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ABSTRACT 

 
With the emergence and proliferation of new methods for 
implanting malware, the next frontiers in system 
vulnerabilities are the embedded viruses or system attacks 
through vulnerabilities below the application layer. This paper 
researches contemporary and potential attacks that implant 
malware functions underneath the operating system (OS) 
within the firmware. At the lower OSI layers, the Malware 
take control and command before starting the operating 
system. The common wisdom is that if the underlying 
firmware cannot be trusted, then the OS and the applications 
depended on the firmware also cannot be trusted.  
 
This paper presents a comprehensive research on malwares in 
the BIOS and firmware and discusses and analyse them with 
specific interest towards the SMM. Furthermore this paper 
provides a novel and general solution approach to common 
firmware and for a secure processing framework. 
 
This paper showed in a novel approach that if the firmware 
cannot be trusted then the OS and the software that are 
dependent on the underlying firmware might not be trusted. 
 

Index Terms – Embedded Security, SMM, 

BIOS, Trusted Hardware, Root Kit. 
 

1. Introduction   
 

The most lethal form of embedded malware comes in the 
form of a rootkit attack. The first widely known instance of 
wide spread exploitation was in 2005. Within that incident the 
rootkit was devoid of known malicious intention when Sony 
Corporation of Japan implanted this modus operandi so as to 
hide its Intellectual Protection (IP) copy protection software 
(Michael 2010). The implementations involved the inclusion 
of eXtended Copy Protection (XCP) and MediaMax CD-3 
software on Sony brand music CDs. This software silently 
and automatically installed on the Windows OS hosting the 
playing CDs, causing alteration of the operating system. To 
obfuscate itself, the Sony rootkit used and hid files, registry 
keys and processes that starts with the string name of $sys$. 
This obfuscation opened the door for malicious exploitation 
by others.  

 
It is acknowledged that the less common systems such as 
Apple and Linux do face fewer attacks, as compared to 
Microsoft products. Also custom made and special 
applications as well as embedded processors are rarely 
attacked unless the attack is targeted (Chen 2010). This is not 

an indication of the sturdiness of the Apple or Linux design 
but is the result of the wide spread use of the MS System, 
making the later more readily available for an exploitation. 
Furthermore, unless the attack is targeted, attackers seek the 
most “Bang for the Buck” effect, which would require system 
types with wider platform proliferations such as usage across 
differing intellectual, social and economic system and 
applications.  
 
There are other papers that researched the topic but were 
hardware specific. While other papers targeted the firmware 
but fell short of comprehensive analysis and lack effective 
recommendations for a secure platform.   
 
Malware detection is based on Cohen theorem. Cohen (1986) 
built on the work of Goedel's, where Cohen implemented the 
"proof by contradiction" technique to show that no perfect 
virus checker can ever exist. However Cohen theorem is based 
on the anti-malware tools that are hosted on the operating 
system which are inert to malwares in the firmware, (this 
research uniquely present to show that it is highly effective 
method of an attack). Seshadri et al (2004) published their first 
work on Software-based attestation for embedded devices. 
Seshadri (2005) followed it by verifying integrity on legacy 
platforms. Their two papers presented a note worthy issues, 
however these papers and others failed to cover the SMM and 
the Hypervisor Virtual Machine VM malware concerns.  

 
The VM vulnerabilities were discussed by King et al (2006) 
were the team showed that malware attack on the VM based 
Rootkit (VMBR) was possible. Building on previous work, 
Duflot et al (Duflot) worked on the privilege escalation issue 
by manipulating the SMM code. Duflot results were the bases 
for Embleton et al (2008) who to some extent discussed the 
SMM (System Management Mode) rootkit as an entry into the 
firmware. 

 
This is a problematic topic to disquisition. Castelluccia et al 
(2009a) presented their work on the difficulty of software-
based attestation for embedded devices asserting the 
difficulties associated with their research and presented their 
recommendation only to see in less than a year be refuted by 
Perrig (2010) of CyLab and Doorn of AMD. However it did 
not take long for Perrig paper itself to be re-refuted by 
Francillon (2010), and continue to confirm the difficulty of the 
subject by Castelluccia (2009b).  
 
Early research by King (2006) showed that malware attack 
using methods implemented in the Virtual Machine based 
Rootkit (VMBR) was possible. However their research was 
based on simulation and their findings were narrow in its 
applications and limited to specific hardware. Loic Duflot 
(Duflot) followed King in showing that privileged mode 
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escalation by manipulating the SMM code was possible and 
can result in malware code injection to switch the system 
operation mode to a higher user privilege level.  
 
Emleton (2008) analysed the SMM threat as it relates to the 
invocation of SMM in a rootkit however their work was not 
fully published. 
 
This paper introduction is shown in section 1, the SMM 
Threats are presented in section 2, the SMM Mode Operations 
are explained in section 3, the Embedded Rootkit Analyses is 
shown in section 4. The full analysis of Firmware attacks is 
supplied in section 5 and the Firmware vulnerabilities in the 
BIOS32 are discussed in section 6. The simulation of the 
attack on the Firmware is given in section 7 and the paper is 
concluded in section 8. 

 

2. SMM (System Management Mode) 

Threats 
Most common computing platforms (including PDAs and 
IPhones, etc) share similar logical booting sequence. This 
booting sequence involves three distinctive stages with 
similar sequential order starting with System firmware 
execution; then pointing and starting the Operating system 
loader and finally loading the operating system (OS) from a 
memory location. Although this paper discusses the BIOS in 
the PC, it is equally viable to all other computing platforms 
including consumer goods. 
 
The system firmware is the lowest common denominator and 
is the closest to the metal (hardware); this is sometimes 
referred to as bare-metal coding. In the PC world the system 
firmware would be hosted in the BIOS. In non-PC devices 
this would also be the BIOS, however the BIOS may not be a 
separate but Embedded Software hosted on a ROM or RAM 
hardware device, and is co-hosted with the system application 
software. 
 
At stage one the system start with the Pre POST routine. This 
routine commences by initialising the hardware relevant to the 
system operations including the hardware initialisation of the 
hosting CPU then the RAM. After the RAM is initialised and 
the system firmware is copied, the Pre POST routine allocate 
and initialise tables allocated in the main system memory 
creating a 640k RAM segment, starting form space pointer 00 
000 to A0 000. After the completion of Stage one, the System 
firmware goes into protected mode and passes control to 
Stage two.  
 
To optimise memory each of the BIOS modules (except 
Bootblock; BootCode, and the Decompression routine; 
DECOMPCODE) are compressed using LZH compression 
methods and containing an 8-bit checksum. The 
decompression routine decompresses modules prior to 
execution and places the uncompressed mode into CPU 
RAM.    
 
The SIMM code (in the firmware or BIOS) includes the 
instructions for connecting peripheral components and 
peripheral emulation to be available to the operating system 
upon physical interconnection.  

 
The System Management Mode (SMM) is invoked by the 
execution of the SMM code (SMI handler) this is done during 
high-privilege mode. This mode is part of the firmware boot 
up cycle, and is invoked during the Power On Self Test 
(POST) stage in BIOS.  
 
There are two main functional areas for firmware codes; the 
first is to initiate the boot up process, while the second is used 
for run time mode. The later is where the booting code copies 
the SMI handlers (interrupt code part of the SMM) for use 
during run time and in parallel with full OS operation.  

 

3. SMM Mode Operations 

 
There are two methods for entering the SMM normal-mode 
operations:  

• SMI interrupt, Hardware assertion (SMI pin), non-
maskable interrupts highest priority in the system. 

• SMINT instruction; Software assertion entry 
through CPU instruction code (0F 38).  

 
SMM is totally transparent to all application software on the 
host, including the protected-mode operating system. 
 
The most common method for invoking the SMM mode is by 
the execution of the SMM code (SMI handler) in high-
privilege mode during the firmware boot up cycle, as in the 
Power on Self Test (POST) stage in BIOS. Once the SMM is 
invoked it would be locked and placed into protected mode. 
To penetrate the SMM mode while it is protected, the malware 
must slither into the SMM while it is in open state or while the 
SMM mode is in the state of a running normal-mode operation 
which can be achieved either through SMI interrupt or through 
SMINT command instruction:  

• SMI interrupt; Hardware physical assertion of the 
allocated pin in the hardware casing. This is 
intended to invoke the interrupt mode. This would 
lead to a non-maskable interrupts, which is the 
highest priority in the system. The non-maskable 
interrupt is a hardware event of high priority that 
must get the immediate attention of the CPU. In 
contrast maskable interrupt, would cause the CPU to 
continue computing instructions processing until it 
has time for a safe point for the CPU to take care of 
this interrupt. 

• SMINT instruction; Software assertion that require 
code instructions invoked upon the CPU to trigger 
entry to the SMM through CPU instruction code (0F 
38). Part of the SMM module within the firmware or 
the BIOS is the SIMM code which is a firmware 
code that includes the instructions for connecting 
peripheral components and serve as peripheral 
emulation needed to be available for the operating 
system while it is independent of the OS or the 
hosting system. 

 
The SMM for the Intel IA-32 model design supports three 
operating modes and one quasi-operating mode. These four 
modes are listed below: 
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• Virtual-8086 mode — if the processor placed into 
protected mode, then it would support a quasi-
operational mode known as virtual-8086. This mode 
is for executing 8086 software in a protected, 
multitasking environment. 

• Real-address mode — In this mode the SMM 
operate in real time mode providing real time code 
execution services for software code capable of 
running on an Intel 8086 processor. While in this 
mode the SMM has the capability to switch to other 
modes. Protected mode — (32 or 64 bit operating 
system) Native operating mode with a set of 
architectural features and backward compatibility 
for the existing legacy software base. 

• System management mode (SMM) — SMM first 
launched with the Intel386 SL processor however it 
became standard architectural feature for all 
subsequent IA-32 processors. The main function is 
to provide transparent mechanism for implementing 
power management and OEM compatibilities 
functionality. 

 
The SMM operation is a separate operating mode of the CPU, 
with distinct hardware and software dependency intended for 
use only by system firmware and not by application software 
or general-purpose system software.. The operating system is 
not aware of the SMM or the SMI mode. One exception to the 
SMI is that it can be invoked by the system. When the system 
invoke this mode, the CPU would function separately from 
Real, Virtual, or Protected modes, however it allows system 
designers to add components that operate transparently to the 
operating system and software applications (Advanced Micro 
Devices Inc, 1997).  
 
During the SMI mode, all normal instruction; component 
initialisation; and operating system execution are suspended 
by the CPU however the CPU return system hardware and 
software control to the operating system upon completing the 
SMM mode, see Diagram 1, the Flow chart of SMM Routine. 

 
Diagram 1 Flow chart of SMM Routine 

(Cyrix inc, 1998, P 6)  
An example of an interrupt code implementations 
that halt processing and store registers is listed 

below, see Code 1 Auto Halt Restart Implementation Pseudo-
Code: 

 
Begin 
; The Auto Halt Restart slot at register-offset 7F02h in 

SMRAM indicates 
; To the SMM handler that the SMI interrupted the CPU 

during a HALT 
; State Bit position 0 of 7F02h will be set to a one in this 

condition 
{ 
if EFLAGS.21 is write able then  ; should be done during 
ID process 

{ 
if HLT instruction needs to be 

restarted then 
{ 
if SMI during halt state then  ;bit 0 of offset 

7F02h = 1 
set HLT restart slot to 00FFh   ;offset 7F00h 

in state save map 
} 
} 

else 
SMM features are not supported 

} 
end 

Code 1 Auto Halt Restart Implementation 

Pseudo-Code 
(Advanced Micro Devices Inc, 1995, P 22) 
 

Once the SMM code is initiated the system transfer control to 
the System Management Interrupt (SMI) in BIOS this is the 
POST stage and prior to booting the operating system. Access 
to the allocated memory is locked and secured from 
modification or override by the BIOS by setting the D_LCK 
bit to 1, memory can only be accessed if D_LCK is set to 0. 
This locked state is not accessible even by the Operating 
System. However it should be noted that if the malware code 
is executed before reaching the POST and prior to the setting 
of the D_LCK bit, then the SMI is accessible and vulnerable 
to altercation. 

 
Upon entering the SMM the CPU clears the “IF” flag to 
disable INTR interrupts masks INTR, NMI, SMI, INIT, and 
A20M interrupts. However INTR can be enabled within SMM 
when the SMM handler set the IF flag to 1. A20M is disabled 
so that address bit 20 is never masked when in SMM mode 
(Advanced Micro Devices Inc, 2011). There are six steps to 
this process, see Diagram 2. 
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Diagram 2 SMI Execution Flow Diagrams 
(Cyrix Inc, 1998, P 20) 

 

4. Embedded Rootkit Analysis 
 
Commercial off the shelf software tools (anti malware) target 
malware detections in the application layer (i.e. the operating 
system files, directories and data). Once the malware is 
detected, often by detection techniques such as the “Virus 
Signature” where engineers and researchers study the bit 
patterns and the footprint of the virus, identifying the code, 
procedures, steps and methods of a specific attack.  
 
Arguably, it is possible to have a legitimate business case for 
rootkits. The first widely known instance of broad spread 
exploitation was in 2005. Within that incident the rootkit was 
devoid of known malicious intent at least in accordance with 
the corporation that implanted, Sony BMG Music. Similarly 
Dell announced that a malware code W32.Spybot program 
was detected on the embedded server management firmware 
of the Power Edge product line including Power Edge R310, 
Power Edge R410, Power Edge R510 and Power Edge T410 
(Dell Inc, 2010). 
 
Each rootkit differ in its disguise and functionality depending 
on intention; however all have common target by obfuscating 
one or several of the following system entities: Registry Keys, 
Files, Drivers, TCP/IP Ports, Processes, and Services. 
 
A comparison of the information in PID (Process IDentifier) 
and TID (Thread IDentifier) of table PspCidTabl to table 
PsActiveProcessList would reveal hidden processes. Similarly 
noticeable heavy memory usage, I/O read, I/O writes maybe 
detected by the embedded systems tools. Another common 
Operating System rootkit malware involve process rights 
elevation such as in the NT Rootkit by hooking the SSDT to 
perform full ring0 (highest CPU priority) functionalities. 
Later modification involved process rights elevation surfaced 
with rootkits like FU and later improvement with FUto 
rootkit.  
 
Rootkits are typically based on undiscovered vulnerabilities 
while obfuscations based on lack of system knowledge or lack 

of proper detection tools. Unless the malware is a known 
vulnerability attack, few people would know its details except 
to some including the malware writer. Once the vulnerability 
is known, with proper detection tools it would no longer be 
obfuscated and can be detected by anti-virus tools or 
engineering forensic methods, unless it is a polymorphic 
which can dynamically change its binary code or behaviours 
to avoid identification by a pre determined pattern of binary 
bytes or a pattern of functional characteristics.  
 
Generally there are three types of rootkits (the last is firmware 
relevant): 

• Software embedded rootkit: reside within the 
Operating system 

• Hypervisor rootkit: resides between the operating 
system and the hardware. Forcing the original 
operating system to run over obfuscated virtual 
machine, by creating a Hypervisor interface below 
the Hardware Abstraction Layer (HAL), “The HAL 
is a lightweight runtime environment that provides a 
device driver interface for programs to connect to 
the underlying hardware. The HAL application 
program interface (API) is integrated with the ANSI 
C standard library. (Altera Corporation, 2010). 

• Firmware rootkit: resides inside the hardware 
beyond the reach of the operating System.  

   
A rootkit placed in the Operating System hijacks system's 
behaviour by changing function start or function pointer to 
redirects execution flow by modifying the “syscall list” of the 
pointer in kernel structure; System Service Descriptor Table 
(SSDT) thereby controlling the behaviour of the function with 
hooks to the malicious code. Code illustration of creating a 
Hook-System-Call on a system under attack can be in the 
following format (Informative information for the uninformed, 
2007):  

 
PVOID HookSystemCall( 
   PVOID SystemCallFunction, 
   PVOID HookFunction) 
{ 
   ULONG SystemCallIndex = 
      *(ULONG 
*)((PCHAR)SystemCallFunction+1); 
   PVOID *NativeSystemCallTable = 
      KeServiceDescriptorTable[0]; 
   PVOID OriginalSystemCall = 
     
 NativeSystemCallTable[SystemCallIndex]; 
 
   NativeSystemCallTable[SystemCallIndex] = 
HookFunction; 
   return OriginalSystemCall; 
} 

 
Similarly an application type rootkit redirect system calls by 
altering the Import Access Table (IAT), which is a CPU 
specific table localized in kernel used by the system for 
managing exceptions and interruptions, See Figure 2 
Application code flow for normal execution path vs. hooked 
execution path of an IAT hook. 
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Figure 2 Application code flow for normal 

execution path vs. hooked execution path of an 

IAT hook. 

(Hoglund 2005, P 74)  
 
Planting the rootkit in the SMM away from the operating 
system makes the rootkit superfluously stealthy. This is a 
numerous advantage however it would severely limit viral 
proliferation. This is so since the malware code implanted in 
the firmware must be expressly written for each system 
attacked. 

 

5. Analysis of a Firmware Attacks 
Firmware vulnerabilities unlock and expose the firmware (or 
the BIOS) to an attack. This should not be confused with the 
extensively researched vulnerabilities associated with the 
Master Boot Record (MBR) Viruses.  

 
MBR is considered a legacy type malware but certainly is not 
an inert in its effect. It is intended as a malicious attack works 
by erasing the first memory sector of the booting device 
thereby rendering the system not bootable. The MBR resides 
in the first externally accessible (outside the hard drive) 
sector. This sector is considered as track zero (0), number of 
tracks depends on drive size, and each track has sixty-three 
sectors. Track 0 functions as the disk-mapping directory 
containing the hard disk partition tables as well as the initial 
loader to the disk operation. Sixty-two sectors after the 
location of the MBR, the DOS Boot Record (DBR) is located 
which contains the initial loader of an operating system and 
the logical drive mapping information. In contrast to the hard 
disk sectors layout, in floppy drive, the Floppy Boot Record 
(FBR) is located on the first track of a diskette and it is used 
for the same purposes as the DBR (F-Secure, 2009).  

 
Malwares in the BIOS is the most lethal firmware hack. It can 
be in the form of firmware corruption leading to a Denial of 
Service (DoS), or could be persistent, subvert, and 
undetectable even with powerful anti malware tools leading to 
a persistent malware as part of legitimate software implanted 
and embedded in the hardware. If the intention were 
propagation then a boot virus that is copied or downloaded 
externally such as the Internet would infect the hard drive. 
The hard drive would in turn be triggered to infect other 
memory devices (USB insertion would trigger a virus residing 
in the drive to replicate itself on the USB thumb drive).  

 
Firmware vulnerabilities are classified into three groups as 
they relate to the functionality of an attack: 

1. Vulnerabilities existing in the system      

       firmware 
2.        Physical attack on firmware. 
3. Malicious code integrated within the flash chip 

 

6. Known Vulnerabilities in the 

Firmware BIOS32 
To facilitate the marketing of their devices, hardware 
manufacturers provide BIOS systems information for vendors 
to access an OS based on the 32-bit architecture. A vendor 
utilizes this info to build new services and features, such as the 
direct-to-kernel binary execution.  

 
To cause a direct-to-kernel binary execution a designer of a 
specific vendor would invoke this service by placing a 
BIOS32 header somewhere in the E000:0000 to F000:FFFF 
memory region, 16-byte aligned. The headers structure is in 
the following programming outline (Sacco, 2010): 

Offset Bytes Description 
0 4 Signature 
4 4 Entry point for the BIOS32 

Service (here hacker place pointer to 
malicious code) 
8 Revision level, (hacker would 
put rev 0) 

9 1 Length of the BIOS32 Headers 
in paragraphs (hacker would insert length) 

10 1 8-bit Checksum. 
11 5 Reserved for future use 

 
In systems operation, the OS consider the BIOS as a trusted 
platform. Therefore, since the OS always trust the BIOS this 
can be taken advantage of by hackers by simply inserting a 
header to the malware code instead of the expected software 
code in the BIOS header pointing to the OS.  
In the structure above such insertion utilizes part of the 16 
bytes placing the malicious code in offset 4 using 4 bytes.  
Upon system restart this routine would be executed, however 
instead of a call be placed to the BIOS, the pointer at offset 4 
would be called. This pointer points to any offending code. 
Upon the execution of this offending code, the pointer return 
to a similar offset (without malware code) so as to normally 
initiate the BIOS starts up process: 

Offset Bytes Description 
0 4 Signature 
4 4 Entry point for the BIOS32 

Service 
8 1 Revision level 
9 1 Length of the BIOS32 Headers 

in paragraphs 
10 1 8-bit Checksum. 
11 5 Reserved for future use 

 
Such an attack is similar in function to a network attack on 
communication protocol such as TCP/IP, called man in the 
middle attack. 

 
Another method is for the hacker to locate system services in 
memory. This is accomplished by initiating a pattern search of 
known system services in memory. Once a specific service is 
located and confirmed with a checksum, the hacker would 
inject a pointer to the offending code. One such commonly 
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available service found in typical modern BIOS is a USB 
function such as the Plug and Play ($PnP); others are the Post 
Memory Manager ($PMM) and the BIOS32 (discussed 
above).   

 
Other attacks include the “Boot/Stoned.Monkey” which re-
routs the BIOS-level disk calls through its own code. As such 
it is not a direct attack on the BIOS but rather it is a 
mechanism to place the BIOS in an un-trusted mode; “Boot 
virus” which traps the BIOS functions disk interrupt vector 
Int 13h, then write to the MBR (discussed earlier); Physical 
attack on Firmware by data alteration such as the routine in 
the “W32.Mypics.Worm” which overwrite the high byte of 
the two-byte CMOS checksum value in the system BIOS, 
resulting in the computer displaying a system BIOS error and 
failure to boot. This propagates by automatically sending 
itself through the contacts list of the Outlook address book; 
“Chernobyl Virus (CIH)” also known as Spacefiller, this 
malware scheme accomplished by two steps payload 
approach. In the first step the Virus deletes the contents of the 
partition table and fills the first 1024 Kbytes of the host's boot 
hard drive with zeroes, beginning at memory location sector 
0. The second step is to attack the i430TX motherboard BIOS. 
CIH only affected Windows computer operating systems; 
Windows 95 kernel and subsequently released versions 
including Windows 95, Windows 98 and Windows ME, 
which were widespread operating system at that time; “Bare-
metal BIOS bug” privilege escalation rootkit vulnerability 
found in Intel manufactured Desktop system Boards, in which 
under specified circumstances allow privilege escalation by 
software running administrative (ring 0) to modify software 
code running in System Management Mode (SMM).  

 

7. Simulation of an Attack on the 

Firmware 
Every traditional computing system such as the PC, IPhone, 
IPad, and other hand held devices encompass an embedded 
firmware. The closest to the metal in every case is the BIOS. 
This simulation is a proof of concept on any of these devices; 
however the most accessible and technically friendly device is 
the PC. As such, the simulation included a set-up of a desktop 
PC with an AMI BIOS. Even though the operating system is 
irrelevant, this set-up included a Windows XP SP3 platform 
with BIOS editing and flashing tools. 

 
Through this research it was possible to access the BIOS and 
alter the BIOS code so as to simulate an actual attack in 
progress. The first attempt was altering the POST routine, 
resulting in placing the booting process in suspense prompting 
the user for an input. The input requested was a muted 
request, but meant to show a hack at the metal level. The next 
step was to flash the BIOS with a clean code then the 
Platform functioned as normal. In the second attempt the 
system indicated that the booting process was corrupt (in 
suspended state) and the BIOS would not proceed beyond the 
initial booting process, it appeared that it was stuck in the 
POST routine.  
 
The felicity achieve by the first altered scenario, was at the 
expense of a presumed falsity that the BIOS would always be 
reloadable. This experimentation rendered the first system 

unoperateable, which was a calculated risk. The proof of 
concept implementation in hardware is problematic since each 
modification to the firmware requires a new hardware flashing 
risking permanent corruption to the loading module, which 
corrupts the boot up process. 

 
In the second simulation/testing set-up, it was relied on 
running simulation on a PC platform using a “PC emulator” 
called Bochs. Figure 3 Screen capture of the working 
environment using Bochs simulator. The set-up shows that the 
BIOS after a hack was not able to hand over booting 
instructions to a working bootable device. 

 

 

Figure 3 Screen capture of the working 

environment 
 
 
 
Figure 4 Display of the working screen of BIOS attack in 
progress. delaying the screen capture of hacked BIOS. Not 
only is the booting sequence cannot proceed “no bootable 
device” on the twelfth text line, but also the hacking included 
an inserted text message as a proof of concept. This hacked 
PC would display a message on the screen upon the booting 
stage stating on the seventh text line the following hacked 
text: 

 
”This PC is hacked by the smart students at 

Anglia Ruskin University if you like to secure 

your place into the future contact the Faculty of 

S&T.” 
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Figure 4 Display of the working screen of BIOS attack in 
progress. 

8. Conclusion 
 

This paper presented the technical knowledge and researched 
malware vulnerabilities below the OS.  

 
This paper showed in a novel approach that if the firmware 
cannot be trusted then the OS and the software that are 
dependent on the underlying firmware might not be trusted. 
 
This paper is also unique in that it provided comprehensive 
and novel analysis that can be applied to any malware. This 
would help future researchers and practitioners in exposing 
future polymorphic and evolutions of these vulnerabilities. 
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