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ABSTRACT 
 

 
Two behaviour based controllers for mobile robots are described and their abilities to 
solve highly confined goal-seeking problems are compared, both using a physical 
robot and a simulator. The first code implements fixed responses to environmental 
stimuli and thus has no adaptability or flexibility. The second program uses an 
idiotypic artificial immune network to act as an independent behaviour arbitration 
mechanism and hence provide a degree of autonomy. This network is coupled with a 
reinforcement learning technique to allow initial random networks to develop into 
fully functioning systems that permit effective and efficient task completion. 
 
Both goal-seeking problems require the robot to explore a small pen and discover and 
pass through a gate of known width, avoiding any obstacles encountered. To solve the 
short-term problem the robot must stop having passed through the gate. The long-term 
task demands that the gate is discovered and reached as many times as possible in a 
set period. As well as assessing the performance of the controllers in solving these 
problems, a number of different obstacle avoidance strategies are compared and 
results are interpreted.  
 
The fixed code is highly competent at solving the short-term problem, both in the 
simulator and using a real robot. However, due to problems navigating through small 
gaps it is not suitable for use with the long-term task. The immune code solves the 
short-term problem equally as well as the fixed code, but also demonstrates a 
consistent ability to guide the robot successfully through the gaps. Simulation 
experiments with the immune code and the long-term problem demonstrate that it is 
possible for robots with initial random network structures to acquire the essential 
obstacle avoidance, navigation and goal-seeking skills necessary to accomplish the 
task successfully. The emergent behaviour is shown to be intelligent, adaptive, 
flexible and self-regulatory. Furthermore, improved performance is obtained by using 
a genetic algorithm to evolve virtual robots with network structures more suited to the 
exercise. A Pioneer 3 robot, Player device server software and a Player/Stage 
simulator are used throughout. 
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Introduction 
 
Aims of the study 
 
•  To use an idiotypic immune network as a model for constructing a robot 

navigation controller. Ideally the control system should act as a decentralised 
behaviour arbitrator, i.e. the robot must respond to its sensors using a set of 
dynamically changing rules, modelled as antibodies.  

•  To test the adaptability and flexibility of the code by using it to control real and 
virtual robots that are required to complete two specific goal-seeking exercises. 
These tasks are to be carried out in a highly confined area and their successful 
completion should demonstrate the robustness of the chosen architecture. 

•  To integrate the idiotypic methodology with a reinforcement learning technique. 
•  To investigate whether the above approach permits robots to acquire the necessary 

task skills autonomously.  
•  To design a fixed behaviour based code with crisp rules and to compare its 

performance with that of the immune system code by using it to solve the same 
goal-seeking problems. 

•  To compare various different obstacle avoidance strategies within the two codes, 
highlighting those methods that translate well from the simulator to the real world.  

 
These experiments were motivated by an interest in applying idiotypic networks and 
reinforcement learning to highly constrained problems where robots have very little 
space to move around and yet must navigate through tight gaps and pass through a 
relatively small gate. Although the idiotypic approach has been used to solve other 
less confined mobile robotics problems (see section 3.2.2), it has not been widely 
applied to problems like these.  
 
 
Background 
  
Traditional robot navigation methods used modelling to map sensor data to high level 
symbolic representations of the world, (see for example [37]). The internal world 
models were then used to plan paths. Although such systems were useful for 
navigation through static environments, they were less robust when applied to real 
dynamic environments, (Ram et al. [36]).   
 
Reactive control is an alternative approach that links sensory input directly to 
behaviour, without the need for a world model. These systems are much more robust 
to dynamically changing environments and are simpler to implement than modelling 
complex worlds. The subsumption architecture of Brooks [38], a purely reactive 
method, was first described in 1986 and comprised of a set of functions that worked 
together to display emergent behaviour not built into the system. 
 
Most behaviour based approaches have been coupled with learning techniques, which 
require robots to accomplish their goals by making discoveries and adjusting their 
reactions to sensory input accordingly. The emphasis is on the interaction between the 
robot and its surroundings and the assessment of performance, which should evolve 
the control system in some way, [23]. In addition, the system should be completely 
self-contained. A variety of adaptive control strategies have been successfully 
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implemented in the literature, using tools such as neural networks, genetic algorithms 
and reinforcement learning.  
 
More recently researchers have been exploiting the learning and adaptive properties of 
the immune system in order to design effective sensory response systems for 
autonomous robot navigation. In particular, Jerne’s idiotypic network theory [7] has 
been used as a model for behaviour mediation and has produced encouraging results. 
Most designs have modelled behaviours as antibodies and environmental situations as 
antigens, using their interactions to govern behaviour selection. In idiotypic systems 
antibodies are linked both to environmental stimuli and to each other, forming a 
network. Immune system metadynamics and learning techniques keep the network in 
a state of constant flux, ensuring that behaviour selection is flexible, self-regulatory 
and adaptable to environmental change. 
 
 
Organisation 
 
Section 1 discusses the motivation for the study and gives a brief overview of the two 
goal-seeking problems tackled. These comprise a short-term task that terminates as 
soon as the goal is reached and a long-term scenario where the robot must reach the 
goal as many times as possible within a fixed period. Section 2 illustrates some of the 
strategies and learning methods that have been applied to solving similar problems, 
for example neural networks and fuzzy systems. A detailed account of reinforcement 
learning is also presented. 
 
Section 3 provides a brief introduction to the immune system and explains the 
principles behind the idiotypic network theory modelled in this research. The 
application of the network theory to autonomous robot navigation is then treated, and 
recent work in this field is reviewed. 
 
Section 4 presents a description of the hardware and software architectures used 
throughout this research and explains the structure of the fixed behaviour based code. 
The results of solving the short-term problem using both a simulator and a physical 
robot are then presented in the form of a comparison between the various navigation 
strategies. A summary and explanation of the main weaknesses of the program when 
applied to both domains is also given. Section 5 describes an amendment to the code 
that allowed better results to be achieved, both in the simulator and with the physical 
robot.  
 
Section 6 discusses the methodology and structure of the adaptive immune system 
code and uses it to solve the short-term problem, comparing performance with the 
fixed code. The abilities of both codes to guide the robot through small gaps are also 
compared and the adaptive code is used to solve the long-term problem, owing to the 
under performance of the fixed code at gap navigation. During solution of the long-
term problem, the development of initially random network structures through 
reinforcement learning is examined and an attempt is made to evolve network 
structures through a genetic algorithm to obtain sensor-behaviour mappings 
successively more adept at solving the problem. The section concludes with an 
overview of the results of the study and some ideas for future research are presented. 
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1. The problem  
 
1.1. Detailed description 
 
A Pioneer 3 robot equipped with laser and sonar sensors was given the task of passing 
through a gate (AB) in a small pen, see figure 1.  The pen was 2.50 metres wide, 4.00 
metres in length and 0.46 metres high and the gate measured 0.97 metres across. The 
side gap widths were 0.62 metres, (just wide enough for the robot to pass through, see 
section 4.1.1) and the post bases were 0.145 by 0.13 metres.  The real world and a 2-
dimensional simulated world (a scale model of the pen, robot and gate, see section 
4.2.3) are shown in figures 2 and 3 respectively. 
 
A short-term version of the problem required the robot to navigate safely around the 
pen and stop once it had passed through the gate once. It was not allowed to pass 
through gaps XA or BY at any time, nor through the gate in wrong direction DC. It 
was given 3 minutes only to complete the task. In addition, a long-term version of the 
problem allowed the robot to navigate freely around the pen, requiring that it discover 
and travel to the goal as many times as possible in a fixed period. For the long-term 
exercise passing through the gate in either direction was acceptable. 
 
These problems were difficult because the world was small in comparison to the 
robot, allowing it little freedom to move. In addition, no prior knowledge of the gate’s 
location was given, only its width.  
 
 
1.2. Motivation 
 
Mobile robot navigation has a wide variety of real world applications such as garbage 
collection, moving supplies through factories and mail delivery. In addition, robots 
are capable of carrying out vital tasks in potentially hazardous environments, for 
example handling dangerous chemicals, rescuing fire and earthquake victims and 
exploring the terrain of other planets. In order to accomplish their tasks effectively 
they need to be equipped with a number of sensors so that they can perceive their 
environment and make intelligent decisions about the actions that they should take, 
for example avoiding obstacles.  
 
The problems described above involve goal seeking in a confined space and were 
selected for several reasons.  
 
•  The constrained nature of the problems made them sufficiently difficult to warrant 

investigation. A high degree of precision is required to steer towards the centre of 
the small gate and the robot needs to be able to navigate through tight gaps to 
solve the long-term problem effectively. 

  
•  Although much attention has been given to goal seeking and obstacle avoidance in 

mobile robotics there has been little research effort directed towards solving 
highly confined problems, which makes their solution both interesting and 
valuable. Moreover, it would be useful to find out whether it is possible to develop 
a control system capable of learning in such an environment. If this was 
achievable the code developed could be applied to similar constrained problems. 
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•  The solution could have many useful applications, for example in a factory 

scenario, where a robot might be required to work in a small space, transporting 
boxes from one shelf to another or delivering mail in an office where doors are a 
fixed width. In these situations, the ability to achieve the tasks efficiently and 
effectively (i.e. with no collisions), would be essential.  

 
•  Lastly, it was impractical to build a larger world due to laboratory space 

restrictions.  
 
The next section examines the approaches that have been used in the past to solve 
similar problems in mobile robotics. In particular behaviour based architectures, 
neural networks, genetic algorithms, reinforcement learning and fuzzy controllers are 
explained and some examples of their application to robot control are given. 
 
 
 
 
 

Figure 1 – Showing the dimensions of the robot world  
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Figure 3 – The simulated pen and gate world with virtual Pioneer P3-DX8  

Figure 2 – The real pen, gate and Pioneer P3-DX8  
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2. Scientific approach - Part 1 
 
2.1. Strategies for effective robot control 
 
Effective control for robot navigation involves intelligent processing of sensory 
information, such as laser and sonar readings and their directions of origin. However, 
intelligence methods fall into two distinct categories; Top down processing selects 
intelligent behaviour and attempts to replicate it through explicit knowledge, for 
example expert systems. Bottom up processing studies the biological mechanisms 
underlying intelligence and simulates them by building systems that work on the same 
principle, for example neural networks and genetic algorithms (both forms of 
evolutionary methodology). In these approaches knowledge is implicit and the system 
is both adaptive and self-contained.   
 
Since the publication of Brooks’ subsumption architecture [38] in the mid-eighties the 
main focus of mobile robot research has been behaviour based reactive control. This 
has often been implemented in conjunction with evolutionary and reinforcement 
learning methods, chiefly because autonomous robots must function without human 
intervention. They should be capable of adapting their behaviour to their surroundings 
“…without external supervision or control”, McFarland [25]. Furthermore, they need 
to perform in a broad range of dynamically changing environments and often have to 
make use of sensors that can produce uncertain readings.  
 
 
2.1.1. Behaviour based architectures 
 
In the mid-eighties, driven by dissatisfaction with robot performances in the real 
world, Brooks [38] developed a methodology known as the subsumption architecture.  
Behaviour based modules (for example exploring, wandering and avoiding obstacles) 
mapped environmental states directly into low level actions, without the need for an 
intervening world model.  This was achieved through the connection of the sensors 
and actuators to an asynchronous network of computational elements that passed 
messages to each other, [20].   Layers were run in parallel and new behaviour models 
were obtained by adding new network layers. 
 
The subsumption architecture represents a hierarchical behaviour based approach; i.e. 
higher level layers subsume the actions of lower levels through a suppression 
mechanism. This can be beneficial, especially when robots have conflicting goals, (for 
example navigating to a target whilst avoiding obstacles) and have no other way of 
assessing their relative importance. Brooks states that robots need to be “… 
responsive to high priority goals whilst servicing low level goals”, [38]. In Brooks 
[38] the lowest level of competence was obstacle avoidance, and the next highest 
level was wandering. Wandering used a heuristic to plan paths every ten seconds and 
subsumed obstacle avoidance, i.e. was able to incorporate that behaviour into its own. 
 
Since the eighties the subsumption method and more general behaviour based 
approaches have been used widely in the field of robotics as they are computationally 
more efficient than using symbolic world representation models, and are much more 
robust when applied to realistic dynamically changing environments. Co-ordinate-
based systems only tend to work well in abstract worlds, as attempting to model real 
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environments can be extremely complex. Another advantage of reactive systems is 
that controllers can be built and tested incrementally.  However, reactive methods are 
generally heavily dependent on parameter optimisation, as single parameters can 
affect multiple behaviours and their interactions [36]. Some examples of reactive 
approaches are discussed below. 

 
Brooks et al. [22] used the behaviour based subsumption architecture for vision based 
obstacle avoidance on a monocular mobile robot.  Their strategy involved the use of 
three vision processing modes based on brightness, RGB value and HSV value. (This 
scenario has important applications for the autonomous exploration of Mars.) 
Obstacle detection was reactive, i.e. locations were not stored. Camera images were 
converted to motor commands through a fusion of the outputs from the three vision 
modules. The robot turned away from obstacles nearby with the angle of turn and the 
speed dependent on the nearness of the obstacle. The system was tested in Mars like 
environments with a high success rate, although shadows and bright sunlight caused 
the robot to detect false obstacles. 
 
Goldberg and Matarić [34] used a reactive approach to control four physical R2e 
robots performing a mine collection task using grippers. They defined behaviours as a 
collection of asynchronous rules that acquire input from the sensors and respond via 
the actuators or through other behaviours. The modules used were wandering, 
avoiding obstacles, mine detecting (through the use of colour), homing, creeping and 
reverse homing. The state of the environment, time scales and statistics were used to 
select an appropriate mode. 
 
The mapping of sensory information to a particular behaviour can be either learned or 
hard coded. When hard coded systems are used the results often work well for fixed 
environments, but lack the adaptability to perform well in changing ones, [39]. In 
such dynamic environments, the reactive approach is frequently coupled with learning 
methods, for example neural networks (see section 2.1.2) and reinforcement learning 
(see section 2.1.4). 
 
 
2.1.2. Neural networks 
 
Neural networks are modelled on the human brain, with processing elements 
representing neurons. These are arranged in an input layer (perception neurons), a 
hidden layer (associative cortex) and an output layer (motor neurons) and are linked 
by weights (synaptic strengths). Intelligent behaviour emerges through self-
organisation of the weights in response to input data, i.e. through training the system. 
During training the weights are continually adjusted until the desired response is 
obtained. Supervised training involves supplying a set of correct responses to given 
inputs in order for the system to adapt its weights to replicate the output response. 
Unsupervised learning requires only a set of inputs as weights are updated 
competitively. There is a wealth of examples of mobile robot control using neural 
networks in the literature. A few examples are given below for clarification. 
 
Floreano and Mondada [23] used a recurrent (feedback) neural network to develop a 
set of behaviours for a small mobile robot with the tasks of navigating through a 
corridor with sharp corners and of locating and using a battery charger. Results using 
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a real robot showed that navigation was more effective and far smoother than 
compared with a simple Braitenberg1 Vehicle [26]. Furthermore, the robot did not get 
trapped at any point. Discovery of the battery charger and its effective use took 240 
generations. 
 
Tani et al. [2] used a hybrid of Kohonen and recurrent neural networks with 
supervised training on a real robot with a laser range sensor and three cameras. The 
robot’s task was to loop in figures of eight and zero in sequence, with no prior 
information about the environment. The task was learned by guiding the robot from 
each of several starting points. After ten training sessions the robot always followed 
the desired path, although noise affected the performance substantially. 
 
Floreano and Urzelai [21] argue that neural networks only perform well if the training 
conditions are maintained, i.e. in different environments the software can fail. They 
propose that it is the rules used for determining connection strengths that should be 
evolved, and that the weights should emerge as a result of this. As unpredictable 
environments are a common problem for robot navigation they developed a more 
robust neural network code, based on these principles and tested it on a small, mobile 
robot in a rectangular environment, using vision as the main sensor. The robot’s task 
was to travel to a grey area when a light was on. Using conventional neural networks, 
even slight changes in lighting affected the robot’s performance. For the adapted code 
success was achieved even when extreme changes were made such as using a larger 
robot and arena, switching the colours and changing from a simulated to a real robot. 
 
Yamauchi and Beer [58, 59] used a continuous time recurrent neural network 
(CTRNN) as a control system for a robot that was required to find a target with the aid 
of a light. Sometimes the light was on the same side as the target and at other times it 
was on the opposite side. The robot had to decide whether the light was associated 
with the target in order to reach its goal. The control system consisted of an 
assessment module, and anti-guidance and pro-guidance mechanisms.  Following 
training the robot learned to ignore the light and use other means to identify the target 
successfully. 
 
Supervised learning with neural networks is usually done offline. For example 
Reigner et al. [39] used supervised learning to train a 4-wheeled rectangular robot to 
follow a boundary, using 24 sonar sensors. Initially a human operator guided the robot 
along the edge using only two basic commands, “move” and “turn”. The resulting 
sensory data was saved to a file of perception-action associations and was then fed to 
the neural network for training. After this the network was used to guide the robot, but 
if the behaviour was unsatisfactory the operator regained control and a new data file 
was created. The robot was thus trained in an incremental fashion. It did not learn 
merely to reproduce the actions of the operator, but was able to make generalisations 
and successfully steer around boundaries not previously encountered. An advantage of 
this method was that once past experience was established the robot did not need to 
re-learn. 

                                                
1 These machines proposed by Valentino Braitenberg had very basic internal structures for example 
two light sensors and two motors, and were connected using simple, direct relationships. A connection 
might consist of the two motors driving the left and right wheels independently according to the output 
from the light sensors. The nature of the connections determined the behaviour of the vehicle, for 
example light-avoiding or light-seeking behaviours. 
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2.1.3. Genetic algorithms 
 
Genetic algorithms search state space by mimicking the mechanics of genetics and 
natural selection. They can quickly converge to optimal solutions after examining 
only a small fraction of the search space; i.e. the population of solutions is often 
optimised after only a small number of generations. An initial population of solutions 
is selected at random and encoded into a binary representation. A fitness function then 
assigns selection probabilities to each member of the population. The genetic 
operators crossover (controlled swapping of binary bits between two members for 
potentially better solutions) and mutation (changing one binary bit to provide 
diversity) are applied at set levels of probability. Each iteration results in a new 
population, and the algorithm continues until certain conditions are met. The result is 
an increasing aptitude for a given task through successive generations. Evolved 
solutions are not always optimal but can provide useful compromises between 
constraints, [48]. 
 
The technique first received attention in the nineteen eighties when it was seen as a 
branch of alternative computing along with neural networks [48]. Since then it has 
become accepted as a useful learning mechanism in autonomous mobile robotics as it 
reduces the quantity of prior assumptions that have to be built. The method has also 
been widely applied to parameter optimisation, as manual tuning of control 
parameters is notoriously difficult and costly in terms of time, especially using real 
robots. For example Ram et al. [36] applied genetic algorithms to the problem of 
parameter optimisation for goal seeking and obstacle avoidance, using navigation 
performance as a fitness measure. They assigned a set of virtual robots a set of fixed 
parameters to control their behaviours. The performances in the simulator were 
evaluated so that new parameters could be evolved and assigned to a new population 
of robots. A good set of parameters was obtained after several generations. The fitness 
measure was based on task time, distance travelled and the number of collisions.  
 
 
2.1.4. Reinforcement learning 
 
Reinforcement learning occurs when knowledge is implicitly coded in a scalar reward 
or penalty function. There is no teacher and no instruction about the correct action, 
just a score that is yielded by the robot’s interaction with its environment. Control 
designers thus need to structure the reward system so that it defines the goal. (This is 
analogous to pleasure and pain in a biological system.) Reinforcement learning is 
distinct from supervised learning as the latter teaches the system to produce a desired 
output given an input, [19]. 
 
Both reinforcement learning and genetic algorithms use an evaluation function to 
assess performance. The main difference is that genetic algorithms use the fitness 
function to determine a strategy’s chances of becoming a parent in the next 
generation. In reinforcement learning the function is used to provide immediate 
feedback about an action’s usefulness. Reinforcement learning is thus a more 
localised methodology, i.e. it usually scores individual components of a robot’s 
performance. Genetic algorithms operate at a more global level, for example scoring 
time taken to complete the overall task. Both methods help to reduce the burden of 
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behaviour designers, allowing robots to learn strategies that would not necessarily be 
anticipated, [33]. 
 
Hailu [1] argued that some degree of domain knowledge is necessary in reinforcement 
learning schemes, in order to reduce the amount of discovering that robots need to do, 
otherwise learning takes too long. The main problem for designers is deciding what 
information should be explicitly given and what should be discovered. Hailu 
recommended a basic set of reflex rules or safe actions that should be given in the first 
instance, to allow safe navigation. Once reinforcement learning was established these 
rules could be overridden. He implemented this strategy for obstacle avoidance and 
goal seeking on a simulated TRC robot and a real B21 robot in a labyrinth world with 
a gate and a concave trap region. Belief matrices were used to determine possible 
actions and environmental knowledge was dynamically encoded into the matrices as 
time progressed. The robot had a camera, infra-red, tactile and sonar sensors and had 
to navigate through the gate to a goal on the other side. After training both robots 
were able to reach the goal successfully without entering the concave trap region. 
 
Gullapalli [19] implemented reinforcement learning for a peg insertion task with real 
robots, where handcrafted solutions had previously proved inadequate. (He argues 
that direct reinforcement learning is one of the most useful methods for achieving a 
high level of flexibility, precision and robustness for many complex and unpredictable 
tasks.) The robots began with the peg at a random position and orientation and the 
reward function (a scalar value between 0 and 1) was evaluated from the forces acting 
on it, (the closer it was to the hole, the higher the reward). The system was controlled 
by a neural network that continually adjusted the weights according to the score. The 
robots gradually became more adept at placing the pegs in the holes, and after 150 
trials worked robustly, even with high degrees of environmental noise and 
uncertainty. 
 
As mentioned in section 2.1.1, mappings between environmental states and low-level 
actions can be pre-programmed or learned.  Michaud and Matarić [33] were interested 
in the effective control of multiple robots given a foraging task. They developed a set 
of robust behaviour based modules and a set of initial state to action mappings that 
allowed safe task completion. The modules were implemented along with a 
reinforcement learning algorithm so that choice of behaviour could be dynamically 
adapted based on past history and performance measures. Time was used as the 
primary behaviour evaluation parameter, i.e. penalties were awarded if performance 
took longer than in the past and rewards were issued if time was shorter. Chosen 
behaviours and their sequences of use were stored within a tree structure that allowed 
alternative behaviours to be selected. The use of time as a reward measure provided a 
good compromise between adaptability to change and tolerance for bad decisions 
resulting from exploration of different strategies. Furthermore, using past performance 
rather than external criteria allowed behaviour to be assessed on the strength of 
consistency rather than some arbitrary hard-coded rule. 
 
The approach was tested using Pioneer I robots equipped with sonar for obstacle 
avoidance and a vision system. The robots showed competence in exploiting the 
regularities of the world and a high degree of adaptability to change, i.e. a good 
compromise between exploration and exploitation strategies. They learned to override 
the initial state to action mappings, choosing behaviours not normally associated with 
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particular conditions. All behaviours were selected through past experience once 
learning was complete and interestingly, each robot learned to specialise in how it 
accomplished the task, as individual experiences were different. 
 
 
2.1.5. Fuzzy systems 
 
In first order predicate calculus set membership is binary and has a value either 0 
(false, not a member) or 1 (true, a member). However, fuzzy set membership ranges 
between 0 and 1; i.e. an object can be a member of a set to some degree. Similarly, 
under fuzzy rules the assignment of a possibility distribution can represent the truth of 
a logical proposition, (see [40], Chapter 7 for further details). 
 
Fuzzy control systems, i.e. a set of rules with associated possibility distributions, have 
frequently been employed in mobile robotics. In reactive control methods the use of 
classical fuzzy systems is a way of hard coding the mapping from environmental state 
to behaviour [39], i.e. mappings are created off-line and there is no learning.  
 
Takeuchi and Nagai [8] used a fuzzy controller in order to guide a purpose built 
mobile robot around obstacles using CCD camera images of the floor as system input. 
The fuzzy control rules were based on human driving processes and objects were 
detected on the basis of floor brightness. Detected boundary lines provided a means 
for calculating object distances. Information from the vision system was fed into the 
fuzzy controller and output was in the form of independent speed commands to the 
two wheels. The fuzzy controller consisted of a set of IF…THEN rules for motion 
direction, gain and acceleration, combined into a fuzzy relation. The velocity was 
related to the width of the passageway detected by the vision system. Results showed 
that the system performed well but sometimes failed due to imaging errors such as 
glare from the floor being mistaken for obstacles. 
 
The next section focuses on the use of the vertebrate immune system as a model for 
adaptive behaviour. These systems have recently been used as inspiration for mobile 
robot control strategies under a wide variety of situations.  
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3. Scientific approach - Part 2 
 
3.1. Background to the immune system 
 
The purpose of the immune system is to expel foreign material, or antigens from the 
body. The ability to distinguish self from non-self is therefore fundamental to its 
design.  Essentially there are two systems that work co-operatively as described 
below: 
 
•  In the innate system phagocyte cells are immediately able to ingest a large number 

of bacteria that show common molecular patterns. No previous exposure to these 
bacteria is necessary and the system is constant throughout life and the same for 
all individuals. Infection is controlled whilst the adaptive system is getting started.   

 
•  In the adaptive system lymphocyte cells (B-cells and T-cells) are responsible for 

the identification and removal of antigens. The T-cells are activated when they 
recognise antigen-presenting cells. They divide and secrete lymphokines that 
stimulate B-cells to attack the antigens. They thus contribute to the protection of 
self-cells. 

 
Epitopes are antigen determinants, i.e. patches on antigen molecules that present 
patterns that can be recognised (with varying degrees of accuracy) by complementary 
patterns on the surface receptors of B-cells. Each B-cell has surface receptors of a 
single specificity, although there are millions of B-cells and hence millions of 
different specificities in circulation. The clonal selection theory [53] states that once 
an epitope pattern is recognised the B-cell is stimulated to divide until the new cells 
mature into plasma cells that secrete the matching receptor molecules or antibodies 
into the bloodstream. The antibody combining sites or paratopes bind to the antigen 
epitopes, which causes other cells to assist in the elimination of the antigen.  Some of 
the matching lymphocytes act as memory cells, circulating for a long time.  

 
The efficiency of the immune response to a given antigen is hence governed by the 
quantity of matching antibodies, which in turn depends on previous exposure to the 
antigen. Under the clonal selection theory the concentrations of useful lymphocytes 
are increased at the expense of the randomly generated proportion so that the 
repertoire mirrors the antigenic environment [18]. In other words, cells with high 
affinities enter the pool of memory cells. 
 
Following birth, the antibody repertoire is random. Diversity is maintained by 
replacement of the B-cells at the rate of about 5% per day [18] in the bone marrow 
during which time mutation (reorganisation of the DNA) can occur. In addition, the 
reproduction of the B-cells upon stimulation also causes a high rate of mutation. 
Through mutation, weakly matching B-cells may produce antibodies with higher 
affinities for the stimulating antigen. The diversification process ensures that an 
almost infinite number of surface receptor types is possible. If self-recognising 
antibodies are produced they are suppressed and eliminated. 
 



 19 

3.2. The idiotypic network theory 
 
In 1974 Jerne [7] proposed the immune system network theory as a mechanism for 
regulating the antibody repertoire, although it has not gained wide acceptance within 
the field of immunology. The theory is based on the fact that as well as paratopes (for 
epitope recognition), antibodies also possess a set of epitopes and so are capable of 
being recognised by other antibodies even in the absence of antigens. Under the clonal 
selection theory all immune responses are triggered by the presence of antigens, but 
under the network theory antibodies can be internally stimulated. (Experiments have 
shown that the number of activated lymphocytes in germ free mice is similar to that of 
normal mice [60], which supports the argument.) 
 
Paratopes and epitopes are complimentary and are analogous to keys and locks. 
Paratopes can be viewed as master keys that may open a set of locks (epitopes), with 
some locks able to be opened by more than one key (paratope), [30]. N. B. Epitopes 
that are unique to an antibody type are termed idiotopes and the group of antibodies 
that share the same idiotope belong to the same idiotype. 
 
When an antibody type is recognised by other antibodies it is suppressed i.e. its 
concentration is reduced, but when an antibody type recognises other antibodies or 
antigens it is stimulated and its concentration increases. The theory explains the 
suppression and elimination of self-antibodies and presents the immune system as a 
complex network of paratopes that recognise idiotopes and idiotopes that are 
recognised by paratopes, see figure 4. This implies that B-cells are not isolated, but 
are communicating with each other via collective dynamic network interactions, [42]. 
 

 
 
 
 
 

Figure 4 – Showing suppression and activation between antibodies, 
adapted from [7]  
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The network is self-regulating and continually adapts itself, maintaining a steady state 
that reflects the global results of interacting with the environment [7], although a 
single antibody may be more dominant. (The cell with the paratope that best fits the 
antigen epitope contributes more to the collective response, [44].) This is in contrast 
to the clonal selection theory, which supports the view that change to immune 
memory is the result of single antibody-antigen interactions.  
 
The network theory also states that suppression must be overcome in order to elicit an 
immune response. In other words, the system is governed by suppressive forces, but 
open to environmental influences, [7]. The suppression models the immune system’s 
mechanism for removing useless antibodies [5] and maintaining diversity. The 
increase in useful antibody concentrations models the immune system’s memory. 
(However, it is worth noting that the exact mechanism of immune memory is still 
relatively poorly understood [44]. In 1989 Coutinho [51] postulated that networks 
may not contribute to memory as their capacity is probably too small to store the vast 
quantity of data required to record previous antigen attacks.)   

 
 

3.2.1. Modelling the idiotypic immune network  
 
The learning, retrieval, memory, tolerance and pattern recognition capabilities of 
artificial immune systems make them highly suitable as models for machine learning.  
Furthermore, the behaviour of an idiotypic network can be considered intelligent, as it 
is both adaptive at a local level and shows emergent properties at a global level, [42]. 
The dynamics ensure that antibodies closely matching antigens and yet distinct from 
one another are selected, whereas sub-optimal matches are removed, [31].  
 
In 1986 Farmer et al. [30] presented a general method for modelling the idiotypic 
immune network in computer simulations and this is described below. A differential 
equation models the suppressive and stimulating components and binary strings of a 
given length, l represent epitopes and paratopes. Each antibody thus has a pair of 
binary strings, [p, e] and each antigen has a single string, [e]. The estimate of degree 
of fit between epitope and paratope strings is analogous to the affinities between real 
epitopes and paratopes, and uses the exclusive OR operator to test the bits of the 
strings, (0 and 1 yields a positive score). 
 
Exact matching between p and e is not required and as strings can match in any 
alignment one needs only to define a threshold value s below which there is no 
reaction. For example if s was set at 6 and there were 5 matches (0 and 1 pairs) for a 
given alignment, the score for that alignment would be 0. If there were 6 the score 
would be 1 and if there were 7 the score would be 2. The strength of reaction for a 
given alignment is thus: 
 

δ+=1G , 
 
where δ is the number of matching bits in excess of the threshold. The measure of 
strength of reaction for all possible alignments, mij  between an antibody, i and 
another, j, is given by: 
 

∑= Gmij . 
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When two antibodies interact the extent to which one proliferates and one recedes is 
governed by the degree of matching. In a system with N antibodies: 
 
[ ]xxx N..., 21 , 
 
and n antigens 
 
[ ]yyy n..., 21 , 
 
the differential equation governing the rate of change in concentration of antibody xi is 
given by: 
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represents stimulation of the antibody in response to all other antibodies,  
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models suppression of the antibody in response to all other antibodies, and 
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represents stimulation of the antibody in response to all antigens. The damping term 
 

xk i2          3.5 
 
models the tendency of antibodies to die in the absence of interactions, with constant 
rate k2. c is a rate constant and k1 models possible inequalities between stimulation 
and suppression. (If k1 = 1 these forces are equal.)  Antibodies are eliminated from the 
system when their concentrations drop below a minimum threshold. 
 
Equation 3.1 is known as Farmer’s equation and the authors note that it follows a 
general form often seen in biological systems, that is: 
 
∆xi  =  internal interactions (between antibodies) + driving (antigen interactions) – 
damping (natural death). 
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3.2.2. Idiotypic models and mobile robot navigation  
 
Artificial immune networks are particularly useful tools for controlling autonomous 
mobile robot navigation as they can be used as a means of behaviour arbitration and 
are suited for solving dynamic problems in unknown environments [6]. Some 
examples of recent work in this field are presented below. 
 
Luh and Liu [3] used a reactive immune network for robot obstacle avoidance, trap 
escapement and goal reaching in an unknown and complex environment with both 
static and dynamic obstacles. Their architecture consisted of a combination of prior 
behaviour based components and an adaptive component modelled on the immune 
network theory. In their system conditions detected by the sensors were analogous to 
antigens with multiple epitopes, for example “obstacle ahead” with epitopes “distance 
away from robot”, “sensor position” and “orientation of goal with respect to the 
obstacle”. Antibodies were defined as steering directions: 
 
[ ]θθθ N..., 21 ,   where   πθ 20 ≤≤ i . 
 
A given antigen was recognised by several antibodies, but only one antibody was 
allowed to bind to one of that antigen’s epitopes. The antibody with the highest 
concentration was selected, and concentrations were determined using Farmer’s 
dynamic equation, (3.1).  Their strategy was tested on a simulator and proved flexible, 
efficient and robust to environmental change, although optimisation of parameters 
was not achieved. 
 
Krautmacher and Dilger [4] applied Farmer’s immune network model to robot 
navigation in a simulated maze world in which a building had collapsed due to an 
earthquake. The robot’s task was to find victims, determine their situation and 
location and record the information on a data sheet. No a priori knowledge of the 
maze or object locations was given; fuzzy identification of objects was achieved 
through image processing and comparison with stored information. Location and 
identification of a given object was analogous to the presence of an antigen, and its 
type and location were used as epitopes. Many potentially useful antibodies 
representing basic behaviours were used and as the system evolved new antibodies 
emerged and were added to the system.  
 
Watanabe et al. [6] used an artificial immune network to control behaviour arbitration 
for a garbage collecting mobile robot, a problem originally posed by Michelan and 
Von Zuben [54]. The robot had a finite energy supply and was required to collect 
garbage and place it in a waste basket, recharging its power as required at a charging 
station. Competence modules (“move forward”, “turn right”, “turn left”, “search 
station”, “wander”, “collect garbage”) were prepared in advance for use as antibodies 
and antigens were represented by object types, distances and the energy level, for 
example, “garbage in front”, “charging station right”, “energy level high”. Antibody 
concentration dynamics were maintained by Farmer’s differential equation, (3.1) and 
a squashing function, (see section 6.2.2). A roulette wheel method selected an 
antibody based on probabilities assigned by concentration values and a genetic 
algorithm was used to establish initial antibody concentrations and determine 
affinities between connections. Simulations and trials using a real robot with infra-red 
sensors and a CCD camera demonstrated the validity of their approach. 
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Vargas et al. [5] constructed a hybrid robot navigation system (CLARINET) that 
merged ideas from learning classifier systems, (introduced by Holland in the mid- 
seventies, see [32]) and the immune network model of Farmer et al. [30]. 
Environmental conditions were matched to classifiers (similar to production rules) 
with varying strengths. The classifiers competed to execute their action components 
and were continually evolved using crossover and mutation to produce the next 
generation.  
 
Learning classifier systems have been likened to artificial immune systems by Farmer 
et al. [30] and Vargas et al. [45]. Antibodies can be thought of as classifiers with a 
condition and action part (the paratope) and a connection part (the idiotope). The 
action part must be matched to a condition (antigen epitope) and the connections show 
how the classifier is linked to others. The presence of environmental conditions causes 
variations in classifier concentration levels in the same way that antigens disturb 
antibody dynamics. 
 
Vargas et al. [5] selected the antibody with the highest activation level (match 
strength multiplied by concentration). Hence, the best-matched classifier was not 
necessarily selected. This is intuitive since useful classifiers with high concentrations 
should be given more influence than weak ones in order for the system to learn [30].  
 
CLARINET was applied to the same problem as Watanabe et al. [6] and four actions 
were used, “right”, “left”, “forward” and “explore”. Classifiers were initially random 
with crossover used on those with the same condition part and with a 10% probability. 
Mutation was at 1%. Results showed that the robot discovered alternative paths 
around obstacles, responding quickly to environmental changes. The use of non-fixed 
rules allowed the selection of classifiers that were tailored towards immediate 
environmental conditions.  
 
Learning classifier systems have frequently been used to solve mobile robotics 
problems. Stolzmann and Butz [56] applied them to robot learning in a T-shaped 
maze environment and Carse and Pipe [57] used a fuzzy classifier system. Webb et al. 
[46] used classifiers with reinforcement learning for the autonomous navigation of 
simulated mobile Khepera robots that were required to find and travel to target 
locations. The action parts of the classifiers were “move forward”, “rotate right”, 
“rotate left” and “do nothing”. Initially, an equal chance of choosing a random action 
and of choosing the action with the highest reward was coded. Reinforcement learning 
based on past history was used to determine future classifiers.  
 
The next section describes the physical hardware and software used to solve the 
problems described in section 1.1. The fixed behaviour based code is also described 
and the results of solving the short-term problem using a simulator and a real robot are 
presented. 
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4. Proposed solution 
 
4.1. Hardware used 
 
4.1.1. Physical robot and the network configuration 
 
An ActivMedia Pioneer P3-DX8 with a range finding laser was used, see figures 5 
and 6.  This is a mobile, two-wheeled robot with reversible DC motors, on-board 
microcontroller, server software and an integrated onboard PC. The wheels are 
supported by a rear caster and the robot is capable of both translational and rotational 
motion. The chassis is 38 cm wide, 44 cm deep and 22 cm high (not including the 
laser), [11]. The laser unit is 19 cm high. 
 
These robots act as the server in a client-server paradigm, with the on-board 
microcontroller handling the low-level details of mobile robotics, for example setting 
speed and acquiring sensor readings, [10]. The onboard PC routes the sensor values to 
the host and the motor commands back from it. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 – The Pioneer P3-DX8 with laser, adapted from [10] 

Drive 
wheel 

Front sonar 
array 

Range 
finding laser  

Caster 

Rear sonar 
array 

Control 
panel 



 25 

 
 
 
 
 
 
Connection between the on-board host computer and the laboratory PC (a Pentium 4 
with 3.6 GHz running Linux) was via a Cisco Aironet local wireless network, (see 
figures 7 and 9). Client software running on the remote PC provided all high-level 
control. 

  
 

 
 
 
 

 
 
 
 
 

Private robot lab network 

Public wired network 

Figure 7 – Laboratory network architecture for the Pioneer robots 

Figure 6 – The Pioneer robot used throughout this research 
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4.1.2. Sensors 
 
Sixteen sonar and 1 SICK LMS-200 laser range-finder were used, see figure 6. 
Pioneer 3 robots have fixed sonar with 2 on each side and the others spaced at 20-
degree intervals, see figure 8. Readings are possible in ranges from 15 cm to 7 m 
approximately, [11]. The laser provides 2 readings for each degree covering the front 
180° sector, i.e. 361 readings in total. (Note that a pan-tilt camera was also installed 
above the laser and a gripper was positioned at the front, but these were not used in 
this research.)  

 
 
  
 
4.2. Software used 
 
4.2.1. The Player robot device server 
 
Player, a robot device server was used to control the sensors and actuators. This 
software acts as an interface to the robot and runs on the on-board PC. Connection to 
the client program (running on the laboratory PC) was through a standard TCP socket, 
see figure 9. Player is both language and platform independent, meaning that control 
programs can be written in C, C++, Java etc. All controllers developed as part of this 
research were written in C++ to take advantage of the object-oriented Player C++ 
Client Library, see section 4.2.2. 
 
Player was selected as it does not place any constraints on how control programs 
should be written and it can also be used to interface with the 2D Stage simulator used 
throughout this research, see section 4.2.3. Furthermore, it provides a visualisation 
tool, PlayerViewer that can display the sensor output graphically, see figure 10. 
Further details about Player are available in [13]. 

Figure 8 – Sonar arrangement on the Pioneer, adapted from [10] 
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Figure 9 – Player server and controller client architecture 

Figure 10 – PlayerViewer showing the real Pioneer’s laser and sonar output (left and right respectively) 
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4.2.2. Player C++ client library 
 
The Player C++ library uses classes as proxies for local services. There are two kinds, 
the single server proxy, PlayerClient and numerous proxies for the devices used, 
for example the SonarProxy class. Connection to a Player server is achieved by 
creating an instance of the PlayerClient proxy. Devices are registered by creating 
instances of the appropriate proxies and initialising them through the established 
PlayerClient object. Device access levels are set through their device proxy 
constructor methods. See [9] for full details of the attributes and methods of the 
various classes. 
 
The proxies used throughout this research and a brief description of them are given in 
table 1 below. 
 
 

Proxy Description 
PlayerClient Server proxy, used to establish a connection to the Player 

server by specifying a host or port 
PositionProxy Used to obtain the latest position data, (x-co-ordinate, y-co-

ordinate and orientation) and set the internal odometry 
LaserProxy Holds the latest scan data for the laser 
SonarProxy Holds the latest sonar range measurements 

 
 
 
 
 
4.2.3. Stage simulations 
 
Developing control software and testing it on a real robot is expensive in terms of 
clock time, experimental logistics and the potential damage to the robot. Artificial 
worlds and virtual robots are therefore frequently used to overcome these problems 
and enable the safe and rapid testing of control strategies. Throughout this research 
Stage was used for 2D simulations. As there is no connection to a real robot, the Stage 
Player server runs on the laboratory PC, i.e. the client controller, Player server and the 
Stage simulator are all run on the same machine, with Stage controlling the virtual 
robots created. Figure 11 below shows the graphical 2D Stage simulation of a robot in 
a world full of irregular shaped obstacles. 
 
Here all software was developed and tested using a Stage simulator so that free 
parameters could be set to useful values and risk to the real robot was minimal. The 
simulated environment was created in the usual manner by building a world file to 
describe the robot, its initial position, sensors, port number and the objects it 
interacted with, (see Appendix K). The plan of the pen was designed using GIMP and 
converted to a zipped pnm file for inclusion in the environment section of the world 
file, (see [12] for a full description of Stage world files). N. B. A pre-written Pioneer 
P3 DX-SH include file was used in the world file to describe the exact positions 
of the sonar and the size of the robot, (see Appendix L). 

Table 1 – Description of the Player C++ client library proxies 
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4.3. The fixed behaviour based code (goalseek) 
 
A behaviour based approach was adopted because it has been well documented that 
this has proved computationally cheaper and less complex to implement than world 
mapping techniques. Furthermore, the method lends itself to object oriented 
programming. 
 
The controller was separated into a main method, a Robot class, and a 
WorldReader class. (WorldReader was only used during initial testing with the 
simulator to obtain the start co-ordinates automatically.) The Robot class was 
created to act as an interface to the main program, providing different modes of 
operation, for example: 
 
taylor.obstacleAvoid(true); 
 
commands a robot called taylor to go into obstacle avoidance mode, steering away 
from the minimum laser or sonar reading. Table 2 below summarises the public 
methods in the Robot class and explains their functions, (see Appendices C and D 
for a listing of the class code and Appendix H for user documentation). 
 
 
 
 
 
 

Figure 11 – Example 2D Stage world and virtual robot 
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Method Description of functionality 

constructor Sets the robot's maximum allowed speed and distance tolerance for 
obstacles. 

connect  
   

Sets the connection parameters to those supplied with the run 
command, (if none are specified the control program uses the 
default). 

position  

Sets the robot’s internal odometry to the starting co-ordinates 
supplied. (This is only necessary for testing with fixed goals and 
simulated robots. If the goal is unknown then the start position is not 
important and can be arbitrarily set to [0,0,0] for example.) 

getSensorInfo
  

Gives the positions of the sensors giving the minimum and 
maximum readings and gives the minimum and average readings. 
The same method is used for laser and sonar information processing. 

getLaserArray 

This method is used for averaging the laser readings over 8 sectors 
at the front. The array of averages rather than the full array of 361 
values is then passed to the getSensorInfo method for 
processing. 

getCoords Gives the robot’s current x and y co-ordinates and its orientation. 

obstacleAvoid 
Avoids obstacles by either turning to the direction of the maximum 
laser or sonar reading, or turning away from the minimum reading. 

goFixedGoal Travel to a goal where the co-ordinates are known. (This method 
was only used for simulated robots during initial testing.) 

goNewGoal Travel to a discovered goal, (i.e. head through the gate).  

escapeTraps Used to free the robot when it has collided, is cornered or is standing 
still. 

explore  Wander around and examine the laser output until a goal is 
recognised. 

   
 
 
 
The main program allowed several different parameters to be set. Laser or sonar could 
be specified for obstacle avoidance, and in addition two methods were possible. The 
robot could move towards the maximum laser or sonar reading or move away from 
the minimum when it encountered an obstacle. The option of using laser readings 
averaged across sectors was also available. In addition, the robot could be set as 
simulated or real. For simulated robots the goal could be set as known (for code 
testing purposes) or as unknown. However, the goal was always set as unknown when 
using real robots. The control program architecture is simplified and illustrated in 
figure 12. 
 
 
4.3.1. Explanation of methodology 
 
Processing of the sensor information, (sonar or laser) yielded a minimum reading and 
its position, the position of the maximum reading and the average of all the readings. 
The minimum reading was used to detect a collision and the average reading was used 
to check that there was no corner entrapment, see figure 13. If either situation was 
detected the robot was sent into trap escape mode. If neither were detected then a 
Robot class method was assigned according to table 3 below. 
 

Table 2 – Public Robot class methods 
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Method Assignment conditions 
explore If goal is not known and minimum sensor reading is above or 

equal to a tolerance value 
goNewGoal If goal is known and minimum sensor reading is above or equal 

to a tolerance value 
obstacleAvoid If minimum sensor reading is below a tolerance value 

 
 
 
 
 
In obstacle avoidance mode either the minimum or maximum sensor positions 
determined the steering angle and speed. For example a minimum position directly in 
front required a greater turn and slower speed than one towards the side. As minimum 
positions at the two sides (i.e. from sonar 0 and 7) did not present serious problems, 
these readings were not considered when computing the minimum. Table 4 below 
shows the fixed linear and rotational velocities used with each strategy. 
 
 
 
 

create robot; 
connect to robot; 
 
DO forever 
{ 
 IF one second has passed  
  { 
   get position; 
   IF goal reached stop; 
   work out distance travelled; 
   get maximum / minimum sensor positions and minimum 
   reading; 
   IF no collision AND not cornered 
    { 
     IF minimum reading < tolerance avoid obstacles; 
     IF minimum reading > tolerance AND goal found head for 
     goal; 
     IF minimum reading > tolerance AND goal not found explore; 
    }  
  } 
 IF distance travelled zero OR collision occurred OR robot 
  cornered 
  { 
   escape trap; 
  } 
}  

Table 3 – Mapping of methods to conditions 

Figure 12 – Control program architecture 
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Turn towards 
maximum sensor 

reading 

Turn away from 
minimum sensor 

reading Position  
Angle 

(Degrees) 
Speed 

m/s 
Angle 

(Degrees) 
Speed 

m/s 
0 30° 0.05 - - 
1 20° 0.05 -20° 0.10 
2 10° 0.10 -30° 0.05 
3 0° 0.10 -45° -0.10 
4 0° 0.10 45° -0.10 
5 -10° 0.10 30° 0.05 
6 -20° 0.05 20° 0.10 
7 -30° 0.05 - - 

 
 
 
 
 
 
 

Sector Laser positions 
0 315 - 360 
1 270 - 314 
2 225 - 269 
3 180 - 224 
4 135 - 179 
5 90 - 134 
6 45 - 89 
7 0 - 44 

 
 
 

 

 
 
 
 
 
Laser obstacle avoidance worked on the same principle as sonar, i.e. the same steering 
angles and speeds were used. However, as there are 361 readings, the positions were 
divided into 8 sectors corresponding to the sonar positions, see table 5. In addition, the 
maximum and minimum of all laser readings or averages across each of the 8 sectors 
were possible. Following obstacle avoidance the public found_goal property of the 
Robot object was reset to false so that the goal needed to be rediscovered, (see 
Appendix H).  
 
Under the goNewGoal method the robot moved at maximum speed, computing the 
distance travelled since the goal was found. This was for stopping purposes and also 
so that the obstacle distance tolerance could be reduced on approach to the gate posts 
to prevent the robot going into obstacle avoidance mode.  
 
 
 

Table 4 – Speeds and angles used in the two different obstacle avoidance strategies 

Table 5 – How the laser readings were 
divided into sectors 

Figure 13 – Showing how 
average front sensor readings 
reduce when the robot is 
trapped in a corner 
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In explore mode the robot wandered around searching for a goal. Recognition of the 
gate as the goal was achieved by extracting the two maximum changes in the laser 
readings and their angular positions. Computation of an estimate for gap distance was 
given by: 
 

)cos2()( 22 θxyyxd −+= ,  
 
where x and y are the lower valued laser readings before the change and θ is the angle 
between them, see figures 14a – 14d. The gap estimate was compared with the known 
figure, using a tolerance value of 0.4 metres derived from experimentation. Note that 
depending on the robot's position, the gate width could be estimated as any of the 
lines d shown in figures 14a –14d (or their mirror images), and the tolerance had to 
allow for this. Although the shape of the gate yielded 4 large changes in reading, 
maximum changes at positions a1 and a2 or b1 and b2, (see figure 1), did not record a 
goal as the gap estimate was too small.  (Maximum changes at positions a2 and b1 

showed the gap as in figure 14a, positions a1 and b2 as in figure 14b, positions a1 and 
b1 as in figure 14c and positions a2 and b2 as in figure 14d.) N. B. The private method 
getDistance in the Robot class ensured that the lower values at the change points 
were used for x and y in each case. 
 
If the gap estimate did not approximate the known gate width then the gap was 
assumed to be something other than the gate and the robot carried on exploring. If a 
match was achieved then other checks were enforced, including that the two 
maximum changes were greater than a tolerance value and that the difference between 
them was less than another threshold. After passing these tests the goNewGoal 
method was invoked and the public found_goal property of the Robot object was 
set to true.  
 
An estimate of the distance, h to the gate was given by: 
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where φ is the side angle between x and d (see figures 14a – 14d), and h is the line 
from the robot origin that cuts d in half.  
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Figure 14a Figure 14b 

Figure 14c Figure 14d 

Figures 14a – 14d – Showing the different estimates of the gate width, depending on which laser 
paths produce the maximum change in reading. N. B. The robot is shown in the same position 
for simplicity, but in reality its position would have to vary to obtain different maximum change 
points. Mirror images of the line d are also possible. 
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The approximation for h and the estimate of the distance travelled were used as the 
stopping criteria. In order to move in the direction of the goal the robot was oriented 
towards the centre of the gate, i.e. was turned by µ degrees where 
 

ωπγµ −−=
2

, 

 
and ω is the angle between the left hand laser beam and the line h in figures 14a – 
14d, calculated from  
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γ is the array number of the left hand maximum change in the laser readings.  
 
If a goal was not detected the robot wandered at maximum speed, i.e. the private 
wander method of the Robot class was invoked. Wander mode presented a choice of 
exploration (random turn) and exploitation (turn towards the maximum sensor 
reading) strategies. Random numbers were used both to assign strategies and to 
choose a random turn angle between –45° and 45°. The random element was added 
because exploitation strategies are not always optimal, but this made the method 
rather ad hoc due to the fact that random directions can be good or bad. A 60% chance 
of choosing the exploration strategy and a 40% chance of choosing the exploitation 
strategy were coded, as the robot’s priority was to explore new directions rather than 
maintain a safe path. (Future research could examine the effect of varying the 
probability ε of choosing a random direction. However, Kaelbling et al. [29] have 
noted that there is no technique that adequately resolves the trade off between 
exploration and exploitation strategies for complex problems.) 
 
The escapeTraps method was used to reverse the robot initially and then to send it 
into wander mode at zero speed. This meant that it could use either the exploration or 
exploitation strategy to free itself from becoming cornered or stalled. 
 
 
4.3.2. Experimental procedures for the simulator 

The aim was to solve the short-term goal-seeking problem described in section 1.1. 
The goalseek code was run 90 times for each of the 6 different obstacle avoidance 
strategies, (turning towards the maximum sensor reading and turning away from the 
minimum sensor reading for each of sonar, single laser and average laser readings), 
i.e. the program was run 540 times in all. For each strategy 6 different starting 
positions, (see figure 15) and 5 different orientations were used, (0°, 45°, 90°, 135° 
and 180°). The start locations were selected as a representative sample covering the 
lower quarter of the pen. (Higher positions were not selected since pre-trials had 
shown that goal discovery was too difficult when high up and close to the edges.) The 
robot was allowed to explore for 3 minutes before being stopped. If it was successful 
in its task the time taken was noted. If it was unsuccessful the causes were recorded, 
(see table 6).  The robot was not stopped as soon as it failed, hence multiple causes for 
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failure were possible. N. B. Throughout this research, the maximum allowed speed 
was 0.17ms-1 and all significance testing was at the 95% confidence level using a t-
test. 

 
 

Code Unsuccessful outcome 

1 
Passed through the gate but did not know the goal had been reached and did not 
stop. However, passed through the gate and stopped later. 

2 
Passed through the gate but did not know the goal had been reached and did not 
stop. Did not pass through the gate and stop later. 

3 Passed through the gate the wrong way and stopped. 

4 Passed through one of the gaps XA or BY, see figure 1. 

5 Became trapped and could not escape. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
4.3.3. Simulator results   
 
Tables 7, 8a and 8b below summarise the experimental results using the simulator. 
During pre-trials it was found that success was very heavily dependent on the correct 
choice of the following free parameters. (In fact this was true for all codes tested as 
part of this research, both in the simulator and in the physical domain.) 

 
d - The tolerance for the distance between the robot and an obstacle. When this was 
too small collisions with the gate posts and walls were frequent and the robot often 
got trapped.  
a - The tolerance for the average of the sensor readings, used for escaping from the 
corners of the pen. Increasing this effectively caused the robot to back up further. 

Table 6 – Unsuccessful outcomes for the simulator 

Figure 15 – Start positions for 
the virtual robots 
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r - By how much d was reduced on approach to the gate.   
p - The proximity to the gate when the reduction in r was made. Increasing this gave 
the robot a higher chance of success. 
s - The small number representing the distance between an obstacle and the robot 
after a collision, (used for escaping traps). 
 
 

 
 Table 7 – Frequency of reasons for failure using the simulator 

Table 8a – Summary of statistics for time to pass through the gate using the 
simulator 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 19.97 5.87 1.07 22.07 17.86
Sonar - turn towards max 18.23 2.51 0.46 19.13 17.33
Laser - turn away from min 20.87 5.82 1.06 22.95 18.78
Laser - turn towards max 19.33 6.10 1.11 21.52 17.15
Laser (averages)  - turn away from min 22.10 11.50 2.10 26.21 17.99
Laser (averages) - turn towards max 20.23 9.76 1.78 23.73 16.74

All experiments 20.12 7.62 0.57 21.24 19.01
All sonar experiments 19.10 4.60 0.59 20.26 17.94
All single reading laser experiments 20.10 6.01 0.78 21.62 18.58
All average reading laser experiments 21.17 10.71 1.38 23.88 18.46
Turn away from min strategy 20.98 8.22 0.87 22.68 19.28
Turn towards max strategy 19.27 6.85 0.72 20.68 17.85

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 86 4 96% 4% 14.33 1.11 0.45 15.22 13.45
Sonar - turn towards max 86 4 96% 4% 14.33 0.75 0.30 14.93 13.74
Laser - turn away from min 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29
Laser - turn towards max 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29
Laser (averages)  - turn away from min 87 3 97% 3% 14.50 0.50 0.20 14.90 14.10
Laser (averages) - turn towards max 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29

All experiments 523 17 97% 3% 14.53 0.69 0.11 14.75 14.30
All sonar experiments 172 8 96% 4% 14.33 0.94 0.27 14.87 13.80
All single reading laser experiments 176 4 98% 2% 14.67 0.47 0.14 14.93 14.40
All average reading laser experiments 175 5 97% 3% 14.58 0.49 0.14 14.86 14.30
Turn away from min strategy 261 9 97% 3% 14.50 0.76 0.18 14.85 14.15
Turn towards max strategy 262 8 97% 3% 14.56 0.60 0.14 14.83 14.28

NUMBER OF PASSES FOR EACH [x,y] POSITION

95 % CONFIDENCE 
INTERVAL

SUMMARY

CODE
FREQ 

(causes of 
failure)

% FREQ 
(all failed 

trials)

% 
FREQ 

(causes of 
failure)

1 2 12% 7%
2 12 71% 43%
3 2 12% 7%
4 1 6% 4%
5 11 65% 39%

Table 8b – Summary of statistics for number of successful passes through the gate for each start 
position using the simulator 
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For example, when using d = 0.4 metres for laser obstacle avoidance the robot 
occasionally came too close to the bottom of the pen and then went into escape mode. 
Having freed itself it detected a goal but could not turn by the computed angle as it 
did not have enough room. It consequently began to head towards a false goal on the 
right hand side. However, changing d to 0.5 metres overcame this problem. Adequate 
parameter choice is not particular to this research, it is an important issue in mobile 
robotics, for example Krautmacher and Dilger [4] found that their AIS code was 
heavily dependent on the choice of free parameters used. 
 
As no reliable and fast method for determining truly optimum values was readily 
available, trial and error was used to determine reasonable values that appeared to 
produce good results. Table 9 below shows the values that were used: 
 
 

Parameter Value (m) 
d 0.50 
a 0.65 
r 0.45 
p 0.85 
s 0.10 

 
 
Tables 8a and 8b show that the pass rate was very good over all the experiments, with 
the robot taking an average of just 20 seconds to pass through the gate and failing to 
get through it in only 17 out of 540 trials. As expected, in terms of the mean number 
of passes for each position and the time taken to pass, there was no significant 
difference between using the laser and sonar sensors for obstacle avoidance. This is 
because the simulator provides an ideal environment and does not highlight the real 
world drawbacks associated with using sonar. (In the real world readings include 
noise and this problem is particularly severe with sonar where for example multiple 
reflections of ultra sonic waves can cause false readings.) In addition, although the 
world is highly confined there were many starting positions for which the robot did 
not need to go into obstacle avoidance mode. For example, in most cases when 
starting at 90°, all it had to do was discover the goal, shift its orientation slightly and 
keep going. 
 
The confidence intervals in tables 8a and 8b also show that the use of the minimum or 
maximum average laser reading across the sectors produced no significant difference 
to using a single maximum or minimum reading from each sector. Again, this can be 
attributed to the idealised environment.  
 
Additionally, there was no significant difference between the two strategies, turning 
towards the maximum reading or turning away from the minimum reading. This was 
in terms of the mean number of passes and task time. However, observations showed 
that the strategy of turning away from the minimum sensor reading was superior for 
the sub-task of avoiding obstacles as maximum readings were often orientated straight 
ahead when obstacles were to the side, meaning that the robot made no turn and hence 
collided with the side objects. 
 
Table 7 shows the frequency of causes of failure. (This figure is then shown as a 
percentage of the total number of failed trials, (17) and the total number of causes of 

Table 9 – 
Reasonable 
parameter values 
determined 
during pre-trials 
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failure, (28).) The most frequent reason for under performance was the robot locating 
its goal and heading towards it but coming in too close to one of the posts and going 
into obstacle avoidance mode so that after passing through the gate it did not stop. 
This occurred in 71% of all failed trials and was usually the primary reason for 
failure. The problem was anticipated when developing the control code and is the 
reason for the introduction of parameters, r and p.   
 
Entrapment usually occurred in the more confined top end, i.e. once the robot had 
already failed by passing through the gate without stopping. Whilst the robot was 
good at freeing itself from the corners of the pen, it had difficulty navigating through 
the tight gaps XA and BY, see figure 1, (although success was achieved in some 
instances). If it attempted to navigate through at an angle the sensors would often 
detect that it was too close to the wall or post and it would go into escape mode. Here, 
escape mode proved inadequate with the robot tending to back into the wall and 
remain trapped. In subsequent tests reducing parameters a and s enabled more 
effective navigation of these gaps but made escape from the pen corners more 
difficult. There are two issues here. First, travelling backwards to escape traps in the 
first instance is not always a good strategy. Whilst it is useful for escaping from the 
corners, it is ineffective for navigating through tight spaces. Second, there is clearly a 
trade off between setting useful parameters for steering through small gaps and for 
escaping from the pen corners. (Chapter 6 describes an adaptive control architecture 
that provides a satisfactory method for tackling these two different situations.) 
 
Most of the problems occurred when starting orientations of 180° and 0° were used, 
or when positions closer to the left and right edges of the pen were chosen. This is 
intuitive since the robot was facing away from the goal at these angles and was more 
susceptible to collisions when close to the side. In addition, the turn angle for  goal 
alignment was also generally greater when starting at 180° and 0°, which led to 
misalignment in some instances. (N. B. These orientations and positions proved the 
most troublesome throughout all experiments, i.e. with all codes and both in the 
physical world and with the simulator.) 
 
In some cases, despite the use of several checking mechanisms, the robot headed 
toward a false goal. Sometimes this led to task failure, although in other cases it 
simply went into obstacle avoidance mode or escape mode on reaching the false goal, 
and was subsequently able to complete the task. The phenomenon was due to slight 
discrepancies between the computed turn angles and those executed by the robot, (see 
section 4.3.5) and meant that instead of passing through the centre of the gate, it 
veered off course. The problem was more serious when the approach to the goal was 
steep and the robot was further away, as a slight change in turn produced a greater 
deviation from the intended path.  (Chapter 5 describes an amended version of 
goalseek, which helps to solve this problem.) 
 
 
4.3.4. Experimental procedures for the physical robot 
 
The bottom of the pen was divided into 8 equal sized start areas, (see figure 16). The 
goalseek code was set up to solve the short-term goal-seeking problem and run with 
the physical Pioneer at approximately 0º, 90º and 180º orientations in each of the 
areas. Again, these positions were selected as a representative sample covering the 
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lower quarter of the pen. The time to complete the task or reason for failure was noted 
in each case. In all experiments involving the physical domain the robot was stopped 
if a collision with one of the posts was anticipated, as it was not fitted with a front 
bumper and the posts were not fixed to the floor. This meant that only 1 reason for 
failure (see table 10) was recorded. Parameters were set as in table 9, except where 
stated differently in section 4.3.5. The maximum number of successful outcomes for 
each area was 3, but results tables show this figure scaled to 15 for comparison with 
the simulation results. 
 
 

Code Unsuccessful outcome 

1 Robot would have hit one of the posts in “travel to discovered goal” mode 

2 Robot would have hit one of the posts in “explore” mode 

3 Robot went into obstacle avoidance mode on approach to the goal  

4 Robot failed to find the goal and passed through without stopping  

 
 
 
 
 

 
 
 
 
 

Table 10 – Unsuccessful outcomes for the real robot 

Figure 16 – The start areas used in the real world  
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4.3.5. Physical robot results 
 
The code was initially tested using single laser readings and the strategy of turning 
away from the minimum reading. However, as the failure rate proved extremely high 
(71%) further testing with the code as it stood was abandoned. (It was expected that 
other obstacle avoidance strategies would not fair any better since it is well 
documented that laser out performs sonar in the real world and the strategy of turning 
to the maximum reading proved inferior in the simulator.) 
 
The high fail rate was chiefly due to the robot performing inaccurate turns towards the 
goal. The angles were correctly computed but the actual orientations executed differed 
from those calculated. With physical robots there are often errors in carrying out 
motor commands due to imprecise odometry, slippage between the wheels and floor, 
and uneven terrain. Furthermore, delays between sensing and acting (0.2 seconds for 
Pioneers, [33]) means that turns (even when executed accurately) can be made too late 
if the robot is continually moving. Any small rotational errors can lead to large 
translational errors and there is also the added problem of sensor noise, which can 
mean that even the computed angles are not exact. 
 
Here, the difference between the computed and actual turn was usually great enough 
to prevent the Pioneer from aligning with the centre of the goal. The discrepancy was 
approximately proportional to the angle of turn itself, although other factors such as 
the presence of grates on the floor also contributed. Brooks reported a similar 
phenomenon in [38]. When commanded to turn through an angle α his robots actually 
turned by α  + δα. In addition, Ambastha et al. [47] calculated the imprecision of their 
estimated goal location by examining the size of the computed turn angle. (If the 
imprecision was low their robots were more likely to move to the target.)  
 
In the simulator there were differences between the actual and computed turns but 
they were very small, meaning that the virtual robot could achieve a 97% success rate. 
(The main discrepancy in the simulator is the controller’s assumption that the robot 
executes a command every second exactly. Since the robot is instructed with angular 
speeds not specific turn values, the slight variation in execution time causes the 
differences.) The virtual robot only failed when turn angles were very large, causing it 
to approach the goal too close to the posts, go into obstacle avoidance mode and pass 
through without stopping (see section 4.3.3). 
 
In order that goalseek could be tested on the real robot the code was amended to 
compute the difference between the actual turn and that calculated and to make an 
appropriate correction. The program was then run 24 times for each of the obstacle 
avoidance strategies. Results showed that the fail rate went down to 30% but 
innacurate turns were still the primary cause of failure. This was because the angular 
adjustments needed were quite often too small for the robot to execute them 
accurately, although they were large enough to cause misalignment. In addition, large 
adjustments caused the robot to spin indefinitely, continually trying to correct itself. It 
is worth noting that the real robot also under performed in comparison to the 
simulator since it was not allowed to continue after making errors (such as heading 
towards one of the posts). The virtual robot was permitted to carry on after collisions 
and was often able to solve the problem subsequently. 
 



 42 

When using sonar, the obstacle tolerance value, d had to be reduced from 0.50 metres 
to 0.40 metres to help prevent the robot from going into obstacle avoidance mode on 
approach to the gate. The sonar sensors read distances as smaller than the laser in the 
real world, probably because the laser is positioned approximately 10 cm back from 
the anterior of the robot. The effects are illustrated in figure 17 below. 
 
When the PlayerViewer image was produced the robot was just in front of the gate. 
The minimum reading was caused by the presence of the left post and was given as 
0.426 metres by the sonar and 0.564 metres by the laser.  If the tolerance had been set 
at 0.50 metres in sonar mode the robot would have gone into obstacle avoidance mode 
on approach to the gate.  
 

 
 
In addition, the obstacle avoidance strategy of turning towards the maximum reading 
did not work well using sonar with the real robot. This was due to large inaccuracies 
in the readings, which often suggested a safe path but in reality caused the robot to 
push against the boundaries of the pen and move them. To avoid damage to the robot 
and its world, testing using sonar with this method was discontinued. The 
PlayerViewer images in figure 18 below illustrate the problem and show that it was 
not an issue in the simulator, where sonar readings were reasonably accurate. The 
purple lines correspond to the edge of the pen, as seen by the laser. 
 
In the real world sonar can often produce unexpected readings and it is not unusual for 
two identical sensors to demonstrate sensitivities that can differ by as much as a factor 
of 2, [20]. In addition there are many angles for which the beam can bounce around 
(acting as if objects were mirrors) before returning to the emitter. This is known as 
secondary reflection and is a major cause of false high readings, [49].  

Figure 17 – PlayerViewer 
image showing how the 
minimum sensor reading is 
smaller for sonar. (False high 
sonar readings can also be 
seen.) 

Position of left 
post 

Sonar ray 

Laser rays 



 43 

 

 
 
 
 
 
 
Different materials can also respond differently, for example some woods can absorb 
the entire signal making it appear as if there is no object present [20]. Here, it was 
likely that metal bolts holding the pen panels together caused the problem. Indeed, 
when an identical Pioneer robot was positioned as shown in figure 18, the sonar 
output was very similar, with sonar 2, 5 and 6 also showing false high readings. 
 
There was no problem with the strategy of turning towards the maximum reading 
when the laser was used for obstacle avoidance on the real robot. This is because the 
laser beam is more highly focused and is not as readily distorted or absorbed by the 
reflecting medium as sonar. Laser generally gives far fewer false positive readings.  
 
 

 
 
 
 
 
 
Tables 11, 12a and 12b summarise the reasons for failure, task completion times and 
success and failure rates for the real robot. Table 11 shows that the imprecision of the 
turns, causing the robot to approach a post rather than the centre of the gate caused 
67% of all failures.   
 

Figure 18 – Inaccurate sonar readings in the real world (left) compared 
with more precise readings in the simulator (right) 

Table 11 – Frequency of reasons for failure using the real robot 

CODE FREQ % FREQ

1 24 67%
2 9 25%
3 3 8%
4 0 0%

PHYSICAL ROBOT SIMULATOR 

False sonar reading 
Edge of pen as shown 
by laser output 
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Tables 12a and 12b below show that there was no significant difference between any 
of the obstacle avoidance strategies in terms of both task completion time and success 
rate. Although laser was expected to perform better than sonar in the real world, it is 
likely that the more serious problem of performing turns inaccurately overshadowed 
any differences that might have existed. Furthermore, the incompatability of the sonar 
sensors with the strategy of turning towards the maximum reading is evidence for the 
superior accuracy of the laser sensor. 
 
Comparison of table 8a with table 12a shows that there was no significant difference 
between task completion time for the simulator and the real robot, with both 
averaging about 20 seconds over all experiments. However, tables 8b and 12b show 
that in terms of success rates the simulator performed significantly better than the 
physical robot. The average number of successful passes for each position was 14.5 in 
the simulator, compared with 10.5 for the real robot. This is intuitive since the 
simulator represents an idealised environment with executed turns matching those 
calculated much more closely. In addition the robot was allowed to continue 
following collisions in the simulator. 
 

 
 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 18.54 3.85 0.93 20.37 16.71
Laser - turn away from min 19.58 6.49 1.67 22.87 16.30
Laser - turn towards max 19.67 5.02 1.26 22.13 17.21
Laser (averages)  - turn away from min 21.54 9.04 2.19 25.84 17.24
Laser (averages) - turn towards max 20.69 9.89 2.27 25.13 16.24

All experiments 20.00 7.45 0.81 21.60 18.41
All sonar experiments 18.54 3.85 0.93 20.37 16.71
All single reading laser experiments 19.63 5.78 1.04 21.66 17.59
All average reading laser experiments 21.11 9.51 1.59 24.22 18.01
Turn away from min strategy 19.89 6.98 1.00 21.84 17.93
Turn towards max strategy 20.18 8.05 1.36 22.85 17.51

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

Table 12a – Summary of statistics for time to pass through the gate using  
the real robot 

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser - turn away from min 75 45 63% 38% 9.38 3.00 1.06 11.45 7.30
Laser - turn towards max 80 40 67% 33% 10.00 3.54 1.25 12.45 7.55
Laser (averages)  - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser (averages) - turn towards max 95 25 79% 21% 11.88 2.42 0.86 13.55 10.20

All experiments 420 180 70% 30% 10.50 3.12 0.49 11.47 9.53
All sonar experiments 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
All single reading laser experiments 155 85 65% 35% 9.69 3.29 0.82 11.30 8.07
All average reading laser experiments 180 60 75% 25% 11.25 2.80 0.70 12.62 9.88
Turn away from min strategy 245 115 68% 32% 10.21 3.05 0.62 11.43 8.99
Turn towards max strategy 175 65 73% 27% 10.94 3.17 0.79 12.49 9.38

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]

95 % CONFIDENCE 
INTERVAL

SUMMARY

Table 12b – Summary of statistics for number of successful passes through the gate for each start position 
using the real robot 
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The next section describes a change to the architecture of the goNewGoal method in 
the Robot class. This allowed much better results to be achieved, both with the 
simulator and the real robot. 
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5. The amended goalseek code 
 
5.1. Description of amendments 
 
An amended version of goalseek was created to overcome the problems described 
in section 4.3.5. Here turn angles were re-assessed when the robot was a quarter of the 
way towards the goal. After the initial goal detection and turn the robot was required 
to re-discover the goal in order to make the turn calculation once again. As it was 
heading in the correct general direction when this re-discovery took place, a new 
public boolean variable onPath was created and set to true. This allowed the 
exploratory part of goal seeking, (with random and often large turns) to be suppressed 
and meant that the robot carried on along the current vector, thus being able to re-
discover the goal quickly and easily. Furthermore as the robot was on the right course 
and was closer to the goal, the new calculated turn was small and hence differences 
between actual and calculated turns was slight. Once the obstacle tolerance was 
reduced (when the robot was 0.85 metres from the gate), goal re-discovery was not 
undertaken. This meant that the required orientation was recalculated approximately 
three times, depending on the distance between the robot and the goal when it was 
initially discovered. The re-alignments allowed the robot to meet the goal much more 
squarely and closer to the centre. This also helped to prevent it from going into 
obstacle avoidance mode on approach to the gate, as it was kept away from the posts. 
Turn corrections were still allowed but if they were greater than 1.5˚ they were not 
implemented to prevent the physical robot from spinning continuously. 
 
It is important to note that although this work is described as an amendment to 
goalseek, all alterations were carried out on the Robot class code that it interfaces 
with. In particular the public goNewGoal and explore methods were extended. This 
meant that the improvements were available for any other controllers that needed to 
make use of these methods, (for example the idiotypic learning code discussed in 
Chapter 6). 
 
 
5.2. Experimental procedures and results for the simulator 
 
Experimental procedures were carried out as described in section 4.3.2, with 
parameters set as in table 9. Tables 13a and 13b summarise the results using the 
amended code with the simulator. Comparison of tables 8a and 13a shows that overall 
there was no significant difference between completion time for the original 
goalseek and the new version. The amendments did not improve task speed. 
However, for the amended code the overall strategy of turning towards the maximum 
sensor reading was slightly faster than that of turning away from the minimum. This 
may have been because alignment with the maximum reading generally served to 
place the robot in a better position for goal discovery. Further tests should help to 
pinpoint whether this phenomenon was real. There were no other significant 
differences in terms of task speed. 
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Comparison of tables 8b and 13b shows that overall there was a significant 
improvement in success rate compared with the original version, in fact 100% success 
was achieved in the simulator with the new code. Since the pass rate was 100% there 
were no significant differences within the various obstacle avoidance strategies. 

 

 
 

 
 
 
The changes to the program overcame the chief weakness of the original code, i.e. the 
adoption of obstacle avoidance behaviour on approach to the goal was significantly 
reduced.  The re-calculations of the turn meant that once the robot was near the goal it 
was able to advance almost perpendicular to it and much closer to the centre, so the 
posts were rarely detected as obstacles. Furthermore, the virtual robot did not get 
trapped or stuck since it did not attempt to navigate through the side gaps from bottom 
to top and it always stopped once it had passed through the gate, hence there was no 
reason to have to navigate back down through them. 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 21.23 6.09 1.11 23.41 19.05
Sonar - turn towards max 19.20 2.14 0.39 19.96 18.44
Laser - turn away from min 21.03 5.01 0.91 22.83 19.24
Laser - turn towards max 19.33 2.20 0.40 20.12 18.55
Laser (averages)  - turn away from min 20.37 4.63 0.85 22.02 18.71
Laser (averages) - turn towards max 19.23 2.74 0.50 20.21 18.25

All experiments 20.07 4.18 0.31 20.68 19.46
All sonar experiments 20.22 4.68 0.60 21.40 19.03
All single reading laser experiments 20.18 3.96 0.51 21.19 19.18
All average reading laser experiments 19.80 3.85 0.50 20.77 18.83
Turn away from min strategy 20.88 5.29 0.56 21.97 19.78
Turn towards max strategy 19.26 2.37 0.25 19.75 18.77

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Sonar - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages)  - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00

All experiments 540 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All sonar experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All single reading laser experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All average reading laser experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Turn away from min strategy 270 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Turn towards max strategy 270 0 100% 0% 15.00 0.00 0.00 15.00 15.00

NUMBER OF PASSES FOR EACH [x,y] POSITION

95 % CONFIDENCE 
INTERVAL

SUMMARY

Table 13b – Summary of statistics for number of successful passes through the gate for each start position 
using the simulator 

Table 13a – Summary of statistics for time to pass through the gate using the 
simulator 
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5.3. Experimental procedures and results for the physical robot 
 
Experimental procedures were carried out as described in section 4.3.4, with 
parameters set as in table 9, except for the obstacle avoidance parameter, d, which had 
to be reduced to 0.4 metres for sonar as before. The strategy of turning towards the 
maximum reading was not tested using sonar because of the problems described in 
section 4.3.5. 
 
Tables 14, 15a and 15b summarise the experimental results using the amended 
goalseek code with the real Pioneer. The predominant cause of failure was an 
inability to discover the goal with 58% of all failures falling into this category. This 
compared with 0% for the original code. However, the new version required the robot 
to rediscover the goal approximately three times on approach so that turn angles could 
be re-assessed. Most of the ineffective trials were a result of failure to detect the goal 
the third time, (when the robot was very close to it). It thus passed through without 
stopping. The remaining 42% of unsuccessful trials were attributed to the robot 
adopting obstacle avoidance behaviour on approach to the goal when in sonar mode, 
even though the tolerance parameter, d was lowered to 0.4 metres for sonar. 
 
Table 15a shows that compared with the simulator task completion time was slightly 
slower (this was significant at the 95% level). This may have been due to differences 
between the time it takes to stop and restart in the two domains, as the speed is 
reduced when re-calculations of the turn are made. There were no significant 
differences between the various obstacle avoidance strategies in terms of task speed 
for this experiment.  
 

 
 
 
 
 

Table 14 – Frequency of reasons for failure using the real robot 

Table 15a – Summary of statistics for time to pass through the gate using the 
real robot 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 21.83 4.19 1.02 23.83 19.84
Laser - turn away from min 23.83 5.79 1.18 26.15 21.52
Laser - turn towards max 21.90 2.64 0.56 23.00 20.79
Laser (averages)  - turn away from min 22.13 4.44 0.91 23.90 20.35
Laser (averages) - turn towards max 21.19 2.93 0.64 22.44 19.93

All experiments 22.18 4.46 0.43 23.02 21.33
All sonar experiments 21.83 4.19 1.02 23.83 19.84
All single reading laser experiments 22.86 4.90 0.72 24.28 21.45
All average reading laser experiments 21.66 3.97 0.59 22.82 20.50
Turn away from min strategy 22.60 5.25 0.65 23.87 21.32
Turn towards max strategy 21.54 2.74 0.42 22.36 20.72

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

CODE FREQ % FREQ

1 0 0%
2 0 0%
3 5 42%
4 7 58%
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Table 15b below shows that overall the success rate was generally very good, with 
90% of runs resulting in accomplishment of goal detection and subsequent 
termination. This represents a significantly better total pass rate than the original code 
when used with real robots. However, it was not significantly better for sonar. The 
average fail rate over all laser experiments was 5% compared with 29% for sonar. 
(Sonar also had a 29% fail rate in the original code.) 
 
The main problem was that the goal had to be rediscovered when the robot had 
travelled a quarter of the way to it and all rediscoveries had to be made before the 
obstacle tolerance was reduced. (There must be a cut off point otherwise goal 
discovery would never be recorded.) When the robot tried to make the second or third 
re-discovery b1 and b2 or a1 and a2 (see figure 1) sometimes repeatedly held the 
maximum changes in laser reading, which meant that the goal was not found. This 
problem could have been exacerbated by non-adjustment of the current vector when 
searching for the goal. Slight dimensional differences between the real and simulated 
worlds could explain why this phenomenon was not prevalent on the simulator. 
 
Sonar did not fair better than in the original code, since it suffered both from the 
problem described above and the tendency to go into obstacle avoidance mode on 
approach to the gates, (see section 4.3.5 for a full explanation). 
 

 
 
 
 
 
 
Compared with the simulator the overall pass rate for the real robot was significantly 
less. This was primarily due to the under performance of sonar. When laser alone was 
considered there was no significant difference. 
 
The next section illustrates an idiotypic immune network controller, which is used to 
govern behaviour selection in response to environmental stimuli. The architecture is 
described and the results of tests using both the simulator and a real robot are 
presented. 

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser - turn away from min 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn towards max 110 10 92% 8% 13.75 2.17 0.77 15.25 12.25
Laser (averages)  - turn away from min 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) - turn towards max 105 15 88% 13% 13.13 3.48 1.23 15.54 10.71

All experiments 540 60 90% 10% 13.50 2.78 0.44 14.36 12.64
All sonar experiments 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
All single reading laser experiments 230 10 96% 4% 14.38 1.65 0.41 15.19 13.56
All average reading laser experiments 225 15 94% 6% 14.06 2.63 0.66 15.35 12.77
Turn away from min strategy 325 35 90% 10% 13.54 2.69 0.55 14.62 12.46
Turn towards max strategy 215 25 90% 10% 13.44 2.91 0.73 14.87 12.01

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]

95 % CONFIDENCE 
INTERVAL

SUMMARY

Table 15b – Summary of statistics for number of successful passes through the gate for each start position 
using the real robot 



 50 

6. The immune network code 
 
6.1. Motivation 
 
Behaviour based approaches allow a degree of intelligence to emerge from module 
interactions, but on their own they often lack adaptability and flexibility, [41]. For 
example Brooks’ subsumption architecture used a fixed priority scheme for selecting 
modules, [38]. However, as mobile robot navigation problems represent complex, 
non-linear systems and are hence difficult to model and predict, a rigid behavioural 
approach is often inadequate. 
 
In addition, engineering set responses to environmental stimuli in a top down manner 
(as with goalseek) can lead to deadlock and can produce systems that are hard to 
tune. For example, the robot can be programmed to reverse if there is a collision and 
go forward if the way ahead is clear. It is possible, (given the right environmental 
conditions), for the robot to get caught up doing this in a never-ending loop. A self-
maintaining and adaptive framework is clearly needed as the system must be able to 
cope with continuous environmental change, and should ideally demonstrate an overt 
approach (exploring alternatives) rather than merely assigning a current action (a tacit 
approach), [45].  
 
Idiotypic immune networks have recently been used as a behaviour mediation 
mechanism for mobile robot control, (see section 3.2.2 for a review). In such systems, 
the mapping of response to environmental stimuli is linked to affinities between them, 
past use and the network connections between the different behaviours, (the 
stimulatory and suppressive effects).  Dynamically changing affinities between 
environmental conditions and behaviour can also be obtained when reinforcement 
learning (or some form of evolutionary algorithm) is coupled with the approach. The 
resultant behaviour has been shown to be intelligent, adaptive, flexible and self-
regulatory. Furthermore, as each element interacts with others and contributes to the 
collective response there is no central control.  
 
An immune network system thus represents a genuinely autonomous and 
decentralised methodology, with adaptation to change occurring continuously, [42]. 
For this reason it is useful for application to problems such as autonomous robot 
navigation, where there is no single solution that suits all circumstances.  
 
 
6.2. Methodology 
 
6.2.1. Immune network analogy 
 
Following the work of Watanabe et al. [6, 41] and many other research groups that 
have linked immune networks with mobile robot control, environmental situations 
were modelled as the epitopes of antigens and responses to them were modelled as 
antibodies. An Antibody class was designed to interface with the controller, so that 
multiple Antibody objects could be created. The class had public double attributes 
strength, concentration and activation and a public double array 
paratope_strength to hold the degree of match (a value between 0 and 1) for each 
antigen. There was also a public integer array idiotope_match to hold disallowed 
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mappings (a value of 1 for a disallowance, 0 otherwise) between the antibody and 
each antigen and thus represent the idiotypic suppression and stimulation between 
antibodies. The behaviour of the robot in response to environmental conditions was 
hence analogous to external matching between antibodies and antigens and internal 
matching between antibodies. 
 
For solution of the short-term goal-seeking problem and comparison with the 
amended goalseek program the degrees of paratope matching were initially hand 
designed. They were allowed to change dynamically through reinforcement learning, 
(although this was expected to have little effect since solution time averaged less than 
23 seconds). Table 16 below shows the 9 antigens and 12 antibodies that were 
selected and the match values that were initially assigned. Positive matches are shown 
in yellow. The idiotope mappings were also designed by hand, but were not developed 
in any way. Table 17 shows the idiotope values used, with disallowed pairs shown in 
green.  
 

 
 
 
 

 
 

Table 16 – Initial paratope mapping 

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1 Slow right 20 1.00 1.00 0.00 0.25 0.50 0.00 0.00 0.50 0.50
2 Slow left 20 0.00 1.00 1.00 0.25 0.50 0.00 0.00 0.50 0.50
3 Fwd centre 0.50 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.75
4 Fwd left 20 0.00 0.75 0.75 0.50 0.00 0.00 0.00 0.00 0.25
5 Fwd right 20 0.75 0.75 0.00 0.50 0.00 0.00 0.00 0.00 0.25
6 Go to goal 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
7 Discover goal 0.00 0.00 0.00 0.50 0.00 0.00 1.00 0.00 0.00
8 Slow right 50 1.00 1.00 0.00 0.50 0.50 0.00 0.00 0.50 0.50
9 Slow left 50 0.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 0.50
10 Fwd left 40 0.00 0.75 0.75 0.75 0.00 0.00 0.00 0.00 0.25
11 Fwd right 40 0.75 0.75 0.00 0.75 0.00 0.00 0.00 0.00 0.25

Antigens

Antibodies

PARATOPE

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0 0 0 0 0 0 0 0 1
1 Slow right 20 0 0 1 0 0 0 0 0 0
2 Slow left 20 1 0 0 0 0 0 0 0 0
3 Fwd centre 0 1 0 0 0 0 0 0 0
4 Fwd left 20 1 0 0 0 0 0 0 0 0
5 Fwd right 20 0 0 1 0 0 0 0 0 0
6 Go to goal 0 0 0 0 0 0 1 0 0
7 Discover goal 0 0 0 0 0 0 0 0 0
8 Slow right 50 0 0 1 0 0 0 0 0 0
9 Slow left 50 1 0 0 0 0 0 0 0 0

10 Fwd left 40 1 0 0 0 0 0 0 0 0
11 Fwd right 40 0 0 1 0 0 0 0 0 0

Antibodies

AntigensIDIOTOPE

Table 17 – Idiotope mapping 
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Hand-designed mappings were used for the short-term problem as the code was 
required to compete with goalseek and there was not enough time to begin with a 
random matrix and develop it. In addition, beginning with a random matrix would not 
have been suitable for the physical robot. The hand-designed matrices were thus based 
on a common sense approach that would allow the robot to carry out its task safely. 
(Both Hailu [1] and Michaud and Matarić [33] recommended the use of initial safe 
sensor-behaviour mappings that should be allowed to change in response to learning.) 
 
It is worth noting that although the initial idiotope matrix was not developed in any 
way, the idiotypic results were still adaptive. The presence of suppressive and 
stimulatory forces was based on the static idiotope matrix but the scores awarded or 
deducted for these effects were taken from the dynamic paratope matrix. 
 
The constructor method of the Antibody class set the initial concentration level and 
here all antibodies were started with a concentration of 1,000. Table 18 below 
summarises the other public methods of the class and their functions. User 
documentation and a full code listing for the class are given in Appendices I and B 
respectively.  
 
 
Method Description of functionality 

matchAntigens Loops through the presenting antigen set and calculates the 
strength of match to it  

idiotypicEffects 
    

Adjusts the strength of match to the antigen set by 
considering idiotypic effects 

changeMatching  Alters the paratope_strength array values according 
to a scalar reward and penalty system based on performance 

setConcentration  Computes an antibody’s current concentration level  

setActivationLevel Computes an antibody’s current activation level  - 
(concentration * strength) 

 
 
 
Multiple antigens were allowed to present themselves simultaneously, but they were 
given an order of priority so that for every antigen set, one was deemed dominant. 
Table 19 shows the order of precedence. In the matchAntigens method a match 
with the dominant antigen was given greater weighting, i.e. the degree of matching 
was doubled when calculating the total strength of match to the presenting antigen set. 
For non-dominant antigens the degree of match was divided by 4 to weaken its 
weighting. The rationale behind this approach was that although the behaviour of an 
immune network is the result of collective interactions between antibodies, the one 
with the paratope that best fits the invading antigen is usually dominant [42]. 
 
The idiotypicEffects method adjusted the total strength of match to the antigen 
set, using the idiotope_match array to calculate idiotypic effects between 
antibodies. Here, stimulatory and suppressive effects were considered between the 
antibody with the initial highest strength of match (i.e. the “round one” winner, 
calculated using the matchAntigens method) and any other antibodies with positive 
strength of match scores for the presenting antigen set. A justification for this 
approach is that in learning classifier systems, which have been likened to immune 

Table 18 – Public methods of the Antibody class 
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networks [30, 45], classifiers with the highest levels of matching are the only ones 
that are allowed to compete to have their actions executed [45]. However, it should be 
stressed that all the antigens were considered when calculating the idiotypic effects, 
not just the presenting set. This combination worked best for producing “round two” 
winning antibodies that frequently differed from the “round one” winner. Suppression 
was taken as 75% of the value of the “round one” winner’s antibody match strength, 
whereas stimulation was at 100% of the stimulating antibody’s match strength, (see 
figure 20).  
 
 
 

Antigen Priority 
Average sensor reading > threshold Lowest 
Goal known 
Goal unknown 
Object left, object centre, object right 
Average sensor reading < threshold 
Robot stalled (collision) 

 

Path blocked behind Highest 
 
 
 
 
Explicit details for mechanisms like stimulation and suppression are scarce for the 
network theory [45]. Several models have been suggested, but each is different. 
Jerne’s original theory postulates that the entire network is connected, but it is 
reasonable to assume that the immune response should be limited to a localised region 
of antibodies, [44].   Chowdhury et al. [52] proposed that the immune system might 
consist of a number of networks of different sizes and connections and that there is 
probably interaction within these networks but not between them. 
 
 
6.2.2. Network dynamics 
 
The network dynamics govern how concentrations and molecular structures vary over 
time, [45]. Here Farmer’s equation (3.1) and squashing were used to govern 
concentration levels. Molecular structures were held constant, i.e. antibodies were not 
killed off and new ones were not introduced (using for example genetic algorithms). 
Selection was from the fixed 12 antibodies listed in tables 16 and 17 only. 
 
The initial strength of match to the presenting antigen set calculated in 
matchAntigens represented term 3.4 in Farmer’s equation, (see section 3.2.1). The 
alterations made in the idiotypicEffects method represented bringing in terms 
3.2 and 3.3, with k1 equal to 0.75. The setConcentration method completed the 
full equation (3.1) by multiplying the final calculated strength (i.e. terms 3.2 – 3.3 + 
3.4) by c and subtracting the damping term (natural death, term 3.5). This gave the 
increase in the antibody’s concentration, and here c and k2 were set at 40 and 10 
respectively.  New concentrations were then computed using the stored previous value 
and the calculated increase. The setActivationLevel method calculated the 
antibody’s activation level as its current strength multiplied by its concentration. 

Table 19 – Order of precedence for antigens 
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Many studies involving artificial idiotypic networks, for example [6] and [31], have 
used a squashing function to prevent concentrations of antibodies becoming too high 
or to keep the total number a constant. Studies with mice have suggested that an 
almost constant number of B-cells are active, so it is likely that there is a mechanism 
in nature that controls this, [43]. Here the total concentration was kept at 12,000 by 
the squashConc() method in the main control program, which divided each 
antibody concentration by the new total and multiplied by the initial total. 
 
During code development it was found that goal seeking often built up high 
concentrations of antibodies, and when coupled with other environmental messages, 
the “goal known” message could lead to selection of the goal-seeking antibody for 
this reason.  To eliminate this problem and ensure that the system was not too heavily 
dependent on concentrations and idiotypic effects a 50% chance of selecting an 
antibody as the winner of “round one” was used, (i.e. there was a 50% chance of 
selection being dependant upon strength of match only). This further ensured that a 
variety of strategies were available for all environmental situations and overcame the 
tendency of the idiotypic effects to over-suppress the “reverse” antibody. (This may 
have been caused by non-optimisation of the idiotope mapping in figure 17.) 
 
 
6.2.3. Reinforcement learning 
 
The initial paratope match array was allowed to develop dynamically by using a 
reinforcement learning technique. Successful implementation of an antibody in 
response to a given set of presenting antigens increased the degree of match to the 
dominant antigen, (a reward was given).  However, antibodies that were deemed 
unsuccessful had their degree of match to the dominant antigen and any concentration 
increase awarded as a result of winning deducted, (a penalty was issued). Reducing 
the concentration back down to its previous level is intuitive since useful rules should 
gain strength, not counter productive ones. In this model, concentration level 
represents memory and when bad decisions are made, forgetting is as important as 
learning [55] and allows exploration of new strategies to take place. Furthermore, in 
machine learning in general a careful balance between over fitting (keeping too much 
data) and under fitting (discarding too much data) must be maintained, [34]. 
 
Timescale for reward is very important. If it is too small the robot is not given enough 
time to respond and if it is too large new environmental situations may cause 
inappropriate feedback to be given, [35]. Here, antibodies were selected each second, 
so it was convenient to measure their performance against the dominant antigen half a 
second later. This was achieved by calling one of the reinforcement learning methods 
from the main control program. Table 20 summarises the functions of these 3 methods 
and lists the antigens that they were used with. 
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Method Description Used by 

dominant 
antigen 

Parameter values 
taken 

•  Average < t 1. New average 
2. Old average 

rewardAntibody 
 

Compares two 
parameters. If the 
first is greater the 
antibody is 
rewarded otherwise 
it is penalised. 

•  Robot stalled 
•  Blocked behind 

1. Distance travelled 
in half second 

2. 0.01 

•  Goal known 1. ID number of “go 
to goal” antibody 

rewardGoalKnown Rewards a 
particular antibody 
directly. This is 
similar to 
supervised 
learning. A penalty 
is awarded for any 
other antibody. 

•  Goal unknown 1. ID number of 
“discover goal” 
antibody 

rewardMinChange Takes four 
parameters. 
Compares the third 
and fourth. If the 
third is greater than 
the fourth the 
antibody is 
rewarded. It is 
penalised if the 
fourth is greater 
than the third and 
the first and second 
are the same. 

•  Object left 
•  Object centre 
•  Object right 

1. New minimum 
sensor position 

2. Old minimum 
sensor position 

3. New minimum 
sensor reading 

4. Old minimum 
sensor reading 

 
 
 
 
 
 
A heterogeneous scoring technique was used i.e. reward and penalty values were not 
fixed. The magnitude of the reward or penalty was 0.2 for rewardGoalKnown, twice 
the difference between the first and second parameters for rewardAntibody and 
twice the difference between the third and fourth parameters for rewardMinChange. 
As there was no easy way of scoring the antibody used when the antigen “average > 
threshold” was dominant (as this meant that everything was in order), it was scored in 
a reverse manner when “average < threshold”, “robot stalled”, “blocked behind” or 
the three “object present” antibodies were scored. For example if “forward centre” 
scored negatively when “robot stalled” was the dominant antigen, its strength of 
match for “average > threshold” was increased. Conversely, if “reverse” scored 
positively for “robot stalled”, it scored negatively for “average > threshold”. 
 
In [35] Matarić used reinforcement learning to control R2 robots conducting a 
foraging exercise. Part of the required behaviour was to grasp and drop pucks with 
their grippers. However, the grasping and dropping behaviours were hard coded and 

Table 20 – Reinforcement learning methods in the main control program 
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hence did not constitute part of the learning space. The reasons given were that these 
behaviours could be potentially damaging if the robot had to learn them and they were 
easily pre-programmed. Here goal-seeking and travelling to the goal once found were 
considered to be the most important behaviours. A compromise between hard-coding 
these responses and controlling them through the immune network and reinforcement 
learning was achieved by building the desired responses into the learning subroutine, 
rewardGoalKnown. This was similar to supervised learning in that the correct 
response was effectively given by incorporating it into the reward function. Thus, the 
robot had only to try these behaviours under the right environmental conditions once, 
and the scoring mechanism ensured that maximum mappings (i.e. values of 1) were 
written into the paratope-matching matrix. The robot hence “learned” to discover and 
travel to the goal in a matter of seconds. 
 
So that the use of reinforcement learning could be tested and paratope mappings could 
be developed from scratch, the goal-seeking problem was extended to a long-term 
exercise, where the robot was required to arrive at the goal as many times as possible 
in a given timeframe.  An initial paratope matrix with all values equal to 0.5 and 
another with random values between 0.5 and 0.75 were initially assigned, in order to 
see whether obstacle avoidance and gap navigation behaviours would develop through 
reinforcement learning after 45 minutes run time. In section 6.6 the resulting 
mappings and behaviours are discussed and some work on further evolution of the 
mappings through genetic algorithms is presented in section 6.7. 
 
 
6.2.4. Controller program structure 
 
Figure 19 shows pseudocode for the immunoid control program and table 21 
describes the controller’s methods. In figure 19 where a line of code represents a call 
to one of these methods the number is shown in red afterwards. 
 
Figure 20 summarises the architecture of the controller’s chooseAntibody method, 
which implements Farmer’s equation by interfacing with the matchAntigens, 
idiotypicEffects, setConcentration and setActivationLevel methods 
of the Antibody class. 
 
The Antibody objects were created with initial concentrations of 1,000 and were 
then declared as an array of antibodies. After the Robot object was created and 
connection was made, the paratope and idiotope arrays for each antibody (see tables 
16 and 17) were read in from files. The read-think-act loop of the controller checked 
every second for goal accomplishment, and if this was achieved stopped the program. 
Each second the distance travelled was computed and the sensor data was obtained 
and processed by calling the getSensorData method. The average and minimum of 
the sensor readings and the position of the minimum reading were stored for later use 
with the reinforcement learning methods. The getAntigens method was called to 
determine the set of presenting antigens and the dominant antigen and then the 
winning antibody was selected using the chooseAntibody method, see figure 20. 
 
Selection of the winning antibody was either a one or two stage process and involved 
selection of a “round one” winner based on strength of match. Fifty percent of the 
time there was also a “round two” winner based on concentration levels and idiotypic 
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interactions between the “round one” winner and other antibodies with positive 
strength of match values. An appropriate action was thus carried out each second, 
governed by the chosen antibody. Half a second later the distance travelled was 
recalculated and the sensor data was re-processed so that the winning antibody could 
be scored by comparison with the saved environmental data and paratope arrays could 
be adjusted according to performance. The concentration levels were then re-squashed 
(initial squashing occurred in the chooseAntibody method) since they might have 
been altered as a result of any penalty awards. The updated paratope mappings were 
output to a file every 5 seconds. 
 
 
No Method Description 
1 getAntigens Uses sensory data to detect which antigens are present and 

writes the results to a binary integer array. Determines the 
dominant antigen and stores its ID number. The dominant 
antigen is determined using the priority ranking illustrated 
in table 19.  Uses the rear sonar to determine the presence 
of the “blocked behind” antigen. 

2 getMax Loops through the antibodies to find the one with the 
highest strength (round one) or activation (round two).  

3 chooseAntibody Implements Farmer’s equation. Loops through the 
antibody array, matching the paratopes to the presenting 
antigens. Calls getMax to determine the antibody with the 
highest strength. 
Loops through the antibody array, considering idiotypic 
effects once the antibody with the highest strength has 
been determined. Sets the concentrations by calling the 
setConcentration method of the Antibody class. 
Squashes the concentrations. Calls getMax to determine 
the antibody with the highest activation. See figure 20 for 
pseudocode. 

4 processSensorData Calls the getSensorInfo or getLaserArray method 
of the Robot class, using the appropriate parameters for 
sonar, single laser or averaged laser readings. 

5 getDistance Calculates distance travelled by calling the getCoords 

method of the Robot class and using Pythagoras’ 
theorem. 

6 getInitialMatches Reads in an initial paratope matrix and an idiotope matrix 
from a file at the start of the program. 

7 updateMatches Writes the updated paratope matrix (after reinforcement 
learning) to an output file. 

8 getRandomMatches Generates a random initial paratope matrix and reads in an 
idiotope matrix. 

9 squashConc Keeps the total antibody concentration at a constant value. 
10 rewardAntibody 
11 rewardGoalKnown 
12 rewardMinChange 

Reinforcement learning methods - see table 20 for a  full 
description. 

 
 
 
 

Table 21 – Main controller methods and their functions 
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6.2.5. Changes to the Robot class 
 
Rear sonar processing was introduced to test for the presence of the “blocked behind” 
antigen. The public getSensorInfo method of the Robot class was given a new 
boolean parameter rear to indicate whether the back sonar should be included in the 
data array. The getAntigens method of the main program called getSensorInfo 
with rear set to true to test whether the minimum sonar value was coming from 
behind. 

create antibodies and set initial concentrations to 1000; 
declare array of the antibodies; 
 
MAIN METHOD:  
 
create robot; 
connect to robot; 
read-in initial paratope and idiotope matches for antibodies;      (6 or 8) 
 
           
DO forever 
{ 
 IF one second has passed  
  { 
   IF goal reached stop; 
   work out distance travelled this second;    (5) 
   set co-ordinates for next cycle; 
    
   process sensor data;        (4) 
   store average, minimum position and reading for sensors; 
    
   detect antigens present and dominant antigen;    (1) 
   choose winning antibody using Farmer’s equation;   (3) 
   execute appropriate action for winning antibody;   
  } 
 IF half second has passed AND one second has already passed 
  {  
   work out distance travelled since it was last calculated;      (5) 
               
   process sensor data;        (4) 
   reward or penalise winning antibody using reinforcement  
   learning;            (10, 11 or 12) 
  } 
 squash antibody concentrations;       (9) 
 IF five seconds have passed  
  { 
   write updated paratope matrix to a file;     (7) 
  } 
}  

 

Figure 19 – Pseudocode for the main immunoid control program 
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In addition a new method steerRobot was added to the Robot class to control the 
speed and angles for antibodies 0-5 and 8-11 in table 16, for example steerRobot 
(0.03, 20) for “Slow left 20”. This method also prevented the robot from 
exceeding the maximum allowed speed of 0.17ms-1.  
 
N. B. Antibody 6 used the goNewGoal method of the Robot class and antibody 7 
used the explore method. The amended versions of these methods (i.e. with goal 
rediscovery) were used with immunoid in all cases, see section 5.1. 

 
 

6.3. Experimental procedures and results for the simulator 
 
Experimental procedures were carried out as described in section 4.3.2 and parameters 
were set as in table 9. Response to obstacles was governed by the immune network 
with steering angle dependent on the antibody selected, thus there were only three 
different obstacle avoidance strategies for the immunoid experiments, (laser, sonar 
and averaged laser). 
 
Comparison of tables 13a and 22a shows that there was no significant difference 
between overall task time for goalseek and for immunoid when the simulator was 
used, (both were approximately 20 seconds). In addition, there were no significant 
differences between the three obstacle avoidance strategies for immunoid. 
 
Table 22b shows that the pass rate for immunoid was identical to goalseek, i.e. 
100%. The similarity between results is not surprising since both codes interface with 
the same version of the Robot class and the task was too short for differences 
resulting from the accumulation of learning and memory to have any effect.  
 
 

 
 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 19.90 4.26 0.78 21.42 18.38
Laser 21.30 6.51 1.19 23.63 18.97
Laser (averages) 21.20 5.23 0.95 23.07 19.33

All experiments 20.80 5.45 0.57 21.93 19.67

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

Table 22a – Summary of statistics for time to pass through the gate using the 
simulator 

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00

All experiments 270 0 100% 0% 15.00 0.00 0.00 15.00 15.00

NUMBER OF PASSES FOR EACH [x,y] POSITION

95 % CONFIDENCE 
INTERVAL

SUMMARY

Table 22b – Summary of statistics for number of successful passes through the gate for each start position 
using the simulator 



 60 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FOR each antibody, i 
 { 
   call matchAntigens; 
 } 
 
 
 
 
 
 
 
select antibody with highest strength as winner of round one  
   
FOR each antibody, i 
 { 
   call idiotypicEffects;  
 } 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
FOR each antibody, i 
 { 
   call setConcentration;  
 } 
 
 
squash concentrations; 
   
 
FOR each antibody, i 
 { 
   call setActivationLevel;  
 } 
 
 
 
select antibody with the highest activation and execute its action; 

set strength of antibody i to 0; 
FOR each antigen, j 
   {  
     IF antigen was present 
       { 
           increase strength of i by 
           affinity i,j; 
       } 
   } 

FOR each antigen, j 
   {  
     IF winner has affinity for j AND 
     idiotope i,j = 1 AND strength of i 
     > 0 
       { 
           reduce strength of i 
           by K1 * winner affinity for j; 
       } 
     IF winner has idiotope i,j = 1 AND 
     i has affinity for j AND strength 
     of i > 0 
       { 
           increase strength of i 
           by affinity i,j; 
       } 
   }    

increase concentration of i by 40 
times its strength minus natural 
death rate; 

set activation of i to strength 
times concentration; 
 

Figure 20 – Pseudocode for the chooseAntibody method of the main control 
program. Calls to methods in the Antibody class are shown in bold and their methods 
are also shown as pseudocode in boxes. 
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6.4. Experimental procedures and results for the physical robot 
 
Experimental procedures were carried out as described in section 4.3.4, with 
parameters set as in table 9. The obstacle avoidance parameter, d, was reduced to 0.4 
metres for sonar, as in all of the physical robot experiments.  
 
Table 23 shows that 63% of all unsuccessful runs were caused by an inability to re-
discover the goal for the third time. This figure is comparable with 58% for 
goalseek. However, for immunoid these failed trials all occurred when using the 
sonar obstacle avoidance method. The paratope mapping in table 16 was developed 
through simulation trials using the single laser method and so may not have been 
suited for use with a real robot using sonar. In addition, the secondary cause of failure 
for goalseek was going into obstacle avoidance mode on approach to the goal but 
this did not occur with the immunoid program. Here, other causes of non-
performance were collision with one of the posts when exploring (25%) and when 
travelling to the goal (13%), which all occurred during average-value laser obstacle 
avoidance. Although the use of average values can be beneficial as it reduces the 
impact of false readings [1], it also decreases precision and means that robots can be 
more susceptible to collision with obstacles. Again, this may have been prevalent in 
the immunoid code (and not the goalseek code) because the paratope mapping was 
developed for single laser readings. 

Table 23 – Frequency of 
reasons for failure using the 
real robot 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 21.98 4.19 0.96 23.86 20.09
Laser 24.79 9.22 1.88 28.48 21.10
Laser (averages) 23.46 5.96 1.30 26.01 20.91

All experiments 23.41 7.07 0.88 25.14 21.68

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

Table 24a – Summary of statistics for time to pass through the gate using the 
real robot 

CODE FREQ % FREQ

1 1 13%
2 2 25%
3 0 0%
4 5 63%
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Table 24a shows that, as with the simulator, there was no significant difference 
between goalseek and immunoid in terms of task time, (both averaged around 23 
seconds). This was as expected since both codes use the same methods of the Robot 
class and both reduce the robot’s speed when goal re-discovery takes place. There 
were no significant differences between the various obstacle avoidance strategies in 
terms of task time. 
 
Table 24b shows that immunoid achieved an average of 13.33 passes per position, 
which was not significantly different to the figure of 13.50 for goalseek. Here the 
single laser method proved significantly better than both sonar and the average laser 
method, for the reasons specified above. 

 
 
 
 
 
 
 
When immunoid was run on the simulator a significantly higher pass rate was 
achieved, (a maximum of 15.00 passes compared with 13.33 for the physical Pioneer). 
These results are as expected and are consistent with goalseek, which also showed 
an average of 15.00 passes in the simulator compared with 13.50 for the real robot.  
 
The trials described in this section suggest that adaptive learning codes such as 
immunoid can solve short-term confined goal-seeking problems equally as well as 
fixed codes like goalseek, so long as initial behaviour arbitration mappings are 
carefully selected. Although immunoid does not appear to have improved on 
goalseek, further tests in sections 6.5 and 6.6 show that it out-performs goalseek for 
the solution of problems involving navigation of tight gaps. It can hence be used to 
solve the long-term goal-seeking problem described in section 1.1, whereas 
goalseek is shown to be inadequate for this purpose. 
 
 
6.5. Testing gap navigation  
 
The ability to navigate through one of the small gaps at the side of the pen was tested 
using the simulator only to prevent damage to the physical robot. The virtual robot 
was placed in the top left-hand corner of the pen facing the side gap and was 
prevented from turning away from it by placing a block at the side, see figure 21 
below. Three trials were conducted for each obstacle avoidance strategy using the 
goalseek code and 6 were carried out for each using the immunoid program, as this 
had only 3 strategies. The maximum score possible was thus 18 for each code. 

Table 24b – Summary of statistics for number of successful passes through the gate for each start 
position using the real robot 

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 95 25 79% 21% 11.88 2.42 0.86 13.55 10.20
Laser 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) 105 15 88% 13% 13.13 2.42 0.86 14.80 11.45

All experiments 320 40 89% 11% 13.33 2.36 0.48 14.28 12.39

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]

95 % CONFIDENCE 
INTERVAL

SUMMARY
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Tolerance parameters were set as in table 9, except that d was reduced to 0.4 metres 
when using sonar as this had proved most effective. For immunoid the initial 
paratope and idiotope mappings shown in tables 16 and 17 were used. If the robot 
became trapped and failed to free itself after 60 seconds the run was counted as a 
failure.  Table 25 summarises the results. 
 
The immunoid code provided a robust methodology for tight gap navigation, 
succeeding in all of the trials. Gap navigation usually took between 10 and 20 
seconds, with the robot adopting an oscillatory motion when passing through. Success 
was attributed to the system’s ability to adapt. If the robot became wedged against the 
side of the pen for example and the winning antibody’s action did not free it, the 
effects of reinforcement learning and changes in immune system metadynamics meant 
that another strategy was tried.  
 

 

 
 

No. of successful passes through gap 
Sonar Single laser Average laser Controller 

Max Min Max Min Max Min 

Pass 
rate 

goalseek 0 1 1 1 2 1 33% 

immunoid 6 6 6 100% 

 

 
When using goalseek the robot became stuck against the sides of the pen in 67% of 
all trials and was unable to free itself in the time allowed. The code called the 
escapeTraps method of the Robot class whenever the robot came too close to an 
object. This caused it to reverse and eventually become stalled against the wall. On 
stalling, escapeTraps was also called, but further reversal was not possible. Since 
the ability to steer around gaps is essential for solving the long-term goal-seeking 
problem described in section 1.1, goalseek proved unsuitable for this purpose. It is 
possible that amendments to the escapeTraps method, (such as the use of the rear 
sonar to detect obstacles behind, or forcing movement in random directions) could 
make the code more robust for gap navigation. The use of separate escape routines for 
corner entrapment, collisions and stalling could also improve the controller. However, 
with the adaptive learning code, these details are taken care of by the immune network 
and the burden is lifted from the designer. 

Table 25 – Results of gap navigation experiments 

Figure 21 – Starting position for gap navigation trials 
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6.6. Long term development of the behaviour mappings  
 
The short-term goal-seeking problem does not provide a suitable testing bed for the 
memory and adaptation properties of the immunoid code. Furthermore, when all 
affinities are pre-defined the system is not truly dynamic, [42] and can lead to 
unnecessary bias in the robot’s performance. Although the hand-designed mapping 
has demonstrated adequate navigation skills, it is limited by initial values of 0 and 
other biases that may prevent particular antibodies from being selected. In order to 
address these issues the program was set up to solve the long-term goal-seeking 
problem in the simulator and the obstacle avoidance method was set to single laser as 
this had proved most robust. Parameters were set as in table 9. The code was allowed 
to run for 45 minutes, first using a paratope mapping with all elements set to 0.5 and 
then with a random mapping. (Random values in the range 0.5 – 0.75 were used, to 
help reduce any initial bias.) The behaviour of the robot, in terms of how quickly it 
learned to avoid obstacles, discover the goal, travel to the goal and navigate through 
the side gaps was observed and the final paratope mappings after 45 minutes of 
reinforcement learning were examined. For comparison the hand-designed mapping 
shown in table 16 was also allowed to develop for 45 minutes.  
 
 
6.6.1. Development of the hand-designed mapping 
 
The robot began with good obstacle avoidance behaviour using a strong turning action 
and it was also able to discover and travel to the goal immediately.  If it became 
trapped near the sides of the posts it was able to free itself throughout the duration of 
the experiment. Initially, the robot proved competent at travelling quickly through the 
side gaps using an oscillatory motion, but after approximately 15 minutes there was a 
noticeable improvement in efficiency. The speed with which the robot was able to 
free itself after becoming trapped also increased throughout. The final paratope 
mapping after the 45-minute trial is shown in table 26. The differences between the 
developed mapping and the initial mapping are shown in table 27. 
 
 

 
 
 
 
The largest changes were increases of 0.73 and 0.96 for the “discover goal” antibody 
used with the “object left” and “object right” antigen respectively. These changes 

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1 Slow right 20 1.00 0.48 0.00 0.00 0.42 0.00 0.00 0.21 0.35
2 Slow left 20 0.00 0.48 0.96 0.12 0.23 0.00 0.00 0.40 0.46
3 Fwd centre 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.00
4 Fwd left 20 0.00 0.47 0.80 0.20 0.00 0.00 0.00 0.00 0.25
5 Fwd right 20 0.92 0.51 0.00 0.12 0.00 0.00 0.00 0.00 0.25
6 Go to goal 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
7 Discover goal 0.73 0.00 0.96 0.60 0.00 0.00 1.00 0.07 0.39
8 Slow right 50 0.96 0.56 0.00 0.00 1.00 0.00 0.00 0.17 0.33
9 Slow left 50 0.00 0.53 0.88 0.20 0.40 0.00 0.00 0.34 0.45

10 Fwd left 40 0.00 0.35 0.55 1.00 0.00 0.00 0.00 0.00 0.25
11 Fwd right 40 0.92 0.51 0.00 0.08 0.00 0.00 0.00 0.00 0.25

Antigens

Antibodies

PARATOPE

Table 26 – Final paratope mapping after 45 minutes for the hand-designed matrix 
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0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 Slow right 20 0.00 -0.52 0.00 -0.25 -0.08 0.00 0.00 -0.29 -0.15
2 Slow left 20 0.00 -0.52 -0.04 -0.13 -0.27 0.00 0.00 -0.10 -0.04
3 Fwd centre 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 0.25
4 Fwd left 20 0.00 -0.28 0.05 -0.30 0.00 0.00 0.00 0.00 0.00
5 Fwd right 20 0.17 -0.24 0.00 -0.38 0.00 0.00 0.00 0.00 0.00
6 Go to goal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 Discover goal 0.73 0.00 0.96 0.10 0.00 0.00 0.00 0.07 0.39
8 Slow right 50 -0.04 -0.44 0.00 -0.50 0.50 0.00 0.00 -0.33 -0.17
9 Slow left 50 0.00 -0.47 -0.12 -0.30 -0.10 0.00 0.00 -0.16 -0.05

10 Fwd left 40 0.00 -0.40 -0.20 0.25 0.00 0.00 0.00 0.00 0.00
11 Fwd right 40 0.17 -0.24 0.00 -0.67 0.00 0.00 0.00 0.00 0.00

Antigens

Antibodies

CHANGES

provide a good example of the importance of using adaptive strategies. The mappings 
were initially coded as 0, which was an obvious oversight on the part of the designer 
since discovering the goal can involve turning in random directions and steering 
towards the maximum reading, both of which are also good strategies for avoiding 
obstacles. 
 

 

 
6.6.2. Development of the equal mapping 
 
The robot initially became trapped facing the lower right hand side of the pen.  After 
15 seconds it developed the ability to reverse to escape but this was followed 
immediately by moving forwards causing another collision. However, after almost 3 
minutes the robot had learned how to turn after reversing and was able to escape 
completely. After approximately 5 minutes adequate gap navigation, obstacle 
avoidance and goal seeking and discovery behaviours were also acquired. The robot 
proved that it was able to free itself from traps fairly easily and the oscillatory 
behaviour that it adopted when passing the gaps was both effective and efficient. 
After 15 minutes the obstacle avoidance behaviour had improved considerably, with 
generally fewer collisions. After 25 minutes a steady behaviour was reached and the 
robot showed that it was able to pass through the left-hand side gap in less than 2 
seconds, using a much smoother motion. The final mapping is shown in table 28. 
 

 

Table 27 – Changes to the paratope mapping after 45 minutes for the hand-designed matrix 

Table 28 – Final paratope mapping after 45 minutes for the equal matrix 

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.50 1.00 0.50 0.00 0.50 0.50 0.50 1.00 0.50
1 Slow right 20 0.50 0.34 0.46 0.72 0.48 0.30 0.50 0.50 0.50
2 Slow left 20 0.50 0.46 0.50 0.63 0.41 0.50 0.50 0.50 0.50
3 Fwd centre 0.38 0.38 0.42 0.00 0.36 0.30 0.50 0.50 1.00
4 Fwd left 20 0.50 0.38 0.50 0.64 0.48 0.50 0.50 0.50 0.50
5 Fwd right 20 0.50 0.38 0.42 0.72 0.50 0.30 0.50 0.48 0.50
6 Go to goal 0.58 0.30 0.27 0.91 0.50 1.00 0.50 0.44 0.50
7 Discover goal 0.38 0.00 0.14 0.89 0.02 0.30 1.00 0.03 1.00
8 Slow right 50 1.00 0.50 0.50 0.00 0.40 0.30 0.50 0.49 0.50
9 Slow left 50 0.50 0.50 1.00 0.03 0.97 0.50 0.50 0.48 0.50

10 Fwd left 40 0.50 0.34 0.42 0.76 0.50 0.50 0.50 0.48 0.50
11 Fwd right 40 0.50 0.42 0.46 0.63 0.50 0.50 0.50 0.49 0.50

Antigens

Antibodies

PARATOPE
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The above table shows strong links between: 
 
•  Reversing when stalled or when an object is at the centre 
•  Turning 50° right slowly when an object is to the left 
•  Turning 50° left slowly when an obstacle is to the right 
•  Travelling forward or looking for the goal when blocked behind 
•  Discovering the goal when it is unknown 
•  Travelling to the goal when it is known 
•  Not reversing when average sensor readings are high 
 
These behaviours are intuitive but it is interesting to note that some counter-intuitive 
behaviours, such as turning right when an object is to the right, do not have scores of 
zero. This is because it is the relative weightings of the degrees of match that 
contribute to antibody selection. Once an antibody’s affinity for a particular antigen 
falls below a threshold, it is unlikely to get selected as the response to that antigen, 
(unless concentrations of the others become low). Since it is not selected, negative 
scoring ceases and the match value never reaches zero. 
 
 
6.6.3. Development of the random mapping 
 
The robot discovered the goal and travelled to it in a matter of seconds, but 
immediately collided with the top wall of the pen. It remained trapped there for 
approximately 2 minutes, but eventually reversed and turned to free itself. Despite 
this, it did not develop a reliable obstacle avoidance technique for quite some time and 
became trapped again, spending almost 7 minutes trying to free itself. However, after 
25 minutes obstacle avoidance techniques began to emerge and the robot was able to 
navigate up though the left-hand gap using a very gentle oscillatory motion, freeing 
itself from entrapments much more easily. After approximately 40 minutes the left 
hand gap was cleared in a matter of seconds using a much smoother motion. Excellent 
obstacle avoidance techniques were also developed before the end of the experiment. 
The final mapping after 45 minutes is shown in table 29 below. 
 
Although the acquisition of obstacle avoidance behaviour took longer for the random 
mapping than the equal mapping, experiments with other random mappings showed 
that these techniques were learned much more quickly. There may have been some 
bias in the initial random mapping that made this behaviour difficult to learn. 
 
Table 29 shows that the robot developed the same essential manoeuvres that were 
acquired when the equal mapping was used, although it did not have such a heavy 
dependence on reversing when an object was at the centre. It also showed a preference 
for looking for the goal when blocked behind rather than travelling forward to the 
centre. Interestingly both robots showed a high affinity for turning slowly left when 
cornered but a much lower affinity for turning right. This may have been because a 
slight right spin was coded into reversing. 
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6.6.4. Discussion of reinforcement learning 
 
The use of reinforcement learning coupled with an idiotypic immune network for 
behaviour arbitration allowed the virtual robot to develop and successfully utilise all 
the essential goal-discovery and navigation techniques necessary to solve the long-
term problem. However, when random mappings introduced counter-intuitive 
behaviours, these skills took longer to acquire. Furthermore, as actions were scored on 
an individual basis, the development of techniques that work well together such as 
reversing then turning to avoid being cornered took longer to emerge, happening more 
by chance than by any design. 
 
When undertaking reinforcement learning, the performance of a robot can be difficult 
to measure externally, [33]. Part of the problem is that the assignment of rewards is 
localised. A maintenance behaviour such as obstacle avoidance may receive a reward, 
but this might not contribute to the overall goal, i.e. to the achievement behaviour. For 
example reversing when an obstacle is directly in front deserves merit in a local sense 
but it would be better to go forward around the obstacle to avoid getting caught up in 
continuous forward-reverse loops, which would not serve to accomplish to the overall 
goal. A method of scoring based on combinations of actions and contribution to the 
task’s overall aim would therefore provide a much better framework for reinforcement 
learning, see section 6.9. 
 
 
6.7. The use of genetic algorithms to evolve paratope mappings 
 
Genetic algorithms can be engineered to score behaviour in a global sense, i.e. to 
assess the robot’s performance in terms of its ultimate goal. Here 3 initially random 
paratope mappings were developed through reinforcement learning for 30 minutes. 
An attempt was then made to evolve the developed mappings using a genetic 
algorithm to obtain generations of robots that could discover and travel to the goal 
progressively more times in a set period.  
 
For each developed mapping the immunoid code was run on the simulator with 
single laser as the obstacle avoidance tool (as this had proved most robust) and 

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.54 0.60 0.58 0.00 0.54 0.44 0.52 1.00 0.72
1 Slow right 20 0.57 0.50 0.53 0.70 0.69 0.54 0.54 0.55 0.53
2 Slow left 20 0.65 0.58 0.69 0.08 0.92 0.55 0.58 0.50 0.58
3 Fwd centre 0.55 0.47 0.51 0.89 0.62 0.53 0.41 0.55 0.59
4 Fwd left 20 0.51 0.47 0.56 1.00 0.54 0.54 0.53 0.58 0.76
5 Fwd right 20 0.51 0.38 0.56 1.00 0.62 0.54 0.51 0.56 0.59
6 Go to goal 0.53 0.26 0.55 1.00 0.64 1.00 0.54 0.51 0.51
7 Discover goal 0.78 0.00 0.72 0.68 0.32 0.23 1.00 0.07 1.00
8 Slow right 50 1.00 0.63 0.56 0.00 0.37 0.52 0.61 0.47 0.74
9 Slow left 50 0.59 0.56 1.00 0.00 1.00 0.56 0.50 0.46 0.70

10 Fwd left 40 0.65 0.42 0.53 1.00 0.50 0.51 0.58 0.58 0.50
11 Fwd right 40 0.96 0.49 0.56 0.04 0.57 0.48 0.65 0.52 0.54

Antigens

Antibodies

PARATOPE

Table 29 – Final paratope mapping after 45 minutes for the random matrix 
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parameters set as in table 9. The number of times the goal was reached during 20 
minutes run time was used as a fitness function to determine the probability of passing 
on paratope arrays to the next generation. After the fitness was obtained for each 
parent mapping the genetic algorithm listed in Appendix F was used to generate 3 
child mappings. In all cases the child mappings and the fittest parent from the 
previous generation formed the next generation. There was a 3% probability of an 
array having a mutated element. 
 
 
6.7.1. Genetic algorithm results 
 
As a fitness score of 24 was obtained from the fourth generation and an upper bound 
of 30 was estimated, only 4 generations were used. (There were also time constraints 
since fitness testing was conducted in real time and took 20 minutes for each member 
of the population.) Table 30 below summarises the results for the 4 generations and 
shows the potential of genetic algorithms to evolve populations of robots successively 
more suited to solving the long-term goal-seeking task. The paratope mapping for the 
fittest member of the fourth generation is illustrated in table 31. 
 
 

Generation Average 
fitness 

Highest 
fitness 

1 15 18 
2 16 21 
3 19 21 
4 20 24 

 

 
 

 

 
 
In theory, a high number of goal passes in the long-term problem should also mean an 
ability to solve the short-term problem more quickly and with a higher success rate, 
since it implies good navigation skills all round. To test whether the fittest member of 
the population could improve upon the results obtained when immunoid was run on 

Table 30 – Emergence of greater fitness through generations 

0 1 2 3 4 5 6 7 8

Object left
Object 
centre

Object 
right

Average > 
t

 Average 
< t

 Goal 
known

Goal 
unknown

Robot 
stalled

Blocked 
behind

0 Reverse 0.63 1.00 0.50 0.00 1.00 0.55 0.69 1.00 0.64
1 Slow right 20 0.65 0.49 0.67 0.80 0.91 0.67 0.69 0.65 0.74
2 Slow left 20 0.63 0.64 0.96 0.04 0.70 0.58 0.60 0.63 0.65
3 Fwd centre 0.64 0.48 0.60 0.73 0.75 0.59 0.64 0.53 0.20
4 Fwd left 20 0.69 0.57 0.50 0.76 0.64 0.69 0.51 0.51 0.65
5 Fwd right 20 0.61 0.30 0.62 0.20 0.67 0.10 0.62 0.63 0.50
6 Go to goal 0.90 0.50 0.57 0.79 0.65 1.00 0.59 0.58 0.71
7 Discover goal 0.50 0.00 0.39 0.08 0.17 0.53 1.00 0.34 0.94
8 Slow right 50 1.00 0.70 0.65 0.00 0.54 0.61 0.71 0.62 0.70
9 Slow left 50 0.68 0.50 1.00 0.00 0.53 0.68 0.63 0.66 0.57

10 Fwd left 40 0.65 0.42 0.53 0.20 0.50 0.51 0.58 0.58 0.50
11 Fwd right 40 0.50 0.54 0.55 0.00 0.63 0.64 0.55 0.58 1.00

Antigens

Antibodies

PARATOPE

Table 31  –  The paratope mapping for the fittest member of the fourth generation 
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Table 33b – Summary of statistics for number of successful passes through the gate for each start position 
using the fourth generation mapping 

the physical robot, the experiment was repeated using the mapping shown in table 31. 
All other experimental procedures were held constant. Tables 32, 33a and 33b 
summarise the results obtained. 
 
Table 32 shows that the most frequent cause of failure was adopting obstacle 
avoidance behaviour on approach to the goal. This occurred mostly with sonar, but 
also once with single laser. Table 33b shows that sonar and average laser obstacle 
avoidance strategies both demonstrated a 75% pass rate compared with 92% for single 
laser, although the differences in number of passes for each position were not 
significant. As the fittest fourth generation mapping was evolved using the single laser 
method, it is possible that optimisation was not achieved for the other strategies. 
Tables 33a and 33b show that both task speed and pass rate were not significantly 
different from trials using the hand-designed mapping. It is quite likely that the short-
term problem cannot be solved any more efficiently using physical robots and current 
goal discovery techniques, or perhaps as mentioned above, a separate mapping needs 
to be evolved for each obstacle avoidance strategy. 
 

 
  
 
 

 
 
 
 
 
 
 
 
 

Table 32 – Frequency of reasons for failure 
using the fourth generation mapping 

Table 33a – Summary of statistics for time to pass through the gate using the 
fourth generation mapping 

SCENARIO MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 23.13 6.64 1.56 26.19 20.06
Laser 21.44 4.17 0.89 23.18 19.69
Laser (averages) 21.50 4.30 1.01 23.48 19.52

All experiments 22.02 5.13 0.67 23.34 20.70

TIME TO PASS THROUGH GATE (SECONDS)

SUMMARY

95 % 
CONFIDENCE 

INTERVAL

CODE FREQ % FREQ

1 3 21%
2 0 0%
3 6 43%
4 5 36%

SCENARIO GRAND 
TOTAL 

PASSES 

GRAND 
TOTAL 
FAILS

PASS 
RATE

FAIL 
RATE

MEAN STANDARD 
DEVIATION

STANDARD 
ERROR

Sonar 90 30 75% 25% 11.25 4.15 1.47 14.12 8.38
Laser 110 10 92% 8% 13.75 2.17 0.77 15.25 12.25
Laser (averages) 90 30 75% 25% 11.25 3.31 1.17 13.54 8.96

All experiments 290 70 81% 19% 12.08 3.51 0.72 13.49 10.68

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]

95 % CONFIDENCE 
INTERVAL

SUMMARY
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6.8. Results summary  
 
When solving the short-term problem, both the fixed behaviour code and the adaptive 
code demonstrated a heavy dependence on choice of free parameters such as tolerance 
for obstacle distance. (This consistently needed to be set to a lower value when using 
sonar obstacle avoidance with the real robot due to the tendency of sonar to read 
distances as smaller.) For both real and simulated trials significant improvements in 
pass rate were achieved when turn angles were repeatedly re-calculated, although 
speed of task completion did not increase. 
 
There were no significant differences, either between the two codes or between real 
and simulated trials for task time, except that when goalseek was used the real robot 
was slightly slower than the virtual robot. This may have been due to differences 
between the time it takes to stop and re-start in the two domains, although the trait 
was not observed for the immunoid code. Further trials should confirm whether this 
phenomenon is real. 
 
The success rate was consistently better when using the simulator; in fact a pass rate 
of 100% was achieved in this domain.  For goalseek the under performance of the 
real robot was attributed to the sonar obstacle avoidance method. This had a much 
higher propensity for going into obstacle avoidance mode on approach to the goals, 
despite lowering the tolerance parameter.  When using immunoid the chief causes of 
failure were an inability to rediscover the goal when using the sonar method and 
heightened susceptibility to post collision when average laser readings were used. 
These weaknesses may have been caused by a failure to optimise the paratope 
mappings for physical robots using these strategies. Although the reasons for failure 
were not the same there were no significant differences between the two codes in 
terms of success rates. 
 
The obstacle avoidance strategy of turning to the maximum reading proved 
inadequate when using sonar on a real robot, due to the high number of false readings. 
In the simulator no significant differences were found apart from a slightly faster 
average task speed when turning toward the maximum reading to avoid obstacles. 
There were no speed differences between the obstacle avoidance methods when using 
real robots, but sonar demonstrated a significantly lower pass rate using goalseek, 
and both sonar and average laser under performed in this respect using immunoid. 
Although both codes solved the short-term problem equally well, the immune code 
proved superior to the fixed code for the task of navigation through small gaps and 
was hence used to solve the long-term problem.  
 
When the long-term problem was tackled using the immunoid code and initially 
random network mappings, results proved that a virtual Pioneer could acquire the 
necessary navigation skills autonomously. Furthermore, generations of virtual robots 
progressively more suited to the task were produced when network mappings 
developed through reinforcement learning were evolved using genetic algorithms. 
However, a sensor-behaviour mapping deemed highly fit for the long-term problem 
did not solve the real world short-term task more efficiently or effectively than a 
hand-designed matrix.  It could be that the short-term problem has already reached its 
limit in terms of speed and success rate using real world robots and this particular 
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methodology. A more robust strategy for goal discovery might lead to improved 
performance in this domain, (see section 6.9). 
 
 
6.9. Future research 
 
To improve learning speed in the immune code, sequences of actions could be 
assessed rather than isolated behaviours. (Michaud and Matarić [33] used this 
approach by storing action patterns in a tree structure and scoring them on past 
history.) This strategy should eliminate the problem of awarding positive scores to 
actions that are only useful in local sense. Reinforcement learning could also provide 
a method for establishing non-engineered idiotope mappings. If degree of match 
scores become negative they are automatically set back to 0, but this information 
could be used to establish disallowed mappings and thus drive the idiotypic effects. 
 
In addition, a more robust methodology for goal discovery could be developed by 
identifying the 4 maximum changes in laser reading and selecting the inner 2 
positions.  This should overcome the problem of blind spots, where the laser detects 
the 2 sides of the post as the maximum change points and hence misses the goal. 
Results for the physical robot, where such blind spots were identified as a chief cause 
for failure, should thus improve. This work could be underpinned by an attempt to 
introduce greater autonomy by allowing the robot to discover the width of the gate 
that it needs to pass through. This could be achieved by storing laser sensor data and 
evaluating the patterns of maximum changes that occur most frequently when 
exploring. The width of the goal could then be varied to test the adaptability of the 
code. In particular, a smaller gate could be used to provide a more difficult problem. 
 
The work using genetic algorithms to evolve efficient network mappings could also 
be greatly expanded. Experiments using much larger populations could be undertaken 
and crossover using columns of network mappings rather than rows could be 
investigated. Indeed a number of trials using different crossover methods could be 
conducted to establish the most effective technique. Following Ambastha et al. [47] 
the use of a fitness function that considers the cost of reaching the target (for example 
by counting the number of collisions) as well as a measure of success could also be 
employed.  
 
The problem itself could be extented by introducing wooden blocks and requiring that 
the robot move them from one side of the gate to the other, using its grippers.  In 
addition, tests could be conducted to see how well the codes described perform in 
other, perhaps less confined worlds with moving obstacles.  
 
Finally, some work could be done to introduce new antibodies into the repertoire 
rather than using a fixed set. This could be accomplished by introducing new 
combinations of steering angle and speed to replace those antibodies that have been 
deemed ineffective or by varying certain tolerance parameters as a means of 
optimising these values. Adaptive parameter optimisation should make the code more 
extensible to previously unexplored and more dynamically changing worlds. 



 72 

Conclusion 
 
An idiotypic immune network has been used as model for designing a behaviour 
based robot control program, with sensor-action mappings driven by reinforcement 
learning. The resulting code has successfully solved both a short-term and long-term 
goal-seeking problem and results have demonstrated that it provides decentralised 
control, mediating behaviour selection in a way that is adaptable to environmental 
change. In particular, the contoller has shown itself to be highly robust for guiding 
virtual robots through tight gaps, whereas a fixed behaviour based approach proved 
inadequate for these purposes and hence unsuitable for solving the long-term goal-
seeking problem. Furthermore, when the long-term problem was tackled with initially 
random sensor-action mappings, immune system metadynamics and reinforcement 
learning allowed virtual robots to acquire all necessary task skills autonomously.  
 
The idiotypic approach has not previously been applied to constrained robotics tasks 
such as the ones described here. This research has thus shown that the chosen control 
architecture provides a suitable methodology for the autonomous solution of highly 
confined goal-seeking problems. It has also highlighted some of the factors involved 
in achieving a high success rate both in the simulator and in the physical world, 
suggesting useful tolerance parameters and pinpointing which obstacle avoidance 
methods translate well between the two domains.   
 
This study has also stressed the importance of incorporating re-assessment strategies 
into code design when dealing with rotational motion and real robots. Such 
adjustments have dramatically increased physical robot performance although success 
rates are still inferior to simulations. Part of the under performance can be attributed 
to noise, uncertainty and stricter experimental logistics, but it is likely that a more 
robust strategy for goal discovery, (as suggested in section 6.9) would improve 
performance in the physical domain even further.  
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Appendices 
 
Appendix A – Idiotypic immune network code – immunoid.cc 
 
/* 
*---------------------------------------------------------------------- 
*  
* immunoid.cc 
* By A. M. Whitbrook 11th August 2005 
* 
*----------------------------------------------------------------------- 
*  
* To navigate a Pioneer 3 robot through a gate of known width, avoiding 
* obstacles. The location of the gate must be discovered. Behaviour is 
* matched to environmental situations through the use of an artificial 
* immune system 
* 
*----------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*----------------------------------------------------------------------- 
*/ 
 
//#define AVERAGE_LASER_METHOD 
#define SINGLE_LASER_METHOD 
#define LONG_TERM 
//#define SHORT_TERM 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <playerclient.h>    // C++ player client library 
#include <string>    
#include <iostream>     
#include <math.h>            // For trig functions  
#include "Robot.cpp"         // Robot class for use with this program 
#include "WorldReader.h"     // To read start position directly from World file for simulations 
#include "Antibody.h"        // Antibody class for use with this program 
#include <cstdlib>           // For random number generation 
#include <fstream> 
 
using namespace std; 
 
/* 
*---------------------------------------------------------- 
* Global variables 
*---------------------------------------------------------- 
*/ 
 
double startConc = 1000;                    // Starting concentration 
const int NUMANTIGENS = 9;                  // Number of antigens in the system 
const int NUMANTIBODIES = 12;               // Number of antibodies in the system 
double distTravelled;                       // Distance travelled each cycle 
double avTol = 0.65;                        // Threshold for average distance of obstacles 
double standStillApprox = 0.1;              // Limit of distance from obstacle when robot unable to move 
double x, y, z;                             // Start co-ordinates  
bool obsTool = true;                        // Obstacle avoidance tool 
                                            // False => sonars : True => lasers 
 
int antigenArray[NUMANTIGENS];              // Array representing those antigens detected 
int antigenScorer;                          // Priority antigen for reward / penalty scoring 
double maxStren;                            // Maximum antibody strength 
double maxActiv;                            // Maximum antibody activation 
int winFirstRound;                          // Winner of first round 
int winAntibodyNum;                         // ID of winning antibody 
double antibodyActivations[NUMANTIBODIES];  // Array of antibody activations 
double antibodyStrengths[NUMANTIBODIES];    // Array of antibody strengths 
 
void getAntigens(SonarProxy *sonar, Robot *thisRobot, int loopVal);     // Detects all antigens 
double getMax(double value_array[NUMANTIBODIES]);                       // Finds strongest antibody  
void chooseAntibody();                                                  // Selects an antibody 
void processSensorData(Robot *thisRobot, SonarProxy *sonar, double data_Laser[361]); // Processes sensor data  
double getDistance(Robot *thisRobot);                                   // Calculates distance travelled    
 
void rewardGoalKnown(int antNum);                                       // Reinforcement learning methods 
void rewardAntibody(double value, double tol);                              
void rewardMinChange(int pos, int oldPos, double value, double oldVal);  
  
void getInitialMatches(string paraFileName, string idioFileName);       // Read initial matches from file 
void updateMatches();                                                   // Write updated matches to a file 
void getRandomMatches(string idioFileName);                             // Get a set of initial random matches 
void squashConc();                                                      // Squash antibody concentrations  
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/* Create antibodies */ 
 
Antibody Reverse(startConc); 
Antibody slowRight20(startConc); 
Antibody slowLeft20(startConc); 
Antibody fwdCentre(startConc); 
Antibody fwdLeft20(startConc); 
Antibody fwdRight20(startConc); 
Antibody goToGoal(startConc); 
Antibody discoverGoal(startConc); 
Antibody slowRight50(startConc); 
Antibody slowLeft50(startConc); 
Antibody fwdLeft40(startConc); 
Antibody fwdRight40(startConc); 
 
/* Put created antibodies into an array for looping */ 
 
Antibody robotAntibodies[NUMANTIBODIES] = {Reverse, slowRight20, slowLeft20, fwdCentre, fwdLeft20, fwdRight20, 
goToGoal, discoverGoal, slowRight50, slowLeft50, fwdLeft40, fwdRight40}; 
 
/* 
*---------------------------------------------------------- 
* Main method - goal seeking with obstacle avoidance 
*---------------------------------------------------------- 
*/ 
 
int main(int argc, char **argv) 
{ 
 
double maxSafeSpeed = 0.17;             // Maximum speed allowed 
double minDistTol = 0.50;               // Threshold distance for obstacle avoidance mode 
double scan_data[361];                  // Array for passing laser data 
int count = 1;                          // Used for read-think-act loop 
double tolDec = 0.45;                   // Distance tolerance reduction when passing through gate 
double gate_size = 1.32;                // Size of gate robot must pass through 
double gap_tol = 0.4;                   // Tolerance for accuracy of laser gate size estimation 
double diff_tol = 0.7;                  // Tolerance for difference between the two highest laser reading changes 
double min_val = 0.8;                   // Minimum value of highest difference for goal recognition 
double checkDist = 0;                   // To check if robot has moved in the half second since action was taken 
bool turnOnMotors = true; 
double oldAverage;                      // Saved average sensor reading before action 
int oldMinNum;                          // Saved minimum sensor position before action 
double oldMin;                          // Saved minimum sensor reading before action 
int countGoal = 0;                      // How many times the goal was discovered - for long term behaviour studies 
 
 
x = y = z = 0;                          // Start positions arbitrarily set to 0 
 
/* Create an instance of a Robot called taylor */ 
 
Robot taylor(x, y, z, false, 0, 0, maxSafeSpeed, minDistTol);   
taylor.connect(argc, argv);             // Connect to specified host or port  
 
PlayerClient rb(host, port);            // Create instance of PlayerClient  
PositionProxy pp(&rb, 0, 'a');          // Create instance of PositionProxy 
SonarProxy sp(&rb, 0, 'r');             // Create instance of SonarProxy 
LaserProxy lp(&rb, 0, 'r');             // Create instance of LaserProxy 
 
if (lp.access != 'r')                   // Check laser switched on 
  { 
   cout << "cannot read from laser\n"; 
   exit(-1); 
  } 
 
taylor.position(&pp);                   // Links created robot with PositionProxy and sets the odometry 
 
if(turnOnMotors && pp.SetMotorState(1)) // Turn on the motors 
  { 
   exit(1); 
  } 
 
cout << "Connected on port : "<< port<<"\n"; 
 
/* Read in paratopes and idiotopes from files */ 
 
getInitialMatches("initialParatopeMatches.txt", "initialIdiotopeMatches.txt");    // Hand-designed mappings 
 
/* Generate new random paratopes. Read in idiotopes from file */ 
 
//getRandomMatches("initialIdiotopeMatches.txt");                                 // Use random paratope map                            
 
/* 
*---------------------------------------------------------- 
* Go into read-think-act loop  
*---------------------------------------------------------- 
*/ 
 
for (;;)         
 
 { 
   
   if (rb.Read())  
    {       
      exit(1); 
    } 
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   if (count%10 == 0)   // Processes carried out every second - (runs at 10Hz) 
     { 
       if (taylor.reach_goal == true)                // Stopping criteria when goal is reached  
         {                                              
            
           #ifdef LONG_TERM                          // Long term mode - does not end when goal reached 
             taylor.reach_goal=false;                // Reset appropriate Robot class variables 
             taylor.found_goal=false; 
             taylor.onPath=false; 
             if (taylor.dist_Trav > 0.5) 
              { 
                countGoal = countGoal+1;             // Count how many times the goal was reached  
                cout << "Goal was reached "<<countGoal<< " times\n";   
              } 
             taylor.dist_Trav=0; 
           #endif   
           #ifdef SHORT_TERM                         // Short term mode - ends when goal first reached 
             cout << "Stopping at goal" << "\n";      
             cout << "Time was " << count/10 <<"\n"; 
             exit(1); 
           #endif     
         }  
 
        distTravelled = getDistance(&taylor);        // Find out distance travelled since last second 
        x = taylor.xpos;                             // Set co-ords ready for next cycle 
        y = taylor.ypos; 
 
        for (int i = 0; i < lp.scan_count; i++)      // Put laser readings into a simple array 
         { 
           scan_data[i] = lp[i]; 
         } 
    
        processSensorData(&taylor, &sp, scan_data);  // Process the sensor data 
        oldAverage = taylor.average;                 // Save average for reinforcement learning 
        oldMinNum = taylor.min_num;                  // Save minimum position for reinforcement learning 
        oldMin = taylor.min_value;                   // Save minimum reading for reinforcement learning 
  
        getAntigens(&sp, &taylor, count);  // Detect environmental situations (antigens) based on sensor data   
       
        chooseAntibody();                  // Select the strongest antibody based on match and concentration 
        switch(winAntibodyNum)             // Select a method based on final winning antibody 
          {  
            case 0:taylor.steerRobot(-0.1, -10); break; 
            case 1:taylor.steerRobot(0.03, -20); break; 
            case 2:taylor.steerRobot(0.03, 20); break; 
            case 3:taylor.steerRobot(maxSafeSpeed, 0); break; 
            case 4:taylor.steerRobot(maxSafeSpeed, 20); break; 
            case 5:taylor.steerRobot(maxSafeSpeed, -20); break; 
            case 6:taylor.goNewGoal(distTravelled, tolDec);break; 
            case 7:taylor.explore(scan_data, gate_size, gap_tol, diff_tol, min_val); break; 
            case 8:taylor.steerRobot(0.03, -50); break; 
            case 9:taylor.steerRobot(0.03, 50); break; 
            case 10:taylor.steerRobot(maxSafeSpeed, 40); break; 
            case 11:taylor.steerRobot(maxSafeSpeed, -40); break; 
          } 
        
     }//end of if (count%10 == 0) 
 
   if (count%5 == 0 && count%10 != 0 && count > 10)   // Processes carried out half second after - (scoring) 
     { 
 
       checkDist = getDistance(&taylor);              // Find out distance travelled since action was carried out 
                 
       for (int i = 0; i < lp.scan_count; i++)        // Put laser readings into a simple array 
          { 
            scan_data[i] = lp[i]; 
          } 
     
       processSensorData(&taylor, &sp, scan_data);    // Process the sensor data  
        
       switch(antigenScorer)                          // Select an evaluation method based on dominant antigen 
          {  
            case 0:rewardMinChange(taylor.min_num, oldMinNum, taylor.min_value, oldMin);break; 
            case 1:rewardMinChange(taylor.min_num, oldMinNum, taylor.min_value, oldMin);break; 
            case 2:rewardMinChange(taylor.min_num, oldMinNum, taylor.min_value, oldMin);break; 
            case 3:;break; 
            case 4:rewardAntibody(taylor.average, oldAverage);break; 
            case 5:rewardGoalKnown(6);break; 
            case 6:rewardGoalKnown(7);break; 
            case 7:rewardAntibody(checkDist, 0.01);break; 
            case 8:rewardAntibody(checkDist, 0.01);break; 
          } 
 
       squashConc();     // Squash the concentrations to keep the total number a constant 
     } 
 
   if (count%50 == 0)    // Processes carried out every five seconds - (runs at 10Hz) 
     { 
       updateMatches();  // Write updated antigen - antibody match strengths to file 
       cout << "Goal was reached "<<countGoal<< " times\n";   
     } 
              
   count++; 
      
 }// end read-think-act loop 
 
}//end main 
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/* 
*---------------------------------------------------------- 
* Detect environmental situations - (antigens) 
*---------------------------------------------------------- 
*/ 
 
void getAntigens(SonarProxy *sonar, Robot *thisRobot, int loopVal) 
{ 
 
/* First initialise matches to array of zeros */ 
      
for (int i = 0; i < NUMANTIGENS; i++) 
  { 
     antigenArray[i] = 0;       
  } 
         
/* Set the array of antigens presented based on situations detected */ 
 
if (thisRobot->average >= avTol) 
  { 
     cout << "Average OK\n";                                 // Average of front sensor readings OK 
     antigenArray[3] = 1; 
     antigenScorer = 3; 
  } 
 
if (thisRobot->found_goal == true) 
  { 
     cout << "Goal known\n";                                 // Goal is known 
     antigenArray[5] = 1; 
     antigenScorer = 5; 
  }else 
  { 
     cout << "Goal unknown\n";                               // Goal is unknown 
     antigenArray[6] = 1; 
     antigenScorer = 6; 
  } 
 
if (thisRobot->min_value < thisRobot->obsTol)     
  { 
     thisRobot->found_goal = false; 
     thisRobot->onPath=false; 
           
     if (thisRobot->min_num == 1 || thisRobot->min_num == 2) 
       { 
          cout << "Object left\n";                           // Object to the left 
          antigenArray[0]= 1; 
          antigenScorer = 0; 
       } 
       
     if (thisRobot->min_num == 3 || thisRobot->min_num == 4) 
       { 
          cout << "Object centre\n";                         // Object to the centre 
          antigenArray[1] = 1; 
          antigenScorer = 1; 
       } 
 
     if (thisRobot->min_num == 5 || thisRobot->min_num == 6) 
       { 
          cout << "Object right\n";                          // Object right 
          antigenArray[2] = 1; 
          antigenScorer = 2; 
       } 
 
    } // end if min_value less than obsTol 
 
if (thisRobot->average < avTol) 
  { 
     cout << "Average low - may be cornered \n";             // Average of front sensor readings low 
     thisRobot->found_goal = false; 
     antigenArray[4] = 1; 
     antigenScorer = 4; 
     thisRobot->onPath=false; 
  } 
 
if (distTravelled == 0 && loopVal > 30) 
  { 
     cout << "Robot stalled\n";                              // Robot has been stalled 
     antigenArray[7] = 1; 
     thisRobot->found_goal=false; 
     antigenScorer = 7; 
     thisRobot->onPath=false; 
  } 
 
thisRobot->getSensorInfo(sonar->ranges, true, false, true);  // Check the rear sonar 
 
if (antigenArray [7] == 1 && thisRobot->min_num > 7) 
  {  
     cout << "Blocked behind\n";                             // Path behind is blocked 
     antigenArray[8] = 1;                         
     antigenScorer = 8;  
  } 
 
for (int i = 0; i < NUMANTIGENS; i++) 
  {          
     cout << antigenArray[i] << " ";      // Print array of detected antigens to screen 
  } 
cout << "\nAntigenScorer "  << antigenScorer << "\n";   
 
} 
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/* 
*---------------------------------------------------------- 
* Find highest strength or activation level for antibodies 
*----------------------------------------------------------- 
*/ 
 
double getMax(double value_array[NUMANTIBODIES]) 
{ 
 
double max = 0;           // Maximum score or strength, initialise to 0 
winAntibodyNum = 20;      // Winning antibody number, initialise to number beyond range 
int random_number;        // For ties when selecting antibody with highest strength 
 
for (int i = 0; i < NUMANTIBODIES; i++)    // Loop through antibodies to find highest value 
   {     
     if (value_array[i] > max) 
       {     
          winAntibodyNum = i; 
          max = value_array[i]; 
       } 
 
     if (value_array[i] == max)  // If there is a tie, randomly select one 
       { 
          srand(static_cast<unsigned>(time(0)));  // Set random number seed 
          random_number = (rand()%10);            // Get number between 0 and 9 
          if (random_number > 4) 
            { 
               winAntibodyNum = i; 
               max = value_array[i]; 
            } 
       }        
   } // end loop through antibodies to find highest value 
 
return max; 
 
} 
 
/* 
*---------------------------------------------------------- 
* Select an antibody based on strength or activation level 
*---------------------------------------------------------- 
*/ 
 
void chooseAntibody() 
{ 
 
int random_number; // To select whether idiotypic effects are used 
 
for (int i = 0; i < NUMANTIBODIES; i++)    // Loop through antibodies computing strengths 
   {        
      //cout << " antibody "<< i << "\n"; 
      robotAntibodies[i].matchAntigens(antigenArray, antigenScorer);     
      //cout <<"Antibody strength for " << i << " " << robotAntibodies[i].strength << "\n"; 
   } 
 
for (int i = 0; i < NUMANTIBODIES; i++)    // Set a local array of antibody strengths 
   { 
      antibodyStrengths[i] = robotAntibodies[i].strength;  
   } 
   
maxStren = getMax(antibodyStrengths);      // Find antibody with highest strength as winner of first round 
         
cout <<"Highest strength antibody in first round " << winAntibodyNum << "  with strength of " << maxStren << "\n"; 
 
winFirstRound = winAntibodyNum; 
 
srand(static_cast<unsigned>(time(0)));     // Set random number seed 
random_number = (rand()%2);                // Get number between 0 and 1 
 
cout << "RANDOM NO " << random_number << "\n"; 
 
/* Need inter-antibody effects - stimulation and suppression */ 
 
if (random_number == 0 && winFirstRound != 6)    // If using idiotypic effects 
  { 
     for (int j = 0; j < NUMANTIBODIES; j++)     // Loop through antibodies examining idiotypic effects 
        { 
           //cout << " antibody "<< j << "\n"; 
           robotAntibodies[j].idiotypicEffects(&robotAntibodies[winAntibodyNum], antigenArray);     
           //cout <<"Antibody strength for " << j << " " << robotAntibodies[j].strength << "\n";                                        
        } 
  } 
 
for (int i = 0; i < NUMANTIBODIES; i++)          // Set concentrations 
   { 
      robotAntibodies[i].setConcentration();   
   } 
 
squashConc();       // Squash the concentrations to keep the total number a constant 
 
if (random_number == 0 && winFirstRound != 6)    // If using idiotypic effects 
  { 
     for (int i = 0; i < NUMANTIBODIES; i++)     // Set activation levels and put into local array 
        { 
           robotAntibodies[i].setActivationLevel();  
           antibodyActivations[i] = robotAntibodies[i].activation;  
        } 
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     maxActiv = getMax(antibodyActivations);     // Find antibody with highest activation as winner of second round 
     cout <<"Winning antibody after second round "<< winAntibodyNum<< "  with activation of " << maxActiv << "\n"; 
  } 
     
} 
 
/* 
*---------------------------------------------------------- 
* Process the sensor data according to the method chosen 
*---------------------------------------------------------- 
*/ 
 
void processSensorData(Robot *thisRobot, SonarProxy *sonar, double data_Laser[361]) 
{ 
 
if (obsTool == false)   // Using sonars as the sensors 
  { 
    //cout << "Using sonars \n"; 
    thisRobot->getSensorInfo(sonar->ranges, true, false, false);   // Process 8 front sonar readings       
  } 
 
if (obsTool == true)    // Using lasers as the sensors 
  { 
     //cout << "Using lasers\n"; 
           
     #ifdef AVERAGE_LASER_METHOD 
       cout<< "Using averaged laser readings \n"; 
       thisRobot->getLaserArray(data_Laser, true, false);          // Process 8 averaged laser readings     
     #endif 
     #ifdef SINGLE_LASER_METHOD 
       cout<< "Using single laser readings  \n"; 
       thisRobot->getSensorInfo(data_Laser, true, true, false);    // Process 361 single laser readings     
     #endif       
  }       
 
} 
 
/* 
*---------------------------------------------------------- 
* Get distance travelled 
*---------------------------------------------------------- 
*/ 
 
double getDistance(Robot *thisRobot) 
{ 
 
double dist; 
 
thisRobot->getCoords();                // Find robot's current co-ordinates 
 
/* Calculate distance travelled this cycle */ 
   
dist = sqrt(pow(thisRobot->xpos - x, 2) + pow(thisRobot->ypos - y, 2)); 
//cout <<"Distance travelled this cycle = " << dist <<"\n"; 
 
return dist; 
 
} 
 
/* 
*---------------------------------------------------------- 
* Reinforcement learning for antibodies - Method 1 
* based on environmental feedback 
*---------------------------------------------------------- 
*/ 
 
void rewardAntibody(double value, double tol) 
{ 
  
double score = 2 * abs(tol-value); 
 
if (value > tol) 
  { 
     cout <<"reward\n"; 
     /* Assign reward to winning antibody for dominant antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, true, score);  
 
    /* Assign penalty to winning antibody for "average OK" antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(3, antigenArray, false, score);  
  }else 
  { 
     cout <<"penalty\n"; 
     /* Assign penalty to winning antibody for dominant antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, false, score);  
 
     /* Assign reward to winning antibody for "average OK" antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(3, antigenArray, true, score);  
  } 
} 
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/* 
*---------------------------------------------------------- 
* Reinforcement learning for antibodies - Method 2 
* based on common sense mapping of action to conditions 
*---------------------------------------------------------- 
*/ 
 
void rewardGoalKnown(int antNum) 
{ 
 if (winAntibodyNum == antNum) 
   { 
      cout <<"reward\n"; 
      /* Assign reward to winning antibody */ 
      robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, true, 0.2);  
   }else 
   { 
      cout <<"penalty\n"; 
      /* Assign penalty to winning antibody */ 
      robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, false, 0.2);  
   } 
} 
 
/* 
*---------------------------------------------------------- 
* Reinforcement learning for antibodies - Method 3 
* based on environmental feedback for obstacle avoidance 
*---------------------------------------------------------- 
*/ 
 
void rewardMinChange(int pos, int oldPos, double value, double oldVal) 
{ 
 
double score = 2 * abs(oldVal-value); 
 
if (value > oldVal) 
  { 
     cout <<"reward\n"; 
     /* Assign reward to winning antibody for dominant antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, true, score);  
 
     /* Assign penalty to winning antibody for "average OK" antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(3, antigenArray, false, score);  
  } 
 
if (value < oldVal && pos == oldPos) 
  { 
     cout <<"penalty\n"; 
     /* Assign penalty to winning antibody for dominant antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(antigenScorer, antigenArray, false, score); 
 
     /* Assign reward to winning antibody for "average OK" antigen */ 
     robotAntibodies[winAntibodyNum].changeMatching(3, antigenArray, true, score);  
  } 
} 
 
/* 
*---------------------------------------------------------- 
* Read initial safe match strengths from file 
*---------------------------------------------------------- 
*/ 
 
void getInitialMatches(string paraFileName, string idioFileName) 
{ 
fstream paraFile;                                                 // Input file for initial paratope matches 
paraFile.open (paraFileName.c_str(), ios::in);                    // Open the paratope file for reading 
fstream idioFile;                                                 // Input file for initial idiotope matches 
idioFile.open (idioFileName.c_str(), ios::in);                    // Open the idiotope file for reading 
double paraValue;                                                 // For holding paratope file values 
int idioValue;                                                    // For holding idiotope file values 
 
for (int j = 0; j < NUMANTIBODIES; j++)                           // Loop through antibodies 
   { 
      for (int i = 0; i < NUMANTIGENS; i++)                       // Loop through antigens 
         { 
            paraFile >> paraValue;                                // Get paratope value from file 
            idioFile >> idioValue;                                // Get idiotope value from file 
            robotAntibodies[j].paratope_strength[i] = paraValue;  // Set paratope strengths 
            robotAntibodies[j].idiotope_match[i] = idioValue;     // Set idiotope matches 
            //cout << "Antibody " <<j<< " value " << value << "\n"; 
         } 
    } 
 
/* Close files */ 
paraFile.close(); 
idioFile.close(); 
 
} 
 
/* 
*---------------------------------------------------------- 
* Put updated antibody - antigen match strengths into file 
*---------------------------------------------------------- 
*/ 
 
void updateMatches() 
{ 
fstream updateFile;                                                // Output file for updated matches 
updateFile.open ("updatedMatches.txt", ios::out);                  // Open the file for writing 
double value;                                                      // For holding file values 
 
updateFile.setf(ios::fixed);             
updateFile.setf(ios::showpoint);                               
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updateFile.precision(2);                                           // Two decimal places required 
for (int j = 0; j < NUMANTIBODIES; j++)                            // Loop through antibodies 
   { 
      for (int i = 0; i < NUMANTIGENS; i++)                        // Loop through antigens 
         {                                           
            value = robotAntibodies[j].paratope_strength[i];       // Set value as paratope strengths 
            updateFile << value << " ";                            // Write value to file 
         } 
     updateFile << "\n";                                           // Start new line 
   } 
 
/* Close file */ 
updateFile.close(); 
 
} 
 
/* 
*---------------------------------------------------------- 
* Generate random antigen match strengths for antibodies 
*---------------------------------------------------------- 
*/ 
 
void getRandomMatches(string idioFileName) 
{ 
 
double value;    
fstream idioFile;                                                 // Input file for initial idiotope matches 
idioFile.open (idioFileName.c_str(), ios::in);                    // Open the idiotope file for reading 
int idioValue;                                                    // For holding idiotope file values 
 
                                                     
srand(static_cast<unsigned>(time(0)));                                      // Set random number seed 
 
for (int j = 0; j < NUMANTIBODIES; j++)                                     // Loop through antibodies 
   { 
      for (int i = 0; i < NUMANTIGENS; i++)                                 // Loop through antigens 
         {    
            value = (rand()%26);                                            // Get number between 0 and 25 
            robotAntibodies[j].paratope_strength[i] = (value/100.0)+0.5;    // Set random values for paratope  
            idioFile >> idioValue;                                          // Get idiotope value from file 
            robotAntibodies[j].idiotope_match[i] = idioValue;               // Set idiotope matches 
         } 
   } 
 
/* Close file */ 
idioFile.close(); 
 
} 
 
/* 
*-------------------------------------------------------------------------------------- 
* Squash concentrations to keep total number a constant 
*-------------------------------------------------------------------------------------- 
*/ 
 
void squashConc() 
{ 
 
double totalConc = 0; 
 
for (int j = 0; j < NUMANTIBODIES; j++)                            // Loop through antibodies 
   { 
      totalConc = totalConc + robotAntibodies[j].conc;             // Find total concentration                                          
   } 
 
cout << "1st total conc " << totalConc <<"\n";   
 
for (int j = 0; j < NUMANTIBODIES; j++)                            // Loop through antibodies 
   { 
      /* Squash concentrations */ 
      robotAntibodies[j].conc = (robotAntibodies[j].conc / totalConc) * NUMANTIBODIES * startConc;                                      
   } 
 
totalConc = 0; 
 
for (int j = 0; j < NUMANTIBODIES; j++)                            // Loop through antibodies 
   { 
      totalConc = totalConc + robotAntibodies[j].conc;             // Find new total concentration                                      
   } 
 
cout << "2nd total conc " << totalConc <<"\n";  
 
} 
 
/* 
*---------------------------------------------------------- 
* END OF CONTROL PROGRAM 
*---------------------------------------------------------- 
*/ 
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Appendix B – Antibody class – Antibody.h 
 
/* 
*------------------------------------------------------------------------------------- 
*  
* Antibody.h 
* Antibody class - header file 
* By A. M. Whitbrook 11th July 2005 
* 
*-------------------------------------------------------------------------------------- 
*  
* This class models an antibody 
*  
*-------------------------------------------------------------------------------------- 
* 
* Copyright (C) 2005 A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*------------------------------------------------------------------------------------- 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
 
using namespace std; 
 
/* 
*------------------------------------------------------------------------------------- 
* Global variables 
*------------------------------------------------------------------------------------- 
*/ 
 
const int N_ANTIGENS = 9;      // Number of antigens 
const int N_ANTIBODIES = 12;   // Number of antibodies 
const int K2 = 10;             // Natural death rate of antibodies 
const int C = 40;              // Rate constant 
const double K1 = 0.75;        // Suppression - stimulation balancing constant 
 
/* 
*-------------------------------------------------------------------------------------- 
* Antibody class definition 
*-------------------------------------------------------------------------------------- 
*/ 
 
class Antibody 
 
{ 
 
 public:     
 
 double conc;                                  // Concentration 
 double strength;                              // Current strength 
 double activation;                            // Computed activation (based on strength and concentration) 
 double paratope_strength[N_ANTIGENS];         // Array of strengths of antibody-antigen matches 
 int idiotope_match[N_ANTIGENS];               // Array of matches for antibody-antigen disallowance 
 
 /* See user documentation for a full description of the public methods below */ 
  
 Antibody(double concen);   
 void matchAntigens(int ant_array[N_ANTIGENS], int domAntigen); 
 void idiotypicEffects(Antibody *winner, int antArray[N_ANTIGENS]); 
 void changeMatching(int ant_num, int ant_array[N_ANTIGENS], bool reward, double score); 
 void setConcentration(); 
 void setActivationLevel(); 
  
}; 
     
/* 
*-------------------------------------------------------------------------------------- 
* Constructor 
*-------------------------------------------------------------------------------------- 
*/ 
 
Antibody::Antibody(double concen)  
{ 
 
/* Set global variables */ 
 
conc = concen; 
 
} 
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/* 
*-------------------------------------------------------------------------------------- 
* Antigen to antibody matching routine - provides initial strengths for antibodies 
* based on antibody-antigen interaction 
*-------------------------------------------------------------------------------------- 
*/ 
 
void Antibody::matchAntigens(int ant_array[N_ANTIGENS], int domAntigen) 
{ 
strength = 0;                                 // Initialise strength 
for (int i = 0; i < N_ANTIGENS; i++)          // Loop through antigens for matches 
   { 
     //cout << "antigen " << i <<"\n"; 
     if (paratope_strength[i] > 0 && ant_array[i] == 1)  // If match for antibody paratope and antigen epitope 
       { 
          if (i == domAntigen) 
            { 
              strength = strength + (2 * paratope_strength[i]);            // Increase strength by affinity 
              //cout << "strength of match " << paratope_strength[i] << "\n"; 
            }else 
            { 
              strength = strength + (0.25 * paratope_strength[i]);         // Increase strength by 1/4 affinity  
              //cout << "strength of match " << paratope_strength[i] << "\n"; 
            }    
       } 
   } 
} 
 
/* 
*-------------------------------------------------------------------------------------- 
* Get results of the idiotypic effects - provides a final strength, concentration and  
* activation level for antibodies 
*-------------------------------------------------------------------------------------- 
*/ 
 
void Antibody::idiotypicEffects(Antibody *winner, int antArray[N_ANTIGENS]) 
{ 
 
activation = 0;                           // Initialise activation 
for (int i = 0; i < N_ANTIGENS; i++)      // Loop through antigens for inter-antibody effects 
   { 
      /* Winning antibody has recognised these idiotopes, they are suppressed - reduce strengths*/ 
 
      if (idiotope_match[i] == 1 && winner->paratope_strength[i] > 0 && strength > 0)     
        { 
           strength = strength - (winner->paratope_strength[i] * K1);  
           //cout << "Paratope strength :"<< winner->paratope_strength[i]<<"\n"; 
           //cout << "SUPPRESSION!\n"; 
        } 
 
      /*  
      * Winning antibody's idiotope has been recognised by these antibodies, they are stimulated – increase 
      * strengths 
      */ 
 
      if (winner->idiotope_match[i] == 1 && paratope_strength[i] > 0 && strength > 0) 
        {         
           strength = strength + (paratope_strength[i]);  
           //cout <<"Paratope strength :"<< paratope_strength[i]<<"\n"; 
           //cout << "Match between winner's idio and this para - adding to strength for antigen "<<i<<"\n"; 
           //cout << "STIMULATION!\n"; 
        } 
   } 
} 
 
/* 
*-------------------------------------------------------------------------------------- 
* Change strength of antigen matching based on reward-penalty results 
*-------------------------------------------------------------------------------------- 
*/ 
 
void Antibody::changeMatching(int ant_num, int ant_array[N_ANTIGENS], bool reward, double score) 
{ 
 
if (reward == true)                                                    // If action was useful 
  { 
     paratope_strength[ant_num] = paratope_strength[ant_num] + score;  // Reward antibody for dominant antigen 
     if (paratope_strength[ant_num] > 1)                               // Don't let strengths rise above 1 
       { 
          paratope_strength[ant_num] = 1; 
       }   
  }else                                                                // If action was not useful 
  {  
 
     paratope_strength[ant_num] = paratope_strength[ant_num] - score;  // Award penalty for dominant antigen     
     if (paratope_strength[ant_num] < 0)                               // Don't let strengths fall below 0 
       { 
          paratope_strength[ant_num] = 0; 
       }   
     conc = conc - (C * strength);                                     // Reduce concentration    
  } 
 
} 
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/* 
*-------------------------------------------------------------------------------------- 
* Compute concentrations based on strengths 
*-------------------------------------------------------------------------------------- 
*/ 
 
void Antibody::setConcentration() 
{ 
conc = conc + (C * strength) - K2;           // Set concentration                            
} 
 
/* 
*-------------------------------------------------------------------------------------- 
* Compute activations based on concentrations 
*-------------------------------------------------------------------------------------- 
*/ 
 
void Antibody::setActivationLevel() 
{                    
activation = conc * strength;                // Set activation 
} 
 
/* 
*---------------------------------------------------------------------------------------------------- 
* END OF ANTIBODY CLASS HEADER FILE 
*---------------------------------------------------------------------------------------------------- 
*/ 
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Appendix C – Robot class header file – Robot.h 
 
/* 
*------------------------------------------------------------------------------------- 
*  
* Robot.h 
* Robot class - header file 
* By A. M. Whitbrook 5th July 2005 
* 
*-------------------------------------------------------------------------------------- 
*  
* This class provides an interface to robot control programs used in this research, 
* allowing processing of laser and sonar sensors and permitting several  
* navigation behaviours to be set  
* 
*-------------------------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*------------------------------------------------------------------------------------- 
*/ 
 
#ifndef ROBOT_H 
#define ROBOT_H 
 
#include <stdio.h> 
#include <stdlib.h> 
 
using namespace std; 
 
/* 
*------------------------------------------------------------------------------------- 
* Definitions and global variables 
*------------------------------------------------------------------------------------- 
*/ 
 
#define USAGE \ 
  "USAGE: sonarobstacleavoid [-h <host>] [-p <port>] \n" \ 
  "       -h <host>: connect to Player on this host\n" \ 
  "       -p <port>: connect to Player on this TCP port\n" \ 
 
char host[256] = "localhost";         // Default host name 
int port = PLAYER_PORTNUM;            // Default port number 
const double RADTODEG = 180/M_PI;     // Radians to degrees conversion factor 
const double DEGTORAD = M_PI/180;     // Degrees to radians conversion factor 
 
/* 
*-------------------------------------------------------------------------------------- 
* Robot class definition 
*-------------------------------------------------------------------------------------- 
*/ 
 
class Robot 
 
{ 
 
 public:     
 
 double min_value;                       // Current minimum obstacle distance 
 double average;                         // Average front obstacle distance 
 int min_num;                            // Min number from laser or sonar ( scaled : 1 -> 6 ) 
 double xpos, ypos;                      // Current x and y co-ordinates 
 bool found_goal;                        // Whether robot has located goal  
 bool reach_goal;                        // Used to stop robot when goal reached 
 double obsTol;                          // Tolerance for obstacle avoidance 
 bool onPath;                            // Whether robot is on goal path 
 double dist_Trav;                       // Distance travelled towards goal 
  
/* See user documentation for a full description of the public methods below */ 
  
 Robot(double x_cord, double y_cord, double z_cord, bool s_Goal, double x_goal, double y_goal, double max_sd, 
double ob_tol); 
 void connect(int argc, char** argv); 
 void position (PositionProxy *ppc); 
 void getCoords(); 
 void obstacleAvoid (bool min_method); 
 void goFixedGoal(double stopTol); 
 void goNewGoal(double newDistance, double tolDec); 
 void escapeTraps(); 
 void explore(double data[361], double gateSize, double gapTol, double diffTol, double minVal); 
 void getSensorInfo(double data[361], bool min_method, bool full, bool rear); 
 void getLaserArray(double data[361], bool min_method, bool full); 
 void steerRobot(double sd, double angle); 
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private: 
 
 int max_num;                            // Max number from laser or sonar ( scaled : 0 -> 7 ) 
 double speed, turn;                     // Linear and angular velocities 
 double average_laser[8];                // Average laser readings (in sectors) 
 double zpos;                            // Current orientation 
 PositionProxy *pp;          
 bool start_goal;                        // Whether robot was explicitly given a goal 
 double xStartPos;                       // Start x co-ordinate   
 double yStartPos;                       // Start y co-ordinate   
 double zStartPos;                       // Start orientation     
 double xGoal;                           // X co-ordinate of goal ) For simulated robots with fixed goals 
 double yGoal;                           // Y co-ordinate of goal ) 
 double goal_Dist;                       // Distance from discovered goal 
 double maxSpeed;                        // Maximum safe speed for the robot 
 double oldObsTol;                       // Saved tolerance for explore mode 
 bool changeTol;                         // Whether tolerance has been changed 
 double maxDiff[2];                      // Array of 2 maximum differences in laser readings 
 int maxRegion[2];                       // Array of 2 positions of maximum laser differences 
 double oldOrient;                       // Orientation before goal turn is made; 
 double goalTurn;                        // Angle of turn needed to align with goal 
 
 void setArgs(bool min_method);          // Sets the speed and angle of the robot 
 void wanderRandom(double sd);           // Random wander mode 
 void wanderMax(double sd);              // Wander in direction of maximum sensor reading 
 void getMaxTwo(double data[361]);       // Find two largest changes in laser reading 
 double getDistance(int position, double data[361]);  // Obtain estimates of gate post distances 
 
}; 
 
#endif 
 
/* 
*---------------------------------------------------------------------------------------------------- 
* END OF ROBOT CLASS HEADER FILE 
*---------------------------------------------------------------------------------------------------- 
*/ 
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Appendix D – Robot class implementation file – Robot.cpp 
 
/* 
*---------------------------------------------------------------------------------------------------- 
*  
* Robot.cpp 
* Robot class - implementation file 
* By A. M. Whitbrook 5th July 2005 
* 
*----------------------------------------------------------------------------------------------------- 
*  
* This class provides an interface to Player C++ robot control programs 
* allowing processing of laser and sonar sensors and permitting several  
* navigation behaviours to be set  
* 
*----------------------------------------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*----------------------------------------------------------------------------------------------------- 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h>    
#include <iostream>     
#include <math.h>                // For trig functions  
#include <playerclient.h>        // C++ player client library 
#include <cstdlib>               // For random number generation 
#include "Robot.h"               // The header file for this class 
 
using namespace std; 
 
/* 
*----------------------------------------------------------------------------------------------------- 
* Constructor method 
*----------------------------------------------------------------------------------------------------- 
*/ 
 
Robot::Robot(double x_cord, double y_cord, double z_cord, bool s_goal, double x_goal, double y_goal, double max_sd, 
double ob_tol) 
{ 
 
xStartPos = x_cord;        // Set global variables  
yStartPos = y_cord; 
zStartPos = z_cord;   
start_goal = s_goal; 
maxSpeed = max_sd; 
obsTol = ob_tol; 
oldObsTol = ob_tol; 
changeTol = false; 
 
if (start_goal == true) 
  { 
     xGoal = x_goal;       // Set co-ordinates of goal (if known) 
     yGoal = y_goal; 
  } 
 
cout<<"A new robot object has been created at " << x_cord << ", " << y_cord << ", " << z_cord << "\n"; 
 
found_goal = start_goal;   // Set global variables  
reach_goal = false;   
onPath = false;     
 
} 
 
/* 
*---------------------------------------------------------------------------------------------------------- 
* Robot connection routine - (if optional arguments are used). N.B. This is a standard connection routine    
* used in most Player C++ codes 
*---------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::connect(int argc, char** argv) 
{ 
int i = 1; 
 
while (i < argc) 
 { 
   if(!strcmp(argv[i],"-h"))          // If a host argument was specified 
    { 
      if(++i < argc) 
       { 
        strcpy(host,argv[i]);         // Set host connection variable 
       }else 
       { 
        puts(USAGE);                  // Explain how to set arguments 
        exit(1); 
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       } 
    }else if(!strcmp(argv[i],"-p"))   // If a port argument was specified 
    { 
      if(++i < argc) 
       { 
        port = atoi(argv[i]);         // Set port connection variable 
       }else 
       { 
        puts(USAGE);                  // Explain how to set arguments 
        exit(1); 
       } 
    }     
    i++; 
 } 
} 
 
/* 
*--------------------------------------------------------------------------------------------------------- 
* Position robot 
*--------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::position(PositionProxy *ppc) 
{ 
 
pp = ppc; 
   
/* Tell the robot its start co-ordinates. This is important otherwise 
*  all readings are relative to robot rather than the grid */ 
 
pp->SetOdometry(xStartPos, yStartPos, zStartPos);   
 
} 
 
/* 
*----------------------------------------------------------------------------------------------------------- 
* Get average laser reading for each of the 8 sectors around the front 
*----------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::getLaserArray(double data[361], bool min_method, bool full) 
{ 
 
double av[8];                                // Average of sector's readings 
double sum = 0;                              // Sum of sector's readings 
 
for (int i = 0; i < 8 ; i++)                 // Loop through sectors 
   { 
      for (int j = i*45; j < (i*45)+45; j++) // Loop through readings 
         { 
            //cout << "Data array " << data[j] << "\n"; 
            sum = sum + data[j];       
         } 
      av[i] = sum / 45;    
      //cout <<"Average array "<< av[i]<< " sum " << sum <<"\n"; 
      sum =0; 
   } 
 
/* Set global variable */ 
 
for (int k = 0; k<8; k++) 
   { 
      average_laser[k] = av[7-k]; 
   } 
 
getSensorInfo(average_laser, min_method, full, false); // Process the averaged readings 
 
} 
 
/* 
*-------------------------------------------------------------------------------------------------------- 
* Set turn and speed according to direction of min or max reading 
*-------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::setArgs(bool min_method) 
{ 
 
double turn_rate;         // Angular velocity 
double sd;                // Linear velocity 
 
if (min_method == true)   // Turn away from minimum reading 
  { 
     switch(min_num)      // Set robot to turn away from minimum position and set speeds 
      { 
        case 1:turn_rate = -20; sd = 0.1; break;    // NB Minimum values from positions 0 and 7 are not possible 
        case 2:turn_rate = -30; sd = 0.05; break; 
        case 3:turn_rate = -45; sd = -0.1; break; 
        case 4:turn_rate = 45; sd = -0.1; break; 
        case 5:turn_rate = 30; sd = 0.05; break; 
        case 6:turn_rate = 20; sd = 0.1; break; 
      } 
 
     cout<< "Turning :" << turn_rate << " away from min reading : " << min_num << "\n"; 
  } 
 
if (min_method == false)              // Turn towards maximum reading 
  { 
     switch(max_num)                  // Set robot to turn towards maximum position and set speeds 
      { 
        case 0:turn_rate = 30; sd = 0.05; break; 
        case 1:turn_rate = 20; sd = 0.05; break; 
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        case 2:turn_rate = 10; sd = 0.1; break; 
        case 3:turn_rate = 0; sd = 0.1; break; 
        case 4:turn_rate = 0; sd = 0.1; break; 
        case 5:turn_rate = -10; sd = 0.1; break; 
        case 6:turn_rate = -20; sd = 0.05; break; 
        case 7:turn_rate = -30; sd = 0.05; break;  
      } 
 
     cout<< "Turning :" << turn_rate << " towards max reading : " << max_num << "\n"; 
 } 
 
turn = turn_rate;      // Set global velocity variables 
speed = sd; 
 
} 
 
/* 
*------------------------------------------------------------------------------------------------------ 
* Obtain robot's current co-ordinates from odometry 
*------------------------------------------------------------------------------------------------------ 
*/ 
 
void Robot::getCoords() 
{ 
xpos = pp->Xpos();     // Get position data 
ypos = pp->Ypos(); 
zpos = pp->Theta(); 
} 
 
/* 
*------------------------------------------------------------------------------------------------------ 
* Obstacle avoidance code - for laser and sonar 
*------------------------------------------------------------------------------------------------------ 
*/ 
 
void Robot::obstacleAvoid (bool min_method) 
{ 
 
cout << "OBSTACLE AVOIDANCE MODE\n"; 
cout << "------------------\n\n"; 
 
setArgs(min_method);                   // Get linear and angular speeds 
steerRobot(speed, turn); 
onPath = false; 
 
if (start_goal == false)               // If was not given goal co-ordinates 
  { 
    found_goal = false;                // Needs to rediscover goal after avoiding obstacles 
  } 
 
} 
 
/* 
*------------------------------------------------------------------------------------------------------ 
* Travel to a discovered goal 
*------------------------------------------------------------------------------------------------------ 
*/ 
 
void Robot::goNewGoal(double newDistance, double tol_Dec) 
{ 
 
double change;    // Measure of how the orientation has shifted 
double correct;   // Correction for limits of turn accuracy; 
 
cout << "TRAVEL TO DISCOVERED GOAL MODE\n"; 
cout << "------------------\n\n"; 
 
zpos = pp->Theta();                                  // Get the current orientation 
cout << "Current orientation "<< zpos <<"\n";  
change = (zpos - oldOrient);                         // Calculate change 
cout << "Change " << change << "\n"; 
correct = goalTurn - change;                         // Work out correction 
cout << "Making a correction " << correct <<"\n"; 
 
/* For real robot corrections may be large causing spinning action so set correction to zero if too large */ 
 
if (abs(correct * RADTODEG) > 1.5) 
  {                                 
     correct = 0.0;                 
  } 
 
steerRobot(maxSpeed, correct * RADTODEG); 
cout <<"Speed is now: " << maxSpeed << "\n"; 
dist_Trav = dist_Trav + newDistance;                 // Keep track of how far moved 
cout << "Distance travelled towards goal is " << dist_Trav << "\n"; 
 
if (goal_Dist - dist_Trav < 0.85 && changeTol == false)      
  { 
     oldObsTol = obsTol;     
     obsTol = obsTol - tol_Dec;                      // Getting close to goal - decrease obstacle tolerance      
     changeTol = true;         
     cout << "WARNING - getting near goal ...Decreasing obstacle tolerance to " << obsTol << "\n";      
  }                                    
 
if (dist_Trav > (goal_Dist/4) && changeTol == false) // Recalculate angle when quarter way  
  {             // unless obstacle tolerance has changed             
     cout << "RECALCULATING TURN!\n"; 
     found_goal = false;                             // This causes goal rediscovery and hence new turn value 
     onPath = true;                                  // Robot already on correct course 
  }                            
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if (dist_Trav - goal_Dist > 0.1)                     // Stopping mechanism 
  { 
     reach_goal = true;                   
  } 
} 
 
/* 
*----------------------------- ------------------------------------------------------------------------ 
* Escape code - implemented when robot is stuck 
*------------------------------------------------------------------------------------------------------ 
*/ 
 
void Robot::escapeTraps() 
{ 
 
cout << "ESCAPE TRAPS MODE\n"; 
cout << "------------------\n\n"; 
 
steerRobot(-0.05, 5);                   // Initially back-up 
 
wanderRandom(0); 
    
if (start_goal == false)                // If was not given goal co-ordinates 
  { 
    found_goal = false;                 // Needs to rediscover goal after avoiding obstacles 
  } 
 
onPath = false; 
} 
 
/* 
*------------------------------------------------------------------------------------------------------ 
* Explore code - when robot doesn't know its goal 
*------------------------------------------------------------------------------------------------------ 
*/ 
 
void Robot::explore(double data[361], double gateSize, double gapTol, double diffTol, double minVal) 
{ 
 
double dist1;                // Distance from robot to 1st side of gate 
double dist2;                // Distance from robot to 2nd side of gate 
double targetAngle;          // Angle between beams hitting gate edges 
double goalDistance;         // Distance to gate 
double gap;                  // Estimated gate width 
int region1;                 // Maximum difference position 
int region2;                 // Second maximum difference position  
int leftRegion;              // Left hand side maximum difference region (for use in angle calculations) 
double leftDist;             // Left hand side maximum difference (for use in angle calculations) 
int rightRegion;             // Right hand side maximum difference region (for use in angle calculations) 
double rightDist;            // Right hand side maximum difference (for use in angle calculations) 
double checkGoalTurn = 0;    // Checking mechanism for angle robot must turn to goal 
 
cout << "LOOKING FOR A GOAL\n"; 
cout << "------------------\n\n"; 
 
dist_Trav = 0;               // Reset global variables 
goal_Dist = 0; 
 
if (onPath == false)         // Only reset if the robot is not on the correct course 
  { 
     obsTol = oldObsTol;     // Reset obstacle tolerance to start value 
     cout << "Resetting obstacle tolerance to " << obsTol << "\n";  
  } 
 
changeTol = false; 
 
getMaxTwo(data);             // Get two maximum differences in laser readings 
 
region1 = maxRegion[0];      // Set local variables 
region2 = maxRegion[1]; 
 
/* Compute distances from robot to sides of gate */ 
 
dist1 = getDistance(region1, data); 
dist2 = getDistance(region2, data); 
 
/* Find angle between beams hitting gate edges */ 
 
targetAngle = (abs(double(region1) - double(region2))/2.0); 
 
/* Use cosine rule to find gap distance */ 
 
gap = sqrt(pow(dist1,2)+pow(dist2,2)-(2 * dist1 * dist2 * (cos(targetAngle * DEGTORAD)))); 
cout << "Dist1 " << dist1 << " Dist2 " << dist2 << " Angle " << targetAngle  << " Distance is " << gap << " \n"; 
 
/* Check computed gap approximates known gate size and check other tolerances */ 
/* If these criteria are fulfilled we have a goal */ 
 
if (abs(maxDiff[0] - maxDiff[1]) < diffTol && maxDiff[0] > minVal && maxDiff[1] > minVal && abs(gap - gateSize) < 
gapTol) 
  { 
     cout << "FOUND A GOAL!!\n\n"; 
     cout << "--------------\n\n"; 
 
     /* Compute goal distance */ 
     goalDistance = sqrt((pow(dist1,2)/2.0)-(pow(gap,2)/4.0)+(pow(dist2,2)/2.0)); 
     cout << "Goal is " << goalDistance << " away\n"; 
     goal_Dist = goalDistance;                  // Set global variable 
    
     if (maxRegion[0] > maxRegion[1])           // Find which laser beam is on left hand side 
       { 
         leftRegion = maxRegion[0]; 
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         leftDist = dist1;    
         rightRegion = maxRegion[1]; 
         rightDist = dist2;        
       }else 
       { 
         leftRegion = maxRegion[1]; 
         leftDist = dist2;  
         rightRegion = maxRegion[0]; 
         rightDist = dist1;        
       } 
 
     /* Find left side angle first using cosine rule */ 
     goalTurn = RADTODEG*(acos((pow(leftDist,2)+pow(goal_Dist,2)-pow((gap/2.0),2))/(2*leftDist*goal_Dist))); 
 
     /* Check the right side angle */ 
     checkGoalTurn = RADTODEG*(acos((pow(rightDist,2)+pow(goal_Dist,2)-pow((gap/2.0),2))/(2*rightDist*goal_Dist))); 
 
     cout << "Left side angle " << goalTurn << "\n"; 
     cout << "Right side angle " << checkGoalTurn << "\n"; 
     goalTurn = ((leftRegion-180)/2.0) - goalTurn;              // Find angle robot must turn 
     checkGoalTurn = ((rightRegion-180)/2.0) + checkGoalTurn;   // Check angle robot must turn 
    
     found_goal = true;                                         // Set global variable if turn is small enough 
     dist_Trav = 0;                                             // Reset distance travelled to goal 
    
     zpos = pp->Theta();                                        // Check current orientation 
     cout << "Current orientation "<< zpos <<"\n"; 
     oldOrient=zpos;                                            // Save orientation (before turn)  
     cout<< "Turning towards goal " << goalTurn  << " \n"; 
     steerRobot(0.05, goalTurn);                                // Set linear and angular speeds                         
     cout<< "Check " << checkGoalTurn  << " \n"; 
     goalTurn = goalTurn * DEGTORAD; 
   
  }else                                                  // Goal not yet found 
  { 
     found_goal = false;                                 // Set global variable 
     if (onPath == true)                                 // If previously heading to goal 
       { 
          steerRobot(maxSpeed, 0);                       // Wander ahead 
       }else 
       { 
          wanderRandom(maxSpeed);                        // Wander randomly or toward max laser reading 
       }                                     
  } 
 
} 
 
/* 
*----------------------------------------------------------------------------------------------------- 
* Move towards known fixed goal 
* For simulated robots where goal co-ordinates are explicitly input at the start for testing 
*----------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::goFixedGoal(double stopTol) 
{ 
 
cout << "TRAVEL TO KNOWN GOAL MODE\n"; 
cout << "------------------\n\n"; 
 
 
if ((xGoal-xpos) > 0)                                                // Goal is in 1st or 4th quadrant  
  { 
    turn = (- 1 * zpos) + atan ((yGoal-ypos)/(xGoal-xpos));          // Obtain angle of goal 
  } 
 
if ((xGoal-xpos) < 0  && (yGoal-ypos) < 0)                           // Goal is in 3rd quadrant     
  { 
    turn = ((- 1 * zpos) + atan ((yGoal-ypos)/(xGoal-xpos))) - M_PI; // Obtain angle of goal 
  } 
 
if ((xGoal-xpos) < 0  && (yGoal-ypos) > 0)                           // Goal is in 2nd quadrant 
  { 
    turn = ((- 1 * zpos) + atan ((yGoal-ypos)/(xGoal-xpos))) + M_PI; // Obtain angle of goal 
  } 
 
if (abs(turn * RADTODEG) > 10)                     // If angle to turn is large obstacles are still close 
  { 
     steerRobot(0.05, RADTODEG *(turn/2.0));       // ..so go slower and only turn half way to goal 
     cout << "speed is 0.05\n"; 
  }else 
  { 
     steerRobot(maxSpeed, RADTODEG * turn);        // If angle to turn is small 
     cout << "speed is maximum\n";                 // .. can go faster and turn full way 
  }  
     
cout<< turn * RADTODEG << "\n";; 
 
if (abs(xpos - xGoal) < stopTol && abs(ypos - yGoal) < stopTol)      // Stopping mechanism 
  {       
     reach_goal = true; 
  } 
 
} 
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/* 
*----------------------------------------------------------------------------------------------------- 
* Random wander mode  
*----------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::wanderRandom(double sd) 
{ 
 
cout << "RANDOM WANDER MODE\n"; 
cout << "------------------\n\n"; 
 
int random_angle;       // Random turn 
int random_number_1;    // Used to decide whether to turn this time 
int random_number_2;    // Used to decide which way to turn 
 
srand(static_cast<unsigned>(time(0)));  // Set random number seed 
 
random_angle = 5 * (rand()%10);         // Get number between 0 and 45 
random_number_1 = (rand()%10);          // Get number between 0 and 9 
random_number_2 = (rand()%10); 
 
if (random_number_2 < 4) 
  { 
     random_angle = -1 * random_angle;  // Switch direction 
  } 
 
if (random_number_1 > 3 ) 
  { 
     steerRobot(sd, random_angle);      // Turn 
     cout << "Turning random angle " << random_angle <<"\n"; 
  }else 
  { 
     wanderMax(sd);    
  }          
 
} 
 
/* 
*--------------------------------------------------------------------------------------------------------- 
* Wander towards max laser reading - used when goal searching 
*--------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::wanderMax(double sd) 
{ 
setArgs(false);                     // Get linear and angular speeds 
steerRobot(sd, turn);               // Set linear and angular speeds 
cout <<"Heading for open space\n"; 
} 
 
/* 
*--------------------------------------------------------------------------------------------------------- 
* Find the two maximum changes in laser reading 
*--------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::getMaxTwo(double data[361]) 
{ 
 
double diff;    //Current difference between adjacent laser readings 
 
/* Initialise global variables */ 
 
maxDiff[0] = 0;     
maxDiff[1] = 0; 
maxRegion[0] = 0; 
maxRegion[1] = 0; 
 
/* Loop through readings looking for 2 maximums */ 
 
for (int i = 0; i < 361; i++)     
   { 
      if (i > 0) 
        { 
           diff = abs(data[i]-data[i-1]);      // Set current difference 
          //cout << data[i] << " " << diff << " [" << i << "] \n"; 
          if (diff > maxDiff[1] && diff == maxDiff[0]) 
            { 
               maxDiff[1] = maxDiff[0];        // Set second maximum difference and region 
               maxRegion[1] = i; 
            }   
 
          if (diff > maxDiff[1] && diff > maxDiff[0]) 
            { 
               maxDiff[1] = maxDiff[0];        // Set second maximum difference and region 
               maxRegion[1] = maxRegion[0]; 
            }   
          if (diff > maxDiff[0]) 
            { 
               maxDiff[0] = diff;              // Set maximum difference and region 
               maxRegion[0] = i; 
            } 
          if (diff > maxDiff[1] && diff < maxDiff[0]) 
           { 
               maxDiff[1] = diff;              // Set second maximum difference and region 
               maxRegion[1] = i; 
           }       
        } 
   } 
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cout << "Maximum difference : " << maxDiff[0] << " from number " << maxRegion[0] <<"\n"; 
cout << "2nd maximum difference : " << maxDiff[1] << " from number " << maxRegion[1] <<"\n"; 
 
} 
 
/* 
*-------------------------------------------------------------------------------------------------------- 
* Find distance between robot and obstacle given laser readings and obstacle position 
*-------------------------------------------------------------------------------------------------------- 
*/ 
 
double Robot::getDistance(int position, double data[361]) 
{ 
 
double distance;  // Distance between robot and obstacle 
 
if (data[position] - data [position-1] < 0) 
  { 
    distance = abs(data[position]); 
  } 
 
if (data[position] - data [position-1] > 0) 
  { 
    distance = abs(data[position-1]); 
  } 
 
return distance; 
} 
 
/* 
*-------------------------------------------------------------------------------------------------------- 
* Obtain minimum and maximum sensor positions, plus average and mimimum readings 
*-------------------------------------------------------------------------------------------------------- 
*/ 
 
void Robot::getSensorInfo(double data[361], bool min_method, bool full, bool rear) 
{ 
 
double sum;           // Sum of the readings 
double av;            // Average of the readings 
int min;              // Position of minimum reading        
int max = 0;          // Position of maximum reading    
double max_reading;   // Maximum reading 
double min_reading;   // Minimum reading 
int dimension;        // Size of the array of readings 
int startLoop;        // Start of loop for minimum 
int endLoop;          // End of loop for minimum 
sum = 0;              // Set sum to zero 
 
if (full == true) 
  {  
     dimension = 361;          // No. of readings for laser 
     startLoop = 45; 
     endLoop = 315; 
     min_reading = data[45];   // Initialise minimum reading 
     min = 45; 
  }else if (rear == false) 
 { 
     dimension = 8;            // No. of readings for front sonar 
     startLoop = 1; 
     endLoop = 7; 
     min_reading = data[1];    // Initialise minimum reading 
     min = 1; 
 }else 
 { 
     dimension = 16;           // No. of readings for all sonar 
     startLoop = 0; 
     endLoop = 16; 
     min_reading = data[0];    // Initialise minimum reading 
     min = 0; 
 } 
 
 
for (int i = 0; i < dimension; i++)         // Loop to find average 
   {    
      sum = sum + data[i]; 
   } 
 
av = sum / dimension; 
 
for (int i = startLoop; i < endLoop; i++)   // Loop to find minimum and position 
   { 
     //cout << "Reading: " << i << " " << data[i]<<"\n"; 
     if ((data[i] < min_reading)) 
       { 
           min_reading = data[i]; 
           min = i; 
       }   
   } 
 
/* Set global variables */ 
average = av;                                     
 
if (full == true) 
  { 
     min_num = (359 - min) / 45;            // Scale to a position 1 - 6  for laser    
  }else 
  { 
     min_num = min; 
  }                     
min_value = min_reading;    
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cout<<"Minimum reading : "<< min_value << " From position : " << min_num << "\n"; 
 
if (min_method == false)                    // Turn towards max reading strategy 
  { 
     max_reading = data[0];                 // Initialise maximum reading  
     for (int i = 0; i < dimension; i++)    // Loop to find maximum and position 
        {   
          if (data[i] > max_reading) 
            { 
               max_reading = data[i]; 
               max = i; 
            }  
        } 
 
     /* Set global variables */ 
     if (full == true)   
       { 
          cout<< "using single laser readings\n"; 
          max_num = (359 - max) / 45;       // Scale to a position 0 - 7    
          if (max_num == 8)                 // Force 0 to position 7 
            { 
               max_num = 7; 
            } 
       }else 
       { 
          max_num = max; 
       } 
     cout<<"Maximum reading : "<< max_reading << " From position : " << max_num << "\n"; 
  } 
} 
 
/* 
*----------------------------------------------------------------------------------------------------- 
* Steer the robot at specified linear and angular velocities 
*----------------------------------------------------------------------------------------------------- 
*/ 
void Robot::steerRobot(double sd, double angle) 
{ 
 
if (sd > maxSpeed )              // Safety net for speed ... 
  { 
    sd = maxSpeed;               // ... can't exceed maximum 
  } 
 
pp->SetSpeed(sd, DTOR(angle)); 
} 
 
/* 
*---------------------------------------------------------- 
* END OF ROBOT IMPLEMENTATION FILE 
*---------------------------------------------------------- 
*/ 
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Appendix E – Fixed behaviour code – goalseek.cc 
 
/* 
*---------------------------------------------------------- 
*  
* goalseek.cc 
* By A. M. Whitbrook 5th July 2005 
* 
*----------------------------------------------------------------------- 
*  
* To navigate a Pioneer 3 robot through a gate of known width, avoiding 
* obstacles. The location of the gate must be discovered 
* 
*----------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*----------------------------------------------------------------------- 
*/ 
 
#define AVERAGE_LASER_METHOD 
//#define SINGLE_LASER_METHOD 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <playerclient.h>  // C++ player client library 
#include <string>    
#include <iostream>     
#include <math.h>          // For trig functions  
#include "Robot.cpp"       // Robot class for use with this program 
#include "WorldReader.h"   // To read start position directly from World file for simulations 
 
using namespace std; 
 
/* 
*---------------------------------------------------------- 
* Main method - goal seeking with obstacle avoidance 
*---------------------------------------------------------- 
*/ 
 
int main(int argc, char **argv) 
{ 
double avTol = 0.65;               // Threshold for average distance of obstacles 
double maxSafeSpeed = 0.17;        // Maximum speed allowed 
double minDistTol = 0.5;           // Threshold distance for obstacle avoidance mode 
double standStillApprox = 0.1;     // Limit of distance from obstacle when robot unable to move 
double scan_data[361];             // Array for passing laser data 
double tol = 0.2;                  // Tolerance level for stopping when goal reached 
int count = 1;                     // Used for read-think-act loop 
double tolDec = 0.45;              // Distance tolerance reduction when passing through gate 
 
bool obsMethod = true;             // Obstacle avoidance strategy 
                                   // False => steer towards maximum reading :  
                                   // True => steer away from minimum reading 
 
bool obsTool = false;              // Obstacle avoidance tool 
                                   // False => sonars : True => lasers 
 
bool sim = true;                   // Whether a simulator is being used 
                                   // True => simulations : False => real robot 
 
double x, y, z;                    // Start co-ordinates - for simulated robot read from world file 
double distTravelled;              // Distance travelled each cycle 
bool startGoal;                    // Whether goal co-ordinates are known (for simulated robots) 
double gX, gY;                     // Goal co-ordinates for simulated robots 
string answer;                     // User input for whether goal co-ords known 
double gate_size = 1.32;           // Size of gate robot must pass through 
double gap_tol = 0.4;              // Tolerance for accuracy of laser gate size estimation 
double diff_tol = 0.7;             // Tolerance for difference between the two highest laser reading changes 
double min_val = 0.8;              // Minimum value of highest difference for goal recognition 
bool turnOnMotors = true; 
 
/* Get scenario - (real or simulation) and set parameters */ 
 
if (sim ==true)                              // If using simulator 
  { 
     WorldReader readWorld("simple4.world"); // Create object for reading world file 
     readWorld.getStartCoords();             // Get starting co-ordinates from world file 
     x = readWorld.xVal;                     // Set start co-ordinates 
     y = readWorld.yVal; 
     z = readWorld.zVal; 
  
     z = z * (M_PI / 180);                   // Convert degrees to radians for orientation 
 
     cout << "Goal co-ordinates known? (y/n)\n";   
     cin >> answer; 
  
   if (answer == "y")                        // If goal co-ords known  



 100 

     { 
        cout << "Input goal x co-ordinate\n";      // Get goal from user 
        cin >> gX; 
        cout << "Input goal y co-ordinate\n"; 
        cin >> gY; 
        startGoal = true; 
    }else                          // Robot must discover own goal 
    { 
        gX = 0; 
        gY = 0; 
        startGoal = false; 
    } 
 } 
 
if (sim ==false)                   // Using real robot 
  { 
     startGoal = false;            // Robot must discover own goal 
     gX = gY = x = y = z = 0;      // Start and goal positions not needed 
  } 
 
/* Create an instance of a Robot called taylor */ 
 
Robot taylor(x, y, z, startGoal, gX, gY, maxSafeSpeed, minDistTol);   
taylor.connect(argc, argv);        // Connect to specified host or port  
 
PlayerClient rb(host, port);       // Create instance of PlayerClient  
PositionProxy pp(&rb, 0, 'a');     // Create instance of PositionProxy 
SonarProxy sp(&rb, 0, 'r');        // Create instance of SonarProxy 
LaserProxy lp(&rb, 0, 'r');        // Create instance of LaserProxy 
 
if (lp.access != 'r')              // Check laser switched on 
  { 
     cout << "cannot read from laser\n"; 
     exit(-1); 
  } 
 
taylor.position(&pp);              // Links created robot with PositionProxy and sets the odometry 
 
/* maybe turn on the motors */ 
if (turnOnMotors && pp.SetMotorState(1)) 
  { 
     exit(1); 
  } 
 
cout << "Connected on port : "<< port<<"\n"; 
 
/* 
*---------------------------------------------------------- 
* Go into read-think-act loop 
*---------------------------------------------------------- 
*/ 
 
for (;;)         
 
 { 
   
   if (rb.Read())  
     {       
        exit(1); 
     } 
 
   if (count%10 == 0)   // Work out distance travelled and get sensor readings every second - (runs at 10Hz) 
     { 
        taylor.getCoords();                      // Find robot's current co-ordinates 
    
        if (taylor.reach_goal == true)   
          {                                      // Stopping criteria      
             cout << "Stopping at goal" << "\n"; // When goal is reached 
             cout << "Time was " << count/10 <<"\n"; 
             exit(1); 
          } 
   
        distTravelled = sqrt(pow(taylor.xpos - x, 2) + pow(taylor.ypos - y, 2)); 
        //cout <<"Distance travelled this cycle = " << distTravelled <<"\n"; 
        x = taylor.xpos;        // Set co-ords ready for next cycle 
        y = taylor.ypos; 
 
        if (obsTool == false)   // Using sonars as the sensors 
          { 
             //cout << "Using sonars \n"; 
             taylor.getSensorInfo(sp.ranges, obsMethod, false, false);   // Process 8 sonar readings       
          } 
 
        if (obsTool == true)    // Using lasers as the sensors 
          { 
             //cout << "Using lasers\n"; 
             for ( int i = 0; i < lp.scan_count; i++)   
                { 
                    scan_data[i] = lp[i]; 
                } 
             #ifdef AVERAGE_LASER_METHOD 
               cout<< "Using averaged laser readings \n"; 
               taylor.getLaserArray(scan_data, obsMethod, false);        // Process 8 averaged laser readings     
             #endif 
             #ifdef SINGLE_LASER_METHOD 
               cout<< "Using single laser readings  \n"; 
               taylor.getSensorInfo(scan_data, obsMethod, true, false);  // Process 361 single laser readings     
             #endif       
          } 
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         if (taylor.min_value > standStillApprox && count > 9 && taylor.average > avTol)  // If robot isn't stuck 
           {               
              /* Check for obstacle */   
              if (taylor.min_value < taylor.obsTol)    
                { 
                   taylor.obstacleAvoid(obsMethod);                 
                }            
 
              /* If no obstacles and goal known then go to goal */ 
              if (taylor.min_value >= taylor.obsTol && taylor.found_goal == true)    
                { 
                   switch(startGoal) 
                    { 
                      case true:taylor.goFixedGoal(tol);break;                       // Goal was given at start 
                      case false:taylor.goNewGoal(distTravelled, tolDec);break;      // Goal has been discovered 
                    } 
                } 
 
              /* If no obstacles and goal not known then discover goal - (explore) */ 
              if (taylor.min_value >= taylor.obsTol && taylor.found_goal == false)    
                { 
                   for (int i = 0; i < lp.scan_count; i++) 
                      { 
                         scan_data[i] = lp[i];    
                      } 
                   taylor.explore(scan_data, gate_size, gap_tol, diff_tol, min_val); // Use laser to look for gate   
                }    
 
           }//end if robot not stuck  
 
     }//end of if (count%10 == 0) 
 
   /* If robot is stuck */   
 
   if ((taylor.min_value <= standStillApprox || distTravelled == 0 || taylor.average <= avTol) && count > 30) 
     {   
        cout << "average reading " << taylor.average <<"\n"; 
        taylor.escapeTraps();  
     } 
  
   count++; 
      
 }// end read-think-act loop 
 
}//end main 
 
 
/* 
*---------------------------------------------------------- 
* END OF MAIN PROGRAM 
*---------------------------------------------------------- 
*/ 
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Appendix F – Genetic algorithm code – genalg.cc 
 
/* 
*---------------------------------------------------------------------- 
*  
* genalg.cc 
* By A. M. Whitbrook 11th August 2005 
*----------------------------------------------------------------------- 
*  
* To evolve paratope mappings through a genetic algorithm 
* 
*----------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*----------------------------------------------------------------------- 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
 
#include <string>    
#include <iostream>     
#include <cstdlib>                          // For random number generation 
#include <fstream> 
 
using namespace std; 
 
const int NUMANTIGENS = 9;                  // Number of antigens in the system 
const int NUMANTIBODIES = 12;               // Number of antibodies in the system 
const int POPNUM = 3;                       // Number of mappings in the genetic pool 
int parent;                                 // Parent code number 
 
void getPopMatrices(string paraFileName);   // Read in the population of parent mapping 
void getChild();                            // Produce a new mapping           
void getParent();                           // Select a parent based on fitness 
 
/* 
*---------------------------------------------------------------------- 
* Matrix class - defines a mapping 
*----------------------------------------------------------------------- 
*/ 
 
class Matrix 
 
{ 
 
 public:     
 
 double paratope_strength [NUMANTIGENS] [NUMANTIBODIES];  // Matrix elements 
 int fitness;                                             // Suitability for breeding  
 
 Matrix(int fit);                                         // Constructor method 
  
}; 
 
/* 
*-------------------------------------------------------------------------------------- 
* Constructor 
*-------------------------------------------------------------------------------------- 
*/ 
 
Matrix::Matrix(int fit)  
{ 
 
/* Set global variables */ 
 
fitness = fit; 
 
} 
 
/* Define the mappings and put them into an array of mappings*/ 
 
Matrix mapping1(33); 
Matrix mapping2(38); 
Matrix mapping3(29); 
 
Matrix population[POPNUM] = {mapping1, mapping2, mapping3}; 
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/* 
*---------------------------------------------------------------------- 
* Main method 
*----------------------------------------------------------------------- 
*/ 
 
int main(int argc, char **argv) 
{ 
 
srand(static_cast<unsigned>(time(0)));                            // Set random number seed 
 
getPopMatrices("joined-mapping.txt");                             // Read in the initial mappings 
getChild();                                                       // Produce one offspring 
    
} 
 
 
/* 
*---------------------------------------------------------- 
* Read population matrices from file 
*---------------------------------------------------------- 
*/ 
 
void getPopMatrices(string matrixFileName) 
{ 
fstream matrixFile;                                                  // Input file for initial paratope matches 
matrixFile.open (matrixFileName.c_str(), ios::in);                   // Open the paratope file for reading 
double value;                                                        // For holding paratope file values 
 
for (int k = 0; k < POPNUM; k++)                                     // Loop through mappings 
   { 
      for (int j = 0; j < NUMANTIBODIES; j++)                        // Loop through antibodies 
         { 
            for (int i = 0; i < NUMANTIGENS; i++)                    // Loop though antigens 
               { 
                  matrixFile >> value;                               // Get value from file          
                  population[k].paratope_strength[i][j] = value;     // Set values      
                  cout << "Element " <<i<< " "<<j<< " value " << value << "\n"; 
               } 
         } 
   } 
 
matrixFile.close(); 
} 
 
/* 
*---------------------------------------------------------- 
* Generate a child mapping from population 
*---------------------------------------------------------- 
*/ 
 
void getChild() 
{ 
fstream childFile;                                             // Output file for updated matches 
childFile.open ("child.txt", ios::out);                        // Open the file for writing 
double value;                                                  // For holding selected value 
double rnd1;                                                   // For determining whether mutation occurs 
double rnd2;                                                   // For determining mutation value 
 
childFile.setf(ios::fixed);             
childFile.setf(ios::showpoint);                               
childFile.precision(2);                                        // Two decimal places required 
 
for (int j = 0; j < NUMANTIBODIES; j++)                        // Loop though antibodies                   
   {  
      getParent();                                             // Choose a parent based on fitness 
      for (int i = 0; i < NUMANTIGENS; i++)                    // Loop through antigens 
         { 
            rnd1=(rand()%100);                                 // Generate random no. between 0 and 99                                  
            if (rnd1 == 10 || rnd1 == 85 || rnd1 == 62 )       // Mutation at 3% 
              { 
                 rnd2=(rand()%10);                             // Get mutated value 
                 rnd2 = rnd2 /10.0;                                  
                 cout << "MUTATION " << rnd2 <<" FOR ELEMENT " << i << j << "\n"; 
                 value = rnd2;                                      
              }else 
              { 
                 value = population[parent].paratope_strength[i][j];   // Set value to paratope strength of parent  
              } 
            childFile << value << " ";                                 // Write value to file  
         }   
      childFile << "\n";                                               // Start new line       
   } 
     
childFile.close(); 
 
} 
 
 
/* 
*---------------------------------------------------------- 
* Generate a parent from population 
*---------------------------------------------------------- 
*/ 
 
void getParent() 
{ 
 
double random_number; 
 
random_number = (rand()%100);                                          // Get number between 0 and 99  
random_number = random_number+1;                                       // Set number between 1 and 100  
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int startNo = 0;                                                         
int endNo = 0; 
 
/* Select parent based on fitness */ 
                   
for (int i = 0; i<POPNUM; i++)                                         // Loop through population to assign parent 
   { 
      startNo = endNo;                                                 // Update start number 
      endNo = endNo + population[i].fitness;                           // Update end number 
      //cout << "Start number " << startNo << " End number " << endNo << "\n"; 
      if (random_number > startNo && random_number <= endNo)             
        { 
           parent = i;  
        } 
   } 
 
//cout << "Random no is " << random_number << "\n"; 
cout << "Parent is " << parent << "\n";                                    
 
} 
 
 
/* 
*---------------------------------------------------------- 
* END OF PROGRAM 
*---------------------------------------------------------- 
*/ 
 



 105 

Appendix G – Worldreader class code – Worldreader.h 
 
/* 
*----------------------------------------------------------------------------------------------------- 
*  
* WorldReader.h 
* WorldReader class - header and implementation file 
* By A. M. Whitbrook 5th July 2005  
* 
*----------------------------------------------------------------------------------------------------- 
*  
* Reads start position (x, y, z co-ordinates) directly from the Player/Stage "world" file 
* For simulated robots only 
* (World file should have indenting removed from p3dx-sh section) 
* 
*----------------------------------------------------------------------------------------------------- 
* 
* Copyright (C) 2005  A. M. Whitbrook  
* 
* This program is free software; you can redistribute it and/or 
* modify it under the terms of the GNU General Public License 
* as published by the Free Software Foundation; either version 2 
* of the License, or (at your option) any later version. 
 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
* GNU General Public License for more details. 
*  
* Email : amw04m@cs.nott.ac.uk 
* 
*----------------------------------------------------------------------------------------------------- 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream>     
#include <fstream> // For file handling 
#include <string>   
 
using namespace std; 
 
/* 
*------------------------------------------------------------------- 
* Class definition 
*------------------------------------------------------------------- 
*/ 
 
class WorldReader 
 
{ 
 
 public:     
     
 double xVal;    // x-coordinate 
 double yVal;    // y-coordinate 
 double zVal;    // z-coordinate 
  
 WorldReader(string fileName);  // Constructor 
 void getStartCoords();         // Reads world file to get start co-ordinates  
 
 private: 
 
 fstream worldFile;   // Input file variable name 
 string str;          // Used for file reading 
 int loopCounter;     // Used when looping through lines of file 
 int length;          // Length of str 
 string temp;         // Temporary string 
 string tempNum;      // Temporary string 
 string firstNum;     // String x-coordinate 
 string secondNum;    // String y-coordinate 
 string thirdNum;     // String z-coordinate 
 int spaceCounter;    // Used for counting space delimiter when tokenizing 
 int thirdLen;        // Length of thirdNum; 
 string fileName;     // World file name - passed to constructor 
  
}; 
 
/* 
*------------------------------------------------------------------- 
* Constructor method 
*------------------------------------------------------------------- 
*/ 
  
WorldReader::WorldReader(string fileName) 
{ 
loopCounter = 100;                 // Initialise to something large 
spaceCounter = 0;    
worldFile.open (fileName.c_str()); // Open the world file 
} 
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/* 
*------------------------------------------------------------------- 
* Get start co-ordinates from file 
*------------------------------------------------------------------- 
*/ 
 
void WorldReader::getStartCoords() 
{ 
 
while(!worldFile.eof()) 
 { 
    getline(worldFile, str, '\n');       // Read one line 
    loopCounter = loopCounter + 1;    
    if (str == "p3dx-sh")     
      { 
         loopCounter = 0;                // If the Pioneer type declaration found => set loopCounter to 0 
      } 
    if (loopCounter == 4)                // Start co-ordinates are four lines down from this 
      { 
         length = str.length();          // Get length of string holding start co-ordinates 
         for (int i = 0; i<length; i++)  // Loop through this string to tokenize   
            { 
              temp = str[i]; 
              tempNum =tempNum + temp;           // Build the new strings 
              if (temp == " " || i == length-1)  // Look for a space as a delimiter 
                { 
                  spaceCounter = spaceCounter + 1;    
                  switch(spaceCounter)           // Set the three placement variables 
                   { 
                      case 1:; break; 
                      case 2:firstNum = tempNum; firstNum.erase(0,1);break; 
                      case 3:secondNum = tempNum; break; 
                      case 4:thirdNum = tempNum; thirdLen = thirdNum.length(); thirdNum.erase(thirdLen-1,1);break; 
                   }      
                  tempNum = "";                  // Reset the temporary variable 
                } 
 
            }// end for 
     
      }// end if 
 
 }// end while 
 
xVal = strtod(firstNum.c_str(),NULL);   // Convert the strings to doubles 
yVal = strtod(secondNum.c_str(),NULL);  // (NB: First convert to c strings) 
zVal = strtod(thirdNum.c_str(),NULL); 
 
}//end getStartCoords 
 
/* 
*---------------------------------------------------------------------------------------------------- 
* END OF WORLDREADER CLASS HEADER FILE 
*---------------------------------------------------------------------------------------------------- 
*/ 
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Appendix H – Robot class user documentation 
 
 
 
Class Robot 
Author: A. M. Whitbrook 
 
Provides an interface to control programs described in this report, allowing processing 
of laser and sonar sensors and permitting several navigation modes to be set. 
 
# include “Robot.h” 
 
 
Public methods 
 
 
Method Robot(double x_cord, double y_cord, double 

z_cord, bool s_Goal, double x_goal, double 
y_goal, double max_sd, double ob_tol) 

Description Default constructor – creates a Robot object  
Returns Void 
Takes arguments: Type Representation 
x_cord Double The starting x-co-ordinate 

 
y_cord Double The starting y-co-ordinate  
z_cord Double The starting orientation in radians 
s_Goal Bool Whether the goal is known: 

True : Goal is known 
False : Goal is not known  

x_goal Double The goal x-co-ordinate if known 
y_goal Double The goal y-co-ordinate if known 
max_sd Double The maximum speed allowed in ms-1 
ob_tol Double The minimum object distance allowed 

before obstacle avoidance mode is called 
 
 
 
Method connect(int argc, char** argv) 
Description Sets the host name or port number either to the default (“local 

host” and PLAYER_PORTNUM respectively) or to that which 
is specified when the main control program is run 

Returns Void 
Takes arguments: Type Representation 
argc Int The number of arguments supplied to the 

control program 
**argv Char pointer Points to the arguments supplied to the 

control program 
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Method position(PositionProxy *ppc) 
Description Sets the robot’s internal odometry to the supplied start co-

ordinates. (N. B. This is only necessary for simulated robots.) 
Returns Void 
Takes arguments: Type Representation 
*ppc Pointer to 

PositionProxy 
Points to the PositionProxy created in the 
control program 

 
 
 
Method getCoords() 
Description Gets the robot’s current x and y co-ordinates and orientation and 

passes them to the public xpos and ypos class attributes and 
the private zpos class attribute respectively 

Returns Void 
Takes arguments: Type Representation 

- - - 

 
 
 
Method obstacleAvoid (bool min_method) 
Description Puts the robot into obstacle avoidance mode 
Returns Void 
Takes arguments: Type Representation 
min_method Bool The obstacle avoidance strategy: 

True :  Turn away from minimum 
sensor reading 
False : Turn towards maximum 
sensor reading 

 
 
 
Method goFixedGoal(double stopTol) 
Description Sets the robot to head towards a goal with known co-ordinates 
Returns Void 
Takes arguments: Type Representation 
stopTol Double The degree to which the stopping position 

can differ from the goal position 
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Method goNewGoal(double newDistance, double 
tolDec) 

Description Sets the robot to head towards a discovered goal with unknown 
co-ordinates 

Returns Void 
Takes arguments: Type Representation 
newDistance Double The distance travelled in the last second 
tolDec Double How much the obstacle distance tolerance 

should be reduced on approach to the goal 
 
 
 
Method escapeTraps() 
Description Allows the robot to attempt to free itself from collisions and 

corner entrapments 
Returns Void 
Takes arguments: Type Representation 
- - - 
 
 
 
Method explore(double data[361], double gateSize, 

double gapTol, double diffTol, double 
minVal) 

Description Sets the robot to wander around looking for a goal 
Returns Void 
Takes arguments: Type Representation 

data[361] Array of doubles The array of laser readings 
gateSize Double The size of the gate through which the 

robot must pass 
gapTol Double By how much the robot’s estimate of gate 

size is allowed to differ from the actual gate 
size 

diffTol Double By how much the two maximum changes 
in laser reading are allowed to differ  

minVal Double The smallest allowed value for any 
maximum change in laser reading 
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Method getSensorInfo(double data[361], bool 

min_method, bool full) 
Description Processes the sensor readings (both for laser and sonar). It 

transfers the maximum and minimum positions to the private 
class attributes max_num and min_num respectively. It transfers 
the minimum reading and average readings to the public class 
attributes min_value and average respectively. 

Returns Void 
Takes arguments: Type Representation 

data[361] Array of doubles Array of sensor readings, up to a maximum 
size of 361. The front 8 sonar, full 16 sonar, 
8 averaged laser or full 361 laser values can 
be passed. The average laser values can be 
determined by calling the public 
getLaserArray() method, see the table 
overleaf. 

min_method Bool The obstacle avoidance strategy: 
True :  Turn away from minimum 
sensor reading 
False : Turn towards maximum 
sensor reading 

full Bool Whether a full set of 361 values is passed, 
or only 8/16 values: 
True :  361 values are passed 
False : 8 or 16 values are passed 

rear Bool Whether the rear sonar sensors are to be 
included in the data set: 
True :  Include rear sonar sensors 
False : Do not include rear sonar 
sensors 

 
 
 
Method steerRobot(double sd, double angle) 
Description Sets the robot’s linear and angular velocities. The robot is 

prevented from exceeding a set maximum linear velocity. 
Returns Void 
Takes arguments: Type Representation 
sd Double Linear velocity in ms-1 
angle Double Angular velocity in degrees 
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Method getLaserArray(double data[361], bool 

min_method, bool full) 
Description Averages the laser readings over 8 sectors, and passes them to 

the public getSensorInfo method for processing 
Returns Void 
Takes arguments: Type Representation 

data[361] Array of doubles The full array of 361 laser readings 
min_method Double The obstacle avoidance strategy: 

True :  Turn away from minimum 
sensor reading 
False : Turn towards maximum 
sensor reading 

full Bool Whether a full set of 361 values is passed, 
or only 8 values: 
True :  361 values are passed 
False : 8 values are passed 

 
 
 
 
Public attributes 
 
 
Attribute Type Representation 
min_value Double The minimum sensor reading 
average Double The average of all the front sensor readings 
xpos Double The current x-co-ordinate 
ypos Double The current y-co-ordinate 
found_goal Bool Whether a goal has been found 

True :  Goal found 
False :  Goal not found 

reach_goal Bool Whether the goal has been reached 
True :  Goal reached 
False :  Goal not reached 

obsTol Double The tolerance value used in obstacle 
avoidance mode. Represents the minimum 
allowed obstacle distance 

min_num Int The position of the minimum sensor reading 
onPath Bool Whether the robot is on course for the goal 

True :  On course for goal 
False :  Not on course for goal 

dist_Trav Double How for the robot has travelled in ms-1 
 
 
 
 
The class has no child classes 
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Appendix I – Antibody class user documentation 
 
 
 
Class Antibody 
Author: A. M. Whitbrook 
 
This class models an antibody with attributes strength, concentration and activation 
level. 
 
# include “Antibody.h” 
 
 
Public methods 
 
 
Method Antibody(double concen) 
Description Default constructor – creates an Antibody object 
Returns Void 
Takes arguments: Type Representation 

concen double Initial antibody concentration 
 
 
 
Method matchAntigens(int ant_array [N_ANTIGENS], 

int domAntigen) 
Description Loops through the presenting antigen set and calculates the 

strength of match to it  
Returns Void 
Takes arguments: Type Representation 
ant_array Array of ints An array of binary integers of size 

corresponding to the number of antigens in 
the system. Position in the array indicates 
ID number. 0 should be used to represent 
the absence of an antigen and 1 should 
represent its presence. 

domAntigen Int The ID number of the dominant antigen. 
 
 
 
Method setConcentration() 
Description Computes an antibody’s current concentration level 
Returns Void 
Takes arguments: Type Representation 
- - - 
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Method setActivationLevel() 
Description Computes an antibody’s current activation level  - 

(concentration * strength) 
Returns Void 
Takes arguments: Type Representation 
- - - 
 
 
 
Method idioTypicEffects(int ant_array 

[N_ANTIGENS], int domAntigen) 
Description Adjusts the strength of match to the antigen set by considering 

idiotypic effects 
Returns Void 
Takes arguments: Type Representation 
*winner Pointer to an 

Antibody object 
Points to the antibody with the highest 
strength of match after execution of the 
matchAntigens method. 

antArray Array of ints An array of binary integers of size 
corresponding to the number of antigens in 
the system. Position in the array indicates 
ID number. 0 should be used to represent 
the absence of an antigen and 1 should 
represent its presence. 

 
 
 
Method changeMatching (int ant_num, int ant_array 

[N_ANTIGENS], bool reward, double score) 
Description Alters the paratope_strength array values according to a 

scalar reward and penalty system based on performance 
Returns Void 
Takes arguments: Type Representation 
ant_Num Int The ID number of the dominant antigen. 
antArray Array of ints An array of binary integers of size 

corresponding to the number of antigens in 
the system. Position in the array indicates 
ID number. 0 should be used to represent 
the absence of an antigen and 1 should 
represent its presence. 

reward Bool Whether a penalty or reward should be 
awarded: 
True :  Award reward 
False :  Award penalty 
 

score Double Measure of reward or penalty to be issued 
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_____________________________________________________________________ 
 
Public attributes 
 
 
Attribute Type Representation 
conc Double Current antibody concentration 
strength Double Current antibody strength 
activation Double Current antibody activation level 
paratope_strength Array of 

doubles 
Array of doubles with value between 0 and 1 
that represents an antibody’s degree of match 
to the set of antigens in the system. The 
dimension of the array must equal the 
number of antigens. 

idiotope_match Array of 
binary 
integers 

Array of binary integers that represents 
disallowance between an antibody and the 
set of antigens in the system. The dimension 
of the array must equal the number of 
antigens. 

 
 
 
 
The class has no child classes 
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Appendix J – WorldReader class user documentation 
 
 
 
Class WorldReader  
Author: A. M. Whitbrook 
 
Reads the starting x-co-ordinate, y-co-ordinate and orientation of simulated robots 
from Stage “World” files that contain p3dx-sh objects. (N. B. All indenting should be 
removed from the p3dx-sh declaration in the world file prior to using this method.) 
 
# include “WorldReader.h” 
 
 
Public methods 
 
 
Method WorldReader(string fileName) 
Description Default constructor – creates a WorldReader object 
Returns Void 
Takes arguments: Type Representation 
fileName String Location and name of the world file to be 

read 
 
 
 
Method getStartCoords() 
Description Gets the robot’s starting x, y and z co-ordinates direct from the 

world file and passes them to the object’s public xval, yval 
and zval attributes 

Returns Void 
Takes arguments: Type Representation 
- - - 
 
 
 
Public attributes 
 
 
Attribute Type Representation 
xval Double Starting x-co-ordinate 
yval Double Starting y-co-ordinate 
zval Double Starting orientation 
 
 
 
 
The class has no child classes 
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Appendix K – World file 
 
# Desc: 1 robot with player, laser and sonar 
 
 
# Set the resolution of Stage's raytrace model in meters 
# 
resolution 0.02 
 
# GUI settings 
# 
gui 
( 
size [ 502.000 485.000 ] 
origin [4.059 6.043 0] 
scale 0.009 # the size of each bitmap pixel in meters 
) 
 
# load a bitmapped environment from a file 
# 
bitmap 
( 
file "cave8.pnm.gz"  
resolution 0.02 
) 
 
include "p3dx-sh.inc" 
 
# create a robot, setting its start position and Player port,  
# and equipping it with a laser range scanner 
# 
p3dx-sh 
( 
name "robot1" 
port 6665 
pose [3.5 4.5 0] 
laser()  
)  
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Appendix L –  P3 DX-SH include file (for use with world file) 
 
define p3dx-sh_sonar sonar 
( 
 scount 16 
 spose[0] [ 0.115 0.130 90 ] 
 spose[1] [ 0.155 0.115 50 ] 
 spose[2] [ 0.190 0.080 30 ] 
 spose[3] [ 0.210 0.025 10 ] 
 spose[4] [ 0.210 -0.025 -10 ] 
 spose[5] [ 0.190 -0.080 -30 ] 
 spose[6] [ 0.155 -0.115 -50 ] 
 spose[7] [ 0.115 -0.130 -90 ] 
 spose[8] [ -0.115 -0.130 -90 ] 
 spose[9] [ -0.155 -0.115 -130 ] 
 spose[10] [ -0.190 -0.080 -150 ] 
 spose[11] [ -0.210 -0.025 -170 ] 
 spose[12] [ -0.210 0.025 170 ] 
 spose[13] [ -0.190 0.080 150 ] 
 spose[14] [ -0.155 0.115 130 ] 
 spose[15] [ -0.115 0.130 90 ] 
) 
 
define p3dx-sh position 
( 
  size [.445 .400] 
  offset [-0.04 0.0] 
  shape "rect" 
  fiducial_id 1 
  obstacle_return "visible" 
  sonar_return "visible" 
  vision_return "visible" 
  laser_return "visible" 
  p3dx-sh_sonar() 
  power() 
) 
 
 
 


