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Abstract

A new method is presented based on trinary logic able to check the state of different control

variables and synchronously record the physiological data and behavioral data of behaving animals

and humans. The basic information structure of the method is a time-interval of defined maximum

duration, called time-slice, during which the supervisor system periodically checks the status of a

specific subset of input channels. An experimental condition is a sequence of time-slices

subsequently executed according to the final status of the previous time-slice. The proposed method

implements in its data structure the possibility to branch like an if-else cascade and the possibility to

repeat parts of it recursively like the while-loop. Therefore, its data structure contains the most basic

control structures of programming languages. The method was implemented using a real-time

version of LabVIEW™ programming environment to program and control our experimental set-up.

Using this supervision system, we synchronously record 4 analog data channels at 500Hz (including

eye-movements) and the time-stamps of up to 6 neurons at 100kHz. The system reacts with a

resolution within 1ms to changes of state of digital input channels. The system is set to react to

changes in eye-position with a resolution within 4ms. The time-slices, experimental conditions and

data are handled by relational databases. This facilitates the construction of new experimental

conditions and data analysis. The proposed implementation allows continuous recording without an

inter-trial gap for data storage or task management. The implementation can be used to drive

electrophysiological experiments of behaving animals and psychophysical studies with human

subjects.
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Introduction

Electrophysiology research in behaving animals is still a growing field in neuroscience as

seen from the ongoing increase in the number of publications each year. The use of sophisticated

digital systems (based on microcomputer and related software) in the experimental setup has

allowed neural activity to be studied in behaving animals in more and more complex experiments.

Nowadays, some research methodologies require the synchronous recording of the bioelectrical

activity of different neurons, eye-movements, electromyography, and other external events or data

describing the behavior of the animal.

The algorithms described in the literature for neurophysiological experiments with animals

or humans (Kling-Petersen and Svensson, 1993; Budai, 1994; Nordstrom et al., 1995; Poindessault

et al., 1995; Desimone et al., 2004) have two main problems. The first is due to the limited

computer memory size. This forces algorithms to be developed with a maximum recording time

limited by the hardware so that experiments must be designed in a trial-by-trial fashion. The second

problem is a consequence of the trial-by-trial design of the experiment. When an animal does not

react as predicted by the scientist (for instance a monkey does not perform eye-movements as

intended) during a trial, the program has to stop and wait until the experimental situation comes

back to the origin before starting a new trial. Any information during this time is lost.

To overcome these limitations we developed a new method based on trinary logic able to

check the state of different control variables and continuously record electrophysiological data and

data describing the animal’s behavior. The basic information structure of the method is a time-

interval of defined maximum duration, called time-slice, during which the supervisor system

periodically checks the status of a specific subset of input channels. The status of a time-slice is

based on trinary logic which refers to the three behavior-dependent states: non-fulfillment of

required behavior, correct performance of task, or erroneous task performance. An experiment is
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seen as a sequence of time-slices, subsequently executed according to the final state of the previous

time-slice.

This paper describes the algorithm and its implementation using the real-time version of

LabVIEW™ programming environment (National Instruments Corp., Austin (TX), U.S.A.). Since

its introduction, the LabVIEW G-language (Kodosky and Dye, 1989) has been one of the most

powerful software tools to create easily supervised systems to control experiments. This is

demonstrated by numerous examples in the literature, showing the advantages of a graphical

software environment in human and animal studies (in vitro: Budai et al., 1993; Kullmann et al.,

2004; in vivo: Kling-Petersen and Svensson, 1993; Budai, 1994; Nordstrom et al., 1995;

Poindessault et al., 1995; animal behavior: Puppe et al., 1999).

Our algorithm also allows continuous recording in the case of unpredicted animal behavior,

and can be used to drive psychophysical studies with normal human subjects or patients.

Preliminary data have been presented in abstract form (Marzocchi et al., 2004).
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Method

This section is divided into two parts. The first (Theory) describes the new method,

introducing the concept of a time-slice and its algorithm and higher level structures based on the

time-slice concept. The second part describes the method implementation and the hardware used. In

addition, the Appendix contains a more detailed description of the different procedures

implemented with the LabVIEW G-language (Kodosky and Dye, 1989).

Theory

Control of experiments using behaving animals

Experiments using awake, behaving animals are difficult to control because the behavior of an

animal is only partially predictable. Although animals like monkeys can be trained for certain tasks

(e.g. to perform a saccade towards a target), the induced behavior will be correctly performed with a

probability less than 100%. Experiments based on animal behavior must be designed so that they

take into account the probabilities of an animal producing behavior in the sequence and timing

intended by the scientist. The timing of the task sequence expresses the given probabilities of an

animal producing a behavior (for instance the maximum time from a stimulus to execution of a

behavior).  A supervisor system must be able to wait for the execution of an intended behavior and

react immediately when it is produced, or interrupt the task if the animal does not produce the

behavior in a given time. Therefore, any element of a task sequence can have three distinct states:

ongoing behavior, correct completion of behavior or false completion of behavior. The three states

can be expressed by trinary logic.

The problems of controlling an electrophysiological experiment with behaving animals are

illustrated by an example from the literature (Fattori et al., 2001). In this experiment a monkey

(Macaca fascicularis) had to produce straight arm movements from a start button towards a defined

target button indicated by an illuminated LED, and then come back to the start button (Fig. 1A). In

the meantime, the monkey had to maintain fixation of the reaching target (LED). Bioelectrical
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activity of single neurons in the posterior parietal cortex was recorded extracellularly. The computer

had to set the LED (off, green, red) to control the buttons (off, pushed), control the position of the

eyes and record the event of neural activity as well as eye movements and events of change of the

external apparatus (LED, buttons). The sequence of the experiment is the following. The monkey:

1. presses the start button (placed at chest level in front of it)

2. waits for a variable time for a LED in front of it to light up green

3. makes a saccade towards the position of the LED

4. fixates the LED and waits for it to change color (green -> red)

5. releases the start-button as a result of a color change

6. makes an arm movement towards the target button and presses the target button

7. remains with its hand on the target button and waits for the LED to switch off

8. releases the target button as a result of the LED switch-off

9. makes an arm movement back to the start button and presses the start button

10. is rewarded.

The experiment is shown in figure 1B as a time sequence of states of input channels to be

controlled (upper part) and output channels to be set (lower part). Advancement in the sequence

depends not only on the supervisor system but also in large part on the behavior of the animal. For

example, it is impossible either to foresee the exact time an animal needs to release the start button

after the LED color change or the time needed to move its arm towards the target button. It is only

possible to set some upper limits for these intervals in ranges of physiological behavior. Depending

on the animal’s behavior, the supervisor system has to decide to go ahead in the experimental

sequence or to change requests to the animal as necessary (for example breaking the trial and

finishing any type of stimulation).

Figure 1 about here
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An analysis of the state-graph in figure 1B, will show how a supervisor system can control

different behavior requirements. Behavior requirements can be classified as four kinds: to remain in

the current behavior (e.g. fixation of a visual target), to reach a behavioral condition (e.g. starting to

press a button), to end a behavioral condition (e.g. releasing a button), to avoid producing a

behavior (e.g. not making a saccade to a distracter). Examples for the first three behavior

requirements are shown in figure 1B in the 1st, 4th, and 5th intervals. At the beginning (interval 1) the

supervisor system waits for the monkey to press the start button. Expressed in sense of information,

the system waits for the condition “pushed” to be reached. In a subsequent interval (no. 4), when the

LED lights up green and the monkey fixates it, the supervisor system checks that the start button

remains “pushed”. In the next interval (no. 5) the LED changes color and the system waits for the

condition “pushed” of the start button is end. This description, confined for simplicity to the state

change of the start button, shows that a pre-defined condition of a control variable can be reached in

a time interval, can end during a time interval, or can remain for a time interval.

 At the moment in which a pre-defined condition is reached or ends, the time interval finishes

and the control program advances in the sequence. In contrast, in cases in which the condition has

to remain at a pre-defined value the time interval finishes after its whole execution. Thus, during

each interval, here often called time-slice, the input channels (except channel Eye) and output

channels remain unchanged, as the state-graph reveals (Fig. 1B). In those cases in which a change

in input channel is expected, it is the change itself which provokes the transition from one time-slice

to the next. The same is true for the output channels: output channels are changes at the beginning

of a time-slice. Any change in an output channel first needs a transition from one time-slice to the

next.

The input channel Eye is a special input channel, not only because eye position data are analog

and not digital (like the start button), but also because it is not always necessary to control eye

movements. In the example experiment of figure 1, eye movements are controlled only during the

3rd to 8th time intervals.
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The time-slice state

Summarizing the above description, a time-slice can be defined as a time-interval of

defined maximum duration (Tmax) during which neither the input or output signals changed in

relation to prefixed values. Four distinct time-slices can be introduced in consideration of the

behavior: Remain, Reach, End, and Avoid. The supervisor system periodically checks the time

elapsed (T) and a time-slice-specific subset of input channels. Each of these input channels is

compared to time-slice-specific conditions yielding a state value Sin = 0, 1 or 2 for each comparison

(Table 1). In addition, time T is assessed compared to the maximum time allowed for that slice

(Tmax) and the ST value is assigned. The sum of Sin + ST determines the time-slice state, and thus

progression of the subsequent behavior of the control algorithm (Table 2).

Table 1 about here

Table 2 about here

Example: In time-slice 1 (Fig. 1) the monkey is expected to press the start button,

therefore the supervisor system waits for a change in the digital input channel monitoring the start

button. As long as the button is not pressed and time elapsed is shorter than the time allowed for

time-slice 1, digital input status (Sin) and time status (ST) values are both 0 and the supervisor

system stays in time-slice 1. If the monkey presses the start button in time, the digital input status

(Sin) becomes 1 and the supervisor system proceeds to time-slice 2. Finally, if the maximum time

expires without the start button being pressed, the time status (ST) becomes 2 and the time-slice

finishes incorrectly, causing the supervisor system to restart the experiment.

An important feature of the time-slice concept is that during a time-slice only one input

channel is monitored for a change while the other input channels are either ignored or are expected

to maintain their status without a change. An example for the latter case is time-slice 3 when the
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LED in front of the monkey is changed to green and the monkey is expected to make a saccade

towards the LED while keeping the start button pressed. In this time-slice the digital input channels

of start button and target button are expected to remain unchanged, whereas the channel Eye

reaches a reference value (see table 1). If the task consists of making the saccade and moving the

arm from one button to another, it has to be split into two time-slices. In the first time-slice the input

from the analog channel monitoring eye-position would be expected to change. Then, in the second

time-slice, the execution of the arm movement would be monitored. Because saccades are faster

than arm movements, this strategy works quite well.

The condition: an orderly sequence of time-slices

The next step is the construction of an experimental condition based on a sequence of time-

slices. In principle, this involves composing an experiment as a sequence of time-slices like the

experiment shown in figure 1. In the experiment of figure 1 the supervisor system executes the

sequence until the animal behaves as foreseen by the protocol. Problematic is the situation when the

animal does not behave as required. To handle this situation a specific time-slice called error-

handling slice (eh) has been introduced with the same data-structure as the other time-slices. Its

function is to manipulate the experimental situation up to a point at which a new experimental

condition can start. Therefore, two pointers must be added to the data-structure of a time slice, one

for the advancement following a correct end of time slice (time-slice state = 1) and one following an

erroneous end (time-slice state > 1). These pointers will be called true-index and false-index,

respectively. For convenience time-slices in condition sequences will be called working slices (ws).

An example of a condition based on a sequence of time-slices is shown in figure 2A. The figure

shows that the false-index of he error-handling slice points back to itself. This behavior is necessary

because any time-slice must have a defined maximum duration, but it cannot be foreseen how much

time is required until the experimental situation allows a new start of the experiment. Pointing the
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false-index of the error-handling slice back to itself creates a continuous repetition of this time-slice

until the true-index condition is achieved (while-loop on a time-slice).

In principle, it is possible to create a specific error-handling slice for each working slice.

But, experience of a real implementation showed that it is much more convenient to handle the

false-indexes in a way that they point to just one error-handling slice. Note that an error-handling

slice is part of a condition. A condition ends with the end of execution of its last working slice or

the end of execution of an error-handling slice. To concatenate a sequence of conditions, the true-

indexes of any possible last slice (irrespective of whether it is a working slice or an error-handling

slice) must point to the first working slice of a condition (see figure 2A). It is worth noting that the

true-index pointer of the error-handling slice can be used for different training strategies, i.e. the

same condition can be repeated by pointing back the true-index to the first working slice of the

same condition (while-loop on a condition) or, as a different strategy, pointing the true-index to the

first workings slice of the following condition (like in figure 2A).

The fact that each time-slice has two successors, usually the next working slice and an error-

handling slice, shows an important behavior of the algorithm, the possibility of implementing a

branch in the execution. This possibility can be used to meet the needs of experimental interest. For

example, you may want to study the neural response in a two choice reaction task, like presenting

two visual stimuli to an animal and asking it to decide if they are similar or not by making a saccade

upward or downward, respectively. Depending on the reaction of the animal the experiment will

proceed in one of two different manners. In cases like this, the two pointers (true- and false-index)

of the working slice revealing the animal’s decision, will point to a working slice. Such a situation

is shown in figure 2B. The branch point in the flow of the experiment is at the second working slice

(ws_2 in figure 2B). The experimental condition described in figure 2B contains the time-slice

sequence ws_1, ws_2, ws_3, ws_4, ws_7 as well as ws_1, ws_2, ws_5, ws_6, ws_7. It is worth

noting that the two branches converge on one time-slice (ws_7) before ending the condition. This is

not necessary, but it simplifies the handling of the pointers to the first working slice of the next
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condition. A problem to solve here is again the defined maximum duration of the time-slice. In the

example the branch of the false-index will be followed either if during the previous working slice

(ws_2) the animal made a saccade downward or if the time-slice was timed out. So the first thing to

do in the false-index branch is to check if the saccade occurred. This can be done by constructing a

working slice (ws_5 in figure 2B) in which the animal has to fix on the downward position (=>

Remain in table 1). If the animal has reached the position the supervisor system proceeds as

required otherwise it terminates immediately. In principle, another branch can be added in any

branch. So, the program can behave like an if-else cascade.

Figure 2 about here

Task: a sequence of conditions

The task structure will be introduced to complete the description of the experimental

protocol. A task is referred to as a set of one or more conditions. For example, if the experimental

interest is to study the neural response to saccadic eye movements, it could be desirable to study the

neural response to different movement directions and/or amplitudes. Each test to one direction or

amplitude will be a different experimental condition. All conditions prepared for an experiment will

be grouped in one task (e.g. the eight conditions for studying saccadic eye movements along the

directions of the cardinal and oblique axes). No order is imposed on the execution of the conditions.

The decision to use an orderly sequence of conditions or a randomized one often depends on the

experimental protocol, so it should be possible to present to the animal an orderly sequence as well

as a randomized one.
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Implementation

The method is implemented so as to perform a task, like that described by Fattori et al.

(2001). Our actual setup (figure 3) allows single- and multi-electrode recordings. Neurons are

separated by means of a Schmitt trigger (BAK Electronics Inc., Germantown (MD), U.S.A.) or a

Multiple Spike-Detector (Alpha-Omega Eng., Nazareth, Israel) and their time-stamps are recorded

by a counter device used for buffered event counting. Eye positions are measured using an infrared

oculometer (DR. BOIUS Devices for movement measurements, Karlsruhe, Germany) and recorded

by an analog input device of a multifunctional-board. LED and buttons are through a homemade

interface controlled by a digital I/O device.

The method is implemented using the LabVIEW G-language (Kodosky and Dye, 1989) on

two computers (see figure 3), an ordinary PC running Windows (host-PC) and a dedicated

PXI/CompactPC (National Instruments) for real-time control and data acquisition. For a flexible

management of time-slices, conditions and tasks, we used a relational database (Microsoft

Access™) read out by LabVIEW. The host-PC serves as the interface between the user and the

PXI-PC. It programs on the PXI, stores the data acquired by the PXI-PC, and analyzes the acquired

data online in the form of peri-stimulus time histograms. The PXI-PC contains the program to

control the experiment and acquire analog, digital and counter-data.

Figure 3 about here

Hardware

PXI (PCI eXtensions for Instrumentation) is a CompactPCI specification, which combines

the high-speed PCI bus with integrated timing and triggering designed specifically for high

performance measurements. Deterministic real-time performance is achieved with an embedded

controller and LabVIEW real-time environment. PXI boards can be connected together for precise

synchronization of functions by means of a real-time system integration bus (RTSI bus). LabVIEW

and the PXI components are available from National Instruments Corp. (Austin, Texas, U.S.A.).
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In our present system the PXI-PC control module is built into an eight-slot chassis and

includes a Pentium III-processor, RAM and a hard disk. We use a multifunction data acquisition

device for analog acquisition, a 96-channel Digital-IO device for digital input/output operations and

an 8-channel counter/timer device for spike acquisition and internal timing utilities (table 3). We

dedicated 2 counters of the Timing IO-device for timing purposes of the PXI-program. One counter

produces TTL-pulses at a frequency of 500Hz to command the analog acquisition. Higher

frequencies to command an analog acquisition device are possible. The maximum frequency

depends mainly on the characteristics of the device. The second counter serves to count the ongoing

time and works at a frequency of 100kHz. The other 6 counters are reserved for acquisition of time-

stamps of detected spikes or external digital events (for this reason we use the word counter-data

rather than spike-data) and work at a frequency of 100kHz. To record more time-stamps additional

Timing IO-devices (each with 8 counters) can be added. The devices are wired to the periphery by a

homemade interface which serves for output signal adaptation (i. ex. the reward system needs a 12

V command-voltage) or stabilize incoming signals from pressed buttons (using flip-flop circuitry).

In our application the RTSI bus is used to trigger and synchronize analog data and spikes

acquisition. One of the PXI trigger bus lines is used to start all hardware devices synchronously and

another one is used to route a square wave generated by one of the Timing-IO device counters to the

scan clock input of the analog data acquisition board. This allows a time synchronized analog data

acquisition at constant intervals.

Table 3 about here
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Software

The supervisor system is organized in two main modules running on the host-PC and the

PXI-PC respectively (for this reason indicated as host-PC program and PXI-PC program). This

structure was fixed by the fact that the real-time system runs as a target on which the host-computer

downloads applications, and it does not provide a user interface for applications. Data could have

been stored on PXI-PC hard disk, however we preferred host-PC because this allows us to perform

some on-line analyses of the data, such as trials statistics and neural discharges visualization (raster

plots and PSTH).

The front-panel (user interface) of the host-PC program contains all the controls needed by

the experimenter, such as task choice, selection of active spike channels, buttons to start and stop

the experiment, and some useful indicators, like trial counters, program status, etc. Furthermore the

host-PC program communicates by a TCP/IP line with the PXI-PC program, sending user

commands and receiving data and other information. Received data are stored on a relational

database, allowing easier retrieval of data for on-line and off-line analyses using simple SQL

queries. In particular this enables highly flexible on-line analysis of the spike trains: during the

acquisition it is possible to change the visualized spike channels, the marker used to align neural

activity and the conditions analyzed. This provides the scientist with a good tool to understand

recorded neurons behavior to optimize their investigation.

The host-PC drives the PXI-PC program, which has three main duties: controlling the

advancement of the experimental sequence, acquiring data and transmitting them to the host-PC.

The control loop, executed with a real-time priority, represents the implementation of the time-slice

algorithm. It handles one time-slice at a time. First, it sets the output values, and then continuously

reads the actual values of the input signals (digital lines, analog channels and elapsed time),

comparing them with the intended values to calculate the state value. Based on this result the

control loop continues to check the input signals or proceeds with another time-slice as described in
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the theory section. Further information on implementation details and a description of some

emblematic procedures can be found in the Appendix.

Using relational databases for data and tasks

As previously mentioned, to achieve a flexible management of information regarding task

structures and acquired data we used relational databases based on the Structured Query Language

(SQL), readable with different DBMS such as LabVIEW Database Toolkit using the Open

DataBase Connectivity (ODBC).

The database containing information on the structure of time-slices, conditions and tasks and

their linkage includes five tables joined as shown in figure 4A. Any task/condition/time-slice is

identified by a unique reference number called ID and is described by a record in the corresponding

descriptor table, containing as fields all the general parameters necessary for its definition. The

Time-Slice Descriptor includes the ID of the time-slice, its name and description, a set of output

values and the subset of input to be monitored and their awaited values. The Task Descriptor record

includes only its ID, its name and a brief description string. The remaining two tables are used to

define condition and task structures. Each record in the Condition Structure Table associates a time-

slice with a condition, states the time-slice position in the sequence and specifies the true-index and

the false-index. Therefore by querying this table pre-defined time-slices can be assembled into any

kind of experimental sequence considering all the records with the same ID Condition. Similarly

different conditions can be assembled into a task by means of the Task Structure Table.

The database for acquired data includes four tables as shown in figure 4B. The main table

called Recordings associates to each experimental recording an identification number (ID

recording) used to reference the entrances of the other tables, and specifies the path of the binary

file containing analog data. This kind of storage for analog data was chosen to enhance the time to

write data to hard disk. The second table in the database is for chronological data, i.e. information

about time-slices execution (state value, start-time, end-time). The remaining two tables are used for
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spike acquisition and contain the list of units recorded on selected spike channels and the spike

time-stamps respectively. The advantage of storing spike data and chronological data in a database

is not only for off-line analyses but it also allows on-line analyses during the experiment. Reading

the data base for different criteria like different conditions of a task, different behavioral events of a

condition or different counter-number (=> different neurons) allows the incoming data to be

separated for different response characteristics of different neurons and to adapt the query

procedure as a result, thereby allowing us to resynchronize histogram and raster-plots to new events

during the recording.

Figure 4 about here
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Results

We tested the time accuracy of the supervisor system during synchronous recording, forcing

the system to react as fast as possible to changes in digital input values. The recording of changes of

digital input is the most critical one because it depends on the reaction time of the control algorithm.

We used a pulse generator (BAK Electronics Inc., Germantown (MD), U.S.A.) to generate square

pulse waves with equal duration of on- and off-phase (duty-cycle 50%). The waves were recorded

as a continuous signal by the analog device, the rising edges of each wave as time-stamps by the

counter device (simulating spike data), and each change to high or low value by the digital device

(simulating behavioral data). We constructed a condition with only two time-slices in which the

first time-slice waited for the change to high value of the digital input line and the second one

waited for the opposite change. So each change from off- to on-phase of the pulse and vice versa

triggered a decision by the supervisor system with advancement in the time-slice series and entry of

a new record in the chronological data table of the database.

We calculated the accuracy of synchronous detection between data from the counter device

(simulated spikes) and the entries for the first time-slice of each condition in the table of

chronological data (behavioral events)  both triggered by the same event (the rising edge of a square

wave). This means that we can estimate the accuracy with which behavioral data can be correlated

with spike data. The results (Fig. 5) show that the system reacted with an error of synchronous

detection less than 1ms when the duration of a time-slice was 40ms or longer. Forcing the system to

react faster increased the error. The maximum error of synchronous detection of all measurements

was not longer than 4ms. Forcing the system to react faster than any 4ms the supervisor system

broke down. This dead time of the supervisor system was due to the fact that the inner while-loop of

the control loop contains a sequence structure with 4 elements (see Appendix). Executing all 4

sequence frames, 4ms time was needed. During the execution of longer time-slices (≥ 40ms), when

the supervisor system needed to take a decision, the supervisor system was executing the third
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sequence frame of the control loop containing the time-slice control algorithm (see fig. A4 in the

Appendix). The loop contained in this sequence frame was performed with a precision of 1ms.

Taking into account the fact that the fastest behavior a monkey can produce is an expressed saccade

(latency > 50ms), we can be sure that any relevant behavior of an animal can be correlated with

spike data with accuracy below 1ms.

We also estimated the error of synchronous detection between the analog device (eye

position or EMG) vs. digital device and between analog device vs. counter device. The error was

0.73ms +/- 0.71 and 1.16ms +/- 0.58, respectively.  Taking into account that the sample frequency

of analog data was 500Hz, the supervisor system recorded data with a sufficient precision to

correlate analog data with neural or behavioral data.

Figure 5 about here

Figure 6 shows the continuous recording of neural activity, eye position, and behavioral data

for more than 15 minutes in which the animal had to perform a delayed-reach task similar to that

described in figure 1. The neurons discharged with varying frequencies during the whole recording.

The neuron shown in the second line of the raster plot discharged throughout the recording, the one

in the first line discharged less often, and the neuron in the third line discharged rarely. The animal

performed the task during the first three minutes and paused for the following 7 minutes, with two

exceptions. The supervisor system continued to record data, and during the pauses it waited for the

moment when the animal decided to restart the task. Continuous recording was possible thanks to

the qualities of the algorithm. The first time-slice of the condition was a Reach time-slice set to wait

for the animal to press the start button with a duration up to Tmax = 5s. If after this duration the

animal has not pressed the start button, the time-slice finished with an error and the supervisor

system proceeded with the error-handling slice. The error-handling slice waited for no button to be

pressed, which was immediately fulfilled, because the animal did not pressed any button. Therefore,
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the supervisor system restarted the condition with its first time-slice waiting for the animal to press

the start button for another 5 seconds, and so on.

It is worth noting that the recording of eye-position signals and time-stamps of detected

spikes are independent from the time needed by the supervisor system to make a decision. The

continuous recording allows us to correlate neural response with behavior during the performance

of a task but also to correlate neural response recorded during the inter-trial phase, independently

from its duration.

Figure 6 about here



JN-01292-2004.R119

Discussion

This paper describes the design and implementation of a new algorithm to control

experiments with awake, behaving animals. The algorithm was implemented by LabVIEW on an

embedded PC fitted with a real-time operating system (RTOS). This implementation represents a

good comparison between high performance and ease of use and it allows neural data, eye

movement, electromyography, and behavioral data to be recorded synchronously and continuously

with an alignment error of less than 1ms. The data recording is not done in a trial oriented manner

and it is independent of the animal’s behavior. Data and tasks are stored in relational databases. The

algorithm does not need an inter-trial interval for data storage or task management. The use of

relational databases allows online-analysis during continuous recording. The algorithm could be

used to drive psychophysical experiments in which human subjects have to react to stimuli,

performing eye movements, hand movements, etc.

The basic information structure of the algorithm is a time-interval of defined maximum

duration, called a time-slice. The status of a time-slice is based on trinary logic which takes into

account three possible behavioral states: non-fulfillment of task-required behavior, correct

performance of task, or erroneous task performance. The proposed data structure to implement the

algorithm allows branching of the condition (if-else cascade) as well as looping of parts of a

condition (while-control). Therefore, the proposed data structure itself contains the most basic

control structures of programming languages. This advantage simplifies the construction of

complex tasks, because the construction of cascades or loops is done by the concatenation of time-

slices. In addition it should be noted that the construction of these control structures does not need

knowledge of specific program languages.

The algorithm described is not the first to be published in the literature. Poindessault et al.

(1995) gave first complete program for stimulation and data acquisition using LabVIEW. This
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program was designed to perform stimulus control and data acquisition and off-line analysis of

visually driven neurons in frog. The main difference of between our program and that of

Poindessault can be summarized in two points: 1) their program is constructed for experiments with

animals which do not have to produce any kind of behavior, 2) using the classical (non real-time)

LabVIEW environment (LabVIEW 2 on a Macintosh II computer), the program was not suited to

real-time needs. Any node of the program was executed about 1/60s in round robin fashion.

Therefore, real-time application had needed to be design around the hardware (Poindessault et al.,

1995).

Recently, Kullmann et al. (2004) described a new control and recording program using

LabVIEW-RT. The program called “G-clamp” is an implementation of the dynamic clamp method

for whole cell voltage clamp studies. The authors divided their program into two parts, one to be

executed in real-time on a PXI-PC and a second part, executed on a Windows-PC, used as a User-

Interface. This program is designed for a fixed duration of trial/sweep, and therefore it is suitable

for experimental studies different from those recording behaving subjects. It stimulates a cell and

records data for a defined time, without the need to react on an intended behavior. Another

difference lies in the possibility to extent the program. Kullmann et al. have foreseen the

implementation of new virtual ion-channels as an addition to the software in the real-time cycle.

The experimental task (application of pulses of defined duration) remains unchanged. In contrast,

our program is designed to construct as many tasks as possible with the hardware environment.

Another program to control neurophysiological experiments with awake, behaving animals

is CORTEX, developed by Robert Desimone in the early 1980’s and re-elaborated by many of his

colleagues in the following years. We will refer here to the VCortex Ver. 2.0 User-Manual

(Desimone et al., 2004). This program is developed in the C-language for a Windows-PC.

CORTEX is mainly a program designed to study neural responses to visual stimulation. It is a trial
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oriented supervisor system in which a defined experimental condition is tested during one trial. The

basic concept in organizing the experiment is called condition and it works similarly to our concept

of condition. In CORTEX a condition is divided into screens of images (TEST0 to TEST15). A

TEST# contains a defined set of visual stimulation during a defined period. This is a concept similar

to the output part of our time-slice notion. A difference between the two algorithms is the fact that a

CORTEX condition cannot contain more than 16 TEST items.

The trial oriented design of CORTEX has some disadvantages: 1) it needs at least a gap of

500ms between each trial to store and analyze data; 2) the on-line analysis takes into account only

the last stored trial, so during recordings, histograms cannot be resynchronized to a new event; 3)

the maximum number of data for each type of data is set to 15000. Although this number is large, it

constrains the user to create conditions which are not too long. For example, recording eye positions

(2 channels) at a sample frequency of 1kHZ limits the maximum trial duration to 7.5s. The design

of our program allows continuous recording without an inter-trial gap (see fig. 6) and we can

theoretically store an infinite amount of data. In addition, the storage of behavioral as well as spike

data in a relational database allows us to resynchronize histograms and raster-plots to different

events during the recording. CORTEX contains a large set of pre-defined functions for visual

stimulation. As our program was written with the intention to produce visual as well as other kinds

of stimulation by hardware outside the supervisor system, the supervisor system controls only the

start and end of different stimulations and the responses evoked by them.  CORTEX contains also

the possibility to branch the execution or create loops of different parts, but this can be done only of

the level of the CSS-program language and not in the data structure. If one wants to change parts of

a task, it is necessary to rewrite the program.

In conclusion, our program does not contain any limitation in the length of a condition. It

synchronously records the signals of 4 analog channels (i.e. eye-position signals, electromyography

etc.), the time-stamps of several single neurons simultaneously (by means of single- and multi-
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electrode recording and multi-spike detection), sets digital output channels, and reacts immediately

on changes of selected digital or analog channels. In our present system, we reserved 6 counters for

acquisition of time-stamps of detected spikes. This number can be scaled by installing additional

Timing IO-devices. The time-slice based construction of experimental conditions allows an easy

construction of different experimental protocols.
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Appendix

The following is a description of some emblematic procedures to explain the

implementation of the time-slice algorithm addressing questions linked to the LabVIEW G-

language and its main structures like the while-loop, case-structure, sequence-structure, event-case

structure, etc. Three types of synchronization structures of the LabVIEW environment play a key

role in our program: queue, notifier and occurrence. For a detailed explanation of these structures

see http://www.ni.com/labview. A Queue is a buffer in which data are stored and the first data

stored in the queue are the first data read from the queue (FIFO-method). The amount of data which

can be stored on a queue is virtually infinite and depends on the size of RAM on the PXI-PC or on

the host-PC. A notifier is a single element buffer. When a new value is written to a notifier the old

one is overwritten, reading a value from a notifier does not cancel the value in a notifier. In

LabVIEW, queues and notifiers can be of any data type including complex structures (like cluster)

and polymorphic ones. An occurrence is a synchronization structure equivalent to a classical

Boolean flag. It serves to start or stop synchronously different, separated parts of the program

without forcing LabVIEW to poll on a global variable.

The host-PC program

The main program running on the host-PC contains two while-loops working in parallel as

main structures. The first one, containing an event-structure, controls all input elements of the front-

panel (fig. A1-A) and sends the commands to the PXI-PC. The while-loop interfaces the user with

the program running on PXI-PC. One example of an event-case is shown in figure A1-B. This

event-case is executed when the “Load Task” button of the front panel is pressed. It allows the user

to select one of the tasks. When the event-case is executed it reads for the specified task the

sequence of time-slices, converts them to a string and sends it with an identification letter ahead

(here “t”) through a TCP-connection to the PXI-PC. The PXI-PC confirms the reception of the
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time-slice sequence sending back the identification letter. The event-case structure is set to have no

timeout. In this way it reacts immediately to any detected event on the front panel.

The second main structure of the host program, again a loop structure, contains a set of

parallel working while-loops to read the transmitted data from the PXI-PC and store them in a file

or database on the host-PC. An example is shown in figure A2 containing the two loops to read

spike data and store them in the database. The first loop (fig. A2-A) contains three read procedures.

The first one reads from a TCP-line the number of data to be transmitted, the second one reads the

counter-number (that corresponds to the spike channel) to which the data belong, and the third one

reads the data and converts them into an array. All three pieces of information are stored in a cluster

and saved on a queue for spike data. The queue is needed as a buffer to mediate between the timing

of data reception and the timing to write data to hard disk.

The second loop (fig. A2-A) reads the data from its queue (here that of spike data) and saves

them in the database using the ODBC-Toolkit of LabVIEW. The other two kinds of data (analog

and chronological data) are received and stored in the same manner, with one difference: as

explained in the implementation section the analog data are stored in a binary file not in the

database and the database contains just the reference to the binary file.

Figure A1 about here

Figure A2 about here

The PXI-PC program

The main program running on the PXI-PC is based on a while-loop for the communication

and six subVIs running in parallel in real-time (fig. A3). There are a couple of subVI’s for

acquisition and transmission of analog data (analog acq, tx analog data) and spike data (spike acq,

tx spike data). The other two subVI’s are the control sub-VI controlling the experiment (real-time

ctrl) and a subVI transmitting the chronological data in relation to the advancement of the time-slice
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sequence (tx chron data). The task control subVI has time-critical real-time priority, and is set to

work with a time-accuracy of 1ms. The other subVI have lower real-time priorities (see table A1).

The procedure of the main program is divided into sequence-frames. In the first frame, the

counter, which triggers the analog acquisition, starts then pauses and waits for its activation during

the recording sessions. This “warm-up round” of the counter ensures a synchronous start at the

beginning of each recording. The next frame contains the creation of the data queues (“analog”,

“time_slices”, “spikes”), the control queue “exit”, the notifier “eyes”, and the start occurrence.

Their references are passed to the acquisition and transmission subVI’s in the third frame (shown in

fig. A3). This frame also contains the main while-loop, which receives the task from the host-PC,

starts the control and acquisition routines, and stops them. The start signal for each recording is

given by means of the start-occurrence and the stop signal is given by the queue “exit”. The queue

“exit” contains Boolean value. The presence of a value on the queue indicates to the other subVIs to

stop the acquisition or the transmission process. Depending on the value on the queue, the subVIs

waits for a new start signal (false-value) or terminates definitively (true-value).

Table A1 about here

Figure A3 about here

The control loop

The control loop (fig A4) is the core of the time-slice algorithm implementation. In fact it

handles one time-slice at a time e.g. it reads the actual state of the input channels and compares

them to the intended values until it finds a result-value corresponding either to a correct end or to an

erroneous end of the time-slice. Then, based on this value it starts the following time-slice.

The control loop has the following construction going from outside to inside (fig A4): an

outer while-loop, a case structure (not shown), an intermediate while-loop, and a sequence structure

containing in frame #2 the inner while-loop. The outer while loop cycles around all tasks applied

during a recording session. The intermediate while loop cycles around all time-slices of a task and
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the inner while-loop cycles around all the evaluations of input channel values during a time-slice.

The main VI passes to this subVI the references of the start occurrence, the queues “task”,

“time_slices”,  “exit”, the notifier “eyes”, and the reference of the static TCP-line. When started, the

subVI first configures the input and output boards of the PXI-DIO96 device and one clock of the

TIO-device, which serves for time-measurement of the time-slices, and waits at the start occurrence

(for the start procedure see the description for all other subVIs later on). When the start-signal

arrives, the subVI sends the synchronization sequence to the TIO-device to start counters and clock,

takes one element from the “task”-queue (an array of time-slices elements) and enters the

intermediate while-loop. The intermediate while-loop contains a sequence structure with the

following sequence-frames:

#0: reads the actual value of the clock at the start of the time-slice

#1: reads the actual time-slice element of the task-array, calculates the time when the time-

slice finishes, and writes the digital output values to the PXI-DIO96 device.

#2: contains the innermost while-loop timing with 1ms (minimum loop timing possible in

LabVIEW 7.0), reads out the actual state of the digital input-channels, the position of the

eyes (passed by the notifier “eyes”), and the actual time, compares the values with the

intended values and calculates the result value as described above, stops when the state

value is > 0.

#3: reads the finishing time of the time-slice, writes the number of condition, the time-slice

index, the state value of the time-slice, and the states of the digital input-channels in a

cluster, which is set on the “time-slice” queue, these values will be transmitted to the  host-

PC and constitute the chronological data. Finally the index of the next time-slice is

calculated in relation to the state value: actual-index + true-index, if state value = 1 or

actual-index + false-index, if state value > 1.
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When the program has passed the sequence structure, the intermediate loop tests whether the task

has terminated correctly and sends the stop-sequence for all subVIs by the “exit”-queue. The outer

loop terminates depending on the value taken from the “exit”-queue.

Figure A4 about here

PXI data-acquisition and transmission

The acquisition of data and their transmission is described using the example of analog data

acquisition (fig. A5). The acquisition of the counter data is solved in a similar manner. The subVIs

are started immediately as the references of the queues, occurrence, and notifier are passed to them.

As soon as the acquisition VI is started (fig. A5-A), the MIO-device is configured for the number of

channels to acquire (here four channels) and an external scan-clock is assigned. The scan signal is

sent on one of the RTSI-bus lines from the dedicated counter. The MIO-device is started and paused

immediately, so it is armed to be used. The reference number of the MIO-device and the references

of the queues, notifier, and occurrence are passed to a while-loop containing a case structure. The

case structure is guided by the start occurrence in the following way. The occurrence is set to have

no timeout and the program waits on the occurrence until the start signal arrives. Immediately after

the start signal, the program passes into the case structure, starts the MIO-device and begins to read

out the buffer assigned to the MIO-device. The buffer read procedure is organized in an inner while

loop which is timed to be executed every 4 ms. In each loop at least 2 samples are read from the

device buffer and sent on the data queue (“analog”). The values of first two channels, containing the

data of eye-position, are stored also in a notifier (“eyes”). The number of data points remaining on

the device-buffer is stored in a shift register and used to extend the number of data to read in the

next cycle of the inner loop. After reading the device buffer, it checks whether an element on the

“exit” queue is present. If not, it begins with a new read operation, otherwise it stops the inner while

loop, immediately sets the MIO-device to pause and takes one element from the queue “exit”. In
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relation to the value from the queue, as explained previously, the program finishes the outer while

loop and terminates the subVI or goes back to wait a new start signal on the start-occurrence.

The transmission procedure of the data is shown in figure A5-B. The algorithm, similar to

the acquisition algorithm, is based on a construction of an outer while-loop and a case structure

containing the inner while-loop. The reference of the start-occurrence, of the “analog”- and “exit”-

queue are passed to this subVI as well as the reference of a static TCP-line for communication with

the host-PC. After the start of outer while-loop and the reception of start signal on the start

occurrence, the program passes to the case-structure. It first opens a dedicated TCP-line for

transmission of the analog data, and then passes to the inner while-loop, where it takes first one

element from the queue, converts it to a string and sends the string to the host-PC through the

dedicated TCP-line. The inner loop is stopped when an element is found on the “exit”-queue and no

more data elements are stored on the data queue. If there are data still stored on the queue, the inner

loop continues to send the data. This makes sure that all acquired data are sent to the host-PC. After

finishing the inner while-loop, the subVI sends a character to the host (here “a”) on the static TCP-

line to inform that the transmission of analog data is terminated. The inner while loop is timed to be

executed every 4 ms. We decided to use this short interval to ensure a high transmission rate for

analog data, because of their large amount. The outer while-loop is finished in relation to the value

taken from the “exit”-queue.

Figure A5 about here
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Figure legends

Figure 1: Schematic representation of the task used in (Fattori et al., 2001).

A) Schematic drawing of the experimental setup. B) The upper part shows the states of input

controls to be checked during the task. The input-controls Start Button and Touch Button are digital

controls, which are checked during the total duration of the task. The input control Eye is a special

analog control of two channels (x, y) controlling eye position, which is checked only during a

specific time interval (ts_3 – ts_8). The lower part shows output channels (Reward, LED) and their

states (on/off and red/green/off, respectively) during the task. Vertical dashed lines define the start

and end of a time-slice. The time-slices are numbered below.

Figure 2: A) Schematic drawing of the construction of a condition: each time-slice contains in its

data structure the information of the output-channels, input-controls (not shown) and a true- and

false-index. The supervisor system executes a time-slice while the time-slice status is =0. If the

time-slice status becomes =1 the supervisor system advances in the sequence to the next time-slice

indicated by the true-index (T). If the time-slice status becomes >1 the supervisor system will

execute the time-slice indicated by the false-index (F). The true-indexes are pointing to the next

working-slice (ws_1, ws_2, ws_n), the false-indexes are pointing to the error-handling slice (eh_1).

Note that the false-index of the error-handling slice is pointing back to itself.

 B) Schematic drawing of the branching of a condition: the condition branches after the second

working-slice (ws_2). Its true-index points to the sequence ws_3, ws_4 and its false-index points to

the sequence ws_5, ws_6. Both branches converge to the last working slice.

Figure 3: Schematic drawing representing the hardware and software structure of the implemented

real-time supervisor system.
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Figure 4: Hierarchy and relations of tables in the relational databases

A) The tables Task Descriptor and Task Structure describes a Task, the tables Condition Descriptor

and Condition Structure describe each Condition of a Task, the table Time-Slice Descriptor

describes each time-slice of a Condition.

B) Acquired data are stored in four tables. Table Recordings associate the general data of each

recording with the other tables. Table chronological data contains information on time-slices

execution. The remaining two tables are used for acquisition of spike time-stamps of different

spikes detected by means of single- and multi-spike detection.

Figure 5: Results of the performance test

The graph shows the difference of time-stamps in ms recorded with the counter device and as

chronological data by the supervisor program. The abscissa gives the duration of the time-slices and

the ordinate the differences. Each point represents the median and S.D. of the test.

Figure 6: Continuous recording

The graph shows the continuous recording of three neurons, eye-position signals and behavioral

events for more than 15min of recording time. Sixteen rows comprise the graph, each row

demonstrates the data for up to 1min and the running minute is indicated on the left side. The first

three lines show the raster-plot of the simultaneously recorded neurons, the following two lines

show the horizontal and vertical eye-position, respectively. In the last line, a thick line indicates the

intervals in which the animal performed the task. Thin vertical lines show start and end of trials.
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Figure legends of figures in the appendix

Figure A1: A) Front panel of the Host-PC program with different parameters to be set by the user.

B) “Load Task” event structure to transmit the task values to the PXI-PC. For details see text.

Figure A2: Program on Host-PC to receive and store spike data

A) While-loop to receive data from the PXI-PC.

B) While-loop to store the received data in the database. For details see text.

Figure A3: LabVIEW diagram of the PXI-PC main program

Only the second and third frames of the program are shown.

Figure A4: LabVIEW diagram of the supervisor program on PXI-PC

The supervisor program with the third frame of the sequence structure containing the innermost

while-loop.

Figure A5: Analog data recording and sending programs on PXI-PC

A) While loop to record analog data.

B) While loop to transmit recorded data to the Host-PC. For details see text.
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Tables

Table 1 Time-slice state coding.

The state is coded for input signals (Sin) and for time (ST). Ain are the analog inputs, Aref are the

reference values of the inputs, dmax is the maximum difference acceptable. Din are the current values

of digital inputs, Dmask sets on the digital inputs to be controlled and Dset settles the awaited value for

the settled digital inputs. T is the elapsed time. Tmax is the acknowledged maximum length of time-

slice. Time-slice state is computed as Sin + ST.

T, F = True, False. For description of behaviors Remain, Reach, End, and Avoid see text.

Intended Behavior
Remain Reach End AvoidQuery
T F T F T F T F

Sin |Ain – Aref| < dmax

Din & Dmask == Dset

0 2 1 0 0 1 2 0

ST T > Tmax 1 0 2 0 2 0 1 0
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Table 2: The behavior of the control algorithm
For definition of Sin, ST, T, and Tmax see table 1.

Time-slice state

(Sin + ST)

Motive / Cause Algorithm outcome

0 no change in any selected input channel has

occurred and T has not exceeded Tmax

go ahead with the same

time-slice

1 an intended change in an input channel or

time-slice finishes without any change of the

selected input channels as intended (correct

end of the time-slice)

go ahead with the next

t ime sl ice of  the

experiment

>1 an unintended change in selected input

channel or time-slice finishes without any

intended change of a selected input channel

(erroneous end of a time-slice)

go ahead with a time-slice

different from the foreseen

one
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Table 3 Hardware specifications
The specifications regard our implementation. Other boards can be also used depending on the
experimental requirements. Instead of the LabVIEW Professional Version also the Full Version can
be used. LabVIEW and the PXI components are available from National Instruments Corp. (Austin,
Texas, U.S.A.)

Component Part Main Characteristics

2.80 GHz Pentium IV with 1GB
RAM, 40 GB HD and 10/100
Ethernet card
Windows 2000
LabVIEW 7.0 Express Professional
Development System
LabVIEW Real-Time Module
LabVIEW Database Connectivity
Toolset

Host computer

Microsoft Access

The Ethernet connection between host
and embedded controller can run through
a LAN or directly between the two
machines.

PXI-8176 Real-Time Embedded
Controller

1.20 GHz Pentium III with 128 MB
RAM, 15 GB HD, integrated 10/100
BaseTX Ethernet with real-time operating
system and LabVIEW Real-Time Engine
installed.

PXI-1000B General Purpose PXI Chassis (8 Slot, DC
Powered)

PXI-6070E Multifunction I/O Card with 16 Analog
Inputs (1.25 MS/s, 12-bit), 2 analog
Outputs, 8 digital I/O lines, two 24-bit
counters, analog triggering

PXI-6602 8-channel, 32-bit up/down counter/timer
module

Embedded
Controller

PXI-6508 Digital I/O Card with 96 static digital I/O
lines in 8-bit ports
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Tables in the appendix

Table A1 Priorities of the real-time subVIs
Name Priority
Task_ctrl.vi time critical priority (highest)
Analog_acq.vi normal priority
Spikes_acq.vi normal priority
Tx_chronological_data.vi normal priority
Tx_analog_data.vi normal priority
Tx_spikes_data.vi normal priority
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