Mathematica Link for Excel 3.5

User’s
Manual

&

Reference
Guide

Copyright © 1998-2011 Episoft Inc.

Table of Contents

(@117 QY= AP EERURR 1
Y LU= 1
(o1 =T e To =1 OO PP PERSR 2
N oo YU PRSP 5

Working in Mathematica

GEIEING STAMEA ..uuuveeieeeiiiieeeeeeeiette e e e e e eteeeeeeeeteeeeeseeasseeeeeaaassseeaeeaasssseeeesaassseeeeassnsseneassansssneeesannns 6
GENEIAl PriINCIPIES 1eviiiiiiiiiiii ittt ettt e e e ee e s e se s s rrreeeeeeeaeeessass s brsesereeeeseesessasssssnsrrbeereeeseenssnsans 8
AUTOMALING EXCEI 11vviiriiieiieiieiieiiiiirtttereeeeeeeess et siassisbssssrsreeeeseessssssaaassssssssesseeseseesessssnsassassrrsnseeees 12
Creating EXCEl FUNCLIONS oottt ittt e et e e e e e e ee e e e st e e e e e e e eaaeaeeesseasasnnssrssrnseeeeeeaaaaeeesennaas 15
Creating EXCEI MACIOS 11rueriieeeeeiiiiiirreeeteeeeseseiiitrsreetesssssaasasssssseeeesssssassassrsssessesssssmssassssssesseseesinns 22

Working in Excel

(T e IR S] ¥ L g = OO 27
GENETAl PrINCIPIES .ueeiiiieitiieie e eeittte e e e e ettt e e e e s te e e e e e ettt e e e e eeeaaseeeeeaaabsseeasaaassseeeesasnseeeseeanssneeesannnnes 34
WOTKING WIth FUNCHIONS .uuiiiiiiiiiiieieciie e e e eeee e e et ee e e e satre e e e e s aae e e e enaaeeeeeennseeeseassseeeeannesassannseeenans 36
WOTKING WITN IMBICTOS iiuurrreieeieeeeesieiiistssrereeesessssssisssssssseesessesssasissssssssseesessssasassssssnseesesssesssanssens 43
LiNK MaANAGEMENT «eeiiieeiiiieeieiitieeeeeeeeeeeeeseeeeesaabeeeeeeeaaeeeseaaassasraeseeeeaaaesssaaaaassssenaseeseeaaessesannsssnsens 47
SNArING WOTKDOOKS ..iiiiiiiiitiiriieiiee e e e e eeeiicbrre e e eeeeeesseesasabbreeeeeeeaeessassasasbsreeeeeeeesssessasssrresaneesanesens 48

Using The Clipboard

(I F: Ve ITaTo I TN e [o I T PRSPPI 51
COPYING DALA fTOM EXCEl vivviiiiiiiiiiiiiitieitieeeeeeseeiesissbrrreeeeeeesesessasssssarseeeeeseesessssaaassbssseeeeesesssnsanns 51
e Lol B (2= (o R = o3 =) SR 51
FiXiNG ProDIEMALIC DALA cuvvrreeieeeesiiiiiirreeeeeeeseiiisrreeeessessiasissssseeesssssanasssssessesssssasssssssseessessanssssens 52

Mathematica Reference

MathematiCa FUNCTION INOEX 1ivvieerrrreeeeseeeeeeessassssesetessssssseseessessssaseeeeeessssnserssesessssnnereseeeesnnns 54

Excel Reference

EXCEl WOTKSHNEEt FUNCLIONS 1uvviiiiiiieiesiiiieie e e eiiete e e e ettae e e e s etae e e e s snseeeeeesssaeeeeeannsneeeeeennnseeesannnnnnens 97
TOOIDAr COMMANTS ...uuiviiieeeeiiiee e e eeteeee e e s e e e e e eere e e e e s areeeeeasaseseeeseasssseeesaanseeeeeaansseeeeesanseneeanans 99
CONEEXE COMIMEANTS 1iiiiiiiiiiieeeeiieeeeeeeiteeeeeesteeeeeesebeeeeesassseeeeeaasseeeeeeaassessessaasseseesaasseeaeseassneesanans 102
KEYDOAIT SHOMCULS iiivurrereeieeiiiiiiitreeeeeeeeeesesssbrrrreeeesessasasbssseeeasessaasasssssseesesssasasrrssrssessessnananes 106
DALA TYPES treeeeeeiureeeeiirreeesaareeeeaaisrereesaaaseeeesaasseeeaaasseeasaasssseesaasseseseasseeeesaasseeeesansseeeesanssneessansens 107

NN LT a Y= o L £ =Y = 111

Introduction

Introduction

Overview

Mathematica Link for Excel consists of two main components:
m The ExcelLink package.
= The MathematicaLink add-in.

These components work together to provide full two-way connectivity between Mathematica and Excel.
= To use the link from Mathematica, you load the ExcelLink package.

= To usethelink from Microsoft Excel, you load the Mathematicalink add-in.

Features

The ExcelLink package provides:

m A set of Mathematica functions that allow you to:
@ Read and write data to Excel ranges.
@ Display graphics, typeset equations, and formatted output in Excel.
@ Create, open, modify, and close Excel files.
@ Develop Excel worksheet functionsin Mathematica.

@ Develop Excel macros in Mathematica.
The MathematicaLink add-in provides:

m A set of worksheet functionsthat allow you to use Mathematica functionsin Excel formulas.

= A Mathematica Function Wizard to help you learn about and enter Mathematica functions.

= A Mathematica macros window that allows you to turn Mathematica code into Excel macros.
m A special Clipboard window that allows you to easily copy and paste data between programs.
m A searchable PDF-based manual.

Introduction

Changes

Version 3.5

New in Version 3.5

= Compatibility with Mathematica 8.0.

= Compatibility with Excel 2010 (including Excel 2010 64-bit version).

m Excel Share function allows sharing a kernel between Excel and Mathematica.

= VBA support routines. MathematicaSet, MathematicaRun, and M athematicaGet

= Support for reading and writing Excel comments (including writing to arange using CellLabel["my comment"]).
= Shift-click the Mathematica Evaluate button to close link and bring up the Mathematica connection window.

= Shift-right-click arange to quickly display the Mathematica Context menu w/o turning on Mathematica Contexts.

Improved in Version 3.5

= Updated toolbar and menu icons

= |mproved Mathematica connection management (self-healing link, new connection options window)
= Improved handling of Mathematica connection exceptions and evaluation interrupts

= |mproved Mathematica messaging (messages now returned in real time)

= [mproved 'Display Message Box' option now only appliesto Print[] output

= |mproved workbook initialization code evaluation and management

= [mproved common multi-workbook initialization now supported using ainit.mfile in same directory
= |mproved support for long-running Mathematica macros

= |mproved automatic workbook relinking and addin startup logic

m Other minor improvements and fixes

Introduction

Version 3.2

New in Version 3.2

= Compatibility with Mathematica 7.0 including Mathematica 7.0 based icons.

m ExcelOpen, Excel Save, and Excel Dialog support for Excel 2007 xIsx, .xIsm, .xlIsb files.

m ExcelWrite support for writing Grid[{{1,2,3} {4,5} {6} }, opts] f.ex. ANOVATable output
m ExcelFormat["A:C"," AutoFit"] to automatically adjust column width.

= Support for 64-bit Windows and 64-bit Mathematica connecting to 32-bit Excel.

Improved in Version 3.2

= |mproved message print format in Mathematica 6 and 7.

= Fixed a bug where some workbooks with macro buttons do not relink correctly

= I[mproved Excellnstall[Visible->True] method for launching visible instance of Excel
= |mproved Mathematica Macros dialog method of inserting of code boxes and buttons
= No "kernel connection closed” dialog if initialization code ends with Quit[]

m Other minor improvements and fixes

Version 3.1

New in Version 3.1

= Compatibility with Mathematica 6.0.

= Compatibility with Excel 2007.

m Keyboard shortcuts for Excel toolbar commands.

= Additional Excel message-related options.

= Restored backwards compatibility with Excel 2000.

Improved in Version 3.1

= Improved editing of existing functions using the Mathematica Function Wizard.
= Improved compatibility with workbooks originally built with version 2.x of the link.

= |mproved printable PDF documentation.

4 Introduction

Version 3.0

New in Version 3

m Display of typesetting and formatted output in Excel.
= Creating Mathematica-based macros.

= A suite of Mathematica functions to interact with and automate Excel.

Improved in Version 3

= Start/End Link button is now an Evaluate button. This button can be used to interrupt current evaluations and re-evaluate
the workbook once changes have been made. To end alink, hold down the Shift key and click the Evaluate button.

= You can now use the Function Wizard to edit existing formulas, select and assign options more easily, and browse for
built-in functions by category.

m Standard packages are automatically declared by default and can be browsed directly within the Function Wizard. This
functionality replaces the Libraries Dialog.

= Data Copy and Paste commands are now available from a Mathematica Context Menu. Y ou can now see the datayou are
copying and pasting using the Mathematica Clipboard window.

m Kernel Dialog has now been incorporated into the Mathematica Clipboard window. Y ou can type Mathematica expres-
sions directly into the Clipboard window, evaluate them, and paste the results somewhere if you choose.

= Messages are now displayed and stored to a nonmodal window. Using the window you can scroll through multiple mes-
sages, find the source of a message, and even save the messagesto alog file.

m» Formula Activate/Deactivate/Recalculate commands are available from the Mathematica Context Menu as a Com-
ments toggle and Recalculate command.

= | ncreased worksheet function speed. Worksheet functions now calculate up to 8 times faster.

m |ncreased worksheet function reliability. Worksheet functions are now robust enough for the most demanding spreadsheet
applications. Automated tests have performed hillions of continuous evaluations without errors.

= Improved worksheet function error handling. Dependent evaluations are now suppressed through the use of native Excel
error codes.

= To share workbooks with others, you can unlink the workbooks formulas and macro buttons using the Unlink button in
the Mathematica Options @ Workbook tab. If colleagues have the link, they will be automatically prompted to relink
formulas when they open the workbook.

= Strings and fl oating-point numbers can now be specified using the DATA worksheet function.

Obsolete in Version 3

The MATH worksheet functions provided in Version 2 have been superseded by a more flexible set of functionsin Version 3.
The MATH worksheet functions still work in Version 3. However, there may be slight differencesin how results are returned.

Introduction 5

If you would like to convert your existing formulas, here are examples of how they can be mapped.

Version 2 Version 3

=MATH("I nver se", Al: B2) =EVAL("I nverse", Al: B2)

=MATHEXACT(" I nver se", Al: B2) =EVAL(" I nput Forni', EXPR(" | nver se", Al: B2))
=MATHVOLATI LE(" Randon{] ") =CALC(EVAL(" Randon{]"))

=MATHDEFI NE(" ni', Al: C3) =EVAL("Set","m', Al: C3)

=MATHCODE(B1: B10) initialization code livesis a code box, no formula required
MATHFORMULA & CELL functions experimental functions no longer supported

MATH function mappings.

The ReadExcel function has been superseded by a new suite of Excel functions. Here is an example of how an improved
ReadExcel function could be defined using the new Excel functions.

ReadExcel[file_, sheet_,rng_]:=
Module[{book, data},
If[Not[ExcelCheck[ExcelBook[file]]], book = ExcelOpenlfile]];
data = ExcelRead[ExcelRangel[file, sheet, rng]];
If[ValueQ[book], ExcelClose[book]];
data

I

This ReadExcel function checks to see if the required file is already open in Excel. If not it opens the file, reads the
required data, and closes the book if it was not aready open.

About

Mathematica Link for Excel
Version 3.5
Copyright © 1998-2011 Episoft, Inc.

http://mww.episoft.com

http://www.episoft.com

6 Working in Mathematica

Working in Mathematica

Getting Started

Loading the Package

To start using the link from inside Mathematica, you must first load the Excel Link package.
In[1]:= << ExcelLink’

The ExcelLink package provides alibrary of functions and symbols relating to Excel.

In2]:= ? ExcelLink™*

ExcelLink”

Excel ExcelDelete ExcelOffset ExcelSave ExcelWrite
ExcelActivate ExcelDialog ExcelOpen ExcelSelect ImageFormat
ExcelAddress ExcelDirectory ExcelOutput ExcelShape MaxCharacters

ExcelBook ExcelFilter ExcelPosition ExcelShapes ToExcel
ExcelBooks ExcelForm ExcelRange ExcelShare $ExcelDialogs
ExcelCalculate ExcelFormat ExcelRanges ExcelSheet $ExcelDirectories
ExcelCall ExcelGraphic ExcelRead ExcelSheets $ExcelGraphic
ExcelCheck Excellnsert ExcelRefresh ExcelSize $ExcelLink
ExcelClear Excellnstall ExcelRename ExcelStatus $ExcelOutput
ExcelClose ExcelName ExcelResize ExcelTypeset $ExcelResult
ExcelContext ExcelNew ExcelResult ExcelUninstall $ExcelShare
ExcelDate ExcelObject ExcelRun ExcelUnshare $ExcelTypeset

Y ou can learn more about these functions and symbols by looking up its entry in the Mathematica Reference section of this
manual. Y ou can also access this manual within Mathematica's help system by looking under Add-Ons.

Assigning and Retrieving Data
In[1]:= Needs["ExcelLink™]

The top-level Excel function provides an easy way to specify a location in Excdl, as if it were a variable, then assigns or
retrieves data fromiit.

Working in Mathematica

In[2]:= Excel["Al1"] ="hello"
In[3:= Excel["A1"]

Out[3]= hello
You can aso clear datafrom the Excel location.

In[4]:= Excel["'Al"]=.
When assigning data to Excel ranges, one-dimensional data can be assigned either to single rows or single columns of cells.

In[5]:= Excel['A1:C1"]1={1, 2, 3}

In6]:= Excel["A1:A3"]={1, 2, 3}
Two-dimensional data can be assigned to a rectangular range of cells.

In[7]:= Excel['A1:C3"]1={{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[8]:= Excel['Al:C3"]=.

Displaying Graphics
In[1]:= Needs["ExcelLink™]
This displays a graphic in Mathematica.

In2]:= g = Plot[Sin[a" 2], {a, —4, 4}, PlotStyle » Huel[.8], Frame - True]

1 N N M e N N\

-4 -2 0 2 a4

This displays the same graphic in Excel.
In[8]:= Excel["'B3"]=g

As specified, the graphic is displayed at cell B3. This cell will serve as an anchor point for the graphic; however, you can
move it anywhere you like. Y ou can also resize the graphic as needed.

Subsequent assignments update and redraw the existing graphic.

Working in Mathematica

Inf[4]:= g = Plot[Sin[a”" 2], {a, -3, 3}, PlotStyle - Hue[.8], Frame - True]

1A -

-1 \/ \J
-3 -2 -1 0 1 2 3

In[5]:= Excel["'B3"]=g
This clears the graphic associated with cell B3.

Inf6]:= Excel['B3"]=.

Displaying Expressions
In[1]:= Needs["ExcelLink™]
This defines an expression to be displayed.
In[2]:= expr =Sin[iPi]*2/2;
Hereis atypeset form of the expression.
In[5]:= TraditionalForm[expr]
Out[5]//TraditionalForm=
L g2
> (im)
This displays the typeset form in Excel.
Inf6]:= Excel["B3"] = TraditionalForm[expr]
This clears the displayed expression associated with cell B3.

In[7]:= Excel['B3"] =.

General Principles

Function Overview

Functions in the ExcelLink package follow the general convention:

Working in Mathematica 9

ExcelMethod[ExcelObject] ...], ...]
Four kinds of Excel objects are supported. Hereisalist of the objects with some methods that apply to them.

m Book: New, Open, Refresh, Save, Close.
m Sheet: Insert, Rename, Delete, Activate.
m Range: Read, Write, Clear, Resize, Offset, Filter, Select.

® Shape: Insert, Rename, Delete, Read, Write, Select.

For detailed information on all the objects and methods provided by the ExcelLink package, see the Mathematica Reference
section.

Shorthand Notation

Objects
Most objects in Excel can be referenced directly by a unique identifier. The identifier is typically the name of an object or,
in the case of ranges, the address. If an identifier is unique among all object types, you do not need to specify what kind of
object itis.
Here arange object is provided as a typed object.

ExcelRead[ExcelRange["A1:B10"]]
Here the range object is specified only by its address, the identifier implicitly identifiesit as arange.

ExcelRead["A1:B10"]

Y ou can use this type of shorthand referencing in any function that requires an Excel object.

Methods

Read and write operations are so common, a shorthand has also been provided for them, and for clearing arange.
In[1]:= Needs["ExcelLink™]
In[2]:= Excel['A1:B10"] = Table[Random([], {10}, {2}]

In[3]:= Excel["'A1:B10"]

Out[3]= {{0.395543, 0.335494}, {0.934515, 0.304868}, {0.495912, 0.426754}, {0.657647, 0.398919}, {0.800834, 0.159929},
{0.216486, 0.109539}, {0.694347, 0.157112}, {0.0578395, 0.273708}, {0.750935, 0.710237}, {0.760348, 0.420566}}

In[4]:= Excel['A1:B10"] =.
The above three lines of shorthand code are equivalent to the following.

In[5]:= ExcelWrite[ExcelRange["'A1:B10"], Table[Random[], {10}, {2}1]

10 Working in Mathematica

In[6]:= ExcelRead[ExcelRange["A1:B10"]]

out[6]= {{0.779186, 0.105253}, {0.954368, 0.320287}, {0.383643, 0.769759}, {0.0198529, 0.0154194}, {0.887731, 0.343005},
{0.362206, 0.6165}, {0.0868974, 0.183076}, {0.14572, 0.506961}, {0.39255, 0.025964}, {0.0878807, 0.233253}}

In[7]:= ExcelClear[ExcelRange["A1:B10"]]

Notes

= |f more than one object has the same identifier (e.g., a shape has the same name as a shest)
the identifier most likely to be used by the calling method is returned.
Object Notation

Using full object notation can be useful when referring to an object by index, or providing context for the object.

Here are afew examples.
ExcelSheet[1]
ExcelSheet["Book1", "Sheet1"]
ExcelSheet["Book1", 1]
ExcelRange["'Report.xls", 1, "A1:D100"]
When no context is provided, the active context is assumed.

Excel object references are resolved when they are passed to a method, not before. Until then, they are just Mathematica
expressions representing alocation in Excel.

In[1]:= Needs["ExcelLink™]

In[2]:= ExcelSheet["My Sheet"]

Out[2]= —Sheet: My Sheet—

In[3]:= ExcelRead[ExcelSheet["My Sheet"]]

ExcelRead::source : —Sheet: My Sheet- is not a valid range, shape, or sheet.

out[3]= $Failed
If you want to see if an object reference is valid, you can do so by using the Excel Check function.

In[4]:= ExcelCheck[ExcelSheet["My Sheet"]]

Out[4]= False
Y ou can return collections of objects asalist by using the plural of an object name.

In[5]:= ExcelSheets[]

Out[5]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

Y ou can extract the name of areturned object.

Working in Mathematica 11

In[6]:= ExcelName[First[ExcelSheets[]]]

Oout[6]= Sheetl
Y ou can also return the embedded context information for the objects.

In[7]:= ExcelContext[First[ExcelSheets[]]]

out[7]= {Book1}

Expression Cells

If the Number Format of an Excel cell is set to Text, the contents of the cell are considered to be a Mathematica expres-
sion when transferring them to Mathematica via the clipboard or in a macro.

For more information, see Strings in the Excel Reference guide.

Notes

= Cells should be formatted as Text before entering an expression. To convert existing contents
to Text, you can re-enter them manually or use the provided Expression command from the
Mathematica Context menu

m EXpressions such as 1/2 or -x can only be entered in cells formatted as Text. Otherwise, Excel
will attempt to interpret them as something else.

= When working with expression cells, al cellsin the range should be formatted as Text.
Partial expression ranges are not currently supported.

= From Mathematica, you can use the ExcelFormat function to apply or unapply Text format
to arange.

Data Cells
If the Number Format of an Excel cell isanything other than Text, the cell is considered a data cell.

When transferring the contents of data cells from Excel to Mathematica:

m Dataistransferred asit is natively stored in Excel. This means, for example, all numbers will be returned as floating point
doubles. Thisincludes dates which are numbers with special formatting properties.

When transferring Mathematica expression to Excel data cells:

= Nonnative expressions are converted to an equivalent Excel data type whenever possible. Expressions that do not have any
possible Excel-equivalent are converted to InputForm strings.

See the Data Types Overview in the Excel Reference guide for more details.

Notes

12 Working in Mathematica

= Y ou can use the ExcelDate function and ExcelForm functions to work with date values once
you get them into Mathematica.

m Cell referencesin Excel-based formulas such as =EVAL (A1,A2,A3) are an exception to this
rule. In this case, you must wrap formula arguments with the provided DATA function to
treat them as data cells, =EVAL (" StringJoin”, DATA(A2), DATA(AJ)), for example.

Automating Excel

Opening Excel

By default, the ExcelLink package automatically connects, as needed, to an open instance of Excel. This provides easy,
on-demand connectivity. In this mode, you can open or close Excel on your own whenever you wish.

If you write Mathematica code that automates Excel to perform a task, you may want the Mathematica code to initiate
opening an instance of Excel. The Excellnstall function provides away of doing this.

In[1]:= Needs["ExcelLink™]
This opens avisible instance of Excel, if oneis not aready open.

In[2]:= Excellnstall[Visible » True]

Out[2]= LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]

Once an Excel automation routine has been developed, you can set Visible->False instead. Thiswill open a hidden, private
instance of Excel to perform the requested tasks.

Importing Workbooks
In[1]:= Needs["ExcelLink™]
This specifies afile to import data from.

In2]:= f=ToFileName[{ExcelDirectory['Link"], "Examples"}, "Stocks.xls"]

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xIs
This opensthefile.

In[3]:= ExcelOpen[f]

Out[3]= —Book: Stocks.xls—

This returns the sheetsin the file.

Working in Mathematica 13

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: IBM-, —Sheet: CSCO-, —Sheet: AAPL—, —Sheet: MSFT—, —Sheet: BLDP-,
—Sheet: AIG—, —Sheet: ADP—, —Sheet: JNJ-, —Sheet: SYY—, —Sheet: WMT-}

Thisreadsin all the data from one of the shests.
In[5]:= data = ExcelRead[ExcelSheet["IBM"]];
This previews the first five rows of data from the sheet.

In[6]:= Take[data, 5]

Oout[6]= {{Date, Open, High, Low, Close, Volume, Adj. Close},
{36886., 88.97, 89.53, 82.14, 85., 6.0523x 10°, 84.47}, (36878., 88.39, 94.41, 80.07, 89., 7.6938 x 10°, 88.45},
{36871., 96.49, 98.23, 87.32, 87.81, 6.1856 x 10°, 87.27}, {36864., 96.01, 104.74, 93.13, 97., 5.5668 x 10°, 96.4}}

This defines the datain the last column.
In[7]:= adjclose = Rest[Part[data, All, —1]];
This plots the data.

In[8]:= ListPlot[adjclose, PlotJoined —» True, Frame - True, Axes - False]

80

60

0 25 50 75 100 125 150

This closes the workbook once we are finished importing data from it.

In[9]:= ExcelClose[]

Exporting Workbooks

In[1]:= Needs["ExcelLink™]
Y ou can provide any format to an exported workbook by referencing an existing template file.
This specifies an existing template file to use for exporting thefile.

In[2]:= f = ToFileName[{ExcelDirectory['Link"], "Templates"}, "Report.xls"]

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Templates\Report.xls

This creates the new workbook based on the template file.

14 Working in Mathematica

In[3]:= ExcelNew][f]
Out[3]= —Book: Reportl-
The template contains a named range that defines where to put data in the report.
In[4]:= ExcelRangesl]
Out[4]= {-Range: Trials_Range-}
It also contains a named shape to display a graphic.
In[5]:= ExcelShapes]]
Out[5]= {-Shape: Histogram Graphic—}
This simulates rolling two six-sided dice 500 times.

In[6]:= roll := Random[Integer, {1, 6}]
trials = Table[roll +roll, {500}];

Thiswritesthetrial datato the report.
In[8]:= ExcelWrite["Trials_Range", trials]
This displays a histogram to the named shape.

In[9:= If[$VersionNumber < 7, If[$VersionNumber = 6, Needs["Histograms™], Needs["Graphics™]]]
ExcelWrite["Histogram Graphic", Histogram[trials]]

80
60
40

20

4 6 8 10 12

This defines the file name for the report workbook.

In[11]:= f = ToFileName[{ExcelDirectory["Home"]}, "Autogenerated Report.xls"]

Out[11]= C:\Documents and Settings\Anton\My Documents\Autogenerated Report.xls
This saves the report workbook to disk.

In[12]:= ExcelSave[Active, f]

Out[12]= -Book: Autogenerated Report.xls—

This closes the workbook once you have finished exporting data to it.

Working in Mathematica 15

In[13]:= ExcelClose[]

This cleans up by deleting the exported workbook file.

In[14]:= DeleteFile[f]

Closing Excel
In[1]:= Needs["ExcelLink™]
Once your automation routines are completed, you can use the ExcelUninstall function to close Excel.
In[2]:= ExcelUninstall[]
By default, ExcelUninstall only closes visible instances of Excel if no workbooks remain open. This avoids accidental data

loss. You can force a visible instance of Excel to close, even if workbooks are open, by specifying Visible->True as an
option to ExcelUninstall.

Creating Excel Functions

Defining Functions
Here is how to define a Mathematica function that adds two numbers.
In[1]:= addtwo[x_,y]:=x+Yy

Arguments for the function are specified using pattern _ indicators. The delayed assignment := operator indicates that the
body of the function is evaluated only once the values for the arguments are known.

In[2]:= addtwo[2, 2]
Out2]l= 4
The next example uses afunction defined in a standard package, which you must load first.

In[3]:= If[$VersionNumber >= 6, Needs["ComputationalGeometry™],
Needs["DiscreteMathComputationalGeometry™]]

Thisis an example of afunction that generates a graphic.
In[4]:= triplot[n_] := PlanarGraphPlot[Table[Random[], {n}, {2}]1]

The function triangulates a set of n random coordinates.

16 Working in Mathematica

In[5]:= triplot[10]

Here isaversion of the same function, written in two steps.

In[6]:= triplot[n_]:=
Module[{data},
data = Table[Random[], {n}, {2}1;
PlanarGraphPlot[data]
1

In this definition, alocal variable is defined within the body of the function. The two steps within the body of the function
are separated using a semicolon. The final line of code returns the value of the function.

In[7]:= triplot[10]

- 1

Working in Mathematica 17

Special Considerations

Usage
To help others know how to use your function, you can define a usage message.

In[8]:= triplot::"usage" ="triplot[n] plots a random triangulation of n planar points."

Out[8]= triplot[n] plots a random triangulation of n planar points.

The usage message is used by the Mathematica Function Wizard to automatically generate argument templates for the
function. To be fully compatible with the Function Wizard, you should always use the following convention for your usage

messages.
In[9]:= f::"usage" ="f[x] does one thing. f[list] does another. f[list, x] does more."

out[9]= f[x] does one thing. f[list] does another. f[list, x] does more.

Options
Y ou can also define a set of default options for your functions, if needed.

In[10]:= Options[triplot] = {Frame - False, GridLines -» None}

Out[10]= {Frame - False, GridLines » None}
This clears the previous definition for the function, then definesit with options.
In[11]:= Clear[triplot]

In[12]:= triplot[n_, opts___ Rule]:=
Module[{data, g, rules},
data = Table[Random[], {n}, {2}];
rules = Sequence @@ Join[{opts}, Options[triplot]];
PlanarGraphPlot[data, rules]
1

18 Working in Mathematica

In[13]:= triplot[10, Frame - True, GridLines -» Automatic]

A
\
RN RN

0.2 0.4 0.6 0.8

Errors

When you are developing a function that will be used in Excel, you should consider returning the symbol $Failed if some-
thing goes wrong in your function. Y ou can do this using the Check function.

In[14]:= triplot[n_, opts___ Rule]:=
Check[Module[{data, g, rules},
data = Table[Random([], {n}, {2}1;
rules = Sequence @@ Join[{opts}, Options[triplot]];
PlanarGraphPlot[data, rules]
], $Failed]

The symbol $Failed is converted to a#VALUE! error in Excel that will suppress further dependent calculations.

In[15]:= triplot["hello"]
Table::iterb : Iterator {hello} does not have appropriate bounds. More...

out[15]= $Failed

To be complete, you should also create a catch-all function definition that will handle the case where users provide argu-
ments that do not match the pattern you specified. By default, the function returns unevaluated.

In[16]:= triplot[1, 2, 3]
Out[16]= triplot[1, 2, 3]
Thistrapsthe error.

In[17]:= triplot[__]:=$Failed

In[18]:= triplot[1, 2, 3]

out[18]= $Failed

Working in Mathematica 19

Y ou can also create your own error messages to inform the user about what went wrong.

In[19]:= triplot[___]:=
Module[{},
Messageltriplot::"args"];
$Failed
1

In[20]:= triplot::"args" ="Arguments are incorrect"
Out[20]= Arguments are incorrect
In[21]:= triplot[1, 2, 3]

triplot::args : Arguments are incorrect

out[21]= $Failed

Code Box Deployment

Once you have developed a set of Mathematica functions you would like to use in Excel, you can collect cells that define
the functions in one place to make it easier to transfer the code to Excel.

In[1]:= If[$VersionNumber >= 6, Needs["ComputationalGeometry™],
Needs["DiscreteMathComputationalGeometry™]]

In[2]:= Clear[triplot]
In[3]:= triplot::"usage" ="triplot[n] plots a random triangulation of n points.";
In[4]:= Options]triplot] = {Frame — False, GridLines - None};

In[5]:= triplot[n_, opts___ Rule]:=
Check[Module[{data, g, rules},
data = Table[Random[], {n}, {2}1;
rules = Sequence @@ Join[{opts}, Options[triplot]];
PlanarGraphPlot[data, rules]
], $Failed]

In[6]:= triplot[___]:=
Module[{},
Messageltriplot::"args"];
$Failed
1

In[7]:= triplot::"args" ="Arguments are incorrect";

To deploy this code as an Excel function, you will need to copy the contents of the notebook cells that define the function to
an initialization code box in an Excel workbook.

Hereis how to do this.

20 Working in Mathematica

1. Create an initialization code box in Excel:

@ Click Macros on the Mathematica Toolbar.

@ Click New... and name the macro Initialization. Thisisthe default if no other macros exist in your workbook.

@ Select alocation for the code box and click OK.
2. Copy the code from Mathematica:

@ UseKernel @ Show In/Out Names to temporarily hide input labels.
@ Select the Input cellsto copy. To select noncontiguous cells, hold down the Control key.

@ Press Crtl-C or choose Edit @ Copy.
3. Paste the Mathematica code into the Excel code box:

@ Click and drag inside the code box to select all existing contents.
@ Press Delete to delete the previous contents.

@ Press Ctrl-V or choose Edit @ Paste.

Y ou can now use the Mathematica function you created inside Excel.

E4 - A =EvAL["triplat” B3)

A B C D E F 5

20

1
2
3
4 ExcelGraphic]1]

Notes

= Using the code box approach, you can create workbooks that have no dependencies on other
files.

Working in Mathematica 21

Package Deployment

Mathematica notebooks can automatically generate an associated package file. This provides an easy way for you to export
a set of Mathematica function definitions you would like to use in an Excel workbook.

With thisin mind, on the Excel side, the Mathematicalink add-in checks for a package file with the same name in the same
directory when initializing a workbook. If one is found, the code in the file is considered the initialization code for the
workbook.

Here is how to create a package file from a notebook, then use the contents of the package file as initialization code in a
workbook:

@ Create .nb and .xlIsfiles with the same name in the same directory.
@ Select the cells that contain code that will be used in the workbook.
@ Click Cell @ Cell Properties @ Initialization Cell to specify the selected cells asinitialization cells.

@ Save the notebook. When you do this, you will be prompted to create a package file with the contents of the initialization
cells.

@ Click Create Auto Save Package.

#4 Auto Save Package

The notebook pou azked to zave containg Initialization cells.
If you want to be able to load thiz notebook into the kemel directly using
the Get or Needs functions, vou should click Create Auto Save Package.

This will cause the front end to automatically maintain a package [.m) file in
the zame directory az the notebook. The package will contain all the
inihialization cells from the notebook; it will be updated each time the
notebook s saved.

| LCreate Auto Save Package | [Don't Create Auto Save Package]

You should now have .nb, .m, and .xIs files in the same directory with the same name. In the future, every time you save
changes to the notebook, the package file is automatically updated. In turn, the next time you evaluate in Excel, the new set
of function definitions will be automatically loaded and used.

Notes

= Using the package approach, you can easily develop and update function definitions for a
workbook. However, you must remember to send the package file along with the workbook to
enable others to interact with the workbook.

= During devel opment, be sure to save changes to your Mathematica notebook in order to
update the package file before using it from the Excel side.

22 Working in Mathematica

Creating Excel Macros

Developing Macros

Setting Up a New Notebook

When developing Mathematica code, it is best to separate input and output definitions from the main analysis portion of the
routine. Thisway your analysis code can be easily adapted to obtain inputs and send outputs anywhere.

Here is a sequence of Mathematica commands that performs some analysis.
This section defines inputs.
In[l:= m={{1, 2}, {3. 43}
This section performs your analysis.
In[2l:= m = Inverse[m];
This section displays outputs.

In[3]:= m

outigl= {{-2., 1.}, {1.5, ~0.5}}

To use this code as an Excel macro, you only need to load the ExcelLink package to modify the input and output sections.
Before doing this, open Excel and type in the same inputs into the workbook locations indicated in the following.

This section loads required packages.
In[4]:= Needs["ExcelLink™]

This section defines inputs from Excel.
In[5]:= m = Excel["'B3:C4"];

This section performs your analysis.
In[6]:= m =Inverse[m];

This section returns outputs to Excel.
In[7):= Excel['B3:C4"]=m

In this example, the input and output range is the same. Thisisaway of performing in-place evaluation.

Working in Mathematica 23

Modifying an Existing Notebook
To convert an existing Mathematica notebook to be used as an Excel macro:

@ Locate the cellsin your notebook that define inputs to your analysis.
@ Modify those cellsto use values contained in Excel.
@ Likewise, locate the cellsin the notebook that display outputs of your analysis.

@ Modify those cellsto return results to Excel.

For more information, see Code Box Deployment.

Special Considerations

Status

If your analysis takes a while to complete, you may want to provide some feedback to the user on how the anaysis is
proceeding. Y ou can do this by using the ExcelStatus function.

In[1]:= Needs["ExcelLink™]

In[2]:= ExcelStatus["Processing data..."];

Pausel[3];

ExcelStatus["Analyzing data..."];
Pausel[5];

ExcelStatus["Generating report..."];
Pausel[1];

ExcelStatus]];

This writes status information to the status bar at the bottom left-hand side of the Excel window. In the final line ExcelStatus
is called without arguments in order to return the status bar to its default state.

Notes

= Writing status messages makes the analysis section of your notebook Excel specific. How-
ever, this may be required for longer routines.

= Writing status messages can also be a good way to see which part of your analysisis taking
up the most time.

Dialogs

If you would like to ask the user to select arange or specify a file name during a macro, you can do so using the ExcelDialog
function. The symbol $ExcelDialog gives alist of available dialogs.

24 Working in Mathematica

In[9]:= $ExcelDialogs

out[9]= {Range, Open, Save, Files, Folder}
This displays the "Range" dialog.

In[10]:= ExcelDialog['Range"]

Out[10]= —Range: B3:C4-

Notes

= When running code from Mathematica, you need to activate Excel first to interact with an
Excel diaog.
Notebook Deployment

When developing Excel macros, you do not need to transfer code to a workbook. The Mathematica code can remain stored
in a notebook file. In this case, any time you want to run a macro on a particular Excel workbook, open the notebook that
contains the macro and, with the workbook open in Excel, evaluate the code from the notebook.

Code Box Deployment

To create a stand-alone workbook interface, you can transfer the Mathematica macros you have developed in a notebook to
code boxes in the Excel workbook. Once thisis done you can create buttons for the macros.

To deploy Mathematica code as an Excel macro you will need to copy the the notebook cells that define the macro to a code
box in an Excel workbook.

Here are the notebook cells that contain the code you want to use as a macro.
In[1]:= Needs["ExcelLink™]
In2:= m = Excel["B3:C4"];
In[3l:= m = Inverse[m];
In[4]:= Excel['B3:C4"]1=m
Here is how to transfer the code to Excel.
1. Create a code box for the macro in Excel:
@ Click Macros on the Mathematica Toolbar.

@ Click New... and name the macro whatever you like. Spaces in the macro name are permitted.

@ Select alocation for the code box and click OK.

2. Copy the code from Mathematica:

Working in Mathematica

25

@ UseKernel @ Show In/Out Names to temporarily hide input labels.
@ Select the cellsto copy. To select noncontiguous cells, hold down the Control key.

@ Press Crtl-C or choose Edit @ Copy.
3. Paste the Mathematica code into the Excel code box:

@ Click inside the code box you just created.
@ Click and drag to select all existing contents of the code box.
@ Press Delete to delete the previous contents.

@ Press Ctrl-V or choose Edit @ Paste.

s B L& B L E | E | & | ' |
1]

2 |

3 -2 1

4 15 05 ilable Macros:

2 R e
6 |

1 g 1 Heeds ["Excellink" "] uttan.
El w = Excel["B3:04"] Bew...
10

“1 1” m = Inverse[m] Rename. .,
12

13 Excel ["B3:C4"] = m Source
14 |

15 Delete. ..
16

17

18 | Close
18]

20

21

To create a button for the Mathematica macro:

@ Select the name of the macro from the Available Macros list.
@ Click Button....

@ Select alocation for the button and click OK.

For more information on using macros you create in Excel, see Working with Macros.

Notes

= When running macro code from inside Excel, it is not necessary to load the ExcelLink
package. However, you can till include the line in your macro.

= Using the code box approach, you can create workbooks that have no dependencies on other
files.

26 Working in Mathematica

Package Deployment

Mathematica notebooks can automatically generate an associated package file. This provides an easy way to export a set of
Mathematica commands that can be used as a one-click workbook processing macro.

To create a package file, follow the steps outlined for creating a package file outlined in the Creating Excel Functions
Package Deployment section. The only difference is, in this case, you will save a sequence of macro commands to the
package file instead of a set of function definitions.

You should now have .nb, .m, and .xIs files in the same directory with the same name. In the future, every time you save
changes to the notebook, the package file is automatically updated. In turn, the next time you click Evaluate in Excel, the
new workbook processing macro will be used.

Notes

= |f you would like the kernel to close after workbook processing is complete, include Qui t []
asthelast line of your macro.

Working in Excel 27

Working in Excel

Getting Started

Loading the Add-In

After installing the link, you will see a Mathematica Link for Excel folder in your Start @ All Programs menu. The add-in
in thisfolder isrequired if using the link from the Excel-side or when copying and pasting data between programs.

%;' Mathematica Link Add-In
T'; Mathematica Link Manual

fﬁ Mathematica Link For Excel

If] Microsoft Developer Metwork, 4
Jﬁ Microsoft OFfice Toals +

The Mathematica Link for Excel start menu folder.

If you did not install the addin when you installed the software, click Mathematica Link Add-In to do no now. The addin
will install itself when it isloaded the first time. This may take a moment depending on your anti-virus/ security settings.

If you are prompted to do so, choose to Enable Macros in the security warning dialog. If no dialog appears and nothing
works, you may need to adjust your Excel macro security settings to permit the macros in the add-in to run. Refer to the help
in your version of Excel regarding how to change your macro security settings. Once you have adjusted your security
settings, close Excel and try loading the add-in again.

Once the add-in is loaded, the Mathematica toolbar will appear.

@ In Excel 2007 or later, the Mathematica toolbar can be found under the Add-Ins ribbon tab .

Mathematica v X
L IEEE

The Mathematica Toolbar.

If you would like a Mathematica menu instead, you can click the Options button on the toolbar. All commands in the
Mathematica menu are identical to those on the Mathematica toolbar. The Mathematica menu can be useful if you would
like to use the Alt key to access menu-based commands.

Once you have installed the add-in the first time, you no longer need to use the Start menu shortcut. Instead, you can use
Tools @ Add-ins dialog to load or unload the Mathematica Link add-in. Excel checks the settings in this dialog each time it
starts and automatically loads any checked add-ins.

28 Working in Excel

Add-Ins available:

[Analysis ToolPak J e
[analysis ToolPak - YBA
[Conditional Surm Wizard
[Euro Currency Tools

[Internet Assistant YEA
[Lookup Wizard

MlMathematica Link

| solver sdd-in

Cancel

Browse. .,

s

Aukarmakion. ..

The Excel Add-Ins manager.

@ To access the add-ins manager in Excel 2007 or later, click the Office button / File menu to the upper-left, click Excel
Options, then under Add-Ins, next to the Manage: Excel Add-ins drop down box, click Go....

Entering a Function

Once the MathematicaLink addin is loaded, you are ready to perform Mathematica calculations inside Excel. One way of
doing thisis using the EVAL worksheet function. This worksheet function allows you to call any Mathematica function from
within an Excel formula.

Try entering the simple Mathematica function, Prime, in an empty worksheet cell. Thisis done as shown.

Formula Result

=EVAL("Prine", 100) 541

The value returned is the hundredth prime number.
@ Intermational verisons of Excel may require semi-colon separated formulas such as =EVAL("Prime"; 100)

@ During your first calculation, a Mathematica kernel will be launched as a computation server for Excel. This new process
may appear in your Windows task bar.

Now, try creating an interactive prime number calculator by specifying a cell reference as an argument.

Formula Result

=EVAL("Prinme", Al) #N/ A

Unless you have aready entered avaue in cell Al, the function returns unevaluated and displays an error code. The #N/ A
error code indicates that one or more inputs to the formula are not available.

Type any integer you choose in cell A1, and a prime number will be calculated for you.

Here are some other examples.

Working in Excel 29

Formula Result

=EVAL("Factorial ", 10) 3628800

=EVAL("Det", Al: C3) determinate of matrix in cellsAl: C3
=EVAL(" Expand", " (x+1) ~3") 1 +3*x+3*xA"A2+x"3
=EVAL("Plot", "x*2","{x, 0,5}") Excel Graphi c[1]

@ To display graphics, acopy of the Mathematica front end may be launched in graphics server mode.

Mathematica 5.2 Server

-
€3 Mathematica...

The Mathematica kernel and Mathematica graphics server in the Windows task bar.

Mathematica contains thousands of functions. If you know precisely which Mathematica function you wish to use and the
arguments it takes, you can type it directly into your spreadsheet, as shown.

If you are unsure of the name of a Mathematica function or how to use it, or want to explore the functions Mathematica has
to offer, click Functions on the Mathematica Toolbar. Thiswill launch the Mathematica Function Wizard.

Thefirst step of the wizard is designed to help you find, and learn about, Mathematica functions.

Mathematica Function Browser fg|
Look In: Lok, For: Look, Up:
|L0aded Libraries _:J |Names Caonkaining _ﬂ |F‘rime* Laak Lip

& | Prime[n] gives the nth prime number,
PrimeFactorList Funckion

PrimePi Function | Conkesk: System”

PrimePower() Function

Primed Funckion Options: {+

PrimeQCertificate Funckion

PrimeQertificateCheck Function | Attributes; {Listable, Protected}
PrimeQMessages Symbol

Primes Symbol

7 functions and 2 symbols Found

Preview Close - Back Mext = Enter...

The Mathematica Function Wizard—Step 1.

The next step is designed to help you interactively specify arguments to the function.

30 Working in Excel

Mathematica Function Arguments

X

Function: |F‘rime |F‘rime[n]

KN

Args: 1=F'.1

Mo options available.

Prewview Close < Back Mext = Enter...

The Mathematica Function Wizard—Step 2.

An optional third step is available to select and specify options for functions such as Pl ot that have a defined set of options.

Mathematica Function Options

Available Options:
|PIOI: Mame: |.0.spectRati|:|
O #AspectRatio Goldenfatio™(- « i JGDHenRatigA(-n
O Axes Aukomatic :
Default; |GoldenRatio™(-1
[0 AxesLabel Mone L J RldsRaL G
D esiorigin Autornatic Usage: |AspectRatiois an option for
O Axesstyle Aukanmatic — Grapljlcs anl:ll related_ :
: functions which specifies the
O Background Autamatic ratio of height ta width For a
O cColorCukput Aukormatic plat.
O “Compiled True
O DefaulkCalor Aukomatic
O CDefaultFont $DefaultFont
[CisplayFunction $DisplayFunctiDrﬂ
30 options available, Mo options selected.
Prewview Close ‘ < Back | b Enter...

The Mathematica Function Wizard—Step 3.

Notes

= Unlike Excel, Mathematica uses case-sensitive syntax. Therefore, be sure to capitalize
Mathematica function names like Prime.

= |f you do not include a* character in your name search, the wizard defaults to a non case-sen-
sSitive search for *name*.

Working in Excel 31

= Y ou cannot interact with a Mathematica front end that isin server mode. If you would like to
work in the Mathematica front end, you can launch another standard instance of the front end.

Creating a Macro

To call Mathematica code as an Excel macro, the Mathematica code must be contained in a named code box inside Excel.
Once you have created the named code box, you can then create a button that will call the code in the box. The Mathematica

Macros manager can help you do this.

To create amacro code box:

@ Click Macros on the Mathematica Toolbar.

@ Click New... and specify aname. In this case, name the macro Example.
@ Select where to place the code box.

@ Click OK.

The Example macro is added to the list Available Macros and a code box for the Example macro is inserted at the location
you specified.

| A s - | 5 | E | E | w | H
1
2 Mathematica Macros
3| 1 2
4 3 4 Available Macros:
.5 | Run
6 —1
7 | Buktkan,
19D t*** Example ***j mew.“
11 . {* This template i= custao Rename...
12

| (* Defi I L= *)
-13 elflne nput.=s EDL“,EE
14 1 m = Excel["B3:-C4"]
19| Celete. ..
16 ! (* Perform Analysis *)
17
18 | m = Inwverse[m] Close
19
2|:|' {* Return Besults *)
21 Excel["B3:C4"] =
22 HCe M mn
2|
24 |
25

Running Mathematica code as an Excel macro.

The initial contents of the code box are specified by a customizable template. In this case, you can |eave the default code as
is. Before running the code, however, you should type valuesinto the cells referenced in the macro.

To run amacro:

32

Working in Excel

@ Select the macro from the available macros list.

@ Click Run.
To make it more convenient to run the macro, you can create a button for the macro.
To create a macro button:

@ Select the macro from the available macros list.
@ Click Button....
@ Select where to place the button.

@ Click OK.

A | B | o | o | E | F

Example

et A= Ry B N R SR
—
m ra
o
M —

Creating a button for a Mathematica macro.

Notes

= The default macro name, Initialization, is reserved for code you want to run automeatically
every time you connect to akernel or click Evaluate.

= To move a button or acode box, hold down the Ctrl key before selecting it.

= Code boxes can be located anywhere in aworkbook. They do not need to be on the same
sheet as the button calling the code.

Evaluating an Expression

Y ou can use the Mathematica Clipboard window to evaluate Mathematica expressions the same way you would in a Mathe-
matica notebook. This may be useful, for example, to quickly check the state of a variable or experiment with a function you

are using for the first time.
To evaluate an expression in the Mathematica Clipboard window:

@ Click Clipboard on the Mathematica Toolbar.
@ Type the expression into the Mathematica Clipboard window.

@ Click Evaluate.

Working in Excel 33

Mathematica Clipboard [g|
fVWersion
Copy... | Paste... | Put ‘ Gek ‘ Evaluate | Close |

Typing an expression into the Mathematica Clipboard window.

Once the Mathematica kernel has evaluated the expression, the answer replaces the contents of the Clipboard window.

Mathematica Clipboard [§|

"E_Z for Microsoft Windows {(June 20, Z00E5)"

Close

Copy... | Paste... | Puk ‘ Get ‘

Viewing evaluation results in the Mathematica Clipboard window.

@ To restore the original input expression, click Restore.

Notes

m To paste evaluation results to alocation in Excdl, click Paste. Y ou will be prompted to
specify where to paste the results.

= To paste evaluation results to another program, click Put. This puts the evaluation results
onto the global Clipboard. Y ou can then paste them into another program.

Unloading the Add-In

If you are finished using the link, you can uncheck Mathematica Link in the Add-Ins manager and click OK. This unloads
the add-in from Excel.

34 Working in Excel

Add-Ins available:

[Analysis ToolPak J e
[Analysis ToolPak - YEA
[Conditional Surm Wizard el
[Euro Currency Tools
[Internet Assistant YEA
[Lookup Wizard

Browse. .,

IMathematica Link,
| Solver sdd-in

s

Aukarmakion. ..

Unloading the MathematicaLink add-in.

When you unload the link, you will be prompted to delete your personal settings.

Click No to preserve your settings until the next time you use the link. Click Yes to restore default settings the next time you
use the link.

Notes

= |f you do not uncheck Mathematica Link in the Add-Ins manager, the link is automatically
loaded the next time you start Excel.

General Principles

Non-modal Dialogs
All MathematicalLink dialogs are non-modal. Y ou can leave dialogs open and still work in Excel.
There are two ways of closing alink dialog:

@ Click Close or pressthe Esc key. The dialog remembersits current location and state the next time it is displayed.

@ Click the X in the upper right-hand corner. The dialog returns to a default location and state the next time it is displayed.

Notes

= Occasionally, changes you make in Excel may not be reflected in the contents of an open
diaog. If this happens, redisplay the dialog to refresh its contents.

The Context Menu

Mathematicalink commands that operate on the current selection are available from a Mathematica Context Menu. To
display this context menu, right-click arange when Mathematica contexts are enabled.

Working in Excel 35

|

Expression

Bz Copy

I:E"' Paske
Clear

£ Eunction..,
Array
Comment
Recalculate

The Mathematica Context Menu.

To enable or disable Mathematica contexts, click Contexts on the Mathematica Toolbar.

Notes

= All commands on the Mathematica Context Menu also have a keyboard shortcut. See Key-
board Shortcuts for alisting.

Expression Cells

If the Number Format of an Excel cell is set to Text, the contents of the cell are considered to be a Mathematica expres-
sion when transferring them via the clipboard or in a macro.

For more information, see Strings in the Excel Reference guide.

Notes

= The number format of arange can also be changed using Excel’ s built-in Format @ Cells @
Number tab.

= Cells should be formatted as Text before entering an expression. To convert existing contents
to Text, you can re-enter them manually or use the provided Expression command from the
Mathematica Context menu

m Expressions such as 1/2 or -x can only be entered in cells formatted as Text. Otherwise, Excel
will attempt to interpret them as something else.

= When working with expression cells, al cellsin the range should be formatted as Text.
Partial expression ranges are not currently supported.

= From Mathematica, you can use the ExcelFormat function to apply or unapply Text format
to arange.

36 Working in Excel

Data Cells

If the Number Format of an Excel cell isanything other than Text, the cell is considered a data cell.

When transferring the contents of data cells from Excel to Mathematica:

@ Dataistransferred as it is natively stored in Excel. This means, for example, all numbers will be returned as floating point
doubles. This includes dates which are numbers with special formatting properties.

When transferring Mathematica expression to Excel data cells:

@ Non-native expressions are converted to an equivalent Excel data type whenever possible. Expressions that do not have
any possible Excel-equivalent are converted to InputForm strings.

See the Data Types Overview in the Excel Reference guide for more details.

Notes

= You can use the ExcelDate function and ExcelForm functions to work with date values once
you get them into Mathematica.

m Cell referencesin Excel-based formulas such as=EVAL(A1,A2,A3) are an exception to this
rule. In this case, you must wrap formula arguments with the provided DATA function to
treat them as data cells, =EVAL (" StringJoin”, DATA(A2), DATA(A3)), for example.

Working with Functions

The Link Functions

There are five worksheet functions provided by the MathematicaLink add-in.

Function Use

EVAL perform Mathematica eval uations

EXPR build Mathematica expressions

DATA specify an argument as native Excel data

RULE build a Mathematica rule

CALC force afunction to respond to the Excel calculate command (F9)

The Link functions.

Together, these functions can be used to build up expressions and perform evaluations in Mathematica in very flexible ways.
For more detailed information on each worksheet functions, see Worksheet Functions.

Working in Excel 37

Using the EVAL worksheet function, you can call any function defined in Mathematica. This immediately extends the
number of functions available inside Excel from afew hundred to several thousand.

Excel syntax Mathematica syntax

=EVAL("f","argl", "arg2", ..) flargl,arg2,...]

The EVAL function.

Example Result
=EVAL("Si nplify", "x"2+2x+1") (1 +x)"2
=EVAL(" Randont, "I nteger", "{1, 6} aninteger between 1 and 6
")
EVAL examples.

As shown, Mathematica syntax must be wrapped in quotes when directly typed into an Excel formula. If this is not done,
Excd’s formula parser will try to interpret these as Excel syntax. To avoid having to do this, you can create references to
argumentsin Excel cells. Thisis discussed in more detail in Specifying Arguments.

In its single argument form, the EVAL function can also be used to evaluate Mathematica expressions such as symbols or
operator forms of expressions.

Excel syntax Mathematica syntax

=EVAL(" expressi on") expression

The single argument form of EVAL.

Example Result
=EVAL(" $Ver si on") the version of the kernel you are running
=EVAL("7! + 5!") 5160

EVAL single argument examples.

Specifying Function Heads

When specifying a Mathematica function, the function does not necessarily have to be a named Mathematica function. The
function can aso be specified as a nameless pure function. Using pure functions, you can use multiple functions to create a
new function on the fly.

The syntax of Mathematica pure functionsis as follows:

38 Working in Excel

= Slotsfor individual arguments are specified as#1, #2,

= All arguments can collectively be inserted at one point using ##.

Here, a pure function with two arguments is created in a step-by-step way.

Method Notes

=EVAL(" Sunf 1/ x"3, {x, 10}1") this sumsthe first ten termsin the series
=EVAL("Sunf 1/ x*3, {x, #1}]","10") number of termsis now specified as a pure function argument

=EVAL("Sunf 1/ x"#2, {x, #1}]", " 10" exponent of x isnow specified as a second pure function argument
1 " 3")

Creating a pure function.

Note that, as shown, arguments do not have to appear in sequential order inside the function. The index specifies which
argument goes where.

Once values that may be edited have been specified as arguments, a reference to the cells containing the values can be made.
Thisis discussed in the next section.

Notes

m |f you are familiar with pure functions, you will notice the pure function indicator (&) is not
used here. There is no need because, in this context, it is clear that if pound signs are present,
apure function is being specified.

= For more information on creating and using pure functions refer to The Mathematica Book.

Specifying Arguments

While arguments can be typed directly into aformula, it is generally more convenient to specify arguments as the contents of
acell or arange of cells. Editing values contained in cells is much easier than editing values embedded in aformula. And, if
entered in a cell, Mathematica syntax does not need to be wrapped in quotes.

Method Notes

=EVAL("Randoni I nteger, {1, 6}]") function and its arguments entered as a single expression

=EVAL("Randont, "I nteger", "{1, 6} function arguments passed individually

")
=EVAL(" Randont, C2,"{1, 6}") symbol | nt eger now provided by cell C2
=EVAL(" Randoni', C2, D2: E2) list{1, 6} now provided by range D2: E2

Specifying range arguments.

Working in Excel 39

Using the last form of the example, you can easily change the upper and lower bound of the random number by changing
cells D2 and E2. Also, by typing Real in cell C2 you can change the type of random number returned.

A single column or single row of cellsis interpreted as a one-dimensional Mathematica list; if a range has multiple rows and
multiple columns, it isreturned asa 2D list of lists.

Specifying String Arguments

To specify a string in Mathematica, you can wrap a text argument with the DATA function. The following methods return a
list of Mathematica functions that end in Sol ve.

Method Notes
=EVAL("Print", DATA("Hel | 0")) evaluates Print["Hello"]
=EVAL("Print", DATA(AL)) string now provided in cell A1

Specifying string arguments.

Specifying Numeric Data

Mathematica evaluations are performed at the precision of the inputs provided. If you would like the kernel to perform
evaluations numerically at floating-point precision, wrap your inputs with the DATA function.

Method Notes

=EVAL("Ei genval ues", Al: C3) performs evaluation using symbolic or numeric methods depend-
ing on the inputs provided in A1: C3

=EVAL("Ei genval ues", DATA(AL: C3) aways performs evaluation using numeric methods
)

Specifying numeric arguments.

Specifying Subexpressions

Using the EXPR function you can build up multi-function expressions for a single evaluation.

Method Notes

=EVAL("f", EXPR("g", 1), EXPR("g", 2)) evaluates f[g[1],9[2]]

Specifying subexpressions.

40 Working in Excel

Specifying Options

Mathematica functions may have defined options associated with them. To specify an optional argument you can use the
RUL E worksheet function.

Method Notes

=EVAL("ListPlot", Al: B100, RULE(" Pl ot Joi ned" specifies an option using the value in cell D2
, D2))

Specifying an option.

Generating Graphics

The EVAL worksheet functions can also be used to return Mathematica graphics.

Example Result
=EVAL("ListPlot","Tabl e[Randon{], {50}]") ExcelGraphic[1]
=EVAL(" Graphi cs", "Pol ygon[{{0, 0},{9, 3},{3,5}}] ExcelGraphic[2]
")

=EVAL(" Pl ot 3D", " Si n[x+Cos[x Y] ExcelGraphic[3]

y1", "{x,0,4}","{y, 0, 4}")

EVAL graphics examples.

Mathematica graphics are displayed as picture objects in Excel. By default these pictures are rendered as Windows meta-
files. This format scales reasonably well since it is a vector format. Font sizes, however, may become a bit distorted when a
graphic is resized. If this happens, you can force the graphic to be re-rendered at its new size by recalculating its formula.
Re-rendering the graphic will reapply any font size you have specified as a graphics option.

Notes

m |t isthe name of a graphic that associates it with a particular Excel cell. For example, if a
formulain cell E10 returns graphics, the picture named " Graphic E10" will be updated on the
same sheet. If no picture named "Graphic E10" exists on that sheet, a new graphic will be
created. Thisisthe extent to which the pictureis“linked.” When cutting and pasting a
Mathematica-generated picture to another application or worksheet, this name-based “link” is
not maintained. The copied graphic issimply a static picture.

= By modifying the name of a picture, you can change which cell updates that graphic. To
modify the name of a picture, you can select the picture and click in the Name box on the
left-hand side of the formulabar.

Working in Excel 41

Generating Messages

If amessage is generated during a kernel evaluation, it is sent to the Mathematica messages window. Here are some evalua-
tionsthat generate kernel messages.

Example Result
=EVAL(" 7+") $Failed or #VALUE!
=EVAL("1/0") ComplexInfinity

=EVAL(" I nverse","{{1,2},{2,4}}" Inverse[{{1,2},{2,4}}]
)

EVAL single argument examples.

When a Mathematica evaluation returns $Failed, an Excel #VALUE! is returned. This suppresses further evaluations that
depend on this result. However, often when messages are generated, the original calculation request may be returned
unevaluated as shown in the last example.

Notes

m Optionsthat control how the link responds to a kernel message can be specified under the
Mathematica Options @ Message tab.
Using Array Formulas

To return lists of values to multiple cells, Mathematica functions can be entered as an array formula. Some functions in
Mathematica naturally return lists, others can be mapped over lists. Here are some examples.

Example Result

=EVAL("Range", "10") {1,2,3,4,5,6,7,8,9, 10}

=EVAL("Map", "Factorial", Al: A10) alist containing the factorial of each number in Al: A10

Formulas that can be entered as an array.
To enter aformulaas an array:
m Select al cellsthat will bein the array.

m Enter the formula.

m Press Ctrl-Shift-Enter.

Once entered, array formulas appear surrounded by { } in the formula bar. All cellsin an array formula range share asingle
formula, each element of the array returned to a separate cell.

42 Working in Excel

The MathematicaLink add-in provides two tools to help make using array formulas easier:

= The Mathematica Function Wizard can help you automatically enter and edit array formulas.

= The Array command on the Mathematica Context Menu provides a way to easily toggle between single-cell and array
formulas.

B - B {=EWAL"Map","Factorial" A1:A100)
A B . [D E F
i] I
2 2] Expression
E 3 fB2 Copy
4 4 2
5 5 120 Paste
(5] o] 720 Clear
7 7 a040 .
= 5 40371 F Function...
g 9 362880 v | aray
1? 10 3528300 o
12 Recalculate
13

The Array toggle command on the Mathematica Context Menu.

Notes

= |f you manually edit an array formula but forget to select all cellsin the array beforehand, an
error message will appear when you try to re-enter the formula. If this happens, press Esc to
cancel any changes you made. Then, select all cellsin the array before making the changes

again.

= Array formulas can significantly reduce calculation times if the same operation is being
performed on alarge number of cells. If you have filled a range with the same formula by
dragging the formula across the range, it may be much faster to perform these calculations
using an array formula. There is a transaction time associated with each call to Mathematica.
If asingle array formulais used to return values for 100 cells, recalculation could be up to
100 times faster than calling 100 individual formulas.

Controlling Recalculation

Forcing Recalculation

Excel typically recalculates formulas only when the inputs to a formula have been changed. However, when you change the
definition of a function or the value of a symbol in Mathematica, there is no way for Excel to automatically know about this
change. In this case, you may want to force formulas to recalcul ate.

To force repeated recal culation of a specific formula:

= Wrap the formula with the CALC function. Y ou can then trigger recalculation of that formula by pressing F9.

Working in Excel 43

Example Description

=CALC(EVAL(" Randon{]")) gives anew random number each time F9 is pressed

Marking a formula for repeated calcuation using the CALC function.

To force one-time recal cul ation of the current selection:
m Press Ctrl-Shift-= or choose Recalculate from the Mathematica Context Menu.
To force recalculation of all link functions in the current workbook:

= Click the Evaluate button. Thisis an option specified under Mathematica Options @ Workbook.

Disabling Recalculation

By temporarily storing formulas as comments, you can disable recalculation on a formula-by-formula basis. Y ou may want
to do thisto preserve currently calculated values or to suppress unwanted recal culation.

To comment link formulas in the current selection:

m Press Ctrl-Shift-' or check Comment from the Mathematica Context Menu.

To uncomment link formulas in the current selection:

m Press Ctrl-Shift-' again or uncheck Comment on the Mathematica Context Menu.

Commenting a formula essentially freezes the formula in its currently calculated state. Commenting formulas for an entire
workbook is discussed as away of sharing aworkbook with othersin Sharing Workbooks.

Notes

= To select an entire sheet, click the upper left-hand corner of the header row, between Aand 1.
Y ou can then apply selection commands to the sheet.

= The CALC function can be used to generate random numbers for Excel-based simulations.

Working with Macros

Macro Types

There are three types of Mathematica macros that you can create.

44 Working in Excel

Macro Type Description

Definitions Macro defines Mathematica functions used in a workbook

Processing Macro processes a workbook when the Evaluate button is clicked

Task Macro performs atask when an associated button on a spreadsheet is clicked

Types of Mathematica macros.

The difference between the first two is that a workbook definitions macro does not perform actions on a workbook, a
workbook processing macro does.

All Mathematica macros can be deployed by creating a code box to store the Mathematica code inside a workbook. For
workbook-level macros, however, you can also store the Mathematica code in a packagefile.

Macro Type Deployment

Definitions Macro initialization code box or workbook package file
Processing Macro initialization code box or workbook package file
Task Macro macro code box

Deploying Mathematica macros.

A workbook package file should be in the same directory and have the same name as a workbook with the .m extension
replacing .xIs.

Working with Code Boxes

Code boxes are simply text boxes that have been formatted for writing Mathematica code and given a special name. They
are, in every other way, ordinary text boxes.

There are two ways of selecting a text box, selecting the box itself or selecting text inside the box. The selection border of
the text box will be different in each case. To do anything other than edit the text inside the box you will need to make sure
the box itself is selected. Once the box itself is selected, you can, for example, move it or resize it, copy and paste it to
another location, or deleteit.

When typing in atext box, be aware that Excel goes into a different mode. Most toolbar buttons, for example, are no longer
available.

Working in Excel

45

File Edit Wiew Insert Format Tools Data window

v &
Courier Mews * & - B I U E =
Flot Code = f
A, B C D E
1] o Ze"
2 .
3 data = Excel[Selection]
4 55 o = ListPlot[data, PlotfStyle-rBlue]
5
|5 Excel["My Plot"] = o :I:
v
8| & Ga
9
1M

Excel while in edit mode.

As with many toolbar buttons, Mathematica macros do not work while Excel isin this mode. To get out of this edit mode,
press the Esc key or click out of the box.

Working with Buttons

By default, the caption of the button will be the same as the macro name. Y ou can change this. Y ou can aso change the size

of the button or moveit. To do this, you will need to select the button.

To select a butt

on:

@ Hold down the Ctrl key then click the button.

Once you have a button selected, you can work with it as you would any other shape. You can, for example, move it or

resizeit, change its caption, copy and paste it to another location, or deleteit.

Right-clicking a button will also select it and work with it in various ways.

Cuk

Copry

ST

Paste

Crder

Edit Text

Grouping

Assign Macra...

% Farmat Contral...

Right-clicking a macro button.

46 Working in Excel

Developing on the Clipboard

The Mathematica Clipboard window can evaluate multiple lines of code at atime. When multiple lines are evaluated on the
Clipboard, only the result from the last line is returned. Y ou can use this behavior to progressively build up code that can be
used as amacro by alternatively clicking Evaluate and Restore.

Mathematica Clipboard @

data = Excel[Selection]
g = ListPlotldata, PlotiStyle->Blue]
Excel ["My Plot"] = g
Copy... | Paste... | Put ‘ Getk ‘ Evaluate | Close |

Developing code on the Clipboard.

When used this way, the Mathematica Clipboard window becomes a floating macro code box. The Clipboard Evaluate
button becomes a Run button for the macro during development. When you are done developing, you can transfer the code
to a code box.

To transfer code from the Mathematica Clipboard to a code box:

@ Click Put on the Mathematica Clipboard.
@ Select where to put the code in the code box.
@ Press Ctrl-V or choose Edit @ Paste.

Developing in Mathematica

If you are familiar with the Mathematica notebook front end, you can develop code in that environment, then transfer it to a
code box in Excel.

For more information on devel oping macros in Mathematica, see Creating Macros.

Protecting Your Code

Once you have developed a macro, you may want to protect your code. This can be done by hiding or protecting the sheet
containing the code.

To hide asheet in Excel:
@ Click Format @ Sheet @ Hide.

Working in Excel 47

To protect a sheet in Excel:

@ Click Tools @ Protection @ Protect Sheet.

See Excel help for more information on these commands.

Link Management

Opening a Link

The first time you request a Mathematica evaluation in Excel, a link to a Mathematica kernel will open automatically. If
you'd like to force alink to open, even if there is nothing to evaluate, you can:

@ Click the Evaluate icon on the Mathematica Toolbar.

Y ou can manually specify akernel to connect to using the Mathematica Options @ Kernel tab. Settings you specify will be
used automatically the next time you connect.

Notes

= |f you do not have a typica Mathematica installation, you may be required to specify akernel
the first time you use the link.

Interrupting Evaluations

To interrupt a Mathematica evaluation:

@ Click Evaluate on the Mathematica Toolbar.

Although most Mathematica evaluations can be interrupted, some cannot. If the kernel does not respond to an abort request
after some time, you can choose to close the kernel to end the evaluation.

To close akernel during an evaluation and return control to Excel:

@ Hold down Shift and click Evaluate on the Mathematica Toolbar, or

@ Right-click the Mathematica kernel in the task bar and choose Close.

Notes

m Pressing the Esc key does not interrupt Mathematica evaluations. The Esc key is used by
Excel to send interruptsto local Visual Basic code.

= Aborted formulas return #NULL! thereby suppressing evaluation of dependent formulas.

48 Working in Excel

Closing a Link

To close alink with a Mathematica kernel, you can:
@ Hold down the Shift key while clicking Evaluate.
@ Click Close under Mathematica Options @ Kernel.

@ Evaluate Quit[] in the Clipboard window, a function, or amacro.

Notes

= The kernel is automatically closed whenever Excel is closed or the Mathematicalink add-in
is uninstalled.

Sharing Workbooks

Unlinking a Workbook

Before sharing a workbook containing Mathematica formulas or macros, you may first want to unlink the workbook.
Unlinking a workbook will alow others to take a look at the results in the workbook without launching a kernel, encounter-
ing pathnames from your hard drive, or inadvertantly replacing cell values with #NAME? errors.

To unlink aworkbook:

@ Click Unlink on the Mathematica Options @ Workbook tab.

Mathematica Options El

Interface l Kernel] Message Wiorkbook. l

Evaluation

v Reevaluate workbook initialization code

[+ Recalculate workbook Formulas

Sharing

Unlink. .. Relink. ..

Apply [o]4 Cancel

Unlinking a workbook.

Working in Excel 49

When unlinked, formulas are stored as cell comments, and macro buttons display a “macro cannot be found” error when
clicked.

Once aworkbook is unlinked, it can easily be viewed without problems on other machines, even machines where Mathemati-
caLink is not installed. Those who do have the link will have the option of relinking the workbook and interacting with it.

Notes

= |n Excel, cell comments are typically indicated by a small red triangle in the upper-right
corner of acell. Thisisan option that can be specified under Tools @ Options @ View. To
view acomment, place your cursor over the cell.

Relinking a Workbook

When opening an unlinked workbook, link users are automatically prompted to relink formulas in the workbook.

Mathematica Link

9

"-'f) Relink Mathematica formulas in Example, xls?

Yes Mo

@ Click Yes to relink all formulas contained in the workbook.

@ Click No to leave the workbook asis. You can relink formulas later, at any time, by clicking Relink on the Mathematica
Options @ Workbook tab.

Notes

= Relinking formulas recal culates all Mathematica formulas in the workbook, overwriting the
existing set of results.

m |f aworkbook contains only Mathematica macros, the relink prompt will not appear. Macro
buttons are relinked without prompting since this has no other impact on the workbook.

Fixing Broken Links

If a workbook was not unlinked prior to opening it on another machine, broken path-based formula links can be fixed
automatically by clicking Relink under Mathematica Options @ Workbook.

Thisis possible, of course, only if the Mathematicalink add-in is available on that machine.

Notes

50

Working in Excel

m Fixing broken links recalcul ates all Mathematica formulas in the workbook, overwriting the
existing set of resullts.

Using the Clipboard 51

Using the Clipboard

Loading the Add-In

Before you can transfer data between Mathematica notebooks and Excel workbooks via the clipboard, you first need to load
the Mathematica Link add-in in Excel. To do this, see Getting Started in the Working in Excel section.

Once installed, the Mathematica Link add-in adds and special copy and paste commands to Excel. These commands convert
Excel datato and from Mathematica lists.

Copying Data from Excel

To copy the contents of an Excel range to a Mathematica notebook:

@ In Excel, select the range you want to copy.

@ Press Ctrl-Shift-C or right-click and choose Copy if Mathematica Contexts are enabled. This will copy the contents of the
range onto the Clipboard as a Mathematica list.

@ Switch to your Mathematica notebook and place the cursor where you would like to insert the list.

@ Press Ctrl-V or choose Paste from the Edit menu.

Notes

= |f the contents of the range were not converted into a Mathematica list, verify Mathematica
keyboard shortcuts are enabled in Excel. Y ou can do this under Mathematica Options @
Interface.

= By default, text cells are copied as Mathematica strings. Only cells formatted as Text are
considered to contain Mathematica expressions. See Strings. If needed, you can convert
strings to expressions using ToExpression[data].

= Empty cells are copied as the symbol Empty. If needed, you can convert these to a desired
default value, such as 0 or ", using ReplaceAll[data, Empty->val].

Pasting Data to Excel

To paste the contents of a Mathematica list to an Excel range:

52 Using the Clipboard

@ In a Mathematica notebook, select the list you wish to copy.
@ Press Ctrl-C or choose Copy from the Edit menu.

@ Switch to Microsoft Excel and select where to insert the contents of the list. If asingle cell is selected, data will be pasted
down and to theright of that cell.

@ Press Ctrl-Shift-V or right-click and choose Paste if Mathematica Contexts are enabled.

Notes

= |f nothing was pasted, verify Mathematica keyboard shortcuts are enabled in Excel. You can
do this under Mathematica Options @ Interface.

= For best results, convert your datato Mathematica | nput For mbefore pasting the data into
Excel. You can do thisin Mathematica or using the Mathematica Clipboard window in
Excel. See Fixing Problematic Data.

= Be sure the opening and closing brackets of the Mathematica list are selected. Excel will not
recognize the Clipboard contents as a Mathematica list unless these brackets are present.

= A convenient way to select an entire Mathematica list isto place the cursor at the beginning
of thelist and triple-click.

Fixing Problematic Data

If you run into problems pasting data into Excel, it is likely the copied data is not in the proper form. The Paste command
requires data to be in Mathematica InputForm. Depending on how you copied the data and from what kind of notebook cell
you copied it, you may end up with datain aformat other than InputForm.

The Paste command can fix certain common problems with the data automatically, however in some cases you may still
need to convert to InputForm on your own.

Y ou can do thistwo ways:

@ In Mathematica before copying, use Cell @ Convert @ InputForm.

@ In Excel, after copying, use the Evaluate button in the Mathematica Clipboard window.
If you do not want to modify your source notebook, the second approach is the most convenient.
Here is an example of some data to paste.

In[1]:= data = Table[Random[] 10" -8, {10}]

out[l]= {6.92556x107°, 5.23638x107°, 4.21124x10°, 4.61886x 10°, 9.65829x 10 *°,
5.8988x 107°, 4.26737x107%, 1.64441x 10, 1.50418x 10"°, 7.90577x 10"°)

To view this data in the Mathematica Clipboard window, copy the output then, in Excel, open the Mathematica Clipboard
window and click Get.

Using the Clipboard

53

Mathematica Clipboard

3

WIW {6 925561600569 615 * -9
3, 3
4_ 61885561151 6593 *~-9 9 _gEREEYS68391891*~-10,
4 ZETFITIBEEIETEEE " *"-9, 1_64441386Z20930233"*~-9
o908 7EEYRYEL1IVET I E -9)

5._Z36380718350266" "-9

Copy.., | Paste. ., | Puk ‘ Get ‘ Evaluate |

4_Z11237336171509" *~—

L.8937026 30202 *~-0,
1.E50417378437E5533" *~=0

!
it

Close |

The Mathematica Clipboard window before clicking Evaluate.

Y ou can see additional formatting characters are present in the data. In this case, the fixes are minor, so pasting directly into
Exce does, in fact, still work. However, you can also convert the contents of the Clipboard to InputForm by clicking

Evaluate.

Mathematica Clipboard

3

{6 9ZLE61600569516%"-9
4_E18855611516633*~-9
4. 2E7372EEE32T78EEF -0
F.O0E7EE7I7E117e7 -0

L_EZ36380718950Z66*"-9,
Q_ELBEET7EE391891*~-10,
1.6444132388E0320223* -3

4 F11Z37336171509*~-9,
L. 8987986530223 * -0
1.E04173784975033*-9

Copy.., | Paste. ., | Puk Get ‘ Restore |

Close |

The Mathematica Clipboard window after clicking Evaluate.

Once the data has been standardized to InputForm, you can continue to paste
mand or the Paste button on the Clipboard window.

it into Excel using the standard Paste com-

Notes

= An alternative to copying and pasting is to assign and retrieve Excel data programmatically

from Mathematica. This can be significantly faster if you are dealing wit
more information, see Getting Started.

h large data sets. For

54 Mathematica Reference

Mathematica Reference

Function Index

Excel Function

Excel

m Excel [id] identifiesalocation to read and write from in Excel.
m Excel [id] readsthe contentsof id.
m Excel [id] =expr writesexpr toid.

m Excel [id] =. clearsthe contents of id.

= Thelocation identified by id can be arange, shape, or sheet.

= Theid can be aname, Al-style address, All, Selection, or an Excel object reference.

= Assigning graphics, typeset equations, or formatted output to alocation displays a graphic.
m Excel [id] isequivaent to ExcelRead[id].

m Excel[id] = expr is equivaent to ExcelWrite[id, expr].

m Excel[id] =. isequivaent to ExcelClear]id].

m ExcelRange, ExcelShape, or ExcelSheet can be used to create an Excel object reference.

m Excel object references can be used to provide a specific context for id or to specify adiffer-
ent type of id.

m Examples. Excel [" Al: C10"], Excel [" Sheet 1"], and Excel [Excel Sheet[1]].

m See dlso: ExcelRead, ExcelWrite, ExcelClear.

Examples
In[1]:= <<ExcelLink®
In[2]:= Excel["A1:C3"] = IdentityMatrix[3]

In[3]:= Excel["A1:C3"]

ouigj= {{1.,0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

Mathematica Reference

55

In[4]:=
In[5]:=
In[6]:=
In[7]:=
In[8]:=

out[8]=

In[9]:=

Excel["A1:C3"] =.

data = Table[Random][], {10000}, {10}];
Excel["Sheetl"] = data

data = Excel["Sheet1"];
Dimensions[data]

{10000, 10}

Excel["Sheetl"] =.

ExcelActivate Function

Excel Acti vat e

m Excel Act i vat e[book] makes book the active book.

m Excel Act i vat e[sheet] makes sheet the active sheet.

m See also: ExcelBook, ExcelSheet, ExcelContext, ExcelSelect.

Examples

In[1]:= <<ExcellLink®

In[2]:= ExcelActivate[ExcelSheet["Book1","Sheet1"]]
In[3]:= ExcelContext[]

Out[3]= {Bookl, Sheetl}

In[4]:= ExcelActivate["Sheet3"]

In[5]:= ExcelContext[]

Oout[5]= {Book1, Sheet3}

In[6]:= ExcelActivate["Sheetl"]

In[7]:= ExcelContext[]

Oout[7]=

{Book1, Sheetl}

56

Mathematica Reference

ExcelAddress Function

Excel Addr ess

m Excel Addr ess| range] returnsthe Al-style address of the specified range.

m See also: ExcelRange, ExcelPosition, ExcelSize.

Examples
In[1]:= <<ExcelLink®

In2]:= ExcelAddress[{{1, 1}, {10, 3}}]1

out2]= A1:C10

ExcelBook Function

Excel Book

m Excel Book| id] represents aworkbook identified by id.

= Theid can be one of the following:

Active currently active workbook

"Book1" or "Report.xIs" the name of the workbook
"C:\\Reports\\Report.xlIs" the full path of the workbook
lor-1 apositive or negative position index

= Thefirst workbook opened has position 1. The last workbook opened has position -1.

m Once aworkbook is saved, the .xIs suffix is required to identify the workbook by name or
path.

m See also: ExcelBooks, ExcelDirectory, ExcelName, ExcelCheck, ExcelObject.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelBooksl[]

Out[2]= {-Book: Bookl-}

Mathematica Reference

57

In[3]:=
out[3]=
In[4]:=
out[4]=
In[5]:=
out[s]=
In[6]:=
out[6]=
In[7]:=
out[7]=
In[8]:=
In[9]:=
out[9]=
In[10]:=

out[10]=

ExcelName[ExcelBook[Active]]

Book1

ExcelNew[]

—Book: Book2—

ExcelBooks]]

{-Book: Bookl—, —Book: Book2-}

ExcelName[ExcelBook[1]]

Book1

ExcelName[ExcelBook][-1]]
Book?2

ExcelClose[]
ExcelBooks]]

{-Book: Book1-}

ExcelCheck[ExcelBook[2]]

False

ExcelBooks Function

Excel Books

m Excel Books[] givesalist of workbooks currently openin Excel.

m See also: ExcelBook, ExcelNew, ExcelOpen, ExcelClose.

Examples

In[1]:= <<ExcellLink®

In[2]:=
Out[2]=
In[3]:=

Out[3]=

ExcelBooks[]

{-Book: Book1-}

ExcelNew[]

—Book: Book2—

58 Mathematica Reference

In[4]:= ExcelBooksl[]

Out[4]= {-Book: Bookl-, —Book: Book2-}

In[5]:= ExcelClose[]

ExcelCalculate Function

Excel Cal cul ate

m Excel Cal cul at e[] causesall formula-based calculations in Excel to update.

= Thisfunction can be useful if Excel has been set to manual calculation mode or if volatile
functions, such as random number generators, are being used.

m See dlso: ExcelBook, ExcelRefresh.

Examples
In[1]:= <<ExcelLink®
In[2]:= ExcelWrite["Al", "=RAND()"]

In[3]:= ExcelRead["A1"]

out3l= 0.0145436

In[4]:= ExcelCalculate[]
In[5]:= ExcelRead["Al"]

out5]= 0.0438649

In[6]:= ExcelClear["Al1"]

ExcelCall Function

Excel Cal |

m Excel Cal | isaninternal function called by all functions that need to communicate with Excel.

m See dlso: Excellnstall, ExcelUninstall, $ExcelLink.

Mathematica Reference

59

ExcelCheck Function

Excel Check

m Excel Check][object] checksif object isvalid.
m Excel Check[object, "format"] checksif object has the specified format.

m Excel Check awaysreturns Tr ue or Fal se.
m |f object is a shape, the format can be "Image", "Text", or "Other".

m |f object is a sheet, the format can be "Work" or "Chart".

m |f object isarange, the format can be "General”, "Text", anumber format, or "Mixed".

= See also: ExcelObject.

Examples

In[1]:= <<ExcelLink®

In[2]:= object=ExcelRange["Sheetl","Al"]
Out[2]= -Range: Al-

In[3]:= ExcelCheck[object]

Out[3]= True

In[4]:= object=ExcelRange["Bogus","Al1"]
Out[4]= -Range: Al-

In[5]:= ExcelCheck[object]

Out[5]= False

In[6]:= object=ExcelSheet[1]

Out[6]= —Sheet: 1—

In[7]:= ExcelCheck[object, "Work"]
Out[7]= True

In[8]:= ExcelCheck[object, "Chart"]

Out[8]= False

60 Mathematica Reference

ExcelClear Function

Excel d ear

m Excel C ear [range] clearsdatafrom the specified range in Excel.

m Excel C ear [sheet] clearsall datacontained in the specified sheet.

mExcel Clear[All] andExcel O ear[Acti ve] both clear all dataon the active sheet.

m See also: ExcelRange, ExcelSheet, ExcelWrite.

Examples
In[1]:= <<ExcelLink®
In[2]:= ExcelWrite["A:A", $Path]
In[3]:= ExcelClear["A:A"]
In[4]:= ExcelWrite["Sheetl", Table[Random[],{1000},{10}]]

In[5]:= ExcelClear["Sheetl"]

ExcelClose Function

Excel Cl ose

m Excel C ose[] closesthe active workbook.

m Excel Cl ose[book] closesthe specified book.

= See also: ExcelBook, ExcelSave.

Examples
In[1]:= <<ExcelLink®

In[2]:= book = ExcelNew[]

Out[2]= —-Book: Book2—-

In[3]:= ExcelBooksI[]

Out[3]= {-Book: Bookl-, —Book: Book2-}

Mathematica Reference

61

In[4]:= ExcelClose[book]

In[5]:= ExcelBooksI[]

out[5]= {-Book: Bookl-}

ExcelContext Function

Excel Cont ext

m Excel Cont ext [] returnsalist identifying the current active context.

m Excel Cont ext [object] returnsalist identifying the context of the specified object.

m See also: ExcelObject, ExcelActivate, ExcelName, ExcelAddress.

Examples

In[1]:= <<ExcelLink®

In[2]:= ExcelActivate["'Book1"]

In[3]:= ExcelActivate["Sheetl"]

In[4]:= ExcelContext[]
Out[4]= {Book1, Sheetl}

In[5]:= object=ExcelRange["Book1","Sheet2","A1:C10"]
Out[5]= —Range: A1:C10-

In[6]:= ExcelContext[object]

Oout[6]= {Bookl, Sheet2}

ExcelDate Function

Excel Dat e

m Excel Dat e[n] converts Excel date nto {y,m,d,h,n,s} list form.
m Excel Dat e[list] convertsdate list to an Excel date.

= Excel dates count days from December 30, 1899.

= Time of day information is provided by the fractional part of the date, where 0.5 represents
noon.

62 Mathematica Reference

m Excel dates can be printed in various formats using the Excel For mfunction.

m See also: ExcelForm, ExcelFormat.

Examples
In[1]:= <<ExcelLink®

In[2]:= d = Date|]

out2= {2006, 7, 11, 13, 8, 48.6900112}

In[3]:= n = ExcelDate[d]

out[3j= 38909.5

In[4l:= n//InputForm

Out[4]//InputForm=
38909.54778576389

In[5]:= ExcelForm[n,"dddd, mmm d, yyyy"]

Out[5]= Tuesday, Jul 11, 2006

In[6]:= ExcelForm[n,"h:mm AM/PM"]

out/e]= 1:08 PM

In[7]:= ExcelDate[n]

out[7]= {2006, 7, 11, 13, 8, 48.69}

ExcelDelete Function

Excel Del et e

m Excel Del et e[sheet] deletesthe specified sheet.
m Excel Del et e[shape] deletes the specified shape.

m See also: ExcelSheet, ExcelShape, Excellnsert, ExcelRename.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelSheets][]

Out[2]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

Mathematica Reference

63

In[3]:= Excellnsert["Sheet"]

Out[3]= —Sheet: Sheet4—

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3—, —Sheet: Sheet4-}

In[5]:= ExcelDelete[ExcelSheet[-1]]

In[6]:= ExcelSheets][]

Oout[6]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

ExcelDialog Function

Excel Di al og

m Excel Di al og["type"] displaysadialog specified by type.
m Excel Di al og["type", "title"] displaysadiaog with acustom title.

= Supported dialog types are given by $Excel Di al ogs.

m See also: $ExcelDialogs, ExcelOpen, ExcelSave, ExcelSelect.

Examples
In[1]:= <<ExcelLink®
In[2]:= $ExcelDialogs
out[2]= {Range, Open, Save, Files, Folder}
In[3]:= ExcelDialog["Range"]
Out[3]= —Range: B2:C6—-
In[4]:= ExcelDialog["Open"]
Out[4]= C:\Documents and Settings\Anton\Desktop\Excel Data Types.xls
In[5]:= ExcelDialog["Save"]

Oout[5]= C:\Documents and Settings\Anton\Desktop\New File.xls

In[6]:= ExcelDialog["Files"]

out[6]= {C:\Documents and Settings\Anton\Desktop\Manager.xls,
C:\Documents and Settings\Anton\Desktop\Temp.xls, C:\Documents and Settings\Anton\Desktop\Test.xIs}

64 Mathematica Reference

In[7]:= ExcelDialog["Folder"]

Oout[7]= C:\Documents and Settings\Anton\My Documents

ExcelDirectory Function

Excel Directory

m Excel Di rect ory["name"] givesadirectory specified by name.

m Excel Direct or y[book] givesthe directory of the specified book.

= Supported named directories are given by $Excel Direct ori es.
m |f book is unsaved, itsdirectory isgiven asNone.

m See also: $ExcelDirectories, ExcelBook.

Examples
In[1]:= <<ExcellLink®

In[2]:= ExcelDirectory["Installation"]

Out[2]= C:\Program Files\Microsoft Office\Office10

In[8]:= s = ToFileName[{ExcelDirectory["Link"], "Examples"}, "Stocks.xls"]

Out[3]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xIs

In[4]:= book = ExcelOpen|[s]

Out[4]= —Book: Stocks.xls—

In[5]:= ExcelDirectory[book]

out[5]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples

In[6]:= ExcelClose[book]

ExcelFilter Function

Excel Fil ter

m Excel Fi |l ter[range {filterl, filter2, ..}] appliesfiltersto header fieldsin range.

m Excel Fi |l t er[range, None] turnsoff all filtersfor the specified range.

Mathematica Reference 65

m Thefirst filter is applied to the first field, the second filter to the second field, and so on.
m Filters can be value strings such as "Q4", or comparison strings such as ">100".
m If afilter is All, no filter is applied to the field at that position.

m See also: ExcelRange, ExcelRead.

Examples
In[1]:= <<ExcelLink®
In[2]:= s = ToFileName[{ExcelDirectory["Link"], "Examples"}, "Cities.xIs"]
Oout[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Cities.xls
In[3]:= ExcelOpen[s]
Out[3]= —Book: Cities.xls—
In[4]:= rng = ExcelRange["USA", All]
Out[4]= —Range: All-
In[5]:= ExcelFilter[rng, {All, "Nevada"}]

In[6]:= ExcelRead[rng]

out6]= {{City, State, Lat, Lon}, {Carson City, Nevada, 39.1667, —119.767}, {Elko, Nevada, 40.8333, —115.783},
{Ely, Nevada, 39.2833, —114.85}, {Las Vegas, Nevada, 36.0833, -115.167},
{Lovelock, Nevada, 40.0667, —118.55}, {Reno, Nevada, 39.5, —119.783},
{Tonopah, Nevada, 38.0667, —117.083}, {Winnemucca, Nevada, 40.9, —-117.8}}

In[7]:= ExcelFilter[rng, None]

In[8]:= ExcelClose[s]

ExcelForm Function

Excel Form

m Excel For nf expr] printsexpr asit would appear in Excel in" Gener al " format.

m Excel For nf expr, "format"] printsexpr asit would appear in the specified format.

= The format can be specified using special characters such as "$ #,###.00", "0.0%", or
"yyyy-mm-dd hh:mm:ss".

m See dlso: ExcelRead, ExcelFormat, ExcelDate.

66

Mathematica Reference

Examples
In[1]:= <<ExcelLink®
In2]:= v={3.,,1.5*"-15,1/2, 3+51, "Hello", Empty, True, False}

Out[2]=

—_~—

1
3.,15x107%, > 3+54, Hello, Empty, True, False}

In[3]:= Map[ExcelForm, v]

out[3]= {3, 1.5E-15, 0.5, 3 + 5xl, Hello, , TRUE, FALSE}

In[4]:= n = ExcelDate[Date[]]

outj4]= 38909.6

In[5]:= ExcelForm[n, "dd-mmm-yy hh:mm AM/PM"]

outsj= 11-Jul-06 01:36 PM

In[6]:= ExcelForm[5/7, "0.0%"]

outfsl= 71.4%

In[7]:= ExcelForm[12345, "# ### \[Euro]"]

outi7j= 12,345 €

ExcelFormat Function

Excel For nat

m Excel For mat [target] returnsthe number format of target.

m Excel For mat [target, "format"] setsthe number format of target.

m The target can be arange or a sheet.

= The format can be "General”, "Text", or anumber format such as"$ #,###.00", "0.0%", or
"yyyy-mm-dd hh:mm:ss".

= The format can also be "AutoFit" to adjust column widths in target to display all contents.
= |f multiple formats exist in target, Excel For mat [target] returns™ M xed" .

m See also: ExcelWrite, ExcelForm, ExcelDate.

Examples

In[1]:= <<ExcelLink®

Mathematica Reference

67

In[2]:= ExcelFormat["Al"]

Out[2]= General

In[3]:= ExcelWrite["Al", .5]

In[4]:= ExcelFormat["Al1","0.0%"]
In[5]:= ExcelFormat["Al"]

Out[5]= 0.0%

In[6]:= ExcelFormat["A1", "hh:mm"]
In[7]:= ExcelFormat["Al1"]

out[7]= hh:mm

In[8]:= ExcelFormat["Al", "General"]
In[9]:= ExcelFormat["Al1"]

Out[9]= General

In[10]:= ExcelClear["A1"]

ExcelGraphic Function

Excel Graphi c

m Excel G aphi c[graphic, opts...] specifiesoptionsfor how graphic should be displayed in Excel.

m Excel [id] = Excel Graphi c[graphic, opts...] displays graphic with specified options.
m Excel[id] = graphic displays graphic using default options.

m Options[ExcelGraphic] gives alist of available options.

m SetOptions[ExcelGraphic, opts...] setsthe defaults.

m See also: ExcelWrite, $ExcelGraphic.

Examples

In[1]:= <<ExcelLink®

68 Mathematica Reference

In[2]:= g = Plot[Sin[x], {x, —Pi, Pi}]
1

In[3]:= Excel["B3"] =g
In[4]:= Options[ExcelGraphic]

Out[4]= {ImageSize - Automatic, ImageMargins —» Automatic,
ImageFormat —» Automatic, ImageResolution - Automatic, TextStyle - Automatic}

In[5]:= Excel["B3"] = ExcelGraphic[g, ImageFormat->"GIF", ImageSize->{400,300}, ImageMargins->20,
TextStyle->{FontFamily->"Arial", FontSize->9}]

Inf6]:= Excel['B3"]=.

Excellnsert Function

Excel | nsert

m Excel I nsert[] insertsasheet in the active book.

m Excel I nsert["name"] inserts asheet with the specified name.
m Excel I nsert [Excel Sheet [id]] insertsthe specified sheet.
m Excel I nsert [Excel Shape[id]] insertsthe specified shape.

m Theid canbea" name" or Aut omat i c.

m Option Posi t i on can be used to specify the position where the new object isto be inserted.
m For sheets, Posi t i on can be an existing sheet name or index.

= For shapes, Posi t i on can bea{top, left} coordinate pair.

= Option For mat can be used to specify the format of the inserted object.

m For sheets, For mat canbe" Wor k", " Chart ", or areference to an existing sheet to use as
atemplate.

= For shapes, For mat canbe" | nage"," Text ", or areference to an existing shape to use
as atemplate.

m See also: ExcelSheet, ExcelShape, ExcelRename, ExcelDelete.

Mathematica Reference

69

Examples
In[1]:= <<ExcelLink®
In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[3]:= Excellnsert[]

Out[3]= —Sheet: Sheetd4—

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3—, —Sheet: Sheet4-}
In[5]:= ExcelDelete[ExcelSheet[-1]]
In[6]:= ExcelSheets][]

Out[6]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}
In[7]:= Excellnsert["New", Position —> 1]

Out[7]= —Sheet: New—
In[8]:= ExcelSheets][]

Out[8]= {-Sheet: New—, —Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}
In[9]:= ExcelDelete[ExcelSheet[1]]

In[10]:= ExcelSheets[]

Out[10]= {-Sheet: Sheetl—-, —Sheet: Sheet2—, —Sheet: Sheet3-}

Excellnstall Function

Excel | nst al |

m Excel I nstal | [] starts communications with Excel.
m Option Vi si bl e specifiesif avisibleinstance of Excel isused. The default is Vi si bl e- >-
Aut omati c.

m If Vi si bl eisAut omat i ¢, avisibleinstance of Excel must already be open to start
communications.

m If Vi si bl e isTrue, avisibleinstance of Excel islaunched if needed.

70 Mathematica Reference
m If Vi si bl e isFal se, ahidden instance of Excel islaunched for private use by
Mathematica.
m By default, Excel I nst al | [] iscalled the first time communication with Excel is required.
m See also: ExcelUninstall, $ExcelLink.
Examples

In[1]:= <<ExcelLink®

In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=
out[4]=
In[5]:=
In[6]:=
In[7]:=

Oout[7]=

In[8]:=

Out[8]=

In[9]:=

Out[9]=

In[10]:=

Excellnstall[Visible —» True]

LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]

ExcelNew[]

—Book: Bookl1-

ExcelBooks][]
{-Book: Book1-}
ExcelClose[]
ExcelUninstall[]

Excellnstall[Visible->False]

LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
3,2]

ExcelNew[]

—Book: Bookl1-

ExcelBooks][]

{-Book: Book1-}

ExcelUninstall[]

ExcelName Function

Excel Nanme

= Excel Nane[object] returnsthe name of the specified object.

Mathematica Reference 71

m See also: ExcelObject, ExcelContext.

Examples
In[1]:= <<ExcelLink®

In[2]:= objects = ExcelSheets]]

Out[2]= {-Sheet: Sheetl-, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[3]:= ExcelName /@ objects

Out[3]= {Sheetl, Sheet2, Sheet3}

ExcelNew Function

Excel New

m ExcelNew[] creates a new workbook with the default number of sheets.
m ExcelNew[i] creates a book with i sheets.
= ExcelNew[{"namel", "name2", ..}] creates abook with the specified named sheets.

= ExcelNew["book.xIS"] creates a book using the specified existing book as atemplate.

= Template names must be specified using a full path.

m See also: ExcelBook, ExcelOpen, ExcelSave, ExcelClose.

Examples
In[1]:= <<ExcelLink®
In[2]:= ExcelBooks]]
Out[2]= {-Book: Book1l-}
In[3]:= ExcelNew[]
Out[3]= —Book: Book2—
In[4]:= ExcelClose[]
In[5]:= v =Map[ToString, Range[2000, 2010]]
Out[5]= {2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010}
In[6]:= ExcelNew][v]

Out[6]= —Book: Book3—

72 Mathematica Reference

In[7]:= ExcelClose[]

In[8]:= s = ToFileName[{ExcelDirectory["Link"], "Templates"}, "Report.xIs"]

out[8]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Templates\Report.xls

In[9]:= ExcelNew[s]

Out[9]= -Book: Reportl-

In[10]:= ExcelClose[]

ExcelObject Function

Excel (bj ect

m Excel Obj ect ["type", id] represents an object of the specified type identified by id in the active context.
m Excel Obj ect ["type", context] @ Excel Qoj ect ["type", id] providesacontext for the object id.

m All Excel objects are represented internally in this form.

m See also: ExcelCheck, ExcelName, ExcelContext, ExcelBook, ExcelSheet, Excel-
Range, ExcelShape.

Examples

In[1]:= <<ExcelLink®

In[2]:= object=ExcelRange["Sheetl", "Al1"]
Out[2]= —Range: Al-

In[3]:= InputForm[object]

Out[3])//InputForm=
ExcelObject["Sheet", "Sheetl1"][ExcelObject["Range"”, "A1"]]

In[4]:= object=ExcelRange["Book1", "Sheetl", "A1"]

Out[4]= —Range: Al-

In[5]:= InputForm[object]

Out[5]//InputForm=
ExcelObject['Book", "Book1"][ExcelObject["Sheet", "Sheet1"][
ExcelObject['Range”, "A1"]]]

Mathematica Reference

73

ExcelOffset Function

Excel O f set

m Excel O f set [range, {rows, cols}] offsetsrange by the specified number of rows and columns.

m Al | specifiesrange should be offset to the end of contiguous datain that dimension.
= None specifies range should not be offset in that dimension.

m See also: ExcelRange, ExcelResize, ExcelPosition.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelOffset["Al", {5, None}]

Out[2]= —Range: A6-

In[3]:= ExcelOffset["A:A", {None, 5}]

Out[3]= —Range: F:F-

In[4]:= ExcelOffset["A1:C3", {1, 1}]

Out[4]= —Range: B2:D4-
In[5]:= ExcelWrite["A:A", Range[10]]

In[6]:= ExcelOffset["Al", {All, None}]

Out[6]= —Range: A11-

In[7]:= ExcelClear["A:A"]

ExcelOpen Function

Excel Open

m Excel Open["book.xIs'] opens the specified workbook in Excel.
= File name book.xls must be specified using a full path.

m |f it isalready open in Excel, the workbook is activated.

= Newer Excdl file formats such as .xIsx, .xIsm and .xIsb files are also supported.

74 Mathematica Reference

m See also: ExcelBook, ExcelDirectory, ExcelDialog, ExcelClose.

Examples
In[1]:= <<ExcelLink®
In[2]:= dir = ToFileName[{ExcelDirectory["Link"], "Examples"}]
Oout[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\
In8]:= files = FileNames["*.xlIs", dir];
In[4]:= books = ExcelOpen /@ files

Out[4]= {-Book: Cities.xls—, —Book: Highways.xls—, —Book: Metals.xls—,
—Book: Stocks.xls—, —Book: Waves.xls—, —Book: Wind.xls—}

In[5]:= ExcelClose /@ books

out[5]= {Null, Null, Null, Null, Null, Null}

ExcelOutput Function

Excel Qut put

m Excel Qut put [expr, opts...] specifiesoptionsfor how expr should be output in Excel.

m Excel [id] = Excel Qut put [expr, opts...] displays expr with specified options.
m Excel[id] = form[expr] displays expr in the specified form using default options.

m Options[ExcelOutput] gives alist of available options.

= SetOptions[ExcelOutput, opts...] setsthe defaults.

m See also: ExcelWrite, $ExcelOutput.

Examples
In[1]:= <<ExcelLink®

In[2]:= expr = Expand[(x +y)" 5]

out2l: X +5x*y+10x3y? +10x2y® +5xy* +y°

In[3]:= Excel["B8"] = OutputForm[expr]

Mathematica Reference 75

In[4]:= Options[ExcelOutput]

Out[4]= {ImageSize - Automatic, ImageMargins —» Automatic,
ImageFormat —» Automatic, ImageResolution - Automatic, TextStyle - Automatic}

In[5]:= Excel["B8"] = ExcelOutput[expr, ImageMargins->10, TextStyle->{FontSize->16}]

In[6]:= Excel['B8"] =.

ExcelPosition Function

Excel Posi ti on

m Excel Posi ti on[range] returnsthe position of the top-left cell of range as a{row, col} index pair.

m See also: ExcelRange, ExcelAddress, ExcelSize, ExcelOffset.

Examples

In[1]:= <<ExcelLink®

In[2]:= ExcelPosition["C10"]
out2]= {10, 3}

In[3]:= ExcelPosition["A1:C10"]

outigl= {1, 1}

ExcelRange Function

Excel Range

m Excel Range[id] represents arangeidentified by id in the active context.
m Excel Range[sheet, id] representsarange in the specified sheet.
m Excel Range[book, sheet, id] represents arange in the specified book.

= Theid can be one of the following:

Selection the currently selected range
All all cellsin the sheet

"Data_Range" a defined range name

76 Mathematica Reference

"Al:C10" an Al-style address

{1, 1} a{row, col} index pair

{{1, 1} {10, 3}} alist of two index pairs {{top, |€eft}, { bottom, right}} defining a rectangular
range

m See ExcelSheet for alisting of valid id values for sheet.
m See ExcelBook for alisting of valid id values for book.

m See also: ExcelRanges, ExcelAddress, ExcelName, ExcelPosition, ExcelSize, Excel-
Check, ExcelObject.

Examples
In[1]:= <<ExcellLink®
In[2]:= ExcelSelect[ExcelRange["'Al:C5"]]

In[3]:= ExcelAddress[ExcelRange[Selection]]

out[gl= A1:C5

In[4]:= ExcelAddress[ExcelRange[{1, 1}]1]

Out[4]= Al

In[5]:= ExcelAddress[ExcelRange[{{1,1},{5,3}}]]

outs]= A1:C5

In[6]:= ExcelSize[ExcelRange[All]]

outfs]= {65536, 256}

ExcelRanges Function

Excel Ranges

m Excel Ranges[] givesalist of named rangesin the active sheet.
m Excel Ranges| sheet] givesalist for the specified sheet.

m Excel Ranges|[book] givesalist of al named rangesin book.

m See also: ExcelRange, ExcelName.

Examples

In[1]:= <<ExcelLink®

Mathematica Reference 77

In[2]:= s = ToFileName[{ExcelDirectory['Link"], "Examples"}, "Stocks.x|s"]
Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xls
In[3]:= book = ExcelOpen(s]
Out[3]= —Book: Stocks.xls—
In[4]:= ExcelRanges]]
Out[4]= {-Range: Stock_History—}
In[5]:= ranges = ExcelRanges[book]
out[5]= {-Range: Stock_History—, —Range: Stock_History—, —Range: Stock_History—,
—Range: Stock_History—, —Range: Stock_History—, —Range: Stock_History—, —Range: Stock_History—,
—Range: Stock_History—, —Range: Stock_History—, —Range: Stock_History—}
In[6]:= ExcelContext /@ ranges
out[6]= {{Stocks.xls, AAPL}, {Stocks.xls, ADP}, {Stocks.xls, AlG}, {Stocks.xls, BLDP}, {Stocks.xls, CSCO},
{Stocks.xls, IBM}, {Stocks.xls, INJ}, {Stocks.xls, MSFT}, {Stocks.xls, SYY}, {Stocks.xls, WMT}}
In[7]:= ExcelClose[book]

ExcelRead Function

Excel Read

m Excel Read][range] reads data from the specified rangein Excel.
m Excel Read] sheet] readsall data contained in the specified sheet.
m Excel Read[shape] reads the contents of the specified shape.

m |f range includestrailing empty cells, they are ignored.

m See also: ExcelRange, ExcelSheet, ExcelShape, ExcelForm, ExcelDate.

Examples

In[1]:= <<ExcelLink®

In[2]:= ExcelWrite["A1:C3",IdentityMatrix[3]]
In[3]:= ExcelRead["A1l:C3"]

ouy3= {{1.,0., 0., {0., 1., 0}, {0., 0., 1.}}
In[4]:= ExcelRead["A:C"]

Out[4]=

{{1.,0,0.},{0.,1.,0.},{0., 0., 1.}}

78 Mathematica Reference

In[5]:= ExcelRead["Sheetl"]

oul= {{1.,0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

Inf6]:= ExcelClear["A1:C3"]

ExcelRefresh Function

Excel Refresh

m Excel Ref resh[] refreshesall external data queries and pivot tables in the active book.
m Excel Ref r esh[book] refreshes the specified book.

m External data sources can include text files, web pages, or databases.
= To set up an externa dataquery in Excel, use the Data @ Import External Data commands.

= See also: ExcelBook, ExcelCalculate.

Examples
In[1]:= <<ExcellLink®

In2]:= s = ToFileName[{ExcelDirectory["Link"], "Examples"}, "Stocks.xls"]

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xIs

In[3]:= ExcelOpen[s]

Out[3]= —Book: Stocks.xls—

In[4]:= ExcelRefresh[]
In[5]:= data = ExcelRead /@ ExcelSheets][];

In[6]:= ExcelClose[s]

ExcelRename Function

Excel Renane

m Excel Renane|[sheet, "name"] renames the specified shest.

m Excel Renane[shape, "name"] renames the specified shape.

m See also: ExcelSheet, ExcelShape, Excellnsert, ExcelDelete.

Mathematica Reference

79

Examples
In[1]:= <<ExcelLink®

In[2]:= sheets = ExcelSheets[]

Out[2]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[3]:= ExcelRename["Sheetl", "Summary"]

Out[3]= —Sheet: Summary—

In[4]:= sheets = ExcelSheets[]

Out[4]= {-Sheet: Summary—, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[5]:= ExcelRename["Summary", "Sheetl"]

Out[5]= —Sheet: Sheetl—

In[6]:= sheets = ExcelSheets[]

out[e]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

ExcelResize Function

Excel Resi ze

m Excel Resi ze[range, {rows, cols}] resizesrange to the specified number of rows and columns.

m Excel Resi ze[range, Al I] resizesrangeto include all contiguous data.

= None specifies range should not be resized in that dimension.
m Al | specifies range should be extended to include all contiguous datain that dimension.

m See also: ExcelRange, ExcelOffset, ExcelSize.

Examples
In[1]:= <<ExcellLink®

In[2]:= ExcelResize["Al", {10, None}]

Out[2]= —Range: A1:A10-

In[3]:= ExcelResize["Al", {10, 10}]

Out[3]= —Range: A1:J10-

80 Mathematica Reference

In[4]:= data = Table[Random[], {10}, {3}];
In[5]:= ExcelWrite["A1:C10", data]
In[6]:= ExcelResize["Al", All]

Out[6]= —Range: A1:C10-

In[7]:= ExcelResize["Al", {All, None}]

Out[7]= —Range: A1:A10-

In[8]:= ExcelClear["A1:C10"]

ExcelResult Function

Excel Resul t

m Excel Resul t isaninterna function used to return lengthy resultsto Excel.

m Opt i ons[Excel Resul t] givesalist of optionsthat affect how results are returned.
m Set Opt i ons[Excel Resul t, opts...] can be used to specify these options.
m See also: ExcelWrite, $ExcelResult.

Examples

In[1]:= <<ExcelLink®

In[2]:= Options[ExcelResult]

Out[2]= {MaxCharacters - 255, NumberMarks - False}

In[8]:= expr = Expand[(x +.8)" 9]

out[3]= 0.134218+ 1.50995 X + 7.54975 X% + 22.0201 x° + 41.2877 x* + 51.6096 X° + 43.008 x° + 23.04 X" +7.2x% + x°
In[4]:= StringLength[ToString[InputForm[expr]]]

Outj4]= 205

In[5]:= ExcelForm[expr]

Out[5]= 0.134218 + 1.50995:x + 7.54975+x"2 + 22.0201+x"
3 +41.2877+x™M + 51.6096+x"5 + 43.008+x"6 + 23.04xx"7 + 7.2+x"8 + x"9

In[6]:= SetOptions[ExcelResult, MaxCharacters - 100]

out[6]= {MaxCharacters - 100, NumberMarks — False}

Mathematica Reference

81

In[7]:= ExcelForm[expr]

Oout[7]= ExcelResult[1]

In[8]:= SetOptions[ExcelResult, MaxCharacters —» 255]

out[8]= {MaxCharacters - 255, NumberMarks - False}

In[9]:= SetOptions[ExcelResult, NumberMarks - True]

out[9]= {MaxCharacters —» 255, NumberMarks — True}

In[10]:= ExcelForm[expr]

Out[10]= 0.13421772800000006" + 1.5099494400000009x + 7.549747200000004
x"2 + 22.02009600000001 +x"3 + 41.287680000000016 +x"4 + 51.609600000000015
x"5 + 43.00800000000001 x"6 + 23.040000000000006 +x7 + 7.2°xx"8 + x"9

In[11]:= SetOptions[ExcelResult, NumberMarks - False]

Out[11]= {MaxCharacters - 255, NumberMarks — False}

ExcelRun Function

Excel Run

m Excel Run["macro"] runs the specified VBA macro in Excel.

m Excel Run["macro"”, argl, arg2, ...] runsthe macro with the specified arguments.

m See also: ExcelStatus.

Examples
If the Mathematica Link add-inis currently loaded in Excel, this displays the Mathematica Clipboard window.
In[1]:= <<ExcellLink®

In[2]:= ExcelRun["MathematicaClipboard"]

82 Mathematica Reference

ExcelSave Function

Excel Save

m Excel Save[] saveschangesto the active workbook.
m Excel Save[book] saveschangesto the specified book.

m Excel Save[book, "book.xIs'] saveschanges as book.xls.

m |f book has never been saved, afile name must be specified.
m File name book.xls must be specified using a full path.
= Newer Excdl file formats such as .xIsx, .xIsm and .xIsb files are also supported.

m See also: ExcelBook, ExcelDirectory, ExcelDialog, ExcelClose.

Examples
In[1]:= <<ExcelLink®

In[2]:= book = ExcelNew[{"Data"}]

Out[2]= —Book: Book2—
In[3]:= ExcelWrite["Data", Table[Random([], {100}, {10}]]

In[4]:= s = ToFileName[ExcelDirectory["User"], "Temporary.xIs"]

Out[4]= C:\Documents and Settings\Anton\Desktop\Temporary.xls

In[5]:= book = ExcelSave[book, s]

Out[5]= —Book: Temporary.xls—

In[6]:= ExcelClose[book]

In[7]:= DeleteFile[s]

ExcelSelect Function

Excel Sel ect

m Excel Sel ect [range] selects the specified range.
m Excel Sel ect [shape] selects the specified shape.

m See also: ExcelRange, ExcelShape, ExcelContext, ExcelActivate, ExcelDialog.

Mathematica Reference

83

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelContext[]

Out[2]= {Bookl, Sheetl}

In[3]:= ExcelSelect[ExcelRange["Sheet3", "B2:D5"]]

In[4]:= ExcelContext[Selection]

Out[4]= {Book1, Sheet3}

In[5]:= ExcelAddress[Selection]

out5}= B2:D5

In[6]:= ExcelSelect[ExcelRange["Sheetl", "Al1"]]

ExcelShape Function

Excel Shape

m Excel Shape[id] represents a shape identified by id in the active context.
m Excel Shape[sheet, id] represents ashape in the specified sheet.
m Excel Shape[book, sheet, id] representsashape in the specified book.

= Theid can be one of the following:

Selection the currently selected shape
"Rectangle 1" the name of the shape
lor-1 apositive or negative position index

= Thefirst shape inserted on a sheet has position 1. The last shape inserted on a sheet has
position -1.

m See ExcelSheet for alisting of valid id values for sheet.
m See ExcelBook for alisting of valid id values for book.

m See also: ExcelShapes, ExcelName, ExcelCheck, ExcelObject.

Examples
In[1]:= <<ExcelLink®

In2]:= shapel = Excellnsert[ExcelShape["Rectangle 1"]1;

84

Mathematica Reference

In[3]:= shape2 = Excellnsert[ExcelShape["Rectangle 2"]1;
In[4]:= ExcelShapes]]

Out[4]= {-Shape: Rectangle 1-, —Shape: Rectangle 2—}
In[5]:= ExcelName[ExcelShape[1]]

Out[5]= Rectangle 1

In[6]:= ExcelName[ExcelShape[-1]]

Oout[6]= Rectangle 2

In[7]:= ExcelSelect[ExcelShape[1]]

In[8]:= ExcelName[ExcelShape[Selection]]

Out[8]= Rectangle 1

In[9]:= ExcelCheck[ExcelShape[5]]

Oout[9]= False
In[10]:= ExcelDelete[shapel]

In[11]:= ExcelDelete[shape?2]

ExcelShapes Function

Excel Shapes

m Excel Shapes[] givesalist of supported shapesin the active sheet.
m Excel Shapes| sheet] givesalist for the specified sheet.
m Excel Shapes|[book] givesalist of al supported shapesin book.

m See also: ExcelShape, ExcelName, Excellnsert, ExcelDelete.

Examples

In[1]:= <<ExcellLink®

In[2]:= ExcelShapes]]

Oout[2]= {}

In[3]:= shape = Excellnsert[ExcelShape['Rectangle 1"]]

Out[3]= —Shape: Rectangle 1-

Mathematica Reference

In[4]:= ExcelShapes][]

Out[4]= {-Shape: Rectangle 1-}

In[5]:= ExcelDelete[shape]

ExcelShare Function

Excel Shar e

m Excel Shar e[] starts kernel sharing with Excel on alink named "Excel Share".

= Y ou must have the MathematicalLink add-in loaded in Excel to share akernel with Excel.
m Excel Shar e[] must be called before connecting from Excel.

= |n Excdl, if your Mathematica Connection is set to "Automatic", the Mathematical ink addin
will first try to connect to alink named "Excel Share" and then launch its own kernel if alink
with that name is not available.

= |n Excdl, if your Mathematica Connection is set to " Shared", the Mathematical ink addin will
try to connect to alink "Excel Share" and fail if alink with that name is not available.

= Anytime you close a connection from the Excel-side, you need to call ExcelShare[] againin
Mathematica before starting a new shared kernel session.

m Excel Shar e[] only worksin Mathematica 6.0 or later.

m See also: ExcelUnshare, $ExcelShare.

Examples
In[1]:= <<ExcelLink®
In[2]:= ExcelShare[]

Once you have connected from the Excel-side, you can share definitions of data between Excel and Mathematica.

In[3]:= X

out[sj= 100

The above assumes you defined x as 100 in Excel using aformula, macro, or the clipboard.

86 Mathematica Reference

ExcelSheet Function

Excel Sheet

m Excel Sheet [id] represents a sheet identified by id in the active context.
m Excel Sheet [book, id] representsa sheet in the specified book.

= Theid can be one of the following:

Active the current active sheet
"Sheetl" the name of the sheet
lor-1 apositive or negative position index

m See ExcelBook for alisting of valid id values for book.
= Thefirst sheet in the workbook has position 1. The last sheet in the workbook has position -1.

m See also: ExcelSheets, ExcelName, ExcelCheck, ExcelObject.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheetl-, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[3]:= ExcelName[ExcelSheet[1]]

Out[3]= Sheetl

In[4]:= ExcelName[ExcelSheet[-1]]

Out[4]= Sheet3

In[5]:= ExcelName[ExcelSheet[Active]]

Out[5]= Sheetl

In[6]:= ExcelCheck[ExcelSheet[5]]

out[6]= False

Mathematica Reference

87

ExcelSheets Function

Excel Sheet s

m Excel Sheet s[] givesalist of sheetsin the active workbook.
m Excel Sheet s[book] givesalist for the specified book.

m See also: ExcelSheet, ExcelName, Excellnsert, ExcelDelete.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3-}

In[3]:= sheet = Excellnsert["Sheet"]

Out[3]= —Sheet: Sheet4—

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheetl—, —Sheet: Sheet2—, —Sheet: Sheet3—, —Sheet: Sheet4-}

In[5]:= ExcelDelete[sheet]

ExcelSize Function

Excel Si ze

m Excel Si ze[range] returnsthe size of range as{rows, cols}.

m See also: ExcelRange, ExcelPosition, ExcelResize.

Examples
In[1]:= <<ExcelLink®

In2]:= ExcelSize["Al1:C10"]

outi2j= {10, 3}

88

Mathematica Reference

ExcelStatus Function

Excel St at us

m Excel St at us["text"] displaystext in the status bar in Excel.
m Excel St at us[] restoresthe status bar to its default state.

m See also: ExcelRun.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelStatus["Performing analysis..."];
Pause[2];
ExcelStatus["Generating report..."];
Pausel[1];
ExcelStatus[];

ExcelTypeset Function

Excel Typeset

m Excel Typeset [expr, opts...] specifiesoptionsfor how expr should be typeset in Excel.

m Excel [id] = Excel Typeset [expr, opts...] displaysexpr with specified options.
m Excel[id] = form[expr] displays expr in the specified form using default options.

m Options[ExcelTypeset] givesalist of available options.

m SetOptions[ExcelTypeset, opts...] setsthe defaults.

m See also: ExcelWrite, $ExcelTypeset.

Examples
In[1]:= <<ExcelLink®
In[2]:= expr = Expand[(\[Alpha] +\[Beta])" 4]

Out[2]= a4+4a3ﬁ+6a2ﬁ2+4afﬁ3+ﬁ4

In[3]:= Excel["B3"] = TraditionalForm[expr]

Mathematica Reference 89

In[4]:= Options[ExcelTypeset]

Out[4]= {ImageSize - Automatic, ImageMargins —» Automatic,
ImageFormat —» Automatic, ImageResolution - Automatic, TextStyle - Automatic}

In[5]:= Excel["B3"] = ExcelTypeset[expr, ImageFormat->"WMF", ImageSize->{300,50}, TextStyle->{FontSize->20}]

In[6]:= Excel["B3"] =.

ExcelUninstall Function

Excel Uni nst al |

m Excel Uni nstal | [] endscommunications with Excel.

m Option Visible specifiesif visible instances of Excel should be closed when thelink is
uninstalled. The default is Visible->Automatic.

m |f Visible is Automatic, visible instances of Excel are closed if no workbooks are open.

m |f Visible is True, visible instances are aways closed and unsaved changes to open work-
books are discarded.

m |f Visible is False, visible instances are never closed.

m See also: Excellnstall, $ExcelLink.

Examples

In[1]:= <<ExcelLink®

In[2]:= Excellnstall[Visible->False]
Out[2]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]

In[3]:= $ExcelLink

Out[3]= LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]
In[4]:= ExcelUninstall[]

In[5]:= $ExcellLink

90

Mathematica Reference

ExcelUnshare Function

Excel Unshar e

m Excel Unshar e[] endskernel sharing with Excel.

m Calling ExcelUnshare[] from a Mathematica session is not required. Thereisno harmin
leaving the shared link open once it is established.

m ExcelUnshare[] is automatically called when Excel closes a shared kernel session.

m See also: ExcelShare, $ExcelShare.

Examples
In[1]:= <<ExcelLink®

In[2]:= ExcelShare[]

Out[2]= LinkObject[ExcelShare, 2, 2]

In[3]:= $ExcelShare

Out[3]= LinkObject[ExcelShare, 2, 2]
In[4]:= ExcelUninstall[]

In[5]:= $ExcelShare

ExcelWrite Function

Excel Wite

m Excel Wit e[range, data] writesdatato the specified range in Excel.
m Excel Wit e[sheet, data] fillssheet with data.
m Excel Wit e[range, graphic] displaysagraphic at the specified range location.

m Excel Wit e[range, form] displaysthe expression form at the specified range location.

m Excel Wit e[shape, graphic] displaysagraphic to the specified shape.
m Excel Wit e[shape, form] displaysthe expression form to the specified shape.
m Excel Wit e[shape, "text"] writestext to the specified shape.

= |f data does not completely fill the range, remaining cells are cleared.

Mathematica Reference

91

m See also: ExcelRange, ExcelSheet, ExcelShape, ExcelClear, ExcelFormat, ExcelDate,
ExcelGraphic, ExcelTypeset, ExcelOutput, ExcelResult.

Examples
In[1]:= <<ExcelLink®
In[2:= ExcelWrite["A1", 1]
In[3]:= ExcelWrite["AL:A3", {1, 2, 3}]
In[4]:= ExcelWrite["A1:C1", {1, 2, 3}]
In[5]:= ExcelWrite["A1:C3", {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
In[6]:= ExcelWrite["AL1:C3", {{1, 2}, {3, 4}}]
In[7]:= data = Table[Random[], {30}, {30}];
In[8]:= ExcelWrite["Sheetl", data]
In[9]:= ExcelClear["Sheet1"]

In[10]:= ExcelWrite["Al", ListContourPlot[data, ContourLines - False]]
30

25

20

15

10

In[11]:= ExcelClear["Al1"]

ToExcel Function

ToExcel

m ToExcel isaninternal function used by the link to convert expressionsinto aform suitable for use in Excel.

m See also: ExcelForm, ExcelWrite.

92 Mathematica Reference

$ExcelDialogs Symbol

$Excel D al ogs

m $Excel Di al ogs givesalist of supported named dialogs that can be used with the Excel Di al og
function.

m See also: ExcelDialog, ExcelOpen, ExcelSave, ExcelSelect.

Examples
In[1]:= <<ExcelLink®
In[2]:= $ExcelDialogs
Out[2]= {Range, Open, Save, Files, Folder}

In[3]:= ExcelDialog["Folder","Select a folder"]

Out[3]= C:\Documents and Settings\Anton\My Documents

$ExcelDirectories Symbol

$Excel Directories

m $Excel Direct ori es givesalist of supported named directories that can be used with the
Excel Di rect ory function.
m"|nstall ati on" isthedirectory where Excel isinstalled.

= " Hone" isthe default file location in Excel. Thisis specified in Excel under Tools @
Options... @ General.

m " User" isthedirectory where Excel user settings are stored.
m"Li nk" isthe directory where Mathematica Link for Excel isinstalled.

m See also: ExcelDirectory, ExcelBook.

Examples
In[1]:= <<ExcelLink®

In[2]:= $ExcelDirectories

out[2]= {Installation, Home, User, Link}

Mathematica Reference

In[3]:= ExcelDirectory /@ $ExcelDirectories

out[3]= {C:\Program Files\Microsoft Office\Office10, C:\Documents and Settings\Anton\My Documents,
C:\Documents and Settings\Anton\Application Data\Microsoft,
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink}

$ExcelGraphic Symbol

$Excel Graphi c

m $Excel G aphi c isaninternal counter used to display graphicsin Excel.

m See also: ExcelGraphic.

Examples

In[1]:= <<ExcellLink®
In[2]:= $ExcelGraphic
Out2]= O

In[38l:= g = Plot[Sin[x], {x, Pi, —Pi}]
1

In[4]:= ExcelForm[g]

Out[4]= ExcelGraphic[1]

In[5]:= $ExcelGraphic

Out[5]= 1

94 Mathematica Reference

$ExceLink Symbol

$Excel Li nk

m $Excel Li nk givestheLi nkCbj ect being used to communicate with Excel.

m See also: Excellnstall, ExcelUninstall.

Examples
In[1]:= <<ExcelLink®
In[2]:= $ExcelLink

In[3]:= Excellnstall[]

Out[3]= LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]

In[4]:= $ExcelLink

Out[4]= LinkObject[
C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,
2,2]
In[5]:= ExcelUninstall[]

In[6]:= $ExcelLink

$ExcelOutput Symbol

$Excel Qut put

= $Excel Qut put isaninternal counter used to display formatted output in Excel.

m See also: ExcelOutput.

Examples
In[1]:= <<ExcelLink®

In[2]:= $ExcelOutput

Out[2]= 0

Mathematica Reference

95

In[3]:= expr =BaseForm[10, 2]

Out[3]//BaseForm=
1010,

In[4]:= ExcelForm[expr]

Out[4]= ExcelOutput[1]

In[5]:= $ExcelOutput

Out5]= 1

$ExcelResult Symbol

$Excel Resul t

m $Excel Resul t isaninternal counter used to return lengthy expressionsto Excel.

m See also: ExcelResult.

Examples
In[1]:= <<ExcelLink®

In[2]:= $ExcelResult

Out2]= O
In[3]:= expr = Expand[(x +2)”"100];

In[4]:= ExcelForm[expr]

Out[4]= ExcelResult[1]

In[5]:= $ExcelResult

Out5]= 1

$ExcelShare Symbol

$Excel Share

m $Excel Shar e givestheLi nkCbj ect being used to share akernel session with Excel.

m See also: ExcelShare, ExcelUnshare.

96

Mathematica Reference

Examples

In[1]:= <<ExcelLink®
In[3]:= ExcelShare[]

Out[3]= LinkObject[ExcelShare, 2, 2]

In[4]:= $ExcelShare

Out[4]= LinkObject[ExcelShare, 2, 2]

$ExcelTypeset Symbol

$Excel Typeset

m $Excel Typeset isaninterna counter used to display typeset equationsin Excel.

m See also: ExcelTypeset.

Examples

In[1]:= <<ExcelLink®

In[2]:= $ExcelTypeset

Out2]= O

In[38]:= expr = TraditionalForm[Expand[(x + 1/2)"5]]

Out[3]//TraditionalForm=
)é+5x4 5x3+5x2+5x+ 1
2 2 4 16 32
In[4]:= ExcelForm[expr]

Out[4]= ExcelTypeset[1]

In[5]:= $ExcelTypeset

Out[5]= 1

Excel Reference

Excel Reference

Excel Worksheet Functions

EVAL Function

EVAL

m =EVAL (expr) evaluates expr in a Mathematica kernel.

m =EVAL (head, argl, arg2, ...) builds an expression from the provided head and args and evaluates it.

m =EVAL(head, argl, arg2, ...) isequivalent to =EVAL(EXPR(head, argl, arg2, ...)).

= You can use =EXPR(head, argl, arg2, ...) to see exactly what will be evaluated in
Mathematica.

m =EVAL(head, argl, arg2, ...) evaluates only once head and all arguments have been pro-
vided. If head or any argument refersto an empty cell or an error, evaluation is suppressed
and #N/ A isreturned.

m See notes for EXPR.
m See also: DATA, RULE.

EXPR Function

EXPR

m =EXPR(head, argl, arg2, ...) builds an expression from the provided head and arg and returnsit as
unevaluated text.

m =EXPR(head, argl, arg2, ...) builds the Mathematica expression head[argl, arg2, ...].

= Example: =EXPR("f","x","y") returns f[x,y].

= You can build any expression using nested EXPR calls.

m Example: =EXPR("Sqrt",EXPR("Plus",EXPR("Power",A1,2),EXPR("Power",A2,2))).

m |f head contains #, head is automatically assumed to be a pure function.

» Example: =EXPR("Sqr[#1°2+#2°2]" A1,A2).

98 Excel Reference

m =EXPR(head, argl, arg2, ...) returns #N/ A if head or any arguments refer to an empty cell
or an error.

= =EXPR(range) trims empty cells and errors from the end of range.

m Seealso: EVAL, DATA, RULE.

DATA Function

DATA

m =DATA(text) convertstext to aliteral string.
= =DATA(num) ensures numincludes a decimal point.

= =DATA(range) returns Excel[range] when rangeisnot asingle cell.

= The DATA function istypically used inside EVAL, EXPR, or RULE calls.
m Example: =EVAL("FileNames",DATA("*"),DATA("C:\")).

= Y ou can wrap numeric datain the DATA function to ensure numeric calculation methods are
used instead of symbolic methods. The former is often much faster.

= Example: =EVAL("Eigenvalues",DATA(A1:B2)).
= Unlike EXPR ranges, DATA ranges can contain empty cells or errors.
= =DATA(range) trims empty cells and errors from the end of range.

m See also: EVAL, EXPR, RULE.

RULE Function

RULE

= =RULE(Ihs, rhs) builds a Mathematica rule from the provided |eft-hand side and right-hand side.

= =RULE(Ihs, rhs) builds the Mathematica expression Ihs->rhs.
= Example: =RULE("x",1) returns x->1.

= The RULE function can be used to specify options for the Mathematica functionin EVAL or
EXPR cdls.

m Example: =EVAL("Plot",A1,A2:A4,RULE("PlotTitle",Al),RULE("PlotStyle","Blue")).

m |f Ihsand rhs are references to multi-cell ranges of the same size, alist of rulesis returned.
= Example: =EVAL("ReplaceAll",A1,RULE(A2:A4,B2:B4)).

m Seeaso: EVAL, EXPR, DATA.

Excel Reference 99

CALC Function

CALC

m =CALC(function) defines the calculation method of function as volatile.

= Volatile functions recal culate when any cell changes or when the F9 key is pressed.
= Nonvolatile formulas recal culate only when a referenced input cell changes.

m Excel functions RAND() and NOW/() are examples of built-in volatile functions.

m Volatile functions are typically used to run smulationsin Excel.

= Y ou can use the CALC worksheet function to use Mathematica-generated random numbers
within Excel-based simulations.

m Example: =CALC(EVAL("Random[Integer,{1,6}]")).

= Y ou can use the CALC worksheet function to "tag" specific functionsto respond when F9 is
pressed or when ExcelCalculate is called from Mathematica code.

m Example: =CALC(EVAL("Set", "stockprice", G10)).

= Note: Volatile functions recal culate frequently and can, therefore, significantly slow down
recal culation and editing operations in your spreadsheet. To avoid any potential problems,
use volatile functions sparingly and, if needed, disable them when making modificationsto
your spreadshests.

= See also: EVAL.

Toolbar Commands

Evaluate Command

Mathematica Evaluate

m Establishes a connection with a Mathematica kernel.
= Reinitializes and/or recal cul ates the active workbook (based on workbook options).
m Closes or resets the connection with a Mathematica kernel (depending on modifier key).

= | nterrupts Mathematica evaluation (if an evaluation is currently running).

100

Excel Reference

= Workbook options can be specified under the Mathematica Options @ Workbook tab.
m Shift-Click: Closesthe kernel.

m Ctrl-Click: Clearsthe kernel’s Global context. (Soft kernel reset)

m Ctrl-Shift-Click: Closes and restarts the kernel. (Hard kernel reset)

m Location: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-E

Functions Command

Mathematica Functions

= Displays the Mathematica Function Wizard.

m |f no link formulais selected, the Wizard starts at the Mathematica Function Browser step.

m |f an existing link formulais selected, the Wizard starts at the Mathematica Function Argu-
ments step, and the Wizard is populated with the existing formula.

= Using the Wizard you can search for, learn about, and interactively build and edit Mathemat-
ica function calls.

= Note: The Wizard is nonmodal. Y ou can leave it open and still work in Excel.
m L ocation: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-F

Macros Command

Mathematica Macros

= Displays the Mathematica M acros window.

= Using this window, you can create code boxes and corresponding buttons that allow you to
run Mathematica code asif it were an Excel macro.

= Using thiswindow, you can also create initialization code boxes for workbooks that contains
code that is run automatically when you connect to akernel or re-evaluate the workbook.

= Note: The window is honmodal. Y ou can leave it open and still work in Excel.
= | ocation: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-M

Excel Reference 101

Clipboard Command

Mathematica Clipboard

= Displays the Mathematica Clipboard window.

= Using this window, you can interactively copy and paste datato Excel ranges.

= Y ou can also type code directly into the Mathematica Clipboard widow, evaluateit, and view
the results.

= Note: The window is honmodal. Y ou can leave it open and still work in Excel.
= | ocation: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-C

Contexts Command

Mathematica Contexts

= Toggle command. Enables or disables Mathematica Context Menus.
= When menus are enabled, if you right-click arange, a custom Mathematica Context Menu
will appear.

= When menus are disabled, if you right-click arange, the default Excel Context menu will
appear.

m Location: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-X

Messages Command

Mathematica Messages

= Displays the Mathematica M essages window.

= Using this window, you can use view messages generated by the Mathematica kernel.

= Y ou can also locate the source of messages, browse through past messages, and save mes-
sagesto alog file.

= Note: The window is honmodal. Y ou can leave it open and still work in Excel.

102 Excel Reference

m Location: Mathematica Toolbar, Mathematica Menu

m Keyboard shortcut: Ctrl-Alt-G

Options Command

Mathematica Options

= Displays the Mathematica Options window.

= Y ou can browse this window to explore link options available to you.

= |f you change an option, but want to leave the window open, click Apply to apply the changes.
= Note: The window is honmodal. Y ou can leave it open and still work in Excel.
m L ocation: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-O

Help Command

Mathematica Help

= Opens the PDF-based Mathematica Link for Excel manual.

= Adobe Reader isrequired to view this version of the manual.

= Contents of thismanual can also be viewed in the Mathematica Help Browser under Add-
Ons & Links @ Mathematica Link for Excel.

m Location: Mathematica Toolbar, Mathematica Menu

= Keyboard shortcut: Ctrl-Alt-H

Context Commands

Expression Command

Text Expression

= Toggle command. Applies or removes the Text number format from the selected range.

Excel Reference 103

= Contents of the range are automatically reentered after the format change.

m |f the number format for all cellsis Text, the format for all cellsis changed to General.
m |f the number format for all cellsisnot Text, the format for all cellsis changed to Text.
= | ocation: Context Menu

= Keyboard shortcut: Ctrl-Shift-E

Copy Command

Copy Data

= Copies the contents of the selected range to the Mathematica Clipboard.

m |f the number format for all cellsis Text, strings are copied as Mathematica text expressions.
= |f the number format for all cellsisnot Text, strings are copied as Mathematica strings.
= The copy command uses Mathematica | nput For mto represent the contents of the range.

= |f the Mathematica Clipboard window is open, the window is automatically updated,
allowing you to view what has been placed on the Clipboard.

m Location: Context Menu

= Keyboard shortcut: Ctrl-Shift-C

Paste Command

Paste Data

m Pastes the contents of the Mathematica Clipboard into an Excel range.

m |f the number format for all cellsin the target range is Text, the contents of the Clipboard will
be pasted as Mathematica text expressions.

m |f the number format for all cellsis not Text, the contents of the Clipboard will be converted
to native Excel data types wherever possible.

m |f the Mathematica Clipboard window is open, you can view the text expression beforeit is
pasted.

= The Paste command requires the contents of the Clipboard to be in Mathematica | nput -
Form

= Note: If the expression on the Clipboard isnot in | nput For m you can use the Mathematica
Clipboard window to convert the expression to | nput For mby clicking Evaluate.

104 Excel Reference

= Location:; Context Menu

= Keyboard shortcut: Ctrl-Shift-V

Clear Command

Clear Data

= Clears the contents and number formats of the selected range.

= When using this command, the number format for the range is reset to General. Thisisthe
only difference between this command and the Excel standard Edit @ Clear Contents
command.

m Location: Context Menu

m Keyboard shortcut: Ctrl-Shift-Delete

Function Command

Function...

m Edits the selected formulain the Mathematica Function Wizard.

= |f the selected cell does not contain alink formula, the Wizard goes directly to the Mathemat-
ica Function Arguments step. Thisis the only difference between this command and the
Toolbar Command @ Functions command.

m Use this command if you know what function you would like to enter, and you do not need to
browse for it.

m See also: Toolbar Command @ Functions
m |_ocation: Context Menu

= Keyboard shortcut: Ctrl-Shift-F

Array Command

Array Formula

= Toggle command. Converts multi-cell array formulas to single-cell formulas and back again.

= When converting an array formula to asingle-cell formula, you can select the top-left cell or
the entire array.

Excel Reference 105

= When converting asingle-cell formulato an array formula, the array formulais automatically
sized correctly, or you can preselect the cells you would like to be included in the array.

= Location:; Context Menu

= Keyboard shortcut: Ctrl-Shift-A

Comments Command

Comments

= Toggle command. Comments or uncomments formulas in the current selection.

= Commenting formulas allows you to temporarily disable evaluation of the selected formulas.

= To comment all Mathematica formulas on a sheet, click the top-left corner of the header rows
between A and 1 to select the entire sheet.

= To comment all Mathematica formulas in aworkbook, click Unlink under Mathematica
Options @ Workbook.

= Location:; Context Menu

m Keyboard shortcut: Ctrl-Shift-'

Recalculate Command

Recalculate

m Recalculates formulasin the current selection.
m To force recalcutation of all Mathematica formulas on a sheet, click the top-left corner of the
header rows, between A and 1 to select the entire sheet.

m To force recalculation of all Mathematica formulas in the workbook, you can click Evaluate
if your options are set to do so.

= Location:; Context Menu

m Keyboard shortcut: Ctrl-Shift-=

106

Keyboard Shortcuts

Toolbar Shortcuts

Keyboard shortcuts are available for all commands on the Mathematica Toolbar. These toolbar shortcuts all include the Alt

key.

Evaluate
Functions
Macros
Clipboard
Contexts
Messages
Options
Help

Ctrl+Alt+E
Ctrl+Alt+F
Ctrl+Alt+M
Ctrl+Alt+C
Ctrl+Alt+X
Ctrl+Alt+G
Ctrl+Alt+O
Ctrl+Alt+H

Keyboard shortcuts for Mathematica toolbar commands.

For descriptions of these commands, see the Toolbar Commands section in this reference guide.

Context Shortcuts

Keyboard shortcuts are available for al commands in the Mathematica Context Menu. Context shortcuts all include the Shift

key. They al operate on the current selection in Excel.

Expression
Copy
Paste
Clear
Function
Array
Comments

Recalculate

Ctrl+Shift+E
Ctrl+Shift+C
Ctrl+Shift+V
Ctrl+Shift+Delete
Ctrl+Shift+F
Ctrl+Shift+A
Ctrl+Shift+'
Ctrl+Shift+=

Keyboard shortcuts for Mathematica context menu commands.

For descriptions of these commands, see the Context Commands section in this reference guide.

Excel Reference

Excel Reference 107

Workbook Shortcuts

Keyboard shortcuts are available for the following workbook-level operations.

Reevaluateinitialization code Ctrl+Enter
Recalculatelink formulas Ctrl+=

Unlink / Relink workbook ~ Ctrl+'

Keyboard shortcuts for workbook operations.

The functionality provided by some of these commands can optional automatically occur as part of the Evaluate toolbar
command. Related options and buttons can be found on the Mathematica Options @ Workbook tab.

Notes

= Keyboard shortcuts can be disabled and re-enabled using the the Mathematica Options @
Interface tab.

Data Types

Overview

Excd cdlls can contain six different types of data.

Numbers machine-precision double
Dates machine-precision double with special formatting
Strings unicode text
Booleans TRUE, FALSE
Errors #VALUE! , #REF! | ...
Empty empty cell

Native Excel data types.

Mathematica data types not natively supported by Excel can be stored as stringsin arange formatted as Text.

108 Excel Reference

Integer 1
Rational 1/2
Complex 1+21
Symbol x
Expression x+vy

Mathematica data types that can be stored in text cells.

To specify the format of a range, you can use the ExcelFormat function provided by the ExcelLink package. Or, from
within Excel, you can select a format in the Format @ Cell... @ Number pane or use the Expression toggle command
provided by the Mathematicalink add-in.

Notes

= For worksheet functions, such as EVAL or EXPR, inputs are always assumed to contain text
expressions, even if Text formatting has not been applied to input ranges. This assumption
makes it easier to build Mathematica expressions. To use data asit is natively stored in Excel,
wrap the reference to the data range with the DATA worksheet function.

= When anumber is stored as text in Excel, an error flag may appear on the cell. If you find
these flags distracting, you can turn this type of error checking off in the Tools @ Options...
@ Error Checking pane.

Numbers

Excel stores all numbers as machine-precision doubles. A number may appear to be an integer in Excel when no decimal
point is displayed, however internally the number is stored as a floating point. Whether a decimal point is displayed is a
matter of formatting. See Excel Number Formats for more information.

Maximum and minimum numbers that can be natively stored in Excel are defined by machine-precision limits.

$MaxMachineNumber 1.7976931348623157*/308
$MinMachineNumber 2.2250738585072014*"-308

Excel number limits.

Outside of this range, numbers can be stored as Mathematica text expressions.

Dates

Excel dates are stored as numbers where the integer part represents the day and the fractional part represents the time of day.

Excel Reference 109

0.0 December 30, 1899 (beginning of day)
2.0 January 1, 1900 (beginning of day)
2.5 January 1, 1900 (midday)
36526.0 January 1, 2000 (beginning of day)
36526.5 January 1, 2000 (midday)

How Excel stores date and time information.

What makes a number appear as adate in Excel isamatter of formatting. See Excel Number Formats for more information.

Notes

= Excel cellsonly format dates properly after March 1, 1900. Excel erroneously considers 1900
aleap year, and negative numbers cannot be formatted as datesin Excel.

= The ExcelForm function does not suffer from the same restrictions as Excel cellsand can
therefore be used to print out dates before March 1, 1900.

Strings

In Excel, textual data can be entered into cells specifically formatted as Text. It can also to entered into cells with other
formats, such as General. Mathematica Link for Excel uses this formatting difference to distiguish between text expressions
and strings. If acell isformatted as Text, the content of the cell is considered to be a Mathematica expression, otherwise the
contents are considered to be a Mathematica string.

xyz (Textformat) xyz

xyz (other format) "xyz

Excel string mapping.

In Excel, the two versions of the string appear identical. However, there are significant behavioral difference between text
cellsand other célls:

m Strings assigned to nontext cells pass through an Excel interpreter. The interpreter checks to see if the string being
assigned appears to be a data type it knows about. If so, the string is converted to the identified data type, and an appropriate
cell format is automatically applied if needed.

m Strings assigned to text cells do not pass through the Excel interpreter. They can therefore contain exact numbers, ratio-
nals, or anything else that can be stored as a Mathematica expression.

Asan example, if 1/2 isassigned to a cell with the General format, the rationa is interpeted as January 2 of the curent year,
and a date format is automatically assigned to the cell. When 1/2 is assigned to atext cell, the fraction remains as entered.

Notes

110 Excel Reference

m For worksheet functions, such as EVAL or EXPR, input ranges are always assumed to
contain text expressions, even if the input range has not been formated as Text. This assump-
tion makes it easy to build Mathematica expressions. Y ou can wrap data ranges with the
DATA worksheet function to treat text contained in the range as Mathematica strings.

Booleans

Excel booleans are mapped to corresponding Mathematica symbols.

TRUE True
FALSE False

Excel boolean mapping.

Errors

Excd errors are converted to Mathematica strings.

#N/A - "#N/A"
#REF! "#REF!"
#VALUE! "#VALUE!"
#NULL! "#NULL!"
#NAME? "#NAME?"
#NUM! "#NUM!"
#DIV/O! "#DIV/O!"

Excel error mapping.

Of these errors, four may be returned by Mathematica worksheet functions. In this case, the errors have the following
meanings.

#N/A error or empty found in inputs
#REF! connection error or invalid kernel path
#VALUE! evauation returned $Failed
#NULL! evaluation returned $Aborted or link was closed

Mathematica worksheet function errors.

Notes

= For worksheet functions, such as EVAL or EXPR, the #N/A error suppresses further evalua-
tion. To force arange containing empty cells or errorsto be evaluated in Mathematica, you
can use the DATA function as an argument wrapper. DATA(range) specifiesrange is a data

Excel Reference

111

range that may contain empty cells or errors. Y ou can then handle the empty values and errors
in your Mathematica code.

Empty

Mathematica Link for Excel handles empty cells differently depending on where the cells are located.

non-trailing empty Empty
trailing empty trimmed from range

Excel empty cell mapping.

For empty cells to be trimmed, an entire trailing row or column within the range must contain nothing but empty cells.

Notes

= The trimming of trailing empty cells allows you to easily work with entire rows and columns
of data.

Number Formats

Excel number formats allow you to define how a number will appear in your spreadsheet.

1000 General
1.0E+03 0.0E+00
$1,000.00 $####.00

100000% 0%

Examples of Excel number formats.

Excel number formats are also used to format dates and time information that has been stored as a number.

January 1, 2000 mmmm d, yyyy
12:00 hh:mm
01-Jan-00 12:00:00 dd-mmm-yy hh:mm:ss

Examples of Excel date formats.

For more examples of Excel number formats, browse the Custom category in the Format @ Cells... @ Number pane in

Excel.

	Cover Page
	Copyright © 1998-2011 Episoft Inc.

	Table of Contents
	Introduction
	Overview
	Features
	Changes
	About

	Working in Mathematica
	Getting Started
	General Principles
	Automating Excel
	Creating Excel Functions
	Creating Excel Macros

	Working in Excel
	Getting Started
	General Principles
	Working with Functions
	Working with Macros
	Link Management
	Sharing Workbooks

	Using the Clipboard
	Loading the Add-In
	Copying Data from Excel
	Pasting Data to Excel
	Fixing Problematic Data

	Mathematica Reference
	Mathematica Function Index

	Excel Reference
	Excel Worksheet Functions
	Toolbar Commands
	Context Commands
	Keyboard Shortcuts
	Data Types
	Number Formats

