
Kontron Page 1 of 12

Application Note

COMe-cP2020 (S1000, D0481) Com Express Module supporting
P1020, P1011, P2010 and P2020

Building BSP Images using the Yocto Layer meta-kbc-ppc

Version 3
2014-09-19

Ralf Kihm

Revision History
Date Revision Author Chapters affected / Remarks
2012-12-21 0.1 Ralf Kihm Initial Draft
2013-02-27 2 Ralf Kihm Release for LIN_BSP R20
2014-09-19 3 Ralf Kihm Disclaimer removed

Kontron Page 2 of 12

Table of Content
Revision History.. 1

Introduction ... 3

Additional Resources.. 3

Preparation... 4

Prerequisites ... 4

Installing Freescale SDK 1.3 ... 4

Basic Setup.. 4

Installing Kontron BSP Layer “meta-kbc-ppc” ... 4

Build Directory and Sample Configuration Files ... 4

Adapt the Configuration Files .. 5

Shared State (SSTATE) Mirror Configuration... 5

Setup the Build Environment... 5

Building the BSP ... 6

Building ... 6

Build Results.. 6

Building the Freescale Toolchain .. 7

Building ... 7

Build Results.. 7

Appendix A: local.conf.sample.. 8

Appendix B: bblayers.conf.sample ..12

Kontron Page 3 of 12

Introduction
The Kontron provided BSP layer “meta-kbc-ppc” is an additional layer that adds support for the

Kontron COMe-cP2020 modules on top of the Freescale SDK 1.3. Kontron provides the “meta-kbc-

layer” on request. Please contact <support-keu@kontron.com>.

Additional Resources
- Freescale Technical Information Center - http://www.freescale.com/infocenter/topic/qfamily-

sdk/index.html
- Yocto Project Homepage - https://www.yoctoproject.org
- BitBake User Manual - http://docs.openembedded.org/bitbake/html/

mailto:support-keu@kontron.com
http://www.freescale.com/infocenter/topic/qfamily-sdk/index.html
http://www.freescale.com/infocenter/topic/qfamily-sdk/index.html
https://www.yoctoproject.org/

Kontron Page 4 of 12

Preparation

Prerequisites
- Python 2.6 must be available from the default search path

Installing Freescale SDK 1.3
The Freescale SDK 1.3 is not provided by Kontron, but available from Freescale’s homepage. Please

contact your Freescale FAE for more information.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=SDKLINUX

The location of the Freescale SDK 1.3 installation on the local file system is referenced as ${SDKDIR}

in the following text.

Basic Setup
The following examples use shell variables that point to the installation directory of the original

Freescale SDK and to the directory that holds intermediate and build results. These variables have

to be set properly before following the steps in this Application Note.

Shell Variable Description
SDKBASE Point to the location of the Freescale SDK installation
BASEDIR Points to the folder that holds your intermediate and build results

Installing Kontron BSP Layer “meta-kbc-ppc”

Extract the Kontron provided tar archive to a temporary folder this folder is referenced as

${BASEDIR} in the following text.

tar xzf meta-kbc-ppc.tgz –C ${BASEDIR}

Build Directory and Sample Configuration Files
Kontron provides the sample configuration files “local.conf.sample” and “bblayers.conf.sample”

within the meta-kbc-ppc layer directory.

Create your local build directory by copying the sample configuration files into the new build

directory.

install -D ${BASEDIR}/meta-kbc-ppc/conf/local.conf.sample

${BASEDIR}/build_d0481_release/conf/local.conf

install -D ${BASEDIR}/meta-kbc-ppc/conf/bblayers.conf.sample

${BASEDIR}/build_d0481_release/conf/bblayers.conf

Kontron Page 5 of 12

Adapt the Configuration Files
The sample configuration files still contain the placeholders “##COREBASE##” and

“##KBCBASE##” that have to be replaced with the absolute paths that reflect your build

environment.

sed -i "s>##COREBASE##>${SDKBASE}>g" ${BASEDIR}/build_d0481_release/conf/local.conf

sed -i "s>##KBCBASE##>${BASEDIR}>g" ${BASEDIR}/build_d0481_release/conf/local.conf

sed -i "s>##COREBASE##>${SDKBASE}>g" ${BASEDIR}/build_d0481_release/conf/bblayers.conf

sed -i "s>##KBCBASE##>${BASEDIR}>g" ${BASEDIR}/build_d0481_release/conf/bblayers.conf

Shared State (SSTATE) Mirror Configuration

Optionally you may want to benefit from the Freescale provided prebuilt binaries. In that case

append sstate mirror configuration to the end of your “local.conf” file.

echo SSTATE_MIRRORS += \"file://.* file://${SDKBASE}/sstate-cache/ \n\ \" >>

${BASEDIR}/build_d0481_release/conf/local.conf

Setup the Build Environment

The following command line setups the build environment and changes to the

“${BASEDIR}/build_d0481_release”.

source ${SDKBASE}/oe-init-build-env ${BASEDIR}/build_d0481_release

Kontron Page 6 of 12

Building the BSP

Building
bitbake kbc-image

Build Results

The build results are available from the directory "${BASEDIR}/build_d0481_release/deploy".

Kontron Page 7 of 12

Building the Freescale Toolchain

Building
bitbake fsl-toolchain

Build Results

The toolchain is available from "${BASEDIR}/build_d0481_release/deploy/sdk".

Kontron Page 8 of 12

Appendix A: local.conf.sample

This file is your local configuration file and is where all local user settings

are placed. The comments in this file give some guide to the options a new user

to the system might want to change but pretty much any configuration option can

be set in this file. More adventurous users can look at local.conf.extended

which contains other examples of configuration which can be placed in this file

but new users likely don't need any of them initially.

Lines starting with the '#' character are commented out and in some cases the

default values are provided as comments to show people example syntax. Enabling

the option is a question of removing the # character and making any change to the

variable as required.

Parallelism Options

These two options control how much parallelism BitBake should use. The first

option determines how many tasks bitbake should run in parallel:

#BB_NUMBER_THREADS = "4"

The second option controls how many processes make should run in parallel when

running compile tasks:

PARALLEL_MAKE = "-j 4"

For a quadcore, BB_NUMBER_THREADS = "4", PARALLEL_MAKE = "-j 4" would

be appropriate for example.

BB_NUMBER_THREADS = "2"

PARALLEL_MAKE = "-j 2"

Machine Selection

You need to select a specific machine to target the build with. There are a selection

emulated machines available which can boot and run in the QEMU emulator:

#MACHINE ?= "qemuarm"

#MACHINE ?= "qemumips"

#MACHINE ?= "qemuppc"

#MACHINE ?= "qemux86"

#MACHINE ?= "qemux86-64"

There are also the following hardware board target machines included for

demonstration purposes:

#MACHINE ?= "atom-pc"

#MACHINE ?= "beagleboard"

#MACHINE ?= "mpc8315e-rdb"

#MACHINE ?= "routerstationpro"

This sets the default machine to be d0481 if no other machine is selected:

MACHINE = "d0481"

Where to place downloads

During a first build the system will download many differernt source code tarballs

from various upstream projects. This can take a while, particularly if your network

connection is slow. These are all stored in DL_DIR. When wiping and rebuilding you

Kontron Page 9 of 12

can preserve this directory to speed up this part of subsequent builds. This directory

is safe to share between multiple builds on the same machine too.

The default is a downloads directory under TOPDIR which is the build directory.

#DL_DIR ?= "${TOPDIR}/downloads"

Where to place shared-state files

BitBake has the capability to accelerate builds based on previously built output.

This is done using "shared state" files which can be through of as cache objects

and this option determines where those files are placed.

You can wipe out TMPDIR leaving this directory intact and the build would regenerate

from these files if no chages were made to the configuration. If changes were made

to the configuration, only shared state files where the state was still valid would

be used (done using checksums).

The default is a sstate-cache directory under TOPDIR.

#SSTATE_DIR ?= "${TOPDIR}/sstate-cache"

Where to place the build output

This option specifies where the bulk of the building work should be done and

where BitBake should place its temporary files and output. Keep in mind that

this includes the extraction and complation of many applications and the toolchain

which can use Gigabytes of hard disk space.

The default is a tmp directory under TOPDIR.

#TMPDIR = "${TOPDIR}/tmp"

Default policy config

The distribution setting controls which policy settings are used as defaults.

The default value is fine for general Yocto project use, at least initially.

Ultimately when creating custom policy, people will likely end up subclassing

these defaults.

DISTRO ?= "poky"

As an exable of a subclass there is a "bleeding" egde policy configuration

where many versions are set to the absolute latest code from the upstream

source control systems. This is just mentioned here an an example, its not

useful to most new users.

DISTRO ?= "poky-bleeding"

DISTRO = "fsl"

Package Management configuration

This variable lists which packaging formats to enable. Multiple package backends

can be enabled at once and the first item listed in the variable will be used

to generate the root filesystems.

Options are:

- 'package_deb' for debian style deb files

- 'package_ipk' for ipk files are used by opkg (a debian style embedded package manager)

- 'package_rpm' for rpm style packages

E.g.: PACKAGE_CLASSES ?= "package_rpm package_deb package_ipk"

Kontron Page 10 of 12

We default to rpm:

PACKAGE_CLASSES ?= "package_rpm"

SDK/ADT target architecture

This variable specified the architecture to build SDK/ADT items for and means

you can build the SDK packages for architectures other than the machine you are

running the build on (i.e. building i686 packages on an x86_64 host._

Supported values are i686 and x86_64

#SDKMACHINE ?= "i686"

Extra image configuration defaults

The EXTRA_IMAGE_FEATURES variable allows extra packages to be added to the generated

images. Some of these options are added to certain image types automatically. The

variable can contain the following options:

"dbg-pkgs" - add -dbg packages for all installed packages

(adds symbol information for debugging/profiling)

"dev-pkgs" - add -dev packages for all installed packages

(useful if you want to develop against libs in the image)

"tools-sdk" - add development tools (gcc, make, pkgconfig etc.)

"tools-debug" - add debugging tools (gdb, strace)

"tools-profile" - add profiling tools (oprofile, exmap, lttng valgrind (x86 only))

"tools-testapps" - add useful testing tools (ts_print, aplay, arecord etc.)

"debug-tweaks" - make an image for suitable of development

e.g. ssh root access has a blank password

There are other application targets that can be uses here too, see

meta/classes/core-image.bbclass and meta/recipes-core/tasks/task-core.bb for more details.

We default to enabling the debugging tweaks.

EXTRA_IMAGE_FEATURES = "debug-tweaks"

Additional image features

The following is a list of additional classes to use when building images which

enable extra features. Some available options which can be included in this variable

are:

- 'image-mklibs' to reduce shared library files size for an image

- 'image-prelink' in order to prelink the filesystem image

- 'image-swab' to perform host system intrusion detection

NOTE: if listing mklibs & prelink both, then make sure mklibs is before prelink

NOTE: mklibs also needs to be explicitly enabled for a given image, see local.conf.extended

USER_CLASSES ?= "image-mklibs image-prelink"

Runtime testing of images

The build system can test booting virtual machine images under qemu (an emulator)

after any root filesystems are created and run tests against those images. To

enable this uncomment this line

#IMAGETEST = "qemu"

This variable controls which tests are run against virtual images if enabled

above. The following would enable bat, oot test case under sanity suite and

toolchain tests

#TEST_SCEN = "sanity bat sanity:boot toolchain"

Because of the QEMU booting slowness issue(see bug #646 and #618), autobuilder

may suffer a timeout issue when running sanity test. We introduce variable

TEST_SERIALIZE here to reduce the time on sanity test. It is by default set

Kontron Page 11 of 12

to 1. This will start image and run cases in the same image without reboot

or kill. If it is set to 0, the image will be copied and tested for each

case, which will take longer but be more precise.

#TEST_SERIALIZE = "1"

Interactive shell configuration

Under certain circumstances the system may need input from you and to do this it

can launch an interactive shell. It needs to do this since the build is

multithreaded and needs to be able to handle the case where more than one parallel

process may require the user's attention. The default is to use xterm.

Examples of the occasions this may happen are when resolving patches which cannot

be applied, to use the devshell or the kernel menuconfig

If you do not use (or have installed) xterm you will need to

uncomment these variables and set them to the terminal you wish to use

Supported shell prefixes for *_TERMCMD and *_TERMCMDRUN are:

GNOME, SCREEN, XTERM and KONSOLE

Note: currently, Konsole support only works for KDE 3.x due to the way

newer Konsole versions behave

#TERMCMD = "${XTERM_TERMCMD}"

#TERMCMDRUN = "${XTERM_TERMCMDRUN}"

By default disable interactive patch resolution (tasks will just fail instead):

PATCHRESOLVE = "noop"

Shared-state files from other locations

As mentioned above, shared state files are prebuilt cache data objects which can

used to accelerate build time. This variable can be used to configure the system

to search other mirror locations for these objects before it builds the data itself.

This can be a filesystem directory, or a remote url such as http or ftp. These

would contain the sstate-cache results from previous builds (possibly from other

machines). This variable works like fetcher MIRRORS/PREMIRRORS and points to the

cache locations to check for the shared objects.

#SSTATE_MIRRORS ?= "\

#file://.* http://someserver.tld/share/sstate/ \n \

#file://.* file:///some/local/dir/sstate/ \n \

#file://.* file://##COREBASE##/sstate-cache/"

use xz instead of gzip for sstate-cache

SSTATE_PKG_SUFFIX ?= "txz"

SSTATE_PKG_TARZIPPROG ?= "xz"

Archiving source code configuration

The following variables control which files to archive and the type to archive to generate.

There are three basic class defintions of common operations that might be desired and these

can be enabled by uncommenting one of the following lines:

INHERIT += "archive-patched-source"

INHERIT =+ "archive-configured-source"

INHERIT += "archive-original-source"

Type of archive:

SOURCE_ARCHIVE_PACKAGE_TYPE = 'srpm'

SOURCE_ARCHIVE_PACKAGE_TYPE ?= 'tar'

Kontron Page 12 of 12

Whether to include WORKDIR/temp, .bb and .inc files:

'logs_with_scripts' include WORKDIR/temp directory and .bb and .inc files

'logs' only include WORKDIR/temp

SOURCE_ARCHIVE_LOG_WITH_SCRIPTS ?= 'logs'

SOURCE_ARCHIVE_LOG_WITH_SCRIPTS ?= 'logs_with_scripts'

CONF_VERSION is increased each time build/conf/ changes incompatibly and is used to

track the version of this file when it was generated. This can safely be ignored if

this doesn't mean anything to you.

CONF_VERSION = "1"

use sources supplied by Freescale SDK

PREMIRRORS_prepend = "\

cvs://.*/.* file://##COREBASE##/sources/ \n \

svn://.*/.* file://##COREBASE##/sources/ \n \

git://.*/.* file://##COREBASE##/sources/ \n \

ftp://.*/.* file://##COREBASE##/sources/ \n \

http://.*/.* file://##COREBASE##/sources/ \n \

https://.*/.* file://##COREBASE##/sources/ \n \

file://.* file://##KBCBASE##/meta-kbc-ppc/sources/ \n"

delete sources after build to save disk space

INHERIT += "rm_work"

set meta-oe layer with lowest priority

BBFILE_PRIORITY_openembedded-layer = "1"

Appendix B: bblayers.conf.sample
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf

changes incompatibly

LCONF_VERSION = "4"

BBFILES ?= ""

BBLAYERS = " \

 ##COREBASE##/meta \

 ##COREBASE##/meta-yocto \

 ##COREBASE##/meta-fsl-ppc \

 ##COREBASE##/meta-fsl-ppc-private \

 ##COREBASE##/meta-oe/meta-oe \

 ##KBCBASE##/meta-kbc-ppc \

 "

	Revision History
	Introduction
	Additional Resources

	Preparation
	Prerequisites
	Installing Freescale SDK 1.3

	Basic Setup
	Installing Kontron BSP Layer “meta-kbc-ppc”
	Build Directory and Sample Configuration Files
	Adapt the Configuration Files
	Shared State (SSTATE) Mirror Configuration
	Setup the Build Environment

	Building the BSP
	Building
	Build Results

	Building the Freescale Toolchain
	Building
	Build Results

	Appendix A: local.conf.sample
	Appendix B: bblayers.conf.sample

