
OSCEF: The Open-Source CIM-EARTH Framework

User Manual for Version 1.0∗

Sou-Cheng T. Choi† Todd Munson‡

March 11, 2014

Argonne National Laboratory Technical Report ANL/MCS-TM-339

∗This work was supported by the U.S. National Science Foundation Decision Making Under Uncertainty Program under
grant SES-0951576 and by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research under
contract DE-AC02-06CH11357.
†Computation Institute, University of Chicago, Chicago, IL 60637; e-mail: sctchoi@ci.uchicago.edu.
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail: tmunson@mcs.anl.

gov.

i

sctchoi@ci.uchicago.edu
tmunson@mcs.anl.gov
tmunson@mcs.anl.gov

Contents

List of Figures iii

List of Tables iii

1 Introduction 1

2 Quick Start 1
2.1 Download and Install . 1

2.1.1 Before Installation . 1
2.1.2 Installation of OSCEF . 1
2.1.3 Third-Party Data Required . 2

2.2 Running a Complete Test Case . 3
2.3 Modifying a Test Case . 4

2.3.1 Getting Help . 5

3 Social Accounting Matrices 5
3.1 Data Representation . 5

3.1.1 Dense Matrix Format . 6
3.1.2 Sparse Matrix Format . 8

3.2 Transformation Tools . 8
3.2.1 Permutations . 9
3.2.2 Renaming Header Codes . 10
3.2.3 Aggregation . 10

4 C++ Classes and APIs 11
4.1 OSCEF Documentation . 14
4.2 Unit Test Suite . 14

A Installing OSCEF on a CI Machine 14

References 16

ii

List of Figures

1 Key for submatrix structure of the SAM. 6
2 C++ classes in OSCEF. 11
3 HTML documentation of a SAM constructor generated by Doxygen. 14
4 HTML documentation of the class List generated by Doxygen. 15

List of Tables

1 SAM dimensions defined by s, f , r, m, and c in various versions of GTAP database. OSCEF 1.0
uses GTAP version 7.1. 6

2 Keys of nonzero blocks in a SAM. 7
3 First indices and header names of submatrices in GTAP SAM version 7.1. 8
4 Metadata of a SAM in dense format. 8
5 Metadata of a SAM in sparse format. 8
6 SAM in dense format. 9
7 SAM in sparse format. 9

iii

Open Source License

Copyright 2013 Sou-Cheng (Terrya) Choi and Todd Munson.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. A copy of the License is available at http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

iv

http://www.apache.org/licenses/LICENSE-2.0

1 Introduction

Computable general equilibrium (CGE) models [6, 8, 11] are used when studying the impacts of economic
activity on climate change and vice versa. These models typically include many countries, each endowed
with different amounts of labor and natural resources; the commodities produced by those countries; and
international trade and transportation of the commodities among the countries. These models are extended
to account for the greenhouse gases emitted from burning fossil fuels. The Open-Source CIM-EARTH
Framework (OSCEF) is an open-source framework for formulating large-scale CGE models [6, 8, 11] based
on the CIM-EARTH architecture [4]. OSCEF Version 1.0 includes basic processing of social accounting
matrices (SAMs), which contain critical input data for CGE models. Section 2 provides a quick installation
guide OSCEF and the third-party libraries, as well as execution of the OSCEF test suite and use cases.
Section 3 describes the SAM data format and Section 4 highlights the design and usage of a few key
application programming interfaces (APIs) in OSCEF.

2 Quick Start

2.1 Download and Install

Following are the basic steps for installing OSCEF on a UNIX platform running the bash shell. For Windows
users, we recommend installing Cygwin (http://www.cygwin.com) and GNU g++. The steps below are
then directly applicable. If you have an account with the Computation Institute (CI) at the University of
Chicago, you can install and run OSCEF in your account; refer to Appendix A for details.

2.1.1 Before Installation

1. Check that the following amount of disk space is available in the machine on which you intend to install
OSCEF.

(a) OSCEF version 1.0: 150 MB

(b) Boost C++ library version 1.54.0: 488.5 MB

2. Check that at least 20 MB of memory are available in the machine for running unit tests.

2.1.2 Installation of OSCEF

1. Download OSCEF source.

(a) The current release can be obtained from

http://www.rdcep.org/oscef

(b) The release can also be obtained from the RDCEP subversion repository by running the command

svn checkout http://svn.ci.uchicago.edu/svn/rdcep-public/oscef/oscef-1.0

the first time; the svn update command can then be used to obtain the latest changes in the
repository. More details are available at http://bit.ly/I2rRYp.

A subdirectory named oscef-1.0 containing the OSCEF source files will be created in the current
directory. All subsequent directory paths are relative to oscef-1.0 unless absolute paths are provided
or otherwise indicated.

2. Download the Boost C++ library from boost.org. Edit your .bash profile to configure the path
to the Boost library. The following example assumes that the BOOST C++ library version 1.54 is
installed in the home directory.

export BOOST_LIB_PATH=~/boost_1_54_0

1

http://www.cygwin.com
http://www.rdcep.org/oscef
http://svn.ci.uchicago.edu/svn/rdcep-public/oscef/oscef-1.0
http://bit.ly/I2rRYp
boost.org

Then run the following command at the prompt.

source ~/.bash_profile

3. (Optional) If you would like to run OSCEF’s unit tests (see Step 6), you need to install the CUTE ver-
sion 1.7.0 standalone library from http://cute-test.com/projects/cute/wiki/CUTE_standalone.
Edit your .bash profile to configure the path to the CUTE library. The following example assumes
that the CUTE library is installed in the home directory.

export CUTE_PATH=~/cute1_7_0

Then run the following command at the prompt.

source ~/.bash_profile

4. (Optional) If you would like to execute OSCEF with a detailed runtime log, you need to install the
LOG4CPP library from http://sourceforge.net/projects/log4cpp/files. Edit your .bash profile

to configure the path to the LOG4CPP library. The following example assumes that the LOG4CPP
library is installed in the home directory.

export LOG4CPP_PATH=~/log4cpp

Then run the following command at the prompt.

source ~/.bash_profile

5. (Optional) The OSCEF API documentation in both HTML and PDF is found in the subdirectory
doc. To regenerate the documentation, you need to install Doxygen from http://www.stack.nl/

~dimitri/doxygen.

6. (Optional) To run OSCEF’s unit tests in Test.cpp, install the CUTE library (see Step 3), go into
the subdirectory tests, and execute the shell script Test.sh. If the installation of OSCEF has been
successful, “success” should be the first word in every line of output before the last. the last few lines
of the output should look similar to the following.

11655:#success CgeTest::operator() OK

12178:#success CgeTest::cgeConstructorTest OK

14048:#success CgeTest::cgeWriteMcpTest OK

14056:~~~~~ End of all OSCEF unit tests ~~~~~

2.1.3 Third-Party Data Required

OSCEF uses social accounting matrices (SAMs) from the Global Trade Analysis Project (GTAP) version 7.1
database. Users need to subscribe to the database to obtain the SAMs; see https://www.gtap.agecon.

purdue.edu/databases for details. The default location for installing the SAMs is ../datasets/gtap-7.1.
Regarding the structure of and OSCEF operations on SAMs, see Section 3.

2

http://cute-test.com/projects/cute/wiki/CUTE_standalone
http://sourceforge.net/projects/log4cpp/files
http://www.stack.nl/~dimitri/doxygen
http://www.stack.nl/~dimitri/doxygen
https://www.gtap.agecon.purdue.edu/databases
https://www.gtap.agecon.purdue.edu/databases

2.2 Running a Complete Test Case

The subdirectory useCases contains the OSCEF test cases that you can examine, compile, and run. The fol-
lowing three programs, for example, are used to generate data for the “BTA 16x16” model in [4, Section 4.2].
These programs require SAMs from GTAP; see Section 2.1.3 for information.

Program 1. oscefAggSec aggregates GTAP 7.1 SAMs from 57 to 16 sectors following the mapping defined
in sector merger.csv and outputs the aggregated SAMs in useCases/outS16.

Program 2. oscefAggFac reads the sector-aggregated files, aggregates the five factors into four according to
the mapping defined in factor merger.csv and outputs the aggregated SAMs in useCases/outS16F4.

Program 3. oscefAggReg reads the factor-aggregated files, aggregates from 112 to 16 regions using the map-
ping defined in region merger.csv and outputs the resultant SAMs in useCases/outS16F4R16.

The following are key steps to compile and execute this use case.

Step 1. Change to the useCases directory.

Step 2. To compile and run the sectoral aggregation program:

(a) Compile the file oscefAggSec.cpp by running the following at the prompt.

make oscefAggSec

(b) Run oscefAggSec by providing up to three input arguments. When all or some of the arguments
are missing, the program provides default values.

i. The first argument is the directory containing the GTAP SAMs input.

ii. The second argument is the OSCEF mapping for sectoral aggregation.

iii. The third argument is the directory for the aggregated SAMs output.

For example, you can run the following command.

./oscefAggSec "../../datasets/gtap-7.1/" "../data/bta16x16/sector_merger.csv" "outS16/"

The command will produce aggregated files in the subdirectory useCases/outS16.

Step 3. To compile and run the factoral aggregation program:

(a) Compile the file oscefAggFac.cpp by running the following at the prompt.

make oscefAggFac

(b) Run oscefAggFac by providing up to three input arguments. When all or some of the arguments
are missing, the program provides default values.

i. The first argument is the directory containing the SAMs produced by oscefAggSec.

ii. The second argument is the OSCEF mapping for factoral aggregation.

iii. The third argument is the directory for the aggregated SAMs output.

For example, you can run the following command.

./oscefAggFac "outS16/" "../data/bta16x16/factor_merger.csv" "outS16F4/"

The command will produce aggregated files in the subdirectory useCases/outS16F4.

Step 4. To compile and run the regional aggregation program:

(a) Compile the file oscefAggReg.cpp by running the following at the prompt.

make oscefAggReg

(b) Run oscefAggReg by providing up to three input arguments. When all or some of the arguments
are missing, the program provides default values.

3

i. The first argument is the directory containing the SAMs produced by oscefAggFac.

ii. The second argument is the OSCEF mapping for regional aggregation.

iii. The third argument is the directory for the aggregated SAMs output.

For example, you can run the following command.

./oscefAggReg "outS16F4/" "../data/bta16x16/region_merger.csv" "outS16F4/"

The command will produce aggregated files in the subdirectory useCases/outS16F4R16.

Alternatively, oscefAgg combines all three aggregation steps in a single program. The C++ source file
can be compiled by running the following at the prompt.

make oscefAgg

Run oscefAgg by providing up to three input arguments. When all or some of the arguments are missing,
the program provides default values.

1. The first argument is the directory containing the GTAP SAMs input.

2. The second argument is the directory containing the OSCEF mappings for regions, factoral, and
sectoral aggregation.

3. The third argument is the directory for the aggregated SAMs output.

For example, you can run the following command.

./oscefAgg "../../datasets/gtap-7.1/" "../data/bta16x16/" "outS16F4R16/"

The command will produce aggregated files in the subdirectory useCases/outS16F4R16.

2.3 Modifying a Test Case

Users can modify and run their own test cases by changing the mapping files for aggregation. For example,
the default oscefAgg aggregates GTAP 7.1 SAMs from 57 to 16 sectors, 5 to 4 factors, and 112 to 16 regions
using the mappings in ../data/bta16x16. To further aggregate the SAMs into only two regions, you can
use the following steps.

1. Create a mapping file with the final 16 regions from the BTA case in the first column, mapping “USA”
to “USA”, and mapping the other 15 regions to “ROW” (rest of world) in the second column.

2. Run the oscefAggReg command using the new mapping file. For example, you can run the following
command.

./oscefAggReg "outS16F4R16/" "tworeg.csv" "outS16F4R2/"

where tworeg.csv is the file containing the new region mapping. The command will produce aggre-
gated files in the subdirectory useCases/outS16F4R2.

Another exercise is to repeat the use case in Section 2.2 but aggregate all sectors into 10 (and all marginal
commodities into one), five factors into four, and all regions into 10 using the mappers in ../data/bta10x10/.
For example, you could run the following command:

./oscefAgg "../../datasets/gtap-7.1/" "../data/bta10x10/" "myoutS10F4R10/"

This will store the output from this aggregation in the myoutS10F4R10. Since GTAP allows distribution of
SAMs with up to 10 sectors and regions, we include the aggregated SAMs in outS10F4R10 for reference.
There should be no difference between the reference SAMs in outS10F4R10 and the generated ones in
myoutS10F4R10.

4

2.3.1 Getting Help

If your installation fails and you need help, please first attempt the following steps and then provide us with
the requested information.

1. You are attempting to run the OSCEF unit tests in Step 6 from the tests directory.

(a) Run make clean at the prompt.

(b) Run the following command at the prompt.

./Test.sh > Test.log 2>&1

Compare your Test.log with the reference Test-ref.log contained in the distribution.

(c) Send rdcep-support@ci.uchicago.edu the files Test.log, Test-stdout.log, Test-stderr.log,
and Test-make-stderr.log if any of them exists.

2. You are attempting to run the OSCEF use cases from the useCases directory (see Section 2.2 for more
details).

(a) Run make clean at the prompt.

(b) Run the following command at the prompt.

./oscefAggSec "../../datasets/gtap-7.1/" > oscefAggSec.log 2>&1

Compare your oscefAggSec.log with the reference oscefAggSec-ref.log contained in the dis-
tribution.

(c) Send rdcep-support@ci.uchicago.edu your file oscefAggSec.log if it exists.

3. Other information to include in your email:

(a) What operating system and version are you using?

(b) What version of OSCEF are you using?

(c) Any additional information such as a workaround or suggested solution?

3 Social Accounting Matrices

We represent the economic data input to the CGE models using social accounting matrices and standardize
on the particular format output by GTAP version 7.1. Here we discuss the format and contents as well as
the transformations applied to produce different regional and sectoral aggregations.

3.1 Data Representation

The economic data consists of a set of files, one file per region, stored within a single directory. Each file
contains a table with the economic data for the region in a column separated values format. These files are
labeled as SAM [region code] [year].csv (e.g. SAM USA 2004.csv).

The size of each table is a function of s, f , r, m, and c: s is the number of sectors; f is the number of
factors; r is the number of regions; m is the number of transportation sectors, typically air, land, sea; and c
is the number of capital goods. The values for the various GTAP versions are found in Table 1. Each table is
sparse and the nonzeros occur in specific submatrices. In particular the table can be partitioned into 19×19
submatrices, many of which are zero. Figure 1 shows the submatrix structure, in which the nonzero regions
are colored. The nonzero submatrics contain information related to expenditures, taxes and subsidies, and
international trade. The nonzero submatrices can be grouped into roughly eight categories, as summarized
in Table 2. The indices for the submatrices in the overall matrix can be defined in terms of s, f , r, m, and c.
We list the beginning indices of each submatrix and their headers in Table 3. The headers are tagged with

5

rdcep-support@ci.uchicago.edu
rdcep-support@ci.uchicago.edu

Table 1: SAM dimensions defined by s, f , r, m, and c in various versions of GTAP database. OSCEF 1.0
uses GTAP version 7.1.

GTAP Version 5.3/5.4 Version 6.0 Version 7.0 Version 7.1 Version 8
Description Code Year 1997 Year 2001 Year 2004 Year 2004 Year 2007

Aggregated Sectors s 57 57 57 57 57
Aggregated Factors f 5 5 5 5 5
Aggregated Regions r 78 85 113 112 129
Margin Commodities m 3 3 3 3 3
CGDS (capital goods) c 1 1 1 1 1

{S}, {R}, {F} and {M}, which represent code names for sectors, regions, factors, and margins, respectively,
and I and J indicate the index for the block. The information in a SAM is very rich. For example, if we
consider the submatrix T4,3 “Factor demand,” the sum represents the GDP for the region. In the rest of
this subsection, we present two formats that OSCEF used for reading, writing, and processing a SAM.

1 1 1 1
SAM_R1 m_S1 m_S2 m_S3 d_S1 d_S2 d_S3 a_S1 a_S2 a_S3 labor capital 12 tmm_R113 tmm_R314 tmm_R215 tee_R116 tee_R317 tee_R218 tssm_S119 tssm_S220 tssm_S321 tssd_S122 tssd_S223 tssd_S324 tf_labor25 tf_capital26 S1_R127 S1_R328 S1_R2ww_R1 ww_R2 ww_R3 REGHOUS HOUS 35 SALTAX36 PRODTAX37 DIRTAXGovt CGDS Total
1 m_S1
2 m_S2
3 m_S3 Cnsmer Govt Capitl
4 d_S1 demnd demnd goods
5 d_S2 expnd
6 d_S3
7 a_S1
8 a_S2
9 a_S3
10 labor
11 capital
12 tmm_R1
13 tmm_R2
14 tmm_R3
15 tee_R1
16 tee_R2
17 tee_R3
18 tssm_S1
19 tssm_S2
20 tssm_S3 Cnsmer Govt CGDS
21 tssd_S1 sales sales sales
22 tssd_S2 tax tax tax
23 tssd_S3
24 tf_labor
25 tf_capital
26 TR_R1
27 TR_R2
28 TR_R3

m 29 S1_pvst
30 ww_R1
31 ww_R2
32 ww_R3

1 33 REGHOUS
1 34 HOUS Inc-Save Trnsfrs
1 35 SALTAX
1 36 PRODTAX
1 37 DIRTAX
1 38 Govt Rtax-Trans
1 39 CGDS Depric Net save

Total TOTAL

R

R

S

S

S

F

R

R

S

S

SSFR

F

Bilateral imports

R
O

W
 S

U
M

S

COLUMN SUMS

S S S F RRR

Revenues

Factor demands

Import taxes

After tax income

Production taxes

I/O matrix of Imports

I/O matrix of
domestics

Export taxes

Factor taxes

Transport margins

Trade balance

Sales Taxes on
imports

Sales taxes on
domestics

Income taxes

Bilateral exports

Figure 1: Key for submatrix structure of the SAM.

3.1.1 Dense Matrix Format

For GTAP version 7.1, the overall tables is a 978× 978 matrix, not including the row and column headers.
The metadata of the dense format is described in Table 4. OSCEF requires SAMs to be stored as text in csv
(comma-separated values) files. The first row contains the text label “SAM” and column headers, finishing
with the text label “Total” in the last entry. Then we have row headers followed by the matrix values itself,
with the last column being row sums. The last row starts with text label “Total” again, followed by column
sums and a final entry of total matrix sum.

Table 6 is an instance of an aggregated SAM with s = 4, f = 2, r = 3, and m = 1. To save space, we
have omitted rows 4 to 43, some zero entries in rows 1-3 and 44, and some entries in the last row of column
sums; the omissions are indicated by ellipses (. . .).

6

Table 2: Keys of nonzero blocks in a SAM.

TI,J Key Values
Domestic Commodity Producers (including government services)
T1,3 Expenditure on commodities from Armington importers +
T2,3 Expenditure on commodities from domestic producers +
T4,3 Expenditure on factors from domestic consumers +
T7,3 Taxes paid on commodities from Armington importers +/−
T8,3 Taxes paid on commodities from domestic producers +/−
T9,3 Taxes paid on factors from domestic consumers +/−
T16,3 Taxes paid on revenue +/−
Domestic Investment Production
T1,19 Investment expenditure on imported commodities +
T2,19 Investment expenditure on domestic commodities +
T7,19 Investment taxes paid on imported commodities +/−
T8,19 Investment taxes paid on domestic commodities +/−
T16,19 Investment taxes paid on revenue +/−
Armington Importers
T12,1 Armington importer bilateral import expenditure +
T10,1 Armington importer homogeneous transport expenditure +
T5,1 Armington taxes on imports paid to importing country +/−
T6,2 Armington taxes on imports paid to exporting country +/−
Homogeneous Transport
T2,11 Domestic transportation exported to homogeneous transport +
Government Consumer
T1,18 Government expenditure on imported commodities +
T2,18 Government expenditure on domestic commodities +
T7,18 Government tax on imported commodities +/−
T8,18 Government tax on domestic commodities +/−
T18,13 Government income from taxes +
Private Consumer
T1,14 Consumer expenditure on imported commodities +
T2,14 Consumer expenditure on domestic commodities +
T7,14 Consumer tax on imported commodities +/−
T8,14 Consumer tax on domestic commodities +/−
T19,4 Capital depreciation +
T19,11 Homogeneous transport trade imbalance +/−
T19,12 Trade imbalance +/−
T19,13 Net consumer expenditure on investment +
T13,4 After tax revenue from consumer factors +
T17,4 Consumer taxes paid on consumer factors +/−
T19,4 Consumer depreciation paid on consumer factors +
T14,13 Consumer expenditure on products +
Tax Accounts
T13,5 Taxes collected on import duties +/−
T13,6 Taxes collected on export duties +/−
T13,7 Taxes collected on imported commodities +/−
T13,8 Taxes collected on domestic commodities +/−
T13,9 Taxes collected on consumer factors paid by producers +/−
T13,16 Taxes collected from producer revenue (including investment) +/−
T13,17 Taxes collected on consumer factors paid by consumers +/−
Other Accounts
T3,2 Total producer revenue +
T11,10 Total homogeneous transport expenditures for the region +
T2,12 Total domestic commodities expenditures exported +

7

Table 3: First indices and header names of submatrices in GTAP SAM version 7.1.

I, J First Indices Header I, J First Indices Header

1 1 m {S} 11 5s+2f+2r+mr+1 {M} pvst
2 s+1 d {S} 12 5s+2f+2r+mr+m+1 ww {R}
3 2s+1 a {S} 13 5s+2f+3r+mr+m+1 REGHOUS
4 3s+1 {F} 14 5s+2f+3r+mr+m+2 HOUS
5 3s+f+1 tmm {R} 15 5s+2f+3r+mr+m+3 SALTAX
6 3s+f+r+1 tee {R} 16 5s+2f+3r+mr+m+4 PRODTAX
7 3s+f+2r+1 tssm {S} 17 5s+2f+3r+mr+m+5 DIRTAX
8 4s+f+2r+1 tssd {S} 18 5s+2f+3r+mr+m+6 Govt
9 5s+f+2r+1 tf {F} 19 5s+2f+3r+mr+m+7 CGDS
10 5s+2f+2r+1 {M} {R}

3.1.2 Sparse Matrix Format

Since most SAM matrices contain a lot of zeros (≥ 70% of all entries), we could use sparse matrices for
storage to reduce memory usage by 50% or more. The first line in a sparse-SAM csv file is the same as
that in a dense-SAM file. It is then followed by each nonzero row of a SAM, starting with the row index,
and pairs of column indices and nonzero entries in the row. The last two lines in the csv file are dense and
contain row sums, column sums, and matrix sum as depicted in Table 5. Table 7 is the same example SAM
from Section 3.1.1 except that it is defined in sparse format.

3.2 Transformation Tools

In this section, we summarize a few standard operations commonly performed on a SAM or a set of SAMs.
These operations include symmetric permutations; renaming header codes; and aggregation of SAMs by
sectors, factors, regions, and marginal commodities. In each operation, a sequence of orthogonal updates on
social accounting matrix S is performed such that S ← QTSQ, where Q is a square or rectangular orthogonal
matrix; that is, QTQ = I, where I is the identity matrix. A list or a mapper is specified by the OSCEF user
for constructing Q. The list or mapper can be defined by an external text csv file with one or two columns
or can be programmatically created by the C++ classes List or Mapper in OSCEF.

The basic steps for constructing Q are to select relevant block indices (I, J), where 1 ≤ I, J ≤ 19, and
TI,J 6= 0 so that QTSQ actually is applied only on submatrix TI,J ← UTTI,JV for some orthogonal matrices
U and V ; that is, QTSQ has no effect on other subblocks TK,L for K 6= I and L 6= J . The choices of (I, J)
depends on whether the operation is related to sectors, factors, regions, or marginal commodities. In the
following subsections, we describe the specific details of a list or a mapper, the orthogonal matrices, and
their defining indices for each class of operations.

Table 4: Metadata of a SAM in dense format.

SAM [Column headers] Total

[Row headers] [Dense matrix] [Row sums]

Total [Column sums] [Matrix sum]

Table 5: Metadata of a SAM in sparse format.

SAM SPARSE [Column headers] Total

[Sparse matrix]

Total [Row sums]

Total [Column sums] [Matrix sum]

8

Table 6: SAM in dense format.

SAM ,1 m_ALL ,2 m_DWE ,3 m_TRA ,4 m_GOV ,5 d_ALL ,6 d_DWE ,7 d_TRA ,8 d_GOV ,9 a_ALL ,10

a_DWE ,11 a_TRA ,12 a_GOV ,13 labor ,14 capital ,15 tmm_USA ,16 tmm_ROW ,17 tmm_DEV

,18 tee_USA ,19 tee_ROW ,20 tee_DEV ,21 tssm_ALL ,22 tssm_DWE ,23 tssm_TRA ,24

tssm_GOV ,25 tssd_ALL ,26 tssd_DWE ,27 tssd_TRA ,28 tssd_GOV ,29 tf_labor ,30

tf_capital ,31 TRA_USA ,32 TRA_ROW ,33 TRA_DEV ,34 TRA_pvst ,35 ww_USA ,36 ww_ROW

,37 ww_DEV ,38 REGHOUS ,39 HOUS ,40 SALTAX ,41 PRODTAX ,42 DIRTAX ,43 Govt ,44 CGDS ,

Total

1 m_ALL ,0 ,... ,0 ,791361 ,2413 ,22388 ,56489 ,0 ,... ,0 ,464855 ,0 ,0 ,0 ,1388 ,240315 ,1579208

2 m_DWE ,0,...,0

3 m_TRA ,0 ,... ,0 ,30156 ,0 ,13896 ,4074 ,0 ,... ,0 ,16689 ,0 ,0 ,0 ,375 ,2 ,65191

...

44 CGDS ,0 ,... ,0 ,1045522 ,0 ,... ,0 ,31859 ,0 ,316548 ,219544 ,584979 ,0 ,... ,0 ,2198452

Total ,1579208 ,0 ,65191 ,37171 ,14911409 ,1191313 ,... ,2198452 ,80902362

Table 7: SAM in sparse format.

SAM SPARSE ,1 m_ALL ,2 m_DWE ,3 m_TRA ,4 m_GOV ,5 d_ALL ,6 d_DWE ,7 d_TRA ,8 d_GOV ,9

a_ALL ,10 a_DWE ,11 a_TRA ,12 a_GOV ,13 labor ,14 capital ,15 tmm_USA ,16 tmm_ROW ,17

tmm_DEV ,18 tee_USA ,19 tee_ROW ,20 tee_DEV ,21 tssm_ALL ,22 tssm_DWE ,23 tssm_TRA

,24 tssm_GOV ,25 tssd_ALL ,26 tssd_DWE ,27 tssd_TRA ,28 tssd_GOV ,29 tf_labor ,30

tf_capital ,31 TRA_USA ,32 TRA_ROW ,33 TRA_DEV ,34 TRA_pvst ,35 ww_USA ,36 ww_ROW

,37 ww_DEV ,38 REGHOUS ,39 HOUS ,40 SALTAX ,41 PRODTAX ,42 DIRTAX ,43 Govt ,44 CGDS ,

Total

1 ,9 ,791361 ,10 ,2413 ,11 ,22388 ,12 ,56489 ,39 ,464855 ,43 ,1388 ,44 ,240315

3 ,9 ,30156 ,11 ,13896 ,12 ,4074 ,39 ,16689 ,43 ,375 ,44 ,2

...

44 ,14 ,1045522 ,34 ,31859 ,36 ,316548 ,37 ,219544 ,38 ,584979

Total ,1579208 ,0 ,65191 ,37171 ,14911409 ,1191313 ,... ,2198452

Total ,1579208 ,0 ,65191 ,37171 ,14911409 ,1191313 ,... ,2198452 ,80902362

3.2.1 Permutations

Symmetric permutations on a SAM can be on sectors, factors, regions, and margins. A sector permutation
permutes rows or columns in a block related to sectors, whose row header or column header is tagged with
“{S}” in Table 3. The sectoral block index set is thus defined as I ≡ {1, 2, 3, 7, 8}, and its complement is
Ic ≡ {1, . . . , 19}\I.

Suppose there are four sectors in an economy, whose codes are ALL, DWE, TRA, and GOV. Let them be the
row and column headers of T1,3 in order. If we want to rearrange the rows and columns of T1,3 with the new
order DWE, ALL, GOV, and TRA instead, OSCEF needs the following input csv list file with a column of the
sectoral codes in the new order:

DWE

ALL

GOV

TRA

Alternatively, the list can be programmatically constructed by the C++ class Sectors, which is a subclass
of List, provided by OSCEF. With this list, OSCEF’s method sectorPermute in the class Sam defines a

permutation matrix P =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
. Let TI,J ∈ Rp×q. We have the following four defining cases for U and V

9

in terms of P , the identity matrices Ip and Iq, and index sets I and Ic.
U = P, V = Iq if I ∈ I, J ∈ Ic

U = Ip, V = P if I ∈ Ic, J ∈ I
U = V = P if I ∈ I, J ∈ I
U = Ip, V = Iq if I ∈ Ic, J ∈ Ic.

(1)

When U or V is an identity matrix or TI,J = 0, of course we do not carry out the matrix multiplication
explicitly. The implementation also permutes the header labels accordingly.

Similar permutations for regions, factors, and marginal commodities can be defined. The differences are
in the definition of index set I.

I =


{1, 2, 3, 7, 8} for sectoral operations

{5, 6, 10, 12} for regional operations

{4, 9} for factoral operations

{1, 2, 3, 7, 8, 10, 11} for marginal operations.

(2)

Extra care is exercised for operations on a submatrix with row or column index 10, found in regional or
marginal permutations. The reason is that it is composed of m blocks of all regions, where m is the number
of marginal commodities. Thus, a regional permutation for T10,1 is Diag(UT, . . . , UT) × T10,1, where Diag
gives a block-diagonal matrix.

We note that marginal commodities are subsets of sectors. Thus marginal permutations on sectoral
submatrices operate only on the relevant rows and columns related to marginal commodities but not to
other sectors. While Sam::sectorPermute is applicable to permuting marginal commodities, we also have
a dedicated method, Sam::marginPermute, for the purpose.

3.2.2 Renaming Header Codes

Renaming header codes on a SAM can be selectively performed on sectoral, factoral, regional, or marginal
commodity submatrices. Suppose we have only two regions USA and ROW (rest of the world) and that
they are associated with the SAM files SAM USA 2004.csv and SAM ROW 2004.csv, respectively. If we want
to rename ROW to NUS (not US), then we may define the following mapper in a csv file with two columns.

USA,USA

ROW,NUS

The first column consists of the original regional codes and the second column the new codes. Then OSCEF’s
interface sectorPermute in the C++ class Sam defines U = Ip and V = Iq for each 0 6= TI,J ∈ Rp×q as a
special case of regional permutations defined in the previous subsection (without explicitly carrying out any
matrix multiplication with identity), and the implementation changes the header labels accordingly. Since
the SAM filenames also contain the regional codes, they will be changed as necessary.

Renaming header labels for sectors, factors, and marginal commodities are similar and treated as special
cases of symmetric permutations; see Section 3.2.1. In these cases, however, SAM filenames are not changed
as in a regional operation.

3.2.3 Aggregation

Aggregation of SAMs by sectors, factors, regions, or marginal commodities means identifying the subblock
index set I as in (2) and summing the corresponding rows and columns. The operation returns a new SAM
that is typically a square matrix of smaller size than the original SAM, but with the same total sum.

Suppose we have three sectors in an economy and their codes are ALL, DWE, and TRA. If we want to
combine the first two sectors into one and call the aggregated sector APT, OSCEF needs the following input
mapper in a csv file.

ALL,APT

DWE,APT

TRA,TRA

10

The first column is the original sectoral codes, and the second column is their code names after aggregation.

Then OSCEF’s method sectorAggregate in the class Sam defines an matrix P =
[
1 0
1 0
0 1

]
. For each nonzero

TI,J ∈ Rp×q, we have U and V defined as in (1) and act on TI,J on its left and right, respectively. For

instance, suppose we are given the sectoral submatrix in a SAM T1,3 =
[
1 2 3
4 5 6
7 8 9

]
. To aggregate the first two

rows and columns, we update T1,3 ← UTT1,3V = PTT1,3P = [12 9
15 9].

Aggregating regions, factors, and marginal commodities is similar. For regional aggregation, an additional
step sums across all SAM matrices according to the same mapper. The regional codes in the resultant SAMs
are also changed as necessary.

Extra care is exercised for operations on a submatrix with row or column index 10, found in regional or
marginal aggregation. The reason is that it is composed of m blocks of all regions, where m is the number of
marginal commodities. Thus, a regional aggregation for T10,1 is Diag(UT, . . . , UT)× T10,1, where Diag gives
a block-diagonal matrix.

We note that marginal commodities are subsets of sectors. Thus, marginal aggregation on sectoral
submatrices operate only on the relevant rows and columns related to marginal commodities but not other
sectors. While Sam::sectorAggregate is applicable to permuting marginal commodities, we also have a
dedicated method, Sam::marginAggregate, for the purpose.

4 C++ Classes and APIs

An important part of this project is to provide tools for reading, writing, and transforming the static data
SAMs for the base year along with corresponding APIs. Figure 2 summarizes the C++ classes we use to
model SAMs. We cannot enumerate all the important practices and guiding principles in developing a large
scientific framework such as OSCEF. Instead, we refer interested readers to some of the more recent trade
books such as [5, 9, 10].

Sam

SamsRegions SectorsMarginsFactorsCgds

Lists MapperOscefException SamDimOscefLogger

PdnFcn CustUtil

Cge

has

inherits

uses

Figure 2: C++ classes in OSCEF.

The following is a list of key APIs in OSCEF version 1.

1. Read and write description of regions and sectors. The following APIs reads in two csv files stored in
a directory called “data.”

Regions regions ("../ data/regionlist.csv");

Sectors sectors ("../ data/sectorlist.csv");

The format of these csv files are simple; see the following table for an example of a list with six regions.

11

No.,String

1,AUS

2,NZL

3,XOC

4,CHN

5,HKG

6,JPN

2. Read and write SAMs. To read a SAM matrix in dense format and write it in sparse format, we can
issue the following commands.

Sam sam ("../ data/SAMS_USA_2004.csv");

bool isSparse = true;

sam.write ("../ output/SAMS_USA_2004.csv", isSparse);

For reading and writing multiple SAMs in sparse format, the APIs are similar except that we use the
class Sams instead of Sam. The second and third arguments to the constructor make the program use
sparse matrices for storage and read the csv files in sparse format.

Sams sams ("../ data", isSparse , isSparse);

sams.write ("../ output", isSparse);

To have the SAM data-storage formats automatically managed by the program, simply call the following
static API before invoking any Sam or Sams constructors.

bool USE_SPARSE = true;

Sam:: setAutoSparsify(USE_SPARSE);

3. Querying social accounting matrices. To retrieve the value of an entry in a SAM, we can use the
following API.

int i = 6, j = 4;

double val = sam.getValue(i, j);

(a) Sparse storage should be used for producers, along with mechanisms to query the nonzero inputs.
The following instance extracts the submatrix T3,2 and stores it in a sparse matrix:

int I = 3, J = 2;

Double_Sparse_Matrix T = sam.getSparseSubmatrix(I, J);

We need to be able to work with these index sets to check consistency later, mainly by way of
intersections. Let I be a given index set of columns. Then S•I = {S•i|i ∈ I} can be retrieved as
a sparse matrix by using the following API.

int I[3] = {1, 2, 5};

Double_Sparse_Matrix T = sam.getSparseColumns(I);

(b) Dense storage should be used for bilateral trade among the regions. There are a few components:
one is the value of the goods traded, and the other is the transport margins. The following
example extracts the submatrix T2,12 and stores it in a dense matrix.

12

int I = 2, J = 12;

Double_Matrix T = sam.getSubmatrix(I, J);

Likewise, S•I can be retrived as a dense matrix with the following API.

int I[3] = {1, 2, 5};

Double_Matrix T = sam.getColumns(I);

4. Consistency checks to ensure balances by sector, region, and international trade flows. The following
API returns true if each row sum ri is numerically equal [7] to its corresponding column sum ci, that
is, |ri − ci| ≤ εmax(|ri|, |ci|) for each row i = 1, . . . , n, where n is the size of the SAM and ε denotes
machine precision.

bool bal = sam.isBalanced ();

If a tolerance parameter is specified, then the API returns true if |ri − ci| ≤ tol × max(|ri|, |ci|) for
each row i = 1, . . . , n. For instance, if the following example returns true with tol = 10−6, then every
pair of sums agree to the most significant six digits.

double tol = 1e-6;

bool bal = sam.isBalanced(tol);

To check if every SAM in a Sams instance is balanced, we provide the following API where tol is
optional and defaults to ε.

bool bal = sams.areBalanced(tol);

5. Aggregation tools for transforming the matrices. To aggregate by regions, we use the following.

sams.regionAggregate ("../ data/region_merger.txt");

The following is an example mapper, also a csv file, in which the first column contains codes of three
existing regions in a SAM or multiple SAMs, to be aggregated into a new region called “URD” as listed
in the second column of the file.

USA ,URD

ROW ,URD

DEV ,URD

To aggregate by sectors, we use the following.

sam.sectorAggregate ("../ data/sector_merger.csv");

To aggregate by factors, we use the following.

sam.factorAggregate ("../ data/factor_merger.csv");

13

Figure 3: HTML documentation of a SAM constructor generated by Doxygen.

6. Diagnostics. We provide methods write, print, isValid for classes Sam and Sams so that the data of
an instance can be written to an external file or printed to standard output. For example, we have the
following.

sam.print();

7. Logging. Users may take advantage of the third-party package Log4Cpp [3] for logging messages to an
external file at various detail levels such as INFO, WARN, DEBUG, and ERROR. The employment of

the package is optional at compilation time of OSCEF. OSCEF_DEBUG ("Size=%d", sam.getSize ());

4.1 OSCEF Documentation

In addition to this technical report, we also use the third-party package Doxygen [2] for creating online
HTML documentation. For example, Figure 3 provides an impression of the Doxygen documentation for the
constructor of SAM generated from the following annotated comment. Figure 4 is a partial display of the
documentation for the class List with an inheritance graph.

/**

* @brief Sam constructor reads an external standardized SAM file.

*

* @param filename Path to a SAMS file.

*

* @param sparse Flag to use sparse data structure. Defaults to false.

*

* @param sparseFormat Flag to indicate if the external SAM file is in sparse

* format. Defaults to false.

*/

Sam::Sam(const string& filename , const bool sparse , const bool sparseFormat);

4.2 Unit Test Suite

Development and quality of OSCEF APIs is driven by rigorous unit tests built on CUTE [1]. A suite of
more than 200 short and longer unit tests are available with the OSCEF source code for verification and
extension. The short tests take about ten seconds to execute and the longer tests are optional.

A Installing OSCEF on a CI Machine

If you have an account with the Computation Institute (CI) at the University of Chicago, installation of
OSCEF can be simplified.

14

Figure 4: HTML documentation of the class List generated by Doxygen.

1. Remote login from your computer to a CI machine using

ssh yourUserLogin@login.ci.uchicago.edu

2. The Boost C++ libraries are already installed on the CI machines and you need to load the appropriate
module following the two steps below.

(a) Add the following to your .bashrc file.

[-f /soft/Modules/etc/modules.sh] && . /soft/Modules/etc/modules.sh

Then edit your .bash profile to configure the path to the Boost library.

export BOOST_LIB_PATH=$MODULEPATH

(b) Run the following commands at the prompt.

source ~/.bashrc

source ~/.bash_profile

module load boost

You will receive the following message if the Boost library is successfully loaded.

boost version 1.48.0 (gnu-4.1 compiler) loaded

3. Follow Steps 3 - 6 in Section 2.1.2.

15

References

[1] CUTE: C++ Unit Testing Easier. http://cute-test.com.

[2] Doxygen documentation. http://www.doxygen.org.

[3] Log for C++ Project. http://log4cpp.sourceforge.net.

[4] J. Elliott, I. Foster, K. Judd, E. Moyer, and T. Munson, CIM-EARTH: Framework and Case
Study, The B.E. Journal of Economic Analysis & Policy, 10 (2010).

[5] M. Gregoire, N. A. Solter, and S. J. Kleper, Professional C++, John Wiley & Sons, 2011.

[6] L. Johansen, A Multisectoral Study of Economic Growth, North Holland, Amsterdam, 1960.

[7] D. E. Knuth, The Art of Computer Programming. Vol. 2, Addison-Wesley Publishing Co., Reading,
Mass., second ed., 1981. Seminumerical algorithms, Addison-Wesley Series in Computer Science and
Information Processing.

[8] S. Robinson, Macroeconomics, Financial Variables, and Computable General Equilibrium Models,
World Development, 19 (1991), pp. 1509–1525.

[9] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 2003.

[10] , Programming: Principles and Practice Using C++, no. v. 10 in Developer’s Library, Addison-
Wesley, 2009.

[11] I. Sue Wing, Computable General Equilibrium Models and Their Use in Economy-Wide Policy Anal-
ysis, Technical Note 6, Joint Program on the Science and Policy of Global Change, 2004.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National
Laboratory (“Argonne”) under Contract DE-AC02-06CH11357 with the U.S. Department of Energy. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

16

http://cute-test.com
http://www.doxygen.org
http://log4cpp.sourceforge.net

	List of Figures
	List of Tables
	Introduction
	Quick Start
	Download and Install
	Before Installation
	Installation of OSCEF
	Third-Party Data Required

	Running a Complete Test Case
	Modifying a Test Case
	Getting Help

	Social Accounting Matrices
	Data Representation
	Dense Matrix Format
	Sparse Matrix Format

	Transformation Tools
	Permutations
	Renaming Header Codes
	Aggregation

	C++ Classes and APIs
	OSCEF Documentation
	Unit Test Suite

	Installing OSCEF on a CI Machine
	References

