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Abstract

This paper presents a case study in formal specification and verification of a smart
card application. The application is an electronic purse implementation, developed
by the smart card producer Gemplus as a test case for formal methods for smart
cards. It has been annotated (by the authors) with specifications using the Java
Modeling Language (JML), a language designed to specify the functional behavior
of Java classes. The reason for using JML as a specification language is that several
tools are available to check (parts of) the specification w.r.t. an implementation.
These tools vary in their level of automation and in the level of correctness they
ensure. Several of these tools have been used for the Gemplus case study. We discuss
how the usage of these different tools is complementary: large parts of the specifi-
cation can be checked automatically, while more precise verification methods can
be used for the more intricate parts of the specification and implementation. We
believe that having such a range of tools available for a single specification language
is an important step towards acceptance of formal methods in industry.

Key words: Formal specification languages, smart cards, Java Card, formal
verification, JML, ESC/Java, annotations

1 Introduction

With the emergence of smart cards, industry has become more interested in
techniques to establish the correctness and security of the applications devel-
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oped. Typical smart card applications like electronic purses and health care
information holders contain privacy-sensitive information. For the acceptance
of the use of smart cards in such domains, it is necessary that the users trust
that details of their private life are not passed on to third parties. Industry
has realized that the only way to ensure this, is by rigorous use of formal tech-
niques for specification and verification of smart card applications. Moreover,
this is enforced in higher levels of evaluation schemes like Common Criteria.
This paper does not deal with security aspects like data leakage, but inves-
tigates functional behavior and possible abnormalities such as null pointer
exceptions. Proper functional behavior and safety properties are a first step
towards secure applications. Other researchers investigate how JML can be
used to specify actual security features [28].

However, as always, the problem is that formal methods are considered dif-
ficult to use. There is a wide range of tools available that can be used to
establish different properties of an implementation. In general, each tool uses
its own specification language. Thus, with every new tool one has to under-
stand the techniques, underlying theory and the specification language used.
And if one wishes to use different validation techniques on the same appli-
cation, one has to adapt the specification accordingly each time. This large
overhead to apply new techniques makes industry reluctant to apply formal
methods; if they use formal methods at all, then preferably with a single tool
using a specification language that they master well. Therefore, a first step to
make formal methods more accessible would be to have a single specification
language and different tools that can match (different aspects of) this spec-
ification with an implementation. These tools can then vary in their level of
precision, but also in their ease of use. In general, tools that are very precise
and allow to check arbitrarily complicated specifications will need more user
interaction than tools that check a limited subset of the specifications.

An interesting development in this direction is the JML project. JML – short
for Java Modeling Language [19,20] – is an annotation language for Java. It
allows one to write functional behavior specifications for Java programs, using
a Java-like syntax. JML is designed to be relatively easy to understand for an
experienced Java programmer. In fact, by now JML has become the de facto
standard source code level specification language for functional behavior of
Java programs in the academic community. As a result, more and more tools
that aim at the verification of Java programs are adopting JML as property
specification language (see [3] for an overview).

This paper reports on work done in this context, using different tools on (parts
of) a single JML specification. For a single applet (consisting of 42 classes and
432 kB in total of code and documentation) a specification has been writ-
ten in JML. The specification for this applet has been checked using ESC/
Java [22,12], a tool for automatic static checking of Java programs, aiming at
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finding efficiently the most common program errors. Parts of the specification
and implementation also have been verified within the LOOP project [23], a
project that aims at full verification of Java programs using interactive theo-
rem proving. The LOOP approach has been applied to some algorithms that
manipulate data in an intricate way, and whose verification falls completely
out of the scope of ESC/Java (and other automatic tools).

Elsewhere the authors have reported on the individual case studies in two
separate papers [2,5] with two separate tools, but here we want to show how
the different techniques complement and contribute to each other in a natural
way. We do not want to argue that a certain approach is better, in fact we
think they should be used both. Given an implementation, for large parts of
a specification, it might be sufficient to use static checking techniques to gain
confidence in its correctness, but for the crucial algorithms full verification is
necessary. However, the effort needed for verification is actually reduced by
using static checking beforehand, because this can already identify the errors
that are relatively easy to find.

The electronic purse case study that forms the basis for this work has been
provided by Gemplus. It has been developed by several trainees, and later been
extended by some members of the Gemplus research lab. The case study is
publicly available 1 . It is intended to be an example of a Java Card 2 applet on
which different formal methods could be tested. Gemplus provides the applet
without a formal specification: the JML specifications are ours. It was known
beforehand that the code contained bugs, but it gives a reasonable impression
of how Java Card applets are structured. The work done on this case study,
both with ESC/Java and LOOP, convinced smart card manufacturers to adopt
JML and (at least) static checking in their development process.

This paper is structured as follows. In the next section the language JML is
introduced, together with several tools using JML as input language. In partic-
ular, ESC/Java and the LOOP tool are introduced. Then, Sect. 3 gives more
details about the electronic purse case study. Next, Sect. 4 discusses several
aspects of specifying Java Card applications and Sect. 5 gives an overview of
how the purse case study is annotated and checked using ESC/Java, while
Sect. 6 focuses on a single class and discusses its verification – using LOOP –
in full detail. Finally, Sect. 7 draws conclusions and sketches a view on further
use of formal methods in industry.

1 Via http://www.gemplus.com/smart/r_d/publications/case-study/.
2 Java Card is a dialect of Java that is used to program smart card applications.
The Java Card language is an extended subset of Java, in particular it does not
contain multi-threading, floats, doubles and multi-dimensional arrays, but it does
contain some additional constructs, such as shareable interfaces, which are used to
enable communication between different applets.
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2 JML

2.1 The language

The development of JML – short for Java Modeling Language [19] – was
started by Gary Leavens and his team at Iowa State University, but is now a
community process with many people involved [20]. There is a group of active
users and tool developers, where new language proposals are discussed before
they actually become part of the “official” language standard.

The JML language is designed to be easy and accessible for an average Java
programmer. Therefore, the specifications use Java syntax and are written in
the source code as specially marked comments. Markers /*@ .. @*/ and //@

enable the various JML tools to recognize the comments as JML annotations.

A simple JML specification consists of pre- and post-conditions for meth-
ods (denoted by the keywords requires and ensures) and class invariants,
restricting the reachable state space of an object. However, if wanted and
needed, much more complicated properties can be expressed. Here we present
only a few language constructs that are necessary for understanding this pa-
per; we refer to the standard language documents for a full description of the
language [19,20].

First of all, a method specification can contain exceptional postconditions,
so-called exsures or signals clauses. An exceptional postcondition specifies
which conditions should hold, if a method terminates abruptly, because of an
exception. A typical usage of exceptional postconditions is to specify that the
exception is thrown before any instance variables have been changed (thus
implicitly preserving the class invariants, see the example in Fig. 1 below).

Method specifications also can contain modifies clauses (also known as as-

signable or modifiable clauses, or frame conditions) that restrict which
variables may be changed by a method call. Modifies clauses are crucial when
doing modular program verification [21].

It is also possible to restrict the reachable state space of an object by spec-
ifying a constraint. In JML, this denotes a relation between the pre- and
post-state of a method, restricting how a variable might change. One can for
example specify that a variable is constant or that it can only increase. No-
tice that invariants and constraints could be expressed as pre-post-condition
specifications for each method, but by specifying them explicitly, one gets a
higher level of abstraction. Moreover, in this way they immediately carry over
to subclasses, i.e. all methods in subclasses have to respect the invariants and
constraints of superclasses.
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Sometimes one also likes to specify explicitly that a condition holds at a partic-
ular point in a method body. For this, JML provides the assert annotation. If
a method body contains such an assert annotation, this means that whenever
control reaches this point in the method body, the associated condition should
hold. This can be used for example to add outlines of correctness proofs to
the implementation of a method body – as is used by the LOOP compiler, see
below – but also to state that a particular control point never can be reached
(using assert false;).

As mentioned before, the JML specifications use Java syntax. More precisely,
the various conditions are written as side-effect-free boolean-typed Java ex-
pressions. To make the language more expressive and usable, several additional
specification constructs are available. Again, we mention only the few that are
relevant for this paper. For further information we refer to the JML documen-
tation [20].

First of all, there is a special keyword \result that refers to the return value.
This keyword can only be used in ensures clauses. One can refer to the value
of an expression E in the pre-state (before method body execution) by writing
\old(E). This keyword can be used both in the ensures and signals clauses.
Keyword \old is used to see how an expression differs from its original value.

Finally, to have a higher level of abstraction in specifications, JML allows one
to declare so-called model variables. These are variables that exist only at
the level of the specification. Declarations of model variables have the same
format as declarations of normal variables, but are preceded by the keyword
model. Model variables can be related to concrete variables (or other model
variables) by represents and depends clauses. A represents clause specifies
how the value of a model variable can be calculated from the values of the
concrete variables. A depends clause only specifies on which concrete variables
the value of the model variable depends. Hence if all the concrete variables
in the depends clause are unchanged, one can assume that the value of the
model variable is also unchanged, and if the model variable may be modified,
the concrete variables implicitly also may be modified. If a represents clause
is given, the information in the depends clause is redundant. However, since
often it is not possible to give the represents clause – for example when speci-
fying an abstract class – it is useful to also have the depends clause. For more
information on depends and represents clauses and their use in modular ver-
ification we refer to the work of Leino [21]. ESC/Java provides a lightweight
variation of model variables, called ghost variables. However, since it is not
possible to specify represents and depends clauses, their use is limited.

To conclude this section, Fig. 1 shows part of the JML specification of the
class Decimal from the case study at hand. The class Decimal represents
decimal numbers as composed of an integer and decimal part (intPart and

5



public class Decimal extends Object{

public static final short MAX_DECIMAL_NUMBER = (short) 32767;

public static final short PRECISION = (short) 1000;

/*@ spec_public @*/ private short intPart = (short) 0;

/*@ spec_public @*/ private short decPart = (short) 0;

/*@ invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&

@ 0 <= decPart && decPart < PRECISION;

@

@ model int decimal;

@ represents decimal <- intPart * PRECISION + decPart;

@ depends decimal <- intPart, decPart;

@*/

/*@ behavior

@ requires true;

@ modifies decimal;

@ ensures decimal == v * PRECISION;

@ signals (DecimalException e)

@ v < 0 &&

@ decimal == \old(decimal);

@*/

public Decimal setValue(short v) throws DecimalException{

if(v < 0)

DecimalException.throwIt(DecimalException.DECIMAL_OVERFLOW);

intPart = v;

decPart = (short) 0;

return this;

}

.

.

.

}

Fig. 1. Fragment of the annotated class Decimal

decPart, respectively). As JML does not allow to include private fields in
public specifications, we add /*@ spec_public @*/ immediately before the
declarations of these two fields. This keyword causes the fields to be included
in the scope of every specification. The class invariant restricts the possible
values of these variables: intPart is a positive number, less than the constant
MAX_DECIMAL_NUMBER – the maximal value of a short, while decPart ranges
between 0 and the constant PRECISION. The value of PRECISION is 1000, thus
the class Decimal will represent decimal numbers up to three decimal places.

To denote the value of the decimal number represented, a model variable
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decimal has been declared. The value of this variable depends on intPart

and decPart, and the represents clause shows how.

As an example, we show the specification of the method setValue, which
takes a single argument v and as a result sets the decimal number to represent
v.000. We do not explicitly specify any precondition for this method 3 (it is
a defensive specification, as discussed in Sect. 4). The method may modify
decimal, thus implicitly it may modify the variables intPart and decPart. If
the method terminates normally, the value of decimal is set appropriately
(and because of the represents clause and the class invariant this implies
that decPart and intPart are set appropriately). If the method terminates
abruptly with a DecimalException, then this is because the argument v is
less than 0. In this case, the value of decimal (and implicitly of intPart and
decPart) is unchanged.

2.2 The tools

As mentioned before, there is a wide range of tools available using JML as
specification language. This is one of the reasons why JML is becoming the
de facto standard specification language for source code level specification of
Java programs. For our case study, we have used the Extended Static Checker
for Java (ESC/Java) [22,12] and the LOOP compiler [23]. We will describe
these tools in some detail, followed by a brief description of other tools that
are available for JML. Again, for a more extensive overview of the various
tools, see [3].

2.2.1 ESC/Java

ESC/Java has been developed at Compaq Research, in the group led by Rus-
tan Leino [22,12]. Currently, it is no longer maintained by Compaq, but it is
available as open source software. An improvement making it compatible with
official JML (ESC/Java 2) is done by David Cok (Kodak) and Joseph Kiniry
(Nijmegen)[10]. At the time of writing and verifying the ESC/Java specifica-
tions in this paper, version 2 was not yet available. Therefore, the ESC/Java
version used here is Compaq release 1.2.4.

The initial design goal of ESC/Java was to develop a tool which could effi-
ciently find common programming errors, such as indexing an array out of
bounds or null-pointer dereferencing. The user can guide the search for errors
by putting appropriate annotations in the code. For example, a user might
specify that some method argument should always be a non-null-reference

3 Thus, by default, this method has precondition requires true;.
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//@ requires o != null;

void m(Object o) {

o.n();

}

ESC/Java finds no problem.
//@ requires true;

void p(Object o) {

o.j();

}

ESC/Java checks whether o is not
null

Fig. 2. ESC/Java example

(the requires clause of method m in Fig. 2). When checking the method
body, the tool will then assume that this is actually the case (thus the call
o.n() in Fig. 2 will not raise a null pointer exception), but for every call to this
method, it will check whether the assumption actually holds (thus ESC/Java
will warn for a potential problem in the call m(x) in method p in Fig. 2,
because it cannot ensure that x is non-null).

ESC/Java proceeds by generating verification conditions, based on the annota-
tions and the code. The verification conditions are sent to a dedicated theorem
prover, called Simplify 4 . ESC/Java issues a warning if Simplify cannot estab-
lish the proof obligation. However, such a warning does not necessarily mean
that the program is incorrect, as both Simplify and the modeling of the Java
semantics underlying ESC/Java are unsound and incomplete. The designers
chose to accept this, in order to keep simplicity and good performance of the
tool. Also, if the tool does not issue any warning, this does not necessarily
mean that the program is correct. Again, to keep performance and simplicity
of the tool, and to avoid many spurious warnings, the designers of the tool
do not always generate all the necessary verification conditions. For example,
a loop statement by default is approximated by a single loop iteration. The
ESC/Java manual [22] contains a detailed list of known sources of unsoundness
and incompleteness of the original ESC/Java.

The specification language that is used by ESC/Java is not exactly a subset of
JML. Already some work has been done on integrating the two languages [8]
and currently work on this is continued. However, for this paper the exact
differences are not relevant. It is sufficient to know that ESC/Java supports
the specification constructs described above, except for the constraint and
modifies construct and the support for model variables.

2.2.2 LOOP tool

The LOOP tool has been developed at the University of Nijmegen. Its purpose
is to offer a sound environment within the theorem prover PVS [27] in which
formal verification of JML specifications written for Java source code can

4 See http://research.compaq.com/SRC/esc/Simplify.html.

8



Loop compiler

Java source code

JML specifications

PVS QED?
logical theories +

proof obligations

semantic prelude

Fig. 3. LOOP tool schema

be performed. What is usually called the LOOP tool actually consists of a
collection of tools. The relation between the different parts is shown in Fig. 3.

Java source code and associated JML specifications are fed into the LOOP
compiler which generates PVS code. The Java source code is translated to
PVS logical theories which are based on the handwritten “semantic prelude”.
This prelude defines sequential Java in all its details. The JML specifications
are translated into PVS predicates. The aim is to show that the predicates
generated from the JML annotation hold for the translated Java source code.
The actual interactive verification work thus takes place inside PVS.

In the LOOP translation of Java methods to PVS theories, the structure of
the methods remains intact. While proving, we can therefore step through the
method body using different techniques. The following list gives an overview
of available techniques for proving the correctness of a method given its spec-
ification.

(1) All Java language constructs have appropriate Hoare rules associated
with them [18]. All these rules are proved correct in terms of the un-
derlying semantics. The Hoare rules are used to split up the proof obli-
gation in several smaller proof obligations. For example, the Hoare rule
for composition splits up the proof obligation in two parts. The down-
side of reasoning with Hoare rules is that they require user interaction.
The Hoare rule for composition needs an intermediate predicate which is
the post-condition for the first statement, and the pre-condition for the
second one.

(2) To avoid excessive user interaction, several Weakest Precondition (WP)
techniques [17] can be applied to enable automatic proofs of non-recursive
programs. Like the Hoare rules, the Weakest Precondition rules are also
proved correct in terms of the underlying Java semantics.

(3) When a proof is completely split up and decomposed after applying Hoare
or Weakest Precondition rules, the remaining proof obligations, if any,
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must be verified by “semantic rules” and logical deduction. These se-
mantic rules are either generated by the LOOP compiler, or present in
the semantic prelude [15]. The semantic rules describe the actual Java
semantics. Applying these rules eventually brings a Q.E.D., or an un-
provable formula.

The three proof methods above are used in combination. Sometimes a method
body is too long to be handled by WP (PVS might fail due to lack of resources).
The body is then split up by Hoare rules. When a proof obligation is on the
granular level (i.e. assignments) we revert to using semantic rules.

Because the whole system is sound (modulo the soundness of PVS, and the
handwritten semantic prelude of course), specifications verified by LOOP can
be trusted. The biggest downside of doing such heavyweight verification work
is the cost of user interaction.

For example, when applying the Hoare rule for composition on statement
s1;s2, an intermediate predicate has to be constructed to serve as a post-
condition for s1 and a pre-condition for s2. Constructing intermediate pred-
icates in PVS is painstaking because one has to write these in terms of the
semantic prelude. Fortunately, we can avoid constructing such a predicate in
PVS by writing intermediate predicates in the Java code using in-line JML as-
sertions. The LOOP tool converts these assertions to intermediate predicates
in terms of the semantic prelude. Implementing support for in-line assertions
is part of the plan to reduce user interaction. Apart from in-line assertions,
there is also support for loop variants (JML keyword decreasing) and invari-
ants (JML keyword maintaining). The JML used by the LOOP compiler is a
subset of JML. We do, for example, not cover quantifications outside behav-
ior specifications. The core of JML is supported though. We also added some
modifiers for JML assert statements (assert) saying whether the previous
assert still holds.

2.2.3 Other tools

To illustrate the wide range of formal techniques that are available when one
decides to use JML as specification language, we briefly survey several other
tools that use JML as specification language.

When the development of JML started, it was intended to be used with a
runtime assertion checker (as advocated in the Design by Contract approach
in Eiffel [25]). The JML tool, which is developed at Iowa State University, does
exactly this: it translates annotations into runtime checks. When running the
translated code on example input, every time an assertion is violated, an
exception is thrown.
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Further, at MIT one uses JML as specification language for Daikon [9], which
is a tool for invariant detection. Based on several test runs, this tool tries to
establish possible class invariants.

There are also several tools which are inspired by ESC/Java. Chase [6], devel-
oped at INRIA Sophia Antipolis, is a tool for checking the modifies clauses,
an aspect of JML which is not treated by ESC/Java. At Compaq, a tool called
Calvin [13] has been developed. Calvin can be used to check properties about
multi-threaded programs. It uses a technique to reduce the proof obligations
to proof obligations on single threads (using appropriate annotations), which
then can be checked using ESC/Java.

Further, at Gemplus, a tool called Jack has been developed [4]. Jack works
similar to ESC/Java, in that it generates proof obligations based on the an-
notations and then sends those off to a prover, but it aims at being sound and
complete. Jack has been designed in such a way that it can interface different
proof tools (currently AtelierB, Simplify and Coq). Further, Jack has been in-
tegrated with a standard IDE, which makes it easy to use for a Java developer.
Other tools for full program verification using interactive theorem provers are
Jive and Krakatoa. The Jive tool [26], which is developed in Kaiserslautern,
implements a Hoare logic for Java [29] and generates proof obligations for
PVS or Isabelle 5 . The Krakatoa tool [24] is developed at INRIA Rocquen-
court. It uses the Why tool [11] to generate verification conditions as Coq
proof obligations.

3 The Gemplus electronic purse

The Gemplus electronic purse is a smart card application that has been devel-
oped to serve as a realistic example for researchers working on formal methods
for the Java Card platform [1]. However, it is too big to fit on most of the
cards that are currently available.

Any Java Card application consists of two parts: the terminal side, imple-
menting the configuration and communication functionalities, and the card
side, implementing the Java Card application itself (see Fig. 4). These two
sides communicate with each other by sending APDU (Application Protocol
Data Unit) messages, which is an ISO standard defining the way in which
commands and data are structured. In Java Card, the APDU is a class with
a member of type byte array containing the raw data.

On the card side, the electronic purse provides the card holder with banking

5 In fact, Jive does not use JML, but it uses a JML-like language.

11



terminal sideCard issuer applet
APDU

messages

Shared
interfaces

Purse applet

Loyalty applets

Fig. 4. The electronic purse

functionalities such as credit, debit and currency change. The card side of
the purse application contains three kinds of applets: loyalty applets, the card
issuer applet and the purse applet. These applets communicate with each other
by means of shared interfaces, the standard mechanism of communication
between applets. When the purse applet wishes to call a method of a loyalty
applet, it requests the loyalty applet for an object implementing the loyalty
shareable interface. The loyalty applet then decides whether to give the purse
a reference to such a shareable interface object.

The card issuer applet keeps information of the card holder such as name and
identifier and PIN code, which is necessary to initialize the card.

The purse applet implements the basic operations of credit, debit and cur-
rency change, and also implements mechanisms for installing, selection and
de-selection of the applet. The purse applet interacts with loyalty applets in
such a way that whenever the card holder has made a purchase, the loyalty ap-
plet can use this information to increase an internal counter of loyalty points.
These loyalty points can be used later to make purchases.

The purse applet keeps track of the balance of the purse, the transactions
done by the purse, the different currency changes that have taken place and
the different loyalty programs that the card holder is subscribed to. Certain op-
erations can be done only for a restricted set of users, which can be recognized
for instance by requiring a PIN code. The purse applet defines the different ac-
cess conditions and also binds these access conditions to operations. So, when
the card holder wishes to do some operation, the purse application will check
whether the card holder has the appropriate permissions.

Finally, the electronic purse contains several classes implementing crypto-
graphic concepts. In this case study we did not study this.

4 Specifications for Smart Card Applets

When writing behavioral specifications, several issues concerning the style of
specifications have to be considered. Notice that many of these issues are
relatively independent of the typicalities of smart card applications. However,
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/*@

@ requires aid != null;

@ modifies data[*];

@ ensures (\forall int i; 0 <= i & i < nbLoyalties ==>

@ (\forall int k; 0 <= k & k < data[i].aid.length ==>

@ data[i].aid[k] == aid.theAID[k]) ==>

@ !data[i].logfullInformation);

@*/

void removeNotification(AID aid) {

byte i = 0;

while(i < nbLoyalties) {

AllowedLoyalty al = data[i];

if(al.getAID().equals(aid)) {

al.dontKeepInformed();

}

else i++;

}

}

Fig. 5. Example heavyweight specification

the choices that we make often are influenced by the application domain. The
first subsection discusses several of these issues, and explains our choices for
this case study. The second subsection discusses the existing specifications for
the Java Card API.

4.1 Specification style

4.1.1 Lightweight vs. heavyweight specifications

The first point one has to decide upon is how “heavy” a specification should be.
That is, does one just want to specify under which conditions (no) exceptions
will occur, or does one also want to specify exactly which postconditions are
established, i.e. the complete behavior of a method or class.

Naturally, the more information is given by a specification, the better it re-
flects the behavior of a program. However, in some cases the postcondition of
a method might be too complicated to formulate or would basically require
repeating the method implementation. One also has to remember that giving
specifications only makes sense when one has reasonable confidence that the
specification is correct. Thus, when specifying methods with complicated con-
trol structures or data manipulations and checking these specifications with
an automatic tool as ESC/Java, it might not make sense to specify compli-
cated postconditions, because one can never rely on their correctness, given
the limitations of such tools. If one wishes to actually specify and verify such
complex postconditions, one should use e.g. LOOP and do full verification.
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Additionally, it is also important to consider what is the return of the invest-
ment put into writing specifications, i.e. how does the number of bugs found
relate to the amount of time spent on writing the specifications. If most bugs
can be found by writing lightweight specifications only, one seriously has to
consider whether it is worth the extra effort of making heavier specifications.
This issue is very important in industry, where every investment has to be
economically justified. Thus, it is important to find the right balance between
completeness and reliability of a specification.

To illustrate this, Fig. 5 contains a heavyweight specification of remove-

Notification in class LoyaltiesTable. The precise behavior of this method
is not so important, but what is important to see is that this method contains
two loops (one explicitly in the while statement, and one implicitly in the call
aid.equals), and the postcondition aims at describing precisely the intended
behavior of these loops. However, in this case ESC/Java is not able to establish
whether the postcondition is correct; one would need full verification – using
e.g. LOOP – for this.

With respect to this, we also would like to emphasize that even so-called light-
weight specifications are useful, because they describe exactly under which
conditions (no) exceptions will occur. For the correct functioning of a program,
unexpected exceptions are often a bigger threat than the risk of incorrect
calculations. Also, programmers tend to pay more attention to the correctness
of a computation than to whether it will handle all possible cases and will not
throw an unexpected exception.

The work that is done in this case study illustrates how the tools that one has
at hand influence the level of detail in the specifications. Most of the speci-
fications have been checked with ESC/Java, so that one cannot rely on the
correctness of postconditions for methods with complicated control structures
or data manipulations, such as removeNotification in Fig. 5. Similarly, for
the addition and multiplication methods in the class Decimal, ESC/Java can-
not establish any postcondition other than true. In contrast, using the LOOP
tool, specifications describing the complete behavior of these two methods
have been verified, as discussed in Sect. 6.

4.1.2 Defensive vs. offensive specifications

Independently of the question how complete one’s specifications should be,
one also has to decide whether to write defensive or offensive specifications.

An offensive method implementation requires that its input parameters are
valid and correct. It will not test whether this is the case; it is up to the caller
of the method to ensure it. If the method is called with inappropriate param-
eters, nothing can be guaranteed about its behavior. In contrast, a defensive
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Offensive specification for m() Defensive specification for m()
/*@ requires a != null; /*@ requires true;

@ ensures Q; @ ensures Q;

@ signals (E) false; @ signals (E) \old(a) == null;

@*/ @*/

void m(int[] a) { void m (int[] a) {

... ...

} }

Fig. 6. Offensive vs. defensive specification

method implementation does not make any requirements on its input parame-
ters: before manipulating them it will check for their validity. Typically, it will
throw an exception if the input is invalid (or do some sort of error recovery,
e.g. replacing it by some default value).

When writing specifications, this aspect of the method’s behavior will be made
explicit, An offensive specification will state in its precondition under which
conditions the method will function correctly (i.e. as specified). Nothing is
guaranteed on the behavior of the method, if the precondition is not respected.
When the program is verified, for each method call to the method, one will be
obliged to show that the precondition is respected. A defensive specification
however, will not make any requirements on the caller of the method (i.e. its
precondition will be requires true;), but it will typically specify which ex-
ceptions are thrown when the input parameters are invalid. Figure 6 sketches
an offensive and a defensive specification for the same method. When verifying
the program, in the offensive case, one has to verify that the precondition a

!= null is respected for each call to the method m(). In the defensive case, no
proof obligation exists for the precondition, but one has to take into account
that the method might finish abruptly, because of an exception, if it is called
with a == null.

Often, offensive specifications are considered as the better way to write spec-
ifications (see e.g. [25]). However, it might be the case that it is prescribed
explicitly that no assumptions may be made on the state of the caller. In such
cases it is necessary to write defensive specifications. This choice is ultimately
governed by an object’s interface to the outside world. For example, for a pri-
vate method it might still be possible to write an offensive specification, if all
calls to this method guarantee the precondition.

In this case study we started writing specifications for existing code. At first
we decided to leave the code unchanged 6 . Therefore we write defensive speci-
fications for methods that make explicit tests on the values of their arguments,

6 However, when writing formal specifications one gets a good idea about possible
improvements. Therefore, Sect. 6 presents the verification of an improved version of
the code (for the Decimal class only).
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thus following the implementation. However, as discussed in Sect. 5, we also
found several places where unnecessary tests were made and the exceptional
cases never could occur.

4.1.3 Level of abstraction of specifications

When writing readable specifications, it is important to have a reasonable level
of abstraction. Two techniques for achieving a higher level of abstraction are
the use of pure methods, i.e. side-effect-free methods, and the use of model
variables in specifications. Both are provided by JML and supported by the
LOOP compiler, but ESC/Java does not support them (except for the use of
ghost variables, which is a more limited variation of model variables).

Since within this case study most of the specifications are checked using
ESC/Java, the specifications often are more verbose than we would have liked.
In particular, most of the specifications are written in terms of the concrete
variables and without introducing any abstractions. However, for the class
Decimal specifications with and without model variables exist. Figure 1 (in
Sect. 2.1) contains part of the specification of Decimal with model variables.
As an example, the same method setValue is specified as follows for checking
with ESC/Java.

/*@

@ requires true;

@ modifies intPart, decPart;

@ ensures intPart == v;

@ ensures decPart == (short) 0;

@ ensures \result == this;

@ signals (DecimalException) v < 0;

@*/

public Decimal setValue(short v) throws DecimalException{ ... }

An example where abstraction could improve the readability of the specifica-
tion is in the communication between card and terminal. As explained above,
this communication takes place by sending so-called APDUs, which are com-
mands encoded as arrays. However, when writing specifications one would
prefer to do this in terms of the abstract notion of commands, instead of in
terms of the contents of the APDU buffer.

4.2 Specifications for the Java Card API

We used the specifications for the Java Card API written by Erik Poll and
other members of the LOOP project [30] as basis for this work. In short,
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these are offensive specifications that describe when methods are guaranteed
not to throw unwanted runtime exceptions. We cannot present here the JML
specifications for the whole Java Card API, but as an example we discuss the
method arrayCopy of the Java Card API.

/*@ requires src!=null & srcOff>=0 & srcOff+length<=src.length

@ & dest!=null & destOff>=0 & destOff+length<=dest.length

@ & length>=0;

@ modifies dest[*];

@ ensures (\forall int i; (i<=0 & i<dest.length) ==>

@ (destOff<=i & i<destOff+length) ?

@ dest[i] == src[srcOff + (i - destOff)] :

@ dest[i] == \old(dest[i]));

@ ensures \result == destOff+length;

@ signals (TransactionException e)

@ e._reason == TransactionException.BUFFER_FULL &

@ JCSystem._transactionDepth == 1;

@ signals (NullPointerException) false;

@ signals (ArrayIndexOutOfBoundsException) false;

@*/

public static final native short arrayCopy(

byte[] src, short srcOff, byte[] dest, short destOff,

short length)

throws ArrayIndexOutOfBoundsException, NullPointerException,

TransactionException;

The method arrayCopy copies length bytes located at position srcOff in
array src to position destOff in destination array dest.The precondition for
this method requires that src and dest have the right size and that the num-
ber of bytes for copying is a positive number. The postcondition specifies that
if the method terminates without raising any exception, then the method will
have copied length bytes from src starting in the position srcOff, to dest

starting in the position destOff. Otherwise, the method terminates abruptly
raising an exception of type TransactionException but the method will never
raise a NullPointerException or ArrayIndexOutOfBoundsException excep-
tion.

This is the kind of specifications that can be checked efficiently automati-
cally: a strong precondition about array variables, ranges of values in which
arrays can be accessed and conditions preventing the array variables of be-
ing null. This strong precondition allows one to specify that certain excep-
tions never can be raised; in this case ArrayIndexOutOfBoundsException

and NullPointerException. However, notice that this is not the case for the
exception TransactionException: this exception can occur if for example the
card holder decides to remove his card before the session is finished.

17



5 Checking the specifications for the Electronic Purse

After having discussed the general issues involved in writing specifications
for smart card applications, this section focuses on the actual specifications
for the electronic purse. As said before, we wrote a formal specification –
using JML – for most classes of the Gemplus electronic purse case study.
The majority of these specifications have been checked only with ESC/Java,
but the specifications for the class Decimal have been verified completely,
using LOOP technology. The next section discusses the LOOP verification in
more detail; this section presents the general ideas behind the specification,
and in particular it shows how relatively lightweight use of formal methods –
using automatic tools only – can already help to improve an application. We
show in particular how the formal specification helped to identify ambiguities
and inconsistencies in the informal documentation and unnecessary checks in
the implementation. However, this does not mean that full verification is not
necessary: the verifications as described in the next section fall completely out
of the scope of what can be checked with ESC/Java. On the other hand, the
verification with ESC/Java on the entire purse falls out of the scope of the
LOOP tool because the purse simply is too large. Manageable parts of source
code that can be verified with LOOP are in the order of hundreds of lines of
code.

Elsewhere [5], we have already reported on the different kinds of errors and
possibilities for improvement that we found in the case study with ESC/Java.
Here we will not discuss these in full detail, but we will give a more general
overview of the typical kind of problems that can easily be found by auto-
matic tools. However, to give an indication: we found roughly 20 errors and
possibilities for improvement. Further, we found approximately 25 unreach-
able code fragments. Notice that most of these errors are straightforward to
find, requiring only simple specifications.

When writing the specifications, we decided to take the code as it is as a
starting point. Only when we found real mistakes in the code, we would change
it, but we did not change the design or general structure. However, writing
formal specifications forces one to think carefully about the code, and often it
makes one aware of possibilities for improvement. Therefore, the verifications
in the next section are actually done on an improved version of the class
Decimal.

Since most of the specifications are checked only with ESC/Java, we can-
not have unlimited trust in their correctness. Therefore, we aimed at writing
specifications that were as “heavy” as possible, but where we still could feel
confident in the outcome of the tool. The full annotations – with an overview
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of remaining warnings – are available on a web-site 7 . Typically, if one wishes
to do full verification on fragments of the code, the remaining warnings and
the methods containing loops or recursion are the most interesting, i.e. they
are the most likely to still contain errors.

When checking the specifications, one is often forced to work in a bottom-up
manner. First one has to annotate the classes that are at the bottom of the
class hierarchy and that are used by many of the other classes, e.g. in this case
study the utility classes. Afterwards, using these specifications, one can go up
higher in the class hierarchy.

We found that writing and checking the formal specifications in particular was
important for the following two reasons:

• formal specifications help to maintain the consistency between documenta-
tion and implementation and to avoid ambiguities in the documentation;
and

• formally specifying class invariants – which exist often implicitly in the
programmer’s mind – allows to show the redundancy of tests on the well-
formedness of object states.

We will illustrate these aspects with some examples.

5.1 Informal documentation vs. formal specification

Over time, the electronic purse case study has been developed by several people
(trainees and employees of Gemplus). Looking at the documentation and the
implementation, it is evident that these different developers have not always
worked with the same ideas in mind. For example, in the class Decimal, the
informal documentation reads:

“Two important notes about a decimal number: it is limited to 32767 (short
representation) and the decimal part must be done in the interval [000,999].”

This informal documentation immediately suggests that an appropriate class
invariant would be the following (where MAX_DECIMAL_NUMBER is 32767 and
PRECISION is 1000).

invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&

0 <= decPart && decPart < PRECISION;

Notice that this class invariant is straightforward to write given the informal
class documentation; no difficult formalizations are needed. However, having

7 See http://www-sop.inria.fr/lemme/verificard/electronic_purse.
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written this formal class invariant enables one to use the different JML tools to
check whether this invariant is maintained everywhere. This is useful, because
from the implementation of the class, it becomes clear that not all developers
have adhered to this design decision about decimal numbers. For example,
having this formal invariant allows one to detect immediately that there is a
problem with the method oppose.

public Decimal oppose(){

intPart = (short) -intPart;

decPart = (short) -decPart;

return this;

}

This method should not be declared public, because it can break the class
invariant, by making intPart and decPart negative.

Having a formal class specification, instead of informal documentation only,
cannot avoid all inconsistencies. For example, the class Decimal also contains
methods isPositif and isNegatif, which denote whether the value is pos-
itive or negative, respectively. Since these methods do not break the class
invariant, one does not immediately detect that they are useless, given the
informal documentation. However, using the different JML tools it is easy to
show that the results of these methods actually are constant values, and thus
that these methods do not give any new information. For example, the method
isNegatif can be specified as follows.

/*@

@ ensures \result == false;

@*/

public boolean isNegatif(){

return (compareTo((short) 0) < (short) 0 );

}

Formal specifications do not only help to maintain an implementation over
time, but because of their precise semantics they can also help to avoid the
ambiguities, which typically occur in natural language documentation. To il-
lustrate this, we take an example from the class Transaction. In this class,
an instance variable type is declared as follows.

/* the transaction type: debit or credit */

/*@ spec_public @*/ private byte type;

Since the class also contains the following constant declarations:

/* the transaction status */

public static final byte TYPE_CREDIT = (byte)50;

/* the transaction status */
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public static final byte TYPE_DEBIT = (byte)51;

it seems natural to specify the following class invariant 8 .

/*@ invariant type == TYPE_CREDIT ||

@ type == TYPE_DEBIT;

@*/

However, when checking whether this invariant is respected by all methods
in the class, it turns out that it is not: the class contains a method reset()

which contains the assignment type = INDETERMINE;, where INDETERMINE is
another constant declared in the class. One could consider this as an error –
given the documentation – but it also seems reasonable that this is done on
purpose. After all, when initializing or resetting a transaction, one cannot say
whether it will be a credit or debit operation, and also neither of them is a
typical default value. Having a formal specification would clarify the initial
intention of the developer, and would allow to signal this problem earlier.

To summarize, we would like to stress that writing a – relatively easy – formal
specification, instead of informal documentation helps to maintain the consis-
tency of an implementation over time and to avoid ambiguities. When design
decisions, such as restricting the possible range of a variable, are specified for-
mally, each time the implementation is modified the various JML tools can
be used to check whether the design decisions have not been violated. And if
they are violated, one is forced to decide whether the design decision or the
implementation has to be changed. Notice that many of these violations can be
detected by automatic tools, thus they can be found with quick checks – over
and over again – during the development process.

5.2 Class invariants

In fact, class invariants do not only serve to formally specify certain design
decisions, they can also be used as a formal motivation that certain tests are
unnecessary. To illustrate this, we consider the method setTaux 9 , also from
the class Transaction.

void setTaux(Decimal tx) throws ISOException {

try{

taux.setValue(tx);

}

8 Notice that there exist several programming languages in which this class invari-
ant could be described precisely using enumeration types. Violations are then found
immediately by type checking.
9 Taux is the French word for rate.
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catch(DecimalException e){

//@ assert false;

ISOException.throwIt(PurseApplet.DECIMAL_OVERFLOW);

}

}

This method has a parameter tx, which is an instance of class Decimal. Thus,
we know that tx respects the class invariant for Decimal, as specified. The
method then assigns tx to the instance variable taux, using the setValue

method of the class Decimal. Since this method can throw an exception, the
call to setValue is put in a try-catch statement. However, given the spec-
ification of setValue and since the argument tx is a legal instance of class
Decimal, respecting its invariant, we can actually prove that this exception
will never be thrown. This is emphasized by the //@ assert false; annota-
tion, which means that this part of the program text will never be reached.
In fact, because of the class invariant of Decimal, we can give the following
method specification for setTaux.

/*@ requires tx != null;

@ modifies taux.intPart, taux.decPart;

@ ensures taux.intPart == tx.intPart;

@ ensures taux.decPart == tx.decPart;

@ signals (ISOException) false;

@*/

Notice in particular that we do not have to specify any conditions on tx.int-

Part or tx.decPart, it is sufficient that we know that tx respects its class
invariant.

As another example on the use of class invariants, we consider the class
AccessCondition. The electronic purse is implemented in such a way that
certain operations only can be performed when the card is in a particular
state. The class AccessCondition implements operations to check whether
the card is in the appropriate state. Following the documentation of the elec-
tronic purse, there is a variable condition, which can have only one of the
following constant values: FREE, LOCKED, SECRET_CODE, SECURE_MESSAGING or
SECRET_CODE and SECURE_MESSAGING. This last combination is represented by
the bitwise or of the two constants. This restriction on the variable condition
is easily expressed as a class invariant.

public static final byte FREE = (byte)1;

public static final byte LOCKED = (byte)2;

public static final byte SECRET_CODE = (byte)4;

public static final byte SECURE_MESSAGING = (byte)8;

/*@ spec_public @*/ private byte condition = FREE;
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/*@ invariant condition == FREE ||

@ condition == LOCKED ||

@ condition == SECRET_CODE ||

@ condition == SECURE_MESSAGING ||

@ condition == (SECRET_CODE | SECURE_MESSAGING)

@*/

When deciding whether the card is in the appropriate state to perform a
certain operation, this is basically implemented by a case distinction (a Java
switch statement), as in this method verify.

/*@ signals (AccessConditionException) false;

@*/

private final boolean verify(byte c)

throws AccessConditionException {

byte t = (byte)0;

switch(condition) {

case FREE: return true;

case SECRET_CODE: return [...]

case SECURE_MESSAGING: return [...]

case SECRET_CODE | SECURE_MESSAGING: return [...]

case LOCKED: return false;

default:

//@ assert false;

t = AccessConditionException.CONDITION_COURANTE_INVALIDE;

AccessConditionException.throwIt(t);

return false;

}

}

For our exposition, it is not important what this method actually computes,
but we are interested in its structure. The case distinction distinguishes all
possible values of the variable condition, as specified by the class invariant.
Thus, the default clause will never be reached. Again, this is emphasized by
our //@ assert false; annotation. Notice that since the default clause never
will be reached, the method will never throw an exception, as expressed by the
exceptional postcondition. In fact, because of the class invariant it is possible
to remove completely the throws clause from this method declaration.

Thus to summarize, we would like to emphasize that many class invariants can
be specified fairly easily: they directly reflect the informal documentation and
do not contain any complicated specification constructs. Moreover, they also
can be checked efficiently. Automatic checking techniques, such as ESC/Java,
can easily find places where invariants are violated. Finally, an additional
advantage of properly specifying class invariants is that it allows to avoid
unnecessary tests, because objects are known to respect their class invariants.
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6 Focus on a single class: the verification of Decimal

Next, we switch our attention to the specification and full verification of a sin-
gle class: Decimal. The specification and verification of the original Decimal
class was done earlier [2]. This section is about the specification and verifica-
tion of a modified Decimal class: one that fulfills our wishes in terms of clearer,
shorter Java code and specifications that are supplemental to the ones con-
structed and checked using ESC/Java [5]. When we refer to the Decimal class,
we mean our modified variant. Note that the specifications for the Decimal

class in this section are “out of scope” for fully automatic tools as ESC/Java.

The Decimal class receives special attention because:

• it is an independent, self-contained class. Hence, the verification is indepen-
dent of other specifications of the purse as well. This simplifies the verifica-
tion process;

• the Decimal class is a backbone of the purse applet. Therefore verification
is important, and its correctness is critical to the proper functioning of the
purse applet. Many classes in the purse use Decimal as a library class;

• it is not only a backbone of the applet (so is the class that handles the APDU
communications, for example) but it is also a functional class that does the
actual arithmetic needed to increase the balance on the card. Functional
specifications can be expressed well using JML;

• its size is limited. Large Java classes with elaborate methods are very costly
to specify and verify. The Decimal class consists of 40 methods, roughly 1.5
kilobytes, whereas the whole purse is 432 kB of source code.

The Decimal class, the header of which is shown in Fig. 1, is used in the
purse to store real numbers with a precision of three digits. Because floats
do not exists in Java Card, the Decimal class is the place where this kind of
arithmetic is defined. Two fields of type short are used for storage . When
storing value 3.493, the floored value 3 is put in field intPart and the rest
value as whole number 493 is stored in field decPart. Negative numbers are
not allowed 10 . This information is reflected in the class invariant.

/*@ invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&

@ 0 <= decPart && decPart < PRECISION;

@*/

To ease reasoning, an abstract field is added to the Decimal class specification
to denote the stored value. The value of the abstract field has a one-on-one
relationship with intPart and decPart, denoted by its represents clause,

10 They are not allowed in our version. Whether or not they could occur in the
original version of Gemplus remains unclear, see Sect. 5.1.
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repeated here for convenience.

/*@ model int decimal;

@ represents decimal <- intPart * PRECISION + decPart;

@*/

This so-called “representation function” is a function over the instance vari-
ables intPart and decPart. The abstract value of 3.493 is equal to 3493.

Out of the 40 members that make up Decimal, in the next subsection we give
an outline of the specification and verification of only one method, the one
that multiplies decimals. This method is interesting because it is the most
complicated one and because its original implementation is “incorrect”. Fur-
thermore, it uses Java rounding tricks which give us the possibility to show
our LOOP techniques w.r.t. reasoning with bounded arithmetic. Last but not
least it shows the need of unbounded integral types in specifications, which is
further discussed in Subsect. 6.2

Method mul uses method add to produce its result. The specification of add
is shown below. Details about its verification can be found elsewhere [2].

/*@ requires 0 <= f && f < PRECISION &&

@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&

@ e + intPart + 1 <= MAX_DECIMAL_NUMBER;

@ modifies decimal;

@ ensures decimal == \old(decimal) + e * PRECISION + f;

@ signals(Exception e) false;

@*/

private void add(short e, short f) { .. }

Arguments e and f contain respectively the integer and decimal part of the
number to add. Because the argument to add is not a Decimal object, the
pre-condition explicitly describes to which bounds e and f must adhere. For
Decimal objects, these same bounds are described in the invariant.

6.1 Implementation and specification of mul

Multiplication of decimals is difficult because of rounding. Suppose we have
two Decimal objects which represent decimal numbers a.b and e.f where a and
e are the corresponding values of intPart and b and f are the corresponding
values of decPart. Mathematically speaking, multiplication of a.b and e.f can
be written as the sum of 4 simpler multiplications.

a.b ∗ e.f = a ∗ e + a ∗ 0.f + 0.b ∗ e + 0.b ∗ 0.f (1)
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The first three of these multiplications can be computed using the add method,
because a and e are natural numbers. For example a ∗ e is computed by:

for ( short i = (short) 0; i < e; i++) {

add(a, 0);

}

which means in English: do e times add a.

The tricky part is the last multiplication in (1), namely 0.b ∗ 0.f , which is
called the “rest-part”. Because b and f are less than 1000, we know that
0.b∗0.f = (b∗f)/106. The result of (b∗f)/106 is always less than 1, and because
we are only interested in the 3 most significant digits (out of 6), we want to
calculate the truncated value of the rest-part: ⌊(b ∗ f)/103⌋, which thus lies
within [0, 1000〉. This truncated value must then be stored in decPart. A very
reasonable solution is thus to write add(0, ((b*f)/1000)). Unfortunately
this is not possible in Java Card. Arguments b and f are shorts, and the result
of their multiplication possibly does not fit in a short, which is the biggest type
available. We also cannot write add(0,(b/1000 * f/1000)) because in Java
(b * f)/1000 is not always equal to (b/1000) * (f/1000) due to premature
rounding of b/1000 and f/1000. Remember, in Java (347/10) * 10 == 340.

Gemplus circumvented the above problem in their mul method for which we
wrote a specification [2]. Unfortunately, their calculation of the rest-part is
in-precise. The specification for – a slightly simplified version of – Gemplus’s
private mul is given below. The original code [2] is not very relevant here.
The arguments of mul are two shorts, an integer and a decimal part. These
values are multiplied with the intPart and decPart of the this object. The
ensures clause defines the 4 multiplications of (1), where the rest-part is
constructed by some complicated rounding. The Gemplus multiplication code
satisfies the specification below, but mathematically speaking it is not defining
a multiplication.

/*@ requires 0 <= f && f < PRECISION &&

@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&

@ (e + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;

@ modifies decimal;

@ ensures decimal ==

@ e * \old(intPart) * PRECISION

@ +

@ \old(intPart) * f

@ +

@ e * \old(decPart)

@ +

@ /// difficult rest-part, given by four options

@ ( (f > 100 && \old(decPart) > 100)
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@ ?

@ ( ((\old(decPart)/10) * (f/10)) / 10 )

@ :

@ ( (f > 100 && \old(decPart) <= 100)

@ ?

@ ( (\old(decPart) * (f/10)) / 100 )

@ :

@ ( (f <= 100 && \old(decPart) > 100)

@ ?

@ ( ((\old(decPart)/10) * f) / 100 )

@ :

@ ( (\old(decPart) * f) / 1000 ))));

@ signals(Exception e) false;

@*/

private void mul(short e, short f) { ... }

The rest-part above is composed of case distinctions. Suppose we multiply
0.998 with itself, the answer given according to the above spec is 0.980. In
precision arithmetic the answer to this multiplication is 0.998001. Rounded to
3 digits, this makes 0.998.

In the Nijmegen implementation we chose precision arithmetic. An advantage
is that the specification of the rest-part becomes trivial. The private specifi-
cation for the new mul is shown below.

/*@ requires 0 <= f && f < PRECISION &&

@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&

@ (e + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;

@ modifies decimal;

@ ensures decimal =

@ e * \old(intPart) * PRECISION

@ +

@ \old(intPart) * f

@ +

@ e * \old(decPart)

@ +

@ (f * \old(decPart)) / PRECISION;

@ signals(Exception e) false;

@*/

The only problem left is to write an implementation that conforms to this
specification without overflow. Note again that an implementation would be
trivial (same as the spec) if Java Card would have integers. The new code for
mul is shown below.

void mul(short e, short f){

// intPart.decPart * e.f ==
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// intPart * e +

// 0.decPart * e +

// intPart * f +

// 0.decPart * 0.f

short a = intPart;

short b = decPart;

intPart = (short)0;

decPart = (short)0;

// a * e + 0.b * e

for (short i = (short)0; i < e; i++) {

add(a, b);

}

// a * 0.f

for (short i = (short)0; i < a; i++){

add((short) 0, f);

}

// 0.b * 0.f

short a1 = (short)(b / 100);

short a2 = (short)((b - a1 * 100) / 10);

short a3 = (short)(b - a1 * 100 - a2 * 10);

short d1 = (short)((a1 * f) / 10);

short d2 = (short)((a2 * f) / 100);

short d3 = (short)((a3 * f) / 1000);

short gross = (short)(d1 + d2 + d3);

short e1 = (short)((a1 * f - d1 * 10) * 100);

short e2 = (short)((a2 * f - d2 * 100) * 10);

short e3 = (short) (a3 * f - d3 * 1000);

short rest = (short)(e1 + e2 + e3);

add((short)0, (short)(gross + (rest / 1000)));

}

The rest-part of the new mul is computed by two shorts gross and rest, which
are both additions of 3 shorts: d1, d2, d3 and e1, e2, e3, respectively. The
construction of these shorts is explained by unfolding the rest-part (decPart
* f)/ 1000 below. In the following equations decPart and f are called a and
b respectively. When we write ai, we mean the ith digit of a (counting from
left to right).

(a ∗ b)/1000 = ((a1 a2 a3) ∗ b) /1000
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Number a consists of 3 digits.

=















100 ∗ a1 ∗ b

+ 10 ∗ a2 ∗ b

+ a3 ∗ b















/1000

Multiplication a ∗ b can therefore be split in 3.
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The results of each of the 3 multiplications are named c, c′ and c′′.
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Numbers c, c′ and c′′ are split in 2.

=















(c1 c2 c3)

+ ( c′
1

c′
2
)

+ ( c′′
1
)















+















(c4 0 0)

+ (c′
3

c′
2

0)

+ (c′′
2

c′′
3

c′′
4
)















/1000

The division by 1000 is distributed over these two components.
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The names in tt font correspond to fields in the mul method. All the parts of
this multiplication can be computed without the risk of overflow.

The specification of the mul method has been verified by a combination of
Hoare logic and Weakest-Precondition reasoning. Suitable intermediate pred-
icates are inserted as JML assertions in the method body (not shown), and
proved. The two for-loops require appropriate (in)variants (not shown). A 32-
bit bounded representation for Java’s numeric types has been used, see [16],
in the translations of both Java and JML expressions. The semantics of 16-bit
Java Card is preserved, because in the code no integer types are declared, and
all casts are explicit.

6.2 Integral semantics in specifications

By evaluating all JML expressions in a bounded integral representation, over-
flow can occur in specifications. It is an issue under debate in the JML com-
munity what the right semantics of integral types in specifications should be,
see [7]. Ideally, one would want to use the unbounded (mathematical) inte-
gers in specifications. This has the advantage that one does not have to worry
about overflow in specifications. The disadvantage is that by using two differ-
ent kinds of integral semantics, expressions can have different values in Java
and JML, for example Integer.MAX_VALUE + 1 == Integer.MIN_VALUE is
true in Java, but false in unbounded JML.

The mul method specified and verified in the previous subsection is invoked
by a public mul method which has a Decimal object d as argument, instead
of two shorts. Its post-condition can be written completely in terms of model
fields decimal and d.decimal.

/*@ requires d != null &&

@ (d.intPart + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;

@ modifies decimal;

@ ensures decimal == \old(decimal * d.decimal) / 1000;

@ signals(Exception e) false;

@*/

public Decimal mul(Decimal d) {

mul(d.getIntPart(), d.getDecPart());

return this;

}

Unfortunately, this specification can not be proved using bounded 32-bit in-
tegral semantics. The result of \old(decimal * d.decimal) possibly does
not fit in an integer. When the JML community agrees on how to deal with
bounded and unbounded specifications, the LOOP tool will be adjusted appro-
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priately. Until then, the integral semantics of JML and Java remain coupled
in LOOP technology, so it is either all bounded or all unbounded semantics.

7 Conclusions

This paper discusses experiences with specification and verification of an in-
dustrial smart card case study, using JML. One of the advantages of the JML
specification language is that it comes with a spectrum of validation tools,
ranging from runtime assertion checking through static checking to interactive
verification. The case study in this experience report was handled by the two
latter verification techniques, using Compaq’s ESC/Java tool and the LOOP
tool from the University of Nijmegen. It turned out that ESC/Java works best
for relatively lightweight specifications, for which it can give immediate feed-
back. It filtered out many common programming errors from the entire purse
applet. The LOOP tool can also be used on such lightweight specifications,
but it is typically applied to more detailed functional specifications in selected
smaller code fragments. In this case study a precise high-level specification
for the Decimal class underlying the purse was developed, implemented (in
a different way than the purse developers originally did), and proven correct.
The verification was done interactively, via a combination of Hoare logic and
weakest precondition reasoning. This has demonstrated that using different
levels of verification, with corresponding tools, gives an attractive (and feasi-
ble) combination of global checking and selected local verification.

Part of this verification effort was developing the specifications. One would
hope that, in the future, advanced programmers will write such specifications
themselves. This would considerably reduce the effort spent on such verifica-
tion projects. The whole verification underwent several updates and adapta-
tions (w.r.t. [2,5]), so it is hard to estimate the investment. But if we would
have to start from scratch, the application of ESC/Java to the whole purse
involves a couple of weeks work. Applying the LOOP tool to the Decimal class
only involves a similar investment.

As a result of this (and other) work, JML has developed into the standard
specification language for Java Card (e.g. within the European project Verifi-
Card [14]).

Future work involves a further development of the JML language, integration
of tools around JML, and addressing scalability issues (especially for interac-
tive tools such as LOOP).
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