

BL600 smart BASIC Module
User Manual
Release 1.5.66.0

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940

Hong Kong: +852-2923-0610

www.lairdtech.com/wireless

http://www.lairdtech.com/wireless

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

2 Laird Technologies

© 2013 Laird Technologies

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system,
or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior
written permission of Laird Technologies.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To
the extent permitted by law no liability (including liability to any person by reason of negligence) will be
accepted by Laird Technologies, its subsidiaries or employees for any direct or indirect loss or damage caused
by omissions from or inaccuracies in this document.

Laird Technologies reserves the right to change details in this publication without notice.

Windows is a trademark and Microsoft, MS-DOS, and Windows NT are registered trademarks of Microsoft
Corporation. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed to Laird
Technologies and its subsidiaries.

Other product and company names herein may be the trademarks of their respective owners.

Laird Technologies

Saturn House,

Mercury Park,

Wooburn Green,

Bucks HP10 0HH,

UK.

Tel: +44 (0) 1628 858 940

Fax: +44 (0) 1628 528 382

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

3 Laird Technologies

REVISION HISTORY

Version Revisions Date Change History

1.0 1 Feb 2013 Initial Release

1.1.50.0r3 3 Apr 2013 Production Release

1.1.51.0 15 Apr 2013 Incorporate review comments for JG

1.1.51.5 24 Apr 2013 Engineering release

1.1.53.10 8 May 2013 Engineering release with custom service capability

1.1.53.20 12 Jun 2013 Engineering release with Virtual Serial Service capability

1.2.54.0 29 Jun 2013 Production Release

1.2.55.3 26 Jul 2013 Engineering release with PWM & FREQUENCY output

1.2.55.5 8 Aug 2013 Engineering release with VSP/Uart Bridging

1.2.55.8 12 Aug 2013 Engineering release with AT+CFG command

1.2.55.12 29 Aug 2013 Engineering release with sysinfo$()

1.3.57.0 12 Sep 2013 Engineering release with UartCloseEx

1.4.59.0 19 Dec 2013 Engineering release v1.4.59.0

1.5.62.0 4 Jan 2014 Production release v1.5.62.0 (Softdevice 6.0.0)

1.5.65.0 24 Feb 2014 Engineering release v1.5.65.0 (Softdevice 6.0.0)

1.5.66.0 28 Mar 2014 Production release v1.5.66.0 (Softdevice 6.0.0)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

4 Laird Technologies

CONTENTS

Revision History .. 3
Contents ... 4
1. Introduction .. 6

Why Do We Need smart BASIC? ... 6
Why Write Applications? .. 7
What does a BLE Module Contain? ... 7
smart BASIC Essentials .. 8
Developing with smart BASIC ... 9
smart BASIC Operating Modes ... 9
Types of Applications .. 10
Non Volatile Memory .. 11
Using the Module’s Flash File System ... 11

2. Getting Started ... 12
Requirements.. 12
Connecting Things Up ... 12
UWTerminal .. 12
Your First smart BASIC Application ... 18

3. Interactive Mode Commands ... 31
4. smart BASIC Commands ... 49

Syntax .. 49
Functions ... 49
Subroutines ... 49
Statements .. 50
Exceptions ... 50
Language Definitions .. 51
Command .. 51
Variables ... 51
Constants .. 55
Compiler Related Commands and Directives ... 56
Arithmetic Expressions ... 57
Conditionals .. 59
Error Handling ... 66
Miscellaneous Commands .. 70

5. Core Language Built-in Routines .. 75
Result Codes ... 75
Information Routines .. 76
Event & Messaging Routines .. 80
Arithmetic Routines .. 81
String Routines .. 83
Table Routines .. 105
Miscellaneous Routines .. 108
Random Number Generation Routines .. 110
Timer Routines .. 112
Circular Buffer Management Functions .. 119
Serial Communications Routines .. 125
Cryptographic Functions ... 162
File I/O Functions .. 167

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

5 Laird Technologies

Non-Volatile Memory Management Routines .. 173
Input/Output Interface Routines .. 177
User Routines .. 187

6. BLE Extensions Built-in Routines ... 190
MAC Address ... 190
Events and Messages .. 190
Miscellaneous Functions ... 205
Advertising Functions ... 208
Connection Functions ... 219
Security Manager Functions ... 224
GATT Server Functions .. 228
GATT Client Functions ... 265
Attribute Encoding Functions ... 310
Attribute Decoding Functions ... 321
Pairing/Bonding Functions .. 335
Virtual Serial Port Service – Managed test when dongle and application availbable ... 338

7. Other Extension Built-in Routines .. 353
System Configuration Routines .. 353
Miscellaneous Routines .. 353

8. Events & Messages ... 356
9. Module Configuration .. 356
10. Miscellaneous ... 357
11. Acknowledgements ... 358
Index ... 359

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

6 Laird Technologies

1. INTRODUCTION

This user manual provides detailed information on Laird Technologies smart BASIC language which is
embedded inside the BL600 series Bluetooth Low Energy (BLE) modules. This manual is designed to make
handling BLE-enabled end products a straightforward process and it includes the following:

 An explanation of the language’s core and extension functions

 Instructions on how to start using the tools

 A detailed description of all language components and examples of their use

The Laird website contains many complex examples which demonstrate complete applications. For those with
programming experience, smart BASIC is easy to use because it is derived from BASIC language.

BASIC, which stands for Beginners All-Purpose Symbolic Instruction Code, was developed in the early 1960s
as a tool for teaching computer programming to undergraduates at Dartmouth College in the United States.
From the early 70s to the mid-80s, BASIC, in various forms, was one of the most popular programming
languages and the only user programming language in the first IBM PC to be sold in the early 80s. Prior to
that, the first Apple computers were also deployed with BASIC.

Both BASIC and smart BASIC are interpreted languages – but in the interest of run-time speed on an
embedded platform which has limited resources, smart BASIC’s program text is parsed and saved as
bytecodes which are subsequently interpreted by the run-time engine to execute the application. On the
BL600 module platform, the parsing from code test to bytecode is done on a Windows PC using a free cross-
compiler. Other platforms with more firmware code space also offer on-board compiling capabilities.

The early BASIC implementations were based on source code statements which, because they were line
numbered, resulted in non-structured applications that liberally used ‘GOTO’ statements.

At the outset, smart BASIC was developed by Laird to offer structured programming constructs. It is not line
number based and it offers the usual modern constructs like subroutines, functions, while, if and for loops.

smart BASIC offers further enhancement which acknowledges the fact that user applications are always in
unattended use cases. It forces the development of applications that have an event driven structure as
opposed to the classical sequential processing for which many BASIC applications were written. This means
that a typical smart BASIC application source code consists of the following:

 Variable declarations and initialisations

 Subroutine definitions

 Event handler routines

 Startup code

The source code ends with a final statement called WAITEVENT, which never returns. Once the run-time
engine reaches the WAITEVENT statement, it waits for events to happen and, when they do, the appropriate
handlers written by the user are called to service them.

Why Do We Need smart BASIC?

Programming languages are mostly designed for arithmetic operations, data processing, string manipulation,
and flow control. Where a program needs to interact with the outside world, like in a BLE device, it becomes
more complex due to the diversity of different input and output options. When wireless connections are
involved, the complexity increases. To compound the problem, almost all wireless standards are different,
requiring a deep knowledge of the specification and silicon implementations in order to make them work.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

7 Laird Technologies

We believe that if wireless connectivity is going to be widely accepted, there must be an easier way to
manage it. smart BASIC was developed and designed to extend a simple BASIC-like programming language
with all of the tokens that control a wireless connection using modern language programming constructs.

smart BASIC differs from an object oriented language in that the order of execution is generally the same as
the order of the text commands. This makes it simpler to construct and understand, particularly if you’re not
using it every day.

Our other aim in developing smart BASIC from the ground up is to make wireless design of products both
simple and similar in look and feel for all platforms. To do this we are embedding smart BASIC within our
wireless modules along with all of the embedded drivers and protocol stacks that are needed to connect and
transfer data. A run-time engine interprets the customer applications (reduced to bytecode) that are stored
there, allowing a complete product design to be implemented without the need for any additional external
processing capability.

Why Write Applications?

smart BASIC for BLE has been designed to make wireless development quick and simple, vastly cutting down
time to market. There are three good reasons for writing applications in smart BASIC:

 Since the module can auto launch the application each time it powers up, you can implement a

complete design within the module. At one end, the radio connects and communicates while, at the

other end, external interactions are available through the physical interfaces such as GPIOs, ADCs, I2C,

SPI, and UART.

 If you want to add a range of different wireless options to an existing product, you can load

applications into a range of modules with different wireless functionality. This presents a consistent API

interface defined to your host system and allows you to select the wireless standard at the final stage

of production.

 If you already have a product with a wired communications link, such as a modem, you can write a

smart BASIC application for one of our wireless modules that copies the interface for your wired

module. This provides a fast way for you to upgrade your product range with a minimum number of

changes to any existing end user firmware.

In many cases, the example applications on our website and in the applications manual can be modified to
speed up the development process.

What does a BLE Module Contain?

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing solution. Each
one contains:

 A highly integrated radio with an integrated antenna (external antenna options are also available)

 BLE Physical and Link Layer

 Higher level stack

 Multiple GPIO and ADC

 Wired communication interfaces like UART, I2C, and SPI

 A smart BASIC run-time engine

 Program accessible flash memory which contains a robust flash file system exposing a conventional file

system and a database for storing user configuration data

 Voltage regulators and brown-out detectors

http://www.lairdtech.com/bluetooth
http://www.lairdtech.com/

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

8 Laird Technologies

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smart BASIC module from a
hardware perspective on the left and a firmware/software perspective on the right.

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: BLE smart BASIC module block diagram

smart BASIC Essentials

smart BASIC is based upon the BASIC language. It has been designed to be highly efficient in terms of
memory use, making it ideal for low cost embedded systems with limited RAM and code memory.

The core language, which is common throughout all smart BASIC implementations, provides the standard
functionality of any program, such as:

 Variables (integer and string)

 Arithmetic functions

 Binary operators

 Conditionals

 Looping

 Functions and subroutines

 String processing functions

 Arrays (single dimension only)

 I/O functions

 Memory management

 Event handling

The language on the various platforms differs by having a sophisticated set of target-specific extensions, such
as BLE for the module described in this manual.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

9 Laird Technologies

These extensions have been implemented as additional program functions that control the wireless
connectivity of the module including, but not limited to, the following:

 Advertising

 Connecting

 Security – encryption and authentication

 Power management

 Wireless status

Developing with smart BASIC

smart BASIC is one of the simplest embedded environments on which to develop because much of the
functionality comes prepackaged. The compiler, which can be internal or external on a Windows PC,
compiles source text on a line-by-line basis into a stream of bytes (or bytecode) that can be stored to a
custom-designed flash file system. Following that, the run-time engine interprets the application bytecode in-
situ from flash.

To further simplify development, Laird provides its own custom developed application called UWTerminal
which is a full blown customised terminal emulator for Windows, available upon request at no cost. See
Chapter 2 – UWTerminal for information on writing smart BASIC applications using UWTerminal.

UWTerminal also embeds smart BASIC to automate its own functionality; the extension smart BASIC functions
facilitate the automation of terminal emulation functionality.

smart BASIC Operating Modes

Any platform running smart BASIC has up to three modes of operation:

 Interactive Mode – In this mode, commands are sent via a streaming interface which is usually a UART,

and are executed immediately. This is similiar to the behavior of a modem using AT commands.

Interactive mode can be used by a host processor to directly configure the module. It is also used to

manage the download and storage of smart BASIC applications in the flash file system subsequently

used in run-time mode.

 Application Load Mode – This mode is only available if the platform includes the compiler in the

firmware image. The BLE module has limited firmware space and so compilation is only possible

outside the module using a smart BASIC cross-compiler (provided for free).

If this feature is available, then the platform switches into Load mode when the compile (AT+CMP)
command is sent by the host.

In this mode the relevant application is checked for syntax correctness on a line-by-line basis, tokenised
to minimise storage requirements, and then stored in a non-volatile file system as the compiled
application. This application can then be run at any time and can even be designated as the application
to be automatically launched upon power up.

 Run-time Mode – In Run-time mode, pre-compiled smart BASIC applications are read from program

memory and executed in-situ from flash. The ability to run the application from flash ensures that as

much RAM memory as possible is available to the user application for use as data variables.

On startup, an external GPIO input pin is checked. If the state of the input pin is asserted (high or low,
depending on the platform) and $autorun$ exists in the file system, the device enters directly into Run-time
mode and the application is automatically launched. If that input pin is not asserted, then regardless of the
existence of the autorun file, it enters Interactive mode.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

10 Laird Technologies

If the auto-run application completes or encounters a STOP or END statement, then the module returns to
Interactive mode.

It is therefore possible to write autorun applications that continue to run and control the module’s behavior
until power-down, which provides a complete embedded application.

The modes of the module and transitions are illustrated in Figure 2.

Power Up/Start

autorun input

asserted

AND

$autorun$ app

exists

autorun input

deasserted

OR

$autorun$ app

missing

Interactive

mode
Run mode

command

' AT+RUN "file" '

STOP or

END statement or

runtime error and no ONERROR handler

Figure 2: Module modes & transitions

Types of Applications

There are two types of applications used within a smart BASIC module. In terms of composition, they are the
same but run at different times.

 Autorun – This is a normal application named $autorun$ (case insensitive). When a smart BASIC

module powers up, it looks for the $autorun$ application. If it finds it and if the nAutoRUN pin of the

module is at 0v, then it executes it. Autorun applications may be used to initialise the module to a

customer’s desired state, make a wireless connection, or provide a complete application program. At

the completion of the autorun application, which is when the last statement returns or a STOP or END

statement is encountered, a smart BASIC module reverts to Interactive mode.

In unattended use cases, the autorun application is expected to never terminate. It is typical for the last
statement in an application to be the WAITEVENT statement.

Developers should be aware that an autorun application does not need to complete and exit to
Interactive mode. The application can be a complete program that runs within the smart BASIC
module, removing the requirement for an external processor.

Applications can access the GPIOs and ADCs and use ports (UART, I2C, and SPI, for example) to
interface with peripherals such as displays and sensors.

Note: By default, when the autorun application starts up and if the STDOUT is the UART, then it
will be in a closed state. If a PRINT statement is encountered which results in output, then
the UART is automatically opened using default comms paramaters.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

11 Laird Technologies

 Other – Applications can be loaded into the BASIC module and run under the control of an external

host processor using the AT+RUN command. The flash memory supports the storage of multiple

applications. Note that the storage space is module dependent. Check the individual module data

sheet.

Non Volatile Memory

All smart BASIC modules contain user accessible flash memory. The quantity of memory varies between
modules; check the relevant datasheet.

The flash memory is available for three purposes:

 File Storage – Files which are not applications can also be stored in flash memory certificates (for

example X.501). The most common non-application files are data files for application.

 Application Storage – Storage of user applications and the AT+RUN command is used to select which

application runs.

 Non-volatile records – Individual blocks of data can be stored in non-volatile memory in a flat database

where each record consists of a 16 bit user defined ID and data consisting of variable length. This is

useful for cases where program specific data needs to be preserved across power cycles. For example,

passwords.

Using the Module’s Flash File System

All smart BASIC modules hold data and application files in a simple flash file system which was developed by
Laird and has some similarity to a DOS file system. Unlike DOS, it consists of a single directory in which all of
the files are stored.

Note: When files are deleted from the flash file system, the flash memory used by that file is not

released. Therefore, repeated downloads and deletions eventually fill the file system, requiring it
to be completely emptied using the AT&F1 command.

The command AT I 6 returns statistics related to the flash file system when in interactive mode. From within a
smart BASIC application, the function SYSINFO(x), where x is 601 to 606 inclusive, returns similar information.

Note: Non-volatile records are stored in a special flash segment that is capable of coping with cases
where there is no free unwritten flash but there are many deleted records.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

12 Laird Technologies

2. GETTING STARTED

This chapter is a quick start guide for using smart BASIC to program an application. It shows the key elements
of the BASIC language as implemented in the module and guides you through using UWTerminal (a Laird
Terminal Emulation utility available for free) and Laird’s Development Kit to test and debug your application.

For the purpose of this chapter, the examples are based upon Laird’s BL600, a BLE module. However, the
principles apply to any smart BASIC enabled module.

Requirements

To replicate this example, you need the following items:

 A BL600 series development kit

 UWTerminal application (contact Laird for the latest version). The UWTerninal must be at least v6.50.

Save the application to a suitable directory on your PC.

 A cross-compiler application with a name typically formatted as XComp_dddddddd_aaaa_bbbb.exe,

where dddddddd is the first non-space eight characters from the response to the AT I 0 command and

aaaa/bbbb is the hexadecimal output to the command AT I 13.

Note: aaaa/bbbb is a hash signature of the module so that the correct cross-compiler is used to
generate the bytecode for download. When an application is launched in the module, the hash
value is compared against the signature in the run-time engine and, if there is a mismatch, the
application is aborted.

Connecting Things Up

The simplest way to power the development board and module is to connect a USB cable to the PC. The
development board regulates the USB power rail and feeds it to the module.

Note: The current requirement is typically a few mA with peak currents not exceeding 20 mA. We
recommend connecting to a powered USB hub or a primary USB port.

UWTerminal

UWTerminal is a terminal emulation application with additional GUI extensions to allow easy interactions with
a smart BASIC-enabled module. It is similar to other well-known terminal applications such as Hyperterminal.
As well as a serial interface, it can also open a TCP/IP connection either as a client or as a server. This aspect
of UWTerminal is more advanced and is covered in the UWTerminal User’s Guide. The focus of this chapter is
its serial mode.

In addition to its function as a terminal emulator it also has smart BASIC embedded so you can locally write
and run smart BASIC applications. This allows you to write smart BASIC applications which use the terminal
emulation extensions that enable you to automate the functionality of the terminal emulator.

It may be possible in the future to add BLE extensions so that when UWTerminal is running on a Windows 8
PC with Bluetooth 4.0 hardware, an application that runs on a BLE module also runs in the UwTerminal
environment.

Before starting UWTerminal, note the serial port number to which the development kit is connected.

http://www.lairdtech.com/bluetooth
http://contact/

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

13 Laird Technologies

Note: The USB to serial chipset driver on the development kit generates a virtual COM port. Check the
port by selecting My Computer > Properties > Hardware > Device Manager > Ports (COM &
LPT).

To use UWTerminal, follow the steps below. Note that the screen shots may differ slightly as it is a continually
evolving Windows application:

1. Switch on the development board, if applicable.

2. Start the UWTerminal application on your PC to access the opening screen (Figure 3).

Figure 3: UWTerminal opening screen

3. Click Accept to open the configuration screen.

Figure 4: UWTerminal Configuration screen

4. Enter the COM port that you have used to connect the development board. The other default

parameters should be:

Baudrate 9600

Parity None

Stop Bits 1

Data Bits 8

Handshaking CTS/RTS

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

14 Laird Technologies

Note: Comport (not Tcp Socket) should be selected on the left.

5. Select Poll for port to enable a feature that attempts to re-open the comport in the event that the

devkit is unplugged from the PC causing the virtual comport to disappear.

6. In Line Terminator, select the characters that are sent when you type ENTER.

7. Once these settings are correct, click OK to bring up the main terminal screen.

Getting Around UWTerminal

Figure 5: UWTerminal tabs and status lights

The following tabs are located at the top of the UWTerminal:

 Terminal – Main terminal window. Used to communicate with the serial module.

 BASIC – smart BASIC window. Can be used to run BASIC applications locally without a device

connected to the serial port.

Note: You can use any text editor, such as notepad, for writing your smart BASIC applications.

However, if you use an advanced text editor or word processor you need to take care that non-
standard formatting characters are not incorporated into your smartBASIC application.

 Config – Configuration window. Used to set up various parameters within UWTerminal.

 About – Information window that displays when you start UWTerminal. It contains command line

arguments and information that can facilitate the creation of a shortcut to the application and launch

the emulator directly into the terminal screen.

The four LED-type indicators below the tabs display the status of the RS-232 control lines that are inputs to
the PC. The colors are red, green, or white. White signifies that the serial port is not open.

Note: According to RS-232 convention, these are inverted from the logic levels at the GPIO pin

outputs on the module. A 0v on the appropriate pin at the module signifies an asserted state

 CTS – Clear to Send. Green indicates that the module is ready to receive data.

 DSR – Data Set Ready. Typically connected to the DTR output of a peripheral.

 DCD – Data Carrier Detect.

 RI – Ring Indicate.

If the module is operating correctly and there is no radio activity, then CTS should be asserted (green), while
DSR, DCD, and RI are deasserted (red). Again note that if all four are white (Figure 6), it means that the serial
port of the PC has not been opened and the button labelled OpenPort can be used to open the port.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

15 Laird Technologies

Figure 6: White lights

Note: At the time of this manual being written, the DSR line on the BL600 DevKit is connected to the
SIO25 signal on the module which has to be configured as an output in a smart BASIC application
so that it drives the PC’s DSR line. The DCD line (input on a PC) is connected to SIO29 and should
be configured as an output in an application and finally the RI line (again an input on a PC) is
connected to SIO30. Please request a schematic of the BL600 development kit to ensure that these
SIO lines on the modules are correct.

Figure 7: Control options

Next to the indicators are a number of control options (Figure 7) which can be used to set the signals that
appear on inputs to the module.

 RTS and DTR – The two additional control lines for the RS-232 interface.

Note: If CTS/RTS handshaking is enabled, the RTS checkbox has no effect on the actual physical
RTS output pin as it is automatically controlled via the underlying Windows driver. To gain
manual control of the RTS output, disable Handshaking in the Configuration window.

 BREAK – Used to assert a break condition over the Rx line at the module. It must be deasserted after

use. A Tx pin is normally at logic high (> 3v for RS232 voltage levels) when idle; a BREAK condition is

where the Tx output pin is held low for more than the time it takes to transmit 10 bits.

If the BREAK checkbox is ticked then the Tx output is at non-idle state and no communication is

possible with the UART device connected to the serial port.

 LocalEcho – Enables local echoing of any characters typed at the terminal. In default operation, this

option box should be selected because modules do not reflect back commands entered in the terminal

emulator.

 LineMode – Delays transmission of characters entered into UWTerminal until you press Enter. Enabling

LineMode means that Backspace can be used to correct mistakes. We recommend that you select this

option.

 Clear – Removes all characters from the terminal screen.

 ClosePort – Closes the serial port. This is useful when a USB to serial adaptor is being used to drive the

development board which has been briefly disconnected from the PC.

 OpenPort – Re-opens the serial port after it has been manually closed.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

16 Laird Technologies

Useful Shortcuts

There are a number of shortcuts that help speed up the use of UWTerminal.

Each time UWTerminal starts, it asks you to acknowledge the Accept screen and to enter the COM port
details. If you are not going to change these, you can skip these screens by entering the applicable command
line parameters in a shortcut link.

Follow these steps to create a shortcut to UWTerminal on your desktop:

1. Locate and right-click the UwTerminal.exe file, and then drag and drop it onto your desktop. In the

dialog box, select Create Shortcut.

2. Right-click the newly created shortcut.

3. Select Properties.

4. Edit the Target line to add the following commands (Figure 8):

accept com=n baud=bbb linemode

(where n is the COM port that is connected to the dev kit and bbb is the baudrate)

Figure 8: Shortcut properties

Starting UWTerminal from this shortcut launches it directly into the terminal screen. At any time, the status
bar on the bottom left (Figure 9) shows the comms parameters being used at that time. The two counts on
the bottom right (Tx and Rx) display the number of characters transmitted and received.

The information within { } denotes the characters sent when you hit ENTER on the keyboard.

Figure 9: Terminal screen status bar

Using UWTerminal

The first thing to do is to check that the module is communicating with UWTerminal. To do this, follow these
steps:

1. Check that the CTS light is green (DSR, DCD, and RI should be red).

2. Type at.

3. Press Enter. You should get a 00 response (Figure 10).

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

17 Laird Technologies

Figure 10: Interactive command access

UWTerminal supports a range of interactive commands to interact directly with the module. The
following ones are typical:

 AT – Returns 00 if the module is working correctly.

 AT I 3 – Shows the revision of module firmware. Check to see that it is the latest version.

 AT I 13 – Shows the hash value of the smart BASIC build.

 AT I 4 – Shows the MAC address of the module.

 AT+DIR – Lists all of the applications loaded on the module.

 AT+DEL “filename” – Deletes an application from the module.

 AT+RUN “filename” – Runs an application that is already loaded on the module. Please be aware

that if a filename does not contain any spaces, it is possible to launch an application by just

entering the filename as the command.

The next chapter lists all of the Interactive commands.

First, check to see what is loaded on the module by typing AT+DIR and Enter:

If the module has not been used before then you should not see any lines starting with the two digit 06
sequence.

at+dir

06 $factory$
00

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

18 Laird Technologies

Your First smart BASIC Application

Create ‘Hello World’ App

Let’s start where every other programming manual starts… with a simple program to display “Hello World”
on the screen. We use Notepad to write the smart BASIC application.

To write this smart BASIC application, follow these steps:

1. Open Notepad.

2. Enter the following text:

print "\nHello World\n"

3. Save the file with single line test1.sb.

Note the following:

smart BASIC files can have any extension. UWTerminal, which is used to download an application to the
module, strips all letters including and after the first ‘.’ when the file is downloaded to the module.

For example, a file called “this.is.my.first.file.sb” will be downloaded as “this” and so will
“this.is.my.second.file.sb”, but “that.is.my.other.file.sb” will get downloaded as “that”. This has special
significance when you want to manage the special smartBASIC file called “$autorun$” which is run
automatically on power up.

It means that you can have files called “$autorun$.heart.rate.sb” and “$autorun$.blood.pressure.sb” in a
single folder and yet ensure that when downloaded they get saved as “$autorun$”

We recommend always using the extension .sb to make it easier to distinguish between smart BASIC files and
other files. You can also associate this extension with your favorite editor and enable appropriate syntax
highlighting. You may also encounter files with extension .sblib which are library source files provided by
Laird to make developing code easier. They are included in your application using the #include statement
which is is described later in this manual.

As you start to develop more complex applications, you may want to use a more fully-featured editor such as
TextPad (trial version downloadable from www.textpad.com) or Notepad++ (free and downloadable from
http://notepad-plus.sourceforge.net).

Tip: Laird recommends using TextPad or Notepad++ because appropriate color syntax highlighting files
are available for each build of the firmware which means all tokens recognised by smartBASIC are highlighted
in various colors.

If you use Notepad++, do the following:

1. Copy the file smartBASIC(notepad++).xml to the Notepad++ install folder.

2. Launch Notepad++.

3. From the menu, select Language > Define your Language.

4. In the new dialog box, click Import… and select the smartBASIC(notepad++).xml file from the

folder you saved it to. A confirmation dialog box displays stating that the import was successful.

5. Close the User defined Language dialog box and then the Notepad++ application.

6. Reopen Notepad++ and select Language > smartBASIC from the menu.

If you use TextPad, do the following:

http://www.lairdtech.com/bluetooth
http://www.textpad.com/
http://notepad-plus.sourceforge.net/

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

19 Laird Technologies

1. Copy the smartBASIC(Textpad).syn file from the firmware upgrade zip file to the Textpad install

folder (specifically, the system subfolder).

2. As a one-time procedure, start TextPad.

3. Ensure no documents are currently open.

4. From the menu, select Configure > Preferences.

5. Select Document Classes.

6. In the User defined classes list box, add smartBASIC.

7. Click the plus sign (+) to expand Document Classes and select smartBASIC.

8. In the new Files in class smartBASIC list box, add the following two lines:

 *.sb

 *.sblib

9. Click + to expand smartBASIC and select Syntax.

10. Select Enable syntax highlighting to enable it.

11. In the Syntax definition file dropdown menu, enter or select the smartBASIC(textpad).syn file.

12. Click OK.

You should now have TextPad configured so that any file with file extension .sb or .sblib will be
displayed with color syntax highlighting. To change the colors of the syntax highlighting, do the
following:

1. From the Configure/Preferences dialog box, select the Document Classes plus sign (+) (next to

smartBASIC) and select Colors.

2. Change the color of any of the items as necessary.

For example, smartBASIC FUNCTIONs are ‘Keywords 2’, smartBASIC SUBs are ‘Keywords 3’ and

smartBASIC Event and Message IDs (as used in the ONEVENT statement) are ‘Keywords 4’

Figure 11 displays a sample of what a smartBASIC code fragment looks like in TextPad:

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

20 Laird Technologies

Figure 11: Example of a smartBASIC code fragment in TextPad

Download ‘Hello World’ App

You must now load the compiled output of this file into the smart BASIC module’s File System so that you
can run it.

1. To manage file downloads, right click on any part of the black UWTerminal screen to display the drop-

down menu (Figure 12).

Figure 12: Right-click UWTerminal screen

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

21 Laird Technologies

2. Click XCompile+Load and navigate to the directory where you’ve stored your test1.sb file.

Note: Do not select Compile+Load.

3. Click Open. In UWTerminal, you should see the following display:

 Behind the scenes, the shortcut uses Interactive Commands to load the file onto the module. The first
two AT I commands are used to identify the module so that the correct cross compiler can be invoked
resulting in the text <<Cross Compiling [test1.sb]>>.

In this example, since the compilation is successful, the generated binary file must be downloaded and
the AT+DEL “filename” + deletes any previous file with the same name that might already be on the
module. The new file is downloaded using the AT+FOW, AT+FWRH, and AT+FCL commands. The
strings following AT+FWRH consist of the binary data generated by the cross compiler. The +++ DONE
+++ signifies that the process of compiling and downloading was successfully accomplished.

There may be a possible failure in this process if the cross compiler cannot be located. In this case, the
following window displays:

To fix this issue, locate the cross compiler application mentioned in between the [] brackets and save it
to either the folder containing UWTerminal.exe or the folder that contains the smart BASIC application
test1.sb

A compilation error may be another cause of failure. For example, if the print statement contains an
error in the form of a missing “ delimiter, then the following should display in a separate window:

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

??? Cross Compiler [XComp_Bl600Med_9E56_5F81.exe] not found ???

??? Please save a copy to the same folder as UwTerminal.exe ???

??? If you cannot locate the file, please contact the supplier ???

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

<<Cross Compiling [test1.sb]>>

AT+DEL "test1" +

AT+FOW "test1"

AT+FWRH "FE900002250000000000FFFFFFFF569E815FFC10"

AT+FWRH "FB70090054455354312E555743000110CE211000"

AT+FWRH "FB0009000D000A48656C6C6F20576F726C640A00"

AT+FWRH "CC211400A52000000110FD10F510"

AT+FCL

+++ DONE +++

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

22 Laird Technologies

Figure 13: Compilation error window

Now that the application has been downloaded into the module, run it by issuing test1 or AT+RUN

“test1”.

Note: smart BASIC commands, variables, and filenames are not case sensitive; smart BASIC treats
Test1, test1 and TEST1 as the same file.

The screen should display the following results (when both forms of the command are entered):

You can check the file system on the module by typing AT+DIR and pressing Enter, you should see:

You have just written and run your first smart BASIC program.

To make it a little more complex, try printing “Hello World” ten times. For this we can use the conditional
functions within smart BASIC. We also introduce the concept of variables and print formatting. Later chapters
go into much more detail, but this gives a flavor of the way they work.

Before we do that, it’s worth laying out the rules of the application source syntax.

at+run "test1"

Hello World

00

Test1

Hello World

00

06 test1
00

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

23 Laird Technologies

smart BASIC Statement Format

The format of any line of smart BASIC is defined in the following manner:

{ COMMENT | COMMAND | STATEMENT | DIRECTIVE } < COMMENT > { TERMINATOR }

Anything in { } is mandatory and anything in < > is optional. Within each set of { } or < > brackets, the
character | is used to denote a choice of values.

The various elements of each line are:

 COMMENT – A COMMENT token is a ‘ or // followed by any sequence of characters. Any text after the

token is ignored by the parser. A comment can occupy its own line or be placed at the end of a

STATEMENT or COMMAND.

COMMAND – An Interactive command; one of the commands that can be executed from Interactive

mode.

 STATEMENT – A valid BASIC statement(s) separated by the : character if there are more than one

statement.

Note: When compiling an application, a line can be made of several statements which are
separated by the : character.

 DIRECTIVE – A line starting with the # character. It is used as an instruction to the parser to modify its

behavior. For example, #DEFINE and #INCLUDE.

 TERMINATOR – The \r character which corresponds to the Enter key on the keyboard.

The smart BASIC implementation consists of a command parser and a single line/single pass compiler. It takes
each line of text (a series of tokens) and does one of the following (depending on its content and operating
mode):

 Acts on them immediately (such as with AT commands).

 If the build includes the compiler, generates a compiled output which is stored and processed at a later

time by the run-time engine. This capability is not present in the BL600 due to flash memory constraint.

smart BASIC has been designed to work on embedded systems where there is often a very limited amount of
RAM. To make it efficient, you must declare every variable that you intend to use by using the DIM
statement. The compiler can then allocate the appropriate amount of memory space.

In the following example program, we are using the variable “i” to count how many times we print “Hello
World”. smart BASIC allows a couple of different variable types, numbers (32 bit signed integers) and strings.

Our program (stored in a file called HelloWorld.sb’) looks like this:

//Example :: HelloWorld.sb (See in BL600CodeSnippets)

DIM i as integer //declare our variable

for i=1 to 10 //Perform the print ten times

 print "Hello World \n" //The \n forces a new line each time

next

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

24 Laird Technologies

Some notes regarding the previous program:

 Any line that starts with an apostrophe (‘) is a comment and is ignored by the compiler from the token

onwards. In other words, the opening line is ignored. You can also add a comment to a program line

by adding an apostrophe proceeded by a space to start the comment.

If you have C++ language experience, you can also use the // token to indicate that the rest of the line

is a comment.

 The second item of interest is the line feed character ‘\n’ which we’ve added after Hello World in the

print statement. This tells the print command to start a new line. If left out, the ten Hello World’s

would have been concatenated together on the screen. You can try removing it to see what would

happen.

Compile and download the file HelloWorld.sb to the module (using XCompile+Load in UwTerminal) and then
run the application in the usual way:

AT+RUN “helloworld”

The following output displays:

If you now change the print statement in the application to

print "Hello World ";i;"\n" //The \n forces a new line each time

… the following output displays:

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

25 Laird Technologies

If you run AT+DIR, you will see that both of these programs are now loaded in memory. They remain there
until you remove them with AT+DEL.

Note: All responses to interactive commands are of the format

\nNN\tOptionalText1\tOptionalText2…\r
where NN is always a two digit number and \t is the tab character and is terminated by \r.
This format has been provided to assist with developing host algorithms that can parse these
responses in a stateless fashion. The NN will always allow the host to attach meaning to any
response from the module.

Autorun

One of the major features of a smart BASIC module is its ability to launch an application autonomously when
power is applied. To demonstrate this we will use the same HelloWorld example.

An autorun application is identical to any other BASIC application except for its name, which must be called
$autorun$. Whenever a smart BASIC module is powered up, it checks its nAutoRUN input line (see the BL600
module pinout) and, if it is asserted (at 0v), it looks for and executes the autorun application.

In the BL600 development kit, the nAutoRUN input pin of the module is connected to the DTR output pin of
the USB to UART chip. This means the DTR checkbox in UWTerminal can be used to affect the state of that
pin on the BL600 module. The DTR checkbox is always selected by default (in asserted state), which translates
to a 0v at the nAutoRUN input of the module. This means if an autorun application exists in the module’s file
system, it is automatically launched on power up.

Copy the smart BASIC source file HelloWorld.sb to $autorun$.sb and then cross-compile and download to the
module. After it is downloaded, enter the AT+DIR command and the following displays:

TIP: A useful feature of UWTerminal is that the download function strips off the filename extension
when it downloads a file into the module file system. This means that you can store a number
of different autorun applications on your PC by giving them longer, more descriptive extension
names.

06 test1

06 HelloWorld

00

at+dir

06 test1

06 HelloWorld

06 $autorun$

00

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

26 Laird Technologies

For example:

$autorun$.HelloWorld

By doing this, each $autorun$ file on your PC is unique and the list is simpler to manage.

Note: If Windows adds a text extension, rename the file to remove it. Do not use multiple extensions
in filenames (such as filename.ext1.ext2). The resulting files (after being stripped) may overwrite
other files.

Clear the UWTerminal screen by clicking the Clear button on the toolbar and then enter the command ATZ
to force the module to reset itself. You could also click Reset on the development kit to achieve the same
outcome.

Warning: If the JLINK debugger is connected to the development kit via the ribbon, then the reset button
has no effect.

The following output displays:

In UWTerminal, next clear the screen using the Clear button and then unselect the checkbox labelled DTR so
that the nAutoRUN input of the module is not asserted. After a reset (ATZ or the button), the screen remains
blank which signifies that the autorun application was NOT invoked automatically.

The reason for providing this capability (suppressing the launching of the autorun application) is to ensure
that if your autorun application has the WAITEVENT as the last statement. This allows you to regain control of
the module’s command interpreter for further development work.

Debugging Applications

One difference with smart BASIC is that it does not have program labels (or line numbers). Because it is
designed for a single line compilation in a memory constrained embedded environment, it is more efficient to
work without them.

Because of the absence of labels, smart BASIC provides facilities for debugging an application by inserting
breakpoints into the source code prior to compilation and execution. Multiple breakpoints can be inserted
and each breakpoint can have a unique identifier associated with it. These IDs can be used to aid the
developer in locating which breakpoint resulted in the break. It is up to the programmer to ensure that all IDs
are unique. The compiler does not check for repeated values.

Each breakpoint statement has the following syntax:

BP nnnn

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

27 Laird Technologies

Where nnnn should be a unique number which is echoed back when the breakpoint is encountered at
runtime. It is up to the developer to keep all the nnnn’s unique as they are not validated when the source is
compiled.

Breakpoints are ignored if the application is launched using the command AT+RUN (or name alone). This
allows the application to be run at full speed with breaks, if required. However, if the command AT+DBG is
used to run the application, then all of the debugging commands are enabled.

When the breakpoint is encountered, the runtime engine is halted and the command line interface becomes
active. At this point, the response seen in UWTerminal is in the following form:

<linefeed>21 BREAKPOINT nnnn<carriage return>

Where nnnn is the identifier associated with the BP nnnn statement that caused the halt in execution. As the
nnnn identifier is unique, this allows you to locate the breakpoint line in the source code.

For example, if you create an application called test2.sb with the following content:

//Example :: test2.sb (See in BL600CodeSnippets)

 DIM i as integer

 for i=1 to 10

 print "Hello World”;i;”\n"

 if i==3 then

 bp 3333

 endif

 next

When you launch the application using AT+RUN, the following displays:

If you launch the application using AT+DBG, the following displays:

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

28 Laird Technologies

Having been returned to Interactive mode, the command ? varname can be used to interrogate the value of
any of the application variables, which are preserved during the break from execution. The command =
varname newvalue can then be used to change the value of a variable, if required. For example:

The single step command SO (Step Over) can then be invoked to step through the next statements
individually (note the first SO reruns the BP statement).

When required, the command RESUME can be used to resume the run-time engine from the current
application position as shown below:

Structuring an Application

Applications must follow smart BASIC syntax rules. However, the single pass compiler places some restrictions
on how the application needs to be arranged. This section explains these rules and suggests a structure for
writing applications which should adhere to the event driven paradigm.

Typically, do something only when something happens. This smart BASIC implementation has been designed
from the outset to feed events into the user application to facilitate that architecture and, while waiting for
events, the module is designed to remain in the lowest power state.

smart BASIC uses a single pass compiler which can be extremely efficient in systems with limited memory.
They are called “single pass” as the source application is only passed through the parser line by line once.
That means that it has no knowledge of any line which it has not yet encountered and it forgets any previous
line as soon as the first character of the next line arrives. The implication is that variables and subroutines
need to be placed in position before they are first referenced by any function which dictates the structure of
a typical application.

In practice, this results in the following structure for most applications:

 Opening Comments – Any initial text comments to help document the application.

 Includes – The cross compiler which is automatically invoked by UWTerminal allows the use of #DEFINE

and #INCLUDE directives to bring in additional source files and data elements. Variable Declarations –

Declare any global variables. Local variables can be declared within subroutines and functions.

? i

08 3

00

= I 42

? i

08 42

00

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

= I 8

resume

Hello World 8

Hello World 9

Hello World 10

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

29 Laird Technologies

 Subroutines and Functions – These should be cited here, prior to any program references. If any of

them refer to other subroutines or functions, these referred ones should be placed first. The golden

rule is that nothing on any line of the application should be “new”. Either it should be an inbuilt

smart BASIC function or it should have been defined higher up within the application.

 Event and error handlers – Normally these reference subroutines, so they should be placed here.

 Main program – The final part of the application is the main program. In many cases this may be as

simple as an invocation of one of the user functions or subroutines and then finally the WAITEVENT

statement.

An example of an application (btn.button.led.test.sb) which monitors button presses and reflects them to leds
on the BLE development kit is as follows:

//**

// Laird Technologies (c) 2013

//

// +++

// +++++ ++

// +++++ When UwTerminal downloads the app it will store it as a filenname ++

// +++++ which consists of all characters up to the first . and excluding it ++

// +++++ ++

// +++

//

//

// Simple development board button and LED test

// Tests the functionality of button 0, button 1, LED 0 and LED 1 on the development

board

// DVK-BL600-V01

//

// 24/01/2013 Initial version

//

//**

//**

// Definitions

//**

//**

// Library Import

//**

//#include "$.lib.ble.sb"

//**

// Global Variable Declarations

//**

dim rc // declare rc as integer variable

//**

// Function and Subroutine definitions

//**

//==

//==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

30 Laird Technologies

function button0release() //this function is called when the button 0

is released"

gpiowrite(18,0) // turns LED 0 off

print "Button 0 has been released \n" //these lines are printed to the UART when

the button is released

print "LED 0 should now go out \n\n"

endfunc 1

//==

//==

function button0press() //this function is called when the button 0

is pressed"

gpiowrite(18,1) // turns LED 0 on

print "Button 0 has been pressed \n" //these lines are printed to the UART when

the button is pressed

print "LED 0 will light while the button is pressed \n"

endfunc 1

//==

//==

function button1release() //this function is called when the button 1

is released"

gpiowrite(19,0) //turns LED 1 off

print "Button 1 has been released \n" //these lines are printed to the UART when

the button is released

print "LED 1 should now go out \n\n"

endfunc 1

//==

//==

function button1press() //this function is called when the button 1

is pressed"

gpiowrite(19,1) // turns LED 1 on

print "Button 1 has been pressed \n" //these lines are printed to the UART when

the button is pressed

print "LED 1 will light while the button is pressed \n"

endfunc 1

//**

// Handler definitions

//**

//**

// Equivalent to main() in C

//**

rc = gpiosetfunc(16,1,2) //sets sio16 (Button 0) as a digital in with

a weak pull up resistor
rc = gpiosetfunc(17,1,2) //sets sio17 (Button 1) as a digital in with

a weak pull up resistor
rc = gpiosetfunc(18,2,0) //sets sio18 (LED0) as a digital out

rc = gpiosetfunc(19,2,0) //sets sio19 (LED1) as a digital out

rc = gpiobindevent(0,16,0) //binds a gpio transition high to an event.

sio16 (button 0)

rc = gpiobindevent(1,16,1) //binds a gpio transition low to an event.

sio16 (button 0)

rc = gpiobindevent(2,17,0) //binds a gpio transition high to an event.

sio17 (button 1)

rc = gpiobindevent(3,17,1) //binds a gpio transition low to an event.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

31 Laird Technologies

sio17 (button 1)

onevent evgpiochan0 call button0release //detects when button 0 is released and

calls the function

onevent evgpiochan1 call button0press //detects when button 0 is pressed and calls

the function

onevent evgpiochan2 call button1release //detects when button 1 is released and

calls the function

onevent evgpiochan3 call button1press //detects when button 1 is pressed and calls

the function

print "Ready to begn button and LED test \n" //these lines are printed to the UART

when the program is run

print "Please press button 0 or button 1 \n\n"

//--

// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

//--

waitevent //when program is run it waits here until an

event is detected

When this application is launched and appropriate buttons are pressed and released, the output is as follows:

3. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the
operation of a smart BASIC based module. Many of these emulate the functionality of AT commands. Others
add extra functionality for controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the command,
and subsequent parameters. This allows the smart BASIC tokeniser to efficiently distinguish
between AT commands and other tokens or variables starting with the letters “at”.

‘Example:

AT I 3

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

32 Laird Technologies

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines.
Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

Note: Inthe case of the 01 response, the “<tab>optional_verbose_explanation” will be missing in
resource constrained platforms like the BL600 modules. The ‘verbose explanation’ is a constant
string and since there are over 1000 error codes, these verbose strings can occupy more than
10 kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be used to help
investigate the problem causing the failure. Rather than provide a list of all the error codes in this manual,
you can use UWTerminal to obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description, click on the BASIC tab (in UWTerminal) and, if the error value is hhhh, enter
the command ER 0xhhhh and note the 0x prefix to ‘hhhh’. This is illustrated in Figure 14.

Figure 14: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-clicking and
selecting “Lookup Selected ErrorCode” in the Terminal window.
If you get the text “UNKNOWN RESULT CODE 0xHHHH”, please contact Laird for the latest version of
UWterminal.

AT

AT is an Interactive mode command. It must be terminated by a carriage return for it to be processed.

It performs no action other than to respond with “\n00\r”. It exists to emulate the behaviour of a device which
is controlled using the AT protocol. This is a good command to use to check if the UART has been correctly
configured and connected to the host.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

33 Laird Technologies

AT I or ATI

Provided to give compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT i num

Command

Returns \n10\tMM\tInformation\r
\n00\r

Where

\n = linefeed character 0x0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = sting consisting of information requested associated with MM
\r = carriage return character 0x0D

Arguments

num Integer Constant - A number in the range 0 to 65,535. Currently defined
numbers are:

0 Name of device
3 Version number of Module Firmware

4 MAC address in the form TT AAAAAAAAAAAA
5 Chipset name

6 Flash File System size stats (data segment): Total/Free/Deleted
7 Flash File System size stats (FAT segment) : Total/Free/Deleted
12 Last error code
13 Language hash value
16 NvRecord Memory Store stats: Total/Free/Deleted
33 BASIC core version number
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
603 Flash File System: Data Segment: Deleted Space
604 Flash File System: FAT Segment: Total Space
605 Flash File System: FAT Segment: Free Space
606 Flash File System: FAT Segment: Deleted Space
631 NvRecord Memory Store Segment: Total Space
632 NvRecord Memory Store Segment: Free Space
633 NvRecord Memory Store Segment: Deleted Space
1000..1999 See SYSINFO() function definition

2000..2999 See SYSINFO() function definition

Any other number currently returns the manufacturer’s name.

For ATi4 the TT in the response is the type of address as follows:-

 00 Public IEEE format address
 01 Random static address (default as shipped)
 02 Random Private Resolvable (used with bonded devices) – not currently available
 03 Random Private Non-Resolvable (used for reconnections) – not currently available

 Please refer to the Bluetooth specification for a further description of the types.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

34 Laird Technologies

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Interactive Command: Yes

‘Example:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command.

The information returned by this Interactive command can also be useful from within a running application
and so a built-in function called SYSINFO(cmdId) can be used to return exactly the same information and
cmdid is the same value as used in the list above.

AT+DIR

COMMAND

List all application or data files in the module’s flash file system.

AT+DIR <“string”>

Returns \n06\tFILENAME1\r

\n06\tFILENAME2\r
\n06\tFILENAMEn\r
\n00\r

If there are no files within the module memory, then only \n00\r is sent.

Arguments:

string string_constant An optional pattern match string.

If included AT+DIR will only return application names which include this string.

The match string is not case sensitive.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+DIR

AT+DIR “new”

AT+DIR is a core command.

AT+DEL

COMMAND

This command deletes a file from the module’s flash file system.

When the file is deleted, the space it occupied does not get marked as free for use again.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

35 Laird Technologies

Eventually, after many deletions, the file system does not have free space for new files.
When this happens, the module responds with an appropriate error code when a new
file write is attempted. Use the command AT&F 1 to completely erase and reformat the
file system.

At any time you can use the command AT I 6 to get information about the file system. It
respond with the following:

10 6 aaaa,bbbb,cccc

Where aaaa is the total size of the file system, bbbb is the free space available, and cccc
is the deleted space.

From within a smart BASIC application you can get aaaa by calling SYSINFO(601), bbbb
by calling SYSINFO(602), and cccc by calling SYSINFO(603).

Note: After AT&F 1 is processed, because the file system manager context is unstable,
there will be an automatic self-reboot.

AT+DEL “filename” (+)

Returns OK

If the file does not exist or if it was successfully erased, it will respond
with \n00\r.

Arguments:

filename string_constant.
The name of the file to be deleted. The maximum length of
filename is 24 characters and should not include the following
characters :*?"<>|

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Adding the “+” sign to an AT+DEL command can be used to force the deletion of an open file. For example,
use AT+DEL “filename” + to delete an application which you have just exited after running it.

Interactive Command: YES

‘Examples:

AT+DEL “data”

AT+DEL “myapp” +

AT+DEL is a core command.

AT+RUN

COMMAND

AT+RUN runs a precompiled application that is stored in the module’s flash file system. Debugging statements
in the application are disabled when it is launched using AT+RUN.

AT+RUN “filename”

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

36 Laird Technologies

Returns If the filename does not exists the AT+RUN will respond with an error response starting with a
01 and a hex value describing the type of error. When the application aborts or if the
application reaches its end, a deferred \n00\r response is sent.

If the compiled file was generated with a non-matching language hash then it will not run with
an error value of 0707 or 070C

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24
characters and should not include the following characters :*?"<>|

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Note: Debugging is disabled when using AT+RUN, hence all BP nnnn statements are inactive. To run
an application with debugging active, use AT+DBG.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

Note: The application “filename” can also be invoked by entering the name if it does not contain any

spaces.

Interactive Command: YES

‘Examples:

AT+RUN “NewApp”

 or

 NewApp

AT+RUN is a core command.

AT+DBG

COMMAND

AT+DBG runs a precompiled application that is stored in the flash file system. In contrast to AT+RUN,
debugging is enabled.

AT+DBG “filename”

Returns If the filename does not exists the AT+DBG will respond with an error response. When the
application aborts or if the application reaches its end, a deferred \n00\r response is sent.

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24 characters and
should not include the following characters :*?"<>|

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

37 Laird Technologies

Debugging is enabled when using AT+DBG, which means that all BP nnnn statements are active. To launch
an application without the debugging capability, use AT+RUN. You do not need to recompile the application,
but this is at the expense of using more memory to store the application.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

Interactive Command: YES

‘Examples:

AT+DBG “NewApp”

AT+DBG is a core command.

AT+SET

This command has been deprecated, please use the new presentation command AT+CFG num value instead.

AT+GET

This command has been deprecated, please use the new command AT+CFG num ? instead.

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are are comparable to S registers in
modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the
file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and NvRecordGet() to
set and get these keys respectively.

The ‘num value’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the current value.
When the value is read the syntax of the response is

27 0xhhhhhhhh (dddd)

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and ‘dddd’ is the decimal
signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num Integer Constant
The ID of the required configuration key. All of the configuration keys are stored
as an array of 16 bit words.

value Integer_constant
This is the new value for the configuration key and the syntax allows decimal,

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

38 Laird Technologies

octal, hexadecimal or binary values.

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

40 Maximum size of locals simple variables

41 Maximum size of locals complex variables

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables

44 The size of stack for storing user functions complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:
0x0000 Disable
0x0001 Enable
0x80nn Enable ONLY if Signal Pin ‘nn’ on module is HIGH
0xC0nn Enable ONLY if Signal Pin ‘nn’ on module is LOW

0x81nn Enable ONLY if Signal Pin ‘nn’ on module is HIGH and auto-bridged to uart when
connected
0xC1nn Enable ONLY if Signal Pin ‘nn’ on module is LOW and auto-bridged to uart when
connected
ELSE Disable

101 Virtual Serial Port Service to use INDICATE or NOTIFY to send data to client.
0 Prefer Notify
ELSE Prefer Indicate
This is a preference and the actual value is forced by the property of the TX characteristic of the
service.

102 This is the advert interval in milliseconds when advertising for connections in interactive mode and
AT Parse mode. Valid values are:

20 to 10240 milliseconds

103 This is the advert timeout in milliseconds when advertising for connections in interactive mode and
AT Parse mode. Valid values are:

1 to 16383 seconds

104 In the virtual serial port service manager data transfer is managed. When sending data using
NOTIFIES, the underlying stack uses transmission buffers of which there are a finite number. This
specifies the number of transmissons to leave unused when sending a lot of data. This allows other
services to send notifies without having to wait for them.
The total number of transmission buffers can be determined by calling SYSINFO(2014) or in
interactive mode submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum
connection interval in milliseconds to be negotiated with the master. Valid value is 0 to 4000 ms
and if a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum
connection interval in milliseconds to be negotiated with the master. Valid value is 0 to 4000 ms
and if a value of less the minimum specified in 105, then it is forced to the value in 105 + 2 ms

107 When in interactive mode and connected for virtual serial port services, this is the connection
supervision timeout in milliseconds to be negotiated with the master. The valid range is 0 to 32000
and if the value is less than the value in 106, then a value double that specified in 106 is used.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

39 Laird Technologies

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to
be negotiated with the master. An adjusted value is used if this value times the value in 106 is
greater than the supervision timeout in 107

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used
for adverts and connections. The main reason for setting a low value is to ensure that in
production, if smart BASIC applications are downloaded over the air, then limited range allows
many stations to be used to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the transmit ring buffer in the managed layer sitting above the service characteristic fifo register. It
must be a value in the range 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the receive ring buffer in the managed layer sitting above the service characteristic fifo register. It
must be a value in the range 32 to 256

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any
other value is a per the modified Laird’s service.
See more details of the service definition here.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and
UART Bridge mode. Valid values are:

20 to 10240 milliseconds

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and
UART Bridge mode. Valid values are:

0 to 16383 seconds, and 0 disables the timer hence continuous

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART
bridge mode is enabled. Valid values are 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,
57600, 76800, 115200, 230400, 250000, 460800, 921600, 1000000.

If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART Bridge mode, this value specifies the latency in milliseconds for data arriving via the
UART and transfer to VSP and then onward on-air. This mechanism ensures that the underlying
bridging algorithm waits for up to this amount of time before deciding that no more data is going
to arrive to fill a BLE packet and so flushes the data onwards.
Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the latency timer
is overridden and the data is sent immediately.

Interactive Command: YES

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the

“AT & F *” interactive command.

AT+FOW

COMMAND

AT+FOW opens a file to allow it to be written with raw data. The group of commands (AT+FOW, AT+FWR,
AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash filing system. For
example, web pages, x.509 certificates, or BLE data.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

40 Laird Technologies

AT+FOW “filename”

Returns If the filename is valid, AT+FOW responds with \n00\r.

Arguments:

filename string_constant.

The name of the file to be opened. The maximum length of filename is 24
characters and should not include the following characters :*?"<>|

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+FOW “myapp”

AT+FOW is a core command.

AT+FWR

COMMAND

AT+FWR writes a string to a file that has previously been opened for writing using AT+FOW. The group of
commands (AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the
module’s flash filing system. For example, web pages, x.509 certificates, or BLE data.

AT+FWR “string”

Returns If the string is successfully written, AT+FWR will respond with \n00\r.

Arguments:

string string_constant – A string that is appended to a previously opened file. Any \NN
or \r or \n characters present within the string are de-escaped before they are
written to the file.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+FWR “\nhelloworld\r”

AT+FWR “\00\01\02”

AT+FWR is a core command.

AT+FWRH

COMMAND

AT+FWRH writes a string to a file that has previously been opened for writing using AT+FOW. The group of
commands (AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

41 Laird Technologies

module’s flash filing system. For example, web pages, x.509 certificates, or BLE data.

AT+FWRH “string”

Returns If the string is successfully written, AT+FWRH will respond with \n00\r.

Arguments

string string_constant – A string that is appended to a previously opened file. Only hexadecimal
characters are allowed and the string is first converted to binary and then appended to the file.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+FWRH “FE900002250DEDBEEF”

AT+FWRH “000102”

‘Invalid example

AT+FWRH “hello world” ‘because not a valid hex string

AT+FWRH is a core command.

AT+FCL

COMMAND

AT+FCL closes a file that has previously been opened for writing using AT+FOW. The group of
commands; AT+FOW, AT+FWR, AT+FWRH and AT+FCL are typically used for downloading
files to the module’s flash filing system.

AT+FCL

Returns If the filename exists, AT+FCL responds with \n00\r.

Arguments:

None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+FCL

AT+FCL is a core command.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

42 Laird Technologies

? (Read Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of
operation and does not discard any global variables created by the application. This allows them to be
referenced in Interactive mode.

? var <[index]>

Returns Displays the value of the variable if it had been created by the application. If the variable is an
array then the element index MUST be specified using the [n] syntax.

If the variable exists and it is a simple type then the response to this command is

\n08\tnnnnnn\r
\n00\r

If the variable is a string type, then the response is

\n08\t"Hello World"\r
\n00\r

If the variable does not exist then the response to this command is

\n01\tE023\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Note: If the optional type prefix is present, the output value, when it is an integer

constant, is displayed in that base. For example:

 ? h’ var returns

 \n08\tH'nnnnnn\r
\n00\r

Arguments:

Var <[n]> Any valid variable with mandatory [n] if the variable is an array.

For integer variables, the display format can be selected by prefixing the variable
with one of the integer type prefixes:

D' := Decimal
H' := Hexadecimal
O' := Octal
B' := Binary

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

? argc

08 11

00

? h’argc

08 H’0000000B

00

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

43 Laird Technologies

? B’argc

08 B’000000000000000000000001011

? argv[0]

08 “hello”

00

? is a core command.

= (Set Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of
operation and does not discard the global variables so that they can be referenced in Interactive Mode. The =
command is used to change the content of a known variable. When the application is RESUMEd, the variable
contains the new value. It is useful when debugging applications.

= var<[n]> value

Returns If the variable exists and the value is of a compatible type then the variable value is overwritten
and the response to this command is:

\n00\r

If the variable exists and it is NOT of compatible type then the response to this command is

\n01\tE027\r

If the variable does not exist then the response to this command is

\n01\tE023\r

If the variable exists but the new value is missing, then the response to this command is

 \n01\tE26\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Arguments:

Var<[n]> The variable whose value is to be changed

value A string_constant or integer_constant of appropriate form for the variable.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

Examples: (after an app exits which had DIM’d a global variable called

‘argc’)

? argc

08 11

00

= argc 23

00

? argc

08 23

00

= is a core command.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

44 Laird Technologies

SO

SO (Step Over) is used to execute the next line of code in Interactive Mode after a break point has been
encountered when an application had been launched using the AT+DBG command.

Use this command after a breakpoint is encountered in an application to process the next statement. SO can
then be used repeatedly for single line execution

SO is normally used as part of the debugging process after examining variables using the ? Interactive
Command and possibly the = command to change the value of a variable.

See also the BP nnnn, AT+DBG, ABORT, and RESUME commands for more details to aid debugging.

SO is a core function.

RESUME

COMMAND

RESUME is used to continue operation of an application from Interactive Mode which had been previously
halted. Normally this occurs as a result of execution of a STOP or BP statement within the application. On
execution of RESUME, application operation continues at the next statement after the STEP or BP statement.

If used after a SO command, application execution commences at the next statement.

RESUME

Returns If there is nothing to resume (e.g. immediately after reset or if there are no more statements
within the application), then an error response is sent.

\n01\tE029\r

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed

Interactive Command: YES

‘Examples:

RESUME

RESUME is a core function.

ABORT

COMMAND

Abort is an Interactive Mode command which is used to abandon an application, whose execution has halted
because it has processed a STOP or BP statement.

ABORT

Returns Abort is an Interactive Mode command which is used to abandon an application, whose
execution has halted because it had processed a STOP or BP statement. If there is nothing to
abort then it will return a success 00 response.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

45 Laird Technologies

Interactive Command: YES

‘Examples:

‘(Assume the application someapp.sb has a STOP statement somewhere which will

invoke interactive mode)

AT+RUN “someapp”

ABORT

ABORT is a core command.

AT+REN

COMMAND

Renames an existing file.

AT+REN “oldname” “newname”

Returns OK if the file is successfully renamed.

Arguments

oldname string_constant. The name of the file to be renamed.

Newname string_constant. The new name for the file.

The maximum length of filename is 24 characters.

oldname and newname must contain a valid filename, which cannot contain the following seven characters

: * ? " < > |

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT+REN “oldscript.txt” “newscript.txt”

AT+REN is a core command.

AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments

Integermask Integer corresponding to a bit mask or the “*” character

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

46 Laird Technologies

The mask is an additive integer mask, with the following meaning:

1 Erases normal file system and system config keys
(see AT+CFG for examples of config keys)

16 Erases the User config keys only

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by
erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

AT&F 1 ‘delete the file system

AT&F 16 ‘delete the user config keys

AT&F * ‘delete all data segments

AT&F is a core command.

AT Z or ATZ

Resets the CPU.

AT Z

Returns \n00\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Interactive Command: YES

‘Examples:

AT Z

AT Z is a core command.

AT + BTD *

COMMAND

Deletes the bonded device database from the flash.

AT + BTD*

Returns \n00\r

Arguments None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

47 Laird Technologies

Note: The module self-reboots so that the bonding manager context is also reset.

Interactive Command: YES

‘Examples:

AT+BTD*

AT+BTD* is an extension command

AT + MAC “12 hex digit mac address”

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This
address is then used instead of the random static MAC address that comes preprogrammed in the module.

Notes: If the module has an invalid licence then this address will not be visible.
If the address “000000000000” is written then it will be treated as invalid and prevent a new
address from being entered.

AT + MAC “12 hex digits”

Returns \n00\r
or
\n01 192A\r

Where the error code 192A is “NVO_NVWORM_EXISTS” meaning an IEEE mac address
already exists, which can be read using the command AT I 24

Arguments:

A string delimited by “” which shall be a valid 12 hex digit mac address that is written to non-
volatile memory.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command
generate an error.

Interactive Command: YES

‘Examples:

AT+MAC “008098010203”

AT+MAC is an extension command

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

48 Laird Technologies

AT + BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is
particularly useful when the virtual serial port is enabled while in interactive mode.

AT + BLX

Command

Returns \n00\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Interactive Command: YES

‘Examples:

AT+BLX

AT+BLX is an extension command.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

49 Laird Technologies

4. SMART BASIC COMMANDS

smart BASIC contains a wide variety of commands and statements. These include a core set of programming
commands found in most languages and extension commands that are designed to expose specific
functionality of the platform. For example, Bluetooth Low Energy’s GATT, GAP, and security functions.

Because smart BASIC is designed to be a very efficient embedded language, you must take care of command
syntax.

Syntax

smart BASIC commands are classified as one of the following:

 Functions

 Subroutines

 Statements

Functions

A function is a command that generates a return value and is normally used in an expression. For example:

newstr$ = LEFT$ (oldstring$, num)

In other words, functions cannot appear on the left side of an assignment statement (which has the equals
sign). However, a function may affect the value of variables used as parameters if it accepts them as
references rather than as values. This subtle difference is described further in the next section.

Subroutines

A subroutine does not generate a return value and is generally used as the only command on a line. Like a
function, it may affect the value of variables used as parameters if it accepts them as references rather than
values. For example:

STRSHIFTLEFT (string$, num)

This brings us to the definition of the different forms an argument can take, both for a function and a
subroutine. When a function is defined, its arguments are also defined in the form of how they are passed –
either as byVal or byRef.

Passing Aruments as byVal If an argument is passed as byVal, then the function or subroutine only sees
a copy of the value. While it is able to change the copy of the variable upon
exit, all changes are lost.

Passing Arguments as byRef If an argument is passed as byRef, then the function or subroutine can
modify the variable and, upon exit, the variable that was passed to the
routine contains the new value.

To understand, look at the smart BASIC subroutine STRSHIFTLEFT. It takes a string and shifts the characters to
the left by a specified number of places:

STRSHIFTLEFT (string$, num)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

50 Laird Technologies

It is used as a command on string$, which is defined as being passed as byRef. This means that when the
rotation is complete, string$ is returned with its new value. num defines the number of places that the string
is shifted and is passed as byVal; the original variable num is unchanged by this subroutine.

Note: Throughout the definition of the following commands, arguments are explicitly stated as being
byVal or byRef.

Functions, as opposed to subroutines, always return a value. Arguments may be either byVal or byRef. In
general and by default, string arguments are passed byRef. The reason for this is twofold:

 It saves valuable memory space because a copy of the string (which may be long) does not need to be

copied to the stack.

 A string copy operation is lengthy in terms of CPU execution time. However, in some cases the

valuables are passed byVal and in that case, when the function or subroutine is invoked, a constant

string in the form “string” can be passed to it.

Note: For arguments specified as byRef, it is not possible to pass a constant value – whether number
or string.

Statements

Statements do not take arguments, but instead take arithmetic or string expression lists. The only Statements
in smart BASIC are PRINT and SPRINT.

Exceptions

Developing a software application that is error free is virtually an impossible task. All functions and
subroutines act on the data that is passed to them and there are occasions when the values do not make
sense. For example, when a divide operation is requested and the divisor passed to the function is the value
zero. In these types of cases it is impossible to generate a return of meaningful value, but the event needs to
be trapped so that the effects of doing that operation can be lessened.

The mitigation process is via the inclusion of an ONERROR handler as explained in detail later in this manual.
If the application does not provide an ONERROR handler and if an exception is encountered at run-time, then
the application aborts to Interactive mode.

Note: This is disastrous for unattended use cases. A good catchall ONERROR is to invoke a handler in

which the module is reset; then at least the module resets from a known condition.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

51 Laird Technologies

Language Definitions

Throughout the rest of this manual, the following convention is used to describe smart BASIC commands and
statements:

Command
FUNCTION / SUBROUTINE / STATEMENT

Description of the command.

COMMAND (<byRef | byval> arg1 <AS type>,..)

Returns

TYPE Description. Value that a function returns (always byVal).

Exceptions

ERRVAL Description of the error.

Arguments (a list of the arguments for the command)

arg1 byRef TYPE A description, with type, of the variable.

argn byVal TYPE A description, with type, of the variable.

Interactive Command Whether the command can be run in Interactive Mode using
the ! token.

‘Examples:

Examples using the command.

Note: Always consult the release notes for a particular firmware release when using this manual. Due

to continual firmware development, there may be limitations or known bugs in some commands
that cause them to differ from the descriptions given in the following chapters.

Variables

One of the important rules is that variables used within an application MUST be declared before they are
referenced within the application. In most cases the best place is at the start of the application. Declaring a
variable can be thought of as reserving a portion of memory for it. smart BASIC does not support forward
declarations. If an application references a variable that has not been declared, the parser reports an ERROR
and aborts the compilation.

Variables are characterised by two attributes:

 Variable Scope

 Variable Class

DIM

The Declare statement is used to declare a number of variables of assorted types to be defined in a single
statement.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

52 Laird Technologies

If it is used within a FUNCTION or SUB block of code, then those variables will only have local scope.
Otherwise they will have validity throughout the application. If a variable is declared within a FUNCTION or
SUB and a variable of the same name already exists with global scope, then this declaration will take over
whilst inside the FUNCTION or SUB. However, this practice should be avoided.

DIM var<,var<,…>>

Arguments:

Var – A complete variable definition with the syntax varname <AS type>. Multiple variables can be defined in
any order with each definition being separated by a comma.

Each variable (var) consists of one mandatory element varname and one optional element AS type separated
by whitespaces and described as follows:

- Vaname – A valid variable name.

- AS type – Where ‘type’ is INTEGER or STRING. If this element is missing, then varname is used to

define the type of the variable so that if the name ends with a $ character, then it defaults to a

STRING; otherwise an INTEGER .

A variable can be declared as an array, although only one dimension is allowed. Arrays must always be
defined with their size, e.g.

array [20] – The (20) with round brackets is also allowed.

 The size of an array cannot be changed after it is declared and the maximum size of an array is 256.

Interactive Command: NO

//Example :: DimEx1.sb (See in BL600CodeSnippets.zip)

DIM temp1 AS INTEGER

DIM temp2 //Will be an INTEGER by default

DIM temp3$ AS STRING

DIM temp4$ //Will be a STRING by default

DIM temp5$ AS INTEGER //Allowed but not recommended practice as there

//is a $ at end of name

DIM temp6 AS STRING //Allowed but not recommended practice as no $

//at end of name

DIM a1,a2,a3$,a4 //3 INTEGER variables and 1 STRING variable

print "We will now print each varaible on screen \n"

print temp1, temp2, temp3$, temp4$, temp5$, temp6, a1, a2, a3$, a4

//Since the variables have not been instantiated, they hold default values

//The comma inserts a TAB

Expected Output:

We will now print each varaible on screen

0 0 0 0 0 0

 0 0 0 0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

53 Laird Technologies

Variable Scope

The scope of a variable defines where it can be used within an application.

 Local Variable – The most restricted scope. These are used within functions or subroutines and are only

valid within the function or subroutine. They are declared within the function or subroutine.

 Global Variable – Any variables not declared in the body of a subroutine or a function and are valid

from the place they are declared within an application. Global Variables remain in scope at the end of

an application, which allows the user or host processor to interrogate and modify them using the ? and

= commands respectively.

As soon as a new application is run, they are discarded.

Note: If a local variable has the same name as a global variable, then within a function or a
subroutine, that global variable cannot be accessed.

Variable Class

smart BASIC supports two generic classes of variables:

 Simple – Numeric variables. There are currently two types of simple variables: INTEGER, a signed 32-bit

variable (which also has the alias LONG), and ULONG, an unsigned 32-bit variable.

Simple variables are scalar and can be used within arithmetic expressions as described later.

 Complex – Non-numeric variables. There is currently only one type STRING.

STRING is an object of concatenated byte characters of any length up to a maximum of 65280 bytes
but for platforms with limited memory, it is further limited and that value can be obtained by
submitting the AT I 1004 command when in Interactive mode and using the SYSINFO(1004) function
from within an application.

For example, in the BLE module, the limit is 512 bytes since it is always the largest data length for any
attribute.

Complex variables can be used in expressions which are dedicated for that type of variable. In the
current implementation of smart BASIC, the only general purpose operator that can be used with
strings is the '+' operator which is used to concatenate strings.

 //Example :: DimEx2.sb (See in BL600CodeSnippets.zip)

 DIM i$ as STRING

 DIM a$ as STRING

 a$ = "Laird"

 i$ = a$ + "Rocks!" //Here we are concatenating the two strings

 print i$

Expected Output:

Note: To preserve memory, smart BASIC only allocates memory to string variables when they are

first used and not when they are allocated. If too many variables and strings are declared in

LairdRocks!

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

54 Laird Technologies

a limited memory environment it is possible to run out of memory at run time. If this occurs
an ERROR is generated and the module will return to Interactive Mode. The point at which
this happens depends on the free memory so will vary between different modules.

 This return to Interactive Mode is NOT desirable for unattended embedded systems. To
prevent this, every application MUST have an ONERROR handler which is described later in
this user manual.

Note: Unlike in the “C” programming language, strings are not null terminated.

Arrays

Variables can be created as arrays of single dimensions; their size (number of elements) must be explicitly
stated when they are first declared using the nomenclature [x] or (x) after the variable name, e.g.

DIM array1 [10] AS STRING

DIM array2(10) AS STRING

 //Example :: ArraysEx1.sb (See in BL600CodeSnippets.zip)

 DIM nCmds AS INTEGER

 DIM stCmds[20] AS STRING //declare an array as a string with 20 elements

 //Not recommended because we are only using 7 elements as you will see below

 //Setting the values for 7 of the elements

 stCmds[0]="\rATS0=1\r"

 stCmds[1]="ATS512=4\r"

 stCmds[2]="ATS501=1\r"

 stCmds[3]="ATS502=1\r"

 stCmds[4]="ATS503=1\r"

 stCmds[5]="ATS504=1\r"

 stCmds[6]="AT&W\r"

 nCmds=6

 //Print the 7 elements above in order

 DIM i AS INTEGER

 for i=0 to nCmds step 1

 print stCmds[i]

 next

Expected Output:

ATS0=1

ATS512=4

ATS501=

ATS502=1

ATS503=1

ATS504=1

AT&W

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

55 Laird Technologies

General Comments on Variables

Variable Names begin with 'A' to 'Z' or '_' and then can have any combination of 'A' to 'Z', '0' to '9' ‘$’ and
'_'.

Note: Variable names are not case sensitive (for example, test$ and TEST$ are the same variable).

smart BASIC is a strongly typed language and so if the compiler encounters an incorrect variable type then
the compilation will fail.

Declaring Variables

Variables are normally declared individually at the start of an application or within a function or subroutine.

 DIM string$ AS STRING

 DIM str1$ // the $ at the end of the name implies a string

 // so AS STRING not necessary

 DIM temp1 AS INTEGER

 DIM alarmstate // no $ at the of the name implies an integer

 // so AS INTEGER not necessary

 DIM array [10] AS STRING

Constants

Numeric Constants

Numeric Constants can be defined in decimal, hexadecimal, octal, or binary using the following
nomenclature:

Decimal D’1234 or 1234 (default)

Hex H’1234 or 0x1234

Octal O’1234

Binary B’01010101

Note: By default, all numbers are assumed to be in decimal format.

The maximum decimal signed constant that can be entered in an application is 2147483647 and the
minimum is -2147483648.

A hexadecimal constant consists of a string consisting of characters 0 to 9, and A to F (a to f). It must be
prefixed by the two character token H' or h' or 0x.

H'1234

h'DEADBEEF

0x1234

An octal constant consists of a string consisting of characters 0 to 7. It must be prefixed by the two character
token O' or o'.

O'1234

o'5643

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

56 Laird Technologies

A binary constant consists of a string consisting of characters 0 and 1. It must be prefixed by the two
character token B' or b'.

B'11011100

b'11101001

A binary constant can consist of 1 to 32 bits and is left padded with 0s.

String Constants

A string constant is any sequence of characters starting and ending with the " character. To embed the "
character inside a string constant specify it twice.

"Hello World"

"Laird_""Rocks""" // in this case the string is stored as Laird_”Rocks”

Non-printable characters and print format instructions can be inserted within a constant string by escaping
using a starting ‘\’ character and two hexadecimal digits. Some characters are treated specially and only
require a single character after the ‘\’ character.

The table below lists the supported characters and the corresponding string.

Character Escaped
String

Character Escaped
String

Linefeed \n “
\22 or
“”

Carriage
return

\r A \41

Horizontal
Tab

\t B \42

\ \5C etc…

Compiler Related Commands and Directives

#SET

The smart BASIC complier converts applications into an internally compiled program on a line by line basis. It
has strict rules regarding how it interprets commands and variable types. In some cases, it is useful to modify
this default behaviour, particularly within user defined functions and subroutines. To allow this, a special
directive is provided - #SET.

#SET is a special directive which instructs the complier to modify the way that it interprets commands and
variable types. In normal usage you should never have to modify any of the values.

#SET must be asserted before the source code that it affects, or the compiler behaviour will not be altered.

#SET can be used multiple times to change the tokeniser behaviour throughout a compilation.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

57 Laird Technologies

#SET commandID, commandValue

Arguments

cmdID Command ID and valid range is 0..10000

cmdValue Any valid integer value

Currently smart BASIC supports the following cmdIDs:

CmdID MinVal MaxVal Default Comments

1 0 1 0 Default Simple Arguments type for routines. 0 = ByVal, 1=ByRef

2 0 1 1 Default Complex Arguments type for routines. 0 = ByVal, 1=ByRef

3 8 256 32 Stack length for Arithmetic expression operands

4 4 256 8 Stack length for Arithmetic expression constants

5 16 65535 1024 Maximum number of simple global variables per application

6 16 65535 1024 Maximum number of complex global variables per application

7 2 65535 32 Maximum number of simple local variables per routine in an
application

8 2 65535 32 Maximum number of complex local variables per routine in an
application

9 2 32767 256 Max array size for simple variables in DIM

10 2 32767 256 Max array size for complex variables in DIM

Note: Unlike other commands, #SET may not be combined with any other commands on a line.

‘Example

#set 1 1 ‘change default simple args to byRef
#set 2 0 ‘change default complex args to byVal

Arithmetic Expressions

Arithmetic expressions are a sequence of integer constants, variables, and operators. At runtime the
arithmetic expression, which is normally the right hand side of an = sign, is evaluated. Where it is set to a
variable, then the variable takes the value and class of the expression (such as INTEGER).

If the arithmetic expression is invoked in a conditional statement, its default type is an INTEGER.

Variable types should not be mixed.

 //Example :: Arithmetic.sb (See in BL600CodeSnippets.zip)

 DIM sum1,bit1,bit2

 bit1 = 2

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

58 Laird Technologies

 bit2 = 3

 DIM volume,height,area

 height = 5

 area = 20

 sum1 = bit1 + bit2

 volume = height * area

 print "\nSum1 = ";sum1

 print "\nVolume = ";volume;"\n"

Expected Output:

Arithmetic operators can be unitary or binary. A unitary operator acts on a variable or constant which follows
it, whereas a binary operator acts on the two entities on either side.

Operators in an expression observe a precedence which is used to evaluate the final result using reverse
polish notation. An explicit precedence order can be forced by using (and) in the usual manner.

The following is the order of precedence within operators:

 Unitary operators have the highest precedence

! logical NOT

~ bit complement

- negative (negate the variable or number – multiplies it by -1)

+ positive (make positive – multiplies it by +1)

 Precedence then devolves to the binary operators in the following order:

* Multiply

/ Divide

% Modulus

+ Addition

- Subtraction

<< Arithmetic Shift Left

>> Arithmetic Shift Right

< Less Than (results in a 0 or 1 value in the expression)

<= Less Than Or Equal (results in a 0 or 1 value in the expression)

> Greater Than (results in a 0 or 1 value in the expression)

>= Greater Than Or Equal (results in a 0 or 1 value in the expression)

Sum1 = 5

Volume = 100

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

59 Laird Technologies

== Equal To (results in a 0 or 1 value in the expression)

!= Not Equal To (results in a 0 or 1 value in the expression)

& Bitwise AND

^ Bitwise XOR (exclusive OR)

| Bitwise OR

&& Logical AND (results in a 0 or 1 value in the expression)

^^ Logical XOR (results in a 0 or 1 value in the expression)

|| Logical OR (results in a 0 or 1 value in the expression)

Conditionals

Conditional functions are used to alter the sequence of program flow by providing a range of operations
based on checking conditions.

Note: smart BASIC does not support program flow functionality based on unconditional statements, such

as JUMP or GOTO. In most cases where a GOTO or JUMP might be employed, ONERROR
conditions are likely to be more appropriate.

Conditional blocks can be nested. This applies to combinations of DO, UNTIL, DOWHILE, FOR, IF, WHILE, and
SELECT. The depth of nesting depends on the build of smart BASIC but in general, nesting up to 16 levels is
allowed and can be modified using the AT+CFG command.

DO / UNTIL

This DO/UNTIL construct allows a block of one or more statements to be processed until a condition becomes
true.

DO
statement block
UNTIL arithmetic expr

 Statement block – A valid set of program statements. Typically several lines of application.

 Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is defined in the

section ‘Arithmetic Expressions’.

For DO / UNTIL, if the arithmetic expression evaluates to zero, then the statement block is executed again.
Care should be taken to ensure this does not result in infinite loops.

Interactive Command: NO

 //Example :: DoUntil.sb (See in BL600CodeSnippets.zip)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 UNTIL a==10 //loop will end when A gets to the value 10

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

60 Laird Technologies

Expected Output:

DO / UNTIL is a core function.

DO / DOWHILE

This DO / DOWHILE construct allows a block of one or more statements to be processed while the expression
in the DOWHILE statement evaluates to a true condition.

DO
statement block
DOWHILE arithmetic expr

 Statement block – A valid set of program statements. Typically several lines of application

 Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is defined in the

section ‘Arithmetic Expressions’.

For DO / DOWHILE, if the arithmetic expression evaluates to a non-zero value, then the statement block is
executed again. Care should be taken to ensure this does not result in infinite loops.

Interactive Command: NO

 //Example :: DoWhile.sb (See in BL600CodeSnippets.zip)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 DOWHILE a<10 //loop will end when A gets to the value 10

Expected Output:

DO / DOWHILE is a core function.

FOR / NEXT

The FOR / NEXT composite statement block allows program execution to be controlled by the evaluation of a
number of variables. Using the tokens TO or DOWNTO determines the order of execution. An optional STEP
condition allows the conditional function to step at other than unity steps. Given the choice of either
TO/DOWNTO and the optional STEP, there are four variants:

FOR var = arithexpr1 TO arithexpr2
statement block
NEXT

FOR var = arithexpr1 TO arithexpr2 STEP arithexpr3
statement block
NEXT

2345678910

2345678910

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

61 Laird Technologies

FOR var = arithexpr1 DOWNTO arithexpr2
statement block
NEXT

FOR var = arithexpr1 DOWNTO arithexpr2 STEP arithexpr3
statement block
NEXT

 Statement block – A valid set of program statements. Typically several lines of application which can

include nested conditional statement blocks.

 Var – A valid INTEGER variable which can be referenced in the statement block

 Arithexpr1 – A valid arithmetic or logical expression. arithexpr1 is enumerated as the starting point for

the FOR NEXT loop.

 Arithexpr2 – A valid arithmetic or logical expression. arithexpr2 is enumerated as the finishing point

for the FOR NEXT loop.

 Arithexpr3 – A valid arithmetic or logical expression. arithexpr3 is enumerated as the step in variable

values in processing the FOR NEXT loop. If STEP and arithexpr3 are omitted, then a unity step is

assumed.

Note: Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’

The lines of code comprising the statement block are processed with var starting with the value calculated or
defined by arithexpr1. When the NEXT command is reached and processed, the STEP value resulting from
arithexpr3 is added to var if TO is specified, or subtracted from var if DOWNTO is specified.

The function continues to loop until the variable var contains a value less than or equal to arithexpr2 in the
case where TO is specified, or greater than or equal to arithexpr2 in the alternative case where DOWNTO is
specified.

Note: In smart BASIC the Statement Block is ALWAYS executed at least once.

Interactive Command: NO

 //Example :: ForNext.sb (See in BL600CodeSnippets.zip)

 DIM a

 FOR a=1 TO 2

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=2 DOWNTO 1

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=1 TO 4 STEP 2

 PRINT "Hello"

 NEXT

Expected Output:

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

62 Laird Technologies

FOR / NEXT is a core function.

IF THEN / ELSEIF / ELSE / ENDIF

The IF statement construct allows a block of code to be processed depending on the evaluation of a
condition expression. If the statement is true (equates to non-zero), then the following block of application is
processed until an ENDIF, ELSE, or ELSEIF command is reached.

Each ELSEIF allows an alternate statement block of application to be executed if that conditional expression is
true and any preceding conditional expressions were untrue.

Multiple ELSEIF commands may be added, but only the statement block immediately following the first true
conditional expression encountered is processed within each IF command.

The final block of statements is of the form ELSE and is optional.

IF arithexpr_1 THEN
statement block A
ENDIF

IF arithexpr_1 THEN
statement block A
ELSE
statement block B
ENDIF

IF arithexpr_1 THEN
statement block A
ELSEIF arithexpr_2 THEN
statement block B
ELSE
statement block C
ENDIF

 Statement block A|B|C – A valid set of zero or more program statements.

 Arithexpr_n – A valid arithmetic or logical expression. A valid arithmetic or logical expression.

Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’.

All IF constructions must be terminated with an ENDIF statement.

Note: As the arithmetic expression in an IF statement is making a comparison, rather than setting a
variable, the double == operator MUST be used, e.g.

 IF i==3 THEN : SLEEP(200)

 See the Arithmetic Expressions section for more options.

Interactive Command: NO

 //Example :: IfThenElse.sb (See in BL600CodeSnippets.zip)

 DIM n

HelloHello

HelloHello

HelloHello

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

63 Laird Technologies

 n=1

 IF n>0 THEN

 PRINT "Laird Rocks\n"

 ENDIF

 IF n==0 THEN

 PRINT "n is 0"

 ELSEIF n==1 THEN

 PRINT "n is 1"

 ELSE

 PRINT "n is not 0 nor 1"

 ENDIF

Expected Output:

IF is a core function.

WHILE / ENDWHILE

The WHILE command tests the arithmetic expression that follows it. If it equates to non-zero then the
following block of statements is executed until an ENDWHILE command is reached. If it is zero, then
execution continues after the next ENDWHILE.

WHILE arithexpr
statement block
ENDWHILE

 Statement block – A valid set of zero or more program statements.

 Arithexpr – A valid arithmetic or logical expression. Arithmetic precedence, is as defined in the section

‘Arithmetic Expressions’.

All WHILE commands must be terminated with an ENDWHILE statement.

Interactive Command: NO

 //Example :: While.sb (See in BL600CodeSnippets.zip)

 DIM n

 n=0

 //now print “Hello” ten times

 WHILE n<10

 PRINT " Hello " ;n

 n=n+1

 ENDWHILE

Expected Output:

WHILE is a core function.

Hello 0 Hello 1 Hello 2 Hello 3 Hello 4 Hello 5 Hello 6 Hello 7 Hello 8

Hello 9

Laird Rocks

N is 1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

64 Laird Technologies

SELECT / CASE / CASE ELSE / ENDSELECT

SELECT is a conditional command that uses the value of an arithmetic expression to pass execution to one of
a number of blocks of statements which are identified by an appropriate CASE nnn statement, where nnn is
an integer constant. After completion of the code, which is marked by a CASE nnn or CASE ELSE statement,
execution of the application moves to the line following the ENDSELECT command. In a sense, it is a more
efficient implementation of an IF block with many ELSEIF statements.

An initial block of code can be included after the SELECT statement. This is always processed. When the first
CASE statement is encountered, execution moves to the CASE statement corresponding to the computed
value of the arithmetic expression in the SELECT command.

After selection of the appropriate CASE, the relevant statement block is executed until a CASE, BREAK or
ENDSELECT command is encountered. If a match is not found, then the CASE ELSE statement block is run.

It is mandatory to include a final CASE ELSE statement as the final CASE in a SELECT operation.

SELECT arithexpr
 unconditional statement block
CASE integerconstA
 statement block A
CASE integerconstB
 statement block B
CASE integerconstc,integerconstd, integerconste, integerconstf, …
 statement block C
CASE ELSE
 statement block
ENDSELECT

 Unconditional statement block – An optional set of program statements, which are always executed.

 Statement block – A valid set of zero or more program statements.

 Arithexpr – A valid arithmetic or logical expression. Arithmetic precedence, is as defined in the section

‘Arithmetic Expressions’.

 IntegerconstX – One or more comma seperated integer constants corresponding to one of the possible

values of arithexpr which identifies the block that will get processed.

Interactive Command: NO

 //Example :: SelectCase.sb (See in BL600CodeSnippets.zip)

 DIM a,b,c

 a=3 : b=4 //Use ":" to write multiple commands on one line

 SELECT a*b

 CASE 10

 c=10

 CASE 12 //this block will get processed

 c=12

 CASE 14,156,789,1022

 c=-1

 CASE ELSE

 c=0

 ENDSELECT

 PRINT c

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

65 Laird Technologies

Expected Output:

SELECT is a core function.

BREAK

BREAK is relevant in a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, FOR/NEXT, or SELECT/ENDSELECT
compound construct. It forces the program counter to exit the currently processing block of statements.

For example, in a WHILE/ENDWHILE loop, the statement BREAK stops the loop and forces the command
immediately after the ENDWHILE to be processed. Similarly, in a DO/UNTIL, the statement immediately after
the UNTIL is processed.

BREAK
Interactive Command: NO

 //Example :: Break.sb (See in BL600CodeSnippets.zip)

 DIM n

 n=0

 WHILE n<10

 n=n+1

 IF n==5 THEN

 BREAK

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

BREAK is a core function.

CONTINUE

CONTINUE is used within a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, or FOR/NEXT compound construct,
where it forces the program counter to jump to the beginning of the loop.

CONTINUE

Interactive Command: YES

 //Example :: Continue.sb (See in BL600CodeSnippets.zip)

 DIM n

 n=0

 WHILE n<10

 n=n+1

12

Hello 1Hello 2Hello 3Hello 4

Finished

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

66 Laird Technologies

 IF n==5 THEN

 CONTINUE

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

CONTINUE is a core function.

Error Handling

Error handling functions are provided to allow program control for instances where exceptions are generated
for errors. These allow graceful continuation after an error condition is encountered and are recommended
for robust operation in an unattended embedded use case scenario.

In an embedded environment, it is recommended to include at least one ONERROR and one ONFATALERROR
statement within each application. This ensures that if the module is running unattended, then it can reset
and restart itself without the need for operator intervention.

ONERROR

ONERROR is used to redirect program flow to a handler function that can attempt to modify operation or
correct the cause of the error. Three different options are provided in conjunction with ONERROR: REDO,
NEXT, and EXIT.

The GETLASTERROR() command should be used in the handler routine to determine the type of error that
was generated.

ONERROR REDO routine On return from the routine, the statement that originally caused the error
is reprocessed.

ONERROR NEXT routine On return from the routine, the statement that originally caused the error
is skipped and the following statement is processed.

ONERROR EXIT If an error is encountered, the application will exit and return operation to
Interactive Mode.

Arguments:

Routine – The handler SUB that is called when the error is detected. This must be a SUB routine which takes
no parameters. It must not be a function. It must exist within the application PRIOR to this ONERROR
command being compiled.

Interactive Command: NO

Hello 1Hello 2Hello 3Hello 4Hello 6Hello 7Hello 8Hello 9Hello 10

Finished

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

67 Laird Technologies

 //Example :: OnError.sb (See in BL600CodeSnippets.zip)

 DIM a,b,c

 SUB HandlerOnErr() //Do this when an error occurs

 DIM le

 le = GetLastError()

 PRINT "Error code 0x";le;" denotes a Divide by zero error.\n"

 PRINT "Let's make b equal 25 instead of 0\n\n"

 b=25

 ENDSUB

 a=100 : b=0

 ONERROR REDO HandlerOnErr //Calls the "HandlerOnErr" routine.

 //After that, the error causing statement

 //(below) is reprocessed

 c=a/b

 print "c now equals ";c

Expected Output:

ONERROR is a core function.

ONFATALERROR

ONFATALERROR is used to redirect program flow to a subroutine that can attempt to modify operation or
correct the cause of a fatal error. Three different options are provided – REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the subroutine to determine the
 type of error that was generated.

ONFATALERROR REDO routine On return from the routine, the statement that originally caused the
error is reprocessed.

ONFATALERROR NEXT routine On return from the routine, the statement that originally caused the
error is skipped and the following statement is processed.

ONFATALNERROR EXIT If an error is encountered, the application will exit and return the
operation to Interactive Mode.

Please Note: At present, no fatal errors are thrown in the BL600 module.

ONFATALERROR is a core function.Event Handling

An application written for an embedded platform is left unattended and in most cases waits for something to
happen in the real world, which it detects via an appropriate interface. When something happens it needs to
react to that event. This is unlike sequential processing where the program code order is written in the
expectation of a series of preordained events. Real world interaction is not like that and so this
implementation of smart BASIC has been optimised to force the developer of an application to write
applications as a group of handlers used to process events in the order as and when those events occur.

Error code 0x1538 denotes a Divide by zero error.

Let's make b equal 25 instead of 0

c now equals 4

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

68 Laird Technologies

This section describes the statements used to detect and manage those events.

WAITEVENT

WAITEVENT is used to wait for an event, at which point an event handler is called. The event handler must be
a function that takes no arguments and returns an INTEGER.

If the event handler returns a zero value, then the next statement after WAITEVENT is processed. Otherwise
WAITEVENT continues to wait for another event.

WAITEVENT

Interactive Command: NO

 FUNCTION Func0()

 PRINT "\nEV0"

 ENDFUNC 1

 FUNCTION Func1()

 PRINT "\nEV1"

 ENDFUNC 0

 ONEVENT EV0 CALL Func0

 ONEVENT EV1 CALL Func1

 WAITEVENT //wait for an event to occur

 PRINT "\n Got here because EV1 happened"

WAITEVENT is a core function.

ONEVENT

ONEVENT is used to redirect program flow to a predefined FUNCTION that can respond to a specific event
when that event occurs. This is commonly an external event, such as an I/O pin change or a received data
packet, but can be a software generated event too.

ONEVENT symbolic_name CALL routine When a particular event is detected, program execution is
directed to the specified function.

ONEVENT symbolic_name DISABLE

A previously declared ONEVENT for an event is unbound from
the specified subroutine. This allows for complex applications
that need to optimise runtime processing by allowing an
alternative to using a SELECT statement.

Events are detected from within the run-time engine – in most cases via interrupts - and are only processed
by an application when a WAITEVENT statement is processed.

Until the WAITEVENT, all events are held in a queue.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

69 Laird Technologies

Note: When WAITEVENT services an event handler, if the return value from that routine is non-zero,
then it continues to wait for more events. A zero value forces the next statement after
WAITEVENT to be processed.

Arguments:

Routine – The FUNCTION that is called when the event is detected. This must be a function which returns an
INTEGER and takes no parameters. It must not be a SUB routine. It must exist within the application PRIOR to
this ONEVENT command.

Symbolic_Name – A symbolic event name which is predefined for a specific smart BASIC module.

Some Symbolic Event Names:

A partial list of symbolic event names are as follows:-

EVTMRn Timer n has expired (see Timer Events)
EVUARTRX Data has arrived in UART interface
EVUARTTXEMPTY The UART TX ring buffer is empty

Note: Some symbolic names are specific to a particular hardware implementation.

Interactive Command: NO

 //Example :: OnEvent.sb (See in BL600CodeSnippets)

 DIM rc

 FUNCTION Btn0press()

 PRINT "\nButton 0 has been pressed"

 ENDFUNC 1 //Will continue waiting for an event

 FUNCTION Btn0rel()

 PRINT "\nButton 0 released. Resume waiting for an event\n"

 ENDFUNC 1

 FUNCTION Btn1press()

 PRINT "\nButton 1 has been pressed"

 ENDFUNC 1

 FUNCTION Btn1rel()

 PRINT "\nButton 1 released. No more waiting for events\n"

 ENDFUNC 0

 rc = gpiobindevent(0,16,0) //binds gpio transition high on sio16 (button 0)

to event 0

 rc = gpiobindevent(1,16,1) //binds gpio transition low on sio16 (button 0)

to event 1

 rc = gpiobindevent(2,17,0) //binds gpio transition high on sio16 (button 1)

to event 2

 rc = gpiobindevent(3,17,1) //binds gpio transition low on sio16 (button 2)

to event 3

 onevent evgpiochan0 call Btn0rel //detects when button 0 is released and calls

the function

 onevent evgpiochan1 call Btn0press //detects when button 0 is pressed and calls the

function

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

70 Laird Technologies

 onevent evgpiochan2 call Btn1rel //detects when button 1 is released and calls

the function

 onevent evgpiochan3 call Btn1press //detects when button 1 is pressed and calls the

function

 PRINT "\nWaiting for an event...\n"

 WAITEVENT //wait for an event to occur

 PRINT "\nGot here because evgpiochan2 happened"

Expected Output:

ONEVENT is a core function.

Miscellaneous Commands

PRINT

The PRINT statement directs output to an output channel which may be the result of multiple comma or
semicolon separated arithmetic or string expressions. The output channel is a UART interface in most
platforms.

PRINT exprlist

Arguments:

exprlist An expression list which defines the data to be printed consisting of comma or semicolon
separated arithmetic or string expressions.

Formatting with PRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT and the SPRINT command. Two types
of Expression lists are allowed – arithmetic and string. Multiple valid Expression lists may be concatenated
with a comma or a semicolon to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon
generates no output. The latter results in the output of two expressions being concatenated without any
white space.

Numeric Expression Lists

Numeric variables are formatted in the following form:

<type.base> arithexpr <separator>

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

71 Laird Technologies

Where,

 Type – Must be INTEGER for integer variables

 base – Integers can be forced to print in decimal, octal, binary, or hexadecimal by prefixing with D’, O’,

B’, or H’ respectively.

For example, INTEGER.h’ somevar will result in the content of somevar being output as a hexadecimal

string.

 Arithexpr – A valid arithmetic or logical expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

String Expression Lists

String variables are formatted in the following form:

<type . minchar> strexpr< separator>

 Type – Must be STRING for string variables. The type must be followed by a full stop to delineate it

from the width field that follows.

 Minchar – An optional parameter which specifies the number of characters to be printed for a string

variable or expression. If necessary, leading spaces are filled with spaces.

 strexpr – A valid string or string expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

Interactive Command: YES

 //Example :: Print.sb (See in BL600CodeSnippets.zip)

 PRINT "Hello \n"

 DIM a

 a=100

 PRINT a

 PRINT "\nIn Hex", "0x"; INTEGER.H' 100 ;"\n"

 PRINT "In Octal ", INTEGER.O' 100 ;"\n"

 PRINT "In Binary ", INTEGER.B' 100 ;"\n"

Expected Output:

PRINT is a core function.

Hello

100

In Hex 0x00000064

In Octal 00000000144

In Binary 00000000000000000000000001100100

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

72 Laird Technologies

SPRINT

The SPRINT statement directs output to a string variable, which may be the result of multiple comma or
semicolon separated arithmetic or string expressions.

It is very useful for creating strings with formatted data.

SPRINT #stringvar, exprlist

Arguments:

Stringvar – A pre-declared string variable.

Exprlist – An expression list which defines the data to be printed; consisting of comma or semicolon
separated arithmetic or string expressions.

Formatting with SPRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT command and the SPRINT command.
Two types of Expression lists are allowed – arithmetic and string. Multiple valid Expression lists may be
concatenated with a comma or a semicolon to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon
generates no output. The latter results in the output of two expressions being concatenated without any
whitespace.

Numeric Expression Lists

Numeric variables are formatted in the following form:

<type.base> arithexpr <separator>

Where,

 Type – Must be INTEGER for integer variables

 base – Integers can be forced to print in decimal, octal, binary, or hexadecimal by prefixing with D’, O’,

B’, or H’ respectively.

For example, INTEGER.h’ somevar will result in the content of somevar being output as a hexadecimal

string.

 Arithexpr – A valid arithmetic or logical expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

String Expression Lists

String variables are formatted in the following form:

<type . minchar> strexpr< separator>

 Type – Must be STRING for string variables. The type must be followed by a full stop to delineate it

from the width field that follows.

 minchar - An optional parameter which specifies the number of characters to be printed for a string

variable or expression. If necessary, leading spaces are filled with spaces.

 strexpr – A valid string or string expression.

 separator – One of the characters , or ; which have the following meaning:

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

73 Laird Technologies

, Insert tab before next variable
; Print next variable without a space

Interactive Command: YES

 //Example :: SPrint.sb (See in BL600CodeSnippets.zip)

 DIM a,s$: a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

Expected Output:

SPRINT is a core function.

STOP

STOP is used within an application to stop it running so that the device falls back into Interactive Command
line mode.

STOP

It is normally limited to use in the prototyping and debugging phases.

Once in Interactive Mode, the command RESUME is used to restart the application from the next statement
after the STOP statement.

Interactive Command: NO

 //Example :: Stop.sb (See in BL600CodeSnippets.zip)

 DIM a, s$

 a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 STOP

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

100

00000064

00000000144

00000000000000000000000001100100

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

74 Laird Technologies

Expected Output:

STOP is a core function.

BP

COMMAND

The BP (Breakpoint) statement is used to place a BREAKPOINT in the body of an application. The integer
constant that is associated with each breakpoint is a developer supplied identifier which gets echoed to the
standard output when that breakpoint is encountered. This allows the application developer to locate which
breakpoint resulted in the output. Execution of the application is then paused and operation passed back to
Interactive mode.

BP nnnn

After execution is returned to Interactive mode, either RESUME can be used to continue execution or the
Interactive mode command SO can be used to step through the next statements.

Note: The next state is the BP statement itself, hence multiple SO commands may need to be issued.

Arguments

nnnn A constant integer identifier for each breakpoint in the range 0 to 65535. The
integers should normally be unique to allow the breakpoint to be determined,
but this is the responsibility of the programmer. There is no limit to the number
of breakpoints that can be inserted into an application other than ensuring that
the maximum size of the compiled code does not exceed the 64 Kword limit.

Note: It is helpful to make the integer identifiers relevant to the program structure to help the
debugging process. A useful tip is to set them to the program line.

Interactive Command: NO

 //Example :: BP.sb (See in BL600CodeSnippets.zip)

 PRINT "hello"

 BP 1234

 PRINT "world"

 PRINT "Laird"

 PRINT "Rocks"

 BP 5678

 PRINT "the"

 PRINT "world"

Expected Output (Depending on what order you use the commands SO and RESUME):

100

01 0702

resume

00000064

00000000144

00000000000000000000000001100100

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

75 Laird Technologies

BP is a core function.

5. CORE LANGUAGE BUILT-IN ROUTINES

Core Language built-in routines are present in every implementation of smart BASIC. These routines provide
the basic programming functionality. They are augmented with target specific routines for different platforms
which are described in the next chapter.

Result Codes

Some of these built-in routines are subroutines, and some are functions. Functions always return a value, and
for some of these functions the value returned is a result code, indicating success or failure in executing that
function. A failure may not necessarily result in a run-time error (see GetLastError() and ResetLastError()), but
may lead to an unexpected output.

Being able to see what causes a failure greatly helps with the debugging process. If you declare an integer
variable e.g. ‘rc’ and set it’s value to your function call, after the function is executed you can print rc and see
the result code. For it to be useful, it has to be in Hexadecimal form, so prefix your result code variable with “
INTEGER.H’ ” when printing it. You can also save a bit of memory by printing the return value from the
function directly, without the use of a variable.

 //Example :: ResultCodes.sb (See in BL600CodeSnippets.zip)

 DIM cB,nItems,rc,s$

 rc=CircBufItems(cB,nItems)

 PRINT INTEGER.H'rc

 PRINT "\n"; //New line

 //Printing return value directly

 PRINT INTEGER.H'CircBufItems(cB,nItems)

 //To remove the leading zeros

 SPRINT #s$, INTEGER.H'CircBufItems(cB,nItems)

 StrShiftLeft(s$,4) : PRINT s$

Now highlight the last 4 characters of the result code in UwTerminal and select “Lookup Selected
ErrorCode”:

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

76 Laird Technologies

Expected Output:

Information Routines

GETLASTERROR

FUNCTION

GETLASTERROR is used to find the value of the most recent error and is most useful in an error handler
associated with ONERROR and ONFATALERROR statements which were described in the previous section.

You can get a verbose error description by printing the error value, then highliting it in UwTerminal, and
selecting ‘Lookup Selected ErrorCode’.

GETLASTERROR ()

Returns INTEGER Last error that was generated.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive Command: NO

 //Example :: GetLastError.sb (See in BL600CodeSnippets.zip)

 DIM err

 err = GETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Output (If no errors from last application run):

GETLASTERROR is a core function.

//smartBASIC Error Code: 073D -> "RUN_INV_CIRCBUF_HANDLE"

error = 0x00000000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

77 Laird Technologies

RESETLASTERROR

SUBROUTINE

Resets the last error, so that calling GETLASTERROR() returns a success.

RESETLASTERROR ()

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive Command: NO

 //Example :: ResetLastError.sb (See in BL600CodeSnippets.zip)

 DIM err : err = GETLASTERROR()

 RESETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Result:

RESETLASTERROR is a core function.

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER .Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned
as described below.

0 ID of device, for the BL600 module the value will be 0x42460600

3 Version number of Module Firmware. For example W.X.Y.Z will be
returned as a 32 bit value made up as follows:
 (W<<26) + (X<<20) + (Y<<6) + (Z)
 where Y is the Build number and Z is the ‘Sub-Build’ number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

error = 0x00000000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

78 Laird Technologies

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005 Will be 1 for run-time only implementation, 3 for compiler included

2000 Reset Reason
 8 : Self-Reset due to Flash Erase
 9 : ATZ
 10 : Self-Reset due to smart BASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC Application

2004 Tick timer resolution in microseconds

2005 LMP Version number for BT 4.0 spec

2006 LMP Sub Version number

2007 Chipset Company ID allocated by BT SIG

2008 Returns the current TX power setting (see also 2018)

2009 Number of devices in trusted device database

2010 Number of devices in trusted device database with IRK

2011 Number of devices in trusted device database with CSRK

2012 Max number of devices that can be stored in trusted device database

2013 Maximum length of a GATT Table attribute in this implementation

2014 Total number of transmission buffers for sending attribute NOTIFIES

2015 Number of transmission buffers for sending attribute NOTIFIES – free

2016 Radio activity of the baseband
 0 : no activity
 1 : advertising
 2 : connected
 3 : broadcasting and connected

2018 Returns the TX power while pairing in progress (see also 2008)

2019 Default ring buffer length for notify/indicates in gatt client manager
(see BleGattcOpen function)

2020 Maximum ring buffer length for notify/indicates in gatt client
manager (see BleGattcOpen function)

2021 Stack tide mark in percent. Values near 100 is not good.

2022 Stack size

2023 Initial Heap size

0x8000 to 0x81FF
Content of FICR register in the Nordic nrf51 chipset. In the nrf51
datasheet, in the FICR section, all the FICR registers are listed in a table
with each register identified by an offset, so for example, to read the

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

79 Laird Technologies

Code memory page size which is at offset 0x010, call
SYSINFO(0x8010) or in interactive mode use AT I 0x8010.

Interactive Command: No

 //Example :: SysInfo.sb (See in BL600CodeSnippets.zip)
 PRINT "\nSysInfo 1000 = ";SYSINFO(1000) // BASIC compiler HASH value

 PRINT "\nSysInfo 2003 = ";SYSINFO(2003) // Number of timers

 PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SYSINFO is a core language function.

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING .Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as
described below.

4 The Bluetooth address of the module. It is seven bytes long. First
byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

14 A random public address unique to this module. May be the same
value as in 4 above unless AT+MAC was used to set an IEEE mac
address. It is seven bytes long. First byte is 00 for IEEE public address
and 01 for random public address. Next six bytes are the address.

Interactive Command: No

 //Example :: SysInfo$.sb (See in BL600CodeSnippets.zip)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

80 Laird Technologies

Expected Output:

SYSINFO$ is a core language function.

Event & Messaging Routines

SENDMSGAPP

FUNCTION

This function is used to send an EVMSGAPP message to your application so that it can be processed by a
handler from the WAITEVENT framework. It is useful for serialised processing.

For messages to be processed, the following statement must be processed so that a handler is associated
with the message.

ONEVENT EVMSGAPP CALL HandlerMsgApp

Where a handler such as the following has been defined prior to the ONEVENT statement as follows:

 FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 //do something with nMsgId and nMsgCtx

 ENDFUNC 1

SENDMSGAPP(msgId, msgCtx)

Returns INTEGER 0000 if successfully sent.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

msgId byVal msgId AS INTEGER

Will be presented to the EVMSGAPP handler in the msgId field

msgCtx byVal msgCtx AS INTEGER

Will be presented to the EVMSGAPP handler in the msgCtx field.

Interactive Command: NO

 //Example :: SendMsgApp.sb (See in BL600CodeSnippets.zip)

 DIM rc

 FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 PRINT "\nId=";nMsgId;" Ctx=";nMsgCtx
 ENDFUNC 1

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

81 Laird Technologies

 ONEVENT EVMSGAPP CALL HandlerMsgApp

 rc = SendMsgApp(100,200)

 WAITEVENT

Expected Output:

SENDMSGAPP is a core function.

Arithmetic Routines

ABS

FUNCTION

Returns the absolute value of its INTEGER argument.

ABS (var)

Returns INTEGER Absolute value of var.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 If the value of var is 0x80000000 (decimal -2,147,483,648) then an

exception is thrown as the absolute value for that value causes an

overflow as 33 bits are required to convey the value.

Arguments:

var byVal var AS INTEGER

The variable whose absolute value is required.

Interactive Command: No

 //Example :: ABS.sb (See in BL600CodeSnippets.zip)

 DIM s1 as INTEGER,s2 as INTEGER

 s1 = -2 : s2 = 4

 PRINT s1, ABS(s1);"\n";s2, Abs(s2)

Expected Output:

ABS is a core language function.

Id=100 Ctx=200

-2 2

4 4

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

82 Laird Technologies

MAX

FUNCTION

Returns the maximum of two integer values.

MAX (var1, var2)

Returns INTEGER The returned variable is the arithmetically larger of var1 and var2.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

var1 byVal var1 AS INTEGER
The first of two variables to be compared.

var2
byVal var2 AS INTEGER
The second of two variables to be compared.

Interactive Command: No

 //Example :: MAX.sb (See in BL600CodeSnippets.zip)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\n The Maximum of these two integers is "; MAX(s1,s2)

Expected Output:

MAX is a core language function.

MIN

FUNCTION

Returns the minimum of two integer values.

MIN (var1, var2)

Returns INTEGER The returned variable is the arithmetically smaller of var1 and var2.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

var1 byVal var1 AS INTEGER
The first of two variables to be compared.

var2
byVal var2 AS INTEGER
The second of two variables to be compared.

Interactive Command: No

-2 4

The Maximum of these two integers is 4

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

83 Laird Technologies

 //Example :: MIN.sb (See in BL600CodeSnippets.zip)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\nThe Minimum of these two integers is "; MIN(s1,s2)

Expected Output:

MIN is a core language function.

String Routines

When data is displayed to a user or a collection of octets need to be managed as a set, it is useful to
represent them as strings. For example, in BLE modules there is a concept of a database of ‘attributes’ which
are just a collection of octets of data up to 512 bytes in length.

To provide the ability to deal with strings, smart BASIC contains a number of commands that can operate on
STRING variables.

LEFT$

Retrieves the leftmost n characters of a string.

LEFT$(string,length)

Function

Returns STRING The leftmost ‘length’ characters of string as a STRING object.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING
The target string which cannot be a const string.

length
byVal length AS INTEGER
The number of leftmost characters that are returned.

If ‘length’ is larger than the actual length of string then the entire string is returned

Notes: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: LEFT$.sb (See in BL600CodeSnippets.zip)

-2 4

The Maximum of these two integers is -2

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

84 Laird Technologies

 DIM newstring$

 DIM s$

 s$="Arsenic"

 newstring$ = LEFTs,4)
 print newstring$; "\n"

Expected Output:

LEFT$ is a core language function.

MID$

FUNCTION

Retrieves a string of characters from an existing string. The starting position of the extracted characters and the
length of the string are supplied as arguments.

If ‘pos’ is positive then the extracted string starts from offset ‘pos’. If it is negative then the extracted string
starts from offset ‘length of string – abs(pos)’

MID$(string, pos, length)

Returns STRING The ‘length’ characters starting at offset ‘pos’ of string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING
The target string which cannot be a const string.

pos
byVal pos AS INTEGER
The position of the first character to be extracted. The leftmost character
position is 0 (see examples).

length
byVal length AS INTEGER
The number of characters that are returned.

If ‘length’ is larger than the actual length of string then the entire string is returned from the position
specified. Hence pos=0, length=65535 returns a copy of string.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function.

Interactive Command: NO

//Example :: MID.sb (See in BL600CodeSnippets.zip)

DIM s$: s$="Arsenic"

DIM new$: new$ = MID$(s$,2,4)

Arse

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

85 Laird Technologies

PRINT new$; "\n"

Expected Output:

MID$ is a core language function.

RIGHT$

FUNCTION

Retrieves the rightmost n characters from a string.

RIGHT$(string, len)

Returns STRING The rightmost segment of length len from string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING
The target string which cannot be a const string.

length byVal length AS INTEGER
The rightmost number of characters that are returned.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

If ‘length’ is larger than the actual length of string then the entire string is returned.

Interactive Command: NO

 //Example :: RIGHT$.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="Parse"

 DIM new$: new$ = RIGHT$(s$,4)

 PRINT new$; "\n"

Expected Output:

RIGHT$ is a core function.

Arse

abcdef

cdefg

hij

arse

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

86 Laird Technologies

STRLEN

FUNCTION

STRLEN returns the number of characters within a string.

STRLEN (string)

Returns INTEGER The number of characters within the string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The target string which cannot be a const string.

Interactive Command: NO

 //Example :: StrLen$.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="HelloWorld"

 PRINT "\n";s$;" is ";StrLen(S$);" bytes long"

Expected Output:

STRLEN is a core function.

STRPOS

FUNCTION

STRPOS is used to determine the position of the first instance of a string within another string. If the string is
not found within the target string a value of -1 is returned.

STRPOS (string1, string2, startpos)

Returns INTEGER Zero indexed position of string2 within string1.

>=0 If string2 is found within string1 and specifies the location where found
-1 If string2 is not found within string1

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string1 byRef string AS STRING
The target string in which string2 is to be searched for.

string2 byRef string AS STRING
The string that is being searched for within string1. This may be a single
character string.

HelloWorld is 10 bytes long

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

87 Laird Technologies

startpos byVAL startpos AS INTEGER
Where to start the position search.

Note: STRPOS does a case sensitive search.

Note: string1and string2 cannot be a string constant, e.g. “the cat”, but must be a string variable and
so if you must use a const string then first save it to a temp string variable and then pass it to
the function

Interactive Command: NO

 //Example :: StrPos.sb (See in BL600CodeSnippets.zip)
 DIM s1$,s2$

 s1$="Are you there"

 s2$="there"

 PRINT "\nIn '";S1$;"' the word '";S2$;"' occurs at position ";StrPos(S1$,S2$,0)

Expected Output:

STRPOS is a core function.

STRSETCHR

FUNCTION

STRSETCHR allows a single character within a string to be replaced by a specified value. STRSETCHR can also
be used to append characters to an existing string by filling it up to a defined index.

If the nIndex is larger than the existing string then it is extended.

The use of STRSETCHR and STRGETCHR, in conjunction with a string variable allows an array of bytes to be
created and manipulated.

STRSETCHR (string, nChr, nIndex)

Returns INTEGER Represents command execution status.

0 If the block is successfully updated

-1 If nChr is greater than 255 or less than 0

-2 If the string length cannot be extended to accommodate nIndex

-3 If the resultant string is longer than allowed.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

In 'Are you there' the word 'there' occurs at position 8

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

88 Laird Technologies

000

@ello@@@@

string byRef string AS STRING
The target string.

nChr byVal nCHr AS INTEGER
The character that will overwrite the existing characters. nChr must be within
the range 0 and 255.

nindex byVal nIndex AS INTEGER
The position in the string of the character that will be overwritten, referenced
to a zero index.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrSetChar.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="Hello"

 PRINT StrSetChr(s$,64,0) //64 is the ASCII decimal code for the char '@'

 PRINT StrSetChr(s$,64,8) //s$ will be extended

 PRINT "\n";s$

Expected Output:

STRSETCHR is a core function.

STRGETCHR

FUNCTION

STRGETCHR is used to return the single character at position nIndex within an existing string.

STRGETCHR (string, nIndex)

Returns INTEGER The ASCII value of the character at position nIndex within string, where nIndex is
zero based. If nIndex is greater than the number of characters in the string or <=0 then an
error value of -1 is returned.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The string from which the character is to be extracted.

nindex byVal nIndex AS INTEGER
The position of the character within the string (zero based – see example).

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

89 Laird Technologies

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrGetChar.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="Hello"

 PRINT s$;"\n"

 PRINT StrGetChr(s$,0), "-> ASCII value for 'H' \n"

 PRINT StrGetChr(s$,1), "-> ASCII value for'e' \n"

 PRINT StrGetChr(s$,-100), "-> error \n"

 PRINT StrGetChr(s$,6), "-> error \n"

Expected Output:

STRGETCHR is a core function.

STRSETBLOCK

FUNCTION

STRSETBLOCK allows a specified number of characters within a string to be filled or overwritten with a
single character. The fill character, starting position and the length of the block are specified.

STRSETBLOCK (string, nChr, nIndex, nBlocklen)

Function

Returns INTEGER Represents command execution status.

0 If the block is successfully updated
-1 If nChr is greater than 255
-2 If the string length cannot be extended to accommodate nBlocklen
-3 if the resultant string will be longer than allowed

-4 If nChr is greater than 255 or less than 0
-5 if the nBlockLen value is negative

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The target string to be modified

nChr byVal nChr AS INTEGER
The character that will overwrite the existing characters.
nChr must be within the range 0 – 255

Hello

72 -> ASCII value for 'H'

101 -> ASCII value for'e'

-1 -> error

-1 -> error

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

90 Laird Technologies

HelloWorld

0

Hell@@orld

-4

Hell@@orld

nindex byVal nIndex AS INTEGER
The starting point for the filling block, referenced to a zero index.

nBlocklen byVal nBlocklen AS INTEGER
The number of characters to be overwritten

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrSetBlock.sb (See in BL600CodeSnippets.zip)
 DIM s$: s$="HelloWorld"

 PRINT s$;"\n"
 PRINT StrSetBlock(s$,64,4,2) : PRINT "\n";s$;"\n"

 PRINT StrSetBlock(s$,300,4,200) : PRINT "\n";s$

Expected Output:

STRSETBLOCK is a core function.

STRFILL

FUNCTION

STRFILL is used to erase a string and then fill it with a number of identical characters.

STRFILL (string, nChr, nCount)

Returns INTEGER Represents command execution status.

 0 If successful
-1 If nChr is greater than 255 or less than 0
-2 If the string length cannot be extended due to lack of memory
-3 If the resultant string is longer than allowed or nCount is <0.

STRING

string contains the modified string

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

91 Laird Technologies

The target string to be filled

nChr byVal nChr AS INTEGER
ASCII value of the character to be inserted. The value of nChr should be
between 0 and 255 inclusive.

nCount byVal nCount AS INTEGER
The number of occurrences of nChr to be added.

The total number of characters in the resulting string must be less than the maximum allowable string length
for that platform.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrFill.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="hello"

 PRINT s$;"\n"

 PRINT StrFill(s$,64,7);"\n"

 PRINT s$;"\n"

 PRINT StrFill(s$,-23,7)

Expected Output:

STRFILL is a core function.

STRSHIFTLEFT

SUBROUTINE

STRSHIFTLEFT shifts the characters of a string to the left by a specified number of characters and drops the
leftmost characters. It is a useful subroutine to have when managing a stream of incoming data, as for
example, a UART, I2C or SPI and a string variable is used as a cache and the oldest N characters need to be
dropped.

STRSHIFTLEFT (string, numChars)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The string to be shifted left.

hello

7

@@@@@@@

-1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

92 Laird Technologies

numChrs byVal numChrs AS INTEGER
The number of characters that the string is shifted to the left.
If numChrs is greater than the length of the string, then the returned string
will be empty.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrShiftLeft.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="123456789"

 PRINT s$;"\n"

 StrShiftLeft(s$,4) //drop leftmost 4 characters

 PRINT s$

Expected Output:

STRSHIFTLEFT is a core function.

STRCMP

FUNCTION

Compares two string variables.

STRCMP(string1, string2)

Returns INTEGER A value indicating the comparison result:

0 – if string1 exactly matches string2 (the comparison is case sensitive)

1 – if the ASCII value of string1 is greater than string2

-1 - if the ASCII value of string1 is less than string2

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string1 byRef string1 AS STRING
The first string to be compared.

string2 byRef string2 AS STRING
The second string to be compared.

123456789

56789

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

93 Laird Technologies

Note: string1and string2 cannot be a string constant, e.g. “the cat”, but must be a string variable and
so if you must use a const string then first save it to a temp string variable and then pass it to
the function

Interactive Command: NO

 //Example :: StrCmp.sb (See in BL600CodeSnippets.zip)

 DIM s1$,s2$

 s1$="hello"

 s2$="world"

 PRINT StrCmp(s1$,s2$);"\n"

 PRINT StrCmp(s2$,s1$);"\n"

 PRINT StrCmp(s1$,s1$);"\n"

Expected Output:

STRCMP is a core function.

STRHEXIZE$

FUNCTION

This function is used to convert a string variable into a string which contains all the bytes in the input string
converted to 2 hex characters. It will therefore result in a string which is exactly double the length of the
original string.

STRHEXIZE$ (string)

Returns STRING A printable version of string which contains only hexadecimal characters and exactly
double the length of the input string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

String byRef string AS STRING

The string to be converted into hex characters.

Interactive Command: NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Associated Commands: STRHEX2BIN

-1

1

0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

94 Laird Technologies

 //Example :: StrHexize$.sb (See in BL600CodeSnippets.zip)

 DIM s$,t$

 s$="Laird"

 PRINT s$;"\n"

 t$=StrHexize$(s$)

 PRINT StrLen(s$);"\n"

 PRINT t$;"\n"

 PRINT StrLen(t$);"\n"

Expected Output:

STRHEXIZE$ is a core function.

STRDEHEXIZE$

STRDEHEXISE$ is used to convert a string consisting of hex digits to a binary form. The conversion stops at
the first non hex digit character encountered.

STRDEHEXIZE$ (string)

Function

Returns

STRING A dehexed version of string

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING

The string to be converted in-situ.

If a parsing error occurs, a nonfatal error is generated which must be handled or the application aborts.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

Laird

5

4C61697264

10

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

95 Laird Technologies

 //Example :: StrDehexize$.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$="40414243"

 PRINT "\nHex data: ";s$

 PRINT "\nDehexized: "; StrDehexize$(s$)

 //Will stop at first non hex digit 'h'

 s$="4041hello4243"

 PRINT "\n";s$;" Dehexized: "; StrDehexize$(s$)

Expected Output:

STRDEHEXIZE$ is a core function.

STRHEX2BIN

This function is used to convert up to 2 hexadecimal characters at an offset in the input string into an integer
value in the range 0 to 255.

STRHEX2BIN (string,offset)

Function

Returns INTEGER A value in the range 0 to 255 which corresponds to the (up to) 2 hex characters at
the specified offset in the input string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The string to be converted into hex characters.

offset byVal offset AS INTEGER
This is the offset from where up to 2 hex characters will be converted into a
binary number.

Interactive Command: NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Associated Commands: STRHEXIZE

Hex data: 40414243

Dehexized: @ABC

4041hello4243 Dehexized: @A

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

96 Laird Technologies

 //Example :: StrHex2Bin.sb (See in BL600CodeSnippets.zip)
 DIM s$

 s$="0102030405"

 PRINT StrHex2Bin(s$,4);"\n"

 s$="4C61697264"

 PRINT StrHex2Bin(s$,2);"\n"

Expected Output:

STRHEX2BIN is a core function.

STRESCAPE$

FUNCTION

STRESCAPE$ is used to convert a string variable into a string which contains only printable characters using a
2 or 3 byte sequence of escape characters using the \NN format.

STRESCAPE$ (string)

Returns STRING A printable version of string which means at best the returned string is of the same
length and at worst not more than three times the length of the input string.

The following input characters are escaped as follows:

carriage return \r
linefeed \n
horizontal tab \t
\ \\
" \"
chr < ' ' \HH
chr >= 0x7F \HH

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING
The string to be converted.

If a parsing error is encountered a nonfatal error will be generated which needs to be handled otherwise the
script will abort.

Interactive Command: NO

3

97

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

97 Laird Technologies

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Associated Commands: STRDEESCAPE

 //Example :: StrEscape$.sb (See in BL600CodeSnippets.zip)

 DIM s$,t$

 s$="Hello\00world"

 t$=StrEscape$(s$)

 PRINT StrLen(s$);"\n" : PRINT StrLen(t$);"\n"

Expected Output:

STRESCAPE$ is a core function.

STRDEESCAPE

SUBROUTINE

STRDEESCAPE is used to convert an escaped string variable in the same memory space that the string exists
in. Given all 3 byte escape sequences are reduced to a single byte, the result is never longer than the original.

STRDEESCAPE (string)

Returns None

string now contains de-escaped characters converted as follows:

\r carriage return
\n linefeed
\t horizontal tab
\\ \
“” “
\HH ascii byte HH

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 String De-Escape Error (E.g chrs after the \ are not recognized)

Arguments:

string byRef string AS STRING
The string to be converted in-situ.

If a parsing error occurs, a nonfatal error is generated which must be handled or the application will abort.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

11

13

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

98 Laird Technologies

Interactive Command: NO

 //Example :: StrDeescape.sb (See in BL600CodeSnippets.zip)

 DIM s$,t$

 s$="Hello\5C40world"

 PRINT s$;"\n"; StrLen(s$);"\n"

 StrDeescape(s$)

 PRINT s$;"\n"; StrLen(s$);"\n"

Expected Output:

STRDEESCAPE is a core function.

STRVALDEC

FUNCTION

STRVALDEC converts a string of decimal numbers into the corresponding INTEGER signed value. All leading
whitespaces are ignored and then conversion stops at the first non-digit character

STRVALDEC (string)

Function

Returns INTEGER Represents the decimal value that was contained within string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The target string

If STRVALDEC encounters a non-numeric character within the string it will return the value of the digits
encountered before the non-decimal character.

Any leading whitespace within the string is ignored.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrValDec.sb (See in BL600CodeSnippets.zip)

 DIM s$

 s$=" 1234"

Hello\40world

13

Hello@world

11

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

99 Laird Technologies

 PRINT "\n";StrValDec(s$)

 s$=" -1234"

 PRINT "\n";StrValDec(s$)

 s$=" +1234"

 PRINT "\n";StrValDec(s$)

 s$=" 2345hello"

 PRINT "\n";StrValDec(s$)

 s$=" hello"

 PRINT "\n";StrValDec(s$)

Expected Output:

STRVALDEC is a core function.

STRSPLITLEFT$

FUNCTION

STRSPLITLEFT$ returns a string which consists of the leftmost n characters of a string object and then drops
those characters from the input string.

STRSPLITLEFT$ (string, length)

Returns STRING The leftmost ‘length’ characters are returned, and then those characters are dropped
from the argument list.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING
The target string which cannot be a const string.

length byVal length AS INTEGER
The number of leftmost characters that are returned before being dropped
from the target string.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrSplitLeft$.sb (See in BL600CodeSnippets.zip)

 DIM origStr$

 origStr$ = "12345678"

1234

-1234

1234

2345

0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

100 Laird Technologies

 PRINT StrSplitLeft$ (origStr$, 3);"\n"

 PRINT origStr$

Expected Output:

STRSPLITLEFT$ is a core function.

STRSUM

This function identifies the substring starting from a specified offset and specified length and then does an
arithmetic sum of all the unsigned bytes in that substring and then finally adds the signed initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then the
output will be 1000+2+3=1005.

STRSUM (string, nIndex, nBytes, initVal)

Function

Returns INTEGER The result of the arithmetic sum operation over the bytes in the substring. If nIndex or
nBytes are negative, then the initVal will be returned.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING

String that contains the unsigned bytes which need to be arithmetically added

nIndex byVal nIndex AS INTEGER

Index of first byte into the string

nBytes ByVal nBytes AS INTEGER

Number of bytes to process

initVal ByVal initVal AS INTEGER

Initial value of the sum

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrSum.sb (See in BL600CodeSnippets.zip)

 DIM s$

 s$="0aA%<"

 PRINT StrSum(s$,0,5,0);"\n" //48+97+65+37+60+0

 PRINT StrSum(s$,0,5,10);"\n" //48+97+65+37+60+10

 PRINT StrSum(s$,4,1,100);"\n" //60+100

123

45678

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

101 Laird Technologies

Expected Output:

STRSUM is a core function.

STRXOR

This function identifies the substring starting from a specified offset and specified length and then does an
arithmetic exclusive-or (XOR) of all the unsigned bytes in that substring and then finally XORs the signed
initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then
the output will be 1000 ^ 2 ^ 3=1001.

STRXOR (string, nIndex, nBytes, initVal)

Function

Returns INTEGER The result of the xor operation over the bytes in the substring. If nIndex or nBytes
are negative, then the initVal will be returned.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING

String that contains the unsigned bytes which need to be XOR’d

nIndex byVal nIndex AS INTEGER

Index of first byte into the string

nBytes ByVal nBytes AS INTEGER

Number of bytes to process

initVal ByVal initVal AS INTEGER

Initial value of the XOR

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: StrXOR.sb (See in BL600CodeSnippets.zip)

 DIM number$

 number$="01234"

 PRINT StrXOR(number$,0,5,0) //XOR: 48,49,50,51,52,0

 PRINT StrXOR(number$,0,5,10) //XOR: 48,49,50,51,52,10

 PRINT StrXOR(number$,0,5,1000) //XOR: 48,49,50,51,52,1000

307

317

160

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

102 Laird Technologies

Expected Output:

STRXOR is a core function.

EXTRACTSTRTOKEN

This function takes a sentence in the first parameter and extracts the leftmost string token from it and passes
it back in the second paremeter. The token is removed from the sentence and is not post processed in any
way. The function will return the length of the string in the token. This means if 0 is returned then there are
no more tokens in the sentence.

It makes it easy to create custom protocol for commands send by a host over the uart for your application.

For example, if the sentence is “My name is BL600, from Laird” then the first call of this function will return
“My” and the sentence will be adjusted to “name is BL600, from Laird”. Note that “BL600,” will result in
“BL600” and then “,”

The parser logic is exactly the same as when in the command mode. If you are not sure which alphabet
character is a token in its own right, then the quickest way to get an answer is to actually try it.

NOTE: any text after either ‘ or // will be taken as a comment just like the behaviour in the command mode.

EXTRACTSTRTOKEN (sentence$,token$)

Function

Returns INTEGER
The length of the extracted token. Will be 0 of there are no more tokens to extract.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

sentence$ byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

token$ byRef token$ AS STRING

The leftmost token from the sentence and will have been removed from the
sentence.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you

must use a const string then first save it to a temp string variable and then pass it to the
function

52

62

988

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

103 Laird Technologies

Interactive Command: NO

 //Example :: ExtractStrToken.sb (See in BL600CodeSnippets.zip)

 DIM sentence$, token$, tknlen

 sentence$="My name is BL600, from Laird"

 PRINT "\nSentence is :";sentence$

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

ExtractStrToken is a core function.

EXTRACTINTTOKEN

This function takes a sentence in the first parameter and extracts the leftmost set of tokens that make an integer
number (hex or binary or octal or decimal) from it and passes it back in the second paremeter. The tokens are removed
from the sentence. The function will return the number of characters extracted from the left side f the sentence. This
means if 0 is returned then there are no more tokens in the sentence.

For example, if the sentence is “0x100 is a hex,value” then the first call of this function will return 256 in the second
parameter and the sentence will be adjusted to “is a hex value”. Note that “hex,value,” whill result in “hex” then “,”
and then “value”

The parser logic is exactly the same as when in the command mode. If you are not sure which alphabet character is a
token in its own right, then the quickest way to get an answer is to actually try it.

NOTE: any text after either ‘ or // will be taken as a comment just like the behaviour in the command mode.

EXTRACTINTTOKEN (sentence$,intValue)

Function

Returns INTEGER
The length of the extracted token. Will be 0 of there are no more tokens to extract.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

104 Laird Technologies

Arguments:

sentence$ byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

intValue byRef intValue AS STRING

The leftmost set of tokens constituting a legal integer value is extracted from the
sentence and will be removed from the sentence.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

 //Example :: ExtractIntToken.sb (See in BL600CodeSnippets.zip)

 DIM sentence$

 DIM intValue, bytes

 DIM token$, tknlen

 sentence$="0x100 is a hex,value"

 PRINT "\nSentence is :";sentence$

 bytes = ExtractIntToken(sentence$,intValue)

 PRINT "\nintValue (bytes ";bytes;") = :";intValue

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

ExtractIntToken is a core function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

105 Laird Technologies

Table Routines

Tables provide associative array (or in other words lookup type) functionality within smart BASIC programs.
They are typically used to allow lookup features to be implemented efficiently so that, for example, parsers
can be implemented.

Tables are one dimensional string variables, which are configured by using the TABLEINIT command.

Tables should not be confused with Arrays. Tables provide the ability to perform pattern matching in a highly
optimised manner. As a general rule, use tables where you want to perform efficient pattern matching and
arrays where you want to automate setup strings or send data using looping variables.

TABLEINIT

FUNCTION

TABLEINIT initialises a string variable so that it can be used for storage of multiple TLV tokens, allowing a
lookup table to be created.

TLV = Tag, Length, Value

TABLEINIT (string)

Returns INTEGER Indicates success of command:

0 Successful initialisation
<>0 Failure

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING

String variable to be used for the Table. Since it is byRef the compiler will not
allow a constant string to be passed as an argument. On entry the string can
be non-empty, on exit the string will be empty.

Interactive Command: NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you

must use a const string then first save it to a temp string variable and then pass it to the
function

Associated Commands: TABLEADD, TABLELOOKUP

 //Example :: TableInit.sb (See in BL600CodeSnippets.zip)

 DIM t$:t$="Hello"

 PRINT "\n";"[";t$;"]"

 PRINT "\n";TableInit(t$)

 PRINT "\n";"[";t$;"]" //String now blank after being initialised as a table

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

106 Laird Technologies

Expected Output:

TABLEINIT is a core function.

TABLEADD

FUNCTION

TABLEADD adds the token specified to the lookup table in the string variable and associates the index
specified with it. There is no validation to check if nIndex has been duplicated as it is entirely valid that more
than one token generate the same ID value

TABLEADD (string, strtok, nID)

Returns INTEGER Indicates success of command:

0 Signifies that the token was successfully added

1 Indicates an error if nID > 255 or < 0

2 Indicates no memory is available to store token

3 Indicates that the token is too large

4 Indicates the token is empty

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
A string variable that has been initialised as a table using TABLEINIT.

strtok byVal strtok AS STRING
The string token to be added to the table.

nID byVal nID AS INTEGER
The identifier number that is associated with the token and should be in the
range 0 to 255.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

Associated Commands: TABLEINIT, TABLELOOKUP

 //Example :: TableAdd.sb (See in BL600CodeSnippets.zip)
 DIM t$: PRINT TableInit(t$);"\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"everyone",2);"\n"

 PRINT TableAdd(t$,"to",300);"\n"

[Hello]

0

[]

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

107 Laird Technologies

 PRINT TableAdd(t$,"",3);"\n"

 PRINT t$

 //Tokens are stored in TLV format: \Tag\LengthValue

Expected Output:

TABLEADD is a core function.

TABLELOOKUP

FUNCTION

TABLELOOKUP searches for the specified token within an existing lookup table which was created using
TABLEINIT and multiple TABLEADDs and returns the ID value associated with it.

It is especially useful for creating a parser, for example, to create an AT style protocol over a uart interface.

TABLELOOKUP (string, strtok)

Returns INTEGER Indicates success of command:

>=0 signifies that the token was successfully found and the value is the ID

-1 if the token is not found within the table

-2 if the specified table is invalid

-3 if the token is empty or > 255 characters

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string byRef string AS STRING
The lookup table that is being searched

strtok byRef strtok AS STRING
The token whose position is being found

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Interactive Command: NO

Associated Commands: TABLEINIT, TABLEADD

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

108 Laird Technologies

 //Example :: TableLookup.sb (See in BL600CodeSnippets.zip)

 DIM t$

 PRINT TableInit(t$);"\n\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"world",2);"\n"

 PRINT TableAdd(t$,"to",3);"\n"

 PRINT TableAdd(t$,"you",4);"\n\n"

 PRINT TableLookup(t$,"to");"\n"

 PRINT TableLookup(t$,"Hello");"\n"

 PRINT TableLookup(t$,"you");"\n"

Expected Output:

TABLELOOKUP is a core function.

Miscellaneous Routines

This section describes all miscellaneous functions and subroutines

RESET

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nType byVal nType AS INTEGER.
This is for future use. Set to 0.

Interactive Command: NO

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

109 Laird Technologies

 //Example :: RESET.sb (See in BL600CodeSnippets.zip)

 RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive command
‘ATZ’, the CTS indicator will momenterally change from green to
red, then back to green.

RESET is a core subroutine.

ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if
and only if, the SIO7 input pin is held high.

Given that SIO7 is high, after erasing the file system, the module will reset and reboot into command mode
with the virtual serial port service enabled and the module will advertise for a few seconds. See the virtual
serial port service section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING
If this function is called from within $autorun$, and the SIO7 input is high, then it will get erased and a fresh
download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure, but you will not see it as the module will reboot
<>0 Failure

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER

This is for future use and MUST always be set to 1. Any other value will
result in a failure.

 //Example :: EraseFileSystem.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc = EraseFileSystem(1234)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because incorrect parameter"

 ENDIF

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

110 Laird Technologies

 //Input SIO7 is low

 rc = EraseFileSystem(1)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because SIO7 is low"

 ENDIF

Expected Output:

ERASEFILESYSTEM is an extension function.

Random Number Generation Routines

Random numbers are either generated using pseudo random number generator algorithms or using thermal
noise or equivalent in hardware. The routines listed in this section provide the developer with the capability of
generating random numbers.

The Interactive Mode command “AT I 1001” or at runtime SYSINFO(1001) will return 1 if the system
generates random numbers using hardware noise or 0 if a pseudo random number generator.

RAND

FUNCTION

The RAND function returns a random 32 bit integer. Use the command ‘AT I 1001’ or from within an
application the function SYSINFO(1001), to determine whether the random number is pseudo random or
generated in hardware via a thermal noise generator. If 1001 returns 0 then it is pseudo random and 1 if
generated using hardware.

RAND ()

Returns INTEGER A 32 bit integer.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments: None

Depending on the platform, the RAND function can be seeded using the RANDSEED function to seed the
pseudo random number generator. If used, RANDSEED must be called before using RAND. If the platform has
a hardware Random Number Generator, then RANDSEED has no effect.

Interactive Command: NO

Associated Commands: RANDSEED

 //Example :: RAND.sb (See in BL600CodeSnippets.zip)

 PRINT "\nRandom number is ";RAND()

Failed to erase file system because incorrect parameter

Failed to erase file system because SIO7 is low

00

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

111 Laird Technologies

Expected Output:

RAND is a core language function.

RANDEX

FUNCTION

The RANDEX function returns a random 32 bit positive integer in the range 0 to X where X is the input
argument. Use the command ‘AT I 1001’ or from within an application the function SYSINFO(1001) to
determine whether the random number is pseudo random or generated in hardware via a thermal noise
generator. If 1001 returns 0 then it is pseudo random and 1 if generated using hardware.

RANDEX (maxval)

Returns INTEGER A 32 bit integer.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

maxval byVal maxval AS INTEGER

The return value will not exceed the absolute value of this variable

Depending on the platform, the RANDEX function can be seeded using the RANDSEED function to seed the
pseudo random number generator. If used, RANDSEED must be called before using RANDEX. If the platform
has a hardware Random Number Generator, then RANDSEED has no effect.

Interactive Command: NO

Associated Commands: RANDSEED

 //Example :: RANDEX.sb (See in BL600CodeSnippets.zip)

 DIM x : x=500

 PRINT "\nRandom number between 0 and ";x;" is ";RANDEX(x)

Expected Output:

RAND is a core language function.

RANDSEED

SUBROUTINE

On platforms without a hardware random number generator, the RANDSEED function sets the starting point
for generating a series of pseudo random integers. To reinitialize the generator, use 1 as the seed argument.
Any other value for seed sets the generator to a random starting point. RAND retrieves the pseudo random

Random number is -2088208507

Random number between 0 and 500 is 193

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

112 Laird Technologies

numbers that are generated.

It has no effect on platforms with a hardware random number generator.

RANDSEED (seed)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

Seed byVal seed AS INTEGER

The starting seed value for the random number generator function RAND.

Interactive Command: No

Associated Commands: RAND

 RandSeed(1234)

Note: Since the BL600 contains a hardware random number generator, this subroutine has no effect.

RANDSEED is a core language subroutine.

Timer Routines

In keeping with the event driven paradigm of smart BASIC, the timer subsystem enables smart BASIC
applications to be written which allow future events to be generated based on timeouts. To make use of this
feature up to N timers, where N is platform dependent, are made available and that many event handlers can
be written and then enabled using the ONEVENT statement so that those handlers are automatically invoked.
The ONEVENT statement is described in detail elsewhere in this manual.

Briefly the usage is, select a timer, register a handler for it, and start it with a timeout value and a flag to
specify whether it is recurring or single shot. Then when the timeout occurs AND when the application is
processing a WAITEVENT statement, the handler will be automatically called.

It is important to understand the significance of the WAITEVENT statement. In a nutshell, a timer handler
callback will NOT happen if the runtime engine does not encounter a WAITEVENT statement. Events are
synchronous not asynchronous like say interrupts.

All this is illustrated in the sample code fragment below where timer 0 is started so that it will recur
automatically every 500 milliseconds and timer 1 is a single shot 1000ms later.

Note, as explained in the WAITEVENT section of this manual, if a handler function returns a non-zero value
then the WAITEVENT statement is reprocessed, otherwise the smart BASIC runtime engine will proceed to
process the next statement after the WAITEVENT statement – not after the handlers ENDFUNC or EXITFUNC
statement. This means that if the WAITEVENT is the very last statement in an application and a timer handler
returns a 0 value, then the application will exit the module from Run Mode into Interactive Mode which will
be disastrous for unattended operation.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

113 Laird Technologies

Timer Events

EVTMRn Where n=0 to N, where N is platform dependent, it is generated when timer n expires. The
number of timers (that is, N+1) is returned by the command AT I 2003 or at runtime by
SYSINFO(2003)

 //Example :: EVTMRn.sb (See in BL600CodeSnippets.zip)

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TimerStart(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TimerStart(1,1000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

 WAITEVENT

 PRINT "\nGot here because TIMER 1 expired and handler returned 0"

Expected Output:

TimerStart

This subroutine starts one of the built-in timers.

The command AT I 2003 will return the number of timers and AT I 2002 will return the resolution of the
timer in microseconds.

When the timer expires, an appropriate event is generated, which can be acted upon by a handler registered
using the ONEVENT command.

TIMERSTART (number,interval_ms,recurring)

SUBROUTINE:

Arguments:

number byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command
AT I 2003 or at runtime returned via SYSINFO(2003).

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

114 Laird Technologies

If the value is not valid, then a runtime error will be thrown with code INVALID_TIMER.

Interval_ms byVal interval AS INTEGER
A valid time in milliseconds, between 1 and 2,147,493,647 (24.8 days). Note although the
time is specified in milliseconds, the resolution of the hardware timer may have more
granularity than that. Submit the command AT I 2002 or at runtime SYSINFO(2002) to
determine the actual granularity in microseconds.

If longer timeouts are required, start one of the timers with 1000 and make it repeating and
then implement the longer timeout using smart BASIC code.

If the interval is negative or > 2,147,493,647 then a runtime error will be thrown with code
INVALID_INTERVAL

If the recurring argument is set to non-zero, then the minimum value of the interval is 10ms

recurring byVal recurring AS INTEGER
Set to 0 for a once-only timer, or non-0 for a recurring timer.

When the timer expires, it will set the corresponding EVTMRn event. That is, timer number 0 sets EVTMR0,
timer number 3 sets EVTMR3. The ONEVENT statement should be used to register handlers that will capture
and process these events.

If the timer is already running, calling TIMERSTART will reset it to count down from the new value, which may
be greater or smaller than the remaining time.

If either number or interval is invalid an Error is thrown.

Interactive Command: No

Related Commands: ONEVENT, TIMERCANCEL

 //Example :: EVTMRn.sb (See in BL600CodeSnippets.zip)

 SUB HandlerOnErr()

 PRINT "Timer Error: ";GetLastError()

 ENDSUB

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer2()

 PRINT "\nTimer 2 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR1 CALL HandlerTimer1

 ONEVENT EVTMR2 CALL HandlerTimer2

 TimerStart(0,-500,1) //start a -500 millisecond recurring timer

 PRINT "\nStarted Timer 0 with invalid inerval"

 TimerStart(1,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 1"

 TimerStart(2,1000,0) //start a 1000 millisecond timer

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

115 Laird Technologies

 PRINT "\nWaiting for Timer 2"

 WAITEVENT

 PRINT "\nGot here because TIMER 2 expired and Handler returned 0"

Expected Output:

TIMERSTART is a core subroutine.

TimerRunning

FUNCTION

This function determines if a timer identified by an index number is still running. The command AT I 2003 will
return the valid range of Timer index numbers. It returns 0 to signify that the timer is not running and a non-
zero value to signify it is still running and the value is the number of milliseconds left for it to expire.

TIMERRUNNING (number)

Function

Returns: 0 if the timer has expired, otherwise the time in milliseconds left to expire.

Arguments:

number byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command
AT I 2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error will be thrown with code INVALID_TIMER.

Interactive Command: No

Related Commands: ONEVENT, TIMERCANCEL

 //Example :: TimerRunning.sb (See in BL600CodeSnippets.zip)

 SUB HandlerOnErr()

 PRINT "Timer Error ";GetLastError()

 ENDSUB

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 PRINT "\nTimer 1 has ";TimerRunning(1);" milliseconds to go"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

116 Laird Technologies

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TIMERSTART(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TIMERSTART(1,2000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

 WAITEVENT

Expected Output:

TIMERRUNNING is a core function

TimerCancel

SUBROUTINE

This subroutine stops one of the built-in timers so that it will not generate a timeout event.

TIMERCANCEL (number)

Arguments:

number byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command
AT I 2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error will be thrown with code INVALID_TIMER.

Interactive Command: NO

Related Commands: ONEVENT, TIMERCANCEL,TIMERRUNNING

 //Example :: TimerCancel.sb (See in BL600CodeSnippets.zip)

 DIM i,x

 i=0 : x=1 //'x' is HandlerTimer0's return value

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

117 Laird Technologies

 //Will switch to 0 when timer0 has expired so that the application can

stop

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired, starting again"

 IF i==4 THEN

 PRINT "\nCancelling Timer 0"

 TimerCancel(0)

 PRINT "\nTimer 0 ran ";i+1;" times"

 x=0

 ENDIF

 i=i+1

 ENDFUNC x

 ONEVENT EVTMR0 CALL HandlerTimer0

 TimerStart(0,800,1)

 PRINT "\nWaiting for Timer 0. Should run 5 times"

 WAITEVENT

Expected Output:

TIMERCANCEL is a core subroutine.

GetTickCount

FUNCTION

There is a 31 bit free running counter that increments every 1 millisecond. The resolution of this counter in
microseconds can be determined by submitting the command AT I 2004 or at runtime SYSINFO(2004) . This
function returns that free running counter. It wraps to 0 when the counter reaches 0x7FFFFFFF.

GETTICKCOUNT ()

Returns: INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of milliseconds.

Arguments: None

Interactive Command: No

Related Commands: GETTICKSINCE

 //Example :: GetTickCount.sb (See in BL600CodeSnippets.zip)

 FUNCTION HandlerTimer0()

 PRINT "\n\nTimer 0 has expired"

 ENDFUNC 0

 PRINT "\nThe value on the counter is ";GetTickCount()

 ONEVENT EVTMR0 CALL HandlerTimer0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

118 Laird Technologies

 TimerStart(0,1000,0)

 PRINT "\nWaiting for Timer 0"

 WAITEVENT

 PRINT "\nThe value on the counter is now ";GetTickCount();

Expected Output:

GETTICKCOUNT is a core subroutine.

GetTickSince

FUNCTION

This function returns the time elapsed since the ‘startTick’ variable was updated with the return value of
GETTICKCOUNT(). It signifies the time in milliseconds. If ‘startTick’ is less than 0 which is a value that
GETTICKCOUNT() will never return, then a 0 will be returned.

GETTICKSINCE (startTick)

Returns: INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of milliseconds.

startTickr byVal startTick AS INTEGER
This is a variable that was updated using the return value from
GETTICKCOUNT() and it is used to calculate the time elapsed since that
update.

Interactive Command: No

Related Commands: GETTICKCOUNT

 //Example :: GetTickSince.sb (See in BL600CodeSnippets.zip)

 DIM startTick, elapseMs, x

 x=1

 startTick = GetTickCount()

 DO

 PRINT x;" x 2 = "

 x=x*2

 PRINT x;"\n"

 UNTIL x==32768

 elapseMs = GetTickSince(startTick)

 PRINT "\n\nThe Do Until loop took ";elapseMS; " msec to process"

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

119 Laird Technologies

Expected Output:

GETTICKCOUNT is a core subroutine.

Circular Buffer Management Functions

It is a common requirement in applications that deal with communications to require circular buffers that can
act as first-in, first-out queues or to create a stack that can store data in a push/pop manner.

This section describes functions that allow these to be created so that they can be expedited as fast as
possible without the speed penalty inherited in any interpreted language. The basic entity that is managed is
the INTEGER variable in smartBASIC. Hence be aware that for a buffer size of N, 4 times N is the memory that
will be taken from the internal heap.

These buffers are referenced using handles provided at creation time.

CircBufCreate

FUNCTION

This function is used to create a circular buffer with a maximum capacity set by the caller. Most often it will
be used as a first-in, first-out queue.

CIRCBUFCREATE (nItems, circHandle)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Arguments:

nItems byVal nItems AS INTEGER
This specifies the maximum number of INTEGER values that can be stored in the buffer. If
there isn’t enough free memory in the heap, then this function will fail and return an
appropriate result code.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

120 Laird Technologies

circHandle byRef circHandle AS INTEGER
If the circular buffer is successfully created, then this variable will return a handle that
should be used to interact with it.

Interactive Command: NO

 //Example :: CircBufCreate.sb (See in BL600CodeSnippets.zip)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; "was not created"

 ENDIF

 rc = CircBufCreate(32000,circHandle2)

 PRINT "\n\n";rc

 IF rc!=0 THEN

 PRINT "\n---> The circular buffer 'circHandle2' was not created"

 ENDIF

Expected Output:

CIRCBUFCREATE is an extension function.

CircBufDestroy

SUBROUTINE

This function is used to destroy a circular buffer previously created using CircBufCreate.

CIRCBUFDESTROY (circHandle)

Arguments:

circHandle byRef circHandle AS INTEGER
A handle referencing the circular buffer that needs to be deleted. On exit an invalid
handle value will be returned

Interactive Command: NO

 //Example :: CircBufDestroy.sb (See in BL600CodeSnippets.zip)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; " was not created"

0

20736

---> The circular buffer 'circHandle2' was not created

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

121 Laird Technologies

 ENDIF

 CircBufDestroy(circHandle)

 PRINT "\nThe handle value is now ";circHandle; " so it has been destroyed"

Expected Output:

CIRCBUFDESTROY is an extension function.

CircBufWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space
available to write, then it will return with a failure resultcode and NOT write the value.

CIRCBUFWRITE (circHandle, nData)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Arguments:

circHandle byRef circHandle AS INTEGER
This identifies the circular buffer to write into.

nData byVal nData AS INTEGER

This is the integer value to write into the circular buffer

Interactive Command: NO

 // Example :: CircBufWrite.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM circHandle

 DIM i

 rc = CircBufCreate(16,circHandle)

 IF rc != 0 then

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 //write 3 values into the circular buffer

 FOR i = 1 TO 3

 rc = CircBufWrite(circHandle,i)

 IF rc != 0 then

 PRINT "\nFailed to write into the circular buffer\n"

 ELSE

 PRINT i;" was successfuly written to the circular buffer\r"

 ENDIF

 NEXT

0

The handle value is now -1 so it has been destroyed

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

122 Laird Technologies

Expected output:

CIRCBUFWRITE is an extension function.

CircBufOverWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space
available to write, then it will return with a failure resultcode but still write into the circular buffer by first
discarding the oldest item.

CIRCBUFOVERWRITE (circHandle, nData)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation
Note if the buffer was full and the oldest value was overwritten then a non-zero value
of 0x5103 will still be returned.

Arguments:

circHandle byRef circHandle AS INTEGER
This identifies the circular buffer to write into.

nData byVal nData AS INTEGER

This is the integer value to write into the circular buffer. It is always written into the
buffer. Oldest is discarded to make space for this.

Interactive Command: NO

 // Example :: CircBufOverwrite.sb (See in BL600CodeSnippets.zip)

 DIM rc,circHandle,i

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed to write into the circular buffer"

 ELSE

 PRINT "\n";i

The circular buffer was created successfully

1 was successfuly written to the circular buffer

2 was successfuly written to the circular buffer

3 was successfuly written to the circular buffer

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

123 Laird Technologies

 ENDIF

 NEXT

Expected Output:

CIRCBUFOVERWRITE is an extension function.

CircBufRead

FUNCTION

This function is used to read an integer from the tail end of the circular buffer. A nonzero resultcode will be
returned if the buffer is empty or if the handle is invalid.

CIRCBUFREAD(circHandle, nData)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation. If 0x5102 is returned it implies the buffer was empty so nothing was read.

Arguments:

circHandle byRef circHandle AS INTEGER
This identifies the circular buffer to read from.

nData byRef nData AS INTEGER

This is the integer value to read from the circular buffer

Interactive Command: NO

 // Example :: CircBufRead.sb (See in BL600CodeSnippets.zip)

 DIM rc,circHandle,i,nData

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 PRINT "Writing..."

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i;"\n"

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ELSE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

124 Laird Technologies

 PRINT "\n";i

 ENDIF

 NEXT

 //read 4 values from the circular buffer

 PRINT "\nReading...\n"

 FOR i = 1 to 4

 rc = CircBufRead(circHandle,nData)

 IF rc == 0x5102 THEN

 PRINT "The buffer was empty"

 ELSEIF rc != 0 THEN

 PRINT "Failed to read from the circular buffer"

 ELSE

 PRINT nData;"\n"

 ENDIF

 NEXT

Expected Output:

CIRCBUFREAD is an extension function.

CircBufItems

FUNCTION

This function is used to determine the number of integer items held in the circular buffer.

CIRCBUFITEMS(circHandle, nItems)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. If
0x5102 is returned it implies the buffer was empty so nothing was read.

Arguments:

circHandle byRef circHandle AS INTEGER
This identifies the circular buffer which needs to be queried.

nItems byRef nItems AS INTEGER

This returns the total items waiting to be read in the circular buffer.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

125 Laird Technologies

Interactive Command: NO

 // Example :: CircBufItems.sb (See in BL600CodeSnippets.zip)

 DIM rc,circHandle,i,nItems

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ENDIF

 rc = CircBufItems(circHandle,nItems)

 IF rc == 0 THEN

 PRINT "\n";nItems;" items in the circular buffer"

 ENDIF

 NEXT

Expected Output:

CIRCBUFITEMS is an extension function.

Serial Communications Routines

In keeping with the event driven architecture of smart BASIC, the serial communications subsystem enables
smart BASIC applications to be written which allow communication events to trigger the processing of user
smart BASIC code.

Note that if a handler function returns a non-zero value then the WAITEVENT statement is reprocessed,
otherwise the smart BASIC runtime engine will proceed to process the next statement after the WAITEVENT
statement – not after the handlers ENDFUNC or EXITFUNC statement. Please refer to the detailed description
of the WAITEVENT statement for further information.

 UART (Universal Asynchronous Receive Transmit)

This section describes all the events and routines used to interact with the UART peripheral available on the
platform. Depending on the platform, at a minimum, the UART will consist of a transmit, a receive, a CTS

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

126 Laird Technologies

(Clear To Send) and RTS (Ready to Send) line. The CTS and RTS lines are used for hardware handshaking to
ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many peripherals, then
the user is able to create those using the GPIO lines of the module and interface with those control/status
lines using smart BASIC code.

 Output DTR Data Terminal Ready
 Input DSR Data Set Ready
 Output/Input DCD Data Carrier Detect
 Output/Input RI Ring Indicate

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a PC where
they are always inputs and modems where they are always outputs, to configure the pins to be either so that
the device can adopt a DTE (Data Terminal Equipment) or DCE (Data Communications Equipment) role.
Please note that both DCD and RI have to be BOTH outputs or BOTH inputs, one cannot be an output and
the other an input.

UART Events

In addition to the routines for manipulating the UART interface, when data arrives via the receive line it is
stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user
smart BASIC code in handlers can perform user defined actions.

The following is a detailed list of all events generated by the UART subsystem which can be handled by user
code.

EVUARTRX This event is generated when one or more new characters have arrived and have
been stored in the local ring buffer.

EVUARTTXEMPTY This event is generated when the last character is transferred from the local transmit
ring buffer to the hardware shift register.

 // Example :: EVUARTRX.sb (See in BL600CodeSnippets.zip)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1)

 PRINT "\nPress Button 0 to exit this application \n"

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

 WAITEVENT //wait for rx, tx and modem status events

 PRINT "Exiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

127 Laird Technologies

Expected Output:

Note: If you type unknown commands, an E007 error displays in UwTerminal.

 // Example :: EVUARTTXEMPTY.sb (See in BL600CodeSnippets.zip)

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is empty"

 ENDFUNC 0

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 PRINT "\nSend this via uart"

 WAITEVENT

Expected Output:

UartOpen

Note: Until further notice, the parity parameter shall not be changed when using this function.

Function

This function is used to open the main default uart peripheral using the parameters specified.

If the uart is already open then this function will fail.

If this function is used to alter the communications parameters, like say the baudrate and the application exits
to interactive mode, then those settings will be inherited by the interactive mode parser. Hence this is the
only way to alter the communications parameters for Interactive mode.

While the uart is open, if a BREAK is sent to the module, then it will force the module into deep sleep mode
as long as BREAK is asserted. As soon as BREAK is deasserted, the module will wake up through a reset as if
it had been power cycled.

Send this via uart

Tx buffer is empty

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

128 Laird Technologies

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

 Returns: INTEGER Indicates success of command:

 0 Opened successfully
0x5208 Invalid baudrate
0x5209 Invalid parity
0x520A Invalid databits
0x520B Invalid stopbits
0x520C Cannot be DTE (because DCD and RI cannot be inputs)
0x520D Cannot be DCE (because DCD and RI cannot be outputs)
0x520E Invalid flow control request
0x520F Invalid DTE/DCE role request
0x5210 Invalid length of stOptions parameter (must be 5 chrs)
0x5211 Invalid tx buffer length
0x5212 Invalid rx buffer length

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

baudrate byVal baudrate AS INTEGER
The baudrate for the uart. Note that, the higher the baudrate, the more power will be drawn
from the supply pins.
AT I 1002 or SYSINFO(1002) returns the minimum valid baudrate
AT I 1003 or SYSINFO(1003) returns the maximum valid baudrate

txbuflen byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0 then a default value will be used by
the underlying driver

rxbuflen byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0 then a default value will be used by
the underlying driver

stOptions byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is
used to specify further comms parameters as follows:-

Character Offset :
0: DTE/DCE role request - ‘T’ for DTE and ‘C’ for DCE
1: Parity – ‘N’ for none, ‘O’ for odd and ‘E’ for even
2: Databits – ‘5’,’6’,’7’,’8’,9’
3: Stopbits – ‘1’,’2’
4: Flow Control – ‘N’ for none, ‘H’ for CTS/RTS hardware, ‘X’ for xon/xof

Note: There will be further restrictions on the options based on the hardware as for example a PC
implementation cannot be configured as a DCE role. Likewise many microcontroller uart
peripherals are not capable of 5 bits per character – but a PC is.

Note: In DTE equipment DCD and RI are inputs, while in DCE they are outputs.
Interactive Command: No

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

129 Laird Technologies

Related Commands: UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 // Example :: UartOpen.sb (See in BL600CodeSnippets.zip)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

 UartClose()

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1) //For button0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

 UartClose() //Since Uart port is already open we must

 //close it before opening it again with

 //different settings.

 //--- Open comport so that DCD and RI are inputs

 rc = UartOpen(9600,0,0,"CN81H") //Open as DCE, no parity, 8 databits,

 //1 stopbits, cts/rts flow control

 IF rc!= 0 THEN

 PRINT "\nFailed to open UART interface with error code ";INTEGER.H' rc

 ELSE

 PRINT "\nUART open success"

 ENDIF

 PRINT "\nPress button0 to exit this application\n"

 WAITEVENT //wait for rx, events

 PRINT "\nExiting..."

Expected Output:

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

130 Laird Technologies

UARTOPEN is a core function.

UartClose

FUNCTION

This subroutine is used to close a uart port which had been opened with UARTOPEN.

If after the uart is closed, a print statement is encountered, the uart will be automatically re-opened at the
default rate (9600N81) so that the data generated by the PRINT statement is sent.

This routine will throw an exception if the uart is already closed, so if you are not sure then it is best to call it
if UARTINFO(1) returns a non-zero value.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any data in
either of these buffers when the UART is closed, it will be lost. This is because the execution of UARTCLOSE
takes a very short amount of time, while the transfer of data from the buffers will take much longer.

In addition please note that when a smart BASIC application completes execution with the UART closed, it
will automatically be reopened in order to allow continued communication with the module in Interactive
Mode using the default communications settings.

UARTCLOSE()

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments: None

Interactive Command: No

Related Commands: UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS,
UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartClose.sb (See in BL600CodeSnippets.zip)

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed"

 ELSE

 PRINT "\nThe Uart port was not closed"

 ENDIF

 IF UartInfo(0)!=0 THEN

 PRINT "\nand now it is open"

 ENDIF

Expected Output:

UARTCLOSE is a core subroutine.

The Uart port was closed

and now it is open

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

131 Laird Technologies

UartCloseEx

FUNCTION

This function is used to close a uart port which had been opened with UARTOPEN depending on the flag
mask in the input parameter.

Please see UartClose() for more details

Note:

 For firmware versions older than 1.3.57.3 there is a bug which means that if the rx & tx
buffers are not empty an internal pointer is still set to NULL when it should. This results in
unpredictable behaviour.

Workaround:

 Use UartInfo(6) to check if the buffers are empty and then call UartCloseRx(1)

UARTCLOSEEX(nFlags)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation. If 0x5231 is returned it implies one of the buffers was not empty so not
closed.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nFlags byVal nFlags AS INTEGER
If Bit 0 is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the
same effect as UartClose() routine.
Bits 1 to 31 are for future use and must be set to 0.

Interactive Command: No

Related Commands: UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS,
UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

132 Laird Technologies

Workaround for FW 1.3.57.0 and earlier:

 //Example :: UartCloseExWA.sb (See in BL600CodeSnippets.zip)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow control

 PRINT "Laird"

 //---Workaround for bug for firmware versions older than 1.3.57.3

 IF UartInfo(6)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc2=UartCloseEx(1)

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nThe Uart Port was closed"

 ENDIF

For FW 1.3.57.3 and newer:

 //Example :: UartCloseEx.sb (See in BL600CodeSnippets.zip)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow

control

 PRINT "Laird"

 IF UartCloseEx(1)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

Laird

Data in at least one buffer. Uart Port not closed

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

133 Laird Technologies

UartInfo

FUNCTION

This function is used to query information about the default uart, such as buffer lengths, whether the port is
already open or how many bytes are waiting in the receive buffer to be read.

UARTINFO (infoId)

Function

Returns: INTEGER The value associated with the type of uart information requested

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

infoId byVal infoId AS INTEGER
This specifies the type of uart information requested as follows if the uart is open:-
0 := 1 (the port is open), 0 (the port is closed)
And the following specify the type of uart information when the port is open:-
1 := Receive ring buffer capacity
2 := Transmit ring buffer capacity
3 := Number of bytes waiting to be read from receive ring buffer
4 := Free space available in transmit ring buffer
5 := Number of bytes still waiting to be sent in transmit buffer
6 := Total number of bytes waiting in rx and tx buffer

If the uart is closed, then regardless of the value of infoId, a 0 will be returned.
Note: UARTINFO(0) will always return the open/close state of the uart.
Interactive Command: No

Related Commands: UARTOPEN, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartInfo.sb (See in BL600CodeSnippets.zip)

 DIM rc,start

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed\n"

 ELSE

 PRINT "\nThe Uart port was not closed\n"

 ENDIF

 PRINT "\nReceive ring buffer capacity: ";UartInfo(1)

 PRINT "\nTransmit ring buffer capacity: ";UartInfo(2)

 PRINT "\nNo. bytes waiting in transmit buffer: ";UartInfo(5)

 start = GetTickCount()

 DO

 UNTIL UartInfo(5)==0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

134 Laird Technologies

 PRINT "\n\nTook ";GetTickSince(start);" milliseconds for transmit buffer to be

emptied"

Expected Output:

UARTINFO is a core subroutine.

UartWrite

FUNCTION

This function is used to transmit a string of characters.

UARTWRITE (strMsg)

Returns: INTEGER 0 to N : Actual number of bytes successfully written to the local transmit ring
buffer

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN (or auto-opened with PRINT statement)

Arguments:

strMsg byRef strMsg AS STRING
The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring
buffer. If STRLEN(strMsg) and the return value are not the same,this implies the transmit
buffer did not have enough space to accommodate the data. If the return value does not
match the length of the original string, then use STRSHIFTLEFT function to drop the data
from the string, so that subsequent calls to this function only retries with data which was not
placed in the output ring buffer.

Interactive Command: No

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

135 Laird Technologies

 //Example :: UartWrite.sb (See in BL600CodeSnippets.zip)

 DIM rc,str$,i,done,d

 //str$ contains a lot of space so that we can satisfy the condition in the IF

statement

 str$="

Hello World"

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is now empty"

 ENDFUNC 0 //exit from WAITEVENT

 rc=UartWrite(str$)

 //Shift 'str$' if there isn't enough space in the buffer until 'str$' can be written

 WHILE done == 0

 IF rc < StrLen(str$) THEN

 PRINT rc;" bytes written"

 PRINT "\nStill have ";StrLen(str$)-rc;" bytes to write\n"

 PRINT "\nShifting 'str$' by ";rc

 StrShiftLeft(str$,rc)

 done = 0

 ELSE

 PRINT "\nString 'str$' written successfully"

 done=1

 ENDIF

 ENDWHILE

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 WAITEVENT

Expected Output:

UARTWRITE is a core subroutine.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

136 Laird Technologies

UartRead

FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied.

UARTREAD(strMsg)

Returns: INTEGER 0 to N : The total length of the string variable – not just what got appended. This
means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPENxxx

Arguments:

strMsg byRef strMsg AS STRING
The content of the receive buffer will get appended to this string.

Interactive Command: No

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you

must use a const string then first save it to a temp string variable and then pass it to the
function

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH,
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartRead.sb (See in BL600CodeSnippets.zip)

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 strLength=UartRead(str$)

 PRINT "\n";str$

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

137 Laird Technologies

Expected Output:

UARTREAD is a core subroutine.

UartReadN

FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied
but it ensures that the string is not longer than nMaxLen.

UARTREADN(strMsg, nMaxLen)

Returns: INTEGER 0 to N : The total length of the string variable – not just what got appended. This
means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPENxxx

Arguments:

strMsg byRef strMsg AS STRING
The content of the receive buffer will get appended to this string.

nMaxLen byval nMaxLen AS INTEGER
The output string strMsg will never be longer than this value. If a value less than 1 is
specified, it will be clipped to 1 and if > that 0xFFFF it will be clipped to 0xFFFF.

Interactive Command: No

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you

must use a const string then first save it to a temp string variable and then pass it to the
function

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH,
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

What is your name?

David

Your name is David

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

138 Laird Technologies

 FUNCTION HndlrTmr0()

 strLength=UartReadn(str$,11)

 PRINT "\n";str$

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

UARTREADN is a core subroutine.

UartReadMatch

FUNCTION

This function is used to read the content of the underlying receive ring buffer and append it to the string
variable supplied, up to and including the first instance of the specified matching character OR the end of
the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a constant
character such as a carriage return (0x0D). In that case, in the handler, if the return value is greater than 0, it
implies a terminated message arrived and so can be processed further.

UARTREADMATCH(strMsg , chr)

Returns: INTEGER Indicates the presence of the match character in strMsg as follows:

 0 : data may have been appended to the string, but no matching character.
1 to N : The total length of the string variable up to and including the match chr.

Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of data
stored in the string. On some platforms with low amount of RAM resources, the underlying
code may decide to leave the data in the receive buffer rather than transfer it to the string.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments:

strMsg byRef strMsg AS STRING
The content of the receive buffer will get appended to this string up to and including the
match character.

What is your name?

David

Your name i

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

139 Laird Technologies

chr byVal chr AS INTEGER
The character to match in the receive buffer, for example the carriage return character 0x0D

Interactive Command: No

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so if you
must use a const string then first save it to a temp string variable and then pass it to the
function

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTGETDSR,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS,
UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartReadMatch.sb (See in BL600CodeSnippets.zip)
 DIM rc,str$,ret,char,str2$

 ret=1 //Function return value

 char=13 //ASCII decimal value for 'carriage return'

 str$="Your name is "

 str2$="\n\nMatch character ' ' not found \nExiting.."

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0) //Allow time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 rc = UartReadMatch(str$,char)

 PRINT "\n";str$

 IF rc==0 THEN

 rc=StrSetChr(str2$,char,19) //Insert 'char', the match character

 PRINT str2$

 str2$="\n\nMatch character not found \nExiting.." //reset str2$

 ret=0

 ELSE

 PRINT "\n\n\nNow type something without the letter 'a'\n"

 str$="You sent " //reset str$

 char=97 //ASCII decimal value for 'a'

 ret=1

 ENDIF

 ENDFUNC ret

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

140 Laird Technologies

Expected Output:

UARTREADMATCH is a core subroutine.

UartFlush

SUBROUTINE

This subroutine is used to flush either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a
very long message and the input buffer fills up. In that case, there is no more space for an incoming
termination character and the RTS handshaking line would have been asserted so the message system will
stall. A flush of the receive buffer is the best approach to recover from that situation.

Note: Execution of UARTFLUSH is much quicker than the time taken to transmit data to/from the
buffers

UARTFLUSH(bitMask)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments:

bitMask byVal bitMask AS INTEGER

 This bit mask is used to choose which ring buffer to flush.

 Bit Description

0 Set to flush the rx buffer

1 Set to flush the tx buffer

 Set both bits to flush both buffers.

Interactive Command: No

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS,
UARTSETDCD, UARTBREAK, UARTFLUSH

 //Example :: UartFlushRx.sb (See in BL600CodeSnippets.zip)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

141 Laird Technologies

 FUNCTION HndlrUartRx()

 TimerStart(0,2,0) //Allow time for data to reach rx

buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 PRINT UartInfo(3);" bytes in the rx buffer,\n"

 UartFlush(01) //clear rx buffer

 PRINT UartInfo(3);" bytes in the rx buffer after flushing"

 ENDFUNC 0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 PRINT "\nSend me some text\n"

 WAITEVENT

Expected Output:

 //Example :: UartFlushTx.sb (See in BL600CodeSnippets.zip)

 DIM s$: s$ = "Hello World"

 DIM rc : rc = UartWrite(s$)

 UartFlush(10) //Will flush before all chars have been transmitted

 PRINT UartInfo(5); " bytes in the tx buffer after flushing"

Expected Output:

UARTFLUSH is a core subroutine.

UartGetCTS

FUNCTION

This function is used to read the current state of the CTS modem status input line.

If the device does not expose a CTS input line, then this function will return a value that signifies an asserted
line.

UARTGETCTS()

Returns: INTEGER Indicates the status of the CTS line:

 0 : CTS line is NOT asserted
1 : CTS line is asserted

Send me some data

Laird

6 bytes in the rx buffer,

0 bytes in the rx buffer after flushing

H0 bytes in the tx buffer after flushing

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

142 Laird Technologies

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments: None

Interactive Command: No

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETDSR, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS,
UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartGetCTS.sb (See in BL600CodeSnippets.zip)

 IF UartGetCTS()==0 THEN

 PRINT "\nCTS line is not asserted"

 ELSEIF UartGetCTS()==1 THEN

 PRINT "\nCTS line is asserted"

 ENDIF

Expected Output:

UARTGETCTS is a core subroutine.

UartSetRTS

SUBROUTINE

This function is used to set the state of the RTS modem control line. When the UART port is closed, the RTS
line can be configured as an input or an output and can be available for use as a general purpose
input/output line.

When the uart port is opened, the RTS output is automatically defaulted to the asserted state. If flow control
was enabled when the port was opened then the RTS output cannot be manipulated as it is owned by the
underlying driver.

UARTSETRTS(newState)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments:

newState byVal newState AS INTEGER
0 to deassert and non-zero to assert

Interactive Command: No

CTS line is not asserted

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

143 Laird Technologies

Related Commands: UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETDTR,
UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

Note: This subroutine is not implemented in the BL600

UARTSETRTS is a core subroutine.

UartBREAK

SUBROUTINE

This subroutine is used to assert/deassert a BREAK on the transmit output line. A BREAK is a condition where
the line is in non idle state (that is 0v) for more than 10 to 13 bit times, depending on whether parity has
been enabled and the number of stopbits.

On certain platforms the hardware may not allow this functionality, contact Laird to determine if your device
has the capability. On platforms that do not have this capability, this routine has no effect.

The BL600 module currently does not offer the capability to send a BREAK signal.

UARTBREAK(state)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments:

newState byVal newState AS INTEGER
0 to deassert and non-zero to assert

Interactive Command: No

Related Commands: UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD,
UARTREADMATCH, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR,
UARTSETRTS, UARTSETDCD, UARTFLUSH

Note: This subroutine is not implemented in the BL600

UARTBREAK is a core subroutine.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

144 Laird Technologies

I2C - Also known as Two Wire Interface (TWI)

This section describes all the events and routines used to interact with the I2C peripheral available on the
platform. An I2C interface is also known as a Two Wire Interface (TWI) and has a master/slave topology.

An I2C interface allows multiple masters and slaves to communicate over a shared wired-OR type bus
consisting of two lines which normally sit at 5 or 3.3v.

The BL600 module can only be configured as an I2C master with the additional constraint that it be the only
master on the bus and only 7 bit slave addressing is supported.

The two signal lines are called SCL and SDA. The former is the clock line which is always sourced by the
master and the latter is a bi-directional data line which can be driven by any device on the bus.

It is essential to remember that pull up resistors on both SCL and SDA lines are not provided in the module
and MUST be provided external to the module.

A very good introduction to I2C can be found at http://www.i2c-bus.org/i2c-primer/ and the reader is
encouraged to refer to it before using the api described in this section.

I2C Events

The API provided in the module is synchronous and so there is no requirement for events.

I2cOpen

FUNCTION

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to open the main I2C peripheral using the parameters specified.

On the BL600 module the SCL signal Pin is on SIO9 and SDA signal pin is SIO8.

I2COPEN (nClockHz, nCfgFlags, nHande)

Returns: INTEGER Indicates success of command:

 0 Opened successfully
0x5200 Driver not found
0x5207 Driver already open
0x5225 Invalid Clock Frequency Requested
0x521D Driver resource unavailable
0x5226 No free PPI channel
0x5202 Invalid Signal Pins
0x5219 I2C not allowed on pins specified

 Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

http://www.lairdtech.com/bluetooth
http://www.i2c-bus.org/i2c-primer/

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

145 Laird Technologies

Arguments:

nClockHz byVal nClockHz AS INTEGER
This is the clock frequency to use, and can be one of 100000, 250000 or 400000.

nCfgFlags byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the I2C interface. All unused bits are allocated as for
future use and MUST be set to 0. Used bits are as follows:-
Bit Description

0 If set, then a 500 microsecond low pulse will NOT be sent on open. This low pulse is
used to create a start and stop condition on the bus so that any signal transitions on
these lines prior to this open which may have confused a slave can initialise that
slave to a known state. The STOP condition should be detected by the slave.

1-31 Unused and MUST be set to 0

nHandle byRef nHandle AS INTEGER
The handle for this interface will be returned in this variable if it was successfully opened.
This handle is subsequently used to read/write and close the interface.

Related Commands: I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cOpen.sb (See in BL600CodeSnippets.zip)

 DIM handle

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

Expected Output:

I2COPEN is a core function.

I2cClose

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

I2C open success

Handle is 0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

146 Laird Technologies

This subroutine is used to close a I2C port which had been opened with I2COPEN.

This routine is safe to call if it is already closed.

I2CCLOSE(handle)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

handle byVal handle AS INTEGER
This is the handle value that was returned when I2COPEN was called which identifies the
I2C interface to close.

Interactive Command: No

Related Commands: I2COPEN, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cClose.sb (See in BL600CodeSnippets.zip)
 DIM handle

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

 I2cClose(handle) //close the port

 I2cClose(handle) //no harm done doing it again

I2CCLOSE is a core subroutine.

I2cWriteREG8

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to write an 8 bit value to a register inside a slave which is identified by an 8 bit register
address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

147 Laird Technologies

I2CWRITEREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit register address in the addressed slave in range 0 to 255.

nRegValue byVal nRegValue AS INTEGER
This is the 8 bit value to written to the register in the addressed slave.
Please note only the lowest 8 bits of this variable are written.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteReg8.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 23 : nRegVal = 0x63

 rc = I2cWriteReg8(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG8 is a core function.

I2C open success

99 written successfully to register 23

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

148 Laird Technologies

I2cReadREG8

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to read an 8 bit value from a register inside a slave which is identified by an 8 bit register
address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2CREADREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit register address in the addressed slave in range 0 to 255.

nRegValue byRef nRegValue AS INTEGER
The 8 bit value from the register in the addressed slave will be returned in this variable.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadReg8.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 23

 rc = I2cReadReg8(nSlaveAddr, nRegAddr, nRegVal)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

149 Laird Technologies

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG8 is a core function.

I2cWriteREG16

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able

to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to write a 16 bit value to 2 registers inside a slave and the first register is identified by an
8 bit register address supplied.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2CWRITEREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue byVal nRegValue AS INTEGER
This is the 16 bit value to be written to the register in the addressed slave.
Please note only the lowest 16 bits of this variable are written.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

I2C open success

Value read from register is 99

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

150 Laird Technologies

 //Example :: I2cWriteReg16.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 0x34 : nRegVal = 0x4210

 rc = I2cWriteReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG16 is a core function.

I2cReadREG16

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to read a 16 bit value from two registers inside a slave which is identified by an 8 bit
register address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2C open success

16912 written successfully to register 52

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

151 Laird Technologies

I2CREADREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue byRef nRegValue AS INTEGER
The 16 bit value from two registers in the addressed slave will be returned in this variable.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadReg16.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 0x34

 rc = I2cReadReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG16 is a core function.

I2C open success

Value read from register is 16912

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

152 Laird Technologies

I2cWriteREG32

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to write a 32 bit value to 4 registers inside a slave and the first register is identified by an
8 bit register address supplied.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2CWRITEREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue byVal nRegValue AS INTEGER
This is the 32 bit value to be written to the register in the addressed slave.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteReg32.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 nSlaveAddr = 0x6f : nRegAddr = 0x56 : nRegVal = 0x4210FEDC

 rc = I2cWriteReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

153 Laird Technologies

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG32 is a core function.

I2cReadREG32

FUNCTION

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to read a 32 bit value from four registers inside a slave which is identified by a starting 8
bit register address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2CREADREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr byVal nRegAddr AS INTEGER
This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue byRef nRegValue AS INTEGER
The 32 bit value from four registers in the addressed slave will be returned in this variable.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadREG32.sb (See in BL600CodeSnippets.zip)

I2C open success

1108410076 written successfully to register 86

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

154 Laird Technologies

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x56

 nSlaveAddr = 0x6f : nRegAddr = 0x56

 rc = I2cReadReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to read from slave/register"

 ELSE

 PRINT "\nValue read from register is "; nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG16 is a core function.

I2cWriteRead

SUBROUTINE

Note: For firmware releases older than 1.2.54.4, there is an issue where some I2C slaves are not able
to drive the ACK down to a low enough voltage level for the module to recognise it as an
ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not being
released by the module. This has been corrected in release 1.2.54.4 and the firmware is
available as a uart download on request. You should upgrade the firmware if you have an I2C
slave not responding to the correct slave address.

This function is used to write from 0 to 255 bytes and then immediately after that read 0 to 255 bytes in a
single transaction from the addressed slave. It is a ‘free-form’ function that allows communication with a
slave which has a 10 bit address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one I2C interface is made available,
most likely made available by bit-bashing gpio.

I2CWRITEREAD(nSlaveAddr, stWrite$, stRead$, nReadLen)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

I2C open success

Value read from register is 1108410076

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

155 Laird Technologies

Arguments:

nSlaveAddr byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

stWrite$ byRef stWrite$ AS STRING
This string contains the data that must be written first. If the length of this string is 0 then
the write phase is bypassed.

stRead$ byRef stRead$ AS STRING
This string will be written to with data read from the slave if and only if nReadLen is not 0.

nReadLen byRef nReadLen AS INTEGER
On entry this variable contains the number of bytes to be read from the slave and on exit
will contain the actual number that were actually read. If the entry value is 0, then the read
phase will be skipped.

Interactive Command: No

Related Commands: I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,
I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteRead.sb (See in BL600CodeSnippets.zip)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc

 DIM handle

 DIM nSlaveAddr

 DIM stWrite$, stRead$, nReadLen

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";integer.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //Write 2 bytes and read 0

 nSlaveAddr=0x6f : stWrite$ = "\34\35" : stRead$="" : nReadLen = 0

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 3 bytes and read 4

 nSlaveAddr=0x6f : stWrite$ = "\34\35\43" : stRead$="" : nReadLen = 4

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 0 bytes and read 8

 nSlaveAddr=0x6f : stWrite$ = "" : stRead$="" : nReadLen = 8

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

156 Laird Technologies

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREAD is a core function.

SPI Interface

This section describes all the events and routines used to interact with the SPI peripheral available on the
platform.

The BL600 module can only be configured as a SPI master.

The three signal lines are called SCK, MOSI and MISO, where the first two are outputs and the last is an
input.

A very good introduction to SPI can be found at http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
and the reader is encouraged to refer to it before using the api described in this section.

It is possible to configure the interface to operate in any one of the 4 modes defined for the SPI bus which
relate to the phase and polarity of the SCK clock line in relation to the data lines MISO and MOSI. In addition,
the clock frequency can be configured from 125,000 to 8000000 and it can be configured so that it shifts
data in/out most significant bit first or last.

Note: A dedicated SPI Chip Select (CS) line is not provided and it is up to the developer to dedicate

any spare gpio line for that function if more than one SPI slave is connected to the bus. The SPI
interface in this module assumes that prior to calling SPIREADWRITE, SPIREAD or SPIWRITE
functions the slave device has been selected via the appropriate gpio line.

SPI Events

The API provided in the module is synchronous and so there is no requirement for events.

SpiOpen

FUNCTION

This function is used to open the main SPI peripheral using the parameters specified.

SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)

Returns: INTEGER Indicates success of command:

I2C open success

Write = 3435 Read =

Write = 343543 Read = 1042D509

Write = Read = 2B322380ED236921

http://www.lairdtech.com/bluetooth
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

157 Laird Technologies

 0 Opened successfully
0x5200 Driver not found
0x5207 Driver already open
0x5225 Invalid Clock Frequency Requested
0x521D Driver resource unavailable
0x522B Invalid mode

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nMode byVal nMode AS INTEGER
This is the mode, as in phase and polarity of the clock line, that the interface shall operate
at. Valid values are 0 to 3 inclusive:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

nClockHz byVal nClockHz AS INTEGER
This is the clock frequency to use, and can be one of 125000, 250000, 500000, 1000000,
2000000, 4000000 or 8000000.

nCfgFlags byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the SPI interface. All unused bits are allocated as for
future use and MUST be set to 0. Used bits are as follows:-
Bit Description
0 If set then the least significant bit is clocked in/out first.
1-31 Unused and MUST be set to 0

nHandle byRef nHandle AS INTEGER
The handle for this interface will be returned in this variable if it was successfully opened.
This handle is subsequently used to read/write and close the interface.

Related Commands: SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

SPIOPEN is a core function.

On the following page is an example which demonstrates usage of all the SPI related functions for this
module.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

158 Laird Technologies

SPI Example

 //Example :: SpiExample.sb (See in BL600CodeSnippets.zip)

 //The SPI slave used here is the Microchip 25A512

 //See http://ww1.microchip.com/downloads/en/DeviceDoc/22237C.pdf

 DIM rc

 DIM h //handle

 DIM rl //readlen

 DIM rd$,wr$,p$

 DIM wren

 //---

 //Get eeprom Status Register

 //---

 FUNCTION EepromStatus()

 GpioWrite(13,0)

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 ENDFUNC StrGetChr(rd$,1)

 //---

 //Wait for WR bit in status flag to reset

 //---

 SUB WaitWrite()

 DO

 GpioWrite(13,0)

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 UNTIL ((StrGetChr(rd$,1)&1)==0)

 ENDSUB

 //---

 //Enable writes in eeprom

 //---

 SUB EnableWrite()

 GpioWrite(13,0)

 wr$="\06" : rd$="" : rc=SpiWrite(wr$)

 GpioWrite(13,1)

 ENDSUB

 //---

 // Configure the Chip Select line using SIO13 as an output

 //---

 rc= GpioSetFunc(13,2,1)

 // ensure CS is not enabled

 GpioWrite(13,1)

 //---

 //open the SPI

 //---

 rc=SpiOpen(0,125000,0,h)

 //...

 //Write DEADBEEFBAADC0DE 8 bytes to memory at location 0x0180

 //...

 EnableWrite()

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

159 Laird Technologies

Writing to location 0x180 020180DEADBEEFBAADC0DE

Data at location 0x0180 is 000000DEADBEEFBAADC0DE

Data at location 0x0180 is DEADBEEF

Data at location 0x0184 is BAADC0DEFFFFFFFF

 wr$="\02\01\80\DE\AD\BE\EF\BA\AD\C0\DE"

 PRINT "\nWriting to location 0x180 ";StrHexize$(wr$)

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 GpioWrite(13,1)

 WaitWrite()

 //...

 //Read from written location

 //...

 wr$="\03\01\80\00\00\00\00\00\00\00\00"

 rd$=""

 GpioWrite(13,0)

 rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 //...

 //Prepare for reads from location 0x180 and then read 4 and then 8 bytes

 //...

 wr$="\03\01\80"

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 rd$=""

 rc=SpiRead(rd$,4)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 rd$=""

 rc=SpiRead(rd$,8)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0184 is ";StrHexize$(rd$)

 //---

 //close the SPI

 //---

 SpiClose(h)

Expected Output:

SpiClose

SUBROUTINE

This subroutine is used to close a SPI port which had been opened with SPIOPEN.

This routine is safe to call if it is already closed.

SPICLOSE(handle)

Exceptions Local Stack Frame Underflow

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

160 Laird Technologies

 Local Stack Frame Overflow

Arguments:

handle byVal handle AS INTEGER
This is the handle value that was returned when SPIOPEN was called which identifies the
SPI interface to close.

Interactive Command: No

Related Commands: SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPICLOSE is a core subroutine.

SpiReadWrite

FUNCTION

This function is used to write data to a SPI slave and at the same time read the same number of bytes back.
Every 8 clock pulses result in one byte being written and one being read.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one SPI interface is made available.

SPIREADWRITE(stWrite$, stRead$)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

stWrite$ byRef stWrite$ AS STRING
This string contains the data that must be written.

stRead$ byRef stRead$ AS STRING
While the data in stWrite$ is being written, the slave sends data back and that data is
stored in this variable. Note that on exit this variable will contain the same number of bytes
as stWrite$.

Interactive Command: No

Related Commands: SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIWRITEREAD is a core function.

SpiWrite

FUNCTION

This function is used to write data to a SPI slave and any incoming data will be ignored.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

161 Laird Technologies

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one SPI interface is made available.

SPIWRITE(stWrite$)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

stWrite$ byRef stWrite$ AS STRING
This string contains the data that must be written.

Interactive Command: No

Related Commands: SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIWRITE is a core function.

SpiRead

FUNCTION

This function is used to read data from a SPI slave.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the
future, a new version of this function will be made available if more than one SPI interface is made available.

SPIREAD(stRead$, nReadLen)

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

stRead$ byRef stRead$ AS STRING
This string will contain the data that is read from the slave.

nReadLen byVal nReadLen AS INTEGER
This specifies the number of bytes to be read from the slave.

Interactive Command: No

Related Commands: SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIREAD is a core function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

162 Laird Technologies

Cryptographic Functions

This section describes cryptographic functions that can be used to encrypt and decrypt data, over and above
and in addition to any crypting applied at the transport layer.

In cryptography there are many algorithms which could be symmetric or assymetric. Each function described
in this section will detail the type and modes catered for.

AesSetKeyIV

FUNCTION

This function is used to initialise a context for AES encryption and decription using the mode, key and
initialisation vector supplied. The modes that are catered for is EBC and CBC with a block size of 128 bits.

AESSETKEYIV (mode, blockSize,key$, initVector$)

Returns: INTEGER

Will be 0x0000 if the context was created successfully. Otherwise an appropriate
resultcode will be returned which will convery the reason it failed.

Arguments:

mode BYVAL mode AS INTEGER
This shall be as follows:-
0x100 for EBC mode
0x101 for EBC mode but data is XORed with same initVector$ everytime
0x200 for CBC mode

blockSize BYVAL blockSize AS INTEGER

Must always be set to16, which is the size in bytes.

key$ BYREF key$ AS STRING
This string specifies the key to use for encryption and decryption and MUST be exactly 16
bytes long

initVector$ BYREF initVector$ AS STRING

If mode is 0x101 or 0x200, then this string MUST be supplied and it shall be 16 bytes
long. It is left to the caller to ensure a sensible value is supplied. For example, providing a
string where all bytes is 0 is going to be of no value.

Interactive Command: NO

 //Example :: AesSetKeyIv.sb (See in BL600CodeSnippets.zip)

 DIM key$, initVector$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

163 Laird Technologies

 PRINT "\nFailed to create EBC context"

 ENDIF

 //Create context for EBC mode with XOR, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x101,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC-XOR context created successfully"

 ELSE

 PRINT "\nFailed to create EBC-XOR context"

 ENDIF

 //Create context for CBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x200,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nCBC context created successfully"

 ELSE

 PRINT "\nFailed to create CBC context"

 ENDIF

Expected Output:

AESSETKEYIV is a core language function.

AesEncrypt

FUNCTION

This function is used to encrypt a string up to 16 bytes long using the context that was precreated using the
most recent call of the function AesSetKeyIv.

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept in the
context object that was created by AesSetKeyIV.

On the BL600, which has AES 128 encryption hardware assist, the function has been timed to take roughly
125 microseconds.

AESENCRYPT (inData$,outData$)

Returns: INTEGER

Will be 0x0000 if the data was encrypted successfully. Otherwise an appropriate
resultcode will be returned which will convey the reason it failed. ALWAYS check this.

Arguments:

inData$ BYREF inData$ AS STRING
This string is up to 16 bytes long and should contain the data to encrypt

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

164 Laird Technologies

outData$ BYREF outData$ AS STRING

On exit, if the function was successful, then this string will contain the encrypted cypher
data. If unsuccessful, then string will be 0 bytes long.

Interactive Command: NO

 //Example :: AesEncrypt.sb (See in BL600CodeSnippets.zip)

 DIM key$, initVector$

 DIM inData$, outData$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

 PRINT "\nFailed to create EBC context"

 ENDIF

 inData$="303132333435363738393A3B3C3D3E3F"

 inData$=StrDehexize$(inData$)

 rc=AesEncrypt(inData$,outData$)

 IF rc==0 THEN

 PRINT "\nEncrypt OK"

 ELSE

 PRINT "\nFailed to encrypt"

 ENDIF

 PRINT "\ninData = "; strhexize$(inData$)

 PRINT "\noutData = "; strhexize$(outData$)

Expected Output:

AESENCRYPT is a core language function.

AesDecrypt

FUNCTION

This function is used to decrypt a string of exactly 16 bytes using the context that was precreated using the
most recent call of the function AesSetKeyIv.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

165 Laird Technologies

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept in the
context object that was created by AesSetKeyIV.

On the BL600, which does not have AES 128 decryption hardware assist, the function has been timed to take
roughly 570 microseconds.

AESDECRYPT (inData$,outData$)

Returns: INTEGER

Will be 0x0000 if the data was decrypted successfully. Otherwise an appropriate
resultcode will be returned which will convey the reason it failed. ALWAYS check this.

Arguments:

inData$ BYREF inData$ AS STRING
This string MUST be eactly 16 bytes long and should contain the data to decrypt

outData$ BYREF outData$ AS STRING

On exit, if the function was successful, then this string will contain the decrypted plaintext
data. If unsuccessful, then string will be 0 bytes long.

Interactive Command: NO

//Example :: AesDecrypt.sb (See in BL600CodeSnippets.zip)

DIM key$, initVector$

DIM inData$, outData$, c$[3]

DIM rc

//Create context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//encrypt some data

inData$="303132333435363738393A3B3C3D3E3F"

inData$=StrDehexize$(inData$)

rc=AesEncrypt(inData$,c$[0])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[0])

//encrypt same data again

rc=AesEncrypt(inData$,c$[1])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

166 Laird Technologies

PRINT "\noutData = "; strhexize$(c$[1])

//ecrypt same data again

rc=AesEncrypt(inData$,c$[2])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[2])

//Rereate context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//now decrypt the data

rc=AesDecrypt(c$[0],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[0])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[1],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[1])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[2],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[2])

PRINT "\noutData = "; strhexize$(outData$)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

167 Laird Technologies

Expected Output:

AESDECRYPT is a core language function.

File I/O Functions

A portion of module’s flash memory is dedicated to a file system which is used to store smartBASIC
applications and user data files.

Due to the internal requirement, set by the smartBASIC runtime engine (because applications are interpreted
in-situ), compiled application files have to be stored entirely in one continguous memory block. This means
the file system is currently restricted so that it is NOT possible for an application to open a file and then write
to it. To store application data so that they are non-volatile, use the functions described in the section “Non-
Volatile Memory Management Routines”

This means any and all user data files need to be preloaded using the commands:-
 AT+FOW
 AT+FWR or AT+FWRH
 AT+FCL
which are described in the section “Interactive Mode Commands”.

The utility UwTerminal helps with downloading such files, but not strictly required.

This section describes all the functions that are available to an application to interact with data files in read
mode.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

168 Laird Technologies

With the use of READ, FTELL and FSEEK downloading configuration files (like say digital certificates) can be a
very useful and convenient way of making an app behave in custom manner from data derived from these
data files as demonstrated by the example application listed in the description of FOPEN.

FOPEN

FUNCTION

This function is used to open a file in mode specified by the ‘mode$’ string parameter. When the file is
opened the file pointer is set to 0 which effectively means that a read operation will happen from the
beginning of the file and then after the read the file pointer will be adjusted to offset equal to the size of the
read.

Function FSEEK is provided to move that file pointer to an offset relative to the beginning, or current position
or from the end of the file and function FTELL is provided to obtain the current position as an offset from the
beginning of the file.

FOPEN (filename$, mode$)

Returns: INTEGER

A non-zero integer representing an opaque handle to the file that was opened. If the
file failed to open, like for example because the mode specified writing to the file which
is not allowed on certain platforms, then the returned value will be 0.

Arguments:

filename$ BYREF filename$ AS STRING
This string specifies the name of the file to open.

mode$ BYVAL mode$ AS STRING

Must always be set to “r”
This string specifies the mode the file should be opened, and for this module, as only
reading is allowed must always be specified as “r”.

Interactive Command: NO

 //Example :: FileIo.sb (See in BL600CodeSnippets.zip)

 //

 // First download a file into the module by submitting the following

 // commands manually (wait for a 00 response after each command) :-

 //

 // at+fow "myfile.dat"

 // at+fwr "Hello"

 // at+fwr " World. "

 // at+fwr " This is something"

 // at+fwr " in a file which we can read"

 // at+fcl

 //

 // You can check you have the file in the file system by submitting

 // the command AT+DIR and you should see myfile.dat listed

 //

 DIM handle,fname$,flen,frlen,data$,fpos,rc

 fname$="myfile.dat" : handle = fopen(fname$,"r")

 IF handle != 0 THEN

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

169 Laird Technologies

 //determine the size of the file

 flen = filelen(handle)

 print "\nThe file is ";flen;" bytes long"

 //get the current position in the file (should be 0)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //read the first 11 bytes from the file

 frlen = fread(handle,data$,11)

 print "\nData from file is : ";data$

 //get the current position in the file (should be 11)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //reposition the file pointer to 6 so that we can read 5 bytes again

 rc = fseek(handle,6,0)

 //get the current position in the file

 rc = ftell(handle,fpos)

 //read 5 bytes

 frlen = fread(handle,data$,5)

 print "\nData from file is : ";data$

 //reposition to the start of 'is'

 rc = fseek(handle,19,0)

 //read until a 'w' is encountered : w = ascii 0x77

 frlen = freaduntil(handle,data$,0x77,32)

 print "\nData from file is : ";data$

 //finally close the file, which on exit will set the handle to 0

 fclose(handle)

 ELSE

 print "\nFailed to open file ";fname$

 ENDIF

Expected Output:

FOPEN is a core language function.

FCLOSE

FUNCTION

This function is used to close a file previously opened with FOPEN. It takes a handle parameter as a reference
and will on exit set that handle to 0 which signifies an invalid file handle.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

170 Laird Technologies

FCLOSE (fileHandle)

Returns: N/A as it is a subroutine

Arguments:

fileHandle BYREF fileHandle AS INTEGER
The handle of the file to be closed. On exit it will be set to 0

Interactive Command: NO

 //See the full and detailed example in the FOPEN section

FCLOSE is a core language function.

FREAD

FUNCTION

This function is used to read X bytes of data from a file previously opened with FOPEN and will return the
actual number of bytes read.

FREAD (fileHandle, data$, maxReadLen)

Returns: INTEGER

The actual number of bytes read from the file. Will be 0 if read from end of file is
attempted.

Arguments:

fileHandle BYVAL fileHandle AS INTEGER
The handle of the file to be read from

data$ BYREF data$ AS STRING
The data read from file is returned in this string

maxReadLen BYVAL maxReadLen AS INTEGER
The max number of bytes to read from the file

Interactive Command: NO

//See the full and detailed example in the FOPEN section

FREAD is a core language function.

FREADUNTIL

FUNCTION

This function is used to read X bytes or until (and including) a match byte is encountered, whichever comes
earlier, from a file previously opened with FOPEN and will return the actual number of bytes read (includes
the match byte if encountered).

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

171 Laird Technologies

FREADUNTIL (fileHandle, data$, matchByte, maxReadLen)

Returns: INTEGER

The actual number of bytes read from the file. Will be 0 if read from end of file is
attempted.

Arguments:

fileHandle BYVAL fileHandle AS INTEGER
The handle of the file to be read from

data$ BYREF data$ AS STRING
The data read from file is returned in this string

matchByte BYVAL matchByte AS INTEGER
Read until this matching byte is encountered or the max number of bytes are read.
Whichever condition is asserted first.

maxReadLen BYVAL maxReadLen AS INTEGER
The max number of bytes to read from the file

Interactive Command: NO

 //See the full and detailed example in the FOPEN section

FREADUNTIL is a core language function.

FILELEN

FUNCTION

This function is used determine the total size of the file in bytes.

FILELEN (fileHandle)

Returns: INTEGER

The total number of bytes read from the file specified by the handle. Will be 0 if an
invalid handle is supplied.

Arguments:

fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.

Interactive Command: NO

 //See the full and detailed example in the FOPEN section

FILELEN is a core language function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

172 Laird Technologies

FTELL

FUNCTION

This function is used determine the current file position in the open file specified by the handle. It will be a
value from 0 to N where N is the size of the file.

FTELL (fileHandle, curPosition)

Returns: INTEGER

The total number of bytes read from the file specified by the handle. Will be 0 if an
invalid handle is supplied.

Arguments:

fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.

curPosition BYREF curPosition AS INTEGER
This will be updated with the current file position for the file specified by the fileHandle.

Interactive Command: NO

 //See the full and detailed example in the FOPEN section

FTELL is a core language function.

FSEEK

FUNCTION

This function is used to move the file pointer of the open file specified by the handle supplied. The offset is
relative to the beginning of the file or the current position or the end of the file which is specified by the
‘whence’ parameter.

FSEEK (fileHandle, offset, whence)

Returns: INTEGER

Will be 0 if successful

Arguments:

fileHandle BYVAL fileHandle AS INTEGER
The handle of a file for which the file pointer is to be moved

offset BYVAL offset AS INTEGER
This is the offset relative to the position defined by the ‘whence’ parameter.

whence BYVAL whence AS INTEGER
This parameter specifies from which position the offset is to be calculated. It shall be 1 to
specify from the current position, 2 from the end of the while and then for all other
values from the beginning of the file.
When the start position is ‘end of file’ then a positive ‘offset’ value is used to calculate
backwards from the end of file. Hence supplying a negative value has no meaning.

Interactive Command: NO

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

173 Laird Technologies

 //See the full and detailed example in the FOPEN section

FSEEK is a core language function.

Non-Volatile Memory Management Routines

These commands provide access to the non-volatile memory of the module and provide the ability to use
non-volatile storage for individual records.

NvRecordGet

FUNCTION

NVRECORDGET reads the value of a user record as a string from non-volatile memory.

NVRECORDGET (recnum, strvar$)

Returns: INTEGER, the number of bytes that were read into strvar$. A negative value is returned if an
error was encountered:

Error Description

-1 Recnum is not in valid range or is unrecognised.

-2 Failed to determine the size of the record.

-3 The raw record is less than 2 bytes long (possible flash
corruption).

-4 Insufficient RAM.

-5 Failed to read the data record.

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

recnum byVal recnum AS INTEGER
The record number to be read, in the range 1 to n, where n is the maximum number of
records allowed by the specific module.

strvar$ byRef strvar$ AS STRING
The string variable that will contain the data read from the record.

Interactive Command: NO

 //Example :: NvRecordGet.sb (See in BL600CodeSnippets.zip)

 DIM r$

 PRINT NvRecordGet(100,r$);" bytes read"

 PRINT "\n";r$

Expected Output (When no data present in record):

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

174 Laird Technologies

NVRECORDGET is a module function.

NvRecordGetEx

FUNCTION

NVRECORDGETX reads the value of a user record as a string from non-volatile memory and if it does not exist
or an error occurred, then the specified default string is returned.

NVRECORDGETEX (recnum, strvar$, strdef)

Returns: INTEGER, the number of bytes that are read into strvar$.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 Out of Memory

Arguments:

recnum byVal recnum AS INTEGER
The record number that is to be read, in the range 1 to n, where n is the maximum number
of records allowed by the specific module.

strvar$ byRef strvar$ AS STRING
The string variable that will contain the data read from the record.

strdef$ byVal strdef$ AS STRING
The string variable that will supply the default data if the record does not exist.

Interactive Command: NO

 //Example :: NvRecordGetEx.sb (See in BL600CodeSnippets.zip)
 DIM r$

 PRINT NvRecordGetEx(100,r$,"default");" bytes read"

 PRINT "\n";r$

Expected Output:

NVRECORDGETEX is a module function.

0 bytes read

7 bytes read

default

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

175 Laird Technologies

NvRecordSet

FUNCTION

NVRECORDSET writes a value to a user record in non-volatile memory.

NVRECORDSET (recnum, strvar$)

Returns: INTEGER Returns the number of bytes written.

If an invalid record number is specified then -1 is returned. There are a limited number of
user records which can be written to, depending on the specific module.

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

recnum byVal recnum AS INTEGER
The record number that is to be read, in the range 1 to n, where n depends on the specific
module.

strvar$ byRef strvar$ AS STRING
The string variable that will contain the data to be written to the record.

WARNING: You should minimise the number of writes. Each time a record is changed, empty flash is used
up. The flash filing system does not overwrite previously used locations. Eventually there will be
no more free memory and an automatic defragmentation will occur. This operation takes much
longer than normal as a lot of data may need to be re-written to a new flash segment. This
sector erase operation could affect the operation of the radio and result in a connection loss.

Interactive Command: NO

 //Example :: NvRecordSet.sb (See in BL600CodeSnippets.zip)

 DIM w$, r$, rc : w$ = "HelloWorld"

 PRINT NvRecordSet(500,w$);" bytes written\n"

 PRINT NvRecordGetEx(500,r$,"default");" bytes read\n"

 PRINT "\n";r$

Expected Output:

NVRECORDSET is a module function.

10 bytes written

10 bytes read

HelloWorld

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

176 Laird Technologies

NvCfgKeyGet

FUNCTION

NVCFGKEYGET reads the value of a built-in configuration key. See AT+CFG for a list of configuration keys.

NVCFGKEYGET (keyId, value)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

keyId byVal keyId AS INTEGER
The configuration key that is to be read, in the range 1 to n, where n depends on the
specific module and the full list is described for the AT+CFG command.

value byRef value AS INTEGER
The integer variable that will be updated with the value of the configuration key if it exists.

Interactive Command: see AT+CFG

 //Example :: NvCfgKeyGet.sb (See in BL600CodeSnippets.zip)
 DIM v : v = 0 //initial the value just in case the key does not

exist

 PRINT NvCfgKeyGet(100,v)

 PRINT "\n";v

Expected Output:

NVCFGKEYGET is a module function.

NvCfgKeySet

FUNCTION

NVCFGKEYSET writes a value to a pre-existing configuration key. See AT+CFG for a complete list of
configuration keys. If a key does not exist, calling this function will not create a new one. The set of
configuration keys are created at firmware build time. If you wish to create a database of non-volatile
configuration keys for your own application use the NvRecordSet/Get() commands.

NVCFGKEYSET (keyId, value)

Returns: INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Exceptions:

0

33031

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

177 Laird Technologies

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

keyId byVal keyId AS INTEGER
The configuration key that is to be read, in the range 1 to n, where n depends on the
specific module and the full list is described for the AT+CFG command.

value byVal value AS INTEGER
If the configuration key ‘keyId’ exists then it is updated with the new value.

WARNING: You should minimise the number of writes, as each time a record is changed, empty
flash is used up. The flash filing system does not overwrite previously used locations.
At some point there will be no more free memory and an automatic defragmentation
will occur. This operation takes much longer than normal as a lot of data may need to
be re-written to a new flash segment. This sector erase operation could affect the
operation of the radio and result in a connection loss.

Interactive Command: NO

 //Example :: NvCfgKeyGet.sb (See in BL600CodeSnippets.zip)
 DIM rc, r, w : w=0x8107

 PRINT "\n";NvCfgKeySet(100,w)

 PRINT "\n";NvCfgKeyGet(100,r)

 PRINT "\nValue for 100 is ";r

Expected Output:

NVCFGKEYSET is a module function.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smart BASIC modules.
Most of these commands are applicable to the range of modules. However, some are dependent on the
actual I/O availability of each module.

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number designated
for that special I/O pin corresponds to the nSigNum argument.

0

0

Value for 100 is 33031

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

178 Laird Technologies

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.

nFunction byVal nFunction AS INTEGER.
Specifies the configuration of the GPIO pin as follows:
1 := DIGITAL_IN
2 := DIGITAL_OUT
3 := ANALOG_IN
4 := ANALOG_REF (not currently available on the BL600 module)
5 := ANALOG_OUT (not available in the BL600 module)

nSubFunc byVal nSubFunc INTEGER.
Configures the pin as follows:

 If nFunction == DIGITAL_IN

Bits 0..3

 1 - pull down resistor (weak)

 2 - pull up resistor (weak)

 3 - pull down resistor (strong)

 4 - pull up resistor (strong)

Else :- No pull resistors

Bits 4, 5

 4 - When in deep sleep mode, awake when this pin is LOW

 5 - When in deep sleep mode, awake when this pin is HIGH

Else - No effect in deep sleep mode.

Bits 8..31

 Must be 0s

if nFuncType == DIGITAL_OUT

Bits 0..3

 0 = Initial output to LOW

 1 = Initial output to HIGH

 2 = Output will be PWM (Pulse Width Modulated Output). See function GpioConfigPW()

for more configuration. The duty cycle is set using function GpioWrite().

 3 = Output will be FREQUENCY. The frequency is set using function GpioWrite() where 0

will switch off the output any value in range 1..4000000 will generate an output signal

with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0 :- 0=Standard, 1=Standard

1 :- 0=High, 1=Standard

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

179 Laird Technologies

2 :- 0=Standard, 1=High

3 :- 0=High, 1=High

4 :- 0=Diconnect, 1=Standard

5 :- 0=Disconnect, 1=High

6 :- 0=Standard, 1=Disconnect

7 :- 0=High, 1=Disconnect

if nFuncType == ANALOG_IN

 0 := Use Default for system.

For BL600 : 10 bit adc and 2/3
rd
 scaling

0x13 := For BL600 : 10 bit adc, 1/3
rd
 scaling

0x11 := For BL600 : 10 bit adc, unity scaling

Note: The internal reference voltage is 1.2V with +/- 1.5% accuracy.

WARNING: This subfunc value is ‘global’ and once changed will apply to all ADC inputs.

Interactive Command: NO

 //Example :: GpioSetFunc.sb (See in BL600CodeSnippets.zip)

 PRINT GpioSetFunc(3,1,2) //Digital In Gpio pin 3, weak pull up resistor

 PRINT GpioSetFunc(4,3,0) //Analog In Gpio pin 4, default settings

 PRINT GpioSetFunc(5,1,0x12) //internal pull up on gpio5 and wake from deep sleep

 //when there is transition from high to low

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM
output using GpioSetFunc() function described above.

Please note that this is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is
advised that this be called once at the beginning of your application and not changed again within the
application, unless all PWM outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 32 bit hardware timers. The timers are clocked by a 1MHz clock source.

A PWM signal has a frequency and a duty cycle property, the frequency is set using this function and is
defined by the nMaxPeriodus parameter. For a given nMaxPeriodus value, given that the timer is clocked
using a 1MHz source, the frequency of the generated signal will be 1000000 divided by nMaxPeriodus.
Hence if nMinFreqHz is more than that 1000000/nMaxPeriodus, this function will fail with a non-zero value.

000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

180 Laird Technologies

The nMaxPeriodus can also be viewed as defining the resolution of the PWN output in the sense that the
duty cycle can be varied from 0 to nMaxPeriodus. The duty cycle of the PWM signal is modified using the
GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, a frequency of 2Khz
etc.

On exit the function will return with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxPeriodus)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

nMinFreqHz byRef nMinFreqHz AS INTEGER.
On entry this variable contains the minimum frequency desired for the PWM output. On exit,
if successful, it contains the actual frequency of the PWM output.

nMaxPeriodus byVal nMaxPeriodus INTEGER.
This specifies the duty cycle resolution and the value to set to get a 100% duty cycle.

Interactive Command: NO

 // Example :: GpioConfigPWM() (See in BL600CodeSnippets.zip)
 DIM rc

 DIM nFreqHz, nMaxValUs

 // we want a minimum frequency of 500Hz so that we can use a 100Hz low pass filter to

 // create an analogue output which has a 100Hz bandwidth

 nFreqHz = 500

 // we want a resolution of 1:1000 in the generated analogue output

 nMaxValUs = 1000

 PRINT GpioConfigPWM(nFreqHz,nMaxValUs)

 PRINT "\nThe actual frequency of the PWM output is ";nFreqHz;"\n"

 // now configure SIO2 pin as a PWM output

 PRINT GpioSetFunc(2,2,2) //3rd parameter is subfunc == PWM output

 // Set PWM output to 0%

 GpioWrite(2,0)

 // Set PWM output to 50%

 GpioWrite(2,(nMaxValUs/2))

 // Set PWM output to 100%

 GpioWrite(2,nMaxValUs) // any value >= nMaxValUs will give a 100% duty cycle

 // Set PWM output to 33.333%

 // Set PWM output to 50%

 GpioWrite(2,(nMaxValUs/3))

Expected Output:

GPIOCONFIGPWM is a Module function.

0

The actual frequency of the PWM output is 1000

0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

181 Laird Technologies

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet will contain a pinout table which will mention SIO (Special I/O) pins and the number
designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns: INTEGER, the value from the signal. If the signal number is invalid, then it will return value 0.
For digital pins, the value will be 0 or 1. For ADC pins it will be a value in the range 0 to M
where M is the max value based on the bit resolution of the analogue to digital converter.

Arguments:

nSigNum byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

Interactive Command: NO

 //Example :: GpioRead.sb (See in BL600CodeSnippets.zip)

 DIM signal

 signal = GpioRead(3)

 PRINT signal

Expected Output:

GPIOREAD is a Module function.

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in the range 0 to
N where N is the max PWM value that will generate a 100% duty cycle output (that is, a constant high signal)
and N is a value that is configure using the function GpioConfigPWM().

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the desired
frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a constant low value.
Setting a value greater than 4000000 will clip the output to a 4MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Arguments:

nSigNum byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

nNewValue byVal nNewValue INTEGER.
The value to be written to the port. If the pin is configured as digital then 0 will clear the pin

1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

182 Laird Technologies

and a non-zero value will set it.
If the pin is configured as analogue, then the value is written to the pin.
If the pin is configured as a PWM then this value sets the duty cycle.
If the pin is configured as a FREQUENCY then this value sets the frequency.

Interactive Command: NO

 //Example :: GpioWrite.sb (See in BL600CodeSnippets.zip)

 DIM rc,dutycycle,freqHz,minFreq

 //set sio pin 1 to an output and initialise it to high

 PRINT GpioSetFunc(1,2,0);"\n"

 //set sio pin 5 to PWM output

 minFreq = 500

 PRINT GpioConfigPWM(minFreq,1024);"\n" //set max pwm value/resolution to 1:1024

 PRINT GpioSetFunc(5,2,2);"\n"

 PRINT GpioSetFunc(7,2,3);"\n\n" //set sio pin 7 to Frequency output

 GpioWrite(18,0) //set pin 1 to low

 GpioWrite(18,1) //set pin 1 to high

 //Set the PWM output to 25%

 GpioWrite(5,256) //256 = 1024/4

 //Set the FREQ output to 4.236 Khz

 GpioWrite(7,4236)

 //Note you can generate a chirp output on sio 7 by starting a timer which expires

 //every 100ms and then in the timer handler call GpioWrite(7,xx) and then

 //increment xx by a certain value

Expected Output:

GPIOWRITE is a Module function.

GPIO Events

EVGPIOCHANn Here, n is from 0 to N where N is platform dependent and an event is generated
when a preconfigured digital input transition occurs. The number of digital inputs
that can auto-generate is hardware dependent. For the BL600 module, N can be
0,1,2 or 3. Use GpioBindEvent() to

Tgenerate these events.

EVDETECCHANn Here, n is from 0 to N where N is platform dependent and an event is generated
when a preconfigured digital input transition occurs. The number of digital inputs
that can auto-generate is hardware dependent. For the BL600 module, N can only
be 0. Use GpioAssignEvent() to generate these events.

GpioBindEvent

FUNCTION

This routine binds an event to a level transition on a specified special i/o line configured as a digital input so
that changes in the input line can invoke a handler in smart BASIC user code.

0000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

183 Laird Technologies

Note: In the BL600 module, using this function will result in over 1mA of continuous current
consumption from the power supply. If power is of importance, use GpioAssignEvent() instead
which uses other resources to expedite an event.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum byVal nEventNum INTEGER.
The GPIO event number (in the range of 0 - N) which will result in the event EVGPIOCHANn
being thrown to the smart BASIC runtime engine.

nSigNum byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER.
States the transition as follows:

 0 - Low to high transition
1 - High to low transition
2 - Either a low to high or high to low transition

Interactive Command: NO

 //Example :: GpioBindEvent.sb (See in BL600CodeSnippets.zip)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1) //Bind event 0 to high low transition on sio16

(button0)

 ONEVENT EVGPIOCHAN0 CALL Btn0Press //When event 0 happens, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOBINDEVENT is a Module function.

0

Press button 0

Hello

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

184 Laird Technologies

GpioUnbindEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum byVal nEventNum INTEGER.
The GPIO event number (in the range of 0 - N) which will be disabled so that it no longer
generates run-time events in smart BASIC.

Interactive Command: NO

 //Example :: GpioUnbindEvent.sb (See in BL600CodeSnippets.zip)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1);"\n"

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnbindEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNBINDEVENT is a Module function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

185 Laird Technologies

GpioAssignEvent

FUNCTION

This routine assigns an event to a level transition on a specified special I/O line configured as a digital input.
Changes in the input line can invoke a handler in smart BASIC user code

Note: In the BL600, this function results in around 4uA of continuous current consumption from the
power supply. It is impossible to assign a polarity value which detects either level transitions.

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum byVal nEventNum INTEGER.
The GPIO event number (in the range of 0 - N) which will result in the event
EVDETECTCHANn being thrown to the smart BASIC runtime engine.

Note: For BL600 only nEventNum = 0 is valid

nSigNum byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER.
States the transition as follows:

 0 - Low to high transition

 1 - High to low transition

 2 - Either a low to high or high to low transition (Not available in BL600)

Interactive Command: NO

 //Example :: GpioAssignEvent.sb (See in BL600CodeSnippets.zip)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1) //Assign event 0 to high low transition on

sio16 (button0)

 ONEVENT EVDETECTCHAN0 CALL Btn0Press //When event 0 is detected, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOASSIGNEVENT is a Module function.

0

Press button 0

Hello

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

186 Laird Technologies

GpioUnAssignEvent

FUNCTION

This routine unassigns the runtime engine event from a level transition assigned using GpioAssignEvent().

GPIOUNASSIGNEVENT (nEventNum)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum byVal nEventNum INTEGER.
The GPIO event number (in the range of 0 - N) which will be disabled so that it no longer
generates run-time events in smart BASIC.

Note: For BL600 only nEventNum = 0 is valid.

Interactive Command: NO

 //Example :: GpioUnAssignEvent.sb (See in BL600CodeSnippets.zip)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1);"\n"

 ONEVENT EVDETECTCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnAssignEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNASSIGNEVENT is a Module function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

187 Laird Technologies

User Routines

As well as providing a comprehensive range of built-in functions and subroutines, smart BASIC provides the
ability for users to write their own, which are referred to as ‘user’ routines as opposed to ‘built-in’ routines.

These are often used to perform frequently repeated tasks in an application and to write event and message
handler functions. An application with user routines is highly modular, allowing reusable functionality.

SUB

A subroutine is a block of statements which constitute a user routine which does not return a value but takes
arguments.

SUB routinename (arglist)
EXITSUB
ENDSUB

A SUB routine MUST be defined before the first instance of it being called. It is good practice to define SUB
routines and functions at the beginning of an application, immediately after global variable declarations.

A typical example of a subroutine block would be

SUB somename(arg1 AS INTEGER arg2 AS STRING)

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITSUB

 ENDIF

ENDSUB

Defining the routine name

The function name can be any valid name that is not already in use as a routine or global variable.

Defining the arglist

The arguments of the subroutine may be any valid variable types, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables
(INTEGER) are passed by value (byVal) and complex variables (STRING) are passed by reference (byRef).

However, this default behaviour can be varied by using the #SET directive during compilation of an
application.

#SET 1,0 ‘Default Simple arguments are BYVAL
#SET 1,1 ‘Default Simple arguments are BYREF
#SET 2,0 ‘Default Complex arguments are BYVAL
#SET 2,1 ‘Default Complex arguments are BYREF

When a value is passed by value to a routine, any modifications to that variable will not reflect back to the
calling routine. However, if a variable is passed by reference then any changes in the variable will be reflected
back to the caller on exit.

The SUB statement marks the beginning of a block of statements which will consist of the body of a user
routine. The end of the routine is marked by the ENDSUB statement.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

188 Laird Technologies

ENDSUB

This statement ends a block of statements belonging to a subroutine. It MUST be included as the last
statement of a SUB routine, as it instructs the compiler that there is no more code for the SUB routine. Note
that any variables declared within the subroutine lose their scope once ENDSUB is processed.

EXITSUB

This statement provides an early run-time exit from the subroutine.

FUNCTION

A statement beginning with this token marks the beginning of a block of statements which will consist of the
body of a user routine. The end of the routine is marked by the ENDFUNC statement.

A function is a block of statements which constitute a user routine that returns a value. A function takes
arguments, and can return a value of type simple or complex.

FUNCTION routinename (arglist) AS vartype
EXITFUNC arithemetic_expression_or_string_expression
ENDFUNC arithemetic_expression_or_string_expression

A function MUST be defined before the first instance of its being called. It is good practice to define
subroutines and functions at the beginning of an application, immediately after variable declarations. A
typical example of a function block would be:

FUNCTION somename(arg1 AS INTEGER arg2 AS STRING) AS INTEGER

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITFUNC arg1*2

 ENDIF

ENDFUNC arg1 * 4

Defining the routine name

The function name can be any valid name that is not already in use. The return variable is always passed as
byVal and shall be of type varType.

Return values are defined within zero or more optional EXITFUNC statements and ENDFUNC is used to mark
the end of the block of statements belonging to the function.

Defining the return value

The variable type AS varType for the function may be explicitly stated as one of INTEGER or STRING prior to
the routine name. If it is omitted, then the type is derived in the same manner as in the DIM statement for
declaring variables. Hence, if function name ends with the $ character then the type will be a STRING.
Otherwise, it is an INTEGER.

Since functions return a value, when used, they must appear on the right hand side of an expression
statement or within a [] index for a variable. This is because the value has to be 'used up' so that the
underlying expression evaluation stack does not have 'orphaned' values left on it.

Defining the arglist

The arguments of the function may be any valid variable type, i.e. INTEGER or STRING.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

189 Laird Technologies

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables
(INTEGER) are passed byVal and complex variables (STRING) are passed byRef. However, this default
behaviour can be varied by using the #SET directive.

SET 1,0 Default Simple arguments are BYVAL
SET 1,1 Default Simple arguments are BYREF
SET 2,0 Default Complex arguments are BYVAL
SET 2,1 Default Complex arguments are BYREF

Interactive Command: NO

ENDFUNC

This statement marks the end of a function declaration. Every function must include an ENDFUNC statement,
as it instructs the compiler that here is no more code for the routine.

ENDFUNC arithemetic_expression_or_string_expression

This statement marks the end of a block of statements belonging to a function. It also marks the end of
scope on any variables declared within that block.

ENDFUNC must be used to provide a return value, through the use of a simple or complex expression.

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

ENDFUNC S$ + “world”

FUNCTION doThis(byRef v as integer) AS INTEGER

 v=v+100

ENDFUNC v * 3

EXITFUNC

This statement provides a run-time exit point for a function before reaching the ENDFUNC statement.

EXITFUNC arithemetic_expression or string expression

EXITFUNC can be used to provide a return value, through the use of a simple or complex expression. It is
usually invoked in a conditional statement to facilitate an early exit from the function.

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

 IF a==0 THEN

 EXITFUNC S$ + “earth”

 ENDIF

ENDFUNC S$ + “world”

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

190 Laird Technologies

6. BLE EXTENSIONS BUILT-IN ROUTINES

Bluetooth Low Energy (BLE) extensions are specific to the BL600 smart BASIC BLE module and provide a high
level managed interface to the underlying Bluetooth stack.

MAC Address

To address privacy concerns there are 4 types of MAC addresses in a BLE device which can change as often as
required. For example, an iPhone will regularly change it’s BLE MAC address and it always exposes only it’s
resolvable random address.

To manage this, the usual 6 octet MAC address is qualified on-air by a single bit which qualifies the MAC
address as public or random. If public, then the format is as defined by the IEEE organisation. If random, then
it can be up to 3 types and this qualification is done using the upper 2 bits of the most significant byte of the
random MAC address. The exact details and format of how the specification requires this to be managed is
not relevant for the purpose of how BLE functionality as exposed in this module and only how various API
functions in smartBASIC expect MAC addresses to be provided is detailed here.

Where a MAC address is expected as a parameter (or provided as a response) it will always be a STRING
variable. This variable SHALL be 7 octets long where the first octet is the address type and the the rest of the
6 octets is the usual MAC address in big endian format (so that most significant octet of the address is at
offset 1), whether public or random.

The address type is :-

0 for Public
1 for Random Static
2 for Random Private Resolvable
3 for Random Private Non Resolvable
All other values are illegal

For example, to specify a public address which has the MAC potion as 112233445566 then then STRING
variable shall contain 7 octets 00112233445566 and a variable can be initialised using a constant string by
escaping as follows: DIM addr : addr=”\00\11\22\33\44\55\66”. Likewise a static random address will be
01C12233445566 (upper 2 bits of MAC portion == 11), a resolvable random address will be
02412233445566 (upper 2 bits of MAC portion ==01) and a non-resolvable address will be
03112233445566 (upper 2 bits of MAC portion ==00).

Please note: The MAC address portion in smartBASIC is always in big endian format. If you sniff on-air
packets, the same 6 packets will appear little endian format, hence reverse order – and you will NOT see 7
bytes, but a bit in the packet somewhere which specifies it to be public or random.

Events and Messages

EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out. Usage is as per the
example below.

 //Example :: EvBle_Adv_Timeout.sb (See in BL600CodeSnippets.zip)

 DIM peerAddr$

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

191 Laird Technologies

 //handler to service an advert timeout

 FUNCTION HndlrBleAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 //DbgMsg("\n - could use SystemStateSet(0) to switch off")

 //--

 // Switch off the system - requires a power cycle to recover

 //--

 // rc = SystemStateSet(0)

 ENDFUNC 0

 //start adverts

 //rc = BleAdvertStart(0,"",100,5000,0)

 IF BleAdvertStart(0,peerAddr$,100,2000,0)==0 THEN

 PRINT "\nAdvertisement Successful"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBleAdvTimOut

 WAITEVENT

Expected Output:

EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE related event has
occurred and it does so by throwing this message (as opposed to an EVENT, which is akin to an interrupt and
has no context or queue associated with it). The message contains two parameters. The first parameter, to be
called msgID subsequently, identifies what event was triggered and the second parameter, to be called
msgCtx subsequently, conveys some context data associated with that event. The smart BASIC application will
have to register a handler function which takes two integer arguments to be able to receive and process this
message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and

unless that queue is full will pend all messages until they are handled. Only messages that have
handlers associated with them will get inserted into the queue. This is to prevent messages that
will not get handled from filling that queue. The list of triggers and associated context
parameter follows:

MsgID Description

0 A connection has been established and msgCtx is the connection handle.

1 A disconnection event and msgCtx identifies the handle.

2 Immediate Alert Service Alert. The 2
nd
 parameter contains new alert level.

3 Link Loss Alert. The 2
nd
 parameter contains new alert level.

4 A BLE Service Error. The 2
nd
 parameter contains the error code.

5 Thermometer Client Characteristic Descriptor value has changed. (Indication enable state
and msgCtx contains new value, 0 for disabled, 1 for enabled)

Advert Started

Advert stopped via timeout

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

192 Laird Technologies

MsgID Description

6 Thermometer measurement indication has been acknowledged.

7 Blood Pressure Client Characteristic Descriptor value has changed. (Indication enable state
and msgCtx contains new value, 0 for disabled, 1 for enabled)

8 Blood Pressure measurement indication has been acknowledged.

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. msgCtx is key type.

12 Heart Rate Client Characteristic Descriptor value has changed. (Notification enable state and
msgCtx contains new value, 0 for disabled, 1 for enabled)

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

19 The supply voltage has dropped below that specified in the most recent call of
SetPwrSupplyThreshMv() and msgCtx is the current voltage in milliVolts.

20 The connection is no longer encrypted and msgCtx is the conn handle

21 The device name characteristic in the GAP service of the local gatt table has been written by
the remote gatt client.

Note: Message ID 13 is reserved for future use

An example of how these messages can be used is as follows:

 //Example :: EvBleMsg.sb (See in BL600CodeSnippets.zip)
 DIM addr$: addr$=""

 DIM rc

 //==

 // This handler is called when there is a BLE message

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nBle Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE 18

 PRINT "\nConnection ";nCtx;" is now encrypted"

 CASE 16

 PRINT "\nConnected to a bonded master"

 CASE 17

 PRINT "\nA new pairing has replaced the old key";

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

 ENDFUNC 1

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

193 Laird Technologies

 ENDFUNC 0

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 PRINT GpioSetFunc(16,1,0x12)

 PRINT GpioBindEvent(0,16,0)

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nPress button 0 to exit\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (When connection made with BL600):

Expected Output (When no connection made):

EVDISCON

This event is thrown when there is a disconnection. It comes with 2 parameters. Parameter 1 is the
connection handle and Parameter is the reason for the disconnection. The reason, for example, can be 0x08
which signifies a link connection supervision timeout which is used in the Proximity Profile.

A full list of Bluetooth HCI result codes for the ‘reason of disconnection’ can be determined in provided in
this document here.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

194 Laird Technologies

 //Example :: EvDiscon.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT "\nNew Connection ";nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

EVCHARVAL

This event is thrown when a characteristic has been written to by a remote GATT client. It comes with three
parametera which are the characteristic handle that was returned when the characteristic was registered
using the function BleCharCommit() the Offset and Length of the data from the characteristic value

 //Example :: EvCharVal.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

195 Laird Technologies

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 CloseConnections()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

196 Laird Technologies

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nValue of the characteristic is ";at$

 PRINT "\nSend a new value to write to the characteristic\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one
parameter which is the characteristic handle that was returned when the characteristic was registered using
the function BleCharCommit().

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two
parameters, the first is the characteristic handle returned when the characteristic was registered with
BleCharCommit() and the second is the new 16 bit value in the updated CCCD attribute.

 //Example :: EvCharCccd.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

197 Laird Technologies

 attr$="Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x6A,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

198 Laird Technologies

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT "\nIndications have been enabled by client"

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BL600 will then indicate a new characteristic value\n"

 PRINT "\nPress button 0 to exit"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two
parameters, the first is the characteristic handle that was returned when the characteristic was registered
using the function BleCharCommit()and the second is the new 16 bit value in the updated SCCD attribute.

The SCCD is used to manage broadcasts of characteristic values.

 //Example :: EvCharSccd.sb (See in BL600CodeSnippets.zip)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

199 Laird Technologies

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, read enabled, accept signed writes, broadcast capable

 rc=BleCharNew(0x03,BleHandleUuid16(1),charMet,0,mdSccd)

 //commit char initialised above, with initial value "hi" to service

'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO

pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

200 Laird Technologies

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT "\nBroadcasts have been enabled by client"

 ELSE

 PRINT "\nBroadcasts have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can write to the SCCD attribute."

 PRINT "\n--- Press button 0 to exit\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a CCCD or
SCCD as they are catered for with their own dedicated messages. It comes with two parameters, the first is
the characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit() and the second is an index into an opaque array of handles managed inside the
characteristic handle. Both parameters are supplied as-is as the first two parameters to the function
BleCharDescRead().

 //Example :: EvCharDesc.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

201 Laird Technologies

 // Initialise and instantiate service, characteristic, start adverts

 //==

 Sub OnStartup()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, read/write enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),charMet,0,0)

 //Add another descriptor

 attr$="descr_value"

 rc=BleCharDescAdd(0x2999,attr$,BleAttrMetadata(1,1,20,0,rc))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 rc=BleScanRptInit(scRpt$)

 //get UUID handle for other descriptor

 hOtherDscr=BleHandleUuid16(0x2905)

 //Add 'hSvc','hMyChar' and the other descriptor to the advert report

 rc=BleAdvRptAddUuid16(adRpt$,hSvc,hOtherDscr,-1,-1,-1,-1)

 rc=BleAdvRptAddUuid16(scRpt$,hOtherDscr,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

202 Laird Technologies

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc(BYVAL charHandle, BYVAL hDesc) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\n ::Char Handle: ";charHandle

 PRINT "\n ::Descriptor Index: ";hDesc

 PRINT "\nThe new descriptor value is then read using the function

BleCharDescRead()"

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 PRINT "\n--- Press button 0 to exit\n"

 WAITEVENT

 PRINT "\nExiting..."

EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit
buffer is sent via a notify or indicate. See VSP (Virtual Serial Port) Events

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example
using the function BleCharValueNotify() or when a Write_with_no_response is sent by the Gatt Client to a
remote server they are stored in temporary buffers in the underlying stack. There is finite number of these
temporary buffers and if they are exhausted the notify function or the write_with_no_resp command will fail
with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over the air,
given there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle
this event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note that when sending data using Indications, this event is not thrown because those messages have to be
confirmed by the client which will result in a EVCHARHVC message to the smartBASIC application. Likewise,
writes which are acknowledged also do not consume these buffers.

 //Example :: EvNotifyBuf.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

203 Laird Technologies

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 SUB SendData()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT "\n--- Notifying"

 DO

 tx$="SomeData"

 rc=BleCharValueNotify(hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT "\n--- Buffer full"

 PRINT "\nNotified ";count;" times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT "\n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

204 Laird Technologies

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf()

 SendData()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$="Hello"

 rc=BleCharValueNotify(hMyChar,tx$)

 ELSE

 PRINT "\nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then send you data until buffer is full\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

205 Laird Technologies

Expected Output:

Miscellaneous Functions

This section describes all BLE related functions that are not related to advertising, connection, security
manager or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that
the highest value in the list which is less than the desired value is selected, unless the desired value is less
than -55 and in that case -55 will be set.

For example, setting 1000 will result in +4, -3 will result in -4, -100 will result in -55.

At any time SYSINFO(2008) will return the actual transmit power setting. Or when in command mode use the
command AT I 2008.

BLETXPOWERSET(nTxPower)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nTxPower byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent tx packets. The
actual value is determined by scanning through the following values (4, 0, -4, -8, -12, -16, -
20, -30 , -55) such that the highest value in the table which is less than the desired value is
selected, unless the desired value is less than -55 and in that case -55 will be set.

Interactive Command: NO

//Example :: BleTxPowerSet.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPowerSet(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

dp=8 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

206 Laird Technologies

dp=2 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-10 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-25 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-45 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-1000 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:

BLETXPOWERSET is an extension function.

BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This
mode of pairing is referred to as Whsiper Mode Pairing. The actual value will be clipped to the transmit
power for normal operation which is set using BleTxPowerSet() function.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that
the highest value in the list which is less than the desired value is selected, unless the desired value is less
than -55 and in that case -55 will be set.

For example, setting 1000 will result in +4, -3 will result in -4, -100 will result in -55.

At any time SYSINFO(2018) will return the actual transmit power setting. Or when in command mode use the
command AT I 2018.

BLETXPWRWHILEPAIRING(nTxPower)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nTxPower byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent tx packets. The
actual value is determined by scanning through the following values (4, 0, -4, -8, -12, -16, -
20, -30 , -55) such that the highest value in the table which is less than the desired value is
selected, unless the desired value is less than -55 and in that case -55 will be set.

Interactive Command: NO

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

207 Laird Technologies

//Example :: BleTxPwrWhilePairing.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=8 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=2 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=-10 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-25 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-45 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

BLETXPOWERSET is an extension function.

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of 3 states:- OFF, ON or AUTOMATIC.

Note: Until a future revision when the chipset vendor has fixed a hardware issue at the silicon level
this function will not function as stated and any nNewState value will be interpreted as OFF

BLECONFIGDCDC(nNewState)

Returns: None

Arguments:

nNewState byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:
0 = OFF
2 = AUTO
Any other value = ON

Interactive Command: NO

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

208 Laird Technologies

 BleConfigDcDc(2) //Set for automatic operation

BLECONFIGDCDC is an extension function.

Advertising Functions

This section describes all the advertising related routines.

An advertisement consists of a packet of information with a header identifying it as one of 4 types along with
an optional payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to 3 fields. The first field is 1 octet in length and contains the number of octets
that follow it that belong to that record. The second field is again a single octet and is a tag value which
identifies the type of payload that starts at the next octet. Hence the payload data is ‘length – 1’. A special
NULL AD record consists of only one field, that is, the length field, when it contains just the 00 value.

The specification also allows custom AD records to be created using the ‘Manufacturer Specific Data’ AD
record.

The reader is encouraged to refer to the “Supplement to the Bluetooth Core Specification, Version 1, Part A”
which has the latest list of all AD records. You will need to register as at least an Adopter, which is free, to
gain access to this information. It is available at
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An advertisement event
consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is
initialised, created and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx and BLEADVRPTCOMMIT
functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND) then the peerAddr$ string must not
be empty and should be a valid address. When advertising with this packet type, the timeout is automatically
set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying
stack so that only those bonded masters will result in scan and connection requests being serviced.

Note: nAdvTimeout in the BL600 is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType,peerAddr$,nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

If a 0x6A01 resultcode is received it implies whitelist has been enabled but the Flags AD in the advertising
report is set for Limited and/or General Discoverability. The solution is to resubmit a new advert report which
is made up so that the nFlags argument to BleAdvRptInit() function is 0.
The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement see Volume 3,
Sections 9.2.3.2 and 9.2.4.2.

http://www.lairdtech.com/bluetooth
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

209 Laird Technologies

Arguments:

nAdvType byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:
0 ADV_IND invites connection requests
1 ADV_DIRECT_IND invites connection from addressed device
2 ADV_SCAN_IND invites scan request for more advert data
3 ADV_NONCONN_IND will not accept connections / active scans

peerAddr$ byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not
ADV_DIRECT_IND. This is only required when nAdvType == 1. When not empty, a valid
address string is exactly 7 octets long for example ”\00\11\22\33\44\55\66”, where the
first octet is the address type and the rest of the 6 octets is the usual MAC address in big
endian format (so that most significant octet of the address is at offset 1), whether public
or random. The address type is 0 for Public, 1 for Random Static, 2 for Random Private
Resolvable and 3 for Random Private Non Resolvable and all other values are illegal.

nAdvInterval byVal nAdvInterval AS INTEGER.
The interval between two advertisement events (in milliseconds).
An advertisement event consists of a total of 3 packets being transmitted in the 3
advertising channels.
The range of this interval is between 20 and 10240 milliseconds.

nAdvTimeout byVal nAdvTimeout AS INTEGER.
The time after which the module stops advertising (in milliseconds). The range of this
value is between 0 and 16383000 milliseconds and is rounded up to the nearest 1
seconds (1000ms). A value of 0 means disable the timeout, but note that if limited advert
modes was specified in BleAdvRptInit() then this function will fail. When the advert type
specified is ADV_DIRECT_IND , the timeout is automatically set to 1280 ms as per the
Bluetooth Specification.

WARNING: To save power, do not mistakenly set this to e.g. 100ms.

nFilterPolicy byVal nFilterPolicy AS INTEGER.
 Specifies the filter policy for the whitelist as follows:

0 Filter Policy - Any
1 Filter Policy - Filter Scan Request, Allow Connection Request from Any
2 Filter Policy - Filter Connection Request, Allow Scan Request from Any
3 Filter Policy - Filter Scan Request and Connection Request

If the filter policy is not 0, then the whitelist is enabled and filled with all the addresses of
all the devices in the trusted device database.

Interactive Command: NO

 //Example :: BleAdvertStart.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

210 Laird Technologies

 PRINT "\nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nIf you search for bluetooth devices on your device, you should see

'Laird BL600'"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

BLEADVERTSTART is an extension function.

BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments: None

Interactive Command: NO

 //Example :: BleAdvertStop.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 IF BleAdvertStop()==0 THEN

 PRINT "\nAdvertising Stopped"

 ELSE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

211 Laird Technologies

 PRINT "\n\nAdvertising failed to stop"

 ENDIF

 PRINT "\nExiting..."

 ENDFUNC 0

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started. Press button 0 to stop.\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc(16,1,2)

 rc = GpioBindEvent(0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BLEADVERTSTOP is an extension function.

BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records)
and store it the string specified. It will not be advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT(advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt$ byRef advRpt$ AS STRING.
This will contain an advertisement report.

nFlagsAD byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for
general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3 to
7 are reserved for future use by the BT SIG and must be set to 0.

Note: If a whitelist is enabled in the BleAdvertStart() function then both Limited and
General Discoverability flags MUST be 0 as per the BT 4.0 specification (Volume
3, Sections 9.2.3.2 and 9.2.4.2)

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

212 Laird Technologies

nAdvAppearance byVal nAdvAppearance AS INTEGER.
Determines whether the appearance advert should be added or omitted as follows:

0 Omit appearance advert
1 Add appearance advert as specified in the GAP service which is supplied via

the BleGapSvcInit() function.

nMaxDevName byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in The GAP service. If this
value is set to 0 then the device name will not be included.

Interactive Command: NO

 //Example :: BleAdvRptInit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN

 PRINT "\nAdvert report initialised"

 ENDIF

Expected Output:

BLEADVRPTINIT is an extension function.

BleScanRptInit

FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will
not be used until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT(scanRpt)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

scanRpt byRef scanRpt ASSTRING.
This will contain a scan report.

Interactive Command: NO

 //Example :: BleScanRptInit.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$: scnRpt$=""

 IF BleScanRptInit(scnRpt$)==0 THEN

 PRINT "\nScan report initialised"

 ENDIF

Advert report initialised

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

213 Laird Technologies

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This
consists of all the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

AdvRpt byRef AdvRpt AS STRING.
The advert report onto which the 16 bit uuids AD record is added.

Uuid1 byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored and then all further UUID arguments will also be ignored.

Uuid2 byVal uuid2 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored and then all further UUID arguments will also be ignored.

Uuid3 byVal uuid3 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored and then all further UUID arguments will also be ignored.

Uuid4 byVal uuid4 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored and then all further UUID arguments will also be ignored.

Uuid5 byVal uuid5 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored and then all further UUID arguments will also be ignored.

Uuid6 byVal uuid6 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it will be ignored, so set the value
to -1 to have it be ignored.

Interactive Command: NO

 //Example :: BleAdvAddUuid16.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN

Scan report initialised

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

214 Laird Technologies

 PRINT "\nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

BLEADVRPTADDUUID16 is an extension function.

BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified.
Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless
there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt byRef AdvRpt AS STRING.
The advert report into which the 128 bit uuid AD record is to be added.

nUuidHandle byVal nUuidHandle AS INTEGER

This is handle to a 128 bit uuid which was obtained using say the function
BleHandleUuid128() or some other function which returns one, like BleVSpOpen()

Interactive Command: NO

 //Example :: BleAdvAddUuid128.sb (See in BL600CodeSnippets.zip)

 DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$=""

 PRINT BleScanRptInit(scRpt$)

 //Open the VSP

 PRINT BleVSpOpen(128,128,0,hndl)

 //Advertise the VSPservice in a scan report

 PRINT BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 PRINT BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 PRINT BleAdvertStart(0,addr$,20,30000,0)

Expected Output:

BLEADVRPTADDUUID128 is an extension function.

UUID Service List AD added

00000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

215 Laird Technologies

BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

AdvRpt byRef AdvRpt AS STRING.
The advert report onto which the AD record is to be appended.

nTag byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.

stData$ byRef stData$ AS STRING

This is an octet string which can be 0 bytes long. The maximum length is governed by the
space available in AdvRpt, a maximum of 31 bytes long.

Interactive Command: NO

 //Example :: BleAdvRptAppendAD.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$="\01\02\03\04"

 PRINT BleScanRptInit(scnRpt$)

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the

report

 PRINT "\nAD with data '";ad$;"' was appended to the advert report"

 ENDIF

Expected Output:

BLEADVRPTAPPENDAD is an extension function.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string
which is assumed to contain the data portion of an advert report, incoming or outgoing.

Please not that if the last AD element is malformed then it will be treated as not existing. For example, it will
be malformed if the length byte for that AD element suggests that more data bytes are required than actually
exist in the report string.

0

AD with data '\01\02\03\04' was appended to the advert report

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

216 Laird Technologies

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns: INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex byVAL nIndex AS INTEGER
This is a zero based index of the AD element that will be copied into the output data
parameter ADval$.

rptData$ byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which will have been
either constructed for an outgoing advert or will have been received in a scan (depends on
module variant)

nADTag byREF nADTag AS INTEGER

When the nth index is found, the single byte tag value for that AD element is returned in this
paramater

ADval$ byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AD
element is returned in this parameter.

Interactive Command: NO

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 rc=BleGetADbyIndex(0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 rc=BleGetADbyIndex(1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc=BleGetADbyIndex(2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

217 Laird Technologies

 PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYINDEX is an extension function.

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte
specified from a string which is assumed to contain the data portion of an advert report, incoming or
outgoing. If multiple instances of that AD tag type are suspected then use the function BleGetADbyIndex to
extract.

Please not that if the last AD element is malformed then it will be treated as not existing. For example, it will
be malformed if the length byte for that AD element suggests that more data bytes are required than actually
exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns: INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

rptData$ byREF rptData$ AS STRING.
This parameter is a string that contains concatenated AD elements which will have been
either constructed for an outgoing advert or will have been received in a scan (depends on
module variant)

nADTag byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned in
the ADval$ parameter. Only the first instance can be catered for. If multiple instances are
suspected then use BleAdvADbyIndex() to extract it.

ADval$ byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AT
element is returned in this parameter.

Interactive Command: NO

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

218 Laird Technologies

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 nADTag = 0xDD

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 nADTag = 0xEE

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYTAG is an extension function.

BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not
updated. Both strings can be empty and in that case this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT(advRpt, scanRpt)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

219 Laird Technologies

Arguments:

advRpt byRef advRpt AS STRING.
The most recent advert report.

scanRpt byRef scanRpt AS STRING.

The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating the
other report even if this other report is valid.

Interactive Command: NO

 //Example :: BleAdvRptsCommit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM scRpt$: scRpt$=""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

 PRINT BleAdvRptsCommit(advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

BLEADVRPTSCOMMIT is an extension function.

Connection Functions

This section describes all the connection manager related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection, but can perform
disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet is
received from a peripheral.

Events & Messages

See also Events & Messages for BLE related messages that are thrown to the application when there is a
connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

220 Laird Technologies

18 The connection is encrypted

20 The connection is no longer encrypted

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete a EVBLEMSG message with msgId = 1 and context containing the
handle will be thrown to the smart BASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

Interactive Command: NO

 //Example :: BleDisconnect.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nNew Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 PRINT BleDisconnect(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLEDISCONNECT is an extension function.

Adverts Started

New Connection 35800

Disconnected 3580

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

221 Laird Technologies

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For
example interval, slave latency and link supervision timeout

When the request is complete a EVBLEMSG message with msgId = 14 and context containing the handle will
be thrown to the smart BASIC runtime engine if it was successful. If the request to change the connection
parameters fails, an EVBLEMSG message with msgid = 15 is thrown to the smart BASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must have the connection parameters
changed.

nMinIntUs byVal nMinIntUs AS INTEGER.
The minimum acceptable connection interval in microseconds.

nMaxIntUs byVal nMaxIntUs AS INTEGER.
The maximum acceptable connection interval in microseconds.

nSuprToutUs byVal nSuprToutUs AS INTEGER.
The link supervision timeout for the connection in microseconds. It should be greater
than the slave latency times the actual granted connection interval.

nSlaveLatency byVal nSlaveLatency AS INTEGER.
The number of connection interval polls that the peripheral may ignore. This times the
connection interval shall not be greater than the link supervision timeout.

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains
short latency. Generally a slave reduces power usage by setting the largest connection interval
possible. This means the latency is equivalent to that connection interval. To mitigate this, the
peripheral can greatly reduce the connection interval and then have a non-zero slave latency.

 For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0.
In this case, key presses are reported to the central device once per second, a poor user
experience. Instead, the connection interval can be set to e.g. 50 msec and slave latency to 19.
If there are no key presses, the power use is the same as before because ((19+1) * 50) equals
1000. When a key is pressed, the peripheral knows that the central device will poll within 50
msec, so it can send that keypress with a latency of 50 msec. A connection interval of 50 and
slave latency of 19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll
messages from the central device.

Interactive Command: NO

 //Example :: BleSetCurConnParms.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

222 Laird Technologies

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT "\n --- New Connection : ","",nCtx

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\nConn Interval","","",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency","",slat

 PRINT "\n\nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms(nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT "\n --- Disconnected : ",nCtx

 EXITFUNC 0

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\n\nConn Interval",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency",slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT "\n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT "\nBle Msg",nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL600"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

223 Laird Technologies

Expected Output (Successful Negotiation):

Note: First set of parameters will differ depending on your central device.

BLESETCURCONNPARMS is an extension function.

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle.
Given there are 3 connection parameters, the function takes three variables by reference so that the function
can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that needs to have the connection parameters
changed

nIntervalUs byRef nIntervalUs AS INTEGER.
The current connection interval in microseconds

nSuprToutUs byRef nSuprToutUs AS INTEGER.
The current link supervision timeout in microseconds for the connection.

nSlaveLatency byRef nSlaveLatency AS INTEGER.
This is the current number of connection interval polls that the peripheral may ignore.
This value multiplied by the connection interval will not be greater than the link
supervision timeout.

Note: See Note on Slave Latency.

Interactive Command: NO

See previous example

BLEGETCURCONNPARMS is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

224 Laird Technologies

Security Manager Functions

This section describes routines which manage all aspects of BLE security such as saving, retrieving and
deleting link keys and creation of those keys using pairing and bonding procedures.

Events & Messages

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message
with msgIDs as follows:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11 Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which will be a number in the range 0 to 999999 and 2 for OOB key
which is a 16 byte key.

To submit a passkey, use the function BLESECMNGRPASSKEY.

BleSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the
EVBLEMSG with msgId set to 11. See Events & Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle byVal connHandle AS INTEGER.
This is the connection handle as received via the EVBLEMSG event with msgId set to
0.

nPassKey byVal nPassKey AS INTEGER.
This is the passkey to submit to the stack. Submit a value outside the range 0 to
999999 to reject the pairing.

Interactive Command: NO

 //Example :: BleSecMngrPasskey.sb (See in BL600CodeSnippets.zip)

 DIM rc, connHandle

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\n--- Ble Connection, ",nCtx

 CASE 1

 PRINT "\n--- Disconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 11

 PRINT "\n +++ Auth Key Request, type=";nCtx

 rc=BleSecMngrPassKey(connHandle,123456)

 IF rc==0 THEN //key is 123456

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

225 Laird Technologies

 PRINT "\nPasskey 123456 was used"

 ELSE

 PRINT "\nResult Code 0x";integer.h'rc

 ENDIF

 CASE ELSE

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 rc=BleSecMngrIoCap(4) //Set i/o capability - Keyboard Only (authenticated pairing)

 IF BleAdvertStart(0,addr$,25,0,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL600"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLESECMNGRPASSKEY is an extension function.

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for subsequent
pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country
with an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES(nMinKeysize, nMaxKeysize)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nMinKeysiz byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

226 Laird Technologies

Interactive Command: NO

 //Example :: BleSecMngrKeySizes.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrKeySizes(8,15)

Expected Output:

BLESECMNGRKEYSIZES is an extension function.

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is
authenticated or not. This is related to Simple Secure Pairing as described in the following whitepapers:

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition the “Security Manager Specification” in the core 4.0 specification Part H provides a full
description.

You will need to be registered with the Bluetooth SIG (www.bluetooth.org) to get access to all these
documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was
compromised by a MITM (Man in the middle) security attack.

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIoCap byVal nIoCap AS INTEGER.
The user I/O capability for all subsequent pairings.
0 None also known as ‘Just Works’ (unauthenticated pairing)
1 Display with Yes/No input capability (authenticated pairing)
2 Keyboard Only (authenticated pairing)
3 Display Only (authenticated pairing – if other end has input cap)
4 Keyboard only (authenticated pairing)

Interactive Command: NO

 //Example :: BleSecMngrIoCap.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrIoCap(1)

0

http://www.lairdtech.com/bluetooth
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

227 Laird Technologies

Expected Output:

BLESECMNGRIOCAP is an extension function.

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing.

Note: This function will be deprecated in future releases. It is recommended to invoke this function,
with the parameter set to 0, before calling BleAuthenticate().

BLESECMNGRBONDREQ (nBondReq)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nBondReq byVal nBondReq AS INTEGER.
0 Disable
1 Enable

Interactive Command: NO

 //Example :: BleSecMngrBondReq.sb (See in BL600CodeSnippets.zip)

 IF BleSecMngrBondReq(0)==0 THEN

 PRINT "\nBonding disabled"

 ENDIF

Expected Output:

BLESECMNGRBONDREQ is an extension function.

BleAuthenticate

FUNCTION

This routine is used to induce the device to authenticate the peer. This will be deprecated in future firmware.

BLEAUTHENTICATE (nConnCtx)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnCtx byVal nConnCtx AS INTEGER.
This is the context value provided in the EVBLEMSG(0) message which informed the stack
that a connection had been established.

Interactive Command: NO

0

Bonding disabled

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

228 Laird Technologies

See example for BleDisconnect:

Change “rc = BleAuthenticate(nCtx)” to “PRINT BleAuthenticate(nCtx)”

BLEAUTHENTICATE is an extension function.

GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT
table from a GATT server role perspective. These functions allow the developer to create any Service that has
been described and adopted by the Bluetooth SIG or any custom Service that implements some custom
unique functionality, within resource constraints such as the limited RAM and FLASH memory that is exist in
the module.

A GATT table is a collection of adopted or custom Services which in turn are a collection of adopted or
custom Characteristics. Although keep in mind that by definition an adopted service cannot contain custom
characteristics but the reverse is possible where a custom service can include both adopted and custom
characteristics.

Descriptions of Services and Characteristics are available in the Bluetooth Specification v4.0 or newer and like
most specifications are concise and difficult to understand. What follows is an attempt to familiarise the
reader with those concepts using the perspective of the smartBASIC programming environment.

To help understand the terms Service and Characteristic better, think of a Characteristic as a container (or a
pot) of data where the pot comes with space to store the data and a set of properties that are officially called
‘Descriptors’ in the BT spec. In the ‘pot’ analogy, think of Descriptor as colour of the pot, whether it has a lid,
whether the lid has a lock or whether it has a handle or a spout etc. For a full list of these Descriptors online
see http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are
assigned 16 bit UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you
decide to add those to your characteristic definition.

To wrap up the loose analogy, think of Service as just a carrier bag to hold a group of related Characterisics
together where the printing on the carrier bag is a UUID. You will find that from a smartBASIC developer’s
perspective, a set of characteristics is what you will need to manage and the concept of Service is only
required at GATT table creation time.

A GATT table can have many Services each containing one or more Characteristics. The differentiation
between Services and Characteristics is expedited using an identification number called a UUID (Universally
Unique Identifier) which is a 128 bit (16 byte) number. Adopted Services or Characteristics have a 16 bit (2
byte) shorthand identifier (which is just an offset plus a base 128 bit UUID defined and reserved by the
Bluetooth SIG) and custom Service or Characteristics shall have the full 128 bit UUID. The logic behind this is
that when you come across a 16 bit UUID, it implies that a specification will have been published by the
Bluetooth SIG whereas using a 128 bit UUID does NOT require any central authority to maintain a register of
those UUIDs or specifications describing them.

The lack of requirement for a central register is important to understand, in the sense that if a custom service
or characteristic needs to be created, the developer can use any publicly available UUID (sometimes also
known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128 bit random number that has an extremely
low probability to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website
http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID generation service,
although it uses the term GUID. From the GUID Generator website:

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
http://www.guidgenerator.com/online-guid-generator.aspx

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

229 Laird Technologies

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000
GUIDs per second were generated for 1 year the probability of a duplicate would be only
50%. Or if every human on Earth generated 600,000,000 GUIDs there would only be a 50%
probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register
maintained by the Bluetooth SIG for custom UUIDs.

Please note that Laird does not warrant or guarantee that the UUID generated by this website or any other
utility is unique. It is left to the judgement of the developer whether to use it or not.

Note: If the developer does intend to create custom Services and/or Characteristics then it is
recommended that a single UUID is generated and be used from then on as a 128 bit (16 byte)
company/developer unique base along with a 16 bit (2 byte) offset, in the same manner as the
Bluetooth SIG.

 This will then allow up to 65536 custom services and characteristics to be created, with the
added advantage that it will be easier to maintain a list of 16 bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down given that
16 bytes of RAM is used to store a long UUID. Smart BASIC functions have been provided to
manage these custom 2 byte UUIDs along with their 16 byte base UUIDs.

In this document when a Service or Characteristic is described as adopted, it implies that the Bluetooth SIG
has published a specification which defines that Service or Characteristic and there is a requirement that any
device claiming to support them SHALL have approval to prove that the functionality has been tested and
verified to behave as per that specification.

Currently there is no requirement for custom Service and/or Characteristics to have any approval. By
definition, interoperability is restricted to just the provider and implementer.

A Service is an abstraction of some collectivised functionality which, if broken down further into smaller
components, would cease to provide the intended behaviour. A couple of examples in the BLE domain that
have been adopted by the Bluetooth SIG are Blood Pressure Service and Heart Rate Service. Each have sub-
components that map to Characteristics.

Blood Pressure is defined by a collection of data entities like for example Systolic Pressure, Diastolic Pressure,
Pulse Rate and many more. Likewise a Heart Rate service also has a collection which includes entities such as
the Pulse Rate and Body Sensor Location.

A list of all the adopted Services is at:http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx.
Laird recommends that if you decide to create a custom Service then it is defined and described in a similar
fashion, so that your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an
interoperable manner.

These Services are also assigned 16 bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC
API functions described in this section.

Services, as described above, are a collection of one or more Characteristics. A list of all adopted
characteristics is found at http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx.
You should note that these descriptors are also assigned 16 bit UUIDs (value 0x2Axx) and are referenced in
some of the API functions described in this section. Custom Characteristics will have 128 bit (16 byte) UUIDs
and API functions are provided to handle those too.

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

230 Laird Technologies

Note: If you intend to create a custom Service or Characteristic, and adopt the recommendation,
stated above, of a single long 16 byte base UUID, so that the service can be identified using a 2
byte UUID, then allocate a 16 bit value which is not going to coincide with any adopted values
to minimise confusion. Selecting a similar value is possible and legal given that the base UUID is
different. The recommendation is just for ease of maintenance.

Finally, having prepared a background to Services and Characteristics, the rest of this introduction will focus
on the specifics of how to create and manage a GATT table from a perspective of the smart BASIC API
functions in the module.

Recall that a Service has been described as a carrier bag that groups related characteristics together and a
Characteristic is just a data container (pot). Therefore, a remote GATT Client, looking at the Server, which is
presented in your GATT table, sees multiple carrier bags each containing one or more pots of data.

The GATT Client (remote end of the wireless connection) needs to see those carrier bags to determine the
groupings and once it has identified the pots it will only need to keep a list of references to the pots it is
interested in. Once that list is made at the client end, it can ‘throw away the carrier bag’.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

231 Laird Technologies

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

Similarly in the module, once the GATT
table is created and after each Service is
fully populated with one or more
Characteristics there is no need to keep
that ‘carrier bag’. However, as each
Characterstic is ‘placed in the carrier bag’
using the appropriate smartBASIC API
function, a ‘receipt’ will be returned and is
referred to as a char_handle. The
developer will then need to keep those
handles to be able to read and write and
generally interact with that particular
characteristic. The handle does not care
whether the Characteristic is adopted or
custom because from then on the
firmware managing it behind the scenes in
smartBASIC does not care.

Therefore from the smartBASIC app
developer’s logical perspective a GATT
table looks nothing like the table that is
presented in most BLE literature. Instead
the GATT table is purely and simply just a
collection of char_handles that reference
the characteristics (data containers) which
have been registered with the underlying
GATT table in the BLE stack.

A particular char_handle is in turn used to
make something happen to the referenced
characteristic (data container) using a
smart BASIC function and conversely if
data is written into that characteristic (data
container), by a remote GATT Client, then
an event is thrown, in the form of a
message, into the smart BASIC runtime
engine which will get processed if and
only if a handler function has been
registered by the apps developer using the
ONEVENT statement.

With this simple model in mind, an
overview of how the smart BASIC
functions are used to register Services and
Characteristics is illustrated in the
flowchart on the right and sample code
follows on the next page.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

232 Laird Technologies

 //Example :: ServicesAndCharacteristics.sb (See in BL600CodeSnippets.zip)

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notifyable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 //---Register Service 1

 hUuidS1 = BleHandleUuid16(0x180D)

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY, hUuidS1,hSvc)

 //---Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16(0x2A37)

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit(shHrs,hrs$,hChar11)

 //---Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16(0x2A39)

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$="\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar21)

 //---Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16(0x1856)

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY, hUuidS2,hSvc)

 //---Register Characteristic 1 in Service 2

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

233 Laird Technologies

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

 hUuidC21 = BleHandleUuid16(0x2A54)

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$="\00\00\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar12)

 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client is detected and processed as follow:

 //--

 // To deal with writes from a gatt client into characteristic 1 of Service 1

 // which has the handle hChar11

 //--

 // This handler is called when there is a EVCHARVAL message

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead(hChar11,attr$)

 print "Svc1/Char1 has been writen with = ";attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled then a value notification is expedited as follows:

 //--

 // Notify a value for characteristic 1 in service 2

 //--

 attr$="somevalue"

 rc = BleCharValueNotify(hChar12,attr$)

Assuming there is a connection and indicate has been enabled then a value indication is expedited as follows:

 //--

 // indicate a value for characteristic 2 in service 1

 //--

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$="somevalue"

 rc = BleCharValueIndicate(hChar12,attr$)

The rest of this section details all the smart BASIC functions that help create that framework.

Events & Messages

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

234 Laird Technologies

See also Events & Messages for the messages that are thrown to the application which are related to the
generic characteristics API. The relevant messages are those that start with EVCHARxxx.

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the
information provided. If it is not called before adverts are started, default values are exposed. Given this is a
mandatory service, unlike other services which need to be registered, this one must only be initialised as the
underlying BLE stack unconditionally registers it when starting up.

The GAP service contains five characteristics as listed at the following site:
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access
.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,
nSupervisionTout, nSlaveLatency)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

deviceName byRef deviceName AS STRING
The name of the device (e.g. Laird_Thermometer) to store in the ‘Device Name’
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT() this field is read
from the service and an attempt is made to append it in the Device Name
AD. If the name is too long, that function fails to initialise the advert report
and a default name is transmitted. It is recommended that the device
name submitted in this call be as short as possible.

nameWritable byVal nameWritable AS INTEGER
If non-zero, the peer device is allowed to write the device name. Some profiles allow
this to be made optional.

nAppearance byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance
characteristic of the GAP service. Possible values:

 org.bluetooth.characteristic.gap.appearance.

nMinConnInterval byVal nMinConnInterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service. Range is between 7500
and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be smaller than nMaxConnInterval.

nMaxConnInterval byVal nMaxConnInterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service. Range is between 7500

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

235 Laird Technologies

and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be larger than nMinConnInterval.

nSupervisionTimeout byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service. Range is between 100000
to 32000000 microseconds (rounded to the nearest 10000 microseconds).

nSlaveLatency byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave
may ignore without losing the connection and updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service. This value must be smaller
than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e. nSlaveLatency <
(nSupervisionTimeout / nMaxConnInterval) -1

Interactive Command: NO

 //Example :: BleGapSvcInit.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency--number of conn events that can be missed

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

BLEGAPSVCINIT is an extension function.

Success

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

236 Laird Technologies

BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local gatt table. This value is the same as
that supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time
to call this function.

BLEGETDEVICENAME$ ()

Returns: STRING, the current device name in the local GATT table. It is the same as that supplied in
BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.
EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value.

Arguments: None

Interactive Command: NO

 //Example :: BleGetDeviceName$.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL

 PRINT "\n --- DevName : "; BleGetDeviceName$()

 // Changing device name manually

 dvcNme$= "My BL600"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT "\n --- New DevName : "; BleGetDeviceName$()

Expected Output:

BLEGETDEVICENAME$ is an extension function.

BleSvcRegDevInfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The ‘Device Information’
service contains nine characteristics as listed at the following website:
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_inform
ation.xml

The firmware revision string will always be set to “BL600:vW.X.Y.Z” where W,X,Y,Z are as per the revision
information which is returned to the command AT I 4.

--- DevName : LAIRD BL600

--- New DevName : My BL600

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

237 Laird Technologies

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$,
swRev$, sysId$, regDataList$, pnpId$)

FUNCTION

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

manfName$ byVal manfName$ AS STRING
The device manufacturer. Can be set empty to omit submission.

modelNum$ byVal modelNum$ AS STRING
The device model number. Can be set empty to omit submission.

serialNum$ byVal serialNum$ AS STRING
The device serial number. Can be set empty to omit submission.

hwRev$ byVal hwRev$ AS STRING
The device hardware revision string. Can be set empty to omit submission.

swRev$ byVal swRev$ AS STRING
The device software revision string. Can be set empty to omit submission.

sysId$ byVal sysId$ AS STRING
The device system ID as defined in the specifications. Can be set empty to omit
submission. Otherwise it shall be a string exactly 8 octets long, where:
 Byte 0..4 := Manufacturer Identifier
 Byte 5..7 := Organisationally Unique Identifier

 For the special case of the string being exactly 1 character long and containing “@”,
the system ID is created from the MAC address if (and only if) an IEEE public address
is set. If the address is the random static variety, this characteristic is omitted.

regDataList$ byVal regDataList$ AS STRING
The device’s regulatory certification data list as defined in the specification. It can be
set as an empty string to omit submission.

pnpId$ byVal pnpId$ AS STRING
The device’s plug and play ID as defined in the specification. Can be set empty to
omit submission. Otherwise, it shall be exactly 7 octets long, where:

 Byte 0 := Vendor Id Source
 Byte 1,2 := Vendor Id (Byte 1 is LSB)
 Byte 3,4 := Product Id (Byte 3 is LSB)
 Byte 5,6 := Product Version (Byte 5 is LSB)

Interactive Command: NO

 //Example :: BleSvcRegDevInfo.sb (See in BL600CodeSnippets.zip)

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BL600"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

238 Laird Technologies

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc

 ENDIF

Expected Output:

BLESVCREGDEVINFO is an extension function.

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32 bit integer handle that
associates the integer as an offset into the Bluetooth SIG 128 bit (16byte) base UUID which is used for all
adopted services, characteristics and descriptors.

If the input value is not in the valid range then an invalid handle (0) is returned

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based
on the bit content, apart from all 0’s which represents an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns: INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle.

Arguments:

nUuid16 byVal nUuid16 AS INTEGER
nUuid16 is first bitwise ANDed with 0xFFFF and the result will be treated as an offset into
the Bluetooth SIG 128 bit base UUID.

Interactive Command: NO

 //Example :: BleHandleUuid16.sb (See in BL600CodeSnippets.zip)
 DIM uuid

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16(uuid)

 IF hUuidHRS == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")"
 ENDIF

Success

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

239 Laird Technologies

Expected Output:

BLEHANDLEUUID16 is an extension function.

BleHandleUuid128

FUNCTION

This function takes a 16 byte string and converts it into a 32 bit integer handle. The handle consists of a 16
bit (2 byte) offset into a new 128 bit base UUID.

The base UUID is basically created by taking the 16 byte input string and setting bytes 12 and 13 to zero after
extracting those bytes and storing them in the handle object. The handle also contains an index into an array
of these 16 byte base UUIDs which are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based
on the bit content. However, note that a string of zeroes represents an invalid UUID handle.

Please ensure that you use a 16 byte UUID that has been generated using a random number generator with
sufficient entropy to minimise duplication, as stated in an earlier section and that the first byte of the array is
the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns: INTEGER, A handle representing the shorthand UUID. If zero, which is an invalid UUID
handle, there is either no spare RAM memory to save the 16 byte base or more than
253 custom base UUIDs have been registered.

Arguments:

stUuid$ byRef stUuid$ AS STRING
Any 16 byte string that was generated using a UUID generation utility that has enough
entropy to ensure that it is random. The first byte of the string is the MSB of the UUID –
that is, big endian format.

Interactive Command: NO

 //Example :: BleHandleUuid128.sb (See in BL600CodeSnippets.zip)
 DIM uuid$: hUuidCustom

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 IF hUuidCustom == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")"
 ENDIF

 // hUuidCustom now references an object which points to

 // a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Handle for HRS Uuid is FE01180D (-33482739)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

240 Laird Technologies

Expected Output:

BLEHANDLEUUID128 is an extension function.

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously
created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references
the same 128 base UUID as the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based
on the bit content, apart from all 0’s which represents an invalid UUID handle.

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns: INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid
UUID handle, if nUuidHandle is an invalid handle in the first place.

Arguments:

nUuidHandle byVal nUuidHandle AS INTEGER
A handle that was previously created using either BleHandleUui16() or
BleHandleUuid128().

nUuid16 byVal nUuid16 AS INTEGER
A UUID value in the range 0 t0 65535 which will be treated as an offset into the 128 bit
base UUID referenced by nUuidHandle.

Interactive Command: NO

 //Example :: BleHandleUuidSibling.sb (See in BL600CodeSnippets.zip)

 DIM uuid$,hUuid1, hUuid2 //hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuid1 = BleHandleUuid128(uuid$)

 IF hUuid1 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")"

 ENDIF

 // hUuid1 now references an object which points to

 // a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "\nHandle for custom sibling Uuid is ";integer.h';hUuid2;"(";hUuid2;")"

 ENDIF

Handle for custom Uuid is FC03D913 (-66856685)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

241 Laird Technologies

 // hUuid2 now references an object which also points to

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

BLEHANDLEUUIDSIBLING is an extension function.

BleSvcCommit

This function is now deprecated, use BleServiceNew() & BleServiceCommt() instead.

BleServiceNew

FUNCTION

As explained in an earlier section, a Service in the context of a GATT table is just a collection of related
Characteristics. This function is used to inform the underlying GATT table manager that one or more related
characteristics are going to be created and installed in the GATT table and that until the next call of this
function they shall be associated with the service handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a
PRIMARY or a SECONDARY service. The value for this attribute shall be the UUID that will identify this service
and in turn have been precreated using one of the functions; BleHandleUuid16(), BleHandleUuid128() or
BleHandleUuidSibling().

Note that when a GATT Client queries a GATT Server for services over a BLE connection, it will only get a list
of PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY services to reference
single instances of shared Characteristics that are collected in a SECONDARY service. This referencing is
expedited within the definition of a service using the concept of ‘INCLUDED SERVICE’ which itself is just an
attribute that is grouped with the PRIMARY service definition. An ‘Included Service’ is expedited using the
function BleSvcAddIncludeSvc() which is described immediately after this function.

This function now replaces BleSvcCommit() and marks the beginning of a service definition in the gatt server
table. When the last descriptor of the last characteristic has been registered the service definition should be
terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSvcType byVal nSvcType AS INTEGER
This will be 0 for a SECONDARY service and 1 for a PRIMARY service and all other values are
reserved for future use and will result in this function failing with an appropriate result code.

Handle for custom Uuid is FC03D913 (-66856685)

Handle for custom sibling Uuid is FC031234 (-66907596)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

242 Laird Technologies

nUuidHandle byVal nUuidHandle AS INTEGER
This is a handle to a 16 bit or 128 bit UUID that identifies the type of Service function provided
by all the Characteristics collected under it. It will have been pre-created using one of the three
functions: BleHandleUuid16(), BleHandleUuid128() or BleHandleUuidSibling()

hService byRef hService AS INTEGER

If the Service attribute is created in the GATT table then this will contain a composite handle
which references the actual attribute handle. This is then subsequently used when adding
Characteristics to the GATT table. If the function fails to install the Service attribute for any
reason this variable will contain 0 and the returned result code will be non-zero.

Interactive Command: NO

 //Example :: BleServiceNew.sb (See in BL600CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809) //HT Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN

 PRINT "\nHealth Thermometer Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidHT

 PRINT "\nService Attribute Handle value: ";hHtsSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

 //--

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F

 //--

 DIM hBatSvc //composite handle for battery primary service

 //or we could have reused nHtsSvc

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F) //Batt Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN

 PRINT "\n\nBattery Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidBatt

 PRINT "\nService Attribute Handle value: ";hBatSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

243 Laird Technologies

Expected Output:

BLESERVICENEW is an extension function.

BleServiceCommit

This function in the BL600 is a dummy function and does not do anything. However, for portability to other
Laird 4.0 compatible modules, always invoke this function after the last descriptor of the last characteristic of
a service has been committed to the gatt server.

BLESERVICECOMMIT (hService)

Returns: INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hService byVal hService AS INTEGER
This handle will have been returned from BleServiceNew().

BleSvcAddIncludeSvc

FUNCTION

Note: This function is currently not available for use on the BL600

This function is used to add a reference to a service within another service. This will usually, but not
necessarily, be a SECONDARY service which is virtually identical to a PRIMARY service from the GATT Server
perspective and the only difference is that when a GATT client queries a device for all services it does not get
any mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it shall
perform a sub-procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of Characteristics to be shared by multiple primary
services. This is most relevant if a Characteristic is defined so that it can have only one instance in a GATT
table but needs to be offered in multiple PRIMARY services. Hence a typical implementation, where a
characteristic is part of many PRIMARY services, installs that Characteristic in a SECONDARY service (see
BleSvcCommit()) and then uses the function defined in this section to add it to all the PRIMARY services that
want to have that characteristic as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include
further PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be
recursion.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

244 Laird Technologies

Further note that if a service has INCLUDED services, then they shall be installed in the GATT table
immediately after a Service is created using BleSvcCommit() and before BleCharCommit(). The BT 4.0
specification mandates that any ‘included service’ attribute be present before any characteristic attributes
within a particular service group declaration.

BleSvcAddIncludeSvc (hService)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

hService byVal hService AS INTEGER
This argument will contain a handle that was previously created using the function
BleSvcCommit().

Interactive Command: NO

 //Example :: BleSvcAddIncludeSvc.sb (See in BL600CodeSnippets.zip)

 #define BLE_SERVICE_SECONDARY 0

 #define BLE_SERVICE_PRIMARY 1

 //--

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F

 //--

 dim hBatSvc //composite handle for batteru primary service

 dim rc //or we could have reused nHtsSvc

 dim metaSuccess

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess)

 DIM s$: s$ = "Hello" //initial value of char in Battery Service

 DIM hBatChar

 rc = BleSvcCommit(BLE_SERVICE_SECONDARY,BleHandleUuid16(0x180F),hBatSvc)

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0)

 rc = BleCharCommit(hBatSvc, s$,hBatChar)

 //--

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY,BleHandleUuid16(0x1809),hHtsSvc)

 //Have to add includes before any characteristics are committed

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc)

BleSvcAddIncludeSvc is an extension function.

BleAttrMetadata

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further
grouped into Services. Each attribute consists of a data value which can be anything from 1 to 512 bytes long
according to the specification and properties such as read and write permissions, authentication and security

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

245 Laird Technologies

properties. When Services and Characteristics are added to a GATT server table, multiple attributes with
appropriate data and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties
and is then submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in
the BT specification so that it is open for reads without any security requirements but cannot be written and
always has the same data content structure. This implies that a metadata object does NOT need to be
created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function
as the aforementioned Service attribute and the other the actual data container, then properties for the value
attribute must be specified. Here, ‘properties’ refers to properties for the attribute, not properties for the
Characteristic container as a whole. These also exist and must be specified, but that is done in a different
manner as explained later.

For example, the value attribute must be specified for read / write permission and whether it needs security
and authentication to be accessed.

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or
disable that. This is done through a Characteristic Descriptor which is also another attribute. The attribute will
also need to have a metadata supplied when the Characteristic is created and registered in the GATT table.
This attribute, if it exists, is called a Client Characteristic Configuration Descriptor or CCCD for short. A CCCD
always has 2 bytes of data and currently only 2 bits are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT
client to be able to control this, there is yet another type of Characteristic Descriptor which also needs a
metadata object to be supplied when the Characteristic is created and registered in the GATT table. This
attribute, if it exists, is called a Server Characteristic Configuration Descriptor or SCCD for short. A SCCD
always has 2 bytes of data and currently only 1 bit is used as on/off settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also
supplied to add that to the GATT table and when setting up a metadata object will also need to be supplied.

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table
manager will need that before it is added. Some attributes have those ‘notes’ specified by the BT specification
and so the GATT table manager will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATA (nReadRights, nWriteRights, nMaxDataLen, fIsVariableLen, resCode)

Returns: INTEGER, a 32 bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

nReadRights byVal nReadRights AS INTEGER
This specifies the read rights and shall have one of the following values:
0 : No Access
1 : Open
2 : Encrypted with No Man-In-The-Middle (MITM) Protection
3 : Encrypted with Man-In-The-Middle (MITM) Protection
4 : Signed with No Man-In-The-Middle (MITM) Protection (not available)
5 : Signed with Man-In-The-Middle (MITM) Protection (not available)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

246 Laird Technologies

Note: In early releases of the firmware, 4 and 5 are not available.

nWriteRights byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:
0 : No Access
1 : Open
2 : Encrypted with No Man-In-The-Middle (MITM) Protection
3 : Encrypted with Man-In-The-Middle (MITM) Protection
4 : Signed with No Man-In-The-Middle (MITM) Protection (not available)
5 : Signed with Man-In-The-Middle (MITM) Protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nMaxDataLen byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute. Range is from 1 to 512
bytes according to the BT specification; the stack implemented in the module may limit it
for early versions. At the time of writing the limit is 20 bytes.

fIsVariableLen byVal fIsVariableLen AS INTEGER

Set this to non-zero only if you want the attribute to automatically shorten it’s length
according to the number of bytes written by the client. For example, if the initial length is
2 and the client writes only 1 byte, then if this is 0, then only the first byte gets updated
and the rest remain unchanged. If this parameter is set to 1, then when a single byte is
written the attribute will shorten it’s length to accommodate. If the client tries to write
more bytes than the initial maximum length, then the client will get an error response.

resCode byRef resCode AS INTEGER

This variable will be updated with result code which will be 0 if a metadata object was
successfully returned by this call. Any other value implies a metadata object did not get
created.

Interactive Command: NO

 //Example :: BleAttrMetadata.sb (See in BL600CodeSnippets.zip)

 DIM mdVal //metadata for value attribute of Characteristic

 DIM mdCccd //metadata for CCCD attribute of Characteristic

 DIM mdSccd //metadata for SCCD attribute of Characteristic

 DIM rc

 //++++

 // Create the metadata for the value attribute in the characteristic

 // and Heart Rate attribute has variable length

 //++++

 //There is always a Value attribute in a characteristic

 mdVal=BleAttrMetadata(17,0,20,0,rc)

 //There is a CCCD and SCCD in this characteristic

 mdCccd=BleAttrMetadata(1,2,2,0,rc)

 mdSccd=BleAttrMetadata(0,0,2,0,rc)

 //Create the Characteristic object

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

247 Laird Technologies

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLEATTRMETADATA is an extension function.

BleCharNew

FUNCTION

When a Characteristic is to be added to a GATT table, multiple attribute ‘objects’ must be precreated. After
they are all created successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that SHALL be called to start the process of creating those multiple attribute
‘objects’. It is used to select the Characteristic properties (which are distinct and different from attribute
properties), the UUID to be allocated for it and then up to three metadata objects for the value attribute, and
CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps,nUuidHandle,mdVal,mdCccd,mdSccd)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nCharProps byVal nCharProps AS INTEGER
This variable contains a bit mask to specify the following high level properties for the
Characteristic that will get added to the GATT table:
BIT Description
0 Broadcast capable (Sccd Descriptor has to be present)
1 Can be read by the client
2 Can be written by the client without response
3 Can be written
4 Can be Notifiable (Cccd Descriptor has to be present)
5 Can be Indicatable (Cccd Descriptor has to be present)
6 Can accept signed writes
7 Reliable writes

nUuidHandle byVal nUuidHandle AS INTEGER

This specifies the UUID that will be allocated to the Characteristic, either 16 or 128 bits.
This variable is a handle, pre-created using one of the following functions:
BleHandleUuid16() , BleHandleUuid128() , BleHandleUuidSibling().

mdVal byVal mdVal AS INTEGER

This is the mandatory metadata that is used to define the properties of the Value attribute
that will be created in the Characteristic and will have been pre-created using the help of
the function BleAttrMetadata().

Success

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

248 Laird Technologies

mdCccd byVal mdCccd AS INTEGER
This is an optional metadata that is used to define the properties of the CCCD Descriptor
attribute that will be created in the Characteristic and will have been pre-created using
the help of the function BleAttrMetadata() or set to 0 if CCCD is not to be created. If
nCharProps specifies that the Characteristic is notifiable or indicatable and this value
contains 0, this function will abort with an appropriate result code.

mdSccd byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD Descriptor
attribute that will be created in the Characteristic and will have been pre-created using
the help of the function BleAttrMetadata() or set to 0 if SCCD is not to be created. If
nCharProps specifies that the Characteristic is broadcastable and this value contains 0,
this function will abort with an appropriate resultcode.

Interactive Command: NO

 // Example :: BleCharNew.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM charUuid : charUuid = BleHandleUuid16(2) //Characteristic's UUID

 DIM mdVal : mdVal = BleAttrMetadata(1,0,20,0,rc) //Metadata for value attribute

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //Metadata for CCCD attribute of

Characteristic

 //==

 // Create a new char:

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

 // --- Can be read, not written (shown in mdVal as well)

 //==

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN

 PRINT "\nNew Characteristic created"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARNEW is an extension function.

BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after
BleCharNew() has started the process of describing a new Characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a
textual description of the characteristic value.” It further stipulates that this attribute is optionally writable
and so a metadata argument exists to configure it to be so. The metadata automatically updates the
“Writable Auxilliaries” properties flag for the Characteristic. This is why that flag bit is NOT specified for the
nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC(userDesc$, mdUser)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

New Characteristic created

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

249 Laird Technologies

Arguments:

userDesc$ byRef userDesc$ AS STRING
The user description string to initiliase the Descriptor with. If the length of the string
exceeds the maximum length of an attribute then this function will abort with an error
result code.

mdUser byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description
Descriptor attribute created in the Characteristic and will have been pre-created using the
help of BleAttrMetadata(). If the write rights are set to 1 or greater, the attribute will be
marked as writable and the client will be able to provide a user description that overwrites
the one provided in this call.

Interactive Command: NO

 //Example :: BleCharDescUserDesc.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARDESCUSERDESC is an extension function.

BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a Characteristic and can only be called after
BleCharNew() has started the process of describing a new Characteristic. It adds the descriptor to the gatt
table with open read permission and no write access, which means a metadata parameter is not required.

The BT 4.0 specification states that one or more than 1 presentation format descriptor can occur in a
Characteristic and that if more than one then an Aggregate Format description shall be included too.

The book “Bluetooth Low Energy: The Developer's Handbook” by Robin Heydon, says on the subject of the
Presentation Format Descriptor, the following:-

One of the goals for the Generic Attribute Profile was to enable

generic clients. A generic client is defined as a device that can

Char created and User Description 'A description' added

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

250 Laird Technologies

read the values of a characteristic and display them to the user

without understanding what they mean.

. . .

The most important aspect that denotes if a characteristic can be

used by a generic client is the Characteristic Presentation Format

descriptor. If this exists, it’s possible for the generic client to

display its value, and it is safe to read this value.

BLECHARDESCPRSTNFRMT (nFormat,nExponent,nUnit,nNameSpace,nNSdesc)

Returns: INTEGER , a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nFormat byVal nFormat AS INTEGER
Valid range 0 to 255.
The format specifies how the data in the Value attribute is structured. A list of valid values
for this argument is found at http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
and the enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.
At the time of writing, the enumeration list is as follows:
0x00 RFU 0x01 boolean
0x02 2bit 0x03 nibble
0x04 uint8 0x05 uint12
0x06 uint16 0x07 uint24
0x08 uint32 0x09 uint48
0x0A uint64 0x0B uint128
0x0C sint8 0x0D sint12
0x0E sint16 0x0F sint24
0x10 sint32 0x11 sint48
0x12 sint64 0x13 sint128
0x14 float32 0x15 float64
0x16 SFLOAT 0x17 FLOAT
0x18 duint16 0x19 utf8s
0x1A utf16s 0x1B struct
0x1C-0xFF RFU

nExponent byVal nExponent AS INTEGER
Valid range -128 to 127. This value is used with integer data types given by the
enumeration in nFormat to further qualify the value so that the actual value is:
actual value = Characteristic Value * 10 to the power of nExponent.

nUnit byVal nUnit AS INTEGER

Valid range 0 to 65535. This value is a 16 bit UUID used as an enumeration to specify the
units which are listed in the Assigned Numbers document published by the Bluetooth SIG,
found at: http://developer.bluetooth.org/gatt/units/Pages/default.aspx

nNameSpace byVal nNameSpace AS INTEGER

Valid range 0 to 255. The value identifies the organization, defined in the Assigned
Numbers document published by the Bluetooth SIG, found at:
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

251 Laird Technologies

nNSdesc byVal nNSdesc AS INTEGER
Valid range 0 to 65535. This value is a description of the organisation specified by
nNameSpace.

Interactive Command: NO

 //Example :: BleCharDescPrstnFrmt.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

 // ~ ~ ~

 // other optional descriptors

 // ~ ~ ~

 // 16 bit signed integer = 0x0E

 // exponent = 2

 // unit = 0x271A (amount concentration (mole per cubic metre))

 // namespace = 0x01 == Bluetooth SIG

 // description = 0x0000 == unknown

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN

 PRINT "\nPresentation Format Descriptor added"

 ELSE

 PRINT "\nPresentation Format Descriptor not added"

 ENDIF

Expected Output:

BLECHARDESCPRSTNFRMT is an extension function.

Char created and User Description 'A description' added

Presentation Format Descriptor added

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

252 Laird Technologies

BleCharDescAdd

Note: This function has a bug for firmware versions prior to 1.4.X.Y

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to
0x2904 inclusive as they are treated specially using dedicated API functions. For example, 0x2904 is the
Presentation Format Descriptor and it is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing / future defined Descriptors to be added that may or may not have write
access or require security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nUuid16 byVal nUuid16 AS INTEGER
This is a value in the range 0x2905 to 0x2999 (Note: This is the actual UUID value, NOT the
handle). The highest value at the time of writing is 0x2908, defined for the Report Reference
Descriptor. See http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
for a list of Descriptors defined and adopted by the Bluetooth SIG.

attr$ byRef attr$ AS STRING

This is the data that will be saved in the Descriptor’s attribute

mdDesc byVal n AS INTEGER

This is mandatory metadata that is used to define the properties of the Descriptor attribute that
will be created in the Characteristic and will have been pre-created using the help of the
function BleAttrMetadata(). If the write rights are set to 1 or greater, then the attribute is
marked as writable and so the client will be able to modify the attribute value.

Interactive Command: NO

 //Example :: BleCharDescAdd.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = charMet

 DIM mdSccd : mdSccd = charMet

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)

 // ~ ~ ~

 // other descriptors

 // ~ ~ ~

 //++++

 //Add the other Descriptor 0x29XX -- first one

http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

253 Laird Technologies

 //++++

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)

 DIM attr$: attr$="some_value1"

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- second one

 //++++

 attr$="some_value2"

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- last one

 //++++

 attr$="some_value3"

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc)

 IF rc==0 THEN

 PRINT "\nOther descriptors added successfully"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARDESCADD is an extension function.

BleCharCommit

FUNCTION

This function commits a Characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the Characteristic
should appear in the GATT table in a single atomic transaction. If it successfully created, a single composite
Characteristic handle is returned which should not be confused with GATT table attribute handles. If the
Characteristic was not accepted then this function will return a non-zero result code which conveys the
reason and the handle argument that is returned will have a special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked list of all the
attribute handles in the Characteristic which by definition implies that there will be a minimum of 1 (for the
characteristic value attribute) and more as appropriate. For example, if the Characteristic’s property specified
is notifiable then a single CCCD attribute will exist too.

Please note that in reality, in the GATT table, when a Characteristic is registered there are actually a minimum
of 2 attribute handles, one for the Characteristic Declaration and the other for the Value. However there is no
need for the smart BASIC apps developer to ever access it, so it is not exposed. Access is not required because
the Characteristic was created by the application developer and so shall already know its content – which
never changes once created.

BLECHARCOMMIT (hService,attr$,charHandle)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

Other descriptors added successfully

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

254 Laird Technologies

hService byVal hService AS INTEGER
This is the handle of the service that this Characteristic shall belong to, which in turn was
created using the function BleSvcCommit().

attr$ byRef attr$ AS STRING

This string contains the initial value of the Value attribute in the Characteristic. The
content of this string is copied into the GATT table and so the variable can be reused after
this function returns.

charHandle byRef charHandle AS INTEGER

The composite handle for the newly created Characteristic is returned in this argument. It
is zero if the function fails with a non-zero result code. This handle is then used as an
argument in subsequent function calls to perform read/write actions, so it is must be
placed in a global smartBASIC variable. When a significant event occurs as a result of
action by a remote client, an event message is sent to the application which can be
serviced using a handler. That message contains a handle field corresponding to this
composite characteristic handle. Standard procedure is to ‘select’ on that value to
determine which Characteristic the message is intended for.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD,
EVCHARDESC.

Interactive Command: NO

 // Example :: BleCharCommit.sb (See in BL600CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 DIM rc

 DIM attr$,usrDesc$: usrDesc$="A description"

 DIM hHtsSvc //composite handle for hts primary service

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc)

 DIM hHtsMeas //composite handle for htsMeas characteristic

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 rc=BleSvcCommit(BLE_SERVICE_PRIMARY,BleHandleUuid16(0x1809),hHtsSvc)

 //--

 //Create the Measurement Characteristic object, add user description descriptor

 //--

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 //--

 //Commit the characteristics with some initial data

 //--

 attr$="hello\00worl\64"

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

255 Laird Technologies

 PRINT "\nCharacteristic Commited"

 ELSE

 PRINT "\nFailed"

 ENDIF

 //the characteristic will now be visible in the GATT table

 //and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

BLECHARCOMMIT is an extension function.

BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was
previously returned by the function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write
event is presented asynchronously to the smart BASIC application in the form of EVCHARVAL event and so
this function will most often be accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle,attr$)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be read which was returned
when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

This string variable contains the new value from the characteristic.

Interactive Command: NO

 //Example :: BleCharValueRead.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc, conHndl

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

Characteristic Commited

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

256 Laird Technologies

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //initialise scan report

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,150,0,0)

 ENDFUNC rc

 //==

 // New char value handler

 //==

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)

 dim s$

 IF chrHndl == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 rc=BleAdvertStop()

 rc=BleDisconnect(conHndl)

 ENDFUNC 0

 //==

 // Get the connnection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn)

 conHndl=nCtn

 ENDFUNC 1

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL600 and send a new

value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVCHARVAL CALL HndlrChar

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 WAITEVENT

 PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

257 Laird Technologies

Expected Output:

BLECHARVALUEREAD is an extension function.

BleCharValueWrite

Note: For firmware versions prior to 1.4.X.Y, the module must be in a connection for this function to
work.

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a
composite handle returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle,attr$)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which was returned
when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

String variable, contains new value to write to the characteristic.

Interactive Command: NO

 //Example :: BleCharValueWrite.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 ENDFUNC rc

 //==

Characteristic value attribute: Hi

Connect to BL600 and send a new value

New characteristic value: Laird

Exiting...

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

258 Laird Technologies

 // Uart Rx handler - write input to characteristic

 //==

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0)

 ENDFUNC 1

 //==

 // Timer0 timeout handler

 //==

 FUNCTION HndlrTmr0()

 DIM t$: rc=UartRead(t$)

 IF BleCharValueWrite(hMyChar,t$)==0 THEN

 PRINT "\nNew characteristic value: ";t$

 ELSE

 PRINT "\nFailed to write new characteristic value"

 ENDIF

 ENDFUNC 0

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nSend a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEWRITE is an extension function.

BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a Characteristic so that it
can be sent as a notification to the GATT client. The characteristic is identified by a composite handle that
was returned by the function BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle,attr$)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

259 Laird Technologies

Arguments:

charHandle byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which was returned
when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then send as a
notification to the client. If there is no connection, this function fails with an appropriate
result code.

Interactive Command: NO

 //Example :: BleCharValueNotify.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

260 Laird Technologies

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 value$="hello"

 IF BleCharValueNotify(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to notify new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful notification of new value"

 EXITFUNC 0

 ENDIF

 ELSE

 PRINT " : Notifications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then notify your device of a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUENOTIFY is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

261 Laird Technologies

BleCharValueIndicate

FUNCTION

If there is BLE connection this function is used to write new data into the VALUE attribute of a Characteristic
so that it can be sent as an indication to the GATT client. The characteristic is identified by a composite
handle returned by the function BleCharCommit().

An indication results in an acknowledgement from the client and that will be presented to the smart BASIC
application as the EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle,attr$)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which was returned
when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then to send as a
notification to the client. If there is no connection, this function fails with an appropriate
result code.

Interactive Command: NO

 //Example :: BleCharValueIndicate.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

262 Laird Technologies

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Indications have been enabled by client"

 value$="hello"

 rc=BleCharValueIndicate(hMyChar,value$)

 IF rc!=0 THEN

 PRINT "\nFailed to indicate new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful indication of new value"

 EXITFUNC 1

 ENDIF

 ELSE

 PRINT " : Indications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // Indication Acknowledgement Handler

 //==

 FUNCTION HndlrChrHvc(BYVAL charHandle)

 IF charHandle == hMyChar THEN

 PRINT "\n\nGot confirmation of recent indication"

 ELSE

 PRINT "\n\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVCHARHVC CALL HndlrChrHvc

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then indicate a new characteristic value\n"

 ELSE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

263 Laird Technologies

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEINDICATE is an extension function.

BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two
parameters supplied in the EVCHARDESC event message after a Gatt Client writes to it.

In most cases a local read will be performed when a GATT client writes to a characteristic descriptor attribute.
The write event will be presented asynchronously to the smart BASIC application in the form of an
EVCHARDESC event and so this function will most often be accessed from the handler that services that
event.

BLECHARDESCREAD (charHandle,nDescHandle,nOffset,nLength,nDescUuidHandle,attr$))

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle byVal charHandle AS INTEGER
This is the handle to the characteristic whose descriptor must be read which was returned
when BleCharCommit() was called and will have been supplied in the EVCHARDESC event
message.

nDescHandle byVal nDescHandle AS INTEGER

This is an index into an opaque array of descriptor handles inside the charHandle and will
have been supplied as the second parameter in the EVCHARDESC event message.

nOffset byVal nOffset AS INTEGER

This is the offset into the descriptor attribute from which the data shoud be read and
copied into attr$.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

264 Laird Technologies

nLength byVal nLength AS INTEGER
This is the number of bytes to read from the descriptor attribute from offset nOffset and
copied into attr$.

nDescUuidHandle byRef nDescUuidHandle AS INTEGER

On exit this will be updated with the uuid handle of the descriptor that got updated.

attr$ byRef attr$ AS STRING

On exit this string variable contains the new value from the characteristic descriptor.

Interactive Command: NO

 //Example :: BleCharDescRead.sb (See in BL600CodeSnippets.zip)

 DIM rc,conHndl,hMyChar

 //--

 //Create some PRIMARY service attribure which has a uuid of 0x18FF

 //--

 SUB OnStartup()

 DIM hSvc,attr$,scRpt$,adRpt$,addr$

 rc=BleSvcCommit(1,BleHandleUuid16(0x18FF),hSvc)

 // Add one or more characteristics

 rc=BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

 //Add a user description

 DIM s$: s$="You can change this"

 rc=BleCharDescAdd(0x2999,s$,BleAttrMetadata(1,1,20,1,rc))

 //commit characteristic

 attr$="\00" //no initial alert

 rc = BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 char handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hMyChar,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,200,0,0)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler - Just to get the connection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 ENDFUNC 1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

265 Laird Technologies

 //==

 // Handler to service writes to descriptors by a gatt client

 //==

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)

 DIM instnc,nUuid,a$, offset,duid

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc==0 THEN

 PRINT "\nRead 20 bytes from index ";offset;" in new char value."

 PRINT "\n ::New Descriptor Data: ";StrHexize$(a$);

 PRINT "\n ::Length=";StrLen(a$)

 PRINT "\n ::Descriptor UUID ";integer.h' duid

 EXITFUNC 0

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //install a handler for writes to characteristic values

 ONEVENT EVCHARDESC CALL HandlerCharDesc

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 //wait for events and messages

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

BLECHARDESCREAD is an extension function.

GATT Client Functions

This section describes all functions related to GATT Client capability which enables interaction with GATT
servers at the other end of the BLE connection. The Bluetooth Specification 4.0 and newer allows for a device
to be a GATT server and/or GATT Client simultaneously and the fact that a peripheral mode device accepts a
connection and in all use cases has a GATT server table does not preclude it from interacting with a GATT
table in the central role device which is connected to it.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

266 Laird Technologies

These GATT Client functions allow the developer to discover services, characteristics and descriptors, read and
write to characteristics and descriptors and handle either notifications or indications.

To interact with a remote GATT server it is important to have a good understanding of how it is constructed
and the best way is to see it as a table consisting of many rows and 3 visible columns (handle, type, value)
and at least one more column which is not visible but the content will affect access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by
creating a row with Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803
for characteristics.

Basically, a table should be scanned from top to bottom and the specification stipulates that the 16 bit
handle field SHALL contain values in the range 1 to 65535 and SHALL be in ascending order and gaps are
allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the ‘Type’ column then it SHALL
be understood as the start of a primary or secondary service which in turn SHALL contain at least one
charactestic or one ‘included service’ which have Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803, a characteristic, is encountered, then the next row shall contain the value
for that characteristic and then after that there may be 0 or more descriptors.

This means each characteristic shall consist of at least 2 rows in the table, and if descriptors exist for that
characteristic then a single row per descriptor.

Handle Type Value Comments

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start

0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start

0x000D Value UUID3 Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)

0x000F 0x2903 Value Descriptor 2 (SCCD)

0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT Server table is shown above which shows there are 3 services (at
handles 0x0001,0x0008 and 0x000B) because there are 3 rows where the Type = 0x2803 and all rows up to
the next instance of a row with Type=0x2800 or 2801 belong to that service.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

267 Laird Technologies

In each group of rows for a service, you can see one or more characteristics where Type=0x2803. For
example the service beginning at handle 0x0008 has one characteristic which contains 2 rows identified by
handles 0x0009 and 0x000A and the actual value for the characteristic starting at 0x0009 is in the row
identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it up to a row with
type = 0x2800/2801/2803 are considered belonging to that characteristic. For example see characteristic at
row with handle = 0x0004 which has the mandatory value row and then 2 descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors
and they are differentiated by the unique handle. Hence when a handle is known there is no ambiguity.

Each GATT Server table will allocate the handle numbers, the only stipulation being that they be in ascending
order (gaps are allowed). This is important to understand because two devices containing the same services
and characteristic and in EXACTLY the same order may NOT allocate the same handle values, especially if one
device increments handles by 1 and another with some other arbitrary random value. The specification DOES
however stipulate that once the handle values are allocated they be fixed for all subsequent connections,
unless the device exposes a GATT Service which allows for indications to the client that the handle order has
changed and thus force it to flush it’s cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist and of their
handles, so the GATT protocol which is used to interact with GATT servers provides procedures that allow for
the GATT table to be scanned so that the client can ascertain which services are offered. This section
describes smartBASIC functions which encapsulate and manage those procedures to enable a smartBASIC
application to map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value
type for appropriate characteristics as those are the ones that will be read or written to. The smartBASIC
internal engine also maintains data objects so that it is possible to interact with descriptors associated with
the characteristic.

In a nutshell, the table scanning process will reveal characteristic handles (as handles of handles) and these
are then used in other GATT client related smartBASIC functions to interact with the table to for example
read/write or accept and process incoming notifications and indications.

This encapsulated approach is to ensure that the least amount of RAM resource is required to implement a
GATT Client and given that these procedures operate at speeds many orders of magnitude slower compared
to the speed of the cpu and energy consumption is to be kept as low as possible, the response to a command
will be delivered asynchnornously as an event for which a handler will have to be specified in the user
smartBASIC application.

The rest of this chapter describes all the GATT Client commands, responses and events in detail along with
example code demonstrating usage and expected output.

Events & Messages

The nature of GATT Client operation consists of multiple queries and acting on the responses. Due to the
connection intervals being vastly slower than the speed of the cpu, responses can arrive many 10s of
milliseconds after the precudure was triggered, which are delivered to an app using an event or message.
Since these event/messages are tightly coupled with the appropriate commands, all but one will be described
when the command that triggers them is described.

The event EVGATTCTOUT is applicable for all Gatt Client related functions which result in transactions over
the air. The Bluetooth specification states that if an operation is initiated and is not completed within 30
seconds then the connection shall be dropped as no further Gatt Client transaction can be initiated.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

268 Laird Technologies

EVGATTCTOUT event message

This event message WILL be thrown if a Gatt Client transaction takes longer than 30 seconds. It contains 1
INTEGER paramter :-

 Connection Handle

//Example :: EVGATTCTOUT.sb (See in BL600CodeSnippets.zip)

//

DIM rc,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected"

 ENDIF

ENDFUNC 1

'//==

'//==

FUNCTION HandlerGattcTout(cHndl) AS INTEGER

 PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVGATTCTOUT call HandlerGattcTout

rc = OnStartup()

WAITEVENT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

269 Laird Technologies

Expected Output:

BleGattcOpen

FUNCTION

This function is used to initialise the GATT Client functionality for immediate use so that appropriate buffers
for caching GATT responses are created in the heap memory. About 300 bytes of RAM is required by the
GATT Client manager and given that a majority of BL600 use cases will not utilise it, the sacrifice of 300
bytes, which is nearly 15% of the available memory, is not worth the permament allocation of memory.

There are various buffers that need to be created that are needed for scanning a remote GATT table which
are of fixed size. There is however, one buffer which can be configured by the smartBASIC apps developer
and that is the ring buffer that is used to store incoming notifiable and indicatable characteristics. At the time
of writing this user manual the default minimum size is 64 unless a bigger one is desired and in that case the
input parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but that can result
in unreliable operation as the smartBASIC runtime engine will be starved of memory very quickly.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The
same information can be obtained in interactive mode using the commands AT I 2019 and 2020 respectively.

Note that when the ring buffer for the notifiable and indicatable characteristics is full, then any new
messages will get discarded and depending on the flags parameter the indicates will or will not get
confirmed.

This function is safe to call when the gatt client manager is already open, however, in that case the
parameters are ignored and existing values are retained and any existing gattc client operations are not
interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nNotifyBufLen byVal nNotifyBufLen AS INTEGER
This is the size of the ring buffer used for incoming notifiable and indicatable characterstic
data. Set to 0 to use the default size.

nFlags byVal nFlags AS INTEGER
Bit 0 : Set to 1 to disable automatic indication confirmations if buffer is full then the
Handle Value Confirmation will only be sent when BleGattcNotifyRead() is called to read
the ring buffer.
Bit 1..31 : Reserved for future use and must be set to 0s

Interactive Command: NO

. . .

. . .

EVGATTCTOUT connHandle=123

. . .

. . .

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

270 Laird Technologies

 //Example :: BleGattcOpen.sb (See in BL600CodeSnippets.zip)
DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

//open the client with default notify/indicate ring buffer size - again

rc = BleGattcOpen(128,1)

IF rc == 0 THEN

 PRINT "\nGatt Client is still open, because already open"

ENDIF

Expected Output:

BLEGATTCOPEN is an extension function.

BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Arguments: None

Interactive Command: NO

//Example :: BleGattcClose.sb (See in BL600CodeSnippets.zip)

DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

BleGattcClose()

PRINT "\nGatt Client is now closed"

BleGattcClose()

PRINT "\nGatt Client is closed - was safe to call when already closed"

Expected Output:

BLEGATTCCLOSE is an extension subroutine.

Gatt Client is now open

Gatt Client is still open, because already open

Gatt Client is now open

Gatt Client is now closed

Gatt Client is closed - was safe to call when already closed

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

271 Laird Technologies

BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote Gatt Server for all primary services with the help of the
EVDISCPRIMSVC message event and when called a handler for the event message must be registered as the
discovered primary service information is passed back in that message.

A generic or uuid based scan can be initiated. The former will scan for all primary services and the latter will
scan for a primary service with a particular uuid, the handle of which must be supplied and is generated by
using either BleHandleUuid16() or BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter
low power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary
may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt related
operations like for example servicing sensors and displays or any of the onboard peripherals.

EVDISCPRIMSVC event message

This event message WILL be thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The
message contains 4 INTEGER parameters:-

 Connection Handle
 Service Uuid Handle
 Start Handle of the service in the Gatt Table
 End Handle for the service.

If no more services were discovered because the end of the table was reached, then all parameters will
contain 0 apart from the Connection Handle.

BLEDISCSERVICEFIRST (connHandle,startAttrHandle,uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting
for the EVDISCPRIMSVC event message and depending on the information returned in that message calling
BleDiscServiceNext(), which in turn will result in another EVDISCPRIMSVC event message and typically is as
follows:-

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

 If Start/End Handle == 0 then scan is complete

 Else Process information then

 call BleDiscServiceNext()

 if BleDiscServiceNext() not OK then scan complete

Call BleDiscServiceFirst()

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCPRIMSVC event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an
EVDISCPRIMSVC message will NOT be thrown.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

272 Laird Technologies

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

startAttrHandle byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for primary services will be started and
you can typically set it to 0 to ensure that the entire remote Gatt Server is scanned.

uuidHandle byVal uuidHandle AS INTEGER
Set this to 0 if you want to scan for any service, otherwise this value will have been
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

BLEDISCSERVICENEXT (connHandle)

Calling this assumes that BleDiscServiceFirst() has been called at least once to set up the internal primary
services scanning state machine.

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCPRIMSVC event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an
EVDISCPRIMSVC message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

Interactive Command: NO

//Example :: BleDiscServiceFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscPrimSvc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

273 Laird Technologies

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 PRINT "\nScan for service with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

274 Laird Technologies

 PRINT "\nScan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscServiceNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nScan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

275 Laird Technologies

Expected Output:

BLEDISCSERVICEFIRST and BLEDISCSERVICENEXT are both extension functions.

BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote Gatt Server for characteristics in a service with the help of
the EVDISCCHAR message event and when called a handler for the event message must be registered as the
discovered characteristics information is passed back in that message

A generic or uuid based scan can be initiated. The former will scan for all characteristics and the latter will
scan for a characteristic with a particular uuid, the handle of which must be supplied and is generated by
using either BleHandleUuid16() or BleHandleUuid128().

If instead it is known that a gatt table has a specific service and a specific characteristic, then a more efficient
method for locating details of that characteristic is to use the function BleGattcFindChar() which is described
later.

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter
low power state as the WAITEVENT statement is used as normal to wait for events and messages.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

276 Laird Technologies

Depending on the size of the remote GATT server table and the connection interval, the scan of all
characteristics may take many 100s of milliseconds, and while this is in progress it is safe to do other non
Gatt related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future
enhancement.

EVDISCCHAR event message

This event message WILL be thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The
message contains 5 INTEGER parameters:-

 Connection Handle
 Characteristic Uuid Handle
 Characteristic Properties
 Handle for the Value Attribute of the Characteristic
 Included Service Uuid Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters will
contain 0 apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the uuid of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:-
 Bit 0 : Set if BROADCAST is enabled
 Bit 1 : Set if READ is enabled
 Bit 2 : Set if WRITE_WITHOUT_RESPONSE is enabled
 Bit 3 : Set if WRITE is enabled
 Bit 4 : Set if NOTIFY is enabled
 Bit 5 : Set if INDICATE is enabled
 Bit 6 : Set if AUTHENTICATED_SIGNED_WRITE is enabled
 Bit 7 : Set if RELIABLE_WRITE is enabled
 Bit 15 : Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a gatt server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and will always be 0.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle,endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information
obtained from a primary services scan and then waiting for the EVDISCCHAR event message and depending
on the information returned in that message calling BleDiscCharNext() which in turn will result in another
EVDISCCHAR event message and typically is as follows:-

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message

 If Char Value Handle == 0 then scan is complete

 Else Process information then

 call BleDiscCharNext()

 if BleDiscCharNext() not OK then scan complete

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

277 Laird Technologies

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)

If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCCHAR event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVDISCCHAR
message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

charUuidHandle byVal charUuidHandle AS INTEGER
Set this to 0 if you want to scan for any characteristic in the service, otherwise this value
will have been generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

startAttrHandle byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for characteristic will be started and will
have been acquired by doing a primary services scan, which returns the start and end
handles of services.

endAttrHandle byVal endAttrHandle AS INTEGER
This is the end attribute handle for the scan and will have been acquired by doing a
primary services scan, which returns the start and end handles of services.

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine. It scans for the next characteristic.

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCCHAR event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVDISCCHAR
message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

Interactive Command: NO

//Example :: BleDiscCharFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

278 Laird Technologies

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for characteristic with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc == 0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc==0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

279 Laird Technologies

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscCharNext(conHndl)

 IF rc != 0 THEN

 PRINT "\nCharacteristics scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

280 Laird Technologies

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEDISCCHARFIRST and BLEDISCCHARNEXT are both extension functions.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

281 Laird Technologies

BleDiscDescFirst / BleDiscDescNext

FUNCTIONS

These pair of functions are used to scan the remote Gatt Server for descriptors in a characteristic with the
help of the EVDISCDESC message event and when called a handler for the event message must be registered
as the discovered descriptor information is passed back in that

A generic or uuid based scan can be initiated. The former will scan for all descriptors and the latter will scan
for a descriptor with a particular uuid, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

If instead it is known that a gatt table has a specific service, characteristic and a specific descriptor, then a
more efficient method for locating details of that characteristic is to use the function BleGattcFindDesc()
which is described later.

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter
low power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all
descriptors may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt
related operations like for example servicing sensors and displays or any of the onboard peripherals.

EVDISCDESC event message

This event message WILL be thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The
message contains 3 INTEGER parameters:-

 Connection Handle
 Descriptor Uuid Handle
 Handle for the Descriptor in the remote Gatt Table

If no more descriptors were discovered because the end of the table was reached, then all parameters will
contain 0 apart from the Connection Handle.

‘Descriptor Uuid Handle’ contains the uuid of the descriptor and supplied as a handle.

‘Handle for the Descriptor in the remote Gatt Table’ is the handle for the descriptor, and also is the value to
store to keep track of important characteristics in a gatt server for later read/write operations.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information
obtained from a characteristics scan and then waiting for the EVDISCDESC event message and depending on
the information returned in that message calling BleDiscDescNext() which in turn will result in another
EVDISCDESC event message and typically is as follows:-

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message

 If Descriptor Handle == 0 then scan is complete

 Else Process information then

 call BleDiscDescNext()

 if BleDiscDescNext() not OK then scan complete

Call BleDiscDescFirst(--information from EVDISCCHAR)

If BleDiscDescFirst() ok then Wait for EVDISCDESC

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

282 Laird Technologies

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCDESC event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVDISCDESC
message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

descUuidHandle byVal descUuidHandle AS INTEGER
Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this
value will have been generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

charValHandle byVal charValHandle AS INTEGER
This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine, and that BleDiscDescFirst() has been called at least once to start the descriptor
discovery process.

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVDISCDESC event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVDISCDESC
message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

Interactive Command: NO

//Example :: BleDiscDescFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics

// which contains 8 descriptors, that are ...

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr

//==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

283 Laird Technologies

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for descritors with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc == 0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc==0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

284 Laird Technologies

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first characteristic service at handle ";hVal

 PRINT "\nScan for ALL Descs"

 cValAttr = hVal

 rc = BleDiscDescFirst(conHndl,0,cValAttr)

 IF rc != 0 THEN

 PRINT "\nScan descriptors failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCDESC event handler

'//==

function HandlerDescDisc(cHndl,cUuid,hndl) as integer

 print "\nEVDISCDESC"

 print " cHndl=";cHndl

 print " dscUuid=";integer.h' cUuid

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDescriptor Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscDescNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nDescriptor scan abort"

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

285 Laird Technologies

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

286 Laird Technologies

Expected Output:

BLEDISCDESCFIRST and BLEDISCDESCNEXT are both extension functions.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

287 Laird Technologies

BleGattcFindChar

FUNCTION

This function facilitates a quick and efficient way of locating the details of a characteristic if the uuid is known
along with the uuid of the service containing it and the results will be delived in a EVFINDCHAR event
message. If the Gatt server table has multiple instances of the same service/characteristic combination then
this function will work because in addition to the uuid handles to be searched for, it also accepts instance
parameters which are indexed from 0, which means the 4

th
 instance of a characteristic with the same uuid in

the 3
rd
 instance of a service with the same uuid will be located with index values 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt
related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future
enhancement.

EVFINDCHAR event message

This event message WILL be thrown if BleGattcFindChar() returns a success. The message contains 4 INTEGER
parameters:-

 Connection Handle
 Characteristic Properties
 Handle for the Value Attribute of the Characteristic
 Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote Gatt Server Table then all
parameters will contain 0 apart from the Connection Handle.

 ‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:-
 Bit 0 : Set if BROADCAST is enabled
 Bit 1 : Set if READ is enabled
 Bit 2 : Set if WRITE_WITHOUT_RESPONSE is enabled
 Bit 3 : Set if WRITE is enabled
 Bit 4 : Set if NOTIFY is enabled
 Bit 5 : Set if INDICATE is enabled
 Bit 6 : Set if AUTHENTICATED_SIGNED_WRITE is enabled
 Bit 7 : Set if RELIABLE_WRITE is enabled
 Bit 15 : Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a gatt server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and will always be 0.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

288 Laird Technologies

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex,charUuidHndl, charIndex)

A typical pseudo code for finding a characteristic involves calling BleGattcFindChar() which in turn will result
in the EVFINDCHAR event message and typically is as follows:-

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message

 If Char Value Handle == 0 then

 Characteristic not found

 Else

 Characteristic has been found

Call BleGattcFindChar()

If BleGattcFindChar () ok then Wait for EVFINDCHAR

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVFINDCHAR event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVFINDCHAR
message will NOT be thrown.

Arguments:

connHandle byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

svcUuidHndl byVal svcUuidHndl AS INTEGER
Set this to the service uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIndex byVal svcIndex AS INTEGER
This is the instance of the service to look for with the uuid handle svcUuidHndl, where 0 is
the first instance, 1 is the second etc

charUuidHndl byVal charUuidHndl AS INTEGER
Set this to the characteristic uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIndex byVal charIndex AS INTEGER
This is the instance of the characteristic to look for with the uuid handle charUuidHndl,
where 0 is the first instance, 1 is the second etc

Interactive Command: NO

//Example :: BleGattcFindChar.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

289 Laird Technologies

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for an instance of char"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1 //valHandle will be 32

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3 //does not exist

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

290 Laird Technologies

'//==

'//==

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer

 print "\nEVFINDCHAR "

 print " cHndl=";cHndl

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nDid NOT find the characteristic"

 ELSE

 PRINT "\nFound the characteristic at handle ";hVal

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDCHAR is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

291 Laird Technologies

BleGattcFindDesc

FUNCTION

This function facilitates a quick and efficient way of locating the details of a descriptor if the uuid is known
along with the uuid of the service and the uuid of the characteristic containing it and the results will be
delivered in a EVFINDDESC event message. If the Gatt server table has multiple instances of the same
service/characteristic/descriptor combination then this function will work because in addition to the uuid
handles to be searched for, it also accepts instance parameters which are indexed from 0, which means the
2

nd
 instance of a descriptor in the 4

th
 instance of a characteristic with the same uuid in the 3

rd
 instance of a

service with the same uuid will be located with index values 1, 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt
related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future
enhancement.

EVFINDDESC event message

This event message WILL be thrown if BleGattcFindDesc()returned a success. The message contains 2
INTEGER parameters:-

 Connection Handle
 Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote Gatt Server Table
then all parameters will contain 0 apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important
descriptors in a gatt server for later read/write operations – for example CCCD’s to enable notifications
and/or indications.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx)

A typical pseudo code for finding a descrirptor involves calling BleGattcFindDesc() which in turn will result in
the EVFINDDESC event message and typically is as follows:-

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message

 If Descriptor Handle == 0 then

 Descriptor not found

 Else

 Descriptor has been found

Call BleGattcFindDesc()

If BleGattcFindDesc() ok then Wait for EVFINDDESC

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVFINDDESC event message WILL be thrown by the smartBASIC

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

292 Laird Technologies

runtime engine containing the results. A non-zero return value implies an EVFINDDESC
message will NOT be thrown.

Arguments:

connHndl byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

svcUuHndl byVal svcUuHndl AS INTEGER
Set this to the service uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIdx byVal svcIdx AS INTEGER
This is the instance of the service to look for with the uuid handle svcUuidHndl, where 0 is
the first instance, 1 is the second etc

charUuHndl byVal charUuHndl AS INTEGER
Set this to the characteristic uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIdx byVal charIdx AS INTEGER
This is the instance of the characteristic to look for with the uuid handle charUuidHndl,
where 0 is the first instance, 1 is the second etc

descUuHndl byVal descUuHndl AS INTEGER
Set this to the descriptor uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

descIdx byVal descIdx AS INTEGER
This is the instance of the descriptor to look for with the uuid handle charUuidHndl,
where 0 is the first instance, 1 is the second etc

Interactive Command: NO

//Example :: BleGattcFindDesc.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

293 Laird Technologies

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC,uHndD

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 uu$ = "1122C0DE5566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndD = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1

 dIdx = 1 // handle will be 37

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3

 dIdx = 4 //does not exist

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindDesc(cHndl,hndl) as integer

 print "\nEVFINDDESC "

 print " cHndl=";cHndl

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDid NOT find the descriptor"

 ELSE

 PRINT "\nFound the descriptor at handle ";hndl

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

294 Laird Technologies

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDDESC is an extension function.

BleGattcRead / BleGattcReadData

FUNCTIONS

If the handle for an attribute is known then these functions are used to read the content of that attribute
from a specified offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be
registered for the EVATTRREAD event.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

295 Laird Technologies

Depending on the connection interval, the read of the attribute may take many 100s of milliseconds, and
while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors
and displays or any of the onboard peripherals.

BleGattcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the
underlying cache when the EVATTRREAD event message is received with a success status.

EVATTRREAD event message

This event message WILL be thrown if BleGattcRead() returns a success. The message contains 3 INTEGER
parameters:-

 Connection Handle
 Handle of the Attribute
 Gatt status of the read operation.

‘Gatt status of the read operation’ is one of the following values, where 0 implies the read was successfully
expedited and the data can be obtained by calling BlePubGattClientReadData().

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error: Client Characteristic Configuration Descriptor

 (CCCD)improperly configured

0x01FE ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF ATT Common Profile and Service Error: Out Of Range

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

296 Laird Technologies

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn will result
in the EVATTRREAD event message and typically is as follows:-

Register a handler for the EVATTRREAD event message

On EVATTREAD event message

 If Gatt_Status == 0 then

 BleGattcReadData() //to actually get the data

 Else

 Attribute could not be read

Call BleGattcRead()

If BleGattcRead() ok then Wait for EVATTRREAD

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation
and it means an EVATTRREAD event message WILL be thrown by the smartBASIC
runtime engine containing the results. A non-zero return value implies an EVATTRREAD
message will NOT be thrown.

Arguments:

connHndl byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

attrHndl byVal attrHndl AS INTEGER
Set this to the handle of the attribute to read and will be a value in the range 1 to 65535

offset byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has
a success gatt status code.

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

attrHndl byRef attrHndl AS INTEGER
The handle for the attribute that was read is returned in this variable. Will be the same as
the one supplied in BleGattcRead, but supplied here so that the code can be stateless.

offset byRef offset AS INTEGER
The offset into the attribute data that was read is returned in this variable. Will be the

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

297 Laird Technologies

same as the one supplied in BleGattcRead, but supplied here so that the code can be
stateless.

attrData$ byRef attrData$ AS STRING

The attribute data which was read is supplied in this parameter.

Interactive Command: NO

//Example :: BleGattcRead.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so read attibute handle 3"

 atHndl = 3

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

298 Laird Technologies

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nread attibute handle 300 which does not exist"

 atHndl = 300

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrRead(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRREAD "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute read OK"

 rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$)

 print "\nData = ";StrHexize$(at$)

 print " Offset= ";nOfst

 print " Len=";strlen(at$)

 print "\nhandle = ";nAhndl

 else

 print "\nFailed to read attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRREAD call HandlerAttrRead

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

299 Laird Technologies

Expected Output:

BLEGATTCREAD and BLEGATTREADDATA are extension functions.

BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0.
The acknowledgement will be returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be
registered for the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many 100s of milliseconds, and
while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors
and displays or any of the onboard peripherals.

EVATTRWRITE event message

This event message WILL be thrown if BleGattcWrite() returns a success. The message contains 3 INTEGER
parameters:-

 Connection Handle
 Handle of the Attribute
 Gatt status of the write operation.

 ‘Gatt status of the write operation’ is one of the following values, where 0 implies the write was successfully
expedited.

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

300 Laird Technologies

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written

 using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error:

 Client Characteristic Configuration Descriptor (CCCD)

 improperly configured

0x01FE ATT Common Profile and Service Error:

 Procedure Already in Progress

0x01FF ATT Common Profile and Service Error:

 Out Of Range

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVATTRWRITE event message and
typically is as follows:-

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message

 If Gatt_Status == 0 then

 Attribute was written successfully

 Else

 Attribute could not be written

Call BleGattcWrite()

If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

301 Laird Technologies

attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$ byRef attrData$ AS STRING
The attribute data to write.

Interactive Command: NO

//Example :: BleGattcWrite.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWrite.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attibute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

302 Laird Technologies

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attibute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

303 Laird Technologies

Expected Output:

BLEGATTCWRITE is an extension function.

BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute at offset 0when no
acknowledgment response is expected. The signal that the command has actually been transmitted and that
the remote link layer has acknowledged is by the EVNOTIFYBUF event.

Note that the acknowledgement received for the BleGattcWrite() command is from the higher level GATT
layer, not to be confused with the link layer ack in this case.

All packets are acknowledged at link layer level. If a packet fails to get through then that
condition will manifest as a connection drop due to the link supervision timeout.

Given that the transmission and link layer ack of this write operation is indicated in an event message, a
handler must be registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many 100s of milliseconds, and
while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors
and displays or any of the onboard peripherals.

EVNOTIFYBUF event

This event message WILL be thrown if BleGattcWriteCmd() returned a success. The message contains no
parameters.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVNOTIFYBUF event is as follows:-

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message

 Can now send another write command

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

304 Laird Technologies

Call BleGattcWriteCmd()

If BleGattcWrite() ok then Wait for EVNOTIFYBUF

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote Gatt Server can be accessed. This will have been returned in the
EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection
handle.

attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$ byRef attrData$ AS STRING
The attribute data to write.

Interactive Command: NO

//Example :: BleGattcWriteCmd.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWriteCmd.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

305 Laird Technologies

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attribute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\05\06\07\08"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\09\0A\0B\0C"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attribute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 PRINT "\nEven when the attribute does not exist an event will occur"

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerNotifyBuf() as integer

 print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

306 Laird Technologies

Expected Output:

BLEGATTCWRITECMD is an extension function.

BleGattcNotifyRead

FUNCTION

A Gatt Server has the ability to notify or indicate the value attribute of a characteristic when enabled via the
Client Characeristic Configuration Descriptor (CCCD). This means data will arrive from a Gatt Server at any
time and so has to be managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require Gatt acknowledgements, however indications require them.
This Gatt Client manager saves data arriving via a notification in the same ring buffer for later extraction
using the command BleGattcNotifyRead() and for indications an automatic gatt acknowledgement is sent
when the data is saved in the ring buffer. This acknowledgment happens even if the data was discarded
because the ring buffer was full. If however it is required that the data NOT be acknowledged when it is
discarded on a full buffer then set the flags parameter in the BleGattcOpen() function where the Gatt Client
manager is opened.

In the case when an ack is NOT sent on data discard, the Gatt Server will be throttled and so no further data
will be notified or indicated by it until BleGattNotifyRead() is called to extract data from the ring buffer to
create space and it will trigger a delayed acknowledgement.

When the Gatt Client manager is opened using BleGattcOpen() it is possible to specify the size of the ring
buffer. If a value of 0 is supplied then a default size is created. SYSINFO(2019) in a smartBASIC application or
the interactive mode command AT I 2019 will return the default size. Likewise SYSINFO(2020) or the
command AT I 2020 will return the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer and at the same time a
EVATTRNOTIFY event is thrown to the smartBASIC runtime engine. This is an event, in the same way an
incoming UART receive character generates an event, that is, no data payload is attached to the event.

EVATTRTOTIFY event message

This event WILL be thrown when an notification or an indication arrives from a gatt server . The event
contains no parameters. Please note that if one notification/indication arrives or many, like in the case of
UART events, the same event mask bit is asserted. The paradigm being that the smartBASIC application is
informed that it needs to go and service the ring buffer using the function BleGattcNotifyRead.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

307 Laird Technologies

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

A typical pseudo code for handling and accessing notification/indication data is as follows:-

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIRY event

 BleGattcNotifyRead() //to actually get the data

 Process the data

Enable notifications and/or indications via CCCD descriptors

Returns: INTEGER, a result code. The typical value is 0x0000, indicating data was successful read.

Arguments:

connHndl byRef connHndl AS INTEGER
On exit this will be the connection handle of the gatt server that sent the notification or
indication.

attrHndl byRef attrHndl AS INTEGER
On exit this will be the handle of the characteristic value attribute in the notification or
indication.

attrData$ byRef attrData$ AS STRING
On exit this will be the data of the characteristic value attribute in the notification or
indication. It is always from offset 0 of the source attribute.

discardedCount byRef discardedCount AS INTEGER
On exit this should contain 0 and it signifies the total number of notifications or
indications that got discared because the ring buffer in the gatt client manager was full.
If non-zero values are encountered, it is recommended that the ring buffer size be
increased by using BleGattcClose() when the gatt client was opened using
BleGattcOpen().

Interactive Command: NO

//Example :: BleGattcNotifyRead.sb (See in BL600CodeSnippets.zip)

//

// Server created using BleGattcTblNotifyRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

308 Laird Technologies

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so enable notification for char with cccd at 16"

 atHndl = 16

 at$="\01\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- enable indication for char with cccd at 19"

 atHndl = 19

 at$="\02\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

'//==

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

309 Laird Technologies

'//==

function HandlerAttrNotify() as integer

 dim chndl,aHndl,att$,dscd

 print "\nEVATTRNOTIFY Event"

 rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd)

 print "\n BleGattcNotifyRead()"

 if rc==0 then

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " data=";StrHexize$(att$)

 print " discarded=";dscd

 else

 print " failed with ";integer.h' rc

 endif

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

OnEvent EVATTRNOTIFY call HandlerAttrNotify

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCNOTIFYREAD is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

310 Laird Technologies

Attribute Encoding Functions

Data for Characteristics are stored in Value attributes, arrays of bytes. Multibyte Characteristic Descriptors
content is stored similarly. Those bytes are manipulated in smart BASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored communicated in little endian
format and so all data manipulation is done similarly. Little endian means that a multibyte data entity will be
stored so that lowest significant byte is position at the lowest memory address and likewise when
transported, the lowest byte will get on the wire first.

This section describes all the encoding functions which allow those strings to be written to in smaller
bytewise subfields in a more efficient manner compared to the generic STRXXXX functions that are made
available in smart BASIC.

Note: CCCD and SCCD Descriptors are special cases; they have just 2 bytes which are treated as 16
bit integers. This is reflected in smartBASIC applications so that INTEGER variables are used to
manipulate those values instead of STRINGS.

BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it
will be extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE8 (attr$,nData, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

nData byVal nData AS INTEGER

The least significant byte of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data is
written to. If the string attr$ is not long enough to accommodate the index plus the
length of the fragment, it is extended. If the extended length exceeds the maximum
allowable length of an attribute (see SYSINFO(2013)), this function fails.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

311 Laird Technologies

Interactive Command: NO

 //Example :: BleEncode8.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //Remember: - 4 bytes are used to store an integer on the BL600

 //write 'C' to index 2 -- '111' will be ignored

 rc=BleEncode8(attr$,0x11143,2)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'B' to index 1

 rc=BleEncode8(attr$,0x42,1)

 //write 'D' to index 3

 rc=BleEncode8(attr$,0x44,3)

 //write 'y' to index 7 -- attr$ will be extended

 rc=BleEncode8(attr$,0x67, 7)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BLEENCODE8 is an extension function.

BleEncode16

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE16 (attr$,nData, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

attr$=Laird

attr$ now = ABCDd\00\00g

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

312 Laird Technologies

nData byVal nData AS INTEGER
The two least significant bytes of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the extended length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncode16.sb (See in BL600CodeSnippets.zip)

 DIM rc, attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //write 'CD' to index 2

 rc=BleEncode16(attr$,0x4443,2)

 //write 'AB' to index 0 - '2222' will be ignored

 rc=BleEncode16(attr$,0x22224241,0)

 //write 'EF' to index 3

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BLEENCODE16 is an extension function.

BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it
will be extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE24 (attr$,nData, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute.

nData byVal nData AS INTEGER

The three least significant bytes of this integer is saved. The rest is ignored.

attr$=Laird

attr$ now = ABCDEF

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

313 Laird Technologies

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the extended length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function will fail.

Interactive Command: NO

 //Example :: BleEncode24.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCD' to index 1

 rc=BleEncode24(attr$,0x444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'EF'to index 4

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "attr$=";attr$

Expected Output:

BLEENCODE24 is an extension function.

BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE32(attr$,nData, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

nData byVal nData AS INTEGER

The four bytes of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length

attr$=ABCDEF

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

314 Laird Technologies

of the fragment, it is extended. If the extended length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncode32.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCDE' to index 1

 rc=BleEncode32(attr$,0x45444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 PRINT "attr$=";attr$

Expected Output:

BLEENCODE32 is an extension function.

BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is
extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nMatissa byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data is
written in little endian so that the least significant byte is at the lower memory address.
Note that the range is not +/- 2048 because after encoding the following 2 byte values
have special meaning:

0x07FFFFFF NaN (Not a Number)
0x08000000 NRes (Not at this resolution)
0x07FFFFFE + INFINITY
0x08000002 - INFINITY
0x08000001 Reserved for future use

attr$=ABCDE

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

315 Laird Technologies

nExponent byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the extended length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncodeFloat.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 //write 1234567 x 10^-54 as FLOAT to index 2

 PRINT BleEncodeFLOAT(attr$,123456,-54,0)

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail

 //because the exponent is too large, it has to be < 127

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail

 //because the mantissa is too large, it has to be < 8388600

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

Expected Output:

BLEENCODEFLOAT is an extension function.

BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the string is
not long enough, it is extended with the extended block uninitialized. Then the bytes are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODESFLOATEX(attr$,nData, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

0

Failed to encode to FLOAT

Failed to encode to FLOAT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

316 Laird Technologies

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

nData byVal nData AS INTEGER

The 32 bit value is converted into a 2 byte IEEE-11073 16 bit SFLOAT consisting of a 12
bit signed mantissa and a 4 bit signed exponent. This means a signed 32 bit value always
fits in such a FLOAT enitity, but there will be a loss in significance to 12 from 32.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the new length exceeds the maximum allowable length
of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncodeSFloatEx.sb (See in BL600CodeSnippets.zip)

 DIM rc, mantissa, exp

 DIM attr$: attr$=""

 //write 2,147,483,647 as SFLOAT to index 0

 rc=BleEncodeSFloatEX(attr$,2147483647,0)

 rc=BleDecodeSFloat(attr$,mantissa,exp,0)

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp

Expected Output:

BLEENCODESFLOAT is an extension function.

BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the string is
not long enough, it is extended with the new block uninitialized. Then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODESFLOAT(attr$, nMatissa, nExponent, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful
operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

The number stored is 214 x 10^7

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

317 Laird Technologies

nMatissa byVal n AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little
endian so the least significant byte is at the lower memory address.

Note that the range is not +/- 2048 because after encoding the following 2 byte values
have special meaning:
0x07FF NaN (Not a Number)
0x0800 NRes (Not at this resolution)
0x07FE + INFINITY
0x0802 - INFINITY
0x0801 Reserved for future use

nExponent byVal n AS INTEGER

This value must be in the range -8 to 7 or the function fails.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the new length exceeds the maximum allowable length
of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncodeSFloat.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 SUB Encode(BYVAL mantissa, BYVAL exp)

 IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN

 PRINT "\nFailed to encode to SFLOAT"

 ELSE

 PRINT "\nSuccess"

 ENDIF

 ENDSUB

 Encode(1234,-4) //1234 x 10^-4

 Encode(1234,10) //1234 x 10^10 will fail because exponent too large

 Encode(10000,0) //10000 x 10^0 will fail because mantissa too large

Expected Output:

BLEENCODESFLOAT is an extension function.

Success

Failed to encode to SFLOAT

Failed to encode to SFLOAT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

318 Laird Technologies

BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7 byte string into the string at a specified offset. If the string is not long enough, it
is extended with the new extended block uninitialized and then the byte specified is overwritten.

The 7 byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 will be represented as “\14\0D\05\05\0A\1F\18”

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16 bit
integer. Hence \14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute.

timestamp$ byRef timestamp$ AS STRING

This is an exactly 7 byte string as described above. For example 5 May 2013 10:31:24 is
entered “\14\0D\05\05\0A\1F\18”

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment it is extended. If the new length exceeds the maximum allowable length
of an attribute (see SYSINFO(2013)), this function fails.

Interactive Command: NO

 //Example :: BleEncodeTimestamp.sb (See in BL600CodeSnippets.zip)

 DIM rc, ts$

 DIM attr$: attr$=""

 //write the timestamp <5 May 2013 10:31:24>

 ts$="\14\0D\05\05\0A\1F\18"

 PRINT BleEncodeTimestamp(attr$,ts$,0)

Expected Output:

BLEENCODETIMESTAMP is an extension function.

0

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

319 Laird Technologies

BleEncodeSTRING

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the
destination string is not long enough, it is extended with the new block uninitialized. Then the byte is
overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

BleEncodeSTRING (attr$,nIndex1 str$, nIndex2,nLen)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This argument is the string that will be written to an attribute

nIndex1 byVal nIndex1 AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is
written If the string attr$ is not long enough to accommodate the index plus the length
of the fragment it is extended. If the new length exceeds the maximum allowable length
of an attribute (see SYSINFO(2013)), this function fails.

str$ byRef str$ AS STRING

This contains the source data which is qualified by the nIndex2 and nLen arguments that
follow.

nIndex2 byVal nIndex2 AS INTEGER

This is the zero based index into the string str$ from which data is copied. No data is
copied if this is negative or greater than the string

nLen byVal nLen AS INTEGER
This species the number of bytes from offset nIndex2 to be copied into the destination
string. It is clipped to the number of bytes left to copy after the index.

Interactive Command: NO

 //Example :: BleEncodeString.sb (See in BL600CodeSnippets.zip)
 DIM rc, attr$, ts$: ts$="Hello World"

 //write "Wor" from "Hello World" to the attribute at index 2

 rc=BleEncodeString(attr$,2,ts$,6,3)

 PRINT attr$

Expected Output:

BLEENCODESTRING is an extension function.

\00\00Wor

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

320 Laird Technologies

BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is
treated as a bit array of length 32. If the destination string is not long enough, it is extended with the new
extended block uninitialized. Then the bits specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512; hence the (nDstIdx + nBitLen) cannot
be greater than the max attribute length times 8.

BleEncodeBITS (attr$,nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

attr$ byRef attr$ AS STRING
This is the string written to an attribute. It is treated as a bit array.

nDstIdx byVal nDstIdx AS INTEGER

This is the zero based bit index into the string attr$, treated as a bit array, where the new
fragment of data bits is written. If the string attr$ is not long enough to accommodate
the index plus the length of the fragment it is extended. If the new length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

srcBitArr byVal srcBitArr AS INTEGER

This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments
that follow.

nSrcIdx byVal nSrcIdx AS INTEGER

This is the zero based bit index into the bit array contained in srcBitArr from where the
data bits will be copied. No data is copied if this index is negative or greater than 32.

nBitLen byVal nBitLen AS INTEGER

This species the number of bits from offset nSrcIdx to be copied into the destination bit
array represented by the string attr$. It will be clipped to the number of bits left to copy
after the index nSrcIdx.

Interactive Command: NO

 //Example :: BleEncodeBits.sb (See in BL600CodeSnippets.zip)

 DIM attr$, rc, bA: bA=b'1110100001111

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

Expected Output:

BLEENCODEBITS is an extension function.

\00\00\A0\01

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

321 Laird Technologies

Attribute Decoding Functions

Data in a Characteristic is stored in a Value attribute, a byte array. Multibyte Characteristic Descriptors
content are stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise
subfields more efficiently than the generic STRXXXX functions that are made available in smart BASIC.

Please note that CCCD and SCCD Descriptors are special cases as they are defined as having just 2 bytes
which are treated as 16 bit integers mapped to INTEGER variables in smartBASIC.

BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable with sign
extension. If the offset points beyond the end of the string then this function fails and returns zero.

BLEDECODES8 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER
This references an integer to be updated with the 8 bit data from attr$, after sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which the data is read. If the string
attr$ is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeS8.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 //create random service just for this example

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 //create char and commit as part of service commited above

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read signed byte from index 2

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

322 Laird Technologies

 rc=BleDecodeS8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read signed byte from index 6 - two's complement of -122

 rc=BleDecodeS8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES8 is an extension function.

BleDecodeU8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable without sign
extension. If the offset points beyond the end of the string, this function fails.

BLEDECODEU8 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 8 bit data from attr$, without sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeU8.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

323 Laird Technologies

 rc=BleCharValueRead(chrHandle,attr$)

 //read unsigned byte from index 2

 rc=BleDecodeU8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read unsigned byte from index 6

 rc=BleDecodeU8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU8 is an extension function.

BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32bit integer variable with sign extension.
If the offset points beyond the end of the string then this function fails.

BLEDECODES16 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER
This references an integer to be updated with the 2 byte data from attr$, after sign
extension.

nIndex byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string
attr$ is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeS16.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

324 Laird Technologies

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 signed bytes from index 2

 rc=BleDecodeS16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 signed bytes from index 6

 rc=BleDecodeS16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES16 is an extension function.

BleDecodeU16

This function reads two bytes from a string at a specified offset into a 32bit integer variable without sign
extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU16 (attr$,nData, nIndex)

FUNCTION

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 2 byte data from attr$, without sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string
attr$ is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeU16.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

325 Laird Technologies

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 unsigned bytes from index 2

 rc=BleDecodeU16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 unsigned bytes from index 6

 rc=BleDecodeU16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU16 is an extension function.

BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32bit integer variable with sign
extension. If the offset points beyond the end of the string, this function fails.

BLEDECODES24 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, with sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

326 Laird Technologies

 //Example :: BleDecodeS24.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 signed bytes from index 2

 rc=BleDecodeS24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 signed bytes from index 6

 rc=BleDecodeS24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES24 is an extension function.

BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32bit integer variable without sign
extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU24 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, without sign
extension.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

327 Laird Technologies

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeU24.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 unsigned bytes from index 2

 rc=BleDecodeU24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 unsigned bytes from index 6

 rc=BleDecodeU24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU24 is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

328 Laird Technologies

BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32bit integer variable. If the offset points
beyond the end of the string, this function fails.

BLEDECODE32 (attr$,nData, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, after sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecode32.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 signed bytes from index 2

 rc=BleDecode32(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 4 signed bytes from index 6

 rc=BleDecode32(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

329 Laird Technologies

Expected Output:

BLEDECODE32 is an extension function.

BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32bit integer variables. The
decoding results in two variables, the 24 bit signed mantissa and the 8 bit signed exponent. If the offset
points beyond the end of the string, this function fails.

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa byRef nMantissa AS INTEGER

This is updated with the 24 bit mantissa from the 4 byte object.

If nExponent is 0, you MUST check for the following special values:

0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use

nExponent byRef nExponent AS INTEGER

This is updated with the 8 bit mantissa. If it is zero, check nMantissa for special cases as
stated above.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeFloat.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

330 Laird Technologies

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 bytes FLOAT from index 2 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 4 bytes FLOAT from index 6 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODEFLOAT is an extension function.

BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32bit integer variables. The
decoding results in two variables, the 12 bit signed maintissa and the 4 bit signed exponent. If the offset
points beyond the end of the string then this function fails.

BLEDECODESFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa byRef nMantissa AS INTEGER

This is updated with the 12 bit mantissa from the 2 byte object.

If the nExponent is 0, you MUST check for the following special values:

0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use

The number read is 262914*10^-123

The number read is -7829626*10^-119

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

331 Laird Technologies

nExponent byRef nExponent AS INTEGER

This is updated with the 4 bit mantissa. If it is zero, check the nMantissa for special cases
as stated above.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeSFloat.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 bytes FLOAT from index 2 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 2 bytes FLOAT from index 6 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODESFLOAT is an extension function.

BleDecodeTIMESTAMP

FUNCTION

This function reads 7 bytes from string an offset into an attribute string. If the offset plus 7 bytes points
beyond the end of the string then this function fails.

The 7 byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example 5 May 2013 10:31:24 will be represented in the source as “\DD\07\05\05\0A\1F\18” and the
year will be translated into a century and year so that the destination string will be “\14\0D\05\05\0A\1F\18”

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex)

The number read is 770 x 10^0

The number read is 1926x 10^-8

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

332 Laird Technologies

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

timestamp$ byRef timestamp$ AS STRING

On exit this is an exact 7 byte string as described above. For example 5 May 2013
10:31:24 is stored as “\14\0D\05\05\0A\1F\18”

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$
is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive Command: NO

 //Example :: BleDecodeTimestamp.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //5th May 2013, 10:31:24

 DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 7 byte timestamp from the index 3 in the string

 rc=BleDecodeTimestamp(attr$,ts$,3)

 PRINT "\nTimestamp = "; StrHexize$(ts$)

Expected Output:

BLEENCODETIMESTAMP is an extension function.

BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a
destination string. This function will not fail as the output string can take truncated strings.

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes)

Returns: INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Timestamp = 140D05050A1F18

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

333 Laird Technologies

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nIndex byVal nIndex AS INTEGER

This is the zero based index into string attr$ from which data is read.

dst$ byRef dst$ AS STRING

This argument is a reference to a string that will be updated with up to nMaxBytes of
data from the index specified. A shorter string will be returned if there are not enough
bytes beyond the index.

nMaxBytes byVal nMaxBytes AS INTEGER

This specifies the maximum number of bytes to read from attr$.

Interactive Command: NO

 //Example :: BleDecodeString.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 4 bytes from index 3 in the string

 rc=BleDecodeSTRING(attr$,3,decStr$,4)

 PRINT "\nd$=";decStr$

 //read max 20 bytes from index 3 in the string - will be truncated

 rc=BleDecodeSTRING(attr$,3,decStr$,20)

 PRINT "\nd$=";decStr$

 //read max 4 bytes from index 14 in the string - nothing at index 14

 rc=BleDecodeSTRING(attr$,14,decStr$,4)

 PRINT "\nd$=";decStr$

Expected Output:

BLEDECODESTRING is an extension function.

d$=CDEF

d$=CDEFGHIJ

d$=

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

334 Laird Technologies

BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination
integer object (treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. This
function will not fail as the output bit array can take truncated bit blocks.

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx,nMaxBits)

Returns: INTEGER, the number of bits extracted from the attribute string. Can be less than the
size expected if the nSrcIdx parameter is positioned towards the end of the source string
or if nDstIdx will not allow more to be copied.

Arguments:

attr$ byRef attr$ AS STRING
This references the attribute string from which to read, treated as a bit array. Hence a
string of 10 bytes will be an array of 80 bits.

nSrcIdx byVal nSrcIdx AS INTEGER

This is the zero based bit index into the string attr$ from which data is read. E.g. the third
bit in the second byte is index number 10.

dstBitArr byRef dstBitArr AS INTEGER

This argument references an integer treated as an array of 32 bits into which data is
copied. Only the written bits are modified.

nDstIdx byVal nDstIdx AS INTEGER

This is the zero based bit index into the bit array dstBitArr where the data is written to.

nMaxBits byVal nMaxBits AS INTEGER

This argument specifies the maximum number of bits to read from attr$. Due to the
destination being an integer variable, it cannot be greater than 32. Negative values are
treated as zero.

Interactive Command: NO

 //Example :: BleDecodeBits.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM ba : ba=0

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 14 bits from index 20 in the string to index 10

 rc=BleDecodeBITS(attr$,20,ba,10,14)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

335 Laird Technologies

 PRINT "\nbit array = ", INTEGER.B' ba

 //read max 14 bits from index 20 in the string to index 10

 ba=0x12345678

 PRINT "\n\nbit array = ",INTEGER.B' ba

 rc=BleDecodeBITS(attr$,14000,ba,0,14)

 PRINT "\nbit array now = ", INTEGER.B' ba

 //ba will not have been modified because index 14000

 //doesn't exist in attr$

Expected Output:

BLEDECODEBITS is an extension function.

Pairing/Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages trusted
devices. The database stores information like the address of the trusted device along with the security keys.
At the time of writing this manual a maximum of 4 devices can be stored in the database.

The command AT I 2012 or at runtime SYSINFO(2012) returns the maximum number of devices that can be
saved in the database

The type of information that can be stored for a trusted device is:

 The MAC address of the trusted device.

 The eDIV and eRAND for the long term key.

 A 16 byte Long Term Key (LTK).

 The size of the long term key.

 A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.

 A 16 byte Indentity Resolving Key (IRK).

 A 16 byte Connection Signature Resolving Key (CSRK)

Whisper Mode Pairing

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To enhance
security while a pairing is in progress the specification has provided for Out-of-Band pairing where the shared
secret information is exchanged by means other than the Bluetooth connection. That mode of pairing is
currently not exposed.

Laird have provided an additional mechanism for bonding using the standard inbuilt simple secure pairing
which is called Whisper Mode pairing. In this mode, when a pairing is detected to be in progress, the transmit
power is automatically reduced so that the ‘bubble’ of influence is reduced and thus a proximity based
enhanced security is achieved.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

336 Laird Technologies

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce the transmit
power for the short duration that the pairing is in progress.

Tests have shown that setting a power of -55 using BleTxPwrWhilePairing() will create a ‘bubble’ of about
30cm radius, outside which pairing will not succeed. This will be reduced even further if the BL600 module is
in a case which affects radio transmissions.

BleBondMngrErase

Note: For firmware versions prior to 1.4.X.Y, this subroutine has a bug. It occurs when the subroutine
is called during radio activity.

Workaround when advertising:

 1. Stop adverts by calling BleAdvertStop()

 2. Call BleBondMngrErase()

 3. Restart adverts using BleAdvertStart()

SUBROUTINE

This subroutine deletes the entire trusted device database if the supplied parameter is 0. Other values of the
parameter are reserved for future use.

Note: In Interactive Mode, the command AT+BTD* can also be used to delete the database.

BLEBONDMNGRERASE (nFutureUse)

Arguments:

nFutureUse byVal nFutureUse AS INTEGER
This shall be set to 0.

Interactive Command: NO

Workaround for FW 1.3.57.0 and earlier when there is radio activity:

 //Example :: BleBondMngrErase.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc=BleAdvertStop()

 BleBondMngrErase(0)

For FW 1.4.X.Y and newer:

 //Example :: BleBondMngrErase.sb (See in BL600CodeSnippets.zip)

 DIM rc

 BleBondMngrErase(0)

BLEBONDMNGRERASE is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

337 Laird Technologies

BleBondMngrGetInfo

FUNCTION

This function retrieves the MAC address and other information from the trusted device database via an index.

Note: Do not rely on a device in the database mapping to a static index. New bondings will change
the position in the database.

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo)

Returns: INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex byVal nIndex AS INTEGER
This is an index in the range 0 to 1, less than the value returned by SYSINFO(2012).

addr$ byRef addr$ AS STRING

On exit if nIndex points to a valid entry in the database, this variable contains a MAC address
exactly 7 bytes long. The first byte identifies public or private random address. The next 6
bytes are the address.

nExtraInfo byRef nExtraInfo AS INTEGER

On exit if nIndex points to a valid entry in the database, this variable contains a composite
integer value where the lower 16 bits are the eDIV. Bit 16 is set if the IRK (Identity Resolving
Key) exists for the trusted device and bit 17 is set if the CSRK (Connection Signing Resolving
Key) exists for the trusted device.

Interactive Command: NO

 //Example :: BleBondMngrGetInfo.sb (See in BL600CodeSnippets.zip)

 #define BLE_INV_INDEX 24619

 DIM rc, addr$, exInfo

 rc = BleBondMngrGetInfo(0,addr$,exInfo) //Extract info of device at index 1

 IF rc==0 THEN

 PRINT "\nMAC address: ";addr$

 PRINT "\nInfo: ";exInfo

 ELSEIF rc==BLE_INV_INDEX THEN

 PRINT "\nInvalid index"

 ENDIF

Expected Output when valid entry present in database:

Expected Output with invalid index:

BLEBONDMNGRGETINFO is an extension function.

MAC address: \00\BC\B1\F3x3\AB

Info: 97457

Invalid index

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

338 Laird Technologies

Virtual Serial Port Service – Managed test when dongle and application

availbable

This section describes all the events and routines used to interact with a managed virtual serial port service.

“Managed” means there is a driver consisting of transmit and receive ring buffers that isolate the BLE service
from the smartBASIC application. This in turn provides easy to use API functions.

Note: The driver makes the same assumption that the driver in a PC makes: If the on-air connection

equates to the serial cable, there is no assumption that the cable is from the same source as prior
to the disconnection. This is analogous to the way that a PC cannot detect such in similar cases.

The module can present a serial port service in the local GATT Table consisting of two mandatory
characteristics and two optional characteristics. One mandatory characteristic is the TX FIFO and the other is
the RX FIFO, both consisting of an attribute taking up to 20 bytes. Of the optional characteristics, one is the
ModemIn which consists of a single byte and only bit 0 is used as a CTS type function. The other is
ModemOut, also a single byte, which is notifiable only and is used to convey an RTS flag to the client.

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as follows:-

The UUID of the service is: 569a1101-b87f-490c-92cb-11ba5ea5167c
The UUID of the rx fifo characteristic is: 569a2001-b87f-490c-92cb-11ba5ea5167c
The UUID of the tx fifo characteristic is: 569a2000-b87f-490c-92cb-11ba5ea5167c

The UUID of the ModemIn characteristic is: 569a2003-b87f-490c-92cb-11ba5ea5167c
The UUID of the ModemOut characteristic is: 569a2002-b87f-490c-92cb-11ba5ea5167c

Note: Laird’s Base 128bit UUID is 569aXXXX-b87f-490c-92cb-11ba5ea5167c where XXXX is a
16 bit offset. We recommend, to save RAM, that you create a 128 bit UUID of your own and
manage the 16 bit space accordingly, akin to what the Bluetooth SIG does with their 16 bit UUIDs.

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s serial port
service is exposed with UUID’s as follows:-

The UUID of the service is: 6e400001-b5a3-f393-e0a9-e50e24dcca9e
The UUID of the rx fifo characteristic is: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
The UUID of the tx fifo characteristic is: 6e400003-b5a3-f393-e0a9-e50e24dcca9e

Note: The first byte in the UUID’s above is the most significant byte of the UUID.

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is for data that
goes out from the module. This means a GATT Client using this service will send data by writing into the ‘rx
fifo characteristic’ and will get data from the module via a value notification.

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a maximum of 20
bytes value attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a maximum of
20 bytes value attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

339 Laird Technologies

The ‘ModemIn characteristic’ is defined with no authentication or encryption requirements, a single byte
attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption requirements, a single
byte attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

For ModemIn, only bit zero is used, which is set by 1 when the client can accept data and 0 when it cannot
(inverse logic of CTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when it cannot
(inverse logic of RTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

Note: Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART scenario. If
the peer decides to ignore the suggestion and data is kept flowing, the only coping mechanism is
to drop new data as soon as internal ring buffers are full.

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client Configuration
Characteristic (CCCD) which must be set to 0x0001 to allow the module to send any data waiting to be sent
in the transmit ring buffer. While the CCCD value is not set for notifications, writes by the smart BASIC
application result in data being buffered. If the buffer is full the appropriate write routine indicates how many
bytes actually got absorbed by the driver. In the background, the transmit ring buffer is emptied with one or
more indicate or notify messages to the client. When the last bytes from the ring buffer are sent,
EVVSPTXEMPTY is thrown to the smart BASIC application so that it can write more data if it chooses.

When GATT Client sends data to the module by writing into the ‘rx fifo characteristic’ the managing driver
will immediately save the data in the receive ring buffer if there is any space. If there is no space in the ring
buffer, data is discarded. After the ring buffer is updated, event EVVSPRX is thrown to the smart BASIC
runtime engine so that an application can read and process the data.

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a Client
Configuration Characteristic (CCCD) which must be set to 0x0001. By default, in a connection the RTS bit in
ModemOut is set to 1 so that the VSP driver assumes there is buffer space in the peer to send data. The RTS
flag is affected by the thresholds of 80 and 120 which means the when opening the VSP port the rxbuffer
cannot be less than 128 bytes.

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that with the
virtual service manager to allow that service to function in the managed environment. This allows the
application developer to interact with any GATT client implementing a serial port service, whether one
currently deployed or one that the Bluetooth SIG adopts.

VSP Configuration

Given that VSP operation can happen in command mode the ability to configure it and save the new
configuration in non-volatile memory is available. For example, in bridge mode, the baudrate of the uart can
be specified to something other than the default 9600. Configuration is done using the AT+CFG command
and refer to the section describing that command for further details. The configuration id pertinent to VSP
are 100 to 116 inclusive

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

340 Laird Technologies

Command & Bridge Mode Operation

Just as the physical UART is used to interact with the module when it is not running a smart BASIC
application, it is also possible to have limited interaction with the module in interactive mode. The limitation
applies to NOT being able to launch smart BASIC applications using the AT+RUN command. If bridge mode is
enabled then any incoming VSP data is retransmitted out via the UART. Conversely, any data arriving via the
UART is transmitted out the VSP service. This latter functionality provides a cable replacement function.

Selection of Command or Bridge Mode is done using the nAutorun input signal. When nAutorun is low,
interactive mode is enabled. When it is high, and bit 8 in the config register 100 accessed by AT+CFG 100 is
set, bridge mode is selected. By default, bridge mode is not enabled and the command AT+CFG 100 0x8107
should be supplied either over the UART or the on-air interactive mode.

Note: If $autorun$ file exists in the file system, the bridge mode is always suppressed regardless of the
state of the nAutorun input signal.

The main purpose of interactive mode operation is to facilitate the download of an autorun smart BASIC
application. This allows the module to be soldered into an end product without preconfiguration and then
the application can be downloaded over the air once the product has been pre-tested. It is the smart BASIC
application that is downloaded over the air, NOT the firmware. Due to this principle reason for use in
production, to facilitate multiple programming stations in a locality the transmit power is limited to -12dBm.
It can be changed by changing the 109 config key using the command AT+CFG.

The default operation of this virtual serial port service is dependent on one of the digital input lines being
pulled high externally. Consult the hardware manual for more information on the input pin number. By
default it is SIO7 on the module, but it can be changed by setting the config key 100 via AT+CFG.

You can interact with the BL600 over the air via the Virtual Serial Port Service using the iOS “BL600 Serial”
app, available free on the Apple App Store.

You may download smart BASIC applications using a Windows application, which will be available for free
from Laird. The PC must be BLE enabled using a Laird supplied adapter. Contact your local FAE for details.

As most of the AT commands are functional, you may obtain information such as version numbers by
sending the command AT I 3 to the module over the air.

Note that the module enters interactive mode only if there is no autorun application or if the autorun
application exits to interactive mode by design. Hence in normal operation where a module is expected to
have an autorun application the virtual serial port service will not be registered in the GATT table.

If the application requires the virtual serial port functionality then it shall have to be registered
programmatically using the functions that follow in subsequent subsections. These are easy to use high level
functions such as OPEN/READ/WRITE/CLOSE.

VSP (Virtual Serial Port) Events

In addition to the routines for manipulating the Virtual Serial Port (VSP) service, when data arrives via the
receive characteristic it is stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user
smart BASIC code in handlers can perform user defined actions.

The following is a list of events generated by VSP service managed code which can be handled by user code.

EVVSPRX This event is generated when data has arrived and has been stored in the local ring
buffer to be read using BleVSpRead().

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

341 Laird Technologies

EVVSPTXEMPTY This event is generated when the last byte is transmitted using the outgoing data
characteristic via a notification or indication.

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: VSpEvents.sb (See in BL600CodeSnippets.zip)

 DIM tx$,rc,x,scRpt$,adRpt$,addr$,hndl

 //handler for data arrival

 FUNCTION HandlerBleVSpRx() AS INTEGER

 //print the data that arrived

 DIM n,rx$

 n = BleVSpRead(rx$,20)

 PRINT "\nrx=";rx$

 ENDFUNC 1

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 IF x==0 THEN

 rc = BleVSpWrite("tx buffer empty")

 x=1

 ENDIF

 ENDFUNC 1

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP

 PRINT "\n"; BleVSpOpen(128,128,0,hndl)

 //Initialise a scan report

 PRINT "\n"; BleScanRptInit(scRpt$)

 //Advertise the VSP service in the scan report so

 //that it can be seen by the client

 PRINT "\n"; BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 PRINT "\n"; BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 PRINT "\n"; BleAdvertStart(0,addr$,20,300000,0)

 //Now advertising so can be connectable

 ONEVENT EVVSPRX CALL HandlerBleVSpRx

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 PRINT "\nUse the iOS 'BL600 Serial' app to test this"

 //wait for events and messages

 WAITEVENT

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

342 Laird Technologies

BleVSpOpen

FUNCTION

This function opens the default VSP service using the parameters specified. The service’s UUID is:
569a1101-b87f-490c-92cb-11ba5ea5167c

By default, ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO
characteristics. To suppress Modem characteristics in the GATT table, set bit 1 in the nFlags parameter (value
2). If the virtual serial port is already open, this function fails.

BLEVSPOPEN (txbuflen,rxbuflen,nFlags,svcUuid)

Returns: INTEGER, indicating the success of command:

 0 Opened successfully
0x604D Already open
0x604E Invalid Buffer Size
0x604C Cannot register Service in Gatt Table while BLE connected

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

txbuflen byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVspInfo(2) to determine the size.

rxbuflen byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVspInfo(1) to determine the size.

nFlags byVal nFlags AS INTEGER
This is a bit mask to customise the driver as follows:

Bit 0: Set to 1 to try for reliable data transfer. This uses INDICATE messages if allowed and
there is a choice. Some services will only allow NOTIFY and in that case if set to 1 it will be
ignored.

Bit1.31 : Reserved for future use. Set to 0

svcUuid byRef svcUuid AS INTEGER
On exit, this variable is updated with a handle to the service UUID which can then be
subsequently used to advertise the service in an advert report. Given that there is no BT SIG
adopted Serial Port Service the UUID for the service is 128 bit, so an appropriate Advert Data
element can be added to the advert or scan report using the function
BleAdvRptAddUuid128() which takes a handle of that type.

Related Commands: BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

 //Example :: BleVspOpen.sb (See in BL600CodeSnippets.zip)

 DIM scRpt$,adRpt$,addr$,vspSvcHndl

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

343 Laird Technologies

 //Close VSP if already open

 IF BleVSpInfo(0)!=0 THEN

 BleVSpClose()

 ENDIF

 //Open VSP

 IF BleVSpOpen(128,128,0,vspSvcHndl)==0 THEN

 PRINT "\nVSP service opened"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLEVSPOPEN is an extension function.

BleVSpClose

SUBROUTINE

This subroutine closes the managed virtual serial port which had been opened with BLEVSPOPEN. This routine
is safe to call if it is already closed. When this subroutine is invoked both receive and transmit buffers are
flushed. If there is data in either buffer when the port is closed, it will be lost.

BLEVSPCLOSE()

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments: None

Interactive Command: No

Related Commands: BLEVSPINFO, BLEVSPOPEN, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Use the iOS “BL600 Serial” app and connect to your BL600 to test this sample app.

 //Example :: BleVspClose.sb (See in BL600CodeSnippets.zip)

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 PRINT "\n\nVSP tx buffer empty"

 BleVspClose()

 ENDFUNC 0

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP, advertise

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

VSP service opened

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

344 Laird Technologies

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

 //This message will send when connected to client

 tx$="send this data and will close when sent"

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLEVSPCLOSE is an extension subroutine.

BleVSpInfo

FUNCTION

This function is used to query information about the virtual serial port, such as buffer lengths, whether the
port is already open or how many bytes are waiting in the receive buffer to be read.

BLEVSPINFO (infoId)

Returns: INTEGER The value associated with the type of uart information requested

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

infoId byVal infoId AS INTEGER
This specifies the information type requested as follows if the port is open:

0: 0 if closed, 1 if open, 3 if open and there is a BLE connection and 7 if the transmit fifo
characteristic CCCD has been updated by the client to enable notifies or indications.

1: Receive ring buffer capacity
2: Transmit ring buffer capacity
3: Number of bytes waiting to be read from receive ring buffer
4: Free space available in transmit ring buffer

Related Commands: BLEVSPOPEN, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

345 Laird Technologies

 //Example :: BleVspInfo.sb (See in BL600CodeSnippets.zip)

 DIM hndl, rc

 //Close VSP if it is open

 BleVSpClose()

 rc = BleVSpOpen(128,128,0,hndl)

 PRINT "\nVsp State: "; BleVSpInfo(0)

 PRINT "\nRx buffer capacity: "; BleVSpInfo(1)

 PRINT "\nTx buffer capacity: "; BleVSpInfo(2)

 PRINT "\nBytes waiting to be read from rx buffer: "; BleVSpInfo(3)

 PRINT "\nFree space in tx buffer: "; BleVSpInfo(4)

 BleVspClose()

 PRINT "\nVsp State: "; BleVSpInfo(0)

Expected Output:

BLEVSPINFO is an extension subroutine.

BleVSpWrite

FUNCTION

This function is used to transmit a string of characters from the virtual serial port.

BLEVSPWRITE (strMsg)

Returns: INTEGER 0 to N : Actual number of bytes successfully written to local transmit ring buffer.

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:
strMsg byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring
buffer. If STRLEN(strMsg) and the return value are not the same, it implies that the transmit
buffer did not have enough space to accommodate the data.
If the return value does not match the length of the original string, use STRSHIFTLEFT
function to drop the data from the string, so subsequent calls to this function only retry with
data not placed in the output ring buffer.
Another strategy is to wait for EVVSPTXEMPTY events, then resubmit data.

Interactive Command: No

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

346 Laird Technologies

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable. If you must
use a const string, first save it to a temp string variable and then pass it to the function

Related Commands: BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPREAD, BLEVSPFLUSH

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: BleVSpWrite.sb (See in BL600CodeSnippets.zip)

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl,cnt

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 cnt=cnt+1

 IF cnt<= 2 THEN

 tx$="then this is sent"

 rc = BleVSpWrite(tx$)

 ENDIF

 ENDFUNC 0

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

 PRINT "\nDevice name is "; BleGetDeviceName$()

 cnt=1

 tx$="send this data and "

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEVSPWRITE is a extension subroutine.

Device name is LAIRD BL600

Exiting...

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

347 Laird Technologies

BleVSpRead

FUNCTION

This function is used to read the content of the receive buffer and copy it to the string variable supplied.

BLEVSPREAD(strMsg,nMaxRead)

Returns: INTEGER 0 to N : The total length of the string variable. This means the caller does not need
to call strlen() function to determine how many bytes in the string must be processed.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

strMsg byRef strMsg AS STRING
The content of the receive buffer is copied to this string.

nMaxRead byVal nMaxRead AS INTEGER
The maximum number of bytes to read.

Interactive Command: No

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and. If you
must use a const string, first save it to a temp string variable and then pass it to the function

Related Commands: BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: BleVSpRead.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //Only 1 global variable because its value is used in more than 1 routine

 //All other variables declared locally, inside routine that they are used in.

 //More efficient because these local variables only exist in memory

 //when they are being used inside their respective routines

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text \nTo exit the app, just tell me\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

348 Laird Technologies

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

 DIM rc, rx$, e$: e$="exit"

 rc=BleVSpRead(rx$,20)

 PRINT "\nMessage from client: ";rx$

 //If user has typed exit

 IF StrPos(rx$,e$,0) > -1 THEN

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup() //Calls first subroutine declared above

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

Expected Output:

BLEVSPREAD is an extension subroutine.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

349 Laird Technologies

BleVSpUartBridge

SUBROUTINE

This function creates a bridge between the managed Virtual Serial Port Service and the UART when both are
open. Any data arriving from the VSP is automatically transferred to the UART for forward transmission. Any
data arriving at the UART is sent over the air.

It should be called either when data arrives at either end or when either end indicates their transmit buffer is
empty. The following events are examples: EVVSPRX, EVUARTRX, EVVSPTXEMPTY and EVUARTTXEMPTY.

Given that data can arrive over the UART a byte at a time, a latency timer specified by AT+CFG 116
command may be used to optimise the data transfer over the air. This tries to ensure that full packets are
transmitted over the air. Therefore, if a single character arrives over UART, a latency timer is started. If it
expires, that single character (or any more that arrive but less than 20) will be forced onwards when that
timer expires.

BLEVSPUARTBRIDGE()

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments: None

Interactive Command: No

Related Commands: BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

 //Example :: BleVSpUartBridge.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$();"\n"

 tx$="\nSend me some text. \nPress button 0 to exit\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

350 Laird Technologies

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // BLE event handler - connection handle is obtained here

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

 //==

 //handler to service an rx/tx event

 //==

 FUNCTION HandlerBridge() AS INTEGER

 // transfer data between VSP and UART ring buffers

 BleVspUartBridge()

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerBridge

 ONEVENT EVUARTRX CALL HandlerBridge

 ONEVENT EVVSPTXEMPTY CALL HandlerBridge

 ONEVENT EVUARTTXEMPTY CALL HandlerBridge

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup()

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

BLEVSPUARTBRIDGE is an extension subroutine.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

351 Laird Technologies

BleVSpFlush

SUBROUTINE

This subroutine flushes either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a
very long message, filling the input buffer. In that case, there is no more space for an incoming termination
character. A flush of the receive buffer is the best approach to recover from that situation.

BLEVSPFLUSH(bitMask)

Exceptions:

 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

bitMask byVal bitMask AS INTEGER
Bit 0 is set to flush the Rx buffer. Bit 1 is set to flush the Tx buffer. Set both bits to flush
both buffers.

Interactive Command: No

Related Commands: BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPREAD

 //Example :: BleVSpFlush.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text, I won't get it. \nTo exit the app press Button 0\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 BleVspFlush(2) //Flush both buffers

 ENDSUB

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

352 Laird Technologies

 //==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

 BleVspFlush(0)

 PRINT "\nRx buffer flushed"

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //stop waiting for events and exit app

 ENDFUNC 0

 //==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup() //Calls first subroutine declared above

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

Expected Output:

BLEVSPFLUSH is an extension subroutine.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

353 Laird Technologies

7. OTHER EXTENSION BUILT-IN ROUTINES

This chapter describes non BLE-related extension routines that are not part of the core smart BASIC language.

System Configuration Routines

SystemStateSet

FUNCTION

This function is used to alter the power state of the module as per the input parameter.

SYSTEMSTATESET (nNewState)

Returns : INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nNewState byVal nNewState AS INTEGER
New state of the module as follows:
0 System OFF (Deep Sleep Mode)

Note: You may also enter this state when UART is open and a BREAK condition is
asserted. Deasserting BREAK makes the module resume through reset i.e.
power cycle.

Interactive Command: NO

 //Example :: SystemStateSet.sb (See in BL600CodeSnippets.zip)

 //Put the module into deep sleep

 PRINT "\n"; SystemStateSet(0)

SYSTEMSTATESET is an extension function.

Miscellaneous Routines

ReadPwrSupplyMv

FUNCTION

This function is used to read the power supply voltage and the value will be returned in millivolts.

READPWRSUPPLYMV ()

Returns: INTEGER, the power supply voltage in millivolts.

Arguments: None

Interactive Command: NO

 //Example :: ReadPwrSupplyMv.sb (See in BL600CodeSnippets.zip)

 //read and print the supply voltage

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV"

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

354 Laird Technologies

Expected Output:

READPWRSUPPLYMV is an extension function.

SetPwrSupplyThreshMv

FUNCTION

This function sets a supply voltage threshold. If the supply voltage drops below this then the BLE_EVMSG
event is thrown into the run time engine with a MSG ID of BLE_EVBLEMSGID_POWER_FAILURE_WARNING
(19) and the context data will be the current voltage in millivolts.

Events & Messages

MsgId Description

19 The supply voltage has dropped below the value specified as the argument to this function in
the most recent call. The context data is the current reading of the supply voltage in millivolts

SETPWRSUPPLYTHRESHMV(nThresh)

Returns: INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be implemented.

Arguments: None

nThreshMv byVal nThresMv AS INTEGER
The BLE_EVMSG event is thrown to the engine if the supply voltage drops below this value.
Valid values are 2100, 2300, 2500 and 2700.

Interactive Command: NO

 //Example :: SetPwrSupplyThreshMv.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM mv

 //==

 // Handler for generic BLE messages

 //==

 FUNCTION HandlerBleMsg(BYVAL nMsgId, BYVAL nCtx) AS INTEGER

 SELECT nMsgId

 CASE 19

 PRINT "\n --- Power Fail Warning ",nCtx

 //mv=ReadPwrSupplyMv()

 PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv();"mV"

 CASE ELSE

 //ignore this message

 ENDSELECT

 ENDFUNC 1

 //==

 // Handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

Supply voltage is 3343mV

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

355 Laird Technologies

 //just exit and stop waiting for events

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV\n"

 mv=2700

 rc=SetPwrSupplyThreshMv(mv)

 PRINT "\nWaiting for power supply to fall below ";mv;"mV"

 //wait for events and messages

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

SETPWRSUPPLYTHRESHMV is an extension function.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

356 Laird Technologies

8. EVENTS & MESSAGES

smart BASIC is designed to be event driven, which makes it suitable for embedded platforms where it is
normal to wait for something to happen and then respond.

To ensure that access to variables and resources ends up in race conditions, the event handling is done
synchronously, meaning the smart BASIC runtime engine has to process a WAITEVENT statement for any
events or messages to be processed. This guarantees that smart BASIC will never need the complexity of
locking variables and objects.

There are many subsystems which generate events and messages as follows:-

 Timer events, which generate timer expiry events and are described here.

 Messages thrown from within the user’s BASIC application as described here.

 Events related to the UART interface as described here.

 GPIO input level change events as described here.

 BLE events and messages as described here.

 Generic Characteristics events and messages as described here.

9. MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive
mode operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are
stored in non-volatile flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in
interactive mode and the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

357 Laird Technologies

10. MISCELLANEOUS

Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code, e.g. the
EVDISCON message. The meaning of the result code is as per the list reproduced from the Bluetooth
Specifications below. No guarantee is supplied as to its accuracy. Consult the specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation and are unlikely to appear.

BLE_HCI_STATUS_CODE_SUCCESS 0x00

BLE_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01

BLE_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02

BLE_HCI_HARDWARE_FAILURE 0x03

BLE_HCI_PAGE_TIMEOUT 0x04

BLE_HCI_AUTHENTICATION_FAILURE 0x05

BLE_HCI_STATUS_CODE_PIN_OR_KEY_MISSING 0x06

BLE_HCI_MEMORY_CAPACITY_EXCEEDED 0x07

BLE_HCI_CONNECTION_TIMEOUT 0x08

BLE_HCI_CONNECTION_LIMIT_EXCEEDED 0x09

BLE_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED 0x0A

BLE_HCI_ACL_COONECTION_ALREADY_EXISTS 0x0B

BLE_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C

BLE_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

BLE_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

BLE_HCI_BLE_HCI_CONN_REJECTED_DUE_TO_BD_ADDR 0x0F

BLE_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED 0x10

BLE_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE 0x11

BLE_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12

BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13

BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14

BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15

BLE_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16

BLE_HCI_REPEATED_ATTEMPTS 0x17

BLE_HCI_PAIRING_NOTALLOWED 0x18

BLE_HCI_LMP_PDU 0x19

BLE_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A

BLE_HCI_SCO_OFFSET_REJECTED 0x1B

BLE_HCI_SCO_INTERVAL_REJECTED 0x1C

BLE_HCI_SCO_AIR_MODE_REJECTED 0x1D

BLE_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E

BLE_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F

BLE_HCI_UNSUPPORTED_LMP_PARM_VALUE 0x20

BLE_HCI_ROLE_CHANGE_NOT_ALLOWED 0x21

BLE_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22

BLE_HCI_LMP_ERROR_TRANSACTION_COLLISION 0x23

BLE_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24

BLE_HCI_ENCRYPTION_MODE_NOT_ALLOWED 0x25

BLE_HCI_LINK_KEY_CAN_NOT_BE_CHANGED 0x26

BLE_HCI_REQUESTED_QOS_NOT_SUPPORTED 0x27

BLE_HCI_INSTANT_PASSED 0x28

BLE_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29

BLE_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

358 Laird Technologies

BLE_HCI_QOS_UNACCEPTABLE_PARAMETER 0x2C

BLE_HCI_QOS_REJECTED 0x2D

BLE_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED 0x2E

BLE_HCI_INSUFFICIENT_SECURITY 0x2F

BLE_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE 0x30

BLE_HCI_ROLE_SWITCH_PENDING 0x32

BLE_HCI_RESERVED_SLOT_VIOLATION 0x34

BLE_HCI_ROLE_SWITCH_FAILED 0x35

BLE_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE 0x36

BLE_HCI_SSP_NOT_SUPPORTED_BY_HOST 0x37

BLE_HCI_HOST_BUSY_PAIRING 0x38

BLE_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND 0x39

BLE_HCI_CONTROLLER_BUSY 0x3A

BLE_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B

BLE_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C

BLE_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D

BLE_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E

11. ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code on the BL600 to
implement AES encryption. Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The redistribution and use of this software (with or without changes) is allowed without the payment of
fees or royalties providing the following:

 Source code distributions include the above copyright notice, this list of conditions and the

following disclaimer;

 Binary distributions include the above copyright notice, this list of conditions and the following

disclaimer in their documentation;

 The name of the copyright holder is not used to endorse products built using this software without

specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of its properties,
including, but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options
to use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl
Malbrain. His contribution is acknowledged.

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

359 Laird Technologies

INDEX
#SET .. 56
ABS ... 81
BleDecode32 ... 328
BleDecodeBITS ... 334
BleDecodeFLOAT ... 329
BleDecodeS16 ... 323
BleDecodeS24 ... 325
BleDecodeSFLOAT ... 330
BleDecodeSTRING .. 332
BleDecodeTIMESTAMP 331
BLEDECODEU16 .. 324
BleDecodeU24 ... 326
BleDecodeU8 ... 321, 322
BleEncode16 ... 311
BleEncode24 ... 312
BleEncode32 ... 313
BleEncode8.. 310
BleEncodeBITS ... 320
BleEncodeFLOAT ... 314
BleEncodeSFLOAT .. 316
BleEncodeSFLOATEX .. 315
BleEncodeSTRING .. 319
BleEncodeTIMESTAMP 318
BLESECMNGRKEYSIZES 219, 224, 233, 267
BLESVCCOMMIT ... 241
BLESVCREGDEVINFO 236
BleVSpClose .. 343
BleVSpFlush ... 351
BleVSpInfo ... 344
BleVSpOpen .. 342
BleVSpRead ... 347
BleVSpUartBridge .. 349
BP .. 74
BREAK ... 65
BYREF .. 162
BYVAL ... 162
CIRCBUFCREATE ... 119, 162, 163, 164, 168, 169,

170, 171, 172
CIRCBUFITEMS .. 124
CIRCBUFOVERWRITE 122
CIRCBUFREAD ... 123
CIRCBUFWRITE .. 121
CONTINUE ... 65
DIM ... 51
DO / DOWHILE .. 60
DO / UNTIL .. 59
ENDFUNC .. 189
ENDSUB ... 188
EVBLE_ADV_TIMEOUT 190
EVBLEMSG .. 191

EVBLEMSG .. 191
EVCHARCCCD .. 196
EVCHARDESC ... 200
EVCHARHVC ... 196
EVCHARSCCD ... 198
EVCHARVAL .. 194
EVDISCON ... 193
EVNOTIFYBUF .. 202
EVVSPRX ... 202
EVVSPTXEMPTY .. 202
Exceptions ... 50
EXITFUNC .. 189
EXITSUB .. 188
FOR / NEXT .. 60
FUNCTION ... 188
GETTICKCOUNT .. 117
GETTICKSINCE .. 118
GPIOUNBINDEVENT ... 184
GPIOWRITE ... 181
I2CCLOSE .. 145
I2CREADREG16 ... 150
I2CREADREG32 ... 153
I2CREADREG8 ... 148
I2CWRITEREAD ... 154
I2CWRITEREG16 ... 149
I2CWRITEREG32 ... 152
I2CWRITEREG8.. 146
IF THEN / ELSEIF / ELSE / ENDIF 62
LEFT$.. 83
MAX ... 82
MID$... 84
MIN ... 82
Notepad++ ... 18
ONERROR .. 66
ONEVENT .. 68
ONFATALERROR .. 67
PRINT .. 70
RAND .. 110
RANDEX .. 111
RANDSEED .. 111
RESET .. 108
RESETLASTERROR .. 77
RESUME .. 44
RIGHT$... 85
SELECT / CASE / CASE ELSE / ENDSELECT 64
SENDMSGAPP ... 80
SPICLOSE .. 159
SPIOPEN .. 156
SPIREAD .. 161
SPIREADWRITE .. 160

http://www.lairdtech.com/bluetooth

smart BASIC
User Manual

Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610
wireless.support@lairdtech.com
www.lairdtech.com/bluetooth

360 Laird Technologies

SPIWRITE ... 160
SPRINT ... 72
STOP ... 73
STRCMP .. 92
STRDEESCAPE ... 97
STRDEHEXIZE$... 94
STRESCAPE$.. 96
STRFILL .. 90
STRGETCHR ... 88
STRHEX2BIN .. 95
STRHEXIZE ... 93
STRLEN .. 86
STRPOS .. 86
STRSETBLOCK ... 89
STRSETCHR ... 87
STRSHIFTLEFT .. 91
STRSPLITLEFT$... 99
STRSUM .. 100
STRVALDEC ... 98
STRXOR ... 101, 102, 103
SUB ... 187

SYSINFO .. 77
SYSINFO$.. 79
SYSTEMSTATESET ... 353
TABLEADD .. 106
TABLEINIT .. 105, 109
TABLELOOKUP .. 107
TIMERCANCEL .. 116
TIMERRUNNING .. 115
TIMERSTART .. 113
UARTBREAK .. 143
UARTCLOSE .. 130
UARTCLOSEEX .. 131
UARTFLUSH ... 140
UARTGETCTS .. 141
UARTINFO ... 133
UARTOPEN .. 127
UARTREAD .. 136, 137
UARTREADMATCH ... 138
UARTSETRTS ... 142
UARTWRITE ... 134
WHILE / ENDWHILE ... 63

http://www.lairdtech.com/bluetooth

	Revision History
	Contents
	1. Introduction
	Why Do We Need smart BASIC?
	Why Write Applications?
	What does a BLE Module Contain?
	smart BASIC Essentials
	Developing with smart BASIC
	smart BASIC Operating Modes
	Types of Applications
	Non Volatile Memory
	Using the Module’s Flash File System

	2. Getting Started
	Requirements
	Connecting Things Up
	UWTerminal
	Getting Around UWTerminal
	Useful Shortcuts
	Using UWTerminal

	Your First smart BASIC Application
	Create ‘Hello World’ App
	Download ‘Hello World’ App
	smart BASIC Statement Format
	Autorun
	Debugging Applications
	Structuring an Application

	3. Interactive Mode Commands
	AT
	AT I or ATI
	AT+DIR
	AT+DEL
	AT+RUN
	AT+DBG
	AT+SET
	AT+GET
	AT+CFG
	AT+FOW
	AT+FWR
	AT+FWRH
	AT+FCL
	? (Read Variable)
	= (Set Variable)
	SO
	RESUME
	ABORT
	AT+REN
	AT&F
	AT Z or ATZ
	AT + BTD *
	AT + MAC “12 hex digit mac address”
	AT + BLX

	4. smart BASIC Commands
	Syntax
	Functions
	Subroutines
	Statements
	Exceptions
	Language Definitions
	Command
	Variables
	DIM
	Variable Scope
	Variable Class
	Arrays
	General Comments on Variables
	Declaring Variables

	Constants
	Numeric Constants
	String Constants

	Compiler Related Commands and Directives
	#SET

	Arithmetic Expressions
	Conditionals
	DO / UNTIL
	DO / DOWHILE
	FOR / NEXT
	IF THEN / ELSEIF / ELSE / ENDIF
	WHILE / ENDWHILE
	SELECT / CASE / CASE ELSE / ENDSELECT
	BREAK
	CONTINUE

	Error Handling
	ONERROR
	ONFATALERROR
	WAITEVENT
	ONEVENT

	Miscellaneous Commands
	PRINT
	SPRINT
	STOP
	BP

	5. Core Language Built-in Routines
	Result Codes
	Information Routines
	GETLASTERROR
	RESETLASTERROR
	SYSINFO
	SYSINFO$

	Event & Messaging Routines
	SENDMSGAPP

	Arithmetic Routines
	ABS
	MAX
	MIN

	String Routines
	LEFT$
	MID$
	RIGHT$
	STRLEN
	STRPOS
	STRSETCHR
	STRGETCHR
	STRSETBLOCK
	STRFILL
	STRSHIFTLEFT
	STRCMP
	STRHEXIZE$
	STRDEHEXIZE$
	STRHEX2BIN
	STRESCAPE$
	STRDEESCAPE
	STRVALDEC
	STRSPLITLEFT$
	STRSUM
	STRXOR
	EXTRACTSTRTOKEN
	EXTRACTINTTOKEN

	Table Routines
	TABLEINIT
	TABLEADD
	TABLELOOKUP

	Miscellaneous Routines
	RESET
	ERASEFILESYSTEM

	Random Number Generation Routines
	RAND
	RANDEX
	RANDSEED

	Timer Routines
	Timer Events
	TimerRunning
	TimerCancel
	GetTickCount
	GetTickSince

	Circular Buffer Management Functions
	CircBufCreate
	CircBufDestroy
	CircBufWrite
	CircBufOverWrite
	CircBufRead
	CircBufItems

	Serial Communications Routines
	UART (Universal Asynchronous Receive Transmit)
	UART Events

	UartOpen
	UartClose
	UartCloseEx
	UartInfo
	UartWrite
	UartRead
	UartReadN
	UartReadMatch
	UartFlush
	UartGetCTS
	UartSetRTS
	UartBREAK
	I2C - Also known as Two Wire Interface (TWI)
	I2C Events

	I2cOpen
	I2cClose
	I2cWriteREG8
	I2cReadREG8
	I2cWriteREG16
	I2cReadREG16
	I2cWriteREG32
	I2cReadREG32
	I2cWriteRead
	SPI Interface
	SPI Events

	SpiOpen
	SPI Example

	SpiClose
	SpiReadWrite
	SpiWrite
	SpiRead

	Cryptographic Functions
	AesSetKeyIV
	AesEncrypt
	AesDecrypt

	File I/O Functions
	FOPEN
	FCLOSE
	FREAD
	FREADUNTIL
	FILELEN
	FTELL
	FSEEK

	Non-Volatile Memory Management Routines
	NvRecordGet
	NvRecordGetEx
	NvRecordSet
	NvCfgKeyGet
	NvCfgKeySet

	Input/Output Interface Routines
	GpioSetFunc
	GpioConfigPwm
	GpioRead
	GpioWrite
	GPIO Events
	GpioBindEvent
	GpioUnbindEvent
	GpioAssignEvent
	GpioUnAssignEvent

	User Routines
	SUB
	Defining the routine name
	Defining the arglist

	ENDSUB
	EXITSUB
	FUNCTION
	Defining the routine name
	Defining the return value
	Defining the arglist

	ENDFUNC
	EXITFUNC

	6. BLE Extensions Built-in Routines
	MAC Address
	Events and Messages
	EVBLE_ADV_TIMEOUT
	EVBLEMSG
	EVDISCON
	EVCHARVAL
	EVCHARHVC
	EVCHARCCCD
	EVCHARSCCD
	EVCHARDESC
	EVVSPRX
	EVVSPTXEMPTY
	EVNOTIFYBUF

	Miscellaneous Functions
	BleTxPowerSet
	BleTxPwrWhilePairing
	BleConfigDcDc

	Advertising Functions
	BleAdvertStart
	BleAdvertStop
	BleAdvRptInit
	BleScanRptInit
	BleAdvRptAddUuid16
	BleAdvRptAddUuid128
	BleAdvRptAppendAD
	BleGetADbyIndex
	BleGetADbyTag
	BleAdvRptsCommit

	Connection Functions
	Events & Messages
	BleDisconnect
	BleSetCurConnParms
	BleGetCurConnParms

	Security Manager Functions
	Events & Messages
	BleSecMngrPasskey
	BleSecMngrKeySizes
	BleSecMngrIoCap
	BleSecMngrBondReq
	BleAuthenticate

	GATT Server Functions
	Events & Messages
	BleGapSvcInit
	BleGetDeviceName$
	BleSvcRegDevInfo
	BleHandleUuid16
	BleHandleUuid128
	BleHandleUuidSibling
	BleSvcCommit
	BleServiceNew
	BleServiceCommit
	BleSvcAddIncludeSvc
	BleAttrMetadata
	BleCharNew
	BleCharDescUserDesc
	BleCharDescPrstnFrmt
	BleCharDescAdd
	BleCharCommit
	BleCharValueRead
	BleCharValueWrite
	BleCharValueNotify
	BleCharValueIndicate
	BleCharDescRead

	GATT Client Functions
	Events & Messages
	EVGATTCTOUT event message

	BleGattcOpen
	BleGattcClose
	BleDiscServiceFirst / BleDiscServiceNext
	EVDISCPRIMSVC event message

	BleDiscCharFirst / BleDiscCharNext
	EVDISCCHAR event message

	BleDiscDescFirst / BleDiscDescNext
	EVDISCDESC event message

	BleGattcFindChar
	EVFINDCHAR event message

	BleGattcFindDesc
	EVFINDDESC event message

	BleGattcRead / BleGattcReadData
	EVATTRREAD event message

	BleGattcWrite
	EVATTRWRITE event message

	BleGattcWriteCmd
	EVNOTIFYBUF event

	BleGattcNotifyRead
	EVATTRTOTIFY event message

	Attribute Encoding Functions
	BleEncode8
	BleEncode16
	BleEncode24
	BleEncode32
	BleEncodeFLOAT
	BleEncodeSFLOATEX
	BleEncodeSFLOAT
	BleEncodeTIMESTAMP
	BleEncodeSTRING
	BleEncodeBITS

	Attribute Decoding Functions
	BleDecodeS8
	BleDecodeU8
	BleDecodeS16
	BleDecodeU16
	BleDecodeS24
	BleDecodeU24
	BleDecode32
	BleDecodeFLOAT
	BleDecodeSFLOAT
	BleDecodeTIMESTAMP
	BleDecodeSTRING
	BleDecodeBITS

	Pairing/Bonding Functions
	Whisper Mode Pairing
	BleBondMngrErase
	BleBondMngrGetInfo

	Virtual Serial Port Service – Managed test when dongle and application availbable
	VSP Configuration
	Command & Bridge Mode Operation
	VSP (Virtual Serial Port) Events
	BleVSpOpen
	BLEVSPOPEN (txbuflen,rxbuflen,nFlags,svcUuid)
	BleVSpClose
	BleVSpInfo
	BleVSpWrite
	BleVSpRead
	BleVSpUartBridge
	BleVSpFlush

	7. Other Extension Built-in Routines
	System Configuration Routines
	SystemStateSet

	Miscellaneous Routines
	ReadPwrSupplyMv
	SetPwrSupplyThreshMv
	Events & Messages

	8. Events & Messages
	9. Module Configuration
	10. Miscellaneous
	Bluetooth Result Codes

	11. Acknowledgements
	License Terms
	Disclaimer

	Index

