# User manual

# Stationary sensor of toxic gases

# **SC-TOX**

No. documentation: 20907

This user manual includes:

Instructions for assembling, installation, putting into operation, use, operation, setting, maintenance and servicing, dismantling, disposal and technical conditions

# Contents

| User manual:                                                                             |    |
|------------------------------------------------------------------------------------------|----|
| Use                                                                                      | 4  |
| Warning!                                                                                 | 5  |
| Description and function                                                                 | 6  |
| Assembling and installation.                                                             | 8  |
| Control calibration and settings of SC-TOX.                                              |    |
| Entering the calibration and setting mode                                                |    |
| Warning!                                                                                 |    |
| Calibration of SC-TOX                                                                    |    |
| Confirmation of zero concentration by SC-TOX (except the O2 sensor)                      |    |
| Setting of measurement of SC-TOX.                                                        |    |
| Temperature compensation.                                                                |    |
|                                                                                          |    |
| Analog output.                                                                           |    |
| Digital, binary output.                                                                  |    |
| Digital frequency output.                                                                |    |
| LED indicators                                                                           |    |
| Other setting of SC-TOX                                                                  |    |
| 6                                                                                        |    |
| Access code, new sensor.                                                                 |    |
| Special states, calibration states.                                                      |    |
| Limit of age of calibration, sensor and network addres                                   |    |
| Factory parameter settings                                                               |    |
| Saving of settings                                                                       |    |
| Reading of saved data                                                                    |    |
| Overview of parameters of SC-TOX.                                                        |    |
| General faults of the sensor SC-TOX                                                      |    |
| Faults and special states detected by the sensor SC-TOX.                                 |    |
| Operating instructions                                                                   |    |
| Warning!                                                                                 |    |
| Maintenance                                                                              |    |
| Repairs and spare parts                                                                  |    |
| Manufacturer and servicing organisation                                                  |    |
| Delivering, transport and storage                                                        |    |
| Fire safety, ecology, disposal, recycling                                                |    |
| Related standards. Regulations and documents                                             |    |
| Technical parameters and appearance                                                      |    |
| Basic technical parameters                                                               | 21 |
| Table of sensors                                                                         | 23 |
| Cross dependencies of sensors                                                            | 26 |
| Other gases and vapours detectable by electrochemical sensors SC-TOX                     | 31 |
| Table of gases, properties and toxicity                                                  |    |
| Max. resistance of a power supply line loop for some sources (backlight off, output 1mA) |    |
| Attainable distance.                                                                     |    |
| Conversion characteristic, range 0-500ppm on the analog output 4-20mA                    |    |
| Internal limitation of maximum current and voltage                                       |    |
| Supplement A: To sensors equipped with M12 connectors                                    |    |
| General                                                                                  |    |

| Use                       |
|---------------------------|
| Installation and assembly |
| Installation and assembly |
|                           |
| Operating instructions    |
| Warning!                  |
| Connection                |
| Disconnection             |
| Connector figures         |
| Maintenance               |
| Repairs and spare parts   |
| Document revision         |

## User manual:

This user manual includes instructions for assembling, installation, putting into operation, use, operation, setting, maintenance and servicing, dismantling, disposal and technical conditions.

All workers carrying out installation, putting into operation, operation, maintenance and servicing shall be acquainted demonstrably with this operation manual. Keep this manual for further.

## Use

• The sensor SC-TOX is designed for permanent measurement of volumetric concentrations of various toxic gases, oxygen or hydrogen. The non-explosive design I M1/II 2GD Ex ia I/IIC T135°C allows use even in spaces with risk of explosion of SNM in coal mines or zones 1, 2, 21 and 22. According to the type of electrochemical sensor, the detector can measure these particular gases: O<sub>2</sub>, CO, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, H<sub>2</sub>, HCN, NO<sub>2</sub>, O<sub>3</sub>, Cl<sub>2</sub>, F<sub>2</sub>, HF, ClO<sub>2</sub>, COCl<sub>2</sub>, PH<sub>3</sub>, AsH<sub>3</sub>, SiH<sub>4</sub>. Cross dependencies of electrochemical sensors enable measurement of other gases.



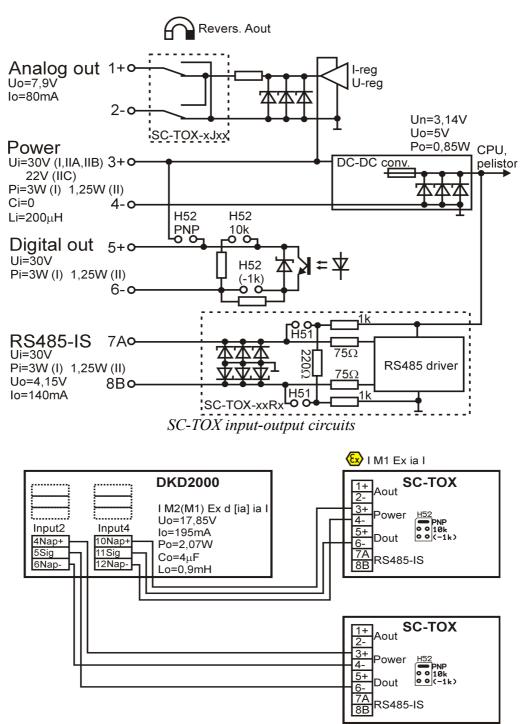
Basically, the sensor is an electrochemical cell and its electrolyte is subject to depletion and dehydration. This occurs even if it is not used. That is why the sensor has a limited service life and cannot be stored for a long time. Sensor warranty period is 6 months.



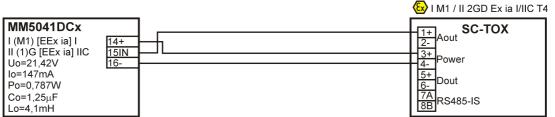
The detector manufactured for a particular sensor / gas cannot be changed to detection of another gas by mere replacement of the sensor. An individual internal wiring is for each type of detector. Changing to another type of sensor / gas can only be carried out by the manufacturer in the workshop.



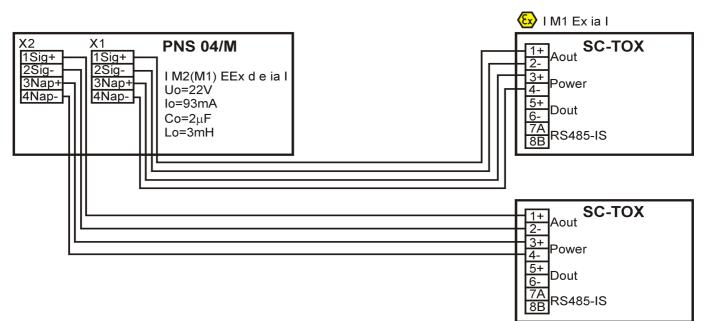
- When handling toxic gases it is necessary to be extremely careful !!!
- It is recommended to carry out calibration of the sensor using gas at least once per 30 days; however, this may be carried out more frequently. In case the particular gas is not available, calibration can be carried out using cross dependence of the sensor on other gases.
- Dusty or damaged filter or grid in the sensor head shall be replaced. In case of operation in dusty or humid areas the filter shall be replaced before each calibration of the sensor or more frequently, depending of particular operating conditions.
- Foreign chemical substances, fire fumes or lack of oxygen may impair measurement results. Sudden changes of pressure may influence measurement of gas. Low humidity may dry electrolyte in the sensor.
- Leakage current in the cable with a current analog output or a voltage drop with the voltage analog output may cause measurement errors in the linked equipment.
- The warning LED and output transistor are not latch types. The function of self-holding of alarm shall be realised in the linked equipment.
- Installation, assembling and settings shall be carried out by a qualified person. In organisations subject to supervision of state mining administration it is necessary to follow the respective regulations.


- In case the sensor is exposed to a concentration exceeding the measuring range, it indicates that the range was exceeded. Then the user shall proceed according to the organisation emergency plan. End of danger can be found e.g. using a hand-held instrument that can be switched on out of the zone of danger and approached to the sensor and at the same time the data on the display are still watched. After decrease of concentration to the acceptable level it is possible to manipulate with the sensor. It is necessary to re-calibrate the sensor using gas, and then re-calibrate it again after 24 hour and again after 48 hours.
- The specific application, use or linkage to other devices might develop further requirements for operation, checks and maintenance of SC-CH4. These may be implied by relevant standards and technical recommendations concerning an application, operating assembly or a functional group as created. Introduction of such additional requirements to the application user is the responsibility of supplier of such application, operating assembly or a functional group.

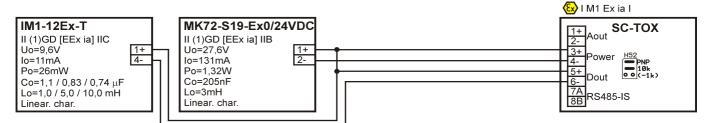



The SC-... sensor checking and testing may only be carried out by the calibration gas, the concentration of which is within the measuring span of the detector. Testing by any other backup procedure is not permitted as it may result in instantaneous damage to the detector and the loss of its functionality. That is why similar tests using a cigarette lighter and fabric soaked in various chemicals, etc. are prohibited!

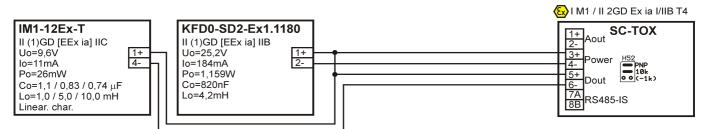
## **Description and function**


- The device body is made up of a polyester box with antistatic finish. It also includes a cable grommet, fixing bars, setting pushbuttons, LED indicators and measuring heads with grids and filters, through which the measured gas is brought by natural diffusion to the electrochemical sensor. The version P allows switching on orange backlight of the display. The version L has no backlight, but the display is visible better than on the version P with backlight switched off.
- The 3-electrode electrochemical sensor consists of a Sensing, Counter and Reference electrodes that enable to keep constant potential of the detecting electrode. The sensors of O<sub>2</sub> are only fitted with 2 electrodes (S and C), special sensors are fitted with 4 electrodes. An electrolyte and a diffusion barrier are inside the sensor; the diffusion barrier direct flow of the measured gas onto the detecting electrode, where gas reduces or oxidizes and creates positive or negative current that is proportional to volumetric concentration of the measured gas. Current from the detecting electrode is inverted and voltage-amplified and converted to digital values that are then processed by an internal micro-controller. The micro-controller software performs correction of the measured concentration according to two calibration constants (amplification and offset), temperature compensation of concentration according to fixed constants of temperature dependence of signals of individual sensors, automatic drift of the offset (if signal drops under zero level. The sensor carries out checks of external power supply (10 to 30V), internal power supply (3 to 3.3V), voltage of centre of symmetric power supply, checks of temperature under the sensor, internal checks of memory (FLASH, RAM and FRAM). Further software counts and checks age of the sensor and calibration (if the sensor is on), saves the values into its internal memory (every minute cyclically for a period of 24 hours), etc.
- Measured concentration is shown on the display (on version P with adjustable backlight) and converted into analog output (voltage or current output with freely adjustable range from 0 to 5.0V or 22.0mA). The analog output is also used for transfer of information about special states, running calibration or exceeded range. The analogue output is active; it is a current and voltage source.
- The digital output can be closed (or open) until the adjustable limit of concentration (or temperature) is reached, or it can send the measured concentration (or temperature) by a frequency signal with freely adjustable range from 1 to 999Hz. The transistor output can be configured using internal jumpers as an ordinary switch or output type NAMUR s with resistors 1k and 10k; further it can be galvanic-separated from power supply or connected to the positive supply branch as an output type PNP.
- All adjustments, calibrations, reading of actual quantities and values from the memory are accessible using two pushbuttons on side of the case. Information on the display can be shown in Czech, Russian or English. The calibration mode and settings are accessible after entering a 4-digit password.
- The version R with communication RS485-IS (protocol Modbus ASCII or RTU) enables reading of actual values of concentration, internal temperature, internal and external voltage, operating status of the sensor or history of these data from the internal memory (saved every minute cyclically for a period of 24 hours).
- The version J with tongue contacts enables, by attaching a magnet to side of the case, reversal of polarity of the analog output; this indicates for some systems that there is just carried out e.g. calibration.
- The sensor can be connected to systems DKD2000, PNS and other systems using a current, voltage or frequency signal or using a protocol Modbus ASCII or RTU.




Example of wiring with a mining data concentrator DKD2000. The frequency output of SC-TOX is set to 200-600Hz a synchro-pulse 200us. The jumper H52-PNP connects internal terminals 3 and 5. The sensor can be connected to any frequency inputs of DKD2000. Max. resistance of power supply line loop of DKD2000 against the surface power supply line is  $450\Omega$  for 1 sensor and  $300\Omega$  for 2 sensors.




*Example of wiring with a current converter MM5041DCx. The current output of SC-TOX is set to 0.2-ImA.* 



Example of wiring with the cabinet PNS 04/M. The current output of SC-TOX is set to 0.2-1mA. Max. power supply line loop of PNS against the surface power supply line is  $800\Omega$ .



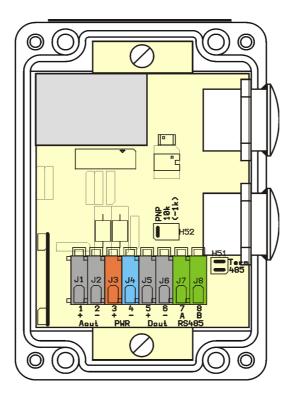
*Example of wiring with an insulation switching amplifier and spark-safe source. The frequency output of SC-TOX is set. The jumper H52-10k provides output type NAMUR..* 



*Example of wiring with an insulation switching amplifier and spark-safe source. The frequency output of SC-TOX is set. The jumper H52-10k provides output type NAMUR.* 

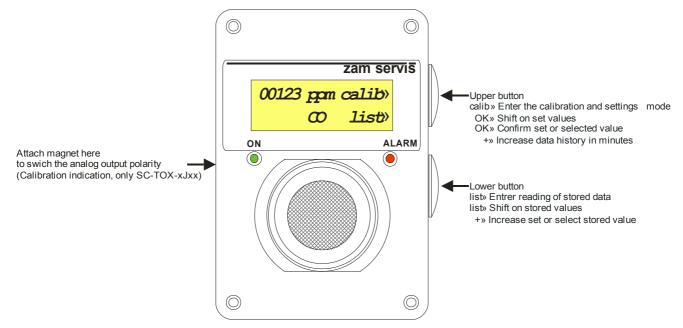
# Assembling and installation

1. Choose the place of installation to minimise vibrations, mechanical stress, disturbing electromagnetic fields and temperature, wind, dust and humidity conditions. Before use check good condition of the case, cable grommets, sealing, grids and filter. SC-TOX should be fixed to a solid surface through fixing bars and 4 screws Ø 4mm on a place where increased concentration of gas can be expected or near to an electric equipment that has to switched off in case of increased concentration of gas. For gases having lower specific density than air (H<sub>2</sub>, NH<sub>3</sub>, HCN) it is recommended to install the sensor at the ceiling; for gases having specific density similar to air (O<sub>2</sub>, CO, H<sub>2</sub>S, F<sub>2</sub>, HF, PH<sub>3</sub>, SiH<sub>4</sub>) at the operator's level and for gases heavier than air (SO<sub>2</sub>, NO<sub>2</sub>, O<sub>3</sub>, Cl<sub>2</sub>, ClO<sub>2</sub>, COCl<sub>2</sub>, AsH<sub>3</sub>) at the floor. The wind must not blow towards the sensor, but from behind or from the side and the potential condensation must not run to the sensor. The best thing is that the detector is directed with its sensor downwards or horizontally in


the wind direction.

2. Installation of the sensor in spaces with a risk of explosion shall comply with this user manual, local operating regulations, ČSN EN 50303, ČSN EN 50394-1, ČSN EN 60079-0, ČSN EN 60079-11, ČSN EN 60079-25 and other applicable regulations and standards.

3. Analog inputs of the linked equipment can be connected to screw-free terminals 1 and 2. Supply voltage 10 to 30V from a spark-safe source is connected to terminals 3 and 4. Galvanic-separated transistor output is brought to terminals 5 and 6. Communication wires A and B are connected to terminals 7 and 8 (only version with RS485-IS). The terminating resistor on the bus RS485-IS is connected to H51 using two jumpers. Carry out electric configuration of the digital output using jumpers connected to H52. The cross section of wires is max. 2.5mm<sup>2</sup> for wires and 1.5mm<sup>2</sup> for stranded wires,he wire stripping length is 5-6 mm. Any ends of wires shall not remain free. When manipulating with the sensor pay special attention that electronic part of the sensor is not damaged.


4. Diameter of the cable in the grommet M20 may be 6-12mm. Use only for fixed installation of the cable. The grommet shall be properly tightened to clamp and seal the cable. Installation shall guarantee that the cable will not be exposed to any tension and torsion in the grommet. After completion of installation it is necessary to install and seal properly the cover of the case.

5. Set the desired parameters of the sensor and after approx. 30 minutes carry out its calibration as described in the following chapter.



Terminal block and setting jumpers of SC-TOX

## **Control calibration and settings of SC-TOX**



All settings, calibration, reading of actual quantities and values from the memory can be carried out using two pushbuttons on side of the case. During settings the functioning of SC-TOX is not limited and the sensor is fully functional according to original settings. Thanks to this fact the parameters can be checked without influencing functions of the sensor.

#### Entering the calibration and setting mode

In case the screen is in the measurement mode, pressing of the upper pushbutton **calib**» enters the calibration and setting mode. The screen language is the first option. The lower pushbutton selects Czech, Russian or English, the upper pushbutton **OK**» confirms the option.

| 00123 ppm calib» | Language OK» | Enter Code OR> |
|------------------|--------------|----------------|
| CO list»         |              | 0000 +»        |

Further there can be entered a 4-digit access code. The lower pushbutton +» changes the digits, the upper pushbutton OK» moves you on the digits and confirms the entered code. Unless the code has been changed, the implicit factory value is 0000. In case that correct code is not entered, the screen returns back to the measurement mode.

#### If you forget your access code, it is possible to restore it by default setting in the service centre only.



When handling toxic gases, utmost care must be taken! There is a risk of health impairment.

#### **Calibration of SC-TOX**

Now the sensor can be calibrated by entering ANO or skip this option by entering NE. The lower pushbutton +» selects YES or NO, the upper pushbutton OK» confirms the option. Calibration should be carried out on a sensor that is in operation for at least 30 minutes. First enter volumetric density of the gas

that will be used for calibration (usually 10 to 50% of the measuring range) and confirm it by the pushbutton OK»..

| Calibr CO ? OK» | Calibr.Conc. OK» | App 1y | Oppm OK»  | Apply | 00100 ar  |
|-----------------|------------------|--------|-----------|-------|-----------|
| YES +»          |                  | co     | cca 00005 | co    | cca 0009! |

In case the sensor is connected to a system with indication of calibration by reversing the polarity, attach a magnet to side of the case as required by the system. Now carry out a two-point calibration. Fill it with zero gas, i.e. synthetic air (pure nitrogen for  $O_2$  sensor) with flow about 0.1 to 0.5 l/min and wait for stabilisation of reading of the displayed concentration. After stabilisation (approx. 1 minute) press the pushbutton OK». Now fill it with the gas, whose concentration was entered and again wait for stabilisation of reading of the displayed concentration. After stabilisation press the pushbutton OK». The recommended exposure time calibration gas at the calibration time is three times the T90. In case that stabilisation takes too much time (more than triple the time T90) at a constant flow, probably the filter is dusty and shall be replaced. In case of dusty and humid areas replace the filter before each calibration. The sensor will measure according to new calibration after saving of the values at the end of the setting mode, so that in case of any doubts about correct calibration, the values should not be saved. The running calibration can be indicated on analog and frequency output according to other settings and after saving the values the counter of age of calibration is reset to zero.

#### Confirmation of zero concentration by SC-TOX (except the O<sub>2</sub> sensor)

Unless the operating conditions allow frequent calibration using a test gas, a simplified calibration of zero can be carried out in case that some zero gas (synthetic air) is available or there is certainty that the sensor is just exposed to atmosphere with pure air. If possible, calibration should be carried out on a sensor that is in operation for at least 30 minutes. First enter volumetric 0ppm and confirm by **OK**».

| Calibr CO ? OR» | Calibr.Conc. OR» | Apply Oppm OK» |
|-----------------|------------------|----------------|
| YES +»          |                  | CO cca 00005   |

In case the sensor is connected to a system with indication of calibration by reversing polarity, attach a magnet to side of the case as required by the system. Now confirm zero concentration. Fill it with zero gas (synthetic air with flow approx. 0.1 to 0.5 l/min) and wait for stabilisation of the displayed concentration. After stabilisation (approx. 1 minute) press OK». In case of certainty of pure atmosphere confirm zero concentration of toxic gas. In case that stabilisation takes too much time (>1 minute) at a constant flow, probably the filter is dusty and shall be replaced. In case of dusty and humid areas replace the filter before each calibration. The sensor will measure according to new calibration after saving of the values at the end of the setting mode, so that in case of any doubts about correct calibration, the values should not be saved. The running calibration can be indicated on analog and frequency output according to other settings and after saving the values the counter of age of calibration is reset to zero.

**Confirmation of zero concentration do not substitutes any full calibration** using a test gas because a drift of "positively drifted zero" downwards also drifts the whole range downwards. Drifting of "negatively drifted zero" upwards also drifts the whole range upwards; this is performed by the sensor software automatically, so that supports safety of the equipment.

### Setting of measurement of SC-TOX

#### Temperature compensation.

Now the measuring parameters can be set by entering **YES** or skip this option by entering **NO**. First there is switched on internal compensation of temperature effects to the sensor signal. The compensation

constants are fixed for each type of sensors in the internal memory. Temperature compensation can be switched on/off during operation, e.g. for verification of effectiveness of temperature compensation. Further there can be modified range of measurement of gas within the maximum measurement range that is defined for each type of sensors. With regard to overall measurement accuracy do not limit the measurement range under 25% of the maximum range.

| Set.Measur? OK» | CompensTemp? OK» | RangeMeasur OK) |
|-----------------|------------------|-----------------|
| YES +»          |                  |                 |

#### Analog output.

Then you can select the current or voltage analog output, followed by entering a minimum value that corresponds 0ppm and a maximum value that corresponds to the measurement range. The minimum and maximum values can be set freely within 0-22.0mA pr 0-5.0V. The standard range 4 to 20mA may represent quite high consumption of energy; therefore more commonly used ranges 0.2-1mA, 1-5mA or 0.4-2V.

| Ana logOutput OK» | MinAnalogVal OK» | MaxAnalogVal OK» |
|-------------------|------------------|------------------|
|                   | Oppm: 04,0mA +»  |                  |

#### Digital, binary output.

Parameters of the transistor digital output can be also set here. The transistor output can be switched on or off unless a certain limit of concentration (or temperature) is reached, or the measured concentration (or temperature) can be set using a frequency signal. In case there is selected that the transistor output has to be closed (open) within certain limits, than there should be set the limit value of concentration of gas (or temperature).

| Trans.Output OK» | LimitValConc QK>> | Trans.Output OK» | LimitValTemp OK» |
|------------------|-------------------|------------------|------------------|
| SW-ON TO CONC+»  | 00100ppm+»        | SW-ON TO TEMP+»  | 055°C +»         |

#### Digital frequency output.

In case that there is chosen that the transistor output will send concentration (or temperature) by a frequency signal, then there shall be entered the minimum frequency corresponding to 0ppm (or -40 °C), maximum frequency corresponding to the measurement range (or 100 °C) and alternation of pulses. The minimum and maximum can be set freely within range 1-999Hz. Standardly use range is 5 to 15Hz with alternating 1:1; the system DKD2000 uses range 200 to 600Hz with constant switching off time 200µs that is changed to 400µs during calibration.

| Trans.Output OK» | MinFrequency OK» | MaxFrequency OK» | Pulse Ratio OR»  |
|------------------|------------------|------------------|------------------|
| FREQUENCY CONC+» | Oppm:200 Hz +»   | 00500:600 Hz +»  | SYNCHRO 200us +» |

#### LED indicators.

Further there can be set concentration for switching on the red LED "ALARM" within range 0ppm to the measurement range. Indication is not the latch type so that after elimination of the danger this LED is off. For the  $O_2$  sensor this function is inverse, i.e. the LED "ALARM" is on until the preset value is not reached.

```
SignalingLED OK»
00100ppm+»
```

#### Other setting of SC-TOX

Other (additional) parameters can be set by entering **YES** or skip this option by entering **NO**. First you can set backlight of the display. The display can be illuminated permanently, not illuminated or illuminated only for 5 seconds after pressing the pushbutton (only version P). Backlight off reduces consumption of energy by up to 5mA from the source 10V. The version L has no backlight, but the display is visible better than on the version P with backlight switched off.

| Other Set.? OK» | Backlight OK»    |  |
|-----------------|------------------|--|
| YES +»          | ALWAYS LUMIN +>> |  |

#### Access code, new sensor.

You can also enter a new 4-digit access code opening the calibration and settings mode. Keep the access code secret to prevent unauthorised access to the calibration and settings mode.

Setting of the new (replaced) sensor resets the counter of age of the sensor to zero and downloads implicit values for the type of the measured gas, measurement range, etc. according to the type number pf the sensor that shall correspond to the actual sensor, and version of the sensor on the identification plate.

It is necessary to set a correct sensor type number and carry out calibration!!! Setting an incorrect sensor type number results in disqualification of the measurement because there are different compensation constants for each sensor.

| 1 | Net Code? OK» | Enter Code | OK)> | Net Sensor? OK» | Sensor Type QK> |
|---|---------------|------------|------|-----------------|-----------------|
|   | YES +»        | 1234       | +»   | YES +»          | 07 +»           |

#### Special states, calibration states.

Another option is setting of a value on the analog output (0-24.2mA or 0-5.5V) that indicates special states of the sensor and minimum duration of such states (0-255s). A special state occurs with errors of the memory, faulty supply voltage, measurement, temperature and if the sensor or calibration is too old.

Another option is setting on a value on the analog output se (0-24.2mA or 0-5.5V) that indicates running calibration and duration of this status (0-255s). The synchro-pulse 200µs will be changed to 400µs on the frequency output for this period.

| SpecialState OK» | SpecStateMin OK» | Calibr.State OK» | CalStateMin OK» |  |
|------------------|------------------|------------------|-----------------|--|
| 0,00mA +»        |                  |                  |                 |  |

#### Limit of age of calibration, sensor and network addres.

Limit of age of calibration can be set from 0 to 255 days. In case it is higher than 0 and no calibration is made within this period, the sensor will indicate a special status "Old calibration".

Limit of age of the sensor can be set from 0 to 255 weeks. In case it is higher than 0 and no setting of the new sensor is made within this period, the sensor will indicate a special status "Old sensor".

The network address can be set on the bus Modbus (1-247). Each equipment in the network RS485-IS (only version R) shall be provided with its different network address.

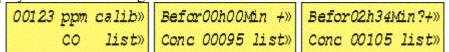
| Calibr.Limit OK» | Sensor Limit OK) | Netvork Addr ORD |
|------------------|------------------|------------------|
| 040day +»        |                  |                  |

#### Factory parameter settings

In case that calibration of the sensor, setting of measurement and other settings were skipped, you can read factory (implicit) setting of all parameters. After saving then it is necessary to set correct number of type of the sensor.



After saving the default setting, it is necessary to set a correct sensor type number and carry out calibration!!! Setting an incorrect sensor type number results in disqualification of the measurement because there are different compensation constants for each sensor.


#### Saving of settings

Finally all the above mentioned settings can be saved into memory. Entering **YES** shows a repeated inquiry and other **YES** saves all the data into memory, re-setting of the sensor to the new parameters and entering the measurement mode.

| Save Values? OK» | Really Save? OK» | WRITTING |
|------------------|------------------|----------|
| YES +»           |                  |          |

#### Reading of saved data

SC-TOX saves measured values of concentration, internal temperature, external and internal voltage and operating status into internal memory every minute cyclically for a period of 24 hours. The data can be read through RS485-IS (only version R, the protocol is compatible with Modbus ASCII or RTU), or it can be read on the display without knowledge of the code.



In case the screen is in the measurement mode, pressing the lower pushbutton **list**» enters mode of reading of the saved data. The upper pushbutton +» drifts the history per minutes, holding the pushbutton +» pressed accelerates drifting time. In case that power supply was restarted, the time data is not unambiguous and this is indicated by a question mark.Pressing the lower pushbutton **list**» selects the particular quantities (concentration, temperature, internal voltage, external voltage).

| Befor01h50Min +» | Befor01h50Min +» | Befor01h50Min +>> Befor01h50Min |                  |  |
|------------------|------------------|---------------------------------|------------------|--|
|                  |                  |                                 | =Sup 016 V list» |  |

Next pressing the lower pushbutton **list**» displays actual age of calibration and age of the sensor. Next pressing the pushbutton **list**» returns the screen back to the measurement mode.

| Calibr Old   | Sensor Old |
|--------------|------------|
| 012day list» |            |

# Overview of parameters of SC-TOX

| No. | Description  | Possible rang                                                                                   | e of values | Factory value                         | Commonly                                                                                                                                                                                                                                           | v used values |      |  |
|-----|--------------|-------------------------------------------------------------------------------------------------|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|--|
| 1   | Jazyk        | CZ, RU, EN                                                                                      |             | CZ                                    | CZ, RU, EN                                                                                                                                                                                                                                         | N             |      |  |
| 4   | Kalibr.Konc. | 040,000                                                                                         |             | 100ppm CO                             | 20.9% O <sub>2</sub><br>100ppm CO<br>10ppm H <sub>2</sub> S, etc.                                                                                                                                                                                  |               |      |  |
| 11  | RozsahMěření | 040,000                                                                                         |             | 500ppm CO                             | 25% O <sub>2</sub><br>500ppm CO<br>50ppm H <sub>2</sub> S, etc.                                                                                                                                                                                    |               |      |  |
| 12  | AnalogVýstup | Current                                                                                         | Voltage     | Current                               | Current                                                                                                                                                                                                                                            |               |      |  |
| 13  | MinAnalogHod | 022.0mA                                                                                         | 05.0V       | 0.2mA                                 | 0,2mA 1m                                                                                                                                                                                                                                           | A 4mA         | 0.4V |  |
| 14  | MaxAnalogHod | 022.0mA                                                                                         | 05.0V       | 1mA                                   | 1mA 5mA                                                                                                                                                                                                                                            | 20mA          | 2V   |  |
| 15  | Tranz.Výstup | Closed to Con<br>Open to Conc<br>Closed to Tem<br>Open to temp<br>Frequency Co<br>Frequency Tem | np<br>nc    | Open to Conc                          | Open to Conc<br>Closed to Conc<br>Frequency Conc                                                                                                                                                                                                   |               |      |  |
| 16  | MezníHodKonc | 040,000                                                                                         |             | 100ррт СО                             | 19,5% O <sub>2</sub><br>100ppm CO<br>10ppm H <sub>2</sub> S atd.                                                                                                                                                                                   |               |      |  |
| 17  | MezníHodTep. | -99+99°C                                                                                        |             | 55°C                                  | 55°C                                                                                                                                                                                                                                               |               |      |  |
| 18  | MinFrekvence | 1999Hz                                                                                          |             | 5Hz                                   | 5Hz 200Hz                                                                                                                                                                                                                                          |               |      |  |
| 19  | MaxFrekvence | 1999Hz                                                                                          |             | 15Hz                                  | 15Hz 600Hz                                                                                                                                                                                                                                         |               |      |  |
| 20  | Střída Pulzů | 1:1, SYNCH                                                                                      | RO200µs     | 1:1                                   | 1:1 SYNCHRO200µs                                                                                                                                                                                                                                   |               |      |  |
| 21  | Signaliz.LED | 040,000                                                                                         |             | 100ppm CO                             | 19.5% O <sub>2</sub><br>100ppm CC<br>10ppm H <sub>2</sub> S                                                                                                                                                                                        |               |      |  |
| 23  | Podsvětlení  | Permanently of<br>Never on<br>5s after pressi                                                   |             | Never on                              | Never on                                                                                                                                                                                                                                           |               |      |  |
| 25  | Vstupní Kód  | 000099999                                                                                       |             | 0000                                  | XXXX                                                                                                                                                                                                                                               |               |      |  |
| 27  | TypSenzoru   | 178                                                                                             |             | 7 (sensor 4CF, range<br>0-500 ppm CO) | 178 (O <sub>2</sub> , CO, H <sub>2</sub> S, NH <sub>3</sub> , SO <sub>2</sub> ,<br>HCN, NO <sub>2</sub> , O <sub>3</sub> , Cl <sub>2</sub> , F <sub>2</sub> , HF, C<br>COCl <sub>2</sub> , PH <sub>3</sub> , AsH <sub>3</sub> , SiH <sub>4</sub> ) |               |      |  |
| 28  | ZvláštníStav | 024.2mA                                                                                         | 05.5V       | 0                                     | 0mA 0                                                                                                                                                                                                                                              |               | 0V   |  |
| 29  | ZvlStavMinim | 0255s                                                                                           |             | 60s                                   | 60s                                                                                                                                                                                                                                                |               |      |  |
| 30  | Kalibr. Stav | 024.2mA                                                                                         | 05.5V       | 0                                     | 0.1mA 0.5mA 2mA                                                                                                                                                                                                                                    |               | 0.2V |  |
| 31  | KalibStavMin | 0255 second                                                                                     | ls          | 0s                                    | 0s 60s 120s                                                                                                                                                                                                                                        |               |      |  |
| 32  | Kalibr.Limit | 0255 days                                                                                       |             | 0 days                                | 0 days 10 days 20 days 40 days                                                                                                                                                                                                                     |               |      |  |
| 33  | Senzor Limit | 0255 weeks                                                                                      |             | 0 weeks                               | 100 week 150 week 200 week                                                                                                                                                                                                                         |               |      |  |
| 34  | SíťováAdresa | 1247                                                                                            |             | 1                                     | 1247                                                                                                                                                                                                                                               |               |      |  |

# General faults of the sensor SC-TOX

| Description of the fault                                                                                                                                                                  | Possible solution                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green LED "ON" is off                                                                                                                                                                     | Measure supply voltage on terminals 3 and 4.<br>Check whether the electronic circuits are not damaged or flooded.                                                                                                                                                                                                                                                                                                      |
| No data on the LCD display                                                                                                                                                                | Measure supply voltage on terminals 3 and 4. Restart power supply.<br>Check whether the electronic circuits are not damaged or flooded.                                                                                                                                                                                                                                                                                |
| Big deviation of the instrument                                                                                                                                                           | Carry out calibration of the sensor. Shorten the calibration interval e.g. to 14 days.<br>Verify that no significant changes of temperature, pressure, humidity, velocity of air flow,<br>amount of dust and content of oxygen in atmosphere occur. Let the sensor replaced.<br>Is not any equipment with high level of interference in vicinity?<br>Check whether the electronic circuits are not damaged or flooded. |
| Analog output gives<br>wrong signal                                                                                                                                                       | Check the current output, whether the detecting resistance incl. cable is $<$ Rmax as on the diagram and leak resistance of the line is $>100x$ detecting resistance.<br>Check the voltage output, whether the loading resistance is $<50k\Omega$ and $>100x$ resistance of the line.<br>Check whether the electronic circuits are not damaged or flooded.                                                             |
| Digital output gives<br>wrong signal                                                                                                                                                      | Measure parameters of the transistor output, terminals 5 and 6. On the frequency output check the course by an oscilloscope in a safe environment.<br>Check whether the electronic circuits are not damaged or flooded.                                                                                                                                                                                                |
| The sensor in version<br>RS485 does not<br>communicate                                                                                                                                    | Verify that different addresses are assigned to all pieces of equipment in the network and terminating resistors are set on ends of the bus. Change over wires A and B. Interconnect the equipment using a GND wire. Check configuration of the superior system. Check whether the electronic circuits are not damaged or flooded.                                                                                     |
| The detector does<br>not respond to<br>buttons; it has a<br>special status value<br>at the analogue<br>output and some of<br>the special statuses<br>are reported on the<br>display unit. | The calibration limit or sensor age limit have been exceeded or another special status is signalized. Some of the special statuses can be cancelled by performing calibration through the RS485 interface whereas others by repair at the manufacturer. Special statuses are described in a separate table.                                                                                                            |

# Faults and special states detected by the sensor SC-TOX

If there are more special statuses at the same time, the special status with the highest priority is reported on the display and in the communication protocol. Statuses in the table are sorted according to priority; the first is the status with the highest priority.

| Status<br>no. | Screen                              | Description of the fault                                                                                                                                                               | Possible solution                                                                                                                                                                                        |
|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47            | 00123 ppm ERROR<br>FLASH!!!!13456   | Critical error of the programme memory.<br>The displayed concentration may be<br>wrong. Special status on the output.                                                                  | Restart power supply. Is not any equipment with high level of interference in vicinity?                                                                                                                  |
|               | 00123 ppm ERROR<br>RAM !!!!!00456   | Critical error of data memory.<br>The displayed concentration may be<br>wrong.<br>Special status on the output.                                                                        | Restart power supply. Is not any<br>equipment with high level of<br>interference in vicinity?                                                                                                            |
|               | 00123 ppm ERROR<br>FRAM !!!!!03456  | The setting memory was unable to correct<br>itself. The displayed concentration may be<br>wrong.<br>Special status on the output.                                                      | Restart power supply. Is not any<br>equipment with high level of<br>interference in vicinity? Try to<br>save new values into memory.                                                                     |
| 44            | 00123 ppm ERROR<br>=SUPPLY!!! 009 V | External power supply is outside the range<br>10 to 30V.<br>The displayed output value may be wrong.<br>Special status on the output.                                                  | Use more suitable power supply<br>source. Move the sensor closer to<br>the source. Enlarge cross section<br>of the supply wires. Check<br>whether the electronic circuits are<br>not damaged or flooded. |
| 45            | 00123 ppm ERROR<br>3VSUPPLY! 2,90V  | Internal power supply is outside the range 3.0 to 3.3V. Displayed output value may be wrong. Special status on the output.                                                             | Restart power supply.<br>Check whether the electronic<br>circuits are not damaged or<br>flooded.                                                                                                         |
| 46            | 00123 ppm calib»<br>MEASURING!!!!!! | Error of the sensor or control<br>measurement.<br>The displayed concentration may be<br>wrong.<br>Special status on the output.                                                        | Restart power supply.<br>Let the sensor replaced.<br>Check whether the electronic<br>circuits are not damaged or<br>flooded.                                                                             |
| 38            | 00123 ppm ERROR<br>TEMPERAT!! 063°C | Internal temperature is outside the range<br>-40°C to +60°C. The displayed<br>concentration may be wrong. Special<br>status on the output.                                             | Move the sensor away from the<br>sources of heat.<br>Carry out calibration of the sensor.                                                                                                                |
| 48            | 00123 ppm meas.»<br>EXCEEDED RANGE  | The sensor was exposed to a concentration<br>above the measurement range. Displayed<br>concentration may be wrong. A status<br>corresponding to 110% of the range is on<br>the output. | In case the danger is eliminated,<br>you can manipulate with the<br>sensor. The sensor shall be<br>calibrated, then re-calibrated after<br>24 h and again after 48 h.                                    |
| 40            | 00123 ppm calib»<br>Old Sensor150t  | Service life of the sensor terminates.<br>Special status on the output.                                                                                                                | Let the sensor repaired. Possibly<br>set a longer limit of the sensor age.                                                                                                                               |
| 39            | 00123 ppm calib»<br>Old Calibr041d  | Old calibration of the sensor.<br>The displayed concentration may be with<br>an error. Special status on the output.                                                                   | Carry out calibration of the sensor.                                                                                                                                                                     |

## **Operating instructions**



# When handling toxic gases, utmost care must be taken! There is a risk of health impairment.

- Measurement of concentration is unattended. Control calibration and setting of the sensor is performed as described in previous chapters.
- It is recommended to calibrate the sensor using gas at least once per 30 days; however, it can be performed more frequently.
- In case the sensor was exposed to a concentration exceeding the measurement range, it indicates that the range was exceeded. Then the user shall proceed according to the emergency plan of the organisation. End of danger can be found e.g. using a hand-held instrument that can be switched on out of the zone of danger and approached to the sensor and at the same time the data on the display are still watched. After decrease of concentration to the acceptable level it is possible to manipulate with the sensor. It is necessary to re-calibrate the sensor using gas, and then re-calibrate it again after 24 hour and again after 48 hours.

## Maintenance

- Remove dust and dirt from the surface using a dry cloth, brush or broom; then clean surfaces using a damp cloth.
- Dusty or damaged filter or grid in the sensor head shall be replaced. In case of dusty and humid areas the filter shall be replaced before each calibration of the sensor or more frequently, depending of particular operating conditions.
- The filter and grid are accessible from outside after release of the lock nut on the head.
- It is recommended to have the unit checked by personnel from the manufacturer or a relevant authorised representative once a year.

## **Repairs and spare parts**

- All repairs and spare parts are provided by the manufacturer. The user may replace the filter:
- Filter of glass fibres, type Whatman GF/D, Ø 25mm, Cat. No. 1823 025 (Supplier Merci, ordering no. 480 001 823 025, or Vitrum, ordering no. 624 901 823 025)
- The list for detectors equipped with connectors is indicated in Addendum A.

## Manufacturer and servicing organisation

• ZAM - SERVIS s.r.o. Křišťanova 1116/14, 702 00 Ostrava - Přívoz, Czech Republic, tel: 596 135 422, e-mail: <u>zam@zam.cz</u>

# Delivering, transport and storage

| Ordering co | od | e: |   |   |   |   |                |                                                                                                |
|-------------|----|----|---|---|---|---|----------------|------------------------------------------------------------------------------------------------|
| SC-TOX-     | x  | x  | x | x | x | x |                |                                                                                                |
|             |    |    |   |   |   |   | Type connector | <b>A</b> – M12 x 8, <b>B</b> – M12 x 4                                                         |
|             |    |    |   |   |   |   | Connector      | $\mathbf{K}$ – connector, without marking = cable gland                                        |
|             |    |    |   |   |   |   | Backligh       | $\mathbf{P}$ – adjustable backlight of the display, $\mathbf{L}$ – d display without backlight |
|             |    |    |   |   |   |   | Communication  | $\mathbf{R}$ – communication RS485-IS, $0$ – without communication                             |
|             |    |    |   |   |   |   | Reed           | $\mathbf{J}$ – reed for reversing of polarity of analog output, $\mathbf{N}$ – without reed    |
|             |    |    |   |   |   |   | Sensor         | 180 type of sensor, see the Table of sensors                                                   |
|             |    |    |   |   |   |   | Detector       | SC-TOX                                                                                         |

Unless the version is specified in the order, the following will be delivered:

**SC-TOX-80NRP** Detector with sensor 4CM, range 0-500ppm CO, without reed, with communication RS485-IS, with backlight of the display, with cable gland

- Delivery includes:
  - This user manual
  - Annexes, see Annexes
  - Declaration of Conformity
  - Certification of quality and completeness of the product
  - Product itself
- There is no cable for detectors equipped with connector and the connector cable is not part of delivery and it must be ordered separately.
- Protect the sensor against dirt during transport; therefore it is necessary to transport it in a PE packing and protect it against effects of foreign substances and toxicants for all the transport.
- Electrodes S and R of 3-electrode sensors are short-circuited.
- During transport of all parts it is necessary to minimise any possible vibrations and impacts. Storage in dry rooms at temperatures from 0 °C to 20 °C in one layer only.
- Accessories ordered separately:
  - SC-KAL Calibration adapter for the sensor head
  - **SC-SET-TOX** Calibration kit with zero and calibration gases; it contains SC-KAL.
  - The list for detectors equipped with connectors is indicated in Addendum A.

# Fire safety, ecology, disposal, recycling

- Do not expose it to open flame; combustion generates harmful substances.
- If used properly, it is not harmful for its surrounding and the environment.
- After termination of its service life, return the product back to the manufacturer for disposal. The address is mentioned below.



- Electric and electronic equipment shall not be disposed as common household waste. The product shall be disposed on the appropriate collecting point for proper processing, regeneration and recycling of electric and electronic components.
- Ask for detailed information on collecting points and recycling of this product your local authorities or nearest organisation engaged in liquidation of household waste or the dealer from which you purchased the product.

# **Related standards. Regulations and documents**

LVD:

| ČSN 33 2000–4–4  | <ul> <li>Electrotechnical regulations – Electric equipment – Part 4: Safety – Chapter</li> <li>41: Protection against injury from electric shock</li> </ul>                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ČSN EN 60529     | Levels of protection by covers (protection - IP code)                                                                                                                                    |
| ČSN EN 45544-1   | Atmosphere on workplace – El. instruments used for direct detection and direct measurement of concentration of toxic gases and vapour – Part 1: general requirements and testing methods |
| ČSN EN 45544-2   | <ul> <li>Part 2: Functional requirements for instruments used for measurement of<br/>concentrations in the field of limit values</li> </ul>                                              |
| ČSN EN 45544-3   | <ul> <li>Part 3: Functional requirements for instruments used for measurement of<br/>concentrations high above limit values</li> </ul>                                                   |
| ČSN EN 45544-4   | - Part 4: Instructions for selection, installation, use and maintenance                                                                                                                  |
| ČSN EN 50271     | Electric equipment for detection and measurement of combustible gases of oxygen – Requirements and tests for equipment that use software and/or digital technologies                     |
| EMC:             |                                                                                                                                                                                          |
| ČSN EN 61000-6   | -2 Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Resistance to industrial environment                                                                              |
| ČSN EN 61000-6-  | -3 Electromagnetic compatibility (EMC) – Part 6-3: Generic standards –<br>Emissions – Residential and commercial environment, environment of light<br>industry                           |
| ČSN EN 50270     | Electromagnetic compatibility – Electric equipment for detection and measurement of combustible gases, toxic gases or oxygen                                                             |
| ATEX:            |                                                                                                                                                                                          |
| ČSN EN 50303     | Equipment of group I, category M1, designed for use under presence of methane and/or combustible dust                                                                                    |
| ČSN EN 50394-1   | Electric equipment for environment with a risk of explosion – Group I – Spark-safe systems                                                                                               |
| ČSN EN 60079-0   | Electric equipment for explosive gaseous atmosphere – Part 0: general requirements                                                                                                       |
| ČSN EN 60079-1   | Explosive atmospheres – Part 11: Protection of equipment by spark safety "i"                                                                                                             |
| ČSN EN 60079-2:  | 5 Electric equipment for explosive gaseous atmosphere – Part 25: Spark-safe systems                                                                                                      |
| ČSN EN 1127-1    | Explosive environments – Elimination and protection against explosion – Part 1: Basic terms and methodology                                                                              |
| ČSN EN 1127-2    | Explosive environments – Prevention a protection against explosion – Part 2: Basic concepts and methodology for mines                                                                    |
| Other documents: | Communication protocol and Data Map of SC sensors                                                                                                                                        |

# **Technical parameters and appearance**

#### Protection IP 54 Dimensions including grommets 140x112x75mm Total weight 600g Of this electronics 100g Solid wire 2.5mm<sup>2</sup>, stranded wire 1.5mm<sup>2</sup> Max. cross section of connecting wires Diameter of the cable in the grommet M20 6 to 12mm Supply voltage 10 to 30V (10 to 22V for IIC) **16mA** + current of analog output (max. 24.2mA) (+ 5mA if the display backlight is on, only version P) Current consumption at 10V (+ 5mA if communication to RS485, only version R) 14mA + current of analog output (max. 24.2mA) (+ 3mA if the display backlight is on, only version P) Current consumption at 20V (+ 3mA if communication to RS485, only version R) 13mA + current of analog output (max. 24.2mA)Current consumption at 30V (+ 2mA if the display backlight is on, only version P) (+ 2mA if communication to RS485, only version R) Adjustable 0.0 to 5.0V (over range max. 5.5V) Voltage analog output Recommended load 5 to 50 k $\Omega$ Adjustable 0.0 to 22.0mA (over range max. 24.2mA) Current analog output, active Max. output voltage is 3.5V at 24 mA (150 $\Omega$ ) Max. output voltage is 5.5V at 3 mA (1500 $\Omega$ ) ref. To graph Error of analog output $<\pm1\%$ of the range 3 to 30V Switched voltage of the transistor output Max. switched current of the transistor output 0.3A Max. switched power of the transistor output 3W Adjustable 1 to 999Hz Parameters of the frequency output Alternating 1:1 or synchro-pulse 200µs (400µs with calibration) <±1% of the range 5-15Hz or 200-600Hz Error of the frequency output Protection against explosion I M1 / II 2GD Ex ia I/IIC T135°C Uo=7,9V; Io=80mA; Po=158mW; Terminals 1, 2 (analog. output) Co=8,8µF; Lo=5mH Ui=30V (I,IIA,IIB); 22V (IIC); Pi= 3W (I); 1,25W (II); Ci=0; Terminals 3, 4 (power supply) Li=200µH Terminals 5, 6 (digital output) Ui=30V; Pi=3W (I); 1,25W (II); Ci=0; Li=0 Ui=30V; Pi=3W (I); 1,25W (II); Ci=0; Li=0 Uo=4,15V; Io=140mA; Po=145mW; Terminals 7, 8 (RS485-IS)

## Basic technical parameters

Co=100µF; Lo=2mH

| Max. ranges of measurement of O <sub>2</sub>                                                                                        | 0-25% (standard testing gas 20.9%)                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max. ranges of measurement of CO                                                                                                    | 0-500 1000,, 2000, 5000, 10000ppm (stand. test. gas 50ppm)                                                                                                                                |
| Max. ranges of measurement of H <sub>2</sub> S                                                                                      | 0-50, 100, 200, 2000ppm (standard testing gas 10ppm)                                                                                                                                      |
| Max. ranges of measurement of NH <sub>3</sub>                                                                                       | 0-100, 500, 1000, 5000ppm (standard testing gas 25ppm)                                                                                                                                    |
| Max. ranges of measurement of SO <sub>2</sub>                                                                                       | 0-20, 100, 2000ppm (standard testing gas 2ppm)                                                                                                                                            |
| Max. ranges of measurement of H <sub>2</sub>                                                                                        | 0-1000, 10000, 40000ppm (=4%)                                                                                                                                                             |
| Max. ranges of measurement of HCN                                                                                                   | 0-30, 50, 100ppm (standard testing gas 10ppm)                                                                                                                                             |
| Max. ranges of measurement of NO <sub>2</sub>                                                                                       | 0-20, 50ppm (standard testing gas 3ppm)                                                                                                                                                   |
| Max. ranges of measurement of O <sub>3</sub>                                                                                        | 0-1, 2ppm (standard testing gas 0.1ppm)                                                                                                                                                   |
| Max. ranges of measurement of Cl <sub>2</sub>                                                                                       | 0-10, 20, 50ppm (standard testing gas 0.5ppm)                                                                                                                                             |
| Max. ranges of measurement of F <sub>2</sub>                                                                                        | 0-1ppm (standard testing gas 1ppm)                                                                                                                                                        |
| Max. ranges of measurement of HF                                                                                                    | 0-10ppm (standard testing gas 2ppm)                                                                                                                                                       |
| Max. ranges of measurement of ClO <sub>2</sub>                                                                                      | 0-1ppm (standard testing gas 0.1ppm)                                                                                                                                                      |
| Max. ranges of measurement of COCl <sub>2</sub>                                                                                     | 0-1ppm (standard testing gas 0.1ppm)                                                                                                                                                      |
| Max. ranges of measurement of PH <sub>3</sub>                                                                                       | 0-5ppm (standard testing gas 0.3ppm)                                                                                                                                                      |
| Max. ranges of measurement of AsH <sub>3</sub>                                                                                      | 0-1ppm (standard testing gas 0.05ppm)                                                                                                                                                     |
| Max. ranges of measurement of SiH <sub>4</sub>                                                                                      | 0-50ppm (standard testing gas 5ppm)                                                                                                                                                       |
|                                                                                                                                     |                                                                                                                                                                                           |
| Ambient temperature                                                                                                                 | -20 to +50°C                                                                                                                                                                              |
| Atmospheric pressure                                                                                                                | 90 to 110kPa                                                                                                                                                                              |
| Max. velocity of air flow                                                                                                           | 4m/s                                                                                                                                                                                      |
| Relative humidity                                                                                                                   | See the Table of sensors                                                                                                                                                                  |
| Response time T <sub>90</sub>                                                                                                       | See the Table of sensors                                                                                                                                                                  |
| Service life of the sensor                                                                                                          | See the Table of sensors                                                                                                                                                                  |
| Total uncertainty of measurement for sensors<br>with max. range <=10x concentration of<br>standard testing gas                      | < 50% of measured value for concentrations <=0,5x<br>concentration of standard testing gas<br>< 30% of measured value for concentrations >0,510x<br>concentration of standard testing gas |
| Total uncertainty of measurement for sensors<br>with max. range >10x concentration of<br>standard testing gas                       | $< \pm 20\%$ of measured value or $\pm 10\%$ of the range                                                                                                                                 |
| Effect of vibrations 10-55Hz, 0.15mm, 10 varying cycles to axis (45min in each axis)                                                | < Total uncertainty of measurement                                                                                                                                                        |
| Effects of temperature 5 to 40°C against 20°C                                                                                       | < Total uncertainty of measurement                                                                                                                                                        |
| Effects of temperature -10°C against 20°C                                                                                           | < 2x Total uncertainty of measurement                                                                                                                                                     |
| Effect of pressure 90 to 110kPa against 100kPa                                                                                      | < Total uncertainty of measurement                                                                                                                                                        |
| Effect of humidity 20 to 90% against 50%                                                                                            | < Total uncertainty of measurement                                                                                                                                                        |
| Effect of air velocity 0.5 and 4.0m/s                                                                                               | < Total uncertainty of measurement                                                                                                                                                        |
| Residual effect 60 minutes after exposure 20x concentration of standard testing gas for sensors with max. range <=10x concentration | < 20% concentration of standard testing gas                                                                                                                                               |

| of standard testing gas                                                                                                                                   |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Residual effect 60 minutes after exposure 5x concentration of standard testing gas for sensors with max. range >10x concentration of standard testing gas | < 20% of the range                 |
| Effect of position 0 to 360° around three axes                                                                                                            | < Total uncertainty of measurement |

## Table of sensors

| N<br>0. | Sensor type    | Nomi<br>nal<br>gas    | Max.<br>range<br>[ppm] | Properties                                                                               | Cross dependence on<br>other gases (if at least<br>5% of the signal)                                                               | Servi<br>ce<br>life<br>[yrs] | T <sub>90</sub><br>[s] | Temp.<br>[°C]         | Rel.<br>humid.<br>[%] |
|---------|----------------|-----------------------|------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-----------------------|-----------------------|
| 1       | 70X-V          | <b>O</b> <sub>2</sub> | 25%                    | Long service life, low drift, ventilation capillary                                      |                                                                                                                                    | 2                            | 15                     | -20+50                | 1599                  |
| 2       | 4OX(1)         | O <sub>2</sub>        | 25%                    | Low drift                                                                                |                                                                                                                                    | 1                            | 15                     | -20+50                | 099                   |
| 3       | 4OX(2)         | $O_2$                 | 25%                    | Long service life                                                                        |                                                                                                                                    | 2                            | 15                     | -20+50                | 099                   |
| 4       | O2-A1          | O <sub>2</sub>        | 25%                    | Low drift                                                                                |                                                                                                                                    | 1                            | 15                     | -30+55                | 595                   |
| 5       | O2-A2          | O <sub>2</sub>        | 25%                    |                                                                                          |                                                                                                                                    | 2                            | 15                     | -30+55                | 595                   |
| 6       | O2-A3          | O <sub>2</sub>        | 25%                    | Long service life                                                                        |                                                                                                                                    | 3                            | 15                     | -30+55                | 595                   |
| 7       | 4CF            | CO                    | 500                    | Filter against H <sub>2</sub> S, SO <sub>2</sub>                                         | NO, NO <sub>2</sub> , H <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                                                               | 2                            | 30                     | -20+50                | 1590                  |
| 79      | 4CF+           | СО                    | 500                    | Fast response, without filter                                                            | NO,NO2,H2,C2H4,H2S,S<br>O2                                                                                                         | 2                            | 20                     | -20+40<br>krátce(+55) | 1590                  |
| 80      | 4CM            | СО                    | 500<br>2000            | Fast response. Filter against<br>H2S,SO2                                                 | NO,NO2,H2,C2H4,H2S,S<br>O2                                                                                                         | 2                            | 20                     | -20+55                | 1590                  |
| 8       | 4CO            | СО                    | 500                    | Fast response, without filter                                                            | H <sub>2</sub> S, SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub> ,<br>H <sub>2</sub>                                      | 2                            | 25                     | -20+50                | 1590                  |
| 9       | 7E             | СО                    | 1000                   | Long service life, fast response, without filter                                         | H <sub>2</sub> S, SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub> ,<br>H <sub>2</sub> , HCN, C <sub>2</sub> H <sub>4</sub> | 3                            | 25                     | -20+50                | 1590                  |
| 10      | 7E/F           | СО                    | 1000                   | Long service life, filter against<br>H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>x</sub> | NO, NO <sub>2</sub> , H <sub>2</sub> , HCN, C <sub>2</sub> H <sub>4</sub>                                                          | 3                            | 30                     | -20+50                | 1590                  |
| 11      | A7E            | СО                    | 1000                   | For compensation* of H <sub>2</sub> , without filter                                     | H <sub>2</sub> S, SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub> ,<br>HCN, C <sub>2</sub> H <sub>4</sub>                  | 3                            | 35                     | -20+50                | 1590                  |
| 12      | A7E/F          | СО                    | 1000                   | For compensation* of H <sub>2</sub> , filter against H <sub>2</sub> S, SO <sub>2</sub>   | H <sub>2</sub> S, NO, HCN, C <sub>2</sub> H <sub>4</sub>                                                                           | 3                            | 35                     | -20+50                | 1590                  |
| 13      | CO 3E 300      | СО                    | 500                    | Long service life, high sensitivity and selectivity                                      | NO,H <sub>2</sub>                                                                                                                  | 3                            | 30                     | -40+50                | 1590                  |
| 14      | CO 3E 500<br>S | СО                    | 500                    | Low dependence on H <sub>2</sub>                                                         | H <sub>2</sub> S, NO, H <sub>2</sub> , HCl                                                                                         | 2                            | 60                     | -20+50                | 1590                  |
| 15      | CO-AE          | СО                    | 10000                  | High range, strong filter<br>against H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>x</sub> | $H_2, C_2H_4$                                                                                                                      | 2                            | 75                     | -30+50                | 1595                  |
| 16      | CO-AF          | СО                    | 5000                   | Fast response, filter against H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>x</sub>        | NO, H <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                                                                                 | 2                            | 25                     | -30+50                | 1595                  |
| 17      | CO-AX          | СО                    | 2000                   | Complies with EN 50379<br>(measurement of fume gases)                                    | $H_2, C_2H_4$                                                                                                                      | 2                            | 30                     | -30+50                | 1590                  |
| 18      | CO-BF          | СО                    | 5000                   | Low drift, filter against H <sub>2</sub> S, SO <sub>2</sub> , NO                         | NO, H <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                                                                                 | 2                            | 30                     | -30+50                | 1590                  |
| 19      | CO-BX          | СО                    | 2000                   | Low drift, filter against H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>x</sub>            | NO, H <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                                                                                 | 2                            | 40                     | -30+50                | 1590                  |

| 20 | 4H                | H <sub>2</sub> S | 100   | Low dependence on H <sub>2</sub>                                       | SO <sub>2</sub> , NO <sub>2</sub>                                                      | 2   | 30  | -40+50 | 1590 |
|----|-------------------|------------------|-------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|--------|------|
| 21 |                   | H <sub>2</sub> S | 100   | Low dependence on H <sub>2</sub> ,                                     | SO <sub>2</sub> , NO <sub>2</sub>                                                      | 2   | 30  | -40+50 |      |
| 21 |                   |                  |       | methanol                                                               |                                                                                        |     |     |        |      |
| 22 | 4HS               | $H_2S$           | 100   |                                                                        | SO <sub>2</sub> , NO <sub>2</sub>                                                      | 2   | 30  | -40+50 | 1590 |
| 23 | 4HS/LM            | $H_2S$           | 100   | Low dependence on methanol                                             | SO <sub>2</sub> , NO <sub>2</sub>                                                      | 2   | 30  | -40+50 | 1590 |
| 24 | 7H                | $H_2S$           | 200   | High range                                                             | SO <sub>2</sub> , NO <sub>2</sub> , HCN                                                | 2   | 35  | -40+50 | 1590 |
| 25 | 7H/LM             | H <sub>2</sub> S | 200   | High range, low dependence on methanol                                 | SO <sub>2</sub> , NO <sub>2</sub> , HCN                                                | 2   | 35  | -40+50 | 1590 |
| 26 | 7HH               | $H_2S$           | 50    | Low dependence on CO, H <sub>2</sub>                                   | SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub> , HCN                          | 2   | 30  | -40+50 | 1590 |
| 27 | 7HH/LM            | $H_2S$           | 50    | Low dependence on CO, H <sub>2</sub> , methanol                        | SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub>                                | 1   | 30  | -40+50 | 1590 |
| 28 | H2S 3E 100        | $H_2S$           | 100   |                                                                        | SO <sub>2</sub> , CO, ClO <sub>2</sub> , HCN,<br>Isopropanol                           | 2   | 30  | -40+40 | 1590 |
| 29 | H2S 3E 100<br>S   | $H_2S$           | 100   | High selectivity, low dependence on H <sub>2</sub>                     | SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub>                                    | 2   | 30  | -40+50 | 1590 |
| 30 | H2S-A1            | H <sub>2</sub> S | 100   | Fast response                                                          | SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub>                                    | 2   | 25  | -30+50 | 1590 |
| 31 | H2S-AH            | H <sub>2</sub> S | 50    | Fast response, high sensitivity                                        | SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub>                                    | 2   | 25  | -30+50 | 1590 |
| 32 | H2S-B1            | H <sub>2</sub> S | 200   |                                                                        | SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub>                                    | 2   | 35  | -30+50 | 1590 |
| 33 | H2S-BE            | $H_2S$           | 2000  | High range                                                             | SO <sub>2</sub> , NO, NO <sub>2</sub> , Cl <sub>2</sub>                                | 2   | 35  | -30+50 | 1590 |
| 34 | H2S-BH            | $H_2S$           | 50    | High sensitivity, low drift                                            | SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub>                                    | 2   | 30  | -30+50 | 1590 |
| 35 | NH3 3E 100        | NH <sub>3</sub>  | 100   | No dependence on CO <sub>2</sub>                                       | CO, H <sub>2</sub> S, SO <sub>2</sub> , Cl <sub>2</sub> , H <sub>2</sub>               | 1,5 | 120 | -40+40 | 1590 |
| 36 | NH3 3E<br>100 SE  | NH <sub>3</sub>  | 100   | High selectivity and sensitivity, low drift                            | H <sub>2</sub> S                                                                       | 2   | 60  | -20+40 | 1590 |
| 37 | NH3 3E 500<br>SE  | NH <sub>3</sub>  | 500   |                                                                        | H2s                                                                                    | 2   | 90  | -20+40 | 1590 |
| 38 | NH3 3E<br>1000    | NH <sub>3</sub>  | 1000  | No dependence on CO <sub>2</sub>                                       | CO, H <sub>2</sub> S, SO <sub>2</sub> , H <sub>2</sub>                                 | 1,5 | 120 | -40+40 | 1590 |
| 39 | NH3 3E<br>1000 SE | NH <sub>3</sub>  | 1000  | High selectivity                                                       | H <sub>2</sub> S, SO <sub>2</sub>                                                      | 2   | 90  | -20+40 | 1590 |
| 40 | NH3 3E<br>5000 SE | NH <sub>3</sub>  | 5000  | High range and selectivity                                             | H <sub>2</sub> S, SO <sub>2</sub>                                                      | 2   | 90  | -20+40 | 1590 |
| 41 | 4S                | SO <sub>2</sub>  | 20    | Filter against H <sub>2</sub> S                                        | NO <sub>2</sub>                                                                        | 2   | 75  | -20+50 | 1590 |
| 42 | 7SH               | SO <sub>2</sub>  | 20    | Fast response, no filter                                               | H <sub>2</sub> S, NO <sub>2</sub> , Cl <sub>2</sub> , HCl, HCN                         | 2   | 15  | -20+50 | 1590 |
| 43 | 7ST/F             | SO <sub>2</sub>  | 100   | Filter against H <sub>2</sub> S                                        | NO, NO <sub>2</sub> , Cl <sub>2</sub> , HCN                                            | 2   | 20  | -20+50 | 1590 |
| 44 | SO2-AE            | SO <sub>2</sub>  | 2000  | High range, filter against H <sub>2</sub> S                            | NO, NO <sub>2</sub> , Cl <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                  | 2   | 25  | -30+50 | 1590 |
| 45 | SO2-AF            | SO <sub>2</sub>  | 20    | High sensitivity, filter against H <sub>2</sub> S                      | NO <sub>2</sub> , Cl <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                      | 2   | 25  | -30+50 | 1590 |
| 46 | SO2-BF            | SO <sub>2</sub>  | 100   | Filter against H <sub>2</sub> S                                        | NO <sub>2</sub> , Cl <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                      | 2   | 30  | -30+50 | 1590 |
| 47 | 4HYT              | H <sub>2</sub>   | 1000  |                                                                        | CO, H <sub>2</sub> S, NO, HCN, C <sub>2</sub> H <sub>4</sub>                           | 2   | 90  | -20+50 | 1590 |
| 48 | 7HYE              | H <sub>2</sub>   | 10000 |                                                                        | CO, H2 <sub>s</sub> , NO, HCN,<br>C2H <sub>4</sub>                                     | 2   | 110 | -20+50 | 1590 |
| 49 | 7HYT              | H <sub>2</sub>   | 1000  | Fast response                                                          | CO, H <sub>2</sub> S, NO, HCN, C <sub>2</sub> H <sub>4</sub>                           | 2   | 50  | -20+50 | 1590 |
| 50 | H2 3E 1%          | H <sub>2</sub>   | 10000 | Fast response, long-term stability                                     | CO, H <sub>2</sub> S, NO <sub>2</sub> , C <sub>2</sub> H <sub>4</sub> ,<br>Isopropanol | 2   | 70  | -20+40 | 1590 |
| 51 | H2 3E 4%          | H <sub>2</sub>   | 40000 | Detection of LEL, resistance<br>against toxins, long-term<br>stability | H <sub>2</sub> S, C <sub>2</sub> H <sub>4</sub> , Isopropanol                          | 2   | 60  | -20+40 | 1590 |

| 80       | 4CM            | СО                     | 500<br>2000 | Fast response. Filter against<br>H2S,SO2                      | NO,NO2,H2,C2H4,H2S,S<br>O2                                                                                                                                          | 2        | 20       | -20+55                | 1590 |
|----------|----------------|------------------------|-------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------------|------|
| 79       | 4CF+           | СО                     | 500         | Fast response, without filter                                 | NO,NO2,H2,C2H4,H2S,S<br>O2                                                                                                                                          | 2        | 20       | -20+40<br>krátce(+55) | 1590 |
| 78       | 4COSH          | H <sub>2</sub> S       | 200         | Double sensor of CO, H <sub>2</sub> S,<br>long service life   | SO <sub>2</sub> , NO <sub>2</sub>                                                                                                                                   | 3        | 35       | -20+50                | 1590 |
| 77       | 4COSH          | СО                     | 500         | Double sensor of CO, H <sub>2</sub> S,<br>long service life   | H <sub>2</sub> S, SO <sub>2</sub> , H <sub>2</sub>                                                                                                                  | 3        | 35       | -20+50                | 1590 |
| 76       | SiH4 3E 50     | SiH <sub>4</sub>       | 50          |                                                               | H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>2</sub> , PH <sub>3</sub> ,<br>AsH <sub>3</sub> , B <sub>2</sub> H <sub>6</sub>                                         | 1,5      | 60       | -20+40                | 2095 |
| 75       | AsH3 3E 1      | AsH <sub>3</sub>       | 1           | Detection of all hydrides, fast response                      | H <sub>2</sub> S, SO <sub>2</sub> , NO <sub>2</sub> , Cl <sub>2</sub> , PH <sub>3</sub> ,<br>SiH <sub>4</sub> , B <sub>2</sub> H <sub>6</sub>                       | 1,5      | 30       | -20+40                | 2095 |
| 74       | 4PH-Fast       | PH <sub>3</sub>        | 5           | Fast response                                                 | SO <sub>2</sub> , AsH <sub>3</sub> ,SiH <sub>4</sub> , GeH <sub>4</sub> ,<br>B <sub>2</sub> H <sub>6</sub>                                                          | 2        | 60       | -20+50                | 1590 |
| 73       | 4PH            | PH <sub>3</sub>        | 5           |                                                               | SO <sub>2</sub> ,SiH4, GeH <sub>4</sub> , B <sub>2</sub> H <sub>6</sub>                                                                                             | 2        | 160      | -20+50                | 1590 |
| 72       | COCl2 3E 1     | COCl <sub>2</sub>      |             |                                                               | NO <sub>2</sub> , Cl <sub>2</sub> , HCl, ClO <sub>2</sub> , O <sub>3</sub> ,<br>AsH <sub>3</sub>                                                                    | 1        | 120      | -20+40                | 1590 |
| 71       | ClO2 3E 1      | ClO <sub>2</sub>       | 1           | No dependence on H <sub>2</sub> S                             | NO <sub>2</sub> , Cl <sub>2</sub> , AsH <sub>3</sub> , ClF <sub>3</sub>                                                                                             | 2        | 120      | -20+40                | 1590 |
| 70       | HF 3E 10<br>SE | HF                     | 10          | High sensitivity, low drift                                   | SO <sub>2</sub> , Cl <sub>2</sub> , HCl, CH <sub>3</sub> COOH                                                                                                       | 1,5      | 90       | -20+40                | 1590 |
| 69       | F2 3E 1        | F <sub>2</sub>         | 1           |                                                               | H <sub>2</sub> S, NO <sub>2</sub> , Cl <sub>2</sub> , HCN, O <sub>3</sub> ,<br>Br <sub>2</sub> , AsH <sub>3</sub> , PH <sub>3</sub> , B <sub>2</sub> H <sub>6</sub> | 1,5      | 80       | -10+40                | 1590 |
| 68       | CL2-B1         | Cl <sub>2</sub>        | 20          |                                                               | H2S, NO <sub>2</sub>                                                                                                                                                | 2        | 60       | -20+50                | 1590 |
| 67       | CL2-A1         | Cl <sub>2</sub>        | 20          |                                                               | $H_2S$ , $NO_2$                                                                                                                                                     | 2        | 40       | -20+50                | 1590 |
| 66       | Cl2 3E 50      | Cl <sub>2</sub>        | 50          | High range, fast response                                     | SO <sub>2</sub> , NO <sub>2</sub> , ClO <sub>2</sub> , O <sub>3</sub> , Br <sub>2</sub> ,<br>F <sub>2</sub>                                                         | 2        | 30       | -20+40                | 1090 |
| 65       | Cl2 3E 10      | Cl <sub>2</sub>        | 10          | Low dependence on SO <sub>2</sub> , resistance against toxins | NO <sub>2</sub> , ClO <sub>2</sub> , O <sub>3</sub> , Br <sub>2</sub>                                                                                               | 2        | 60       | -20+40                | 1590 |
| 64       | 7CLH           | Cl <sub>2</sub>        | 20          |                                                               | H <sub>2</sub> S, NO <sub>2</sub>                                                                                                                                   | 2        | 60       | -20+50                | 1590 |
| 63       | 4CL            | Cl <sub>2</sub>        | 10          |                                                               | H <sub>2</sub> S                                                                                                                                                    | 2        | 60       | -20+50                | 1590 |
| 62       | O3 3E 1 F      | O <sub>3</sub>         | 1           | Fast response                                                 | H <sub>2</sub> S, NO <sub>2</sub> , Cl <sub>2</sub> , ClO <sub>2</sub> ,<br>N <sub>2</sub> H <sub>4</sub> , Br <sub>2</sub> , I <sub>2</sub>                        | 1,5      | 60       | -20+40                | 1590 |
| 61       | O3 3E 1        | O <sub>3</sub>         | 1           | Fast response                                                 | H <sub>2</sub> S, NO <sub>2</sub> , Cl <sub>2</sub> , ClO <sub>2</sub> ,<br>N <sub>2</sub> H <sub>4</sub> , Br <sub>2</sub> , I <sub>2</sub>                        | 1,5      | 60       | -20+40                | 1590 |
| 60       | 7OZ            | O <sub>3</sub>         | 2           |                                                               | $H_2S$ , $NO_2$ , $Cl_2$                                                                                                                                            | 2        | 150      | -20+50                | 1590 |
|          | NO2-B1         | NO <sub>2</sub>        | 20          |                                                               | $H_2S, Cl_2$                                                                                                                                                        | 2        | 60       | -30+50                |      |
| 58       | NO2-A1         | NO <sub>2</sub>        | 20          |                                                               | $H_2S, Cl_2$                                                                                                                                                        | 2        | 40       | -20+50                | 1590 |
|          | NO2 3E 50      | NO <sub>2</sub>        | 50          | High range, fast response, low drift                          | SO <sub>2</sub> , Cl <sub>2</sub>                                                                                                                                   | 2        | 30       | -20+40                |      |
| 56       | 7NDH           | NO <sub>2</sub>        | 20          |                                                               | H <sub>2</sub> S, Cl <sub>2</sub>                                                                                                                                   | 2        | 40       | -20+50                |      |
| 54<br>55 | 30F            | HCN<br>NO <sub>2</sub> | 30<br>20    | low drift                                                     | H <sub>2</sub> S, NO, NO <sub>2</sub><br>H <sub>2</sub> S, Cl <sub>2</sub>                                                                                          | 1,5<br>2 | 50<br>25 | -40+40<br>-20+50      |      |
|          | 7HCN<br>HCN 3E | HCN                    | 100         | High range<br>Fast response, high selectivity,                | Cl <sub>2</sub> , C <sub>2</sub> H <sub>4</sub>                                                                                                                     | 1        |          | -20+50                |      |
|          | 4HN            | HCN                    | 50          | Long service life                                             | CO, H <sub>2</sub> S, SO <sub>2</sub> , NO, NO <sub>2</sub> ,<br>C <sub>2</sub> H <sub>4</sub><br>CO, H <sub>2</sub> S, SO <sub>2</sub> , NO, NO <sub>2</sub> ,     | 2        | 200      | -20+50                | 1590 |

Data in the table are taken over from data sheets of individual sensors.

Other gases, to which the sensor shows some response (so-called cross dependence) are mentioned only if this response reaches at least 5% of signal of the nominal gas.

Each sensor may show some cross dependence on of the gases that are not mentioned here.

Cross dependence can be used e.g. for calibration of a sensor if the nominal gas is not available.

The mentioned service life of each sensor is only presupposed in pure air.

Data sheets of each sensor are available upon request.

| No. | Sensor<br>type | Nominal<br>gas | 15ppm<br>H <sub>2</sub> S | 5ppm<br>SO <sub>2</sub> | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 20ppm<br>NO <sub>2</sub> | 50ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | $\begin{array}{c} 100\\ ppm\\ H_2 \end{array}$ | 10<br>ppm<br>HCN | 5<br>ppm<br>HCl | $\begin{array}{c} 100\\ ppm\\ C_2H_4 \end{array}$ | 200<br>ppm<br>ethanol |
|-----|----------------|----------------|---------------------------|-------------------------|-------------|-------------------------|--------------------------|--------------------------|-------------------------|------------------------------------------------|------------------|-----------------|---------------------------------------------------|-----------------------|
| 7   | 4CF            | CO [ppm]       | < 0.5                     | 0                       | <3          |                         | -1+1                     |                          | 0                       | <40                                            |                  |                 | <50                                               | 0                     |
| 8   | 4CO            | CO [ppm]       | 45                        | 2.5                     | 10          | -3                      |                          |                          | -10                     | <40                                            |                  |                 |                                                   |                       |
| 9   | 7E             | CO [ppm]       | 38                        | 3                       | 10          | -3                      |                          |                          | -0.5                    | <60                                            | 5                | 0               | <100                                              |                       |
| 10  | 7E/F           | CO [ppm]       | <0,3                      | 0                       | <7          | -10                     |                          |                          | 0                       | <60                                            | <2               | 0               | <100                                              | 0                     |
| 11  | A7E            | CO [ppm]       | 38                        | 3                       | 10          | -3                      |                          |                          | -0.5                    |                                                | 5                | 0               | <100                                              |                       |
| 12  | A7E/F          | CO [ppm]       | 1                         | 0                       | <7          |                         |                          | -0.5+1                   | 0                       | 0                                              | <2               | 0               | <75                                               |                       |
| 80  | 4CM            | CO [ppm]       | 0                         | 0                       | 10          |                         | <0,5                     | 5                        | 0                       | <28                                            |                  |                 | 97                                                | 0                     |

#### Cross dependencies of sensors

| No.  | Sensor type                                                                                      |    | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 20ppm<br>SO <sub>2</sub> | 100ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 3000ppm<br>H <sub>2</sub> | 100ppm<br>NH <sub>3</sub> | 10%<br>CO <sub>2</sub> | 1ppm<br>ClO <sub>2</sub> | 1025ppm<br>Alcohols |    | Vapours<br>CH <sub>3</sub> COOH |
|------|--------------------------------------------------------------------------------------------------|----|------------------------------------------------|--------------------------|--------------|--------------------------|-------------------------|---------------------------|---------------------------|------------------------|--------------------------|---------------------|----|---------------------------------|
| 13   | CO 3E<br>300                                                                                     | СО | 0*                                             | 0*                       | 25           | 0*                       | 0                       | 1000                      | 0,1                       | 0                      | 0                        | 0*                  | 0* | 0                               |
| * wi | * with a built-in filter, long-term exposure to high concentrations may reduce its effectiveness |    |                                                |                          |              |                          |                         |                           |                           |                        |                          |                     |    |                                 |

| No. | Sensor type | Nominal<br>gas | 20ppm<br>H <sub>2</sub> S | 2ppm<br>SO <sub>2</sub> | 20ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 10ppm<br>HCl | 3000ppm<br>H <sub>2</sub> | 600ppm<br>Alcohols | Gasoline<br>vapours |
|-----|-------------|----------------|---------------------------|-------------------------|-------------|--------------------------|--------------|---------------------------|--------------------|---------------------|
| 14  | CO 3E 500 S | CO [ppm]       | <2*                       | 0                       | 20          | 0                        | 7            | <300                      | 0*                 | 0*                  |

\* with a built-in filter, long-term exposure to high concentrations may reduce its effectiveness

| No. | Sensor<br>type | Nomin.<br>gas | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 20ppm<br>SO <sub>2</sub> | 50ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 10ppm<br>Cl <sub>2</sub> | $\begin{array}{c} 400 \text{ ppm} \\ H_2 \text{ at} \\ 20^\circ \text{C} \end{array}$ | 20ppm<br>NH <sub>3</sub> |      |     | 900ppm H <sub>2</sub> in<br>900ppm CO at<br>20°C |     |
|-----|----------------|---------------|------------------------------------------------|--------------------------|-------------|--------------------------|--------------------------|---------------------------------------------------------------------------------------|--------------------------|------|-----|--------------------------------------------------|-----|
| 15  | CO-AE          | CO            | 0                                              | 0                        | 0           | 0                        | 0                        | <300                                                                                  | 0                        | <240 |     |                                                  |     |
| 16  | CO-AF          | CO            | 0                                              | 0                        | <2.5        | 0                        | 0                        | <240                                                                                  | 0                        | <100 |     |                                                  |     |
| 17  | CO-AX          | CO            |                                                | 0                        | 0           | 0                        | 0                        |                                                                                       | 0                        | <120 | <18 | <36                                              | <54 |
| 18  | CO-BF          | CO            | 0                                              | 0                        | <12.5       | 0                        | 0                        | <260                                                                                  | 0                        | <260 |     |                                                  |     |
| 19  | CO-BX          | СО            | 0                                              | 0                        | <12.5       | 0.1                      | 0                        | <20                                                                                   | 0                        | <40  |     |                                                  |     |

| No. | Sensor<br>type | Nominal gas            | 300ppm<br>CO | 5ppm<br>SO <sub>2</sub> | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 1ppm Cl <sub>2</sub> | 10000ppm<br>H <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | $\begin{array}{c} 100 ppm \\ C_2 H_4 \end{array}$ |
|-----|----------------|------------------------|--------------|-------------------------|-------------|-------------------------|----------------------|----------------------------|--------------|-------------|---------------------------------------------------|
| 20  | 4H             | H <sub>2</sub> S [ppm] | <6           | 0.5                     | <0.4        | -1                      |                      | <5                         |              |             |                                                   |
| 21  | 4H/LM          | H <sub>2</sub> S [ppm] | <6           | 0.5                     | <0.4        | -1                      |                      | <5                         |              |             |                                                   |
| 22  | 4HS            | H <sub>2</sub> S [ppm] | <3           | 1                       | <0.7        | -1                      |                      | <10                        |              |             |                                                   |
| 23  | 4HS/LM         | H <sub>2</sub> S [ppm] | <2           | 1                       | <0.7        | -1                      |                      | <10                        |              |             |                                                   |
| 24  | 7H             | H <sub>2</sub> S [ppm] | <6           | <1                      | 0           | -1                      | -0.05+0.04           | <15                        | -1.40.5      | 0           | 0                                                 |
| 25  | 7H/LM          | H <sub>2</sub> S [ppm] | <6           | <1                      | 0           | -1                      | -0.05+0.04           | <15                        | -1.40.5      | 0           | 0                                                 |

| 26 | 7HH    | $H_2S$ [ppm]           | <1.5 | <1 | <2 | -10 | -0.2 | <5 | -1.40.1 | 0 | 0 |
|----|--------|------------------------|------|----|----|-----|------|----|---------|---|---|
| 27 | 7HH/LM | H <sub>2</sub> S [ppm] | <1.5 | <1 | <2 | -10 | -0.2 | <5 | 0       | 0 | 0 |

|--|

| Nc | . Sensor type | Nominal gas            | 100<br>ppm<br>CO | 20 ppm<br>SO <sub>2</sub> | 10 ppm<br>NO <sub>2</sub> | 1%<br>CH4 | 1 ppm<br>Cl <sub>2</sub> | 3000<br>ppm<br>H <sub>2</sub> | 20 ppm<br>HCN | 110<br>ppm<br>NH <sub>3</sub> | 1 ppm<br>ClO <sub>2</sub> | 0.25<br>ppm<br>O <sub>3</sub> | 0.2 ppm<br>AsH <sub>3</sub> | 5000<br>ppm<br>CO <sub>2</sub> | 500 ppm<br>C <sub>2</sub> H <sub>4</sub> | 200ppm<br>Isopropan<br>ol |
|----|---------------|------------------------|------------------|---------------------------|---------------------------|-----------|--------------------------|-------------------------------|---------------|-------------------------------|---------------------------|-------------------------------|-----------------------------|--------------------------------|------------------------------------------|---------------------------|
| 28 | H2S 3E 100    | H <sub>2</sub> S [ppm] | 5                | 5                         | 0                         | 0         | 0                        | 45                            | 4             | 0.1                           | -0.1                      | 0                             | 0                           | 0                              | 2                                        | 19                        |

| No. | Sensor type  | Nomin.<br>gas | 100ppm<br>CO | 10ppm<br>SO2 | 10ppm<br>NO2 | 2,18%<br>CH4 | 20ppm<br>Cl <sub>2</sub> | 10000ppm<br>H2 | 15ppm<br>HCN | 100ppm<br>NH3 | 500ppm<br>C2H4 | 600ppm<br>Isopropanol | 1000ppm<br>Metanol |
|-----|--------------|---------------|--------------|--------------|--------------|--------------|--------------------------|----------------|--------------|---------------|----------------|-----------------------|--------------------|
| 29  | H2S 3E 100 S | $H_2S$        | <1           | <0.5         | <3           | 0            | <5                       | <10            | < 0.2        | 0             | 0              | 0                     | 0                  |

| No. | Sensor type | Nominal gas            | 400ppm<br>CO | 20ppm<br>SO <sub>2</sub> | 50ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 10ppm<br>Cl <sub>2</sub> | 400ppm<br>H <sub>2</sub> | 20ppm<br>NH <sub>3</sub> | 400ppm<br>NH <sub>3</sub> | 400ppm<br>C <sub>2</sub> H <sub>4</sub> | 5%<br>CO <sub>2</sub> |
|-----|-------------|------------------------|--------------|--------------------------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|-----------------------------------------|-----------------------|
| 30  | H2S-A1      | H <sub>2</sub> S [ppm] | <6           | <2                       | <2          | <-2                      | <-2.5                    | <0.8                     | < 0.02                   |                           | <2                                      |                       |
| 31  | H2S-AH      | H <sub>2</sub> S [ppm] | <6           | <2                       | <1          | <-3                      | <-2.5                    | <0.6                     | < 0.02                   |                           | <0.6                                    |                       |
| 32  | H2S-B1      | H <sub>2</sub> S [ppm] | <16          | <3.6                     | <1          | <-3                      | <-2.5                    | <4                       |                          | <0.4                      | <3.2                                    | <50                   |
| 33  | H2S-BE      | H <sub>2</sub> S [ppm] | <16          | <4                       | <5          | <-2.5                    | <-1.2                    | <0.8                     | < 0.02                   |                           | <1                                      |                       |
| 34  | H2S-BH      | H <sub>2</sub> S [ppm] | <4           | <2                       | <1.5        | <-3                      | <-2.5                    | <1                       | < 0.02                   |                           | <0.4                                    |                       |

| No. | Sensor type   | Nominal gas           | 100ppm<br>CO | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 20ppm<br>SO <sub>2</sub> | 10ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 10000ppm<br>H <sub>2</sub> | 1000ppm<br>Alcohols | Hydro-<br>carbons | 5000ppm<br>CO <sub>2</sub> |
|-----|---------------|-----------------------|--------------|------------------------------------------------|--------------------------|--------------------------|-------------------------|----------------------------|---------------------|-------------------|----------------------------|
| 35  | NH3 3E 100    | NH <sub>3</sub> [ppm] | 40           | 25                                             | -10                      | 0                        | -6                      | 1000                       | Yes                 |                   |                            |
| 36  | NH3 3E 100 SE | NH <sub>3</sub> [ppm] | 0            | 2*                                             |                          |                          |                         | 0                          | 0                   | 0                 | 0                          |
|     |               | -                     |              |                                                |                          |                          |                         |                            |                     |                   |                            |

\* short exposure in minutes

| No. | Sensor type   | Nominal gas           | 100ppm CO | 20ppm H <sub>2</sub> S | 3000ppm H <sub>2</sub> | 600ppm Alcohols | 5% CO <sub>2</sub> |
|-----|---------------|-----------------------|-----------|------------------------|------------------------|-----------------|--------------------|
| 37  | NH3 3E 500 SE | NH <sub>3</sub> [ppm] | <1        | 5                      | <5                     | <1              | -4                 |

| No. | Sensor type    | Nominal gas           | 100<br>ppm<br>CO | $\begin{array}{c} 20\\ ppm\\ H_2S \end{array}$ | 20<br>ppm<br>SO <sub>2</sub> | 10<br>ppm<br>NO <sub>2</sub> | 5<br>ppm<br>Cl <sub>2</sub> | 3000<br>ppm<br>H <sub>2</sub> | 10<br>ppm<br>HCl | Ami<br>nes | 0,2<br>ppm<br>AsH <sub>3</sub> | 300<br>ppm<br>PH <sub>3</sub> | 5000<br>ppm<br>CO <sub>2</sub> | 1000 ppm<br>Alcohols | Non-<br>saturated<br>hydro-<br>carbons |
|-----|----------------|-----------------------|------------------|------------------------------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|------------------|------------|--------------------------------|-------------------------------|--------------------------------|----------------------|----------------------------------------|
| 38  | NH3 3E 1000    | NH <sub>3</sub> [ppm] | 95               | 40                                             | 5                            | 0                            | 0                           | 3000                          | 0                | Yes        | 0                              | 0                             | 0                              | Yes                  | Yes                                    |
| 39  | NH3 3E 1000 SE | NH <sub>3</sub> [ppm] | 0                | 2                                              | -40                          | 0                            | 0                           | 0                             |                  |            |                                |                               |                                | 0                    |                                        |
| 40  | NH3 3E 5000 SE | NH <sub>3</sub> [ppm] | 0                | Yes                                            | Yes                          | 0                            | 0                           | 0                             |                  |            |                                |                               |                                | 0                    |                                        |

| No. | Typ<br>senz. | Jmen. plyn | 300ppm CO | 15ppm H2S | 35ppm NO | 5ppm<br>NO2 | 1ppm<br>Cl2 | 100ppm<br>H2 | 10ppm<br>HCN | 5ppm<br>HCl | 100ppm<br>C2H4 |
|-----|--------------|------------|-----------|-----------|----------|-------------|-------------|--------------|--------------|-------------|----------------|
| 41  | 4S           | SO2 [ppm]  | <3        | 0         | 0        | -5          |             |              |              |             |                |
| 42  | 7SH          | SO2 [ppm]  | <3        | 20        | -10      | -6          | -0,50       | 0            | 5            | 1           | 0              |
| 43  | 7ST/F        | SO2 [ppm]  | <5        | 0         | -70      | -5          | -1,50       | 0            | <5           | 0           | 0              |

| No. | Sensor<br>type | Nominal<br>gas | 300ppm<br>CO | $15 ppm H_2 S$ | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 100pp<br>m H <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | 100ppm<br>C <sub>2</sub> H <sub>4</sub> | No. |
|-----|----------------|----------------|--------------|----------------|-------------|-------------------------|-------------------------|---------------------------|--------------|-------------|-----------------------------------------|-----|
| 41  | 4S             | $SO_2$ [ppm]   | <3           | 0              | 0           | -5                      |                         |                           |              |             |                                         | 41  |

| 42 | 7SH   | SO <sub>2</sub> [ppm] | <3 | 20 | -10 | -6 | -0,50 | 0 | 5  | 1 | 0 | 42 |
|----|-------|-----------------------|----|----|-----|----|-------|---|----|---|---|----|
| 43 | 7ST/F | SO <sub>2</sub> [ppm] | <5 | 0  | -70 | -5 | -1,50 | 0 | <5 | 0 | 0 | 43 |

| ZAM-SERVIS s.r.o. | Křišťanova 1116/14 | Ostrava-Přívoz 702 00 |
|-------------------|--------------------|-----------------------|
|                   |                    |                       |

| No. | Sensor<br>type | Nominal<br>gas        | 400ppm<br>CO | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 50ppm<br>NO | 500ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 10ppm<br>Cl <sub>2</sub> | 400ppm<br>H <sub>2</sub> | 20ppm<br>NH <sub>3</sub> | 400ppm<br>C <sub>2</sub> H <sub>4</sub> | $\begin{array}{c} 1000 ppm \\ C_2 H_4 \end{array}$ |
|-----|----------------|-----------------------|--------------|------------------------------------------------|-------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|----------------------------------------------------|
| 44  | SO2-AE         | SO <sub>2</sub> [ppm] | <8           | 0,02                                           |             | <-50         | <-14                     | <-14                     | <0,4                     | <0,02                    |                                         | <750                                               |
| 45  | SO2-AF         | SO <sub>2</sub> [ppm] | <16          | <0,02                                          | <2          |              | <-10                     | <-7                      | <0,8                     | <0,02                    | <60                                     |                                                    |
| 46  | SO2-BF         | SO <sub>2</sub> [ppm] | <4           | <0,02                                          | <-1,5       |              | <-12                     | <-5                      | <0,4                     | <0,02                    | <160                                    |                                                    |

| No. | Sensor<br>type | Nominal gas          | 300ppm<br>CO | $\begin{array}{c} 15 ppm \\ H_2 S \end{array}$ | 5ppm<br>SO <sub>2</sub> | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | $\begin{array}{c} 100 ppm \\ C_2 H_4 \end{array}$ |
|-----|----------------|----------------------|--------------|------------------------------------------------|-------------------------|-------------|-------------------------|-------------------------|--------------|-------------|---------------------------------------------------|
| 47  | 4HYT           | H <sub>2</sub> [ppm] | <60          | <3                                             | 0                       | 10          | 0                       | 0                       | 3            | 0           | 80                                                |
| 48  | 7HYE           | H <sub>2</sub> [ppm] | <120         | 10                                             | 0                       | <10         | 0                       | 0                       | 10           | 0           | 40                                                |
| 49  | 7HYT           | H <sub>2</sub> [ppm] | 060          | <3                                             | 0                       | 10          | 0                       | 0                       | 3            | 0           | 80                                                |
|     | 1              |                      |              |                                                |                         |             |                         |                         |              |             |                                                   |

| N | Jo. | Sensor type | Nominal gas          | 100<br>ppm<br>CO | $\begin{array}{c} 20\\ ppm\\ H_2S \end{array}$ | 5<br>ppm<br>SO <sub>2</sub> | 100<br>ppm<br>NO | 10<br>ppm<br>NO <sub>2</sub> | $\begin{array}{c} 1\\ ppm\\ Cl_2 \end{array}$ | 5<br>ppm<br>Cl <sub>2</sub> | 20<br>ppm<br>HCN | 100<br>ppm<br>NH <sub>3</sub> | 0,25<br>ppm<br>O <sub>3</sub> | 0,2<br>ppm<br>AsH <sub>3</sub> | $\begin{array}{c} 500\\ ppm\\ C_2H_4 \end{array}$ | 1000<br>ppm<br>CO <sub>2</sub> | 1%<br>CH4 | 1100 ppm<br>Isopropan<br>ol |
|---|-----|-------------|----------------------|------------------|------------------------------------------------|-----------------------------|------------------|------------------------------|-----------------------------------------------|-----------------------------|------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------------------------------|--------------------------------|-----------|-----------------------------|
| 5 | 50  | H2 3E 1%    | H <sub>2</sub> [ppm] | 60               | 4*                                             | 0                           |                  | -40                          | 0                                             |                             | 0                | 0                             | 0                             | 0                              | Yes                                               | 0                              | 0         | Yes                         |
| 5 | 51  | H2 3E 4%    | H <sub>2</sub> [ppm] | 0                | 44*                                            |                             | 0                | 0                            |                                               | 0                           | 0                | 0                             |                               | 0                              | Yes                                               | 0                              | 0         | Yes                         |

\* with a built-in filter, long-term exposure to high concentrations may reduce its effectiveness

| No. | Sensor<br>type | Nominal gas | 300ppm<br>CO | $\begin{array}{c} 15 ppm \\ H_2 S \end{array}$ | 5ppm<br>SO <sub>2</sub> | 20ppm<br>SO <sub>2</sub> | 35ppm NO | 5ppm NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 200ppm<br>H <sub>2</sub> | 100ppm<br>C <sub>2</sub> H <sub>4</sub> |
|-----|----------------|-------------|--------------|------------------------------------------------|-------------------------|--------------------------|----------|----------------------|-------------------------|--------------------------|-----------------------------------------|
| 52  | 4HN            | HCN [ppm]   | <15          | 90                                             |                         | 4075                     | -280     | -2010                |                         |                          | <25                                     |
| 53  | 7HCN           | HCN [ppm]   | <54          | 350,00%                                        | 5.517.5                 |                          | -17.50   | -2010                | -0.5                    | 0                        | <55                                     |

| No.  | Type sensor                                                                         | Nominal gas | 100ppm<br>CO | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 100ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 10000ppm<br>H <sub>2</sub> | 5000ppm<br>CO <sub>2</sub> | 1000ppm<br>Alcohols | Hydro-<br>carbons |  |  |
|------|-------------------------------------------------------------------------------------|-------------|--------------|------------------------------------------------|--------------|--------------------------|----------------------------|----------------------------|---------------------|-------------------|--|--|
| 54   | HCN 3E 30F                                                                          | HCN [ppm]   | 0            | 0*                                             | -5           | -7                       | 0                          | 0                          | 0                   | 0                 |  |  |
| * sl | * short exposure in minutes; after saturation of the filter, response approx. 40ppm |             |              |                                                |              |                          |                            |                            |                     |                   |  |  |

| No. | Sensor type | Nominal gas           | 300ppm<br>CO | 15ppm<br>H <sub>2</sub> S | 5ppm SO <sub>2</sub> | 35ppm<br>NO | 1ppm<br>Cl <sub>2</sub> | 100ppm<br>H <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | $\begin{array}{c} 100 ppm \\ C_2 H_4 \end{array}$ |
|-----|-------------|-----------------------|--------------|---------------------------|----------------------|-------------|-------------------------|--------------------------|--------------|-------------|---------------------------------------------------|
| 55  | 4ND         | NO <sub>2</sub> [ppm] | 0            | -1.2                      | 0                    | 0           | 1                       |                          |              |             |                                                   |
| 56  | 7NDH        | NO <sub>2</sub> [ppm] | 0            | -1.50                     | -0.050               | 0           | 1                       | 0                        | 0            | 0           | 0                                                 |

| No | Sensor type | Nominal gas           | 20ppm<br>SO <sub>2</sub> | 100ppm<br>NO | 1ppm<br>Cl <sub>2</sub> | 3000ppm<br>H <sub>2</sub> | 5000ppm<br>CO <sub>2</sub> | 1000ppm<br>Alcohols |
|----|-------------|-----------------------|--------------------------|--------------|-------------------------|---------------------------|----------------------------|---------------------|
| 57 | NO2 3E 50   | NO <sub>2</sub> [ppm] | 5                        | 0.4          | 1                       | 0                         | 0                          | 0                   |

| No | Sensor<br>type | Nominal gas           | 400ppm<br>CO | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 20ppm<br>SO <sub>2</sub> | 50ppm<br>NO | 10ppm<br>Cl <sub>2</sub> | 400ppm<br>H <sub>2</sub> | 20ppm<br>NH <sub>3</sub> | 50ppm<br>C <sub>2</sub> H <sub>4</sub> | 400ppm<br>C <sub>2</sub> H <sub>4</sub> | 5%<br>CO <sub>2</sub> |
|----|----------------|-----------------------|--------------|------------------------------------------------|--------------------------|-------------|--------------------------|--------------------------|--------------------------|----------------------------------------|-----------------------------------------|-----------------------|
| 58 | NO2-A1         | NO <sub>2</sub> [ppm] | <0.4         | <-8                                            | <-0.5                    | < 0.25      | 10                       | <0.4                     | < 0.02                   | < 0.05                                 |                                         | <50                   |
| 59 | NO2-B1         | NO <sub>2</sub> [ppm] | <0.4         | -20                                            | <-0.4                    | < 0.25      | 10                       | <0.4                     | < 0.02                   |                                        | <0.4                                    | 0                     |

| No. | Sensor<br>type | Nominal<br>gas       | 300ppm<br>CO | $\begin{array}{c} 15 ppm \\ H_2S \end{array}$ | 5ppm<br>SO <sub>2</sub> | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 100ppm<br>H <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | 100ppm<br>C2H <sub>4</sub> |
|-----|----------------|----------------------|--------------|-----------------------------------------------|-------------------------|-------------|-------------------------|-------------------------|--------------------------|--------------|-------------|----------------------------|
| 60  | 70Z            | O <sub>3</sub> [ppm] | 0            | -2                                            | 0                       | 0           | 3.5                     | <1                      | 0                        | 0            | 0           | 0                          |

| No. | Sensor<br>type | Nominal<br>gas       | 100ppm<br>CO | $\begin{array}{c} 20 ppm \\ H_2 S \end{array}$ | 10ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | $\begin{array}{c} 3000 ppm \\ H_2 \end{array}$ | 1ppm<br>ClO <sub>2</sub> | 5000ppm<br>CO <sub>2</sub> | 3ppm<br>N <sub>2</sub> H <sub>4</sub> | 100% N <sub>2</sub> | Br <sub>2</sub> ,I <sub>2</sub> |
|-----|----------------|----------------------|--------------|------------------------------------------------|--------------------------|-------------------------|------------------------------------------------|--------------------------|----------------------------|---------------------------------------|---------------------|---------------------------------|
| 61  | O3 3E 1        | O <sub>3</sub> [ppm] | 0            | -1.6*                                          | 6                        | 1.2                     | 0                                              | 1.5                      | 0                          | -3                                    | 0                   | Yes                             |
| 62  | O3 3E 1 F      | O <sub>3</sub> [ppm] | 0            | -1.6*                                          | 6                        | 1.2                     | 0                                              | 1.5                      | 0                          | -3                                    | 0                   | Yes                             |
| *   |                |                      |              | 1 /1                                           | 20                       | . ,                     | · · · /1                                       |                          |                            |                                       |                     |                                 |

\* permanent exposure with level of ppm longer than 30 minutes may impair the sensor

| No. | Sensor type | Nominal gas           | 300ppm<br>CO | $15 ppm H_2 S$ | 5ppm<br>SO <sub>2</sub> | 35ppm<br>NO | 5ppm<br>NO <sub>2</sub> | 100ppm<br>H <sub>2</sub> | 10ppm<br>HCN | 5ppm<br>HCl | 100ppm<br>C <sub>2</sub> H <sub>4</sub> |
|-----|-------------|-----------------------|--------------|----------------|-------------------------|-------------|-------------------------|--------------------------|--------------|-------------|-----------------------------------------|
| 63  | 4CL         | Cl <sub>2</sub> [ppm] | 0            | -7.50          | 0                       | 0           |                         |                          |              |             |                                         |
| 64  | 7CLH        | Cl <sub>2</sub> [ppm] | 0            | -3,80          | -0,05                   | 0           | 5                       | 0                        | 0            | 0           | 0                                       |

| No. | Sensor type | Nominal gas           | 100<br>ppm<br>CO | $\begin{array}{c} 20\\ ppm\\ H_2S \end{array}$ | 20<br>ppm<br>SO <sub>2</sub> | 10<br>ppm<br>NO <sub>2</sub> | 3000<br>ppm<br>H <sub>2</sub> | 1 ppm<br>ClO <sub>2</sub> | 2.4<br>ppm<br>ClO <sub>2</sub> | 100<br>ppm<br>NH <sub>3</sub> | 0.25<br>ppm<br>O <sub>3</sub> | 1 %<br>CO <sub>2</sub> | 1 ppm Br <sub>2</sub> | 1.0<br>ppm<br>F <sub>2</sub> |
|-----|-------------|-----------------------|------------------|------------------------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------|-----------------------|------------------------------|
| 65  | Cl2 3E 10   | Cl <sub>2</sub> [ppm] | 0                | 0,1                                            | 0                            | 4.5                          | 0                             |                           | 0.55                           | 0                             | 0.11                          | 0                      | 1.0 (theoret.)        |                              |
| 66  | Cl2 3E 50   | Cl <sub>2</sub> [ppm] | 0                | 0*                                             | 3.5                          | 2                            | 0                             | 0.5                       |                                | 0                             | 0.05                          | 0                      | 1.0                   | 0.4                          |
|     | . 11.0      | •                     |                  |                                                | · 01                         |                              | . 1                           |                           |                                |                               |                               | •                      |                       |                              |

|\* exposure to H<sub>2</sub>S poisons the cell, later exposure to Cl<sub>2</sub> reactivates the sensor

| No. | Sensor<br>type | Nominal<br>gas        | 400ppm CO | 20ppm H <sub>2</sub> S | 20ppm<br>SO <sub>2</sub> | 50ppm<br>NO | 10ppm<br>NO <sub>2</sub> | 400ppm<br>H <sub>2</sub> | 400ppm<br>C2H4 | 20ppm<br>NH <sub>3</sub> | 5% CO <sub>2</sub> |
|-----|----------------|-----------------------|-----------|------------------------|--------------------------|-------------|--------------------------|--------------------------|----------------|--------------------------|--------------------|
| 67  | CL2-A1         | Cl <sub>2</sub> [ppm] | <0.4      | <-8                    | <-0.5                    | < 0.25      | 10                       | <0.4                     | <0.4           |                          |                    |
| 68  | CL2-B1         | Cl <sub>2</sub> [ppm] | <0.4      | -20                    | <-0.4                    | < 0.25      | 10                       | <0.4                     | <0.4           | < 0.02                   | 0                  |

| No. | Sensor<br>type | Nom.<br>gas | 100<br>ppm<br>CO | $\begin{array}{c} 1\\ ppm\\ H_2S \end{array}$ | 20<br>ppm<br>SO <sub>2</sub> | 10<br>ppm<br>NO <sub>2</sub> | $\begin{array}{c} 1\\ ppm\\ Cl_2 \end{array}$ | $\begin{array}{c} 10000\\ ppm\\ H_2 \end{array}$ | 1<br>ppm<br>HCN | 5<br>ppm<br>HCl | 0.25<br>ppm<br>O <sub>3</sub> | 5000<br>ppm<br>CO <sub>2</sub> | 100<br>%<br>N <sub>2</sub> | Br <sub>2</sub> | 0.2<br>ppm<br>AsH <sub>3</sub> | 0.3<br>ppm<br>PH <sub>3</sub> | $\begin{array}{c} 0.25\\ ppm\\ B_2H_6 \end{array}$ | 1000<br>ppm<br>Alcohols | Hydr<br>ocarb<br>ons |
|-----|----------------|-------------|------------------|-----------------------------------------------|------------------------------|------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------|-----------------|-------------------------------|--------------------------------|----------------------------|-----------------|--------------------------------|-------------------------------|----------------------------------------------------|-------------------------|----------------------|
| 69  | F2 3E 1        | F2          | 1                | -2                                            | 0.04                         | -19                          | 1.4                                           | 0                                                | -3              | 0*              | 0.3                           | 0                              | 0                          | Yes             | 1                              | Yes                           | 0.4                                                | 0                       | 0                    |
| * s | hort expos     | ure in      | minut            | es                                            |                              |                              |                                               |                                                  |                 |                 |                               |                                |                            |                 |                                |                               |                                                    |                         |                      |

| No.  | Sensor type      | Nominal<br>gas | 100ppm<br>CO | 20ppm<br>SO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 3000ppm<br>H <sub>2</sub> | 10ppm<br>HCl | 5000ppm<br>CO <sub>2</sub> | 100ppm<br>CH <sub>3</sub> COOH | 1000ppm<br>Alcohols | Hydro-<br>carbons |
|------|------------------|----------------|--------------|--------------------------|-------------------------|---------------------------|--------------|----------------------------|--------------------------------|---------------------|-------------------|
| 70   | HF 3E 10 SE      | HF [ppm]       | 0            | 16*                      | 0.7                     | <1                        | 6            | 0                          | Yes                            | 0                   | 0                 |
| * sl | nort exposure in | minutes        |              |                          |                         |                           |              |                            |                                |                     |                   |

| No.  | Sensor type   | Nominal gas            | 100<br>ppm<br>CO | $\begin{array}{c} 20\\ ppm\\ H_2S \end{array}$ | 10<br>ppm<br>NO <sub>2</sub> | 1ppm Cl <sub>2</sub> | 3000<br>ppm<br>H <sub>2</sub> | 20<br>ppm<br>HCN | 5000<br>ppm<br>CO <sub>2</sub> | 100%<br>N2 | 0.2ppm<br>AsH <sub>3</sub> | 1ppm ClF <sub>3</sub> | 1000ppm<br>Alcohols | Hydro-<br>carbons |
|------|---------------|------------------------|------------------|------------------------------------------------|------------------------------|----------------------|-------------------------------|------------------|--------------------------------|------------|----------------------------|-----------------------|---------------------|-------------------|
| 71   | ClO2 3E 1     | ClO <sub>2</sub> [ppm] | 0                | 0*                                             | 3.7                          | 0.20.4               | 0                             | -0.9             | 0                              | 0          | -0.01                      | 1 (theoret.)          | 0                   | 0                 |
| * sł | nort exposure | in minutes; capac      | ity of t         | he filte                                       | er >15p                      | opm/h                |                               |                  |                                |            |                            |                       |                     |                   |

| No.  | Sensor type.                                           | Nominal gas             | 100ppm<br>CO | 20ppm<br>H <sub>2</sub> S | 10ppm<br>NO <sub>2</sub> | 1ppm<br>Cl <sub>2</sub> | 10 ppm<br>HCl | 1ppm<br>ClO <sub>2</sub> | 100<br>ppm<br>NH <sub>3</sub> | 0.25<br>ppm<br>O <sub>3</sub> | 5000<br>ppm<br>CO <sub>2</sub> | 0.2<br>ppm<br>AsH <sub>3</sub> | 1%<br>CH <sub>4</sub> | 1100ppm<br>Isopropan<br>ol |
|------|--------------------------------------------------------|-------------------------|--------------|---------------------------|--------------------------|-------------------------|---------------|--------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|-----------------------|----------------------------|
| 72   | COCl2 3E 1                                             | COCl <sub>2</sub> [ppm] | 0            | Yes*                      | -1                       | 0.4                     | 25            | -3                       | 0                             | 0.03                          | 0                              | 0.18                           | 0                     | 0                          |
| * at | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                         |              |                           |                          |                         |               |                          |                               |                               |                                |                                |                       |                            |

| No. | Sensor<br>type. | Nominal gas           | 1000ppm CO | 5ppm SO <sub>2</sub> | 1000ppm H <sub>2</sub> | 100ppm<br>C <sub>2</sub> H <sub>4</sub> | 0.15ppm<br>AsH <sub>3</sub> | 1ppm<br>SiH4 | 0.6ppm<br>GeH <sub>4</sub> | $\begin{array}{c} 0.3 ppm \\ B_2 H_6 \end{array}$ |
|-----|-----------------|-----------------------|------------|----------------------|------------------------|-----------------------------------------|-----------------------------|--------------|----------------------------|---------------------------------------------------|
| 73  | 4PH             | PH <sub>3</sub> [ppm] | 1          | 1                    | 30                     | 1,8                                     | 0                           | 0.9          | 0.51                       | 0.105                                             |
| 74  | 4PH-Fast        | PH <sub>3</sub> [ppm] | 5          | 1                    | 1                      | 1                                       | 0,1                         | 0.9          | 0.55                       | 0.105                                             |

| No. | Sensor type                                            | Nom.<br>gas      | 100<br>ppm<br>CO | $\begin{array}{c} 20\\ ppm\\ H_2S \end{array}$ | $\begin{array}{c} 20\\ ppm\\ SO_2 \end{array}$ | 10<br>ppm<br>NO <sub>2</sub> | 1<br>ppm<br>Cl <sub>2</sub> | 3000<br>ppm<br>H <sub>2</sub> | 20<br>ppm<br>HCN | 5<br>ppm<br>HCl | 100<br>ppm<br>NH <sub>3</sub> | 5000<br>ppm<br>CO <sub>2</sub> | 100<br>%<br>N <sub>2</sub> | 0,1<br>ppm<br>PH <sub>3</sub> | 0,2<br>ppm<br>AsH <sub>3</sub> | 5<br>ppm<br>SiH <sub>4</sub> | $\begin{array}{c} 0,25\\ ppm\\ B_2H_6 \end{array}$ | 200ppm<br>Isoprop<br>anol | Hydr<br>ocar<br>bons |
|-----|--------------------------------------------------------|------------------|------------------|------------------------------------------------|------------------------------------------------|------------------------------|-----------------------------|-------------------------------|------------------|-----------------|-------------------------------|--------------------------------|----------------------------|-------------------------------|--------------------------------|------------------------------|----------------------------------------------------|---------------------------|----------------------|
| 75  | AsH3 3E 1                                              | $\mathrm{AsH}_3$ | 0                | 5                                              | 2                                              | -2                           | -0.07                       | 0**                           | 0.5              | 0*              | 0.1                           | 0                              | 0                          | 0.13                          | 0.2                            | 3.8                          | 0.18                                               | 0                         | 0                    |
| 76  | SiH4 3E 50                                             | SiH <sub>4</sub> | 0                | 7                                              | 4                                              | -2                           | 0                           | 0**                           | 0.5              | 0*              | 0                             | 0                              | 0                          | 0.13                          | 0.2                            | 5                            | 0.12                                               | 0                         | 0                    |
| * s | * short exposure in minutes (dose approx. 100ppm min.) |                  |                  |                                                |                                                |                              |                             |                               |                  |                 |                               |                                |                            |                               |                                |                              |                                                    |                           |                      |

\*\* assumed responde at >4%  $H_2$ 

| - | No. | Sensor type | Nominal gas            | 300ppm CO | 15ppm H <sub>2</sub> S | 5ppm SO <sub>2</sub> | 35ppm NO | 5ppm NO <sub>2</sub> | 1ppm Cl <sub>2</sub> | 100ppm H <sub>2</sub> |
|---|-----|-------------|------------------------|-----------|------------------------|----------------------|----------|----------------------|----------------------|-----------------------|
|   | 77  | 4COSH       | CO [ppm]               | 300       | 06                     | <1                   | <0.1     | < 0.1                | 0                    | 20                    |
|   | 78  | 4COSH       | H <sub>2</sub> S [ppm] | <6        | 15                     | 0.41                 | <1       | -1                   | 0                    | 0.03                  |

# Other gases and vapours detectable by electrochemical sensors SC-TOX

| Gas name                  | Chemical formula                     | Relative<br>gas density<br>vs. air | Boiling<br>point<br>[°C] | Explosive<br>concentration in<br>air | PEL<br>{TWA}<br>[ppm] | NPK-P<br>{STEL}<br>[ppm] | Detectable by the sensor          |
|---------------------------|--------------------------------------|------------------------------------|--------------------------|--------------------------------------|-----------------------|--------------------------|-----------------------------------|
| Acetaldehyde              | CH <sub>3</sub> CHO                  | [1.5]                              | 20.2                     | 4-57%                                | 25.45                 | 50.9                     | СО                                |
| Arsenic trifluoride       | AsF <sub>3</sub>                     |                                    | 60.4                     | -                                    | {0.2}                 |                          | HF                                |
| Arsenic<br>pentafluoride  | AsF <sub>5</sub>                     |                                    | -52.8                    | -                                    | {0.2}                 |                          | HF                                |
| Borontrifluoride          | BF <sub>3</sub>                      | 2.3                                | -100                     | -                                    | {1}                   |                          | HF                                |
| Carbonylfluoride          | COF <sub>2</sub>                     | 2.2                                | -84                      | -                                    | {2}                   |                          | HF                                |
| Chlorine dioxide          | ClO <sub>2</sub>                     | 2.36                               | 9.7                      | -                                    | {0.1}                 | {0.3}                    | ClO <sub>2</sub> , O <sub>3</sub> |
| Chlorous trifluoride      | ClF <sub>3</sub>                     | 3.1                                | 11.7                     | -                                    | {0.1}                 |                          | ClO <sub>2</sub> , HF             |
| Disulphur<br>decafluoride | S <sub>2</sub> F <sub>10</sub>       |                                    | 30                       | !                                    | {0.01}                |                          | HF                                |
| Formic acid               | НСООН                                | [1.03]                             | 101                      | 18-57%                               | {5}                   |                          | СО                                |
| Iodine                    | I <sub>2</sub>                       | [9]                                | 184                      | -                                    | {0.1}                 |                          | Cl <sub>2</sub> , O <sub>3</sub>  |
| Isopropanol               | (CH <sub>3</sub> ) <sub>2</sub> CHOH | [2.1]                              | 82.4                     | 2.0-12.7%                            | {200}                 |                          | CO without filter                 |
| Methanol                  | CH <sub>3</sub> OH                   | [1.11]                             | 64.7                     | 6.0-36.5%                            | 175 {200}             | 700                      | CO without filter                 |
| Stiban                    | SbH <sub>3</sub>                     | 4.3                                | -17.1                    | !                                    | {0.1}                 |                          | AsH <sub>3</sub>                  |
| Sulfuryl fluoride         | $SO_2F_2$                            | 3.7                                | -55.4                    | -                                    |                       |                          | HF                                |
| Stannic fluoride          | SnF <sub>4</sub>                     |                                    | >705                     | -                                    |                       |                          | HF                                |
| Trifluortriazine          | $C_3F_3N_3$                          |                                    | 74                       | -                                    |                       |                          | HF                                |
| Acetylene                 | $C_2H_2$                             | 0.85                               | -84                      | 2.5-80%                              |                       |                          | H <sub>2</sub>                    |
| Ethanol                   | C <sub>2</sub> H <sub>5</sub> OH     | [1.6]                              | 78.4                     | 3.3-15%                              |                       |                          | H <sub>2</sub>                    |
| Ethylene                  | C <sub>2</sub> H <sub>4</sub>        | 0.91                               | -103                     | 2.75-36%                             |                       |                          | H <sub>2</sub>                    |
| Propylene                 | C <sub>3</sub> H <sub>6</sub>        | 1.4                                | -47.6                    | 2.0-11.1%                            |                       |                          | H <sub>2</sub>                    |

| Gas name             | Chemical<br>formula | Relative gas<br>density vs. air | Boiling<br>point [°C] | Explosive<br>concentration in<br>air | * Standard<br>testing gas<br>[ppm] | PEL<br>{TWA}<br>[ppm] | NPK-P<br>{STEL}<br>[ppm] |
|----------------------|---------------------|---------------------------------|-----------------------|--------------------------------------|------------------------------------|-----------------------|--------------------------|
| Oxygen               | $O_2$               | 1.1                             | -183                  | -                                    | 20.9%                              | -                     | -                        |
| Carbon<br>monoxide   | СО                  | 0.95                            | -192                  | 10.9-74%                             | 50                                 | 24                    | 120                      |
| Hydrogen<br>sulphide | $H_2S$              | 1.1                             | -60.3                 | 4.3-46%                              | 10                                 | 6.59                  | 13.1                     |
| Ammonia              | NH <sub>3</sub>     | 0.59                            | -33.3                 | 15-30%                               | 25                                 | 18.4                  | 47.4                     |
| Sulphur dioxide      | $SO_2$              | 2.1                             | -10                   | -                                    | 2                                  | 1.75                  | 3.5                      |
| Hydrogen             | $H_2$               | 0.07                            | -253                  | 4.0-72%                              | -                                  | -                     | -                        |
| Hydrogen<br>cyanide  | HCN                 | 0.54                            | 25.6                  | !                                    | 10                                 | 2.49                  | 8.3                      |
| Nitrogen dioxide     | NO <sub>2</sub>     | 2.64                            | 21.1                  | -                                    | 3                                  | {3}                   | {5}                      |
| Ozone                | O <sub>3</sub>      | 1.7                             | -112                  | -                                    | 0.1                                | 0.05                  | 0.09                     |
| Chlorine             | $Cl_2$              | 2.47                            | -34.4                 | -                                    | 0.5                                | 0.48                  | 0.96                     |
| Fluorine             | F <sub>2</sub>      | 1.3                             | -188                  | -                                    | 1                                  | 0.88                  | 1.76                     |
| Hydrofluoride        | HF                  | 0.8                             | 19.5                  | -                                    | 2                                  | 1.76                  | 2.94                     |
| Chlorine dioxide     | ClO <sub>2</sub>    | 2.36                            | 9.7                   | -                                    | 0.1                                | {0.1}                 | {0.3}                    |
| Phosgene             | COCl <sub>2</sub>   | 3.1                             | 8.3                   | -                                    | 0.1                                | 0.11                  | 0.23                     |
| Phosphane            | PH <sub>3</sub>     | 1.18                            | -87.4                 | 1.6-98%                              | 0.3                                | 0.07                  | 0.2                      |
| Arsane               | AsH <sub>3</sub>    | 3.82                            | -62.4                 | 3.9-77.8%                            | 0.05                               | 0.03                  | 0.06                     |
| Silane               | SiH <sub>4</sub>    | 1.04                            | -112                  | 1.4-96%                              | 5                                  | {5}                   | {5}                      |

## Table of gases, properties and toxicity

\* Standard testing gas acc. to ČSN EN 45544-1, Annex A

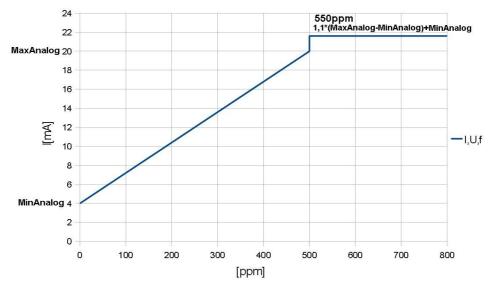
PEL Permissible Exposure Limit per shift (acc. to Decree of the government of CR, no. 178/2001 Coll.)

{TWA} 8-hour Time-Weighted Average

NPK-P Highest Permissible Concentration (acc. to decree of the government of CR, no. 178/2001 Coll.)

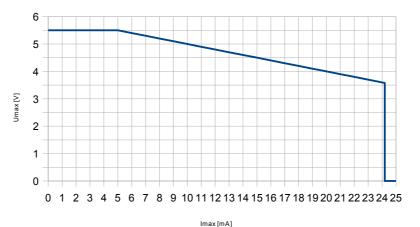
{STEL} Short-Time Exposure Limit

The table is intended for quick reference, the current value must be obtained from the relevant regulations and standards, or from their current version.


# *Max.* resistance of a power supply line loop for some sources (backlight off, output 1mA)

| Туре                               | Uo<br>[V] | Io<br>[mA] | Po<br>[W] | Со<br>[µF]                  | Lo<br>[mH]        | Protection against<br>explosion           | Rmax<br>[Ω] |
|------------------------------------|-----------|------------|-----------|-----------------------------|-------------------|-------------------------------------------|-------------|
| ZAM-SERVIS HOUK-Z                  | 18.9      | 106        | 1.07      | 1.6                         | 5                 | I M2(M1) Ex e mb[ia] I                    | 120         |
| ZAM-SERVIS DKD-2000                | 17.85     | 195        | 2.07      | 4                           | 0.9               | I M2(M1) Ex d [ia] ia I                   | 50          |
| MTA PNS 04/M                       | 22        | 93         |           | 2                           | 3                 | I M2(M1) EEx d e [ia] I                   | 50          |
| MM Group<br>MM5041DCx Uo=21,42V    | 21.42     | 147        | 0.787     | I 1.25                      | I 4.1             | I (M1) [EEx ia] I<br>II (1)G [EEx ia] IIC | 100         |
| MM Group<br>MM5041ACx Uo=28V       | 28        | 93         | 0.66      | I 0.48<br>II 0.07/0.06/0.03 | I 8<br>II 0/1/4.1 | I (M1) [EEx ia] I<br>II (1)G [EEx ia] IIC | 60          |
| MK72-S19-Ex0/24VDC                 | 27.6      | 131        | 1.32      | 0.205                       | 3                 | II (1)GD [EEx ia] IIB                     | 180         |
| Pepperl+Fuchs<br>KFD0-SD2-Ex1.1180 | 25.2      | 184        | 1.159     | I 4.15<br>II 0.82           | I 13.78<br>II 4.2 | I (M1) [Ex ia] I<br>II (1)GD [Ex ia] IIB  | 120         |

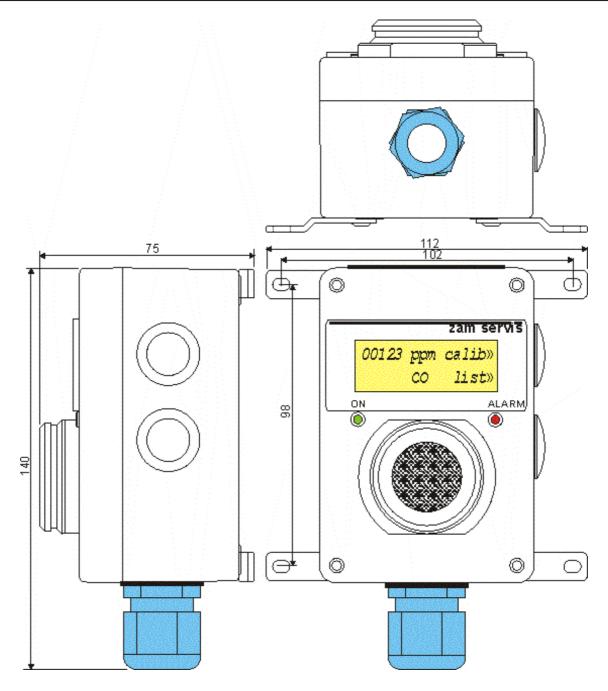
## Attainable distance


| Cross section of a Cu<br>conductor | Resistance of a line loop | Attainable distance from the source with Rmax=40Ω |
|------------------------------------|---------------------------|---------------------------------------------------|
| 0.5mm <sup>2</sup>                 | 78 Ω/km                   | 500m                                              |
| 0.75mm <sup>2</sup>                | 52 Ω/km                   | 750m                                              |
| 1mm <sup>2</sup>                   | 39 Ω/km                   | 1000m                                             |
| 1.5mm <sup>2</sup>                 | 26,6 Ω/km                 | 1500m                                             |
| 2.5mm <sup>2</sup>                 | 16,0 Ω/km                 | 2500m                                             |

#### Conversion characteristic, range 0-500ppm on the analog output 4-20mA.



Conversion characteristic of freely adjustable current, voltage and frequency output. The example shows conversion of the range 0-500ppm on the analog output 4-20mA.


#### Internal limitation of maximum current and voltage



Internal limitation of maximum current and maximum voltage on analog output Maximum output values obtainable according to analogue output loading.



Maximum value of resistance on the current output (Rmax = detecting resistance + line resistance) Recommended loading of the voltage output is 5 to 50 k $\Omega$ 



Mechanical dimensions of SC-TOX

# Supplement A: To sensors equipped with M12 connectors.

## General

SC-... sensors may be equipped with connectors instead cable entries. The connectors are made in two versions: In case of the 8-pin version, all detector terminals are brought out to the connector, or in case of the 4-pin version, power supply and one of the interfaces are brought out to the connector, i.e. analogue output, digital output, and communication interface.

The connectors are already mounted on the detector body by the manufacturer. It must be specified in the order what type of connector it should be.

The cable connectors are delivered separately, i.e. connector, cable, and connector cover separately. Assembling is carried out by user.



Owing to surface distances and clearances in the connector and cable parameters, it is necessary, while connecting, to consider the fact that all inputs and outputs of the detector as well as the circuits in the connected cable are part of one intrinsically safe circuit.

### Use

Connection using the connector makes it possible to promptly replace one detector with another. When replacing, it is not necessary to open the detector.

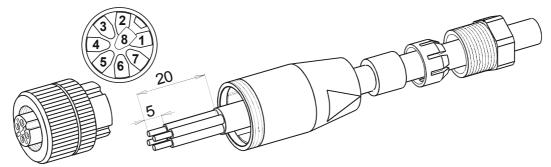
This makes it possible to calibrate detectors in workshop premises, for example. At the measurement point, you can replace the existing detector with the calibrated one and take the one which was used to workshop and calibrate it there.

## Description

It is an industry standard M12 A-coded connector, "M12 connectors A-coded"; there are 4-pin or 8-pin connectors.

Instead of the bushing on the detector body, there is a zinc/nickel-plated brass male connector with protective cover that must be mounted in case that the connector with cable is not connected.

There is a plastic connector with a metal nut and connector cover on the cable. The connector cover must be put on or screwed onto the connector if the connector cable is not connected to the connector on the detector body. The connector has screw-type terminals.


### Installation and assembly

The connector on the detector body is delivered installed by manufacturer; including connector cover; pin numbering and wiring colour codes are referred to further. Connector pin numbering is consistent with detector terminal numbering.

| 8-pin | Pin | Colour | Terminal        | 4-pin | Pin | Colour | Terminal              |
|-------|-----|--------|-----------------|-------|-----|--------|-----------------------|
| 45°   | 1   | white  | 1 Analog out +  | 45    | 1   | brown  | 3 Power +             |
| 30 2  | 2   | brown  | 2 Analog out -  |       | 2   | white  | 1 A- (6 D-, 8 RS485B) |
|       | 3   | green  | 3 Power +       |       | 3   | blue   | 4 Power -             |
| 5 6   | 4   | yellow | 4 Power -       | 4     | 4   | black  | 2 A+ (6 D+, 8 RS485A) |
|       | 5   | grey   | 5 Digital out + |       |     |        |                       |
|       | 6   | pink   | 6 Digital out - |       |     |        |                       |
|       | 7   | blue   | 7 RS485A        |       |     |        |                       |
|       | 8   | red    | 8 RS485B        |       |     |        |                       |

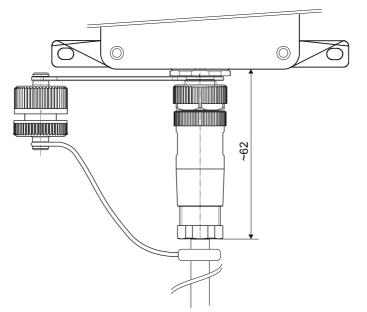
Wiring of connectors on detector body; pins are drawn when looking into the connector.

The cable connector uses the same wiring colour codes as the connector on the detector body. Wire stripping length and connector assembling is indicated in the figure below. It is absolutely necessary to keep the lengths and after assembling the connector, tighten the connector bushing properly so that it can grip the cable jacket. Use a  $2 \times 0.5$  screwdriver for the screw terminals. After assembling, attach the cover to the cable and secure from losing it.



Adapting the cable conductor ends, connector assembling; pins are numbered when looking at screw-type terminals,

## **Operating instructions**




The connectors and covers may never remain open! Either connector covers are put on the connectors or the connectors are connected and consequently, the covers of connected connectors are connected together!

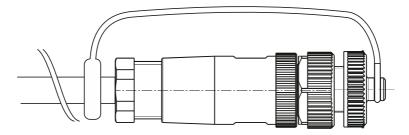
Never use a pair of pliers while handling the connector!

#### Connection

Remove the covers from both connectors. Make sure that no dirt is found in the connectors and their covers and remove the dirt if present. Slide the cable connector into the connector on the detector body and turn until locking mechanisms and connector keys are correctly matched and push all the way in. Apply adequate torque to the knurled nut on the cable connector to secure the connection. Screw the connector covers together and tighten slightly.

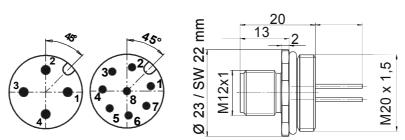


Connection of connectors and protective covers.

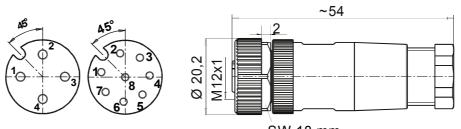

#### Disconnection

Separate the connector covers from each other by screwing them apart. Loosen the securing nut on the cable connector manually and screw out the nut as long as the connectors are disconnected from each other. Put protective covers on both connectors. To avoid damaging the connector cable, store it properly.

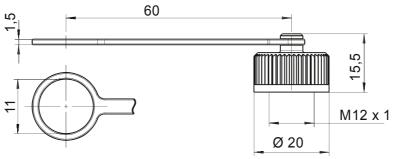
If the nut cannot be loosened by hand, use an 18mm spanner, 2mm high, for hexagon nuts. The securing nuts are provided with the hexagon. Be very careful not to damage the nut. At the same time, it is convenient to hold the connector on the body with a 22mm spanner.



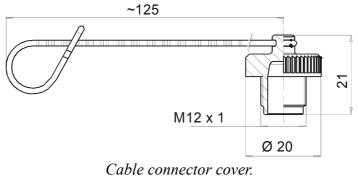

Detector body with the connector and the protective cover on.




Cable connector with protective cover on.


#### **Connector figures**




Panel mount connector, looking into the connector, dimensions.



SW 18 mm *Cable connector, looking into the connector, dimensions.* 



Panel mount connector cover.



Connection of connectors and protective covers.

### Maintenance

Carried out similarly as described for the product.

Make sure to keep inner spaces of connectors and covers as well as threads clean!

#### Repairs and spare parts

The following parts are delivered.

| Туре                                | Pins | Order number                             | Remark                                                                                      | Ver. |
|-------------------------------------|------|------------------------------------------|---------------------------------------------------------------------------------------------|------|
| Cable connector                     | 8    | 99-0486-12-08                            | cable diameter 6–8 mm                                                                       | А    |
| Cable connector                     | 4    | 99-0430-14-04                            | cable diameter 4–6 mm                                                                       | В    |
| Cable connector                     | 4    | 99-0430-314-04 cable diameter 2.5–3.5 mm |                                                                                             | В    |
| Connector cable cover               |      | 08-2425-010-000                          |                                                                                             | A,B  |
| Panel-mount connectors   8   09-348 |      | 09-3481-642-08                           | Cut the wires short to 60mm, strip                                                          | A    |
| Panel-mount connectors              | 4    | 09-3431-642-04                           | 8mm insulation off and provide them<br>with ferrules with 0.25mm <sup>2</sup><br>insulation | В    |
| Connector cable cover               |      | 08-2989-000-000                          |                                                                                             | A,B  |
| Cable                               |      | LiYY 8 x 0,34                            | Minimum withdrawal quantity is in                                                           | A    |
| Cable                               |      | LiYY 4 x 0,34                            | hundreds of metres. Upon enquiry.                                                           | В    |

The panel mount connector is designed for mounting onto the detector body and it is tightened at 2 to 3 Nm. Owing to its low tightening nut, it is necessary to be very careful not to damage the connector. The remaining items as described for the product.

## **Document revision**

| 28. 11. 2012 | Type for NH3 and information about using in NH3 atmosphere added.                                                                                                                                                                                                    |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18. 9. 2012  | Reformatting the document, removal of information not related to the existing software version, additional information for current software version. Modification of factory default settings. Calibration limit changed to 0 days. Description of connectors added. |
| 18.4.2013    | New sensor 4CM. Formal changes, reformatting. Unification, change the type description.                                                                                                                                                                              |