
US006044381A

United States Patent
Boothby et al.

[19] 6,044,381
*Mar. 28, 2000

Patent Number:

Date of Patent:

[11]

[45]

[54] USING DISTRIBUTED HISTORY FILES IN
SYNCHRONIZING DATABASES

[75] Inventors: David J. Boothby; Robert C. Daley,
both of Nashua, NH.

[73] Assignee: Puma Technology, Inc., San Jose,
Calif.

[*] Notice: This patent issued on a continued pros
ecution application ?led under 37 CFR
1.53(d), and is subject to the tWenty year
patent term provisions of 35 U.S.C.
154(a)(2).

[21] Appl. No.: 08/927,922

[22] Filed: Sep. 11, 1997

[51] Int. Cl.7 G06F 17/30

[52] US. Cl. 707/201; 707/10; 707/203

[58] Field of Search 707/10, 201, 202,
707/203, 204; 395/200.31, 200.43

[56] References Cited

U.S. PATENT DOCUMENTS

4,432,057 2/1984 Daniell et al. 395/608

4,807,182 2/1989 Queen 395/144

4,819,156 4/1989 DeLorme et al. 395/182.13
4,827,423 5/1989 Beasley et al. .. 364/468
4,866,611 9/1989 Cree et al. 395/600

(List continued on next page.)

OTHER PUBLICATIONS

Al?eri, “The Best of WordPerfect Version 5.0,” Hayden
Books, pp. 153—165, 429—435 (1988).
“Automatically Synchronized Objects,” Research Disclo
sure #29261, p. 614 (Aug. 1988).
Cobb et al., “Paradox 3.5 Handbook 3rd Edition,” Bantam,
pp. 803—816 (1991).
“FRx Extends Reporting PoWer of Platinum Series: (IBM
Desktop SoftWare’s Line of Accounting SoftWare),” Doug
Dayton, PC Week, v. 8, n. 5, p. 29(2) (Feb. 4, 1991).
IntelliLink Brochure (1990).

DATABASE
CHARACTERISTICS
AND DEFAULT USER

VALUES INPUT

“Logical Connectivity: Applications, Requirements, Archi
tecture, and Research Agenda,” Stuart Madnick & Y. Rich
ard Wang, MIT, Systems Sciences, 1991 HaWaii Int’l, vol. 1,
IEEE (Jun. 1991).
“Open NetWork Computing—Technical Overview,” Sun
Technical Report, Microsystems, Inc., pp. 1—32 (1987).
Organizer Link II Operation Manual, Sharp Electronics
Corporation, p. 1—104, no date.
“The Big Picture (Accessing Information on Remote Data
Management System,” UNIX RevieW, v. 7, n. 8, p. 38(7)
(Aug. 1989).
User Manual for Connectivity Pack for the HP 95LX,
HeWlett Packard Company (1991), p. 1—82.
User Manual for PC—Link for the B.O.S.S. and the PC—Link
for the B.O.S.S., Traveling Software, Inc. (1989) p. 1—82.
Zahn et al., Network Computing Architecture, pp. 1—11;
19—31; 87=115; 117—133; 187—199; 201—209 (1990).
Chapura, Inc., 3 Compare, http://WWW.chapura.com/3com
pare.html (1997), pp. 1—2.
Chapura, Inc., PilotMirror Features Page, http://WW
W.chapura.com/features.html (1997), pp. 1—4.

Primary Examiner—Jean R. Homere
Attorney, Agent, or Firm—Fish & Richardson PC.

[57] ABSTRACT

A computer implemented method is provided for synchro
nizing a ?rst database located on a ?rst computer and a
second database located on a second computer. At the ?rst
computer, it is determined Whether a record of the ?rst
database has been changed or added since a previous
synchronization, using a ?rst history ?le located on the ?rst
computer comprising records representative of records of
the ?rst database at the completion of the previous synchro
nization. If the record of the ?rst database has not been
changed or added since the previous synchronization, the
?rst computer sends the second computer information Which
the second computer uses to identify the record of the ?rst
database to be unchanged.

26 Claims, 8 Drawing Sheets

Micro?che Appendix Included
(2 Micro?che, 153 Pages)

I_

I CONTROL MODULE I g I

1 ' I
-———~— ~———>—-| 124 26

I | i I A f
B—UNLOADER1Q SYNCHRONIZER ' I' " REMOTE REMOTE

' ' D T I| [READER 11 1—5 I SEGMENT A ABASE
32

B TRANSLATOR -? __ _

I 4 2 I__ _ _‘ F_ __I A_TRANSLATOR §I zgqrREMoTEl I REMOTE _,
I WORKSPACE I HOST I I IHISTORYI LWORKSPACEJ

| 16 HISTORY L FILE J ——___
L-*_—-J ' FILE19I | _——

_ J

L __________ 111i _ E_ E__l I REMOTE COMPUTER Q

6,044,381
Page 2

US. PATENT DOCUMENTS 5,463,735 10/1995 Pascucci et al. 395/200.1
5,475,833 12/1995 Dauerer et al. 395/617

2725721333 13/132?) ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 3322(1)? 5,511,188 4/1996 11666116616161. 395/600
4’98O’844 12/199O Deminenko'e't a " 364550 5,519,606 5/1996 Frid-Nielsen et al. 395/228
5065360 11/1991 Ken; " " 395/800 5,560,005 9/1996 11661161 61 61. 395/600
5:136:707 8/1992 Block 395/600 5,568,402 10/1996 Gray et al. 364/514 C
571427619 8/1992 Webster, HI " 395/161 5,583,793 12/1996 Gray 6161. 364/514 (3
571557850 10/1992 Janis etal' _ 395/600 5,600,834 2/1997 H6w61d 395/617
5,170,480 12/1992 MOhaIl 6161. . .. 395/600 5,613,113 3/1997 G°ldnng ~~ - 395/618

5,187,787 2/1993 Skeen 6161. . 395/600 566156364 3/1997 Marks -~ - 395/618

5,210,868 5/1993 ShiIIlada 6161. .. 395/615 5,619,689 4/1997 Kelly ------ -- ~395/617
5,228,116 7/1993 Harris et a1_ 395/54 5,630,081 5/1997 Rybicki et al. 395/948
5,237,678 8/1993 Kuechler e161 __ 395/@()() 5,666,530 9/1997 Clark et al. 395/617

5,251,151 10/1993 Demjanenko et al. .. 364/550 5,666,553 9/1997 CroZier 395/803

5,251,291 10/1993 Malcolm 395/161 5,682,524 10/1997 Freund et al. . 395/605

5,261,045 11/1993 Scully et al. . 395/161 5,684,984 11/1997 Jones et al. . . 395/610
5,261,094 11/1993 Everson et al. .. 395/617 5,684,990 11/1997 Boothby . 395/619
5,272,628 12/1993 Koss 364/419.19 5,701,423 12/1997 CroZier 395/335

5,278,978 1/1994 Demers et al. .. 395/600 5,708,812 1/1998 Van Dyke et al. . 395/712
5,278,982 1/1994 Daniels et al. . .. 395/600 5,708,840 1/1998 Kikinis et al. .. . 395/800

5,283,887 2/1994 Z661161y 395/500 5,710,922 1/1998 A116y 6161. . . 395/617
5,293,627 3/1994 K616 6161. 395/550 5,727,202 3/1998 KllCala . 395/610

5,301,313 4/1994 Terada et al. .. 395/600 5,729,735 3/1998 Meyering . . 395/610
5,315,709 5/1994 Alston, Jr. et al. . 395/606 5,745,712 4/1998 Turpin et al. 395/333
5,327,555 7/1994 Anderson 395/617 5,758,150 5/1998 Bell et al. . 395/610

5,333,252 7/1994 Brewer, III et al. . 395/767 5,758,355 5/1998 Buchanan 707/201
5,333,265 7/1994 Orimo et al. .. 395/200 5,778,388 7/1998 Kawamura et al. 707/203
5,333,316 7/1994 Champagne et al .. 395/600 5,790,789 8/1998 Suarez 395/200.32
5,339,392 8/1994 Risberg et al. .. 395/161 5,845,293 12/1998 Veghte et al. 707/202
5,339,434 8/1994 Rusis 395/700 5,870,759 2/1999 13611616161. 707/201
5,355,476 10/1994 Fukumura 395/600 5,870,765 2/1999 Bauer et al. 707/203

5,375,234 12/1994 Davidson et al. .. 395/600 5,884,323 3/1999 Hawkins et al. 707/201
5,392,390 2/1995 CroZier .. 395/335 5,884,324 3/1999 Cheng et al. 707/201
5,396,612 3/1995 Huh et al. 395/575 5,884,325 3/1999 Bauer et al. 707/201
5,434,994 7/1995 Shaheen et al. 395/617 5,897,640 4/1999 Veghte et al. 707/202
5,444,851 8/1995 Woest 395/200.1 5,926,824 7/1999 Hashimoto et al. 707/520

U.S. Patent Mar. 28,2000 Sheet 1 0f 8 6,044,381

U.S. Patent

501.
502.
503.
504.
505.
506.
507.
508.
509.
5l0.
51 l.
512.
513.
514.
515.
5l6.
S17.
5l8.
5l9.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.

Mar. 28, 2000 Sheet 5 0f 8 6,044,381

INITIALIZE an empty remote workspace
IF there is a remote history ?le matching the host history ?le name

IF the remote history ?le time stamp matches the history ?le time stamp
LOAD the remote history ?le into the remote workspace

ELSE
REMOVE the non-matching history ?le
Proceed with the empty workspace, all records passed to host

ENDIF
ELSE

Proceed with the empty workspace, all records passed to host
ENDIF
FOR each record in the remote database

Translate and load data ?eld values and unique ID into remote workspace
Compute a hash value to represent all translated data values
IF the unique ID matches the unique ID of an existing remote history ?le entry,

IF the hash value is the same
Skip this entry, the host will recreate this record from history

ELSE
Send Unique ID. ?eld values and “Changed" record flag to the host
Create n5}! workspace entry with same unique ID and new hash value
This new entry is marked as “unacknowledged"

ENDIF
ELSE

Send Unique ID, ?eld values and "Added" record ?ag to the host
Create new workspace entry with new unique ID and new hash value
This new entry is marked as “unacknowledged"

ENDIF
NEXT
FOR each unique ID in the remote history ?le not matched in the above loop.

Send Unique ID and “Deleted“ flag to the host
NEXT
WAIT for host to synchronize the data and for user to con?rm results
IF user has aborted the synchronization

The remote workspace is discarded.
The original remote history ?le remains unmodi?ed.
The process is terminated.

ENDIF
FOR each record "action" or “acknowledgment" received from the host,

IF this is an acknowledgment of a record Added or Updated in the remote database.
Mark any corresponding, newly created workspace item as "acknowledged"
Remove any prior workspace item with the same unique ID

ELSE IF this is a new action to Add, Update, or Delete a remote database record
UPDATE remote workspace to re?ect the appropriate change
Mark any corresponding, newly created workspace item as “acknowledged“
Remove any prior workspace item with the same unique ID
IF this is an Add

SEND the new unique ID back to the host to include in history ?le

ENDIF
ENDIF

NEXT
REMOVE any newly create, but "unacknowledged" entries from the workspace
UPDATE the remote history ?le from the remote workspace

FIG. 5

U.S. Patent Mar. 28,2000 Sheet 6 0f 8 6,044,381

0 .GE
000000 =00<= 2:000 05 2 06800 20 E90 E00 0.9 26:5 5.5.. 00008003 mH<QmD

PE 26.5: 00020003 6.; 82:2 05 9 mE0Em00§o§00 :0 02mm
08500 20 9 200 000000 00.0.6800 0:3 28:00 :0 OZmm

PXmZ

0000800 06800 0% 60 0038003 05 5 000.602 8c0Em00~3o§0~ 8 25000 :0 MO»

.20 .20 .20 .20 .20

A000: 08 0.9 0:005 0003 003900

06500 20 8 0038003 05 E00 Swag? M50025 £23 20 590E 06GB P0059000 0862 20 M53003 20 D920 05 5 S00 E00 n: 0:303 05 800 08000 M20008 0% wZOQU

PXmZ

.n: 0:303 06800 0 >0 000808 00» no: 00502 @205 :0 mOm

EQZm

E0: 00008003 2% 0:3 c0000 00200 05 25: 00200090.

E 02903 P000000 02200 05 >0 0038003 0% E E0: 5902 mc._0coam0bo0 00E

02200 0000 000 000000 E mmqw

E0: 0038003 0.20 0:? 08000 00m=20 05 i5: 82000?‘

9 02063 P0802 00m=~00 05 E 0038003 05 E 80: E805 300003.000 00E

00wEE0 0000 mm: 0802 h: mmqm

0E: 25 3 E920 >5 5;» 022280 60 0033003 05 2 08000 30c 05 00<

.0085 B05 2; E82 &

PXmZ

. 06800 05 E00 00005000 005000 08200 05 00325 .0000< :0 mom

.30 420 .NHO .H H0 .20 .90 .mo0 B00 .000 .000 .000 .80 .80 .50

30005 03 0.9 0:90: 0003 S00 5905 main 0360.220? 06 >0 S00 .0385: 00 coc?t?m

U.S. Patent

'Ol.
'02,
T03.
"'04.
'05.
706.
707.
708.
T09.
710.
71 l.
7l2.
Tl}.
"l4.
715.
7l6.
717.
7l8.
7l9,
720.

721.
722.
723.
724.
.725.
726.
727.
728‘
729.
730.
"31.
732.
"33.
734.
735.
736.
737‘
738.

Mar. 28, 2000 Sheet 7 0f 8 6,044,381

TNITIALIZE an empty remote workspace
lF there lS a remote history ?le matching the host history ?le name

IF the remote history ?le time stamp matches the history ?le time stamp
LOAD the remote history ?le into the remote workspace

ELSE
REMOVE the non-matching history ?le
Proceed with the empty workspace, all records passed to host

ENDIF
ELSE

Proceed with the empty workspace. all records passed to host

ENDIF
FOR each record in the remote database,

Translate and load data ?eld values into the remote workspace
Compute a hash value to represent all translated data values
IF the hash value matches the hash value of one or more remote history ?le enrn'es,

Send hash value, remote workspace index, and “Unchanged" record flag to the host

ELSE
Create new workspace entry with new new hash value and remote workspace index

This new entry is marked as "unacknowledged"
Send hash value, remote workspace index, ?eld values and “Added“ record flag to the

host
ENDlF

NEXT
REMOVE any “prior“ workspace entries not matched by hash value above
WAIT for host to synchronize the data and for user to con?rm results

IE user has aborted the synchronization
The remote workspace is discarded.
The original remote history ?le remains unmodi?ed.
The process is terminated.

ENDIF
FOR each record “action“ or "acknowledgment" received from the host,

[1’ this is an acknowledgment of a record sent to the host (above) as “added".
Mark any corresponding, newly created workspace item as “acknowledged"

ELSE IE this is a new action to Add. Update. or Delete a remote database record

UPDATE remote workspace to re?ect the appropriate change
Mark the updated record as "acknowledged"

ENDIF
NEXT
REMOVE any newly create, but “unacknowledged’ entries from the workspace

FIG. 7
UPDATE the remote history ?le from the remote workspace

6,044,381
1

USING DISTRIBUTED HISTORY FILES IN
SYNCHRONIZING DATABASES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to application Ser. No. 08/752,
490, ?led Nov. 13, 1996 now US. Pat. No. 5,943,676, and
Ser. No. 08/748,645, ?led Nov. 13, 1996. This application is
also related to application Ser. No. 08/749,926, ?led Nov.
13, 1996, noW abandoned. These applications are incorpo
rated herein by reference in their entirety.

REFERENCE TO MICROFICHE APPENDIX

An appendix (appearing noW in paper format to be
replaced later in micro?che format) forms part of this
application. The appendix, Which includes a source code
listing relating to an embodiment of the invention, includes
153 frames on 2 micro?che.

This patent document (including the micro?che appendix)
contains material that is subject to copyright protection. The
copyright oWner has no objection to the facsimile reproduc
tion by anyone of the patent document as it appears in the
Patent and Trademark Of?ce ?le or records, but otherWise
reserves all copyright rights Whatsoever.

BACKGROUND

This invention relates to synchroniZing databases.
Databases are collections of data entries Which are

organiZed, stored, and manipulated in a manner speci?ed by
applications knoWn as database managers (hereinafter also
referred to as “Applications”; the term “database” Will also
refer to the combination of a database manager and a
database proper). The manner in Which database entries are
organiZed in a database is knoWn as its data structure.

There are generally tWo types of database managers. First
are general purpose database managers in Which the user
determines (usually at the outset, but subject to future
revisions) What the data structure is. These Applications
often have their oWn programming language and provide
great ?exibility to the user. Second are special purpose
database managers that are speci?cally designed to create
and manage a database having a preset data structure.
Examples of these special purpose database managers are
various scheduling, diary, and contact manager Applications
for desktop and handheld computers. Database managers
organiZe the information in a database into records, With
each record made up of ?elds. Fields and records of a
database may have many different characteristics depending
on the database manager’s purpose and utility.

Databases can be said to be incompatible With one another
When the data structure of one is not the same as the data
structure of another, even though some of the content of the
records is substantially the same. For example, one database
may store names and addresses in the folloWing ?elds:
FIRSTiNAME, LASTiNAME, and ADDRESS. Another
database may, hoWever, store the same information With the
folloWing structure: NAME, STREETiNO, STREETi
NAME, CITYiSTATE, and ZIP. Although the content of
the records is intended to contain the same kind of
information, the organiZation of that information is com
pletely different.

Often users of incompatible databases Want to be able to
synchroniZe them With one another. For example, in the
context of scheduling and contact manager Applications, a
person might use one Application on the desktop computer

10

15

20

25

30

35

40

45

55

65

2
at Work While another on his handheld computer or his
laptop computer While aWay from Work. It is desirable for
many of these users to be able to synchroniZe the entries on
one With entries on another. The US. patent and copending
patent application of the assignee hereof, Puma Technology,
Inc. of St. Jose, Calif. (US. Pat. No. 5,392,390 (hereinafter,
“the ’390 patent”); US. application Ser. No. 08/371,194,
?led on Jan. 11, 1995, incorporated by reference herein)
shoW tWo methods for synchroniZing incompatible data
bases and solving some of the problems arising from incom
patibility of databases.

Synchronization of tWo incompatible databases often
requires comparison of their records so that they can be
matched up prior to synchroniZation. This may require
transferring records in one database from one computer to
another. HoWever, if the data transfer link betWeen the tWo
computers is sloW, as for example is the case With current
infrared ports, telephone modem, or small handheld
computers, such a transfer increases the required time for
synchroniZation by many folds.

SUMMARY

In one aspect, the invention features a computer imple
mented method for synchroniZing a ?rst database located on
a ?rst computer and a second database located on a second
computer. At the ?rst computer, it is determined Whether a
record of the ?rst database has been changed or added since
a previous synchroniZation, using a ?rst history ?le located
on the ?rst computer comprising records representative of
records of the ?rst database at the completion of the previous
synchroniZation. If the record of the ?rst database has not
been changed or added since the previous synchroniZation,
the ?rst computer sends the second computer information
Which the second computer uses to identify the record of the
?rst database to be unchanged.
The embodiments of this aspect of the invention may

include one or more of the folloWing features.

A second history ?le may be located on the second
computer. The second history ?le contains records repre
sentative of records of the ?rst database at the completion of
the previous synchronization, Where one of the representa
tive records represents the record of the ?rst database
determined to be unchanged. Then, at the second computer,
a synchroniZation of the second and ?rst databases is per
formed using the one of the representative records.
The information sent from the ?rst computer to the second

computer can be used to locate the one of the representative
records in the second history ?le. The second history ?le can
store information in relation to the representative records
and the one of the representative records in the second
history ?le can be identi?ed from that stored information.
Additionally, the information sent from the ?rst computer to
the second computer can include information that matches
the information stored in relation to the one of the repre
sentative records in the second history ?les.
The information sent to the second computer can include

information identifying records other than the unchanged
record. It can also include information identifying the
changed record. It can also include information identifying
the deleted records or added records. The information can
also include a code based on at least a portion of the content
of the record of the ?rst database. The code may be a hash
number. The information may be a code uniquely identifying
the record of the ?rst database. Such a code may be one
assigned by the ?rst database to the records.

In another aspect, the invention features a computer
implemented method of identifying a record of a database.

6,044,381
3

A record of the database is read. A code is assigned to the
record of the database, the code being based on at least a
portion of the content of the record of the ?rst database. The
code is then to identify the record at a later time.

The embodiments of this aspect of the invention may
include one or more of the following features.

The code may be a hash number computed based on at
least a portion of the content of a record of the ?rst database.

The database is stored on a ?rst computer and the code is
transmitted to a second computer to identify the record to an
application.

Advantages of the invention may include one or more of
the folloWing advantages.
When synchroniZation is performed using the invention,

a data transfer link, specially a sloW data transfer link, is
used efficiently, since unchanged records that are typically
the majority of the records in a database are not transferred
betWeen the tWo computers. Hence, When synchroniZing tWo
databases on tWo different computers, the time needed to
synchroniZe the tWo databases is decreased.

Also, When transmitting data from one computer to
another, using a content based code, that requires less
bandWidth for being transmitted and nonetheless identi?es a
record, results in a sloW data transfer links being used more
ef?ciently.

The invention may be implemented in hardWare or
softWare, or a combination of both. Preferably, the technique
is implemented in computer programs executing on pro
grammable computers that each include a processor, a
storage medium readable by the processor (including vola
tile and non-volatile memory and/or storage elements), at
least one input device, and at least one output device.
Program code is applied to data entered using the input
device to perform the functions described above and to
generate output information. The output information is
applied to one or more output devices.

Each program is preferably implemented in a high level
procedural or object oriented programming language to
communicate With a computer system. HoWever, the pro
grams can be implemented in assembly or machine
language, if desired. In any case, the language may be a
compiled or interpreted language.

Each such computer program is preferably stored on a
storage medium or device (e.g., ROM or magnetic diskette)
that is readable by a general or special purpose program
mable computer for con?guring and operating the computer
When the storage medium or device is read by the computer
to perform the procedures described in this document. The
system may also be considered to be implemented as a
computer-readable storage medium, con?gured With a com
puter program, Where the storage medium so con?gured
causes a computer to operate in a speci?c and prede?ned
manner.

Other features and advantages of the invention Will
become apparent from the folloWing description of various
embodiments, including the draWings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shoWs tWo computers connected via data transfer
link.

FIG. 2 is a schematic draWing of the various modules
constituting an embodiment.

FIG. 3 is a representation of the host Workspace data
array.

FIG. 4 is pseudocode for the Translation Engine Control
Module.

10

15

25

35

45

55

65

4
FIG. 5 is pseudocode for a remote segment of a synchro

niZation program When loading records from and unloading
records to the remote database, When the database assigns
unique IDs.

FIG. 6 is pseudocode for a host segment of a synchroni
Zation program When loading records from and unloading
records to the remote database, When the database assigns
unique IDs.

FIG. 7 is pseudocode for a remote segment of a synchro
niZation program When loading records from and unloading
records to the remote database, When the database does not
assign unique IDs.

FIG. 8 is pseudocode for a host segment of a synchroni
Zation program When loading records from and unloading
records to the remote database, When the database assigns
unique Ids.

DESCRIPTION

Brie?y, referring to FIGS. 1 and 2, a synchroniZation
program, according to the embodiments described here, has
a host segment 28 and a remote segment 26 Which run on a
host computer 20 and a remote computer 22, respectively.
The tWo computer are connected together via a data transfer
link 24 enabling them to transfer data betWeen them. Data
transfer link 24 may be a sloW data transfer link such as a
serial infrared links, serial cables, modems and telephone
lines, or other such data transfer links. A host database 13
and a remote database 14, eg scheduling databases, are
stored on remote computer 22 and host computer 20, respec
tively.

Generally, in some instances, both computers on Which
the tWo databases run are capable of running programs other
than a database, as in the case of, for eXample, general
purpose computers such as desktop and notebook
computers, or handheld computers having suf?cient memory
and processing poWer. In such a case, the synchroniZation
program may be distributed betWeen the tWo computers so
as to, for example, increase the efficiency of using of a sloW
data transfer link betWeen the tWo machines.

Brie?y, at remote computer 22, remote segment 26 of the
synchroniZation program loads records of remote database
13. Remote segment 26 then determines Which records of
the remote database have been changed/added, deleted or
left unchanged since a previous synchroniZation. If the
remote database assigns unique identi?cation codes (i.e.
unique ID) to its records, remote segment 26 can further
differentiate betWeen records than have been added and
those than have been changed since the previous synchro
niZation. Remote segment 26 uses a remote history ?le 30
Which stores data representing or re?ecting the records of
the database at the completion of the previous synchroniZa
tion. This data may be a copy of remote database 13. It may
also be hash numbers for each of the records of the remote
database. If the remote database assigns unique IDs, the
remote history ?le may contain those unique IDs together
With the hash numbers of the records corresponding to the
stored unique IDs.
Remote segment 26 sends those records of the remote

database that have been changed or added to the host
segment or the host computer. HoWever, the remote segment
does not send the unchanged or deleted records to the host
computer. Instead, the remote segment sends a ?ag indicat
ing the status of the record (e.g. unchanged or changed) and
some data or information that uniquely identi?es the record
to the host segment. This data or information may be a hash
number of all or selected ?elds in the record at the comple

6,044,381
5

tion of the last synchronization. It may also be the unique ID
assigned to the record by the remote database, if the database
assigns one to its records.

Host segment 28 uses the received information or data
that uniquely identi?es the unchanged record to access a
record in host history ?le 19 that corresponds to the received
information or data. This record contains a copy of the data
of the remote database record that the remote segment found
to have been unchanged. Host segment 19 then uses this
record to synchronize the databases by comparing it to the
records of host database 14. After synchronization, the
remote and host history ?les and the databases are updated.
Since the unchanged records Which typically constitute most
of the records of a database are not transferred to the host
computer, a data transfer link, specially a sloW data transfer
link, is used With increased ef?ciency.
We Will describe tWo embodiments of a distributed syn

chronization program. We Will ?rst describe in general terms
the overall structure of the distributed synchronization pro
gram in reference to FIGS. 2 and 3 Which is common to both
embodiments. We Will then describe then the ?rst and
second embodiments performing a distributed synchroniza
tion in reference to FIGS. 4—8.

FIG. 2 shoWs the relationship betWeen the various mod
ules of an embodiment of a distributed synchronization
program. Translation Engine 1 comprises a Control Module
2 that is responsible for controlling the synchronizing pro
cess by instructing various modules to perform speci?c tasks
on the records of the tWo databases being synchronized. The
Control Module 2 also provides data that affects the speci?c
operation of the various components of the synchronization
program, such as the name of the databases being synchro
nized and user preferences. FIG. 4 is the pseudocode of the
steps taken by this module. The Synchronizer 15 has pri
mary responsibility for carrying out the core synchronizing
functions. It is a table-driven code Which is capable of
synchronizing various types of databases Whose character
istics are provided by control module 2. The Synchronizer
creates and uses a host Workspace 16 (shoWn in detail in
FIG. 3), Which is a temporary data array used during the
synchronization process.
Ahost translator 9 includes tWo modules: a reader module

10 Which reads the data from the host database 14 and an
unloader module 10 Which analyzes and unloads records
from the host Workspace into the host database 14. Remote
segment 26 also has similar modules for reading and unload
ing data from the remote database. The remote segment is
designed speci?cally for interacting With remote database
13. The design of the remote segment is speci?cally based
on the record and ?eld structure of the remote database and
remote database’s Application Program Interface (API)
requirements and limitations and other characteristics of the
remote database. Similarly host translator 9 is designed
speci?cally for the host database. The remote segment and
host translator are not able to interact With any other
databases or Applications. They are only aWare of the
characteristics of the databases for Which they have been
designed. In an alternate embodiment, the host translator and
the remote segment can be designed as a table-driven code,
Where a general Translator is able to interact With a variety
of databases based on the parameters supplied by, for
example, the Control Module 2. It should be noted that the
remote segment and host translator may be designed in
various Ways and still perform the tasks set out in this
embodiment.

FIG. 4 is the pseudocode for the operation of Control
Module 2 of the Translation Engine 1. We Will use this

10

15

20

25

30

35

40

45

55

60

65

6
pseudocode to generally describe distributed synchroniza
tion according to the invention. Control Module 2 ?rst
initializes itself and speci?es the current user options to
various modules (Step 401). In step 402, control module 2
instructs the Synchronizer to load host history ?le 19.
Synchronizer 15 in response creates host Workspace 16 data
array and loads host history ?le 19 into host Workspace 16.
Host history ?le 19 is a ?le that Was saved at the end of last
synchronization and contains records representative of the
records of the tWo databases at the end of the previous
synchronization. Typically, the host history ?le contains a
copy of the results of the previous synchronization of the
synchronized records of the tWo databases. It should be
noted that the content of the records of the history ?le may
be limited only to those ?elds that are synchronized and the
data may be translated and stored in a format different than
that of the remote database or the host database. This data
can be used to reconstruct the content of the records of the
remote database as they Were at the end of the previous
synchronization. The host history ?le is generally used to
determine changes to the databases since a previous syn
chronization and also to recreate records not sent from the
remote segment, as Will be described in detail beloW. If no
history ?le from a previous synchronization eXists or the
user chooses to synchronize Without using the history ?le, in
step 402 the synchronizer does not load a history ?le. In that
case, all the records from both databases Will be loaded into
the host Workspace. We Will describe the rest of the opera
tion of the control module as if a history ?le eXists and Will
be used.

Once the History File is loaded into the host Workspace,
Control Module 2 instructs host translator 13 to load the host
database records (step 403). Host Reader module 11 of the
host Translator reads the host database records and sends
them to the Synchronizer for Writing into the host Work
space.

Control Module 2 then instructs remote segment to send
the records of the remote database (step 404). Remote
segment 26 reads the remote database records and sends
them to Synchronizer 15 for Writing into the host Workspace.
The actions taken by the synchronizer and the remote
segment in response to step 404 Will be described in detail
in reference to FIGS. 5, 6, 7, and 8, beloW.

Records in the host Workspace are stored according to
either the host database or the remote database data struc
tures. Therefore, as synchronizer 15 receives each record,
the Synchronizer maps that record using the appropriate
record map (i.e. either a remote database to host database
record map or a host database to remote database record
map) before Writing the record into the neXt available spot
in the host Workspace. Mapping may be performed by other
modules, eg the remote segment. The records may also be
“translated”, i.e. cast into a format Which synchronizer can
use (a “translation” method is described in the ’390 patent).
For example, a date stored as “Apr. 1, 1997” may be
translated into a format preferred by the synchronizer, e.g.
“Apr. 1, 1997”.

Control module 2 then instructs the Synchronizer to
perform a Con?ict Analysis and Resolution (“CAAR”)
procedure on the records in the host Workspace (step 405),
Which procedure is described in detail in the folloWing
applications of the assignee hereof, Puma Technology, Inc.
of St. Jose, Calif., incorporated by reference in their entirety
including any appendices: “Synchronization of Recurring
Records in Incompatible Databases”, Ser. No. 08/752,490,
?led on Nov. 13, 1996 (hereinafter, “’490 application”);
“Synchronization of Databases With Record Sanitizing and

6,044,381
7

Intelligent Comparison,” Ser. No. 08/749,926, ?led Nov. 13,
1996 (hereinafter, “’926 application”); “Synchronization of
Databases With Date Range,” Ser. No. 08/748,645, ?led
Nov. 13, 1996 (hereinafter, “’645 application”). Generally,
synchronization is a process of analyzing records from the
remote database and host database against the records of the
history ?le to determine the changes, additions, and dele
tions in each of the tWo databases since the previous
synchronization and What additions, deletions, or updates
need be made to the databases to synchronize the records of
the databases. Brie?y, during CAAR, the synchronization
engine (i.e. the Synchronizer) compares the records in the
host Workspace and determines What synchronizing actions
should be taken. The synchronization engine processes the
records, including comparing them to one another, in order
to form them into groups of related records. Each of these
groups may comprise at most one recurring or a group of
related nonrecurring records from each of the databases and
history ?le. After forming these groups from all records of
the tWo databases, the Synchronizer determines What syn
chronization action should be taken. To do this, the Syn
chronizer compares them, determines their differences, and
decides What synchronization action is appropriate or asks
the user What action should be taken. The synchronizer then
associates With that record, the speci?c “action” (eg add,
update or delete) that must be taken With respect to that
record in that record’s database. During “CAAR”, the user
may select not to synchronize a particular record With the
other database. We Will describe beloW in detail the steps
performed by the synchronizer and the remote segment in
response to the output of CAAR as the output relates to the
remote database.

Once Synchronizer 15 ?nishes performing CAAR on the
records, the records may be unloaded or Written into their
respective databases, including any additions, updates, or
deletions. HoWever, prior to doing so, the user is asked to
con?rm proceeding With unloading (steps 108—109). Up to
this point, neither the databases nor the History File have
been modi?ed. The user may obtain through the Control
Module’s Graphical User Interface (GUI) various informa
tion regarding What Will transpire upon unloading.

If the user chooses to proceed With synchronization and to
unload, the records are then unloaded in order into the host
database, the remote database and the History File. The
Synchronizer in conjunction With the host translator and the
remote segment perform the unloading for the databases.
Synchronizer 15 creates a host history File and unloads the
records into it. Control Module 2 ?rst instructs the host
translator to unload the records from host Workspace into the
host database. FolloWing unloading of the host records,
Control Module 2 instructs the synchronizer and the remote
segment to unload the remote records from the host Work
space (step 409). We Will describe in detail beloW, in
reference to FIGS. 5—8, the speci?c actions taken by Syn
chronizer 15 and remote segment 26 in order to unload data
from the host Workspace into the remote database and the
update remote history ?le 28. Control Module 2 neXt
instructs the Synchronizer to create a neW History File (step
112). At this point Synchronization is complete.

Referring to FIGS. 5—8, We Will noW describe the actions
taken by the remote segment in coordination With the
Synchronizer in response to the instructions from control
module 2 in step 404 to load records of the remote database
and in step 409 to unload the records of the remote database
from the host Workspace. Speci?cally, We Will describe tWo
embodiments. In the case of the ?rst embodiment, the
remote database assigns unique identi?cation codes (i.e.

10

15

20

25

30

35

40

45

8
unique IDs) to each of its records as they are created. In the
case of the second embodiment, the remote database does
not assign unique IDs to its records. FIG. 5 is the
pseudocode for the steps taken by the remote segment While
FIG. 6 is the pseudocode for the steps taken by the Syn
chronizer in the case of the second embodiment. Similarly,
FIG. 7 is the pseudocode for the steps taken by the remote
segment While FIG. 8 is the pseudocode for the steps taken
by the Synchronizer in the case of the ?rst embodiment.

Brie?y, the remote segment determines Which records
have been changed/added, deleted or left unchanged since a
previous synchronization. The remote segment uses a his
tory ?le located on the remote computer (“remote history
?le”) to determine Which records may have been changed/
added, deleted or left unchanged since a previous synchro
nization. The remote segment essentially can translate out
puts of any database into outputs of a fast synchronization
database Which is a type of database that generally supplies
information as to Which of its records have been changed,
added, deleted, or left unchanged. Fast synchronization
databases and an eXample of a method of synchronizing
them With other databases is described in detail in the ’490,
’926 & ’645 applications. Therefore, for example, this
method of distributed synchronization may also be imple
mented With any synchronization program that is able to
synchronize such databases.

Generally, the remote segment sends the host segment,
over the data transfer link, only the content of those records
that have been changed or neWly added. As for unchanged
records, the history ?le contains all necessary information to
recreate or synchronize those records, if needed. Therefore,
it is not necessary to transfer those records to the host
segment. Only some data or identi?cation code that uniquely
identi?es the record to the Synchronizer need be transferred
for such a record. Since the majority of records are typically
unchanged records, not transferring them over the sloW data
transfer link improves the ef?ciency of the synchronization
process.

After all necessary information has been transferred to the
host segment, the Synchronizer synchronizes the databases.
FolloWing synchronization, the host segment transfers infor
mation necessary to update the remote database and the
remote history ?le to the remote segment. The remote
segment then updates its history ?le and the remote data
base.

Since both the host and remote segments rely heavily on
history ?les to enable distributed synchronization, it is
important that the host and remote segments use history ?les
that correspond to one another, i.e. both contain records
corresponding to a previous synchronization of the same tWo
databases. In the described embodiment, the remote and host
history ?les are named using a common naming convention.
The name of a ?le is made up of siX components:

1) Name or ID of the host computer, Which may be an
assigned name such as an assigned GUID in the case of
operating systems by Microsoft Corporation of
Redmond, Washington, or UUID in the case of oper
ating systems by Open SoftWare Foundation;

2) Name or ID of the host database application, eg
trademark designations “Lotus Organizer” or
“Microsoft Schedule+”;

3) Name or ID of the host database ?le as stored on the
long term storage (e.g. hard disk drive) of the host
computer, eg “My Calendar”;

4) Name or ID of the remote computer;
5) Name or ID of the remote database application; and
6) Name or ID of the remote database.

Therefore, the remote segment and the host segment ensure
that the host history ?le have the same name. Moreover, each

6,044,381
9

of the history ?les have the date and time stamp of the
previous synchronization. The remote segment and synchro
niZer use this to ensure that the history ?les from the same
previous synchronization of the tWo databases are used.

Having described in general terms the actions taken by the
remote segment in coordination With the SynchroniZer in
response to the instructions from control module 2 in steps
404 and 409 (FIG. 4), We Will noW describe in detail a ?rst
embodiment of their operation for the case Where the remote
database assigns unique IDs to its records. We Will do so in
reference to FIGS. 5 and 6.

FIG. 5 is the pseudocode for steps taken by the remote
segment in response to the instruction by control module in
step 404 to load the remote database records into the host
Workspace (FIG. 4). The remote segment ?rst initialiZes (i.e.
creates) a remote Workspace in the remote computer (step
501). The remote segment then compares the name of the
host history ?le With the name of any remote history ?le in
the remote computer. If the remote segment ?nds a remote
history ?le that matches the host history ?le (i.e. a remote
history ?le that matches the host history ?le) (step 502), then
the remote segment eXamine the date and time stamp of the
host and remote history ?les. If the date and time stamp in
the remote history ?le matches the one in the host history ?le
(step 503), then the remote segment determines that tWo
history ?les correspond to one another. Hence, the remote
segment loads the remote history ?le into the remote Work
space.

In general, if matching history ?les do not eXist on the
remote and host computers, the remote segment transfers all
remote database records to the host computer. Therefore, if
the name of the host and remote history ?les match but the
date and time stamps do not match (step 505), then the
remote segment assumes that remote history ?le is not the
correct remote history ?le to be used. The remote segment
removes that history ?le (step 506) and transfers all remote
database records to the host computer (step 507). If no
remote history ?le matches the host history ?le (step 508),
then the remote segment assumes an appropriate remote
history ?le does not eXist. The remote segment transfers all
the records to the host computer (step 509). To transfer all
the records in the above steps, the remote segment ?rst loads
and stores all records of the remote database in the remote
Workspace. The remote segment then transfers all records in
the remote database to the host segment. If remote segment
transfers all the records of the remote database to the host
segment in either step 504 or 509, then the remote Will go
to step 528. It should be noted that the host segment Will use
the host history ?le, if one eXists, to perform the synchro
niZation.

If an appropriate remote history ?le eXists—i.e. condi
tions of steps 501 and 504 are satis?ed—the remote history
?le is loaded into the Work space. It is then used to “?lter”
out information that need not be sent to the host segment
since it already exists on the host segment. Generally, the
history ?les on the remote and history ?les are used to store
information representative of the remote database at the end
of the previous synchroniZation. The records of the remote
history ?le in the ?rst embodiment contain the unique ID of
the records and hash numbers of those records at the
completion of a prior synchroniZation. In other
embodiments, the remote history ?le may contain some or
all of the ?eld values of the records of the remote database.

Hashing may be described as converting any data, such as
a string of characters, into a more compacted format, such as
a number, meant to represent that string of characters. It may
be considered to be a content-based encoding technique. The

10

15

25

35

45

55

65

10
hashed values may be used as a surrogate for a hashed string
of characters, for example, to compare strings. An eXample
of a hashing algorithm is to calculate the folloWing sum for
every characters in a character string:

sum=character+(31 *sum),

Where character is the number stored in the memory to
represent that character (eg an Ascii value). (It should be
noted that there are many Ways of hashing data.) At the end
of the computation, sum contains the hash number for that
string of characters. In the described embodiments, the hash
number is a 32 bit number and therefore can have a value
betWeen 232 different values. Because the eXpected number
of records is much less than this number, the probability of
tWo different records having the same hash value is small.
Therefore, hash numbers can be used to perform compari
sons instead of comparing the non-hashed data or a prelimi
nary check before comparing the data, With relatively loW
risk inaccurate comparison. We have also use hash numbers
as a unique identi?cation code, Which Will be described in
the second embodiment.
The remote segment uses the remote history ?le to

determine Whether a record has been changed, deleted, or
added since a previous synchroniZation. Therefore, for
records that are unchanged, Which typically constitute the
majority of records in a database, the remote segment sends
information that the host segment can use to identify the
matching records in the host history ?le. That matching
history ?le record contains the same data as necessary to use
for synchroniZation as that on the remote database since the
record is unchanged. Therefore, there is no need to send the
Whole record. In essence, the remote segment uses the
remote history ?le to ?lter out information that is already
contained in the host history ?le and sending only those
records that have been changed or added. In some
embodiments, the remote history ?le may contain all the
?eld values of the records of the remote database. In those
embodiments, the remote segment can determine not only
Which records have been changed but more speci?cally
Which ?eld values have been changed. In that case, the
remote segment can determine and then send only those ?eld
values that have been changed, further increasing the ef?
ciency of using the sloW data transfer link.
We Will noW describe this process in detail. In the

described embodiment, for each record of the remote data
base (step 515), the remote segment loads the ?eld values,
including the unique ID, of the record into the remote
Workspace (step 512). As the records are loaded, they are
translated (e.g. “translated” as described in the ’390 patent)
into a universal format for the remote Workspace. The
records Will be translated back into the format of the remote
database as they are Written into the remote database. The
remote segment also computes a hash number based on all
or selected (eg the ?elds to be synchroniZed) ?eld values
(step 513). In the described embodiment, the hashing num
ber is a 32 bit number. The ?elds on Which the hash number
is based on remain the same for all synchroniZations relying
on this remote history ?le. The host segment also performs
a hash on the same ?elds. If the ?elds Which are hashed
changes, the hash number of unchanged records Would not
remain the same from one synchroniZation to the neXt.

If the unique ID matches one of the unique IDs of records
in the remote history ?le (step 515), then the record Was
present during the previous synchroniZation. That record
could either be a changed record or an unchanged record. If
the computed hash number for the record matches the hash
number of the record in the history ?le (step 516), then the

6,044,381
11

remote segment assumes that the record has not been
changed since the previous synchronization and therefore
can be created by the host segment from the host history ?le.
The remote segment will take no action (step 517). In other
embodiments, the remote segment can send the unique ID
and a ?ag indicating that the record is unchanged to the host
segment.

If the computed hash number does not match that of the
history ?le record (step 518), the remote segment assumes
that the record has been changed since a previous synchro
niZation. Therefore, the remote segment sends the host
computer the ?eld values including the unique ID and a
“changed” ?ag (step 519). In some embodiments, only those
?eld values that have been changed since the previous
synchroniZation will be sent, as described above. The remote
segment then creates a new entry for the changed record in
the history ?le (step 520) and marks the record as unac
knowledged (step 521), the purpose and function of which
we will now brie?y describe and is also described in the
’490, ’926 and ’645 applications.

Generally, the remote segment does not change an entry
in the remote history ?le, until it receives an instruction
indicating that the host segment has synchroniZed and
updated the host database with that record. This is done so
that if for any reason (e.g. user does not want to update that
record of the host database as described above) the host
database is not synchroniZed with that record, the remote
segment will not treat that record as unchanged during the
neXt synchroniZation. The acknowledgement may take the
form of an “acknowledgment” ?ag or an “action” instruction
which instructs the remote segment to add, update, or delete
that record of the remote database, as described above.
Therefore, for each changed and deleted record, the remote
segment creates a new entry and marks the entry as “unac
knowledged”. If an “acknowledgment” ?ag is received, the
old history ?le record is deleted. If an “acknowledgement”
?ag is not received, the new workspace entry is deleted. The
steps will be described further below.

If in step 515 the remote segment determines that the
unique ID of the loaded record does not match any of the
unique IDs stored in the records of the history ?le (step 521),
the remote segment assumes that the record loaded from the
remote database has been newly added. Therefore, the
remote segment sends the host segment a copy of the ?eld
values of those ?elds of the record to be synchroniZed
(which may be all or less than all the ?elds) together with an
“added” ?ag (step 524). As in the case of a changed record,
the remote segment creates a new remote workspace entry
and enters the unique ID and hash value of the record (step
525). The new entry is marked as unacknowledged (step
526).

After all the records have been loaded (step 528), the
remote database determines that unique IDs in the history
?le that have not been matched represent the deleted records
(step 529). Therefore, the remote segment sends the host
segment those unique IDS together with “delete” ?ags (step
530).

After the remote segment has ?nished providing data to
the host segment, the host segment synchroniZes the two
databases based on the input from the remote segment. The
remote segment waits until the host segment ?nishes syn
chroniZing and instructs the remote segment in step 409 in
FIG. 4 to begin unloading into the remote database (step
532).

The host segment synchroniZes the two database similar
in the way it synchroniZes a so-called “fast synchronization”
database (as de?ned in the ’490, ’926, and ’645 applications)

10

15

25

35

45

55

65

12
with another database. The operation of a synchroniZation
program synchroniZing a fast synchroniZation database with
either a fast synchroniZation database or a regular database
(i.e. non-fast synchroniZation) is described in detail in the
’490, ’926, and ’645. We will now describe in detail how the
information from the remote segment is used to synchroniZe
the remote database with another database.
As described above, a remote segment sending remote

database records to the SynchroniZer provides ?eld values of
only those records which have been changed or added since
the previous synchroniZation but not those records that are
unchanged or deleted. Therefore, unlike a regular database
Translator, the remote segment does not provide the Syn
chroniZer with unchanged records.

In order to synchroniZe the remote database with the host
database, the SynchroniZer transforms information from the
remote segment into regarding unchanged records into
equivalent regular database records. These transformed
records are then used by the SynchroniZer in the synchro
niZation. Essentially, the synchroniZer transforms and uses
the information sent by the remote segment to identify a
record in the history ?le that is a copy of the ?eld values of
the unchanged remote database record. In the described
embodiment, the synchroniZer also copies that history ?le
record and ?ags as being the remote database record.
The described embodiment uses the host history ?le to

perform this transformation. At the beginning of a ?rst
synchroniZation between the two databases, all records in
the remote database are loaded into the host history ?le. As
changes, additions, and deletions are made to the remote
database, during each subsequent synchroniZation, the same
changes, additions, and deletions are made to the host
history ?le. Therefore, the host history ?le at the end of each
synchroniZation will contain a copy of the relevant content
of the remote database after synchroniZation. By relevant,
we mean data in the ?elds that are synchroniZed. For
eXample, it may be the case that the host history ?le contain
data in ?elds that are not synchroniZed. Moreover, if the
records of the remote are mapped or recast into another
format (eg “translated” as described in the ’390 patent) the
records of the history ?le contain a copy of the records of the
database, as mapped, translated, or both. The SynchroniZer
uses the mapped or translated records for synchroniZation.
Therefore, it only needs the mapped or translated copy of the
unchanged record. In other embodiments, the host history
?le may contains copies of all the records exactly as they are
in the remote database or in some other format that is useful
for the particular application.

Referring to FIG. 6, in the described embodiment, all
records received by the host segment from the remote
segment are ?agged with one of Added, Changed, or Deleted
?ags. For all records received from the remote segment (step
601), the host synchroniZer performs the following func
tions. If a received record is ?agged as an added record (step
602), then the received record is added to the host workspace
(step 603). Since the record is new, it is not associated or
linked to any history ?le record. If a record is ?agged as a
“changed” record (step 604), then the SynchroniZer uses the
received unique ID to ?nd the corresponding record in the
history ?le (step 605) and links the received remote record
to that history ?le record (step 606). If the received record
is ?agged as a “deleted” record (step 607), then the Syn
chroniZer uses the received unique ID to ?nd the corre
sponding record in the history ?le (step 608)and marks the
history ?le record as deleted (step 609).

After all the received records are analyZed (step 611), if
any host history ?le records containing remote database

6,044,381
13

unique IDs are left that were not matched against the
received records, the synchroniZer assumes that those
records represent the remote database records that are
unchanged. For all those records (step 612), the synchro
niZer clones the host history ?le record (i.e. create a work
space entry and copy all the host history ?le record in to that
entry) and treats it as a record received from the remote
database. At this point the host segment proceeds with
synchroniZation since the records of the remote database
have now been loaded. In essence, referring back to FIG. 4,
this is the end of step 404.
As previously described, after the synchroniZer has per

formed CAAR, the user must con?rm to proceed with
updating the remote database (step 406 in FIG. 4). If the user
decides to terminate the synchroniZation, changes are not
made to the host history ?le or the databases. In the case of
the remote database, as described in reference to FIG. 5, the
remote segment is waiting for the synchroniZer to ?nish
synchroniZing. If the user aborts synchroniZation (step 533),
the remote segment discards the remote workspace (step
534), saves the original history ?le without any changes
(step 535), and terminates the process at the remote com
puter.

If the user con?rms to proceed with updating the database
(step 406 in FIG. 4), control module 2 instructs the syn
chroniZer and the remote segment to proceed with unloading
the records from the workspace into the remote database. As
stated, at this point, the remote segment is waiting for the
synchroniZer to ?nish synchroniZing (step 532 in FIG. 5).
During the synchroniZation, the synchroniZer has deter
mined what “actions” with respect to which record in which
database should be taken (update, delete, or add) to complete
synchroniZation. If changes or additions are made to the host
database in the case of particular record but no action need
be taken with respect to that record in the remote database,
the synchroniZer determines that an “acknowledgement”
should be sent to the remote segment. The synchroniZer
sends all the actions concerning the remote database
together with the associated record to the remote (step 616).
The synchroniZer then sends the unique ID of those records
that require “acknowledgements” to be sent to the remote
together with an appropriate ?ag (step 617).

Referring again to FIG. 5, for each action item or
acknowledgement received at the remote segment (step
538), the following steps are performed. If the received data
indicates an “acknowledgement” or “action” with respect to
a record that was added or changed since the previous
synchroniZation, the remote segment marks the new work
space entry that was created in either step 520 or step 525 as
acknowledged (step 540). The remote segment also discards
or removes any other entry in the workspace that contains
the unique ID of this record, which is typically the entry that
was loaded from the remote history ?le. Therefore, as
previously described, this entry as opposed to the old remote
history ?le entry associated with this record will be written
into the history ?le at the end of the process at the remote
segment. This in essence updates the history ?le, as will be
described below.

If the received data indicates an action item that tells the
remote segment to update, change, or add a remote database
record (step 543), the remote segment performs that action
with respect to the remote database. The remote segment
also performs the same steps as steps 540 and 541 (step 544
and 545). If a new record was added to the database (step
546), it will be assigned a new unique ID. The remote
segment sends that unique ID to the host segment (step 547).
The host segment includes that unique ID in the host work
space in association with that record (step 618 in FIG. 6).

15

25

35

45

55

65

14
After all the records have been received, the remote

segment discards all unacknowledged entries from the work
space. Therefore, in the case of those added or changed
records with which the user decided not to update the host
database, the remote history ?le remains unchanged. The
remote history ?le is then updated from the remote work
space. At this point the control module continues with step
410 in FIG. 4, i.e. creating the history ?le to end the
synchroniZation of the two databases.

In the ?rst embodiment, which we described above, the
remote database assigns unique IDs to its records. We will
now describe a second embodiment for the case where the
remote database does not assign unique IDs to its records. In
such a case, the remote segment provides some information
less than all the ?elds of the records to uniquely identify an
unchanged record to the host segment. This information may
be a hash value. The host segment uses this information to
?nd and then use the host history ?le copy of the unchanged
remote database record to synchroniZe the two databases.

To identify a record from the previous synchroniZation or
an unchanged record, the remote segment can use a content
based code, that is a code whose value depends on the
content of all or a selected number of the ?elds of a record.
In the second embodiment, the remote segment uses hash
numbers. Since in the case of an unchanged record, its
content has remained the same, its hash number remains the
same. The hash number acts as a unique identi?er and
therefore enables the remote and host segments to identify
the unchanged record by its hash code. The hash code can be
used to identify a record that is stored in the host history ?le,
since its content remains the same from the end of one
synchroniZation to the time it is updated. It may also be
transmitted to identify an unchanged record or an unchanged
version of a changed record. Ahost history ?le record can in
effect be identi?ed using the hash code of that record.
We will describe the operation of this embodiment in

reference to FIGS. 7 and 8. Steps 701—711 are the same as
steps 501—511 in FIG. 5, described above in reference to the
?rst embodiment. These steps are generally concerned with
?nding the correct remote history ?le.

After determining that there is a suitable remote history
?le, for each record of the remote database (step 712), the
following functions are performed. The remote segment
loads and translates a record of the remote database into the
remote workspace (step 713) and a hash number is calcu
lated for that record (step 714). If the hash number of the
remote record matches one or more hash numbers in the

remote history ?le (step 715), then the remote segment
assumes that the record has not been changed since a
previous synchroniZation.

It is possible that the hash number may be repeated more
than once, eg because of duplicate records or records that
appear as duplicates because some of their ?elds are not
synchroniZed. Therefore, the remote segment sends addi
tional information that can be used to identify which of the
multiple identical hash numbers a particular record relates
to. This is done because during updating the remote history
?le record at the end of synchroniZation, the same number
of identical hash numbers as matching remote database
records are updated. In the second embodiment, this addi
tional information is the indeX number associated with each
entry of the remote workspace. Therefore, when the hash
number of the remote record matches one or more hash

numbers in the remote history ?le (step 715), the remote
segment sends the hash number, a ?ag indicating that the
record is unchanged, and the indeX number of that hash
number to the host segment (step 716). Obviously if the

6,044,381
15

index number was previously sent, the next index number
for the identical hash is sent.

If the hash number does not match one or more hash
numbers in the history ?le (step 717), the remote segment
treats that record as having been newly added. Therefore, the
remote segment sends the host segment a copy of the ?eld
values of the record, the remote workspace index number,
and an “added” ?ag (step 720). The remote workspace index
number makes it easier to perform future search of the
remote workspace when data with respect to this record is
received. As in the case of changed and added record in the
?rst embodiment, the remote segment also creates a new
remote workspace entry and enters hash number value of the
record (step 718). The new entry is marked as “unacknowl
edged” (step 719). It should be noted that although the
remote segment treats the record as a new record, the remote
segment can not distinguish between an added and a
changed record. Therefore, the synchroniZer during synchro
niZation does not treat it as a new record. Instead, the
synchroniZer compares the record to determine whether it
matches with any of host history ?le record which would
mean it is a changed record.

After reading all the remote database records and pro
cessing them (step 722), the remote segment removes from
the remote workspace all entries that have hash numbers that
are unmatched (step 723). These entries represent records
that have either been changed or deleted since the previous
synchroniZation.

After the remote segment has ?nished providing data to
the host segment, the host segment synchroniZes the two
databases based on the input from the remote segment. The
remote segment waits until the host segment ?nishes syn
chroniZing and instructs the remote segment in step 409 in
FIG. 4 to begin unloading into the remote database (step
724).

Referring to FIG. 8, as in the case of the ?rst embodiment,
the synchroniZer on the host computer uses the information
to identify those records in the host history ?le that corre
spond to the unchanged remote database records. For every
record received from the remote segment that is ?agged as
added (step 801), the synchroniZer adds the record to the
host workspace (step 802) and during CAAR compares the
record to the history ?le to determine whether the record is
a changed or added record. For every record received from
the remote segment that is ?agged as “unchanged” (step
804), in the same manner as the ?rst embodiment, the
synchroniZer ?nds the corresponding host history ?le record
by ?nding a record that has the same hash number as that
sent by the remote synchroniZer (step 805). The synchro
niZer then clones the record (step 806), as previously
described, and treats as if it is a record received from the
remote database. At the end of this process, when all the
records of the remote database are loaded into the host
workspace, the control module proceeds to step 405 in FIG.
4 to begin CAAR. CAAR will then analyZe the records in the
host workspace to determine which remote records were
added, which were changed, and which were deleted since
the previous synchroniZation.

After CAAR, if the user con?rms to proceed with updat
ing the database, control module 2 instructs the synchroniZer
and the remote segment to proceed with unloading the
records from the workspace into the remote database (step
409 in FIG. 4). As stated, at this point, the remote segment
is waiting for the synchroniZer to ?nish synchroniZing (step
724 in FIG. 7). During performing CAAR, the synchroniZer
has determined what actions should be taken (update, delete,
or add) to each database. If changes or additions are made

10

15

25

35

45

55

65

16
to the host database in the case of a particular record but no
action need be taken with respect to that record in the remote
database, the synchroniZer determines that at least an
“acknowledgement” is to be sent to the remote segment. The
synchroniZer sends all the actions concerning the remote
database together with the associated record and remote
workspace index to the remote (step 809). The synchroniZer
then sends the remote workspace index of those records that
require acknowledgements to be sent to the remote together
with an appropriate ?ag (step 810). Therefore, the remote
workspace index is used to identify which records in the
remote workspace should be “acknowledged”.

Referring back to FIG. 7, steps 725—729 are the same as
steps 533—537, which were described in reference to the ?rst
embodiment. For each action item or acknowledgement
received at the remote segment (step 730), the following
steps are performed. If the data received indicates an
“acknowledgement” or “action” with respect to a record that
was sent to the host segment ?agged as “added” (step 731),
the remote segment marks the new workspace entry that was
created in either step 718 as acknowledged (step 732). It
should be noted that the remote workspace index number is
used to locate the remote workspace entry. Therefore, as
previously described, this entry will be written into the
history ?le at the end of the process at the remote segment.

If the received data indicates an action item that tells the
remote segment to update, change, or add a remote database
record (step 733), the remote segment performs that action
with respect to the remote database. The remote segment
also updates the remote workspace and marks the entry as
“acknowledge” (step 735).

After all the records have been received, the remote
segment discards all unacknowledged entries from the
workspace, which were newly created entries which were
not acknowledged. Therefore, in case of those added or
changed records with the user decided not to update the host
database with, the remote history ?le remains unchanged.
The remote history ?le is then updated from the workspace.
At this point the control module continues with step 410 in
FIG. 4, i.e. creating the history ?le to end the synchroniZa
tion of the two databases.

Although we have described embodiments in which the
host segment transforms the input from the remote segment,
it should be noted that other embodiments of the host
segment may not transform the input from the remote
segment since they are designed to use inputs that informs
them of which records have been changed, added and
deleted or have been left unchanged. Other embodiments in
which the host segment requires different types of input, the
input from the remote segment are transformed as required.
The various embodiments of the host segment may or may
not use a history ?le.

Other embodiments are within the following claims.
What is claimed is:
1. A computer implemented method for synchroniZing a

?rst database located on a ?rst computer and a second
database located on a second computer, the method com
prising:

determining, at the ?rst computer, whether a record of the
?rst database has been changed or added since a
previous synchronization by comparing records of the
?rst database to a ?rst history ?le located on the ?rst
computer comprising records representative of records
of the ?rst database at the completion of the previous
synchroniZation;

if the record of the ?rst database has not been changed or
added since the previous synchroniZation, sending from

6,044,381
17

the ?rst computer to the second computer information
identifying the unchanged record;

storing a second history ?le on the second computer
containing records representative of records of the ?rst
database at the completion of the previous
synchronization, Wherein one of the representative
records represents the record of the ?rst database
determined to be unchanged;

using the information identifying the unchanged record to
locate the one of the representative records in the
second history ?le; and

performing a synchroniZation, at the second computer, of
the second and ?rst databases using the one of the
representative records.

2. The computer implemented method of claim 1 Wherein
the second history ?le stores information in relation to the
representative records and Wherein the one of the represen
tative records in the second history ?le can be identi?ed
from the stored information.

3. The computer implemented method of claim 2 Wherein
the information sent from the ?rst computer to the second
computer comprises information that matches the informa
tion stored in relation to the one of the representative records
in the second history ?les.

4. The computer implemented method of claim 1 Wherein
the information comprises information identifying records
other than the unchanged record.

5. The computer implemented method of claim 1 Wherein
the information comprises information identifying the
unchanged record.

6. The computer implemented method of claim 1 Wherein
the information comprises information identifying the
deleted records.

7. The computer implemented method of claim 1 Wherein
the information comprise information identifying the added
records.

8. The computer implemented method of claim 1 Wherein
the information comprises a code, the code being based on
at least a portion of the content of the record of the ?rst
database.

9. The computer implemented method of claim 8 Wherein
the code comprises a hash number computed based on at
least a portion of the content of the record of the ?rst
database.

10. The computer implemented method of claim 8
Wherein the information further comprises a ?rst plurality of
records of the ?rst database identi?ed as “changed or
added”, the method further comprises using said information
to identify a plurality of the ?rst database as “deleted or
changed” since the previous synchroniZation.

11. The computer implemented method of claim 1
Wherein the information comprises a code uniquely identi
fying the records of the ?rst database.

12. The computer implemented method of claim 11
Wherein the unique identi?cation code is assigned by the
?rst database to the records of the ?rst database.

13. The computer implemented method of claim 12
Wherein the information further comprising a ?rst plurality
of the records of the ?rst database identi?ed as “changed”,
a second plurality of the records of the ?rst database
identi?ed as added, and information identifying a third
plurality of records of the ?rst database as “deleted”.

14. Acomputer program, resident on a computer readable
medium for synchroniZing a ?rst database located on a ?rst
computer and a second database located on a second
computer, comprising instructions for:

determining, at the ?rst computer, Whether a record of the
?rst database has been changed or added since a
previous synchroniZation by comparing records of the

10

15

25

35

45

55

65

18
?rst database to a ?rst history ?le located on the ?rst
computer comprising records representative of records
of the ?rst database at the completion of the previous
synchroniZation;

if the record of the ?rst database has not been changed or
added since the previous synchroniZation, sending from
the ?rst computer to the second computer information
identifying the unchanged record;

storing a second history ?le on the second computer
containing records representative of records of the ?rst
database at the completion of the previous
synchroniZation, Wherein one of the representative
records represents the record of the ?rst database
determined to be unchanged;

using the information identifying the unchanged record to
locate the one of the representative records in the
second history ?le; and

performing a synchroniZation, at the second computer, of
the second and ?rst databases using the one of the
representative records.

15. The computer program of claim 14 Wherein the
second history ?le stores information in relation to the
representative records and Wherein the one of the represen
tative records in the second history ?le can be identi?ed
from the stored information.

16. The computer program of claim 15 Wherein the
information sent from the ?rst computer to the second
computer comprises information that matches the informa
tion stored in relation to the one of the representative records
in the second history ?les.

17. The computer program of claim 14 Wherein the
information comprises information identifying records other
than the unchanged record.

18. The computer program of claim 14 Wherein the
information comprises information identifying the
unchanged records.

19. The computer program of claim 14 Wherein the
information comprises information identifying the deleted
records.

20. The computer program of claim 14 Wherein the
information comprise information identifying the added
records.

21. The computer program of claim 14 Wherein the
information comprises a code, the code being based on at
least a portion of the content of the record of the ?rst
database.

22. The computer program of claim 21 Wherein the code
comprises a hash number computed based on at least a
portion of the content of the record of the ?rst database.

23. The computer program of claim 21 Wherein the
information further comprises a ?rst plurality of records of
the ?rst database identi?ed as “changed or added”, the
program further comprising instructions for using said infor
mation to identify a plurality of the ?rst database as “deleted
or changed” since a previous synchroniZation.

24. The computer program of claim 14 Wherein the
information comprises a code uniquely identifying the
record of the ?rst database.

25. The computer program of claim 24 Wherein the unique
identi?cation code is assigned by the ?rst database to the
record of the ?rst database.

26. The computer program of claim 24 Wherein the
information further comprises a ?rst plurality of the records
of the ?rst database identi?ed as “changed”, a second
plurality of the records of the ?rst database identi?ed as
added, and information identifying a third plurality of
records of the ?rst database as “deleted”.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. 1 6,044,381

DATED ; MARCH 28, 2000

|NVENTOR(S) : DAVID J. BOOTHBY ET AL.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6, line 55, "1997" should be --97--.

Column 6, line 57, "'Apr. 1, 1997"’ should be --"4-l-97"--.

Signed and Sealed this

First Day of May, 2001

NICHOLAS P. GODICI

Afle?ing Officer Acn'ng Direc‘mr of lhe United States Pmenr and Trademark Office

