US006044381A

United States Patent
Boothby et al.

(19]

6,044,381
*Mar. 28, 2000

Patent Number:
Date of Patent:

(11]
[45]

[54] USING DISTRIBUTED HISTORY FILES IN
SYNCHRONIZING DATABASES
[75] Inventors: David J. Boothby; Robert C. Daley,
both of Nashua, N.H.
[73] Assignee: Puma Technology, Inc., San Jose,
Calif.
[*] Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
[21] Appl. No.: 08/927,922
[22] Filed: Sep. 11, 1997
[51] It CL7 e GO6F 17/30
[52] US.Cl . 707/201; 707/10; 707,203
[58] Field of Searchcccccooneuceee 707/10, 201, 202,
707/203, 204; 395/200.31, 200.43
[56] References Cited
U.S. PATENT DOCUMENTS
4,432,057 2/1984 Daniell et al.ccoeeerevrereerennne 395/608
4,807,182 2/1989 Queen ... 395/144
4,819,156 4/1989 DeLorme et al. 395/182.13
4,827,423 5/1989 Beasley et al.ccvviiiinnns 364/468
4,866,611 9/1989 Cree et al. ..c.ccoeeeecvecruennnnee 395/600

(List continued on next page.)
OTHER PUBLICATIONS

Alfieri, “The Best of WordPerfect Version 5.0,” Hayden
Books, pp. 153-165, 429-435 (1988).

“Automatically Synchronized Objects,” Research Disclo-
sure #29261, p. 614 (Aug. 1988).

Cobb et al., “Paradox 3.5 Handbook 3rd Edition,” Bantam,
pp. 803-816 (1991).

“FRx Extends Reporting Power of Platinum Series: (IBM
Desktop Software’s Line of Accounting Software),” Doug
Dayton, PC Week, v. 8, n. 5, p. 29(2) (Feb. 4, 1991).
IntelliLink Brochure (1990).

DATABASE
CHARACTERISTICS
AND DEFAULT
VALUES

USER
INPUT

“Logical Connectivity: Applications, Requirements, Archi-
tecture, and Research Agenda,” Stuart Madnick & Y. Rich-
ard Wang, MIT, Systems Sciences, 1991 Hawaii Int’], vol. 1,
IEEE (Jun. 1991).

“Open Network Computing—Technical Overview,” Sun
Technical Report, Microsystems, Inc., pp. 1-32 (1987).
Organizer Link II Operation Manual, Sharp Electronics
Corporation, p. 1-104, no date.

“The Big Picture (Accessing Information on Remote Data
Management System,” UNIX Review, v. 7, n. 8, p. 38(7)
(Aug. 1989).

User Manual for Connectivity Pack for the HP 951X,
Hewlett Packard Company (1991), p. 1-82.

User Manual for PC—Link for the B.O.S.S. and the PC-Link
for the B.O.S.S., Traveling Software, Inc. (1989) p. 1-82.
Zahn et al., Network Computing Architecture, pp. 1-11;
19-31; 87=115; 117-133; 187-199; 201-209 (1990).
Chapura, Inc., 3 Compare, http://www.chapura.com/3com-
pare.html (1997), pp. 1-2.

Chapura, Inc., PilotMirror Features Page,
w.chapura.com/features.html (1997), pp. 1-4.

http://ww-

Primary Examiner—Jean R. Homere
Attorney, Agent, or Firm—Fish & Richardson P.C.

[57] ABSTRACT

A computer implemented method is provided for synchro-
nizing a first database located on a first computer and a
second database located on a second computer. At the first
computer, it is determined whether a record of the first
database has been changed or added since a previous
synchronization, using a first history file located on the first
computer comprising records representative of records of
the first database at the completion of the previous synchro-
nization. If the record of the first database has not been
changed or added since the previous synchronization, the
first computer sends the second computer information which
the second computer uses to identify the record of the first
database to be unchanged.

26 Claims, 8 Drawing Sheets

Microfiche Appendix Included
(2 Microfiche, 153 Pages)

-—
| CONTROL MODULE 1 l
l 2 |
| ' |
=== -—- — I 24 26
I | L | A I
B_UNLOADER 10 SYNCHRONIZER 1] REMOTE | REMOTE
I+ SEGMENT | DATABAS|
|| B_READIR 11 15 i ENT E
32
B_TRANSLATOR 9 A_TRANSLATO!
| ——= o= §I 28\I'_REMOTE| T "REMOTE !
| WORKSPACE| HOST | | | HISTORY | | WORKSPACE |
| 16 I HISTORY | L_FLE | Fm—=———
- - LRE19, [|

T
| REMOTE COMPUTER 22

6,044,381

Page 2

U.S. PATENT DOCUMENTS 5,463,735 10/1995 Pascucci et al.ccceeervneee. 395/200.1

5,475,833 12/1995 Dauerer et al. ...occocevvvevereennene 395/617

Pse 18%2(9) cary el s ;gggé? 5511188 4/1996 Pascucci et al. e 395/600
4’980’844 12/1990 Deminenko. e.t“z.il - 364/550 5,519,606 5/1996 Frid-Nielsen et al. . . 395/228
5065360 1171991 Kell}JI : " 30500 5,560,005 9/1996 Hoover et al. 395/600
5,136,707 8/1992 Block et al. ... - 395/600 5,568,402 10/1996 Gray et al. .. 364/514 €
S142619 /1992 Webster, IIl . " 393161 5,583,793 12/1996 Gray et al. woooooooovcooeeeren. 364/514 C
5.155.850 10/1992 Janis et al. 395/600 5,600,834 2/1997 Howard 395/617
5,170,480 12/1992 Mohan et al. . .. 395/600 5,613,113 3/1997 Goldring - 395/018
5,187,787 2/1993 Skeen et al. 395/600 5,615,364 3/1997 Marks .. - 395/618
5,210,868 5/1993 Shimada et al. .. 395/615 5,619,689 4/1997 Kelly 395/617
5,228,116 7/1993 Harris et al. 395/54 5,630,081 5/1997 Rybicki et al.coovviiviiinnne 395/948
5,237,678 8/1993 Kuechler et al. 395/600 5,666,530 9/1997 Clark et al. ...oocovverveervenereenens 395/617
5,251,151 10/1993 Demjanenko et al. .. 364/550 5,666,553 9/1997 Crozier 395/803
5,251,291 10/1993 Malcolm 395/161 5,682,524 10/1997 Freund et al. .. . 395/605
5,261,045 11/1993 Scully et al. 395/161 5,684,984 11/1997 Jones et al. . . 395/610
5,261,094 11/1993 Everson et al. .. 395/617 5,684,990 11/1997 Boothby 395/619
5,272,628 12/1993 KosS 364/419.19 5,701,423 12/1997 Crozier 395/335
5,278,978 1/1994 Demers et al. .. 395/600 5,708,812 1/1998 Van Dyke et al. . 395/712
5,278,982 1/1994 Daniels et al. . .. 395/600 5,708,840 1/1998 Kikinis et al. .. . 395/800
5,283,887 2/1994 Zachery .. . 395/500 5,710,922 171998 Alley et al. . 395/617
5,293,627 3/1994 Kato ef al. 395/550 5727202 3/1998 Kucala 395/610
5,301,313 4/1994 Terada et al. 395/600 5,729,735 3/1998 Meyering . . 395/610
5,315,709 5/1994 Alston, Jr. et al. . 395/606 5,745,712 4/1998 Turpin et al. . 395/333
5,327,555 7/1994 Anderson 395/617 5,758,150 5/1998 Bell et al. 395/610
5,333,252 7/1994 Brewer, III et al. . 395/767 5,758,355 5/1998 Buchanan 707/201
5,333,265 7/1994 Orimo et al. 395/200 5,778,388 7/1998 Kawamura et al. ... 707/203
5,333,316 7/1994 Champagne et al .. 395/600 5,790,789 8/1998 Suarez 395/200.32
5,339,392 8/1994 Risberg et al.ccccoceuennneee. 395/161 5,845,293 12/1998 Veghte et al.ccooevviivvininnne 707/202
5,339,434 8/1994 RUSIS woverrrrorreeoreeeeeeeeoreeerrssron 395/700 5870759 2/1999 Bauer et al. wooovoeveevverrerrerrere. 7071201
5,355,476 10/1994 Fukumura .. 395/600 5,870,765 2/1999 Bauer et al. 707/203
5,375,234 12/1994 Davidson et al.cccoeerrevenene 395/600 5,884,323 3/1999 Hawkins et al. ..c.cccoeeeeceneunenene 707/201
5,392,390 2/1995 CIOZIET ..ooovevverevreeeerrerinrinrennns 395/335 5,884,324 3/1999 Cheng et al.ocevevvinriininnnne 707/201
5,396,612 3/1995 Huh et al. 395/575 5,884,325 3/1999 Bauer et al. . 707/201
5,434,994 7/1995 Shaheen et al.ccocoeereevennne 395/617 5,897,640 4/1999 Veghte et al.ccooevviiviiinnne 707/202

5,444,851 8/1995 Woest ..cvvivivvviiiiniincine 395/200.1 5,926,824 7/1999 Hashimoto et al.ccceeenne. 707/520

6,044,381

Sheet 1 of 8

Mar. 28, 2000

U.S. Patent

6,044,381

Sheet 2 of 8

Mar. 28, 2000

U.S. Patent

- l

G NOLVISNVYL ™V

LT
AYOLSH | 9l

_ _ _
L _LSOH | | 3DVdSHIOM

== — —]
A - AI 6 YOLVISNVYL™d

22 ¥ILNdWOD FLOWIY !
_
L
||||| 1 r m_u._mll_ _
[Dvdsysom; | AAOLSIH |
L J1owad | 'iioway Nz |
e
ISVEV1YA | INIWDIS ——
1LOW3Y | ILOWTY |t
7 Y
9¢ 144

_
|
|
|
|
|

1NdNI SANTVA
RN 1iNv43d ANy
SOILSRIFLDOVIVHD
Svaviva

Gl LT ¥3aviyg
YIZINOEIHONAS » 0L WIAVOINN~ g
) I
F——— - ————
1
z
FINAOW TOYINOD

lllll]

6,044,381

Sheet 3 of 8

Mar. 28, 2000

U.S. Patent

P

€ 'Old

gyoD3y 3Isvaviva v

X3ONI
a3aN3LX3
SQ¥003Y v

cgyoO3y Isvaviva 4

X3ANI
a3an3ix3a
SQYOD3Y 9§

sSay¥0O23Y 3114 AHOLSIH

X3ANI
d3aN31Xx3
SA¥003d H

Avddy @H003

%

1

X3ANI A3aN3L1X3

6,044,381

Sheet 4 of 8

Mar. 28, 2000

U.S. Patent

¥ "Old

"STT3 AIOISTY MBU ' FIYIYD O3 ISZTUOIYDUAS IDNALSNI
‘asegeale s3oway O3

saburyo argeor1dde TT® QVOINN ©3 IO3jelsuell 230way IDNJYILSNI
-@segeled.asoy

03 sabueyo maﬂmuaamam 1T® AQV¥OTINN ©3 HOumHmcmuH asoy IONYISNI
I¥OEY NIHL ‘ON s3ndul xssn JI

SpeW a8 03 INoge ale saburyd Jeym ATIOEXS I8ST WIOANI
"goedsyaIom 8yl UT SpIooal Y Pur ‘spaodsa g

‘A103STY Byl TI® UO (¥YYD) wiojzasd 03 I3ZTUOIYDUAS IDAUILSNI
-- 2segeled 230wWaY WOIJ

SpICoay S3lo0wdy JO [Ie QY01 O3 Io3jelsueilsjowsy IDNVISNI
aseqgeaeg a3AsoOy

wox3 SpIod8y 3ISO0Y JO TIB OVOT ©3 Io3jelsueil 3ISOY IDAUISNI
soedsyaom S3T 03uUT BTT3

Azo3stu =3etadoadde syi peol 031 I3ZTuoIyduds aya IDNAULSNI
suoTado I9sSn JUaIIND

PutAyTosds ‘J79S3T 8ZTTRTITUT O3 ISZTUOIYDUAS 3yl IDNYISNI

"0T¥
"60%
"80%
L0V
909
S0P
"0V
"eob
"20%

10V

U.S. Patent Mar. 28, 2000 Sheet 5 of 8 6,044,381

501. INITIALIZE an empty remote workspace
502. IF there is a remote history file matching the host history file name

503. IF the remote history file time stamp matches the history file time stamp

504. LOAD the remote history file into the remote workspace

305. ELSE

506. REMOVE the non-matching history file

507. Proceed with the empty workspace, all records passed to host

308. ENDIF

509. ELSE

510. Proceed with the empty workspace, all records passed to host

511. ENDIF

512. FOR each record in the remote database

513. Translate and load data field values and unique ID into remote workspace

514, Compute a hash value to represent all translated data values

515, IF the unique ID matches the unique ID of an existing remote history file entry,
516. [F the hash value is the same

517. Skip this entry, the bost will recreate this record from history
518. ELSE

519. Send Unique ID, field values and “Changed” record flag to the host
520. Create new workspace entry with same unique ID and new hash value
521, This new entry is marked as “unacknowledged”

522. ENDIF

523. ELSE

524, Send Unique ID, field values and “Added” record flag to the host

528. Create new workspace entry with new unique ID and new hash value

526. This new entry is marked as “unacknowledged”

527. ENDIF

528. NEXT

529. FOR. each unique ID in the remote history file not matched in the above loop,

530. Send Unique ID and “Deleted” flag to the host

531. NEXT

532, WAIT for host to synchronize the data and for user to confirm results

333, IF user has aborted the synchronization

324 The remote workspace is discarded.

53s. The original remote history file remains unmodified.

536. The process is terminated.

537. ENDIF

S38. FOR each record “action” or “acknowledgment” received from the host,

539. IF this is an acknowledgment of a record Added or Updated in the remote database.
540. Mark any corresponding, newly created workspace item as “acknowledged”
541. Remove any prior workspace item with the same unique ID

S42. ELSE IF this is 2 new action to Add, Update, or Delete a remote database record
543, UPDATE remote workspace to reflect the appropriate change

544, Mark any cormesponding, newly created workspace item as “acknowledged”
545, Remove any prior workspace item with the same unique ID

546. [F this is an Add

247, SEND the new unique ID back to the host to include in history file
548. ENDIF

549, ENDIF

550. NEXT

5S1. REMOVE any newly create, but “unacknowledged” entries from the workspace

s52. UPDATE the remote history file from the remote workspace

FIG. 5

6,044,381

Sheet 6 of 8

Mar. 28, 2000

U.S. Patent

9 "OlId

I1X3N 619

‘suonde ppv,, INS3l Y3 Se 310wl Yy woly 1u3s s, ([anbun yum asedsxyiom 31vadn ‘819
S.{1 anbrun pajerdsosse yim 210Wal1 Y 01 SIUIWIPI[MOWYOE [[B ANIS L19

210W31 3Y) 03 BJEP PI0I3I PIAIEBIJOSSE Ylim SUONIE [[B ANIS ‘919

9SeqEIEp 210Wal 3y} 10j dedsyiom Iyl Ul PapIO3al SIUSWSPI|MOIOE 10 SUONIE [[B YO S19

:(pasn a1e s (J] anbiun usym) aseqerep
10wWa1 3y 01 3sedsyiom 3y) woy sagueyds Supeojun aiym 3|y K01ty 2jowal s 1andwod aowral 3y Sunepdp

1XIN vI9

31y A101s1y 2y u1 eyep woy (Jj snbrup) pue erep p102al Suissiu 3y INOTD €19

‘q] anbiun) s10wal B £q paydiews 134 Jou SP10331 A10ISIY [[B YOI 219

IXIN 119

JIANT 019

wan aoedsyIom SIpI YIIm UONDR 13[3p Y1 (UI|) AIBIIOSSY 609

! anbrup 5,p10331 p21312p 3y £q aoedsyiom ay) i wan A1oisty Sutpuodsaliod puig 809
P3is[3p us=q sey plodal J] IST3 L09

walt asedsyiom s yim p1os21 paueyd ayy (Yuij) A1eId0SSY 909

@l anbtup) s,p10331 paSueyd ay Ag oedsyrom oy ur wal A10151y Surpuodsanios puig "S09
padueys usaq sey p1odal J1 3S7I3 $09

swn siys 18 A101s1y AU® Yuim paiejaniod 10u ‘asedsylom 3y 03 P102331 m3U Y} PPV €09
WPaPPY,, pad3e]) sem p1o33s J] 209

' J10Wa1 3y Wwoy paurwsuel SP10521 PaI3[a(pue ‘padueys) ‘pappv (18 WO4 (109

ussaid are s, anbrun usym erep A10351y Suisn 19ZIUOIYSUAS a1 AQ BIEp _PaIal[y,, JO UONIEAIDAY

U.S. Patent Mar. 28, 2000 Sheet 7 of 8 6,044,381

T01. INITIALIZE an empty remote workspace

T02. IF there 15 a remote history file matching the host history file name

703 {F the remote history file time stamp matches the history file time stamp

T04. LOAD the remote history file into the remote workspace

T0S. ELSE

706. REMOVE the non-matching history file

T07. Proceed with the empty workspace, ail records passed to host

T08. ENDIF

709. ELSE

710. Proceed with the empty workspace, all records passed to host

711 ENDIF

712. FOR each record in the remote database,

T13. Translate and load data field values into the remote workspace

T14. Compute a hash value to represent all ranslated data values

715, IF the hash value matches the hash vaiue of one or more remote history file entries,

T16. Send hash value, remote workspace index, and “Unchanged” record flag to the host

717 ELSE

T18. Create new workspace entry with new new hash vaiue and remote workspace index

719. This new entry is marked as “unacknowledged”

720. : Send hash value, remote workspace index, field values and “Added” record flag to the
host

721. ENDIF

722. NEXT

723. REMOVE zany “prior” workspace entries not matched by hash value above

724. WAIT for host to synchronize the data and for user to confirm resuits

725. IF user has aborted the synchronization

726. The remote workspace is discarded.

727. The original remote history file remains unmodified.

728. The process is terminated.

729. ENDIF

730. FOR each record “action” or “‘acknowledgment” received from the host,

31 IF this is an acknowledgment of a record sent to the host (above) as “added”,

T32. Mark any corresponding, newly created workspace item as “acknowledged”

T33. ELSE IF this is a new action to Add, Update, or Delete a remote database record

724, UPDATE remote workspace to reflect the appropnate change

735. Mark the updated record as “‘acknowledged”

736. ENDIF

737. NEXT

738. REMOVE any newly create, but “unacknowledged™ entries from the workspace

UPDATE the remote history file from the remote workspace

FIG. 7

6,044,381

Sheet 8 of 8

Mar. 28, 2000

U.S. Patent

8 'Oid

LXHN T18

$3X3pUI 90BdSIOM 210X PIJBIDOSSE il SOWIAI 3Y] O SIUSWSPa[Mow(de [[e ANIS 018
2)0WIaI Y} 01 BIEP PI0OI2I PIJBIDOSSE Ylim SUOndE [[B JNIS "608

aseqEIED 9)0WAI Y] 10] 3oedsyIom 3Y) U PIPI0I3I SJUSWSPI|MOUNIE 10 sTONdE [[B YOI ‘808

:(pasn 1ou a1e s, (J] anblun usym) aseqejep
al0wal 3y 01 asedsyzom ayy woyy safueyds Surpeojun a[ym o[y Aloisiy jowal s 19ndwod 0wl Y1 Junepdn)

LXAN 'L08

31y A101S1Yy 2y Ul eIEp WIOL B3RP P10d31 Sussiw 3y INOTO 908

anfea ysey s,p10oa1 pagueysun sy 4q soedsyiom ayi ur wan Aloisty Surpuodsaniod put] "S08
‘ 310Wal AU} WOIJ papnwisuel) swal pagueysup) [[e YOI ‘$08

LXIN t08

swn siy 3e A101S1Y AUB Ylim Pajejallod jou ‘aoedsylom 311 01 PI0d3I M3U 3yl ppY ‘208

‘¢ QJowal AY) WO paurwsuen splosal PaPPV 11® 404 ‘108

quasaid JoU are s, (] anbun uaym ejep Aloisty Suisn 19ztuorgouds sy £q eIEp | P3I3[Y,, JO UONRAIOY

6,044,381

1

USING DISTRIBUTED HISTORY FILES IN
SYNCHRONIZING DATABASES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to application Ser. No. 08/752,
490, filed Nov. 13, 1996 now U.S. Pat. No. 5,943,676, and
Ser. No. 08/748,645, filed Nov. 13, 1996. This application is
also related to application Ser. No. 08/749,926, filed Now.
13, 1996, now abandoned. These applications are incorpo-
rated herein by reference in their entirety.

REFERENCE TO MICROFICHE APPENDIX

An appendix (appearing now in paper format to be
replaced later in microfiche format) forms part of this
application. The appendix, which includes a source code
listing relating to an embodiment of the invention, includes
153 frames on 2 microfiche.

This patent document (including the microfiche appendix)
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document as it appears in the
Patent and Trademark Office file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND

This invention relates to synchronizing databases.

Databases are collections of data entries which are
organized, stored, and manipulated in a manner specified by
applications known as database managers (hereinafter also
referred to as “Applications”; the term “database” will also
refer to the combination of a database manager and a
database proper). The manner in which database entries are
organized in a database is known as its data structure.

There are generally two types of database managers. First
are general purpose database managers in which the user
determines (usually at the outset, but subject to future
revisions) what the data structure is. These Applications
often have their own programming language and provide
great flexibility to the user. Second are special purpose
database managers that are specifically designed to create
and manage a database having a preset data structure.
Examples of these special purpose database managers are
various scheduling, diary, and contact manager Applications
for desktop and handheld computers. Database managers
organize the information in a database into records, with
each record made up of fields. Fields and records of a
database may have many different characteristics depending
on the database manager’s purpose and utility.

Databases can be said to be incompatible with one another
when the data structure of one is not the same as the data
structure of another, even though some of the content of the
records is substantially the same. For example, one database
may store names and addresses in the following fields:
FIRST_NAME, LAST_NAME, and ADDRESS. Another
database may, however, store the same information with the
following structure: NAME, STREET_ NO., STREET _
NAME, CITY_STATE, and ZIP. Although the content of
the records is intended to contain the same kind of
information, the organization of that information is com-
pletely different.

Often users of incompatible databases want to be able to
synchronize them with one another. For example, in the
context of scheduling and contact manager Applications, a
person might use one Application on the desktop computer

10

15

20

25

30

35

40

45

50

55

65

2

at work while another on his handheld computer or his
laptop computer while away from work. It is desirable for
many of these users to be able to synchronize the entries on
one with entries on another. The U.S. patent and copending
patent application of the assignee hereof, Puma Technology,
Inc. of St. Jose, Calif. (U.S. Pat. No. 5,392,390 (hereinafter,
“the ’390 patent”); U.S. application Ser. No. 08/371,194,
filed on Jan. 11, 1995, incorporated by reference herein)
show two methods for synchronizing incompatible data-
bases and solving some of the problems arising from incom-
patibility of databases.

Synchronization of two incompatible databases often
requires comparison of their records so that they can be
matched up prior to synchronization. This may require
transferring records in one database from one computer to
another. However, if the data transfer link between the two
computers is slow, as for example is the case with current
infrared ports, telephone modem, or small handheld
computers, such a transfer increases the required time for
synchronization by many folds.

SUMMARY

In one aspect, the invention features a computer imple-
mented method for synchronizing a first database located on
a first computer and a second database located on a second
computer. At the first computer, it is determined whether a
record of the first database has been changed or added since
a previous synchronization, using a first history file located
on the first computer comprising records representative of
records of the first database at the completion of the previous
synchronization. If the record of the first database has not
been changed or added since the previous synchronization,
the first computer sends the second computer information
which the second computer uses to identify the record of the
first database to be unchanged.

The embodiments of this aspect of the invention may
include one or more of the following features.

A second history file may be located on the second
computer. The second history file contains records repre-
sentative of records of the first database at the completion of
the previous synchronization, where one of the representa-
tive records represents the record of the first database
determined to be unchanged. Then, at the second computer,
a synchronization of the second and first databases is per-
formed using the one of the representative records.

The information sent from the first computer to the second
computer can be used to locate the one of the representative
records in the second history file. The second history file can
store information in relation to the representative records
and the one of the representative records in the second
history file can be identified from that stored information.
Additionally, the information sent from the first computer to
the second computer can include information that matches
the information stored in relation to the one of the repre-
sentative records in the second history files.

The information sent to the second computer can include
information identifying records other than the unchanged
record. It can also include information identifying the
changed record. It can also include information identifying
the deleted records or added records. The information can
also include a code based on at least a portion of the content
of the record of the first database. The code may be a hash
number. The information may be a code uniquely identifying
the record of the first database. Such a code may be one
assigned by the first database to the records.

In another aspect, the invention features a computer
implemented method of identifying a record of a database.

6,044,381

3

A record of the database is read. A code is assigned to the
record of the database, the code being based on at least a
portion of the content of the record of the first database. The
code is then to identify the record at a later time.

The embodiments of this aspect of the invention may
include one or more of the following features.

The code may be a hash number computed based on at
least a portion of the content of a record of the first database.

The database is stored on a first computer and the code is
transmitted to a second computer to identify the record to an
application.

Advantages of the invention may include one or more of
the following advantages.

When synchronization is performed using the invention,
a data transfer link, specially a slow data transfer link, is
used efficiently, since unchanged records that are typically
the majority of the records in a database are not transferred
between the two computers. Hence, when synchronizing two
databases on two different computers, the time needed to
synchronize the two databases is decreased.

Also, when transmitting data from one computer to
another, using a content based code, that requires less
bandwidth for being transmitted and nonetheless identifies a
record, results in a slow data transfer links being used more
efficiently.

The invention may be implemented in hardware or
software, or a combination of both. Preferably, the technique
is implemented in computer programs executing on pro-
grammable computers that each include a processor, a
storage medium readable by the processor (including vola-
tile and non-volatile memory and/or storage elements), at
least one input device, and at least one output device.
Program code is applied to data entered using the input
device to perform the functions described above and to
generate output information. The output information is
applied to one or more output devices.

Each program is preferably implemented in a high level
procedural or object oriented programming language to
communicate with a computer system. However, the pro-
grams can be implemented in assembly or machine
language, if desired. In any case, the language may be a
compiled or interpreted language.

Each such computer program is preferably stored on a
storage medium or device (e.g., ROM or magnetic diskette)
that is readable by a general or special purpose program-
mable computer for configuring and operating the computer
when the storage medium or device is read by the computer
to perform the procedures described in this document. The
system may also be considered to be implemented as a
computer-readable storage medium, configured with a com-
puter program, where the storage medium so configured
causes a computer to operate in a specific and predefined
manner.

Other features and advantages of the invention will
become apparent from the following description of various
embodiments, including the drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows two computers connected via data transfer
link.

FIG. 2 is a schematic drawing of the various modules
constituting an embodiment.

FIG. 3 is a representation of the host workspace data
array.

FIG. 4 is pseudocode for the Translation Engine Control
Module.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is pseudocode for a remote segment of a synchro-
nization program when loading records from and unloading
records to the remote database, when the database assigns
unique IDs.

FIG. 6 is pseudocode for a host segment of a synchroni-
zation program when loading records from and unloading
records to the remote database, when the database assigns
unique IDs.

FIG. 7 is pseudocode for a remote segment of a synchro-
nization program when loading records from and unloading
records to the remote database, when the database does not
assign unique IDs.

FIG. 8 is pseudocode for a host segment of a synchroni-
zation program when loading records from and unloading
records to the remote database, when the database assigns
unique Ids.

DESCRIPTION

Briefly, referring to FIGS. 1 and 2, a synchronization
program, according to the embodiments described here, has
a host segment 28 and a remote segment 26 which run on a
host computer 20 and a remote computer 22, respectively.
The two computer are connected together via a data transfer
link 24 enabling them to transfer data between them. Data
transfer link 24 may be a slow data transfer link such as a
serial infrared links, serial cables, modems and telephone
lines, or other such data transfer links. A host database 13
and a remote database 14, e.g. scheduling databases, are
stored on remote computer 22 and host computer 20, respec-
tively.

Generally, in some instances, both computers on which
the two databases run are capable of running programs other
than a database, as in the case of, for example, general
purpose computers such as desktop and notebook
computers, or handheld computers having sufficient memory
and processing power. In such a case, the synchronization
program may be distributed between the two computers so
as to, for example, increase the efficiency of using of a slow
data transfer link between the two machines.

Briefly, at remote computer 22, remote segment 26 of the
synchronization program loads records of remote database
13. Remote segment 26 then determines which records of
the remote database have been changed/added, deleted or
left unchanged since a previous synchronization. If the
remote database assigns unique identification codes (i.e.
unique ID) to its records, remote segment 26 can further
differentiate between records than have been added and
those than have been changed since the previous synchro-
nization. Remote segment 26 uses a remote history file 30
which stores data representing or reflecting the records of
the database at the completion of the previous synchroniza-
tion. This data may be a copy of remote database 13. It may
also be hash numbers for each of the records of the remote
database. If the remote database assigns unique IDs, the
remote history file may contain those unique IDs together
with the hash numbers of the records corresponding to the
stored unique IDs.

Remote segment 26 sends those records of the remote
database that have been changed or added to the host
segment or the host computer. However, the remote segment
does not send the unchanged or deleted records to the host
computer. Instead, the remote segment sends a flag indicat-
ing the status of the record (e.g. unchanged or changed) and
some data or information that uniquely identifies the record
to the host segment. This data or information may be a hash
number of all or selected fields in the record at the comple-

6,044,381

5

tion of the last synchronization. It may also be the unique ID
assigned to the record by the remote database, if the database
assigns one to its records.

Host segment 28 uses the received information or data
that uniquely identifies the unchanged record to access a
record in host history file 19 that corresponds to the received
information or data. This record contains a copy of the data
of the remote database record that the remote segment found
to have been unchanged. Host segment 19 then uses this
record to synchronize the databases by comparing it to the
records of host database 14. After synchronization, the
remote and host history files and the databases are updated.
Since the unchanged records which typically constitute most
of the records of a database are not transferred to the host
computer, a data transfer link, specially a slow data transfer
link, is used with increased efficiency.

We will describe two embodiments of a distributed syn-
chronization program. We will first describe in general terms
the overall structure of the distributed synchronization pro-
gram in reference to FIGS. 2 and 3 which is common to both
embodiments. We will then describe then the first and
second embodiments performing a distributed synchroniza-
tion in reference to FIGS. 4-8.

FIG. 2 shows the relationship between the various mod-
ules of an embodiment of a distributed synchronization
program. Translation Engine 1 comprises a Control Module
2 that is responsible for controlling the synchronizing pro-
cess by instructing various modules to perform specific tasks
on the records of the two databases being synchronized. The
Control Module 2 also provides data that affects the specific
operation of the various components of the synchronization
program, such as the name of the databases being synchro-
nized and user preferences. FIG. 4 is the pseudocode of the
steps taken by this module. The Synchronizer 15 has pri-
mary responsibility for carrying out the core synchronizing
functions. It is a table-driven code which is capable of
synchronizing various types of databases whose character-
istics are provided by control module 2. The Synchronizer
creates and uses a host workspace 16 (shown in detail in
FIG. 3), which is a temporary data array used during the
synchronization process.

Ahost translator 9 includes two modules: a reader module
10 which reads the data from the host database 14 and an
unloader module 10 which analyzes and unloads records
from the host workspace into the host database 14. Remote
segment 26 also has similar modules for reading and unload-
ing data from the remote database. The remote segment is
designed specifically for interacting with remote database
13. The design of the remote segment is specifically based
on the record and field structure of the remote database and
remote database’s Application Program Interface (API)
requirements and limitations and other characteristics of the
remote database. Similarly host translator 9 is designed
specifically for the host database. The remote segment and
host translator are not able to interact with any other
databases or Applications. They are only aware of the
characteristics of the databases for which they have been
designed. In an alternate embodiment, the host translator and
the remote segment can be designed as a table-driven code,
where a general Translator is able to interact with a variety
of databases based on the parameters supplied by, for
example, the Control Module 2. It should be noted that the
remote segment and host translator may be designed in
various ways and still perform the tasks set out in this
embodiment.

FIG. 4 is the pseudocode for the operation of Control
Module 2 of the Translation Engine 1. We will use this

10

15

20

25

30

35

40

45

50

55

60

65

6

pseudocode to generally describe distributed synchroniza-
tion according to the invention. Control Module 2 first
initializes itself and specifies the current user options to
various modules (Step 401). In step 402, control module 2
instructs the Synchronizer to load host history file 19.
Synchronizer 15 in response creates host workspace 16 data
array and loads host history file 19 into host workspace 16.
Host history file 19 is a file that was saved at the end of last
synchronization and contains records representative of the
records of the two databases at the end of the previous
synchronization. Typically, the host history file contains a
copy of the results of the previous synchronization of the
synchronized records of the two databases. It should be
noted that the content of the records of the history file may
be limited only to those fields that are synchronized and the
data may be translated and stored in a format different than
that of the remote database or the host database. This data
can be used to reconstruct the content of the records of the
remote database as they were at the end of the previous
synchronization. The host history file is generally used to
determine changes to the databases since a previous syn-
chronization and also to recreate records not sent from the
remote segment, as will be described in detail below. If no
history file from a previous synchronization exists or the
user chooses to synchronize without using the history file, in
step 402 the synchronizer does not load a history file. In that
case, all the records from both databases will be loaded into
the host workspace. We will describe the rest of the opera-
tion of the control module as if a history file exists and will
be used.

Once the History File is loaded into the host workspace,
Control Module 2 instructs host translator 13 to load the host
database records (step 403). Host Reader module 11 of the
host Translator reads the host database records and sends
them to the Synchronizer for writing into the host work-
space.

Control Module 2 then instructs remote segment to send
the records of the remote database (step 404). Remote
segment 26 reads the remote database records and sends
them to Synchronizer 15 for writing into the host workspace.
The actions taken by the synchronizer and the remote
segment in response to step 404 will be described in detail
in reference to FIGS. 5, 6, 7, and 8, below.

Records in the host workspace are stored according to
either the host database or the remote database data struc-
tures. Therefore, as synchronizer 15 receives each record,
the Synchronizer maps that record using the appropriate
record map (i.e. either a remote database to host database
record map or a host database to remote database record
map) before writing the record into the next available spot
in the host workspace. Mapping may be performed by other
modules, e.g. the remote segment. The records may also be
“translated”, i.e. cast into a format which synchronizer can
use (a “translation” method is described in the *390 patent).
For example, a date stored as “Apr. 1, 1997” may be
translated into a format preferred by the synchronizer, e.g.
“Apr. 1, 1997”.

Control module 2 then instructs the Synchronizer to
perform a Conflict Analysis and Resolution (“CAAR”)
procedure on the records in the host workspace (step 405),
which procedure is described in detail in the following
applications of the assignee hereof, Puma Technology, Inc.
of St. Jose, Calif., incorporated by reference in their entirety
including any appendices: “Synchronization of Recurring
Records in Incompatible Databases”, Ser. No. 08/752,490,
filed on Nov. 13, 1996 (hereinafter, “’490 application™);
“Synchronization of Databases with Record Sanitizing and

6,044,381

7

Intelligent Comparison,” Ser. No. 08/749,926, filed Nov. 13,
1996 (hereinafter, “’926 application); “Synchronization of
Databases with Date Range,” Ser. No. 08/748,645, filed
Nov. 13, 1996 (hereinafter, “’645 application”). Generally,
synchronization is a process of analyzing records from the
remote database and host database against the records of the
history file to determine the changes, additions, and dele-
tions in each of the two databases since the previous
synchronization and what additions, deletions, or updates
need be made to the databases to synchronize the records of
the databases. Briefly, during CAAR, the synchronization
engine (i.e. the Synchronizer) compares the records in the
host workspace and determines what synchronizing actions
should be taken. The synchronization engine processes the
records, including comparing them to one another, in order
to form them into groups of related records. Each of these
groups may comprise at most one recurring or a group of
related nonrecurring records from each of the databases and
history file. After forming these groups from all records of
the two databases, the Synchronizer determines what syn-
chronization action should be taken. To do this, the Syn-
chronizer compares them, determines their differences, and
decides what synchronization action is appropriate or asks
the user what action should be taken. The synchronizer then
associates with that record, the specific “action” (e.g. add,
update or delete) that must be taken with respect to that
record in that record’s database. During “CAAR?”, the user
may select not to synchronize a particular record with the
other database. We will describe below in detail the steps
performed by the synchronizer and the remote segment in
response to the output of CAAR as the output relates to the
remote database.

Once Synchronizer 15 finishes performing CAAR on the
records, the records may be unloaded or written into their
respective databases, including any additions, updates, or
deletions. However, prior to doing so, the user is asked to
confirm proceeding with unloading (steps 108—109). Up to
this point, neither the databases nor the History File have
been modified. The user may obtain through the Control
Module’s Graphical User Interface (GUI) various informa-
tion regarding what will transpire upon unloading.

If the user chooses to proceed with synchronization and to
unload, the records are then unloaded in order into the host
database, the remote database and the History File. The
Synchronizer in conjunction with the host translator and the
remote segment perform the unloading for the databases.
Synchronizer 15 creates a host history File and unloads the
records into it. Control Module 2 first instructs the host
translator to unload the records from host workspace into the
host database. Following unloading of the host records,
Control Module 2 instructs the synchronizer and the remote
segment to unload the remote records from the host work-
space (step 409). We will describe in detail below, in
reference to FIGS. 5-8, the specific actions taken by Syn-
chronizer 15 and remote segment 26 in order to unload data
from the host workspace into the remote database and the
update remote history file 28. Control Module 2 next
instructs the Synchronizer to create a new History File (step
112). At this point Synchronization is complete.

Referring to FIGS. 5-8, we will now describe the actions
taken by the remote segment in coordination with the
Synchronizer in response to the instructions from control
module 2 in step 404 to load records of the remote database
and in step 409 to unload the records of the remote database
from the host workspace. Specifically, we will describe two
embodiments. In the case of the first embodiment, the
remote database assigns unique identification codes (i.c.

10

15

20

25

30

35

40

45

50

60

65

8

unique IDs) to each of its records as they are created. In the
case of the second embodiment, the remote database does
not assign unique IDs to its records. FIG. 5 is the
pseudocode for the steps taken by the remote segment while
FIG. 6 is the pseudocode for the steps taken by the Syn-
chronizer in the case of the second embodiment. Similarly,
FIG. 7 is the pseudocode for the steps taken by the remote
segment while FIG. 8 is the pseudocode for the steps taken
by the Synchronizer in the case of the first embodiment.

Briefly, the remote segment determines which records
have been changed/added, deleted or left unchanged since a
previous synchronization. The remote segment uses a his-
tory file located on the remote computer (“remote history
file”) to determine which records may have been changed/
added, deleted or left unchanged since a previous synchro-
nization. The remote segment essentially can translate out-
puts of any database into outputs of a fast synchronization
database which is a type of database that generally supplies
information as to which of its records have been changed,
added, deleted, or left unchanged. Fast synchronization
databases and an example of a method of synchronizing
them with other databases is described in detail in the *490,
926 & °645 applications. Therefore, for example, this
method of distributed synchronization may also be imple-
mented with any synchronization program that is able to
synchronize such databases.

Generally, the remote segment sends the host segment,
over the data transfer link, only the content of those records
that have been changed or newly added. As for unchanged
records, the history file contains all necessary information to
recreate or synchronize those records, if needed. Therefore,
it is not necessary to transfer those records to the host
segment. Only some data or identification code that uniquely
identifies the record to the Synchronizer need be transferred
for such a record. Since the majority of records are typically
unchanged records, not transferring them over the slow data
transfer link improves the efficiency of the synchronization
process.

After all necessary information has been transferred to the
host segment, the Synchronizer synchronizes the databases.
Following synchronization, the host segment transfers infor-
mation necessary to update the remote database and the
remote history file to the remote segment. The remote
segment then updates its history file and the remote data-
base.

Since both the host and remote segments rely heavily on
history files to enable distributed synchronization, it is
important that the host and remote segments use history files
that correspond to one another, i.e. both contain records
corresponding to a previous synchronization of the same two
databases. In the described embodiment, the remote and host
history files are named using a common naming convention.
The name of a file is made up of six components:

1) Name or ID of the host computer, which may be an
assigned name such as an assigned GUID in the case of
operating systems by Microsoft Corporation of
Redmond, Washington, or UUID in the case of oper-
ating systems by Open Software Foundation;

2) Name or ID of the host database application, e.g.
trademark designations “Lotus Organizer” or
“Microsoft Schedule+”;

3) Name or ID of the host database file as stored on the
long term storage (e.g. hard disk drive) of the host
computer, e.g. “My Calendar”;

4) Name or ID of the remote computer;

5) Name or ID of the remote database application; and

6) Name or ID of the remote database.

Therefore, the remote segment and the host segment ensure
that the host history file have the same name. Moreover, each

6,044,381

9

of the history files have the date and time stamp of the
previous synchronization. The remote segment and synchro-
nizer use this to ensure that the history files from the same
previous synchronization of the two databases are used.

Having described in general terms the actions taken by the
remote segment in coordination with the Synchronizer in
response to the instructions from control module 2 in steps
404 and 409 (FIG. 4), we will now describe in detail a first
embodiment of their operation for the case where the remote
database assigns unique IDs to its records. We will do so in
reference to FIGS. § and 6.

FIG. 5 is the pseudocode for steps taken by the remote
segment in response to the instruction by control module in
step 404 to load the remote database records into the host
workspace (FIG. 4). The remote segment first initializes (i.e.
creates) a remote workspace in the remote computer (step
501). The remote segment then compares the name of the
host history file with the name of any remote history file in
the remote computer. If the remote segment finds a remote
history file that matches the host history file (i.e. a remote
history file that matches the host history file) (step 502), then
the remote segment examine the date and time stamp of the
host and remote history files. If the date and time stamp in
the remote history file matches the one in the host history file
(step 503), then the remote segment determines that two
history files correspond to one another. Hence, the remote
segment loads the remote history file into the remote work-
space.

In general, if matching history files do not exist on the
remote and host computers, the remote segment transfers all
remote database records to the host computer. Therefore, if
the name of the host and remote history files match but the
date and time stamps do not match (step 505), then the
remote segment assumes that remote history file is not the
correct remote history file to be used. The remote segment
removes that history file (step 506) and transfers all remote
database records to the host computer (step 507). If no
remote history file matches the host history file (step 508),
then the remote segment assumes an appropriate remote
history file does not exist. The remote segment transfers all
the records to the host computer (step 509). To transfer all
the records in the above steps, the remote segment first loads
and stores all records of the remote database in the remote
workspace. The remote segment then transfers all records in
the remote database to the host segment. If remote segment
transfers all the records of the remote database to the host
segment in either step 504 or 509, then the remote will go
to step 528. It should be noted that the host segment will use
the host history file, if one exists, to perform the synchro-
nization.

If an appropriate remote history file exists—i.e. condi-
tions of steps 501 and 504 are satisfied—the remote history
file is loaded into the work space. It is then used to “filter”
out information that need not be sent to the host segment
since it already exists on the host segment. Generally, the
history files on the remote and history files are used to store
information representative of the remote database at the end
of the previous synchronization. The records of the remote
history file in the first embodiment contain the unique ID of
the records and hash numbers of those records at the
completion of a prior synchronization. In other
embodiments, the remote history file may contain some or
all of the field values of the records of the remote database.

Hashing may be described as converting any data, such as
a string of characters, into a more compacted format, such as
a number, meant to represent that string of characters. It may
be considered to be a content-based encoding technique. The

10

15

20

25

30

35

40

45

50

55

60

65

10

hashed values may be used as a surrogate for a hashed string
of characters, for example, to compare strings. An example
of a hashing algorithm is to calculate the following sum for
every characters in a character string:

sum=character+(31*sum),

where character is the number stored in the memory to
represent that character (e.g. an Ascii value). (It should be
noted that there are many ways of hashing data.) At the end
of the computation, sum contains the hash number for that
string of characters. In the described embodiments, the hash
number is a 32 bit number and therefore can have a value
between 237 different values. Because the expected number
of records is much less than this number, the probability of
two different records having the same hash value is small.
Therefore, hash numbers can be used to perform compari-
sons instead of comparing the non-hashed data or a prelimi-
nary check before comparing the data, with relatively low
risk inaccurate comparison. We have also use hash numbers
as a unique identification code, which will be described in
the second embodiment.

The remote segment uses the remote history file to
determine whether a record has been changed, deleted, or
added since a previous synchronization. Therefore, for
records that are unchanged, which typically constitute the
majority of records in a database, the remote segment sends
information that the host segment can use to identify the
matching records in the host history file. That matching
history file record contains the same data as necessary to use
for synchronization as that on the remote database since the
record is unchanged. Therefore, there is no need to send the
whole record. In essence, the remote segment uses the
remote history file to filter out information that is already
contained in the host history file and sending only those
records that have been changed or added. In some
embodiments, the remote history file may contain all the
field values of the records of the remote database. In those
embodiments, the remote segment can determine not only
which records have been changed but more specifically
which field values have been changed. In that case, the
remote segment can determine and then send only those field
values that have been changed, further increasing the effi-
ciency of using the slow data transfer link.

We will now describe this process in detail. In the
described embodiment, for each record of the remote data-
base (step 515), the remote segment loads the field values,
including the unique ID, of the record into the remote
workspace (step 512). As the records are loaded, they are
translated (e.g. “translated” as described in the *390 patent)
into a universal format for the remote workspace. The
records will be translated back into the format of the remote
database as they are written into the remote database. The
remote segment also computes a hash number based on all
or selected (e.g. the fields to be synchronized) field values
(step 513). In the described embodiment, the hashing num-
ber is a 32 bit number. The fields on which the hash number
is based on remain the same for all synchronizations relying
on this remote history file. The host segment also performs
a hash on the same fields. If the fields which are hashed
changes, the hash number of unchanged records would not
remain the same from one synchronization to the next.

If the unique ID matches one of the unique IDs of records
in the remote history file (step 515), then the record was
present during the previous synchronization. That record
could either be a changed record or an unchanged record. If
the computed hash number for the record matches the hash
number of the record in the history file (step 516), then the

6,044,381

11

remote segment assumes that the record has not been
changed since the previous synchronization and therefore
can be created by the host segment from the host history file.
The remote segment will take no action (step 517). In other
embodiments, the remote segment can send the unique ID
and a flag indicating that the record is unchanged to the host
segment.

If the computed hash number does not match that of the
history file record (step 518), the remote segment assumes
that the record has been changed since a previous synchro-
nization. Therefore, the remote segment sends the host
computer the field values including the unique ID and a
“changed” flag (step 519). In some embodiments, only those
field values that have been changed since the previous
synchronization will be sent, as described above. The remote
segment then creates a new entry for the changed record in
the history file (step 520) and marks the record as unac-
knowledged (step 521), the purpose and function of which
we will now briefly describe and is also described in the
490, *926 and *645 applications.

Generally, the remote segment does not change an entry
in the remote history file, until it receives an instruction
indicating that the host segment has synchronized and
updated the host database with that record. This is done so
that if for any reason (e.g. user does not want to update that
record of the host database as described above) the host
database is not synchronized with that record, the remote
segment will not treat that record as unchanged during the
next synchronization. The acknowledgement may take the
form of an “acknowledgment” flag or an “action” instruction
which instructs the remote segment to add, update, or delete
that record of the remote database, as described above.
Therefore, for each changed and deleted record, the remote
segment creates a new entry and marks the entry as “unac-
knowledged”. If an “acknowledgment” flag is received, the
old history file record is deleted. If an “acknowledgement”
flag is not received, the new workspace entry is deleted. The
steps will be described further below.

If in step 515 the remote segment determines that the
unique ID of the loaded record does not match any of the
unique IDs stored in the records of the history file (step 521),
the remote segment assumes that the record loaded from the
remote database has been newly added. Therefore, the
remote segment sends the host segment a copy of the field
values of those fields of the record to be synchronized
(which may be all or less than all the fields) together with an
“added” flag (step 524). As in the case of a changed record,
the remote segment creates a new remote workspace entry
and enters the unique ID and hash value of the record (step
525). The new entry is marked as unacknowledged (step
526).

After all the records have been loaded (step 528), the
remote database determines that unique IDs in the history
file that have not been matched represent the deleted records
(step 529). Therefore, the remote segment sends the host
segment those unique IDS together with “delete” flags (step
530).

After the remote segment has finished providing data to
the host segment, the host segment synchronizes the two
databases based on the input from the remote segment. The
remote segment waits until the host segment finishes syn-
chronizing and instructs the remote segment in step 409 in
FIG. 4 to begin unloading into the remote database (step
532).

The host segment synchronizes the two database similar
in the way it synchronizes a so-called “fast synchronization”
database (as defined in the *490, *926, and *645 applications)

10

15

20

25

30

35

40

45

50

60

12

with another database. The operation of a synchronization
program synchronizing a fast synchronization database with
either a fast synchronization database or a regular database
(i.e. non-fast synchronization) is described in detail in the
’490,°926, and *645. We will now describe in detail how the
information from the remote segment is used to synchronize
the remote database with another database.

As described above, a remote segment sending remote
database records to the Synchronizer provides field values of
only those records which have been changed or added since
the previous synchronization but not those records that are
unchanged or deleted. Therefore, unlike a regular database
Translator, the remote segment does not provide the Syn-
chronizer with unchanged records.

In order to synchronize the remote database with the host
database, the Synchronizer transforms information from the
remote segment into regarding unchanged records into
equivalent regular database records. These transformed
records are then used by the Synchronizer in the synchro-
nization. Essentially, the synchronizer transforms and uses
the information sent by the remote segment to identify a
record in the history file that is a copy of the field values of
the unchanged remote database record. In the described
embodiment, the synchronizer also copies that history file
record and flags as being the remote database record.

The described embodiment uses the host history file to
perform this transformation. At the beginning of a first
synchronization between the two databases, all records in
the remote database are loaded into the host history file. As
changes, additions, and deletions are made to the remote
database, during each subsequent synchronization, the same
changes, additions, and deletions are made to the host
history file. Therefore, the host history file at the end of each
synchronization will contain a copy of the relevant content
of the remote database after synchronization. By relevant,
we mean data in the fields that are synchronized. For
example, it may be the case that the host history file contain
data in fields that are not synchronized. Moreover, if the
records of the remote are mapped or recast into another
format (e.g. “translated” as described in the *390 patent) the
records of the history file contain a copy of the records of the
database, as mapped, translated, or both. The Synchronizer
uses the mapped or translated records for synchronization.
Therefore, it only needs the mapped or translated copy of the
unchanged record. In other embodiments, the host history
file may contains copies of all the records exactly as they are
in the remote database or in some other format that is useful
for the particular application.

Referring to FIG. 6, in the described embodiment, all
records received by the host segment from the remote
segment are flagged with one of Added, Changed, or Deleted
flags. For all records received from the remote segment (step
601), the host synchronizer performs the following func-
tions. If a received record is flagged as an added record (step
602), then the received record is added to the host workspace
(step 603). Since the record is new, it is not associated or
linked to any history file record. If a record is flagged as a
“changed” record (step 604), then the Synchronizer uses the
received unique ID to find the corresponding record in the
history file (step 605) and links the received remote record
to that history file record (step 606). If the received record
is flagged as a “deleted” record (step 607), then the Syn-
chronizer uses the received unique ID to find the corre-
sponding record in the history file (step 608)and marks the
history file record as deleted (step 609).

After all the received records are analyzed (step 611), if
any host history file records containing remote database

6,044,381

13

unique IDs are left that were not matched against the
received records, the synchronizer assumes that those
records represent the remote database records that are
unchanged. For all those records (step 612), the synchro-
nizer clones the host history file record (i.e. create a work-
space entry and copy all the host history file record in to that
entry) and treats it as a record received from the remote
database. At this point the host segment proceeds with
synchronization since the records of the remote database
have now been loaded. In essence, referring back to FIG. 4,
this is the end of step 404.

As previously described, after the synchronizer has per-
formed CAAR, the user must confirm to proceed with
updating the remote database (step 406 in FIG. 4). If the user
decides to terminate the synchronization, changes are not
made to the host history file or the databases. In the case of
the remote database, as described in reference to FIG. 5, the
remote segment is waiting for the synchronizer to finish
synchronizing. If the user aborts synchronization (step 533),
the remote segment discards the remote workspace (step
534), saves the original history file without any changes
(step 535), and terminates the process at the remote com-
puter.

If the user confirms to proceed with updating the database
(step 406 in FIG. 4), control module 2 instructs the syn-
chronizer and the remote segment to proceed with unloading
the records from the workspace into the remote database. As
stated, at this point, the remote segment is waiting for the
synchronizer to finish synchronizing (step 532 in FIG. 5).
During the synchronization, the synchronizer has deter-
mined what “actions” with respect to which record in which
database should be taken (update, delete, or add) to complete
synchronization. If changes or additions are made to the host
database in the case of particular record but no action need
be taken with respect to that record in the remote database,
the synchronizer determines that an “acknowledgement”
should be sent to the remote segment. The synchronizer
sends all the actions concerning the remote database
together with the associated record to the remote (step 616).
The synchronizer then sends the unique ID of those records
that require “acknowledgements” to be sent to the remote
together with an appropriate flag (step 617).

Referring again to FIG. 5, for each action item or
acknowledgement received at the remote segment (step
538), the following steps are performed. If the received data
indicates an “acknowledgement” or “action” with respect to
a record that was added or changed since the previous
synchronization, the remote segment marks the new work-
space entry that was created in either step 520 or step 525 as
acknowledged (step 540). The remote segment also discards
or removes any other entry in the workspace that contains
the unique ID of this record, which is typically the entry that
was loaded from the remote history file. Therefore, as
previously described, this entry as opposed to the old remote
history file entry associated with this record will be written
into the history file at the end of the process at the remote
segment. This in essence updates the history file, as will be
described below.

If the received data indicates an action item that tells the
remote segment to update, change, or add a remote database
record (step 543), the remote segment performs that action
with respect to the remote database. The remote segment
also performs the same steps as steps 540 and 541 (step 544
and 545). If a new record was added to the database (step
546), it will be assigned a new unique ID. The remote
segment sends that unique ID to the host segment (step 547).
The host segment includes that unique ID in the host work
space in association with that record (step 618 in FIG. 6).

10

15

20

25

30

35

40

45

50

55

60

65

14

After all the records have been received, the remote
segment discards all unacknowledged entries from the work-
space. Therefore, in the case of those added or changed
records with which the user decided not to update the host
database, the remote history file remains unchanged. The
remote history file is then updated from the remote work-
space. At this point the control module continues with step
410 in FIG. 4, ie. creating the history file to end the
synchronization of the two databases.

In the first embodiment, which we described above, the
remote database assigns unique IDs to its records. We will
now describe a second embodiment for the case where the
remote database does not assign unique IDs to its records. In
such a case, the remote segment provides some information
less than all the fields of the records to uniquely identify an
unchanged record to the host segment. This information may
be a hash value. The host segment uses this information to
find and then use the host history file copy of the unchanged
remote database record to synchronize the two databases.

To identify a record from the previous synchronization or
an unchanged record, the remote segment can use a content
based code, that is a code whose value depends on the
content of all or a selected number of the fields of a record.
In the second embodiment, the remote segment uses hash
numbers. Since in the case of an unchanged record, its
content has remained the same, its hash number remains the
same. The hash number acts as a unique identifier and
therefore enables the remote and host segments to identify
the unchanged record by its hash code. The hash code can be
used to identify a record that is stored in the host history file,
since its content remains the same from the end of one
synchronization to the time it is updated. It may also be
transmitted to identify an unchanged record or an unchanged
version of a changed record. A host history file record can in
effect be identified using the hash code of that record.

We will describe the operation of this embodiment in
reference to FIGS. 7 and 8. Steps 701-711 are the same as
steps 501-511 in FIG. 5, described above in reference to the
first embodiment. These steps are generally concerned with
finding the correct remote history file.

After determining that there is a suitable remote history
file, for each record of the remote database (step 712), the
following functions are performed. The remote segment
loads and translates a record of the remote database into the
remote workspace (step 713) and a hash number is calcu-
lated for that record (step 714). If the hash number of the
remote record matches one or more hash numbers in the
remote history file (step 715), then the remote segment
assumes that the record has not been changed since a
previous synchronization.

It is possible that the hash number may be repeated more
than once, e.g. because of duplicate records or records that
appear as duplicates because some of their fields are not
synchronized. Therefore, the remote segment sends addi-
tional information that can be used to identify which of the
multiple identical hash numbers a particular record relates
to. This is done because during updating the remote history
file record at the end of synchronization, the same number
of identical hash numbers as matching remote database
records are updated. In the second embodiment, this addi-
tional information is the index number associated with each
entry of the remote workspace. Therefore, when the hash
number of the remote record matches one or more hash
numbers in the remote history file (step 715), the remote
segment sends the hash number, a flag indicating that the
record is unchanged, and the index number of that hash
number to the host segment (step 716). Obviously if the

6,044,381

15

index number was previously sent, the next index number
for the identical hash is sent.

If the hash number does not match one or more hash
numbers in the history file (step 717), the remote segment
treats that record as having been newly added. Therefore, the
remote segment sends the host segment a copy of the field
values of the record, the remote workspace index number,
and an “added” flag (step 720). The remote workspace index
number makes it easier to perform future search of the
remote workspace when data with respect to this record is
received. As in the case of changed and added record in the
first embodiment, the remote segment also creates a new
remote workspace entry and enters hash number value of the
record (step 718). The new entry is marked as “unacknowl-
edged” (step 719). It should be noted that although the
remote segment treats the record as a new record, the remote
segment can not distinguish between an added and a
changed record. Therefore, the synchronizer during synchro-
nization does not treat it as a new record. Instead, the
synchronizer compares the record to determine whether it
matches with any of host history file record which would
mean it is a changed record.

After reading all the remote database records and pro-
cessing them (step 722), the remote segment removes from
the remote workspace all entries that have hash numbers that
are unmatched (step 723). These entries represent records
that have either been changed or deleted since the previous
synchronization.

After the remote segment has finished providing data to
the host segment, the host segment synchronizes the two
databases based on the input from the remote segment. The
remote segment waits until the host segment finishes syn-
chronizing and instructs the remote segment in step 409 in
FIG. 4 to begin unloading into the remote database (step
724).

Referring to FIG. 8, as in the case of the first embodiment,
the synchronizer on the host computer uses the information
to identify those records in the host history file that corre-
spond to the unchanged remote database records. For every
record received from the remote segment that is flagged as
added (step 801), the synchronizer adds the record to the
host workspace (step 802) and during CAAR compares the
record to the history file to determine whether the record is
a changed or added record. For every record received from
the remote segment that is flagged as “unchanged” (step
804), in the same manner as the first embodiment, the
synchronizer finds the corresponding host history file record
by finding a record that has the same hash number as that
sent by the remote synchronizer (step 805). The synchro-
nizer then clones the record (step 806), as previously
described, and treats as if it is a record received from the
remote database. At the end of this process, when all the
records of the remote database are loaded into the host
workspace, the control module proceeds to step 405 in FIG.
4 to begin CAAR. CAAR will then analyze the records in the
host workspace to determine which remote records were
added, which were changed, and which were deleted since
the previous synchronization.

After CAAR, if the user confirms to proceed with updat-
ing the database, control module 2 instructs the synchronizer
and the remote segment to proceed with unloading the
records from the workspace into the remote database (step
409 in FIG. 4). As stated, at this point, the remote segment
is waiting for the synchronizer to finish synchronizing (step
724 in FIG. 7). During performing CAAR, the synchronizer
has determined what actions should be taken (update, delete,
or add) to each database. If changes or additions are made

10

15

20

25

30

35

40

45

50

55

60

16

to the host database in the case of a particular record but no
action need be taken with respect to that record in the remote
database, the synchronizer determines that at least an
“acknowledgement” is to be sent to the remote segment. The
synchronizer sends all the actions concerning the remote
database together with the associated record and remote
workspace index to the remote (step 809). The synchronizer
then sends the remote workspace index of those records that
require acknowledgements to be sent to the remote together
with an appropriate flag (step 810). Therefore, the remote
workspace index is used to identify which records in the
remote workspace should be “acknowledged”.

Referring back to FIG. 7, steps 725-729 are the same as
steps 533-537, which were described in reference to the first
embodiment. For each action item or acknowledgement
received at the remote segment (step 730), the following
steps are performed. If the data received indicates an
“acknowledgement” or “action” with respect to a record that
was sent to the host segment flagged as “added” (step 731),
the remote segment marks the new workspace entry that was
created in either step 718 as acknowledged (step 732). It
should be noted that the remote workspace index number is
used to locate the remote workspace entry. Therefore, as
previously described, this entry will be written into the
history file at the end of the process at the remote segment.

If the received data indicates an action item that tells the
remote segment to update, change, or add a remote database
record (step 733), the remote segment performs that action
with respect to the remote database. The remote segment
also updates the remote workspace and marks the entry as
“acknowledge” (step 735).

After all the records have been received, the remote
segment discards all unacknowledged entries from the
workspace, which were newly created entries which were
not acknowledged. Therefore, in case of those added or
changed records with the user decided not to update the host
database with, the remote history file remains unchanged.
The remote history file is then updated from the workspace.
At this point the control module continues with step 410 in
FIG. 4, i.e. creating the history file to end the synchroniza-
tion of the two databases.

Although we have described embodiments in which the
host segment transforms the input from the remote segment,
it should be noted that other embodiments of the host
segment may not transform the input from the remote
segment since they are designed to use inputs that informs
them of which records have been changed, added and
deleted or have been left unchanged. Other embodiments in
which the host segment requires different types of input, the
input from the remote segment are transformed as required.
The various embodiments of the host segment may or may
not use a history file.

Other embodiments are within the following claims.

What is claimed is:

1. A computer implemented method for synchronizing a
first database located on a first computer and a second
database located on a second computer, the method com-
prising:

determining, at the first computer, whether a record of the

first database has been changed or added since a
previous synchronization by comparing records of the
first database to a first history file located on the first
computer comprising records representative of records
of the first database at the completion of the previous
synchronization;

if the record of the first database has not been changed or

added since the previous synchronization, sending from

6,044,381

17

the first computer to the second computer information
identifying the unchanged record;

storing a second history file on the second computer
containing records representative of records of the first
database at the completion of the previous
synchronization, wherein one of the representative
records represents the record of the first database
determined to be unchanged;

using the information identifying the unchanged record to
locate the one of the representative records in the
second history file; and

performing a synchronization, at the second computer, of
the second and first databases using the one of the
representative records.

2. The computer implemented method of claim 1 wherein
the second history file stores information in relation to the
representative records and wherein the one of the represen-
tative records in the second history file can be identified
from the stored information.

3. The computer implemented method of claim 2 wherein
the information sent from the first computer to the second
computer comprises information that matches the informa-
tion stored in relation to the one of the representative records
in the second history files.

4. The computer implemented method of claim 1 wherein
the information comprises information identifying records
other than the unchanged record.

5. The computer implemented method of claim 1 wherein
the information comprises information identifying the
unchanged record.

6. The computer implemented method of claim 1 wherein
the information comprises information identifying the
deleted records.

7. The computer implemented method of claim 1 wherein
the information comprise information identifying the added
records.

8. The computer implemented method of claim 1 wherein
the information comprises a code, the code being based on
at least a portion of the content of the record of the first
database.

9. The computer implemented method of claim 8 wherein
the code comprises a hash number computed based on at
least a portion of the content of the record of the first
database.

10. The computer implemented method of claim 8
wherein the information further comprises a first plurality of
records of the first database identified as “changed or
added”, the method further comprises using said information
to identify a plurality of the first database as “deleted or
changed” since the previous synchronization.

11. The computer implemented method of claim 1
wherein the information comprises a code uniquely identi-
fying the records of the first database.

12. The computer implemented method of claim 11
wherein the unique identification code is assigned by the
first database to the records of the first database.

13. The computer implemented method of claim 12
wherein the information further comprising a first plurality
of the records of the first database identified as “changed”,
a second plurality of the records of the first database
identified as added, and information identifying a third
plurality of records of the first database as “deleted”.

14. A computer program, resident on a computer readable
medium for synchronizing a first database located on a first
computer and a second database located on a second
computer, comprising instructions for:

determining, at the first computer, whether a record of the

first database has been changed or added since a
previous synchronization by comparing records of the

10

15

20

25

30

35

40

45

50

55

60

65

18

first database to a first history file located on the first
computer comprising records representative of records
of the first database at the completion of the previous
synchronization;

if the record of the first database has not been changed or

added since the previous synchronization, sending from
the first computer to the second computer information
identifying the unchanged record;

storing a second history file on the second computer

containing records representative of records of the first
database at the completion of the previous
synchronization, wherein one of the representative
records represents the record of the first database
determined to be unchanged;

using the information identifying the unchanged record to

locate the one of the representative records in the
second history file; and

performing a synchronization, at the second computer, of

the second and first databases using the one of the
representative records.

15. The computer program of claim 14 wherein the
second history file stores information in relation to the
representative records and wherein the one of the represen-
tative records in the second history file can be identified
from the stored information.

16. The computer program of claim 15 wherein the
information sent from the first computer to the second
computer comprises information that matches the informa-
tion stored in relation to the one of the representative records
in the second history files.

17. The computer program of claim 14 wherein the
information comprises information identifying records other
than the unchanged record.

18. The computer program of claim 14 wherein the
information comprises information identifying the
unchanged records.

19. The computer program of claim 14 wherein the
information comprises information identifying the deleted
records.

20. The computer program of claim 14 wherein the
information comprise information identifying the added
records.

21. The computer program of claim 14 wherein the
information comprises a code, the code being based on at
least a portion of the content of the record of the first
database.

22. The computer program of claim 21 wherein the code
comprises a hash number computed based on at least a
portion of the content of the record of the first database.

23. The computer program of claim 21 wherein the
information further comprises a first plurality of records of
the first database identified as “changed or added”, the
program further comprising instructions for using said infor-
mation to identify a plurality of the first database as “deleted
or changed” since a previous synchronization.

24. The computer program of claim 14 wherein the
information comprises a code uniquely identifying the
record of the first database.

25. The computer program of claim 24 wherein the unique
identification code is assigned by the first database to the
record of the first database.

26. The computer program of claim 24 wherein the
information further comprises a first plurality of the records
of the first database identified as “changed”, a second
plurality of the records of the first database identified as
added, and information identifying a third plurality of
records of the first database as “deleted”.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. . 6,044,381
DATED : MARCH 28, 2000
INVENTOR(S) - DAVID J. BOOTHBY ET AL.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6, line 55, "1997" should be --97--.

Column 6, line 57, "Apr. 1, 1997" should be --"4-1-97"--.

Signed and Sealed this
First Day of May, 2001

Aot [i

NICHOLAS P.GODICI

Attesting Officer Acting Director of the Unired Siates Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,044,381 Page 1 of 1
DATED : March 28, 2000
INVENTOR(S) : David J. Boothby and Robert C. Daley

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2
Line 6, “St. Jose” should be -- San Jose --.

Column 3
Line 24, after “in”, delete “a”.

Column 4
Line 23, “computer” should be -- computers --.

Column 6

Line 55, ““Apr. 1, 97 should be -- “April 1, 977 --.
Line 57, “Apr. 1, 1997” should be -- “4-1-97”. --
Line 63, “St. Jose” should be -- San Jose --.

Column 9
Line 22, “examine” should be -- examines --.

Column 10
Line 19, “use” should be -- used --.

Column 11
Line 56, “IDS” should read -- IDs --.
Line 65, “database” should be -- databases --.

Signed and Sealed this

Sixth Day of August, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

