AstroROOT Containers
AstroROOT | User Manual

23 September 03 1.0 | AstroROOT Containers - UM

Geneva Astronomical Data Centre

ASTROROOT CONTAINERS
USER MANUAL

Reference : AstroROOT Containers - UM
Issue : 1.0
Date : 23 September 03

Geneva Astronomical Data Centre
Chemin d’Ecogia 16
CH-1290 Versoix
Switzerland

http://isdc.unige.ch/index.cgi?Soft+astroroot

Authors and Approvals

AstroROOT Containers
AstroROOT | User Manual

23 September 03 1.0 | AstroROOT Containers UM 1.0

Prepared by : R. Rohlfs

GADC - AstroROOT ContainersUser Manual — Issue 1.0

Document Status Sheet

AstroROOT Containers

AstroROOT | User Manual
23 SEP 03 1.0 | first release
23 SEP 2003 Printed

GADC - AstroROOT ContainersUser Manual — Issue 1.0

ii

Contents

1 Introduction
1.1 SCOPE . . o
1.2 Overview o e
1.3 Hierarchical Structure
2 How to Build
3 Tterators
3.1 Common Functionality oo
3.2 Exceptions L
3.3 TFRowlter and TFGrouplter
4 IOElement
4.1 Create a new Container Versus Open a Container.
4.2 Common Container - Functions
5 Accepted File Formats Lo
5.1 FITS File Format o
5.2 ROOT File Format
5.3 ASRO File Format
6 Headers o e
6.1 Header Attributes
6.2 Attribute Tterator L
7 Tables o e
7.1 Columns e
7.2 Iterators of Tables and Columns
8 Images L
8.1 Image Sub - Section L
8.2 Access of Image Pixels o
8.3 Build a ROOT histogram
9 ROOT Trees (TTree) and ROOT Histograms (TH2D)
9.1 Tables -> Trees o e
9.2 Tables-> T'GraphErrors
9.3 Images -> Histograms o
10 Grouping Implementation L
10.1 Group Iterator

GADC - AstroROOT ContainersUser Manual — Issue 1.0

10
11
11
11
11
12
12
13
14
14
16
17
17
17
18
19

19

iii

11 Template files 22

12 Error Handling and Exceptions 0. 23
13 Executables 24
13.1 tfeconvert 24
13.2 tfdump 24
13.3 tfasromap 25
134 tf2tree oL 25
14 To Do or Not Yet Implemented 26
A Creating a User Defined Column Type 27
Casting of Column Data Types 28
B.1 Cast toa Column Type 28
B2 Casttoa Value Type 28
C ASRO File Format 30

GADC - AstroROOT ContainersUser Manual — Issue 1.0 iv

1 Introduction

1.1 Scope

This is the user manual of the AstroROOT Containers - software system. It describes the com-
ponents like a table, or an image, but not all the implemented methods and functions. These are
described as usual for ROOT classes in a documentation tree on the web

http://isdc.unige.ch/Soft/AstroRoot/html/USER_Index.html

The AstroROOT Containers - software system introduce also a new file format to store astronomical
data, called AstroROOT File Format (ASRO). This is described in detail in appendix C ASRO
File Format.

1.2 Overview

The AstroROOT Containers is part of the AstroROOT package, which itself is an extension to
ROOT (http://root.cern.ch/) for astronomical data analysis. These AstroROOT Containers
provide C++ classes to organize the data in tables and images with header information. Tables
consist of any number of columns and of (a limited number of) rows. All data in one column
have the same data format while different columns in one table can have different data formats.
A table is therefore very much like a FITS table. An image is a n - dimensional data array of one
data format with header information. It is therefore very much like a FITS image.

These data can be saved in files of three different file formats. First tables and images with their
headers can be saved in and can be read from FITS files. Second they can be read from and can
be written into ROOT files. Third a new file format is implemented to read and write the data as
fast as possible: ASRO.

It is the goal of this software library to provide application an easy to use interface to their data.
An application is able to access the data from a file with just one function call. For example, no
memory allocation of a data buffer is necessary. This is all done by the data classes themselves.
Every value in a table can be accessed with one statement. For example, to get the 5th element of
row number 8 of an array column one can write:!

value = table["colName"] [8] [5];
or to access an element of a 4 dimensional image one can write
value = image[5] [2] [4][2];
And there is just one function call needed to create a table / an image, or to read a table / an

image from a file or to save a table / an image to a file.

An other goal is to provide fast file access for huge amount of data. This software is based on
ROOT which is developed at CERN. ROOT is designed to be able to organize huge amount of
data in files. The data rate of experiments in high energy physics is much higher than the data
rate of astronomical telescopes. But this software uses already the capability of ROOT to be ready
for the future.

Ltable[” colName”] will return a base column which has to be casted into a column of a specific data type.
Therefore
value = dynamic_cast<TFIntArrCol& > (table[” colName”])[8][5]
is the correct statement.

GADC - AstroROOT ContainersUser Manual — Issue 1.0 1

ROOT provides a huge functionality for their data structure TTree, like selections and drawing
capabilities. Therefore it is important to convert a table into a ROOT Tree. This is done with a
simple function call:

TTree * tree = table->MakeTree();

Once the tree is created with the MakeTree() method, the ROOT - TreeViewer can be used to
select and to display the data.

On the other side an image can be converted into a ROOT histogram (TH2D). Again there exist
several graphical tools within ROOT to visualize the data of a ROOT histogram.

Like in FITS the grouping of several data structures is implemented. Using an iterator it is very
easy to access the required data structures of a group. Several selection criteria are implemented
to access the data from different files in a simple loop. Data which are not selected are not read
from the file. This is valid for a whole data structure as well as for columns of a table.

Template files can be used to describe the data structures. With such a template file it is much
easier to create a table with several columns than to hard - code this in a program. The software
can read FITS template files to create the data structures. But also easier human readable template
files are supported.

Header attributes, columns of tables and images are implemented as template classes (not to mix
with template files). Therefore these data structures can store every data format. Not only the
basic C - data formats but also a user can define its own data format. Than the user can save his
data with his user defined data format for example in a column. With such a user defined data
format row wise as well as column wise tables are implemented.

1.3 Hierarchical Structure

The whole system of the AstroROOT Containers consist of more than 50 classes, but not all of
them are designed to be used directly by an application. The following table shows the most
important classes which should be used by an application program and will be described in this
user manual:

TFIOElement TFTable TFGroup

TFBaselmage template TFImage

TFHeader TFBaseAttr template TFAttr

TFBaseCol template TFColumn template TFArrColumn
Iterators:

TFAttrIter TFRowlter TFCollter

TFNulllter TFGrouplter TFFilelter

The figure on the next page show the simplified hierarchical structure of the C++ classes of the
AstroROQOT Containers. Note: not all dependencies and not every inheritance is shown.

GADC - AstroROOT ContainersUser Manual — Issue 1.0 2

TFBaseAttr
TFAtr
A

TFArrCol

GADC - AstroROOT ContainersUser Manual — Issue 1.0

’
m
L —
- |- 8
i
|_
\
g \
I
i
\
=3
Q -+ O
: ;
<—|_ -
5
)
S & o
% w =)
- I 2 £
— E L
t ~
- O
[2
O l«— o | &
E 5 || E
AR
o)
|_
f ek
L
I_

Figure 1: The hierarchical structure of the main classes of the AstroROOT Containers

The class in the center is the TFIOElement. It dose not store any data by itself, but this class
and its derived classes can be saved in a file. It inherits from the ROOT class TNamed and from
the TFHeader class to ensure that every container has a name and a header. A container can
be created just in memory without any connection to a file, or it can be created while it reads its
data from a file. With one exception any update of the data is done only in memory. To save the
data of a container a member function (SaveElement()) has to be called. This member function
can also be used to save a previously in memory created container into a file.

TFHeader has a list of pointers to the base class of header attributes: TFBaseAttr. TF-
BaseAttr stores the name, the unit and the comment of an header attribute. The value of an
attribute is stored in one of the derived classes TFAttr. TFAttr is a template class. Therefore
any data type can be stored in an attribute of a header and can be saved in a file.

The table container TFTable has a set of pointers to the base class of columns: TFBaseCol.
TFBaseCol stores some general information like the column name, the size of a column and the
NULL values. The data itself are stored in one of the derived classes TFCol and TFArrCol.
These derived classes are again template classes to be able to store every data type in a column.
It is even possible to store user defined structures and classes in a column. The TFCol stores
a single value per bin, while TFArrCol can store an array of values per bin. Variable bins size
is implemented. The functions to add and to remove bins of a columns are private and can be
accessed only by the TFTable. This ensures that all columns of a table always have the same
number of rows.

The grouping is implemented with the TFGroup container. It inherits from TFTable but does
not store any additional data. It just has two methods to attach and to detach a TFIOElement
or one of its derived classes to the group.

The image container TFImage again is implemented as a template class to be able to store any
data type. It is derived from TFBaselmage, which is derived from TFIOElement. TFBaselm-
age stores common information like the size, the dimension and the NULL pixels of an image,
while the template class TFImage stores the data of the image. There is no limit in the number
of dimensions of the image. Subsections of an image can be defined and one or more dimensions
of an image can be freezed. For example it is possible to access any two dimensional plane from a
n - dimensional image (n >= 2).

These container classes are independent of any file format. Every read and write operation is
performed through the interface definition of the TFVirtuallO class. As soon as a Container
is associated with a file the TFIOElement class keeps a pointer to this interface class. In the
current version there are three implementation of this interface: One to read and write FITS files,
one to read and write ROOT files and one implementation for the AstroROOT file format ASRO.

GADC - AstroROOT ContainersUser Manual — Issue 1.0 4

2 How to Build

It is assumed that ROOT is already installed and the environment variable ROOTSYS
is set!

Download the tar file containing the full AstroROOT package from
http://isdc.unige.ch/index.cgi?Soft+astroroot

Define two directories. The first for the source code. The second to install the header files,
the compiled library and a linked program. The second can be ${ROOTSYS}. This has the
advantage that the header files and the library are installed in the already known directories
${ROOTSYS}/include and ${ROOTSYS}/lib, respectively.

But the installation procedure will create some new subdirectories in ${ROOTSYS} and will copy
some more files in the include, the lib and the bin subdirectory.

Untar the downloaded tar file astro_root-3.0.tar.gz in the first directory you choose. It can be any
directory, but it should be empty!

gunzip astro_root-3.0.tar.gz
tar xvf astro_root-3.0.tar

Set some environment variables:

WORK_ENV has to point to the second directory, where you want to install the software.
PFILES defines the directory the installed programs will look for their parameter files. CC and
CXX defines the ¢ and c++ compiler, respectively.

You should use the same compilers ROOT was build with.

For example for SUN:

setenv WORK_ENV ${ROOTSYS}

setenv CC cc

setenv CXX CC

setenv CFLAGS -KPIC

setenv CXXFLAGS -KPIC

setenv PFILES ".:${WORK_ENV}/pfiles:${PFILES}"

or for linux:

setenv WORK_ENV /home/astro_root

setenv CC gcc

setenv CXX g++

setenv CFLAGS -fPIC

setenv CXXFLAGS -fPIC

setenv PFILES ".:${WORK_ENV}/pfiles:${PFILES}"

in case WORK_ENV does NOT point to the same directory than ROOTSYS the environment
variables PATH and LD_LIBRARY _PATH have to be updated:

setenv PATH ${WORK_ENV}/bin:${PATH}
setenv LD_LIBRARY_PATH ${WORK_ENV}/1ib:${LD_LIBRARY_PATH}

Configure the Makefiles:
cd in the directory where you untared the astro_root-3.0.tar.gz file, the first directory. Than type:

GADC - AstroROOT ContainersUser Manual — Issue 1.0 5

makefiles/ac_stuff/configure

Build the library:
Still in the first directory type:

gmake global_install

This will compile all components and will install the necessary files in some subdirectories of
${WORK_ENV}.

You need GNU make v 3.79.1!! It will not work with SUN’s make, for instance.

An other useful make command:

make distclean

cleans the source code.
After this command the environment variables can be reset and the configure has to issued again!

GADC - AstroROOT ContainersUser Manual — Issue 1.0 6

3 Iterators

For easy data access this AstroROOT Containers package support iterators. There is an iterator
for nearly every data class :

Iterator created by container ”points to”
TFAttrIter TFHeader TFBaseAttr
TFRowlter TFTable Ulnt_t (row number)
TFCollter TFTable TFBaseCol
TFNulllter TFBaseCol TFNulllndex
TFGrouplter TFGroup TFIOElement
TFFilelter TFIOElement

TFAttrIter returns all attributes of a TFHeader.

TFRowlter returns all row numbers of a TFTable. The rows can be sorted and a filter can be
applied.

TFCollter returns all columns of a TFTable.

TFEFNulllter returns TFNulllndex which gives access to row and cell numbers of a column which
are NULL values.

TFGrouplter iterates through all TFIOElements of a TFGroup. It returns never a TFGroup, but
iterates again through all TFIOElements if it finds a TFGroup. The rows of the top level TFGroup
can be sorted and a filter to the top level TFGroup can be applied. A selection depending on the
names of the returned TFIOElements can be applied.

TFFilelter returns all TFIOElement of one disk file.

3.1 Common Functionality

With some exceptions all iterators have the same functions and are created by their container:
The method Makelterator() (or similar name) creates an iterator and returns it. With the
function Next() the iterator points to the next element. After the first call of Next() the iterator
points to its first element. Therefore this function has to be called before the first element can be
accessed. Next() returns kTRUE if there is a further element and kFALSE if the iterator reached
its end. If there is no element in the container the first call of Next() returns already kFALSE.
The iterator can be reset with the function Reset()

The iterators overload two operators to return one element: operator*() and operator->() With
these overloaded operators an iterator can be used very much like a C - pointer. Of course these
operators must not be used after the Next() function returned kFALSE!

The following example prints the names and the data type of all column of a table:

TFColIter collter = table->MakeColIterator();
while (colIter.Next()) {
printf ("Column Name: %-18s Data type: %-10s\n",
colIter->GetName(), colIter->GetTypeName());
}

This example prints all row number of a column which are NULL values:

TFNullIter nulllter = column->MakeNullIterator();

while (nullIter.Next()) {
printf ("row number with NULL values: %u\n", (Uint_t) (*nulllter));
}

GADC - AstroROOT ContainersUser Manual — Issue 1.0 7

3.2 Exceptions
There are two exceptions of the common functionality described above:

e The iterators TFRowlter do NOT support the operator->(). It cannot because it ” points”
not to a class but to a Ulnt_t.

e the TFFilelter is not created by a function of its container. Its ”container” is a disk file. To
create a TFFilelter its constructor has to be used. The first parameter of the constructor is
the file name. Than this iterator can ”point” to all TFIOElements in this file.

3.3 TFRowlter and TFGrouplter

These two iterators have two further functions to select and to sort the returned rows and TFIOEle-
ments, respectively. Actually these function of the TFGrouplter just calls the corresponding func-
tion of the TFRowlter of the top level group.

The Sort(const char * colName) - function sorts the rows depending on one of the columns of
the table. Note: The Sort() - function does not modify the table it only affects the order of row
numbers the iterator points to after one call to the Next() - function after the other call.

The Filter(const char * filter) applies a filter to filter rows of a TFTable or TFGroup. A row
which does not pass the filter is not returned from the operator*() and the operator->().

filter is a ¢ - expression without ; at the end. Column names of the table can be used as variable
names in this filter string. They have the same data type as their column. If the column has more
than one value per row the first value is used in this filter. Of course, the column names must fulfill
the requirement for ¢ - variable names. Beside that "row” can be used to define the row number
(0 based). row is the row number of the original table without sorting and without filter. The
variable "row_” is the row number (0 based) of the sorted and already filtered row number before
the call of this Filter() - function.

For each row in the table the column variables in the filter string are assigned to the value of the
columns at the given row and "row” and ”row_” in the filter string are set to the row number (0
based). Than the filter statement is processed with the ROOT interpreter. If the result is kKTRUE
the given row will be returned from the operator*() and the operator->(). If the result is kKFALSE
the given row will not be returned. A second call of Filter() will not reset the previous filter but
will apply the new filter on the already filtered rows.

The function returns kFALSE if the filter cannot be processed. This means either there is a syntax
error in the filter string or a used column name in the filter string does not exist in the table. The
function will write an error message into the error stack (see TFError).

Example filter strings (assuming cl, ¢2 and ¢3 are column names):

"cl + 2.4 *x c2 >= c3"
"row > 4 && row < 20"
"row_ < 40 || c2 <= c1"

The TFGrouplter has a further function to apply a selection on the TFIOElements it returns:
SetSelector(TFSelector * select). An application can define a selection criteria by itself,
defining a class derived from the TFSelector class. An often used selection criteria depending on
the name of the TFIOElement is already implemented: class TFNameSelector. An example is
shown at 10.1 Group Iterators.

GADC - AstroROOT ContainersUser Manual — Issue 1.0 8

4 I0OElement

The TFIOElement is the base class for all containers which can be stored in a file. For example
TFTable and TFImage. But nevertheless every container can be created in memory without any
connection to a file.

The TFIOElement class does not store any data by itself, but it is derived from the ROOT class
TNamed to ensure that every container has a name, and it is derived from TFHeader to be able
to store header information to every container.

4.1 Create a new Container Versus Open a Container

To create a new container either with or without a connection to a new container in a file one of
the constructors of the container must be used. If the specified file already exist a new container,
for example a TFTable or TFImage, will be created in this file. The file will be created if the file
does not exist. The user must be able to read and to write to the specified file.

If a fileName is defined in the constructor the extension of the file defines the file type and the
format of the data in the file:

fits, *.fts, *fit and *.fits.gz defines a FITS file.

.root defines a ROOQOT file

.asro and anything else defines an ASRO file .

To open an already existing container in a file one of the TFRead*() - functions must be used:

TFTable * table = TFReadTable("fileName.fits", "tableName", cyclelr,

kFReadWrite) ;
TFGrooup * group = TFReadGroup("fileName.root", "groupName", cycleNr,
kFRead) ;
TFDoubleImg * img = TFReadImage("fileName.asro", "imageName", cyclelr,
kFReadWrite) ;

These functions return a NULL pointer or throws an exception (see 12 Error Handling and Ex-
ceptions) if the required container does not exist in the file or if the container is of different data
type. Therefore it is always a good idea to test the returned value against NULL!

There are two ways to read a container in case the data-type and / or the name of the container
is not known:

1) Use the Filelterator TFFilelter (see 3 Iterators) or

2) Use the function

TFIOElement * element = TFRead("fileName.fits", "name", O, kFRead, NULL);

and test the returned element For example: if (element->IsA() == TFTable::Class())

The calling function must delete the container read by one of the TFRead*() - functions.

4.1.1 Function Parameters

The first parameter defines the filename. It can be either a FITS file, a ROOT file or an AstroRoot
(ASRO) file.

The second parameter is the name of the container. For FITS files this parameter can be set to
NULL or an empty string (””) if the third parameter is defined. This is a mandatory parameter
for ROOT files and ASRO files.

GADC - AstroROOT ContainersUser Manual — Issue 1.0 9

The third parameter is the cycle number. If it is set to 0 (the default value) the first container
in the file with the specified name is returned. For FITS files this is the HDU number. The first
HDU, the primary array, has number 1.

The fourth parameter can be set either to kFRead or to kFReadWrite. Obviously it has to be set
to kFReadWrite if the user want to update the container. The default value is kFRead.

4.2 Common Container - Functions

As a general rule all modifications like changing a value or increasing the number of rows of a
table are done only in memory. To save these modification the method SaveElement() has to be
called without parameters. There is one exception to this rule: A deletion of a column of a table
is automatically also performed in the file if the table is associated with a table in a file without
calling the SaveElement() method.

The SaveElement(const char * fileName) method can also be used to store a container in an
other file or to save a container which was previously created only in memory without connection
to a container in a file. In this case the first parameter fileName has to be defined. As default this
parameter is set to NULL.

This function does nothing, also no error, if the container is not associated to a file and the fileName
is not defined.

The method CloseElement() closes the element in the file, i.e the connection to the element in a
file is cut. The Container is not updated before the file is closed. Use SaveElement() to update
the container in the file before it is closed. The container still exist in memory after this call and
still can be used.

The method DeleteElement() deletes the associated container in the file but not in memory.
The container still exist in memory after this call and still can be used. The file will be deleted if
the container was the last one in the file.

Two or more containers in the same file can be opened by one process at the same time and can
be updated without problem. It is also possible to open the same container twice in read - only
mode. But to open the same container twice and to update it will fail!

GADC — AstroROOT ContainersUser Manual — Issue 1.0 10

5 Accepted File Formats

Every AstroROOT container can be written into three different file formats: These are FITS,
ROOT and ASRO. It is even possible to mix these file formats in a TFGroup. That means a group
can consist of any combination of these file formats. For example a pointer of a TFGroup written
into a ROOT file can point to a FITS file.

An application defines the file format with the extension of the filename:

file format file extension

FITS fits fts .fit and .fits.gz
ROOT .root

ASRO .asro and anything else

All three file formats can be read and written from every computer, big endian as well as little
endian machines.

5.1 FITS File Format

The AstroROOT library uses cfitsio to read and write FITS files. There are some limitations for
FITS files which makes it necessary to modify for example the column names or the attribute
names while AstroROOT containers are written into a FITS file. But AstroROOT does its best
to write every data into FITS files. It is ensured that data previously read from a FITS file can
be updated in the FITS file or be written into a new FITS file without losing data and without
changing the names.

5.2 ROOT File Format

AstroROOT supports the fully schema evolution of ROOT. Therefore data written into a ROOT
file can be read with every version of AstroROOT (it is upward and downward compatible). These
data even can be read when the AstroROOT software is not available any more. All necessary
information are stored in the ROOT file.

Columns of a table are stored in their own buffer. Therefore it is possible to read just the re-
quired columns without touching the other columns of a table in the ROOT file. This is done
automatically. An application program does not have to care.

5.3 ASRO File Format

ROQT files are save in various aspects but have some overhead to store the data. The ROOT file
format was designed to store huge amount of data but has some disadvantages if you want to store
a lot of small junks of data, for example a lot of small tables with a few rows.

Therefore AstroROOT Containers comes with its own file format: the AstroROOT File Format
(ASRO). ASRO still uses the streamer function of ROOT to convert the container classes into a
stream of bits and bytes which finally are written into the ASRO file. But ASRO has less overhead
in the structure of the file. As a result it is faster than the ROOT format for small data sets.

Appendix C ASRO File Format describes this file format in detail.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 11

6 Headers

The header class TFHeader stores a list of attributes. An attribute can be either unique in
a header or several attributes with the same name can exist in the same header. While a new
attribute is added to a header with the AddAttribute(const TFBaseAttr & attr, Bool_t replace
= kTRUE) method the application can define if already existing attributes with the same name
should be deleted and be replaced by the new attribute (replace = kTRUE) or if the old attribute
can stay in the header (replace = kKFALSE).

Not only the TFIOElement is derived from TFHeader to ensure that every container can store
header information but also a column of a table is derived from TFHeader. Therefore also columns
can be saved into a file with additional header information.

6.1 Header Attributes

One header attribute consist of a name, a value, a unit and a comment. Attributes are implemented
as TFBaseAttr class and a derived template class TFAttr. TFBaseAttr is derived from the
ROOQOT class TNamed. The name and the unit are stored as name and title of the TNamed class,
respectively. The value is stored in the template class TFAttr.

In the current version ROOT dictionary information are created for fife different data types (fife
TFAttr classes). For a better readable source code also typedef are defined for these data types:

data type of at- template class typedef
tribute value

Bool_t TFAttr<Bool_t, BoolFormat> TFBoolAttr
Int_t TFAttr<Int_t, IntFormat> TFIntAttr
Ulnt_t TFAttr<Ulnt_t, UlntFormat> TEFUIntAttr
Double_t TFAttr<Double_t, DoubleFormat> TFDoubleAttr
TString TFAttr<TString, StringFormat> TFStringAttr

To add a new Attribute to a table one can write:

table->AddAttribute (TFStringAttr("telescope", "INTEGRAL", "", "mission name"));
table->AddAttribute (TFIntAttr("int time", 3000, "sec", total integration time"));
There is no limit in the size of the name and attribute names are case sensitive.

Without knowledge of the data type of the value of an attribute one can always use the GetString-
Value() - method and the SetString() - method of the TFBaseAttr class to get and to set the
value, respectively.

The cast operator is defined for every TFAttr template class. It casts the Attribute class to its
value. Therefore it is easy to access for example the value of an TFIntAttr named size:

TFIntAttr & attr = dynamic_cast<TFIntAttr&>(table->GetAttribute("size"));
Int_t size = attr;

or even simpler

Int_t size = dynamic_cast<TFIntAttr&>(table->GetAttribute("size"));

GADC — AstroROOT ContainersUser Manual — Issue 1.0 12

6.2 Attribute Iterator

If an application wants to access not only a few attributes but all or at least most of the attributes
of a header it is more efficient to use the TFAttrIter than to use the GetAttribute() methods of
the TFHeader.

Following example prints all attributes of a table with their name, value, unit and comment:
TFAttrIter i_attr = table->MakeAttrIterator();

char hstr[500];
while (i_attr.Next())

{

printf (" %-16s : %20s %-5s | %s\n",
i_attr->GetName(),
i_attr->GetStringValue(hstr),
i_attr->GetUnit (),
i_attr->GetComment ());

}

GADC — AstroROOT ContainersUser Manual — Issue 1.0 13

7 Tables

A table is implemented with the TFTable class. A TFTable can store any number of columns.
The maximum number of rows in a table is 4294967295. The column name is the key to find a
column in the table and has to be unique. There is no column number. The columns are sorted
by name to have faster access to a requested column.

To ensure that all columns of a table have always the same number of rows it is not possible to
increase or decrease the row number for a singel column. The InsertRows() and DeleteRows() -
method are public methods of the TFTable but not of a single column. The size of a column, i.
e. the number of rows, is adopted to the number of rows of a table while the column is added to
a table (method AddColumn()).

7.1 Columns

There are two template classes for columns: TFColumn and TFArrColumn. Both are derived
from a base column class: TFBaseCol. The first stores a single value in a bin while the second
can store an array of values per bin. The [| - operator are defined to access the data like an
array. Assuming col is a column of integers and arrCol is an array column of double one can write
following lines to get and to set values into a column:

col[4] = 23;
int val = col[0];

arrCol[4] [0] = 4.6;
double dVal = arrCol[32][39];

Note: the bin as well as the cell number of array columns are 0 - based indexes. As usual for
the [] - operator there is no limit check. This operator will be used very often and a limit check
would decrease the performance a lot. This limit check can be done much more effician by the
application. But of course a program can crash and has at least unpredicted results if a row bejond
the maximum number of rows is accessed!

In the current version ROOT dictionary information are created for several data types of columns.
For a better readable source code also typedef are defined for these data types:

data type of template class typedef
one cell

Bool_t TFColumn<Bool_t, BoolFormat> TFBoolCol
Char_t TFColumn<Char_t, CharFormat> TFCharCol
UChar_t TFColumn<UChar_t, UCharFormat> TFUCharCol
Short_t TFColumn<Short_t, ShortFormat> TFShortCol
UShort_t TFColumn<UShort_t, UShortFormat > TFUShortCol
Int_t TFColumn<Int_t, IntFormat> TFIntCol
Ulnt_t TFColumn<Ulnt_t, UIntFormat> TFUIntCol
Float_t TFColumn<Float_t, FloatFormat> TFFloatCol
Double_t TFColumn<Double_t, DoubleFormat > TFDoubleCol
TString TFStringCol

The TFStringCol is not a template class, but can be used exactly like the other Column classes.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 14

For array columns following is defined:

data type of template class typedef

one cell

Bool _t TFArrColumn<Bool_t, BoolFormat> TFBoolArrCol
Char_t TFArrColumn<Char_t, CharFormat> TFCharArrCol
UChar_t TFArrColumn<UChar_t, UCharFormat> TFUCharArrCol
Short_t TFArrColumn<Short_t, ShortFormat> TFShortArrCol
UShort_t TFArrColumn<UShort_t, UShortFormat> TFUShortArrCol
Int_t TFArrColumn<Int_t, IntFormat> TFIntArrCol
Ulnt_t TFArrColumn<Ulnt_t, UlntFormat> TFUIntArrCol
Float_t TFArrColumn<Float_t, FloatFormat> TFFloat ArrCol
Double_t TFArrColumn<Double_t, DoubleFormat> TFDoubleArrCol

To add a new column to a table one can write:

table->AddColumn(new TFIntCol("colName"));
table->AddColumn("colName2", TFShortArrCol::Class(), kTRUE);

Never change the name of a column after it is inserted into a table! For faster access
the columns are sorted by their names. The result of several functions of the the
TFTable are unpredictable after a name of a column has changed!

To get one column of a table one can use the GetColumn(const char * name) - method or the

operator [] (const char * name). Both return a reference to TFBaseCol. Some care has to be
taken to cast the returned TFBaseCol to the data type of the column. For more information see
B Casting of Column Data Types.

If an application does not know the data type of a column it can test the data type as follows:

TFBaseCol & col = table["ColName"];
if (col.IsA() == TFShortCol::Class())
{
// col is of type TFShortCol
}
else if (col.IsA() == TFIntCol::Class())
{
// col is of type TFIntCol
}

7.1.1 NULL - values

Every bin of a column and every cell of an array column can be set to be a NULL value, like in
FITS files. But there is not a specific value which is used to identify a cell to be NULL. The bin
and cell number of NULL bins and cells themselve are stored in the column. In most cases this is
more efficiant, because usually only a few bins are set to NULL.

There are methods of the TFBaseCol - class to set, to clear and to test for NULL and there is a
iterator to get all bins and cells which are set to NULL:

virtual Bool_t IsNull(UInt_t row, UInt_t bin = 0) const;
virtual void SetNull (UInt_t row, UInt_t bin = 0);
virtual void ClearNull (UInt_t row, UInt_t bin = 0);

GADC — AstroROOT ContainersUser Manual — Issue 1.0 15

TFNullIter MakeNullIterator() const;

7.1.2 Variable Bin Size

Variable bin size of array columns is implemented. For example to define the number of cells to
18 for bin number 4 one has to call:

arrCol[4] .resize(18);

This call has to be performed instead of the the SetNumBins(Ulnt_t cells) - method, which would
set the number of cells for all bins of a column. In any case the number of cells per bin has to be
set before one can use an array column!

7.2 Iterators of Tables and Columns

A TFTable has two iterators: TFCollter and TFRowlter and two methods to create them:
MakeCollterator() and MakeRowlIterator(), respectively. The TFCollter is a standard Astro-
ROOQT - iterator as described at 3 Iterators. This iterator is very usefull if an application does not
know all the column names.

The TFRowlIter iterates through all rows of a column, which is not very usefull by itself. Every
for - loop can do this as well. But this iterator has two further function to sort the rows depending
on one column and to filter rows depending on values of any column. See 3.3 TFRowlter and
TFGrouplter for a full description of these functions.

Every column can create the Null - iterator TFNullIter with the method MakeNulllterator(); To
print all bins of a colum and all bins and cells of an array column one can write:

TFNullIter nullIter = column->MakeNullIterator();
while (nulllIter.Next()) {

UInt_t row = *nulllter;

printf ("row number with NULL values: %u\n", row);

}

TFNullIter nulllIter2 = arrColumn->MakeNullIterator();

while (nullIter2.Next()) {
printf ("NULL - cell: [%u] [%u]l\n", nullIter2->Bin(), nulllter2->Cell());
}

GADC — AstroROOT ContainersUser Manual — Issue 1.0 16

8 Images

An image is implemented as template class TFImage which is derived from the base image class
TFBaselmage. An image is a n - dimensional array of data. There is no limit in the number
of dimensions. The maximum number of pixels of an image is 4294967295 (if there is no other
hardware limitation).

In the current version ROOT dictionary information are created for several data types of images.
For a better readable source code also typedef are defined for these data types:

data type of template class typedef

one pixel

Bool_t TFImage<Bool_t, BoolFormat> TFBoollmg
Char_t TFImage<Char_t, CharFormat> TFCharlmg
UChar_t TFImage<UChar_t, UCharFormat> TFUCharlmg
Short_t TFImage<Short_t, ShortFormat> TFShortlmg
UShort_t TFImage<UShort_t, UShortFormat> TFUShortImg
Int_t TFImage<Int_t, IntFormat> TFIntImg
Ulnt_t TFImage<Ulnt_t, UlntFormat> TFUIntImg
Float_t TFImage<Float_t, FloatFormat> TFFloatImg
Double_t TFImage<Double_t, DoubleFormat> TFDoubleImg

8.1 Image Sub - Section

A sub - section of an image, which can have even less dimensions than the original image can be
defined with the MakeSubSection(Ulnt_t * begin, Ulnt_t * end) - function. begin defines the first
pixel in each dimension of the original image which will be become the index 0 of the sub section.
end defines the pixel in each dimension of the original image which will be behind the last pixel
of the sub - image. The size of the sub - image in a dimension will be end[dimX] - begin[dimX]
The first index (index 0) of begin and end defines the least frequently changing dimension. For
example in a 2 - dimensional image the Y - axis.

A dimension can be freezed if begin[dimX] == end[dimX] A pixel of the sub - image must be
accessed with the operator () instead of the opertor [|. Frozen dimensions must be skipped.

For example:

TFIntImg img("name", 10, 5, 20);
UInt_t begin[3] = {3 , 3, 10};
UInt_t end[3] = {10, 3, 15};
img.MakeSubSection(begin, end);

The sub - image of img has 2 dimensions and is of size 7 X 5
img[4][3][12] will now access the same pixel as img(1)(2)

8.2 Access of Image Pixels
A single pixel of an image can be accessed (read and write) like a element of an C - array:

TFDoubleImg * img = TFReadImage("filename.root", "imageName");
(*img) [3] [4] = 4.56;

double val = (ximg) [30] [234];

img->SaveElement () ;

delete img;

GADC - AstroROOT ContainersUser Manual — Issue 1.0 17

If a sub - section of an image is defined the operator () instead of the operator [] hast to be used
to access a pixel value:

TFDoubleImg * img = TFReadImage("filename.root", "imageName");
UInt_t begin[3] = {3 , 3, 10};

UInt_t end[3] {10, 3, 15};

img->MakeSubSection(begin, end);

(*img) (3) (4) = 4.56;

double val = (ximg) (30) (234);

img->SaveElement () ;

delete img;

Unfortunately the ROOT interpreter rcint does not accept the operator() in the current version
3.05.05.

8.3 Build a ROOT histogram

It is possible with one function call to create a one or a two dimensional ROOT histogram from
every TFImage. See 9.3 Images -> Histograms.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 18

9 ROOT Trees (TTree) and ROOT Histograms (TH2D)

9.1 Tables -> Trees

Every TFTable can be converted into a ROOT TTree. The member function MakeTree() creates
a T'Tree and returns its pointer. This TTree has to be deleted by the calling function. Every
column of the table TFTable is copied into its own branch of the TTree. The header information
of the TFTable is not copied into the TTree.

Following example reads the table named ”tableName” from the FITS file t.fits, creates a TTree
and opens the TTreeViewer of this TTree:

TFTable * table = TFReadTable("tableName", "t.fits");
if (table)
table->MakeTree () ->StartViewer () ;

The MakeTree() - function has one optional parameter to convert the table name and the names
of the columns. The parameter is a pointer to a TFNameConvert class or a derived class. The
MakeTree calls the virtual function const char * TFNameConvert::Conv(const char * name) to
convert the table name and the name of the columns. The user can create its own class, derived
from TFNameConvert, to modify these names. The default is no conversion at all. But it may be
convenient to lower case the table and columns names of the FITS files.

The executable tf2tree reads one or all TFTables from a FITS file, a ROOT file or a ASRO file,
converts them into a TTree and saves them in a new ROOQOT file. The program also writes the
header information of a TFTable into the new ROOT file as a separate object. This program also
shows an example how to define and to use a name conversion class, derived from TFNameConvert.

9.2 Tables-> TGraphErrors

Two columns of one or two tables can be used to build a TGraph or a TGraphErrors. Two further
columns can be used to define the errors in X and Y of a TGraphErrors. In the first example two
columns of the same table are used to build a TGraph while the second example shows how to
build a TGraphErrors from two tables.

TFTable * table = TFReadTable("tableName", "t.fits");
TGraph * graph = table->MakeGraph("XColName", "YColName");
graph->Draw ("AL") ;

TFTable * tablel = TFReadTable("tableName", "t1.fits");

TFTable * table2 = TFReadTable("tableName", "t2.fits");

TGraphErrors * graph = tablel->MakeGraph("XColName", NULL, XErrColName");
table2->MakeGraph(NULL, "YColName", NULL, YErrColName, graph);
graph->Draw("AL") ;

The TGraphError returned by the TFTable::MakeGraph() - function must be deleted by the calling
function.

The first table always define the number of dots of the TGraph. Therefore it must have at least 2
rows. An error message is written to TFError if the table has less than 2 rows and the function
will not create a TGraph but will return NULL. If one of the columns does not exist in the table
an error message will be written to TFError and the TGraph is not updated with any value but
it will be created anyhow and the values will be set to 0.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 19

9.3 Images -> Histograms

Every image can be converted into a one or a two dimensional ROOT histogram:

TFImage * image = TFReadImage("imageName", "i.fits");
if (image)

TFH2D * hist

dynamic_cast<TH2D*>image->MakeHisto();

As default a TF2HD image is created. But the makeHist() - functions accepts a parameter which
define the histogram class which should be created. For example to create a 1 - dimensional
histogram of short values one can write:

TFImage * image = TFReadImage("imageName", "i.fits");
if (image)

TFH1S * hist = dynamic_cast<TH1S*>image->MakeHisto(TH1S::Class());

Ounly one and tow dimensional histograms are supported If a sub - image is defined (function
MakeSubSection()) the histogram will be created using only the sub - image, else the full image is
used. If the image has more dimensions than the histogram the least frequently dimensions of the
image are used. To create for example a two dimensional histogram of the X - and Y - dimension
from a 3 - dimensional image first a sub - section with a freezing third dimension has to be defined.
For example:

UInt_t begin[3] = {3, 0, 20};

UInt_t end[3] {3, 0, 20};
img.MakeSubSection(begin, end);

TH2D * hist = dynamic_cast<TH2D*>(img.MakeHisto());

The returned histogram has to be deleted by the calling function.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 20

10 Grouping Implementation

Grouping, very similar to FITS grouping, is implemented with the TFGroup class. It is derived
from TFTable, i. e. it is a table. The grouping class TFGroup has three additional methods:
Attach(), Detach() and Makelterator()

With Attach(TFIOElement * element, Bool.t relativePath = kTRUE) a new TFIOElement or one
of its derived classes can be attached to a group. The file name can be stored in the group as
absolute path (relativePath = kFALSE) or as relative path, relative to the group (relativePath =
kTRUE). Detach(TFIOElement * element) detaches one element from the group. Remember these
changes are done only in the TFGroup actually stored in memory. To update the group in a file the
SaveElement() has to be called. Finally Makelterator() creates a group - iterator TFGrouplter
and returns it. This group - iterator has to be used to get access to the members of a group.

A TFGroup stores the information of its direct children in one column called ”_GROUP_". There-
fore it is important not to add another column with this name to a group table. The column
”_GROUP_” is automatically created by the Attach() - method when a first TFIOElement is
attached to the group. The application must not create this column.

In the current version all members of a group have to be on the same file system. Access to
members using the FTP or HT'TP protocol is not implemented.

10.1 Group Iterator

The group Iterator TFGrouplter, created with the function TFGroup::Makeltererator() has to
be used to access all children of every level of a group. As usual the operator*() and the operator-
>() return one element the iterator "points” to. In this case a TFIOElement or one of its derived
classes. These operators never return a TFGroup. If a group has as child a TFGroup the iterator
will also iterate through all children of this child TFGroup and so on.

The TFGrouplter has two further functions to select and to sort the returned TFIOElements.
But these functions sort and select the TFIOElements only of the first level group. They cannot
be applied to second order groups because the sorting and selecting depend on other columns of
the group. But children groups properly have other further columns than the top level group. For
more information how to sort and to select the TFIOElements of a TFGrouplter see 3.3 TFRowlter
and TFGrouplter.

There exist an other method to select the TFIOElements which applies to all TFIOElements
returned by the TFGrouplter independent of the group level: SetSelector(TFSelector * select);
The iterator will call the TFSelector::Select() method to every TFIOElement and will return only
TFIOElements for which this method returns kTRUE. To use this selection method an application
has to create its own class derived from TFSelector and has to code the Select() method of its
class.

One example is already implemented: TFNameSelector. This selector takes as parameter in its
constructor a name. This name can have the wildcard *. Its Select() method will return kK TRUE
if the name of a TFIOElement fits to the name passed to its constructor. For example following
code will print the file names of all children which name consist at least of the string "eng”:

TFGroupIter i_group = group->Makeltererator();
i_group.SetSelector(new TFNameSelector ("*engx"));
while (i_group.Next())

printf("fileName: %s\n", i_group->GetFileName());

It is possible to define more than one Selector for one group iterator. Only TFIOElements which
pass all Selectors are returned by the iterator.

GADC — AstroROOT ContainersUser Manual — Issue 1.0 21

11 Template files

Not yet implemented.

GADC - AstroROOT ContainersUser Manual — Issue 1.0

22

12 Error Handling and Exceptions

This library supports exceptions as well as returning an error status. It is easier to check the error
status of a function while the classes and functions are used in an interactive session. But it may
be more convenient to use exceptions in a compiled program. As default the functions do not
throw any exception but will return an error in case of a failure. To switch to exceptions a static
function of the TFError - class has to be called, typically at the beginning of a program:

TFError: :SetErrorType() ;
At any time you can switch back to return error codes from a function:
TFError: :SetErrorType (kStoreErr) ;

After a call of the function TFError::SetErrorType() the functions of this AstrROOT - container
classes throw an exception, return an error code or do both:

TFError:SetErrorType(kStoreErr) : Functions will write an error message to the TFError class
and return an error code.

TFError::SetErrorType(kExceptionErr) : Functions will throw an TFException - exception. The
error message can be read from the exception.

TFError::SetErrorType(kAllErr) : Functions will write an error message to the TFError class and
will throw an TFException - exception.

If no error occurred the functions will return 0 or a valid pointer.

At any time the error messages stored in the TFError class can be printed:
TFError: :PrintErrors();

This function will do nothing if there was no error.

Following functions may throw an exception or return an error code:

function return value in case of an error
TFHeader::GetAttribute a TFBoolAttr with name Error and value false
TFRead NULL pointer

TFIOElement:: TFIOElement IsFileConnected() return kFALSE
TFFilelter:: TFFilelter IsFileConnected() return kFALSE
TFIOElement::SaveElement -1

TFIOElement::DeleteElement -1

Int_t TFTable:: AddColumn -1

TFBaseCol TFTable:: AddColumn reference to a NULL pointer: *((TFBaseCol*)0)
TFBaseCol TFTable::GetColumn reference to a NULL pointer: *((TFBaseCol*)0)
TFTable::MakeGraph NULL pointer

Note: the functions TFTable::AddColumn() and TFTable::GetColumn() return a reference of a
TFBaseCol. Following c++ standard these functions should in any case throw an exception if they
cannot return a valid column. But the developer wanted to avoid this in case these function are
used in an interactive session. The user can easily make a typo in the column name and would

quit also the root program. Therefore these functions return a non standard value: a reference to
a TFBaseCol which is mapped at address NULL (0).

GADC — AstroROOT ContainersUser Manual — Issue 1.0 23

13 Executables

There are some executables coming with the AstroROOT containers.

All executables are like FTOOLS with parameter files. To run the programs the environment
variable PFILES must be set to the directory of the parameter files or the parameter files *.par
must be in the local directory.

Noty: during installation the parameter files are installed in the directory ${WORK_ENV} /pfiles.
Therefore the easiest is to define

setenv PFILES ${WORK_ENV]/pfiles

More information about paraemter files can be found in the PIL user manual ${ WORK_ENV} /help/pil.ps

The GUI to edit the program parameters is launched if the program is called with the flag —g (minus
minus g) or —gui (minus minus gui). For example tfconvert —g Without this flag the programs ask
for the parameters. More information about the program parameters are in a help text of each
program (*.txt). This help text can be displayed with the Help button of the GUL

13.1 tfconvert

The tfconvert program can convert one element in a file, all elements in a file or all elements of a
group from one file format into an other supported file format (See 5 Accepted File Formats).

=

=

|

— Input S

file: |/planckfdevirahlfs/ TR/ development/TFconvertsamec._cony_mod_0007 fits hrowese
|p P = — —I Save Az

name: I RUn

cycle: | o §| group: W checked: yes Qi
Help

Hd

—output hidden
sameDir: [~ checked: yes

Hi

autDir: |resu|t

outFileType: Iasrn vI complLevel: | 1 il lagLevel: |2 vI

13.2 tfdump

tfdump is a simple program to dump either one or all elements of a file to standard output. The
input file must be one of the accepted file formats (FITS, ROOT or ASRO).

GADC — AstroROOT ContainersUser Manual — Issue 1.0 24

JSdump.par
fplancksdevirohifs TR /development TRdumpfome. _cony_mod_0007 fits

FaR_MAME

13.3 tfasro_map

tfasro_map is a program to print the name, the size and the position of all Containers in an ASRO
file.

Jtfasro_map.par

fplanckfdevirahifs TR development TR asro_mapfome_lim_alerts_000&.asr0

13.4 tf2tree

tf2tree converts one or all tables in a file to ROOT TTree(s) and / or to ROOT TGraph(s). FITS
images can be converted into ROOT histograms. The converted data are save together with the

header information in a new ROOT file. The input file must be one of the accepted file formats
(FITS, ROOT or ASRO).

Jtf2tree.par

orouse |

[To_Lower 5]

GADC - AstroROOT ContainersUser Manual — Issue 1.0 25

14 To Do or Not Yet Implemented

Some functionalities described in this user manual are not yet implemented. These are

e templates files

GADC - AstroROOT ContainersUser Manual — Issue 1.0

26

A Creating a User Defined Column Type

To be written.

GADC - AstroROOT ContainersUser Manual — Issue 1.0

27

B Casting of Column Data Types

Columns of a table themselves as well as a single value in a table column have a C - data type.
While all values in a column have the same data type different columns in the same table can have
different data type. Therefore the ”Get” - functions 2 of the table to retrieve a column can return
only a data type independent column. This data type independent column is the TFBaseCol -
class. All other columns are derived from this base column.

To access a column and its data from a table requires a cast either to the data type of a column or
to the data type of a single value of the column. This cast operation is done most of the time either
by the compiler or by defined cast - operators. But the ROOT - interpreter sometimes behaves
differently than a C++ compiler and in some seldom situations it is better that the application
forces a cast. Therefore this chapter described in detail the necessary cast operations.

B.1 Cast to a Column Type
To get a column from a table one can write
TFIntCol & col = table["ColName"];

As mentioned before table[” ColName”] will return a reference to TFBaseCol. The TFBaseCol
defines cast operators to all by the library known column - data types. Therefore the assignment
to a derived column class, like TFIntCol in this example, can be performed.

If an application defines its own column class (see A Creating a User Defined Column Type) the
TFBaseCol cannot be automatically casted to this user defined data type of the column. The
application has to do it. For example:

MyCol & col = dynamic_cast<Mycol&>(table["ColName"]);

This is necessary for compiled code. The ROOT interpreter knows all the data types of the columns
and is smart enough to cast even to user defined column - data types by itself. Therefore this does
work in an interpreter macro:

MyCol & col = table["ColName"];

All these cast operations cast a reference. If the column is not of the required type the dynamic_cast
- operator will throw a bad_cast - exception which should be catched by an application. If this
exception is not catched the program, also the root - program, will terminate.

B.2 Cast to a Value Type

To access a single value of a column one can write

double val = table["ColName"][3];
table["ColName"] [3] = 19;

This can be very useful if an application does not know the data type of the column. But in these
statements no cast operators to a specific column - data type can be performed because neither a

2The ”Get” - functions of a table are
TFBaseCol & GetColumn(const char * name) const; and
TFBaseCol & operator|] (const char * name) const;

GADC — AstroROOT ContainersUser Manual — Issue 1.0 28

compiler nor the ROOT interpreter can know to which column data type it has to cast. Therefore
table[” ColName”] returns a TFBaseCol and the operator[] of the TFBaseCol is executed to access
a single value of the column. But this operator[] of the TFBaseCol cannot assign any data type. It
can assign only one data type and we choose the double data type. To be more precise: To be able
to set a value like in the second line of the example above the operator[] does not directly return a
reference to a double but a reference to a TFSetDDbl class which itself defines a cast operator to
double and the assignment operator to double. As a consequence following line does not work in
the ROOT interpreter (assuming the column named ColName is a column of integers):

int val = table["ColName"] [3];
but this does work:
int val = (double)table["ColName"] [3];

(Both does work as you woud expect in compiled code).

In any case the value is always casted to a double before it is assigned to a value in the column or
while it is read from a column. While the value is finally casted to the data type of the column
the library does not simple cast the double value to an integer value but for example all values
between 0.5 and 1.499 are assigned to 1.

If the column is of a TFStringCol data type, the operator|] converts the double value to a string
while a value is assigned to the row of a column. And the operator[] tries to convert a string to
a double value while it reads a value from the column. Therefore the operator [| will return 0.0 if
the string in the requested row does not start with a number.

This operator|] of the TFBaseCol - class will do nothing for array - columns. It will return always
0 and will not set any value in the column.

For several reasons the cast to a column data type is better than the cast to a value type: It is
much faster and it never casts the value to double before it is casted to the finale data type. This
cast to a double can change the value!

GADC — AstroROOT ContainersUser Manual — Issue 1.0 29

C ASRO File Format

To be written

GADC - AstroROOT ContainersUser Manual — Issue 1.0

30

