
FIP DEVICE MANAGER
Software Version 4 User

Reference Manual

ALS 50278 e-en

First issue: 12-1996
This edition: 01-2001

Page 2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Meaning of terms that may be used in this
document / Notice to readers

WARNING

Warning notices are used to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal
injury exist or may be associated with use of a particular equipment.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where there is a risk of damage to equipment
for example.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information
contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in
connection with installation, operation, or maintenance. Features may be described herein which are not present in all systems. ALSTOM
assumes no obligation of notice to holders of this document with respect to changes subsequently made.

ALSTOM makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the
accuracy, completeness, sufficiency, or usefulness of the information contained herein. ALSTOM gives no warranties of merchantability or
fitness for purpose.

In this publication, no mention is made of rights with respect to trademarks or tradenames that may attach to certain words or signs. The
absence of such mention, however, in no way implies there is no protection.

Partial reproduction of this document is authorized, but limited to internal use, for information only and for no commercial purpose.

However, such authorization is granted only on the express condition that any partial copy of the document bears a mention of its property,
including the copyright statement.

All rights reserved.
© Copyright 2001. ALSTOM (Paris, France)

Revisions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3

Index
letter

Date Nature of revision

b 03-1997 Major updates

c 04-2000 Update

d 09-2000 Software revision 4.9
Transmission rate 5 Mbits/s

e 01-2001 Updates throughout the document

Revisions

Page 4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Preface

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 5

1. PURPOSE OF MANUAL AND DOCUMENTED VERSION

This document is the user manual for the FIP DEVICE MANAGER software, version 4. This software is one of
the components of FIPWARE, a comprehensive technological solution for developing connections to the
WorldFIP network. This FIPWARE, developed by ALSTOM Technology, comprises hardware components,
software components, development tools and miscellaneous accessories.

As part of this FIPWARE, FIP DEVICE MANAGER is a function library designed to be borne by products
connected to the WorldFIP network to facilitate access.

The purpose of this document is to describe all the features offered by this software, as well as the procedures for
implementing and using them. Therefore, it describes how to use FIP DEVICE MANAGER Version 4 in order
to:

• compile it for a specific target using the various compilers;

• use it to initialize a subscriber and configure the communication exchanges;

• use it to implement the bus arbitrator;

• use it to access the MPS variables and to send and receive messages.

In no case whatsoever may this document be considered a manual for learning the concepts and principles
underlying the operation of a WorldFIP network.

Users of this software must already be familiar with the basic mechanisms of a WorldFIP network.

FIP DEVICE MANAGER software Version 4 is designed for developers who develop interfaces with their
communication application and with their run-time environment.

Preface

Page 6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

2. CONTENT OF THIS MANUAL

This user manual is broken down as follows:

Chapter 1 - General introduction: provides an overview of the software. It describes the supported features
and the procedures for using the software.

Chapter 2 – Available functions: contains a detailed description of the available features.

Chapter 3 - Description of user interface primitives: contains a detailed description of each primitive
available, as well as of those called by FIP DEVICE MANAGER, to be written by the user.

Chapter 4 – Performance levels: specifies the performances on the user interface and on the line.

Chapter 5 – Error codes: describes the error codes returned following primitive calls.

Chapter 6 – Installation procedure: describes the installation procedures.

Appendix A – Compatibility: describes the compatibility between Version 2 and Version 4 primitives.

Appendix B – Use with C++: describes the FDM use in a C++ environment.

Glossary

3. RELATED PUBLICATIONS

For more information, refer to these publications:

[1] EN50170 partie 3: Normes WorldFIP

[2] FIP Network General Introduction ALS 50249

[3] FIELDUAL User Manual ALS 50273

[4] FIELDRIVE User Reference Manual ALS 50261

[5] FULLFIP2 Component User Reference Manual ALS 50262

[6] Manuel de référence utilisateur du logiciel FIPCODE V6 ALS 50277

4. WE WELCOME YOUR COMMENTS AND SUGGESTIONS

ALSTOM strives to produce quality technical documentation. Please take the time to fill in and return the
"Reader's Comments" page if you have any remarks or suggestions.

Reader's comments

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 7

ALS 50278 e-en
FIP DEVICE MANAGER Software Version 4 User
Reference Manual

Your main job is:

� System designer
� Distributor
� System integrator
� Installer

� Programmer
� Maintenance
� Operator
� Other (specify below)

If you would like a personal reply, please fill in your name and address below:

COMPANY:...NAME:..

ADDRESS:..

..COUNTRY: ..

Send this form directly to your ALSTOM sales representative or to this address:

ALSTOM Technology
Technical Documentation Department (TDD)

23-25, Avenue Morane Saulnier
92364 Meudon la Forêt Cedex

France
Fax: +33 (0)1 46 29 10 21

All comments will be considered by qualified personnel.

REMARKS

Reader's comments

Page 8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Contents

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 9

CHAPTER 1 - GENERAL INTRODUCTION
1. GENERAL OVERVIEW OF THE SOFTWARE...1-1
2. OVERVIEW OF TARGET HARDWARE CONFIGURATIONS...1-3
3. PRESENTATION OF THE FUNCTIONALITY ...1-4
4. OVERVIEW OF THE INTERFACE WITH THE USER APPLICATION..1-6

4.1 Description of the basic services...1-8
4.2 Management of the reports and ERROR/WARNING callback functions1-12
4.3 Interface with the operating system ..1-13

4.3.1 Management of mutual exclusion...1-13
4.3.2 Memory management ...1-16

4.4 Processing IRQ and EOC interrupts ...1-17
4.5 Processing events..1-20
4.6 Processing real time clock interrupt..1-21
4.7 Operating model for the deferred services..1-23

4.7.1 Operational model for accessing the SM_MPS variables ...1-24
4.7.2 Operational model for accessing the universal-type MPS variables ...1-27
4.7.3 Operational model for the transmission of messages..1-29
4.7.4 Operational model for the reception of messages ...1-32

4.8 Operating model for the local MPS indications..1-34
4.9 Create an FDM application...1-36

CHAPTER 2 - AVAILABLE FUNCTIONS
1. DESCRIPTION OF FUNCTIONS ...2-1

1.1 Self-tests ...2-1
1.1.1 Aims ...2-1
1.1.2 Offline test functions ..2-2
1.1.3 Online test functions...2-3

1.2 Managing the medium (or media) of each configured network..2-3
1.3 Managing AE/LE and MPS variables...2-6

1.3.1 General ...2-6
1.3.2 Management of AE/LE operating modes..2-6

1.3.2.1 Diagram of AE/LE operating modes...2-6
1.3.2.2 Associated functions ...2-7
1.3.2.3 Setting up and adjusting an AE/LE and setting its parameters ..2-7

1.3.3 Managing two AE/LE images...2-8
1.3.4 Managing MPS variables..2-9

1.3.4.1 MPS variables ...2-9
1.3.4.2 MPS variables with dynamic refreshment...2-10
1.3.4.3 Time variable ..2-12
1.3.4.4 Synchronisation variables ...2-12

1.3.5 Managing time variable producer redundancy..2-13
1.4 Managing the Bus Arbitrator(s) ..2-15

1.4.1 Setting up a Bus Arbitrator program...2-15
1.4.2 Managing Bus Arbitrator operating modes...2-16

1.4.2.1 Diagram of Bus Arbitrator operating modes ...2-16
1.4.2.2 Bus Arbitrator associated functions...2-17

1.4.3 Setting the parameters of the Bus Arbitrator Start-up function...2-17
1.5 Managing SM-MPS network management variables ...2-20

1.5.1 Format of network management variables..2-20

Contents

Page 10 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.5.1.1 Report variable..2-21
1.5.1.2 List of equipment present variable ..2-23
1.5.1.3 Presence variable ..2-24
1.5.1.4 Identification variable ...2-24
1.5.1.5 BA synchronisation variable ...2-26
1.5.1.6 Segment Parameters variable ..2-26

1.5.2 Managing network management variables..2-27
1.5.3 Creation of list of equipment present variable ..2-27

1.5.3.1 ZN130 or FIELDUAL in compatible mode ..2-27
1.5.3.2 FIELDUAL in new mode..2-28

1.6 Managing WorldFIP data link layer messages ...2-29
1.6.1 Introduction ..2-29
1.6.2 Transmission configuration ..2-30
1.6.3 Reception configuration ...2-30
1.6.4 User application that plays the role of a bridge...2-31

CHAPTER 3 - DESCRIPTION OF USER INTERFACE PRIMITIVES
1. PROVIDED PRIMITIVES, TO BE CALLED BY THE USER...3-1

1.1 fdm_initialize() ...3-1
1.2 fdm_get_version()...3-2
1.3 fdm_ticks_counter()..3-3
1.4 fdm_initialize_network() ..3-4
1.5 fdm_stop_network() ...3-17
1.6 fdm_online_test ..3-18
1.7 fdm_valid_medium() ..3-19
1.8 fdm_process_its_fip() ...3-21
1.9 fdm_process_it_eoc() ...3-22
1.10 fdm_process_it_irq()...3-23
1.11 fdm_switch_image() ...3-24
1.12 fdm_get_image()...3-25
1.13 fdm_change_test_medium_ticks()..3-26
1.14 fdm_ae_le_create() ...3-27
1.15 fdm_ae_le_delete() ...3-28
1.16 fdm_ae_le_start() ..3-29
1.17 fdm_ae_le_get_state()...3-30
1.18 fdm_ae_le_stop() ..3-31
1.19 fdm_mps_var_create() ..3-32
1.20 fdm_mps_var_change_id() ...3-36
1.21 fdm_mps_var_change_periods() ..3-37
1.22 fdm_mps_var_change_priority() ..3-38
1.23 fdm_mps_var_change_prod_cons()..3-39
1.24 fdm_mps_var_change_rqa() ...3-40
1.25 fdm_mps_var_change_msga()..3-41
1.26 fdm_mps_var_write_loc() ..3-42
1.27 fdm_mps_var_write_universal()...3-43
1.28 fdm_mps_var_time_write_loc() ...3-44
1.29 fdm_mps_var_read_loc()..3-45
1.30 fdm_mps_var_read_universal() ..3-47

Contents

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 11

1.31 fdm_mps_var_time_read_loc()...3-48
1.32 fdm_generic_time_initialize() ..3-49
1.33 fdm_generic_time_write_loc() ...3-51
1.34 fdm_generic_time_read_loc()...3-52
1.35 fdm_generic_time_delete()...3-54
1.36 fdm_generic_time_set_priority() ..3-55
1.37 fdm_generic_time_set_candidate_for_election()..3-56
1.38 fdm_mps_fifo_empty()...3-57
1.39 fdm_ba_load_macrocycle_fipconfb()...3-58
1.40 fdm_ba_load_macrocycle_manual()...3-59
1.41 fdm_ba_delete_macrocycle()..3-64
1.42 fdm_ba_set_priority() ...3-65
1.43 fdm_ba_set_parameters()..3-66
1.44 fdm_ba_start() ..3-67
1.45 fdm_ba_stop()...3-68
1.46 fdm_ba_status() ..3-69
1.47 fdm_ba_commute_macrocycle() ..3-71
1.48 fdm_ba_external_resync() ..3-72
1.49 fdm_ba_loaded()...3-73
1.50 fdm_read_present_list() ..3-74
1.51 fdm_read_presence() ..3-75
1.52 fdm_read_identification() ...3-76
1.53 fdm_read_report()...3-77
1.54 fdm_read_ba_synchronize() ...3-78
1.55 fdm_get_local_report() ...3-79
1.56 fdm_smmps_fifo_empty() ..3-80
1.57 fdm_messaging_fullduplex_create()...3-81
1.58 fdm_messaging_to_send_create() ..3-88
1.59 fdm_messaging_to_rec_create()...3-91
1.60 fdm_messaging_delete()...3-94
1.61 fdm_channel_create() ...3-95
1.62 fdm_channel_delete() ...3-96
1.63 fdm_send_message() ..3-97
1.64 fdm_msg_send_fifo_empty()..3-98
1.65 fdm_msg_rec_fifo_empty() ..3-99
1.66 fdm_msg_ref_buffer_free() ..3-100
1.67 fdm_msg_data_buffer_free() ..3-101
1.68 fdm_change_messaging_acknowledge_type() ...3-102

2. CALLBACK PRIMITIVES TO BE PROVIDED BY THE USER ..3-103

CHAPTER 4 - PERFORMANCE LEVELS
1. USER PRIMITIVE RUN TIME ...4-1

1.1 Introduction ..4-1
1.2 Start-up: fdm_initialize_network() primitive..4-2
1.3 Miscellaneous functions ...4-3

Contents

Page 12 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.4 AE_LE start-up...4-4
1.5 Messaging...4-5
1.6 MPS variables...4-6

2. MEMORY CAPACITY REQUIRED...4-7
2.1 Code size and modularity ...4-7
2.2 Data size ...4-8
2.3 Memory capacity for FULLFIP2..4-8

CHAPTER 5 - ERROR CODES
1. ERROR MESSAGES..5-1

CHAPTER 6 - INSTALLATION PROCEDURE
1. SOFTWARE SUPPLY ...6-1
2. IMPLEMENTATION...6-2
3. COMPILATION PARAMETERS..6-3

APPENDIX A - COMPATIBILITY

APPENDIX B - USE WITH C++

GLOSSARY

Tables

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 13

Table 3.1 – Default values for the network transmission ...3-9
Table 6.1 – FIP DEVICE MANAGER library options ..6-6
Table A.1 – Compatibility between Version 2 and Version 4 ... A-4

Page 14 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-1

Chapter

1
General introduction

1. GENERAL OVERVIEW OF THE SOFTWARE

The FIP DEVICE MANAGER software, Release 4, designed to operate with the FULLFIP2 coprocessor and
Release 6 of its FIPCODE microcode, takes the form of a library of primitives to be linked to the user
application. Run on the host microprocessor of the communication coprocessor, it can transform the equipment
upon which it is integrated into a WorldFIP subscriber, active as a station, bus arbitrator or both.

This library contains all the functions required to manage medium redundancy in the case of a hardware target
that integrates the FIELDUAL component. All the diagnosis functions of the components belonging to the
WorldFIP connection point (excluding the transmission/reception self-test), and the functions to check the
integrity of the configuration data of the communicating subscriber, are performed by this software on start-up,
and the whole time the subscriber is working.

In relation to the European standard applicable to WorldFIP (EN50170), the interface offered by FIP DEVICE
MANAGER Release 4 is at the application layer level for bus arbitrating and variable exchange services, and at
the data link layer level for message exchanges. The basic network management functionality is also integrated.

This library is strictly written in ANSI C and ANSI C++ so that it can be used in a large number of
environments. It is also strictly independent of all utilization contexts and contains no assumptions made about
the run time model of the user application. The user can write the application in C or C++.

The possible implementation in the form of a driver in a given context is the responsibility of the user, who
integrates the FIP DEVICE MANAGER library into this context. However, the mechanisms proposed by this
library optimize this task thanks, for example, to an attempt to provide a standard interface with a real-time
kernel.

General introduction

Page 1-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

FIP DEVICE MANAGER Release 4 can be used to run several FULLFIP2 systems.

FIP DEVICE MANAGER

APPLICATION
E
N
V
I
R
O
N
M
E
N
T

R
U
N
-
T
I
M
E

FIPCODE/FULLFIP2

.............
.............

Only if use of FIELDUAL
controlled by FIPCODE

REDUNDANCY
ARBITRATOR

Only if utilization of ZN130
 or
FIELDDUAL in ZN130 mode

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-3

2. OVERVIEW OF TARGET HARDWARE CONFIGURATIONS

The WorldFIP network connection points managed by FIP DEVICE MANAGER Release 4 can be built in
several ways as regards management of medium redundancy and microprocessor access to the database (i.e.
variables and messages) managed by FIPCODE/FULLFIP2.

The following components may be used to help in managing medium redundancy: see [3] for details.

• ZN130 or FIELDUAL in ZN130 mode: intervention of FIP DEVICE MANAGER,

• FIELDUAL in new mode controlled by FULLFIP2/FIPCODE: no intervention of FIP DEVICE
MANAGER therefore no code run on the host micro to do this.

The FIP DEVICE MANAGER is informed of the type of management selected by means of a compilation
option (see Chapter 6, Section 3.).

The database managed by FULLFIP2/FIPCODE can be accessed in two ways, both dependent on the hardware
architecture. See [5] for details.

• via the FULLFIP2/FIPCODE command user interface,

• via access to a memory shared between FULLFIP2/FIPCODE and the host microprocessor. The latter thus
has direct access to the database containing the objects it must manipulate (variables, messages, etc.).

The FIP DEVICE MANAGER is informed of the type of access selected by means of a compilation option (see
Chapter 6, Section 3.).

General introduction

Page 1-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

3. PRESENTATION OF THE FUNCTIONALITY

The FIP DEVICE MANAGER Release 4 software functionality includes the following tasks:

• Ensuring system operation

This functionality is dedicated to the management of components required to build WorldFIP connection
points, i.e. FULLFIP2, medium redundancy circuits and private memories. It consists of the following basic
functions:

• configure and manage one or N FULLFIP2 components,

• carry out the self-tests of the WorldFIP connection point(s) (optional),

• process events coming from the network(s),

• manage memory resources,

• develop the various time-outs required for other functions,

• monitor the quality of the medium(s),

• prevent degradation,

• prevent latent faults (in double-medium),

• allow the subscriber to run as FIPIO manager.

• Managing AE/LE and the MPS variables

This functionality enables the application layer services to be performed, which enables the user to have
access to the MPS variables through unconnected logic entities called AE/LE. It consists of the following
basic functions:

• create and delete an MPS AE/LE,

• startup and stop an MPS AE/LE,

• add a variable in an MPS AE/LE,

• read a variable consumed in an AE/LE with or without dynamic refresh status,

• write a variable produced in an AE/LE with or without dynamic refresh status,

• manage supposed ”pure sync” variables.

• Managing the bus arbitrator (S)

This functionality consists of the following basic functions:

• load a macrocycle,

• start or stop a macrocycle,

• change a macrocycle,

• resynchronize a macrocycle,

• manage election of a bus arbitrator.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-5

• Handling SM-MPS network management variables

This functionality enables network management services to be performed and provides the user with access
to the SM-MPS variables. It consists of the following basic functions:

• management of the ”list of equipment present” variables,

• management of the presence variable,

• management of the identification variable,

• management of the report variable,

• management of the BA sync variable.

• Managing ”WORLDFIP DATA LINK LAYER” messages

This functionality enables the data connection layer services to be performed. These services provide the user
with access to messages at ”DLL WorldFIP” level. The functionality consists of the following basic
functions:

• configure messaging,

• transmit a message,

• receive a message.

• Managing the time

This functionality consists of the following basic functions:

• managing election of time variable producer,

• time variable read,

• time variable write.

General introduction

Page 1-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4. OVERVIEW OF THE INTERFACE WITH THE USER
APPLICATION

The environment of an application that uses FIP DEVICE MANAGER Release 4 is the following:

Basic User Application
Error CallBack

Function
WarningCallBack

Function

Event Handler
Event Handler

Event HandlerEvent CallBack
Function

Fip Device Manager Release 4

OS Interface Deferred Services IRQ
Handler

IRQ & EOC
Handler

EOC
Handler RTC

Handler

OR

Operating System IRQ Interrupt EOC Interrupt Timers

Event CallBack
 Functions

Interrupt Handlers

Error/Warning CallBack Functions

Real Time Clock
Handler

* if IRQ and EOC are wired to form an OR gate then EOC should be configured in level mode
** EOC can be configured either in level mode or in pulse mode

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-7

Writing a FIP DEVICE MANAGER application means that you have to:

• call the basic FDM services (see Subsection 4.1 of this chapter),

• write the error and warning callback functions (see Subsection 4.2 of this chapter),

• adapt if necessary, some system-dependent objects (semaphores, mutex, etc.) that FDM code uses (see
Subsection 4.3 of this chapter),

• write the FULLFIP component interrupt handlers (IRQ and EOC) (see Subsection 4.4 of this chapter),

• write the event callback functions (see Subsection 4.5 of this chapter),

• write the real-time clock handler (see Subsection 4.6 of this chapter),

• implement the mechanisms of the deferred services if you use these services (see Subsection 4.7 of this
chapter):

• access to the SM_MPS variables,

• access to the aperiodic MPS variables,

• transmission of messages,

• reception of messages,

• implement the mechanism for the periodic MPS indications if you create periodic MPS variables (see
Subsection 4.8 of this chapter).

General introduction

Page 1-8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.1 Description of the basic services

The FIP DEVICE MANAGER Release 4 programming interface contains all the equipment required to set up
the network(s), to provide network management facilities and to offer communication services.

This programming interface is arranged around different objects, which can be manipulated using a set of
functions, and which are associated with different aspects of network functionality.

The functions provide everything required to:

• create or delete objects, in accordance with their dependency rules,

• modify objects in accordance with the possibilities offered,

• manage operating modes in accordance with the protocol,

• have access to the MPS variables and to transmit and receive messages to communicate.

The list of objects which can be manipulated and their interdependence are shown below:

DEVICE

NETWORK1

TIME

AE_LEsMPS

M ACROCYCLE

MESSAGING CONTEXTS

AE_LE SM_MPSVARIABLES

NETWORK1

TIME

AE_LEsMPS

M ACROCYCLE

MESSAGING CONTEXTS

AE_LE SM_MPSVARIABLES

The indentation which shows the interdependence of the objects indicates, for example, that a variable object
required for MPS variable exchanges, can only be created in the context of an existing AE_LE, which itself can
only be created in the context of an existing network.

All the creation primitives refer to the object created which must be specified as a parameter of all the primitives
that manipulate the object.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-9

The primitives for each object are:

DEVICE: equipment that can control several WorldFIP networks. The primitives regard initialization and
overall management of the software.

fdm_initialize) Creation of the device
fdm_get_version() Access to the version of the software
fdm_ticks_counter() Management of internal timing

NETWORK: a WorldFIP network (instance of software to manage it)

fdm_initialize_network() Creation and start-up of network
fdm_stop_network() Deletion of network
fdm_valid_médium() Initialization of medium redundancy management
fdm_ack_ewd_medium() Acknowledgment of the Watch-dog default
fdm_online_test() Activation of online self-tests
fdm_process_its_fip() Processing of IRQ and EOC interrupts
fdm_process_it_irq() Processing of IRQ interrupts
fdm_process_it_eoc Processing of EOC interrupts
fdm_switch_image() Changing the image upon which all the network AE_LEs

function
fdm_get_image() Obtaining the image upon which all the network AE_LEs

function
fdm_generic_time_initialize() Initialization of time management
fdm_generic_time_set_priority() Setting of the subscriber priority in the time producer election

mechanism
fdm_generic_time_set_candidate_
for_election()

Including or not including the subscriber in the time producer
election mechanism

fdm_get_local_report() Local report variable read
fdm_change_test_medium_ticks() Modification of the medium test run time
fdm_mps_fifo_empty() Emptying of aperiodic MPS events
fdm_smmps_fifo_empty() Emptying of SMMPS events
fdm_msg_send_fifo_empty Activation of message transmission function
fdm_msg_rec_fifo_empty Activation of message reception function

AE_LE MPS: Comprehensive application variable units with their projection on the data link layer

fdm_ae_le_create() Creation of an AE_LE
fdm_ae_le_delete() Deletion of an AE_LE
fdm_ae_le_start() Start-up of an AE_LE
fdm_ae_le_stop() Stopping of an AE_LE
fdm_ae_le_get_state() Obtaining the state of an AE_LE

General introduction

Page 1-10 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

VARIABLES: MPS Variables.

fdm_mps_var_create() Creation of an AE_LE
fdm_mps_var_change_id() Modification of the identifying attribute of a variable
fdm_mps_var_change_periods() Modification of the period attributes of a variable
fdm_mps_var_change_priority() Modification of the priority attribute of a variable
fdm_mps_var_change_prod_cons() Modification of the producer consumer attribute of a variable
fdm_mps_var_change_RQa() Modification of the authorized MPS query attribute of a

variable
fdm_mps_var_change_MSGa() Modification of the authorized messaging query attribute of a

variable
fdm_mps_var_write_loc() Local variable write
fdm_mps_var_write_universal() Universal variable write
fdm_mps_var_time_write_loc() Local variable write with time

fdm_mps_var_read_loc() Local variable read
fdm_mps_var_read_universal() Universal variable write
fdm_mps_var_time_read_loc() Local variable read with time

AE_LE SM-MPS: All network management variables

fdm_read_present_list() List of equipment present variables read
fdm_read_presence() Presence variable read
fdm_read_report() Report variable read
fdm_read_identification() Identification variable read

BUS ARBITRATOR/MACROCYCLE: bus arbitrating function and bus arbitrator program

fdm_ba_load_macrocycle_fipconfb() Loading of a macrocycle built with BA_BUILDER
fdm_ba_load_macrocycle_manual() Loading of a macrocycle built manually
fdm_ba_delete_macrocycle() Deleting of a macrocycle
fdm_ba_commute_macrocycle() Changing of a macrocycle
fdm_ba_loaded() Identification variable read
fdm_ba_start() Start-up of BA function
fdm_ba_stop() Stopping of BA function
fdm_ba_status() BA function status read
fdm_ba_set_parameters() Initialize BA timer
fdm_ba_set_priority() Initialize BA priority
fdm_ba_external_resync() External sync request

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-11

MESSAGING CONTEXT:

fdm_messaging_fullduplex_create Creation of messaging context to transmit and receive
fdm_messaging_to_send_create Creation of messaging context to transmit
fdm_messaging_to_rec_create Creation of messaging context to receive
fdm_channel_create Creation of an aperiodic messaging channel
fdm_channel_delete Deletion of an aperiodic messaging channel
fdm_change_messaging_
acknowledge_type()

Modification of type of messaging (ACK/NOACK) being
transmitted

fdm_msg_ref_buffer_free Freeing the part of the memory containing a message received
descriptor

fdm_msg_data_buffer_free Freeing the part of the memory containing a message received
fdm_msg_send_message Request to transmit a message

TIME:

fdm_generic_time_write_loc() Time variable write
fdm_generic_time_read_loc() Time variable read

General introduction

Page 1-12 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.2 Management of the reports and ERROR/WARNING callback
functions

Whenever there is a fault of whatever kind, all the user interface primitives return reports with the following
standard format:

FDM_OK: if the function was carried out correctly,

FDM_NOK: if an error is detected

except for:

• functions for creating different objects,

• functions implemented in the form of macros: fdm_get_image, fdm_ba_loaded,

• functions not associated with a FIP DEVICE MANAGER instance: fdm_get_version,
fdm_initialization, fdm_initialize_network, fdm_ticks_counter,

• activation functions: fdm_mps_fifo_empty, fdm_smmps_fifo_empty,
fdm_msg_send_fifo_empty, et fdm_msg_rec_fifo_empty,

Any errors detected by the FIP DEVICE MANAGER primitives are classified in two families: WARNING type
errors which do not call the correct operation of the FIP DEVICE MANAGER and the WorldFIP connection into
question, and FATAL_ERROR type errors which do.

When the FIP DEVICE MANAGER detects a FATAL_ERROR the User_Signal_Fatal_Error()
callback function is called. The user provides this function to FDM when he calls the fdm_initialize_network
function (field of FDM_CONFIGURATION_HARD structure - see Chapter 3).

In this procedure, the user must take care to restore all the memory allocated by deleting all the objects created
one by one. This procedure must end with the fdm_stop_network()function being called (which itself calls
the user function User_Reset_Composent()to reset FULLFIP2).

The circuit is thus reset: nothing more is transmitted or received from the network and start-up can only occur
after reconfiguration (using fdm_initialize_network()).

To do so, you must remember to restore, if necessary, any reserved memory, for example in the
User_Signal_Fatal_Error primitive.

When the FIP DEVICE MANAGER detects a WARNING error, the user callback function
User_Signal_Warning() is called. The user provides this function to FDM when he calls the
fdm_initialize_network function (field of FDM_CONFIGURATION_HARD structure - see Chapter 3). After this
function is called, FIP DEVICE MANAGER continues in sequence.

Following the detection of an error (WARNING) and after the corresponding user function has been called, the
function concerned immediately sends the 0xffff report to the caller.

These two callback functions use an input parameter of the FDM_ERROR_CODE type described in the
fdm_initialize_network function (see Chapter 3). The error/warning codes are described in Chapter 5.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-13

4.3 Interface with the operating system

4.3.1 Management of mutual exclusion

This management system involves the mutual exclusion required to protect the following:

• access to the FULLFIP2 circuit, which is non-reentrant: only one user command can be activated at any one
time for each FULLFIP2,

• some means of access to the internal FIP DEVICE MANAGER database,

• certain portions of the FIP DEVICE MANAGER code,

• access to the variables (in free access mode).

This is managed with the help of four different semaphores (for each FIP DEVICE MANAGER instance) which
makes it possible to separate the means of access.

Flags are used as it involves the appropriate software tools, which are the most frequently available when using a
real-time kernel.

However, they can be replaced by (i.e. the corresponding macro can refer to) other mechanisms in order to
achieve this mutual exclusion (e.g. masking/unmasking tasks using the primitives which call the flags in
question).

These semaphores, manipulated by the FIP DEVICE MANAGER primitives, are to be provided by the user via a
set of macros, which he must specify in accordance with his environment.

The files fdm_os.c and fdm_os.h provide a set of macros for the operating systems pSOS and VxWorks. If you
use pSOS or VxWorks and if you want to change these macros or if you use another operating system then you
have to change or adapt these macros.

OS_fdm_sm_create To create the semaphores (one call for each)
OS_fdm_sm_delete To delete the semaphores (one call for each)
OS_fdm_sm_p To take the semaphore needed to protect access to FULLFIP2
OS_fdm_sm_v To free the semaphore needed to protect access to FULLFIP2
OS_fdm_sm_p_bd To take the semaphore needed to protect access to FIP DEVICE

MANAGER data base
OS_fdm_sm_v_bd To free the semaphore needed to protect access to FIP DEVICE

MANAGER data base
OS_fdm_sm_p_t To take the semaphore needed to protect certain portions of FIP

DEVICE MANAGER code
OS_fdm_sm_v_t To free the semaphore needed to protect certain portions of FIP

DEVICE MANAGER code
OS_fdm_sm_p_vcom To take the semaphore needed to protect access to the variable (free

access)
OS_fdm_sm_v_vcom To free the semaphore needed to protect access to the variable (free

access)

General introduction

Page 1-14 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

In addition FIP DEVICE MANAGER calls a procedure which enables it to place the processor it is working on
into a state of total non-preemption. It can do this for very short periods of time (a few microinstructions) to
protect itself from certain instances of concurrent access (updating pointer without using semaphores). At the
same time, the procedure to return to the initial state is also called.

These procedures are:

OS_Enter_Region()

OS_Leave_Region()

These procedures can be specified by the user in the form of macros.

The following table shows the FDM functions that use the above primitives.

Note

CA: Classical Access of the host processor to the data base using
FULLFIP2 IO ports

FA: Free Access of the host processor to the data base shared between the
host processor and FULLFIP2

OS_sm_v
OS_sm_p

OS_sm_v_t
OS_sm_p_t

OS_sm_v_bd
OS_sm_p_bd

QS_sm_v_vcom
OS-sm_p_vcom

OS_enter_region
OS_leave_region

CA FA CA FA CA FA CA FA CA FA
fdm_initialize
fdm_get_version
fdm_ticks_counter X X
fdm_change_test_medium_ticks

fdm_initialize_network X X X X X X
fdm_stop_network X X
fdm_valid_medium X X
fdm_online_test X X X
fdm_process_its_fip X X
fdm_process_it_eoc if

status

fdm_process_it_irq X X

fdm_ba_load_macrocycle_fipconfb X X
fdm_ba_load_macrocycle_manual X X
fdm_ba_delete_macrocycle
fdm_ba_external_resync X
fdm_ba_start X X X
fdm_ba_commute_macrocycle X X X
fdm_ba_set_priority X X X
fdm_ba_set_parameters X X X

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-15

OS_sm_v
OS_sm_p

OS_sm_v_t
OS_sm_p_t

OS_sm_v_bd
OS_sm_p_bd

QS_sm_v_vcom
OS-sm_p_vcom

OS_enter_region
OS_leave_region

CA FA CA FA CA FA CA FA CA FA
fdm_ba_status
fdm_ba_stop X X
fdm_ba_loaded

fdm_read_report X X X X X X X
fdm_read_present_list X X X X
fdm_read_identification X X X X X X X
fdm_read_presence X X X X X X X
fdm_read_ba_synchronize X X
fdm_get_local_report

fdm_switch_image X X
fdm_get_image
fdm_ae_le_create
fdm_ae_le_start X X X X X X X
fdm_ae_le_delete
fdm_ae_le_stop X X X X X X X
fdm_ae_le_get_state

fdm_mps_var_create
fdm_mps_var_change_periods X X
fdm_mps-var_change_RQa
fdm_mps_var_change_MSGa
fdm_mps_var_change_priority
fdm_mps_var_change_prod_cons X X
fdm_mps_var_write_loc X X X
fdm_mps_var_read_loc X X X
fdm_mps_var_time_write_loc X X X
fdm_mps_var_time_read_loc X X X
fdm_mps_var_write_universal X X X X X
fdm_mps_var_read_universal X X X X

fdm_generic_time_initialize X X X X X X X
fdm_generic_time_read_loc X X X
fdm_generic_time_write_loc X X X
fdm_generic_time_set_candidate_for_elect
ion
fdm_generic_time_set_priority
fdm_ generic_time _delete X X X X X X X

fdm_channel_create X X X X X X
fdm_channel_delete X X X X X X
fdm_change_channel_nr

General introduction

Page 1-16 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

OS_sm_v
OS_sm_p

OS_sm_v_t
OS_sm_p_t

OS_sm_v_bd
OS_sm_p_bd

QS_sm_v_vcom
OS-sm_p_vcom

OS_enter_region
OS_leave_region

CA FA CA FA CA FA CA FA CA FA
fdm_messaging_fullduplex_create X X X X X X
fdm_messaging_to_send_create X X X X X X
fdm_messaging_to_rec_create X X X X X X
fdm_messaging_delete X X X X X X
fdm_send_message X X
fdm_msg_ref_buffer_free X X
fdm_msg_data_buffer_free X X

fdm_msg_rec_fifo_empty X X
fdm_mps_fifo_empty X X X X
fdm_smmps_fifo_empty X X X X
fdm_msg_send_fifo_empty X X X X

4.3.2 Memory management

This management system affects the allocation and freeing of memory zones carried out dynamically by the FIP
DEVICE MANAGER.

It is carried out by means of macros, which must be specified by the user in accordance with his environment:

OS_Allocate (Memory_Region, type, PA, dim))

OS_Free (Memory_Region,PF)

Where:

Memory_Region: Identification of the memory region used. Useful for working with
real-time operUseless for DOS for example

type: Name of type of object requested, i.e. of the object which will be
contained in the allocated memory zone

PA: Address of the pointer which will contain the address of the allocated
zone

dim: Size in bytes of zone requested
PF: Address of the zone to be freed.

This mechanism enables the FIP DEVICE MANAGER to always dynamically manage the memory it needs,
while offering the user the opportunity to completely control behavior.

FIP DEVICE MANAGER only uses these mechanisms during the configuration phases.

The files fdm_gdm.c and fdm_gdm.h provide a set of macros for the operating systems pSOS and VxWorks. If
you use pSOS or VxWorks and if you want to change these macros or if you use another operating system then
you have to change or adapt these macros.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-17

4.4 Processing IRQ and EOC interrupts

The FULLFIP component issues 2 interrupts:

• IRQ - when one of the following events occurs:

• reception or transmission of an MPS universal-type variable,

• reception of one of the SM_MPS network management variables, following a request to read this
variable,

• transmission of a produced MPS variable with associated event (A_Sent),

• reception of a consumed MPS variable with associated event (A_Received),

• transmission of a produced MPS variable of the universal type or at the time-out of the request,

• reception of a message,

• reception of acknowledgement of transmission of a message,

• start of the TEST_P instruction by a BA, in the case of utilization of ZN130 components or FIELDUAL
components in ZN130 mode,

• stop of the TEST_P instruction by a BA, in the case of utilization of ZN130 components or FIELDUAL
components in ZN130 mode,

• EOC - when the following event occurs:

• reception of a synchronization variable (see Subsection 1.3.4.4 of Chapter 2).

The user has to connect the interrupt vectors to the interrupt handlers. This operation depends on the user
hardware environment and operating system.

Depending on the hardware environment the user can implement 4 types of interrupt handlers:

• IRQ Handler: process of the IRQ interrupt only,

• EOC in level mode Handler: process of the EOC interrupt only and if EOC is configured in level mode,

• EOC in pulse mode Handler: process of the EOC interrupt only and if EOC is configured in pulse mode,

• IRQ and EOC in pulse mode Handler: process of the IRQ and EOC interrupts when they are wired up to
form an OR gate and EOC is configured in level mode.

Note

The setting of the pulse mode of EOC is performed when calling the
fdm_initialize_network function and using the flag EOC_PULSE_MODE of
the field Type of the structure FDM_CONFIGURATION_SOFT.

General introduction

Page 1-18 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1. IRQ Handler: process of the IRQ interrupt only

The interrupt handler processing time has to be short. Therefore, the IRQ interrupt handler has to activate a
task. In the body of this task you can process:

• one event at a time using FDM function fdm_process_it_irq(Network_Identification),

or

• all the waiting events (produced by IRQs) using the following FDM macro sequence:

• BEGIN_SMAP_FIP_EVT,

• SMAP_ON_IRQ(Network_Identification),

• END_SMAP_FIP_EVT.

2. EOC in level mode Handler: process the EOC interrupt if and only if EOC is configured in level mode

The interrupt handler processing time has to be short. For that the EOC interrupt handler has to activate a
task. In the body of this task you can process:

• one event at a time using FDM function fdm_process_it_eoc(Network_Identification),

or

• all the waiting events (produced by EOCs) using the following FDM macro sequence:

• BEGIN_SMAP_FIP_EVT,

• SMAP_ON_EOC(Network_Identification),

• END_SMAP_FIP_EVT.

3. EOC in pulse mode Handler: process the EOC interrupt if and only if EOC is configured in pulse mode
(see Subsection 4.8 of this chapter).

In this case you don't have to call any FDM functions and you can, for example, activate a task that waits for
this synchronization event.

4. IRQ and EOC in pulse mode Handler: process the IRQ and EOC interrupts when they are wired up to
form an OR gate and EOC is configured in level mode.

The interrupt handler processing time has to be short. Therefore, the IRQ and EOC interrupt handler has to
activate a task. In the body of this task you can process:

• one event at a time using FDM function fdm_process_its_fip(Network_Identification),

or

• all the waiting events (produced by IRQs or EOCs) using the following FDM macro sequence:

• BEGIN_SMAP_FIP_EVT,

• SMAP_ON_IRQ_EOC(Network_Identification),

• END_SMAP_FIP_EVT.

Network Identification: FDM_REF type; this handle is returned by the function fdm_initialize_network.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-19

Example of implementation

/* for example in the case of pSOS */

FDM_REF * Network Identification; /* this handle is returned by the function */

 /* fdm_initialize_network. */

static unsigned long sm_irq; /* semaphore */

/* create a task and a semaphore */

t_create("TIRQ", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskIRQ);

sm_create("SIRQ", 0, SM_LOCAL | SM_PRIOR, &sm_irq);

/* IRQ interrupt handler */

static void IRQ_handler(void)

{

 sm_v(sm_irq); /free the semaphore � wake up of the task TaskIRQ */

}

/* task that treat the interrupt IRQ */

static void TaskIRQ(void)

{

for(;;){

BEGIN_SMAP_FIP_EVT;

SMAP_ON_IRQ(Network Identification);

END_SMAP_FIP_EVT;

/* wait the next interrupt */

sm_p(sm_irq, SM_WAIT, 0); /* take the semaphore */

}

}

General introduction

Page 1-20 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.5 Processing events

Events are signaled by an interrupt from the circuit. This interrupt must be processed as indicated in the
preceding section.

Processing the IRQ handlers as described in the preceding section will activate FDM, which will call the
following user callback functions:

• User_Signal_Mps_Aper() if the event corresponds to the reception or the transmission of a universal-
type variable. The user provides this function to the FDM, when he calls the fdm_initialize_network function
(a field of FDM_CONFIGURATION_SOFT structure),

• User_Signal_Smmps() if the event corresponds to the reception of one of the network management
variables, following a request to read this variable. The user provides this function to the FDM, when he calls
the fdm_initialize_network function (a field of FDM_CONFIGURATION_SOFT structure),

• User_Signal_Receive_Msg() if the event corresponds to the reception of a message. The user
provides this function to the FDM, when he calls the fdm_initialize_network function (a field of
FDM_CONFIGURATION_SOFT structure),

• User_Signal_Send_Msg() if the event corresponds to the reception of acknowledgement of
transmission of a message or to a request for user transmission. The user provides this function to the FDM,
when he calls the fdm_initialize_network function (a field of FDM_CONFIGURATION_SOFT structure),

• User_Signal_Asent() if the event corresponds to the transmission of a produced variable with
associated event (A_Sent). The user provides this function to the FDM, when he calls the
fdm_mps_var_create function (a field of FDM_XAE structure),

• User_Signal_Areceived() if the event corresponds to the reception of a consumed variable with
associated event (A_Received). The user provides this function to the FDM, when he calls the
fdm_mps_var_create function (a field of FDM_XAE structure),

• User_Signal_Var_Prod() if the event corresponds to the transmission of a produced variable of the
universal type or at the time-out of the request. The user provides this function to the FDM, when he calls the
fdm_mps_var_create function (a field of FDM_XAE structure),

Processing the EOC handlers (EOC in level mode) as described in the preceding section will activate FDM, wich
will call the following user callback function:

• User_Signal_Synchro() if the event corresponds to the reception of a synchronization variable. The
user provides this function to the FDM, when he calls the fdm_mps_var_create function (a field of
FDM_XAE structure),

A more detailed description of the use of these callback functions is given in Subsection 4.7.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-21

4.6 Processing real time clock interrupt

The hardware environment should have a programmable timer that periodically produces interrupts. The user has
to connect the interrupt vector to the interrupt handler. This operation depends on the user hardware environment
and operating system.

We call the periodicity of the timer interrupt a tick.

The real time clock interrupt handler has to activate a task. Inside the body of this task you have to call the FDM
function fdm_ticks_counter.

The function fdm_ticks_counter manages all the time-out aspects of the FIP DEVICE MANAGER. The
following parameters of the structure FDM_CONFIGURATION_SOFT of the function fdm_initialize_network
set the values of the FDM time management aspects:

• Test_Medium_Ticks: periodicity in ticks of the call of the internal functionality of medium redundancy
management,

• Time_Out_Ticks: number of ticks to trigger a time-out; it is common to all primitives requiring a time-out
except messaging.

• Time_Out_Msg_Ticks: number of ticks to trigger a time-out for messaging.

• OnLine_Tests_Ticks: periodicity in ticks of the call of the internal self-test functionality.

Example of implementation

/* for example in the case of pSOS */

static unsigned long sm_rtc; /* semaphore */

/* create a task and a semaphore */

t_create("TRTC", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskRTC);

sm_create("SRTC", 0, SM_LOCAL | SM_PRIOR, &sm_rtc);

/* RTC interrupt handler */

static void RTC_handler(void)

{

 sm_v(sm_rtc); /free the semaphore � wake up of the task TaskRTC */

}

/* task that treats the real time clock interrupt */

General introduction

Page 1-22 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

static void TaskRTC(void)

{

for(;;){

fdm_ticks_counter();

/* wait the next interrupt */

sm_p(sm_rtc, SM_WAIT, 0); /* take the semaphore */

}

}

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-23

4.7 Operating model for the deferred services

The execution of some services is deferred by FIP DEVICE MANAGER. This chapter describes the general
model to be followed for the use of deferred services.

The main objective of this mechanism is to be able to make, as far as possible, running of the FIP DEVICE
MANAGER code independent of the activation context of a service. The user can choose the moment and the
context to run the processing code of the services requested, independently of the moment and the context of the
request.

For the most time-consuming services, and those that functionally cannot be run immediately, each user request
or each indication of the lower level (i.e. FIPCODE) is placed in a queue and the execution environment is
informed of this event. The user requests the emptying of the queue (i.e. processing by FIP DEVICE
MANAGER) whenever he wishes. Each request causes all the corresponding queues and all that they contain to
be emptied when this is possible (in relation to the queues of the lower level).

Each FIP DEVICE MANAGER instance has its own set of queues.

Furthermore, this technique can easily be taken into account in any real-time environment.

The following services are affected by this mechanism:

• access to the SM_MPS variables,

• access to the universal-type MPS variables,

• transmission of messages,

• reception of messages.

General introduction

Page 1-24 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.7.1 Operational model for accessing the SM_MPS variables

The operational model is the following:

Accessing SM_MPS variables
 operational model

1

2/6

3/7

8

54

1. The user application request is stored in a queue; the requests are the following:

• fdm_read_present_list,

• fdm_read_presence,

• fdm_read_identification,

• fdm_read_report,

• fdm_read_ba_synchronize.

2. The FIP DEVICE MANAGER activation manager is warned of the fact that one of the queues is not empty
by calling a callback procedure reserved for this purpose, and which the user must write. The address of this
procedure is transmitted to FDM by the function fdm_initialize_network (field User_Signal_Smmps of
FDM_CONFIGURATION_SOFT structure). The User_Signal_Smmps callback function must activate a task
that implements the action below.

3. The task activated by the User_Signal_Smmps function has to call the fdm_smmps_fifo_empty function. This
call activates FIP DEVICE MANAGER to empty the queue and process the request.

4. FIP DEVICE MANAGER uses the FIPCODE services to carry out the request.

5. When a SM_MPS variable is received, the FULLFIP component issues an IRQ interrupt; the IRQ handler
has to process the event (see Subsection 4.4). Following this processing, FDM stores the received SM_MPS
variable in a queue and calls the User_Signal_Smmps callback function.

6. The User_Signal_ Smmps callback function must activate a task that implements the action below.

7. The task activated by the User_Signal_Smmps function has to call the fdm_smmps_fifo_empty function. This
call activates FIP DEVICE MANAGER to empty the queue and to signal the event to the user.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-25

8. FIP DEVICE MANAGER calls a user callback procedure. The address of this procedure which is transmitted
to FDM by the function fdm_initialize_network:

• is the field User_Present_List_Prog of FDM_CONFIGURATION_SOFT structure; it is called if the
fdm_read_present_list function is used,

• is the field User_Identification_Prog of FDM_CONFIGURATION_SOFT structure; it is called if the
fdm_read_identification function is used,

• is the field User_Report_Prog of FDM_CONFIGURATION_SOFT structure; it is if the fdm_read_report
function is used,

• is the field User_Presence_Prog of FDM_CONFIGURATION_SOFT structure; it is called if the
fdm_read_presence function is used,

• is the field User_Synchro_BA_Prog of FDM_CONFIGURATION_SOFT structure; it is called if the
fdm_read_ba_synchronize function is used.

Note

Don't call the fdm_smmps_fifo_empty function inside the body of
User_Signal_Smmps function. The execution context of the
fdm_smmps_fifo_empty function should be different from the execution
context of the User_Signal_Smmps function.

Example of implementation of the call of fdm_smmps_fifo_empty function

/* for example in the case of pSOS */

FDM_REF * Network Identification; /* this handle is returned by the function */

 /* fdm_initialize_network. */

static unsigned long sm_smmps; /* semaphore */

/* create a task and a semaphore */

t_create("TSMP", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskSMMPS);

sm_create("SSMP", 0, SM_LOCAL | SM_PRIOR, &sm_smmps);

/* User_Signal_Smmps callback function */

static void User_Signal_Smmps(struct FDM_REF *Ref)

{

 sm_v(sm_smmps); /* free the semaphore � wake up of the task TaskSMMPS */

}

/* task that call fdm_smmps_fifo_empty function*/

General introduction

Page 1-26 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

static void TaskSMMPS(void)

{

for(;;){

/* wait for the next event */

sm_p(sm_smmps, SM_WAIT, 0); /* take the semaphore */

fdm_smmps_fifo_empty(Network_Identification);

}

}

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-27

4.7.2 Operational model for accessing the universal-type MPS variables

 Accessing universal-type MPS
 variables operational model

1

2/6

3/7

8

54

Before using this model you have to create a universal-type MPS variable by the fdm_mps_var_create function
(the Type.Scope field of the structure FDM_XAE should be set to 0 - the variable is set as a remote variable).

The operational model is the following:

1. The user application request is stored in a queue; the requests can be the following:

• fdm_mps_var_write_universal,

• fdm_mps_var_read_universal,

2. The FIP DEVICE MANAGER activation manager is warned of the fact that one of the queues is not empty
by calling a procedure reserved for this purpose, which the user must write. The address of this procedure is
transmitted to FDM by the function fdm_initialize_network (field User_Signal_Mps_Aper of
FDM_CONFIGURATION_SOFT structure). The User_Signal_Mps_Aper function must activate a task that
implements the action below.

3. The task activated by the User_Signal_Mps_Aper function has to call the fdm_mps_fifo_empty function. This
call activates FIP DEVICE MANAGER to empty the queue and process the request.

4. FIP DEVICE MANAGER uses the FIPCODE services to carry out the request.

5. When the MPS variable is sent (or received) then the FULLFIP component issues an IRQ interrupt; the IRQ
handler has to process the event (see Subsection 4.4). Following processing, FDM stores the event signaling
the production of the MPS variable (or the received MPS variable) in a queue and calls the
User_Signal_Mps_Aper callback function.

6. The User_Signal_Mps_Aper callback function must activate a task that implements the action below.

7. The task activated by the User_Signal_Smmps function has to call the fdm_mps_fifo_empty function. This
call activates FIP DEVICE MANAGER to empty the queue and signal the event to the user.

8. FIP DEVICE MANAGER calls a user callback procedure. The address of this procedure, which is
transmitted to FDM when the MPS variable is created by the function fdm_mps_var_create is:

• the field User_Signal_Var_Prod of FDM_XAE structure; it is called if the fdm_mps_var_write_universal
function is used,

• the field User_Signal_Var_Cons of FDM_XAE structure; it is called if the fdm_mps_var_read_universal
function is used.

General introduction

Page 1-28 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Note

Don't call the fdm_mps_fifo_empty function inside the body of the
User_Signal_Mps_Aper function. The execution context of the
fdm_mps_fifo_empty function should be different from the execution context
of the User_Signal_Mps_Aper function.

Example of implementation of the call of fdm_mps_fifo_empty function

/* for example in the case of pSOS */

FDM_REF * Network Identification; /* this handle is returned by the function */

 /* fdm_initialize_network. */

static unsigned long sm_mps; /* semaphore */

/* create a task and a semaphore */

t_create("TMPS", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskMPS);

sm_create("SMPS", 0, SM_LOCAL | SM_PRIOR, &sm_mps);

/* User_Signal_Mps_Aper callback function */

static void User_Signal_Mps_Aper(struct FDM_REF *Ref)

{

 sm_v(sm_mps); /* free the semaphore � wake up of the task TaskMPS */

}

/* task that call fdm_mps_fifo_empty function*/

static void TaskMPS(void)

{

for(;;){

/* wait the next event */

sm_p(sm_mps, SM_WAIT, 0); /* take the semaphore */

fdm_mps_fifo_empty(Network_Identification);

}

}

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-29

4.7.3 Operational model for the transmission of messages

 Message transmission
 operational model

1

2/6

3/7

8

54

Before using this model you have to create a messaging context by calling the fdm_messaging_fullduplex_create
or fdm_messaging_to_send_create function. There are 8 channels for the periodic messages (Channel 1 to 8) and
1 channel for the aperiodic messages (Channel 0).

After the creation of a messaging context, you can use the following model each time when you want to send a
message.

Note

You don't have to create a new messaging context each time you want to send
a message. This messaging context can be created once for the entire life of
your application. At the end, when you no longer need to send messages on
this messaging context, you can delete it by calling fdm_messaging_delete.

General introduction

Page 1-30 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

The operational model is the following:

1. Allocate a buffer to store the message to transmit.

The user application request is stored in a queue (there is a queue for each channel); the request is
fdm_send_message.

Note

Don't free the allocated buffer till step 8.

2. The FIP DEVICE MANAGER activation manager is warned of the fact that one of the queues is not empty
by calling a callback procedure reserved for this purpose, and which the user must write. The address of this
procedure is transmitted to FDM by the function fdm_initialize_network (User_Signal_Send_Msg field of the
FDM_CONFIGURATION_SOFT structure). The User_Signal_Send_Msg callback function must activate a
task that implements the action below.

3. The task activated by the User_Signal_Send_Msg callback function has to call the fdm_msg_send_fifo_empty
function. This call activates the FIP DEVICE MANAGER to empty the queue and process the request.

4. The FIP DEVICE MANAGER uses the FIPCODE services to carry out the request.

5. When the message is sent, the the FULLFIP component issues an IRQ interrupt; the IRQ handler has to
process the event (see Subsection 4.4). Following processing FDM stores the event signaling the sending of
the message in a queue and calls the User_Signal_Send_Msg callback function.

6. The User_Signal_Send_Msg callback function must activate a task that implements the action below.

7. The task activated by the User_Signal_Send_Msg callback function has to call the fdm_msg_send_fifo_empty
function. This call activates FIP DEVICE MANAGER to empty the queue and signal the event to the user.

8. FIP DEVICE MANAGER calls a user callback procedure when it sends the message. The address of this
procedure is transmitted to FDM when a messaging context is created by calling the
fdm_messaging_fullduplex_create or fdm_messaging_to_send_create function:

• field User_Msg_Ack_Proc of the FDM_MESSAGING_FULLDUPLEX structure in the case of a creation
of a messaging context by calling the fdm_messaging_fullduplex_create function,

• field User_Msg_Ack_Proc of the FDM_MESSAGING_TO_SEND structure in the case of a creation of a
messaging context by calling the fdm_messaging_to_send_create function,

Now you can free the allocated buffer used to store the message to transmit.

Note

Don't call the fdm_msg_send_fifo_empty function inside the body of the
User_Signal_Send_Msg function. The execution context of the
fdm_msg_send_fifo_empty function should be different from the execution
context of the User_Signal_Send_Msg function.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-31

Example of implementation of the call of fdm_msg_send_fifo_empty function

/* for example in the case of pSOS */

FDM_REF * Network Identification; /* this handle is returned by the function */

 /* fdm_initialize_network. */

static unsigned long sm_msg_send; /* semaphore */

/* create a task and a semaphore */

t_create("TMSD", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskMsgSend);

sm_create("SMSD", 0, SM_LOCAL | SM_PRIOR, &sm_msg_send);

/* User_Signal_Send_Msg callback function */

static void User_Signal_Send_Msg(struct FDM_REF *Ref)

{

 sm_v(sm_msg_send); /* free the semaphore � wake up of the task TaskMsgSend */

}

/* task that call fdm_msg_send_fifo_empty function*/

static void TaskMsgSend(void)

{

 for(;;){

/* wait the next event */

sm_p(sm_msg_send, SM_WAIT, 0); /* take the semaphore */

fdm_msg_send_fifo_empty(Network_Identification);

}

}

General introduction

Page 1-32 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.7.4 Operational model for the reception of messages

Message reception
operational model

1

2

3

4

Before using this model you have to create a messaging context by calling the fdm_messaging_fullduplex_create
or fdm_messaging_to_rec_create function.

After the creation of a messaging context you can use the following model each time you want to receive a
message.

Note

You don't have to create a new messaging context each time when you want
to receive a message. This messaging context can be created once for the
entire life of your application. At the end when you no longer need to receive
messages on this messaging context you can delete it by calling
fdm_messaging_delete.

The operational model is the following:

1. The indication received by FIP DEVICE MANAGER, in the form of a call to a primitive, is stored in a
queue.

2. The FIP DEVICE MANAGER activation manager is warned of the fact that one of the queues is not empty
by calling a procedure reserved for this purpose, and which the user must write. The address of this procedure
is transmitted to FDM by the function fdm_initialize_network (field User_Signal_Rec_Msg of
FDM_CONFIGURATION_SOFT structure). The User_Signal_Rec_Msg function must activate a task that
implements the action below.

3. The task activated by the User_Signal_Rec_Msg function has to call the fdm_msg_rec_fifo_empty function.
This call activates FIP DEVICE MANAGER to empty the queue and process the indication.

4. FIP DEVICE MANAGER calls the callback procedure provided by the user to inform him of the event. The
address of this procedure is transmitted to FDM when a messaging context is created by calling the
fdm_messaging_fullduplex_create or fdm_messaging_to_rec_create function:

• field User_Msg_Rec_Proc of FDM_MESSAGING_FULLDUPLEX structure in the case of a creation of a
messaging context by calling the fdm_messaging_fullduplex_create function.

• field User_Msg_Rec_Proc of FDM_MESSAGING_TO_REC structure in the case of a creation of a
messaging context by calling the fdm_messaging_to_rec_create function.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-33

Note

Don't call the fdm_msg_rec_fifo_empty function inside the body of the
User_Signal_Rec_Msg function. The execution context of the
fdm_msg_rec_fifo_empty function should be different from the execution
context of the User_Signal_Rec_Msg function.

Example of implementation of the call of fdm_msg_rec_fifo_empty function

/* for example in the case of pSOS */

FDM_REF * Network Identification; /* this handle is returned by the function */

 /* fdm_initialize_network. */

static unsigned long sm_msg_rec; /* semaphore */

/* create a task and a semaphore */

t_create("TMRE", 100, 4096, 0, T_LOCAL | T_NOFPU, &TaskMsgRec);

sm_create("SMRE", 0, SM_LOCAL | SM_PRIOR, &sm_msg_rec);

/* User_Signal_Rec_Msg callback function */

static void User_Signal_Rec_Msg(struct FDM_REF *Ref)

{

 sm_v(sm_msg_rec); /* free the semaphore � wake up of the task TaskMsgRec */

}

/* task that call fdm_msg_rec_fifo_empty function*/

static void TaskMsgRec(void)

{

 for(;;){

/* wait for the next event */

sm_p(sm_msg_rec, SM_WAIT, 0); /* take the semaphore */

fdm_msg_rec_fifo_empty(Network_Identification);

}

}

General introduction

Page 1-34 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.8 Operating model for the local MPS indications

Periodic MPS indications
 operational model

1

32

Before using this model you have to create a local MPS variable using the function fdm_mps_var_create (the
field Type.Scope of the structure FDM_XAE should be set to 1 - the variable is set as a local variable).

The type of the variable (produced, consumed, etc.) is set by the Type.Communication field of the FDM_XAE
structure.

Don't forget to enable the indications by using the Type.Indication field of the FDM_XAE structure.

In the case that you configure the EOC interrupt in pulse mode (see Subsection 4.4), then connect your interrupt
vector corresponding to the EOC interrupt on a "User Interrupt Handler" (your interrupt handler).

Note

EOC mode is set by the Type field of the FDM_CONFIGURATION_SOFT
structure when you call the fdm_initialize_network function.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-35

The operational model is the following:

1. The indication is received by the FIP DEVICE MANAGER from FIPCODE. If the indication is:

• transmission of a produced variable, then action 2 is performed,

• reception of a consumed variable, then action 2 is performed,

• reception of a synchronisation variable and the EOC interrupt has been configured in level mode, then
action 2 is performed,

• reception of a synchronisation variable and the EOC interrupt has been configured in pulse mode, then
action 3 is performed,

2. FIP DEVICE MANAGER calls the associated procedure provided by the user to inform him of the
indication. The address of this procedure, which is transmitted to FDM when the MPS variable is created by
the function fdm_mps_var_create:

• is field User_Signal_Asent of FDM_XAE structure in case of reception by FDM of an indication on the
transmission of a produced variable; you can, for example, in the body of the User_Signal_Asent
procedure, call the function fdm_mps_var-write_loc to write your actual value,

• is field User_Signal_Areceived of FDM_XAE structure in case of reception by FDM of an indication on
the reception of a consumed variable; you can, for example, in the body of the User_Signal_Areceived
procedure, call the function fdm_mps_var-read_loc,

• is field User_Signal_Synchro of FDM_XAE structure in case of reception by FDM of an indication on the
reception of a synchronisation variable and if the EOC interrupt has been configured in level mode.

3. FIP DEVICE MANAGER calls the User Interrupt Handler in case of reception of a synchronisation variable
and if the EOC interrupt has been configured in the pulse mode.

General introduction

Page 1-36 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

4.9 Create an FDM application

To create an FDM application you have to:

Build FIP DEVICE MANAGER library:

1. Adapt the user_opt file (choosing the right options) to your environment (operating system, processor,
compiler type, see Chapter 6.3).

2. Adapt if necessary some system-dependent objects (semaphores, mutex, etc.) that FDM uses by modifying
the files fdm_os.c and fdm_os.h.

3. Adapt if necessary the memory management to your environment. The files fdm_gdm.c and fdm_gdm.h
provide a set of macros for operating systems pSOS, VxWorks, etc.

4. Build the fipman.lib library (you can choose another name if you want).

Write your application:

1. Connect the interrupt vectors to your interrupt handlers for the IRQ, EOC and real-time clock.

2. Initialize FDM by calling the function fdm_initialize (see Chapter 3).

3. Create a context for using FDM on a network (this context is related to one FULLFIP component):

• allocate and fill the structures FDM_CONFIGURATION_HARD, FDM_CONFIGURATION_SOFT and
FDM_IDENTIFICATION; then call the function fdm_initialize_network (see Chapter 3),

• memorize the returned handle; this handle is then used as parameter in the other functions.

Note

For each FULLFIP component that your FDM has to drive, you have to call
the fdm_initialize_network function with the right parameters.

4. Validate the medium(s) by calling the function fdm_valid_medium.

5. Create and initialise the tasks that will process the interrupts (see Subsections 4.4 and 4.6 of this chapter).

6. Implement the Error/Warning callback functions (see Subsection 4.2 of this chapter and Chapter 3 for the
description of the FDM_ERROR_CODE structure in the fdm_initialize_network function and Chapter 5 for
the list of the errors/warnings).

7. If you want to access the SM_MPS variables (see Subsection 1.5 of Chapter 2 for their description), then
follow the model described in Subsection 4.7.1 of this chapter.

8. If your application manages MPS variables, before creating them you have to create the AE_LE objects (see
Subsection 1.3 of Chapter 2) by calling the function fdm_ae_le_create (see the Chapter 3).

9. If you want to send and receive universal-type MPS variables:

• create the universal-type MPS variables by calling the function fdm_mps_var_create (see the Chapter 3);
for each variable to create you have to call the function fdm_mps_var_create,

• follow the model described in Subsection 4.7.2 of this chapter.

General introduction

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 1-37

10. If you want to send and receive local MPS variables:

• create the local MPS variables by calling the function fdm_mps_var_create (see Chapter 3); for each
variable to create you have to call the function fdm_mps_var_create,

• you can read and write local variables using the functions fdm_mps_var_read_loc and
fdm_mps_var_write_loc.

• if you want to receive indications after a write of a variable or when you receive a variable, follow the
model described in Subsection 4.8 of this chapter.

11. If you want to send and receive messages (see Subsection 1.6 of Chapter 2 for an overview):

• if you want to use the periodic messaging then you have to create a periodic channel by calling the
function fdm_channel_create (the channel number should be 1 to 8),

• create a messaging context used only for the transmission of messages by calling the function
fdm_messaging_to_send_create (see Chapter 3); if the channel is aperiodic then the Channel_Nr field of
the structure FDM_MESSAGING_TO_SEND should be 0; otherwise if it is periodic, this field must be set
to the value used when creating the periodic channel using the function fdm_channel_create,

• create a messaging context used only for the reception of messages by calling the function
fdm_messaging_to_rec_create (see Chapter 3),

• create a messaging context used for both the transmission and the reception of messages by calling the
function fdm_messaging_fullduplex_create (see Chapter 3); if the transmission channel is aperiodic then
the Channel_Nr field of the structure FDM_MESSAGING_FULLDUPLEX should be 0. Otherwise, if it is
periodic, this field must be set to the value used when creating the periodic channel using the function
fdm_channel_create,

• if you want to send messages then you have to follow the model described in Subsection 4.7.3 of this
chapter,

• if you want to receive messages then you have to follow the model described in Subsection 4.7.4 of this
chapter.

12. If you want to manage a bus arbitrator (see Chapter 2, Subsection 1.4 and Chapter 3):

• to load a bus arbitrator program then call:

• fdm_ba_load_macrocycle_manual: loading a simple bus arbitrator generated manually by yourself,

• fdm_ba_load_macrocycle_fipconfb: loading a bus arbitrator generated by an external tool.

• start the bus arbitrator by calling the fdm_ba_start function,

• link the application with the FDM library.

The Programs\Fdm_R4.X\demo subdirectory of the CD contains a C++ application.

General introduction

Page 1-38 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-1

Chapter

2
Available Functions

1. DESCRIPTION OF FUNCTIONS

1.1 Self-tests

1.1.1 Aims

This function is used to run the ”In Circuit” test of FULLFIP2 and its associated components.

The test is run in two stages:

• one OFF LINE stage, when the equipment is being powered up

• one ON LINE stage (FULLFIP2 configured and connected to the network).

The limits are those set by the testing possibilities of the FULLFIP2 system (possibility of accessing the ”core”
of the components).

There are no line tool tests.

The following are required:

• adequate coverage has to be established,

• faulty elements have to be detected accurately,

• performance levels have to be reached which do not penalise the user application,

• a special microcode must be available for certain tests (included in FIPCODE V6).

Due to critical sections in the ON LINE test stage, the tests are divided into basic blocks whose run time does not
affect the user application. This breakdown requires that the sequencing of the various tasks be closely
monitored.

Available Functions

Page 2-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.1.2 Offline test functions

Offline test functions comprise all the test functions which are called before FULLFIP2 is connected to the
network.

They are included in the test stage when a FIP DEVICE MANAGER instance is created and initialised.

There are three types of functions:

• complete test of the private FULLFIP2 RAM: the aim of this test is to thoroughly test the private FULLFIP2
RAM by checking:

• PDA[15:0] and PA [19,16] address buses/private data,

• control signals WRn and RDn.

This is done by using an algorithm known as the ”count jump method” whose sequencing is as follows:

• complete write of the volume,

• check of this volume.

• test of user interface and certain parts of the core of the system: the aim of this test is to carry out an electrical
test (detection of sticking at 1 or 0) of the user interface by running address bit, data and control tests, the
functional test of the internal hardware indicators and the register and FIFO tests, as well as the test of certain
parts of the system core which are accessible.

• Ustate register bit test:

Bit IC: carries out a CLOSE command when no other transaction is in progress,
Bit FE: physical read of more than 128 bytes,
Bit AE: read of FIFO when no other transaction is in progress,
Bit SV: no time-out on a function of the physical read or write type by filtering the Busy bit,
Bit FR: FIFO full in write and empty in read,
Bit IRQ: forces generation by FULLFIP2,
Bit EOC: forces generation by FULLFIP2.

• user register test:

Registers UFLAG and VAR_STATE are tested in read and KEY_L, KEY_H,TIMER_L, TIMER_H in write.
The general test principle is signature analysis.

• FIPCODE integrity test.

The aim of the test is to check integrity of the microcode after it has been loaded into the private FULLFIP2
memory. Calculating the check-sum of each page of microcode and comparing it with the check-sum
supplied for reference does this.

• check of interrupt lines IRQn and EOC of FULLFIP2: checks that there is no discrepancy between the value
of signals IRQn and EOC transmitted by FULLFIP2 and the value seen by the user processor.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-3

1.1.3 Online test functions

Online test functions comprise all the test functions, which are called after FULLFIP2 has been connected to the
network. There are four types of functions:

• ON LINE integrity test of FIPCODE: calculates check-sum of each page of microcode to be tested and
compares it with the original. A thorough check is carried out page-by-page,

• partial test of private FULLFIP2 RAM: adds a descriptor of a variable and of the corresponding value zone to
the FULLFIP2/FIPCODE database. The test is carried out in this zone by simulating a variable write using
the descriptor. The page in question is thus circulated. This makes it possible to test the entire private RAM
containing the pages used to store variable values or message contents.

These functions are processed in a primitive which runs through the test blocks one after the other so that the
user application is not penalised. This primitive can either be called automatically by FIP DEVICE MANAGER,
or be called by the user from a background task, for example. The activation type is selected when FIP DEVICE
MANAGER is created.

1.2 Managing the medium (or media) of each configured network

There are 2 important elements that are used for management of medium redundancy:

• a threshold of medium defaults expressed in % of transactions without errors compared to transactions with
errors (this threshold is set by the Default_Medium_threshold field of the FDM_CONFIGURATION_SOFT
structure when you call the fdm_initialize_network function)

• a period of calling an internal procedure (called TEST_MEDIUM in FDM R2). The fdm_ticks_counter
function handles the call of the TEST_MEDIUM procedure. The period of calling the TEST_MEDIUM
function is set by the Test_Mediums_Ticks field of the FDM_CONFIGURATION_SOFT structure when you
call the fdm_initialize_network function). Subsection 4.6 of Chapter 1 describes how to activate the
fdm_ticks_counter function by the real-time clock interrupt handler.

Medium test operation

The aim is to:

• avoid using a medium on which too many faults have been detected,

• use a previously unusable medium from which all faults have been eliminated,

• indicate to the user the status of the media (i.e. through which channel(s) the communication is passing).

The functional summary of redundancy management, executed by the TEST_MEDIUM function, that is called
periodically by FIP DEVICE MANAGER, is as follows:

Available Functions

Page 2-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Assessment of reception quality

If the number of reception faults (read on the FULLFIP2/FIPCODE counters) on channel x since the last
TEST_MEDIUM call exceeds the configured threshold on three consecutive calls of the same procedure, then
Channel_x_Down_On_Reception = true.

(Faults are filtered to prevent reaction to the slightest interference).

If the number of reception faults on channel x is less than the threshold over three consecutive calls of the
TEST_MEDIUM procedure, then Channel_x_Down_On_Reception = false.

(The return to normal is filtered).

In all other cases, there is no change.

Assessment of transmission quality

If the transmission status of channel x, specified by the medium redundancy arbitrator, is positioned on error
over three consecutive calls of the TEST_MEDIUM procedure, then Channel_x_Down_On_Transmission =
true.

(Faults are filtered to prevent reaction to the slightest interference).

If the transmission status of channel x, specified by the medium redundancy arbitrator, is not positioned on error
over three consecutive calls of the TEST_MEDIUM procedure, then Channel_x_Down_On_Reception = false.

(The return to normal is filtered).

In all other cases, there is no change.

Channel validation decision-making

If Channel_x_Down_On_Reception = true or Channel_x_Down_On_Transmission = true and the other
channel is valid, channel x is invalidated: there can be no more transmission or reception on this channel.

(Regardless of their status, two channels can never be invalidated at the same time).

If Channel_x_Down_On_Reception = false and Channel_x_Down_On_Transmission = false, channel x is
revalidated.

Special cases of active Bus Arbitrator

If, over three consecutive calls of the TEST_MEDIUM procedure, both channels have to be invalidated (this is
never done, see above), the Bus Arbitrator function ceases to operate.

(Filtering occurs so that the BA is not halted spuriously).

If both channels have been declared valid over consecutive calls of the TEST_MEDIUM procedure, the Bus
Arbitrator function resumes operation.

(The return to normal is filtered).

In all other cases, there is no change.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-5

Indication to the user

Updating of bits concerning channel status in report variable. See Subsection 1.5.1.1 of this chapter.

Note

Some rules should be respected:

• the recommended values for the periodicity of calling TEST_MEDIUM
are:

• 100 ms: for a 5 Mbits/s network,

• 200 ms: for a 2.5 Mbits/s network,

• 500 ms: for a 1 Mbit/s network,

• 1.6 s: for a 31.25 kbits/s network.

• at least 2 TEST_P instructions should be executed by the Bus Arbitrator
between two successive calls of the TEST_MEDIUM procedure,

• the recommended value of the threshold is 5%.

Available Functions

Page 2-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.3 Managing AE/LE and MPS variables

1.3.1 General

This function is used to manage the operating modes of an AE/LE, set it up, set its parameters, adjust it and
access the MPS variables it contains.

The AE/LE such as FIP DEVICE MANAGER handling them are unconnected MPS variables associated with
their projections on buffers identified by a data link layer identifier.

1.3.2 Management of AE/LE operating modes

1.3.2.1 Diagram of AE/LE operating modes

fdm ae le create()

fdm ae le start()

fdm_mps_var_create()

fdm_mps_var_change_periods()

fdm_mps_var_change_MSGa()

fdm_mps_var_change_RQa()

fdm_mps_var_change_ID()

fdm_mps_var_change_priority()

fdm_ae_le_delete()

fdm_ae_le_stop()

fdm_mps_var_change_periods()

fdm_mps_var_change_prod_cons()

fdm_mps_var_change_priority()

NON-EXISTENT

SET-UP

OPERATION

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-7

1.3.2.2 Associated functions

The functions required to manage the operating modes of an AE/LE as defined above are as follows:

• creation and deletion: a creation request creates the envelope, which receives all the variables of this AE/LE.
A deletion request deletes the envelope,

• start-up and shutdown: start-up causes the variables contained in the AE/LE to be loaded into the
FULLFIP2/FIPCODE database. A shutdown request does the opposite,

• change of operating image(s): you can switch from one image to another in all states except NON-
EXISTENT.

1.3.2.3 Setting up and adjusting an AE/LE and setting its parameters

Setting up an AE/LE consists in creating all the variables it has to contain, along with their associated attributes.

Setting the parameters of an AE/LE consists in modifying the attributes of the variables it contains when the
AE/LE is in the CONFIGURATION state (it has not been started up). The attributes, which can be modified in
this case, are:

• authorised aperiodic MPS queries,

• authorised messaging queries,

• priority of aperiodic MPS queries,

• prompt period,

• refresh period,

• value of associated identifier.

Adjustment of an AE/LE consists in modifying the attributes of the variables it contains when the AE/LE is in
the OPERATION state (it has been started up). The attributes, which can be modified in this case, are:

• authorised aperiodic MPS queries,

• authorised messaging queries,

• priority of aperiodic MPS queries,

• prompt period,

• refresh period,

• produced or consumed.

Available Functions

Page 2-8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.3.3 Managing two AE/LE images

FIP DEVICE MANAGER can manage two images for each AE/LE in which the same variables can have
different attributes, which can be combined as follows:

(Produced implies with or without transmission and Consumed implies with or without reception)

IMAGE 1 IMAGE 2

nil produced

nil consumed

produced produced

produced nil

consumed consumed

consumed nil

pure event pure event

nil pure event

pure event nil

The idea of “image 1” and “image 2” (or Master/Slave or Normal/Backup) as regards the variables of an AE/LE
is only meaningful in terms of what can be transmitted or received on the network; under no circumstances can it
refer to what is produced or read by the user.

The idea of an AE/LE image implies the image seen from the network. The user has only one image of the
AE/LEs, which comprises all the variables declared in the AE/LE, regardless of the image seen, from the
network to which they belong.

This means that once a variable exists in an AE/LE, regardless of the image(s) of the AE/LE to which it belongs,
it is always accessible, and in the case of a produced variable in particular, it is always updated.

The following table shows the different possible cases, indicating what is happening on the network and what the
user can do.

It should be noted that the transmission or reception indication depends on what is happening on the network and
therefore produced or consumed implies with or without a transmission indication.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-9

Produced
or

consumed

MPS
variable or
Sync EVT

AE_LE OPERATES WITH IMAGE 1 AE_LE OPERATES WITH IMAGE 2

IMAGE 2

IMAGE 2

IMAGE 1

IMAGE 1

IMAGE 2

IMAGE 1

CONSUMED

PRODUCED

PRODUCED

PRODUCED

CONSUMED

CONSUMED

CONSUMED

CONSUMED

CONSUMED

MPS VAR

MPS VAR

MPS VAR

MPS VAR

MPS VAR

MPS VAR

SYNC EVT

SYNC EVT

SYNC EVT

USER NETWORK USER NETWORK
Writes variable and

corresponding buffer is
effectively updated in

FULLFIP DB

Variable
image

IMAGE 1
and

IMAGE2

IMAGE 1
and

IMAGE2

IMAGE 1
and

IMAGE2

Reads variable: value is last
one received when operating

with previous image 2.
Prompt status false

Writes variable and
corresponding buffer is
effectively updated in

FULLFIP DB
Writes variable and

corresponding buffer is
effectively updated in

FULLFIP DB

Reads variable: value read is
last update by network

Reads variable: value read is
last update by network

Receives sync event when it
appears

Does not receive sync event
when it appears

Receives sync event when it
appears

Nothing transmitted even if
corresponding ID is

circulating

No variable value updating
even if corresponding

RP_DAT has been received

Variable value transmission
on network

Variable value transmission
on network

Updating of variable value
when corresponding RP_DAT

has been received

Updating of variable value
when corresponding RP_DAT

has been received

Takes sync event into
account to inform user of it

Does not take sync event into
account

Takes sync event into
account to inform user of it

Writes variable and
corresponding buffer is
effectively updated in

FULLFIP DB

Reads variable: value read is
last update by network

Writes variable and
corresponding buffer is
effectively updated in

FULLFIP DB
Writes variable and

corresponding buffer is
effectively updated in

FULLFIP DB

Reads variable: value read is
last update by network

Reads variable: value is last
one received when operating

with previous image 1.
Prompt status false

Receives sync event when it
appears

Receives sync event when it
appears

Does not receive sync event
when it appears

Variable value transmission
on network

Updating of variable value
when corresponding RP_DAT

has been received

Variable value transmission
on network

Nothing transmitted even if
corresponding ID is

circulating

Updating of variable value
when corresponding RP_DAT

has been received

No variable value updating
even if corresponding

RP_DAT has been received

Takes sync event into account
to inform user of it

Takes sync event into account
to inform user of it

Does not take sync event into
account

Table 2-1: Management of two AE/LE images

1.3.4 Managing MPS variables

1.3.4.1 MPS variables

There are two types of MPS variable access services:

• Local: the variable can be read or written directly in the local database.

• Remote: circulation of the variable has to be requested of the Bus Arbitrator via an aperiodic request prior to
the read or following the write.

The type of access service to be used for a given variable is a configuration parameter of the variable in question.
Similarly, in the case of a remote service, the priority of the request is also a configuration parameter of the
variable.

Available Functions

Page 2-10 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Access to the MPS variables contained in the AE/LE therefore requires the following services:

• Local write: Local write of a variable with immediate confirmation.

• Local read: Local read of a variable with immediate confirmation.

• Universal read: This service makes it possible to read the value of a variable without having to know which
type of read service to use. This service offers immediate confirmation that execution is possible and delayed
confirmation is given with the value of the variable.

• Universal write: This service makes it possible to write the value of a variable without having to know which
type of write service to use. This service offers immediate confirmation that execution is possible, with
delayed confirmation. As far as universal services are concerned, the anticipation factor for the same variable
is 1. All these services guarantee the integrity of the variable value obtained.

When read, consumed MPS variables may be produced accompanied by a status indicating the transmission
validity and production validity of a variable. They are:

• PROMPTNESS: Promptness relates to the validity of the value of a variable being made available to the
user by the network. This validity is generated from a maximum consumption period set by the user. The
status is generated the moment the variable is consumed (read) on the network. If the value of the status is
true, the value of the variable has been updated within a period of time less than or equal to the specified
consumption period.

• REFRESHMENT: Refreshment relates to the validity of the value of a variable being made available to the
network by a producer user. This validity is generated from a maximum production period set by the user.
The status is generated the moment the variable is produced on the network. If the value of the status is true,
the value of the variable has been updated within a period of time less than or equal to the specified
production period.

• SIGNIFICANCE: This status is generated the moment the variable is produced on the network. If the value
of the status is true, the value of the variable has been written at least once.

1.3.4.2 MPS variables with dynamic refreshment

The value of the variable supplied to the WorldFIP network is then handled by the network which delivers to the
consumer the length of time this value stays in the producer’s local buffer before it is produced, to which must be
added the time taken to transfer it to the network and the length of time it spent with the consumer before being
read.

Basic diagram:

Read (Value and (User time + Producer time) and
(Network transfer time + Consumer time))

ID-DAT / RP-DAT()

Write (Value + User time)

Value and (User time + Producer time)

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-11

The selected implementation consists in defining a new MPS variable, with the with_time_var attribute.
Processing the variable shows which type it is:

• When the variable is read by the consumer(s):

The time difference between the reception time from the network and the time it is read by the user is
supplied with the contents of the variable.

The contents comprises the value written by the producer followed by four bytes corresponding to the
production difference. The time difference is also expressed in microseconds.

• When the variable is produced on the network:

The time difference between the moment it is updated by the producer in the database and the moment it is
produced on the network is added to the value of the variable in the four bytes intended for this purpose.

The four bytes in question may already contain a time difference (in the case of bridges, for example).

These time differences are expressed in microseconds.

The refresh status is automatically calculated in the same way as for a conventional variable.

Format of variable produced on the network

PDU

Production
time

STATUS

byte

L_DATA = LG-7

LG

LG-2

Note

L_DATA must be a multiple of 2

The accuracy of the calculation of the two time differences corresponds to a value of 2*Tslot (time unit used
internally by the system), for example 125µs for FULLFIP2 at 64 MHz.

It follows from the above that if this type of variable is to be managed correctly, it must be possible to set it up,
the producer must be able to write it and the consumer must be able to read it.

Available Functions

Page 2-12 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.3.4.3 Time variable

The solution adopted consists in changing only the time in an MPS variable produced by the item of equipment
with the reference time.

The time variable is configured automatically, if requested at the time of general configuration. The variable
selected is that associated with identifier 9802H.

It is created as a variable with dynamic refreshment type.

The format of this variable is as follows: (normalised contents).

40H Type of PDU

11H Length of PDU

OBH Duration

80H POSIX time field

09H Length of POSIX time field

XXH Meaning: 0=global-reference, 2=local-reference

(1) XX XX XX XX H Number of seconds since 1/1/70 (Unsigned 32)

(1) XX XX XX XX H Number of nanoseconds since beginning of current second (Unsigned 32)

(1) XX XX XX XX H Dynamic refresh status in µs (Unsigned 32)

XXH MPS refresh status

(1) in the order PF...pf

The value of the reference time supplied to the WorldFIP network in the requested form (POSIX) is handled by
the network, which delivers to the consumer the length of time this value has stayed in the producer’s local
buffer before being produced, to which must be added the time taken to transfer it to the network and the length
of time it stays with the consumer before it is read.

Thus, after a time variable is read, the application has an absolute time supplied directly by the FIP DEVICE
MANAGER which adds to the value given by the producer and the producer and consumer waiting times.

When this time variable is read or written, the operations are the same as those for variables with dynamic
refresh status (see Subsection 1.3.4.2.).

1.3.4.4 Synchronisation variables

Synchronisation variables are used to signal events generated on reception of a frame of the ID_DAT type with
no associated RP_DAT. This notion:

• eliminates the need for a producer: there is no associated user variable,

• is only visible locally.

The signal mode of the event in question is the mode that consists in being alerted directly by a special physical
interrupt signal from the FULLFIP2 system. The semantics of this signal are therefore: ”pure sync event
reception”.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-13

This mode makes use of the following mechanism:

• the EOC signal from the system is used as an interrupt source,

• it is set on reception of a frame of the ID_DAT type with no associated response if the descriptor of the
identifier concerned contains the ”signal mode” parameter set to the corresponding value,

• no additional data are associated with this signal,

• the interrupt is either a pulse lasting approximately 310 ns, in which case it needs no external
acknowledgement, or it operates at various levels and is acknowledged by FIP DEVICE MANAGER after
the user procedure used in this context has been called. The choice of interrupt type can be configured:

• Pulse duration is: 375 µs if FULLFIP2 @ 40 MHz,

234 µs if FULLFIP2 @ 64 MHz,

188 µs if FULLFIP2 @ 80 MHz.

1.3.5 Managing time variable producer redundancy

Several potential time variable producers can exist on one network segment. However, at any given moment,
only one should be the active producer on the network.

The various subscriber statuses with regard to the time production mechanism are:

• potential time producer,

• active time producer (a selected potential producer),

• active non-producing consumer,

• active Bus Arbitrator: it elects the active producer,

• not involved in time management: neither producer nor consumer.

The principle implemented to manage time producer redundancy is as follows:

• a potentially time-producing subscriber:

• consumes the MPS time variable (ID 9802) if required,

• periodically transmits its STATUS via the SUBMMS messaging service Information_Report to the group
of potential Bus Arbitrators,

• consumes a COMMAND transmitted by the active Bus Arbitrator via the SUBMMS messaging service
Information_Report,

• becomes an active producer if the contents of the COMMAND so require,

• an active time-producing subscriber:

• produces the MPS time variable (ID 9802),

• periodically transmits its STATUS via the SUBMMS messaging service Information_Report to the group
of potential Bus Arbitrators,

Available Functions

Page 2-14 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

• consumes a COMMAND transmitted by the active Bus Arbitrator via the SUBMMS messaging service
Information_Report,

• ceases to be an active producer if the contents of the COMMAND so require,

• an active non-producing consumer subscriber consumes the MPS time variable (ID 9802),

• the active Bus Arbitrator:

• consumes the STATUSES transmitted by the time producers (potential and active) via the SUBMMS
messaging service Information_Report,

• builds the COMMAND according to the STATUS contents,

• produces the COMMAND via the SUBMMS messaging service Information_Report. The active producer
is designated in a random manner from among the potential producers standing by to be elected.

The messaging addresses retained are:

• 0xA00000 for the address of the Bus Arbitrator group: STATUS reception
(LSAP = A000, num.segment = 0),

• 0xA00100 for the address of potential producers: COMMAND reception
(LSAP = 0xA001, num.segment = 0),

• 0xFy0000 for the address of the COMMAND and STATUS transmitter
(y = physical address of the transmitting subscriber) (LSAP = 0xFy00, num.segment = 0.).

Note

The active producer cannot consume the time variable: if it is read, its value
is meaningless.

The user application is informed when a potential producer becomes an
active producer by calling a procedure it supplied to FIP DEVICE
MANAGER when the mechanism was started up and initialised.

The user application on the potential producer side may (must) continue to
update the time variable so that the correct value is produced if it is elected.

A potential producer which consumes the time variable indicates in STATUS
the refresh status value of the variable so that the active Bus Arbitrator can
decide to elect another active producer should there be a problem.

The procedure for managing time producer redundancy is activated
periodically on both the active Bus Arbitrator and on the time producers
(active or potential). The activation period is set when the mechanism is
started up and initialised.

Subscribers which are merely time consumers (not potential producers) do
not produce STATUSES and do not consume COMMANDS.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-15

1.4 Managing the Bus Arbitrator(s)

1.4.1 Setting up a Bus Arbitrator program

Bus Arbitrator programs may be supplied as FIP DEVICE MANAGER inputs in two different forms:

• identical to that supplied by the BA_BUILDER (FIPCONFB) tool and to that of remote BA loading via
SMS,

• simplified to create a manual BA program (i.e. with no tools) in a C program.

The instructions that can be used are as follows:

SEND_LIST: Requests that a list of identifiers is transmitted in the form ID_DAT or ID_MSG
SEND_APER: Requests that a window is opened to process aperiodic MPS requests
SEND_MSG: Requests that a window is opened to process aperiodic messaging requests
BA_WAIT: Requests internal synchronisation
SYN_WAIT: Requests external synchronisation
NEXT_MACRO: Reloops the macrocycle
TEST_P: Requests a test of subscribers present
END_BA: Denotes the end of a BA program

Note:

The behaviour of the NEXT_MACRO instruction depends on the bit rate of the network:

• at 31.25 kbits/s, after the NEXT_MACRO instruction and the end of the macrocycle, a time T composed of
Silences and Stuffing will elapse. This time depends on the FDM_WITH_OPTIMIZED_BA compilation
option (in the user_opt.h file):

• if FDM_WITH_OPTIMIZED_BA is set to NO then:

T = (MAX_Subscriber + 2)*T0 + 6260

where

• MAX_Subscriber parameter is set by the user in the fdm_ba_set_parameters() function

• T0 is Silence Time-Out and its value is 4096 ms (for details see [1])

• if FDM_WITH_OPTIMIZED_BA is set to YES then:

T = (GreatestNumberOfBusArbitrator + 2)*T0 + 6260

where

• GreatestNumberOfBusArbitrator is a parameter of the FDM_CONFIGURATION_HARD structure
set by the user in the fdm_initialize_network() function

• T0 is Silence Time-Out and its value is 4096 ms (for details see [1])

• at 1 Mbit/s, 2.5 Mbits/s and 5 Mbits/s, after the NEXT_MACRO instruction and the end of the macrocycle,
a time that corresponds to one Stuffing ID_DAT/Silence will elapse; the elapsed time depends on the bit rate.

Available Functions

Page 2-16 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.4.2 Managing Bus Arbitrator operating modes

1.4.2.1 Diagram of Bus Arbitrator operating modes

Back to user

Time expired

Time expired
or queue empty

Time expired
or queue empty

Time expired
BA election

Removal
(due to priority)

Time expired or
fdm_ba_stop()

or local stop

fdm_ba_stop()
or

local stop

CD present or
3 packing frames OK

BA_STOPPED

Energisation

BA_STARTING

fdm_ba_start()

BA_IDLE

BA_SENDING

BA_WAITING_TIME

BA_APER_WINDOW

BA_MSG_WINDOW

BA_PENDING

BA_WAITING_SYNC

inst.
BA_SUSPEND

inst.
BA_WAIT_TIME

inst.
BA_SEND_APER

inst.
BA_SEND_MSG

inst.
BA_WAIT_SYNC fdm_ba_external_resync()

Start-up impossible

Status description:

BA_STOPPED: The Bus Arbitrator is completely disconnected from the network and is standing by for a
(re)start-up command.

BA_STARTING: The user start-up command is being processed. Three packing frames are transmitted on the
network if no activity has been detected beforehand.

BA_IDLE: In this standby status, the Bus Arbitrator does not transmit on the network but monitors activity,
ready to trigger its election procedure should activity on the network cease.

BA_SENDING: The Bus Arbitrator is active and processes BA program instructions such as
BA_SEND_ID_DAT, BA_SEND_ID_MSG and NEXT_MACRO.

BA_WAITING_TIME: Status in which the Bus Arbitrator transmits packing frames until the specified time has
elapsed. This makes it possible to synchronise execution of the BA program and set a fixed macrocycle duration.

BA_WAITING_SYNC: Status in which the Bus Arbitrator transmits packing frames until the specified time
has elapsed or requests user restart-up (external resynchronisation).

BA_PENDING: Status in which the Bus Arbitrator transmits packing frames until the user asks to take over or
the monitoring time elapses.

BA_APER_WINDOW: In this status, the Bus Arbitrator processes the urgent and non-urgent aperiodic requests
stored in its queues. It leaves this status when the queues are empty or when the time allocated to the window has
elapsed.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-17

BA_MSG_WINDOW: In this status, the Bus Arbitrator processes the aperiodic messaging requests stored in its
queues. It leaves this status when the queue is empty or when the time allocated to the window has elapsed.

1.4.2.2 Bus Arbitrator associated functions

The functions required to manage the Bus Arbitrator operating modes, as defined above, are as follows:

• Start-up: The sequence of actions is as follows:

• launch of a time-out known as Start-up Time-out, the value of which is greater than the longest Election
Time-out possible for the network concerned.

• if an activity is detected during this period, the Bus Arbitrator starts up, passing directly to the IDLE
status where it activates its election time-out.

• if no activity is detected during the start-up period, three packing frames are transmitted. If a fault is
detected during transmission, the Bus Arbitrator returns to the STOPPED status, otherwise it passes to the
IDLE status where it activates its election time-out.

• when the election period has elapsed, and the Bus Arbitrator has not detected any activity on the network,
it becomes active by executing the required BA program.

• Stop: The stop command causes a return to the STOPPED status. It is taken into account from any other
status,

• External resynchronisation of a macrocycle: this command is used to position the user sync pulse that makes
the Bus Arbitrator resume execution of the macrocycle,

• Macrocycle switching: This function is used to select another macrocycle in order to change the nature of the
flow on the network without losing control. The change of macrocycle is only effective at the end of the
current macrocycle execution.

1.4.3 Setting the parameters of the Bus Arbitrator Start-up function

The sequence of operation for starting up a Bus Arbitrator is described in Subsection 1.4.2.2. of this chapter.

The start-up of a Bus Arbitrator function uses the following two time-outs: Start-up Time-out and Election
Time-out.

The parameters that are used to calculate these two time-outs are set by user with the following functions:

• fdm_initialize_network(),

• fdm_ba_set_parameters(),

• fdm_ba_set_priority().

Available Functions

Page 2-18 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

The two time-outs are calculated with the following formula:

Start-up Time-Out = [(GNOBA + 1)*(MP +1) + ETOTPI + 3]*2

Election Time-Out = [(GNOBA + 1)*PL + ETOTPI + BANO + 3]*2

where

• GNOBA: highest number of the BAs on the network.

Its value depends on the FDM_WITH_OPTIMIZED_BA compilation option (in the user_opt.h file) and the
optimization level (STANDARD, OPTIMIZE_1, OPTIMIZE_2 and OPTIMIZE_3) set by the function
fdm_ba_set_parameters()

• if FDM_WITH_OPTIMIZED_BA is set to NO then:

• if the optimization level is STANDARD then GNOBA = 255; this value is constant and cannot be
changed by the user.

• else if the optimization level is OPTIMIZE_1 or OPTIMIZE_2 or OPTIMIZE_3 then the
GNOBA = MAX_Subscriber parameter set by the user in the fdm_ba_set_parameters()
function.

• else if FDM_WITH_OPTIMIZED_BA is set to YES then:

• GNOBA = GreatestNumberOfBusArbitrator parameter of the FDM_CONFIGURATION_HARD
structure set by the user in the fdm_initialize_network() function.

• MP: maximum priority of the Bus Arbitrators connected on the network

Its value depends on the optimization level (STANDARD, OPTIMIZE_1, OPTIMIZE_2 and
OPTIMIZE_3) set by the fdm_ba_set_parameters() function

• if the optimization level is STANDARD or OPTIMIZE_1 then MP = 15; this value is constant and
cannot be changed by the user.

• if the optimization level is OPTIMIZE_2 or OPTIMIZE_3 then MP = Max_Priority parameter
set by the user in the fdm_ba_set_parameters() function.

• PL: priority level.

Its value is PL = Priority_Level parameter set by the user in the fdm_ba_set_priority()
function.

• BANO: bus arbitrator number

Its value depends on the FDM_WITH_OPTIMIZED_BA compilation option (in the user_opt.h file)

• if FDM_WITH_OPTIMIZED_BA is set to NO then:

• BANO = K_PHYADR parameter of the FDM_CONFIGURATION_HARD structure set by the user in
the fdm_initialize_network()function

• else if FDM_WITH_OPTIMIZED_BA is set YES then:

• BANO = NumberOfThisBusArbitrator parameter of the FDM_CONFIGURATION_HARD structure
set by the user in the fdm_initialize_network() function.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-19

• ETOTPI: execution time (in microseconds) of the TEST_P instruction of the BA

Its value depends on the FDM_WITH_OPTIMIZED_BA compilation option (in the user_opt.h file) and the
optimization level (STANDARD, OPTIMIZE_1, OPTIMIZE_2 and OPTIMIZE_3) set by the
fdm_ba_set_parameters() function

• if FDM_WITH_OPTIMIZED_BA is set to NO then:

• if the optimization level is OPTIMIZE_3 then ETOTPI = 0; this value is constant and cannot be
changed by the user.

• else if the optimization level is STANDARD or OPTIMIZE_1 or OPTIMIZE_2 then ETOTPI =
257*T0 where T0 is Silence Time-Out and depends on the bit rate of your network (for details see
[1]); the ETOTPI value depends on the bit rate of your network and cannot be changed by the user.

• else if FDM_WITH_OPTIMIZED_BA is set to YES then:

• if the optimization level is OPTIMIZE_3 then ETOTPI = 0; this value is fixed and cannot be changed
by the user.

• else if the optimization level is STANDARD or OPTIMIZE_1 or OPTIMIZE_2 then :
• ETOTPI = 10000 if the bit rate is 1 Mbit/s or 2.5 Mbits/s or 5 Mbits/s,
• ETOTPI = 50000 if the bit rate is 31.25 kbits/s.

Note

You cannot use the optimization level OPTIMIZE_3 for a double medium
topology of your network. You can only use it for a single medium topology.

Available Functions

Page 2-20 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.5 Managing SM-MPS network management variables

1.5.1 Format of network management variables

The network management services known as SM_MPS come from an MPS specialisation: the exchange
principles are also based on the ”buffer transfer” service of the FIP data link layer.

SM_MPS offers several types of specialised variables characterised by:

• values with special syntax and semantics,

• reserved identifiers,

• as in the MPS, these variables are handled using special read and write primitives,

• there are limited possibilities for the MPS variables (for example there is no associated FIP status).

Via its FIP DEVICE MANAGER software, ALSTOM Technology has chosen to support a variable sub-
assembly proposed in the standard:

• presence variable: each item of equipment sends a data item indicating its presence on the network,

• identity variable: each item of equipment can be clearly identified remotely,

• report variable: each item of equipment supplies potential users with a set of default counters,

• presence control variable: the presence of all the items of equipment can be monitored by one particular item
of equipment,

• BA synchronisation variable: indicates the current status of the active Bus Arbitrator.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-21

1.5.1.1 Report variable

This variable is linked to one physical allocation identifier per station, built in the following way:

ID = 11xyH where xy = physical address of the subscriber

It can be produced by an item of equipment as soon as it is powered up in reply to a report identifier linked to its
own station number.

No FIP status is associated with this variable. As soon as it is produced, it is always valid and meaningful.

Counter value

 Counter value

Counter value

Type of "PDU"

50H

PF cpto

pf cpto

51H

PF cpt1

pf cpt1

52H

PF cpt2

pf cpt2

53H

PF cpt3

pf cpt3

54H

PF cpt4

pf cpt4

}
}
}
}

07

BYTES

BITS
50H

0FH

Counter of transactions correctly received by
Time unit* on channel 1

Counter value

Counter of transactions correctly received by
Time unit* on channel 2

Counter of frames incorrectly received by
Time unit on channel 1

Counter of frames incorrectly received by
Time unit on channel 2

Channel status

(See below)

Data length

}
*time unit = medium test function call time.

Available Functions

Page 2-22 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Format of counter 4

where: 1 = OK or requested
0 = NOK or not requested

Medium 2
Medium 1

2 1 2 1 2 1 2 1

17 23456 0

where: 1 = traffic
 0 = no traffic

Quality status of medium during transmission
 where: 1 = OK

0 = NOK
Quality status of medium during reception
 where: 1 = OK

0 = NOK
Channels requested by TEST_MEDIUM

Traffic status on medium

2 1

9 8

Synthesis on the
state of medium
where : 1 = OK
 0 = NOK

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-23

1.5.1.2 List of equipment present variable

The list of equipment present variable (or presence monitoring variable) is a universal network management
variable associated with identifier 9002 H.

No FIP status is associated with this variable. As soon as it is produced, the variable is valid and significant.

However, this variable, produced by the active Bus Arbitrator, is only valid and significant when the Bus
Arbitrator has finished updating.

Length

Type of "PDU"

}
}

50 H

44 H

80 H

20 H

81 H

20 H

256 bits*

256 bits*

07

BYTE

BIT

For channel 1

For channel 2

* i.e. 32 bytes: subscriber i present on channel x: bit number (i mode 8) of byte number (i div 8) = 1.
Absence: the same bit = 0

When operation is with a single medium card, all the bits on channel 2 are at 0 (no subscribers present). When
operation is with a double medium card, but with a single channel validated, all the bits on the channel not used
are at 0 (no subscribers present).

When operation is in FIPIO mode, only the part concerning channel 1 is contained in this variable.

Available Functions

Page 2-24 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.5.1.3 Presence variable

This variable is linked to one physical allocation identifier per station built in the following way:

ID = 14xy H where xy: physical address of the subscriber

A station can produce it as soon as it has been powered up in reply to the presence indicator linked to its own
station number.

The active Bus Arbitrator to build the list of equipment present consumes it.

No FIP status is associated to this variable. As soon as it is produced, it is always valid and significant.

BA not supported

non-significant

Identification variable length

Length

Type of "PDU"50 H

05

80 H

03

LG_VAR_I

0:
1:
2:
3:

[0...15]

le + le -

7 4 3 0

BA priority

priorityBA status

Reserved (= 00)

BA not eligible
BA idle
BA active

1.5.1.4 Identification variable

The identification (identity) variable is a variable linked to the physical address of each item of equipment. The
identifier used is built as follows:

ID = 10xy H where xy = physical address of subscriber.

It may be produced by an item of equipment as soon as it has been powered up, in reply to the identification
identifier linked to its own station number.

No FIP status is associated with this variable.

This variable is always valid and significant.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-25

The conformity in question has to be interpreted as the software potential.

Type of "PDU"50 H
LG

80 H

81 H

82 H
01

NBR_REVISION
83 H
LG

84 H
01

85 H
LG

LG

8AH

}
}
}
}
}

LG

10

86H

LG

LG

optional: TAGNAME (1 3 LG 3 32)

Length < = 126

Length of vendor field

Field for the vendor

Length of model field (1 3 LG 3 118)

Model field

Revision number

Supported report variable SM_MPS conformity

optional: SMS conformity

optional: MPS, MMS, DLL, Physical conformity

optional: free for the vendor

Available Functions

Page 2-26 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.5.1.5 BA synchronisation variable

The BA sync variable is a universal network management variable associated with identifier 9003H.

No FIP status is associated with this variable. As soon as it is produced, it is valid and significant.

The active Bus Arbitrator produces this variable.

MACROCYCLE NO.

SUBSCRIBER

50H

04H

80H

02H
High order of macrocycle no. of
BA programme in progress
Physical address of the active BA subscriber

1.5.1.6 Segment Parameters variable

This variable is only produced on a subscriber that runs in FIPIO mode (i.e. as a FIPIUO manager). It could not
be consumed by subscribers build with FIP DEVICE MANAGER but only FIPIO Agent (not supplied by
ALSTOM).

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-27

1.5.2 Managing network management variables

The operations to be carried out on these variables are as follows:

• Creation: they are automatically created by the FIP DEVICE MANAGER for each controlled network,
when the corresponding FIP DEVICE MANAGER instance is created.

• Initialisation: the presence and identification variables are initialised when they are created (the
identification variable with the values supplied by the user). The report variable is initialised by FIP DEVICE
MANAGER the first time the medium test function is called. The list of equipment present variable is
initialised by the active Bus Arbitrator subscriber as the potential network subscribers are scanned (however,
it is not produced until all the subscribers have been scanned at least once).

• Updating: the identification variable is never updated. The presence variable is updated (the last byte) as a
function of the possible change in characteristics of the local Bus Arbitrator function. The report variable is
updated each time the medium test function is activated. The list of equipment present variable is updated by
the active Bus Arbitrator each time a subscriber is scanned.

• Read: each of these variables is read by means of a universal read request. If the variable to be read is not
that of the subscriber making the request, an aperiodic request is made. Hence the need for an aperiodic MPS
window in the Bus Arbitrator program. The user is informed of the arrival of the variable requested by
calling a procedure written by it.

1.5.3 Creation of list of equipment present variable

This variable is only built (and therefore produced) by the active Bus Arbitrator subscriber whose BA program
(the series of frames to be circulated) comprises at least one instruction of the TEST_P type (see [4]
Subsection 12.1).

There are two ways of processing this instruction depending on which equipment is used to manage medium
redundancy:

• either FIP DEVICE MANAGER is used with a ZN130 component or a FIELDUAL system used in a mode
compatible with ZN130. In this case, the subscribers present test is partly managed by the FIP DEVICE
MANAGER and partly by FIPCODE

• or FIP DEVICE MANAGER is used with a FIELDUAL system used in a ”new” mode (which can be
controlled by FULLFIP2). In this case, the subscribers present test is entirely managed by FIPCODE which
creates the list of equipment present variables.

1.5.3.1 ZN130 or FIELDUAL in compatible mode

Each time a TEST_P instruction is given, FIP DEVICE MANAGER interrogates a subscriber and asks it to
produce its presence variable in order to check its presence.

Transmitting on each channel alternately carries out this interrogation: complete information about a subscriber
is only obtained after two TEST_P instructions have been executed.

This also makes it possible to find out the status of each subscriber channel, and detect any ”latent faults” by
forcing reception on each channel of all the connected subscribers.

The list of equipment present is updated as a function of the replies, but the list of equipment present variable is
only updated after all subscribers whose presence is being tested have been scanned.

Available Functions

Page 2-28 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

The active Bus Arbitrator also produces the list of equipment present variables each time the TEST_P instruction
is executed.

The detailed operation of TEST_P instruction processing is as follows:

• Decoding by the FULLFIP2 system (microcode of Bus Arbitrator function) of a special BA instruction used
to tell FIP DEVICE MANAGER, via a special event associated with an IT of the IRQ type, that it has to
carry out the test of equipment present. The user BA program is no longer executed: packing frames are
transmitted by the system (to prevent the election of another BA),

• The interrupt which signals the equipment present test to be carried out event is processed by the
fdm_process_its_fip() procedure as follows:

• memorising of return address in interrupted BA program,

• creation and loading of BA program containing instructions for equipment present test,

• positioning of channel to be used, if double medium,

• connection to equipment present test BA program.

• After execution of the equipment present test BA program, the FULLFIP2 system (microcode of Bus
Arbitrator function) decodes a special BA instruction which it uses to tell FIP DEVICE MANAGER, via a
special event associated with an IT of the IRQ type, that it has to process the end of the equipment present
test,

• No further BA programs are executed: packing frames are transmitted by the system (to prevent the election
of another BA),

• The interrupt which signals the end of equipment present test to be processed is processed by the
fdm_process_its_fip() procedure as follows:

• updating of list of equipment present as a function of reply obtained,

• restoration of channel to pre-equipment present test status,

• return to user BA program.

1.5.3.2 FIELDUAL in new mode

The list of equipment present is created entirely by FIPCODE; noting is done by FIP DEVICE MANAGER.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-29

1.6 Managing WorldFIP data link layer messages

1.6.1 Introduction

The structures of the data and mechanisms used for messaging management are specified so that a complete
stack of messages can be developed as easily as possible.

The principle retained is based on the idea of messaging context. Depending on its type, a messaging context is
used either to transmit, to receive or to transmit and receive.

Each context is characterised by:

• two addresses on 24 bits in messaging data link format:
Local_DLL_Address and Remote_DLL_Address

• in the case of a context configured for transmission, Local_DLL_Address represents the source address
and Remote_DLL_Address represents the target address for messages transmitted on this context.

• in the case of a context configured for reception, the messages received on this context have a target
address corresponding to Local_DLL_Address and a source address at Remote_DLL_Address.

• in the case of a context configured for reception and transmission, messages which have been received on
this context have a target address corresponding to Local_DLL_Address and a source address at
Remote_DLL_Address and Local_DLL_Address represents the source address and Remote_DLL_Address
represents the target address of messages transmitted on this context.

• a user procedure (to be written by the user) which will be called by FIP DEVICE MANAGER to signal the
arrival of a received message intended for this context, or the end of transmission (line acknowledgement or
time-out or fault) of a message transmitted on this context,

• two standard pointers intended for use by the user. They are transmitted to the user by the procedures
mentioned above,

• the channel number in the case of a transmission or transmission/reception context,

• the memory zone intended to contain the message in the case of a reception or transmission/reception
context.

Note

The message exchange type at the Data Link Level is acknowledged or not
acknowledged according to the contents of the address.

23 22 0

SegmentS/RI/G

8 7 6

Available Functions

Page 2-30 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

I/G S/R Segment Address Type Message exchange

0 0 00 to 7F Individual address Acknowledged *

1 0 00 to 7F Group address on the segment Not Acknowledged

X 1 7F Group address on all the segments Not Acknowledged

* If you want to exchange unacknowledged messages on an individual address, then use the function
fdm_change_message_acknowledge_type (see Chapter 3) to change the type of message exchange.

1.6.2 Transmission configuration

The configuration of the Message transmission function consists in creating periodic and aperiodic transmission
channels.

For periodic messaging channels, the configuration parameters for a channel are as follows:

• associated identifier,

• channel number: from 1 to 8, a number cannot be associated with more than one identifier.

In the case of aperiodic messaging, there can be only one channel with number 0. It is configured at the same
time as the MPS variables (see Page 3-29 fdm_mps_var_create() primitive).

1.6.3 Reception configuration

The reception configuration consists in indicating the addresses (WorldFIP 24 bits) to be used for receiving
messages.

There are two address types for one message: target and source.

Target addresses have to be associated with memory zones allocated to store messages received at this address.

Available Functions

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 2-31

1.6.4 User application that plays the role of a bridge

If you want to use a station as a bridge (at least 2 networks), then you have to write an application that plays the
role of a bridge.

The following figure shows you a network with 2 segments and a bridge.

For the subscribers you can create:

• a half-duplex context used only for message transmission (see Chapter 3 - fdm_messaging_to_send_create
function and the FDM_MESSAGING_TO_SEND structure).

• a half-duplex context used only for the reception of messages (see Chapter 3 - fdm_messaging_to_rec_create
function and the FDM_MESSAGING_TO_REC structure).

• a full-duplex context used for the transmission and the reception of messages (see Chapter 3 -
fdm_messaging_fullduplex_create function and the FDM_MESSAGING_FULLDUPLEX structure).

Subscriber 1 Subscriber 57 Subscriber 79

Subscriber 58

Subscriber 1

Subscriber 80

BRIDGE

FDM_MESSAGING_TO_REC
local : 0x40000003
remote : 0x80000000

FDM_MESSAGING_TO_SEND
local : 0x40000004
remote : 0x80000000

FDM_MESSAGING_TO_REC
local : 0x40000004
remote : 0x80000000

FDM_MESSAGING_TO_SEND
local : 0x40000003
remote : 0x80000000

Segment 4Segment 3

FDM_MESSAGING_TO_REC
local : 0x00125703
remote : 0x80000000

FDM_MESSAGING_TO_SEND
local : 0x00125703
remote : 0x00180104
 OR
FDM_MESSAGING_FULLDUPLEX
local : 0x00125703
remote : 0x80000000

FDM_MESSAGING_TO_REC
local : 0x00180104
remote : 0x80000000

FDM_MESSAGING_TO_SEND
local : 0x00180104
remote : 0x00125703
 OR
FDM_MESSAGING_FULLDUPLEX
local : 0x00180104
remote : 0x80000000

Available Functions

Page 2-32 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

For the bridge functionality you can create:

• a half-duplex context used only for message transmission of (see Chapter 3 - fdm_messaging_to_send_create
function and the FDM_MESSAGING_TO_SEND structure)

• a half-duplex context used only for message reception (see Chapter 3 - fdm_messaging_to_rec_create
function and the FDM_MESSAGING_TO_REC structure)

Note

It is forbidden to create a full-duplex context for the bridge functionality.

The figure shows you an example of how to configure the local and remote addresses of subscribers and of a
bridge. In the example subscriber 57 of the segment 3 dialogues with subscriber 1 of segment 4.

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-1

Chapter

3
Description of user interface primitives

1. PROVIDED PRIMITIVES, TO BE CALLED BY THE USER

The following conventions have been adopted to describe the primitives:

• the constants written in BOLD are those contained in the fdm.h file, therefore they can be used directly.

• the lines of C code are written in courrier.

1.1 fdm_initialize()

SUMMARY:

FIP DEVICE MANAGER general initialisation function

PROTOTYPE:

void fdm_initialize(void);

DESCRIPTION:

This function carries out the general initialisation operations for the FIP DEVICE MANAGER, in particular
those regarding the management of timers.

It is totally independent of the managed networks and must be the first function called by any application using
FIP DEVICE MANAGER Version 4.

INPUT PARAMETERS:

None.

REPORT:

None.

Description of user interface primitives

Page 3-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.2 fdm_get_version()

SUMMARY:

Function for obtaining the software versions used.

PROTOTYPE:

const FDM_VERSION * fdm_get_version (void);

DESCRIPTION:

This function is for finding out which version of FIP DEVICE MANAGER is being used and which version of
the FIPCODE software is included.

INPUT PARAMETERS:

None

REPORT:

This function produces a report of the FDM_VERSION type, which gives the version, the revision number
and any prototype references for both the software packages.

In all the marketed product versions, the prototype reference is equal to 0. If the prototype reference is not 0, this
means the version or revision is not yet stabilised.

Definition of type: FDM_VERSION

Typedef struct {

FDM_VERSION_ELEMENT fdm;

FDM_VERSION_ELEMENT fipcode;

} FDM VERSIONS;

Typedef struct {

char Version;

char Revision;

char Indice;

} FDM_VERSION_ELEMENT;

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-3

1.3 fdm_ticks_counter()

SUMMARY:

Time management function.

PROTOTYPE:

void fdm_ticks_counter (void);

DESCRIPTION:

This is the function which manages the time-outs of those aspects of the FIP DEVICE MANAGER functionality
aspects which use them and which periodically call (periods given in the primitive
fdm_initialize_network()) the internal functionality of medium redundancy management
(ex TEST_MEDIUM() in Version 2) or, if necessary, the internal self-test functionality. (This is the equivalent
of the IT_HTR_FIP() function of Version 2.)

The unit of time will therefore be the same for all the networks controlled by the FIP DEVICE MANAGER
(i.e. all FIP DEVICE MANAGER instances).

INPUT PARAMETERS:

None

REPORT:

None

Description of user interface primitives

Page 3-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.4 fdm_initialize_network()

SUMMARY:

Function for creating a FIP DEVICE MANAGER utilisation context.

PROTOTYPE:

FDM_REF *fdm_initialize_network (

const FDM_CONFIGURATION_SOFT *User_Soft_Definition,

FDM_CONFIGURATION_HARD *User_Hard_Definition,

const FDM_IDENTIFICATION *User_Ident_Param);

DESCRIPTION:

This function is for creating a context for using the FIP DEVICE MANAGER for each network (i.e.
FULLFIP2/FIPCODE) managed. It must be called as many times as there are networks to manage.

The parameter supplied on output is the reference to be given, directly or indirectly, each time an operation is to
be carried out on the corresponding network.

INPUT PARAMETERS:

User_Soft_Definition: User variable of the FDM_CONFIGURATION_SOFT type containing the
FIP DEVICE MANAGER parameters relating to database configuration.

User_Hard_Definition: User variable of the FDM_CONFIGURATION_HARD type containing the
FIP DEVICE MANAGER parameters relating to external interfaces.

User_Ident_Param: User variable of the FDM_IDENTIFICATION type containing the
identification variable parameters.

Description of type FDM_CONFIGURATION_HARD:

typedef struct { Unsigned char K_PHYADR;

Char MySegment;

#if (FDM_WITH_OPTIMIZED_BA == YES)

Unsigned char NumberOfThisBusArbitrator;

Unsigned char GreatestNumberOfBusArbitrator;

#else

Unsigned char Reserved[2];

#endif

#if (FDM_WITH_CHAMP_IO == YES)

__Port_type__ LOC_FIP[8];

__Port_type__ LOC_FIPDRIVE[4];

#else

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-5

Unsigned char *volatile LOC_FIP[8];

Unsigned char *volatile LOC_FIPDRIVE [4];

#endif

Unsigned short volatile * FREE_ACCES_ADDRESS;

void (*User_Reset_Component) (struct _FDM_CONFIGURATION_HARD*);

void (*User_Signal_Fatal_Error)(Struct _FDM_REF * Ref,
FDM_ERROR_CODE);

void (*User_Signal_Warning)(Struct _FDM_REF * Ref,
FDM_ERROR_CODE);

MEMORY_RN *Memory_Management_Ref;

struct _FDM_REF *Ptr_Autotests;

} FDM_CONFIGURATION_HARD;

K_PHYADR: Physical address of the subscriber on the WorldFIP network in
the interval [0..255].

My_Segment: Number of segment used for messaging other than 0 [1..127]; 0 if
not used.

NumberOfThisBusArbitrator When FDM_WITH_OPTIMIZED_BA is set to YES in the
user.opt.h file, this parameter represents the number of the Bus
Arbitrator of your station [0…255].

GreatestNumberOfBusArbitrator When FDM_WITH_OPTIMIZED_BA is set to YES in the
user.opt.h file, this parameter represents the highest number of
the Bus Arbitrators connected on your network.

LOC_FIP: Contains the addresses for accessing the FULLFIP2 circuit
registers.

LOC_FIPDRIVE: Contains the addresses for accessing the ZN130 circuit or
FIELDUAL circuit registers when it is used in ZN130
compatible mode.

FREE_ACCESS_ADDRESS: Address of the beginning of the memory zone shared between the
host microprocessor and FIPCODE/FULLFIP2 if free-access
mode is used.

User_Reset_Component: Pointer to a user procedure which is called to carry out hardware
resetting of the component.

User_Signal_Fatal_Error: Pointer to the user function which will be called by the FIP
DEVICE MANAGER if there is an error.

User_Signal_Warning: Pointer to the user function which will be called by the FIP
DEVICE MANAGER if there is a warning signal.

Memory_Management_Ref: Pointer to a structure required when using divided memory
manager. Must be initialised at NULL_PTR if divided memory
manager not used.

Ptr_Autotests: Pointer required for interrupt self-tests. Must always be
initialised at NULL_PTR. The
fdm_initialize_network() function will provide its
value.

Description of user interface primitives

Page 3-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Description of type FDM_ERROR_CODE:

typedef struct { ENUM CODE_ERROR Fdm_Default;

union {

struct {

unsigned _Ustate: 3;

unsigned Var_State: 8;

} Fipcode_Report;

unsigned long Additional_Report;

} Information;

} FDM_ERROR_CODE

Fdm_Default:

Code of the detected fault on an unsigned integer. The list of codes is given in Chapter 5 of this document.

Additional_Report: Supplementary information on Fdm_Default when Fdm_Default is
different from 0x100.

Fipcode_Report: Supplementary information on Fdm_Default when Fdm_Default equals
0x100: Errors detected at FIPCODE level.

Description of type: FDM_CONFIGURATION_SOFT:

typedef struct { unsigned short Type;

enum _FULLFIP_Mode_List Mode;

unsigned short Tslot;

unsigned short NB_OF_USER_MPS_VARIABLE

unsigned short BA_Dim;

unsigned long FULLFIP_RAM_Dim;

unsigned short NB_OF_DIFFERENT_ID_PROG_BA;

unsigned short Nr_Of_Repeat;

unsigned short Nr_Of_Tx_Buffer [9];

void (*User_Present_List_Prog)(struct _FDM_REF *Ref,
FDM_PRESENT_LIST *Ptr_Present_List);

unsigned short (*User_Identification_Prog)
(struct _FDM_REF *Ref, FDM_IDENT_VAR*Ptr_Ident_Var);

unsigned short (*User_Report_Prog)(struct _FDM_REF
*Ref, FDM_REPORT_VAR*Ptr_Report_Var);

unsigned short (*User_Presence_Prog)(struct _FDM_REF
*Ref, FDM_PRESENCE_VAR*Ptr_Presence_Var);

void (*User_Synchro_BA_Prog) (struct _FDM_REF *Ref,
FDM_SYNCHRO_BA_VAR *Ptr_Synchro_BA_Var);

unsigned short Test_Medium_Ticks;

unsigned short Time_Out_Ticks;

unsigned short Time_Out_Msg_Ticks;

unsigned short Online_Tests_Ticks;

unsigned short Default_Medium_threshold;

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-7

#if (FDM_WITH_BA = YES)&& (FDM_WITH_FIPIO == YES)

unsigned short Segment_Paramers_Ticks;

#endif

struct {

unsigned short TIMER_CNT_REGISTER;
unsigned short MODE_REGISTER;

} User_Responsability;

void (*User_Signal_Mps_Aper) (struct _FDM_REF *Ref);

void (*User_Signal_Smmps) (struct _FDM_REF *Ref);

void (*User_Signal_Send_Msg) (struct _FDM_REF *Ref);

void (*User_Signal_Rec_Msg) (struct _FDM_REF *Ref);

void *User_Ctxt;

} FDM_CONFIGURATION_SOFT;

Description of user interface primitives

Page 3-8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Type: 16-bit word associated with the basic communication configuration. The logic
OR of the following flags must be carried out to initialize it. The flags are
defined in fdm.h.

MESSAGE_RECEPTION_AUTHORIZED:
The message reception queue is automatically created with 64 message descriptors.

TWO_BUS_MODE:
Use of a double medium card with a medium redundancy management component ZN130
or FIELDUAL.

TWO_IMAGE_MODE:
Configuration mode for the communication database: operation with two images (1 and 2).

EOC_PULSE_MODE:
Operating mode for the EOC interrupt of FULLFIP2: pulse mode (otherwise level mode).

IMAGE_2_STARTUP:
The active image on start-up is Image 2.

TEST_RAM_STARTUP:
Selection of complete RAM test on start-up.

EXTERNAL_TXCK:
Position the TXCK signal of the FULLFIP2 circuit on input (Standard use: on output.
Therefore this flag not used).

IRQ_CONNECTED:
If the FIP DEVICE MANAGER is compiled with the ”FDM_WITH_DIAG” option set to
YES, the use of this flag indicates that the FULLFIP2 IRQn interrupt signal test will be
carried out during the initialization function (self-test off line).

EOC_CONNECTED:
If the FIP DEVICE MANAGER is compiled with the FDM_WITH_DIAG option set to
YES, the use of this flag indicates that the FULLFIP2 EOC interrupt signal test will be
carried out during the initialisation function (self-test off line).
The logic OR, designed to initialize the Type field is to be carried out with the flags
corresponding to the options which are to be implemented. Obviously, the ”Type” field must
be initialized at 0 beforehand.

Mode: Mode of transmission on the network. Its value must be taken from the following list (FIP =
UTE physical layer, WorldFIP = IEC 1158 physical layer):
WORLD_FIP_31 ’WorldFIP’-type network using a FULLFIP2 component at the

speed of 31.25 kbit/s with a 40 MHz clock.
WORLD_FIP_1000 ’WorldFIP’-type network using a FULLFIP2 component at the

speed of 1 Mbit/s with a 64 MHz clock.
WORLD_FIP_2500 ’WorldFIP’-type network using a FULLFIP2 component at the

speed of 5 Mbit/s with a 80 MHz clock.
WORLD_FIP_5000 ’WorldFIP’-type network using a FULLFIP2 component at the

speed of 2.5 Mbit/s with a 80 MHz clock.
FIP_31 ’FIP’-type network using a FULLFIP2 component at the speed of

31.25 kbit/s with a 40 MHz clock.
FAST_FIP_1000 ’fast FIP’-type network using a FULLFIP2 component at the speed

of 1 Mbit/s with a 64 MHz clock.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-9

FIP_2500 ’FIP’-type network using a FULLFIP2 component at the speed of
2.5 Mbit/s with a 80 MHz clock.

FIP_5000 ’FIP’-type network using a FULLFIP2 component at the speed of
5 Mbit/s with a 80 MHz clock.

Slow_FIP_1000 ’slow FIP’-type network using a FULLFIP2 component at the speed
of 1 Mbit/s with a 64 MHz clock.

FDM_OTHER To set other values than the default ones for the turnaround and
silence time. In this case you have to set the fields of the
User_Responsability structure.

Note

The default values of the parameters that characterise the transmission on the
network are given in the table below.

ID

RP

 T1 T1

T2 T2

Mnemonic Speed Type of frame
delimiters and

CRC

Minimum
Turnaround Time

T1

Maximum
Turnaround Time

T2

Silence Time

FIP_31 31.25 kbits/s UTE 424µs 440µs 4096 µs
SLOW_FIP_1000 1 Mbit/s UTE 41 µs 115 µs 290 µs
FAST_FIP_1000 1 Mbit/s UTE 10 µs 33 µs 150 µs

FIP_2500 2.5 Mbit/s UTE 13.5 µs 40 µs 96 µs
FIP_5000 5 Mbit/s UTE 31.75 µs 40 µs(*) 92 µs

WORLD_FIP_31 31.25 kbits/s IEC 424 µs 440 µs 4096 µs
WORLD_FIP_1000 1 Mbit/s IEC 10 µs 33 µs 150 µs
WORLD_FIP_2500 2.5 Mbits/s IEC 13.5 µs 40 µs 96 µs
WORLD_FIP_5000 5 Mbits/s IEC 31.75 µs 40 µs(*) 92 µs

Table 3.1 – Default values for the network transmission

(*) If the time variable (ID 9802) is used then this time is 72 µs.

Tslot: Value of the unit of time used as a basis for all time calculations. Its value in microseconds
must be selected from the following list:

100, 400, 1000, 4000 if Mode = WORLD_FIP_31 or FIP _31
62, 250, 625, 2500 if Mode = FAST_ FIP _1000 or SLOW_ FIP _1000 or

WORLDFIP_1000
50, 200, 500, 2000 if Mode = WORLD_FIP_2500, WORLD _FIP_5000,

FIP_2500 or FIP_5000.

Description of user interface primitives

Page 3-10 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

NB_OF_USER_MPS_VARIABLE: Maximum number of MPS variables that will be created for the
FDM instance being defined.

BA_Dim: For a station intended to be a Bus Arbitrator, this is the maximum
size (in number of 16-bit words) reserved for the arbitrating tables.
The value must be a multiple of 400H in the range [0..FFFFH].

FULLFIP_RAM_Dim: Size of the private RAM of the FULLFIP2 component (in 16-bit
words). The value must be between [6000H..100000H].

NB_OF_DIFFERENT_ID_PROG_BA: Maximum number of different identifiers used in a BA macrocycle.
Nr_Of_Repeat: Maximum number of repetitions authorised in acknowledged

messaging after the initial attempt, at the data link layer. The value
must be between [0 and 3]. “0” corresponds to only one attempt (no
repetition) and “3” corresponds to 4 attempts (i.e. a maximum of
3 repetitions).

Nr_Of_Tx_Buffer: Number of buffers reserved for message transmission. The
FIPCODE software makes it possible to consider a maximum of
32 messages for each of the 9 channels.

User_Present_List_Prog: Pointer to a user function which will be called by the FIP DEVICE
MANAGER after the user has requested a list of equipment present.

User_Synchro_BA_Prog: Pointer to a user function which will be called by the FIP DEVICE
MANAGER after the user has requested a sync variable.

User_Presence_Prog: Pointer to a user function which will be called by the FIP DEVICE
MANAGER after the user has requested a presence variable.

User_Identification_Prog: Pointer to a user function which will be called by the FIP DEVICE
MANAGER after the user has requested an identification variable.

User_Report_Prog: Pointer to a user function which will be called by the FIP DEVICE
MANAGER after the user has requested a report variable.

Note

The above three user functions must provide the following values in response
to the call: NO_VAR_DELETE if FDM is not meant to delete the variable,
and VAR_DELETE if it is.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-11

Test_Medium_Ticks: Periodicity of call of internal function for testing the mediums. One ”ticks”
= one call of fdm_ticks_counter().

Time_Out_Ticks: Number of ticks to trigger a time-out: common to all primitives requiring
idling time except messaging.

Time_Out_Msg_Ticks: Number of ticks to trigger a time-out for messaging function.
Online_Tests_Ticks: Number of ticks to trigger execution of the online self-test primitive. If it

equals 0, then the user is responsible for calling this function.
Default_Medium_threshold: Threshold of medium default between two calls of internal function that

tests the mediums used to declare medium NOK (for reception). The value
must be given as a percent (%) of transactions without errors compared to
transactions with errors

Segment_Paramers_Ticks: Only in FIPIO mode: periodicity of the transmission of the
Segment_Parameters SM_MPS variable by the FIPIO manager

User_Responsability: Data structure which, if the ”Mode” field is FDM_OTHER, makes it
possible to configure the internal registers with values compatible with the
operating modes of earlier versions which are no longer taken into account
with V4 (see the FIPCODE User Manual [6] Chapter 2, Subsection 1.1)

Timer_CNT_Register: see description of FIP_Timer_Cnt parameter in FIPCODE User Manual [6]
Chapter 2, Subsection 1.1

Mode_Register: see description of FIP_Extend_Par parameter in FIPCODE User Manual
[6] Chapter 2, Subsection 1.1.

User_Signal_Mps_Aper: Pointer to a user function which will be called by the FIP DEVICE
MANAGER following reception or transmission of the value of a
universa” type variable.

User_Signal_Smmps: Pointer to a user function which will be called by the FIP DEVICE
MANAGER following reception of the value of a network management
variable (list of equipment present, presence, report, identification or BA
sync).

User_Signal_Rec_Msg: Pointer to a user function which will be called by the FIP DEVICE
MANAGER following reception of a message.

User_Signal_Send_Msg: Pointer to a user function which will be called by the FIP DEVICE
MANAGER following a transmission request or on reception of
acknowledgement of transmission.

User_Ctxt: User identification of his application.

Description of type FDM_PRESENT_LIST

typedef struct {

unsigned char Report;

unsigned char Nop;

unsigned char Bus1_P[32];

unsigned char Bus2_P[32];

} FDM_PRESENT_LIST;

Report: Execution report of the list of equipment present variable read request
VAR_TRANSFERT: The list has been received, therefore the following two parameters are significant.
NO_VAR_TRANSFERT: The list of equipment present has not been transferred, therefore the following two

parameters are not significant.

Description of user interface primitives

Page 3-12 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Bus1_P: Table containing a list of bits indicating that it is present on Channel 1 for each
subscriber: bit = 1 if present)
Bus1_P[0] bit 0: Subscriber 0

Bus1_P[0] bit 7: Subscriber 7

Bus1_P[1] bit 0: Subscriber 8

Bus1_P[1] bit 7: Subscriber 15

Bus1_P[2] bit 0: Subscriber 16

Bus1_P[31] bit 0: Subscriber 248

Bus1_P[31] bit 7: Subscriber 255

Bus2_P: idem Bus1_P for Channel 2

Description of type FDM_PRESENCE_VAR:

typedef struct { unsigned char Report;

unsigned char Subscriber;

unsigned char Ident_Length;

struct {

unsigned char BA_Status;

unsigned char BA_Priority;

} BA_Information;

} FDM_PRESENCE_VAR;

Report: Execution report of the presence variable read request:
VAR_TRANSFERT: The presence variable has been received, therefore the following three

parameters are significant.
NO_VAR_TRANSFERT: No transfer of the variable, therefore the following two parameters are not

significant.
Subscriber: Number of the subscriber (physical address) from which the presence variable

was requested.
Ident_Length: Length in bytes in the interval [0..256] of the identification variable of the

subscriber from which the identification variable was requested.
BA_Status: Status of Bus Arbitrator function on the subscriber interrogated.

000b: The subscriber is not a potential Bus
Arbitrator.

001b: The subscriber is a potential Bus Arbitrator
but the Bus Arbitrator function has not been
started up.

010b: The subscriber is a potential Bus Arbitrator,
the Bus Arbitrator function has been started
up, but the subscriber is not elected active Bus
Arbitrator.

011b: The subscriber is a potential Bus Arbitrator,
the Bus Arbitrator function has been started
up, and the subscriber is elected active Bus
Arbitrator.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-13

BA_Priority: Level of priority in the range [0..15] of the subscriber interrogated. 0 corresponds
to the maximum level of priority and 15 to the minimum. This level of priority is
taken into account in the Bus Arbitrator election time-slot calculation.

Description of type FDM_IDENT_VAR:

typedef struct { unsigned char Report;

unsigned char Subscriber;

unsigned short Identification_Length;

unsigned char Identification [128];

} FDM_IDENT_VAR

Report: Execution report of the identification variable read request:
VAR_TRANSFERT: The identification variable has been received, therefore the following two

parameters are significant.
NO_VAR_TRANSFERT: No transfer of the identification variable, therefore the following two parameters

are not significant.
Subscriber: Number of the subscriber (physical address) from which the identification

variable was requested.
Identification_length: Size in bytes of the identification variable.
Identification: Content of the identification variable.

Description of type FDM_REPORT_VAR:

typedef struct { unsigned char Report;

unsigned char Subscriber;

unsigned short Nb_Of_Transaction_Ok_1;

unsigned short Nb_Of_Transaction_Ok_2;

unsigned short Nb_Of_Frames_Nok_1;

unsigned short Nb_Of_Frames_Nok_2;

unsigned short Activity_status;

} FDM_REPORT_VAR;

Report: Execution report of the report variable read request:
VAR_TRANSFERT: The report variable has been received, therefore the following two

parameters are significant.
NO_VAR_TRANSFERT: No transfer of the report variable therefore the following two parameters are

not significant.
Subscriber: Number of the subscriber (physical address) from which the identification

variable has been requested.
Nb_Of_Transaction_OK_1: Number of transactions without errors per unit of time on Channel 1.
Nb_Of_Transaction_OK_2: Number of transactions without errors per unit of time on Channel 2.
Nb_Of_Frame_NOK_1: Number of frames received with errors per unit of time on Channel 1.
Nb_Of_Frame_NOK_2: Number of frames received with errors per unit of time on Channel 2.

Description of user interface primitives

Page 3-14 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Activity_Status: Bit 0: status of the quality of Channel 1 in transmission
mode

(0=Nok, 1=Ok)

Bit 1: status of the quality of Channel 2 in transmission
mode

(0=Nok, 1=Ok)

Bit 2: status of the quality of Channel 1 in reception mode (0=Nok, 1=Ok)
Bit 3: status of the quality of Channel 2 in reception mode (0=Nok, 1=Ok)
Bit 4: status of the validation of Channel 1 (0=invalidated,

1=validated)
Bit 5: status of the validation of Channel 2 (0=invalidated,

1=validated)
Bit 6: status of traffic on Channel 1 (0=no traffic, 1=traffic)
Bit 7: status of traffic on channel 2 (0=no traffic, 1= traffic)
Bit 8: status of channel 1 (0=Nok, 1=Ok)

OK if (Bit 0 and Bit 2 and
Bit 4 and Bit 6) 00

Bit 9: status of channel 2
(0=Nok, 1=Ok)
OK if (Bit 1 and Bit 3 and
Bit 5 and Bit 7) 00

Note

The unit of time used is the interval between two calls of the function for
testing the mediums using the FIP DEVICE MANAGER.
(cf CONFIGURATION_SOFT.Test_Medium_Ticks)

Description of type FDM_IDENTIFICATION:

typedef struct { char *Vendor_Name;

char *Model_Name;

char *Revision;

char *Tag_Name;

char *SM_MPS_Conform;

char *SMS_Conform;

char *PMDP_Conform;

char *Vendor_Field;

} FDM_IDENTIFICATION;

where

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-15

Vendor_Name: Pointer to a string of characters which contains the name of the equipment
supplier. This string must end with the character ’\0’. The length of this string is
limited by the size of the identification variable and must be within the [2..119]
range.

Model_Name: Pointer to a character string which contains the name of the equipment at the
supplier’s premises. This string must end with the character ’\0’. The length of
this string is limited by the size of the identification variable and must be within
the [2..119] range.

Revision: Pointer to a character string which contains the revision reference of the
supplier’s equipment. The value of this reference must be between [0..255].

Tag_Name: Pointer to a character string which contains the Tag-Name of the equipment in
the context of the user application. This string must end with the character ’\0’.
The length of this string is limited by the size of the identification variable and
must be within the [2..33] range.

SM_MPS_Conform: Pointer to a byte which contains the SMMPS conformity class (network
management) of the equipment. The conformity class will be equal to 10H: thus
a report variable will be created automatically in the two images (images 1 & 2)
of the communication database.

SMS_Conform: Pointer to a byte table that contains the network management conformity class
based on SMS messaging. The value of the conformity class is encoded on an
unspecified number of bytes, between [1..115] limited by the maximum size of
the identification variable. The first element in the table (unsigned 8-bit integer)
contains the size of this value, which can take a value from the [2..116] range.

PMDP_Conform: Pointer to a byte table which contains the class of conformity to MPS and
SubMMS standards, data link, and physical layer. The value of the conformity
class is encoded on an unspecified number of bytes, between [1..115] and
limited by the maximum size of the identification variable. The first element in
the table (unsigned 8-bit integer) contains the size of this value, which can be a
value from the [2..116] range.

Vendor_Field: Pointer to a string of characters which contains additional supplier-specific
information about the equipment. This string must end with the character ’\0’.
The length of this string is limited by the size of the identification variable and
must be within the [2..33] range.

Description du type: FDM_SYNCHRO_BA_VAR :

typedef struct { unsigned char Report;

unsigned char Hi_MC_Nr;

unsigned char Subscriber;

} FDM_SYNCHRO_BA_VAR;

Report Execution report of the Synchro_BA variable read request.
VAR_TRANSFERT The Synchro_BA variable has been received, therefore the following

parameters are significant.
NO_VAR_TRANSFERT The Synchro_BA variable has not been received, therefore the following

parameters are not significant.
Hi_MC_Nr: High order byte of the BA macrocycle number that is running.
Subscriber: Physical address of the active Bus Arbitrator that produced the Synchro_BA

variable.

Description of user interface primitives

Page 3-16 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

REPORT:

The fdm_initialize_network() primitive returns a pointer to a FDM_REF-type structure.

If initialisation could not take place correctly, the NULL_PTR pointer is returned.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-17

1.5 fdm_stop_network()

SUMMARY:

Function for stopping/deleting a FIP DEVICE MANAGER utilisation context (i.e. stopping the network
corresponding to this instance.).

PROTOTYPE:

void fdm_stop_network (FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This primitive makes it possible to end the use of a FIP DEVICE MANAGER context, created by the
fdm_initialize_network() function by restoring all the allocated data (memory).

Each object which is dependent on the context to be deleted must be deleted first (AE/LE, variables, messaging
etc.)

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

Page 3-18 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.6 fdm_online_test

SUMMARY:

Function for running self-diagnosis functions during operation.

PROTOTYPE:

unsigned shortfdm_online_test (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function enables the FIP DEVICE MANAGER to run a part of the self-diagnosis functions during operation
each time a call is made.

This function can be used if CONFIGURATION_SOFT.Online_Tests_Ticks = 0. Otherwise it is the FIP
DEVICE MANAGER which automatically activates the self-tests during operation at a frequency equal to the
CONFIGURATION_SOFT.Online_Tests_Ticks parameter.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type

REPORT:

This function produces a report that reads:

FDM_OK if the function has been carried out correctly

FDM_NOK: if the function has not been carried out correctly; in this case the user function
User_Signal_Warning has been called at least once to warn of an FDM_ERROR_CODE
type fault that is specified in Chapter 5 of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-19

1.7 fdm_valid_medium()

SUMMARY:

Function for initialising medium redundancy management

PROTOTYPE:

unsigned short fdm_valid_medium (

FDM_REF *Ptr_Network_Identification,

enum MEDIUM_DEF Bus_Mode);

DESCRIPTION:

This function initialises the medium management functionality by indicating which channels are used and what
fault threshold to take into account (see Chapter 2, Subsection 1.2. of this document).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Bus_Mode: _ MEDIUM_1: Selection of Channel 1
_ MEDIUM_2: Selection of Channel 2
_ MEDIUM_1_2: Selection of Channels 1 and 2

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type MEDIUM_DEF:

enum MEDIUM_DEF { _MEDIUM_1 = 1, /
_MEDIUM_2 = 2,
_MEDIUM_1_2 = 3

}

REPORT:

This function submits a report as specified by the primitive fdm_online_test().

Note

This function must be called on all the stations with a double-medium card
and on all stations with a single-medium card which are potential Bus
Arbitrators.

Description of user interface primitives

Page 3-20 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Note

Precision for the different types of initialisation required to manage medium
redundancy in accordance with the configurations used:

Double-medium card and double-medium network:

CONFIGURATION_SOFT Type = TWO_BUS_MODEζ ...”other
possible flags” VALID_MEDIUM (3, threshold);

Double-medium card and single-medium network:

CONFIGURATION_SOFT Type = TWO_BUS_MODE �...”other
possible flags” VALID_MEDIUM (1, threshold);
or
VALID_MEDIUM (2, threshold);

Mono-medium card:

with or without TWO_BUS_MODE to build CONFIGURATION_SOFT.Type
VALID_MEDIUM (1, threshold)

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-21

1.8 fdm_process_its_fip()

SUMMARY:

Function for processing EOC and IRQ interrupts

PROTOTYPE:

unsigned short fdm_process_its_fip (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This is the function for processing EOC interrupts, if it is configured by level and IRQ interrupts when they are
together on the same interrupt level. This function must, in this case, be called each time an EOC or IRQ
interrupt occurs.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report of the following type:

EOC_IRQ_TO_PROCESS: if there is still at least one more interrupt to process

NO_EOC_IRQ_TO_PROCESS: if there are no more left to process

Note

EOC must be configured by level.

Description of user interface primitives

Page 3-22 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.9 fdm_process_it_eoc()

SUMMARY:

Function for processing EOC interrupt only.

PROTOTYPE:

unsigned short fdm_process_it_eoc

(FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function is for processing EOC interrupts. In this case it must be called each time an EOC interrupt occurs if
it is configured by level.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report of the following type:

EOC_TO_PROCESS: if there is still at least one interrupt to process

NO_EOC_TO_PROCESS: if there are no more interrupts to process

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-23

1.10 fdm_process_it_irq()

SUMMARY:

Function for processing IRQ interrupts only.

PROTOTYPE:

unsigned short fdm_process_it_irq (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function is for processing IRQ interrupts. In this case it must be called each time an IRQ interrupt occurs.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report of the following type:

IRQ_TO_PROCESS: if there is still at least one interrupt to process

NO_IRQ_TO_PROCESS: if there are no more interrupts to process

Description of user interface primitives

Page 3-24 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.11 fdm_switch_image()

SUMMARY:

Function for switching operation from the AE/LEs of one image, to the other.

PROTOTYPE:

unsigned short fdm_switch_image (

FDM_REF *Ptr_Network_Identification,

enum IMAGE_NR Image_Nr);

DESCRIPTION:

This function is for switching operation from the AE/LE of one image, to the other for all AE/LEs of the FIP
DEVICE MANAGER instance involved.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Image_Nr Identification of the image to which the switch must be made: IMAGE_1 or IMAGE_2

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-25

1.12 fdm_get_image()
PROTOTYPE:

enum IMAGE NR fdm_get_image (

FDM_REF*Ptr_Network_Identification);

DESCRIPTION:

This function makes it possible to know which image all the AE/LEs of the same FIP DEVICE MANAGER
instance are operating on.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report indicating which image is active, stating:

IMAGE_1: if the function has been executed correctly, and AE/Ls are operating on Image 1.

IMAGE_2: if the function has been executed correctly, and AE/Ls are operating on Image 2.

Description of user interface primitives

Page 3-26 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.13 fdm_change_test_medium_ticks()
PROTOTYPE:

fdm_change_test_medium_ticks (

FDM_REF *Ptr_Network_Identification,

unsigned long New_Value;);

DESCRIPTION:

This function is for modifying the value of the frequency with which the FIP DEVICE MANAGER calls the
medium testing function.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

New_Value:New value of the frequency for calling the medium testing function.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

None

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-27

1.14 fdm_ae_le_create()

SUMMARY:

Function for creating an AE/LE

PROTOTYPE:

FDM_AE_LE_REF * fdm_ae_le_create (

FDM_REF *Ptr_Network_Identification,

int Nb_Vcom,

enum FDM_ALLOWED Type);

DESCRIPTION:

This function enables an AE/LE to be created. On creation, this AE/LE does not contain any variables.

INPUT PARAMETERS:

Nb_Vcomr: Max. number of MPS variables that the AE/LE could contain.

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Type: CHANGE_ALLOWED: The P/C attribute of the variables contained in this AE/LE may
be modified

CHANGE_NOT_ALLOWED: The P/C attribute of the variables contained in this AE/LE may
not be modified

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces either:

• a NULL_PTR pointer if it has not been able to run correctly, in which case the
User_Signal_Warning() function has been called at least once.

• or a pointer to an FDM_AE_LE_REF type structure (inside FIP DEVICE MANAGER: not manipulated by
the user).

Description of user interface primitives

Page 3-28 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.15 fdm_ae_le_delete()

SUMMARY:

Function for deleting an AE/LE.

PROTOTYPE:

unsigned short fdm_ae_le_delete (

FDM_AE_LE_REF *Ptr_AE_LE);

DESCRIPTION:

This function enables an AE/LE to be deleted. The AE/LE to be deleted must be in CONFIGURATION mode.
(It must not be in OPERATION mode).

INPUT PARAMETERS:

Ptr_AE_LE: Pointer to a data structure of the FDM_AE_LE_REF type.

Description of type FDM_AE_LE_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_online_test().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-29

1.16 fdm_ae_le_start()

SUMMARY:

Function for starting up an AE/LE.

PROTOTYPE:

unsigned short fdm_ae_le_start (

FDM_AE_LE_REF *Ptr_AE_LE);

DESCRIPTION:

This function enables an AE/LE to be started up.

INPUT PARAMETERS:

Ptr_AE_LE: Pointer to a data structure of the FDM_AE_LE_REF type.

Description of type FDM_AE_LE_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_online_test().

Description of user interface primitives

Page 3-30 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.17 fdm_ae_le_get_state()

SUMMARY:

Function for obtaining the state of an AE/LE.

PROTOTYPE:

enum FDM_AE_LE_STATE fdm_ae_le_get_state (FDM_AE_LE_REF *Ptr_AE_LE);

DESCRIPTION:

This function makes it possible to know the operating state of an AE/LE.

INPUT PARAMETERS:

Ptr_AE_LE: Pointer to a data structure of the FDM_AE_LE_REF type.

Description of type FDM_AE_LE_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report that reads:

AE_LE_NOT_EXIST: if the function has been carried out correctly: AE/LE non-existent.

AE_LE_CONFIG: if the function has been carried out correctly: AE/LE being configured.

AE_LE_RUNNING: if the function has been carried out correctly: AE/LE in operation.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-31

1.18 fdm_ae_le_stop()

SUMMARY:

Function for shutting down an AE/LE.

PROTOTYPE:

unsigned short fdm_ae_le_stop (

FDM_AE_LE_REF *Ptr_AE_LE);

DESCRIPTION:

This function enables an AE/LE to be shut down.

INPUT PARAMETERS:

Ptr_AE_LE: Pointer to a data structure of the FDM_AE_LE_REF type.

Description of type FDM_AE_LE_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1, Subsection 4.2. of this document.

Description of user interface primitives

Page 3-32 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.19 fdm_mps_var_create()

SUMMARY:

Function for creating an MPS variable.

PROTOTYPE:

FDM_MPS_VAR_REF *fdm_mps_var_create (

FDM_AE_LE_REF *Ptr_AE_LE,

const FDM_XAE *Var);

DESCRIPTION:

This function is for creating a variable and loading it into an AE/LE.

INPUT PARAMETERS:

Ptr_AE_LE: Pointer to a data structure of the FDM_AE_LE_REF type.
Var: Pointer to a data structure in the FDM_XAE format, describing all the parameters of a

variable.

Description of type FDM_AE_LE_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Definition of type: FDM_XAE

typedef struct {

struct {

unsigned Reserved :5;

unsigned Position :2;

unsigned Communication :2;

unsigned Scope :1;

unsigned With_Time_Var :1;

unsigned Refreshment :1;

unsigned Indication :1;

unsigned Priority :1;

unsigned Rqa :1;

unsigned MSGa :1;

} Type

unsigned short ID;

unsigned short Var_Length;

unsigned long Refreshment_Period;

unsigned long Promptness_Period;

int Rank;

struct {

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-33

void (*User_Signal_Synchro) (struct _FDM_REF*);

void (*User_Signal_Asent) (struct _FDM_MPS_VAR_REF *);

void (*User_Signal_Areceived) (struct _FDM_MPS_VAR_REF*);

void (*User_Signal_Var_Prod) (struct _FDM_MPS_VAR_REF *,

unsigned short);

void (*User_Signal_Var_Cons) (struct _FDM_MPS_VAR_REF*,

FDM_MPS_READ_STATUS

FDM_MPS_VAR_DATA *);

} Signals;

} FDM_XAE;

Type Reserved: Unused. Must be initialised at 0.
Type Position: Position of the variable in relation to the different images of the AE-LE.

0: AE-LE single image
1: AE-LE double image. The variable is only specified in Image 1.
2: AE-LE double image. The variable is only specified in Image 2.
3: AE-LE double image. The variable is specified in Image 1 and

Image 2.
Type.Communication: Type of variable

VAR_SYNCHRO: Synchronisation variable
VAR_PRODUCED: Produced variable
VAR_CONSUMED: Consumed variable
VAR_CONS_PROD: Consumed variable on creation, but which may then

change type.

Type.Scope: only used for MPS variables. Initialised at 0 for a synchronisation event.
0: Remote variable. Only ”universal” reads or writes possible. The variable

must be specified in Image 1.
1: Local variable. Local reads and writes can be carried out if the variable is

specified in Image 1 or Image 2. The ”universal” reads and writes are
possible if the variable is specified in Image 1.

Type.With_Time_Var:
0: The variable is not a variable with dynamic refresh status.
1: The variable is a variable with dynamic refresh status (see Subsection

1.3.4.2. of Chapter 2).
Type.Refreshment: Used only for communication variables. Must be initialised at 0 for a

synchronisation event. Makes it possible to know if there is a refresh status to be
read for a consumed variable.

0: no refresh status to be read
1: refresh status to be read

Note: can only be set to 1 if Type.Communication = VAR_CONSUMED
at the VAR_CONS_PROD.

Description of user interface primitives

Page 3-34 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Type.Indication: Preparation of a transmission indication (A_SENT) or reception indication
(A_RECEIVE) following a network transaction involving this variable. Must be set to
0 if Type.Communication = VAR_SYNCHRO
0: no indication requested
1: indication requested

Type.Priority: Level of priority of MPS aperiodic requests that can be addressed to the Bus Arbitrator
using the identifier associated with that variable. Must be at zero if
Type.Communication = VAR_PRODUCED or if Type.With_Time_Var = 1
0: Non urgent
1: Urgent

Type.RQa: Authorisation to carry out MPS aperiodic requests using the identifier associated with
that variable. Must be at 0 if Type.Communication = VAR_PRODUCED or if
Type.With_Time_Var = 1
0: MPS aperiodic requests not authorised
1: MPS aperiodic requests authorised

Type.MSGa: Authorisation to carry out messaging aperiodic requests using the identifier associated
with that variable. Must be at 0 if Type.Communication = VAR_PRODUCED
or if Type.With_Time_Var = 1
0: not authorised
1: Authorised

ID: Value of the identifier associated with the variable. This value belongs to one of the
following value ranges:
[0000H ... 0FFFH]
[3000H ... 8FFFH]
[9800H ... 9FFFH]
[B000H ... FFFFH]
.

Var_Length: • for a single MPS variable, this is the length, in bytes, of the data for the user to read
or write. This length is between [1..125] if the refresh status is requested, [1..126] if
it is not.

• In the case of 5 Mbits/s the length should be greater than 6 bytes.

• must be initialised at 0 for a synchronisation event.

• for a produced variable with dynamic refresh status, this is the length in bytes of the
data to be written. This size is between [12..120] and must be even.

• for a consumed variable with dynamic refresh status, this is the length in bytes of
the data to be read. This size is between [12..120] and must be even. In this case,
this size does not include the size of the time differential calculated by the
consumer, but only that of the time differential calculated by the producer.

Rank: Rank of the variable in the AE/LE (user identification of the variable).
Refreshment_Period: Refresh period if the produced variable is expressed in microseconds.
Promptness_Period: Promptness period if consumed variable is expressed in microseconds
User_Signal_Synchro: User procedure which will be called on reception of a synchronisation

variable if the EOC interrupt is configured in ”level” mode.
User_Signal_Asent: User procedure that will be called on production on the network of a

produced local variable if an event is associated with it.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-35

User_Signal_Areceive: User procedure that will be called on reception from the network of a
consumed local variable if an event is associated with it.

User_Signal_Var_Prod: User procedure which will be called:

• on production on the network following a universal-type write of this
variable (if produced variable)

• on expiry of the time-out associated with the previous one.
User_Signal_Var_Cons: User procedure which will be called:

• on reception from the network following a universal-type read of this
variable (if consumed variable)

• on expiry of the time-out associated with the previous one
User_Get_Value User procedure which will be called by the write primitive of a variable

with dynamic refresh (fdm_mps_var_time_write_loc) if
Type.With_Time_Var = 0. This parameter must then be set to
NULL_PTR to request the user to supply the address of the byte table
containing the value to be transmitted.

Definition of type: FDM_MPS_VAR_DATA

typedef struct FDM_XAE_REF{

unsigned char Pdu_Type;

unsigned char Pdu_Length;

unsigned char Fbuffer[126];

} FDM_MPS_VAR_DATA;

Pdu_Type: Type of PDU: 40H for MPS variables, 50H for SM_MPS
Pdu_Length: Length of PDU. Equivalent to:

• size of the variable if no refresh status configured

• size of the variable if refresh status
FBuffer[126] Value of the variable in the form of a byte string

Definition of type: FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces either:

• a NULL_PTR pointer if it has not been able to run correctly, in which case the
User_Signal_Warning() function has been called at least once.

• or a pointer to an FDM_MPS_VAR_REF type structure.

Description of user interface primitives

Page 3-36 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.20 fdm_mps_var_change_id()

SUMMARY:

Function for modifying the value of the ID associated with a variable

PROTOTYPE:

unsigned short fdm_mps_var_change_id (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

unsigned short New_ID);

DESCRIPTION:

This function modifies the value of the identifier associated with an MPS variable when it has already been
created but when the AE/LE to which it belongs has not yet started up.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

New_ID: New value of identifier to be associated with the variable.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-37

1.21 fdm_mps_var_change_periods()

SUMMARY:

Function for modifying the refresh or prompt periods of a variable.

PROTOTYPE:

unsigned short fdm_mps_var_change_periods (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

unsigned long Refreshment_Period,

unsigned long Promptness_Period);

DESCRIPTION:

This function makes it possible to modify the value of the prompt and refresh windows associated with an MPS
variable.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

Refreshment_Period: New value of the period to be associated with the variable when it is produced
(in microseconds).

Promptness_Period: New value of the period to be associated with the variable when it is consumed
(in microseconds).

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-38 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.22 fdm_mps_var_change_priority()

SUMMARY:

Function for modifying the priority attribute of a variable.

PROTOTYPE:

unsigned short fdm_mps_var_change_priority (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

unsigned New_Priority);

DESCRIPTION:

This function makes it possible to modify the value of the priority of aperiodic transfer requests which is liable to
support an MPS variable.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

New_Priority: New value of the priority to be associated with the variable (for any aperiodic
transfer requests) FIFO_URGENT or FIFO_NORMAL.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-39

1.23 fdm_mps_var_change_prod_cons()

SUMMARY:

Function for modifying the P/C attribute of a variable.

PROTOTYPE:

unsigned short fdm_mps_var_change_prod_cons(

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

enum _FDM_CHANGE_TYPE New_Image1_Prod_Cons,

enum _FDM_CHANGE_TYPE New_Image2_Prod_Cons);

DESCRIPTION:

This function makes it possible to modify the value of the Produced/Consumed attribute associated with an MPS
variable when the AE/LE to which it belongs is started up.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

New_Image1_Prod_Cons: New value of the produced/consumed attribute for Image 1 of the
variable: CONSUMED or PRODUCED.

New_Image2_Prod_Cons: New value of the produced/consumed attribute for Image 2 of the
variable: CONSUMED or PRODUCED.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-40 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.24 fdm_mps_var_change_rqa()

SUMMARY:

Function for modifying the RQa attribute of a variable.

PROTOTYPE:

unsigned short fdm_mps_var_change_RQa (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

ENUM FDM_FLAGS New_RQa);

DESCRIPTION:

This function makes it possible to modify the value of the RQa attribute associated with an MPS variable when it
has already been created but the AE/LE to which it belongs has not yet started up.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

New_RQa: New value of the RQa attribute of the variable identified by
Ptr_MPS_VAR: FLAG_OFF or FLAG_ON.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-41

1.25 fdm_mps_var_change_msga()
SUMMARY:

Function for modifying the MSGa attribute of a variable.

PROTOTYPE:

unsigned short fdm_mps_var_change_MSGa(

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

ENUM FDM_FLAGS New_MSGa);

DESCRIPTION:

This function makes it possible to modify the value of the MSGa attribute associated with an MPS variable when
it has already been created, but the AE/LE to which it belongs has not yet started up.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
This parameter enables the variable on which the primitive must act, to be
identified.

New_MSGa: New value of the MSGa attribute of the variable identified by
Ptr_MPS_VAR: FLAG_OFF or FLAG_ON.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-42 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.26 fdm_mps_var_write_loc()

SUMMARY:

Write function of a local MPS variable.

PROTOTYPE:

unsigned short fdm_mps_var_write_loc (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

USER_BUFFER_TO_READ Data_Buffer);

DESCRIPTION:

This function makes it possible to write a local MPS variable.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.

Data_Buffer: Pointer to a read-only data structure of indeterminate type.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type USER_BUFFER_TO_READ

typedef const void * USER_BUFFER_TO_READ

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-43

1.27 fdm_mps_var_write_universal()

SUMMARY:

Write function of a universal type variable.

PROTOTYPE:

unsigned short fdm_mps_var_write_universal(

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

USER_BUFFER_TO_READ Data_Buffer);

DESCRIPTION:

This function makes it possible to write an MPS variable whether it is local or remote. If the variable is remote,
an aperiodic request is made.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.

Data_Buffer: Pointer to a read-only data structure of indeterminate type.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type USER_BUFFER_TO_READ:

Typedef const void * USER_BUFFER_TO_READ

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-44 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.28 fdm_mps_var_time_write_loc()
PROTOTYPE:

unsigned short fdm_mps_var_time_write_loc (

FDM_MPS_VAR_REF *Ptr_MPS_VAR);

unsigned char * (* User_Get_Value) (void)

const unsigned long * Delta

DESCRIPTION:

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type

User_Get_Value: User function that would be called by FIP DEVICE MANAGER to get the variable value
just before writing it in the FIPCODE data base. This function returns an array of char
that contains the variable value to be written. This function call is encapsulated between
OS_Enter_Region () and OS_Leave_Region() calls. So the execution time of
these user-written functions must be as short as possible.

Delta: Pointer to the constant representing the time differential already provided by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-45

1.29 fdm_mps_var_read_loc()

SUMMARY:

Read function of a local variable.

PROTOTYPE:

FDM_MPS_READ_STATUS fdm_mps_var_read_loc (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

FDM_MPS_VAR_DATA *Storage_Buffer);

DESCRIPTION:

This function makes it possible to read a local variable, obtaining in return the value read and any MPS status.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
Storage_Buffer: Pointer to a data structure of the FDM_MPS_VAR_DATA type.

Definition of type: FDM_MPS_VAR_DATA:

See primitive fdm_mps_var_create().

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report of the FDM_MPS_READ_STATUS type.

Definition of type: FDM_MPS_READ_STATUS

typedef struct FDM_MPS_READ_STATUS{
Enum
_FDM_MPS_READ_CNF

Report :3;

Unsigned Non_Significant :1;

unsigned Promptness_false :1;

unsigned Signifiance_status_false :1;

unsigned Refresment_false :1;

} FDM_MPS_READ_STATUS;

Description of user interface primitives

Page 3-46 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Report: Report of the FDM_MPS_READ_CNF type, the possible values of which
are:
_FDM_MPS_READ_OK = correct variable read.
_FDM_MPS_USER_ERROR = incorrect read because

parameters are wrong,
or produced variable read.

_FDM_MPS_STATUS_FAULT = incorrect read because one of the
statuses is false.

Non_Significant: If = 1 the data contained in the zone pointed to by Storage_Buffer
are not significant, nor are the following three bits.

Promptness_false: Prompt status: 0 = false, 1 = true
Refreshment_false: Refresh status: 0 = false, 1 = true
Significance_status_false: Significance status: 0 = false, 1 = true

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-47

1.30 fdm_mps_var_read_universal()

SUMMARY:

Read function for a universal variable

PROTOTYPE:

unsigned short fdm_mps_var_read_universal(

FDM_MPS_VAR_REF *Ptr_MPS_VAR);

DESCRIPTION:

This function makes it possible to read an MPS variable whether it is local or remote. If the variable is remote,
an aperiodic request is made.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.

Description of type FDM_MPS_VAR_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-48 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.31 fdm_mps_var_time_read_loc()

SUMMARY:

Read function for a local variable.

PROTOTYPE:

FDM_MPS_READ_STATUS fdm_mps_var_time_read_loc (

FDM_MPS_VAR_REF *Ptr_MPS_VAR,

Void (*User_Set_Value) (FDM_MPS_VAR_TIME_DATA *),

FDM_MPS_VAR_TIME_DATA *Variable);

DESCRIPTION:

This function makes it possible to read a local MPS variable.

INPUT PARAMETERS:

Ptr_MPS_VAR: Pointer to a data structure of the FDM_MPS_VAR_REF type.
User_Set_Value User function that would be called by FIP DEVICE MANAGER to indicate that the

variable value is available in the FDM_MPS_VAR_TIME_DATA type structure. This
function call is encapsulated between OS_Enter_Region() and
OS_Leave_Region() calls. So the execution time of these user-written functions must
be as short as possible.

Variable: Pointer to the data structure containing the variable and its additional information.

Definition of type: FDM_MPS_VAR_TIME_DATA:

typedef struct {

unsigned long Network_Delay;

unsigned char Pdu_Type;

unsigned char Pdu_Length;

unsigned char FBuffer[126];

} FDM_MPS_VAR_TIME_DATA;

Pdu_Type: Value of the ”PDU type” field of the frame received.
Pdu_Length: Value of the length field of the frame received. It is equal to the effective

length of the data (contained in Rx_Data) +7.
Network_Delay: Sum of the variable transit delays: initial delay when user writes the

variable + production delay + consumption delay + delay for transfer onto
the network in microseconds.

FBuffer: Array of byte containing the value of the variable.

REPORT:

This function produces a report of the FDM_MPS_READ_STATUS type as specified by the primitive
fdm_mps_var_read_loc()

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-49

1.32 fdm_generic_time_initialize()

SUMMARY:

Initialisation and start-up of the procedure for managing redundancy of the MPS time variable producers (ID
9802) and the management of that variable (production/consumption).

PROTOTYPE:

FDM_GENERIC_TIME_REFERENCE fdm_generic_time_initialize (

FDM_REF *Ptr_Network_Identification,

Const FDM_GENERIC_TIME_DEFINITION *User_Definition);

DESCRIPTION:

Creation of the MPS time variable, the messaging LSAPs required for the time producer redundancy
management protocol to be operated and the possible start up of this protocol.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
User_Definition: Pointer to a data structure containing the initialisation and operating

parameters for the time producer redundancy management
procedure.

Definition of type: FDM_GENERIC_TIME_DEFINITION:

typedef struct {

enum BOOLEAN With_Choice_Producer;

enum BOOLEAN With_MPS_Var_Produced;

enum BOOLEAN With_MPS_Var_Consumed;

enum _FDM_MSG_IMAGE Image;

unsigned long Refreshment;

unsigned long Promptness;;

const unsigned long *Delta_Time_Location;

void (*User_Signal_Mode) (const int Sens);

unsigned short Ticks_Election;

unsigned short Channel_Nr;

} FDM_GENERIC_TIME_DEFINITION;

Description of user interface primitives

Page 3-50 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

With_Choice_Producer: YES: Protocol for electing time producer is active
NO: Protocol for electing time producer is not active

With_MPS_Var_Produced: YES: the time variable can be produced: potential producer
NO: the time variable cannot be produced

With_MPS_Var_Consumed: YES: the time variable can be consumed
NO: the time variable cannot be consumed

Image: 1: Time producer redundancy and time can only be managed if
the operating image is Image 1.

2: Time producer redundancy and time can only be managed if
the operating image is Image 2.

3: Time producer redundancy and time can be managed whatever
the operating image (1 or 2).

Refreshment: Time variable refresh period in µs if With_MPS_Var_Produced = YES

Promptness: Time variable prompt period in µs if With_MPS_Var_Consumed = YES

User_Signal_Mode: User function called when moving from potential producer to active producer
or vice-versa.

Channel_Nr: Number of transmission channel chosen to transmit messages from services
linked to the time producer redundancy management protocol. This channel
has to have been created.

Delta_Time_Location: Pointer to the zone where the time supplied by the user is to be recovered.
Ticks_Election: Activation period of the procedure for electing the time producer.

Description of type: FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function places either:

• a NULL_PTR pointer if it has not been able to run correctly. In this case the User_Signal_Warning()
function has been called at least once

• or a pointer to an FDM_GENERIC_TIME_REFERENCE type structure (inside FIP DEVICE MANAGER:
not manipulated by the user).

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-51

1.33 fdm_generic_time_write_loc()

SUMMARY:

Time variable write (ID 9802H).

PROTOTYPE:

unsigned short fdm_generic_time_write_loc (

Const FDM_GENERIC_TIME_REFERENCE *Ptr_Time_Identification,

DESCRIPTION:

This function enables the user to write the value of the time variable (i.e. write the time). The time value is
transmitted to the FIP DEVICE MANAGER on request. Calling the user-written procedure
(fdm_generic_time_get_value) makes this request.

This ensures the time transmitted is as accurate as possible.

To use this function, the compiling switch FDM_WITH_GT or FDM_WITH_GT_ONLY_PRODUCED must be set
to YES.

INPUT PARAMETERS:

Ptr_Time_Identification: Pointer to a data structure of the FDM_GENERIC_TIME_REFERENCE
type.

Description of type FDM_GENERIC_TIME_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Section 4.2. of this document.

Description of the function: fdm_generic_time_get_value()

FDM_GENERIC_TIME_VALUE fdm_generic_time_get_value (void);

The FDM_GENERIC_TIME_VALUE type is described on page 3-51.

This procedure must be written by the user to provide the time to be transmitted by the FIP DEVICE
MANAGER. This is common to type all the FIP DEVICE MANAGER instances.

Description of user interface primitives

Page 3-52 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.34 fdm_generic_time_read_loc()

SUMMARY:

Time variable read (ID 9802H)

PROTOTYPE:

FDM_MPS_READ_STATUS fdm_generic_time_read_loc (

Const FDM_GENERIC_TIME_REFERENCE *Ptr_Time_Identification);

DESCRIPTION:

This function enables the user to read the value of the time variable (i.e. read the time).

The time value is transmitted to the caller by FIP DEVICE MANAGER by calling the user-written function
fdm_generic_time_give_value().

The FIP DEVICE MANAGER directly adds the total differential to the value of the variable.

To use this function, the compiling switch FDM_WITH_GT or FDM_WITH_GT_ONLY_CONSUMED must be set
to YES.

INPUT PARAMETERS:

Ptr_Time_Identification: Pointer to a data structure of the FDM_GENERIC_TIME_REF type.

Description of type: FDM_GENERIC_TIME_REFERENCE:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of the function: fdm_generic_time_give_value()

FDM_GENERIC_TIME_VALUE fdm_generic_time_give_value (void);

Definition of type: FDM_GENERIC_TIME_VALUE: 3

typedef INOUT struct {

unsigned long Significance;

unsigned long Number_Of_Second;

unsigned long Number_Of_Nanosecond;

} FDM_GENERIC_TIME_VALUE;

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-53

Significance:

x00: time written by an overall external reference.

x02: time written locally by the producer.

Number_Of_Second: Number of seconds since 1/01/70.

Number_Of_Nanosecond: Number of nanoseconds since the beginning of the current second.

REPORT:

This function produces a report of the FDM_MPS_READ_STATUS type as specified by the primitive
fdm_mps_var_read_loc().

Description of user interface primitives

Page 3-54 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.35 fdm_generic_time_delete()

SUMMARY:

This function enables the user to stop the procedure for managing redundancy of the MPS time variable
producers (ID 9802) and the management of that variable (production/consumption).

PROTOTYPE:

Unsigned short fdm_generic_time_delete

(FDM_GENERIC_TIME_REFERENCE *Ptr_Time_Identification);

DESCRIPTION:

Deletion of the MPS time variable, the messaging LSAPs required for the time producer redundancy
management protocol to be operated, and stopping of this protocol.

INPUT PARAMETERS:

Ptr_Time_Identification: Pointer to a data structure of the FDM_GENERIC_TIME_REFERENCE type.

Description of type: FDM_GENERIC_TIME_REFERENCE: Inside FIP DEVICE MANAGER: not
manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-55

1.36 fdm_generic_time_set_priority()

SUMMARY:

This function enables the user to define the subscriber priority in the time producer election mechanism.

PROTOTYPE:

Unsigned short fdm_generic_time_set_priority

(FDM_GENERIC_TIME_REFERENCE *Ptr_Time_Identification,

GT_PRIORITY prio);

DESCRIPTION:

After initialisation, and before calling this function the priority is set to 0 (minimum).

To use this function, the compiling switch FDM_WITH_GT must be set to YES.

INPUT PARAMETERS:

Ptr_Time_Identification: Pointer to a data structure of the FDM_GENERIC_TIME_REFERENCE type.

Prio: Value of the priority to be set.

0 is the value for the minimum priority, 15 is the value for the maximum
priority.

Description of type: FDM_GENERIC_TIME_REFERENCE: Inside FIP DEVICE MANAGER: not
manipulated by the user.

Description of type: GT_PRIORITY: Typedef struct {unsigned Val: 4;} GT_PRIORITY.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

Page 3-56 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.37 fdm_generic_time_set_candidate_for_election()

SUMMARY:

This function enables the user to include or to exclude the subscriber in the procedure for managing redundancy
of the MPS time variable producers (ID 9802).

PROTOTYPE:

Unsigned short fdm_generic_time_set_candidate_for_election

(FDM_GENERIC_TIME_REFERENCE *Ptr_Time_Identification,

enum FDM_BOOLEAN Etat);

DESCRIPTION:

The subscriber is to be included in the procedure if Etat = FDM_TRUE, and to be excluded from the
procedure if Etat = FDM_FALSE

To use this function, the compiling switch FDM_WITH_GT must be set to YES.

INPUT PARAMETERS:

Ptr_Time_Identification: Pointer to a data structure of the FDM_GENERIC_TIME_REFERENCE type.

Etat: FDM_TRUE or FDM_FALSE

Description of type FDM_GENERIC_TIME_REFERENCE: Inside FIP DEVICE MANAGER: not
manipulated by the user.

REPORT:

This function produces a report as specified in Chapter 1 Subsection 4.2. of this document.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-57

1.38 fdm_mps_fifo_empty()

SUMMARY:

The user calls this function to activate FIP DEVICE MANAGER for processing the events regarding universal
read or write requests for MPS variables.

PROTOTYPE:

fdm_mps_fifo_empty

(FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function enables the user to find out the events received regarding universal read or write requests for MPS
variables by emptying the corresponding file. Activation of this procedure by the user leads to activation by the
FIP DEVICE MANAGER of the User_Signal_Var_xxx user procedure (xxx=cons or prod depending
on the case) provided it is done on configuration of the variable.

This function must be called after that the user–written function User_Signal_Mps_Aper() is called by FIP
DEVICE MANAGER.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF: Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

None.

Description of user interface primitives

Page 3-58 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.39 fdm_ba_load_macrocycle_fipconfb()
PROTOTYPE:

FDM_BA_REF * fdm_ba_load_macrocycle_fipconfb (

FDM_REF *Ptr_Network_Identification,

const unsigned short *Programme);

DESCRIPTION:

This function is for loading a Bus Arbitrator program presented in a format like that of the BA_BUILDER
output (automatic tool for building Bus Arbitrator program).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Programme: Pointer to a table of elements of the unsigned short type, with the BA

program output format written by BA_BUILDER.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function places either:

• a NULL_PTR pointer if it has not been able to run correctly. In this case the User_Signal_Warning()
function has been called at least once.

• or a pointer to an FDM_BA_REF type structure.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-59

1.40 fdm_ba_load_macrocycle_manual()

PROTOTYPE:

FDM_BA_REF * fdm_ba_load_macrocycle_manual(

FDM_REF *Ptr_Network_Identification,

Integer Nb_Of_Lists,

integer Nb_Of_Instructions,

unsigned short Label,

const PTR_LISTS *Ptr_Lists,

const PTR_INSTRUCTIONS *Ptr_Instructions);

DESCRIPTION:

This function is for loading a Bus Arbitrator program presented in a format which differs from that of the
BA_BUILDER output (automatic tool for building Bus Arbitrator program) but which is easy to manipulate
using C.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Label: Internal macrocycle label.
Nb_Of_Lists: Number of lists described.
Nb_Of_Instructions: Number of instructions described.
Ptr_Lists: Pointer to a data structure of the PTR_LISTS type, described above,

containing the sequences of identifiers to be circulated.
Ptr_instructions: Pointer to a data structure of the PTR_INSTRUCTIONS type,

described above, containing the sequences of instructions to be
executed.

Description of type: FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type: FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

Page 3-60 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Definition of types: PTR_LISTS et PTR_INSTRUCTIONS:

typedef struct {

unsigned short List_Size;

LIST_ELEMENT *Ptr_List_Element;

} PTR_LISTS

typedef struct {

unsigned short ID;

unsigned short Frame_Code;

} LIST_ELEMENT

typedef struct {

unsigned short Op_Code;

unsigned long Param1;

} PTR_INSTRUCTIONS

List_Size: Size in bytes of the described list;
Ptr_List_Element: Pointer to the list of identifiers.
ID: Value of the identifier concerned. Only the packing identifier

cannot be used (value = 9080H).
Frame_Code: Used to indicate with which type of frame the identifier is to be

circulated, and which are the aperiodic requests which can be
processed by the Bus Arbitrator:

03 H: ID-DAT
05 H: ID-MSG

Op_Code: Code of the Bus Arbitrator program instruction which must be
chosen from the following :

2: NEXT_MACRO: Macrocycle re-looping.
4: SEND_MSG: Opening of aperiodic messaging

window.
5: SEND_APER: Opening of aperiodic MPS

variable window.
6: BA_WAIT: Internal synchronisation waiting

window.
100: SEND_LIST: Periodic processing.
103: TEST_P: Test of subscribers present.
104: SYN_WAIT: External synchronisation waiting

window with stuffing.
105 SYN_WAIT_SILENT External synchronisation waiting

window without stuffing.
This instruction must be used
with caution because of
potential BA election problems.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-61

Param 1: Significance dependent on Op_Code parameter
SEND_LIST: Number of the list (i.e.: index in the list array).
NEXT_MACRO, END_BA, TEST_P,: Param1 = 0.
SEND_MSG: End time in relation to beginning of

macrocycle (Time 0) of the aperiodic
messaging window which is going to be
opened (in microseconds).

SEND_APER: End time in relation to beginning of
macrocycle (Time 0) of the MPS aperiodic
window which is going to be opened (in
microseconds).

BA_WAIT: Internal sync time in relation to beginning of
macrocycle (Time 0) (in microseconds).

SYN_WAIT_SILENT: Time of end of external sync time-out in
relation to beginning of macrocycle (Time 0)
in microseconds.

SYN_WAIT: Time of end of external sync time-out in
relation to beginning of macrocycle (Time 0)
in microseconds.

Ptr_list_Elément

List_size

Ptr_list_Elément

List_size

Frame_Code

ID

Frame_Code

ID

Frame_Code

ID

Frame_Code

ID

Ptr_Lists

Ptr_Intructions

Param 1

Op_Code

Param 1

Op_Code

Description of user interface primitives

Page 3-62 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

REPORT:

This function places either:

• a NULL_PTR pointer if it has not been able to run correctly. In this case the User_Signal_Warning()
function has been called at least once.

• or a pointer to an FDM_BA_REF type structure.

EXAMPLE

const LIST_ELEMENT L0 [] = {
0xE001,ID_DAT

};
const LIST_ELEMENT L1 [] = {

0x9802, ID_DAT,

0x0010, ID_DAT,

0x0012, ID_DAT,

0x0013, ID_DAT,

0x0014, ID_DAT,

0x0100, ID_DAT,

0x0101, ID_DAT,

};
const LIST_ELEMENT L2 [] = {

0x1301, ID_MSG,

0x1302, ID_MSG,

0x1303, ID_MSG,

0x1304, ID_MSG,

0x1305, ID_MSG,

0x1306, ID_MSG,

0x1307, ID_MSG,

0x1308, ID_MSG,

0x1309, ID_MSG,

0x130a, ID_MSG,

0x130b, ID_MSG,

0x130c, ID_MSG,

0x130d, ID_MSG,

0x130e, ID_MSG,

0x130f, ID_MSG,

0x1300, ID_MSG,

};

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-63

PTR_LISTS Listes_BA [] = {
(Ushort)sizeof(L0), (LIST_ELEMENT*)L0,

(Ushort)sizeof(L1), (LIST_ELEMENT*)L1,

(Ushort)sizeof(L2), (LIST_ELEMENT*)L2,

};
Const PTR_INSTRUCTIONS Prg_BA_A [] = {

SEND_LIST, 0,

BA_WAIT, 5000,

SEND_LIST, 1,

SEND_LIST, 2,

TEST_P, 0,

SEND_APER, 200000,

SEND_MSG, 200000,

BA_WAIT, 200000,

NEXT_MACRO, 0

};
FDM_BA_REF * MON_BA;

FDM_REF * MON_RESEAU;

MON_BA = fdm_ba_load_macrocycle_manual (

Mon_Reseau,

3,

10,

0,

&Listes_BA,

&Prg_BA_A);

Description of user interface primitives

Page 3-64 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.41 fdm_ba_delete_macrocycle()

SUMMARY:

Function for deleting a macrocycle.

PROTOTYPE:

unsigned short fdm_ba_delete_macrocycle(

FDM_BA_REF *Ptr_BA);

DESCRIPTION:

This function is for removing a macrocycle from the FULLFIP2/FIPCODE database regardless of how it was
loaded.

INPUT PARAMETERS:

Ptr_BA: Pointer to a data structure of the FDM_BA_REF type.

Description of type FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-65

1.42 fdm_ba_set_priority()

SUMMARY:

Function for modifying the priority of a potential Bus Arbitrator.

PROTOTYPE:

unsigned short fdm_ba_set_priority (

FDM_REF *Ptr_Network_Identification,

unsigned char Priority_Level);

DESCRIPTION:

This function makes it possible to modify the priority of a potential Bus Arbitrator.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Priority_Level: Priority level of the Bus Arbitrator between [0..15], 0 being the

highest priority.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

Page 3-66 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.43 fdm_ba_set_parameters()

SUMMARY:

Function for modifying the time-outs used for the calculation of election and start-up of a Bus Arbitrator.

PROTOTYPE:

unsigned short fdm_ba_set_parameters (

FDM_REF *Ptr_Network_Identification,

enum _BA_SET_MODE,

unsigned char MAX_Subscriber,

unsigned char MAX_Priority);

DESCRIPTION:

This function makes it possible to modify the time-outs of a potential Bus Arbitrator.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
_BA_SET_MODE: This parameter is used for the calculation of Start-up Time-out and

Election Time-out used for the startup of a BA. You can enter one of
the following values: STANDARD, OPTIMIZE_1, OPTIMIZE_2,
OPTIMIZE_3. To understand the impact of these values in the
calculation of the time-outs, see Chapter 2, Subsection 1.4.3.

Note

• STANDARD corresponds to the calculation of the time-outs in
compliance with the WorldFIP standard.

• OPTIMIZE_3: this option can be used only in the case of a single-
medium network typology.

Max_Subscriber: Max. value of physical addresses used by subscribers present on the
network (to optimise the calculation of BA time-outs): [0..255].

Max_Priority: Max. value of the priority of BAs present on the network used (to
optimise the calculation of BA time-outs): [0..15].

Description of type FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-67

1.44 fdm_ba_start()

SUMMARY:

Function for starting up a potential Bus Arbitrator.

PROTOTYPE:

unsigned short fdm_ba_start (FDM_BA_REF *Ptr_Ba);

DESCRIPTION:

This function enables a potential Bus Arbitrator to be started up, for which a program has already been loaded. If
necessary, it will become the active Bus Arbitrator, but only after the Bus Arbitrator election procedure has
acted.

INPUT PARAMETERS:

Ptr_Ba: Pointer to a data structure of the FDM_BA_REF type.

Description of type: FDM_BA_REF: Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

Page 3-68 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.45 fdm_ba_stop()

SUMMARY:

Function for shutting down a potential Bus Arbitrator.

PROTOTYPE:

unsigned short fdm_ba_stop (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function makes it possible to request the shutdown of the Bus Arbitrator function. This shutdown will be
effective as soon as a new BA program instruction is processed.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-69

1.46 fdm_ba_status()

SUMMARY:

Function for obtaining the state of a potential Bus Arbitrator.

PROTOTYPE:

unsigned short fdm_ba_status

(FDM_REF *Ptr_Network_Identification,

BA_INF_STATUS *Ptr_BA_Status);

DESCRIPTION:

This function makes it possible to find out the operating state of the Bus Arbitrator functionality of the station.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Ptr_BA_Status: Pointer to a data structure of the BA_INF_STATUS type specified

previously and containing the state of the BA function as well as the
label of the program underway if running.

Description of type: FDM_BA_REF: Inside FIP DEVICE MANAGER: not manipulated by the user.

Definition of type BA_INF_STATUS

typedef struct {

enum _BA_INF Actif_Running;
unsigned short Status_Fiphandler;
unsigned short Label;

} BA_INF_STATUS

Actif_Running: Overall status of the BA
NOT_BA: The subscriber is not a potential BA, or the subscriber is a potential BA

but the BA function is not running.
LOADED_BA: The BA program is loaded.
ACTIVE: The BA function is in the BA_STARTING or BA_IDLE or

BA_STOPPED mode.
RUNNING: The BA function is in the BA_SENDING, BA_PENDING,

BA_WAIT_TIME, BA_WAIT_SYNC,BA_WAIT_SYNC_SILENT,
BA_MSG_WINDOW or BA_APER_WINDOW mode.

Description of user interface primitives

Page 3-70 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Status_Fiphandler: Detailed status of the BA.
BA_SENDING: Periodic window.
BA_STOPPED: Stopped.
BA_STARTING: Starting up.
BA_IDLE: Waiting for election.
BA_MSG_WINDOW: Aperiodic messaging window.
BA_APER_WINDOW: Aperiodic MPS window.
BA_WAIT_TIME: Waiting for internal synchronisation.
BA_WAIT_SYNC: Waiting for external synchronisation without stuffing on the line.
BA_WAIT_SYNC_SILENT Waiting for external synchronisation with stuffing on the line
BA_PENDING: Waiting for external synchronisation (TEST_P).

Label: Label (name) of the program running.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-71

1.47 fdm_ba_commute_macrocycle()

SUMMARY:

Function for changing macrocycle.

PROTOTYPE:

unsigned short fdm_ba_commute_macrocycle (

FDM_BA_REF *Ptr_BA);

DESCRIPTION:

This function makes it possible to change the macrocycle to be run by the local Bus Arbitrator whether active or
idle.

INPUT PARAMETERS:

Ptr_BA: Pointer to a data structure of the FDM_BA_REF type.

Description of type FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

Page 3-72 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.48 fdm_ba_external_resync()
PROTOTYPE:

unsigned short fdm_ba_external_resync (

(FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function is for sending the Bus Arbitrator functionality an external resynchronisation order.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

Only if operating in conventional access. In the case of free access, the
function is implemented with a hardware device.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-73

1.49 fdm_ba_loaded()
PROTOTYPE:

int fdm_ba_loaded (FDM_BA_REF *Ptr_BA,);

DESCRIPTION:

This function makes it possible to find out if a Bus Arbitrator program is loaded.

INPUT PARAMETERS:

Ptr_BA: Pointer to a data structure of the FDM_BA_REF type .

Description of type FDM_BA_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function produces one of the following reports:

BA_LOADED: BA program loaded

BA_NOT_LOADED: No BA program loaded

Description of user interface primitives

Page 3-74 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.50 fdm_read_present_list()

SUMMARY:

Read function of the list of equipment present.

PROTOTYPE:

unsigned short fdm_read_present_list (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function is for the SM_MPS ”list of equipment present” variable read request.

When FIP DEVICE MANAGER will receive the variable, it will call the User_Present_List_Prog()
function. This function is a user-written function given in the configuration parameter
(FDM_CONFIGURATION_SOFT in the fdm_Initialize_Network() function).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The BA program should contain at least one TEST_P instruction.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-75

1.51 fdm_read_presence()

SUMMARY:

Read function of the presence variable of a subscriber.

PROTOTYPE:

unsigned short fdm_read_presence (

FDM_REF *Ptr_Network_Identification,

unsigned char Subscriber);

DESCRIPTION:

This function is for requesting the subscriber presence SM_MPS variable read (including itself). This is carried
out by means of an aperiodic request regarding the variable in question.

When FIP DEVICE MANAGER will receive the variable, it will call the User_Presence_Prog() function.
This function is a user-written function given in the configuration parameter (FDM_CONFIGURATION_SOFT in
the fdm_Initialize_Network() function)

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Subscriber: Physical address on the network of the subscriber whose presence

variable is to be read.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The BA program should contain an aperiodic window (instruction
SEND_APER).

Description of user interface primitives

Page 3-76 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.52 fdm_read_identification()

SUMMARY:

Read function of the subscriber identification variable.

PROTOTYPE:

unsigned short fdm_read_identification (

FDM_REF *Ptr_Network_Identification,

unsigned char Subscriber);

DESCRIPTION:

This function is for requesting the subscriber identification SM_MPS variable read (including itself). This is
carried out by means of an aperiodic request regarding the variable in question.

When FIP DEVICE MANAGER will receive the variable, it will call the User_Identification_Prog()
function. This function is a user-written function given in the configuration parameter
(FDM_CONFIGURATION_SOFT in the fdm_Initialize_Network() function).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Subscriber: Physical address on the network of the subscriber whose

identification variable is to be read.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The BA program should contain an aperiodic window (instruction
SEND_APER).

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-77

1.53 fdm_read_report()

SUMMARY:

Read function of the subscriber report variable.

PROTOTYPE:

unsigned short fdm_read_report (

FDM_REF *Ptr_Network_Identification,

unsigned char Subscriber);

DESCRIPTION:

This function is for requesting the subscriber report SM_MPS variable read (including itself). This is carried out
by means of an aperiodic request regarding the variable in question.

When FIP DEVICE MANAGER will receive the variable, it will call the User_Report_Prog() function.
This function is a user-written function given in the configuration parameter (FDM_CONFIGURATION_SOFT in
the fdm_Initialize_Network() function).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Subscriber: Physical address on the network of the subscriber whose report

variable is to be read.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The BA program should contain an aperiodic window (instruction
SEND_APER).

Description of user interface primitives

Page 3-78 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.54 fdm_read_ba_synchronize()

SUMMARY:

Read function of the BA sync variable.

PROTOTYPE:

unsigned short fdm_read_ba_synchronize(FDM_REF *
Ptr_Network_Identification);

DESCRIPTION:

This function is for requesting the BA synchronisation SM_MPS variable read. This is carried out by means of
an aperiodic request regarding the variable in question. The active Bus Arbitrator produces this variable.

When FIP DEVICE MANAGER will receive the variable, it will call the User_Synchro_BA_Prog()
function. This function is a user-written function given in the configuration parameter
(FDM_CONFIGURATION_SOFT in the fdm_Initialize_Network() function).

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER not manipulated by the user.

REPORT:

This function produces a report as specified by the primitive fdm_stop_network().

Note

The BA program should contain an aperiodic window (instruction
SEND_APER).

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-79

1.55 fdm_get_local_report()

SUMMARY:

Local report variable read.

PROTOTYPE:

unsigned short fdm_get_local_report (

FDM_REF * Ptr_Network_Identification)

FDM_REPORT_VAR * Ptr_Report_Var);

DESCRIPTION:

This function enables the user to read the local report variable (i.e. from itself). No traffic is generated on the
network. The value is obtained immediately.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Ptr_Report_Var: Pointer to a data structure of the FDM_REPORT_VAR type in which

the value of the report variable read will be stored.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER not manipulated by the user.

Description of type FDM_REPORT_VAR:

See the primitive fdm_initialize_network().

REPORT:

This function produces a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

Page 3-80 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.56 fdm_smmps_fifo_empty()

SUMMARY:

Function for emptying the event file regarding SM_MPS requests.

PROTOTYPE:

fdm_smmps_fifo_empty (

FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function enables the user to find out about received events regarding SM_MPS variable read requests by
emptying the corresponding queue. When the user activates the procedure, the FIP DEVICE MANAGER
activates the User_yyy_prog user procedure (yyy=Present_list or Presence or
Identification or Report or Synchro_BA depending on the case) provided to do this on
configuration of the variable.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

None

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-81

1.57 fdm_messaging_fullduplex_create()

SUMMARY:

Creation of a full duplex messaging context.

PROTOTYPE:

FDM_MESSAGING_REF * fdm_messaging_fullduplex_create(

FDM_REF *Ptr_Network_Identification,

FDM_MESSAGING_FULLDUPLEX *Messaging_Fullduplex);

DESCRIPTION:

This function enables a full-duplex messaging context to be created which can be used in transmission and
reception mode.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Messaging_Fullduplex: Pointer to a data structure of the

FDM_MESSAGING_FULLDUPLEX type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type FDM_MESSAGING_FULLDUPLEX:

typedef struct {

enum _FDM_MSG_IMAGE Position;

struct {

void (*User_Msg_Ack) (FDM_MESSAGING_REF*, FDM_MSG_TO_SEND*);

void *User_Qid;

void *User_Ctxt;

unsigned short Channel_Nr;

} sending;

struct {

void (*User_Msg_Rec_Proc)(FDM_MESSAGING_REF*, FDM_MSG_RECEIVED *);

void *User_Qid;

void *User_Ctxt;

int Number_Of_Msg_Desc;

int Number_Of_Msg_Block;

} receiving;

unsigned long Local_DLL_Address;

unsigned long Remote_DLL_Address;

} FDM_MESSAGING_FULLDUPLEX;

Description of user interface primitives

Page 3-82 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Position: _FDM_MSG_IMAGE_1: The messaging context created can only be
used if the AE/LEs are operating in Image 1.

_FDM_MSG_IMAGE_2: The messaging context created can only be
used if the AE/LEs are operating in Image 2.

_FDM_MSG_IMAGE_1_2: The messaging context created can be used
whether the AE/LEs are operating in Image 1
or Image 2.

User_Msg_Ack: Pointer to the user function which will be called by the FIP DEVICE
MANAGER to send the user the transmission acknowledgement or the time-
out if necessary.

User_Qid: Pointer retransmitted to the user for his private use.
User_Ctxt: Pointer retransmitted to the user for his private use.
Channel_Nr: Transmission channel number to be used.
User_Msg_Rec_Proc: Pointer to the user function that will be called by FIP DEVICE MANAGER to

send the user a message received in this context.
Number_Of_Msg_Desc: Number of message descriptors received (of the FDM_MSG_RECEIVED type

specified below) which can be used to receive messages with the same
destination address as that specified below.

Number_Of_Msg_Block: Number of message blocks received (of the FDM_MSG_R_DESC type
specified below) which can be used to receive messages with the same
destination address as that specified below.

Local_DLL_Address: If in transmission mode, then it is the source address of the message
transmitted.
If in reception mode, then it is the destination address of the message received.

31 0

Segment
Most

significant byte
 of the LSAP

Least
significant byte

of the LSAP

Remote_DLL_Address: If in reception mode then it is the source address of the message received.
If in transmission mode, then it is the destination address of the message
transmitted:

31 0

Segment
Most

significant byte
of the LSAP

Least
significant byte

of the LSAP

If bit 31= 1: Remote_DLL_Address is unknown (in general used for
broadcast : transmission for all the stations and reception from all
the stations).

If bit 31= 0: Remote_DLL_Address is known, i.e. a message is received
only if Local_DLL_Address and Remote_DLL_Address
correspond to the address field of this message.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-83

Note

It is forbidden to configure the station as a bridge (at least 2 networks) in full-
duplex mode. A station can be configured as a bridge only in half-duplex
mode (see functions fdm_messaging_to_send_create and
fdm_messaging_to_rec_create).

Description of type FDM_MSG_TO_SEND:

typedef struct _FDM_MSG_TO_SEND{

struct_FDM_MSG_TO_SEND *Next;

struct_FDM_MSG_TO_SEND *Prev;

integer Nr_Of_Blocks;

FDM_MSG_T_DESC *Ptr_Block;

Unsigned long Local_DLL_Address

unsigned long Remote_DLL_Address;

FDM_MSG_SEND_SERVICE_REPORT Service_Report;

FDM_PRIVATE_DLI_T Fdm_Msg_T_Private;

} FDM_MSG_TO_SEND;

Next: Pointer of concatenation on another data structure of the
same type (front concatenation).

Prev: Pointer of concatenation on another data structure of the
same type (back concatenation).

Nr_Of_Blocks: Number of FDM_MSG_T_DESC type blocks that make up
the message to be transmitted.

Ptr_Block: Pointer to the first block of the FDM_MSG_T_DESC type
which contains the message to be transmitted.

Local_DLL_Address:

Remote_DLL_Address: Same definition as for the Local_DLL_Address
parameter (above).

Service_Report: Message transmission report given by the FIP DEVICE
MANAGER when the user procedure intended to
acknowledge it, and the reference which is given by the
aforementioned User_Msg_Ack_Proc parameter, is
called. The parameter of this user procedure is a pointer to a
data structure of the FDM_MSG_TO_SEND type: the same
as that used for transmission.

Fdm_Msg_T_Private: Data structure in the FDM_PRIVATE_DLI_T format
which only the FIP DEVICE MANAGER can use.

Description of user interface primitives

Page 3-84 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Description of type: FDM_MSG_T_DESC

typedef struct _FDM_MSG_T_DESC{

integer Nr_Of_Bytes;

unsigned char *Ptr_Data;

struct _FDM_MSG_T_DESC *Next_Block;

} FDM_MSG_T_DESC;

Nr_Of_Bytes: Number of bytes contained in the block pointed to by
Ptr_Data.

Ptr_Data: Pointer to the zone containing data.
Next_Block: Pointer to the following block of the same type.

Description of type FDM_MSG_SEND_SERVICE_REPORT:

typedef struct {

enum _FDM_MSG_SND_CNF Valid;

enum _FDM_MSG_USER_ERROR_LIST msg_user_soft_report;

enum _FIP_MSG_SND_REP Way;

};

enum _FDM_MSG_SND_CNF {

_FDM_MSG_SEND_OK = 0,

_FDM_MSG_USER_ERROR,

_FDM_DATA_LINK_ERROR

};

_FDM_MSG_SEND_OK No error indication.

_FDM_MSG_USER_ERROR The error type is indicated in the _FDM_MSG_USER_ERROR_LIST
field.

_FDM_DATA_LINK_ERROR The error type is indicated in the _FIP_MSG_SND_REP field.

enum _FDM_MSG_USER_ERROR_LIST {

_FDM_MSG_REPORT_OK = 0,

_FDM_MSG_REPORT_MSG_NOT_ALLOWED,

_FDM_MSG_REPORT_CHANNEL_NOT_ALLOWED,

_FDM_MSG_REPORT_ERR_LG_MSG,

_FDM_MSG_REPORT_ERR_MSG_INFOS,

_FDM_MSG_REPORT_INTERNAL_ERROR

};

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-85

_FDM_MSG_REPORT_OK No indication of an error of this type.

_FDM_MSG_REPORT_MSG_NOT_ALLOWED Transmission has been requested during operation on
image 2.

_FDM_MSG_REPORT_CHANNEL_NOT_ALLOWED Channel on which transmission took place does not
exist.

_FDM_MSG_REPORT_ERR_LG_MSG Message size error: = 0 or > 256.

_FDM_MSG_REPORT_ERR_MSG_INFOS FDM_MSG_TO_SEND.Nr_Of_Blocks = 0 or
FDM_MSG_TO_SEND.Ptr_Blocks = NULL.

_FDM_MSG_REPORT_INTERNAL_ERROR Problem of access to component: User_Signal_Warning
called to provide details.

enum _FIP_MSG_SND_REP {

_FIP_NOACK_BAD_RP_MSG = 0x4,

_FIP_ACK_NO_REC_AFTER_RETRY = 0x2,

_FIP_ACK_NEG_AFTER_RETRY = 0x5,

_FIP_ACK_NEG_NO_RETRY = 0x7,

_FDM_TIME_OUT = 0x8

};

_FIP_NOACK_BAD_RP_MSG Message transmission error if messaging not
acknowledged.

_FIP_ACK_NO_REC_AFTER_RETRY No acknowledgement after retry.

_FIP_ACK_NEG_AFTER_RETRY Negative acknowledgement after retry.

_FIP_ACK_NEG_NO_RETRY Negative acknowledgement with no retry.

_FDM_TIME_OUT Time-out waiting to be transmitted.

Description of type FDM_PRIVATE_DLI_T:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

Page 3-86 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Description of type: FDM_MSG_RECEIVED

typedef struct _FDM_MSG_RECEIVED{

struct _FDM_MSG_RECEIVED *Next;

struct _FDM_MSG_RECEIVED *Prev;

Integer Nr_Of_Blocks

FDM_MSG_R_DESC *Ptr_Block;

unsigned long Local_DLL_Address;

unsigned long Remote_DLL_Address;

Void *User_Qid;

Void *User_Ctxt;

FDM_MESSAGING_REF *Ref;

} FDM_MSG_RECEIVED;

Next: Pointer for concatenation to another data structure of the
same type (front concatenation).

Prev: Pointer for concatenation to another data structure of the
same type (back concatenation).

Nr_Of_Blocks: Number of FDM_MSG_R_DESC type blocks used to store
the received message, (Always equal to 1 in the case of
FIP DEVICE MANAGER).

User_Qid et User_Ctxt: Pointers retransmitted to the user for his private use.
They are those which were given on creation of the context.
Optional user information.

Local_DLL_Address:

Remote_DLL_Address: See Local_DLL_Addresses.

This field is used when Bit 31 of the Remote_DLL_Address field, of the context on which the message is
received, has been initialised at 1 (Remote_DLL_Address unknown).

Ref: Reference of the context on which the message was
received. Can be used to transmit a response if the context
in question is of the FDM_MESSAGING_FULLDUPLEX
type.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-87

Description of type: FDM_MSG_R_DESC

typedef struct _FDM_MSG_R_DESC{

integer Nr_Of_Bytes;

unsigned char *Ptr_Data;

struct _FDM_MSG_R_DESC *Next_Block;

unsigned char Data_Buffer[256];

} FDM_MSG_R_DESC;

Nr_Of_Bytes: Number of significant bytes contained in the Data_Buffer
block.

Ptr_Data: Pointer to the Data_Buffer block containing the data.
Next_Block: Pointer to the next block of the same type: is always

NULL_PTR in the case of FIP DEVICE MANAGER.
Data_Buffer: Zone intended to hold the received messages.

REPORT:

This function produces either:

• a NULL_PTR pointer if it has not been able to run correctly, in which case the
User_Signal_Warning() function has been called at least once,

• or a pointer to an FDM_MESSAGING_REF type structure.

Description of type FDM_MESSAGING_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

Page 3-88 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.58 fdm_messaging_to_send_create()

SUMMARY:

PROTOTYPE:

FDM_MESSAGING_REF * fdm_messaging_to_send_create(

FDM_REF *Ptr_Network_Identification,

FDM_MESSAGING_TO_SEND *Messaging_To_Send);

DESCRIPTION:

This function is for creating a messaging context that can be used in transmission mode.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Messaging_To_Send: Pointer to a data structure of the

FDM_MESSAGING_TO_SEND type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type FDM_MESSAGING_TO_SEND:

typedef struct

enum _FDM_MSG_IMAGE Position;

struct {

void (*User_Msg_Ack)(FDM_MESSAGING_REF*, FDM_MSG_TO_SEND*);

void *User_Qid;

void *User_Ctxt;

unsigned short Channel_Nr;

} sending;

unsigned long Local_DLL_Address;

unsigned long Remote_DLL_Address;

} FDM_MESSAGING_TO_SEND;

Position: _FDM_MSG_IMAGE_1: The messaging context created can only be used if the AE/LEs are
operating in Image 1

_FDM_MSG_IMAGE_2: The messaging context created can only be used if the AE/LEs are
operating in Image 2

_FDM_MSG_IMAGE_1_2: The messaging context created can be used whether the AE/LEs
are operating in Image 1 or Image 2.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-89

User_Msg_Ack: Pointer to the user function which will be called by the FIP DEVICE
MANAGER to send the user the transmission acknowledgement or the time-out
if necessary.

User_Qid: Pointer retransmitted to the user for his private use.
User_Ctxt: Pointer retransmitted to the user for his private use.
Channel_Nr: Transmission channel number to be used.
Local_DLL_Address: Source address of the message transmitted.

30 0

Segment
Most

significant byte
 of the LSAP

Least
significant byte

of the LSAP

Note

If you write an application that plays the role of a bridge (at least 2
networks - see the subsection 1.6.4 of Chapter 2) then you have to set:

• bit 30 = 1,

• Segment byte = segment number of the source address,

• the 2 bytes describing the LSAP = any value.

Remote_DLL_Address: destination address of the message transmitted:

31 0

Segment
Most

significant byte
of the LSAP

Least
significant byte

of the LSAP

If bit 31= 1: Remote_DLL_Address is unknown (in general used for
broadcast : transmission for all the stations)

If bit 31= 0: Remote_DLL_Address is known

Note

If you write an application that plays the role of a bridge (at least 2 networks)
then you have to set:

• bit 31 = 1,

• the Segment byte and the 2 bytes describing the LSAP = any value.

Description of type FDM_MSG_TO_SEND:

See the primitive fdm_messaging_fullduplex_create().

Description of user interface primitives

Page 3-90 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

REPORT:

This function produces either:

• a NULL_PTR pointer if it has not been able to run correctly. In this case the User_Signal_Warning()
function has been called at least once,

• or a pointer to an FDM_MESSAGING_REF type structure.

Description of type FDM_MESSAGING_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-91

1.59 fdm_messaging_to_rec_create()
PROTOTYPE:

FDM_MESSAGING_REF * fdm_messaging_to_rec_create(

FDM_REF *Ptr_Network_Identification,

FDM_MESSAGING_TO_REC *Messaging_To_Rec);

DESCRIPTION:

This function is for creating a messaging context that can be used in reception mode.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Messaging_To_Rec: Pointer to a data structure of the

FDM_MESSAGING_TO_REC type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type FDM_MESSAGING_TO_REC:

typedef struct

enum _FMD_MSG_IMAGE Position,;

struct {

void (*User_Msg_Rec_Proc)(FDM_MESSAGING_REF*, FDM_MSG_RECEIVED*);

void *User_Qid;

void *User_Ctxt;

integer Number_Of_Msg_Desc;

integer Number_Of_Msg_Block;

} receiving;

unsigned long Local_DLL_Address;

unsigned long Remote_DLL_Address;

} FDM_MESSAGING_TO_REC;

Position: _FDM_MSG_IMAGE_1: The messaging context created can only be used if the AE/LEs are
operating in Image 1.

_FDM_MSG_IMAGE_2: The messaging context created can only be used if the AE/LEs are
operating in Image 2.

_FDM_MSG_IMAGE_1_2: The messaging context created can be used whether the AE/LEs
are operating in Image 1 or Image 2.

Description of user interface primitives

Page 3-92 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

User_Msg_Rec_Proc: Pointer to the user function that will be called by FIP DEVICE MANAGER to
send the user a message received in this context.

User_Qid: Pointer retransmitted to the user for his private use.
User_Ctxt: Pointer retransmitted to the user for his private use
Number_Of_Msg_Desc: Number of message descriptors received (of the FDM_MSG_RECEIVED type -

see fdm_messaging_fullduplex_create) which can be used to receive messages
with the same destination address as that specified below.

Number_Of_Msg_Block: Number of message blocks received (of the FDM_MSG_R_DESC type - see
fdm_messaging_fullduplex_create) which can be used to receive messages with
the same destination address as that specified below.

Local_DLL_Address: destination address of the message received.

30 0

Segment
Most

significant byte
 of the LSAP

Least
significant byte
of the LSAP

Note

If you write an application that plays the role of a bridge (at least
2 networks - see Chapter 2, Subsection 1.6.4) then you have to set:

• bit 30 = 1,

• Segment byte = segment number of the destination address,

• the 2 bytes describing the LSAP = any value.

Remote_DLL_Address: source address of the message received.

31 0

Segment
Most

significant byte
of the LSAP

Least
significant byte

of the LSAP

If bit 31= 1: Remote_DLL_Address is unknown (in general used for
broadcast: reception from all the stations).

If bit 31= 0: Remote_DLL_Address is known, i.e. a message is received
only if Local_DLL_Address and Remote_DLL_Address
correspond to the address field of this message.

Note

If you write an application that plays the role of a bridge (at least 2 networks)
then you have to set:

• bit 31 = 1,

• the Segment byte and the 2 bytes describing the LSAP = any value.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-93

Description of type: FDM_MSG_RECEIVED

See the primitive fdm_messaging_fullduplex_create().

REPORT:

This function produces either:

• a NULL_PTR pointer if it has not been able to run correctly. In this case the User_Signal_Warning()
function has been called at least once,

• or a pointer to an FDM_MESSAGING_REF type structure.

Description of type FDM_MESSAGING_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of user interface primitives

Page 3-94 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.60 fdm_messaging_delete()
PROTOTYPE:

unsigned short fdm_messaging_delete (

FDM_MESSAGING_REF *Ptr_Messaging);

DESCRIPTION:

This function deletes a messaging context.

INPUT PARAMETERS:

Ptr_Messaging: Pointer to the messaging context to be deleted.

Description of type FDM_MESSAGING_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-95

1.61 fdm_channel_create()

SUMMARY:

Creation of a periodic messaging channel.

PROTOTYPE:

unsigned short fdm_channel_create (

FDM_REF *Ptr_Network_Identification,

FDM_CHANNEL_PARAM *Ptr_Channel);

DESCRIPTION:

This function is for creating a periodic messaging channel. Eight periodic messaging channels numbered from
1 to 8 can be selected.

When the station receives an ID_MSG frame with an identifier corresponding to a produced variable intended to
support a periodic channel, it takes the message to be transmitted from the queue associated with this channel.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Ptr_Channel: Pointer to a data structure of the FDM_CHANNEL_PARAM type

specified above and containing the transmission channel
configuration parameters to be created.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type: FDM_CHANNEL_PARAM

typedef struct {

enum _FDM_MSG_IMAGE Position

unsigned short Channel_Nr;

unsigned short Identifier;

} FDM_CHANNEL_PARAM;

Position: FDM_MSG_IMAGE_1 or FDM_MSG_IMAGE_2 or
FDM_MSG_IMAGE_1_AND_2

Identifier: Identifier corresponds to a produced variable intended to
support the transmission channel. If this identifier does not exist
in any AE/LE it is automatically created with the produced
attribute.

Channel_Nr: Periodic messaging channel number.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

Page 3-96 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.62 fdm_channel_delete()

SUMMARY:

Deleting a periodic messaging channel.

PROTOTYPE:

unsigned short fdm_channel_delete (

FDM_REF *Ptr_Network_Identification,

unsigned short Channel_Nr);

DESCRIPTION:

This function is for deleting a periodic messaging channel.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.
Channel_Nr: See the fdm_channel_create()primitive.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-97

1.63 fdm_send_message()

SUMMARY:

Request to transmit a message.

PROTOTYPE:

unsigned short fdm_send_message (

FDM_MESSAGING_REF *Ptr_Messaging,

FDM_MSG_TO_SEND *Ptr_Msg_To_Send);

DESCRIPTION:

This function makes it possible to request the transmission of a message on a messaging context which has
already been configured for this purpose.

INPUT PARAMETERS:

Ptr_Messaging: Pointer to a data structure of the FDM_MESSAGING_REF type.
Ptr_Msg_To_Send: Pointer to a data structure of the FDM_MSG_TO_SEND type specified by the

primitive fdm_messaging_fullduplex_create() and containing the
transmission parameters of the message, as well as the reference to the message
itself.

Description of type FDM_MESSAGING_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

Description of type: FDM_MSG_TO_SEND:

See the primitive fdm_messaging_fullduplex_create().

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

In the case of a 5 Mbits/s network, the user message should be greater than
4 bytes.

Description of user interface primitives

Page 3-98 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.64 fdm_msg_send_fifo_empty()

SUMMARY:

Activation of processing of message in transmission mode.

PROTOTYPE:

void fdm_msg_send_fifo_empty

(FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function enables the user to:

• activate the effective transmission of a message, the request for which has been sent by the
fdm_send_message() primitive.

• find out about received events regarding acknowledgement of messages, the transmission of which has been
requested by the fdm_send_message()primitive (line acquired or time-out).

In the second case, when the user activates this procedure, the FIP DEVICE MANAGER activates the
User_Msg_Ack() user procedure, provided for this purpose on configuration of the messaging context on
which the message is sent.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

Description of type FDM_REF:

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

None.

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-99

1.65 fdm_msg_rec_fifo_empty()

SUMMARY:

Activation of processing of message in reception mode.

PROTOTYPE:

void fdm_msg_rec_fifo_empty

(FDM_REF *Ptr_Network_Identification);

DESCRIPTION:

This function enables the user to find out about received messages after their reception has been acknowledged.

When the user activates this procedure, the FIP DEVICE MANAGER activates the User_Msg_Rec_Proc()
user procedure, provided for this purpose on configuration of the messaging context on which the message was
received.

INPUT PARAMETERS:

Ptr_Network_Identification: Pointer to a data structure of the FDM_REF type.

REPORT:

None.

Description of user interface primitives

Page 3-100 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.66 fdm_msg_ref_buffer_free()

PROTOTYPE:

unsigned short fdm_msg_ref_buffer_free (

FDM_MSG_RECEIVED *Ptr_Msg_Received);

DESCRIPTION:

This function enables the FIP DEVICE MANAGER to free the memory zone that contains a received message
descriptor, once it is no longer in use.

INPUT PARAMETERS:

Ptr_Msg_Received: Pointer to a data structure of the FDM_MSG_RECEIVED type.

Description of type FDM_MSG_RECEIVED:

See the primitive fdm_messaging_fullduplex_create().

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The freeing operations must be carried out in the following order:

1. fdm_msg_data_buffer_free()

2. fdm_msg_ref_buffer_free()

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-101

1.67 fdm_msg_data_buffer_free()

PROTOTYPE:

unsigned short fdm_msg_data_buffer_free (

FDM_MSG_R_DESC *Ptr_Block);

DESCRIPTION:

This function enables the FIP DEVICE MANAGER to free the memory zone that contains a received message,
once it is no longer in use.

INPUT PARAMETERS:

Ptr_Block: Pointer to a data structure of the FDM_MSG_R_DESC type.

Description of type FDM_MSG_R_DESC:

See the primitive fdm_messaging_full_duplex_create().

REPORT:

This function submits a report as specified by the primitive fdm_stop_network().

Note

The freeing operations must be carried out in the following order:

1. fdm_msg_data_buffer_free()

2. fdm_msg_ref_buffer_free()

Description of user interface primitives

Page 3-102 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.68 fdm_change_messaging_acknowledge_type()

SUMMARY:

Function for modifying the type of messaging used in transmission mode (with or without acknowledgement).

PROTOTYPE:

unsigned short fdm_change_messaging_acknowledge_type(

FDM_MESSAGING_REF* Ptr_Messaging,

enum _FDM_MSG_ACK_TYPE

(*User_Msg_Ack_Type) (struct _FDM_REF*, Unsigned Long Remote_Adr));

DESCRIPTION:

This function makes it possible to indicate, context by context, whether it is necessary to modify the type of
messaging (acknowledged or not) to be used for transmission.

For a given context, if this function is not called, acknowledged messaging will be used if the destination address
is an individual address and non-acknowledged messaging will be used if it is a group address.

If this function is called for a context, each time a message is transmitted, the User_Msg_Ack_Type
procedure will be called with the destination address as the input parameter, in order to ask which type of
messaging is to be used.

INPUT PARAMETERS:

Ptr_Messaging: Pointer to the messaging context.
User_Msg_Ack_Type: User procedure that will be called by FIP DEVICE MANAGER for each

message transmitted on this context, to find out which type of messaging to
be used.

Description of type: FDM_MESSAGING_REF

Inside FIP DEVICE MANAGER: not manipulated by the user.

REPORT:

This function submits a report as specified the primitive fdm_stop_network().

Description of user interface primitives

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 3-103

2. CALLBACK PRIMITIVES TO BE PROVIDED BY THE USER

The table below is a review of the callback procedures which the user has to write, and which are called by the
FIP DEVICE MANAGER to warn the user of various events. In this document, all these functions are prefixed
by User_. However, the user may name them as he sees fit.

The FIP DEVICE MANAGER recognises these functions by means of a pointer.

PROCEDURE Reference transmitted to the FIP
DEVICE MANAGER by

Called by the FIP DEVICE
MANAGER by or during

User_Reset_Component() Fdm_initialize_network() in the
FDM_CONFIGURATION_HARD type
parameter

fdm_stop_network()

User_Signal_Fatal_Error () Fdm_initialize_network() in the
FDM_CONFIGURATION_HARD type
parameter

Detection of serious errors which lead to
shutdown

User_Signal_Warning() Fdm_initialize_network() in the
FDM_CONFIGURATION_HARD type
parameter

Warning of non-serious errors

User_Present_List_Prog () Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_smmps_fifo_empty() for
transmitting the ”list of equipment present”
variable value

User_Presence_Prog() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_smmps_fifo_empty() for
transmitting the presence variable value

User_Identification_Prog() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_smmps_fifo_empty() for
transmitting the identification variable
value

User_Report_Prog() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_smmps_fifo_empty() for
transmitting the report variable value

User_Synchro_BA_Prog() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_smmps_fifo_empty() for
transmitting the BA sync variable value

User_Signal_Mps_Aper() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_process_its_fip() for
indicating a variable has been transmitted
or received following a ”universal” type
request

User_Signal_Smmps() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_process_its_fip() for
indicating an SM-MPS variable has been
received, following a read request

User_Signal_Rec_Msg() Fdm_initialize_network() in
FDM_CONFIGURATION_SOFT

fdm_process_its_fip() for
indicating a message has been received.

User_Signal_Send_Msg() Fdm_initialize_network() in the
FDM_CONFIGURATION_SOFT type
parameter

fdm_send_message() and
fdm_process_its_fip() for
indicating a message transmission has been
requested or that acknowledgement has
been received

Description of user interface primitives

Page 3-104 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

PROCEDURE Reference sent to the FIP DEVICE
MANAGER by

Called by the FIP DEVICE
MANAGER by or during

User_Signal_Synchro() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_process_its_fip() to indicate
that a sync event has been received

User_Signal_Var_Prod() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_process_its_fip()to indicate
that a universal variable has been
transmitted

User_Signal_Var_Cons() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_process_its_fip()to indicate
that a universal variable has been received

User_Signal_Asent() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_process_its_fip()to indicate
that a produced variable has been
transmitted

User_Signal_Areceived() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_process_its_fip() to indicate
that a consumed variable has been
received.

User_Signal_Mode() fdm_generic_time_initialize in the
FDM_GENERIC_TIME_DEFINITION type
parameter

Management of time producer redundancy
if switching from prod. to cons. or vice
versa.

User_Get_Value() fdm_mps_var_create() in the FDM_XAE
type parameter

fdm_mps_var_time_write_loc()
to request the write value of the variable
with dynamic refresh status

User_Set_Value() Fdmçmps_var_create() in the FDM_XAE
type parameter.

fdm_mps_var_time_read_loc()
to give the read value of the variable with
dynamic refresh status.

User_Msg_Rec_Proc() fdm_messaging_fullduplex_create
fdm_messaging_to_rec_create() in the
FDM_MESSAGING_FULLDUPLEX and
FDM_MESSAGING_TO_REC type parameters

fdm_msg_rec_fifo_empty () to
transmit received message

User_Msg_Ack_Proc() fdm_messaging_fullduplex_create
fdm_messaging_to_send_create() in
the FDM_MESSAGING_FULLDUPLEX and
FDM_MESSAGING_TO_SEND type parameters

fdm_msg_send_fifo_empty() to
transmit received acknowledgement

User_Msg_Ack_Type() fdm_change_messaging_acknowledge_
type

The transmission of a message if this
primitive was called for the context
concerned.

fdm_generic_time_give_value() Unique for all FIP DEVICE MANAGER
instances

fdm_generic_time_read_loc()
to give time value

fdm_generic_time_get_value() Unique for all FIP DEVICE MANAGER
instances

fdm_generic_time_write_loc()
to request time value

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 4-1

Chapter

4
Performance levels

1. USER PRIMITIVE RUN TIME

1.1 Introduction

Performance levels are measured using a:

• CC117 board: target with an i960SA microprocessor at 16 MHz with a code generated with no particular
optimisation options (with a 1 Mbit/s network, therefore FULLFIP2 64 MHz) and pSOS+,

• CC121 board: ISA board (1 MBytes/s) with a FULLFIP2 64 MHz (1 Mbit/s),

• CC139 board: PCI board (132 MBytes/s) with a FULLFIP2 64 MHz (1 Mbit/s).

The main aim is to determine the difference in performance levels between conventional access and free access
operation.

Performance levels

Page 4-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.2 Start-up: fdm_initialize_network() primitive

14

16

12

10

 8

 6

 4

 2

 0

seconds

CA-100 CA-20 FA-100 FA-20
CA : = Conventional access FA : = Free access 100 : Max. variable no.

No RAM test on start-up

RAM test on start-up

The test above has been performed on a CC117 board.

Performance levels

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 4-3

1.3 Miscellaneous functions
Tst_Medium: Periodic medium redundancy management by FIP DEVICE

MANAGER (frequency is determined by the user).
Read_Evt: Time taken to process an interrupt and associated processing time

(user procedure). This is the mean value of all possible cases.
On_line_Tst: Online Autotest. Duration of a call by FIP DEVICE MANAGER, or

by the user (depending on set-up).

1400

1200

1000

800

600

400

200

0

microseconds

Tst Medium Read_Evt OnLine Tst

Free access

Conventional access

The test above has been performed on a CC117 board.

Performance levels

Page 4-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.4 AE_LE start-up

140

120

100

80

60

40

20

0

milliseconds

Start AE_LE

Free access

Conventional access

160

AE_LE with 10 variables

The test above has been performed on a CC117 board.

Performance levels

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 4-5

1.5 Messaging

1400

1000

800

600

400

200

0

1600

0 30 60 90 120 150 180 210 240

++

+

1200

1000

800

600

400

200

0

0 30 60 90 120 150 180 210 240

+

Message Read

Message Write

1200

1800

+
+

16
14
12
10

8
6
4
2
0

0 1 2

+

Duration in microseconds
CC117: FdmV2

CC117: FdmV4 Conventional access

CC117: FdmV4 Free access

No. of bytes

CC121: FdmV4 Conventional

CC139: FdmV4 Free

Performance levels

Page 4-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

1.6 MPS variables

490

350

280

210

140

70

0

560

0 20 40 60 80 100 120

+

+

0
0

+

Variable Read

Variable Write

420

+
+

20 40 60 80 100 120

420

300

240

180

120

60

480

360

540

16
14
12
10

8
6
4
2
0

0 1 2

+

Duration in microseconds

CC117: FdmV2 or FdmV4 Conventional access

CC117: FdmV4 Free access

No. of bytes

CC121: FdmV4 Conventional

CC139: FdmV4 Free

Performance levels

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 4-7

2. MEMORY CAPACITY REQUIRED

2.1 Code size and modularity

Modularity is implemented using compilation switches (described in Section 3, Chapter 6).

The capacities given for reference are those of the libraries (i.e of the object code) obtained for the INTEL 80x86
(16 bits) target with a BORLAND string.

Implemented
Services

• Periodic MPS • Periodic MPS

• Periodic DLL
messaging

• Periodic MPS

• Aperiodic MPS

• Periodic and
Aperiodic DLL
messaging

• Periodic MPS

• Aperiodic MPS

• Periodic and
Aperiodic DLL
messaging

• Bus Arbitrator

FIP DEVICE
MANAGER

34 KB 40 KB 51 KB 62 KB

8 KB 14 KB 20 KB 48 KBFIPCODE

You have to compile
the FIPCODE files
from ST1 directory

(see Chapter 6)

You have to compile
the FIPCODE files
from ST2 directory

(see Chapter 6)

You have to compile
the FIPCODE files
from ST3 directory

(see Chapter 6)

You have to compile
the FIPCODE files
from ST4 directory

(see Chapter 6)

TOTAL 42 KB 54 KB 71 KB 110 KB

Two independent options can also be used:

• Autodiag: 4 KB,

• Double medium: 3 KB.

This leads to the following maximum and minimum capacities:

Max. capacity Min. capacity
FIP DEVICE MANAGER 69 KB 34 KB

FIPCODE 48 KB 8 KB
TOTAL 117 KB 42 KB

Therefore, for a station which has all the functions, the total capacity is: 117 KB.
(by way of comparison, version 2, which has fewer functions, has a capacity of 100 KB)

The minimum set-up (MPS with common functions) has a capacity of 42 KB.

Performance levels

Page 4-8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

2.2 Data size

The size of the data zone required for FIP DEVICE MANAGER operation (size on FULLFIP host
microprocessor) can be broken down as follows:

stack size: Procedure fdm_initialize_network() requires the largest stack size:
approximately 1 KB.

heap size: (in KB)

 2
+ 2.4 for electing time producer
+ 0.1 * number of MPS variables
+ 0.1 * number of simultaneous active requests for SM_MPS
+ 0.06 * number of messaging contexts
+ (0.036 * number of received message descriptors) + (0.268 * number of received message blocks)
+ 0.012 * number of macrocycles

The capacities given are those required by FIP DEVICE MANAGER and which it allocates to itself. They do not
include user capacities (buffer containing transmitted messages).

All dynamic memory allocations made by FIP DEVICE MANAGER are allocated on initialisation or by the
object creation primitives.

2.3 Memory capacity for FULLFIP2

This is the capacity of the FIPCODE database, depending on the set-up required.

The FIPCODE database comprises 5 separate zones:
Zone A: microcode + specific data
Zone B: frame descriptors
Zone C: variable descriptors = queue descriptors for messaging
Zone D: BA program and associated queues
Zone E: message and variable data

Zone capacity constraints:
Zone A capacity < = 24 k words
Zone B capacity < = 64 k words (192 k words in the case of double image operation)
Zone C capacity < = 64 k words
Zone D capacity < = 64 k words
Zone E capacity < = 512 k words

CONFIGURATION_SOFT.BA_DIM = zone D capacity

Performance levels

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 4-9

CONFIGURATION_SOFT.FULLFIP_RAM_DIM = zone A capacity + zone B capacity + zone C capacity +
zone D capacity + zone E capacity

Total memory capacity required =
Zone A capacity + zone B capacity + zone C capacity + zone D capacity + zone E capacity

Calculation of zone A capacity:
if (FDM_WITH_BA= YES) or (FDM_WITH_FREE_ACCES = YES)

zone A capacity = 48 KB
otherwise

if FDM_WITH_APER = YES then
zone A capacity = 20 KB

otherwise
if FDM_WITH_MESSAGING = YES then

zone A capacity = 14 KB
otherwise

zone A capacity = 8 KB
endif

endif
endif

Calculation of zone B capacity:
Zone B capacity = 256 words * 3 if MPS variable number + 5 < 16
Zone B capacity = 512 words * 3 if MPS variable number + 5 < 32
Zone B capacity = 1024 words * 3 if MPS variable number + 5 < 64
Zone B capacity = 2048 words * 3 if MPS variable number + 5 < 128
Zone B capacity = 4096 words * 3 if MPS variable number + 5 < 256
Zone B capacity = 8192 words * 3 if MPS variable number + 5 < 512
Zone B capacity = 16384 words * 3 if MPS variable number + 5 < 1024
Zone B capacity = 32768 words * 3 if MPS variable number + 5 < 2048
Zone B capacity = 64536 words * 3 if MPS variable number + 5 < 4096

Performance levels

Page 4-10 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

Calculation of zone C capacity
zone C capacity = TVAR + TMSGE + TMSGR
TVAR = 160 + (16 * number of MPS variables) words

TMSGE = 16 * (CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [0] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [1] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [2] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [3] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [4] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [5] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [6] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [7] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [8])

TMSGR = 1024 words

Calculation of zone D capacity
zone D capacity =

1000 + (8 * CONFIGURATION_SOFT.NB_OF_DIFFERENT_ID_PROG_BA)
+ (3 * total number of instructions)

Note: for a SEND_LIST instruction, the actual number of instructions is equal to the number of IDs on the list.

Calculation of zone E capacity
zone E capacity = TDATAV + TDATAME + TDATAMR
if (FDM_WITH_FREE_ACCES = YES then

TDATAV = (128 * number of variables) + 1216 words
otherwise

TDATAV = (64 * number of variables) + 704 words
endif

TDATAME = 135 * (CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [0] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [1] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [2] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [3] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [4] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [5] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [6] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [7] +

CONFIGURATION_SOFT.Nr_Of_Tx_Buffer [8]) words

TDATAMR = 8775 words

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 5-1

Chapter

5
Error codes

1. ERROR MESSAGES

Corresponds to contents of FDM_ERROR_CODE.FDM_DEFAULT which is of the enum Code_Error type.
E= error indicated by User_Signal_Fatal_Error, W= warning indicated by User_Signal_Warning
(in 3rd column of table).

VALUE MNEMONIC CONTEXT E/
W

PROBABLE CAUSE

0x000 _NO_ERROR

0x100 _FIPCODE ERROR All primitives W See Fipcode_Report

0x201 _TIME_OUT All primitives W See Fipcode_Report

0x202 _FIPCODE_RESPONSE_IMPOSSIBLE fdm_mps_var_read_loc

fdm_mps_var_write_loc

fdm_mps_var_write_universal

W FIPCODE replies that a variable cannot be
produced on a produced variable write or that a
variable cannot be consumed on a consumed
variable read

0x203 _FIPCODE_FAIL fdm_initialize_network E FIPCODE cannot be loaded

0x204 _INIT_TIMER_FAIL fdm_initialize_network E fdm_Initialize not called

0x205 _INIT_ABORTED fdm_initialize_network E All warnings during
fdm_initialize_network execution are
upgraded

0x206 _RN_FAILED fdm_initialize_network

fdm_ae_le_create

fdm_mps_var_create

fdm_load_macrocycle_fipconfb

fdm_load_macrocycle_manual

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

E
W
W
W
W
W
W
W

Problem to allocate or restore memory when a
divided memory manager is used

0x207 _SM_FAILED fdm_initialize_network E Problem to create system flag

0x208 _CIRCUIT_ACCES_FAILED fdm_ba_load_macrocycle_manual

fdm_load_macrocycle_fipconfb

fdm_initialize_network

fdm_messaging_to_rec_create

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

W
W
E
W
W
W

P roblem with physical access to component

0x209 _ILLEGAL_POINTER fdm_msg_send_fifo_empty E Use of memory resources

0x20A MEDIUM_EWD_FAILED fdm_ticks_counter W Hardware error

0x20B FIFO_ACCES_FAILED fdm_msg_send_fifo_empty If the model of the transmission of messages (see
Chapter 1, Subsection 4.7.3) is not respected

Error codes

Page 5-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

VALUE MNEMONIC CONTEXT E/
W

PROBABLE CAUSE

0x401 _ALLOCATE_MEMORY_FAULT fdm_initialize_network

fdm_ae_le_create

fdm_mps_var_create

fdm_load_macrocycle_fipconfb

fdm_load_macrocycle_manual

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

fdm_ae_le_start

fdm_read_ident

fdm_read_report

fdm_read_presence

E
W
W
W
W
W
W
W
W
W
W
W

Problem with memory allocation

0x402 _PRIVATE_FULLFIP_RAM_OVERFLOW fdm_initialize_network

fdm_ae_le_create

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

fdm_ae_le_start

fdm_read_ident

fdm_read_report

fdm_read_presence

E
W
W
W
W
W
W
W
W

The configuration requested does not fit into the
private FULLFIP2 memory available.

0x403

0x404

0x405

_FRAME_DESCRIPTOR_TABLE_OVERFLOW

_VARIABLE_DESCRIPTOR_TABLE_OVERFLOW

VARIABLE_TABLE_OVERFLOW

fdm_initialize_network

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

fdm_ae_le_start

fdm_read_ident

fdm_read_report

fdm_read_presence

fdm_create_channel

E
W
W
W
W
W
W
W
W

Parameter
FDM_CONFIGURATION_SOFT..NB_OF_USER
_MPS_VARIABLE is too small

0x406 _VARIABLE_ALREADY_EXIST fdm_ae_le_start W Variable has already been defined

0x407 _ILLEGAL_IDENTIFICATION_PARAMETER fdm_initialize_network E Contents of FDM_IDENTIFICATION incorrect

0x408 _ILLEGAL_IDENTIFICATION_LENGTH fdm_initialize_network E Contents of FDM_IDENTIFICATION incorrect

0x409 _INTEGRITY_DATA_BASE_FAULT fdm_initialize_network

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

fdm_ae_le_start

fdm_read_ident

fdm_read_report

fdm_read_presence

E
E
E
E
E
E
E
E

FIP DEVICE MANAGER self-test

0x40A _SYNCHRO_VAR_ALREADY_EXIST fdm_ae_le_start W Sync variable must be unique

0x40B _INDICATION_PROG_MISSING fdm_mps_var_create W User_Signal_Asent or User_Signal_Areceive absent

0x40C _CONFLICT_CONFIGURATION fdm_initialize_network

fdm_ae_le_start

E
W

FIPIO
problem between VCOM and LSAP

0x501 _GEN_AE_LE_ILLEGAL_LENGTH fdm_ae_le_create W Variable number declared for AE/LE is either <1 or
> max.

Error codes

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 5-3

VALUE MNEMONIC CONTEXT E/
W

PROBABLE CAUSE

0x502 _GEN_AE_LE_ILLEGAL_STATE fdm_mps_var_create

fdm_ae_le_start

fdm_ae_le_stop

fdm_ae_le_delete

fdm_mps_var_change_id

fdm_mps_var_read_loc

fdm_mps_var_write_loc

fdm_mps_var_write_universal

fdm_mps_var_read_universal

fdm_read_ident

fdm_read_presence

fdm_read_report

W
W
W
W
W
W
W
W
W
W
W
W

AE/LE is not in a state where primitive execution is
possible

0x503 _GEN_AE_LE_ILLEGAL_RANK fdm_ae_le_create W Rank greater than size of AE/LE

0x504 _GEN_AE_LE_ILLEGAL_POSITION fdm_mps_var_create W Variable declared in image 2 if single image
configuration

0x505 _GEN_AE_LE_ILLEGAL_MODIFICATION fdm_mps_var_change_MSGa

fdm_mps_var_change_RQa

fdm_mps_var_change_priority

fdm_mps_var_change_id

fdm_mps_var_change_periods

fdm_mps_var_change_prod_cons

W
W
W
W
W
W

AE/LE is not in a state where modification
requested can be made

0x506 _GEN_AE_LE_START_NOT_POSSIBLE fdm_ae_le_start W Parameters inconsistent or missing

0x507 _GEN_AE_LE_TIME_PROG_MISSING fdm_mps_var_create W User_Get_Value() procedure absent

0x508 _GEN_AE_LE_SYNCHRO_PROG_MISSING fdm_mps_var_create W User_Synchro() procedure absent

0x509 _GEN_AE_LE_SYNCHRO_PROG_ILLEGAL fdm_mps_var_create W User_Synchro() procedure superfluous

0x50A _GEN_AE_LE_ILLEGAL_CONFIGURATION fdm_mps_var_create

fdm_generic_time_initialize

W
W

Problem creating variable with dynamic refresh

0x601 _GEN_BA_CHECKSUM_ERROR fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Checksum incorrect

0x602 _GEN_BA_LIST_ERROR fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Content of a list is incorrect

0x603 _GEN_BA_END_BA_NOT_FOUND fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Error in BA program: no END_BA

0x604 _GEN_BA_NOT_EXISTED_INSTRUCTION fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Error in BA program: use of non-existent operating
code

0x605 _GEN_BA_NOT_VALID_TIME fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Error in BA program: time parameter incorrect

0x606 _GEN_BA_NOT_ID_IN_LIST fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Error in BA program: use of empty ID list

0x607 _GEN_BA_DEF_DICHO fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

Problem with memory allocation

0x608 _GEN_BA_DEF_DEM_MEM_MC fdm_ba_load_macrocycle_fipconfb

fdm_ba_load_macrocycle_manual

W
W

No space in FULLFIP2 RAM for macrocycle

0x609 _GEN_BA_DEF_DIM_FILE_FILES fdm_initialize_network W Parameter

0x901 _LEVEL_PRIORITY_BA fdm_ba_set_priority

fdm_ba_set_parameters

W
W

Incorrect parameter

0x902 _MAX_SUBSCRIBER_BA fdm_ba_set_priority

fdm_ba_set_parameters

W
W

Incorrect parameter

Error codes

Page 5-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

VALUE MNEMONIC CONTEXT E/
W

PROBABLE CAUSE

0x903 _DELETE_MC_IN_USE fdm_ba_delete_macrocycle W Macrocycle in ”RUN” state

0x904 _USER_NB_OF_USER_MPS_VARIABLE fdm_initialize_network E FDM__CONFIGURATION_SOFT.Desc_Par
incorrect

0x905 _USER_MODE_FAULT fdm_initialize_network E Parameter FDM_CONFIGURATION_SOFT.
Timer incorrect

0x906 _VAR_PERIOD_FAULT fdm_ae_le_start

fdm_mps_var_change_periods

W
W

Refresh or prompt time-out value is incorrect

0x907 _LENGTH_VAR_FAULT fdm_ae_le_start W

0x908 _USER_NR_OF_TX_BUFFER_FAULT fdm_initialize_network E Number of buffers for message transmission
incorrect

0x909 _USER_SWITCH_FAULT fdm_ae_le_switch_image W Switch attempt during single image operation

0x90A _NON_CONSUMING_VARIABLE fdm_mps_var_read_loc

fdm_mps_var_read_universal

W
W

Produced variable read attempt

0x90B _NON_PRODUCING_VARIABLE fdm_mps_var_write_loc

fdm_mps_var_write_universal

W
W

Consumed variable write attempt

0x90C IMAGE_FAULT_ON_REQUEST fdm_mps_var_write_universal

fdm_mps_var_read_universal
W
W

If running on IMAGE 2

0x90D _REQUEST_RAN_ALWAYS fdm_mps_var_write_universal

fdm_mps_var_read_universal

W
W

Previous remote access to same variable is still in
progress

0x90E _NOT_TIME_VARIABLE fdm_mps_var_time_read_loc

fdm_mps_var_time_write_loc

W
W

Accessed variable is not a time variable

0x90F _INDICATION_VARIABLE_IN_USE fdm_mps_var_write_universal

fdm_mps_var_read_universal

W
W

Universal access prohibited on variables with
Asent ou Areceive

0x910 _BA_STOPPED_ON_TIME_OUT fdm_licks_conter W Impossible to send potential BA

0xA01 _CHANNEL_ALREADY_EXIST fdm_channel_create W Creation of an existing channel

0xA02 _INVALID_NO_CHANNEL fdm_channel_create

fdm_channel_nr_modif

fdm_channel_delete

W
W
W

Number of channel specified is < 1 or > 8

0xA03 _CHANNEL_NOT_CONFIGURED fdm_send_message

fdm_channel_delete

W
W

Number of channel specified does not exist

0xA04 _NOT_TX_BUFFER_ON_CHANNEL fdm_channel_create W No buffer associated with this channel

0xA05 _NOT_CREATED_CHANNEL_ON_THIS_VARIA
BLE

fdm_channel_create W Creation of channel impossible on this ID

0xA06 _MSG_PROG_MISSING fdm_initialize_network W User procedure indicating message transmission
or reception has not been defined

0xA07 _EXCEEDED_SEGMENT_NUMBER fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

W
W
W

Creation of messaging context impossible as
concerns segment number possibilities in standard

0xA08 _MISSING_MEMORY_DELETED_MESSAGE fdm_msg_rec_fifo_empty W Memory pool for message reception empty

0xA09 _IMAGE_NOT_CONFIGURED fdm_messaging_to_rec_create

fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

W
W
W

Image field missing

0xB01 _GEN_MESSAGING_USER_ACK_EMIS fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

W
W
W

User procedure indicating transmission
acknowledgement not defined

0xB02 _GEN_MESSAGING_USER_ACK_RECEP fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

W
W
W

User procedure indicating reception not defined

Error codes

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 5-5

VALUE MNEMONIC CONTEXT E/
W

PROBABLE CAUSE

0xB03 _GEN_MESSAGING_BLOCK_DESC_ERROR fdm_send_message W Attempt to transmit message with l = 0

0xB04 _MESSAGING_CONTEXT_NOT_TO_SEND fdm_channel_nr_modif W Context used not of transmission type

0xB05 _MESSAGING_CONTEXT_NOT_ALLOWED fdm_msg_send_fifo_empty W Message transmission on non-existent context

0xB06 _GEN_MESSAGING_ALREADY_CONFIGURED fdm_messaging_fullduplex_create

fdm_messaging_to_send_create

fdm_messaging_to_rec_create

W LSAP already exists

0xB07 _GEN_MESSAGING_ILLEGAL_SEGMENT fdm_messaging_to_rec_create

fdm_messaging_fullduplex_create

W
W

Reception request of bridge type on its own
segment.

0xC01 _TEST_RAM_FAIL fdm_initialize_network E Private FULLFIP2 RAM failure

0xC02 _DIAG_FAIL_ON_BUSY_PIN fdm_initialize_network E NOK pin test

0xC03 _DIAG_FAIL_ON_EOC_PIN fdm_initialize_network E NOK pin test

0xC04 _DIAG_FAIL_ON_IRQ_PIN fdm_initialize_network E NOK test of interface register bit

0xC05 _DIAG_FAIL_ON_SV_PIN fdm_initialize_network E NOK test of interface register bit

0xC06 _DIAG_FAIL_ON_FR_PIN fdm_initialize_network E NOK test of interface register bit

0xC07 _DIAG_FAIL_ON_AE_PIN fdm_initialize_network E NOK test of interface register bit

0xC08 _DIAG_FAIL_ON_FE_PIN fdm_initialize_network E NOK test of interface register bit

0xC09 _DIAG_FAIL_ON_IC_PIN fdm_initialize_network E NOK test of interface register bit

0xC0A _DIAG_FAIL_ON_INTERNAL_FIFO fdm_initialize_network E Internal test of NOK component

0xC0B _DIAG_FAIL_ON_INTERNAL_REGISTERS fdm_initialize_network E Internal test of NOK component

0xC0C _DIAG_FAIL_ON_INTERNAL_TIMERS fdm_initialize_network E Internal test of NOK component

0xC0D _ON_LINE_DIAG_FIPCODE_FAILED fdm_online_test E Internal test of NOK component

0xC0E _ON_LINE_COMPONENT_ACCES_FAILED fdm_online_test E NOK component access test

0xC0F _ON_LINE_TEST_RAM_FAILED fdm_online_test E RAM test

0xC10 _TEST_ON_TICKS_ON_LINE fdm_online_test W Automatic self-tests in use therefore manual tests
NOK

0xD01 _ERR_FIP_DOWNLOAD_FILE fdm_initialize_network E FIPCODE.DAT file cannot be opened

Error codes

Page 5-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 6-1

Chapter

6
Installation procedure

1. SOFTWARE SUPPLY

The software is supplied on a CD-ROM. Under Programs\Fdm_R4.X you can find the following files and
directories:

• FIP DEVICE MANAGER files,

• the following sub-directories:

• ST1: directory containing FIPCODE files that have to be used in your makefile if you need the following
services (see Chapter 4, Subsection 2.1):

• Periodic MPS.

• ST2: directory containing FIPCODE files that have to be used in your makefile if you need the following
services (see Chapter 4, Subsection 2.1):

• periodic MPS,

• periodic DLL messaging.

• ST3: directory containing FIPCODE files that have to be used in your makefile if you need the following
services (see Chapter 4, Subsection 2.1):

• periodic MPS,

• aperiodic MPS,

• periodic and aperiodic DLL messaging.

• ST4: directory containing FIPCODE files that have to be used in your makefile if you needs the following
services (see Chapter 4, Subsection 2.1) :

• periodic MPS,

• aperiodic MPS,

• periodic and aperiodic DLL messaging,

• Bus Arbitrator.

• Demos\CC116: directory containing one example using an ALSTOM Technology target CC116/117/118

Note

Under this sub-directory you can find an example of the user_opt.h file.

Installation procedure

Page 6-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

2. IMPLEMENTATION

To implement the software you have to:

• first write the user procedures likely to be used,

• fill in the macros for the interface with the operating system (fdm_os.c file),

• customise the user_opt.h file according to the requirements of the application in question,

• compile all xx.c files using the required compiler and the appropriate compilation options,

• build the FIPMAN.LIB library (this name is given for reference only: any other name can be chosen) using
the appropriate library manager.

• connect the created library to the rest of the software.

Note

If a 16-bit, 80x86 microprocessor is used along with free access operation,
the compilation model to be used is HUGE.

Installation procedure

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 6-3

3. COMPILATION PARAMETERS

The user can set compilation parameters as configuration options in the file user.opt.h (see example below).

Contents of user_opt.h file
#define YES 1

#define NO 0

#define infini 0

#define 5_millisecondes 5000

#define FDM_WITH_FIPCODE_31_25 NO

#define FDM_WITH_FIPCODE_1000 YES

#define FDM_WITH_FIPCODE_5000 YES

#define FDM_WITH_APER YES

#if (FDM_WITH_APER ==YES)

#define FDM_WITH_SM_MPS YES

#endif

#define FDM_WITH_MESSAGING YES

#define FDM_WITH_BA YES

#define FDM_WITH_DIAG YES

#if (FDM_WITH_BA == YES)

#define SUSPEND_DELAI _5_millisecondes 5000

#define FDM_WITH_FIPIO YES

#define FDM_WITH_OPTIMIZED_BA YES

#endif

#define FDM_WITH_CONTROLS YES

#define FDM_WITH_GT YES

#define FDM_WITH_GT_ONLY_PRODUCED YES

#define FDM_WITH_GT_ONLY_CONSUMED YES

#define FDM_WITH_SUSPEND_BA_ON_DEFAULT NO

#define FDM_WITH_BI_MEDIUM YES

#define FDM_WITH_REDUNDANCY_MGNT YES

#define FDM_WITH_FREE_ACCESS YES

#define FDM_WITH_CHAMP_IO YES

#define FDM_WITH_DTACK YES

#define FDM_WITH_FIPCODE_LINKED YES

#define FDM_WITH_IRQ_EOC_ON_SAME_INTERRUPT YES

#define FDM_WITH_I960 YES

#define FDM_WITH_68XXX YES

#define FDM_WITH_DSP YES

#define FDM_WITH_X86 YES

#define FDM_WITH_PSOS YES

#define FDM_WITH_NT NO

#define FDM_WITH_VXWORKS NO

#define FDM_WITH_NDIS NO

#define FDM_WITH_SOLARIS NO

#if (FDM_WITH_PSOS == YES)

#define FDM_WITH_DELETE_RN_OVERRIDE YES

Installation procedure

Page 6-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

#if (FDM_WITH_I960 == YES)

#define SPLX_VALUE_FOR_MASK_ALL 31

#endif

#if (FDM_WITH_68XXX == YES)

#define SPLX_VALUE_FOR_MASK_ALL 7

#endif

#endif

#define FDM_WITH_SEMAPHORE YES

#define FDM_WITH_LITTLE_INDIAN YES

#if (FDM_WITH_LITTLE_INDIAN ==YES)

#define FDM_WITH_WIN32 NO

#define FDM_WITH_SCOUNIX NO

#define FDM_WITH_MICROSOFT NO

#define FDM_WITH_BORLAND NO

#define FDM_WITH_METAWARE NO

#endif

#define FDM_WITH_MICROTEC YES

#define FDM_WITH_GNU NO

#define FDM_WITH_SPECIAL_USAGE NO

Note

If FDM_WITH_FIPECODE_31_25 is set to YES, then FDM can drive a
FULLFIP2 component at 31.25 kbits/s.

If FDM_WITH_FIPECODE_1000 is set to YES, then FDM can drive a
FULLFIP2 component at 1 Mbit/s and 2.5 Mbits/s.

If FDM_WITH_FIPECODE_5000 is set to YES, then FDM can drive a
FULLFIP2 component at 5 Mbits/s.

If you have an multi-speed application, it is possible to set all the above
options to YES.

Use

You should customise the FIP DEVICE MANAGER library by associating the value YES or NO to each
parameter constant described in the user_opt.h file.

The homogeneity of the choices made by the user is systematically checked during compilation.

Installation procedure

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 6-5

OPTIONS EFFECT (IF VALUE ”YES” IS SELECTED)

FDM_WITH_BA Use of bus arbitrator function.

FDM_WITH_OPTIMIZED_BA Used for the calculation of election and start-up time-outs of the
startup of the BA (see Chapter 2, Subsection 1.4.3).

FDM_WITH_MESSAGING Use of messaging services at WorldFIP data link layer level.

FDM_WITH_FIPCODE_31_25 Use of specific microcode for 31.25 Kbits/s.

FDM_WITH_FIPCODE_1000 Use of specific microcode for 1 Mbyte/s

FDM_WITH_FIPCODE_5000 Use of specific microcode for 5 Mbytes/s

FDM_WITH_APER Use of aperiodic messaging services or MPS or SM_MPS even if
local report variable is read only.

FDM_WITH_SM_MPS Use of SM_MPS functions (e.g. remote subscriber report variable
read) other than production of its own variables, which is
obligatory.

FDM_WITH_FIPIO Use of specific FIPIO variable (i.e. to build a FIPIO manager to
manage FIPIO agent).

FDM_WITH_DIAG Use of “on-line” and “off-line” self-diagnosis.

FDM_WITH_CONTROLS Tests to check validity of all primitive input parameters have been
deleted (saves space in code).

FDM_WITH_GT Use of entire time producer redundancy management procedure.
Production or consumption of time.

FDM_WITH_GT_ONLY_PRODUCED Use of time in production mode only.

FDM_WITH_GT_ONLY_CONSUMED Use of time in consumption mode only.

FDM_WITH_SUSPEND_BA_ON_DEF
AULT

In the case of a redundant medium, if no activity is detected on a
medium then setting this parameter to :

• NO means that the BA remains active,

• YES means that the BA priority is set to the lowest value. In the
case that this BA is the active BA then the BA is stopped and
then started; in this case it is possible that another BA will be
elected (see the Chapter 2, Subsection 1.4).

FDM_WITH_BI_MEDIUM Medium redundancy management. Mandatory if card is double
medium.

FDM_WITH_REDUNDANCY_MGNT FIP DEVICE MANAGER (therefore host processor involved)
manages medium redundancy. Otherwise, it is managed entirely by
FIPCODE.

FDM_WITH_FIPCODE_LINKED FIPCODE is link-edited with FIP DEVICE MANAGER (as
opposed to FIPCODE that is contained in a disk file).

Installation procedure

Page 6-6 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

OPTIONS EFFECT (IF VALUE ”YES” IS SELECTED)

FDM_WITH_PSOS

FDM_WITH_NT

FDM_WITH_VXWORKS

FDM_WITH_NDIS

FDM_WITH_SCOUNIX

FDM_WITH_SOLARIS

FDM_WITH_RTX

For options specific to various operating system or execution
contexts.

FDM_WITH_DELETERN_OVERRIDE Restoration of resources after shutdown caused by pSOS.

FDM_WITH_VXWORKS Use with real time monitor VxWORKS.

FDM_WITH_NDIS Use with ALSTOM TECHNOLOGY driver PC NDIS.

FDM_WITH_FREE_ACCESS Use of free accesses function on system user interface: database is
in shared memory between the host processor and FULLFIP2 and
transactions with the system are reduced to a minimum.

FDM_WITH_CHAMP_IO Can be used with INTEL type microprocessors when the
FULLFIP2 system is located in the I/O field, as opposed to
conventional location in the memory field.

FDM_WITH_DTACK Dtack ”hard” signal can be used. As opposed to activation by the
software of FULLFIP2 Ustate register FR bit test each time the
system FILE register is accessed.

FDM_WITH_IRQ_EOC_ON_SAME_INTERRUPT Use of interrupts EOC et IRQ, by host microprocessor, at the same
interrupt level.

FDM_WITH_LITTLE_ENDIAN Data representation in conventional INTEL internal memory.

FDM_WITH_BORLAND

FDM_WITH_MICROSOFT

FDM_WITH_METAWARE

FDM_WITH_GNU

FDM_WITH_MICROTEC
FDM_WITH_MSDOS
FDM_WITH_CAD_UL

For options specific to various compilers.

FDM_WITH_DSP

FDM_WITH_X86

FDM_WITH_PLX9050

For options specific to various microprocessors.

FDM_WITH_SPECIAL_USAGE If the option is set to YES then the user can specify some elements
for his application. These elements can be defined between a #ifdef
FDM_WITH_SPECIAL_USAGE and #endif couple.

FDM_WITH_WIN32 For use with Win 32.

Table 6.1 – FIP DEVICE MANAGER library options

Installation procedure

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page 6-7

There are three constants:

SUSPEND_DELAI: Time-out on execution of TEST_P by an active BA. If this
timeout elapses, the BA is stopped.

If the value equals INFINITY, there is no active timeout.

_5_millisecondes

SPLX_VALUE_FOR_MASKALL: Max. operating level for an interrupt to be impossible (must be
greater than max. level used)

Used with certain processors
(68xxx mask = 7, i960 mask = 31).

Note

A certain number of development contexts are taken into account as standard
by FIP DEVICE MANAGER (see options above). For all special cases not
covered by these options, the user must add its own options.

If they prove to be of general interest and are sent to ALSTOM Technology,
they could be included in the library as standard.

Installation procedure

Page 6-8 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page A-1

Appendix

A
Compatibility

The following table gives the functional compatibility between Version 2 and 4 primitives.

Compatibility

Page A-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

FIP DEVICE MANAGER R2 FIP DEVICE MANAGER R4
Short INIT_FIP_DB_PRG()

Short INIT_FIP_DB_FILE()

Short INIT_FIP_DB_PROM()

Short INIT_FIP_DB_PRG_TST()

Short INIT_FIP_DB_FILE_TST()

Short INIT_FIP_DB_PROM_TST()

_FDM_REF *Initialize_FULLFIP_Network()

void REMOVE_FIP_DB()

void TEST_MEDIUM()

short VALID_MEDIUM()

void GET_COUNTER()

short FIP_ONLINE_TEST()

void SMAP_FIP_EVT()

short PROCESS_MESSAGE()

short PROCESS_MSG_SENT()

short PROCESS_UPDATE()

short ACK_EVENT()

short ACK_EOC()

void IT_HTR_FIP()

unsigned char *AE_LE_CREATE()

unsigned char *AE_LE_DELETE()

short AE_LE_START()

short AE_LE_STOP()

short AE_LE_SWITCH()

short AE_LE_LOAD()

unsigned short

AE_LE_GET_STATE()

Short GET_IMAGE()

Short AE_LE_DNLOAD()

Short AE_LE_MODIFICATION()

Short WRITE_LOC()

Short WRITE_UNIVERSAL()

Short READ_LOC()

Short READ_UNIVERSAL()

deleted

deleted

deleted

deleted

deleted

deleted

FDM_REF *fdm_initialize_network()

unsigned short fdm_stop_network()

void fdm_initialize()

deleted

unsigned short fdm_valid_medium()

unsigned short fdm_online_test()

unsigned short fdm_process_its_fip()

unsigned short fdm_process_it_eoc()

unsigned short fdm_process_it_irq()

const FDM_VERSION * fdm_get_version()

fdm_msg_rec_fifo_empty()

fdm_msg_send_fifo_empty()

fdm_mps_fifo_empty()

fdm_smmps_fifo_empty()

deleted

deleted

void fdm_ticks_counter()

fdm_change_test_medium_ticks()

FDM_AE_LE_REF *fdm_ae_le_create()

unsigned short fdm_ae_le_delete()

unsigned short fdm_ae_le_start()

unsigned short fdm_ae_le_stop()

unsigned short fdm_switch_image()

FDM_MPS_VAR_REF *fdm_mps_var_create()

int fdm_ae_le_get_state()

int fdm_get_image()

deleted

deleted

unsigned short fdm_mps_var_change_id()

unsigned short fdm_mps_var_change_periods()

unsigned short fdm_mps_var_change_priority()

unsigned short fdm_mps_var_change_prod_cons()

unsigned short fdm_mps_var_change_RQa()

unsigned short fdm_mps_var_change_MSGa()

unsigned short fdm_mps_var_write_loc()

unsigned short fdm_mps_var_write_universal()

unsigned short fdm_mps_var_read_loc()

unsigned short fdm_mps_var_read_universal()

Compatibility

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page A-3

FIP DEVICE MANAGER R2 FIP DEVICE MANAGER R4
Short GET_DATA()

Short CREATE_MACRO_CYCLE()

Short DEL_MACRO_CYCLE()

Short START_BA()

deleted

short fdm_mps_var_time_read_loc() ¡

short fdm_mps_var_time_write_loc() ¡

fdm_generic_time_initialize()

fdm_generic_time_read_loc()

fdm_generic_time_write_loc()

FDM_BA_REF *fdm_ba_load_macrocycle_fipconfb()

FDM_BA_REF *fdm_ba_load_macrocycle_manual()

unsigned short fdm_ba_delete_macrocycle()

Short STOP_BA()

Short FIP_BA_STATUS()

Short COMMUTE()

void RESYNC()

short SET_BA_PARAMETERS()

short SET_BA_PRIORITY()

long SHOW_MACRO_CYCLE()

short READ_PRESENT()

short GET_PRESENT()

short READ_PRESENCE()

short GET_PRESENCE()

short READ_IDENT()

short GET_IDENT()

short READ_REPORT()

short GET_REPORT()

short PRINT_IDENT()

void PRINT_MNGR_COPYRIGHT()

void PRINT_MNGR_ACK()

short ACCEPT_SEGMENT()

short DELETE_SEGMENT()

short LSAP_MODIFICATION()

short UNLOCK_MESSAGE()

short SET_CHANNEL_QUOTA()

short CHANNEL_MODIFICATION()

unsigned short fdm_ba_start()

unsigned short fdm_ba_stop()

unsigned short fdm_ba_status()

unsigned short fdm_ba_commute_macrocycle()

unsigned short fdm_ba_external_resync()

unsigned short fdm_ba_set_parameters()

unsigned short fdm_ba_set_priority()

deleted

int fdm_ba_loaded()

unsigned short fdm_read_present_list()

deleted

unsigned short fdm_read_presence()

deleted

unsigned short fdm_read_ident()

deleted

unsigned short fdm_read_report()

unsigned short fdm_get_local_report()

unsigned short fdm_read_ba_synchronize()

deleted

deleted

deleted

deleted

deleted

deleted

FDM_MESSAGING_REF*fdm_messaging_fullduplex_create()

FDM_MESSAGING_REF*fdm_messaging_to_rec_create

FDM_MESSAGING_REF*fdm_messaging_to_send_create

unsigned short fdm_messaging_delete

deleted

deleted

unsigned short fdm_channel_create()

unsigned short fdm_channel_delete()

Short ACCEPT_MESSAGE()

Short CHANNEL_ALLOC()

Short CHANNEL_FREE()

Short SEND_MESSAGE()

deleted

deleted

deleted

unsigned short fdm_send_message()

unsigned short fdm_msg_ref_buffer_free()

unsigned short fdm_msg_data_buffer_free()

unsigned short
fdm_change_messaging_acknowledge_type()

Table A.1 – Compatibility between Version 2 and Version 4

Compatibility

Page A-4 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

List of modifications between Version 2 and Version 4:

• Possibility of managing several FULLFIP2s with the same software instance. The number of FULLFIP2s
which can be managed is not limited by the software itself.

• Deletion of useless, obsolete primitives.

• Error processing: every time an error can be detected in the code, give an error code which is clearly
identified in the user manual and detail as many different errors as possible.

• Whenever possible and significant, all functions on the user interface produce reports whose formats are
identical.

• Deletion of direct dynamic memory allocation: use of a relay which gives the user complete control of
memory allocation.

• Modification of FULLFIP2 system access protection management.

• Possibility for user of setting number of IT_HTR_FIP() calls to calculate time-outs (instead of
systematically using 100).

• Deletion of possibility of configuring packing identifier value to be used: identifier 0x9080 is used
systematically for all networks (cf. WorldFIP standard).

• Deletion of obligation to periodically call the TEST_MEDIUM() primitive: this will be done by the
equivalent of IT_HTR_FIP() (which must still be called periodically), the frequency of which will be
determined by the user at the time of configuration.

• Addition of a new type of AE/LE: the produced/consumed attribute of the variables they contain can be
modified during operation.

• FIFO type interface for aperiodic management.

• The value of a universal consumed variable is supplied directly as a parameter of the user function called
when it is received: deletion of primitive GET_DATA().

• Possibility of creating BA program macrocycles in two formats: a FIPCONFB/BA_BUILDER compatible
format (also compatible with previous versions of FIP DEVICE MANAGER) or a more user-friendly format
for manual building.

• Possibility of setting maximum number of parameters for bus arbitrator start-up and election time-out.

• FIFO type interface for managing reception of values of variables requested.

• The various user functions to be called when the SM-MPS variable values arrive are no longer sent to FIP
DEVICE MANAGER each time there is a user request, but once and for all at the time of configuration.

• The values of the variables requested are supplied directly as a parameter of the user function called when
they are received: GET_xxx primitives deleted.

• Addition of possibility of not deleting the variable created each time the SM-MPS variable is requested. The
user is responsible for deletion (saves time in request procedure if not created each time and in read
procedure if not deleted each time).

• Use of mechanism and data structure resulting from work on upper layer integration (MCS, SubMMS).

• Switch to a FIFO type interface.

Compatibility

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page A-5

• Simplification of configuration interface of messaging in reception mode (LSAP).

• Coding of messaging addresses (LSAP numbers + segment numbers) systematically as ”long”.

• Increased modularity so that a user can include in his executable file only that which he really needs.

• Optimisation of code whenever possible (particularly by modifying code sequences resulting from successive
additions in previous versions). Offers the user the possibility of optimising size or performance levels
according to his requirements.

• In order to simplify use and make it more secure, possibility of using, in certain cases, FIP DEVICE
MANAGER, a function prototype file (.h) which can be used with C++.

• All conditional compilation switches have been replaced by centralised configuration options in a .h file.
They must have a name which is directly connected to their use.

• Supply of a file that contains all the functions to be written by the user with an empty procedure space.

• Adoption of rules for clear, accurate and conventional naming.

• Management of time variables (ALSTOM Technology terminology) i.e. variables for which the time spent
with the transmitter and the receiver are sent to the consumer(s).

• Use of free access possibilities to FULLFIP2 database: memory shared between FIP DEVICE MANAGER
and FIPCODE.

• Possibility of deleting processing linked to BA ”TEST_P” instruction (subscribers present test) since this is
done internally by FIPCODE Version 6.

• Queues taken into account by type of event from FIPCODE/FULLFIP2.

• Possibility of exchanging messaging frames with a given field size, with the exception of the address field,
which may be equal to 256 bytes (instead of 251 previously).

• Operation at 2.5 Mbits/s and 5 Mbits/s.

• Updating of software included with latest available versions, in particular FIPCODE Version 6 taken into
account which provides significant improvements as regards processing performance levels on user interface
and line (turnaround time).

• Management of time variable (ID9802H) and time multi-producers.

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Page B-1

Appendix

B
Use with C++

FIP DEVICE MANAGER can be used in a C++ environment. The classes of FDM are the following:

• Fdm_Initialize: this class is used for the general initialisation of the FDM timers.

• Fip_Device_Manager; this is the root base class; it is used for the instantiation of a WorldFIP network
connection.

• Bus_Arbitrator: this class is used for the instantiation of Bus Arbitrator objects; this class is derived from
the Fip_Device_Manager class.

• GenericTime: this class is used for the instantiation of the MPS time variable object; this class is derived
from the Fip_Device_Manager class.

• MsgDataLinkFullduplex: this class is used for the instantiation of a full-duplex message context object;
this class is derived from the Fip_Device_Manager class.

• MsgDataLinkToSend: this class is used for the instantiation of a half-duplex transmitting message context
object; this class is derived from the Fip_Device_Manager class.

• MsgDataLinkToReceive: this class is used for the instantiation of a half-duplex receiving message context
object; this class is derived from the Fip_Device_Manager class.

• AE_LE: this class is used for the instantiation of AE_LE objects; this class is derived from the
Fip_Device_Manager class.

• MPS_Var_Prod: this class is used for the instantiation of Producer MPS Variables objects; this class is
derived from the AE_LE class.

• MPS_Var_Cons: this class is used for the instantiation of Consumer MPS Variables objects; this class is
derived from the AE_LE class.

• MPS_Var_Sync: this class is used for the instantiation of Synchronisation MPS Variables objects; this class
is derived from the AE_LE class.

• MPS_Var_Cons_and_Prod: this class is used for the instantiation of Producer/Consumer MPS Variables
objects; this class is derived from the class AE_LE.

• MPS_Areceive: this class is used for the instantiation of periodic MPS Variables with indication objects; this
class is derived from the AE_LE class.

Use with C++

Page B-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

The fdm.h file contains the class definition and implementation for each of the above classes. The body of the
member functions contains calls to the C functions described in Chapter 3.

Note

Demos\CC116 sub-directory contains an C++ example.

Glossary

ALS 50278 e-en FIP DEVICE MANAGER Software Version 4 User Reference Manual Gloss-1

AE/LE Application Entity/Link Entity

BA Bus Arbitrator (WorldFIP Bus Arbitrator)

DLL Data Link Layer

FDM FIP DEVICE MANAGER

FIPCODE microcode executed by FULLFIP2

FULLFIP2 WorldFIP communication coprocessor

FIELDUAL medium redundancy management system

kbits/s: kilobits per second

KB kilobytes

Mbits/s: megabits per second

MHz megahertz

MPS: Manufacturing Periodic/aperiodic Services

SM_MPS System Management Manufacturing Periodic/aperiodic Services

Glossary

Gloss-2 FIP DEVICE MANAGER Software Version 4 User Reference Manual ALS 50278 e-en

	Revisions
	Preface
	PURPOSE OF MANUAL AND DOCUMENTED VERSION
	CONTENT OF THIS MANUAL

	Reader's comments
	Contents
	Tables
	Chapter 1 General introduction
	GENERAL OVERVIEW OF THE SOFTWARE
	OVERVIEW OF TARGET HARDWARE CONFIGURATIONS
	PRESENTATION OF THE FUNCTIONALITY
	OVERVIEW OF THE INTERFACE WITH THE USER APPLICATION
	Description of the basic services
	Management of the reports and ERROR/WARNING callback functions
	Interface with the operating system
	Management of mutual exclusion
	Memory management

	Processing IRQ and EOC interrupts
	Processing events
	Processing real time clock interrupt
	Operating model for the deferred services
	Operational model for accessing the SM_MPS variables
	Operational model for accessing the universal-type MPS variables
	Operational model for the transmission of messages
	Operational model for the reception of messages

	Operating model for the local MPS indications
	Create an FDM application

	Chapter 2 Available Functions
	DESCRIPTION OF FUNCTIONS
	Self-tests
	Aims
	Offline test functions
	Online test functions

	Managing the medium (or media) of each configured network
	Managing AE/LE and MPS variables
	General
	Management of AE/LE operating modes
	Managing two AE/LE images
	Managing MPS variables
	Managing time variable producer redundancy

	Managing the Bus Arbitrator(s)
	Setting up a Bus Arbitrator program
	Managing Bus Arbitrator operating modes
	Setting the parameters of the Bus Arbitrator Start-up function

	Managing SM-MPS network management variables
	Format of network management variables
	Managing network management variables
	Creation of list of equipment present variable

	Managing WorldFIP data link layer messages
	Introduction
	Transmission configuration
	Reception configuration
	User application that plays the role of a bridge

	Chapter 3 Description of user interface primitives
	PROVIDED PRIMITIVES, TO BE CALLED BY THE USER
	fdm_initialize()
	fdm_get_version()
	fdm_ticks_counter()
	fdm_initialize_network()
	fdm_stop_network()
	fdm_online_test
	fdm_valid_medium()
	fdm_process_its_fip()
	fdm_process_it_eoc()
	fdm_process_it_irq()
	fdm_switch_image()
	fdm_get_image()
	fdm_change_test_medium_ticks()
	fdm_ae_le_create()
	fdm_ae_le_delete()
	fdm_ae_le_start()
	fdm_ae_le_get_state()
	fdm_ae_le_stop()
	fdm_mps_var_create()
	fdm_mps_var_change_id()
	fdm_mps_var_change_periods()
	fdm_mps_var_change_priority()
	fdm_mps_var_change_prod_cons()
	fdm_mps_var_change_rqa()
	fdm_mps_var_change_msga()
	fdm_mps_var_write_loc()
	fdm_mps_var_write_universal()
	fdm_mps_var_time_write_loc()
	fdm_mps_var_read_loc()
	fdm_mps_var_read_universal()
	fdm_mps_var_time_read_loc()
	fdm_generic_time_initialize()
	fdm_generic_time_write_loc()
	fdm_generic_time_read_loc()
	fdm_generic_time_delete()
	fdm_generic_time_set_priority()
	fdm_generic_time_set_candidate_for_election()
	fdm_mps_fifo_empty()
	fdm_ba_load_macrocycle_fipconfb()
	fdm_ba_load_macrocycle_manual()
	fdm_ba_delete_macrocycle()
	fdm_ba_set_priority()
	fdm_ba_set_parameters()
	fdm_ba_start()
	fdm_ba_stop()
	fdm_ba_status()
	fdm_ba_commute_macrocycle()
	fdm_ba_external_resync()
	fdm_ba_loaded()
	fdm_read_present_list()
	fdm_read_presence()
	fdm_read_identification()
	fdm_read_report()
	fdm_read_ba_synchronize()
	fdm_get_local_report()
	fdm_smmps_fifo_empty()
	fdm_messaging_fullduplex_create()
	fdm_messaging_to_send_create()
	fdm_messaging_to_rec_create()
	fdm_messaging_delete()
	fdm_channel_create()
	fdm_channel_delete()
	fdm_send_message()
	fdm_msg_send_fifo_empty()
	fdm_msg_rec_fifo_empty()
	fdm_msg_ref_buffer_free()
	fdm_msg_data_buffer_free()
	fdm_change_messaging_acknowledge_type()

	CALLBACK PRIMITIVES TO BE PROVIDED BY THE USER

	Chapter 4 Performance levels
	USER PRIMITIVE RUN TIME
	Introduction
	Start-up: fdm_initialize_network() primitive
	Miscellaneous functions
	AE_LE start-up
	Messaging
	MPS variables

	MEMORY CAPACITY REQUIRED
	Code size and modularity
	Data size
	Memory capacity for FULLFIP2

	Chapter 5 Error codes
	ERROR MESSAGES

	Chapter 6 Installation procedure
	SOFTWARE SUPPLY
	IMPLEMENTATION
	COMPILATION PARAMETERS

	Appendix A Compatibility
	Appendix B Use with C++
	Glossary

