AN IDIOTYPIC IMMUNE NETWORK FOR MOBILE
ROBOT CONTROL

Submitted September 2005, in partial fulfilment of the conditions of the
award of the degree M.Sc. in Management of IT

Amanda Marie Whitbrook

School of Computer Science and Information Technology
University of Nottingham

| hereby declare that this dissertation is all my own work, except as indicated in the text:

Signature

ACKNOWLEDGEMENTS

My sincerest thanks to my supervisors, éJiickelin and Jamie Twycross for all their

help and support. Thanks also to my son, Charlie for filming and editing footage of
the Pioneer robot carrying out its task.

ABSTRACT

Two behaviour based controllers for mobitdots are described and their abilities to
solve highly confined goal-seeking problems are compared, both using a physical
robot and a simulator. The first code implements fixed responses to environmental
stimuli and thus has no adaptability or flexibility. The second program uses an
idiotypic artificial immune network to acs an independent behaviour arbitration
mechanism and hence provide a degree of autonomy. This network is coupled with a
reinforcement learning technique to allow initial random networks to develop into
fully functioning systems that permit effective and efficient task completion.

Both goal-seeking problems require the raimoéxplore a small pen and discover and
pass through a gate of known width, avoiding any obstacles encountered. To solve the
short-term problem the robot must stop having passed through the gate. The long-term
task demands that the gate is discoveradl reached as many times as possible in a
set period. As well as assessing the performance of the controllers in solving these
problems, a number of different obstacle avoidance strategies are compared and
results are interpreted.

The fixed code is highly competent at solving the short-term problem, both in the
simulator and using a real robot. However, due to problems navigating through small
gaps it is not suitable for use with the long-term task. The immune code solves the
short-term problem equally as well @ise fixed code, but also demonstrates a
consistent ability to guide the robot ceessfully through the gaps. Simulation
experiments with the immune code and the long-term problem demonstrate that it is
possible for robots with initial random network structures to acquire the essential
obstacle avoidance, navigation and goal-seeking skills necessary to accomplish the
task successfully. The emergent behaviour is shown to be intelligent, adaptive,
flexible and self-regulatory. Furthermore, improved performance is obtained by using
a genetic algorithm to evolve virtual robots with network structures more suited to the
exercise. A Pioneer 3 robot, Player deviserver software and a Player/Stage
simulator are used throughout.

CONTENTS

INTRODUCGCTION. ..ot e e e s s b e s s 7
L THEPROBLEM ..o s e e e 9
11 DETAILED DESCRIPTION ..ot 9
12 MOTIVATION Lo e e 9
2. SCIENTIFIC APPROACH - PART L. s 12
2.1 STRATEGIESFOR EFFECTIVE ROBOT CONTROL ..o, 12
2.1.1. BEHAVIOUR BASED ARCHITECTURES............cccoiiiii s 12
2.1.2. NEURAL NETWORKS.......ccoii s 13
2.1.3. GENETIC ALGORITHMS.....coiii s 15
214 REINFORCEMENT LEARNING. ..o 15
2.15. FUZZY SYSTEMS.....ooi e 17
3. SCIENTIFIC APPROACH - PART 2. s 18
3.1 BACKGROUND TO THE IMMUNE SYSTEMcccoooiiiiiiii s 18
3.2. THE IDIOTYPIC NETWORK THEORY ...cociiiiiiiiiiii e 19
321 MODELLING THE IDIOTYPIC IMMUNE NETWORK ... 20
3.2.2. IDIOTYPIC MODELSAND MOBILE ROBOT NAVIGATION......coooviiiiiiiiens 22
4. PROPOSED SOLUTION ...ccoiiiiiiiiiiiiii s 24
4.1. HARDWARE USED ..ot 24
411 PHYSICAL ROBOT AND THE NETWORK CONFIGURATIONcoooiiiiiiee 24
4.1.2. SENSORS....c e e s 26
4.2. SOFTWARE USED ...t 26
4.2.1. THE PLAYER ROBOT DEVICE SERVERccccoiviiii e 26
4.2.2. PLAYER C++ CLIENT LIBRARY .o 28
4.2.3. STAGE SIMULATIONS ... s 28
4.3. THE FIXED BEHAVIOUR BASED CODE (GOALSEEK) ..ocoiiiieereernreeee e 29
43.1. EXPLANATION OF METHODOLOGY ..ot 30
43.2. EXPERIMENTAL PROCEDURESFOR THE SIMULATORcccoviiierice, 35
4.3.3. SIMULATOR RESULTS ... s 36

4.3.4. EXPERIMENTAL PROCEDURES FOR THE PHYSICAL ROBOT.......ccccccviiiinne 39

4.35. PHYSICAL ROBOT RESULTS ..ot 41
5. THE AMENDED GOALSEEK CODEcccoiiiiiiiiiii s 46
5.1 DESCRIPTION OF AMENDMENTS ..o 46
5.2. EXPERIMENTAL PROCEDURESAND RESULTSFOR THE SIMULATOR............. 46

5.3. EXPERIMENTAL PROCEDURES AND RESULTSFOR THE PHYSICAL ROBOT . 48

6. THEIMMUNE NETWORK CODEcccooiiiiiiii s 50
6.1. MOTIVATION L. e e 50
6.2. METHODOLOGY ..o st s s e s 50
6.2.1. IMMUNE NETWORK ANALOGYcoioiiiiiiiiiini s 50
6.2.2. NETWORK DYNAMICS ... 53
6.2.3. REINFORCEMENT LEARNING. ..o 54
6.2.4. CONTROLLER PROGRAM STRUCTURE ... 56
6.2.5. CHANGESTO THE ROBOT CLASS. ... s 58
6.3. EXPERIMENTAL PROCEDURESAND RESULTSFOR THE SIMULATOR............. 59

6.4. EXPERIMENTAL PROCEDURES AND RESULTSFOR THE PHYSICAL ROBOT .61

6.5. TESTING GAP NAVIGATION ... e 62
6.6. LONG TERM DEVELOPMENT OF THE BEHAVIOUR MAPPINGS..........cccccoieees 64
6.6.1. DEVELOPMENT OF THE HAND-DESIGNED MAPPINGccoocoiiiiiicee, 64
6.6.2. DEVELOPMENT OF THE EQUAL MAPPING ... 65
6.6.3. DEVELOPMENT OF THE RANDOM MAPPING........ccccoiiiiiiiicices 66
6.6.4. DISCUSSION OF REINFORCEMENT LEARNING ..o, 67
6.7. THE USE OF GENETIC ALGORITHMSTO EVOLVE PARATOPE MAPPINGS..... 67
6.7.1. GENETIC ALGORITHM RESULTS ... 68
6.8. RESULTS SUMMARY ..ottt 70
6.9. FUTURE RESEARCH ... 71
CONCLUSION L. e e e s 72
REFERENCESo 73
APPENDICES. ... b b 78
APPENDIX A —IDIOTYPIC IMMUNE NETWORK CODE —IMMUNOID.CC...........ccceeurnns 78

APPENDIX B —ANTIBODY CLASS—ANTIBODY .H....cccoiiiiiiiiiiiiins 86

APPENDIX C —ROBOT CLASSHEADER FILE —ROBOT.Hcccoiiiiiiiiiiicccs 89
APPENDIX D —ROBOT CLASSIMPLEMENTATION FILE —ROBOT.CPP.......c.cccoecuvururunnns 91
APPENDIX E —FIXED BEHAVIOUR CODE —GOALSEEK.CC.......ccccoovoiiiiniiiniin, 99
APPENDIX F —GENETIC ALGORITHM CODE —GENALG.CC.......coocoiiiiiiiiinccies 102
APPENDIX G —~WORLDREADER CLASS CODE —~WORLDREADER.Hc.cccccovviiininn. 105
APPENDIX H —ROBOT CLASSUSER DOCUMENTATION.......ccccviiiriiiiiiice 107
APPENDIX | —ANTIBODY CLASSUSER DOCUMENTATIONccooeiiiiiiiiniceee 112
APPENDIX J-WORLDREADER CLASSUSER DOCUMENTATION.......c.coioiiiiiriee 115
APPENDIX K =WORLD FILEci it 116
APPENDIX L — P3DX-SH INCLUDE FILE (FOR USE WITH WORLD FILE)ccccevuvuennas 117

Introduction
Aims of the study

* To use an idiotypic immune network as a model for constructing a robot
navigation controller. ldeally the control system should act as a decentralised
behaviour arbitrator, i.e. the robot must respond to its sensors using a set of
dynamically changing rules, modelled as antibodies.

* To test the adaptability and flexibility of the code by using it to control real and
virtual robots that are required to complete two specific goal-seeking exercises.
These tasks are to be carried out in a highly confined area and their successful
completion should demonstrate the robustness of the chosen architecture.

* To integrate the idiotypic methodology with a reinforcement learning technique.

* To investigate whether the above approach permits robots to acquire the necessary
task skills autonomously.

* To design a fixed behaviour based code with crisp rules and to compare its
performance with that of the immune system code by using it to solve the same
goal-seeking problems.

 To compare various different obstacle avoidance strategies within the two codes,
highlighting those methods that translate well from the simulator to the real world

These experiments were motivated by an interest in applying idiotypic networks and
reinforcement learning to highly constrad problems where robots have very little
space to move around and yet must navigate through tight gaps and pass through a
relatively small gate. Although the idiotypic approach has been used to solve other
less confined mobile robotics problems (see section 3.2.2), it has not been widely
applied to problems like these.

Background

Traditional robot navigation methods used modelling to map sensor data to high level
symbolic representations of the world, (see for example [37]). The internal world
models were then used to plan paths. Although such systems were useful for
navigation through static environments, they were less robust when applied to real
dynamic environments, (Raebal. [36]).

Reactive control is an alternative approach that links sensory input directly to
behaviour, without the need for a world model. These systems are much more robust
to dynamically changing environments and are simpler to implement than modelling
complex worlds. The subsumption architecture of Brooks [38], a purely reactive
method, was first described in 1986 and comprised of a set of functions that worked
together to display emergent behaviour not built into the system.

Most behaviour based approaches have keapled with learning techniques, which
require robots to accomplish their goals by making discoveries and adjusting their
reactions to sensory input accordingly eldmphasis is on the interaction between the
robot and its surroundings and the assessment of performance, which should evolve
the control system in some way, [23]. In addition, the system should be completely
self-contained. A variety of adaptive control strategies have been successfully

implemented in the literature, using tools such as neural networks, genetic algorithms
and reinforcement learning.

More recently researchers have been exploiting the learning and adaptive properties of
the immune system in order to design effective sensory response systems for
autonomous robot navigation. In particular, Jerne’s idiotypic network theory [7] has
been used as a model for behaviour mediation and has produced encouraging results.
Most designs have modelled behaviours as antibodies and environmental situations as
antigens, using their interactions to govbehaviour selection. In idiotypic systems
antibodies are linked both to environmental stimuli and to each other, forming a
network. Immune system metadynamics and learning techniques keep the network in
a state of constant flux, ensuring that behaviour selection is flexible, self-regulatory
and adaptable to environmental change.

Organisation

Section 1 discusses the motivation for the study and gives a brief overview of the two
goal-seeking problems tackled. These comprise a short-term task that terminates as
soon as the goal is reached and a long-term scenario where the robot must reach the
goal as many times as possible within a fixed period. Section 2 illustrates some of the
strategies and learning methods that have been applied to solving similar problems,
for example neural networks and fuzzy systems. A detailed account of reinforcement
learning is also presented.

Section 3 provides a brief introduction to the immune system and explains the
principles behind the idiotypic network theory modelled in this research. The
application of the network theory to autonomous robot navigation is then treated, and
recent work in this field is reviewed.

Section 4 presents a description of the hardware and software architectures used
throughout this research and explains the structure of the fixed behaviour based code.
The results of solving the short-term problem using both a simulator and a physical
robot are then presented in the form of a comparison between the various navigation
strategies. A summary and explanation of the main weaknesses of the program when
applied to both domains is also given. Section 5 describes an amendment to the code
that allowed better results to be achieved, both in the simulator and with the physical
robot.

Section 6 discusses the methodology andcsira of the adaptive immune system
code and uses it to solve the short-term problem, comparing performance with the
fixed code. The abilities of both codes to guide the robot through small gaps are also
compared and the adaptive code is used to solve the long-term problem, owing to the
under performance of the fixed code at gap navigation. During solution of the long-
term problem, the development of initially random network structures through
reinforcement learning is examined and an attempt is made to evolve network
structures through a genetic algorithm to obtain sensor-behaviour mappings
successively more adept at solving the problem. The section concludes with an
overview of the results of the study and some ideas for future research are presented.

1 The problem
1.1. Detailed description

A Pioneer 3 robot equipped with laser and sonar sensors was given the task of passing
through a gate (AB) in a small pen, see figure 1. The pen was 2.50 metres wide, 4.00
metres in length and 0.46 metres high and the gate measured 0.97 metres across. The
side gap widths were 0.62 metres, (just wide enough for the robot to pass through, see
section 4.1.1) and the post bases were 0.145 by 0.13 metres. The real world and a 2-
dimensional simulated world (a scale model of the pen, robot and gate, see section
4.2.3) are shown in figures 2 and 3 respectively.

A short-term version of the problem required the robot to navigate safely around the
pen and stop once it had passed through the gate once. It was not allowed to pass
through gaps XA or BY at any time, nor digh the gate in wrong direction DC. It

was given 3 minutes only to complete the task. In addition, a long-term version of the
problem allowed the robot to navigate freely around the pen, requiring that it discover
and travel to the goal as many times as possible in a fixed period. For the long-term
exercise passing through the gate in either direction was acceptable.

These problems were difficult because the world was small in comparison to the
robot, allowing it little freedom to move. In addition, no prior knowledge of the gate’s
location was given, only its width.

1.2. Maotivation

Mobile robot navigation has a wide variety of real world applications such as garbage
collection, moving supplies through factories and mail delivery. In addition, robots
are capable of carrying out vital tasks in potentially hazardous environments, for
example handling dangerous chemicals, rescuing fire and earthquake victims and
exploring the terrain of other planets. In order to accomplish their tasks effectively
they need to be equipped with a number of sensors so that they can perceive their
environment and make intelligent decisions about the actions that they should take,
for example avoiding obstacles.

The problems described above involve goal seeking in a confined space and were
selected for several reasons.

» The constrained nature of the problems made them sufficiently difficult to warrant
investigation. A high degree of precision is required to steer towards the centre of
the small gate and the robot needs to be able to navigate through tight gaps to
solve the long-term problem effectively.

» Although much attention has been given to goal seeking and obstacle avoidance in
mobile robotics there has been little easch effort directed towards solving
highly confined problems, which makes their solution both interesting and
valuable. Moreover, it would be usefulfind out whether it is possible to develop
a control system capable of learning in such an environment. If this was
achievable the code developed couldpplied to similar constrained problems.

* The solution could have many useful applications, for example in a factory
scenario, where a robot might be required to work in a small space, transporting
boxes from one shelf to another or delivering mail in an office where doors are a
fixed width. In these situations, theildély to achieve the tasks efficiently and
effectively (i.e. with no collisions), would be essential.

e Lastly, it was impractical to build a larger world due to laboratory space
restrictions.

The next section examines the approaches that have been used in the past to solve
similar problems in mobile robotics. In particular behaviour based architectures,
neural networks, genetic algorithms, reinforcement learning and fuzzy controllers are
explained and some examples of their application to robot control are given.

A
TOP-D
1.10 m
A B
| o O |
post A ap a by b,
pen —— 40m
2.77m
robot —— Iil
BOTTOM - C !
25m

Figure 1 — Showing the dimensions of the robot world

10

Figure2 — Thereal pen, gate and Pioneer P3-DX8

O EtegerT lalix
File WView Action
Post [~
\\x
Laser rays
Robot
oriented\ -
at 0° =t Sonar rays
]

Figure 3 — The simulated pen and gate world with virtual Pioneer P3-DX8

11

2. Scientific approach - Part 1
2.1. Strategiesfor effectiverobot control

Effective control for robot navigation involves intelligent processing of sensory
information, such as laser and sonar readamgstheir directions of origin. However,
intelligence methods fall into two distinct categories; Top down processing selects
intelligent behaviour and attempts to liegte it through explicit knowledge, for
example expert systems. Bottom up processing studies the biological mechanisms
underlying intelligence and simulates them by building systems that work on the same
principle, for example neural networkand genetic algorithms (both forms of
evolutionary methodology). In these approasknowledge is implicit and the system

is both adaptive and self-contained.

Since the publication of Brooks’ subsumptiochatecture [38] in the mid-eighties the
main focus of mobile robot research hasrbéehaviour based reactive control. This
has often been implemented in conjunction with evolutionary and reinforcement
learning methods, chiefly because autonomous robots must function without human
intervention. They should be capable of adapting their behaviour to their surroundings
“...without external supervision or control”, McFarland [25]. Furthermore, they need

to perform in a broad range of dynamically changing environments and often have to
make use of sensors that can produce uncertain readings.

2.1.1. Behaviour based architectures

In the mid-eighties, driven by dissatisfaction with robot performances in the real
world, Brooks [38] developed a methodology known as the subsumption architecture.
Behaviour based modules (for example exiplg, wandering and avoiding obstacles)
mapped environmental states directly into low level actions, without the need for an
intervening world model. This was achieved through the connection of the sensors
and actuators to an asynchronous netwafrlcomputational elements that passed
messages to each other, [20]. Layers were run in parallel and new behaviour models
were obtained by adding new network layers.

The subsumption architecture representseaahthical behaviour based approach; i.e.
higher level layers subsume the actions of lower levels through a suppression
mechanism. This can be beneficial, especially when robots have conflicting goals, (for
example navigating to a target whilst avoiding obstacles) and have no other way of
assessing their relative importance.o@s states that robots need to be.
responsive to high priority goals whilst servicing low level goals’, [38]. In Brooks

[38] the lowest level of competence was obstacle avoidance, and the next highest
level was wandering. Wandering used a heuristic to plan paths every ten seconds and
subsumed obstacle avoidance, i.e. was able to incorporate that behaviour into its own.

Since the eighties the subsumption method and more general behaviour based
approaches have been used widely in tllel fof robotics as they are computationally
more efficient than using symbolic world representation models, and are much more
robust when applied to realistic dynamically changing environments. Co-ordinate-
based systems only tend to work well in abstract worlds, as attempting to model real

12

environments can be extremely complex. Another advantage of reactive systems is
that controllers can be built and tested incrementally. However, reactive methods are
generally heavily dependent on paramatetimisation, as single parameters can
affect multiple behaviours and their intetians [36]. Some examples of reactive
approaches are discussed below.

Brookset al. [22] used the behaviour based subsumption architecture for vision based
obstacle avoidance on a monocular mokoleot. Their strategy involved the use of

three vision processing modes based onhimigss, RGB value and HSV value. (This
scenario has important applicationsr fthe autonomous exploration of Mars.)
Obstacle detection was reactive, i.e. locations were not stored. Camera images were
converted to motor commands through a fusion of the outputs from the three vision
modules. The robot turned away from obstacles nearby with the angle of turn and the
speed dependent on the nearness of the obstacle. The system was tested in Mars like
environments with a high success rate, although shadows and bright sunlight caused
the robot to detect false obstacles.

Goldberg and Matati[34] used a reactive approach to control four physical R2e
robots performing a mine collection task using grippers. They defined behaviours as a
collection of asynchronous rules that acquire input from the sensors and respond via
the actuators or through other behaviours. The modules used were wandering,
avoiding obstacles, mine detecting (through the use of colour), homing, creeping and
reverse homing. The state of the environment, time scales and statistics were used to
select an appropriate mode.

The mapping of sensory information to a particular behaviour can be either learned or
hard coded. When hard coded systems are used the results often work well for fixed
environments, but lack the adaptability to perform well in changing ones, [39]. In
such dynamic environments, the reactive approach is frequently coupled with learning
methods, for example neural networks (see section 2.1.2) and reinforcement learning
(see section 2.1.4).

2.1.2. Neural networks

Neural networks are modelled on the lambrain, with processing elements
representing neurons. These are arrangeaninnput layer (perception neurons), a
hidden layer (associative cortex) and an output layer (motor neurons) and are linked
by weights (synaptic strengths). Intelligent behaviour emerges through self-
organisation of the weights in response to input data, i.e. through training the system.
During training the weights are continually adjusted until the desired response is
obtained. Supervised training involves supplying a set of correct responses to given
inputs in order for the system to adapt its weights to replicate the output response.
Unsupervised learning requires only a set of inputs as weights are updated
competitively. There is a wealth of examples of mobile robot control using neural
networks in the literature. A few exareplare given below for clarification.

Floreano and Mondada [23] used a recur(éddback) neural network to develop a

set of behaviours for a small mobile robot with the tasks of navigating through a
corridor with sharp corners and of locating and using a battery charger. Results using

13

a real robot showed that navigation was more effective and far smoother than
compared with a simple Braitenbé&igehicle [26]. Furthermore, the robot did not get
trapped at any point. Discovery of the battery charger and its effective use took 240
generations.

Tani et al. [2] used a hybrid of Kohonen and recurrent neural networks with
supervised training on a real robot withager range sensor and three cameras. The
robot’s task was to loop in figures of eight and zero in sequence, with no prior
information about the environment. The task was learned by guiding the robot from
each of several starting points. After ten training sessions the robot always followed
the desired path, although noise affected the performance substantially.

Floreano and Urzelai [21] argue that neuretiworks only perform well if the training
conditions are maintained, i.e. in differarvironments the software can fail. They
propose that it is the rules used for deti@ing connection strengths that should be
evolved, and that the weights should emerge as a result of this. As unpredictable
environments are a common problem for robot navigation they developed a more
robust neural network code, based on theseiptes and tested it on a small, mobile
robot in a rectangular environment, using vision as the main sensor. The robot’s task
was to travel to a grey area when a light was on. Using conventional neural networks,
even slight changes in lighting affected the robot’s performance. For the adapted code
success was achieved even when extreme changes were made such as using a larger
robot and arena, switching the colours anahgfing from a simulated to a real robot.

Yamauchi and Beer [58, 59] used antinuous time recurrent neural network
(CTRNN) as a control system for a robot thats required to find a target with the aid

of a light. Sometimes the light was on the same side as the target and at other times it
was on the opposite side. The robot had to decide whether the light was associated
with the target in order to reach its goal. The control system consisted of an
assessment module, and anti-guidance and pro-guidance mechanisms. Following
training the robot learned to ignore the light and use other means to identify the target
successfully.

Supervised learning with neural netksris usually done offline. For example
Reigneret al. [39] used supervised learning to train a 4-wheeled rectangular robot to
follow a boundary, using 24 sonar sensors. Initially a human operator guided the robot
along the edge using only two basic commands, “move” and “turn”. The resulting
sensory data was saved to a file of perception-action associations and was then fed to
the neural network for training. After thilse network was used to guide the robot, but

if the behaviour was unsatisfactory the operator regained control and a new data file
was created. The robot was thus traine@rnincremental fashion. It did not learn
merely to reproduce the actions of the operator, but was able to make generalisations
and successfully steer around boundaries not previously encountered. An advantage of
this method was that once past experience was established the robot did not need to
re-learn.

! These machines proposed by Valentino Braitenbe very basic internal structures for example

two light sensors and two motors, and were connagsaty simple, direct relationships. A connection
might consist of the two motors driving the left and right wheels independently according to the output
from the light sensors. The nature of the connections determined the behaviour of the vehicle, for
example light-avoiding or light-seeking behaviours.

14

2.1.3. Genetic algorithms

Genetic algorithms search state space by mimicking the mechanics of genetics and
natural selection. They can quickly converge to optimal solutions after examining
only a small fraction of the search space; i.e. the population of solutions is often
optimised after only a small number of generations. An initial population of solutions
is selected at random and encoded into a binary representation. A fithess function then
assigns selection probabilities to each member of the population. The genetic
operatorscrossover (controlled swapping of binary bits between two members for
potentially better solutions) andwtation (changing one binary bit to provide
diversity) are applied at set levels pfobability. Each iteration results in a new
population, and the algorithm continues until certain conditions are met. The result is
an increasing aptitude for a given task through successive generations. Evolved
solutions are not always optimal but can provide useful compromises between
constraints, [48].

The technique first received attention in the nineteen eighties when it was seen as a
branch of alternative computing along with neural networks [48]. Since then it has
become accepted as a useful learning mechanism in autonomous mobile robotics as it
reduces the quantity of prior assumptions that have to be built. The method has also
been widely applied to parameter opsation, as manual tuning of control
parameters is notoriously difficult and costly terms of time, especially using real
robots. For example Ramt al. [36] applied genetic algorithms to the problem of
parameter optimisation for goal seeking and obstacle avoidance, using navigation
performance as a fithess measure. Theygaesdi a set of virtual robots a set of fixed
parameters to control their behaviours. The performances in the simulator were
evaluated so that new parameters could be evolved and assigned to a hew population
of robots. A good set of parameters was olatdiafter several generations. The fitness
measure was based on task time, distance travelled and the number of collisions.

2.1.4. Reinforcement learning

Reinforcement learning occurs when knowledge is implicitly coded in a scalar reward
or penalty function. There is no teacher and no instruction about the correct action,
just a score that is yielded by the robot’s interaction with its environment. Control
designers thus need to structure the rewastesy so that it defines the goal. (This is
analogous to pleasure and pain in a biological system.) Reinforcement learning is
distinct from supervised learning as thder teaches the system to produce a desired
output given an input, [19].

Both reinforcement learning and genetic algorithms use an evaluation function to
assess performance. The main difference is that genetic algorithms use the fitness
function to determine a strategy’s chances of becoming a parent in the next
generation. In reinforcement learning the function is used to provide immediate
feedback about an action’s usefulness. Reinforcement learning is thus a more
localised methodology, i.e. it usually scores individual components of a robot’'s
performance. Genetic algorithms operate at a more global level, for example scoring
time taken to complete the overall task. Both methods help to reduce the burden of

15

behaviour designers, allowing robots to learn strategies that would not necessarily be
anticipated, [33].

Hailu [1] argued that some degree of domain knowledge is necessary in reinforcement
learning schemes, in order to reduce the amount of discovering that robots need to do,
otherwise learning takes too long. The main problem for designers is deciding what
information should be explicitly given and what should be discovered. Hailu
recommended a basic set of reflex rules or safe actions that should be given in the first
instance, to allow safe navigation. Once reinforcement learning was established these
rules could be overridden. He implementbi strategy for obstacle avoidance and
goal seeking on a simulated TRC robot and a real B21 robot in a labyrinth world with
a gate and a concave trap region. Belief matrices were used to determine possible
actions and environmental knowledge was dynamically encoded into the matrices as
time progressed. The robot had a camera, infra-red, tactile and sonar sensors and had
to navigate through the gate to a goal on the other side. After training both robots
were able to reach the goal successfully without entering the concave trap region.

Gullapalli [19] implemented reinforcement learning for a peg insertion task with real
robots, where handcrafted solutions hadvjpusly proved inadequate. (He argues
that direct reinforcement learning is one of the most useful methods for achieving a
high level of flexibility, precision and robustness for many complex and unpredictable
tasks.) The robots began with the peg at a random position and orientation and the
reward function (a scalar value between 0 and 1) was evaluated from the forces acting
on it, (the closer it was to the hole, the higher the reward). The system was controlled
by a neural network that continually adjusted the weights according to the score. The
robots gradually became more adept at placing the pegs in the holes, and after 150
trials worked robustly, even with high degrees of environmental noise and
uncertainty.

As mentioned in section 2.1.1, mappings between environmental states and low-level
actions can be pre-programmed or learned. Michaud and Bgga}iwere interested

in the effective control of multiple robots given a foraging task. They developed a set
of robust behaviour based modules and a set of initial state to action mappings that
allowed safe task completion. The modules were implemented along with a
reinforcement learning algorithm so that choice of behaviour could be dynamically
adapted based on past history and performance measures. Time was used as the
primary behaviour evaluation parameter, i.e. penalties were awarded if performance
took longer than in the past and rewards were issued if time was shorter. Chosen
behaviours and their sequences of use were stored within a tree structure that allowed
alternative behaviours to be selected. The use of time as a reward measure provided a
good compromise between adaptability to change and tolerance for bad decisions
resulting from exploration of different stegies. Furthermore, using past performance
rather than external criteria allowed behaviour to be assessed on the strength of
consistency rather than some arbitrary hard-coded rule.

The approach was tested using Pioneer | robots equipped with sonar for obstacle
avoidance and a vision system. The robots showed competence in exploiting the
regularities of the world and a high degree of adaptability to change, i.e. a good
compromise between exploration and exploitation strategies. They learned to override
the initial state to action mappings, choosing behaviours not normally associated with

16

particular conditions. All behaviours were selected through past experience once
learning was complete and interestingly, each robot learned to specialise in how it
accomplished the task, as individual experiences were different.

2.1.5. Fuzzy systems

In first order predicate calculus set membership is binary and has a value either 0

(false, not a member) or 1 (true, a member). However, fuzzy set membership ranges
between 0 and 1; i.e. an object can be a member of a set to some degree. Similarly,
under fuzzy rules the assignment of a possibility distribution can represent the truth of

a logical proposition, (see [40], Chapter 7 for further details).

Fuzzy control systems, i.e. a set of rules with associated possibility distributions, have
frequently been employed in mobile robotics. In reactive control methods the use of
classical fuzzy systems is a way of hard coding the mapping from environmental state
to behaviour [39], i.e. mappings are created off-line and there is no learning.

Takeuchi and Nagai [8] used a fuzzy gotier in order to guide a purpose built
mobile robot around obstacles using CCD canmerages of the floor as system input.

The fuzzy control rules were based on human driving processes and objects were
detected on the basis of floor brightneBgtected boundary lines provided a means

for calculating object distances. Information from the vision system was fed into the
fuzzy controller and output was in the form of independent speed commands to the
two wheels. The fuzzy controller consisted of a set of IF...THEN rules for motion
direction, gain and acceleration, combined into a fuzzy relation. The velocity was
related to the width of the passageway detected by the vision system. Results showed
that the system performed well but sometimes failed due to imaging errors such as
glare from the floor being mistaken for obstacles.

The next section focuses on the use of the vertebrate immune system as a model for

adaptive behaviour. These systems have recently been used as inspiration for mobile
robot control strategies under a wide variety of situations.

17

3. Scientific approach - Part 2
3.1. Background totheimmune system

The purpose of the immune system is to expel foreign material, or antigens from the
body. The ability to distinguish self from non-self is therefore fundamental to its
design. Essentially there are two systems that work co-operatively as described
below:

* In the innate system phagocyte cells are immediately able to ingest a large number
of bacteria that show common molecular patterns. No previous exposure to these
bacteria is necessary and the system is constant throughout life and the same for
all individuals. Infection is controlled whilst the adaptive system is getting started.

* In the adaptive system lymphocyte cells (B-cells and T-cells) are responsible for
the identification and removal of antigens. The T-cells are activated when they
recognise antigen-presenting cells. They divide and secrete lymphokines that
stimulate B-cells to attack the antigens. They thus contribute to the protection of
self-cells.

Epitopes are antigen determinants, i.e. patches on antigen molecules that present
patterns that can be recognised (with varying degrees of accuracy) by complementary
patterns on the surface receptors of B-cells. Each B-cell has surface receptors of a
single specificity, although there are millions Bfcells and hence millions of
different specificities in circulation. The claihselection theory [53] states that once

an epitope pattern is recognised the B-cell is stimulated to divide until the new cells
mature into plasma cells that secrete the matching receptor molecules or antibodies
into the bloodstream. The antibody combining sites or paratopes bind to the antigen
epitopes, which causes other cells to assist in the elimination of the antigen. Some of
the matching lymphocytes act as memory cells, circulating for a long time.

The efficiency of the immune response to a given antigen is hence governed by the
quantity of matching antibodies, which in turn depends on previous exposure to the
antigen. Under the clonal selection theory the concentrations of useful lymphocytes
are increased at the expense of the randomly generated proportion so that the
repertoire mirrors the antigenic environment [18]. In other words, cells with high
affinities enter the pool of memory cells.

Following birth, the antibody repertoires random. Diversity is maintained by
replacement of the B-cells at the rate of about 5% per day [18] in the bone marrow
during which time mutation (reorganisation of the DNA) can occur. In addition, the
reproduction of the B-cells upon stimulation also causes a high rate of mutation.
Through mutation, weakly matching B-cells may produce antibodies with higher
affinities for the stimulating antigen. The diversification process ensures that an
almost infinite number of surface receptor types is possible. If self-recognising
antibodies are produced they are suppressed and eliminated.

18

3.2. Theidiotypic network theory

In 1974 Jerne [7] proposed the immune system network theory as a mechanism for
regulating the antibody repertoire, although it has not gained wide acceptance within
the field of immunology. The theory is based on the fact that as well as paratopes (for
epitope recognition), antibodies also possess a set of epitopes and so are capable of
being recognised by other antibodies even in the absence of antigens. Under the clonal
selection theory all immune responses are triggered by the presence of antigens, but
under the network theory antibodies can be internally stimulated. (Experiments have
shown that the number of activated lymphocytegerm free mice is similar to that of
normal mice [60], which supports the argument.)

Paratopes and epitopes are complimentary and are analogous to keys and locks.
Paratopes can be viewed as master keys that may open a set of locks (epitopes), with
some locks able to be opened by more than one key (paratope), [30]. N. B. Epitopes
that are unique to an antibody type are termed idiotopes and the group of antibodies
that share the same idiotope belong to the same idiotype.

When an antibody type is recognised diper antibodies it is suppressed i.e. its
concentration is reduced, but when anlaody type recognises other antibodies or
antigens it is stimulated and its concentration increases. The theory explains the
suppression and elimination of self-antibodies and presents the immune system as a
complex network of paratopes that recognise idiotopes and idiotopes that are
recognised by paratopes, see figure 4. This implies that B-cells are not isolated, but
are communicating with each other via collective dynamic network interactions, [42].

Epitopes

Suppression
Antigen
Paratopes

Idiotope
Idlotope

Antibody A

Antibody B

Activation

v

Figure 4 — Showing suppression and activation between antibodies,
adapted from [7]

19

The network is self-regulating and continually adapts itself, maintaining a steady state
that reflects the global results of interacting with the environment [7], although a

single antibody may be more dominant. (The cell with the paratope that best fits the
antigen epitope contributes more to the coNecresponse, [44].) This is in contrast

to the clonal selection theory, which supports the view that change to immune
memory is the result of single antibody-antigen interactions.

The network theory also states that suppression must be overcome in order to elicit an
immune response. In other words, the system is governed by suppressive forces, but
open to environmental influences, [7]. The suppression models the immune system’s
mechanism for removing useless antibodies [5] and maintaining diversity. The
increase in useful antibody concentrations models the immune system’s memory.
(However, it is worth noting that the exact mechanism of immune memory is still
relatively poorly understood [44]. In 1989 Coutinho [51] postulated that networks
may not contribute to memory as their capacity is probably too small to store the vast
guantity of data required to record previous antigen attacks.)

3.2.1. Modelling theidiotypic immune networ k

The learning, retrieval, memory, tolerance and pattern recognition capabilities of

artificial immune systems make them highly suitable as models for machine learning.

Furthermore, the behaviour of an idiotypic network can be considered intelligent, as it
is both adaptive at a local level and shows emergent properties at a global level, [42].
The dynamics ensure that antibodies closely matching antigens and yet distinct from
one another are selected, whereas sub-optimal matches are removed, [31].

In 1986 Farmeet al. [30] presented a general method for modelling the idiotypic
immune network in computer simulations and this is described below. A differential
equation models the suppressive and stimulating components and binary strings of a
given length,| represent epitopes and paratopes. Each antibody thus has a pair of
binary strings, |, €] and each antigen has a single strimj, The estimate of degree

of fit between epitope and paratope strings is analogous to the affinities between real
epitopes and paratopes, and uses the axeld8R operator to test the bits of the
strings, (0 and 1 yields a positive score).

Exact matching betweep and e is not required and as strings can match in any
alignment one needs only to define a threshold valbelow which there is no
reaction. For example gwas set at 6 and there were 5 matches (0 and 1 pairs) for a
given alignment, the score for that alignment would be 0. If there were 6 the score
would be 1 and if there were 7 the score would be 2. The strength of reaction for a
given alignment is thus:

G=1+0,
whereo is the number of matching bits in excess of the threshold. The measure of
strength of reaction for all possible alignments, between an antibodyi, and

anotherj, is given by:

m=2G.

20

When two antibodies interact the extent to which one proliferates and one recedes is
governed by the degree of matching. In a systemMahtibodies:

[XlaX2---XN]1

andn antigens

Ve Yooy

the differential equation governing the rate of change in concentration of antjli®dy
given by:

N N n
Xi=¢ ijiXin_klzijin"‘ijiXiyj ~KkaXi 3.1
j=1 j=1 j=1
where
N
2 M XX 3.2
=

represents stimulation of the antibody in response to all other antibodies,

N
klzm,- Xi Xj 3.3

j=

models suppression of the antibody in response to all other antibodies, and
2 mixY, 34
j=1

represents stimulation of the antibody in response to all antigens. The damping term

koX 35

models the tendency of antibodies to die in the absence of interactions, with constant
rate kp. c is a rate constant arld models possible inequalities between stimulation
and suppression. (K, = 1 these forces are equahitibodies are eliminated from the
system when their concentrations drop below a minimum threshold.

Equation 3.1 is known as Farmer’s equation and the authors note that it follows a
general form often seen in biological systems, that is:

Ax = internal interactions (between antibodies) driving (antigen interactionsy
damping (natural death).

21

3.2.2. ldiotypic models and mobilerobot navigation

Artificial immune networks are particularly useful tools for controlling autonomous
mobile robot navigation as they can be used as a means of behaviour arbitration and
are suited for solving dynamic problems in unknown environments [6]. Some
examples of recent work in this field are presented below.

Luh and Liu [3] used a reactive immune network for robot obstacle avoidance, trap
escapement and goal reaching in an unknown and complex environment with both
static and dynamic obstacles. Their architecture consisted of a combination of prior
behaviour based components and an adaptive component modelled on the immune
network theory. In their system conditions detected by the sensors were analogous to
antigens with multiple epitopes, for example “obstacle ahead” with epitopes “distance
away from robot”, “sensor position” and “orientation of goal with respect to the
obstacle”. Antibodies were defined as steering directions:

[el,ez...eN], where 0<gj<2n.

A given antigen was recognised by several antibodies, but only one antibody was
allowed to bind to one of that antigen’s epitopes. The antibody with the highest
concentration was selected, and conceptiat were determined using Farmer’s
dynamic equation, (3.1). Their strategy was tested on a simulator and proved flexible,
efficient and robust to environmental change, although optimisation of parameters
was not achieved.

Krautmacher and Dilger [4] applied Farmer’s immune network model to robot
navigation in a simulated maze world in which a building had collapsed due to an
earthquake. The robot’'s task was to find victims, determine their situation and
location and record the information on a data sheetalgoori knowledge of the

maze or object locations was given; fuzzy identification of objects was achieved
through image processing and comparison with stored information. Location and
identification of a given object was analogous to the presence of an antigen, and its
type and location were used as epitopes. Many potentially useful antibodies
representing basic behaviours were used and as the system evolved new antibodies
emerged and were added to the system.

Watanabeet al. [6] used an artificial immune network to control behaviour arbitration

for a garbage collecting mobile robot, a problem originally posed by Michelan and
Von Zuben [54]. The robot had a finite energy supply and was required to collect
garbage and place it in a waste basket, recharging its power as required at a charging
station. Competence modules (“move forward”, “turn right”, “turn left”, “search
station”, “wander”, “collect garbage”) were prepared in advance for use as antibodies
and antigens were represented by object types, distances and the energy level, for
example, “garbage in front”, “charging station right”, “energy level high”. Antibody
concentration dynamics were maintainedHaymer’s differential equation, (3.1) and

a squashing function, (see section 6.2.2). A roulette wheel method selected an
antibody based on probabilities assigned by concentration values and a genetic
algorithm was used to establish initial antibody concentrations and determine
affinities between connections. Simulations and trials using a real robot with infra-red
sensors and a CCD camera demonstrated the validity of their approach.

22

Vargaset al. [5] constructed a hybrid robot navigation system (CLARINET) that
merged ideas from learning classifier systems, (introduced by Holland in the mid-
seventies, see [32]) and the immune network model of Faenea. [30].
Environmental conditions were matched to classifiers (similar to production rules)
with varying strengths. The classifiers competed to execute their action components
and were continually evolved using crossover and mutation to produce the next
generation.

Learning classifier systems have been likened to artificial immune systems by Farmer
et al. [30] and Vargast al. [45]. Antibodies can be thought of as classifiers with a
condition and action part (the paratope) and a connection part (the idiotope). The
action part must be matched to a condition (antigen epitope) and the connections show
how the classifier is linked to others. The presence of environmental conditions causes
variations in classifier concentration levels in the same way that antigens disturb
antibody dynamics.

Vargas et al. [5] selected the antibody with the highest activation level (match
strength multiplied by concentration). Hence, the best-matched classifier was not
necessarily selected. This is intuitive since useful classifiers with high concentrations
should be given more influence than weak ones in order for the system to learn [30].

CLARINET was applied to the same problem as Wataeabk [6] and four actions

were used, “right”, “left”, “forward” and “explore”. Classifiers were initially random
with crossover used on those with the same condition part and with a 10% probability.
Mutation was at 1%. Results show#tht the robot discovered alternative paths
around obstacles, responding quickly to environmental changes. The use of non-fixed
rules allowed the selection of classifiers that were tailored towards immediate
environmental conditions.

Learning classifier systems have frequently been used to solve mobile robotics
problems. Stolzmann and Butz [56] applied them to robot learning in a T-shaped
maze environment and Carse and Pipe [57] used a fuzzy classifier systenet\&lebb
[46] used classifiers with reinforcement learning for the autonomous navigation of
simulated mobile Khepera robots that were required to find and travel to target
locations. The action parts of the classifiers were “move forward”, “rotate right”,
“rotate left” and “do nothing”. Initially, an equal chance of choosing a random action
and of choosing the action with the highestasd was coded. Reinforcement learning

based on past history was used to determine future classifiers.

The next section describes the physical hardware and software used to solve the
problems described in section 1.1. The fixed behaviour based code is also described
and the results of solving the short-term problem using a simulator and a real robot are
presented.

23

4, Proposed solution
4.1. Hardware used
4.1.1. Physical robot and the network configuration

An ActivMedia Pioneer P3-DX8 with a range finding laser was used, see figures 5
and 6. This is a mobile, two-wheeled robot with reversible DC motors, on-board
microcontroller, server software and an integrated onboard PC. The wheels are
supported by a rear caster and the robot is capable of both translational and rotational
motion. The chassis is 38 cm wide, 44 cm deep and 22 cm high (not including the
laser), [11]. The laser unit is 19 cm high.

These robots act as the server in a client-server paradigm, with the on-board
microcontroller handling the low-level details of mobile robotics, for example setting
speed and acquiring sensor readings, [10]. The onboard PC routes the sensor values to
the host and the motor commands back from it.

Control
panel
N Range
° finding laser
Rear sonar
array

N o — O — rromt soner

—] array

T _
Caster Drive
\() / wheel

Figure 5 — The Pioneer P3-DX8 with laser, adapted from [10]

24

w L Range finding laser

| Front sonar

Figure 6 — The Pioneer robot used throughout this research

Connection between the on-board host computer and the laboratory PC (a Pentium 4
with 3.6 GHz running Linux) was via a Cisco Aironet local wireless network, (see
figures 7 and 9). Client software running tire remote PC provided all high-level
control.

Private robot lab network

At B

Public wired network

Figure 7 — Laboratory network architecture for the Pioneer robots

25

4.1.2. Sensors

Sixteen sonar and 1 SICK LMS-200 laser range-finder were used, see figure 6.
Pioneer 3 robots have fixed sonar with 2 on each side and the others spaced at 20-
degree intervals, see figure 8. Readings are possible in ranges from 15 cm to 7 m
approximately, [11]. The laser provides 2 readings for each degree covering the front
180° sector, i.e. 361 readings in total. (Note that a pan-tilt camera was also installed
above the laser and a gripper was positioned at the front, but these were not used in
this research.)

Figure 8 — Sonar arrangement on the Pioneer, adapted from [10]

4.2. Softwareused
4.2.1. ThePlayer robot device server

Player, a robot device server was used to control the sensors and actuators. This
software acts as an interface to the robot and runs on the on-board PC. Connection to
the client program (running on the laboratory PC) was through a standard TCP socket,
see figure 9. Player is both language and platform independent, meaning that control
programs can be written in C, C++, Java etc. All controllers developed as part of this
research were written in C++ to take advantage of the object-oriented Player C++
Client Library, see section 4.2.2.

Player was selected as it does not place any constraints on how control programs
should be written and it can also be used to interface with the 2D Stage simulator used
throughout this research, see section 4.2.3. Furthermore, it provides a visualisation
tool, Pl ayer Vi ewer that can display the sensor output graphically, see figure 10.
Further details about Player are available in [13].

26

Onboard PC

Player
server

Sensor data

Remote lab PC

Controller

Actuator .
client

commands

<€ >

Wireless
network
connection

Figure 9 — Player server and controller client architecture

File View Devices

Figure 10 — Pl ayer Vi ewer showing thereal Pioneer’s laser and sonar output (left and right respectively)

27

4.2.2. Player C++ client library

The Player C++ library uses classes as proxies for local services. There are two kinds,
the single server proxyl ayer C i ent and numerous proxies for the devices used,

for example theSonar Pr oxy class. Connection to a Player server is achieved by
creating an instance of tik ayer C i ent proxy. Devices are registered by creating
instances of the appropriate proxies and initialising them through the established
Pl ayer Cl i ent object. Device access levels are set through their device proxy
constructor methods. See [9] for full details of the attributes and methods of the
various classes.

The proxies used throughout this research and a brief description of them are given in
table 1 below.

Proxy Description
Pl ayerd i ent Server proxy, used to establish a connection to the Player
server by specifying a host or port
Posi ti onProxy Used to obtain the latest position data, (x-co-ordinate, y-co-
ordinate and orientation) and set the internal odometry
Laser Pr oxy Holds the latest scan data for the laser

Sonar Pr oxy Holds the latest sonar range measurements

Table 1 — Description of the Player C++ client library proxies

4.2.3. Stage simulations

Developing control software and testing it on a real robot is expensive in terms of
clock time, experimental logistics and the potential damage to the robot. Artificial
worlds and virtual robots are therefore freghensed to overcome these problems

and enable the safe and rapid testingaftrol strategies. Throughout this research
Stage was used for 2D simulations. As there is no connection to a real robot, the Stage
Player server runs on the laboratory PC, i.e. the client controller, Player server and the
Stage simulator are all run on the same machine, with Stage controlling the virtual
robots created. Figure 11 below shows the graphical 2D Stage simulation of a robot in
a world full of irregular shaped obstacles.

Here all software was developed and tested using a Stage simulator so that free
parameters could be set to useful values and risk to the real robot was minimal. The
simulated environment was created in the usual manner by buildinglad file to
describe the robot, its initial position, sensors, port number and the objects it
interacted with, (see Appendix K). The plan of the pen was designed using GIMP and
converted to a zipped pnm file for inclusion in the environment section @fothied

file, (see [12] for a full description of Stager | d files). N. B. A pre-written Pioneer

P3 DX-SHi ncl ude file was used in thaor | d file to describe the exact positions

of the sonar and the size of the robot, (see Appendix L).

28

- ‘#«*F::b =l x

File View Action

e

robot

(]
O | obstacles
4

[e
i i

Figure 11 — Example 2D Stage world and virtual robot

4.3. Thefixed behaviour based code (goal seek)

A behaviour based approach was adopted because it has been well documented that
this has proved computationally cheaper and less complex to implement than world
mapping techniques. Furthermore, the method lends itself to object oriented
programming.

The controller was separated into a main methodRodbot class, and a

Wr | dReader class. Yor | dReader was only used during initial testing with the
simulator to obtain the start co-ordinates automatically.) Robot class was

created to act as an interface to the nyaiogram, providing different modes of
operation, for example:

tayl or. obst acl eAvoi d(true);

commands a robot called taylor to go into obstacle avoidance mode, steering away
from the minimum laser or sonar reading. Table 2 below summarises the public
methods in thdRobot class and explains their functions, (see Appendices C and D
for a listing of the class code and Appendix H for user documentation).

29

M ethod Description of functionality
Sets the robot's maximum allowed speed and distance tolerance for
obstacles.
Sets the connection parameters to those supplied with the run

constructor

connect command, (if none are specified the control program uses the
default).
Sets the robot’s internal odometry to the starting co-ordinates
posi tion supplied. (This is only necessary for testing with fixed goals|and

simulated robots. If the goal is unknown then the start position is not
important and can be arbitrarily set to [0,0,0] for example.)
Gives the positions of the sensors giving the minimum |and
maximum readings and gives the minimum and average readings.
The same method is used for laser and sonar information processing.
This method is used for averaging the laser readings over 8 sgectors
at the front. The array of averages rather than the full array of 361
values is then passed to tlget Sensorlnfo method for
processing.

get Coor ds Gives the robot’s current x and y co-ordinates and its orientation.
Avoids obstacles by either turning to the direction of the maximum
laser or sonar reading, or turning away from the minimum reading.

get Sensor | nfo

get Laser Array

obst acl eAvoi d

Travel to a goal where the co-ordinates are known. (This method

goFi xedGoal was only used for simulated robots during initial testing.)
goNewGoal Travel to a discovered goal, (i.e. head through the gate).
escapeTr aps sl,Jtﬁled to free the robot when it has collided, is cornered or is stahding
Wander around and examine the laser output until a goal is
expl ore .
recognised.

Table 2 — Public Robot class methods

The main program allowed several different parameters to be set. Laser or sonar could
be specified for obstacle avoidance, and in addition two methods were possible. The
robot could move towards the maximum laser or sonar reading or move away from
the minimum when it encountered an obstacle. The option of using laser readings
averaged across sectors was also available. In addition, the robot could be set as
simulated or real. For simulated robots the goal could be set as known (for code
testing purposes) or as unknown. However, the goal was always set as unknown when
using real robots. The control program architecture is simplified and illustrated in
figure 12.

4.3.1. Explanation of methodology

Processing of the sensor information, (sonar or laser) yielded a minimum reading and
its position, the position of the maximum reading and the average of all the readings.
The minimum reading was used to detect a collision and the average reading was used
to check that there was no corner entrapment, see figure 13. If either situation was
detected the robot was sent into trap escape mode. If neither were detected then a
Robot class method was assigned according to table 3 below.

30

create robot;
connect to robot;

DO f orever

{
I F one second has passed
{
get position;
I F goal reached stop;
wor k out distance travell ed;
get maxi mum / mi ni mum sensor positions and m ni num
readi ng;
IF no collision AND not cornered
{
I'F mninmum reading < tol erance avoi d obst acl es;
I F mini numreading > tol erance AND goal found head for
goal ;
I F mnimum reading > tol erance AND goal not found expl ore;
}
| F distance travelled zero OR collision occurred OR robot
cornered
{
escape trap;
}
}
Figure 12 — Control program architecture
Method Assignment conditions
expl ore If goal is not known and minimum sensor reading is above or
equal to a tolerance value
goNewGoall If goal is known and minimum sensor reading is above or gqual
to a tolerance value
obst acl eAvoi d If minimum sensor reading is below a tolerance value

Table 3 — Mapping of methods to conditions

In obstacle avoidance mode either the minimum or maximum sensor positions

determined the steering angle and speed. For example a minimum position directly in
front required a greater turn and slower speed than one towards the side. As minimum
positions at the two sides (i.e. from sonar 0 and 7) did not present serious problems,
these readings were not considered when computing the minimum. Table 4 below

shows the fixed linear and rotational velocities used with each strategy.

31

Turn towards Turn away from

maximum sensor minimum sensor
Position reading reading
Angle Speed Angle Speed
(Degrees) m/s (Degrees) m/s
0 30° 0.05 - -
1 20° 0.05 -20° 0.10
2 10° 0.10 -30° 0.05
3 0° 0.10 -45° -0.10
4 0° 0.10 45° -0.10
5 -10° 0.10 30° 0.05
6 -20° 0.05 20° 0.10
7 -30° 0.05 - -

Table 4 — Speeds and angles used in the two different obstacle avoidance strategies

L aser positions
315 - 360
270 - 314
225 - 269
180 - 224
135-179

90 -134
45 - 89

0-44

\lO‘)(ﬂ-bOOl\)l—‘O&)
—
o
=

i Figure 13 — Showing how
Table 5 —How the laser readings were average front sensor readings

divided into sectors reduce when the robot is
trapped in a corner

Laser obstacle avoidance worked on the same principle as sonar, i.e. the same steering
angles and speeds were used. However, as there are 361 readings, the positions were
divided into 8 sectors corresponding to the sonar positions, see table 5. In addition, the
maximum and minimum of all laser readings or averages across each of the 8 sectors
were possible. Following obstacle avoidance the pdilind_goal property of the

Robot object was reset to false so that the goal needed to be rediscovered, (see
Appendix H).

Under thegoNewGoal method the robot moved at maximum speed, computing the
distance travelled since the goal was found. This was for stopping purposes and also
so that the obstacle distance tolerance could be reduced on approach to the gate posts
to prevent the robot going into obstacle avoidance mode.

32

In expl or e mode the robot wandered around searching for a goal. Recognition of the
gate as the goal was achieved by extracting the two maximum changes in the laser
readings and their angular positions. Computation of an estimate for gap distance was
given by:

d = (x> +y?) - (2xycosd) ,

wherex andy are the lower valued laser readings before the changeiatige angle
between them, see figures 14a — 14d. The gap estimate was compared with the known
figure, using a tolerance value of 0.4 metres derived from experimentation. Note that
depending on the robot's position, the gate width could be estimated as any of the
linesd shown in figures 14a —14d (or their mirror images), and the tolerance had to
allow for this. Although the shape of the gate yielded 4 large changes in reading,
maximum changes at positionsaamd a or by and b, (see figure 1), did not record a

goal as the gap estimate was too small. (Maximum changes at positiand B
showed the gap as in figure 14a, positionaral b as in figure 14b, positiong and

b, as in figure 14c and positions @nd b as in figure 14d.) N. B. The private method

get Di st ance in theRobot class ensured that the lower values at the change points
were used for andy in each case.

If the gap estimate did not approximate the known gate width then the gap was
assumed to be something other than the gate and the robot carried on exploring. If a
match was achieved then other checks were enforced, including that the two
maximum changes weggeater than a tolerance value and that the difference between

them was less than another threshold. After passing these tesisN#eCGoal

method was invoked and the publicund_goal property of theRobot object was

set to true.

An estimate of the distandefo the gate was given by:

e (2l g

whereg is the side angle betwearandd (see figures 14a — 14d), ahds the line
from the robot origin that cutsin half.

Substituting

x2+d2—y2

cosp =
% 2xd

this simplifies to

33

Figure 14a Figure 14b

Figure 14c Figure 14d

Figures 14a — 14d — Showing the different estimates of the gate width, depending on which laser
paths produce the maximum change in reading. N. B. The robot is shown in the same position
for simplicity, but in reality its position would have to vary to obtain different maximum change
points. Mirror images of thelined are also possible.

34

The approximation foh and the estimate of the distance travelled were used as the
stopping criteria. In order to move in the direction of the goal the robot was oriented
towards the centre of the gate, i.e. was turned dggreesvhere

andw is the angle between the left hand laser beam and thé Imdigures 14a —
14d, calculated from

220
_\2)

cosw =
2xh

y is the array number of the left hand maximum change in the laser readings.

If a goal was not detected the robot waredl at maximum speed, i.e. the private
wander method of théRobot class was invoked. Wander mode presented a choice of
exploration (random turn) and exploiti (turn towards the maximum sensor
reading) strategies. Random numbers wesed both to assign strategies and to
choose a random turn angle between —45° and 45°. The random element was added
because exploitation strategies are not always optimal, but this made the method
rather ad hoc due to the fact that random directions can be good or bad. A 60% chance
of choosing the exploration strategy and(®b6 chance of choosing the exploitation
strategy were coded, as the robot’s priority was to explore new directions rather than
maintain a safe path. (Future research could examine the effect of varying the
probability € of choosing a random direction. However, Kaelbletgal. [29] have

noted that there is no technique that adequately resolves the trade off between
exploration and exploitation strategies for complex problems.)

TheescapeTr aps method was used to reverse the robot initially and then to send it
into wander mode at zero speed. This meant that it could use either the exploration or
exploitation strategy to free itself from becoming cornered or stalled.

4.3.2. Experimental proceduresfor the simulator

The aim was to solve the short-term goal-seeking problem described in section 1.1.
The goal seek code was run 90 times for each of the 6 different obstacle avoidance
strategies, (turning towards the maximum sensor reading and turning away from the
minimum sensor reading for each of sonar, single laser and average laser readings),
i.e. the program was run 540 times in all. For each strategy 6 different starting
positions, (see figure 15) and 5 differenteatations were used, (0°, 45°, 90°, 135°

and 180°). The start locations were selected as a representative sample covering the
lower quarter of the pen. (Higher positions were not selected since pre-trials had
shown that goal discovery was too difficult when high up and close to the edges.) The
robot was allowed to explore for 3 minutes before being stopped. If it was successful
in its task the time taken was noted. If it was unsuccessful the causes were recorded,
(see table 6). The robot was not stoppedas ss it failed, hence multiple causes for

35

failure were possible. N. B. Throughout this research, the maximum allowed speed
was 0.17m$ and all significance testing was at the 95% confidence level using a t-
test.

Code | Unsuccessful outcome

1 Passed through the gate but did not know the goal had been reached and did not
stop. However, passed through the gate and stopped later.

> Passed through the gate but did not know the goal had been reached and did not
stop. Did not pass through the gate and stop later.

3 Passed through the gate the wrong way and stopped.

4 Passed through one of the gaps XA or BY, see figure 1.

5 Became trapped and could not escape.

Table 6 — Unsuccessful outcomes for the simulator

a o
Figure 15 — Sart positions for
the virtual robots
vilVa 4 r’"f by
A N W,
AN /
Lo €y ee
RS

4.3.3. Simulator results

Tables 7, 8a and 8b below summarise thgearmental results using the simulator.
During pre-trials it was found that successs very heavily dependent on the correct
choice of the following free parameters. (In fact this was true for all codes tested as
part of this research, both in the simulator and in the physical domain.)

d - The tolerance for the distance between the robot and an obstacle. When this was
too small collisions with the gate posts and walls were frequent and the robot often
got trapped.

a - The tolerance for the average of the sensor readings, used for escaping from the
corners of the pen. Increasing this effectively caused the robot to back up further.

36

r - By how muchd was reduced on approach to the gate.

p - The proximity to the gate when the reductiom iwas made. Increasing this gave

the robot a higher chance of success.

s - The small nhumber representing the distance between an obstacle and the robot
after a collision, (used for escaping traps).

%
FRE % FRE
CODE (causesQof (all faile;g FREQ
failure) trials) | (causes of
failure)

1 2 12% 7%

2 12 71% 43%

3 2 12% 7%

4 1 6% 4%

5 11 65% 39%

Table 7 — Frequency of reasons for failure using the simulator

TIME TO PASS THROUGH GATE (SECONDS)
SCENARIO MEAN | STANDARD |STANDARD 95 %
DEVIATION ERROR CONFIDENCE
INTERVAL
Sonar - turn away from min 19.97 5.87 1.07 22.07 | 17.86
Sonar - turn towards max 18.23 251 0.46 19.13 17.33
Laser - turn away from min 20.87 5.82 1.06 22.95 18.78
Laser - turn towards max 19.33 6.10 111 21.52 17.15
Laser (averages) - turn away from min 22.10 11.50 2.10 26.21 | 17.99
Laser (averages) - turn towards max 20.23 9.76 1.78 23.73 | 16.74
SUMMARY
All experiments 20.12 7.62 0.57 21.24 | 19.01
All sonar experiments 19.10 4.60 0.59 20.26 | 17.94
All single reading laser experiments 20.10 6.01 0.78 21.62 | 18.58
All average reading laser experiments 21.17 10.71 1.38 23.88 | 18.46
Turn away from min strategy 20.98 8.22 0.87 22.68 | 19.28
Turn towards max strategy 19.27 6.85 0.72 20.68 17.85

Table 8a — Summary of statistics for time to pass through the gate using the

simulator
NUMBER OF PASSES FOR EACH [x,y] POSITION
SCENARIO GRAND | GRAND | PASS FAIL MEAN | STANDARD | STANDARD | 95 % CONFIDENCE
TOTAL | TOTAL RATE RATE DEVIATION ERROR INTERVAL
PASSES [FAILS
Sonar - turn away from min 86 4 96% 4% 14.33 111 0.45 15.22 13.45
Sonar - turn towards max 86 4 96% 4% 14.33 0.75 0.30 14.93 13.74
Laser - turn away from min 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29
Laser - turn towards max 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29
Laser (averages) - turn away from min 87 3 97% 3% 14.50 0.50 0.20 14.90 14.10
Laser (averages) - turn towards max 88 2 98% 2% 14.67 0.47 0.19 15.04 14.29
SUMMARY
All experiments 523 17 97% 3% 14.53 0.69 0.11 14.75 14.30
All sonar experiments 172 8 96% 4% 14.33 0.94 0.27 14.87 13.80
All single reading laser experiments 176 4 98% 2% 14.67 0.47 0.14 14.93 14.40
All average reading laser experiments 175 5 97% 3% 14.58 0.49 0.14 14.86 14.30
Turn away from min strategy 261 9 97% 3% 14.50 0.76 0.18 14.85 14.15
Turn towards max strategy 262 8 97% 3% 14.56 0.60 0.14 14.83 14.28

Table 8b — Summary of statistics for number of successful passes through the gate for each start
position using the simul ator

37

For example, when usind = 0.4 metres for laser obstacle avoidance the robot
occasionally came too close to the bottom of the pen and then went into escape mode.
Having freed itself it detected a goal but could not turn by the computed angle as it
did not have enough room. It consequebtdgan to head towards a false goal on the
right hand side. However, changidgo 0.5 metres overcame this problem. Adequate
parameter choice is not particular to thise&rch, it is an important issue in mobile
robotics, for example Krautmacher and Dilger [4] found that their AIS code was
heavily dependent on the choice of free parameters used.

As no reliable and fast method for determining truly optimum values was readily
available, trial and error was used to determine reasonable values that appeared to
produce good results. Table 9 below shows the values that were used:

Parameter | Value (m) Tabled —

d 0.50 Reasonable

a 0.65 parameter values
r 0.45 determined

p 0.85 during pre-trials
S 0.10

Tables 8a and 8b show that the pass rate was very good over all the experiments, with
the robot taking an average of just 20 seconds to pass through the gate and failing to
get through it in only 17 out of 540 trials. As expected, in terms of the mean number
of passes for each position and the time taken to pass, there was no significant
difference between using the laser and sonar sensors for obstacle avoidance. This is
because the simulator provides an ideal environment and does not highlight the real
world drawbacks associated with using sonar. (In the real world readings include
noise and this problem is particularly sevevith sonar where for example multiple
reflections of ultra sonic waves can cause false readings.) In addition, although the
world is highly confined there were mastarting positions for which the robot did

not need to go into obstacle avoidancedmoFor example, in most cases when
starting at 90°, all it had to do was discover the goal, shift its orientation slightly and
keep going.

The confidence intervals in tables 8a and 8b also show that the use of the minimum or
maximum average laser reading across the sectors produced no significant difference
to using a single maximum or minimum reading from each sector. Again, this can be
attributed to the idealised environment.

Additionally, there was no significant difference between the two strategies, turning
towards the maximum reading or turning away from the minimum reading. This was

in terms of the mean number of passes and task time. However, observations showed
that the strategy of turning away from the minimum sensor reading was superior for
the sub-task of avoiding obstacles as maximum readings were often orientated straight
ahead when obstacles were to the side, meaning that the robot made no turn and hence
collided with the side objects.

Table 7 shows the frequency of causedadfire. (This figure is then shown as a
percentage of the total number of faileidls, (17) and the total number of causes of

38

failure, (28).) The most frequent reason for under performance was the robot locating
its goal and heading towards it but coming in too close to one of the posts and going
into obstacle avoidance mode so that after passing through the gate it did not stop.
This occurred in 71% of all failed trials and was usually the primary reason for
failure. The problem was anticipated when developing the control code and is the
reason for the introduction of parameterandp.

Entrapment usually occurred in the more confined top end, i.e. once the robot had
already failed by passing through the gate without stopping. Whilst the robot was
good at freeing itself from the corners of the pen, it had difficulty navigating through
the tight gaps XA and BY, see figure 1, (although success was achieved in some
instances). If it attempted to navigate through at an angle the sensors would often
detect that it was too close to the wall or post and it would go into escape mode. Here,
escape mode proved inadequate with the robot tending to back into the wall and
remain trapped. In subsequent tests reducing parametersd s enabled more
effective navigation of these gaps but made escape from the pen corners more
difficult. There are two issues here. First, travelling backwards to escape traps in the
first instance is not always a good strategy. Whilst it is useful for escaping from the
corners, it is ineffective for navigating through tight spaces. Second, there is clearly a
trade off between setting useful parameters for steering through small gaps and for
escaping from the pen corners. (Chapter 6 describes an adaptive control architecture
that provides a satisfactory method for tackling these two different situations.)

Most of the problems occurred when starting orientations of 180° and 0° were used,
or when positions closer to the left and right edges of the pen were chosen. This is
intuitive since the robot was facing away from the goal at these angles and was more
susceptible to collisions when close to the side. In addition, the turn angle for goal

alignment was also generally greater when starting at 180° and 0°, which led to

misalignment in some instances. (N. B. These orientations and positions proved the
most troublesome throughout all experiments, i.e. with all codes and both in the

physical world and with the simulator.)

In some cases, despite the use of several checking mechanisms, the robot headed
toward a false goal. Sometimes this led to task failure, although in other cases it
simply went into obstacle avoidance mode or escape mode on reaching the false goal,
and was subsequently able to complete the task. The phenomenon was due to slight
discrepancies between the computed turn angles and those executed by the robot, (see
section 4.3.5) and meant that instead of passing through the centre of the gate, it
veered off course. The problem was more serious when the approach to the goal was
steep and the robot was further away, as a slight change in turn produced a greater
deviation from the intended path. (Chapter 5 describes an amended version of
goal seek, which helps to solve this problem.)

4.3.4. Experimental proceduresfor the physical robot

The bottom of the pen was divided into 8 equal sized start areas, (see figure 16). The
goal seek code was set up to solve the short-term goal-seeking problem and run with
the physical Pioneer at approximately 0° 90° and 180° orientations in each of the
areas. Again, these positions were selected as a representative sample covering the

39

lower quarter of the pen. The time to complete the task or reason for failure was noted
in each case. In all experiments involving the physical domain the robot was stopped
if a collision with one of the posts was anticipated, as it was not fitted with a front
bumper and the posts were not fixed to flber. This meant that only 1 reason for
failure (see table 10) was recorded. Parameters were set as in table 9, except where
stated differently in section 4.3.5. Theaximum number of successful outcomes for
each area was 3, but results tables show this figure scaled to 15 for comparison with
the simulation results.

Code | Unsuccessful outcome

1 Robot would have hit one of the posts in “travel to discovered goal’ mode
2 Robot would have hit one of the posts in “explore” mode

3 Robot went into obstacle avoidance mode on approach to the goal

4 Robot failed to find the goal and passed through without stopping

Table 10 — Unsuccessful outcomes for the real robot

5 6 7 8

Ae.cm I 1 2 3 4
a—
625cm

Figure 16 — The start areas used in the real world

40

4.3.5. Physical robot results

The code was initially tested using single laser readings and the strategy of turning
away from the minimum reading. However, as the failure rate proved extremely high
(71%) further testing with the code as it stood was abandoned. (It was expected that
other obstacle avoidance strategies would not fair any better since it is well
documented that laser out performs sonar in the real world and the strategy of turning
to the maximum reading proved inferior in the simulator.)

The high fail rate was chiefly due to the robot performing inaccurate turns towards the
goal. The angles were correctly computed but the actual orientations executed differed
from those calculated. With physical robdhere are often errors in carrying out
motor commands due to imprecise odomedlppage between the wheels and floor,

and uneven terrain. Furthermore, delays betwsensing and acting (0.2 seconds for
Pioneers, [33]) means that turns (even when executed accurately) can be made too late
if the robot is continually moving. Any small rotational errors can lead to large
translational errors and there is also the added problem of sensor noise, which can
mean that even the computed angles are not exact.

Here, the difference between the computed and actual turn was usually great enough
to prevent the Pioneer from aligning with the centre of the goal. The discrepancy was
approximately proportional to the angle of turn itself, although other factors such as
the presence of grates on the floor also contribuBrdoks reported a similar
phenomenon if38]. When commanded to turn through an anghés robots actually
turned byo + da. In addition, Ambasthet al. [47] calculated the imprecision of their
estimated goal location by examining the size of the computed turn angle. (If the
imprecision was low their robots were more likely to move to the target.)

In the simulator there were differences between the actual and computed turns but
they were very small, meaning that thewal robot could achieve a 97% success rate.
(The main discrepancy in the simulator is the controller's assumption that the robot
executes a command every second exactly. Since the robot is instructed with angular
speeds not specific turn values, the slight variation in execution time causes the
differences.) The virtual robot only failed when turn angles were very large, causing it

to approach the goal too close to the posts, go into obstacle avoidance mode and pass
through without stopping (see section 4.3.3).

In order thatgoal seek could be tested on the real robot the code was amended to
compute the difference between the actual turn and that calculated and to make an
appropriate correction. The program was then run 24 times for each of the obstacle
avoidance strategies. Results showed that the fail rate went down to 30% but
innacurate turns were still the primary caa$dailure. This was because the angular
adjustments needed were quite often too small for the robot to execute them
accurately, although they were large enough to cause misalignment. In addition, large
adjustments caused the robot to spin indefinitely, continually trying to correct itself. It
is worth noting that the real robot also under performed in comparison to the
simulator since it was not allowed to conignafter making errs (such as heading
towards one of the posts). The virtual rolats permitted to carry on after collisions

and was often able to solve the problem subsequently.

41

When using sonar, the obstacle tolerance valugad to be reduced from 0.50 metres

to 0.40 metres to help prevent the robot from going into obstacle avoidance mode on
approach to the gate. The sonar sensorsdiséhces as smaller than the laser in the
real world, probably because the laser is positioned approximately 10 cm back from
the anterior of the robot. The effects are illustrated in figure 17 below.

When thePl ayer Vi ewer image was produced the robot was just in front of the gate.
The minimum reading was caused by the presence of the left post and was given as
0.426 metres by the sonar and 0.564 metres by the laser. If the tolerance had been set
at 0.50 metres in sonar mode the robot wddve gone into obstacle avoidance mode

on approach to the gate.

Position of left
post

Laser rays

/

[Sonar ray

Figure 17— Pl ayer Vi ewer
image showing how the

o minimum sensor reading is
smaller for sonar. (False high
sonar readings can also be
seen.)

In addition, the obstacle avoidance strategy of turning towards the maximum reading
did not work well using sonar with the real robot. This was due to large inaccuracies
in the readings, which often suggested a safe path but in reality caused the robot to
push against the boundaries of the pen and move them. To avoid damage to the robot
and its world, testing using sonar with this method was discontinued. The

Pl ayer Vi ewer images in figure 18 below illustrate the problem and show that it was
not an issue in the simulator, where sonar readings were reasonably accurate. The
purple lines correspond to the edge of the pen, as seen by the laser.

In the real world sonar can often produce unexpected readings and it is not unusual for
two identical sensors to demonstrate sensitivities that can differ by as much as a factor
of 2, [20]. In addition there are many angles for which the beam can bounce around
(acting as if objects were mirrors) befarturning to the emitter. This is known as
secondary reflection and is a major cause of false high readings, [49].

42

‘,-.‘....

File View Devices File View Devices

PHYSICAL ROBOT SIMULATOR

Loy

2 jak

h A& | Y.
\

Edge of pen as shown False sonar reading

by laser output

Figure 18 — Inaccurate sonar readingsin the real world (left) compared
with more precise readings in the simulator (right)

Different materials can also respond differently, for example some woods can absorb
the entire signal making it appear as irin is no object present [20]. Here, it was
likely that metal bolts holding the pennms together caused the problem. Indeed,
when an identical Pioneer robot was positioned as shown in figure 18, the sonar
output was very similar, with sonar 2, 5 and 6 also showing false high readings.

There was no problem with the strategy of turning towards the maximum reading
when the laser was used for obstacle avoidance on the real robot. This is because the
laser beam is more highly focused and is not as readily distorted or absorbed by the
reflecting medium as sonar. Laser generally gives far fewer false positive readings.

CODE | FREQ [% FREQ

1 24 67%
2 9 25%
3 3 8%
4 0 0%

Table 11 — Frequency of reasons for failure using the real robot

Tables 11, 12a and 12b summarise the reasons for failure, task completion times and
success and failure rates for the real robable 11 shows that the imprecision of the
turns, causing the robot to approach a post rather than the centre of the gate caused

67% of all failures.

Tables 12a and 12b below show that there was no significant difference between any
of the obstacle avoidance strategies in terms of both task completion time and success
rate. Although laser was expected to perform better than sonar in the real world, it is
likely that the more serious problem of performing turns inaccurately overshadowed
any differences that might have existed. Furthermore, the incompatability of the sonar
sensors with the strategy of turning towards the maximum reading is evidence for the
superior accuracy of the laser sensor.

Comparison of table 8a with table 12a shows that there was no significant difference
between task completion time for the simulator and the real robot, with both
averaging about 20 seconds over all experiments. However, tables 8b and 12b show
that in terms of success rates the simulator performed significantly better than the
physical robot. The average number of successful passes for each position was 14.5 in
the simulator, compared with 10.5 for the real robot. This is intuitive since the
simulator represents an idealised eonwment with executed turns matching those
calculated much more closely. In addition the robot was allowed to continue
following collisions in the simulator.

TIME TO PASS THROUGH GATE (SECONDS)

SCENARIO MEAN STANDARD |STANDARD, 95 %

DEVIATION | ERROR CONFIDENCE

INTERVAL

Sonar - turn away from min 18.54 3.85 0.93 20.37 | 16.71
Laser - turn away from min 19.58 6.49 1.67 22.87 16.30
Laser - turn towards max 19.67 5.02 1.26 22.13 17.21
Laser (averages) - turn away from min 21.54 9.04 2.19 25.84 | 17.24
Laser (averages) - turn towards max 20.69 9.89 2.27 25.13 | 16.24
SUMMARY
All experiments 20.00 7.45 0.81 21.60 | 18.41
All sonar experiments 18.54 3.85 0.93 20.37 16.71
All single reading laser experiments 19.63 5.78 1.04 21.66 17.59
All average reading laser experiments 21.11 9.51 1.59 24.22 18.01
Turn away from min strategy 19.89 6.98 1.00 21.84 | 17.93
Turn towards max strategy 20.18 8.05 1.36 22.85 17.51

Table 12a — Summary of statistics for time to pass through the gate using
the real robot

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]
SCENARIO GRAND | GRAND PASS FAIL MEAN [STANDARD | STANDARD | 95 % CONFIDENCE
TOTAL | TOTAL RATE RATE DEVIATION ERROR INTERVAL
PASSES | FAILS
Sonar - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser - turn away from min 75 45 63% 38% 9.38 3.00 1.06 11.45 7.30
Laser - turn towards max 80 40 67% 33% 10.00 3.54 1.25 12.45 7.55
Laser (averages) - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser (averages) - turn towards max 95 25 79% 21% 11.88 2.42 0.86 13.55 10.20
SUMMARY
All experiments 420 180 70% 30% 10.50 3.12 0.49 11.47 9.53
All sonar experiments 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
All single reading laser experiments 155 85 65% 35% 9.69 3.29 0.82 11.30 8.07
All average reading laser experiments 180 60 75% 25% 11.25 2.80 0.70 12.62 9.88
Turn away from min strategy 245 115 68% 32% 10.21 3.05 0.62 11.43 8.99
Turn towards max strategy 175 65 73% 27% 10.94 3.17 0.79 12.49 9.38

Table 12b — Summary of statistics for number of successful passes through the gate for each start position
using the real robot

The next section describes a change to the architecture gbte@Goal method in
the Robot class. This allowed much better results to be achieved, both with the
simulator and the real robot.

45

5. The amended goalseek code
5.1. Description of amendments

An amended version afoal seek was created to overcome the problems described

in section 4.3.5. Here turn angles were re-assessed when the robot was a quarter of the
way towards the goal. After the initial goal detection and turn the robot was required
to re-discover the goal in order to make the turn calculation once again. As it was
heading in the correct general direction when this re-discovery took place, a new
public boolean variablenPat h was created and set to true. This allowed the
exploratory part of goal seeking, (with random and often large turns) to be suppressed
and meant that the robot carried on along the current vector, thus being able to re-
discover the goal quickly and easily. Furthermore as the robot was on the right course
and was closer to the goal, the new calculated turn was small and hence differences
between actual and calculated turns was slight. Once the obstacle tolerance was
reduced (when the robot was 0.85 metres from the gate), goal re-discovery was not
undertaken. This meant that the required orientation was recalculated approximately
three times, depending on the distance between the robot and the goal when it was
initially discovered. The re-alignments allowed the robot to meet the goal much more
squarely and closer to the centre. This also helped to prevent it from going into
obstacle avoidance mode on approach to the gate, as it was kept away from the posts.
Turn corrections were still allowed but if they were greater than 1.5° they were not
implemented to prevent the physical robot from spinning continuously.

It is important to note that although thigork is described as an amendment to
goal seek, all alterations were carried out on tRebot class code that it interfaces
with. In particular the publigoNewGoal andexpl or e methods were extended. This
meant that the improvements were available for any other controllers that needed to
make use of these methods, (for example the idiotypic learning code discussed in
Chapter 6).

5.2. Experimental proceduresand resultsfor the simulator

Experimental procedures were carried out as described in section 4.3.2, with
parameters set as in tab®. Tables 13a and 13b summarise the results using the
amended code with the simulator. Comparison of tables 8a and 13a shows that overall
there was no significant difference between completion time for the original
goal seek and the new version. The amendments did not improve task speed.
However, for the amended code the overall strategy of turning towards the maximum
sensor reading was slightly faster than that of turning away from the minimum. This
may have been because alignment with the maximum reading generally served to
place the robot in a better position for goal discovery. Further tests should help to
pinpoint whether this phenomenon was real. There were no other significant
differences in terms of task speed.

46

TIME TO PASS THROUGH GATE (SECONDS)
SCENARIO MEAN | STANDARD |STANDARD| 95 %
DEVIATION ERROR CONFIDENCE
INTERVAL
Sonar - turn away from min 21.23 6.09 111 23.41 19.05
Sonar - turn towards max 19.20 2.14 0.39 19.96 | 18.44
Laser - turn away from min 21.03 5.01 0.91 22.83 19.24
Laser - turn towards max 19.33 2.20 0.40 20.12 18.55
Laser (averages) - turn away from min 20.37 4.63 0.85 22.02 18.71
Laser (averages) - turn towards max 19.23 2.74 0.50 20.21 18.25
SUMMARY
All experiments 20.07 4.18 0.31 20.68 | 19.46
All sonar experiments 20.22 4.68 0.60 21.40 | 19.03
All single reading laser experiments 20.18 3.96 0.51 21.19 19.18
All average reading laser experiments 19.80 3.85 0.50 20.77 18.83
Turn away from min strategy 20.88 5.29 0.56 21.97 | 19.78
Turn towards max strategy 19.26 2.37 0.25 19.75 18.77

Table 13a — Summary of statistics for time to pass through the gate using the
simulator

Comparison of tables 8b and 13b shows that overall there was a significant
improvement in success rate compared with the original version, in fact 100% success
was achieved in the simulator with the new code. Since the pass rate was 100% there
were no significant differences withihe various obstacle avoidance strategies.

NUMBER OF PASSES FOR EACH [x,y] POSITION

SCENARIO GRAND | GRAND | PASS FAIL MEAN | STANDARD [STANDARD | 95 % CONFIDENCE

TOTAL | TOTAL RATE RATE DEVIATION ERROR INTERVAL

PASSES | FAILS
Sonar - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Sonar - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) - turn away from min 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) - turn towards max 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
SUMMARY
All experiments 540 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All sonar experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All single reading laser experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
All average reading laser experiments 180 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Turn away from min strategy 270 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Turn towards max strategy 270 0 100% 0% 15.00 0.00 0.00 15.00 15.00

Table 13b — Summary of statistics for number of successful passes through the gate for each start position
using the simulator

The changes to the program overcame the chief weakness of the original code, i.e. the
adoption of obstacle avoidance behaviour on approach to the goal was significantly
reduced. The re-calculations of the turn meant that once the robot was near the goal it
was able to advance almost perpendicular to it and much closer to the centre, so the
posts were rarely detected as obstadkesthermore, the virtual robot did not get
trapped or stuck since it did not attempt to navigate through the side gaps from bottom
to top and it always stopped once it had passed through the gate, hence there was no
reason to have to navigate back down through them.

47

5.3. Experimental proceduresand resultsfor the physical robot

Experimental procedures were carried out as described in section 4.3.4, with
parameters set as in table 9, exdepthe obstacle avoidance parameteryhich had

to be reduced to 0.4 metres for sonar as before. The strategy of turning towards the
maximum reading was not tested using sonar because of the problems described in
section 4.3.5.

Tables 14, 15a and 15b summarise the experimental results using the amended
goal seek code with the real Pioneer. The predominant cause of failure was an
inability to discover the goal with 58% of all failures falling into this category. This
compared with 0% for the original code. However, the new version required the robot
to rediscover the goal approximately three times on approach so that turn angles could
be re-assessed. Most of the ineffective trials were a result of failure to detect the goal
the third time, (when the robot was very close to it). It thus passed through without
stopping. The remaining 42% of unsuccessful trials were attributed to the robot
adopting obstacle avoidance behaviour on approach to the goal when in sonar mode,
even though the tolerance parametesas lowered to 0.4 metres for sonar.

Table 15a shows that compared with the simulator task completion time was slightly
slower (this was significant at the 95% level). This may have been due to differences
between the time it takes to stop and restart in the two domains, as the speed is
reduced when re-calculations of the turn are made. There were no significant
differences between the various obstacle avoidance strategies in terms of task speed
for this experiment.

CODE | FREQ |% FREQ

1 0 0%
2 0 0%
3 5 42%
4 7 58%

Table 14 — Freguency of reasons for failure using the real robot

TIME TO PASS THROUGH GATE (SECONDS)

SCENARIO MEAN | STANDARD [STANDARD 95 %

DEVIATION | ERROR CONFIDENCE

INTERVAL

Sonar - turn away from min 21.83 4.19 1.02 23.83 19.84
Laser - turn away from min 23.83 5.79 1.18 26.15 | 21.52
Laser - turn towards max 21.90 2.64 0.56 23.00 | 20.79
Laser (averages) - turn away from min 22.13 4.44 0.91 23.90 | 20.35
Laser (averages) - turn towards max 21.19 2.93 0.64 22.44 | 19.93
SUMMARY
All experiments 22.18 4.46 0.43 23.02 | 21.33
All sonar experiments 21.83 4.19 1.02 23.83 | 19.84
All single reading laser experiments 22.86 4.90 0.72 24.28 | 21.45
All average reading laser experiments 21.66 3.97 0.59 22.82 | 20.50
Turn away from min strategy 22.60 5.25 0.65 23.87 21.32
Turn towards max strategy 21.54 2.74 0.42 22.36 20.72

Table 15a — Summary of statistics for time to pass through the gate using the
real robot

48

Table 15b below shows that overall the success rate was generally very good, with
90% of runs resulting in accomplishmewnf goal detection and subsequent
termination. This represents a significantly better total pass rate than the original code
when used with real robots. However, it was not significantly better for sonar. The
average fail rate over all laser experiments was 5% compared with 29% for sonar.
(Sonar also had a 29% fail rate in the original code.)

The main problem was that the goal had to be rediscovered when the robot had
travelled a quarter of the way to it and all rediscoveries had to be made before the
obstacle tolerance was reduced. (There must be a cut off point otherwise goal
discovery would never be recorded.) When the robot tried to make the second or third
re-discovery b and b or a and a (see figure 1) sometimes repeatedly held the
maximum changes in laser reading, which meant that the goal was not found. This
problem could have been exacerbated by non-adjustment of the current vector when
searching for the goal. Slight dimensional differences between the real and simulated
worlds could explain why this phenomenon was not prevalent on the simulator.

Sonar did not fair better than in the original code, since it suffered both from the
problem described above and the tendency to go into obstacle avoidance mode on
approach to the gates, (see section 4.3.5 for a full explanation).

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]
SCENARIO GRAND | GRAND PASS FAIL MEAN [STANDARD | STANDARD | 95 % CONFIDENCE
TOTAL | TOTAL RATE RATE DEVIATION ERROR INTERVAL
PASSES | FAILS
Sonar - turn away from min 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
Laser - turn away from min 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser - turn towards max 110 10 92% 8% 13.75 217 0.77 15.25 12.25
Laser (averages) - turn away from min 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) - turn towards max 105 15 88% 13% 13.13 3.48 1.23 15.54 10.71
SUMMARY
All experiments 540 60 90% 10% 13.50 2.78 0.44 14.36 12.64
All sonar experiments 85 35 71% 29% 10.63 3.00 1.06 12.70 8.55
All single reading laser experiments 230 10 96% 4% 14.38 1.65 0.41 15.19 13.56
All average reading laser experiments 225 15 94% 6% 14.06 2.63 0.66 15.35 12.77
Turn away from min strategy 325 35 90% 10% 13.54 2.69 0.55 14.62 12.46
Turn towards max strategy 215 25 90% 10% 13.44 2.91 0.73 14.87 12.01

Table 15b — Summary of statistics for number of successful passes through the gate for each start position
using the real robot

Compared with the simulator the overall pass rate for the real robot was significantly
less. This was primarily due to the under performance of sonar. When laser alone was
considered there was no significant difference.

The next section illustrates an idiotypic immune network controller, which is used to
govern behaviour selection in response teirenmental stimuli. The architecture is
described and the results of tests using both the simulator and a real robot are
presented.

49

6. The immune network code
6.1. Motivation

Behaviour based approaches allow a degrfeimtelligence to emerge from module
interactions, but on their own they often lack adaptability and flexibility, [41]. For
example Brooks’ subsumption architecture uadtked priority scheme for selecting
modules, [38]. However, as mobile robot navigation problems represent complex,
non-linear systems and are hence difficulimodel and predict, a rigid behavioural
approach is often inadequate.

In addition, engineering set responses to environmental stimuli in a top down manner
(as withgoal seek) can lead to deadlock and can produce systems that are hard to
tune. For example, the robot can be programmed to reverse if there is a collision and
go forward if the way ahead is clear. It is possible, (given the right environmental
conditions), for the robot to get caught up doing this in a never-ending loop. A self-
maintaining and adaptive framework is clearly needed as the system must be able to
cope with continuous environmental change, and should ideally demonstrate an overt
approach (exploring alternatives) rather than merely assigning a current action (a tacit
approach), [45].

Idiotypic immune networks have recently been used as a behaviour mediation
mechanism for mobile robot control, (see section 3.2.2 for a review). In such systems,
the mapping of response to environmental glims linked to affinities between them,

past use and the network connections between the different behaviours, (the
stimulatory and suppressive effects). Dynamically changing affinities between
environmental conditions and behaviour aeo be obtained when reinforcement
learning (or some form of evolutionary algorithm) is coupled with the approach. The
resultant behaviour has been shown to be intelligent, adaptive, flexible and self-
regulatory. Furthermore, as each element interacts with others and contributes to the
collective response there is no central control.

An immune network system thus represents a genuinely autonomous and
decentralised methodology, with adaptation to change occurring continuously, [42].
For this reason it is useful for application to problems such as autonomous robot
navigation, where there is no single solution that suits all circumstances.

6.2. Methodology
6.2.1. Immune network analogy

Following the work of Watanabet al. [6, 41] and many other research groups that
have linked immune networks with mobile robot control, environmental situations
were modelled as the epitopes of antigens and responses to them were modelled as
antibodies. AmAnt i body class was designed to interface with the controller, so that
multiple Ant i body objects could be created. The class had public double attributes
strength, concentration and activation and a public double array

par at ope_st rengt h to hold the degree of match (a value between 0 and 1) for each
antigen. There was also a public integer airdiyot ope_nat ch to hold disallowed

50

mappings (a value of 1 for a disallowance, O otherwise) between the antibody and
each antigen and thus represent thetygic suppression and stimulation between
antibodies. The behaviour of the robot in response to environmental conditions was
hence analogous to external matching between antibodies and antigens and internal
matching between antibodies.

For solution of the short-term goal-seeking problem and comparison with the
amendedyoal seek program the degrees of paratope matching were initially hand
designed. They were allowed to changeaiyically through reinforcement learning,
(although this was expected to have little effect since solution time averaged less than
23 seconds). Table 16 below shows the 9 antigens and 12 antibodies that were
selected and the match values that were initially assigned. Positive matches are shown
in yellow. The idiotope mappings were also designed by hand, but were not developed
in any way. Table 17 shows the idiotope values used, with disallowed pairs shown in
green.

PARATOPE ANLIGENS
0 1 2 g 4 5 6 7 8
. : . Object Object |Average > Average Goal Goal Robot Blocked
i Object left centre right t <t known |unknown] stalled behind
0 |Reverse 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1 |Slow right 20 1.00 1.00 0.00 0.25 0.50 0.00 0.00 0.50 0.50
2 [Slow left 20 0.00 1.00 1.00 0.25 0.50 0.00 0.00 0.50 0.50
3 |Fwd centre 0.50 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.75
4 |Fwd left 20 0.00 0.75 0.75 0.50 0.00 0.00 0.00 0.00 0.25
5 |Fwd right 20 0.75 0.75 0.00 0.50 0.00 0.00 0.00 0.00 0.25
6 |Go to goal 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
7 _|Discover goal 0.00 0.00 0.00 0.50 0.00 0.00 1.00 0.00 0.00
8 |Slow right 50 1.00 1.00 0.00 0.50 0.50 0.00 0.00 0.50 0.50
9 [Slow left 50 0.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 0.50
10 |Fwd left 40 0.00 0.75 0.75 0.75 0.00 0.00 0.00 0.00 0.25
11 |Fwd right 40 0.75 0.75 0.00 0.75 0.00 0.00 0.00 0.00 0.25

Table 16 — Initial paratope mapping

IDIOTOPE ANUTENS

0 1 2 3 4 5 6 7 8

. . . Object Object |Average >| Average Goal Goal Robot Blocked

Al Object left centre right t <t known |unknown| stalled behind
0 |Reverse 0 0 0 0 0 0 0 0 1
1 [Slow right 20 0 0 1 0 0 0 0 0 0
2 |Slow left 20 1 0 0 0 0 0 0 0 0
3 [Fwd centre 0 1 0 0 0 0 0 0 0
4 |Fwd left 20 1 0 0 0 0 0 0 0 0
5 |Fwd right 20 0 0 1 0 0 0 0 0 0
6 [Go to goal 0 0 0 0 0 0 1 0 0
7 |Discover goal 0 0 0 0 0 0 0 0 0
8 |Slow right 50 0 0 1 0 0 0 0 0 0
9 |Slow left 50 1 0 0 0 0 0 0 0 0
10 [Fwd left 40 1 0 0 0 0 0 0 0 0
11 [Fwd right 40 0 0 1 0 0 0 0 0 0

Table 17 — Idiotope mapping

51

Hand-designed mappings were used fag #hort-term problem as the code was
required to compete witfoal seek and there was not enough time to begin with a
random matrix and develop it. In addition, beginning with a random matrix would not
have been suitable for the physical robote hland-designed matrices were thus based
on a common sense approach that would allow the robot to carry out its task safely.
(Both Hailu [1] and Michaud and Matéar[33] recommended the use of initial safe
sensor-behaviour mappings that should be allowed to change in response to learning.)

It is worth noting that although the initial idiotope matrix was not developed in any
way, the idiotypic results were still adaptive. The presence of suppressive and
stimulatory forces was based on the statiotaghe matrix but the scores awarded or
deducted for these effects were taken from the dynamic paratope matrix.

The constructor method of that i body class set the initial concentration level and
here all antibodies were started with a concentration of 1,000. Table 18 below
summarises the other public methods tk class and their functions. User
documentation and a full code listing for the class are given in Appendices | and B
respectively.

Method Description of functionality
Loops through the presenting antigen set and calculates| the
strength of match to it

i di otypi cEffects Adjusts the strength of match to the antigen set by
considering idiotypic effects

Alters thepar at ope_st r engt h array values according
to a scalar reward and penalty system based on performance
set Concentration Computes an antibody’s current concentration level
Computes an antibody’s current activation level -
(concentration * strength)

mat chAnti gens

changeMat chi ng

set Acti vati onLevel

Table 18 — Public methods of the Ant i body class

Multiple antigens were allowed to presengritselves simultaneously, but they were
given an order of priority so that for every antigen set, one was deemed dominant.
Table 19 shows the order of precedence. InntlitechAnt i gens method a match

with the dominant antigen was given greater weighting, i.e. the degree of matching
was doubled when calculating the total strength of match to the presenting antigen set.
For non-dominant antigens the degree of match was divided by 4 to weaken its
weighting. The rationale behind this approach was that although the behaviour of an
immune network is the result of collective interactions between antibodies, the one
with the paratope that best fits the invading antigen is usually dominant [42].

Thei di ot ypi cEf f ect s method adjusted the total strength of match to the antigen
set, using thei di otope_match array to calculate idiotypic effects between
antibodies. Here, stimulatory and suppressive effects were considered between the
antibody with the initial highest strength of match (i.e. the “round one” winner,
calculated using theat chAnt i gens method) and any other antibodies with positive
strength of match scores for the presenting antigen set. A justification for this
approach is that in learning classifier systems, which have been likened to immune

52

networks [30, 45], classifiers with the highest levels of matching are the only ones
that are allowed to compete to have their actions executed [45]. However, it should be
stressed that all the antigens were considered when calculating the idiotypic effects,
not just the presenting set. This combination worked best for producing “round two”
winning antibodies that frequently differed from the “round one” winner. Suppression
was taken as 75% of the value of the “round one” winner’s antibody match strength,
whereas stimulation was at 100% of the stimulating antibody’s match strength, (see
figure 20).

Antigen Priority
Average sensor reading > threshold Lowest
Goal known

Goal unknown

Object left, object centre, object right
Average sensor reading < threshold
Robot stalled (collision)

Path blocked behind Highest

Table 19 — Order of precedence for antigens

Explicit details for mechasms like stimulation and suppression are scarce for the
network theory [45]. Several models halleen suggested, but each is different.
Jerne’s original theory postulates that the entire network is connected, but it is
reasonable to assume that the immune response should be limited to a localised region
of antibodies, [44]. Chowdhumst al. [52] proposed that the immune system might
consist of a number of netw of different sizes and connections and that there is
probably interaction within these networks but not between them.

6.2.2. Network dynamics

The network dynamics govern how concentrations and molecular structures vary over
time, [45]. Here Farmer's equation (3.1) and squashing were used to govern
concentration levels. Molecular structuresevield constant, i.e. antibodies were not
killed off and new ones were not introduc@sing for example genetic algorithms).
Selection was from the fixed 12 antibodies listed in tables 16 and 17 only.

The initial strength of match to the presenting antigen set calculated in
mat chAnt i gens represented term 3.4 in Farmegguation, (see section 3.2.1). The
alterations made in thiedi ot ypi cEf f ect s method represented bringing in terms
3.2 and 3.3, wittk; equal to 0.75. Theet Concent r ati on method completed the

full equation (3.1) by multiplying the final calculated strength (i.e. terms 3.2 — 3.3 +
3.4) byc and subtracting the damping term (natural death, term 3.5). This gave the
increase in the antibody’s concentration, and leeendk, were set at 40 and 10
respectively.New concentrations were then congaliusing the stored previous value
and the calculated increase. Thet ActivationLevel method calculated the
antibody’s activation level as its current strength multiplied by its concentration.

53

Many studies involving artificial idiotypic networks, for example [6] and [31], have
used a squashing function to prevent cotreg¢ions of antibodies becoming too high

or to keep the total number a constant. Studies with mice have suggested that an
almost constant number of B-cells are active, so it is likely that there is a mechanism
in nature that controls this, [43]. Hettee total concentration was kept at 12,000 by

the squashConc() method in the main control program, which divided each
antibody concentration by the new total and multiplied by the initial total.

During code development it was found that goal seeking often built up high
concentrations of antibodies, and whemugled with other environmental messages,
the “goal known” message could lead to selection of the goal-seeking antibody for
this reason. To eliminate this problem amdure that the system was not too heavily
dependent on concentrations and idiotypic effects a 50% chance of selecting an
antibody as the winner of “round one” was used, (i.e. there was a 50% chance of
selection being dependant upon strength of match only). This further ensured that a
variety of strategies were available for all environmental situations and overcame the
tendency of the idiotypic effects to over-suppress the “reverse” antibody. (This may
have been caused by non-optimisation of the idiotope mapping in figure 17.)

6.2.3. Reinforcement learning

The initial paratope match array was allowed to develop dynamically by using a
reinforcement learning technique. Successful implementation of an antibody in
response to a given set of presenting antigens increased the degree of match to the
dominant antigen, (a reward was given). However, antibodies that were deemed
unsuccessful had their degree of match to the dominant antigen and any concentration
increase awarded as a result of winning deducted, (a penalty was issued). Reducing
the concentration back down to its previous level is intuitive since useful rules should
gain strength, not counter productive ones. In this model, concentration level
represents memory and when bad decisions are made, forgetting is as important as
learning [55] and allows exploration of new strategies to take place. Furthermore, in
machine learning in general a careful balance between over fitting (keeping too much
data) and under fitting (discarding too much data) must be maintained, [34].

Timescale for reward is vemgnportant. If it is too small the robot is not given enough
time to respond and if it is too largeew environmental situations may cause
inappropriate feedback to be given, [35]. Here, antibodies were selected each second,
so it was convenient to measure their performance against the dominant antigen half a
second later. This was achieved by calling one of the reinforcement learning methods
from the main control program. Table 20 summarises the functions of these 3 methods
and lists the antigens that they were used with.

Method Description Used by Parameter values
dominant taken
antigen

rewar dAnt i body Compares two + Average <t 1. New average
parameters. If the 2. Old average
firstis greater the |« Robot stalled | 1. Distance travelled
antibody is « Blocked behind in half second
rewarded otherwise 2. 0.01
it is penalised.

r ewar dGoal Known Rewards a « Goal known 1. ID number of “go
particular antibody to goal” antibody
directly. This is
similar to e Goal unknown | 1. ID number of
supervised “discover goal”
learning. A penalty antibody
is awarded for any
other antibody.

rewar dM nChange | Takes four + Obiject left 1. New minimum
parameters. « Object centre sensor position
Compares the third « Object right 2. Old minimum
and fourth. If the sensor position
third is greater than 3. New minimum
the fourth the sensor reading
antibody is 4, Old minimum
rewarded. It is sensor reading
penalised if the
fourth is greater
than the third and
the first and second
are the same.

Table 20 — Reinforcement learning methods in the main control program

A heterogeneous scoring technique was usedeward and penalty values were not
fixed. The magnitude of the reward or penalty was 0.2 éoiar dGoal Known, twice

the difference between the first and second parametensef@r dAnt i body and

twice the difference between the third and fourth parametersf@r dM nChange.

As there was no easy way of scoring the antibody used when the antigen “average >
threshold” was dominant (as this meant that everything was in order), it was scored in
a reverse manner when “average < threshold”, “robot stalled”, “blocked behind” or
the three “object present” antibodies wemored. For example if “forward centre”
scored negatively when “robot stalled” was the dominant antigen, its strength of
match for “average > threshold” was increased. Conversely, if “reverse” scored
positively for “robot stalled”, it scored negatively for “average > threshold”.

In [35] Matar used reinforcement learning to control R2 robots conducting a

foraging exercise. Part of the required behaviour was to grasp and drop pucks with
their grippers. However, the graspingdadropping behaviours were hard coded and

55

hence did not constitute part of the learning space. The reasons given were that these
behaviours could be potentially damaging if the robot had to learn them and they were
easily pre-programmed. Here goal-seeking and travelling to the goal once found were
considered to be the most important behaviours. A compromise between hard-coding
these responses and controlling thenoulgh the immune network and reinforcement
learning was achieved by building the dediresponses into the learning subroutine,
rewar dGoal Known. This was similar to supervised learning in that the correct
response was effectively given by incorporating it into the reward function. Thus, the
robot had only to try these behaviours under the right environmental conditions once,
and the scoring mechanism ensured that maximum mappings (i.e. values of 1) were
written into the paratope-matching matrix. The robot hence “learned” to discover and
travel to the goal in a matter of seconds.

So that the use of reinforcement learning could be tested and paratope mappings could
be developed from scratch, the goal-seeking problem was extended to a long-term
exercise, where the robot was required to arrive at the goal as many times as possible
in a given timeframe. An initial paratope matrix with all values equal to 0.5 and
another with random values between 0.5 ad® @vere initially assigned, in order to

see whether obstacle avoidance and gagaaon behaviours would develop through
reinforcement learning after 45 minutesn time. In section 6.6 the resulting
mappings and behaviours are discussed and some work on further evolution of the
mappings through genetic algorithms is presented in section 6.7.

6.2.4. Controller program structure

Figure 19 shows pseudocode for themunoi d control program and table 21
describes the controller's methods. In figd@where a line of code represents a call
to one of these methods the number is shown in red afterwards.

Figure 20 summarises the architecture of the controkdr®seAnt i body method,
which implements Farmer’'s equation by interfacing with ttee chAnti gens,

i di otypi cEffects, set Concentration andset ActivationLevel methods
of theAnt i body class.

The Ant i body objects were created with initial concentrations of 1,000 and were
then declared as an array of antibodies. After RhBot object was created and
connection was made, the paratope and idiotope arrays for each antibody (see tables
16 and 17) were read in from files. The read-think-act loop of the controller checked
every second for goal accomplishment, and if this was achieved stopped the program.
Each second the distance travelled was computed and the sensor data was obtained
and processed by calling thet Sensor Dat a method. The average and minimum of

the sensor readings and the position oftii@mum reading were stored for later use

with the reinforcement learning methods. Tdet Ant i gens method was called to
determine the set of presenting antigens and the dominant antigen and then the
winning antibody was selected using tiwoseAnt i body method, see figure 20.

Selection of the winning antibody was eitlzeone or two stage process and involved

selection of a “round one” winner based on strength of match. Fifty percent of the
time there was also a “round two” winner based on concentration levels and idiotypic

56

interactions between the “round one” winner and other antibodies with positive
strength of match values. An appropriate action was thus carried out each second,
governed by the chosen antibody. Half a second later the distance travelled was
recalculated and the sensor data was re-processed so that the winning antibody could
be scored by comparison with the saved environmental data and paratope arrays could
be adjusted according to performance. The concentration levels were then re-squashed
(initial squashing occurred in thehooseAnt i body method) since they might have

been altered as a result of any penalty awards. The updated paratope mappings were
output to a file every 5 seconds.

No | Method Description

1 get Anti gens Uses sensory data to detect which antigens are present and
writes the results to a binary integer array. Determineg the
dominant antigen and stores its ID number. The dominant
antigen is determined using the priority ranking illustrated

in table 19. Uses the rear sonar to determine the presence
of the “blocked behind” antigen.

2 get Max Loops through the antibodies to find the one with the
highest strength (round one) or activation (round two).
3 chooseAnt i body Implements Farmer’s equation. Loops through the

antibody array, matching the paratopes to the presenting
antigens. Callget Max to determine the antibody with the
highest strength.
Loops through the antibody array, considering idiotypi¢
effects once the antibody with the highest strength has
been determined. Sets the concentrations by calling the
set Concent r ati on method of thént i body class.

Squashes the concentrations. CgéisMax to determine
the antibody with the highest activation. See figure 20 for
pseudocode.

4 processSensor Dat a Calls theget Sensor | nf o orget Laser Arr ay method
of theRobot class, using the appropriate parameters for
sonar, single laser or averaged laser readings.

5 |getD stance Calculates distance travelled by calling tfe¢ Coor ds
method of thdRobot class and using Pythagoras’
theorem.

6 getlnitial Mat ches Reads in an initial paratope triza and an idiotope matrix
from a file at the start of the program.

7 updat eMat ches Writes the updated paratope matrix (after reinforcement
learning) to an output file.

8 get Randomvat ches Generates a random initial paratope matrix and reads jn an
idiotope matrix.

9 squashConc Keeps the total antibody concentration at a constant value.

10 | rewar dAnt i body

Reinforcement learning methods - see table 20 for a full

11 | rewar dGoal Known

description.

12 | rewar dM nChange

Table 21 —Main controller methods and their functions

57

6.2.5. Changestothe Robot class

Rear sonar processing was introduced to test for the presence of the “blocked behind”
antigen. The publiget Sensor | nf o method of theRobot class was given a new
boolean parameterear to indicate whether the back sonar should be included in the
data array. Thget Anti gens method of the main program callgdt Sensor | nfo

with rear set to true to test whether the minimum sonar value was coming from
behind.

create antibodies and set initial concentrations to 1000;
declare array of the antibodies;
MAI N METHOD:
create robot;
connect to robot;
read-in initial paratope and idiotope matches for anti bodi es; (6 or 8)
DO f orever
{
I F one second has passed
{
I F goal reached stop;
wor k out distance travelled this second; (5)
set co-ordinates for next cycle;
process sensor data; (4)
store average, mninmum position and readi ng for sensors;
detect antigens present and dom nant antigen; @)
choose wi nning antibody using Farner’s equati on; 3
execute appropriate action for w nning anti body;
I F hal f second has passed AND one second has al ready passed
{
wor k out distance travelled since it was |ast cal cul ated; (5)
process sensor dat a; (4)
reward or penalise w nning antibody using reinforcenent
| ear ni ng; (10, 11 or 12)
}
squash anti body concentrati ons; 9
IF five seconds have passed
{
wite updated paratope matrix to a file; @)
}
}

Figure 19 — Pseudocode for the maini mrunoi d control program

58

In addition a new methoslt eer Robot was added to thBobot class to control the
speed and angles for antibodies 0-5 and 8-11 in table 16, for exata@eRobot
(0.03, 20) for “Slow left 20”. This method also prevented the robot from
exceeding the maximum allowed speed of 0.1%ms

N. B. Antibody 6 used thgoNewGoal method of theRobot class and antibody 7
used theexpl or e method. The amended versions of these methods (i.e. with goal
rediscovery) were used withhmunoi d in all cases, see section 5.1.

6.3. Experimental proceduresand resultsfor the smulator

Experimental procedures were carried outlescribed in section 4.3.2 and parameters
were set as in table 9. Response toades was governed by the immune network
with steering angle dependent on the antibody selected, thus there were only three
different obstacle avoidance strategies foritheunoi d experiments, (laser, sonar

and averaged laser).

Comparison of tables 13a and 22a shows that there was no significant difference
between overall task time fgoal seek and fori munoi d when the simulator was
used, (both were approximately 20 secontis)addition, there were no significant
differences between the three obstacle avoidance strategiesrioroi d.

Table 22b shows that the pass rateifonunoi d was identical tayoal seek, i.e.
100%. The similarity between results is not surprising since both codes interface with
the same version of thRobot class and the task was too short for differences
resulting from the accumulation of learning and memory to have any effect.

TIME TO PASS THROUGH GATE (SECONDS)

SCENARIO MEAN | STANDARD | STANDARD 95 %
DEVIATION | ERROR CONFIDENCE
INTERVAL

Sonar 19.90 4.26 0.78 21.42 | 18.38
Laser 21.30 6.51 1.19 23.63 | 18.97
Laser (averages) 21.20 5.23 0.95 23.07 | 19.33
SUMMARY

All experiments | 2080 | 545 | 057 | 2193 | 19.67

Table 22a — Summary of statistics for time to pass through the gate using the

simulator
NUMBER OF PASSES FOR EACH [x,y] POSITION
SCENARIO GRAND | GRAND PASS FAIL MEAN | STANDARD | STANDARD | 95 % CONFIDENCE
TOTAL TOTAL RATE RATE DEVIATION ERROR INTERVAL
PASSES FAILS
Sonar 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) 90 0 100% 0% 15.00 0.00 0.00 15.00 15.00
SUMMARY
All experiments [270 T 0] 100% | 0%] 1500] 000] 000 | 1500 | 15.00

Table 22b — Summary of statistics for number of successful passes through the gate for each start position
using the simulator

59

FOR each anti body, i set strength of antibody i to O;
] FOR each antigen, |
call matchAnti gens; {
} . IF{ antigen was present
increase strength of i by
affinity i,j;
}
}
sel ect antibody with highest strength as wi nner of round one
FOR each antibody, i FOR each antigen, |j
L . {
call idiotypicEffects; | F winner has affinity for j AND
} idiotope i,j = 1 AND strength of i
_* > 0
{
reduce strength of i
by K1 * winner affinity for j;
}
IF winner has idiotope i,j =1 AND
i has affinity for j AND strength
of i >0
{
i ncrease strength of i
by affinity i,j;
}
}
FOR each anti body, i
i ncrease concentration of i by 40
call setConcentration; times its strength mnus natural
} death rate;
—_—
squash concentrati ons;
FOR each anti body, i
cal | setActivationLevel: set activation of i to strength
} times concentration;
—

sel ect antibody with the hi ghest activation and execute its action;

Figure 20 — Pseudocode for thechooseAnt i body method of the main control
program. Calls to methodsin the Ant i body class are shown in bold and their methods
are also shown as pseudocode in boxes.

60

6.4. Experimental proceduresand resultsfor the physical robot

Experimental procedures were carried out as described in section 4.3.4, with
parameters set as in table 9. The obstacle avoidance parainetas, reduced to 0.4
metres for sonar, as in all of the physical robot experiments.

Table 23 shows that 63% of all unsuccessful runs were caused by an inability to re-
discover the goal for the third time. This figure is comparable with 58% for
goal seek. However, fori munoi d these failed trials all occurred when using the
sonar obstacle avoidance method. The paratope mapping in table 16 was developed
through simulation trials using the single laser method and so may not have been
suited for use with a real robot using sonar. In addition, the secondary cause of failure
for goal seek was going into obstacle avoidance mode on approach to the goal but
this did not occur with the mmunoi d program. Here, other causes of non-
performance were collision with one of the posts when exploring (25%) and when
travelling to the goal (13%), which all occurred during average-value laser obstacle
avoidance. Although the use of average values can be beneficial as it reduces the
impact of false readings [1], it alsecteases precision and means that robots can be
more susceptible to collision with obstacles. Again, this may have been prevalent in
thei mmunoi d code (and not thgoal seek code) because the paratope mapping was
developed for single laser readings.

CODE | FREQ | % FREQ

1 1 13%
2 2 25%
3 0 0%

4 5 63%

Table 23 — Frequency of
reasons for failure using the
real robot

TIME TO PASS THROUGH GATE (SECONDS)

SCENARIO MEAN | STANDARD [STANDARD 95 %
DEVIATION | ERROR CONFIDENCE
INTERVAL

Sonar 21.98 4.19 0.96 23.86 | 20.09
Laser 24.79 9.22 1.88 28.48 21.10
Laser (averages) 23.46 5.96 1.30 26.01 | 20.91
SUMMARY

All experiments | 2341 | 707 | 088] 25.14 | 21.68

Table 24a — Summary of statistics for time to pass through the gate using the
real robot

61

Table 24a shows that, as with the simulator, there was no significant difference
betweengoal seek andi nmunoi d in terms of task time, (both averaged around 23
seconds). This was as expected sing codes use the same methods oRtimt

class and both reduce the robot’s speed when goal re-discovery takes place. There
were no significant differences between tlaious obstacle avoidance strategies in
terms of task time.

Table 24b shows thatnmunoi d achieved an average of 13.33 passes per position,
which was not significantly different to the figure of 13.50 doml seek. Here the

single laser method proved significantly better than both sonar and the average laser
method, for the reasons specified above.

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]

SCENARIO GRAND | GRAND PASS FAIL MEAN | STANDARD| STANDARD | 95 % CONFIDENCE
TOTAL | TOTAL RATE RATE DEVIATION ERROR INTERVAL
PASSES | FAILS
Sonar 95 25 79% 21% 11.88 2.42 0.86 13.55 10.20
Laser 120 0 100% 0% 15.00 0.00 0.00 15.00 15.00
Laser (averages) 105 15 88% 13% 13.13 2.42 0.86 14.80 11.45
SUMMARY

All experiments [320 [40 | 8% | 11% | 1333 | 236 | 048 | 1428 | 12.39

Table 24b — Summary of statistics for number of successful passes through the gate for each start
position using the real robot

When i munoi d was run on the simulator a significantly higher pass rate was
achieved, (a maximum of 15.00 passes compared with 13.33 for the physical Pioneer).
These results are as expected and are consistengauttseek, which also showed

an average of 15.00 passes in the simutampared with 13.50 for the real robot.

The trials described in this section suggest that adaptive learning codes such as
i munoi d can solve short-term confined goal-seeking problems equally as well as
fixed codes likegoal seek, so long as initial behaviour arbitration mappings are
carefully selected. Although munoi d does not appear to have improved on
goal seek, further tests in sections 6.5 and 6.6 show that it out-performs goalseek for
the solution of problems involving navigation of tight gaps. It can hence be used to
solve the long-term goal-seeking problem described in section 1.1, whereas
goal seek is shown to be inadequate for this purpose.

6.5. Testing gap navigation

The ability to navigate through one of the small gaps at the side of the pen was tested
using the simulator only to prevent damage to the physical robot. The virtual robot
was placed in the top left-hand corner of the pen facing the side gap and was
prevented from turning away from it by placing a block at the side, see figure 21
below. Three trials were conducted for eadistacle avoidance strategy using the
goal seek code and 6 were carried out for each using thunoi d program, as this

had only 3 strategies. The maximum score possible was thus 18 for each code.

62

Tolerance parameters were set as in table 9, excem thas reduced to 0.4 metres
when using sonar as this haguloved most effective. Fornmunoi d the initial
paratope and idiotope mappings shown inlgs 16 and 17 were used. If the robot
became trapped and failed to free itself after 60 seconds the run was counted as a
failure. Table 25 summarises the results.

The i mmunoi d code provided a robust methodology for tight gap navigation,
succeeding in all of the trials. Gap navigation usually took between 10 and 20
seconds, with the robot adopting an oscillatory motion when passing through. Success
was attributed to the system’s ability to adapt. If the robot became wedged against the
side of the pen for example and the winning antibody’s action did not free it, the
effects of reinforcement learning and changes in immune system metadynamics meant
that another strategy was tried.

(5]

Figure 21 — Sarting position for gap navigation trials

No. of successful passesthrough gap Pass
Controller Sonar Singlelaser | Averagelaser rate
M ax Min M ax Min M ax Min
goal seek | 1 1 1 2 1 33%
i nmunoi d 6 6 6 100%

Table 25 — Results of gap navigation experiments

When usingyoal seek the robot became stuck against the sides of the pen in 67% of
all trials and was unable to free itself in the time allowed. The code called the
escapeTr aps method of theRobot class whenever the robot came too close to an
object. This caused it to reverse and eventually become stalled against the wall. On
stalling, escapeTr aps was also called, but further reversal was not possible. Since
the ability to steer around gaps is essential for solving the long-term goal-seeking
problem described in section 1dhal seek proved unsuitable for this purpose. It is
possible that amendments to #tecapeTr aps method, (such as the use of the rear
sonar to detect obstacles behind, orifagcmovement in random directions) could
make the code more robust for gap navaatilThe use of separate escape routines for
corner entrapment, collisions and stalling could also improve the controller. However,
with the adaptive learning code, these details are taken care of by the immune network
and the burden is lifted from the designer.

63

6.6. Longterm development of the behaviour mappings

The short-term goal-seeking problem does not provide a suitable testing bed for the
memory and adaptation properties of iharunoi d code. Furthermore, when all
affinities are pre-defined the system is not truly dynamic, [42] and can lead to
unnecessary bias in the robot’s performance. Although the hand-designed mapping
has demonstrated adequate navigation skills, it is limited by initial values of 0 and
other biases that may prevent particular antibodies from being selected. In order to
address these issues the program was set up to solve the long-term goal-seeking
problem in the simulator and the obstacle avoidance method was set to single laser as
this had proved most robust. Parameters were set as in table 9. The code was allowed
to run for 45 minutes, first irgy a paratope mapping with all elements set to 0.5 and
then with a random mapping. (Random values in the range 0.5 — 0.75 were used, to
help reduce any initial bias.) The behaviour of the robot, in terms of how quickly it
learned to avoid obstacles, discover the goal, travel to the goal and navigate through
the side gaps was observed and the final paratope mappings after 45 minutes of
reinforcement learning were examined. For comparison the hand-designed mapping
shown in table 16 was also allowed to develop for 45 minutes.

6.6.1. Development of the hand-designed mapping

The robot began with good obstacle avoidabehaviour using a strong turning action
and it was also able to discover and travel to the goal immediately. If it became
trapped near the sides of the posts it alale to free itself throughout the duration of

the experiment. Initially, the robot proved competent at travelling quickly through the
side gaps using an oscillatory motion, but after approximately 15 minutes there was a
noticeable improvement in efficiency. The speed with which the robot was able to
free itself after becoming trapped also increased throughout. The final paratope
mapping after the 45-minute trial is shown in table 26. The differences between the
developed mapping and the initial mapping are shown in table 27.

PARATOPE ANIIENS
0 1 2 3 4 5 6 7 8
g q . Object Object |Average >| Average Goal Goal Robot Blocked
e Object left centre right t <t known Junknown | stalled behind
0 |Reverse 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1 |Slow right 20 1.00 0.48 0.00 0.00 0.42 0.00 0.00 0.21 0.35
2 |Slow left 20 0.00 0.48 0.96 0.12 0.23 0.00 0.00 0.40 0.46
3 |Fwd centre 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.00
4 |Fwd left 20 0.00 0.47 0.80 0.20 0.00 0.00 0.00 0.00 0.25
5 |Fwd right 20 0.92 0.51 0.00 0.12 0.00 0.00 0.00 0.00 0.25
6]|Go to goal 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
7 |Discover goal 0.73 0.00 0.96 0.60 0.00 0.00 1.00 0.07 0.39
8 |Slow right 50 0.96 0.56 0.00 0.00 1.00 0.00 0.00 0.17 0.33
9 |Slow left 50 0.00 0.53 0.88 0.20 0.40 0.00 0.00 0.34 0.45
10 |Fwd left 40 0.00 0.35 0.55 1.00 0.00 0.00 0.00 0.00 0.25
11 |Fwd right 40 0.92 0.51 0.00 0.08 0.00 0.00 0.00 0.00 0.25

Table 26 — Final paratope mapping after 45 minutes for the hand-designed matrix

The largest changes were increases of 0.73 and 0.96 for the “discover goal” antibody
used with the “object left” and “object right” antigen respectively. These changes

provide a good example of the importance of using adaptive strategies. The mappings
were initially coded as 0, which was an obvious oversight on the part of the designer
since discovering the goal can involve turning in random directions and steering

towards the maximum reading, both of which are also good strategies for avoiding

obstacles.

CHANGES Antigens
0 1 2) 4 5 6 7 8
. . . Object Object |[Average >| Average Goal Goal Robot Blocked
e D centre right t <t known |unknown| stalled behind
0 |Reverse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 |Slow right 20 0.00 -0.52 0.00 =0:25 -0.08 0.00 0.00 -0.29 -0.15
2 |Slow left 20 0.00 -0.52 -0.04 -0.13 -0.27 0.00 0.00 -0.10 -0.04
3 |Fwd centre 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 0.25
4 |Fwd left 20 0.00 -0.28 0.05 -0.30 0.00 0.00 0.00 0.00 0.00
5 |Fwd right 20 0.17 -0.24 0.00 -0.38 0.00 0.00 0.00 0.00 0.00
6 |Go to goal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 |Discover goal 0.73 0.00 0.96 0.10 0.00 0.00 0.00 0.07 0.39
8 |Slow right 50 -0.04 -0.44 0.00 -0.50 0.50 0.00 0.00 -0.33 -0.17
9 |Slow left 50 0.00 -0.47 -0.12 -0.30 -0.10 0.00 0.00 -0.16 -0.05
10 |Fwd left 40 0.00 -0.40 -0.20 0.25 0.00 0.00 0.00 0.00 0.00
11 |Fwd right 40 0.17 -0.24 0.00 -0.67 0.00 0.00 0.00 0.00 0.00

Table 27 — Changes to the paratope mapping after 45 minutes for the hand-designed matrix

6.6.2. Development of the equal mapping

The robot initially became trapped facing the lower right hand side of the pen. After
15 seconds it developed the ability to reverse to escape but this was followed
immediately by moving forwards causing another collision. However, after almost 3
minutes the robot had learned how to turn after reversing and was able to escape
completely. After approximately 5 minutes adequate gap navigation, obstacle
avoidance and goal seeking and discovery behaviours were also acquired. The robot
proved that it was able to free itself from traps fairly easily and the oscillatory
behaviour that it adopted when passing tlaps was both effective and efficient.
After 15 minutes the obstacle avoidancédaour had improved considerably, with
generally fewer collisions. After 25 minutes a steady behaviour was reached and the
robot showed that it was able to pass through the left-hand side gap in less than 2
seconds, using a much smoother motion. The final mapping is shown in table 28.

PARATOPE ANUGENS
0 1 2) 4 5 6 7 8
. . . Object Object |Average >| Average Goal Goal Robot | Blocked
e S centre right t <t known |unknown | stalled behind
0 |Reverse 0.50 1.00 0.50 0.00 0.50 0.50 0.50 1.00 0.50
1 [Slow right 20 0.50 0.34 0.46 0.72 0.48 0.30 0.50 0.50 0.50
2 |Slow left 20 0.50 0.46 0.50 0.63 0.41 0.50 0.50 0.50 0.50
3 |Fwd centre 0.38 0.38 0.42 0.00 0.36 0.30 0.50 0.50 1.00
4 |Fwd left 20 0.50 0.38 0.50 0.64 0.48 0.50 0.50 0.50 0.50
5 |Fwd right 20 0.50 0.38 0.42 0.72 0.50 0.30 0.50 0.48 0.50
6 |Go to goal 0.58 0.30 0.27 0.91 0.50 1.00 0.50 0.44 0.50
7 _|Discover goal 0.38 0.00 0.14 0.89 0.02 0.30 1.00 0.03 1.00
8 |Slow right 50 1.00 0.50 0.50 0.00 0.40 0.30 0.50 0.49 0.50
9 |Slow left 50 0.50 0.50 1.00 0.03 0.97 0.50 0.50 0.48 0.50
10 [Fwd left 40 0.50 0.34 0.42 0.76 0.50 0.50 0.50 0.48 0.50
11 [Fwd right 40 0.50 0.42 0.46 0.63 0.50 0.50 0.50 0.49 0.50

Table 28 — Final paratope mapping after 45 minutes for the equal matrix

65

The above table shows strong links between:

* Reversing when stalled or when an object is at the centre

e Turning 50° right slowly when an object is to the left

e Turning 50° left slowly when an obstacle is to the right

» Travelling forward or looking for the goal when blocked behind
» Discovering the goal when it is unknown

« Travelling to the goal when it is known

« Not reversing when average sensor readings are high

These behaviours are intuitive but it is interesting to note that some counter-intuitive
behaviours, such as turning right when an object is to the right, do not have scores of
zero. This is because it is the relative weightings of the degrees of match that
contribute to antibody selection. Once an antibody’s affinity for a particular antigen
falls below a threshold, it is unlikely to get selected as the response to that antigen,
(unless concentrations of the others become low). Since it is not selected, negative
scoring ceases and the match value never reaches zero.

6.6.3. Development of the random mapping

The robot discovered the goal and travelled to it in a matter of seconds, but
immediately collided with the top wall of the pen. It remained trapped there for
approximately 2 minutes, but eventually reversed and turned to free itself. Despite
this, it did not develop a reliable obstacle avoidance technique for quite some time and
became trapped again, spending almost 7 minutes trying to free itself. However, after
25 minutes obstacle avoidance techniques began to emerge and the robot was able to
navigate up though the left-hand gap using a very gentle oscillatory motion, freeing
itself from entrapments much more easily. After approximately 40 minutes the left
hand gap was cleared in a matter of secarsitsy a much smoother motion. Excellent
obstacle avoidance techniques were alsoldped before the end of the experiment.
The final mapping after 45 minutes is shown in table 29 below.

Although the acquisition of obstacle avoidance behaviour took longer for the random
mapping than the equal mapping, experiments with other random mappings showed
that these techniques were learned much more quickly. There may have been some
bias in the initial random mapping that made this behaviour difficult to learn.

Table 29 shows that the robot developed the same essential manoeuvres that were
acquired when the equal mapping was used, although it did not have such a heavy
dependence on reversing when an object was at the centre. It also showed a preference
for looking for the goal when blocked behind rather than travelling forward to the
centre. Interestingly both robots showed a high affinity for turning slowly left when
cornered but a much lower affinity for turning right. This may have been because a
slight right spin was coded into reversing.

66

PARATOPE ANTIENS
0 1 2 3 4 5 6 7 8
g q . Object Object |Average >| Average Goal Goal Robot Blocked
e Sl centre right t <t known Junknown| stalled behind
0 |Reverse 0.54 0.60 0.58 0.00 0.54 0.44 0.52 1.00 0.72
1 |Slow right 20 0.57 0.50 0.53 0.70 0.69 0.54 0.54 0.55 0.53
2 |Slow left 20 0.65 0.58 0.69 0.08 0.92 0.55 0.58 0.50 0.58
3 |Fwd centre 0.55 0.47 0.51 0.89 0.62 0.53 0.41 0.55 0.59
4 |Fwd left 20 0.51 0.47 0.56 1.00 0.54 0.54 0.53 0.58 0.76
5 |Fwd right 20 0.51 0.38 0.56 1.00 0.62 0.54 0.51 0.56 0.59
6 |Go to goal 0.53 0.26 0.55 1.00 0.64 1.00 0.54 0.51 0.51
7 |Discover goal 0.78 0.00 0.72 0.68 0.32 0.23 1.00 0.07 1.00
8 |Slow right 50 1.00 0.63 0.56 0.00 0.37 0.52 0.61 0.47 0.74
9 |Slow left 50 0.59 0.56 1.00 0.00 1.00 0.56 0.50 0.46 0.70
10 |Fwd left 40 0.65 0.42 0.53 1.00 0.50 0.51 0.58 0.58 0.50
11 |Fwd right 40 0.96 0.49 0.56 0.04 0.57 0.48 0.65 0.52 0.54

Table 29 — Final paratope mapping after 45 minutes for the random matrix

6.6.4. Discussion of reinforcement learning

The use of reinforcement learning coupled with an idiotypic immune network for
behaviour arbitration allowed the virtual robot to develop and successfully utilise all
the essential goal-discovery and navigation techniques necessary to solve the long-
term problem. However, when random mappings introduced counter-intuitive
behaviours, these skills took longer to acquiarthermore, as actions were scored on

an individual basis, the development of techniques that work well together such as
reversing then turning to avoid being cornered took longer to emerge, happening more
by chance than by any design.

When undertaking reinforcement learning, the performance of a robot can be difficult
to measure externally, [33]. Part of the problem is that the assignment of rewards is
localised. A maintenance behaviour such as obstacle avoidance may receive a reward,
but this might not contribute to the overall goal, i.e. to the achievement behaviour. For
example reversing when an obstacle is directly in front deserves merit in a local sense
but it would be better to go forward around the obstacle to avoid getting caught up in
continuous forward-reverse loops, which would not serve to accomplish to the overall
goal. A method of scoring based on combinations of actions and contribution to the
task’s overall aim would therefore provide a much better framework for reinforcement
learning, see section 6.9.

6.7. Theuseof genetic algorithmsto evolve paratope mappings

Genetic algorithms can be engineered to score behaviour in a global sense, i.e. to
assess the robot’s performance in termgsfiltimate goal. Here 3 initially random
paratope mappings were developed through reinforcement learning for 30 minutes.
An attempt was then made to evolve the developed mappings using a genetic
algorithm to obtain generations of robots tbatld discover and travel to the goal
progressively more times in a set period.

For each developed mapping themunoi d code was run on the simulator with
single laser as the obstacle avoidance tool (as this had proved most robust) and

67

parameters set as in table 9. The number of times the goal was reached during 20
minutes run time was used as a fitness function to determine the probability of passing
on paratope arrays to the next generation. After the fitness was obtained for each
parent mapping the genetic algorithm listed in Appendix F was used to generate 3
child mappings. In all cases the child mappings and the fittest parent from the
previous generation formed the next generation. There was a 3% probability of an
array having a mutated element.

6.7.1. Genetic algorithm results

As a fitness score of 24 was obtained from the fourth generation and an upper bound
of 30 was estimated, only 4 generations wesed. (There were also time constraints
since fitness testing was conducted in real time and took 20 minutes for each member
of the population.) Table 30 below summarises the results for the 4 generations and
shows the potential of genetic algorithmstmlve populations of robots successively
more suited to solving the long-term goal-seeking task. The paratope mapping for the
fittest member of the fourth generation is illustrated in table 31.

Generation Average Highest
fithess fithess

1 15 18

2 16 21

3 19 21

4 20 24

Table 30 — Emergence of greater fitness through generations

PARATOPE ANtGENS
0 1 2 3 4 5 6 7 8
f f . Object Object |Average >| Average Goal Goal Robot Blocked
e Object left centre right t <t known |unknown| stalled behind
0 |Reverse 0.63 1.00 0.50 0.00 1.00 0.55 0.69 1.00 0.64
1 |Slow right 20 0.65 0.49 0.67 0.80 0.91 0.67 0.69 0.65 0.74
2 |Slow left 20 0.63 0.64 0.96 0.04 0.70 0.58 0.60 0.63 0.65
3 |Fwd centre 0.64 0.48 0.60 0.73 0.75 0.59 0.64 0.53 0.20
4 |Fwd left 20 0.69 0.57 0.50 0.76 0.64 0.69 0.51 0.51 0.65
5 |Fwd right 20 0.61 0.30 0.62 0.20 0.67 0.10 0.62 0.63 0.50
6 |Go to goal 0.90 0.50 0.57 0.79 0.65 1.00 0.59 0.58 0.71
7 |Discover goal 0.50 0.00 0.39 0.08 0.17 0.53 1.00 0.34 0.94
8 |Slow right 50 1.00 0.70 0.65 0.00 0.54 0.61 0.71 0.62 0.70
9 |Slow left 50 0.68 0.50 1.00 0.00 0.53 0.68 0.63 0.66 0.57
10 |Fwd left 40 0.65 0.42 0.53 0.20 0.50 0.51 0.58 0.58 0.50
11 |Fwd right 40 0.50 0.54 0.55 0.00 0.63 0.64 0.55 0.58 1.00

Table 31 — The paratope mapping for the fittest member of the fourth generation

In theory, a high number of goal passethm long-term problem should also mean an
ability to solve the short-term problem more quickly and with a higher success rate,
since it implies good navigation skills all round. To test whether the fittest member of
the population could improve upon the results obtained whennoi d was run on

68

the physical robot, the experiment was repeated using the mapping shown in table 31.
All other experimental procedures weheld constant. Tables 32, 33a and 33b
summarise the results obtained.

Table 32 shows that the most frequeratuse of failure was adopting obstacle
avoidance behaviour on approach to the goal. This occurred mostly with sonar, but
also once with single laser. Table 33b shows that sonar and average laser obstacle
avoidance strategies both demonstrated a [7&86 rate compared with 92% for single
laser, although the differences in number of passes for each position were not
significant. As the fittest fourth generation mapping was evolved using the single laser
method, it is possible that optimisation was not achieved for the other strategies.
Tables 33a and 33b show that both task speed and pass rate were not significantly
different from trials using the hand-designed mapping. It is quite likely that the short-
term problem cannot be solved any more efficiently using physical robots and current
goal discovery techniques, or perhaps as mentioned above, a separate mapping needs
to be evolved for each obstacle avoidance strategy.

CODE | FREQ |% FREQ

1 3 21%
2 0 0%

3 6 43%
4 5 36%

Table 32 — Frequency of reasons for failure
using the fourth generation mapping

TIME TO PASS THROUGH GATE (SECONDS)

SCENARIO MEAN | STANDARD |STANDARD| 95 %
DEVIATION | ERROR CONFIDENCE
INTERVAL

Sonar 23.13 6.64 1.56 26.19 | 20.06
Laser 21.44 4.17 0.89 23.18 | 19.69
Laser (averages) 21.50 4.30 1.01 23.48 | 19.52
SUMMARY

All experiments | 2202 | 513 | 067 [2334]| 20.70

Table 33a — Summary of statistics for time to pass through the gate using the
fourth generation mapping

NUMBER OF PASSES FOR EACH [x,y] POSITION
[MAXIMUM WAS 3, THIS IS SCALED TO 15 HERE]
SCENARIO GRAND | GRAND | PASS | FAIL | MEAN |STANDARD| STANDARD | 95 % CONFIDENCE
TOTAL | TOTAL | RATE | RATE DEVIATION| ERROR INTERVAL
PASSES| FAILS
Sonar 90 30 75% 25% 11.25 215 1.47 14.12 8.38
Laser 110 10 92% 8% 13.75 217 0.77 1525 | 12.25
Laser (averages) 2 30 75% 25% 11.25 3.31 117 13.54 8.96
SUMMARY
[All experiments [200 | 70 [81%]| 19% [12.08 | 351 | 072 | 1349 | 10.68

Table 33b — Summary of statistics for number of successful passes through the gate for each start position
using the fourth generation mapping

69

6.8. Resultssummary

When solving the short-term problem, both the fixed behaviour codetenddaptive

code demonstrated a heavy dependence ooebbiree parameters such as tolerance

for obstacle distance. (This consistently needed to be set to a lower value when using
sonar obstacle avoidance with the real robot due to the tendency of sonar to read
distances as smaller.) For both real and simulated trials significant improvements in
pass rate were achieved when turn angles were repeatedly re-calculated, although
speed of task completion did not increase.

There were no significant differences, either between the two codes or between real
and simulated trials for task time, except that wheal seek was used the real robot

was slightly slower than the virtual robot. This may have been due to differences
between the time it takes to stop and re-start in the two domains, although the trait
was not observed for themmunoi d code. Further trials should confirm whether this
phenomenon is real.

The success rate was consistently better when using the simulator; in fact a pass rate
of 100% was achieved in this domain. Igorl seek the under performance of the

real robot was attributed to the sonar obstacle avoidance method. This had a much
higher propensity for going into obstacle avoidance mode on approach to the goals,
despite lowering the tolerance parameter. When usingnoi d the chief causes of
failure were an inability to rediscover the goal when using the sonar method and
heightened susceptibility to post collision when average laser readings were used.
These weaknesses may have been caused by a failure to optimise the paratope
mappings for physical robots using these strategies. Although the reasons for failure
were not the same there were no significant differences between the two codes in
terms of success rates.

The obstacle avoidance strategy of turning to the maximum reading proved
inadequate when using sonar on a real robot, due to the high number of false readings.
In the simulator no significant differences were found apart from a slightly faster
average task speed when turning toward the maximum reading to avoid obstacles.
There were no speed differences between the obstacle avoidance methods when using
real robots, but sonar demonstragedignificantly lower pass rate usiggal seek,

and both sonar and average laser umpggformed in this respect usimgmunoi d.
Although both codes solved the short-term problem equally well, the immune code
proved superior to the fixed code for the task of navigation through small gaps and
was hence used to solve the long-term problem.

When the long-term problem was tackled using itheunoi d code and initially
random network mappings, results proved that a virtual Pioneer could acquire the
necessary navigation skills autonomouslyrtik@ermore, generations of virtual robots
progressively more suited to the task were produced when network mappings
developed through reinforcement learniwgre evolved using genetic algorithms.
However, a sensor-behaviour mapping deemed highly fit for the long-term problem
did not solve the real world short-term task more efficiently or effectively than a
hand-designed matrix. It could be that the short-term problem has already reached its
limit in terms of speed and success ratmgiseal world robots and this particular

70

methodology. A more robust strategy for goal discovery might lead to improved
performance in this domain, (see section 6.9).

6.9. Futureresearch

To improve learning speed in the immune code, sequences of actions could be
assessed rather than isolated behaviours. (Michaud and M§8} used this
approach by storing action patterns irtree structure and scoring them on past
history.) This strategy should eliminate the problem of awarding positive scores to
actions that are only useful in local serReinforcement learning could also provide

a method for establishing non-engineered idiotope mappings. If degree of match
scores become negative they are automatically set back to 0, but this information
could be used to establish disallowed mappings and thus drive the idiotypic effects.

In addition, a more robust methodology for goal discovery could be developed by
identifying the 4 maximum changes in laser reading and selecting the inner 2
positions. This should overcome the problem of blind spots, where the laser detects
the 2 sides of the post as the maximum change points and hence misses the goal.
Results for the physical robot, where such blind spots were identified as a chief cause
for failure, should thus improve. This vkocould be underpinned by an attempt to
introduce greater autonomy by allowing the robot to discover the width of the gate
that it needs to pass through. This could be achieved by storing laser sensor data and
evaluating the patterns of maximum changes that occur most frequently when
exploring. The width of the goal could then be varied to test the adaptability of the
code. In particular, a smaller gate couldused to provide a more difficult problem.

The work using genetic algorithms to evolve efficient network mappings could also
be greatly expanded. Experiments usinggcmlarger populations could be undertaken
and crossover using columns of netwarlappings rather than rows could be
investigated. Indeed a number of trials using different crossover methods could be
conducted to establish the most effective technique. Following Ambets#ha[47]

the use of a fitness function that considers the cost of reaching the target (for example
by counting the number of collisions) as wal a measure of success could also be
employed.

The problem itself could be extented by introducing wooden blocks and requiring that
the robot move them from one side of the gate to the other, using its grippers. In
addition, tests could be conducted to see how well the codes described perform in
other, perhaps less confined worlds with moving obstacles.

Finally, some work could be done to introduce new antibodies into the repertoire
rather than using a fixed set. This could be accomplished by introducing new
combinations of steering angle and speed to replace those antibodies that have been
deemed ineffective or by varying certain tolerance parameters as a means of
optimising these values. Adaptive parametgtimisation should make the code more
extensible to previously unexplored and more dynamically changing worlds.

71

Conclusion

An idiotypic immune network has been used as model for designing a behaviour
based robot control program, with semaotion mappings driven by reinforcement
learning. The resulting code has successfully solved both a short-term and long-term
goal-seeking problem and results have demonstrated that it provides decentralised
control, mediating behaviour selection in a way that is adaptable to environmental
change. In particular, the contoller has shatgelf to be highly robust for guiding
virtual robots through tight gaps, whereas a fixed behaviour based approach proved
inadequate for these purposes and hence unsuitable for solving the long-term goal-
seeking problem. Furthermore, when the long-term problem was tackled with initially
random sensor-action mappings, immune system metadynamics and reinforcement
learning allowed virtual robots to acquire all necessary task skills autonomously.

The idiotypic approach has not previously been applied to constrained robotics tasks
such as the ones described here. This research has thus shown that the chosen control
architecture provides a suitable methodology for the autonomous solution of highly
confined goal-seeking problems. It has also highlighted some of the factors involved

in achieving a high success rate both in the simulator and in the physical world,
suggesting useful tolerangerameters and pinpoingnwhich obstacle avoidance
methods translate well between the two domains.

This study has also stressed the importance of incorporating re-assessment strategies
into code design when dealing with rotational motion and real robots. Such
adjustments have dramatically increased physical robot performance although success
rates are still inferior to simulations. Paftthe under performance can be attributed

to noise, uncertainty and stricter experimental logistics, but it is likely that a more
robust strategy for goal discovery, (as suggested in section 6.9) would improve
performance in the physical domain even further.

72

References

[1]
2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Hailu, G., (2000)Towardsreal learning robots, Peter Lang, Frankfurt am Main

Tani, J., Fukumura, N., (1997) “Self-organising internal representation in
learning navigation: A physical experiment by the mobile robot YAMABICO”,
Neural Networks, Vol. 10, No. 1, pp: 153-157

Luh, G. C., Liu, W. W., (2004) “Ractive immune network based mobile robot
navigation”,Lecture Notes Computer Science, 3239, pp: 119-132

Krautmacher, M., Dilger, W., (2004) “AlS based robot navigation in a rescue
scenario” Lecture Notes Computer Science, 3239, pp: 106-118

Vargas, P. A., de Castro, L. N., Michelan, R., (2003) “An immune learning
classifier network for autonomous navigation’ecture Notes Computer
Science, 2787, pp: 69-80

Kondo, T., Ishiguro, A., Watanabe, Y., Shirai, Y., Uchikawa, Y., (1998)
“Evolutionary construction of an immune network-based behaviour arbitration
mechanism for autonomous mobile robotSlectrical Engineering in Japan,

Vol. 123, No. 3, pp: 865-973

Jerne, N. K., (1974) “Towards a network theory of the immune syst&sm’,
Immunol. (Inst Pasteur), 125 C, pp: 373-389

Takeuchi, T., Nagai, Y., (1988) “Fuzzy control of a mobile robot for obstacle
avoidance” Information Sciences, 45, pp: 231-248

Gerkey, B. P., Vaughan, R. T., Howard, A., (20P#yer C++ Client Library
Version 1.5 Reference Manual, available at: http://playerstage.sourceforge.net,
accessed May — July 2005

ActivMedia Robotics, LLC, (2004Pioneer 3™ Operations Manual, version 1

ActivMedia, Pioneer 3 General Purpose Robot, available at:
http://www/activrobots.com/ROBOTS/p2dx.html, accessed May — July 2005

Gerkey, B. P., Vaughan, R. T., Howard, A., (208&jge Version 1.3.3 User
Manual, available at: http://playerstage.sourceforge.net, accessed May — July
2005

Gerkey, B. P., Vaughan, R. T., Howard, A., (2004dyer Version 1.5 User
Manual, available at: http://playerstage.sourceforge.net, accessed May — July
2005

Howard, A., Koenig, N., (2004%azebo Version 0.4.0 User Manual, available
at: http://playerstage.sourceforge.net, accessed May — July 2005

73

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Vaughan, R. T., Gerkey, B. P., Howard, A., (2003) “On device abstractions for
portable, reusable robot code”, Rnoceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003), pp: 2121-2427,

Las Vegas, Nevada, October 2003

Vaughan, R. T., Gerkey, B. P., Howard, A., (2003) “The Player/Stage project:
Tools for multi-robot and distributed sensor systems”Piinceedings of the
International Conference Advanced Robotics (ICAR 2003), pp: 317-323,
Coimbra, Portugal, June 30 — July 3, 2003

Vaughan, R. T., Gerkey, B. P., Howard, A., Stoy K., Sukhatme, G. S., Matari
M. J., (2001) “Most valuable Player: A robot device server for distributed
control”, in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2001), pp: 1226-1231, Wailea, Hawaii,
29 October — 3 November, 2001

de Castro, L. N., Timmis, J., (200Artificial immune systems: A new
computational intelligence approach, Springer-Verlag, London

Gullapalli, V., (1995) *“Skillful control under uncertainty via direct
reinforcement learning’Robots and Autonomous Systems, 15, pp: 237-246

Brooks, R. A., (1991) “The rolef learning in autonomous robots”, in
Proceedings of the Fourth Annual Workshop on Computational Learning
Theory, (COLT '91), Santa Cruz, CA, Morgan Kaufman Publishers, pp: 5-10

Floreano, D., Urzelai, J., (2000) “Artificial evolution of robust adaptive
software: An application to autonomous robots”, Aroceedings of the 3
International Conference on Human and Computer, The University of Aizu
(Japan)

Lorigo, M., Brookes, R. A., Grimson, W. E. L., (1997) “Visually-guided
obstacle avoidance in unstructured environmentsPrateedings of IROS’ 97,
Grenoble, France, September 1997, pp: 373-379

Floreano, D., Mondada, F., (1996) “Evolution of homing navigation in a real
mobile robot”,IEEE Transactions on Systems, Man and Cybernetics — Part B
Cybernetics, 26 (3), pp: 396-407

ActivMedia Robotics, LLC, (2002) Laser range-finder installation and
operations manual, version 1.0

McFarland, J. D., (1992) “Autongmand self-sufficiency in robots’Al-Memo
92-03, Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium

Braitenberg, V., (1984Yehicles. Experiments in synthetic psychology, (4th ed.)
The MIT Press, Cambridge, Massachusetts

Reignier, P., (1994) “Fuzzy logic techniques for mobile robot obstacle
avoidance” Robotics and Autonomous Systems, 12, pp: 143-153

74

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Matarc, M. J., (1991) “Behavioural syrgy without explicit integration”,
S GART on Integrated Intelligent Systems, Special Issue, July 1991

Kaelbling, L. P., Littman, M. L., Moore, A. W., (1996) “Reinforcement
Learning: A Survey”Artificial Intelligence Research, 4, pp: 237 —285

Farmer, J. D., Packard, N. H., Perelson, A. S., (1986) “The immune system,
adaptation, and machine learninBhysica, 22D, pp: 187-204

Cayzer, S., AickelinJ., (2005) “A recommender system based on idiotypic
artificial immune networks”, Journal of Mathematical Modelling and
Algorithms, 4 (2), pp: 181-198

Holland, J. H., (1992)Adaptation in natural and artificial systems. an
introductory analysis with applications to biology, control and artificial
intelligence, The MIT Press, Ann Arbor, MI91

Michaud, F., Mataé, M. J., (1998) “Learning from history for behaviour-based
mobile robots in non-stationary conditiongiytonomous Robots, 5, pp: 335-
354

Goldberg, D., Mata¢i M. J., (2003) “Maximising reward in a non-stationary
mobile robot environment’Autonomous Agents and Multi-Agent Systems, 6,
pp: 287-316

Matari, M. J., (1997) “Reinforcement lgang in the multi-robot domain”,
Autonomous Robots, 4, pp: 73-83

Ram, A., Arkin, R., Boone, G., Pearce, M., (1994) “Using genetic algorithms to
learn reactive control parametdos autonomous robotic navigatiorAdaptive
Behaviour, 2 (3), pp: 277-304

Elfes, A., (1987) “Sonar-basegktal-world mapping and navigationTEEE
Journal of Robotics and Automation, RA-3 (3), pp: 249-265

Brooks, R A., (1986) “A robust layatecontrol system for a mobile robot”,
|EEE Journal of Robotics and Automation, RA-2 (1), pp: 14-23

Reignier, P., Hansen, V., Crowley, L., (1997) “Incremental supervised
learning for mobile robot reactive controRpbotics and Autonomous Systems,

19, pp: 247-257

Callan, R., (2003Artificial Intelligence, Palgrave MacMillan, Hampshire
Watanabe, Y., Ishiguro, A., Shirai, Y., Uchikawa, Y., (1998) “Emergent

construction of behaviour arbitration mechanism based on the immune system”,
Proc of ICEC 1998, pp: 481-486

75

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Suzuki, J., Yamamoto, Y., (2000) “Building an artificial immune network for
decentralised policy negotiation in a communication end system: Open
webserver/iNexus study”, iRroc. of the 4™ World Conference on Systemics,
Cybernetics and Informatics, (SCI 2000), Orlando, FL, USA, July 2000

Stadler, P. F., Schustd., Perelson, A. S., (1994) “Immune networks modelled
by replicator equationsd. Math. Biol., 33, pp: 111-137

Chowdhury D., (1999) “Immune networan example of complex adaptive
systems” Artificial Immune Systems & Their Applications, Dasgupta, D. (ed.),
Springer, pp: 89-104

Vargas, P., de Castro, L. N., Von Zuben F. J., (2003) “Mapping artificial
immune systems into learning classifier systerhgtture Notes in Artificial
Intelligence, 2661, pp: 163-186, (IWLCS 2002), Lanzi, Petal. (eds.)

Webb, A., Hart, E., Ross, P., Laws A., (2003) “Controlling a simulated
Khepera with an XCS classifier system with memoriécture Notes in
Computer Science, 2801, pp: 885-892, (ECAL 2003)

Ambastha, M., Busquets, D., L6pez de Mantras, R., Sierra, C., (2005)
“Evolving a multiagent system for landmark-based robot navigation”,
International Journal of Intelligent Systems, 20, pp: 523-539

Harvey, ., Di Paolo, E. A., Tuci, E., Wood, R., Quinn, M., (2005)
“Evolutionary robotics: A new scientific tool for studying cognitioAttificial
Life, Vol. 11, Issue 1-2, pp: 79-98

Brooks, R. A., (1991) “Nevapproaches to robotics&ience, 253, pp: 1227-
1232

Whitbrook, A. M., (2005) “An idiotypic immune network for mobile robot
control”, Interimreport for MSc dissertation, University of Nottingham, School
of Computer Science and Information Technology

Coutinho, A., (1989) “Beyond clonal selection and netwotkimunol. Rev.,
110, pp: 63-87

Chowdhury, D., Deshpande, V., Stauffer, D., (1994) “Modeling immune
network through cellular automata: a unified mechanism of immunolgical
memory”, International Journal of Modern Physics C, Vol. 5, No. 6, pp: 1049-
1072

Burnet, F. M., (1959)The clonal selection theory of acquired immunity,
Cambridge University Press

Michelan, R., Von Zuben, F. J., (2002) “Decentralised control system for
autonomous navigation based on an evolved artificial immune network”, in
Proceedings of the 2002 Congress on Evolutionary Computation, Vol. 2, pp:
1021-1026, (CEC2002), Honolulu, Hawaii, May 12-17 2002

76

[55]

[56]

[57]

[58]

[59]

[60]

Albus, J. S., (1991) “Outline for a theory of intelligenceEEE Trans. On
Systems, Man and Cybernetics, 21 (3), pp: 473-509

Stolzmann, W., Butz, M., (2000) “Latelearning and action-planning in robots
with anticipatory classifier systems”, in P. L. Lanzi, W. S., Wilson, S., (eds.)
Learning classifier systems: From foundations to application advances in
evolutionary computing, Springer-Velag, pp: 301-317

Carse, B., Pipe, A., (2002) “X-fcs: A fuzzy classifier system using accuracy-
based fitness-first resultsTechnical Report UWELCSG02-002, University of
the West of England, Bristol

Yamauchi, B., Beer, R., (1994) “Seaqutial behaviour and learning in evolved
dynamic neural networksAdaptive Behaviour, Vol. 2, pp: 219-246

Yamauchi, B., Beer, R., (1994) “Integrating reactive, sequential and learning
behaviour using dynamical neural networks”, in Cliff, &.al. (eds.)From
Animals to Animats 3. Proceedings of the Third International Conference on

the Smulation of Adaptive Behaviour, (SAB 94), Brighton, England, MIT
Press, July 1994

Pereira, P., Forni, L., Larsson, E, Cooper, M. D., Heusser, C., Coutinho, A.,

(1986) “Autonomous activation of T anB cells in antigen-free mice”,
European Journal of Immunology, 16, pp: 685-688

77

Appendices

Appendix A — Idiotypic immune networ k code —immunoid.cc

i mmunoi d. cc

By A M Witbrook 11th August 2005

EE Y

*

*
* To navigate a Pioneer 3 robot through a gate of known width, avoiding
* obstacles. The location of the gate nust be di scovered. Behaviour is
* matched to environnmental situations through the use of an artificial

* imune system

*

o o e e e
*

* Copyright (C) 2005 A. M Whitbrook

*

* This programis free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation; either version 2

*

of the License, or (at your option) any |ater version.

* This programis distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU General Public License for nore details.

*

* Emai l amvo4m@s. not t . ac. uk

*

K o il
*/

/| #defi ne AVERAGE_LASER_METHOD

#define SI NGLE_LASER METHOD

#define LONG_TERM

!/ #define SHORT_TERM

#i ncl ude <stdio. h>

#include <stdlib.h>

#include <playerclient. h> Il C++ player client library

#include <string>

#i ncl ude <iostreanr

#incl ude <mat h. h> Il For trig functions

#i ncl ude "Robot. cpp" !/ Robot class for use with this program
#incl ude "Wr| dReader. h" I/l To read start position directly fromWrld file for sinulations
#incl ude "Antibody. h" I/ Antibody class for use with this program
#incl ude <cstdlib> /1 For random nunber generation

#incl ude <fstreanp

usi ng namespace std;

doubl e startConc = 1000; /1 Starting concentration

const int NUVANTI GENS = 9; /1 Nunber of antigens in the system
const int NUMANTI BODI ES = 12; /1 Nunber of antibodies in the system
doubl e di st Travell ed; /1 Distance travelled each cycle

doubl e avTol = 0.65; /1 Threshold for average distance of obstacles

doubl e standStill Approx = 0.1; /1 Limt of distance fromobstacle when robot unable to nove
double x, vy, z; /1 Start co-ordinates
bool obsTool = true; /1 Obstacl e avoi dance tool
/1 False => sonars : True => |asers
int antigenArray[NUMANTI GENS] ; /1l Array representing those antigens detected
int antigenScorer; /1 Priority antigen for reward / penalty scoring

doubl e naxStren; /1 Maxi num ant i body strength

doubl e maxActiv; /1 Maxi num anti body activation

int wi nFirstRound; /1 Wnner of first round

int winAntibodyNum /1 1D of w nning antibody

doubl e anti bodyActi vati ons[NUVANTI BCDI ES]; // Array of antibody activations

doubl e anti bodySt rengt hs[NUMANTI BODI ES] ; /1 Array of antibody strengths

voi d get Anti gens(Sonar Proxy *sonar, Robot *thisRobot, int |oopVal); /] Detects all antigens

doubl e get Max(doubl e val ue_array[NUVANTI BODI ES]) ;
voi d chooseAnti body();

voi d processSensor Dat a(Robot *t hi sRobot,
doubl e get Di stance(Robot *thi sRobot);

/'l Finds strongest antibody
/] Selects an antibody

doubl e data_Laser[361]); // Processes sensor data
/1 Cal cul ates distance travelled

Sonar Proxy *sonar,

voi d rewar dGoal Known(int antNun; /1 Reinforcement |earning nethods

voi d rewar dAnti body(doubl e val ue, double tol);

voi d rewar dM nChange(int pos, int ol dPos, double value, double ol dval);

voi d getlInitial Matches(string paraFileNane, string idioFileNane); /1 Read initial matches fromfile

voi d updat eMat ches(); /1 Wite updated matches to a file

voi d get Randomivat ches(string idioFil eNane); Il Get a set of initial random natches
voi d squashConc(); /'l Squash antibody concentrations

78

/* Create antibodies */

Anti body Reverse(startConc);
Anti body sl owRi ght 20(st art Conc);
Anti body sl owLeft20(startConc);
Anti body fwdCentre(startConc);
Anti body fwdLeft20(startConc);
Anti body fwdRi ght20(startConc);
Anti body goToGoal (start Conc);
Ant i body di scover Goal (startConc);
Anti body sl owRi ght 50(start Conc);
Anti body sl owLeft50(startConc);
Anti body fwdLeft40(startConc);
Anti body fwdRi ght40(startConc);

/* Put created antibodies into an array for |ooping */

Ant i body robot Anti bodi es[NUMANTI BODI ES] = {Reverse, slowRi ght20, slowl,eft20, fwdCentre, fwdLeft20, fwdRi ght20,
goToGoal , discoverGoal, slowRight50, slowLeft50, fwdLeft40, fwdR ght40};

int main(int argc, char **argv)

doubl e naxSaf eSpeed = 0. 17;
doubl e m nDi st Tol = 0.50;
doubl e scan_dat a[361] ;
int count = 1;

doubl e tol Dec = 0. 45;
doubl e gate_size = 1.32;
doubl e gap_tol = 0.4;
double diff_tol = 0.7;
double mn_val = 0.8;
doubl e checkDi st = 0;
bool turnOnMotors = true;
doubl e ol dAver age;

int ol dM nNum

doubl e ol dM n;

int countGoal = 0;

/1 Maxi mum speed al | oned

/1 Threshol d distance for obstacle avoi dance node

/Il Array for passing |aser data

/1l Used for read-think-act |oop

/1 Distance tol erance reduction when passing through gate

Il Size of gate robot nust pass through

I/ Tolerance for accuracy of |aser gate size estimation

/1 Tolerance for difference between the two highest |aser reading changes
/1 M nimum val ue of highest difference for goal recognition

/1l To check if robot has noved in the half second since action was taken

/1 Saved average sensor reading before action
/1 Saved mini num sensor position before action
!/ Saved m ni rum sensor reading before action
/1 How many tines the goal was discovered - for |ong term behaviour studies

I/ Start positions arbitrarily set to 0

/* Create an instance of a Robot called taylor */

Robot taylor(x, y, z, false, 0, 0, maxSafeSpeed, m nDistTol);
tayl or. connect (argc, argv); /1 Connect to specified host or port

Playerdient rb(host, port); /1l Create instance of Playerdient
PositionProxy pp(&b, 0, 'a'); Il Create instance of PositionProxy
Sonar Proxy sp(&b, 0, 'r'); /1 Create instance of Sonar Proxy
LaserProxy Ip(&b, 0, 'r'); /1l Create instance of LaserProxy

if (Ip.access I="r") /1 Check laser switched on

cout << "cannot read fromlaser\n";

exit(-1);
tayl or. position(&pp); Il Links created robot with PositionProxy and sets the odonetry
if(turnOnMotors &% pp. Set MotorState(1)) // Turn on the notors

{
exit(1);

cout << "Connected on port : "<< port<<"\n";
/* Read in paratopes and idiotopes fromfiles */
getlnitial Matches("initial ParatopeMatches.txt", "initialldiotopeMatches.txt"); /1 Hand- desi gned mappi ngs

/* Generate new random paratopes. Read in idiotopes fromfile */

/1 get Randomvat ches("i ni ti al | di ot opeMat ches. txt");

/] Use random par at ope map

if (rb.Read())

exit(1l);

79

if (count9d0 == 0) /'l Processes carried out every second - (runs at 10Hz)

if (taylor.reach_goal == true) /1 Stopping criteria when goal is reached
#i fdef LONG_TERM /1 Long termnode - does not end when goal reached
tayl or.reach_goal =f al se; /1 Reset appropriate Robot class variables

tayl or. found_goal =f al se;
tayl or. onPat h=f al se;
if (taylor.dist_Trav > 0.5)

count Goal = count Goal +1; /1 Count how many tinmes the goal was reached
cout << "Goal was reached "<<countGoal << " tinmes\n";
tayl or.dist_Trav=0;
#endi f
#i f def SHORT_TERM /1 Short termnode - ends when goal first reached
cout << "Stopping at goal" << "\n";
cout << "Tine was " << count/10 <<"\n";
exit(1);
#endi f
di st Travel | ed = getDi stance(& ayl or); /1 Find out distance travelled since |last second
x = tayl or.xpos; /1 Set co-ords ready for next cycle
y = taylor.ypos;
for (int i =0; i < |p.scan_count; i++) /1 Put laser readings into a sinple array
scan_data[i] = Ip[i];
}
processSensor Data(& ayl or, &sp, scan_data); // Process the sensor data
ol dAverage = tayl or. average; /1 Save average for reinforcenent |earning
ol dM nNum = tayl or. m n_num /1 Save mi ni mum position for reinforcenent |earning
oldM n = tayl or.nin_val ue; /1 Save m ni num reading for reinforcenent |earning

get Antigens(&sp, &aylor, count); // Detect environmental situations (antigens) based on sensor data

:tayl or.explore(scan_data, gate_size, gap_tol, diff_tol, mn_val); break;
:tayl or. st eer Robot (0.03, -50); break;
:tayl or. st eer Robot (0. 03, 50); break;
case 10:tayl or. st eerRobot (maxSaf eSpeed, 40); break;
case 11:tayl or.steerRobot (mexSaf eSpeed, -40); break;
}

}/lend of if (count%d0 == 0)

chooseAnti body(); /'l Select the strongest antibody based on match and concentration
swi tch(w nAnti bodyNum) /1 Select a nethod based on final wi nning antibody
{
case O:tayl or.steerRobot(-0.1, -10); break;
case 1l:tayl or.steerRobot (0.03, -20); break;
case 2:tayl or.steerRobot(0.03, 20); break;
case 3:tayl or. steerRobot (maxSaf eSpeed, 0); break;
case 4:tayl or. st eer Robot (maxSaf eSpeed, 20); break;
case 5:tayl or. st eer Robot (maxSaf eSpeed, -20); break;
case 6:tayl or. goNewCoal (di st Travel | ed, tol Dec); break;
7
8
9

if (count9% == 0 && count%0 != 0 && count > 10) /'l Processes carried out half second after - (scoring)
checkDi st = getDi stance(&t aylor); /1 Find out distance travelled since action was carried out
for (int i =0; i < |Ip.scan_count; i++) /1 Put laser readings into a sinple array
scan_data[i] = Ip[i];
processSensor Dat a(& ayl or, &sp, scan_data); /1 Process the sensor data
swi tch(anti genScorer) /1 Select an evaluation nethod based on dom nant antigen
case 0:rewardM nChange(tayl or. mi n_num ol dM nNum taylor.nin_val ue, ol dM n); break;
case 1:rewardM nChange(taylor.m n_num ol dM nNum taylor.nin_value, ol dM n); break;
case 2:rewardM nChange(taylor.m n_num ol dM nNum taylor.m n_val ue, ol dM n); break;
case 3:;break;
case 4:rewar dAntibody(tayl or.average, ol dAverage); break;
case 5:rewar dGal Known(6) ; br eak;
case 6:rewar dGoal Known(7); break;
case 7:rewardAntibody(checkDist, 0.01);break;
case 8:rewardAntibody(checkDist, 0.01);break;
}
squashConc(); /1 Squash the concentrations to keep the total nunber a constant
if (count9s0 == 0) /'l Processes carried out every five seconds - (runs at 10Hz)

updateMat ches(); // Wite updated antigen - antibody match strengths to file
cout << "Goal was reached "<<countGoal << " times\n";

}
count ++;
}/ 1 end read-think-act |oop

}//end main

80

* Detect environmental situations - (antigens)
*

voi d get Anti gens(Sonar Proxy *sonar, Robot *thisRobot, int

/* First initialise matches to array of zeros */

for (int i = 0; i < NUMANTI GENS; i ++)

antigenArray[i] 0;

| oopVal)

/* Set the array of antigens presented based on situations detected */

if (thisRobot->average >= avTol)

cout << "Average OK\n";
antigenArray[3] = 1;
antigenScorer = 3;

}

if (thisRobot->found_goal == true)
cout << "Goal known\n";
antigenArray[5] = 1;
anti genScorer = 5;

}el se

cout << "Goal unknown\n";
anti genArrayl[6] 1;
anti genScorer = 6;

if (thisRobot->nin_value < thi sRobot->obsTol)

t hi sRobot - >f ound_goal = fal se;

t hi sRobot - >onPat h=f al se;

if (thisRobot->min_num==1 || thisRobot->m n_num == 2)
cout << "Chject left\n";
antigenArray[0] = 1;
antigenScorer = 0;

}

if (thisRobot->min_num== 3 || thisRobot->m n_num == 4)

cout << "Cbject centre\n";

antigenArray[1] = 1,

antigenScorer = 1;

}
if (thisRobot->min_num==5 || thisRobot->m n_num == 6)
cout << "Chject right\n";
antigenArray[2] = 1,

antigenScorer = 2

}
} // end if mn_value | ess than obsTol
if (thisRobot->average < avTol)

cout << "Average |ow - may be cornered \n";

t hi sRobot - >f ound_goal = fal se;
antigenArray[4] = 1,
antigenScorer = 4;

t hi sRobot - >onPat h=f al se;
}

if (distTravelled
{

0 &% | oopval > 30)
cout << "Robot stalled\n";
antigenArray[7] 1;

t hi sRobot - >f ound_goal =f al se;

ant i genScor er 7;

t hi sRobot - >onPat h=f al se;

}

t hi sRobot - >get Sensor | nf o(sonar - >ranges, true, false, true);

if (antigenArray [7] == 1 && thisRobot->nin_num > 7)

cout << "Bl ocked behind\n";

antigenArray[8] = 1;
antigenScorer = 8;

for (int i = 0; i < NUMANTI GENS; i ++)

cout << antigenArray[i] << " ";

/Il Print array of

cout << "\nAntigenScorer

}

<< antigenScorer << "\n";

81

/1l Average of front sensor readings OK

Il Goal is known

Il Coal is unknown

Cbject to the left

to the centre

Qhj ect

Cbj ect right

Aver age of front sensor readings |ow

Robot has been stalled

Check the rear sonar

Path behind is blocked

detected antigens to screen

* Find highest strength or activation |evel for antibodies
*

doubl e get Max(doubl e val ue_array[NUMANTI BCDI ES])

doubl e max = 0; /1 Maxi mum score or strength, initialise to 0

Wi nAnt i bodyNum = 20; /1 Wnning antibody nunber, initialise to nunber beyond range

int random nunber; /1 For ties when selecting antibody with highest strength

for (int i =0; i < NUMANTIBODI ES; i++) /1 Loop through antibodies to find highest value

if (value_array[i] > max)
Wi nAnt i bodyNum = i ;
max = value_array[i];
}
if (value_array[i] == max) // |f there is a tie, randomy select one
srand(static_cast<unsi gned>(time(0))); // Set random nunber seed
random nunber = (rand()%0); Il Get nunber between 0 and 9
if (random nunber > 4)
W nAnti bodyNum = i ;
max = value_array[i];

}

}
} // end loop through antibodies to find highest value

return max;

voi d chooseAnti body()
{

int random nunber; // To select whether idiotypic effects are used
for (int i =0; i < NUMANTIBODI ES; i++) /1 Loop through antibodies conputing strengths

/lcout << " antibody "<< i << "\n";
robot Anti bodi es[i]. mat chAnti gens(anti genArray, antigenScorer);

/lcout <<"Antibody strength for " << i << " " << robotAntibodies[i].strength << "\n";
}
for (int i =0; i < NUMANTIBODI ES; i++) /1 Set a local array of antibody strengths
antibodyStrengths[i] = robotAntibodies[i].strength;
naxStren = get Max(antibodyStrengths); /1 Find antibody with highest strength as winner of first round
cout <<"Hi ghest strength antibody in first round " << winAntibodyNum << " wth strength of " << maxStren << "\n";

Wi nFi rst Round = wi nAnti bodyNum

srand(static_cast<unsi gned>(tine(0))); /'l Set random nunber seed
random nunber = (rand()%); /1 Get nunber between 0 and 1

cout << "RANDOM NO " << random nunber << "\n";
/* Need inter-antibody effects - stinulation and suppression */
if (random nunber == 0 && wi nFirstRound != 6) /1 1f using idiotypic effects
for (int j = 0; j < NUVANTI BODI ES; | ++) /1 Loop through antibodi es exam ning idiotypic effects

{

/lcout << " antibody "<< j << "\n";
robot Anti bodi es[j].idiotypi cEf fects(& obot Anti bodi es[wi nAnti bodyNuni, antigenArray);

//cout <<"Antibody strength for " << j << " " << robotAntibodies[j].strength << "\n";
) }
for (int i =0; i < NUMANTIBODIES; i++) /1 Set concentrations
robot Ant i bodi es[i].set Concentration();
}
squashConc(); /1 Squash the concentrations to keep the total nunber a constant

if (randomnunber == 0 && wi nFirstRound != 6) /1 1f using idiotypic effects
{
for (int i = 0; i < NUVANTI BODI ES; i ++) /1 Set activation levels and put into |ocal array

robot Anti bodi es[i].setActivationLevel ();
anti bodyActivations[i] = robotAntibodies[i].activation;

82

maxActiv = get Max(antibodyActivations); /1 Find antibody wi th highest activation as winner of second round
cout <<"Wnning antibody after second round "<< w nAntibodyNunk< " with activation of " << maxActiv << "\n";

voi d processSensor Dat a(Robot *t hi sRobot, SonarProxy *sonar, double data_Laser[361])
{

if (obsTool == fal se) /1 Using sonars as the sensors

//cout << "Using sonars \n";

t hi sRobot - >get Sensor | nf o(sonar - >ranges, true, false, false); /'l Process 8 front sonar readings
}
if (obsTool == true) /1 Using |asers as the sensors
//cout << "Using | asers\n";
#i f def AVERAGE_LASER_METHOD
cout << "Using averaged | aser readings \n";
t hi sRobot - >get Laser Array(data_Laser, true, false); /'l Process 8 averaged |aser readings
#endi f
#i f def SI NGLE_LASER_METHOD
cout<< "Using single laser readings \n";
t hi sRobot - >get Sensor | nfo(data_Laser, true, true, false); /'l Process 361 single |aser readings
#endi f
}
}
%

doubl e get Di st ance(Robot *thi sRobot)
{

doubl e dist;
t hi sRobot - >get Coor ds(); /1 Find robot's current co-ordinates
/* Calculate distance travelled this cycle */

di st = sqrt(pow(thi sRobot->xpos - x, 2) + pow(thisRobot->ypos - vy, 2));
//cout <<"Distance travelled this cycle =" << dist <<"\n";

return dist;

}

* Reinforcement |earning for antibodies - Method 1
* based on environnental feedback

voi d rewar dAnti body(doubl e val ue, double tol)

doubl e score = 2 * abs(tol-value);
if (value > tol)

cout <<"reward\n";
/* Assign reward to wi nning antibody for domi nant antigen */
robot Ant i bodi es[wi nAnti bodyNunj . changeMat chi ng(anti genScorer, antigenArray, true, score);

/* Assign penalty to winning anti body for "average OK' antigen */
robot Ant i bodi es[wi nAnti bodyNunj . changeMat chi ng(3, antigenArray, false, score);
}el se

cout <<"penalty\n";
/* Assign penalty to winning anti body for dominant antigen */
robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(anti genScorer, antigenArray, false, score);

/* Assign reward to wi nning antibody for "average OK' antigen */
robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(3, antigenArray, true, score);

83

* Reinforcement |earning for antibodies - Method 2
* based on conmon sense napping of action to conditions
*

voi d rewar dGoal Known(int ant Num
{
if (winAntibodyNum == ant Num

cout <<"reward\n";
/* Assign reward to w nning antibody */

robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(anti genScorer, antigenArray, true, 0.2);

}el se
{
cout <<"penalty\n";
/* Assign penalty to winning antibody */

robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(anti genScorer, antigenArray, false, 0.2);

* Reinforcement |earning for antibodies - Method 3
* based on environmental feedback for obstacle avoi dance

voi d rewardM nChange(int pos, int ol dPos, double value, double ol dval)

doubl e score = 2 * abs(ol dval -val ue);
if (value > oldval)

cout <<"reward\n";

/* Assign reward to wi nning antibody for domi nant antigen */
robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(anti genScorer,

antigenArray, true, score);

/* Assign penalty to winning anti body for "average OK' antigen */
robot Ant i bodi es[wi nAnti bodyNunj . changeMat chi ng(3, antigenArray, false, score);

}
if (value < oldval &% pos == ol dPos)
{

cout <<"penalty\n";

/* Assign penalty to winning anti body for dominant antigen */
robot Ant i bodi es[wi nAnt i bodyNunj . changeMat chi ng(anti genScorer,

antigenArray, false, score);

/* Assign reward to wi nning antibody for "average OK' antigen */
robot Ant i bodi es[wi nAnti bodyNunj . changeMat chi ng(3, antigenArray, true, score);

* Read initial safe match strengths fromfile
*

voi d getlnitial Matches(string paraFileName, string idioFileNane)
{

fstream paraFil e;

par aFi |l e. open (paraFileName.c_str(), ios::in);
fstreamidioFile;

idioFile. open (idioFileName.c_str(), ios::in);
doubl e paraVval ue;

int idioVvalue;

for (int j = 0; | < NUMANTI BODIES; j ++)
for (int i = 0; i < NUVANTI GENS; i ++)

paraFile >> paraVal ue;
idioFile >> idioVal ue;

robot Anti bodi es[j]. paratope_strength[i] = paraVal ue;
robot Anti bodi es[j].idiotope_match[i] = idioVal ue;

/1 Input file for initial paratope natches
/1 Open the paratope file for reading

/1 Input file for initial idiotope natches
/1 Open the idiotope file for reading

/1 For hol ding paratope file val ues

/1 For holding idiotope file val ues

/1 Loop through antibodies

/1 Loop through antigens

/1 Get paratope value fromfile
/1 Get idiotope value fromfile

/1 Set paratope strengths
/1 Set idiotope matches

//cout << "Antibody " <<j<< " value " << value << "\n";

}
/* Cose files */

paraFil e.close();
idioFile.close();

voi d updat eMat ches()

fstream updat eFi | e;
updat eFi | e. open ("updat edMat ches. txt", ios::out);
doubl e val ue;

updat eFi | e. setf (ios::fixed);
updat eFi | e. setf (i os::showpoint);

/1 Qutput file for updated nmatches
/1 Open the file for witing
/'l For holding file values

updat eFi | e. preci sion(2); /1 Two deci mal places required

for (int j = 0; j < NUMANTI BODI ES; j ++) /'l Loop through antibodies
for (int i = 0; i < NUVANTI GENS; i ++) /1 Loop through antigens
¢ val ue = robot Antibodi es[j].paratope_strength[i]; /'l Set value as paratope strengths
updateFile << value << " "; /1 Wite value to file
updateFile << "\n"; /1 Start new |ine

/* Cose file */
updat eFi | e. cl ose() ;

*/
voi d get Randomvat ches(string idioFil eName)
{
doubl e val ue;
fstreamidioFile; /1 Input file for initial idiotope natches
idioFile.open (idioFileNanme.c_str(), ios::in); /1 Open the idiotope file for reading
int idioVvalue; /1 For holding idiotope file val ues
srand(static_cast<unsigned>(tinme(0))); /1 Set random nunber seed
for (int j = 0; j < NUMANTI BODI ES; j++) /1 Loop through antibodies
for (int i = 0; i < NUVANTI GENS; i ++) /1 Loop through antigens
{
val ue = (rand()%6); /1 Get nunber between 0 and 25
robot Anti bodi es[j]. paratope_strength[i] = (val ue/100.0)+0.5; /1 Set random val ues for paratope
idioFile >> idioVal ue; /1 Get idiotope value fromfile
robot Anti bodi es[j].idiotope_match[i] = idioVal ue; /1 Set idiotope natches
}

}

/* Cose file */
idioFile.close();

voi d squashConc()
{

doubl e total Conc = O;
for (int j = 0; j < NUMANTI BODI ES; j ++) /'l Loop through antibodies

total Conc = total Conc + robotAntibodies[j].conc; /1 Find total concentration

}

cout << "1st total conc " << total Conc <<"\n";

for (int j = 0; j < NUMANTI BODI ES; j++) /'l Loop through antibodies
{

/* Squash concentrations */
robot Anti bodi es[j].conc = (robotAntibodies[j].conc / total Conc) * NUWANTI BODI ES * start Conc;

}

total Conc = O;

for (int j = 0; j < NUMANTI BODI ES; j++) /'l Loop through antibodies

total Conc = total Conc + robotAntibodies[j].conc; /1 Find new total concentration

}

cout << "2nd total conc " << total Conc <<"\n";

}

%

85

Appendix B — Antibody class— Antibody.h

*
* Antibody. h

* Antibody class - header file

* By A M Witbrook 11th July 2005
*

Copyright (C) 2005 A. M Whitbrook

nodi fy it under the terns of the GNU General Public License
as published by the Free Software Foundation; either version 2

*
*

*

* This programis free software; you can redistribute it and/or
*

*

* of the License, or (at your option) any |ater version.

* This programis distributed in the hope that it will be useful,
* but WTHOUT ANY WARRANTY; without even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU General Public License for nore details.
*
*
*

Emai |l : amm04m@s. nott. ac. uk

#i ncl ude <stdio. h>
#include <stdlib.h>

usi ng namespace std;

*/

const /1 Nunber of antigens

const /1 Nunber of antibodies

const /1 Natural death rate of antibodies

const /! Rate constant

const /1l Suppression - stinulation bal ancing constant
%

class Antibody

{
public:
doubl e conc; /1 Concentration
doubl e strength; /1l Current strength
doubl e activation; /1 Conputed activation (based on strength and concentration)
doubl e parat ope_strengt h[N_ANTI GENS] ; /1 Array of strengths of antibody-antigen matches
int idiotope_nmatch[N_ANTI GENS]; /1 Array of matches for antibody-antigen disallowance

/* See user docunentation for a full description of the public nethods bel ow */

Anti body(doubl e concen);

voi d matchAntigens(int ant_array[N ANTI GENS], int domAntigen);

voi d idiotypicEffects(Antibody *w nner, int antArray[N _ANTI GENS]);

voi d changeMat chi ng(int ant_num int ant_array[N ANTI GENS], bool reward, double score);
void setConcentration();

voi d setActivationLevel ();

Ant i body: : Anti body(doubl e concen)
{

/* Set global variables */
conc = concen;

}

86

Antigen to antibody matching routine - provides initial strengths for antibodies
* based on antibody-antigen interaction
*

*/

voi d Antibody:: matchAntigens(int ant_array[N ANTI GENS], int domAntigen)

{

strength = 0; /1 Initialise strength

for (int i =0; i < NANTIGENS; i++) /1 Loop through antigens for natches

//cout << "antigen " << i <<"\n";

if (paratope_strength[i] > 0 & ant_array[i] == 1) // If match for antibody paratope and antigen epitope
{
if (i == domAntigen)
strength = strength + (2 * paratope_strength[i]); /'l Increase strength by affinity
/lcout << "strength of match " << paratope_strength[i] << "\n";
}el se
strength = strength + (0.25 * paratope_strength[i]); /'l Increase strength by 1/4 affinity
/lcout << "strength of match " << paratope_strength[i] << "\n";
}
}
}
}
%

* Get results of the idiotypic effects - provides a final strength, concentration and
* activation level for antibodies

voi d Antibody: :idiotypi cEffects(Anti body *winner, int antArray[N ANTI GENS])
{

activation
for (int i

0; /1l Initialise activation
0; i < N_ANTIGENS; i++) /1 Loop through antigens for inter-antibody effects

/* Wnning antibody has recogni sed these idiotopes, they are suppressed - reduce strengths*/
if (idiotope_match[i] == 1 & & W nner->paratope_strength[i] > 0 & strength > 0)

{
strength = strength - (wi nner->paratope_strength[i] * Kl);

//cout << "Paratope strength :"<< w nner->paratope_strength[i]<<"\n";
/1 cout << "SUPPRESSION'\n";

/*
* Wnning antibody's idiotope has been recognised by these antibodi es, they are stinulated — increase
* strengths

*

/

if (winner->idiotope_match[i] == 1 && paratope_strength[i] > 0 && strength > 0)
{
strength = strength + (paratope_strength[i]);
//cout <<"Paratope strength :"<< paratope_strength[i]<<"\n";
//cout << "Match between winner's idio and this para - adding to strength for antigen "<<i<<"\n";
//cout << "STIMILLATION'\n";

voi d Antibody:: changeMat ching(int ant_num int ant_array[N ANTI GENS], bool reward, double score)

if (reward == true) /1 1f action was useful

par at ope_strength[ant _nunj = paratope_strength[ant_nun] + score; // Reward antibody for dom nant antigen
if (paratope_strength[ant_nuni > 1) /1 Don't let strengths rise above 1

paratope_strength[ant _nunj = 1;
}el se /1 1f action was not useful
par at ope_strength[ant _nunj = paratope_strength[ant_nun] - score; // Award penalty for dom nant antigen
if (paratope_strength[ant_nuni < 0) I/ Don't let strengths fall below O
paratope_strength[ant _nunj = 0;

conc = conc - (C* strength); !/ Reduce concentration

87

voi d Antibody: :set Concentration()
{

conc = conc + (C * strength) - K2; /1 Set concentration

voi d Antibody: :setActivationLevel ()

activation = conc * strength; /1 Set activation

88

Appendix C —Raobot class

header file—Robot.h

%
*

*

* Robot . h

* Robot class - header file

* By A M Witbrook 5th July 2005
*

*

This class provides an interface to
al | owi ng processing of |aser and so
navi gation behaviours to be set

* ok kA

*

robot control prograns used in this resear
nar sensors and permtting several

ch,

Copyright (C) 2005 A. M \Whitbrook
This programis free software;
nodi fy it under
as published by
of the License,

you

ok ok k%

or (at your option)

the ternms of the GNU General
the Free Software Foundation;

can redistribute it and/or
Public License

either version 2
any | ater version.

* This programis distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU General Public License for nore details.

*

* Enai | am04m@s. not t . ac. uk

*

K o e
*/

#i f ndef ROBOT_H

#define ROBOT_H

#i ncl ude <stdio. h>

#include <stdlib.h>

usi ng namespace std;

%

K o
* Definitions and gl obal variables

*

#define USAGE \
"USAGE: sonarobstacl eavoid [-h <hos

t>] [-p <port>] \n" \
r on this host\n" \
r on this TCP port\n" \

/1 Default host name

!/ Default port nunber

/1 Radians to degrees conversion factor
/1l Degrees to radians conversion factor

" -h <host>: connect to Playe
" -p <port>: connect to Playe

char host[256] = "local host";

int port = PLAYER PORTNUM

const doubl e RADTODEG = 180/ M PI ;

const doubl e DEGTORAD = M Pl /180;

%

*

* Robot class definition

*/

cl ass Robot

{

public:

doubl e min_val ue;
doubl e average;
int mn_num
doubl e xpos,
bool found_goal ;
bool reach_goal ;
doubl e obsTol ;
bool onPat h;
doubl e dist_Trav;

ypos;

/* See user docunentation for a full
Robot (doubl e x_cord, double y_cord,
doubl e ob_tol);
void connect (int argc, char** argv);
void position (PositionProxy *ppc);
voi d get Coords();
voi d obstacl eAvoi d (bool nin_net hod)
voi d goFi xedGoal (doubl e stopTol);
voi d goNewGoal (doubl e newDi stance, d
voi d escapeTraps();
voi d expl ore(doubl e data[361], doubl
voi d get Sensor | nfo(doubl e data[361],
voi d getLaserArray(doubl e data[361],
voi d st eerRobot (doubl e sd, double an

Current ninimum obstacle di stance
Average front obstacle distance

M n nunber fromlaser or sonar (scal
Current x and y co-ordinates

Whet her robot has | ocated goal

Used to stop robot when goal reached
Tol erance for obstacle avoi dance
Whet her robot is on goal path

Di stance travell ed towards goal

description of the public nmethods bel ow */
double z_cord, bool

s_Coal , double x_goal,

oubl e tol Dec);

e gateSize, double gapTol, double diffTol,
bool m n_nethod, bool full, bool rear);
bool mi n_nethod, bool full);

gle);

89

led : 1 ->6)

doubl e y_goal ,

doubl e minval);

doubl e max_sd,

private:

int max_num /1 Max nunber fromlaser or sonar (scaled : 0 ->7)
doubl e speed, turn; /1 Linear and angular velocities
doubl e average_| aser[8]; Il Average |aser readings (in sectors)
doubl e zpos; /1 Current orientation
Posi tionProxy *pp;
bool start_goal; /1 Whet her robot was explicitly given a goal
doubl e xSt art Pos; /1l Start x co-ordinate
doubl e yStartPos; // Start y co-ordinate
doubl e zStart Pos; /1 Start orientation
doubl e xCoal ; Il X co-ordinate of goal) For sinulated robots with fixed goals
doubl e yGoal ; /1 Y co-ordinate of goal)
doubl e goal _Dist; /1 Distance from discovered goal
doubl e maxSpeed; /1 Maxi mum saf e speed for the robot
doubl e ol dObsTol ; /1 Saved tol erance for expl ore node
bool changeTol ; /1 Whet her tolerance has been changed
doubl e maxDi ff[2]; /1 Array of 2 maximum differences in |aser readings
int nmaxRegion[2]; Il Array of 2 positions of maximum|aser differences
doubl e ol dOrient; /Il Orientation before goal turn is nade;
doubl e goal Turn; /1 Angle of turn needed to align with goal
voi d set Args(bool m n_nethod); /1 Sets the speed and angle of the robot
voi d wander Randon(doubl e sd); /1 Random wander node
voi d wander Max(doubl e sd); /1 Wander in direction of maxinum sensor reading
voi d get MaxTwo(doubl e dat a[361]); I/ Find two | argest changes in |aser reading
doubl e get Di stance(int position, double data[361]); // Obtain estimtes of gate post distances
s
#endi f
%

90

Appendix D —Robot classimplementation file— Robot.cpp

%
e
*

* Robot . cpp

* Robot class - inplenentation file

* By A M Witbrook 5th July 2005

*

*
* This class provides an interface to Player C++ robot control prograns
* all owi ng processing of |aser and sonar sensors and permitting several
* navigation behaviours to be set

*

Copyright (C) 2005 A. M \Whitbrook

nodi fy it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2

*
*

*

* This programis free software; you can redistribute it and/or
*

*

* of the License, or (at your option) any |ater version.

* This programis distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU General Public License for nore details.

*

* Email : amm04nm@s. nott. ac. uk

*

K o e il
*/

#include <stdio. h>

#include <stdlib.h>
#incl ude <string. h>
#i ncl ude <iostreanr

#incl ude <mat h. h> /1 For trig functions

#include <playerclient. h> /1 C++ player client library
#incl ude <cstdlib> /1 For random nunber generation
#include "Robot. h" /1 The header file for this class

usi ng namespace std;

* Constructor method
*

Robot : : Robot (doubl e x_cord, double y_cord, double z_cord, bool s_goal, double x_goal, double y_goal, double max_sd,
doubl e ob_tol)

xStartPos = x_cord; /1 Set global variables
yStartPos = y_cord;
zStartPos = z_cord;

start_goal = s_goal;
nmaxSpeed = max_sd;

obsTol = ob_tol;
ol dObsTol = ob_tol;
changeTol = fal se;
if (start_goal == true)
xGoal = x_goal ; /'l Set co-ordinates of goal (if known)
yGoal = y_goal;
cout <<"A new robot object has been created at " << x_cord << ", " <<y cord << ", " << z_cord << "\n";
found_goal = start_goal; /1 Set global variables

reach_goal = false;
onPath = fal se;

* Robot connection routine - (if optional argunents are used). N.B. This is a standard connection routine
* used in nost Player C++ codes

voi d Robot::connect(int argc, char** argv)

while (i < argc)

if(!'strcnp(argv[i],"-h")) /1 1f a host argunment was specified

if(++ < argc)

strcpy(host,argv[i]); /1 Set host connection variable
}else

put s(USAGE) ; I/ Explain how to set argunents

exit(1);

91

}else if(!strcnp(argv[i],"-p")) /1 1f a port argument was specified

if(++i < argc)
port = atoi(argv[i]);
}else
put s(USAGE) ;
exit(1);
}
}
i++;
}
}
I*

/1 Set port connection variable

!/ Explain how to set argunents

voi d Robot: : position(PositionProxy *ppc)

{
PP = ppc;

/* Tell the robot

its start co-ordinates. This is inportant otherw se

* all readings are relative to robot rather than the grid */

pp- >Set Odonet ry(xSt art Pos,

yStartPos, zStartPos);

voi d Robot:: getLaserArray(doubl e data[361], bool m n_nethod, bool full)

doubl e av[8];

doubl e sum = 0;

for (int i =

0;

i <8;

for (int j = i*45;

i

/1 Average of sector's readings
/1 Sum of sector's readings

i++) /1 Loop through sectors

< (i*45)+45; j++) [/ Loop through readings

//cout << "Data array " << data[j] << "\n";
sum = sum + data[j];

av[i] = sum/ 45;

//cout <<"Average array "<< av[i]<< " sum" << sum<<"\n";
sum =0;
}
/* Set global variable */
for (int k = 0; k<8, k++)
average_| aser[k] = av[7-k];
}
get Sensor | nfo(average_| aser, min_nmethod, full, false); // Process the averaged readi ngs
}
%

voi d Robot: : set Args(bool
{

doubl e turn_rate;

doubl e sd;

if (mn_nmethod == true)

swi tch(ni n_num

case
case
case
case
case
case

}

l:turn_rate
2:turn_rate
3:turn_rate
4:
5
6

turn_rate

‘turn_rate
‘turn_rate

cout<< "Turning :"

if (mn_nethod == fal se)

swi t ch(max_num

case O:turn_rate
case liturn_rate

ni n_net hod)

<<

/1 Angul ar velocity
/1 Linear velocity

/1 Turn away from m ni mum readi ng

/1 Set robot to turn away from m nimum position and set speeds

-20; sd = 0.1; break; /1 NB M ni mum val ues from positions 0 and 7 are not
-30; sd = 0.05; break;

-45; sd = -0.1; break;

45; sd = -0.1; break;

30; sd = 0.05; break;

20; sd = 0.1; break;

turn_rate << " away frommin reading : << mn_num << "\n";

/1 Turn towards nexi mum readi ng
/1 Set robot to turn towards maxi mum position and set

30; sd
20; sd

05; break;

= 0.
= 0.05; break;

92

speeds

possi bl e

case 2:turn_rate = 10; sd = 0.1; break;
case 3:turn_rate = 0; sd = 0.1; break;
case 4:turn_rate = 0; sd = 0.1; break;
case 5:turn_rate = -10; sd = 0.1; break;
case 6:turn_rate = -20; sd = 0.05; break;
case 7:turn_rate = -30; sd = 0.05; break;
}
cout<< "Turning :" << turn_rate << " towards max reading : " << max_num << "\n";
}
turn = turn_rate; /1 Set global velocity variables
speed = sd;
}
%

*/

voi d Robot: : get Coords()

{

Xpos = pp->Xpos(); /1 Get position data
ypos = pp->Ypos();

zpos = pp->Theta();

}

%

voi d Robot: : obst acl eAvoi d (bool nin_nethod)

cout << "OBSTACLE AVO DANCE MODE\ n";
COUt << "mmmmmmm e \n\n":

set Args(mi n_net hod) ; I/ Get linear and angul ar speeds
st eer Robot (speed, turn);
onPath = fal se;

if (start_goal == false) /1 1f was not given goal co-ordinates
found_goal = false; /1 Needs to rediscover goal after avoiding obstacles
}
}
%

* Travel to a discovered goal
*

voi d Robot:: goNewGoal (doubl e newDi stance, doubl e tol _Dec)

doubl e change; /1 Measure of how the orientation has shifted
doubl e correct; I/ Correction for limts of turn accuracy;

cout << "TRAVEL TO DI SCOVERED GOAL MODE\n";

COUt << Memmmmm oo e \n\n";

zpos = pp->Theta(); /1 Get the current orientation
cout << "Current orientation "<< zpos <<"\n";

change = (zpos - oldOrient); /1 Cal cul ate change

cout << "Change " << change << "\n";

correct = goal Turn - change; /1 Work out correction

cout << "Making a correction " << correct <<"\n";
/* For real robot corrections nmay be | arge causing spinning action so set correction to zero if too large */
if (abs(correct * RADTODEG) > 1.5)

{

correct = 0.0;

}

st eer Robot (maxSpeed, correct * RADTCDEQG) ;

cout <<"Speed is now " << maxSpeed << "\n";

dist_Trav = dist_Trav + newDi stance; /1l Keep track of how far noved
cout << "Distance travelled towards goal is " << dist_Trav << "\n";

if (goal _Dist - dist_Trav < 0.85 & changeTol == fal se)
ol dObsTol = obsTol ;
obsTol = obsTol - tol_Dec; /1 Getting close to goal - decrease obstacle tolerance
changeTol = true;
cout << "WARNING - getting near goal ...Decreasing obstacle tolerance to " << obsTol << "\n";
}
if (dist_Trav > (goal _Dist/4) &% changeTol == false) // Recal culate angle when quarter way
/'l unl ess obstacle tol erance has changed
cout << "RECALCULATI NG TURN!\ n";
found_goal = false; /1 This causes goal rediscovery and hence new turn val ue
onPath = true; /1 Robot already on correct course
}

93

if (dist_Trav - goal _Dist > 0.1) /1 Stopping mechani sm

reach_goal = true;
}
%
o o e e
* Escape code - inplenented when robot is stuck
K o il
*/

voi d Robot: : escapeTraps()

{

cout << "ESCAPE TRAPS MODE\n";

COUt << Mem-occmomonanaannn \n\in";

st eer Robot (-0. 05, 5); Il Initially back-up

wander Randon(0) ;

if (start_goal == false) /1 1f was not given goal co-ordinates

found_goal = false; /1 Needs to rediscover goal after avoiding obstacles

onPath = fal se;

voi d Robot: : expl ore(doubl e data[361], doubl e gateSize, double gapTol, double diffTol, double mnval)
{

doubl e dist1; /1 Distance fromrobot to 1st side of gate
doubl e dist2; /1 Distance fromrobot to 2nd side of gate
doubl e targetAngle; /1 Angle between beanms hitting gate edges
doubl e goal Di stance; /1 Distance to gate
doubl e gap; !/ Estimated gate wi dth
int regionil; /1 Maximum di f ference position
int region2; /1 Second maxi num di fference position
int |eftRegion; /1 Left hand side maxi mumdifference region (for use in angle calcul ations)
doubl e I eftDist; /1 Left hand side maxi numdifference (for use in angle calcul ations)
int rightRegion; /1 Right hand side naxi mumdifference region (for use in angle cal cul ations)
doubl e rightDist; /1 Right hand side maxi mumdifference (for use in angle cal cul ations)
doubl e checkGoal Turn = 0; /1 Checki ng mechani smfor angle robot nust turn to goal
cout " LCQ(I NG FOR A GOAL\ n";
COUt << "em-eccmononaiaannn \n\n";
dist_Trav = O; /1l Reset global variables
goal _Dist = 0;
if (onPath == false) // Only reset if the robot is not on the correct course

obsTol = ol dObsTol ; /1 Reset obstacle tolerance to start val ue

cout << "Resetting obstacle tolerance to " << obsTol << "\n";

}

changeTol = fal se;
get MaxTwo(dat a) ; /1 Get two maximumdifferences in |aser readings
regi onl nmaxRegi on[0] ; I/ Set local variables

regi on2 = maxRegi on[1];
/* Conpute distances fromrobot to sides of gate */

distl = getDistance(regionl, data);
dist2 = getDi stance(region2, data);

/* Find angl e between beans hitting gate edges */
target Angl e = (abs(doubl e(regionl) - doubl e(region2))/2.0);
/* Use cosine rule to find gap di stance */

gap = sqrt(pow(distl,2)+pow(dist2,2)-(2 * distl * dist2 * (cos(targetAngle * DEGIORAD))));
cout << "Distl " << distl << " Dist2 " << dist2 << " Angle " << targetAngle << " Distance is " << gap << " \n";

/* Check conputed gap approxi mates known gate size and check other tolerances */
/* 1f these criteria are fulfilled we have a goal */

if (abs(maxDiff[0] - maxDiff[1]) < diffTol && maxDiff[0] > minval &% maxDiff[1] > minVal &% abs(gap - gateSize) <
gapTol)
{

cout << "FOUND A GOAL!!\n\n";

cout << Me--ecneiononnn- \n\in";

/* Conpute goal distance */
goal Di stance = sqrt((pow(dist1,2)/2.0)-(pow gap,2)/4.0)+(powdist2,2)/2.0));

cout << "Goal is " << goal Di stance << " away\n";
goal _Di st = goal Di stance; /1 Set global variable
if (maxRegion[0] > maxRegion[1]) /1 Find which |aser beamis on left hand side

| ef t Regi on = maxRegi on[0] ;

94

leftDist = distl;
ri ght Regi on = naxRegi on[1] ;
rightDist = dist2;

}else

{
| ef t Regi on = maxRegi on[1] ;
leftDist = dist2;
ri ght Regi on = naxRegi on[0] ;
rightDist = dist1l;

}

/* Find left side angle first using cosine rule */
goal Turn = RADTODEG* (acos((pow(| eft Di st, 2) +pow(goal _Di st, 2) - pow((gap/2.0),2))/(2*l eft Dist*goal _Dist)));

/* Check the right side angle */
checkGoal Turn = RADTODEG*(acos((pow(ri ghtDi st, 2) +pow(goal _Di st, 2) -pow((gap/2.0),2))/(2*rightDist*goal _Dist)));

cout << "Left side angle " << goal Turn << "\n";

cout << "Right side angle " << checkGoal Turn << "\n";

goal Turn = ((leftRegion-180)/2.0) - goal Turn; /1 Find angle robot must turn
checkGoal Turn = ((right Regi on-180)/2.0) + checkGoal Turn; /1 Check angle robot nust turn

found_goal = true; /1 Set global variable if turn is small enough
dist_Trav = 0; /1 Reset distance travelled to goal

zpos = pp->Theta(); /1 Check current orientation

cout << "Current orientation "<< zpos <<"\n";

ol dOri ent =zpos; /1 Save orientation (before turn)

cout<< "Turning towards goal " << goal Turn << " \n";

st eer Robot (0. 05, goal Turn); /1 Set linear and angul ar speeds

cout << "Check " << checkGoal Turn << " \n";
goal Turn = goal Turn * DEGTORAD;

}el se /'l Coal not yet found
{
found_goal = false; /1 Set global variable
if (onPath == true) /1 1f previously heading to goal
st eer Robot (maxSpeed, 0); /1 Wander ahead
}else
wander Random(naxSpeed) ; /1 Wander randomy or toward nmax |aser reading
}
}
}
%

* Move towards known fixed goal
* For simulated robots where goal co-ordinates are explicitly input at the start for testing
*

voi d Robot: : goFi xedGoal (doubl e stopTol)
{

cout << "TRAVEL TO KNOAN GOAL MODE\ n";

COUt << "em-eccmcmonanannn \n\n";
if ((xGoal-xpos) > 0) !/ Goal is in 1st or 4th quadrant
{
turn = (- 1 * zpos) + atan ((yCoal -ypos)/(xGoal -xpos)); /1 Obtain angle of goal
}
if ((xCGoal-xpos) < 0 && (yGoal-ypos) < 0) !/ Goal is in 3rd quadrant
{

turn = ((- 1 * zpos) + atan ((yGoal -ypos)/(xCoal -xpos))) - MPI; // Obtain angle of goal

if ((xCGoal-xpos) < 0 && (yGoal-ypos) > 0) !/ Goal is in 2nd quadrant
{

turn = ((- 1 * zpos) + atan ((yGoal -ypos)/(xGCoal -xpos))) + MPI; // Obtain angle of goal

if (abs(turn * RADTCDEG) > 10) /1 1f angle to turn is large obstacles are still close
st eer Robot (0. 05, RADTODEG *(turn/2.0)); // ..so go slower and only turn half way to goal
cout << "speed is 0.05\n";
}el se
st eer Robot (maxSpeed, RADTCDEG * turn); /1 1f angle to turn is small
cout << "speed is maxi mumn"; /1l .. can go faster and turn full way
}
cout<< turn * RADTODEG << "\n";;
if (abs(xpos - xCoal) < stopTol && abs(ypos - yGoal) < stopTol) /1 Stopping mechani sm
reach_goal = true;

95

voi d Robot : : wander Randon{ doubl e sd)
{

cout << "RANDOM WANDER MODE\ n";

COUt << "em-ecccomonnannn \n\n",

int random angl e; /1 Random turn

int random nunber_1; /1 Used to decide whether to turn this tine
int random nunber_2; /1 Used to decide which way to turn

srand(static_cast<unsigned>(time(0))); // Set random nunber seed

random angle = 5 * (rand()%0); /1 Get nunber between 0 and 45
random nunber _1 = (rand()%0); Il Get nunmber between 0 and 9
random nunber _2 = (rand()9%0);

if (random nunber_2 < 4)

randomangle = -1 * random angle; // Switch direction

if (randomnunber_1 > 3)

st eer Robot (sd, random angle); /1 Turn
cout << "Turning random angle " << random angle <<"\n";
}el se

wander Max(sd) ;

voi d Robot : : wander Max(doubl e sd)

set Args(false); /1 Get linear and angul ar speeds
steer Robot (sd, turn); /1 Set linear and angul ar speeds
cout <<"Heading for open space\n";

}

voi d Robot: : get MaxTwo(doubl e data[361])

doubl e diff; /1l Current difference between adj acent |aser readings
/* Initialise global variables */

maxDi f f [0]
maxDi ff[1]
nmaxRegi on[0]
nmaxRegi on[1]

0
o

/* Loop through readings |ooking for 2 maximunms */
for (int i =0; i < 361; i++)
it (i >0)
di ff = abs(data[i]-data[i-1]); /1 Set current difference
/lcout << data[i] << " " << diff << ™ [" << i << "] \n";
if (diff > maxDiff[1] && diff == naxDiff[0])
maxDi ff[1] = maxDi ff[0O]; /1 Set second maxi num difference and regi on
maxRegi on[1] = i;
if (diff > maxDiff[1] && diff > maxDiff[0])
{

maxDi ff[1] = maxDi ff[0O]; /1 Set second maxi num difference and regi on
maxRegi on[1] = maxRegi on[0] ;

}
if (diff > maxDiff[0])

maxDi ff[0] = diff; /1 Set maxi numdifference and region
naxRegi on[0] = i;

}
if (diff > maxDiff[1] && diff < maxDiff[0])
{

maxDi ff[1] = diff; /1 Set second maxinum difference and regi on
maxRegion[1] = i;

96

cout << "Maxinmumdifference : " << maxDiff[0] << " from nunber << maxRegi on[0] <<"\n";
cout << "2nd maxinumdifference : " << maxDiff[1] << " fromnunmber " << maxRegion[1] <<"\n";

doubl e Robot: : getDi stance(int position, double data[361])
{

doubl e distance; // Distance between robot and obstacle
if (data[position] - data [position-1] < 0)

di stance = abs(data[position]);

if (data[position] - data [position-1] > 0)

di stance = abs(data[position-1]);

}

return distance;

* Cbtain mni numand maxi mum sensor positions, plus average and mi mi num readi ngs

voi d Robot: : get Sensor | nf o(doubl e data[361], bool mi n_nethod, bool full, bool rear)

doubl e sum /1 Sum of the readings
doubl e av; Il Average of the readings
int mn; /1 Position of mninumreading
int mx = 0; /1 Position of maxinum reading
doubl e nex_readi ng; /1 Maxi mum r eadi ng
doubl e mi n_readi ng; /1 M ni mum r eadi ng
int dinension; /1 Size of the array of readings
int startlLoop; /1 Start of loop for mninmum
int endLoop; /1 End of loop for mninmm
sum = 0; /Il Set sumto zero
if (full == true)

di nensi on = 361; /1 No. of readings for |aser

startLoop = 45;
endLoop = 315;
m n_readi ng = data[45] ; /1 Initialise mnimmreadi ng
mn = 45;
}telse if (rear == fal se)

di mensi on
startLoop
endLoop = 7;
mn_reading = data[1]; /1 Initialise mnimmreadi ng
mn = 1;

}el se

{

8; /1 No. of readings for front sonar
1;

di mension =
startlLoop =
endLoop = 16;
m n_reading = data[0]; I/ 1Initialise mininmmreading

mn = 0;

16; /Il No. of readings for all sonar
0;

o

for (int i =0; i < dinmension; i++) /1 Loop to find average

sum = sum + data[i];

av = sum/ di mension;
for (int i = startLoop; i < endLoop; i++) /1 Loop to find minimum and position

/lcout << "Reading: " << i << " " << data[i]<<"\n";
if ((data[i] < min_reading))

nmn_reading = data[i];
mn=i;

}

/* Set global variables */
average = av,

if (full == true)
mn_num= (359 - nmin) / 45; /1l Scale to a position 1 - 6 for |aser
}else

m n_num = nin;

m n_val ue = mi n_readi ng;

97

cout<<"M ninumreading : "<< min_value << " Fromposition : " << min_num<< "\n";

if (mn_nethod == fal se) /1 Turn towards max reading strategy
max_readi ng = data[0]; /1 Initialise maxi mum reading
for (int i =0; i < dinension; i++) /1 Loop to find maxi mum and position

if (data[i] > max_readi ng)

max_reading = data[i];
max = i;

}

/* Set global variables */
if (full == true)
{

cout << "using single |aser readings\n";

max_num = (359 - mex) / 45; /1l Scale to a position 0 - 7
if (max_num == 8) /!l Force O to position 7

max_num = 7;
}else
{

rax_num = nmax;

cout <<"Maxi mum reading : "<< max_reading << " Fromposition : " << max_num << "\n";

*

/

voi d Robot: : st eer Robot (doubl e sd, doubl e angle)
{

if (sd > maxSpeed) /1 Safety net for speed ...
{
}

pp- >Set Speed(sd, DTOR(angle));
}

sd = maxSpeed; /Il ... can't exceed nmaxi num

98

Appendix E — Fixed behaviour code — goalseek.cc

* ok A *

*

goal seek. cc
By A M Witbrook 5th July 2005

* ok *

*

To navigate a Pioneer
obst acl es.

3 robot through a gate of known wi dth, avoiding

The | ocation of the gate nust be di scovered

This

ok ok k%

nodi fy it under
as published by
of the License,

programis

free software;
the ternms of the GNU General
the Free Software Foundation;
or (at your option) any |later version.

Copyright (C 2005 A. M Whitbrook

distributed in the hope that
WARRANTY; wi thout even the inplied warranty of
FI TNESS FOR A PARTI CULAR PURPCSE.
nore details.

it wll

you can redistribute it and/or
Public License

either version 2

be useful,

See the

* This programis

* but W THOUT ANY

* MERCHANTABI LI TY or

* GNU General Public License for
*

* Enai | am04m@s. not t . ac. uk

*

*

*/

#def i ne AVERAGE_LASER_METHOD

11 #def i

ne SINGLE_LASER METHOD

#i ncl ude <stdio. h>
#include <stdlib.h>

#include <playerclient.h> [/

#include <string>
#incl ude <iostrean>

#incl ude <mat h. h> 11
#i ncl ude "Robot. cpp” 11
#include "Wrl dReader. h" I

usi ng namespace std;

To read start

C++ player client

For trig functions
Robot class for use with this program
position directly fromWrld file for sinulations

library

nmet hod - goal

seeking with obstacle avoi dance

int mai

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

n(int argc, char **argv)
avTol = 0.65;

maxSaf eSpeed = 0. 17;

m nDi st Tol = 0.5;
standStill Approx = 0.1,
scan_dat a[361] ;

tol = 0.2;

int count = 1;
doubl e tol Dec = 0. 45;

bool obsMethod = true;
bool obsTool = fal se;
bool sim = true;

double x, vy, z;

doubl e di st Travell ed;
bool start Goal;

doubl e gX, gv;

string answer;

doubl e gate_size = 1.32;
doubl e gap_tol = 0.4;
double diff_tol = 0.7;
double min_val = 0.8;
bool turnOnMotors = true;
/* Get scenario - (real

if (sim==true)

Threshol d for average distance of obstacles

Maxi mum speed al | oned
Threshol d distance for obstacl e avoidance node
Limt of distance from obstacl e when robot unable to nove

Array for

Tol erance | evel
Used for read-think-act

passing | aser data

| oop

for stopping when goal

reached

Di stance tol erance reduction when passing through gate

Obst acl e avoi dance strategy
Fal se => steer towards maximum reading :
True => steer away from m ni mum readi ng

Cbstacl e avoi dance t ool

Fal se => sonars :

True => | asers

Whether a simulator is being used

True => sinulations :

Start co-ordinates -

Fal se => real

for

Di stance travel | ed each cycle

Whet her goal
co-ordinates for
User input for whether goal
Size of gate robot nust pass through
Tol erance for accuracy of
Tol erance for difference between the two highest
M ni mum val ue of highest difference for goal

Goal

11

Wor | dReader readwWr !l d("sinpled4.world"); //

readwWrl d. get Start Coords();

X

y
z

z

cout << "Goal

ci

= readWorl d. xVval ;
= readWrl d.yval ;
= readWrl d. zVal ;

=z * (MPl / 180);

n >> answer;

if (answer == "y")

Il
Il

or simulation) and set paranmeters */

If using sinulator

robot

simul ated robot

read fromworld file
co-ordi nates are known (for sinmulated robots)
sinul ated robots
co-ords known

| aser gate size estinmation

| aser readi ng changes
recogni tion

Create object for reading world file
Get starting co-ordinates fromworld file

Set start co-ordinates

/1 Convert degrees to radians for orientation

co-ordi nates known? (y/n)\n";

Il

1f goal co-ords known

99

cout << "lInput goal x co-ordinate\n"; Il Get goal from user
cin >> gX;
cout << "lInput goal y co-ordinate\n";
cin >> gv;
start Goal = true;
/1 Robot must discover own goal
start Goal = fal se;
}
}
if (sim==fal se) /1 Using real robot
startGoal = false; /1 Robot must discover own goal
gX=gY=x =y =2z =0; /1 Start and goal positions not needed

/* Create an instance of a Robot called taylor */

Robot taylor(x, y, z, startGoal, gX gY, nmaxSafeSpeed, minDistTol);
tayl or. connect (argc, argv); /1 Connect to specified host or port
Playerdient rb(host, port); /1 Create instance of Playerdient
PositionProxy pp(&b, 0, "a); /1 Create instance of PositionProxy
Sonar Proxy sp(&b, 0, "r'); /1 Create instance of SonarProxy
LaserProxy Ip(&b, 0, "r'); /1 Create instance of LaserProxy

if (Ip.access I="r") /1 Check | aser swi tched on

cout << "cannot read fromlaser\n";

exit(-1);

tayl or. position(&pp);

/* maybe turn on the motors */
if (turnOnWobtors && pp. SetMbtorState(1))

exit(1);

cout << "Connected on port "<< port<<"\n";

for (53)
{
if (rb.Read())

exit(1);

if (count9d0 == 0)
{

tayl or. get Coords(); /1l Find robot's current

if (taylor.reach_goal == true)

/1l Stopping criteria
cout << "Stopping at goal" << "\n"; // \hen goal is reached
cout << "Tine was " << count/10 <<"\n";
exit(1);

}

distTravel led = sqrt(pow(taylor.xpos - x, 2) + pow(tayl or.ypos -
/lcout <<"Distance travelled this cycle " << distTravel led <<"\
x = tayl or.xpos; Il Set co-ords ready for next cycle

y tayl or.ypos;
if (obsTool == false) Il Using sonars as the sensors
//cout << "Using sonars \n";
tayl or. get Sensor I nfo(sp.ranges, obsMethod, false, false);
}
if (obsTool == true) /1l Using lasers as the sensors
{
//cout << "Using lasers\n";
for (int i =0; i < |p.scan_count; i++)
{
scan_data[i] = Ip[i];
}
#i f def AVERAGE_LASER_METHCD
cout << "Using averaged |aser readings \n";
tayl or.getLaserArray(scan_data, obsMethod, false);
#endi f
#i f def SI NGLE_LASER_METHOD
cout<< "Using single |laser readings \n";
tayl or. get Sensor | nfo(scan_data, obsMethod, true, false);
#endi f
}

100

/1 Work out distance travelled and get sensor readings every second -

/1 Links created robot with PositionProxy and sets the odonetry

(runs at 10Hz)

co-ordinates

Y, 2));

n

/1 Process 8 sonar readings

/1 Process 8 averaged | aser readings

/1 Process 361 single |aser readings

if (taylor.mn_value > standStill Approx && count > 9 && taylor.average > avTol) // If robot isn't stuck

/* Check for obstacle */
if (taylor.mn_value < taylor.obsTol)

tayl or. obst acl eAvoi d(obsMet hod) ;
/* If no obstacles and goal known then go to goal */
if (taylor.mn_value >= taylor.obsTol && taylor.found_goal == true)

switch(startGoal)

case true:tayl or. goFi xedCoal (tol); break; /1 Coal was given at start
case fal se:tayl or. goNewGoal (di st Travel | ed, tol Dec); break; /1 Coal has been discovered
}
}
/* If no obstacles and goal not known then discover goal - (explore) */
if (taylor.mn_value >= taylor.obsTol && taylor.found_goal == false)
for (int i =0; i < |p.scan_count; i++)
scan_datal[i] = Ip[i];

}
tayl or. expl ore(scan_data, gate_size, gap_tol, diff_tol, min_val); // Use laser to look for gate

}//end if robot not stuck
}/lend of if (count%d0 == 0)
/* 1f robot is stuck */
if ((taylor.mn_value <= standStill Approx || distTravelled == 0 || taylor.average <= avTol) && count > 30)
{ cout << "average reading " << taylor.average <<"\n";

tayl or. escapeTraps();

}

count ++;
}/1 end read-think-act |oop

}//end main

101

Appendix F — Genetic algorithm code — genalg.cc

* genal g. cc
* By A M Witbrook 11th August 2005

Copyright (C) 2005 A. M Whitbrook

nodi fy it under the terns of the GNU General Public License
as published by the Free Software Foundation; either version 2

*
*

*

* This programis free software; you can redistribute it and/or
*

*

* of the License, or (at your option) any |ater version.

* This programis distributed in the hope that it will be useful,

* but WTHOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU CGeneral Public License for nore details.

*

* Enai | am04m@s. not t . ac. uk

*

K o il
*/

#i ncl ude <stdio. h>
#include <stdlib.h>

#include <string>

#incl ude <iostrean>

#include <cstdlib> /
#incl ude <fstreanp

For random nunber generation

usi ng namespace std;

const int NUVANTI GENS = 9; /1 Nunmber of antigens in the system
const int NUMANTI BODI ES = 12; /1 Nunber of antibodies in the system
const int POPNUM = 3; /1 Nunber of neppings in the genetic pool
int parent; /1 Parent code nunber

voi d get PopMatrices(string paraFi|eName); 11

voi d get Child();
voi d getParent();

Read in the popul ation of parent mapping
Produce a new nmappi ng
Sel ect a parent based on fitness

class Matrix
{
public:

doubl e parat ope_strength [NUMANTI GENS]
int fitness;

[NUMANTI BODI ES]; // Matrix el enents

/1 Suitability for breeding
Matrix(int fit);

1

/'l Constructor method

Matrix::Matrix(int fit)

/* Set global variables */

fitness = fit;

}

/* Define the mappings and put theminto an array of nmappi ngs*/
Mat ri x mappi ng1(33);

Mat ri x mappi ng2(38);

Mat ri x mappi ng3(29);

Mat ri x popul ati on[POPNUM = {mappi ngl, nappi ng2, mapping3};

102

int main(int argc, char **argv)

srand(static_cast<unsigned>(time(0)));

get PopMat ri ces("j oi ned- mappi ng. txt");
get Chil d();

voi d get PopMatrices(string matrixFil eName)

fstream matri xFil e;

matri xFile.open (matrixFileName.c_str(), ios::in);
doubl e val ue;
for (int k = 0; k < POPNUM k++)
for (int j = 0; j < NUMVANTI BODI ES; j++)
for (int i =0; i < NUVANTIGENS; i++)
matri xFile >> val ue;
popul ation[k].paratope_strength[i][j] = value;
cout << "Elenent " <<i<< " "<<j<< " value "
}
}
}
mat ri xFil e. close();
%
K o i
* Generate a child mapping from popul ation
L
*/
voi d get Child()
{
fstream chil dFile;
childFile.open ("child.txt", ios::out);
doubl e val ue;
doubl e rndil;
doubl e rnd2;
childFile.setf(ios::fixed);
childFile.setf(ios::showoint);
childFile.precision(2);
for (int j = 0; j < NUMANTI BODIES; j++)
getParent();
for (int i = 0; i < NUVANTI GENS; i ++)
rnd1l=(rand()%d00);
if (rndl == 10 || rndl == 85 || rndl == 62)
{
rnd2=(rand()%0);
rnd2 = rnd2 /10.0;
cout << "MJUTATION " << rnd2 <<" FOR ELEMENT "
val ue = rnd2;
}else
{ : .
val ue = popul ation[parent]. paratope_strength[i][j];

childFile << value << " ";

childFile << "\ n";

childFile.close();

}

voi d get Parent ()
{

doubl e random nunber;

random nunber
random nunber

(rand()9d00);
random nunber +1;

103

/1 Set random nunber seed

/1 Read in the initial mappings
/1 Produce one of fspring

Input file for initial
Open the paratope file for reading
For hol ding paratope file values
Loop through mappi ngs

Loop through antibodies

Loop though anti gens

11
11

Get value fromfile
Set val ues

<< value << "\n";

/1 Qutput file for updated natches
Qpen the file for witing

/1 For holding selected val ue
I

I

For deternining whether nutation occurs
For deternining nutation val ue

/1 Two decimal places required

/1 Loop though antibodies

Il
Il

Choose a parent based on fitness
Loop through antigens

Il
Il

CGenerate random no. between 0 and 99
Mitation at 3%
/1 Get nutated val ue

<< i << j << "\n";

/1 Wite value to file

/1l Start new |line

Il Get nunber between 0 and 99
/1 Set nunber between 1 and 100

par at ope nat ches

/1 Set value to paratope strength of parent

int startNo =
int endNo = O;

/* Select parent based on fitness */

for (int i = 0; i<POPNUM i++) /1 Loop through popul ation to assign parent
{
startNo = endNo; /1l Update start number
endNo = endNo + popul ation[i].fitness; /1 Update end nunber

//cout << "Start nunber " << startNo << " End nunber " << endNo << "\n";
if (random nunber > startNo && random nunber <= endNo)

parent = i;
}

//cout << "Randomno is << random nunber << "\n";
cout << "Parent is " << parent << "\n";

104

Appendix G —Worldreader class code—Worldreader.h

*
* Wor | dReader . h

* Worl dReader class - header and inplenentation file
* By A M Witbrook 5th July 2005

*

*
* Reads start position (X, y, z co-ordinates) directly fromthe Player/Stage "world" file
* For sinmulated robots only

* (Wrld file should have indenting renoved from p3dx-sh section)

*

Copyright (C) 2005 A. M \Whitbrook

nodi fy it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2

*
*

*

* This programis free software; you can redistribute it and/or
*

*

* of the License, or (at your option) any |ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

Enai |l : amm04m@s. nott. ac. uk

#include <stdio. h>

#include <stdlib.h>

#i ncl ude <iostreanr

#include <fstrean» // For file handling
#include <string>

usi ng namespace std;

class Worl dReader

{
public:
doubl e xVal ; /1 x-coordi nate
doubl e yVval ; /'l y-coordinate
doubl e zVal ; /1 z-coordinate

Wor | dReader (string fileNane); // Constructor

voi d get Start Coords(); /] Reads world file to get start co-ordinates
private:

fstream worl dFil e; /1 Input file variable nanme

string str; /1 Used for file reading

int |oopCounter; /1 Used when | ooping through lines of file

int length; Il Length of str

string tenp; /] Tenporary string

string tenpNum /1 Tenporary string

string firstNum /'l String x-coordinate

string secondNum /1 String y-coordinate

string thirdNum /'l String z-coordinate

int spaceCounter; /1 Used for counting space deliniter when tokenizing
int thirdLen; /1 Length of thirdNum

string fil eNane; /1 Wworld file name - passed to constructor

s

%

* Constructor method

Wor | dReader : : Wor | dReader (string fil eNanme)

{

| oopCounter = 100; /1 Initialise to sonething |arge
spaceCounter = 0;

wor | dFil e. open (fileName.c_str()); // Open the world file
}

105

voi d Wor | dReader: : get St art Coords()
{

whi | e(!worl dFile.eof())

getline(worldFile, str, "\n"); /1 Read one line
| oopCount er = | oopCounter + 1;
if (str == "p3dx-sh")

{

| oopCounter = 0; /1 1f the Pioneer type declaration found => set |oopCounter to O
}
if (loopCounter == 4) I/ Start co-ordinates are four lines down fromthis

length = str.length(); Il Get length of string holding start co-ordinates

for (int i =0; i<length; i++) // Loop through this string to tokenize
tenp = str[i];
tenpNum =t enpNum + tenp; // Build the new strings
if (tenp ==" " || i == length-1) // Look for a space as a deliniter

spaceCount er = spaceCounter + 1;
swi t ch(spaceCounter) /1 Set the three placenment variables

case 1:; break;

case 2:firstNum = tenpNum firstNum erase(0, 1); break;

case 3:secondNum = tenpNum break;

case 4:thirdNum = tempNum thirdLen = thirdNumlength(); thirdNum erase(thirdLen-1,1); break;

tenpNum = H !/ Reset the tenporary variable

}/1 end for
Y/ end if
Y1 end while
xVal = strtod(firstNumc_str(), NULL); /1l Convert the strings to doubles
yVal = strtod(secondNumc_str(),NULL); // (NB: First convert to c strings)
zVal = strtod(thirdNumc_str(), NULL);

}//end get Start Coords

106

Appendix H —Robot class user documentation

Class Robot

Author: A. M. Whitbr ook

Provides an interface to control programsatided in this report, allowing processing
of laser and sonar sensors and permitsiegeral navigation modes to be set.

include “Robot.h”

Public methods

I

al

Method Robot (doubl e x_cord, double y cord, double
z_cord, bool s_Goal, double x_goal, double
y_goal, double max_sd, double ob_tol)

Description Default constructor — creates a Robot object

Returns Void

Takesarguments. | Type Representation

x_cord Double The starting x-co-ordinate

y_cord Double The starting y-co-ordinate

z_cord Double The starting orientation in radians

s_Goal Bool Whether the goal is known:

True Goal is known
False Goal is not known

x_goal Double The goal x-co-ordinate if known

y_goal Double The goal y-co-ordinate if known

max_sd Double The maximum speed allowed in‘ms

ob_t ol Double The minimum object distance allowed

before obstacle avoidance mode is callec

M ethod connect (i nt argc, char** argv)

Description Sets the host name or port number either to the default (“loc
host” and PLAYER_PORTNUM respectively) or to that whig
is specified when the main control program is run

Returns Void

Takesarguments. | Type Representation

argc Int The number of arguments supplied to the

control program

**rargv Char pointer Points to the arguments supplied to the

control program

107

M ethod position(PositionProxy *ppc)

Description Sets the robot’s internal odometry to the supplied start co-
ordinates. (N. B. This is only necessary for simulated robots.)

Returns Void

Takesarguments: | Type Representation
*ppc Pointer to Points to the PositionProxy created in the
PositionProxy control program

Method get Coor ds()

Description Gets the robot’s current x and y co-ordinates and orientation and
passes them to the pubkpos andypos class attributes and
the privatezpos class attribute respectively

Returns Void

Takesarguments. | Type Representation

Method obst acl eAvoi d (bool m n_net hod)

Description Puts the robot into obstacle avoidance mode

Returns Void

Takesarguments: | Type Representation

m n_net hod Bool The obstacle avoidance strategy:
True : Turn away from minimum
sensor reading
False Turn towards maximum
sensor reading

M ethod goFi xedGoal (doubl e stopTol)

Description Sets the robot to head towards a goal with known co-ordinates

Returns Void

Takesarguments. | Type Representation

stopTol Double The degree to which the stopping positign
can differ from the goal position

108

own

al

ate

M ethod goNewGoal (doubl e newDi st ance, doubl e
t ol Dec)
Description Sets the robot to head towards a discovered goal with unkn
co-ordinates
Returns Void
Takesarguments. | Type Representation
newDi st ance Double The distance travelled in the last second
t ol Dec Double How much the obstacle distance toleran
should be reduced on approach to the gg
Method escapeTraps()
Description Allows the robot to attempt to free itself from collisions and
corner entrapments
Returns Void
Takesarguments: | Type Representation
M ethod expl ore(doubl e data[361], double gateSize,
doubl e gapTol, double diffTol, double
m nVal)
Description Sets the robot to wander around looking for a goal
Returns Void
Takesarguments. | Type Representation
dat a[361] Array of doubles | The array of laser readings
gateSi ze Double The size of the gate through which the
robot must pass
gapTol Double By how much the robot’s estimate of gate
size is allowed to differ from the actual gé
size
di f f Tol Double By how much the two maximum changes
in laser reading are allowed to differ
m nval Double The smallest allowed value for any
maximum change in laser reading

109

Method get Sensor | nf o(doubl e data[361], bool
m n_met hod, bool full)

Description Processes the sensor readings (both for laser and sonar). It
transfers the maximum and minimum positions to the private
class attributesax_numandni n_numrespectively. It transfers
the minimum reading and average readings to the public class
attributesmi n_val ue andaver age respectively.

Returns Void

Takesarguments: | Type Representation

dat a[361] Array of doubles | Array of sensor readings, up to a maximum

size of 361. The front 8 sonar, full 16 sonar,
8 averaged laser or full 361 laser values can
be passed. The average laser values can be
determined by calling the public

get Laser Array() method, see the tablg
overleaf.

m n_met hod Bool The obstacle avoidance strategy:

True Turn away from minimum
sensor reading

False Turn towards maximum
sensor reading

full Bool Whether a full set of 361 values is passed,

or only 8/16 values:

True 361 values are passed

False 8 or 16 values are passed
rear Bool Whether the rear sonar sensors are to be

included in the data set:

True Include rear sonar sensors

False Do not include rear sonar

sensors

M ethod st eer Robot (doubl e sd, doubl e angl e)

Description Sets the robot’s linear and angular velocities. The robot is
prevented from exceeding a set maximum linear velocity.

Returns Void

Takesarguments: | Type Representation

sd Double Linear velocity in nis

angl e Double Angular velocity in degrees

110

Method get Laser Array(doubl e data[361], bool
m n_met hod, bool full)

Description Averages the laser readings over 8 sectors, and passes t
the publicget Sensor | nf o method for processing

Returns Void

Takesarguments: | Type Representation

dat a[361] Array of doubles | The full array of 361 laser readings

m n_met hod

Double

The obstacle avoidance strategy:

True Turn away from minimum
sensor reading
False Turn towards maximum

sensor reading

hem to

g

1

full Bool Whether a full set of 361 values is passed,
or only 8 values:
True 361 values are passed
False 8 values are passed
Public attributes
Attribute Type Repr esentation
m n_val ue Double The minimum sensor reading
average Double The average of all the front sensor readings
Xpos Double The current x-co-ordinate
ypos Double The current y-co-ordinate
f ound_goal Bool Whether a goal has been found
True Goal found
False Goal not found
reach_goal Bool Whether the goal has been reached
True Goal reached
False Goal not reached
obsTol Double The tolerance value used in obstacle
avoidance mode. Represents the minimun
allowed obstacle distance
m n_num Int The position of the minimum sensor readit
onPat h Bool Whether the robot is on course for the goa
True On course for goal
False Not on course for goal
dist_Trav Double How for the robot has travelled in'ms

The class has no child classes

111

Appendix | —Antibody class user documentation

Class Ant i body

Author: A. M. Whitbr ook

This class models an antibody with attributes strength, concentration and activation

level.

include “Antibody. h”

Public methods

M ethod Ant i body(doubl e concen)

Description Default constructor — creates an Antibody object

Returns Void

Takesarguments. | Type Representation

concen double Initial antibody concentration

M ethod mat chAnti gens(int ant _array [N_ANTI GENS],

i nt domAnti gen)
Description Loops through the presenting antigen set and calculates the
strength of match to it

Returns Void

Takesarguments: | Type Representation

ant_array Array of ints An array of binary integers of size
corresponding to the number of antigensii
the system. Position in the array indicates
ID number. 0 should be used to represent
the absence of an antigen and 1 should
represent its presence.

domAnt i gen Int The ID number of the dominant antigen.

M ethod set Concentration()

Description Computes an antibody’s current concentration level

Returns Void

Takesarguments. | Type Representation

112

n

Method set Acti vationLevel ()
Description Computes an antibody’s current activation level -
(concentration * strength)
Returns Void
Takesarguments. | Type Representation
M ethod i di oTypi cEffects(int ant_array
[N_ANTI GENS], int domAnti gen)
Description Adjusts the strength of match to the antigen set by considering
idiotypic effects
Returns Void
Takesarguments: | Type Representation
*W nner Pointer to an Points to the antibody with the highest
Antibody object | strength of match after execution of the
mat chAnt i gens method.
ant Array Array of ints An array of binary integers of size
corresponding to the number of antigens|in
the system. Position in the array indicates
ID number. 0 should be used to represent
the absence of an antigen and 1 should
represent its presence.
M ethod changeMat ching (int ant_num int ant_array
[N_ANTI GENS], bool reward, double score)
Description Alters thepar at ope_st r engt h array values according to a
scalar reward and penalty system based on performance
Returns Void
Takesarguments: | Type Representation
ant _Num Int The ID number of the dominant antigen.
ant Array Array of ints An array of binary integers of size
corresponding to the number of antigens|in
the system. Position in the array indicates
ID number. 0 should be used to represent
the absence of an antigen and 1 should
represent its presence.
reward Bool Whether a penalty or reward should be
awarded:
True Award reward
False Award penalty
score Double Measure of reward or penalty to be issued

113

Public attributes

Attribute Type Repr esentation
conc Double Current antibody concentration
strength Double Current antibody strength
activation Double Current antibody activation level
par at ope_strength | Array of Array of doubles with value between 0 and 1
doubles that represents an antibody’s degree of match
to the set of antigens in the system. The
dimension of the array must equal the
number of antigens.
i di ot ope_mat ch Array of Array of binary integers that represents
binary disallowance between an antibody and the
integers set of antigens in the system. The dimension

of the array must equal the number of

antigens.

The class has no child classes

114

Appendix J —WorldReader classuser documentation

ClassWor | dReader
Author: A. M. Whitbr ook

Reads the starting x-co-ordinate, y-co-ordinate and orientation of simulated robots
from Stage “World” files that contain p3dx-sh objects. (N. B. All indenting should be
removed from the p3dx-sh declaration in the world file prior to using this method.)

include “Wrl dReader. h”

Public methods

M ethod Wor | dReader (string fil eName)

Description Default constructor — creates a WorldReader object

Returns Void

Takesarguments: | Type Representation

fil eNane String Location and name of the world file to bg

read

M ethod get St art Coor ds()

Description Gets the robot’s starting x, y and z co-ordinates direct from the
world file and passes them to the object’s publial , yval
andzval attributes

Returns Void

Takesarguments. | Type Representation

Public attributes

Attribute Type Repr esentation

xval Double Starting x-co-ordinate

yval Double Starting y-co-ordinate

zval Double Starting orientation

The class has no child classes

115

Appendix K —World file

Desc: 1 robot with player, |laser and sonar

Set the resolution of Stage's raytrace nodel in neters
#
resol ution 0.02

QU settings
#

gu

(

size [502.000 485.000]

origin [4.059 6.043 0]

scale 0.009 # the size of each bitmap pixel in neters

)

|l oad a bitmapped environnent froma file
#

bi t map

(

file "cave8. pnm gz"

resol ution 0.02

)

i nclude "p3dx-sh.inc"

create a robot, setting its start position and Player port,
and equipping it with a |aser range scanner

#

p3dx-sh

(

name "“robot 1"

port 6665

pose [3.5 4.5 0]

| aser ()

116

Appendix L — P3 DX-SH includefile (for use with world file)

define p3dx-sh_sonar sonar

(

scount 16

spose[0] [0.115 0.130 90]
spose[1] [0.155 0.115 50]
spose[2] [0.190 0.080 30]
spose[3] [0.210 0.025 10]
spose[4] [0.210 -0.025 -10]
spose[5] [0.190 -0.080 -30]
spose[6] [0.155 -0.115 -50]
spose[7] [0.115 -0.130 -90]
spose[8] [-0.115 -0.130 -90]
spose[9] [-0.155 -0.115 -130]
spose[10] [-0.190 -0.080 -150]
spose[11] [-0.210 -0.025 -170]
spose[12] [-0.210 0.025 170]
spose[13] [-0.190 0.080 150]
spose[14] [-0.155 0.115 130]
spose[15] [-0.115 0.130 90]

)

define p3dx-sh position

(
size [.445 .400]
of fset [-0.04 0.0]
shape "rect"
fiducial _id 1
obstacle_return "visible"
sonar _return "visible"
vision_return "visible"
| aser _return "visible"
p3dx-sh_sonar ()
power ()

117

