

CANopen Magic Pro DLL

User Manual

Manual Revision 1.20

CANopen Magic Pro DLL User Manual

Page 2

Information in this document is subject to change without notice and does not represent a

commitment on the part of the manufacturer. The software described in this document is
furnished under license agreement or nondisclosure agreement and may be used or copied

in accordance with the terms of the agreement. It is against the law to copy the software on

any medium except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than the purchaser’s personal use, without prior

written permission.

Every effort was made to ensure the accuracy in this manual and to give appropriate credit

to persons, companies and trademarks referenced herein.

© Embedded Systems Academy, Inc. 2004-2008

All Rights Reserved

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.
PC® is a registered trademark of International Business Machines Corporation.

For support contact support@esacademy.com

For the latest news on CANopen Magic Pro DLL visit us on the web at

www.esacademy.com

 Embedded Systems Academy provides training and consulting services,
specializing in CAN, CANopen and Embedded Internetworking. For more

information visit

www.esacademy.com

CANopen Magic Pro DLL User Manual

Page 3

Contents
Contents ...3
About This Manual..5
Chapter 1 – Introduction...6

1.1 About CANopen ...6
1.2 About the CANopen Magic Pro DLL ...6
1.3 Package Overview..7

Contents..7
Features..7
Limitations...8

1.4 Obtaining Compatible CAN Interfaces ...8
Chapter 2 – Installation ..9

2.1 Installation..9
Minimum Requirements...9
Installation Procedure ...9
Install PEAK CAN Driver...9
Additional Step For PEAK PCAN Dongle Users ...9

Chapter 3 – Using the DLL...10
3.1 Overview ..10
3.2 Adding to a Project...11

Microsoft Visual C++...11
Borland C++ Builder ...11

3.3 Calling Functions..11
Return Values ..11
Other Types...12
Callback Functions ..13
Typical Call Flow...15

3.4 Threads ..16
3.5 Description..17

Overview...17
Start Up ..17
Hardware Configuration...17
Callback Configuration...18
CAN Bus Operations..18
Shut Down...19

3.6 Distribution ...19
Chapter 4 – Function Reference ...20

4.1 CANopenDLL_Startup ...20
4.2 CANopenDLL_Shutdown..20
4.3 Event_Transmit ...21
4.4 Event_Receive...21
4.5 Event_MajorError...21
4.6 Hardware_GetCurrentTime..22
4.7 Hardware_EnumerateHardware ...22
4.8 Hardware_EnumerateNetworks..22
4.9 Hardware_AddNetwork ...23
4.10 Hardware_DeleteNetwork..23
4.11 Hardware_GetBaudrate...23

CANopen Magic Pro DLL User Manual

Page 4

4.12 Hardware_Initialize ..24
4.13 Hardware_Close...24
4.14 Hardware_SwitchNetworks..24
4.15 Hardware_Reset ..25
4.16 Hardware_ErrorFrames ...25
4.17 Hardware_SelfReceive ..25
4.18 Hardware_IsNetworkFunctional..26
4.19 CANopen_SDODownload...27
4.20 CANopen_SDOUpload ...27
4.21 CANopen_Cancel..28
4.22 CANopen_ScanNetwork...28
4.23 CANopen_MassExpeditedWrite...29
4.24 CANopen_SetSDOTimeout...29
4.25 CANopen_SetScanMassOperationDelay ...29
4.26 CANopen_FindLSSSlave ..30
4.27 CANopen_SetLSSSlaveConfig ..30
4.28 CANopen_SetLSSSlaveBitTiming ..31
4.29 CANopen_UseLSSSlaveBitTiming..31
4.30 CANopen_SetLSSTimings ..32
4.31 CANopen_SDOChannels ..32
4.32 CANopen_SDOChannelsTimeout...32
4.33 CANopen_SetSDOConfig ...33
4.34 CANopen_SetBlockSegmentWriteDelay ...33
4.35 CANopen_SetMode...34
4.36 CANopen_NMT...34
4.37 CAN_Transmit ...35
4.38 CANopenConfig_WriteDCF...35
4.39 CANopenConfig_WriteNCF ...36
4.40 CANopenServer_Startup ...37
4.41 CANopenServer_Shutdown..37
4.42 MicroLSS_ScanAndConfig..38

Chapter 5 – Windows CE Driver DLL API ...39
5.1 Introduction ..39
5.2 API ..39

CANopen Magic Pro DLL User Manual

Page 5

About This Manual

This manual follows some set conventions with the aim of making it easier to read. The

following conventions are used:

0x Hexadecimal (base 16) values are prefixed with “0x”.

italictext Replace the text with the item it represents
[] Items inside [and] are optional

a | b a OR b may be used

… One or more items may go here.

This manual frequently uses CANopen terminology as defined by the CANopen standard
DS301 (see www.can-cia.org for more info). Readers that are not yet familiar with all the

CANopen terms may want to consider reading a book like www.canopenbook.com or the

official standard to update their knowledge on CANopen technology and terminology.

CANopen Magic Pro DLL User Manual

Page 6

Chapter 1 – Introduction

1.1 About CANopen

CANopen is a higher layer protocol that runs on a CAN network. The CAN specification

defines only the physical and data link layers in the ISO/OSI 7-layer Reference Model. This
means that only the physical bus and the CAN message format is defined, but not how the

CAN messages should be used. CANopen provides an open and standarized but

customizable description of how to transfer data of different types between different CAN
nodes. This allows off the shelf CANopen compliant nodes to be purchased and plugged into

a network with the minimum of effort. It also can be used in place of an in-house

proprietory higher layer protocol development.

The development of CANopen is supervised by the CAN in Automation User's Group and is

being turned into an international standard. Use of CANopen does not require the payment
of any royalties and the specification may be expanded or altered to suit if closed networks

are being developed.

Typical applications for CANopen include:

� Commercial Vehicles

� Medical Equipment

� Maritime Electronics
� Building Automation

� Light Rail Systems

1.2 About the CANopen Magic Pro DLL

The CANopen Magic Pro DLL provides the necessary information and files to allow custom

applications to be built that use CANopen functionality.

The functionality of the package is provided by a DLL. This DLL is rather like a library and

can be called by any application that knows how to use it. All copies of applications built on

this platform include this DLL. By building upon this DLL an application immediately gains
access to the knowledge of CANopen that have been built up over several years of effort.

The DLL is a tried and tested platform that is currently used by thousands of users

worldwide.

This manual assumes familiarity with the features of CANopen. A description of the features
will not be reproduced here. Instead, please refer to the relevent CAN in Automation

specifications or the Embedded Networking with CAN and CANopen

(www.canopenbook.com) book.

Familiarity with a C or C++ development system is also assumed. This manual does not

describe any features that relate to development systems. Instead please refer to the
manual or help that came with your development system.

CANopen Magic Pro DLL User Manual

Page 7

It is recommended to read this manual completely before starting on any development
work.

1.3 Package Overview

Contents

The package contains the following:

� The CANopen DLL

� The C header file for the DLL
� The necessary library files for the DLL

� An example application

� This manual that describes how to use the DLL

Features

The following are features of the CANopen DLL:

� Send Network Management messages to single nodes or all nodes
� Perform an SDO Download to the Object Dictionary of a node

o Expedited and segmented transfers supported

� Perform an SDO Upload from the Object Dictionary of a node
o Expedited and segmented transfers supported

� Progress callback during SDO transfers giving progress of transfer
� Option to cancel an SDO transfer in progress

� High speed network scan

o Finds all CANopen nodes on the network in less than 0.5 seconds
� High speed mass expedited writing

� Configures the CAN interface for any standard CANopen baud rate

� All received messages have a high precision timestamp
� Transmit and receive callback functions

� Major error callback function

� Change baud rate on the fly
� LSS support

� Supports block transfers

� Able to receive error frames
� Supports CiA 447 Car Add-on Devices

� Supports multi process access to a single CAN interface
� Write Device Configuration Files to nodes

o Allows configuration of nodes

� Write Network Configuration Files to the network
o Allows configuration of all nodes at once

� Transmit and receive plain CAN messages

o CAN 2.0B and RTRs supported

CANopen Magic Pro DLL User Manual

Page 8

� Can be used to send and receive messages at the same time as other

ESACANopenPro.DLL tools are running
o PCANopen Magic Pro can show a trace of the CAN bus during development of

applications using the DLL

� Supports Windows 2000/XP/Vista and Windows CE 5.0 (see limitations)

Limitations

Windows 2000/XP/Vista Limitations

When using a PEAK CAN interface, once in a while the timestamp for a received message or
the current time might be incorrect by as much as 3 seconds.

If CANopenDLL_Startup has been called and the user then changes the CAN interface type
in the control panel (2000/XP/Vista), the list of available hardware interfaces returned from

the DLL will not change to reflect the newly selected CAN inteface type. In this situation,

ensure any connections to networks are closed and call:

CANopenDLL_Shutdown();

CANopenDLL_Startup();

The list of hardware interfaces returned by the DLL will now use the new interface type.

Windows CE 5.0 Limitations

The DLL is compiled for ARMV4I processors only.

A DLL with a suitable API is required for the CAN driver being used.
The multi-process option is not supported.

This manual contains all the information needed to use the DLL. If you have questions,
please contact us at support@esacademy.com

1.4 Obtaining Compatible CAN Interfaces

As mentioned in the feature list, all PEAK-System Technik CAN interfaces are supported.
Visit www.peak-system.com to locate the nearest distributor. Also supported are Emtrion

PCI CAN interfaces.

On Windows CE 5.0 any CAN interface is supported providing a DLL is written to access the

CAN interface and the DLL has a suitable API. Details of the API are provided in this manual.

CANopen Magic Pro DLL User Manual

Page 9

Chapter 2 – Installation

2.1 Installation

Minimum Requirements
The following is a list of the recommended minimum requirements for installing and use the
package.

� Windows 2000/XP/Vista
� 3Mb of disk space

� A C or C++ Development system, such as Microsoft Visual Studio 2005 or Borland
C++ Builder 5/6

� A PEAK CAN interface (Windows 2000/XP/Vista) or a Windows CE 5.0 development

system with a CAN driver

Installation Procedure
Installation is very simple. Simply run the installation executable and follow the prompts.

Once installed, access to this manual, and the folders for the files and example are available
from the Start Menu. You will also need to install hardware drivers by following the

instructions from the hardware vendor, and the PEAK CAN Driver. See the sections below
for a description of these steps.

Install PEAK CAN Driver
The PEAK CAN Driver must be installed before the package may be used. Normally it will be
installed automatically at the end of the CANopen Magic Pro DLL installation. If the

installation file for the driver is not found, then you will be prompted for it's location.

Additional Step For PEAK PCAN Dongle Users
Before using the PEAK PCAN Dongle interface with the CANopen Magic Pro DLL, it must be

removed from the setup window of the PCANView Dongle software. To do this complete the
following steps:

� Start PCANView Dongle from the Start Menu
� Select the PCAN Dongle in the Available CAN Hardware section

� Click on "Delete"

� Click on "OK"
� Close PCANView Dongle

CANopen Magic Pro DLL User Manual

Page 10

Chapter 3 – Using the DLL

3.1 Overview

The DLL implements a set of functions which together provide CANopen functionality. The

following table lists the functions and what they do.

Function Description

CANopen_NMT Sends a Network Management message

CANopen_SDODownload Starts an SDO download
CANopen_SDOUpload Starts an SDO upload

CANopen_Cancel Cancels an SDO download or upload

CANopen_ScanNetwork Scans the network for CANopen nodes
CANopen_MassExpeditedWrite Performs high speed expedited write to all nodes

at once.
CANopen_SetSDOTimeout Sets the timeout to use for SDO operations.

CANopen_SetScanMassOperationDelay Sets a delay used during the network scan and

mass expedited writes to slow them down.
CANopen_FindLSSSlave Finds an LSS slave on the network

CANopen_SetLSSSlaveConfig Sets the configuration of an LSS slave

CANopen_SetLSSSlaveBitTiming Sets the bit timing of an LSS slave
CANopen_UseLSSSlaveBitTiming Instructs all LSS slaves to use bit timings

CANopen_SetLSSTimings Sets the timing information for the LSS protocol

CANopen_SDOChannels Enables/disables SDO channel requesting
CANopen_SDOChannelsTimeout Sets the timeout for SDO channel requesting

CANopen_SetSDOConfig Sets the SDO transfer configuration
CANopen_SetMode Sets the CANopen operating mode

CANopen_SetBlockSegmentWriteDelay Sets the delay after each SDO block is written to

control write speed
Hardware_GetCurrentTime Gets the current time in timestamp format

Hardware_EnumerateHardware Lists available CAN interfaces

Hardware_EnumerateNetworks Lists available CAN networks
Hardware_AddNetwork Adds a new network

Hardware_DeleteNetwork Deletes a network

Hardware_GetBaudrate Gets the current baudrate of a network
Hardware_Initialize Initializes a CAN interface

Hardware_Close Finishes with a CAN interface

Hardware_SwitchNetworks Changes the baud rate on the fly
Hardware_Reset Resets the CAN interface

Hardware_ErrorFrames Turns on or off error frame reception
Hardware_SelfReceive Turns on and off self receive

Hardware_IsNetworkFunctional Checks if the current network is functional

Event_Transmit Registers a transmit callback function
Event_Receive Registers a receive callback function

Event_MajorError Registers a major error callback function

CAN_Transmit Transmits a plain CAN message
CANopenDLL_Startup Initializes the DLL

CANopen Magic Pro DLL User Manual

Page 11

CANopenDLL_Shutdown Finishes with the DLL

CANopenConfig_WriteDCF Writes a DCF to a node

CANopenConfig_WriteNCF Writes a NCF to the network
CANopenServer_Startup Starts a minimal CANopen server

CANopenServer_Shutdown Stops the minimal CANopen server
MicroLSS_ScanAndConfig Scans for and configures MicroLSS slaves

The rest of this chapter describes how the functions are used. The function reference

chapter lists each function in detail.

3.2 Adding to a Project

Microsoft Visual C++
To use the DLL in a project:

� Make copies of the .lib file and .h file for your project
� Add the copied .lib file to the project

� Include the header file in any files that will call CANopen functions

� Copy the .dll file into the same folder as the executable

Ensure the correct .lib file is used. You must use the one from the MSVisualStudio2005

folder. Using the Borland .lib file will not work.

You must distribute the DLL with your application. Do not distribute this documentation, the
.lib or .h files.

Borland C++ Builder
To use the DLL in a project:

� Make copies of the .lib file and .h file for your project

� Add the copied .lib file to the project
� Include the header file in any files that will call DLL functions

� Copy the .dll file into the same folder as the executable

Ensure the correct .lib file is used. You must use the one from the BorlandC++Builder5

folder. Using the Microsoft .lib file will not work.

You must distribute the DLL with your application. Do not distribute this documentation, the

.lib or .h files.

3.3 Calling Functions

Return Values
The RESULTS type is used for return values from API functions. It is defined as:

CANopen Magic Pro DLL User Manual

Page 12

typedef struct

{

 int code;
 wchar_t details[ESACAN_MAXDETAILSLEN];

} RESULTS;

The code indicates either success or a specific error. Depending on the error details may

contain a string describing the error.

The code may be one of:

• OK
• ERR_USERCANCELLED

• ERR_INVALIDPARAM
• ERR_PROTCOL

• ERR_HWINIT

• ERR_BUS
• ERR_TIMEOUT

• ERR_UNSUPPORTED

Other Types
The ESACAN_TIMESTAMP type is used to hold a timestamp. Timestamps are used for such

things as the current time or the time a message was received. It is defined as:

typedef struct

{

 unsigned long millis;
 unsigned int millis_overflow;

 unsigned int micros;

} ESACAN_TIMESTAMP;

The time is given in milliseconds with fractional microseconds.

The ESACAN_MSG type is used to hold a description of a single CAN message. It is defined

as:

typedef struct

{

 ESACAN_TIMESTAMP timestamp;
 unsigned int id;

 unsigned char dlc;

 unsigned char flags;
 unsigned char data[8];

} ESACAN_MSG;

flags contains a combination of one or more of the following flags:

ESACAN_MSG_EXT - 29-bit identifer

CANopen Magic Pro DLL User Manual

Page 13

ESACAN_MSG_RTR - RTR flag was set

ESACAN_MSG_ERRFRAME - message is an error frame

The ESACAN_HARDWARE type describes a hardware interface. It is defined as:

typedef struct

{

 wchar_t name[ESACAN_MAXDRIVERNAMELEN];
 int handle;

} ESACAN_HARDWARE;

name holds the name of the hardware interface. Handle holds a unique handle to the
interface.

The ESACAN_NETWORK type describes a network, which is associated with a specific

hardware interface. It is defined as:

typedef struct

{

 wchar_t name[ESACAN_MAXNETWORKNAMELEN];

 int handle;
 int baudrate;

} ESACAN_NETWORK;

The name holds the name of the network. The handle holds a unique handle to the network.

The baudrate holds the speed of the network in kbps.

The ESACAN_NODEINFO type describes basic information about a node. It is defined as:

typedef struct
{

 unsigned char status;

 unsigned long devicetype;
} ESACAN_NODEINFO;

The status indicates if the node has been found on the bus or not or written to or not. The
device type holds the value read from Index 1000H, subindex 00H. The status may have

one of the following values:

ESACAN_NOTFOUND - node was not found. Ignore devicetype.

ESACAN_FOUND - node was found. Read devicetype.

ESACAN_NOTWRITTEN - node was not written to.
ESACAN_WRITTEN - node was written to.

Callback Functions
The PROGRESS_CALLBACK is a function pointer type with the following prototype:

void (__stdcall *PROGRESS_CALLBACK)(float percentage, unsigned long callbackparam);

CANopen Magic Pro DLL User Manual

Page 14

called during operations such as SDO download, passed is the percentage of the operation
that is completed and a user defined parameter. Used for providing feedback to the user.

The FINISHED_CALLBACK is a function pointer type with the following prototype:

void (__stdcall *FINISHED_CALLBACK)(RESULTS *results, unsigned long callbackparam);

called when an operation such as SDO download is complete. Passed is a RESULTS type
containing the result of the operation and a user defined parameter. The results code is one

of:

• OK

• ERR_PROTOCOL
• ERR_USERCANCELLED

The MESSAGE_CALLBACK is a fucntion pointer type with the following prototype:

void (__stdcall *MESSAGE_CALLBACK)(wchar_t *msg, unsigned long callbackparam);

called when an operation needs to provide status messages. For example when writing a
DCF to a node this callback function will be called to indicate specific problems encountered.

Also passed is a user defined parameter.

The MAJORERROR_CALLBACK is a function pointer type with the following prototype:

void (__stdcall *MAJORERROR_CALLBACK)(int error);

called when a major error has occurred. Passed is an error code. One of:

• MERR_NOERROR no error
• MERR_BUSOFF bus off

• MERR_OVERRUN controller rx buffer overrun

This function is only called when the major error changes.

The RECEIVE_CALLBACK is a function pointer type with the following prototype:

typedef void (__stdcall *RECEIVE_CALLBACK)(ESACAN_MSG *msg, int reply);

This function is called whenever a message is received. Note that the DLL receives it's own
messages, so all transmitted messages will cause this function to be called.

Reply is zero unless the message is an SDO response from a node, in which case reply is
one.

The TRANSMIT_CALLBACK is a function pointer type with the following prototype:

typedef void (__stdcall *TRANSMIT_CALLBACK)(ESACAN_MSG *msg);

CANopen Magic Pro DLL User Manual

Page 15

This function is called whenever a message is transmitted by the DLL. The timestamp is not
used in the copy of the message that is returned.

It is recommended that callback functions execute as quickly as possible to avoid causing
performance problems for the DLL.

The SWITCHNETWORKS_CALLBACK is a function pointer type with the following prototype:

typedef int (__stdcall *SWITCHNETWORKS_CALLBACK)(int newnethandle, long pause);

This function is called when the LSS slaves on the bus are switching to a new bit timing. It
is called when the application itself needs to switch baud rates. newnethandle is the handle

of the network the application should use, and pause is the delay in milliseconds after
switching networks before the application can transmit more messages. This function should

return immediately and not wait for pause milliseconds to pass before returning.

Typical Call Flow
The following is a typical sequence of function calls.

Normally an applicaton will call the functions in the following order:

� CANopenDLL_Startup
• start the DLL

� Event_Receive

� Event_Transmit
� Event_MajorError

• initialize callback functions

� Hardware_EnumerateHardware
• allow the user to choose from the available list of hardware

� Hardware_EnumerateNetworks

• allow the user to choose frrom the available list of networks for
the selected hardware.

� Hardware_AddNetwork
� Hardware_DeleteNetwork

• allow the user to create new networks and delete old networks

� Hardware_Initialize
• connect the application to the selected hardware and network

� Hardware_GetBaudrate

• get baudrate being used by the application
� Hardware_GetCurrentTime

� CANopen_SetSDOConfig

• Configure the SDO transfers
� If using LSS, call the LSS functions in the order described below

� If requesting SDO channels, use the functions in the order described below

� CAN_Transmit
� CANopen_NMT

� CANopen_Cancel

CANopen Magic Pro DLL User Manual

Page 16

� CANopen_SDODownload

� CANopen_SDOUpload
� CANopen_ScanNetwork

• perform operations on the CAN bus

� Hardware_Close
• disconnect the application from the network

� CANopenDLL_Shutdown
• finish using the DLL

The following is a typical sequence of function calls when using LSS:

� CANopen_SetLSSTimings

� CANopen_FindLSSSlave
• To discover a single LSS slave

� CANopen_SetLSSSlaveBitTiming

• Call for each slave on the network
� CANopen_UseLSSSlaveBitTiming

• In the SwitchNetworksFunc callback function call
Hardware_SwitchNetworks

� CANopen_SetLSSSlaveConfig

• Call for each slave on the network

The following is a typical sequence of function calls when requesting SDO channels:

� CANopenServer_Start

� CANopen_SDOChannels

• To enable requesting of SDO channels
� CANopen_SDOChannelsTimeout

3.4 Threads

Functions which do not have progress and finished callback functions passed as parameters
execute in the same thread as the function caller.

Functions which do have progress and finished callback functions as parameters are
executed in a separate thread. These are usually SDO operations which may take some time

to complete. By executing in a separate thread, the user interface can remain responsive

rather than freezing up.

Only one function may be called at any one time in a single instance of the DLL. The single
exception is that CANopen_Cancel may be called while an SDO upload, download or network

scan is in progress. Normally CANopen_Cancel is called from a progress callback function.

Multiple copies of the DLL may be loaded at any one time, allowing multiple parallel

operations to take place on the CAN bus. For example, when using the DLL and running

PCANopen Magic Pro at the same time this situation is taking place.

CANopen Magic Pro DLL User Manual

Page 17

All callback functions are executed in a separate thread that is internal to the DLL. Therefore

the usual limitations and precautions apply when using data in a callback function.

3.5 Description

Overview
In general terms, each application using the DLL goes through the following steps:

� Start up DLL
� Configure hardware

� Register callback functions

� Use CAN bus
� Shut down DLL

Because a PC may have multiple CAN interfaces connected at once, and each interface may
have the option of connecting to a range of CAN networks with different speeds, the

hardware configuration may seem confusing at first.

Once an application has finished with the DLL, the hardware must be closed and the DLL

shut down. Failure to do so may cause memory leaks.

Start Up
The function CANopenDLL_Startup is called to start the DLL. No other functions in the DLL

may be called until after this function has been called.

The DLL may be used to allow a single process to access a CAN interface. This is the
standard arrangement. However, the DLL also supports multi-process access, where

multiple processes each using a copy of the DLL can talk to each other via a simulated CAN

bus internal to the PC, and also optionally a CAN interface. See the description of
CANopenDLL_Startup for more information.

Hardware Configuration
First the CAN interface must be selected. To present the user with a list,
Hardware_EnumerateHardware is called. This will return a list of hardware currently found

on the PC. For PEAK interfaces the list will be limited to a type of CAN interface, for example
plug and play. To change the type, using the CAN-Hardware Control Panel applet. Once

changed, Hardware_EnumerateHardware will then return a different list based on the new

type.

Once the user has selected a hardware interface to use, the handle to the interface is

passed to Hardware_EnumerateNetworks to obtain a list of currently defined networks for
that interface. The user then selects the network they wish to use. If a network at the speed

desired is not present, then one can be added using Hardware_AddNetwork. Also the

application can delete networks using Hardware_DeleteNetwork.
Alternatively, the PEAK tool PCAN Netconfig (available on the Start menu after installing the

PEAK CAN Driver) can be used to add and delete networks if using PEAK interfaces.

CANopen Magic Pro DLL User Manual

Page 18

The next step is to select the specific hardware interface and network to use. This is
achieved by calling Hardware_Initialize.

Callback Configuration
If you wish your application to be informed of certain events, then the callback functions

must be implemented and registered. Registration is performed by calling the Event_xxxxx

functions. Callback functions may be registered or unregistered at any time.

Callback functions must execute as quickly as possible. They execute in a thread internal to

the DLL, therefore the use of messages, signals, mutexs etc. is required to pass data to the
rest of your application.

All messages transmitted by the DLL are also received by the DLL. Therefore by registering
a receive callback function, it is possible to obtain the timestamp of when a message was

transmitted by the DLL.

Some callback functions receive a user defined parameter. This is the exact same value that

is passed to the DLL when the operation involving the callbacks is started. For example if an
SDO download is started and the callback parameter is set to the value 5, then when the

progress and finished callback functions are called, the parameter will have the value 5.

This is useful for passing class instances to ensure that the callback function knows which
class instance is performing the operation.

Callback functions use the __stdcall calling convention. Check your compiler documention
on how to define functions to use this calling convention.

CAN Bus Operations
SDO uploads and downloads may be performed by calling CANopen_SDOUpload and

CANopen_SDODownload. Only one operation may be performed at any one time. Callback

functions notify your application of the progress and when the operation has finished.
CANopen_Cancel may be called to cancel the SDO transfer.

A high speed network scan may be performed by calling CANopen_ScanNetwork. In order
for a node to be detected by the scan, it must implement Object Dictionary entry [1000,00],

which is mandatory for all CANopen nodes. The scan may be cancelled by calling

CANopen_Cancel.

Plain CAN messages may be transmitted by calling CAN_Transmit, and network
management messages may be transmitted by calling CANopen_NMT.

Node and network configuration may be performed by calling CANopenConfig_WriteDCF and
CANopenConfig_WriteNCF. The configuration operations may be cancelled by calling

CANopen_Cancel.

CANopen Magic Pro DLL User Manual

Page 19

Shut Down
Once the DLL is no longer needed, Hardware_Close must be called followed by

CANopenDLL_Shutdown. Once CANopenDLL_Shutdown has been called the only DLL

function that may be called is CANopenDLL_Startup. No other functions may be called.

3.6 Distribution

To distribute an application based on the DLL in the package you need to do the following:

� Tell users to install the driver for their CAN interface. This comes on a CD or floppy

disk or can be downloaded from www.peak-system.com.

� If using PEAK: install your copy of the PEAK CAN Driver on the user's PC. This came
with your copy of this package and usually has the name PCANDrv.exe. Note that

this driver is linked to you by a serial number issued by PEAK.

� If using Emtrion: include HiCANPCI.dll with your application executable, preferably in
the same folder as your application executable.

� Include ESACANopenPro.dll with your application executable, preferably in the same
folder as your application executable.

� If using Windows CE: include the driver wrapper DLL with your application

executable.

You must not under any circumstances distribute the following:

� Any .h, .lib, .def or .exp files provided with this package

� This manual or the contents of this manual, in any format

� Any applications that allow other custom CANopen software to be developed
using the ESACANopenPro.dll file.

� Any source code showing the use of the ESACANopenPro.dll file.

Doing so will render your license to use this product invalid.

This product includes a copy if the CANAPI.DLL by PEAK System Technik. This DLL may only

be distributed freely with products generated with this package if not used directly by the

application program. Developers that wish to use the CANAPI.DLL directly must purchase
PCAN-Developer or PCAN-Evaluation from PEAK System Technik.

CANopen Magic Pro DLL User Manual

Page 20

Chapter 4 – Function Reference

4.1 CANopenDLL_Startup

Prototype:

void CANopenDLL_Startup(int mode, wchar_t *drivername);

Params:

 mode = ESACAN_SINGLEPROCESS or ESACAN_MULTIPROCESS
drivername = name of driver to use. Examples:

"CanApi2.dll" = PEAK CAN interfaces driver
"HICANPCI.dll" = Emtrion PCI CAN interfaces driver

Desc:

Starts up the DLL. Must be called before any other function in the DLL. There
are three configurations possible:

 One process using CAN interface:

Pass ESACAN_SINGLEPROCESS and the driver name.

 Multiple processes using same CAN interface:
Pass ESACAN_MULTIPROCESS and the driver name. The driver name

must be the same for all processes.

 Multiple processes, no CAN interface (simulation only):
Pass ESACAN_MULTIPROCESS, "" for the driver name. The driver

name must be the same for all processes.

In order for the multi-process system to work, ESACANServer.exe must be

first copied to the same folder as ESACANopenPro.DLL.
Returns:

 Nothing

4.2 CANopenDLL_Shutdown

Prototype:

void CANopenDLL_Shutdown(void);

Params:

 None
Desc:

Shuts down the DLL when the application has finished using it. Must be the
last function called.

Returns:

 Nothing

CANopen Magic Pro DLL User Manual

Page 21

4.3 Event_Transmit

Prototype:

void Event_Transmit(TRANSMIT_CALLBACK TransmitFunc);

Params:
 A transmit callback function

Desc:
Registers a callback function to be called when the DLL transmits a single CAN

message. Passing a null pointer unregisters the callback function. Once

registered, the callback function will be called for each message transmitted
by the DLL.

Returns:

 Nothing

4.4 Event_Receive

Prototype:

void Event_Receive(RECEIVE_CALLBACK ReceiveFunc);

Params:
 Callback function

Desc:
Registers a callback function to be called when the DLL receives a single CAN

message. Passing a null pointer unregisters the callback function. Once

registered, the callback function will be called for each message received by
the DLL, including messages transmitted by the DLL.

Returns:

 Nothing

4.5 Event_MajorError

Prototype:

void Event_MajorError(MAJORERROR_CALLBACK MajorErrorFunc);

Params:

 Callback function

Desc:
Registers a callback function to be called when the DLL detects a major error.

Passing a null pointer unregisters the callback function.

Returns:
 Nothing

CANopen Magic Pro DLL User Manual

Page 22

4.6 Hardware_GetCurrentTime

Prototype:

void Hardware_GetCurrentTime(ESACAN_TIMESTAMP *timestamp);

Params:
timestamp = pointer to place to receive timestamp for the current moment in

time.
Desc:

 Timestamps the current moment in time and returns the timestamp.

Returns:
 Nothing

4.7 Hardware_EnumerateHardware

Prototype:

int Hardware_EnumerateHardware(ESACAN_HARDWARE *hwlist, int

hwlistsize);

Params:

 hwlist = pointer to array to receive hardware descriptions
hwlistsize = number of hardware descriptions that can fit into the hwlist array

Desc:
Returns a list of current CAN hardware interfaces. Note that the list only

contains the interfaces in the currently selected category (Plug-n-play, USB,

etc.). The currently selected category may be changed via the Control Panel.
Also returns a hardware interface with the name "None", which can be used

to create internal only networks (i.e. no CAN interface).

Returns:
 Number of CAN interfaces found and stored in hwlist.

4.8 Hardware_EnumerateNetworks

Prototype:

int Hardware_EnumerateNetworks(ESACAN_NETWORK *netlist, int

netlistsize, int hwhandle);

Params:
 netlist = pointer to array to receive network descriptions

netlistsize = number of network descriptions that can fit into the netlist array.

hwhandle = handle of the CAN hardware interface whose networks should be
listed.

Desc:

Returns the currently defined networks for a specific CAN interface. Pass the
CAN interface the user has selected and the available networks including their

baudrates will be returned.

CANopen Magic Pro DLL User Manual

Page 23

Returns:

 Number of networks found and stored in netlist.

4.9 Hardware_AddNetwork

Prototype:

int Hardware_AddNetwork(wchar_t *name, int baudrate, int

hwhandle);

Params:

 name = name of the network to add
 baudrate = bus speed of the network in kbps

 hwhandle = handle to the CAN interface the network is connected to

Desc:
Creates a new network and associates it with a specific CAN interface. The

network details will be stored in the registry so the network can be

automatically added to the current list the next time the DLL is used.
Returns:

 Handle to the new network.

4.10 Hardware_DeleteNetwork

Prototype:

void Hardware_DeleteNetwork(int nethandle);

Params:
 Nethandle = handle to the network to delete

Desc:

Deletes a network. Also removes the network details from the registry so the
network will not be available next time the DLL is used.

Returns:

 Nothing

4.11 Hardware_GetBaudrate

Prototype:

int Hardware_GetBaudrate(int nethandle);

Params:

 Nethandle = handle of the network whose baudrate is needed

Desc:
 Returns the baudrate of a network in kbps

Returns:

 The baudrate of the network in kbps

CANopen Magic Pro DLL User Manual

Page 24

4.12 Hardware_Initialize

Prototype:

void Hardware_Initialize(int nethandle, wchar_t *appname, HWND

hWnd, RESULTS *preturnresult);

Params:
nethandle = handle to the network to use.

 appname = the name of the application

 hWnd = handle to the application's main window
 preturnresult = pointer to the results of the initialization

Desc:

Connects the application to a specific network. Once connected the application
can then send and receive, which will automatically use the network passed

to this function.
Returns:

 Nothing

4.13 Hardware_Close

Prototype:

void Hardware_Close(void)

Params:

 none
Desc:

 Disconnects the application from the network.
Returns:

 Nothing

4.14 Hardware_SwitchNetworks

Prototype:

void Hardware_SwitchNetworks(int operation, int nethandle,

RESULTS *preturnresult)

Params:
operation = the operation to perform (ESACAN_SN_xxx).

nethandle = handle to the network to switch to. The network must be

associated with the current CAN interface in use.
preturnresult = pointer to the results of the switch

Desc:
Switches to a new network for the same CAN interface that is currently in

use. The switch is performed on the fly so it is not necessary to close or

reinitialize the hardware. The switch is performed in two steps. First the
function is called with operation set to ESACAN_SN_DISCONNECT. This will

CANopen Magic Pro DLL User Manual

Page 25

disconnect the node from the current network. Next the function is called with

operation set to ESACAN_SN_CONNECT, which will connect the node to the
new network.

The reason why this feature is performed in two steps is because it is not
possible to switch from one network to another using the same CAN interface

if there are any nodes still connected to the old network while the current
node is trying to connect to the new network. If there are multiple nodes on

the network then they must all call this function to disconnect first before any

of them call this function to connect.
Returns:

 Nothing

4.15 Hardware_Reset

Prototype:

void Hardware_Reset(void);

Params:

 none
Desc:

 Resets the CAN interface.
Returns:

 Nothing

4.16 Hardware_ErrorFrames

Prototype:

void Hardware_ErrorFrames(int mode);

Params:

mode can be either ESACAN_IGNOREERRORFRAMES or
ESACAN_RECEIVEERRORFRAMES.

Desc:
Toggles whether error frames should be received or not. The default setting

when starting the DLL is that they are not received.

4.17 Hardware_SelfReceive

Prototype:

void Hardware_SelfReceive(int mode, RESULTS *preturnresult);

Params:

mode = self receive mode to use. Can be either ESACAN_NOSELFRECEIVE or
ESACAN_SELFRECEIVE

 preturnresult = pointer to the results of the initialization

CANopen Magic Pro DLL User Manual

Page 26

Desc:

Toggles whether self receive mode is turned on or not in the CAN interface.
The default settings when the DLL is started is that self receive is turned on.

The results code will be ERR_UNSUPPORTED if self receive on or off is not

supported in the CAN interface in use.
Returns:

 Nothing

4.18 Hardware_IsNetworkFunctional

Prototype:

int Hardware_IsNetworkFunctional(void);

Params:
none

Desc:

Checks if the current network in use is functional, i.e. can send and receive
CAN messages, whether is it via a simulated CAN bus or a CAN interface.

Returns:

 1 if the network is functional, 0 if the network is not functional.

CANopen Magic Pro DLL User Manual

Page 27

4.19 CANopen_SDODownload

Prototype:

void CANopen_SDODownload(unsigned char nodeid, unsigned int

index, unsigned char subindex, unsigned char *buffer, unsigned long size,

PROGRESS_CALLBACK ProgressFunc, FINISHED_CALLBACK FinishedFunc,

unsigned long callbackparam, RESULTS *presult);

Params:

 nodeid = ID of node to send data to.
 index = index of OD entry to send data to

 subindex = subindex of OD entry to send data to

 buffer = pointer to buffer that holds the data
 size = number of bytes in buffer to send to node

ProgressFunc = function to call to indicate progress of operation. Null pointer

if not required.
FinishedFunc = function to call when operation is finished. Null pointer if not

required.

callbackparam = value passed to callback functions
Desc:

Starts an SDO download. Returns immediately. When the operation is
completed or fails the FinishedFunc function will be called. The ProgressFunc

function will be periodically called to indicate progress of the operation. This

function will start a thread in which the download will be performed.
Operation may be cancelled by calling the CANopen_Cancel function.

Returns in results code:

 OK

4.20 CANopen_SDOUpload

Prototype:

void CANopen_SDOUpload(unsigned char nodeid, unsigned int index,

unsigned char subindex, unsigned char *buffer, unsigned long *size,
PROGRESS_CALLBACK ProgressFunc, FINISHED_CALLBACK FinishedFunc,

unsigned long callbackparam, RESULTS *presult);

Params:

 nodeid = ID of node to receive data to.

 index = index of OD entry to receive data to
 subindex = subindex of OD entry to receive data to

 buffer = pointer to buffer to receive the data

 size = pointer to value that contains the size of the buffer in bytes
ProgressFunc = function to call to indicate progress of operation. Null pointer

if not required.
FinishedFunc = function to call when operation is finished. Null pointer if not

required.

CANopen Magic Pro DLL User Manual

Page 28

callbackparam = value passed to callback functions

Desc:
Starts an SDO upload. Returns immediately. When the operation is completed

or fails the FinishedFunc function will be called. The ProgressFunc function will

be periodically called to indicate progress of the operation. This function will
start a thread in which the upload will be performed. Once complete size will

hold the number of bytes read from the node.
Operation may be cancelled by calling the CANopen_Cancel function.

Returns in results code:

 OK

4.21 CANopen_Cancel

Prototype:

void CANopen_Cancel(void);

Params:
 None

Desc:

Call to indicate the current operation (upload, etc.) should be cancelled at the
first opportunity. The finished function will return ERR_USERCANCELLED in

the results code.
Returns:

 Nothing

4.22 CANopen_ScanNetwork

Prototype:

void CANopen_ScanNetwork(ESACAN_NODEINFO *pnodeinfo,

FINISHED_CALLBACK FinishedFunc, unsigned long callbackparam, RESULTS

*presult);

Params:

pnodeinfo = pointer to an array of 127 ESACAN_NODEINFO structures. Once
the network scan is complete, the array will hold the results of the scan.

FinishedFunc = pointer to the callback function that will be called when the

network scan is complete.
callbackparam = value passed to callback function

Desc:

Scans the network and determines which nodes are present and their device
type. Entry 0 in the array contains the details for node 1, entry 126 in the

array contains the details for node 127.

Returns:
 Nothing

CANopen Magic Pro DLL User Manual

Page 29

4.23 CANopen_MassExpeditedWrite

Prototype:

void CANopen_MassExpeditedWrite(unsigned int index, unsigned

char subindex, unsigned char *buffer, unsigned long size,

ESACAN_NODEINFO *pnodeinfo, FINISHED_CALLBACK FinishedFunc,
unsigned long callbackparam, RESULTS *preturnresult);

Params:

 index = index of OD entry to send data to
 subindex = subindex of OD entry to send data to

 buffer = pointer to buffer that holds the data

 size = number of bytes in buffer to send to each node
pnodeinfo = pointer to an array of 127 ESACAN_NODEINFO structures. Once

the write is complete, the array will hold the results of the write (written or
not written).

FinishedFunc = pointer to the callback function that will be called when the

write is complete.
callbackparam = value passed to callback function

Desc:

Attempts to perform the same expedited write to every node as fast as
possible (typically the SDO timeout period). The data size must be four bytes

or less. Results of which nodes were written to is placed in the pnodeinfo

array.
Returns:

 Nothing

4.24 CANopen_SetSDOTimeout

Prototype:

void CANopen_SetSDOTimeout(long timeout);

Params:
 timeout = SDO protocol timeout in milliseconds

Desc:

Sets a new SDO timeout to use for SDO reads and writes.
Returns:

 Nothing

4.25 CANopen_SetScanMassOperationDelay

Prototype:

void CANopen_SetScanMassOperationDelay(long delay);

Params:
 delay = delay to use in milliseconds

CANopen Magic Pro DLL User Manual

Page 30

Desc:

Used to slow down the network scan and mass expedited writes by inserting a
delay after every read or write access.

Returns:

 Nothing

4.26 CANopen_FindLSSSlave

Prototype:

void CANopen_FindLSSSlave(ESACAN_LSSSLAVE *plssslave,

FINISHED_CALLBACK FinishedFunc, unsigned long callbackparam, RESULTS
*preturnresult);

Params:
 plssslave = pointer to buffer to receive a description of the LSS slave found.

FinishedFunc = pointer to a callback function that is called when the search is

complete.
 preturnresult = pointer to buffer to receive results of calling the function.

callbackparam = value passed to callback function

Desc:
Finds a single LSS slave on the network and returns information about the

slave. When calling this function there must be only one LSS slave on the
network. The ESACAN_LSSSLAVE type is filled with the information about the

found LSS slave, if one was found.

Returns:
 Nothing

4.27 CANopen_SetLSSSlaveConfig

Prototype:

void CANopen_SetLSSSlaveConfig(ESACAN_LSSSLAVE *plssslave,

FINISHED_CALLBACK FinishedFunc, unsigned long callbackparam, RESULTS

*preturnresult);

Params:

plssslave = description of LSS slave whose configuration is to be set along

with the configuration to set
FinishedFunc = pointer to a callback function that is called when the operation

has completed.

 preturnresult = pointer to buffer to receive results of calling function.
 callbackparam = value passed to callback function

Desc:

Configures the node ID of a specific LSS slave on the network and optionally
instructs the slave to store the configuration. A description of which LSS slave

to configure is passed along with the ID to use. To send the store command
set storeconfguration to 1, otherwise set it to 0. The necessary commands will

be sent to configure the node ID and store the configuration. If successful the

CANopen Magic Pro DLL User Manual

Page 31

node will boot up into Pre-operational mode using the node ID. Can be used

when there are other LSS slaves on the network.
Returns:

 Nothing

4.28 CANopen_SetLSSSlaveBitTiming

Prototype:

void CANopen_SetLSSSlaveBitTiming(ESACAN_LSSSLAVE *plssslave,

unsigned char tableselector, unsigned char tableindex, FINISHED_CALLBACK

FinishedFunc, unsigned long callbackparam, RESULTS *preturnresult);

Params:

 plssslave = description of lss slave whose bit timing is to be set.
tableselector = the bit timing table to use. See the LSS specification for

details.

 tableindex = the bit timing index to use. See the LSS specification for details.
FinishedFunc = pointer to callback function that is called when the operation

has completed.

 returnresult = pointer to buffer to receive results of calling the function.
 callbackparam = value passed to callback function

Desc:
Configures the bit timing of a specific LSS slave on the network. Note that

this function does not tell the slave to use the bit timing, only what the new

bit timing will be. Can be used when there are other LSS slaves on the
network. To activate the bit timing call CANopen_UseLSSSlaveBitTiming.

Returns:

 Nothing

4.29 CANopen_UseLSSSlaveBitTiming

Prototype:

void __cdecl CANopen_UseLSSSlaveBitTiming(int nethandle,

SWITCHNETWORKS_CALLBACK SwitchNetworksFunc, FINISHED_CALLBACK
FinishedFunc, unsigned long callbackparam, RESULTS *preturnresult);

Params:
 nethandle = the handle of the network that is being switched to.

SwitchNetworksFunc = pointer to callback function that instructs the

application to switch networks.
FinishedFunc = pointer to callback function that is called when the operation

has completed.

 preturnresult = pointer to buffer to receive results of calling function.
 callbackparam = value passed to callback function

Desc:
Instructs all the LSS slaves to switch to the new bit timing that was previously

programmed by calling CANopen_SetLSSSlaveBitTiming. At the appropriate

CANopen Magic Pro DLL User Manual

Page 32

point the SwitchNetworksFunc will be called to tell the application to switch to

the new network, passing nethandle as a parameter.
Returns:

 Nothing

4.30 CANopen_SetLSSTimings

Prototype:

void CANopen_SetLSSTimings(long responsetimeout, long cmdtime,

long switchdelay);

Params:

 responsetimeout = time to wait for responses from LSS slaves in milliseconds.

cmdtime = time to wait for an LSS slave to process an unconfirmed command
before sending the next command, in milliseconds.

switchdelay = time to wait before an LSS slave should switch to new bit

timing, and the time to wait after switching before transmitting any
messages, in milliseconds.

Desc:

Sets the timing parameters for the LSS protocol. If this function is not called
then default settings are used which are: 300ms for responsetimeout, 30ms

for cmdtime and 300ms for switchdelay.
Returns:

 Nothing

4.31 CANopen_SDOChannels

Prototype:

void CANopen_SDOChannels(int mode);

Params:

mode = SDO channel mode to use. Can be either
ESACAN_DONTREQUESTCHANNELS or ESACAN_REQUESTCHANNELS

Desc:

Specifies whether all default SDO channels on the network should be

requested from an SDO manager before attempting to send an SDO.
Only used if the DLL is running a minimal CANopen server (started by calling

CANopenServer_Startup).

Returns:
 Nothing

4.32 CANopen_SDOChannelsTimeout

Prototype:

void CANopen_SDOChannelsTimeout(long timeout);

CANopen Magic Pro DLL User Manual

Page 33

Params:
timeout = timeout to use

Desc:
Specifies the time to wait for a response from the SDO manager when

attempting to request all default SDO channels on the network. If the SDO
manager does not response within this time period, then it will be assumed

that there is no SDO manager.

Returns:
 Nothing

4.33 CANopen_SetSDOConfig

Prototype:

void CANopen_SetSDOConfig(int enableblocktransfer, unsigned char

segfallbackthreshold, int useblockcrcs, unsigned char blocksize);

Params:

enableblocktransfer = set to 1 to enable block transfers, 0 to disable
segfallbackthreshold = set to a value which at or below that size of data in

byte, segmented transfer will always be used, even if block transfer is
enabled

useblockcrcs = set to 1 to enable CRC generation and checking for block

transfers
blocksize = number of segments in a block, when using block transfers

Desc:
Configures the SDO protocol. Enables or disabled block transfer and when

block transfer is used.

Returns:
 Nothing

4.34 CANopen_SetBlockSegmentWriteDelay

Prototype:

void CANopen_SetBlockSegmentWriteDelay(long delay);

Params:

 delay = delay to use in milliseconds
Desc:

Used to slow down the write of SDO blocks by inserting a delay after each

segment.
Returns:

 Nothing

CANopen Magic Pro DLL User Manual

Page 34

4.35 CANopen_SetMode

Prototype:

void CANopen_SetMode(unsigned long mode);

Params:

 mode = CANopen operating mode
Desc:

Specifies the CANopen operating mode to use. The default is CiA 301, which

is the CANopen specification. The bits have the following meanings:

 bit 0 When set use CiA 447 Car Add-on Devices mode

The CiA447 mode changes the SDO COB-IDs used to access servers on the

network. The DLL uses the SDO channels assigned to node ID 16.
Returns:

 Nothing

4.36 CANopen_NMT

Prototype:

void CANopen_NMT(unsigned char nodeid, int operation, RESULTS

*presult);

Params:
 nodeid = ID of node to send NMT message to, or zero for all nodes

 operation = NMT operation to perform. One of:

 CANOPEN_START

 CANOPEN_STOP
 CANOPEN_PREOP

 CANOPEN_RESET

 CANOPEN_RESETAPP
 CANOPEN_RESETCOMM

Desc:

Specifies the CANopen operating mode to use. The default is CiA 301, which
is the CANopen specification. The bits have the following meanings:

 bit 0 When set use CiA 447 Car Add-on Devices mode

The CiA447 mode changes the SDO COB-IDs used to access servers on the
network. The DLL uses the SDO channels assigned to node ID 16.

Returns:

 Nothing

CANopen Magic Pro DLL User Manual

Page 35

4.37 CAN_Transmit

Prototype:

void CAN_Transmit(ESACAN_MSG *msg, RESULTS *presult);

Params:

Msg = pointer to details of message to be transmitted
Desc:

 Transmits a CAN message. The timestamp is ignored.

Returns in results code:
 OK

 ERR_PROTCOL (data contains description of error)

4.38 CANopenConfig_WriteDCF

Prototype:

void CANopenConfig_WriteDCF(unsigned char nodeid, wchar_t

*dcffile, PROGRESS_CALLBACK ProgressFunc, MESSAGE_CALLBACK

MessageFunc, FINISHED_CALLBACK FinishedFunc, unsigned long

callbackparam, RESULTS *presult);

Params:

 nodeid = ID of node to write DCF to
 dcffile = path and name of DCF to write

ProgressFunc = function to call to indicate progress of operation. Null pointer

if not required.
MessageFunc = function to call to provide status messages during DCF write.

Null pointer if not required.

FinishedFunc = function to call when operation is finished. Null pointer if not
required.

callbackparam = value passed to callback functions

 presult = pointer to buffer to receive results of calling function.

Desc:
Writes a Device Configuration File to a specific node. If the finished callback

function returns the error code ERR_WARNING, then some parts of the DCF

write may not have been successful. Check the messages that were returned
for detailed information. The reason the operation does not stop and return

an error is that it may be acceptible for some writes to fail. OK is only

returned if there were no problems at all. Call CANopen_Cancel to cancel the
operation.

Returns in Results Code:
 OK

CANopen Magic Pro DLL User Manual

Page 36

4.39 CANopenConfig_WriteNCF

Prototype:

void CANopenConfig_WriteNCF(wchar_t *ncffile,

PROGRESS_CALLBACK ProgressFunc, MESSAGE_CALLBACK MessageFunc,

FINISHED_CALLBACK FinishedFunc, unsigned long callbackparam, RESULTS
*presult);

Params:

 ncffile = path and name of NCF to write
ProgressFunc = function to call to indicate progress of operation. Null pointer

if not required.

MessageFunc = function to call to provide status messages during DCF write.
Null pointer if not required.

FinishedFunc = function to call when operation is finished. Null pointer if not
required.

callbackparam = value passed to callback functions

 presult = pointer to buffer to receive results of calling function.

Desc:

Writes a Network Configuration File to the network. A Network Configuration
File is a proprietory file format that contains the DCFs for multiple nodes.

Each DCF is extracted and written to the corresponding node in turn, allowing

an entire network to be configured. If the finished callback function returns
the error code ERR_WARNING, then some parts of a DCF write may not have

been successful. Check the messages that were returned for detailed
information. The reason the operation does not stop and return an error is

that it may be acceptible for some writes to fail. OK is only returned if there

were no problems at all. Call CANopen_Cancel to cancel the operation. Ensure
the NCF is stored on writeable media before calling this function, as a

temporary file must be created in the same folder during execution.

The NCF has the following file format:

[DCF <nodeid>]
<dcf>

[DCF <nodeid>]

<dcf>

Where nodeid is the ID of the node in hexadecimal prefixed with "0x", and dcf
is the DCF of that node.

CANopen Magic Pro and CANopen Magic ProDS can generate NCFs.

Returns in Results Code:

 OK

CANopen Magic Pro DLL User Manual

Page 37

4.40 CANopenServer_Startup

Prototype:

void CANopenServer_Startup(unsigned char nodeid, unsigned long

devicetype, unsigned long vendorid, unsigned long productcode, unsigned

long revisionnumber, unsigned long serialnumber, RESULTS *presult);

Params:

nodeid = ID to use for server

devicetype = device type to use for server
vendorid = vendor ID to use for server

productcode = product code to use for server

revisionnumber = revision number to use for server
serialnumber = serial number to use for server

presult = pointer to buffer to receive results of calling function

Desc:

Starts a minimal CANopen server running in the DLL. The server should be
used when a feature in the DLL is enabled that requires a server to be

running for data and/or control purposes. For example, requesting SDO

channels from an SDO manager.

The minimal server implements Object Dictionary entries [1000], [1001] and

[1018], plus any entries necessary to support DLL features that require the
server to be running.

Returns:
 Nothing

4.41 CANopenServer_Shutdown

Prototype:

void CANopenServer_Shutdown(void);

Params:

None

Desc:

Stops the minimal CANopen server.

Returns:
 Nothing

CANopen Magic Pro DLL User Manual

Page 38

4.42 MicroLSS_ScanAndConfig

Prototype:

void MicroLSS_ScanAndConfig(int eightybit, int byteoptimize,

ESACAN_LSSSLAVE plssslave[], int lssarraysize, unsigned char startnodeid,
unsigned long timeout, PROGRESS_CALLBACK ProgressFunc,

FINISHED_CALLBACK FinishedFunc, unsigned long callbkparam, RESULTS

*preturnresult);

Params:

eightybit = set to 1 to use 80-bit scan instead of 128-bit scan.
byteoptimize = set to 1 to use byte optimization where possible during scan.

plssslave = array to receive description of LSS slaves found on network. The

valid field will be set to 1 for entries that describe LSS slaves.
lssarraysize = the number of entries in the plssslave array.

startnodeid = LSS slaves found are configured using a consecutive range of

node IDs. This parameter specifies the first node ID.
timeout = the length of time to wait for a response in milliseconds.

ProgressFunc = progress callback function or NULL for none.

FinishedFunc = scan finished callback function.
callbkparam = value to pass to callback functions.

preturnresult = result of attempting to start the scan.

Desc:

Performs a scan for MicroLSS nodes on the network and configures them for
operation. Each MicroLSS node that is found is configured with a node ID. The

node IDs used are consecutive, starting with the node ID that is passed to the

function.

The scan type may be 80 bits or 128 bits. In addition byte optimization may

be used. Combining a 80 bit scan with byte optimization will typically produce
the fastests scan times.

Note that MicroLSS is different from regular LSS. Please refer to the MicroLSS

specification for details.

Returns:

 Nothing

CANopen Magic Pro DLL User Manual

Page 39

Chapter 5 – Windows CE Driver DLL
API

5.1 Introduction

At runtime the appropriate driver to use for access to a CAN controller is selected by calling
CANopenDLL_Startup. This package is provided with DLLs to access various PC based CAN

interfaces, such as those from PEAK. However when using Windows CE there are many

different kinds of integrated CAN controller/interface available.

In order to accommodate the various designs and implementations, the CANopen Magic Pro
DLL supports the use of a generic API DLL, which can be used with the CANopen DLL. The

workflow looks like the following:

Obtain the documentation for the CAN driver or existing driver DLL.

Write a Windows CE wrapper DLL with the API described in this chapter to access the CAN

driver directly, or the existing driver DLL.
Make sure that the wrapper DLL has "WinCE" in it's name.

Call CANopenDLL_Startup with the name of the new wrapper DLL.

As long as the DLL has "WinCE" somewhere in it's name (for example

WinCECANWrapper.DLL), then the CANopen Magic Pro DLL will know that it is a DLL for
Windows CE and load and access it in the appropriate way.

Some CAN drivers or WinCE development systems may come with a wrapper DLL already
written for use with this package. Please contact the vendor for details.

The API is very easy to implement.

5.2 API

The following code is the header file that should be used to generate the DLL. It contains a
description of the functions.

The API does not need to be thread safe.

#ifndef _WINDOWSCECANH_

#define _WINDOWSCECANH_

#include <windows.h>

#ifdef __cplusplus

 #define C "C"

#else

CANopen Magic Pro DLL User Manual

Page 40

 #define C

#endif

// The following ifdef block is the standard way of creating macros which make exporting

// from a DLL simpler. All files within this DLL are compiled with the
// WINDOWSCECAN_EXPORTS

// symbol defined on the command line. this symbol should not be defined on any project

// that uses this DLL. This way any other project whose source files include this file see
// WINDOWSCECAN_API functions as being imported from a DLL, whereas this DLL sees

// symbols

// defined with this macro as being exported.
#ifdef WINDOWSCECAN_EXPORTS

#define WINDOWSCECAN_API C __declspec(dllexport)

#else
#define WINDOWSCECAN_API C __declspec(dllimport)

#endif

// opens the CAN controller

// returns INVALID_HANDLE_VALUE for error or a handle to controller
WINDOWSCECAN_API HANDLE __stdcall WinCE_Open

 (

 wchar_t *name, // name of CAN interface "CAN1:", etc.
 int baudrate // baudrate in kbps

);

// closes a CAN controller

WINDOWSCECAN_API void __stdcall WinCE_Close
 (

 HANDLE controller // handle to previously opened can controller

);

// sets the receive event for a CAN controller

// returns 1 for success, 0 for error
WINDOWSCECAN_API int __stdcall WinCE_SetReceiveEvent

 (

 HANDLE controller, // handle to can controller to set event for
 wchar_t *eventname // name of the event to use (must be previously

 // created)

);

// starts a CAN controller
// returns 1 for success, 0 for error

WINDOWSCECAN_API int __stdcall WinCE_Start

 (
 HANDLE controller // handle to can controller to start

);

// stops a CAN controller

// returns 1 for success, 0 for error

CANopen Magic Pro DLL User Manual

Page 41

WINDOWSCECAN_API int __stdcall WinCE_Stop

 (

 HANDLE controller // handle to can controller to stop
);

// transmits a CAN message

// returns 1 for success, 0 for error

WINDOWSCECAN_API int __stdcall WinCE_Transmit
 (

 HANDLE controller, // handle to CAN controller to transmit on

 unsigned int id, // message identifier
 unsigned char rtr, // remote transmit request flag

 unsigned char ext, // 29-bit id flag

 unsigned char err, // error frame flag
 unsigned char dlc, // number of data bytes

 unsigned char *pdata // data bytes - unsigned char data[8]
);

// recieves a CAN message from the controller
// returns 1 for message received, 0 for error

WINDOWSCECAN_API int __stdcall WinCE_Receive

 (
 HANDLE controller, // handle to CAN controller to transmit on

 unsigned int *pid, // filled with message identifier

 unsigned char *prtr, // filled with remote transmit request flag
 unsigned char *pext, // filled with 29-bit id flag

 unsigned char *perr, // filled with error frame flag
 unsigned char *pdlc, // filled with number of data bytes

 unsigned char *pdata // filled with data bytes - unsigned char data[8]

);

// returns the number of CAN interfaces supported

WINDOWSCECAN_API int __stdcall WinCE_NumberOfInterfaces
 (

 void

);

// configures whether error frames should be received or not

// optional – feature can be unsupported but function must be implemented
WINDOWSCECAN_API void __stdcall WinCE_ConfigureErrorFrames

 (
 int mode // set to 1 to receive error frames, otherwise 0

);

// configures whether transmitted messages should be received

// optional – feature can be unsupported but function must be implemented

WINDOWSCECAN_API void __stdcall WinCE_ConfigureSelfReceive
 (

 int mode // set to 1 to self receive, otherwise 0

CANopen Magic Pro DLL User Manual

Page 42

);

// gets status information from the CAN controller
// returns 1 for success, 0 for error

WINDOWSCECAN_API int __stdcall WinCE_Status
 (

 HANDLE controller, // handle to CAN controller to transmit on

 int *pbusoff, // set to 1 if bus is off, otherwise 0
 int *perrorpassive, // set to 1 if error passive, otherwise 0

 int *prxoverrun // set to 1 if receive buffer overrun, otherwise 0

);

#endif

