
CalcHEP

Calculator for High Energy Physics

A package for the evaluation of Feynman

diagrams, integration over multi-particle phase

space, and event generation.

A.Pukhov, A.Belyaev, N.Christensen∗

User’s manual for version 3.3.6

(19.07.2012)

Based on Pukhov et al, hep-ph/9908288

∗calchep@googlegroups.com

1

Contents

1 Preface 6

1.1 Introduction . 6
1.2 Acknowledgments . 10

2 Installation procedure 11

2.1 CalcHEP Web Site . 11
2.2 Calchep License . 11
2.3 How to get the code . 11
2.4 Compilation procedure . 12
2.5 Compilation for High Precision calculations 14
2.6 User installation and start of the CalcHEP session 15
2.7 Potential problems in compilation 16

3 Elements of the user interface 18

4 Menu system for symbolic calculation 29

4.1 Model Choice and Manipulation 29
4.2 Numerical Evaluations . 33
4.3 Process Input . 35
4.4 Squared Diagrams and Symbolic Calculation 37
4.5 Output of results and launching of the numerical calculation . 41
4.6 Switches . 42

5 Numerical session 44

5.1 Sketch of the menu system. 44
5.2 Bookkeeping . 46
5.3 Parton Distribution Functions 47
5.4 QCD coupling . 48
5.5 Breit-Wigner propagator . 50
5.6 Kinematical Functions . 52
5.7 User Defined Functions . 54
5.8 Cuts . 55
5.9 Kinematics . 56
5.10 Regularization . 57
5.11 Monte-Carlo simulation . 58

2

5.12 Event Generation . 60
5.13 Simpson Integration . 62
5.14 Two Particle Decays . 63

6 Collecting Subprocesses 66

6.1 Distribution Summation . 66
6.2 Event Mixing and LHEF . 66
6.3 N-tuples. 69

7 Batch Mode 70

7.1 Blind mode . 71
7.2 Shell Scripts . 73
7.3 Batch interface . 78

7.3.1 Structure and keywords of the bacth file 80
7.3.2 Example of the bacth file 93
7.3.3 Monitoring of the calchep batch session 96
7.3.4 Results Storage . 99

8 Particle Interaction Model Implementation 100

8.1 Independent Parameters . 100
8.2 Dependent Parameters . 101
8.3 Particles . 103
8.4 Interaction Vertices . 106
8.5 External functions and libraries. 109
8.6 Propagators . 110
8.7 Ghost and Goldstone fields propagators 111

9 Tools for model implementation. 114

9.1 The SLHAplus package . 114
9.2 Effective Higgs γ-γ and glu-glu interactions. 117

9.2.1 Construction of effective vertexes. 117
9.2.2 QCD corrections to hγγ 118
9.2.3 QCD corrections for h-glu-glu 118

9.3 LanHEP: automatic generation of models. 119
9.4 FeynRules . 122

3

10 CalcHEP as a generator of matrix elements for other pack-

ages. 123

10.1 Choosing of model . 123
10.2 Setting of parameters and calculation of constraints. 124
10.3 Testing of particle contents. 125
10.4 Decay widths and branching fractions. 125
10.5 Compilation of new processes. 126
10.6 Calculation of matrix elements. 127

11 CalcHEP output for Reduce, Mathematica and Form 129

11.1 General structure . 129
11.2 Reduce examples . 131
11.3 Mathematica examples . 133
11.4 Form . 135
11.5 Reduce program . 135

Appendix 140

A LATEX output 140

B Self-check of the CalcHEP package 140

B.1 Check of the built-in symbolic calculator 141
B.2 Comparison of results produced in two different gauges 141

C Ghost fields and the squared diagram technique for the t’Hooft-

Feynman gauge 142

C.1 The problem . 142
C.2 Incoming and outgoing ghosts 143
C.3 Massless vector-particle case 146
C.4 Summation of ghost diagrams in CalcHEP 146
C.5 Gauge symmetry and cancellations 148

D Feynman rules in CalcHEP 149

D.1 Lorentz part of diagram . 149
D.2 Color factor . 150
D.3 Common factors. 152

4

E Examples of model realization. 152

E.1 Implementation of QCD Lagrangian 152
E.2 Neutrino as a Majorana fermion 155
E.3 Leptoquarks . 158

F Color string basis. 159

G Distribution functions and beam spectra 160

G.1 Backscattered photon spectrum 160
G.2 Weizsaecker-Williams approximation 160
G.3 ISR and Beamstrahlung . 161

H PDT - Particle Distribution Tables in CalcHEP. 163

H.1 CTEQ and MRST parton distributions 163
H.2 Format of parton distribution tables. 165

I Monte Carlo phase space integration 167

I.1 Parameterization of multi-particle phase space 167
I.1.1 Parameterization via decay scheme 167
I.1.2 Polar vectors . 169
I.1.3 Smoothing . 170

I.2 Adaptive Monte Carlo integration package Vegas 172
I.2.1 Importance sampling 172
I.2.2 Stratified sampling . 173

I.3 Generation of events . 173
I.4 Format of event file. 174

J Table of exit codes 176

5

1 Preface

1.1 Introduction

CalcHEP[1] is a package for the automatic calculation of elementary par-
ticle collisions and decays in the lowest order of perturbation theory (the
tree approximation). The main idea of CalcHEP is to provide an interac-
tive environment where the user can pass from the Lagrangian to the final
distributions effectively with a high level of automation.

Other packages created to solve similar problems are GRACE[2, 3, 4],
HELAS[5], CompHEP[6, 7], FeynArts/FormCalc[8, 9, 10], MADGRAPH[11,
12], HELAC-PHEGAS[13, 14, 15], O’MEGA[16], WIHIZARD[17], and SHERPA[18,
19].

The interactive session of CalcHEP is graphical and menu-driven and
guides the user through the calculation by breaking the calculation up into
a series of steps. At each step, CalcHEP presents the user with the available
options allowing him/her to control the details of their calculation in an
intuitive way. Moreover, at each menu, contextual help is available which
explains the details of the current choices.

The batch session of CalcHEP is controlled by a set of scripts which
perform common tasks noninteractively. After initializing the desired calcu-
lation, the user runs one of the scripts in the background. In some cases,
parallelization is also supported.

Many models of particle interactions have been implemented in CalcHEP.
Among them are the minimal supersymmetric extension of the standard
model (MSSM)[20, 21], the next to minimal supersymmetric extension of
the standard model (NMSSM)[22], the cp violating minimal supersymmetric
extension of the standard model (CPVMSSM)[23], Little Higgs Models [24], a
Lepto-quark model [25], a Technicolor model[26], a Higgsless Model[27, 28],
and models with extra-dimensions [29, 30, 31, 32, 33, 34]. Some of these
models are available on the CalcHEP website for the users convenience.

A new model of particle interactions is implemented into CalcHEP by
writing a set of pure text model files which contain all the details of the model
including the properties of its particles, parameters and vertices. Although
it is possible to do this by hand (especially for simple models), new models
are typically implemented using a dedicated implementation package such as
LanHEP[35] or FeynRules[36] which automatize the process of calculating the

6

Feynman rules and writing the CalcHEP model files. This can be especially
important for models with a large number of new particles and complicated
Lagrangians.

The CalcHEP package consists of three parts which perform the symbolic,
numerical and batch calculations. The first two parts are written in the C
programming language. The symbolic part produces C codes for squared
matrix elements which are then used in the numerical calculations. The last
part is written in Perl. It calls the routines of the first two parts and collects
the results to obtain final cross sections and events for multichannel processes
typical of modern collider physics.

The symbolic session of CalcHEP enables the user to, interactively:

• load a new model of particle interactions.

• modify a model of particle interactions.

• check a model for sytax errors.

• read parameter information from an SLHA file[37, 38].

• calculate dependent parameters.

• calculate decay widths and branching ratios.

• choose between Feynman and unitary gauge.

• choose a collision or decay process by specifying the incoming and out-
going particles.

• specify particles exclusions for the diagrams.

• generate Feynman diagrams.

• display Feynman diagrams.

• generate LATEX output for the diagrams.

• remove particular diagrams from the calculation.

• generate and display the squared Feynman diagrams.

7

• remove particular squared diagrams from the calculation.

• calculate analytic expressions for the squared diagrams using the built-
in symbolic calculator.

• export the resulting squared diagram expressions to Reduce , Mathe-
matica or Form format for further symbolic manipulations in those
packages.

• generate optimized C codes for the squared matrix elements.

• compile the generated code.

• launch the resulting numerical session.

• generate numerical libraries of squared matrix elements for other pack-
ages.

The numerical session of CalcHEP enables the user to, interactively:

• convolute the squared matrix element with structure functions and
beam spectra. The CTEQ and MRST parton distribution functions,
the ISR and Beamstrahlung spectra of electrons, the laser photon spec-
trum, and the Weizsaecker-Williams photon structure functions are
available[39] for muons, electrons and protons. Linking with LHAPDF[40]
is also supported.

• modify physical parameters (such as total energy, coupling constants,
masses etc.) involved in the process.

• set the polarization of incoming massless particles.

• set the QCD scale for the evaluation of the QCD coupling constant
(and optionally its running) and for the parton distribution functions.

• (automatically) calculate particle widths including both 1->2 and 1->3

decay processes.

• apply various kinematical cuts.

8

• define the kinematic scheme (phase space parameterization) for effec-
tive Monte Carlo integration.

• introduce a phase space mapping in order to smooth the sharp peaks
of a squared matrix element or of structure functions.

• perform a Monte Carlo phase space integration by use of Vegas.

• generate unweighted events.

• display distributions for various kinematic variables.

• create graphical and LATEX output for histograms.

• save the histogram data to file for further analysis and/or plotting by
gnuplot, PAW or Mathematica.

Most of the features of the symbolic and numerical sessions are supported
in the batch session. The instructions for the batch computation are written
in a text file. The batch interface reads the instructions and performs them
in the background, noninteractively. The batch session enables the user to:

• perform the symbolic and numerical calculations which are available in
the interactive mode.

• view the results of the calculation’s progress via a series of html pages.

• perform the calculations in parallel on a multicore machine or on a
computer cluster.

• combine events from multiple production and decay events.

• write the final events to an LHE file[41] for further processing.

• perform scans over multiple physical parameters.

9

1.2 Acknowledgments

The CalcHEP package contains codes written by the CompHEP group. We
would like to thank to V.Ilyin, D.Kovalenko, A.Kryukov, V.Edneral, A.Semenov
for permission to use their code in CalcHEP.

During the last decade, much of the CalcHEP development was motivated
by the development of the micrOMEGAs package[42, 43] which was done by
A.Pukhov in collaboration with G.Belanger,F.Boudjema, and A.Semenov.
Many new models for CalcHEP were implemented as part of this collabora-
tion. The work of A.Semenov developing the LanHEP program has been cru-
cial for CalcHEP. We are very thankful to G.Belanger, F.Boudjema,A.Semenov
for this collaboration. This work was supported by PICS-397 of CNRS Calcul
en physique en des partiqules.

We would also like to thank A.Datta and K.C.Kong for numerous sug-
gestions, discussions and testing of CalcHEP as well as to Patrik Svantesson
recent help debugging help.

For the last two years, A. Pukhov’s work on CalcHEP has been supported
by the Royal Society grant JP090598.

N. Christensen has been supported by the US National Science Founda-
tion under grants PHY-0354226 and PHY-0705682 and ???(PITT-PACC)

10

2 Installation procedure

2.1 CalcHEP Web Site

The CalcHEP code and manual can be found at the following Web site:

http://theory.sinp.msu.ru/~pukhov/calchep.html

2.2 Calchep License

Non-profit Use License Agreement

This Agreement is to be held between the Authors of the CalcHEP program
and any Party which acquires the program. On acquiring the program the
Party agrees to be bound by the terms of this Agreement.

1. This License entitles the Licensee (one person) and the Licensee’s re-
search group to obtain a copy of the source code of CalcHEP and to
use the acquired program for academic research and education or other
non-profit purposes within the research group; or, it entitles the Li-
censee (a company, organization or computing center) to install the
program and allow access to the executable code to the members of the
Licensee for academic research and education or other non-profit use.

2. No user or site will re-distribute the source code or executable code to
a third party in the modified form. Any re-distribution must provide
the current licence for users.

3. This License does not permit any commercial (profit-making or pro-
prietary) use or re-licensing or re-distributions. Persons interested in a
for-profit use should contact the Authors.

4. The Authors of CalcHEP do not guarantee that the program is free of
errors or meets its specification and cannot be held responsible for loss
or consequential damage as a result of using it.

2.3 How to get the code

If you agree with the license above, you may download the CalcHEP code
from the CalcHEP web site. The current filename is

11

calchep 3.3.6.tar.gz

which corresponds to the current CalcHEP version 3.3.6.
The next step is to unpack this file by doing

gtar -xzf calchep 3.3.6.tar.gz

As a result, a directory named calchep 3.3.6 will be created. Below we shall
refer to this directory as $CALCHEP1. This directory contains the following
subdirectories:

• c sources/ which is used for the source codes of the CalcHEP package.

• lib/ which is used for the libraries generated during the CalcHEP
compilation.

• bin/ which contains the CalcHEP executable scripts and binary files.

• include/ which contains some header files.

• pdTables/ which contains tables of partons distribution functions.

• help/ which contains text files used in the interactive session for the
contextual help.

• utile/ which contains auxiliary routines which are described in the
utile/README file.

• models/ which contains two realizations of the Standard Model in
CalcHEP’s format, one with a full and another with a diagonal CKM
matrix.

• work/ which is a used to initialize a directory for the users calculations.

2.4 Compilation procedure

In order to compile the CalcHEP source code you need a C compiler, the
X11 graphics library and the X11 include files. The compilation is launched
by running

1CalcHEP scripts automatically set the environment variable CALCHEP which contains
the path to the CalcHEP root directory $CALCHEP.

12

gmake

from the calchep 3.3.6 directory. CalcHEP Makefiles are written for
gmake. If the gmake command is absent on the users computer then make
should also work.

If the compiler is detected and the sources are compiled successfully you
will see the message:

"CalcHEP is compiled successfuly and can be started "

Otherwise the corresponding error message is printed on screen. See Sec-
tion (2.7) for a discussion of possible problems. The size of the installed
package is approximately 5Mb. To clean all the files created during compi-
lation and any files created in calchep 3.3.6/work/, the user can issue the
command

gmake clean

This command asks whether the user would like to delete the FlagsForSh

file which contains user modifiable compiler names and compiler flags. The
user may choose to keep this file if he/she wishes to use it in subsequent
compilations.

Compilation tuning. The CalcHEP compilation procedure consists of
two steps. During the first step, CalcHEP looks for compilers and com-
piler flags. The results are written in the FlagsForSh file in the form of bash
assignment instructions. For instance:

CC=gcc

CFLAGS="-g -signed_char -Wall"

If the resulting parameters satisfy the CalcHEP requirements then the file
FlagsForMake, which contains the same assignments, but written in make
format is created. This file is included in all Makefile files used during
CalcHEP compilations. In this way, the user can tune the file FlagsForSh to
fit his/her computing environment and recompile CalcHEP. The FlagsForSh
file contains comments which explain the available parameters. The option to
save the FlagsForSh file during the gmake clean procedure is implemented to
save the users modifications, if desired, for the recompilation. The command

gmake flags

13

generates the FlagsForMake file and stops.
Both C and Fortran compilers are defined in FlagsForSh. The For-

tran compiler is not used for CalcHEP compilation, but it can sometimes
be required for compilation of programs used by CalcHEP interaction mod-
els. For example, the CalcHEP implementation of the MSSM needs either
SuSpect, Isajet or SoftSUSY to calculate the particle spectrum. All of these
programs require a Fortran compiler. So, although CalcHEP does not re-
quire a Fortran compiler, some problems are expected in some models in the
absence of a Fortran compiler.

2.5 Compilation for High Precision calculations

By default CalcHEP uses the double numerical type to store the initial
and intermediate parameter values and double precision functions to work
with them. The user can, optionally, choose to compile CalcHEP for high
precision calculations.

The long double type is part of the C99 standard and realized on all
modern C compilers, however, one has to note that, usually, the long

double type is implemented with 80 bit precision. In this case, calculations
will be as fast as with the standard double type, but the increase in preci-
sion is not significant. To enable the long double type, the compiler option
-D LONG needs to be added to the FlagsForSh file and CalcHEP needs to be
recompiled. If CalcHEP has already been compiled, gmake clean needs to be
run first, but FlagsForSh should be kept. If CalcHEP has not been compiled
yet, gmake flags should be run first, in order to create FlagsForSh.

The Intel C compiler has a Quad type (quadruple precision) for 128 bit
real numbers. To use this type in CalcHEP calculations, the compiler option
-D QUAD has to be added to FlagsForSh. One should note that, currently,
only the Intel compilers support Quad type and that the Intel compilers re-
quire further options. Here is an example of the CFLAGS line of FlagsForSh
for the Intel compiler:
CFLAGS="-D_QUAD_ -fPIC -fsigned-char -Qoption,cpp,--extended_float_type"

To implement other numeric types, the user should edit the file include/nType.h.

14

2.6 User installation and start of the CalcHEP session

After compilation of the CalcHEP package, the user should install a work
directory where they perform their calculations. This is created with the
mkUsrDir script which takes as its (only) argument the directory name where
the user would like to do his/her calculations.

./mkUsrDir <dir.Name>

The directory name can include path information as appropriate. Here is
an example that creates a work directory named work in the user’s home
directory:

./mkUsrDir ~/work

The user can create several work directories for different calculations if they
like. The mkUsrDir script will create the directory <dir.Name> and copy or
link the following directories and files to it:

• bin is a symbolic link to the $CALCHEP/bin directory and contains all
the scripts and binaries required for calculations with CalcHEP.

• models is where the particle interaction model files belong. It is initial-
ized with the default models contained in $CALCHEP/models, but the
user can add further models to this directory.

• tmp is where CalcHEP stores temporary files during symbolic calcula-
tions.

• results is where the output of the symbolic session is written. In
particular, this is where the symbolic session creates the numerical
code n calchep for the user to perform their numerical calculations.

• calchep.ini is a text file which allows the user to specify his/her pref-
erences for the graphical user interface. Among the options available
in this file are the text font, whether to use color or black and white
and whether to use a sound to signal certain events.

• calchep is the shell script which is normally used to start the symbolic
session. It is invoked as ./calchep.

• calchep batch is the shell script which is normally used to start a
batch session. It is invoked as ./calchep batch <batch.file> where

15

<batch.file> is the name of the file which contains the batch instruc-
tions. An example batch file is stored in $CALCHEP/utile/batch file.
The user can copy it and modify as necessary for their calculation.
When run, the batch program creates the following directories:

– Processes is where the binaries for the individual processes are
generated and stored and where the numerical calculations are
performed.

– Events is where the event files (in LHE format) and distributions
are stored.

– html is where a system of html files are stored that inform the
user of the progress and results of the calculation. This directory
also contains a rich set of help files which explain the details of
how to use the batch system. These files can be opened in the
users web browser. The file html/index.html contains links to
all the other html files.

2.7 Potential problems in compilation

X11: The most frequent compilation problem is due to the absence of the
X11 include files on the user’s computer. Usually, these files are stored in the
directory /usr/include/X11/ , but CalcHEP checks other locations as well.
If the X11 header files are not found, CalcHEP still compiles, however, it
only runs in non-interactive mode. If the user attempts to launch ./calchep

in this case, it will immediately close and print the following error message
to the shell

Error: You have launched the interactive session for a version

of CalcHEP that has been compiled without the X11 library.

Presumably, the X11 development package is not installed on

your computer.

Nevertheless, all the non-interactive functionality, including the batch ses-
sion, should still work. If the user would like to use CalcHEP in interactive
mode, he/she should install the following additional package:

libX11-devel for Fedora/Scientific, Darwin(MAC)

libX11-dev for Ubuntu/Debian

xorg-x11-devel for SUSE

16

After installing the X11 development libraries, the user should recompile
CalcHEP by issuing the commands:

gmake clean

gmake

When gmake clean asks whether to remove FlagsForSh, the user should
answer yes, since CalcHEP needs to regenerate it with the X11 library infor-
mation.

Limits on size of texual strings. Some CalcHEP models need very long
lines in the model files for their implementation. Typically, this happens
when the model is generated automatically by LanHEP or FeynRules. Al-
though some of the dependent parameter definitions could, in principle, be
split over several lines, these packages write the entire expression to a single
line. When the line is too long for the interactive session of CalcHEP, it will
print the following error message to the shell:

Error in model file ./models/******

Length of record exceeds the maximum defined by

the parameter STRSIZ=4096

which is defined in c_sources/chep_crt/include/syst.h

The user can solve this problem by using the compiler option -DSTRSIZ=<needed number>

where <needed number> is the line length required by the model. This option
should be set in the FlagsForSh file and CalcHEP should be recompiled:

gmake clean

gmake

However, this time, FlagsForSh should not be removed.

17

3 Elements of the user interface

In this section, we would like to discuss the general elements of the CalcHEP
graphical user interface. Among these elements are the on-line help, the
menu, messages, the string editor, the table editor, the diagram viewer and the
plot viewer. The user can control them using the Arrow keys, the Enter key,
the Esc key2, the Backspace key, the PgUp/PgDn3 keys and mouse clicks 4.

Additionally, the user can control whether colors and sounds are used and
can choose the font used in the graphical user interface. The user can set
all of these preferences by editing the calchep.ini file located in his/her work
directory. This file contains three lines, one for each of these settings. The
color and sound are set by simply toggling between on and off. The font is
set by specifying the full font string of the desired font. Other fonts available
on the users system can be obtained by the command xlsfonts, however,
only non-proportional fonts should be used for CalcHEP. We recommend
fonts from the Courier family. The default value should give the user some
guidance.

1. On-line Help. During interactive symbolic and numerical sessions, the
user can press the F1 key to be shown context sensitive help. This help is in
the form of a textual message explaining the currently available options to
the user. If the text is longer than can be seen at one time in the graphical
user interface, there will be a PgDn symbol in the bottom-right corner of the
help screen. By pressing the PgDn key (or by clicking on the PgDn symbol),
the user can advance the text to the next page. The user can close the help
window by pressing the Esc key or by clicking the asterisk in the top-left
corner of the help screen.

2. Menu. The details of a calculation in CalcHEP are controlled by a
series of menus which allow the user to set the properties of the calculations.
These menus appear on the right side of the graphical user interface as a
vertical list of the available options (see Fig. 1.) The current menu item is

2Use the ’Ctrl [’ sequence if the Esc key is missing on your keyboard
3On some keyboards Prev and Next replace PgUp and PdDn.
4CalcHEP is only sensitive to the release of the left mouse button. It is not sensitive

to the press of the mouse button.

18

highlighted and the user can move between the items by pressing the Up and
Down keys or by clicking on the desired menu item with his/her mouse. Once
the desired menu item is highlighted, the user can activate it by pressing the
Enter key or by clicking on it again with the mouse.

Figure 1: An example of the CalcHEP graphical user interface with a menu
displayed.

If the menu is too long to fit in the graphical user interface, PgUp and/or
PgDn will appear at the respective top and/or bottom of the menu. The user
can scroll to the other available menu items by pressing the PgUp/PgDn keys
or by clicking on the PgUp/PgDn symbols on the menu.

As the user’s calculation progresses and he/she moves through the menus,
he/she can always return to a previous menu by pressing the Esc key or by
clicking on the < symbol at the top-left corner of the menu border.

When a menu is present, CalcHEP is also sensitive to the Function keys
F1, F2,..,F10 5. A list of currently active Function keys is displayed at the
bottom of the graphical user interface and depends on the currently active

5On Macintosh operating systems these keys can be activated within CalcHEP by
holding the Fn key down while pressing them.

19

menu. The typical Function keys that are available are:

F1- Help : displays a help message about the highlighted menu item.
F2- Manual : displays information for using the graphical user interface.
F3- Models : displays the current model of particle interactions.
F4- Diagrams : displays the Feynman diagrams for the current process.
F6- Results : displays and allows the user to delete the output files.
F9- Ref : displays the CalcHEP website, the required citation for

: using the CalcHEP package, and other acknowledgements.
F10- Quit : quits the CalcHEP session.

The function key functionality can also be activated by clicking the mouse on
the function key name at the bottom of the graphical user interface. They can
also be activated by pressing the numeric key corresponding to the Function
key. For example, ’3’ will be interpreted as F3 and so on. The only caveat
is that ’0’ initiates the F10 key.

Another helpful feature of the menu is the menu search. Some menus
can be quite long. For example, some model parameter lists are much longer
than can be shown in one screen. In situations such as this, the user can
press the f, F or F̂ key and a text box will open. The user can then type the
desired menu item and press enter. The menu will immediately skip ahead
to, and highlight, the menu item matching the users string.

3. Messages. At various times, CalcHEP displays a message on the
screen. There are two kinds of messages. The first is informational and does
not require a response from the user. The informational message ends with
“Press and key”. The user can continue his/her work by pressing any key or
by clicking on any part of the graphical user interface with the mouse. The
second kind of message is in the form of a dialog box. This message ends
with (Y/N?) and the user is required to make a choice by pressing the Y or
the N key. The user can also click on the Y or the N in the dialog with the
mouse.

4. String Editor. At times (e.g. the input of a new process) the user is
required to enter a textual string. At these moments, CalcHEP provides a

20

text box where the user can enter and modify his/her text. If text has already
been entered in this text box in the past, CalcHEP will often remember this
string and present it as the default value in the text box for convenience.
If the user’s first input is a letter, number or other textual symbol, the old
string will be removed and a new string will be started. If, on the other
hand, the first input is non-textual (such as a mouse click, a tab or an arrow
key), the old string will be kept and the user will be able to modify it. To
edit this text string, the user can use the left/right arrow keys or the mouse
to move the cursor to the desired position. The Delete and Backspace keys
both remove a character to the left and move the cursor back one position
to the left. When the user is finished with his/her text string, he/she can
press enter to accept it. If the user wishes to cancel, he/she can press the
Esc key.

5. Table Editor. CalcHEP uses a table structure to store information
about the model’s parameters, particles, and vertices as well as for the cuts
and distributions of a numerical calculation. For each of these cases, one row
stores the information for one parameter, one particle, one vertex, one cut
and one distribution respectively. CalcHEP has a table editor which allows
the user to view and, at times, to modify the contents of these tables.

An example of a table can be seen in Fig. 2. The top line of a table
window displays the title of the table. Below this, the table is surrounded by
a frame box. The columns of the table are separated by vertical lines. The
first table row contains the column names and below this, the table data is
displayed. One cell (the intersection of a row and a column) is highlighted
at a time. This is the current cell and contains a cursor if the table is open
for editing. The current line number is shown in the top-right corner of the
window.

To change the position of the highlighted cell and/or the cursor, the user
can use the arrow keys, the Tab key, and the click of the mouse. Pressing
any printing symbol will enter that symbol in the cuurent cell at the cursor
position, if in edit mode. The PgUp and PgDn keys allow the user to
scroll the table up and down. The F1 and F2 keys provide help information
about the current table and the table editor respectively. Exiting the table
is achieved by pressing the Esc key.

There are some further auxiliary commands which can help the user when

21

Figure 2: An example of a CalcHEP table.

working with tables. These commands are achieved by holding down the
Control key (^) while pressing another key or by clicking on the command
label displayed on the table border with the mouse. These commands are:

• Xgoto (^X) allows the user to enter a position and then moves the
cursor to that position in the current cell.

• Ygoto (^Y) allows the user to enter a line number and then moves the
cursor to that line. Entering $ causes CalcHEP to move to the end of
the table.

• Find (^F) allows the user to enter a string or comma separated list of
strings to be searched for in the table. CalcHEP will search the table
for the search string(s) and move the cursor to the position of the next
occurance of the string(s), starting from the current position of the
cursor. If the user enters a comma separated list of strings, CalcHEP
will search for a row containing an instance of each of the strings, where
the order of the strings is not important. Spaces are matched as well
as printing characters. Pressing ^F again, after a search, will result in

22

the cursor moving, again, to the next occurance of the string. A new
search string can be entered by changing the position of the cursor first
and then pressing ^F. The original purpose of table searching was to
facilitate finding particular vertices in the vertex table, however, it is
available in all tables.

• Write (^W) allows the user to enter a filename and then writes the
contents of the current (highlighted) cell to that file. If the content of
the cell is very long then new line symbols are inserted automatically.

The above commands are available in both modes of the Table Editor and
are displayed along the bottom border of the table. The following commands
are available only if the table is open for editing and appear allong the top
border of the table:

• Clr (^C) clears the contents at the cursor position and to the right of
the cursor position in the current cell.

• Read (^R) allows the user to enter a filename and then reads the con-
tents of that file and enters it into the current (highlighted) cell. Spaces
and new-line symbols are ignored. The size of the cell is increased au-
tomatically to accomodate the new string.

• Del (^D) removes the current row of the table and stores it in the
buffer. Pressing the Enter key, creates a new row with buffer contents.

• Size (^S) allows the user to change the width of the current column.
Colunm sizes are, also, increased automatically if the user enters a
string which is too wide for the current column.

• ErrMess (^E) redisplays the most recent error message associated with
editing a table.

• One can use the Enter key to creates a new row.

6. Diagram Viewer. The Diagram Viewer is designed to display multiple
Feynman diagrams at a time. The viewer splits the window into rectangular
cells and puts one diagram in each cell. Each cell is enclosed by a frame
while the current diagram is highlighted by having a thicker frame than the

23

Figure 3: An example of the CalcHEP Diagram Viewer.

others. The index of the current diagram is displayed at the top-right of the
window along with the total number of diagrams. An example can be seen
in Fig.3.

The number of diagrams which can be displayed simultaneously depends
on the size of the window. The user can increase this number by increasing
the size of the window using his/her window manager (typically by dragging
an edge or corner of the window).

The currently highlighted diagram can be changed by using the Ar-
row keys and/or the mouse. Furthermore, the diagrams can be scrolled
up and down by pressing the PgUp and PgDn keys. The Home and
End keys move to the beginning and end of the diagrams respectively. To
move directly to the diagram with index n, the user may press the # key, type
n and press enter. Exiting the Diagram Viewer can be done by pressing the
Esc key. Alternatively, these commands can be accomplished by clicking on
the command labels located at the bottom-left of the Diagram Viewer with
the mouse.

The Diagram Viewer may, also, have some optional functions which de-

24

pend on the context. These are:

• Delete (D) which allows the user to turn off all the diagrams.

• On/off (O) which allows the user to toggle the currently highlighted
diagram between on and off.

• Restore (R) which allows the user to turn on all the diagrams.

• Latex (L) which allows the user to write all the diagrams (that are
not turned off) to file in LATEX axodraw[44] syntax.

• Ghosts (G) which displays the current diagram along with all other
diagrams which are related to the current one by replacing gauge bosons
with their associated ghosts and Goldstone bosons. This command is
only available for squared diagrams.

These commands can be invoked by pressing the key marked in parentheses
or by clicking on the label along the top-left of the Diagram Viewer window.

7. Plot Viewer. The Plot Viewer is designed to display histograms (see
Fig. 4) and continuous curves (see Fig. 5). After being launched, the Plot
Viewer displays the plot and waits for a signal from the keyboard or the
mouse. If the mouse is clicked inside the plot, the x-coordinate of the mouse
is displayed at the bottom of the window. Additionally, the value of the
function or histogram at that x-coordinate value is shown. In the case of
a two-dimensional histogram density plot, both the x-coordinate and the
y-coordinate along with the histogram height are shown.

If a key is pressed, a menu appears (see Fig. 5) allowing the user to control
some aspects of the plot as well as to export the plot data. The available
options are:

• Y-max which allows to set the maximum height of the plot.

• Y-min which allows to set the minimum height of the plot.

• Y-scale which allows whether the vertical axis should be linear or
logarithmic. However, note that the logarithmic scale is only available
if the lower limit is positive and the ratio of upper and lower limits is
greater than ten.

25

Figure 4: An example of a histogram plot in CalcHEP.

Figure 5: An example of a continuous plot in CalcHEP for a 2 → 2 process.

26

• Save plot in file which allows to save the plot data to the file
plot_#.txt where # is an integer. This file also includes example plot
instructions for gnuplot and PAW. Additionally, the file plot_#.gnu

is created which has gnuplot instructions and can be used by issuing
the command gnuplot < plot_#.gnu. The file plot_#.kumac is also
created and contains PAW instructions which can be used by issuing
the command paw -b plot_#.kumac. Alternatively, the user can load
the data, interactively, in either gnuplot or PAW.

• Math file which allows to save the plot data to the file plot_#.math in
Mathematica syntax. It can be read into a Mathematica session using
Get[<file>] where <file> is replaced with the file name and path
in parantheses. This file, also, includes example plotting commands
which the user can copy and modify to suit his/her purpose.

• LaTeX file which allows to save the plot in the form of a LATEX axodraw[44]
file. The axodraw style file is required for compilation and can be found
in the $CALCHEP/utile directory.

In the case of a two-dimensional histogram, the Plot Viewer represents the
differential cross-section of each bin by a solid black rectangle where the
height and width of the black rectangle is given by

S = 0.9 ∗ (binSize) ∗ (F/Fmax)P/2 (1)

where S is the height or width of the rectangle, (binSize) is the size of the
vertical or horizontal bins, F is the differential cross-section for that bin,
Fmax is the maximum differential cross-section in the histogram and P is a
parameter chosen by the user to achieve the best resolution. It defaults to
the value 1. If a two-dimensional histogram is being viewed, the first three
menu options are replaced with:

• S=F^P which allows to choose the scaling of the size of the rectangle
relative to the differential cross-section as described above. Large values
for P tend to increase the resolution for large histogram bins but reduce
the resolution for small histogram bins. Small values for P do the
opposite.

When finished viewing the plot, the user can exit the Plot Viewer by pressing
the Esc key.

27

In addition to using the Plot Viewer in the interactive numerical session,
the user can also view plots that have been saved to file by using the exe-
cutable plot_view located in the $CALCHEP/bin directory. This command
takes one option which is the file where the plot data has been exported as
in

$CALCHEP/bin/plot_view plot_#.txt

This is a stand-alone version of the Plot Viewer.

9. File Search Engine. When CalcHEP requests a file or directory from
the user (such as when importing a new model), it opens a text box where the
user can enter the filename. The user can enter the full file name, including
the path, or he/she can enter part of the path and end his/her text with
/*. When this is done, CalcHEP opens a menu where the contents of the
directory are listed (see Fig. 6.) The user can use the menu functionality to
choose the directory or file he/she wants, after which, the file or directory
name in the text box will be updated accordingly. This can be continued
until the desired file or directory is found. If the final target is a directory, the
user must finally remove the * and press enter to choose the directory. The
initial path can also be started with the environment variables $CALCHEP/,
$WORK/, ~/ and ~<user_name>/.

28

Figure 6: An example of the CalcHEP File Search Engine.

4 Menu system for symbolic calculation

The flow of menus in the symbolic calculation session is presented schemati-
cally in Fig. 7.

4.1 Model Choice and Manipulation

Menu 1. This menu presents a list of available models and allows the user
to choose among them for his/her calculations. Addittionally, at the bottom
of this list is the entry IMPORT MODEL which allows the user to import a new
model of particle interactions into CalcHEP. When IMPORT MODEL is chosen,
the File Search Engine will open allowing the user to specify the directory
where the new model is stored. It will then allow the user to choose among
the models in that directory and choose a new name for the model if desired,
afterwhich the model will be imported and appear on the list of models in
this menu.

29

Figure 7: Menu flow for the interactive symbolic session.

30

Menu 2. The first item on this menu allows the user to enter a physical
process and will be explained further in Subsection 4.3.

The second item on this menu is Force Unit. Gauge and allows the
user to use Unitary gauge in his/her calculation, even if the model is imple-
mented in t’Hooft-Feynman gauge. Generally, we recommend to use t’Hooft-
Feynman guage, whenever possible, as the ultra-violet cancellations between
diagrams are much better in this case. Further information can be found in
Section C.

The third item on this menu is Edit Model and allows the user to view
and modify the current model and will be described further when we discuss
Menu 3 below. We, also, note that after the user reaches Menu 5 (where a
process is entered), he/she can still view the model by pressing the F3 key
but cannot modify it.

The fourth item on this menu is Numerical Evaluation and allows the
user to view the value of the dependent variables as well as the masses,
widths and branching ratios of the particles. Further details can be found in
Subsection 4.2.

The final menu item is Delete model which removes the current model
and returns CalcHEP to Menu 1 where a new model can be chosen. Before
removing the model, a warning dialog appears and allows the user to cancel
the model deletion.

Menu 3. The model details are stored in five text files located in the
models subdirectory of the users work directory. These model files can be
edited with any text editor. However, the user must not include any Tab

symbols and must keep the column structure of the file unchanged. We
recommend that the user take advantage of the built-in model editor which
can detect mistakes in the user’s input.

This menu items appearing for this menu are:

• Parameters : Edit the independent parameters of the model.

• Constraints : Edit the dependent parameters of the model.

• Particles : Edit the particle properties of the model.

• Vertices : Edit the Feynman interaction vertices of the model.

31

• Libraries : Edit the prototypes for external functions and the external
libraries which should be linked to the numerical code.

• RENAME : Edit the name of the model.

• CHECK MODEL : Checks whether the model passes a set of tests described
below.

The detailed format and requirement for these files is described in Section 8.
An explanation of the Table Editor which is used to modify the model files
can be found in Section 3.

When the user is satisfied with his/her modifications, he/she can press
the Esc key. When this occurs, CalcHEP first asks whether the user would
like to save his/her modifications. If the user answers N, CalcHEP returns
to Menu 2 and the modifications are lost. If, however, the user answers Y,
CalcHEP first performs the following series of tests on the model (which can
also be initiated by choosing the CHECK MODEL menu item):

• Do all particle and parameter names satisfy the CalcHEP naming
requirements.

• Are all numbers entered correctly.

• Have all parameters been declared before they are used in any expres-
sions.

• Are all particles used in a vertex defined.

• Are the algebraic expressions correct.

• Are all the Lorentz indices correctly contracted.

• For any vertex, is its conjugate vertex included.

If all these tests are passed after pressing the Esc key and choosing to save
the model, the model is saved to disk and CalcHEP returns to Menu 2.

If, on the other hand, any of the tests are failed, CalcHEP stops the
tests after the first detected error and displays a message describing this
error along with the table and position in that table where the error can
be found. In this case, the user remains in Menu 3 and is allowed to fix the

32

mistake in his/her input. The error message can be viewed again by pressing
^E in any of the model tables. After the user fixes the mistake, he/she can
press the Esc key and try to save the model again.

4.2 Numerical Evaluations

After choosing Numerical Evaluations on Menu 2, the user is taken to
Menu 4 where numerical evaluations of the dependent parameters, masses
and widths can be done. The default independent parameters are those
defined in the model files. However, the user can change the values of the
independent parameters which are used for these numerical evaluations by
choosing Parameters on this menu. This will cause CalcHEP to display a
menu which lists all the independent parameters and allow the user to change
them one by one. Furthermore, CalcHEP displays READ FROM FILE at the
top of this menu. If the user chooses this, CalcHEP opens the File Search

Engine and allows the user to choose a file. Afterwards, it reads the file and
updates all the independent parameters used for the numerical evaluations.
This parameter file must be written in the form of two columns separated
by whitespace. The first columns must contain the parameter name and the
second column must contain the numerical value. Each parameter must be
on a separate line. Here is an example for the SM:

EE 3.1223E-01

alfSMZ 1.172E-01

SW 4.81E-01

Ml 1.777

Mtp 175

MZ 91.1884

Mh 120

These new independent parameter values are only used for the numerical
evaluations done in this menu. The default values used for other numerical
calculations (via Enter Process on Menu 2) are those defined in the model
files.

Once the user is satisfied with the values of the independent parameters,
he/she can initiate the numerical evaluation of the dependent parameters
by choosing All Constraints. By default, CalcHEP will only calculate the
independent parameters up to and including any dependent masses. If the

33

user would like further independent parameters calculated, he/she can add
the keyword %Local! to the dependent parameter definitions. CalcHEP will
then calculate all independent parameters up to %Local!. An example of how
to include the %Local! keyword is:

Constraints

Name | Expression |

.............................

%Local! | |

where the line with the ... represents a list of dependent parameter defini-
tions.

The calculated dependent parameters will appear in a menu which the
user can scroll through. The user can also choose one of the dependent
parameters in this menu in order to view its dependence on the independent
parameters. This is accomplished by displaying another menu that allows
the user to choose the independent parameter and then choose the beginning
value, the ending value and the number of points to evaluate. The results
will be plotted on screen in the Plot Viewer.

The final menu item of Menu 4 is Masses, Widths, Branch.. This item
will bring up a new menu which lists all the particles in the model. Choosing
any particle in this menu will cause CalcHEP to calculate its mass (if de-
pendent) as well as its width and branching ratios (if any) and display them
onscreen along with other particle information. Additionally, the user may
choose ALL PARTICLES at the top of this menu which will cause CalcHEP to
calculate all the dependent masses, widths and branching ratios and write
them in a file in the results subdirectory of the work directory with the
filename decaySLHAN.txt where N is an integer. The format of this file fol-
lows the SLHA[37] convention and should be suitable for other programs that
follow this convention.

When calculating the decay widths and branching ratios, CalcHEP first
calculates the contribution from 1 → 2 decays. If the resulting width is
zero, it then calculates the contribution from 1 → 3 decays. If still zero,
it calculates the contribution from 1 → 4 decays. However, if the model
is defined in terms of an SLHA file and that file contains the widths and
branching ratios, CalcHEP does not calculate them, but uses the values
specified in the SLHA file.

34

Figure 8: Example of the input of a process in the interactive symbolic
session.

4.3 Process Input

After choosing Enter process on Menu 3 the user is presented with the
Process Input screen (see Fig. 8) where he/she can enter the physical pro-
cess he/she would like to calculate. At the top of this screen, CalcHEP dis-
plays a list of the model particles. Each entry contains the particle name
followed by the antiparticle name in parentheses and ends with the full de-
scriptive name for the particle. If the list of particle is too long to fit on the
screen, the user may press the PgUp and PgDn buttons to view the other
particles.

Below the particle list, CalcHEP displays the prompt Enter process:

and presents the user with a text entry box where he/she can enter his/her de-
sired process. The syntax for this entry is:

P1 [,P2] -> P3, P4 [,P5...]

where the incoming particles and outgoing particles are separated by -> and
P1...P5 are (anti)particle names. The total number of (anti)particles should
not exceed 6. For example, the input u, U -> G, G specifies the annihilation

35

of a u-quark and an anti-u-quark into two gluons.
In place of (anti)particle names, the user can enter N*x after the ->, where

N is an integer. CalcHEP replaces this with all possible combinations of N
particles and antiparticles from the X-particles list. The default is for this list
to contain all the particles and antiparticles from the model. For example,
the input u, U -> G, G, 2*x specifies the annihilation into two gluons plus
any other two particles from the model. The user can, however, limit which
particles are included in the X-particles list. If N*x is used, CalcHEP presents
the user with the text Exclude X-particles: followed by a text entry box
where the user can list any desired particle and antiparticle limitations. The
syntax for this entry is:

Exclude X-particles : P1>n1 [,P2>n2, ...]

where P1,P2,... are particle names and n1,n2,.. are quantity limits. This
instructs CalcHEP to remove diagrams with more than n1 particles of type
P1, n2 particles of type P2, and so on, in the part of the final state specified by
N*x. The specification P>0 can be shortened to P and forbids the appearance
of the particle P among the X-particles.

The user may also enter an alias for multiple particles, such as a p for the
partons in a proton, j for the particles that produce jets, or ll for leptons.
The user can use any short name he/she likes as long as it is different than
the names of the (anti)particles defined in the model. When an alias is
used in the process, CalcHEP requests its definition. For example, if the
user enters the process p,ap -> W+,b,B, and there is no p or ap defined in
the model, CalcHEP will display the prompt composit ‘p‘ consists of:

followed by a text entry where the user can specify which particles and/or
antiparticles he/she would like included in the alias definition of p. In this
example, the same is done for the ap entry. This specifies the collision of any
particles in the definition of p against any particles in the definition of ap and
producing the particles W+,b,B. Aliases can be used both for the incoming
and the outgoing particles.

When the initial state particles are massless, the user may request polar-
ized beams. The way this is accomplished is by adding the % symbol to the
end of a massless particle name. For example, entering the process

e%,E%->A,A

will cause CalcHEP to generate the code for the annihilation of polarized
e+ and e− beams to produce two photons. In the current version, we only

36

consider initial states which consist of mixture of left and right polarizations.
We do not, currently, support linear polarizations.

After the process has been entered, CalcHEP allows the user to enter any
particles he/she would like excluded from the internal lines of the diagrams.
It does this by displaying the text Exclude diagrams with: followed by a
text input box. The syntax for this entry is as follows

Exclude diagrams with : P1>n1 [,P2>n2,...]

where P1,P2,... are particle names and n1,n2,.. specify the maximum
number of internal lines that can contain these particles. In other words,
diagrams where the number of internal lines containing P1 is greater than n1

or where the number of internal lines containing P2 is greater than n2 (and
so on) will not be constructed. For example,

Exclude diagrams with : W+>1

will cause CalcHEP to only construct diagrams with zero or one W+ internal
line. The input P>0 can be shortened to P and is understood by CalcHEP to
mean that P can not appear in any internal lines. If the user leaves this text
entry blank, the full set of diagrams will be constructed.

At any time during the process entry, the user may press the Esc key to
return to the previous input and the F1 key to get process input help. After
the process entry is complete, CalcHEP generates all the Feynman diagrams
satisfying the user’s constraints. If no diagrams are allowed, CalcHEP dis-
plays a warning message and returns the user to the beginning of the process
entry to try again. If one or more diagrams are constructed, CalcHEP ad-
vances to Menu 5, which we describe next.

4.4 Squared Diagrams and Symbolic Calculation

Menu 5. This menu appears on the screen after the construction of the
Feynman diagrams along with information about the number of diagrams
and subprocesses generated.

The first menu item is View diagrams and allows the user to view a
graphical representation of the generated Feynman diagrams via the Diagram
Viewer. In addition to viewing the diagrams, as described in Section 3,
the user can remove some of the diagrams before they are squared and can
generate LATEX output for the diagrams which are not removed.

If more than one subprocess is generated, CalcHEP will first present the
user with a list of the subprocesses when he/she chooses View diagrams.

37

Each subprocess will be listed along with the number of diagrams for that
subprocess. The user can move among the subprocesses by using the PgUp and
PgDn keys or by using the mouse. If the F7 key is pressed while on this
menu, all the diagrams for the highlighted subprocess are removed. On the
other hand, if the F8 key is pressed, all the diagrams are restored for the
highlighted subprocess. If the Enter key is pressed while on this menu (or
the mouse clicks on the highlighted process), the Diagram Viewer will open
with the diagrams for the highlighted process.

We will now list some details of the visual representation of Feynman
diagrams used in CalcHEP.

• Incoming particles are drawn on the left side of the diagrams, while the
outgoing particles are shown on the right.

• CalcHEP uses dotted lines for scalar particles (spin 0), dashed lines
for other bosonic particles (spins 1 and 2) and solid lines for fermionic
particles (spins 1/2 and 3/2).

• Charged particles are represented by lines with arrows. The arrow in-
dicates the direction of the particle (not the anti-particle) propagation.

• Incoming and outgoing particles are labeled by their names at the end
of their lines. Virtual particles are labeled by their names at the middle
of their lines. If a particle is not self-conjugate, the particle’s name is
used for the labeling (not the anti-particle’s name).

• In the case of scattering processes, the first scattering particle enters
at the top of the diagram while the second scattering particle enters at
the bottom.

• CalcHEP produces only one representative diagram for a set of dia-
grams which can be transformed into one another by replacing identical
outgoing particles. For example, CalcHEP creates only one diagram
for the SM e+, e− → γ, γ process, whereas a textbook would present
two diagrams. The reason for this is that CalcHEP has not yet as-
signed the momenta in the diagrams, so the representative diagram is
sufficient.

38

• At this stage, CalcHEP does not generate diagrams with the Fadeev-
Popov ghosts or the Goldstone bosons associated with gauge symme-
try breaking. These fields are restored when the diagrams are squared.
This can be done because the vertices with the Fadeev-Popov ghosts
and Goldstone bosons are related to the vertices with the gauge bosons.
After squaring, each squared diagram with a gauge boson in it gives rise
to a set of squared diagrams with the gauge bosons replaced with the
Fadeev-Popov ghosts and Goldstone bosons as determined by the Feyn-
man rules. In some cases, there is no gauge boson vertex corresponding
to a vertex with Fadeev-Popov ghosts or Goldstone bosons (such as the
G4

0 vertex where G0 is the Goldstone boson eaten by the Z boson). In
these cases, CalcHEP produces a diagram as if the corresponding gauge
boson vertex existed (such as a Z4 vertex). After squaring, this squared
diagram simply represents the ones with the Fadeev-Popov ghosts and
Goldstone bosons as determined by the Feynman rules. (The actual
Z4 diagram is dropped while the ones with the Fadeev-Popov ghosts
and/or Goldstone bosons are kept. Further details can be found in
Sections 8.7, 8.4, and E.

• Vertices with a non-trivial color structure (for example, the four-gluon
vertex of the SM) are implemented by means of an unphysical tensor
auxiliary field. The vertices involving this auxiliary field are treated in
the same way as the Fadeev-Popov ghosts and Goldstone bosons. The
Feynman diagrams involving these auxiliary fields are not constructed
at this point. They are restored after the diagrams are squared. See
Sections 8.7, 8.4, E for further explanation.

The second menu item is Squaring and causes CalcHEP to create squared
diagrams. CalcHEP uses these squared diagrams for subsequent calculations
of squared matrix elements. See Section C for the details.

The Write down processes menu item creates the file list prc.txt

in the results subdirectory. This file contains a list of the constructed
subprocesses.

Menu 6. The View squared diagrams menu item is similar to the View

diagrams of the previous menu, however, it displays the squared diagrams.
Each squared diagram is a graphical representation of AB∗, where A and B
are Feynman diagrams constructed in the previous step.

39

We summarize some features of the squared diagrams in CalcHEP :

• CalcHEP does not construct both AB∗ and BA∗. Instead, it only
generates AB∗ and calculates its contribution to the squared matrix
element as 2Re(AB∗). This results in smaller, more efficient code.

• CalcHEP constructs only one representative of a set of squared dia-
grams which can be transformed into one another by permutations of
identical outgoing particles. The needed symmetrization for these par-
ticles is performed during the symbolic or numerical calculations of the
squared matrix element. Again, this results in smaller, more efficient
code.

• Each squared diagram represents a set of squared diagrams where some
physical particles are replaced by their associated ghosts, Goldstone
bosons and/or auxiliary fields in all possible ways according to the
Feynman rules defined for the model. This set of squared diagrams can
be viewed at this stage by pressing the G key while the desired squared
diagram is highlighted.

Just as for the diagrams of the previous menu, the squared diagrams can
be deleted by the user while in the Diagram Viewer. Furthermore, if the
squared diagrams have already been calculated, each diagram will contain
one of CALC, ZERO, Out of memory or Del. They mean, respectively, that
the squared diagram is calculated, is identically zero, the calculation ran out
of memory, or the squared diagram was deleted by the user.

The second menu item is Symbolic calculation and instructs CalcHEP to
begin the symbolic calculation of the squared matrix element using the gen-
erated squared diagrams. This is done by the built-in symbolic calculator.
During this calculation, CalcHEP displays the current status of the calcu-
lation, which includes which diagram is currently being worked on and how
many are left.

The main goal of the CalcHEP package is to generate C code that
numerically calculates the squared matrix element. The next menu item
Make&Launch n calchep, performs the symbolic calculation as described in
the previous paragraph. It then writes the C code for those squared dia-
grams, compiles it and executes the resulting interactive numerical code for
the generated squared diagrams. It also advances to the next menu.

40

The next menu item is Make n calchep which causes CalcHEP to per-
form the symbolic calculation of the squared matrix elements, write the
C code and compile it. However, in distinction to Make&Launch n calchep,
it does not execute the resulting code. Also, in distinction, it closes the
graphical user interface and performs these steps in the background. When
it is finished, it prints the message n calchep is created to stdout and
quits. The executable can be found in the results subdirectory of the
user’s work directory. A lock file is stored in the user’s work directory to
prevent CalcHEP from having multiple instances running at the same time
and interfering with each other.

The Reduce program menu item creates a version of the squared diagrams
that is formatted for the Reduce program [45]. Each squared diagram is put
in a separate file pm n.red where m is the subprocess number and n is the
squared diagram number. These files are not used further by CalcHEP ,
but can be useful when the user would like a symbolic expression for the
squared matrix element. Moreover, they can be used to check the results
of the CalcHEP symbolic calculator. CalcHEP includes some tools for
checking the symbolic calculator using Reduce . More details can be found
in Appendix B.

4.5 Output of results and launching of the numerical

calculation

Menu 7. This menu occurs after the symbolic calculations have been
performed. The first menu item is C-code which causes CalcHEP to write
C code for the squared diagrams to the results subdirectory of the work
directory. After the C code has been written, the user can execute the second
menu item C-compiler which cause CalcHEP to compile the C code and
create the executable n calchep. If the compilation is successful, it will
launch the resulting interactive numerical session which should appear on
the user’s screen. If there are problems with the linking, the user can modify
the libraries linked by using the Edit Linker menu item. Any changes made
using Edit Linker will be added to the model definition for later use. Details
of the numerical interactive session are covered in Section 5.

This menu has three more items allowing the user to export the squared
matrix element expressions to formats appropriate for other programs. Each

41

writes the expressions to files in the results subdirectory of the work di-
rectory. The REDUCE code, MATHEMATICA code and FORM code menu items
write the symbolic expressions to Reduce , Mathematica and Form for-
mats respectively. Further manipulations of the symbolic expressions can be
performed in those programs as desired by the user. The user could, for ex-
ample, sum over the squared diagrams, perform substitutions, evaluate the
expression numerically or calculate the total cross section. Using these ex-
pressions in these external programs is reasonable when the number and size
of the diagrams are small. Further details about this output can be found in
Section 11.

4.6 Switches

There are some switches which influence the results of the symbolic calculator
and C output. They are controled by a menu which can be obtained by
pressing the F5 key. The items on this menu are:

• Number of QCD colors = 3/inf : This switch has two possible val-
ues: 3 or inf. If this switch is set to 3, CalcHEP performs the usual
SU(3) quantum chromodynamic calculations including all the terms.
If this switch is set to inf, on the other hand, CalcHEP only calculates
the leading term in the large Nc expansion. This removes many inter-
ference diagrams which only contribute at higher order and reduces the
size of the code. (Of course, the numerical value of Nc is still taken as
3 in the final results.) The default is 3.

• Diagrams in C-output ON/OFF :This switch determines whether CalcHEP
writes an ascii image of the diagram in the C code of the squared dia-
grams. This can be useful when analyzing the C code. The size of the
code can be reduced by turning this off. (However, the size of the ascii
image is usually small compared to the rest of the code.) The default
is ON.

• Widths in t-channels OFF/ON:This switch determines whether CalcHEP
includes the particle width in the propagator on t-channel lines (where
there is no chance that the particle will go on shell.) The default is OFF
which means that these t-channel widths are not included. The user
may change this to ON in which case the user must also turn this feature

42

on in the Breit-Wigner menu of the numerical session described in the
next section.

43

5 Numerical session

5.1 Sketch of the menu system.

In Section 4, we described the process of generating and compiling C code
for a collision or decay process for any particle physics interaction model. In
this section, we describe how to use the resulting executable to calculate the
collision cross section or the decay width in interactive mode. In Fig. 9, we
present a schematic view of the menu system of the interactive numerical
session. An example of the first menu (Menu 1) is shown in Fig. 1. We will
now describe each of these menu items.

The first menu item is Subprocess which allows the user to choose which
subprocess to work on if more than one was generated during the symbolic
session. The current subprocess is displayed at the top of the numerical
session screen (see Fig. 1.) If a combination of the subprocesses is desired,
we direct the user to the tools described in Sections 6 and 7.

The next menu item is In state which allows to enter the momenta of
the incoming particles, their polarizations and their parton distribution func-
tions. We note that, in order to set the polarizations, the incoming particles
must be massless and the % symbol had to be used in the symbolic session
(see Section 4.3.) If this was done, the polarization can be set anywhere
between the maximum and minimum helicity value for the particle. (For
example, for a fermion, the helicity must be set between −1/2 and 1/2. For
a vector boson, the helicity must be set between −1 and 1, and so on.) The
parton distribution functions will be described further in Subsection 5.3.

The next menu item is Model parameters which allows to modify the
numerical value of the independent parameters which are used in the numer-
ical calculations. The following menu item Constraints is the same as in
the symbolic session and has been described in Subsection 4.2. However, the
QCD strong coupling GG is not included under either of these menus since it
depends on the scale of the interactions. Its value is controlled by the next
menu item QCD coupling which is described in Subsection 5.4.

The Aliases menu function is intended for declaration of alias names
joe particle sets. For example, one can define alias Jet for quarks and gluon:

Jet d,D,u,U,s,S,c,C,b,B,G
Aliases can be used for definition of phase space cuts and histograms. The
cut which contains an alias name will be checked for each particle of the set.

44

Figure 9: Schematic diagram of the menu system for the numerical session.

45

As well as a new point will be added to histogram for each particle of the
set. The Cuts menu item allows to set cuts on the Monte Carlo phase space
integration and event generation. Details of the cuts specification can be
found in Subsection 5.8. The Breit-Wigner menu item allows to modify the
behavior of the propagators for the unstable particles. Further details can
be found in Subsection 5.5. The Phase space mapping menu item opens
up into a menu with two items. They are Kinematics and Regularization

and are described in Subsections 5.9 and 5.10, respectively. They allow to
modify the mapping of phase space to improve Monte Carlo integration.

The menu item Monte-Carlo simulation allows to run the Vegas [46, 47]
Monte Carlo integration of the multiparticle phase space to determine the
collision cross section or the decay width. The Monte-Carlo simulation

menu also allows to generate kinematic distributions and generate events. It
is described in further detail in Subsection 5.11.

For 2->2 processes with fixed energies of incoming particles the phase
space integral is one-dimensional and can be integrated using traditional
Riemann approach. In this case, one can chose the 1D integration which
is the last item in the menu. This option is described in Subsection 5.13. For
the 1->2 case we have zero dimension phase space and this option allows a
fast summation over channels and calculation of branchings.

5.2 Bookkeeping

Each time any parameters are changed which affect the numerical calculation,
CalcHEP increases the session number by one and clears the statistics. The
current session number is displayed at the top of the interactive session screen.
These parameters not only include the dependent model parameters but also
include the choice of subprocess, incoming momenta, parton distribution
functions, QCD coupling and cuts. During a Vegas session, the full set of
parameters for the current session is stored in the file session.dat located
in the results subdirectory. This file changes to match the current session.
If the user quits the interactive session and restarts it later, CalcHEP will
read the parameters from the session.dat file. The user can then continue
from where he/she left off.

The full set of parameters for each session is also stored in the file prt N

where N is the session number. This file, also, contains the results of the
Monte Carlo integration. It is useful if the user would like to determine what

46

parametershe/she used in an earlier calculation and what the results were.
When CalcHEP generates events, they are stored in the file events N where
N is the session number. Moreover, distributions are stored in distr N where
N is the session number. Other results are written by CalcHEP to files with
the session number N as part of the file name and will be described in later
sections.

5.3 Parton Distribution Functions

The first items in the In state menu are S.F.1 and S.F.2 which control
the structure functions of the first and second incoming particles respectively.
Each of these menu items opens a new menu which allows to choose whether
the user wants the structure functions OFF or whether he/she wants the PDT

structure functions or the LHAPDF structure functions. The LHAPDF [40]
sets require separate installation described below. After making this choice,
CalcHEP presents the user with a list of the available structure functions and
then finally allows to choose any free parameters of the structure functions.
Only structure functions allowed for the incoming particles are listed.

Examples of the list of parton distribution functions and of setting the
properties of a LHAPDF structure function are presented in Fig. 5.3. The
PDT structure functions are stored in the directory $CALCHEP/pdTables.
CalcHEP comes with a set of PDT tables. These include structure functions
for initial state radiation (ISR) for incoming electrons, Weizsaecher-Williams
structure functions for photons and structure functions for backscattering
laser photons which are described further in Section G. Additionally, a set
of parton distribution functions for the proton and anti-proton are included
as shown on the left of Fig. 5.3. New PDT tables can be added as described
in Appendix H.

To use the LHAPDF structure functions, the LHAPDF library must be
installed and linked to the model. The way this is handled in CalcHEP is
that it comes preinstalled with a dummy version of the LHAPDF routines
which inform it that the LHAPDF structure functions are not used. When
the user installs and links the true LHAPDF structure functions, they are
used in place of the dummy version that comes with CalcHEP. The de-
sired structure functions along with the LHAPDF libraries according to the
LHAPDF instructions (see [40]).

To use the LHAPDF structure function in the CalcHEP, first of all, one

47

Figure 10: PDT structure functions(left) and LHA settings(right)

has to add
-L<path_to_lhapdf> -lLHAPDF

line to Libraries model item. It is enough to compile executable results/n_calchep,
but may be not enough to launch it. If your <path_to_lhapdf> is disposed
in system area, then problems are not expected. An executable has to know
a location of shared libraries used at time of launching of CalcHEP. Stan-
dard paths like /usr/lib or /usr/local/lib are checked by default. An
arbitrary library location can be passed to executable via environment
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_lhapdf>.
You can define this enviroment before you start to work with CalcHEP, in-
clude it to you startup file (.batchrc) or add it to ./calchep and ./calchep_batch

scripts.
In case of of adding it to ./calchep it is better to use the other variable

— LD_RUN_PATH which provides the generated n_calchep with the property
to be launched independently without setting environment variables. For
./calchep_batch run we recommend to define LD_LIBRARY_PATH variable.

5.4 QCD coupling

The value of the strong coupling constant depends on the scale of the calcu-
lation. CalcHEP runs the strong coupling constant. The parameters of this
running can be set in the QCD coupling menu and include:

• alpha(MZ) : the strong coupling value at MZ .

• nf : the maximum number of quark flavors in the running. At small
energies CalcHEP takes into account threshold effects caused by charm

48

and bottom quarks and changes nf. If nf=6 then the top quark mass
threshold is also taken into account. This is the reason mb(mb) and
Mtop(pole) are included in this menu.

• order : the loop order of the running. Choices are LO, NLO, and NNLO.

• mb(mb) : the pole mass of the bottom quark.

• Mtop(pole) : the pole mass of the top quark.

• Q[GeV] : the scale of the calculation. More details can be found below.

The QCD scale typically depends on the momenta of the particles. In
CalcHEP , it can be defined as an algebraic expression which includes floating
point numbers, model parameters and the following primitive phase space
functions:

• Sij : gives (pi + pj)
2, the invariant mass squared of particles i and j

which must satisfy i, j ≤ nin + nout.

• Mij : gives
√

(pi + pj)2, the invariant mass of particles i and j which
must satisfy either nin < i, j ≤ nin + nout or i, j ≤ nin.

• Ti : gives
√

(px
i)

2 + (py
i)

2, the transverse momentum of particle i.

• Mi : gives Mi the mass of particle i.

• Wij : gives the transverse mass of particles i and j which must satisfy
i, j > nin. The definition of the transverse mass can be found in
Section 5.6.

For example, a popular choice of scale based on the Mandelstam variables

is
√

2stu/(s2 + t2 + u2) and can be realized by the following function in
CalcHEP :

Q[GeV] = sqrt(2*S12*S13*S14/(S12^2+S13^2+S14^2))

The min and max functions can also be used with an arbitrary number of
arguments as can standard mathematical functions. Whatever function is
defined for the scale of the calculation, CalcHEP sets the minimum value as
1 GeV.

49

The last menu item in the QCD coupling menu is Alpha(Q) plot which
allows to see a plot of the strong coupling over a range of QCD scales.

When parton distribution functions are used for the initial state particles,
it is preferable to use the strong coupling constant defined in the parton
distribution function instead of the internal CalcHEP value. This can be
controlled by using the parton dist. alpha item of the QCD coupling

menu. It can take the value ON or OFF. The default is ON (the strong coupling
constant defined in the parton distribution function is used.) However, if the
parton distribution functions are not being used or if they do not define the
strong coupling constant, CalcHEP displays !ON in place of ON and uses its
own internal value of the strong coupling constant.

5.5 Breit-Wigner propagator

The propagator denominator of a particle at tree level is given by

1

p2 − m2
,

where m is the particle mass and has a pole at p2 = m2. If this pole is
inside the phase space volume being integrated over, it causes the integral to
diverge. At higher order, the propagator denominator is modified to become
[48]:

1

p2 − m2 − iΓ(p2)m
.

where Γ(m2) is the width of the particle (the inverse of the particle’s mean
lifetime). This removes the pole and renders the integral convergent. Since
the Γ(p2) terms only dominates this propagator denominator near the pole
(and is a small correction far from the pole), this propagator is well approx-
imated by replacing Γ(p2) with Γ = Γ(m2) which gives the Breit-Wigner
propagator denominator

1

p2 − m2 − iΓm
.

This is the propagator denominator used in CalcHEP. However, because we
are using a width, which comes from higher order corrections, in a tree-level
calculation, it has the potential to violate gauge invariance in the calculation
and ruin the large cancellations that sometimes occur between diagrams.

50

There are three different regimes to consider. In the first regime, the particle
is exactly on shell. In this regime the calculation is exactly gauge invariant
and there is no problem. In the second regime, the particle is off shell, but
not very far from on shell. In this regime, the process is still dominated
by the resonant diagrams and the effect of gauge invariance breaking is still
small. In the third regime, the width is not needed to regularize the integral.
So, gauge invariance can be satisfied by not including the width.

The Breit-Wigner menu allows to adjust the properties of the propaga-
tor denominators used in the phase space integrals. The first menu item is
BreitWigner range which allows to set the regions where the width is used,
by adjusting the value of R. CalcHEP then uses the width in the propaga-
tors for |p2 − m2| < RmΓ. No width is used for |p2 − m2| >

√
R2 + 1mΓ.

And, in the intermediate region, the propagator is replaced with a constant
that interpolates between the two regions. We find that the default value of
R = 2.7 leads to a difference of ∼ 0.2% in the integral of the squared propa-
gator between the modified propagator described in this paragraph and the
propagator with a constant width for the entire momentum range.

The second menu item is T-channel widths and allows to turn the width
on in the t-channel propagators. The default is to not include these since they
are not required to regularize the integration and these propagators never go
on shell. Note that, by default, the symbolic session does not include the
widths in the t-channel propagators. In order to turn this on, the user must
also turn it on during the symbolic session (see Section 4.6.)

The last two menu items (GI in t-channel and GI in s-channel) con-
trol whether CalcHEP applies another method of restoring gauge invariance
described in [49, 50]. The diagrams which do not contain the resonant prop-
agator are multiplied by the factors

(p2 − m2)2

(p2 − m2)2 + (Γm)2
(2)

And in diagrams which contain only the single power of propagator, this
propagator is replaced by

(p2 − m2)

(p2 − m2)2 + (Γm)2
(3)

expression.

51

This modification corresponds to the symbolic summation of all diagram
contributions at a common denominator expression with subsequent substi-
tution of the width term into the factored denominator. The trick allows to
keep all gauge-motivated cancellations. As a defect of the trick it should be
mentioned that the factor (2) kills contributions of non-pole diagrams in the
p2 = m2 point [51].

5.6 Kinematical Functions

CalcHEP allows a very large class of kinematic functions that can be used for
cuts and distributions. Firstly, it defines many popular kinematical functions
which we describe in this section. Secondly, it allows the user to code any
kinematical function in a C code file (see Section 5.7.) In this way, any cut
and/or distribution can be achieved.

The built-in kinematical functions are called with the syntax
Name[^,_](P1[,P2,P3...]),

where Name is one capital letter, the ^ and _ are optional (and will be de-
scribed below) and P1, P2, etc. are (anti)particles. The available functions
are:

A A(P1[,P2,...]) : gives the angle between P1 and the combined
momentum pP2+pP3+ · · ·. If only one particle is specified, as in A(P1),
the angle between P1 and the first incoming particle is returned. The
angle is given in degrees.

C C(P1[,P2,...]) : gives the cosine of the angle defined above for
A(P1[,P2,...]).

J J(P1,P2) : gives the jet cone angle between P1 and P2. The jet cone
angle is defined as

√
∆y2 + ∆ϕ2, where ∆y is the difference in pseudo-

rapidity and ∆ϕ is the difference in azimuth angle between P1 and
P2.

E E(P1[,P2,...]) : gives the energy of the combined momentum pP1+
pP2 + · · ·.

M M(P1[,P2,...]) : gives the invariant mass of the combined momen-
tum pP1 + pP2 + · · ·.

52

P P(P1,P2[,P3,...]) : first boosts into the cms frame of P1,P2[,P3,...]
and then takes the cosine of the angle between P1 (in the cms frame)
and the boost direction.

T T(P1[,P2,...]) : gives the transverse momentum of the combined
momentum pP1 + pP2 + · · ·.

Y Y(P1[,P2,...]) : gives the rapidity of the combined momentum
pP1 + pP2 + · · ·.

N N(P1[,P2,...]) : gives the pseudo-rapidity of the combined mo-
mentum pP1 + pP2 + · · ·.

W W(P1[,P2,...]) : gives the transverse mass of the particle set S =
{P1,P2,...} given by

√√√√
(

∑

i∈S

√
m2

i + (pT
i)2

)2

−
(

∑

i∈S

−→p T
i

)2

where mi and pT
i are the mass and transverse momentum respectively

of the ith particle.

For example, M(e,E) returns the invariant mass of an electron and a positron
in the final state.

The keyword Jet can be used instead of a (anti)particle name and is an
alias for a gluon or any of the first 5 quarks. If the kinematical lists the
same particle more than once, such as in the case of J(Jet,Jet) or M(e,e),
CalcHEPconstructs the kinematical variable for distinct final state particles.
So, J(Jet,Jet) means the jet cone angle of two distinct Jet particles with
different momenta and M(e,e) means the invariant mass of two electrons
with different momenta.

For some processes and kinematical variables, there are multiple ways
the final state particles can be assigned. For example, consider the process
p, p → A,A,A and the kinematical variable E(A) which could be applied to
any of the photons. Sections 5.8 and 5.11 describe how this is handled for
cuts and distributions. Here we describe the use of the ^ and _. For any
kinematic function, ^ causes the highest value to be returned while _ causes
the lowest value to be returned. For our three photon example, E^(A) returns

53

the highest of the three energies and E_(A) returns the lowest of the three
energies.

There are two additional types of kinematical variables that do not follow
the patterns described so far. The first is M12 which returns the invariant

mass of the two initial state particles
√

(p1 + p2)2. The second is user defined
kinematical variables. User defined functions always begin with U. The rest of
the name can be anything the user likes. For example, the user could define
the function xyz in which case the kinematical variable would be written as
Uxyz. Further details can be found in Section 5.7.

5.7 User Defined Functions

There are two C code functions that the user can write to modify the results
of the numerical session. The first prototype is

double usrFF(int nIn,int nOut,double*pvect,char**pName,int*pCode)

which multiplies the squared matrix element for each phase space point.
This could, for example, be used to implement a K factor to approximate
the effect of loops. If the user does not define this function, CalcHEP uses
a dummy version of this function which always returns 1.

The second function prototype is

double usrfun(char*name,int nIn,int nOut,double*pvect,char**pName,int*pCode)

which allows the user to write his/her own kinematical functions to be
used in the cuts and distributions. When the user enters U<name> for a cut
or a histogram, CalcHEP calls usrfun(<name>,...). For example, if the
user enters Ua1b2 in a cut table, CalcHEP calls usrfun("a1b2",...). It
is then the responsibility of the user to write the code that calculates the
kinematical variable and returns the value. In the absence of user code,
CalcHEP contains a dummy version of this function which prints an error
message to stderr and terminates the numerical session.

After the user writes these functions, the user must add the full path to
his/her code in the Libraries table of the model. (Details can be found in
Section 4.1.) If applicable, the environment variables $CALCHEP and $WORK

can be used as part of the path which are defined by CalcHEP. (Other
environment variables can also be used.)

54

We will now describe the other parameters of these functions. nIn and
nOut are the number of incoming and outgoing particles, respectively. pvect
is a one-dimensional array that contains the momenta of the external parti-
cles. The jth component of the ith particle’s momentum is given by pj

i =pvect[4*i+j].
The energy is the 0th component Ei =pvect[4*i] and the momentum along
the axis of collision is given by pzi =pvect[4*i+3]. pName[i] and pCode[i]

give the name and PDG code of the ith particle, respectively.
Two more functions which the user may find helpful in writing his/her code

are

int findval(char*name, double *value);

int qnumbers(char*pname,int*spin2,int*charge3,int*cdim);

The first gives the value of the model parameter specified by its name. Both
independent and dependent parameter values can be obtained in this way.
If the parameter given by name is found in the model, then findval returns
0 and fills value with the numerical value of the parameter. The qnumbers

function gives the particle’s quantum numbers. The particle is specified by
name and the pointers spin2, charge3 and cdim are filled with twice the par-
ticle’s spin, three times the particle’s charge and dimension of the particle’s
color representation. This function returns the particle’s PDG code. If the
parameter name cannot be found, it returns 0.

The $CalcHEP/utile directory contains examples of the usrFF() and
usrfun() functions which can be modified to suit the needs of the user.

5.8 Cuts

Cuts can be entered by choosing the Cuts menu item. This opens a table
where the cuts can be defined. There are four columns in this table. The first
column can contain a %, a ! or can be empty. A % means that the cut should
be ignored. A !means the inverse cut (for each particle combination). The
second column accepts a kinematical function (see Section 5.6.) The third
and fourth columns take the minimum and maximum values, respectively, for
the kinematical variable. If the third or fourth columns are empty then the
minimum or maximum limits, respectively, are not applied. These limits may
contain numerical values, model parameters, standard algebraic expressions
(including +, -, *, / and ^) and functions defined in the C math library
(such as sqrt(), sin() and cos().)

55

If the process contains identical outgoing particles, the cut is applied to
each particle combination. For example, for the process pp → AA, the cut

|!| Parameter |> Min bound <|> Max bound <|

| | E(A) | 20 | 100 |

is equivalent to

|!|Parameter |> Min bound <|> Max bound <|

| |E^(A) | | 100 |

| |E_(A) | 20 | |

On the other hand, the same cut, but with an exclamation mark in the first
column

|!| Parameter |> Min bound <|> Max bound <|

|!| E(A) | 20 | 100 |

demands the absence of photons with energy in the 20 - 100 GeV interval. For
processes with several identical particles, a cut marked by ! does not mean
the mathematical negation of the condition without the exclamation mark.
It means the negation of each individual cut for each particle combination.

If a cut contains particles which are not included in the current subpro-
cess, they are ignored until the user starts to work with a subprocess which
does include them.

5.9 Kinematics

The Kinematics menu subitem of the Phase space mapping menu item al-
lows to display and change the phase space parameterization used in the
Monte Carlo integration. The way this is done in CalcHEP is that it con-
tinually splits the remaining particles into two sets until each particle set
contains one particle. In this framework, the multi-particle phase space is
parameterized by the invariant masses of each particle set and by the two-
dimensional spherical angles of the 1 → 2 splitting [52, 53]. Since the choice
of the kinematics influences the phase space mapping, it also affects the con-
vergence of the Monte Carlo integration. In other words, a mapping choice
that is related to the physical problem is more likely to converge efficiently
than one that is not. See Appendix I.1 for further details.

56

Upon entering the kinematics menu item, the current phase space map-
ping scheme is displayed along with a dialogue asking the user whether
he/she would like to change it. If the user answers Y, CalcHEP will re-
quest the splittings one at a time. For each splitting, CalcHEP presents the
user with the particle set that requires splitting (or 12 if the first splitting
which means all the final state particles). The user then splits these parti-
cles into two groups and enters them separated by a comma. For example,
suppose we are considering a 2 → 4 process. The default splitting is:

12 -> 3 , 456
456 -> 4 , 56
56 -> 5 , 6

However, the user might change this to:
12 -> 34 , 56
34 -> 3 , 4
56 -> 5 , 6

where the 34 is what the user enters.

5.10 Regularization

Generally speaking, the Monte Carlo integration of squared matrix elements
does not converge well because of the presence of the singular propagators.
Even after including the widths, the convergence may not be optimal. It can
be improved by doing a phase space transformation which smooths the sharp
peaks of the squared matrix element (see Appendix I.1 for further details.)
The resonances can come in the forms

1
p2−m2 (4)

1
(p2−m2)2

(5)

1
(p2−m2)2+(m·Γ)2

(6)

where m, Γ and p are the mass, width and momentum of the virtual particle,
respectively.

In order for CalcHEP to regularize these propagators, it needs to know
the position of the resonances. These can be entered via the Regularization
subitem of the Phase space mapping menu item which opens a table edi-
tor allowing to enter the position of these resonances. This table has four

57

columns allowing to specify the momentum, mass, width and power of the
resonance denominator.

The momentum of the resonant particle can be expressed as a sum of
the external momenta. The user can tuype the numbers of the particles
which should be added together to get the resonant momentum. Initial state
momenta are added to each other and final state momenta are added to each
other, but initial and final state momenta are subtracted from each other.
For example, the entry of 12 means the resonance occurs at (p1 + p2)

2 = m2,
the entry of 34 means the resonance occurs at (p3 + p4)

2 = m2 and the entry
of 134 means the resonance occurs at (p1 − p3 − p4)

2 = m2.
The mass and width of the resonace are entered in the second and third

columns. They can include numerical values, model parameters and algebraic
expressions. Typically they should simply be the model parameters which
specify the mass and width of the resonant particle.

The last column is for the power of the denominator of the propagator
that appears in the squared matrix element which can be either 1 or 2. Of
course, in a squared matrix element, resonant propagators appear to the
second power. However, there are times that the gauge cancellations allow
the exponent to be effectively decreased to 1. This typically only happens
when the resonance is stable (its width is 0). If the resonant particle is
unstable and its width is nonzero, CalcHEP uses 2 and ignores the user’s
input.

5.11 Monte-Carlo simulation

The integration of the multiparticle phase space is done by the Vegas Monte
Carlo routine [46, 47] (see Section I.2 for further details.) The Monte-Carlo

simulation menu allows the user to control the integration. It, also, allows
the user to set up histograms to be filled during the integration (explained
below) and generate unweighted events (see the Subsection 5.12.)

Vegas runs Nsess sessions. After each session, if the grid is not frozen,
Vegas improves the grid so that the integral of the next session converges
more efficiently. The number of sessions run by Vegas is controlled by the
menu item nSess. The greater this number, the more likely Vegas is to find
a satisfactory grid. Typical values for nSess are between 5 and 10. The
default is 5.

During each session, Vegas calculates the integrand Ncalls times. This

58

is controlled by the menu item nCalls. Greater values of Ncalls give better
estimates for the integral and allow for better improvement of the grid. The
optimal value depends on the process being analyzed. Processes with more
final state particles typically need larger values of Ncalls whereas processes
with fewer final state particles converge with smaller Ncalls. The default value
of NCalls is 10000.

Vegas begins calculating the integral and improving the grid when the
menu item Start integration is chosen. During the integration, the status
of each session is displayed along with the integration results of previous
sessions. These results include the integral estimate, the uncertainty estimate
and the estimated efficiency of the event generator if the grid is frozen. When
Vegas finishes, it makes a final estimate of the total integral, uncertainty
and χ2. It is usually a good idea to achieve uncertainties of approximately
1% or better for individual sessions. After Vegas finishes, the user can
adjust the Vegas parameters and/or run Vegas again until satisfactory results
are obtained. Unless the statistics are cleared, the new Vegas results are
combined with the previous results.

After the grid is improved, it is a good idea to clear the statistics before
calculating the final integral and distributions. This is done via the Clear

statistics menu item. The grid is usually well adjusted when the Monte
Carlo uncertainty stabilizes at or below approximately 1%. Once the grid is
improved, the user can, optionally, freeze the grid via the Freeze grid menu
item so that Vegas does not further adjust it. Another benefit of freezing the
grid is that the event generator will be prepared during the Vegas sessions.
In some cases, it is desirable to start with a fresh grid. This can be done by
the Clear grid menu item.

CalcHEP has facilities to generate kinematical distributions during the
Vegas sessions. The user can specify which distributions he/she would
like by choosing Set Distributions. A table with 6 columns will open.
The first column is where the user specifies the kinematical variable to be
histogrammed. The kinematical variables available are described in Subsec-
tion 5.6. The second and third columns are the minimum and maximum
values of the histogram. If a 1-dimensional distribution is desired, the last
three columns should be left blank. If a 2-dimensional distribution is desired,
another kinematical variable, a minimum and a maximum can be entered in
the last three columns. Multiple distributions can be entered, one per line.
The minima and maxima can contain numbers, model parameters, algebraic

59

expressions and standard math functions from the C math library. If there
are multiple ways the final state particles fit the kinematical variable, each
is added to the distribution (the distribution is a sum of each possibility.)

The user can continue to run Vegas until he/she is satisfied with the
uncertainties in the distribution. The distributions can be viewed by en-
tering the Display Distributions menu. A list of the distributions will
be presented and the user can choose the one he/she would like to view.
After allowing the user to choose the number of bins for the histogram,
CalcHEP will display it using the Plot Viewer described in Section 3. An
example of a distribution is presented in Fig. 4.

The distribution data is stored in the file distr N where N corresponds
with the CalcHEP session number (not the Vegas session number.) The
user can view the distributions from previous CalcHEP sessions by use of
the show distr program located in the bin subdirectory of the user’s work
directory. For example,

$CALCHEP/bin/show_distr distr_1

would display the distributions from the CalcHEP session number 1.

5.12 Event Generation

CalcHEP can generate unweighted events. These events are useful in sim-
ulations of particle physics collisions and can be passed to other programs
for further analysis. For example, it is often desirable to pass events through
PYTHIA [54] which hadronizes colored final states and adds radiation to the
event. Event generation is done in the Monte-Carlo simulation menu. It
consists of two steps. In the first step, the generator is prepared and in the
second, the events are generated. Details of the algorithms used and the
format of the event files can be found in Appendices F, I.3 and I.4.

Generator preparation. The efficiency of the event generator depends
on the number of phase space cubes and the estimation of the maximum
differential cross section (or partial width) in each cube. Since the differential
cross section (or partial width) can very greatly from phase space point to
point (especially around a resonance), a larger number of phase space cubes
allows for a more efficient generator. The menu item Event cubes allows to

60

modify this parameter. On the other hand, for each phase space cube, it is
very important to have a good estimate of the maximum for that cube. The
maximum is searched for during Vegas integration sessions when the grid is
frozen. The more phase space points Vegas generates, the more likely the
estimate of the maximum is accurate. On the other hand, the greater the
number of generator phase space cubes, the longer Vegas will have to run to
find the maximum for each cube.

When a user would like to generate events, he/she will typically begin by
improving the Vegas grid as described in Subsection 5.11. Once the grids are
optimized, they should be frozen and Vegas should be run again. After each
Vegas session, the current estimate of the event generation efficiency will be
displayed along with the cross section or particle width. Vegas should be
run until the event generation efficiency converges. If the final efficiency is
too low, the number of phase space cubes should be increased via the Event

cubes menu item and Vegas should be run again. This process can be
continued until a satisfactory efficiency is achieved. The user must balance
obtaining a high efficiency against the time it takes to estimate the maxima
for a large number of phase space cubes.

Event generation. When the generator is prepared and the efficiency is
acceptable, the user can enter the Generate Eventsmenu under Monte-Carlo
Simulation. The first item on this menu, Number of events, allows to
specify the number of events to generate. Event generation is started by the
menu item Launch generator. During event generation, if an event is ever
produced with a differential cross section (or partial width) which is greater
than the estimated maximum value in that cube then two things happen.
The first is that the event is split into multiple unweighted events. The sec-
ond is that the maximum for that phase space cube is increased in order to
prevent this from occuring in the future.

When CalcHEP finishes generating the events, it displays an informa-
tional message which states the number of events generated, the actual ef-
ficiency, the number of multiple events generated and the number of events
with negative weight generated. The user is asked whether he/she would
like to accept these events. If there are many multiple events, it is a good
idea to improve the generator further and try again. We recommend the user
test the generator with a small number of events before generating the full

61

desired set of events.
Once the user is satisfied with the events, he/she can answer y to accept

them. The events will be written in plain text to the file events N.txt where
N is the CalcHEP session number. A full description of the event format
can be found in Appendix I.4. These events can be converted to the Les
Houches Accord format by use of the event mixer program found in the bin
directory. event mixer is further described in Section 6.2.

Event analysis. In addition to many external programs that can analyze
events, CalcHEP contains a program which can histogram the events and
generate a distribution. It’s name is events2tab and it is stored in the bin

directory. For example, it can be run as

$CALCHEP/bin/events2tab <var> <min> <max> <N> < <evnts> > <plt>

where <var> is the kinematical variable to be histogrammed (and must be
in quotation marks), <min> and <max> are the minimum and maximum val-
ues of the distribution, and <N> is the number of bins for the histogram.
The events are given to this program via the redirection operator < and
<evnts> is the event file. The output is the distribution data and would
typically be redirected by the > operator to the file <plt>. For example,
$CALCHEP/bin/events2tab "M(b,B)" 0 200 100 < events_1.txt > plot_1.txt

will read the events from the file events_1.txt, generate the M(b,B) distri-
bution with minimum value of 0, maximum value of 200 and 100 bins and
write the plot data to the file plot_1.txt. The resulting plot can be viewed
by use of the program plot_view which is stored in the bin directory. This
will display the plot using the Plot Viewer (see Section 3.)

5.13 Simpson Integration

In the case of 2 → 2 processes, the integration is one-dimensional and stan-
dard one-dimensional integration techniques are used. This method is very
fast and very accurate. It can be accessed via the 1D integration menu
item which brings the user to Menu 8 (see Fig. 9.)

We note, however, that certain user settings are ignored when using the
1D integration method. The structure functions are not included, the
center-of-mass rapidity is set to zero, the regularizations are ignored and all

62

the cuts are ignored. In fact, the only cut allowed in the Simpson integration
is on the cosine of the angle between the third particle (the first outgoing
particle) and the first incoming particle. We call this cos13. The user can
modify the minimum and maximum values of this kinematical variable via
the Cos13(min) and the Cos13(max) menu items. This cut is often necessary
to remove T-channel singularities from massless propagators (such as a T-
channel photon in e+e+ → e+e+). The default cut is

-0.999 < cos13 < 0.999

Upon successful integration, the cross section is displayed on the screen.
The precision of the calculation can be set via the Set precision menu
item. The default value is 10−4. The angular dependence of the differential
cross section can be viewed via the Angular dependence menu item. Plots of
the dependence of the cross section on the model parameters or the center-
of-mass energy can be viewed by the Parameter dependence menu item.
This menu also provides sigma*v plots for v × σ(v) at v → 0 . Here v is
relative velocity of particles . This characteristics is useful for astroparticle
applications, in particular for the estimations of the elastic scatteting of Dark
Matter cadidates.

5.14 Two Particle Decays

1 → 2 decays do not require numerical integration at all. It can be done
symbolically. In this case, CalcHEP displays the Easy 1->2 menu item
which allows to view the widths and branching ratio. An example of this
screen can be seen in Figure 11.

If multiple decay channels are generated during the symbolic session (for
example, if the user specifies the process as Z->2*x), each nonzero decay
channel will be listed on this screen along with either its partial width or
branching fraction. The default listing is with branching fractions, but the
user can switch between the two via the Show Branchings/Show Partial

widths menu item. The total width for the particle (the sum of the partial
widths) is displayed at the top of the screen.

The dependence of the branching ratios and the width on the model
parameters can be viewed by using the Parameter dependence menu item.
This will open a menu allowing to choose either the total width or one of

63

Figure 11: An example of the Easy 1->2 menu for the two particle decays
of the SM Z boson.

64

the decay branching ratios. It will then allow to choose the model parameter
and display the dependence using the Plot Viewer.

The width of the Higgs particle depends sensitively on the effective quark
masses which can accumulate higher order QCD corrections to their Yukawa
couplings. In the built-in version of the Standard Model, we assume that
these masses depend on the model parameter Q. The correct width is obtained
if Q is set equal to the mass of the particle that is decaying (e.g. the Higgs).
This is the default value of Q for a decay. But, the user can adjust this, or
view the dependence of the width on this parameter as desired. For other
models to enjoy this feature, the masses must be implemented in a similar
fashion.

65

6 Collecting Subprocesses

The CalcHEP interactive sessions are designed to run one subprocess at a
time. However, many typical collider processes contain many subprocesses
that differ only by the initial state and/or final state particles. For example,
at the LHC, the initial states are two colliding protons which, however, are
composed of quarks, antiquarks and gluons. In this section, we describe
routines that combine the results from different subprocesses.

6.1 Distribution Summation

The bin directory contains the program sum distr which combines distribu-
tions from different CalcHEP sessions (typically from different subprocesses.)
The way it works is that it sums the distributions that have exactly the same
kinematical variable specification. In other words, M(b,B) and M(B,b) would
not be combined although they are the same distribution. M(u,d) would not
be combined with M(u,s) although they are both the invariant mass of two
jet particles. M(Jet,Jet) would be combined from different subprocesses,
however, because they have exactly the same specification. The user must
make sure each distribution specification is the same for each subprocess and
that there is no ambiguity.

The distributions from each CalcHEP session are stored in the files
distr N where N is the CalcHEP session number. To sum the distributions
from the subprocesses, the user would typically run

$CALCHEP/bin/sum_distr <distr_N1> <distr_N2> ... > <distr_out>

where <distr_N1>, <distr_N2> and ... are the distribution files to be com-
bined and <distr_out> is the file where the results should be written. The
program show_distr can be used on the output file in the same way as for
the distribution files written during the interactive session.

6.2 Event Mixing and LHEF

As described in Subsection 5.12, the interactive numerical session can write
events for each subprocess and for each decay. However, it is often desirable
to combine these events and connect production events with decay events so
that the final events are fully decayed. The program event_mixer does this.

66

The parameters of this program are the number of final events to produce
and a list of the directories where the event files can be found. For example,

$CALCHEP/bin/event_mixer <N> <dir1> <dir2> ...

where <N> is the total number of events to produce, <dir1>, <dir2> and ...

are the directories where the event files produced by the interactive numerical
session are stored. event_mixer searches these directories for event files to
mix.

Two other files are used by event_mixer. The first is the file decaySLHA.txt
which contains a list of the particles masses, quantum numbers, widths and
decay channels in SLHA format [37, 55]. The user can generate this file during
the interactive session by use of the Constraints, then the Masses,Widths,Branching
and then the All Particles menu items. See Subsection 4.2 for further de-
tails. The decaySLHA.txt file is used to determine the total widths of the
particles that are decaying in order to determine the branching ratios and
the final cross section. If this particle is missing, event_mixer will use the
current experimental values for the particles of the SM that have been dis-
covered. For the Higgs particle and particles beyond the SM, event_mixer
will assume that all the decay channels are present in the event files and
estimate the total width from them.

The run_details.txt file contains information about the events and is
placed by event_mixer in the header of the resulting event file. For example,
this file could contain the parameter values, the center of mass energy, the
parton distribution functions and so on.

event_mixer randomly mixes production events and their decays accord-
ing to their cross sections and branching ratios. It does this until the re-
quested number of events is generated or until it runs out of production
events in any of the files. Before it mixes the events, it writes to screen the
final cross section and the maximum number of events that can be generated.
For example,

2.368E-01 -total cross section[pb]

10098 -maximum number of events

To get this number before mixing the events, simply request 0 events.
The results of event_mixer are stored in the file event mixer.lhe. This

file is written in the LHE file format with an XML header [41] and additional

67

sections written in HepML [56] format. This format allows to automatically
upload the LHE file to the CERN Monte-Carlo Database (MCDB) using the
command

./upload2mcdb_hepml.pl -header hepml event_mixer.lhe

where the upload2mcdb_hepml.pl script can be downloaded from the MCDB
website (https:\\mcdb.cern.ch.)

Some special features of LHE file generated by CalcHEP are:

• A history of each decay is presented for each event. The information
about the parent particles and their mean life time is included. This
information can be used for proper hadronisation and detector simula-
tion.

• When connecting decays, event_mixer uses a Breit-Wigner virtual
mass distribution, where we assume that the matrix elements of the
subprocesses do not depend strongly on the off-shell momentum. Our
procedure does not break momentum conservation.

• According to the LHE file format accord, the header (marked by <header>

and </header>) section can be used for auxiliary information. event_mixer
places the following in the header: a <hepml> section (see below),
a <slha> section with information about quantum numbers, masses
widths and decays of non-SM particles, and a <calchep-batch> sec-
tion for the ’run details.txt’ file.

• Information about the process such as a list of the subprocesses, kine-
matical cuts, model name, number of generated events, cross sections
and model parameters is stored in the <hepml> section. For instance,

<files>

<file>

<eventsNumber> 1000 </eventsNumber>

<crossSection unit="pb"> 0.254087 </crossSection>

</file>

</files>

68

This information is recognised when the LHE files are being uploaded
in the MCDB data base and is used for automatically creating the
‘article’ in MCDB.

The routine lhe2tab histograms the events in an LHE file. It is called in
a similar fashion to events2tab described in Subsection 5.12. For example:

$CALCHEP/bin/lhe2tab <var> <min> <max> <N> < <lhe> > <plot.txt>

where <var> is the kinematical variable, <min> and <max> are the minimum
and maximum values for the distribution, <N> is the number of bins, <lhe>
is the LHE event file, and <plot.txt> is the output file where the histogram
data should be written. The only difference with respect to events2tab is
that the PDG number of the particles should be used rather than the names
of the particles. For example, M(5,-5) should be used in place of M(b,B) for
the invariant mass of the b-quark and the anti-b-quark. The output file also
contains a line which records the largest deviation from energy momentum
conservation. An example is

#lost_momenta_max/Etot 7.9E-11 1.3E-12 1.3E-12 8.0E-11

Typical value should be approximately 10−10 because the original event files
recorded 11 digits for the particle momenta. This allows the user to test
whether energy and momentum were conserved in the mixing.

The CalcHEP batch interface (see Section 7), event_mixer is automati-
cally called at the end of the batch session to construct the resulting event
file.

6.3 N-tuples.

CalcHEP contains a program that creates PAW NTUPLES from LHE files.
An example of using this program is

$CALCHEP/bin/nt_maker <events.lhe>

where <events.lhe> is the file containing the LHE events.

69

7 Batch Mode

Initially CalcHEP was designed for interactive calculations with a graphical
user interface. However, there are times when a batch system is ideal. For
example, when a calculation takes a very long time, or the user is interested in
doing scans over parameter space. usters of computers where parallelization
is possible. In these situations, it is preferrable to set up the program with
a set of batch instructions and run it in the background.

CalcHEP provides the user with the ability to record their keystrokes and
then use it as an instruction set in a batch mode. The recording step is done
by using the +blind option. When this option is used, CalcHEP opens in
interactive mode and records all the keystrokes the user performs. When
the user exits, CalcHEP prints to the screen a string which represents the
sequence of keystrokes. The user can then call the program with the -blind

option along with the keystroke string to initiate the same calculation in
batch mode. All the results of the calculations are stored in the same places
as in interactive mode, allowing the user to use the results in the same way
as in the interactive mode.

This batch option has proved to be very powerful, but also very difficult
for users to take full advantage of. Some challenges are:

• If the user wishes to perform a complicated calculation that takes a very
long time, it is not possible to quickly create the key sequence string
using the +blind option. In this situation, the user must become adept
at writing or modifying the key sequence string to achieve the desired
results.

• The symbolic CalcHEP session does not always begin at the same point.
The entry point depends on the previous session. Correspondingly, the
key sequence required to achieve the desired result depends on the
previous session and can be very difficult for the user to control.

• CalcHEP sometimes presents the user with a dialog that requires some
form of input (such as “Press any key” or Yes/No). In batch mode,
all such dialogs are skipped and Yes/No questions are automatically
answered with Yes.

• If the user has a mistake in their keystroke sequence string or if there is
a problem in the setup of the session, the batch mode can not interact

70

with the user to fix the problem. CalcHEP simply quits with an error
code meant to inform the user about the problem.

• Some interactive menus depend on the physical problem being ana-
lyzed. For example, the position of the t-quark mass could be in differ-
ent locations in the parameter menu and different keystroke sequences
would be required to change its value. In the present version, we have
solved this by implementing a Find menu option which allows the user
to type the name of the parameter and be taken directly to it.

• Scans over parameter space are not directly supported by this keystroke
sequence batch mode.

In the present version of CalcHEP, we have attempted to streamline this
process and provide the user more powerful and convenient ways to use
CalcHEP in batch mode. In this section, after reviewing how to use the
batch mode for the symbolic and numerical sessions, we give details of a va-
riety of shell scripts which allow the user to control CalcHEP in blind mode
without the need to write keystroke sequence strings. The final subsection
details a new Perl interface to CalcHEP which automates the procedure of
scanning over parameters and parallelizing the calculations.

Before continuing with the details of the improvements, we note that
the presence and interelated nature of the interactive and the batch regime
facilitates gives the user the ability to set everything up in the interactive
regime where the user can see the results and check that everything is working
properly and then run the long calculation in batch mode. This combines
the advantages of the interactive and batch modes.

7.1 Blind mode

As mentioned, CalcHEP has an option -blind which allows the user to run
in batch mode. It can be used with both the symbolic and numerical code
as in:

s_calchep -blind "STRING"

n_calchep -blind "STRING"

where STRING is a string which represents the sequence of keystrokes required
which would be used in an interactive session to achieve the desired result.

71

] Up
[Down
{ Enter
} Escape

\NN Special keys where NN is the hexadecimal value
0-9 Function keys or numeric input

Table 1: Characters used in blind mode for Up, Down, Enter and Escape.
Other special keys are specified by their hexadecimal number ’NN’. The
interpretation of numeric characters depends on when they are initiated as
discussed in the text. All other characters which print to screen are used
directly.

In this string, each printing character (e.g. alphabetical characters) is rep-
resented by itself while up, down, enter and escape are represented by],
[, {, and } respectively. The response of the numerical characters depends
on where in the interactive session they appear. If alphanumeric input is
required of the user, such as the input of a process, cut, distribution, etc.,
a numeric characters is treated as the number it represents. However, if al-
phanumeric input is not required, then the numeric characters signal function
keys. For example, in this situation, 0 corresponds with the ’F10’ key which
signals the end of the session and instructs CalcHEP to quit. For this reason,
keystroke sequence strings are usually terminated with a 0. All other special
keystrokes are represented by \NN where NN is the hexadecimal value for the
character. For example, the ’Tab’ key is represented by \08. For reference,
we also include these characters in Table 1.

With these definitions, it is possible to write keystroke sequence strings
that perform any desired calculation that can be achieved in an interactive
session. However, it can be very difficult, in practice, to create a keystroke
sequence string from scratch. For this reason, another option +blind was
created and is used as in:

s_calchep +blind

n_calchep +blind

72

This will open an interactive session where each keystroke the user makes is
stored internally. When the user quits, the entire keystroke sequence string
is printed to the screen. The user can then copy or modify this string and
use it with the -blind option.

As an example of this process, suppose the user would like to run vegas
with 6 iterations of 100,000 calls, clear the statistics and then run 10 iter-
ations of 1,000,000 calls each. This could take a long time depending on
the complexity of the process. A simple way of achieving this is to start
n_calchep with the +blind option. When the interactive session starts, the
user would use their keyboard, as usual, to move through the menus and
change the values of nSess_1, nCalls_1, nSess_2, and nCalls_2 but to
smaller values which will finish in a reasonable time, for example, 1, 20000,
1, and 20000 respectively. After quitting, CalcHEP prints the following to
the screen:

"[[[[[[[[{{1{[{20000{[{1{[{20000{[[{0"

The user can then simply change the numerical values to those they desire
and run with the -blind option as in:

n_calchep -blind "[[[[[[[[{{6{[{100000{[{10{[{1000000{[[{0"

CalcHEP will run vegas with the specified settings in the background. Other
scenarios can easily be imagined.

We note that the blind mode is used for the automatic width calculation.
When CalcHEP need the numerical value of an automatically calculated
particle width, it begins by running the symbolic session in blind mode. It
then compiles the code as a shared library which is then attached to the
currently running program. The micrOMEGAs[42] package is based on this
idea too. In this case, all the processes of Dark Matter annihilation are
generated on the fly using the blind mode of the symbolic session.

7.2 Shell Scripts

It is possible to write universal shell scripts based on the blind mode which
accept user input, create the keystroke sequence string and start calchep
in blind mode. This relieves the user from the burden of determining the
keystroke sequence string but allows the user to run CalcHEP in batch mode.

73

We provide several such shell scripts for common tasks in the $CALCHEP/bin

directory which is symbolically linked to the WORK/bin directory. In this
section, we describe them. If any of these scripts require parameters, but
are called without any parameters, the script first prints a message to screen
informing the user of the required parameters and then quits.

We begin by describing s_blind which does a symbolic calculation. It is
called from the users WORK directory.

•s_blind nModel Process nOutput: This command runs s_calchep in
blind mode and generates the squared amplitude code for the pro-
cess Process which must be enclosed in quotation marks, as in
"e,E->m,M". The model is specified by nModel which must be an
integer and corresponds with the position of the model in the model
list. The first model is specified by 1, the second by 2 and so on.
nOutput determines the format of the ouput and is also required
to be an integer. The supported outputs are C code, Reduce code,
Mathematica code, and Form code which are specified by 1, 4, 5,
and 6 respectively.

There are some further things the user should keep in mind when
using this shell script. Because the keystroke sequence required for
this shell script depends on the previous session, this script first
removes the previous results and starts a fresh session. Feynman
gauge is always used by this shell script. There is no possibility to
use composite definitions, remove particles or choose diagrams with
this script.

This script is used by MicrOMEGAs[21] to generate numerical code at run-
time.

We now describe scripts which are designed to work with the numeri-
cal session. These are called from the directory where the numerical code
n_calchep is stored. Typically, this is the WORK/results directory, but this
directory can be renamed or moved by the user. For each of these scripts,
all session parameters are kept fixed except for the ones explicitly described
as being changed. Typically, the user would start n_calchep in interactive
mode and set all the session parameters as desired. The user would then quit
the interactive session and run one of these scripts.

74

•run_vegas it1 N1 it2 N2: This script runs the Vegas Monte Carlo inte-
gration of the phase space. It runs Vegas it1 times with N1 calls
each and then it2 times with N2 times each. The results are cleared
between these two runs. If the user calls this script with all of it1,
N1, it2, and N2 nonzero, Vegas will run it1 times, clear the results,
and then run it2 times more, the idea being that the first it1 calls
allow Vegas to adapt the grid but the second it2 calls achieve the
actual integration. If it1 and N1 are nonzero, but it2 or N2 are
zero, it will run Vegas it1 times and quit. This would typically be
used if the user is satisfied with the adaptation of the Vegas grid and
has already cleared the results but wants to add more statistics to
their integration. If it1 or N1 are zero but it2 and N2 are nonzero,
it will first clear the results and then run Vegas it2 time. This
would typically be used if the user has been adapting the grid, but
is now satisfied and wants to perform the integration after clearing
the statistics.

•set_vegas it1 N1 it2 N2 nCubes : This script sets parameters of two
loops Vegas calculation which drive script run_vegas. Here it1 is
number of Vegas runs and number of integrand calls for the first
loop. it2 and nCall2 define the second loop calculations. The
nCubes parameter defines number of sub-cubes which are used in
the second loop for a proper fitting of integrand for efficient event
generation. Note that parameters of second loop can not be defined
in graphic interface mode. The parameters are stored in ’session.dat’
file.

•run_vegas: This script launches subsequently two loops of Vegas Monte
Carlo integration of the phase space using parameters defined by
set_vegas. At first loop we allow Vegas to adopt the integration
grid. After that all obtained results for cross section and histogram
are cleaned and we launch second loop with fixed grid which gener-
ates final statistics and prepare integrand fitting for event generation.

If it1=0 or N1=0 then the only the second loop is running. In the
same manner only the first loop is running if it2=0 or N2=0. If only
one loop is active intermediate clearing of results is not applied.

run_vegas is used by pcm_cycle, name_cycle, subproc_cycle, and

75

par_scan scripts presented below.

•set_momenta p1 p2: This script updates the momenta of the incoming
particles to p1 and p2 and then quits.

•set_param name1 value1 name2 value2 ...: This script changes the nu-
merical values of one or more of the independent model parameters
name1, name2, etc. to value1, value2, etc. respectively and then
quits.

•set_param File: In this case, this script changes the numerical values of
the independent model parameters as specified in the file File. File
must have each model parameter on a separate line with the name
coming first followed by the new numerical value, separated by white
space.

•pcm_cycle pcm0 step: This script scans the cross-section over the center
of mass energy. For each point in the scan, it updates the momenta
of the initial state particles and then runs the Vegas Monte Carlo
integration. When it is finished, it writes the resulting cross-sections
to the file pcm_tab_j1_j2 where j1 is the session number when the
script began and j2 is the session number when it finished where
N=j2-j1+1. It begins its calculations with the momenta of the initial
state particles equal to pcm0 and -pcm0 and increases in steps of size
step for a total of N steps. If there are distributions specified then
they are stored in the files distr_k where k corresponds with the
session number when it was generated. In general j1≤k≤j2. These
distributions can be viewed using the program disp_dist contained
in the WORK/bin directory.

•name_cycle name val0 step N: This script scans the cross-section over a
model parameter’s value. For each point in the scan, it updates the
parameter name and then calculates the cross-section. When it is fin-
ished, it writes the resulting cross-sections to the file name_tab_j1_j2
where name is the name of the parameter, j1 is the session number
when the script began and j2 is the session number when it finished.
Again, N=j2-j1+1. The scan begins with the parameter name=val0

and then increases it by size step until N steps are completed. As in

76

the previous case, distributions are stored in the files distr_k and
can be viewed using the disp_dist program.

•subproc_cycle L Nmax: This script calculates the cross-section and gener-
ates events for each subprocess. When it is finished, it adds the cross-
sections together and prints the total cross-section to the screen. If
there are distributions specified then they are added together and
the resulting distribution is stored in the file distr_j1_j2 where
j1 is the first session number and j2 is the final session number
and where j2-j1+1 is equal to the number of subprocesses. It also
generates unweighted events for each subprocess. The number it
generates is equal to the smaller of the cross-section times the lu-
minosity which is specified by L and Nmax. It writes these events
to the files events_k.txt where k is the session number when it
was generated and, again, j1≤k≤j2. These events can be combined
using the program event_mixer which is stored in the WORK/bin di-
rectory. The cuts, regularization and histograms must apply to all
subprocesses and the outgoing particles must be identical.

•par_scan < data.txt: calculates the cross-sections according to the grid
for names and parameters given in data.txt file. The format of
data.txt is supposed to be

name_1 name_2 ... name_N

val_11 val_12 ... val_1N

.........................

val_N1 val_N2 ... val_NN

where name_1 name_2 ... name_N should be the set of names of
independent model parameters, while val_11 ... val_1N are val-
ues for the respective parameters to be used for the first point and
val_N1 ... val_NN are values for these parameters for the last grid
point of the calculation. Note, that this script does not do summa-
tion over the subprocesses i.e. it will do the grid calculation only for
chosen subprocess in the menu. The results of the calculation are
printed in the terminal in the format

77

name_1 name_2 ... name_N

val_11 val_12 ... val_1N res_1

...............................

val_N1 val_N2 ... val_NN res_N

or can be redirected into some file, e.g. results.txt with
par_scan < data.txt > results.txt command.

•par_scan_sum < data.txt: calculates the cross-sections according to the
grid for names and parameters given in data.txt file similarly to
the par_scan one, but in addition it performs a summation over all
available subprocesses.

•gen_events Nevents: This script can by launched after successul end of
run_vegas script with active second Vegas loop. Parameter Nevents
events defines number of events to generate.

If any of these scripts ends with an error, a message is printed to stderr

and the return value of the script can be seen by issuing echo $? on the
shell. A description of the possible error codes can be found in the CalcHEP
manual.

7.3 Batch interface

Although the shell scripts of the previous subsection greatly improve the
users ability to run their desired processes in batch mode, there are still
some limitations when doing large complex calculations involving scans over
parameter space, many subprocesses and parallelization. To overcome these
challenges, we have written a Perl script which we call the “batch interface”.
The main features of this Perl interface are:

• The input is a pure text file we call the “batch file”. It consists of a series
of keywords together with values for those keywords, with each keyword
on a separate line. Most of the options available in the interactive
session are supported by keywords in the batch file and thus most
calculations can be done using the batch interface.

78

• A library of subprocess numerical codes is utilized. Each time the
batch interface is run, it first checks whether the subprocess numerical
code exists. If it does, it reuses it and skips the often long process of
code generation. Any requested numerical codes not in the library are
then generated and added to the library. If the model changed, the
numerical codes are regenerated as appropriate.

• The numerical phase space integration is done and events are generated
for each subprocess and the results are combined. Production and
decay events are connected and the final event output is an LHE file
with all the events fully decayed which can be used directly by Pythia
or other software.

• Multiple parameters can be scanned over. For each parameter point,
the results are combined and stored with names unique to that param-
eter point for easy retrieval.

• Both the symbolic calculations and the numerical calculations are par-
allelized. Each subprocess and each parameter point are run as separate
jobs and run on all available cpu cores. The number of cores available
is set by the user as is the type of cluster software used. Multicore
machines, PBS cluters and LSF clusters are currently supported.

• The progress of the calculation is stored in a series of html files which
can be viewed in a web browser. These html pages contain informa-
tion about the progress of the calculation as well as the results of the
calculations which are already finished. The final event files are linked
as are the session.dat and prt files which give the full details of each
individual calculation. Pure text versions of the progress pages are also
created for situations where a web browser is not convenient.

Once the user creates the batch file and runs the batch interface, no user
input is required until it finishes. It can be run in the background and
checked periodically.

After the user has created their batch file, they would typically run the
batch interface from their CalcHEP work directory as

./calchep_batch batch_file

79

where batch_file is the name of their batch file, which can be named any-
thing the user likes. The batch interface will start by printing a message to
the shell which will contain the location of the html progress reports which
the user can simply copy and paste into their browser url window. The first
time the user runs the batch interface, they can also run the following from
the work directory

./calchep_batch -help

which will complain that no batch file was present, create a series of html
help files and quit. The location of the html help files will be printed to
screen. This html help file can be opened in a web browser and contains all
the details that are presented here.

In the following subsection we describe each keyword available for the
batch file and how to use it. An example batch file is stored in CALCHEP/utile/batch_file.

7.3.1 Structure and keywords of the bacth file

Comments

Any line beginning with a # is ignored by run batch. The # has to be at the
very beginning of the line. Some examples are:

This is ignored.

#Model: Standard Model This is ignored.

Model: # Standard Model(CKM=1) This is not ignored.

Model

The first section of the batch file should contain the specification of the
model. This is done by model name and should match exactly the name in the
CalcHEP model list. So, if you want to run the ”Standard Model(CKM=1)”,
you would specify this with the batch file line:

Model : Standard Model(CKM=1)

There is no default for this line. It must be included.
The gauge of the calculation should also be specified in this section.

Choices are Feynman and unitary gauge. CalcHEP is much better suited
to calculation in Feynman gauge, but there may be times that unitary gauge
is useful. This can be specified using the keyword Gauge as in:

80

Gauge : unitary

The default is Feynman.

Process

Processes are specified using the Process keyword and standard CalcHEP
notation as in:

Process : p,p->j,l,l

Multiple processes can also be specified as in:

Process : p,p->E,ne

Process : p,p->M,nm

As many processes as desired can be specified. When more than one process is
specified, the processes are numbered by the order in which they are specified
in the batch file. So, in this example, p,p->E,ne is process 1 and p,p->M,nm

is process 2. This numbering can be useful when specifying QCD scale, cuts,
kinematics, regularization and distributions allowing these to be specified
separately for each process. There is no default for this keyword. It must be
specified.

Decays are specified using the Decay keyword and are also in standard
CalcHEP notation as in:

Decay : W->l,nu

Again, multiple decays can be specified as in:

Decay : W->l,nu

Decay : Z->l,l

The default is to not have any decays. Cuts, kinematics, regularization and
distributions do not apply to decays.

It is sometimes convenient to specify groups of particles as in the particles
that compose the proton or all the leptons. This can be done with the
keyword Composite as in:

81

Composite : p=u,d,U,D,G

Composite : l=e,E,m,M

Composite : nu=ne,Ne,nm,Nm

Composite : W=W+,W-

As many composite particles as necessary can be specified. These definitions
can be used in cuts and distributions as well as in the processes and decays.
The default is not to have any composite definitions.

PDF

The PDF of a proton or antiproton can be specified with the pdf1 and
pdf2 kewords which correspond to the pdfs of the first and second incoming
particles respectively. Choices for these keywords are:

• cteq6l (anti-proton)

• cteq6l (proton)

• mrst2002lo (anti-proton)

• mrst2002lo (proton)

• cteq6m (anti-proton)

• cteq6m (proton)

• cteq5m (anti-proton)

• cteq5m (proton)

• mrst2002nlo (anti-proton)

• mrst2002nlo (proton)

• None

An example for the LHC is:

pdf1 : cteq6l (proton)

pdf2 : cteq6l (proton)

82

The default is None. These keywords can also be used for electron positron
colliders. For this process the available pdfs are:

• ISR

• ISR & Beamstrahlung

• Equiv. Photon

• Laser photons

• None

The following proton electron collider pdf is also available:

• Proton Photon

All of these pdfs must be typed exactly or copied into the batch file.
If ISR & Beam is chosen, then the following beam parameters may be

specified:

Bunch x+y sizes (nm) : 550

Bunch length (mm) : 0.45

Number of particles : 2.1E+10

The default values are the default values in CalcHEP and correspond roughly
with the ILC.

If Equiv. Photon is chosen for the pdf, then the following parameters
may be specified:

Photon particle : e^-

|Q|max : 150

Choices for the Photon particle keyphrase are mu^-, e^-, e^+, mu^+. The
default is e^+. The default for the keyword |Q|max is the same as in the
CalcHEP interactive session.

If Proton Photon is chosen then the following may be specified:

Incoming particle mass : 0.937

Incoming particle charge : -1

|Q^2|max : 2.1

Pt cut of outgoing proton : 0.11

The defaults are the same as in the CalcHEP interactive session.

83

Momenta

The momentum of the incoming states can be specified with the keywords
p1 and p2 and are in GeV as in:

p1 : 7000

p2 : 7000

These are the default values for the momenta.

Parameters

The default parameters of the model are taken from the varsN.mdl file in the
models directory. Other parameter values can be used if specified using the
Parameter keyword. Here is an example:

Parameter : EE=0.31

Parameter : SW=0.481

Parameter : MZ=91.1884

Parameter : wW=2.08895

This gives a convenient way of changing the default values of the param-
eters. Simply open CalcHEP in symbolic mode, choose to edit the model
and change the values of the indepenedent parameters. These new values
will then become the default values used by this batch program. There is no
need to redo the process library.

Scans

In some models it is useful to scan over a parameter such as the mass of
one of the new particles. For example, if there is a new W’ gauge boson,
it may be desireable to generate events and/or distributions for a range of
masses for the W’. This can be done with the Run parameter, Run begin,
Run step size and Run n steps keyphrases. Here is an example:

Run parameter : MWP

Run begin : 400

Run step size : 50

Run n steps : 17

84

This will generate the events and/or distributions for the model with the
mass of the W’ set to 400GeV, 450GeV, 500GeV,...1200GeV. As many runs
as desired can be specified (including zero). For each run, all four keyphrases
have to be specified. Furthermore, if there is more than one run, all four
keyphrases have to be specified together. Here is an example with two runs:

Run parameter : MWP

Run begin : 400

Run step size : 50

Run n steps : 17

Run parameter : MF

Run begin : 2000

Run step size : 200

Run n steps : 11

This example will run over both parameters MWP and MF.

QCD

The parameters of the QCD menu of the numerical session can be specified
as in the following example:

parton dist. alpha : ON

alpha(MZ) : 0.118

alpha nf : 5

alpha order : NLO

mb(mb) : 4

Mtop(pole) : 174

alpha Q : M45

The default values are the ones in the interactive session. Not all the key-
words have to be included in the batch file. It is sufficient to include the ones
that need to be changed. For example, if only the QCD scale needs to be
changed, it can be specified as:

alpha Q : Mt/2

The QCD scale can be specified in terms of the invariant mass of certain final
state particles as in Mij which means that the QCD scale is taken to be the

85

invariant mass of particles i and j. Or, it can be specified as a formula in
terms of the parameters of the model as in Mt/2 which means half of the top
quark mass. When specifying the scale in terms of the invariant mass of final
state particles, the numbers are taken from the way the processes are entered
with the Process keyword. So, if the process is specified as p,p->j,l,n, M45
means the invariant mass of the lepton and neutrino (l,n). The batch script
will take care of renumbering if the subprocesses have the final state particles
in a different order. It is also sometimes useful to use a different scale for
different processes. For example, suppose the two processes p,p->j,l,n and
p,p->j,j,l,n are specified in the batch file, the scales could be specified as
in this example:

alpha Q :1: M45

alpha Q :2: M56

The number between the :: specifies which process to apply this scale and
corresponds to the order in which the user specified the processes. If more
than one process is specified, but the same non default scale is desired for all
of them, this can be specified as in:

alpha Q : Mt/2

This specification will apply the same scale Mt/2 to all processes.

Cuts

Cuts are specified with the keywords Cut parameter, Cut invert, Cut min

and Cut max and use standard CalcHEP notation, except for Cut invert

which can be either True or False. These cuts are only applied to the
production processes. They are not applied to the products of the decays.
Here is an example:

Cut parameter : T(le)

Cut invert : False

Cut min : 20

Cut max :

For each cut, all four keyphrases have to be present. As many cuts as desired
can be included. Including Cut min or Cut max but leaving the value blank

86

will leave the value blank in the CalcHEP table. If the cut should only be
applied to a certain process, then the colon can be changed to :n: where n

is the process number. So, for example, we could do:

Cut parameter : T(l)

Cut invert : True

Cut min :

Cut max : 20

Cut parameter : T(j)

Cut invert : False

Cut min : 20

Cut max :

Cut parameter :2: J(j,j)

Cut invert : False

Cut min :2: 0.4

Cut max :2:

This set of cuts will apply a pT cut to leptons and jets in all processes
but a jet cone angle cut only to process 2. The numbering of the processes
corresponds to the order in which the processes are entered in the batch file.
Composite particle names can be used as long as they are defined by the
keyword Composite in the process section. Note that both of the transverse
mass cuts apply a pT > 20GeV cut in this example.

Kinematics

As the number of final state particles increases, it can be very helpful to
specify the kinematics which helps CalcHEP in the numerical integration
stage. This is done in exactly the same notation as in CalcHEP. The num-
bering corresponds to the order the particles are entered in the process in
the batch file. Here is an example:

Kinematics : 12 -> 34 , 56

Kinematics : 34 -> 3 , 4

Kinematics : 56 -> 5 , 6

If multiple processes are specified, using a single colon as in the previous
example will apply the kinematics to all processes. If different kinematics
are desired for each process, then the :n: notation can be used as in:

87

Kinematics :1: 12 -> 34 , 56

Kinematics :1: 34 -> 3 , 4

Kinematics :1: 56 -> 5 , 6

Kinematics :2: 12 -> 3 , 456

Kinematics :2: 456 -> 45 , 6

Kinematics :2: 45 -> 4 , 5

where n corresponds with the process number as entered in the batch file.

Regularization

When a narrow resonance is present in the signal, it is a good idea to specify
the Regularization. This is done with the same notation as in CalcHEP.
Here is an example:

Regularization momentum : 34

Regularization mass : MW

Regularization width : wW

Regularization power : 2

Regularization for as many resonances can be specified as desired. Further-
more, different resonances can be specified for each process using the :n:

notation as in:

Regularization momentum :1: 34

Regularization mass :1: MW

Regularization width :1: wW

Regularization power :1: 2

Regularization momentum :2: 45

Regularization mass :2: MZ

Regularization width :2: wZ

Regularization power :2: 2

Distributions

Distributions are only applied to the production process. The decays are
ignored. Standard CalcHEP notation is used for the distribution parameter.
Here is an example:

88

Dist parameter : M(e,E)

Dist min : 0

Dist max : 200

Dist n bins : 100

Dist title : p,p->l,l

Dist x-title : M(l,l) (GeV)

The value for the keyphrase Dist n bins has to be one of 300, 150, 100,
75, 60, 50, 30, 25, 20, 15, 12, 10, 6, 5, 4, 3 or 2. These are the values
allowed by the CalcHEP histogram routines. The values given for the titles
have to be pure text. No special characters are currently allowed. Gnuplot
must be installed for plots to be produced on the fly and included in the html
progress reports. More than one distribution can be specified, however each
distribution must be unambiguous and apply in exactly one way for each
subprocess. Also, distributions will work even if no events are requested.

For this to work, the distributions have to be unambiguous and apply
to all subprocesses the same way. For example, if a process is p,p->l,l,l

and the distribution M(l,l) is given, then this routine will not know which
two leptons to apply the distribution to and the results are unpredictable.
If the process is p,p->l,l where l=e,E,m,M and the distribution M(e,E) is
desired, this distribution will only apply to some of the subprocesses and
give unpredictable results. Make sure your distribution is unambiguous and
applies in exactly one way to each subprocess. If this is done, it should work.
Nevertheless, check each distribution carefully to make sure it is being done
correctly.

Events

The number of events is specified with the keyphrase Number of events.
This specifies the number of events to produce after all subprocesses are
combined and decayed. If a run over a parameter is specified, this keyphrase
determines the number of events to produce for each value of the run param-
eter. The number of events requested can be zero. In this case, the cross
sections are determined and the distributions generated but no events are
produced. Here is an example:

Number of events : 1000

89

The name of the file can be specified using the Filename keyword. If
specified, all the files will begin with this name. Here is an example:

Filename : pp-ll

If nt_maker has been installed in the bin directory, PAW ntuples can be
made on the fly by setting NTuple to True as in:

NTuple : True

The default is False.
The keyword Cleanup determines whether the intermediate files of the

calculation are removed. This can be useful if many large intermediate files
are created and space is an issue. On the other hand, it can be useful to
keep the files when debugging is necessary. If this keyword is set to True, the
intermediate files are removed. If set to False then they are not removed.
Here is an example:

Cleanup : False

Parallelization

The parallelization mode is set using the keyphrase Parallelization method

and can be either local, pbs or lsf. In local mode, the jobs run on the
local computer, in pbs mode, the jobs are run on a pbs cluster and in lsf

mode, the jobs are run on an lsf cluster. If run from a pbs or lsf cluster, the
terminal should be on the computer with the pbs or lsf queue. Here is an
example of setting the batch to run in pbs mode:

Parallelization mode : pbs

Local mode is the default.
If run in pbs mode, there are several options that may be necessary for

the pbs cluster. All of them can be left blank in which case they will not be
given to the pbs cluster. Here is an example of the options available:

Que : brody

Walltime : 1.5

Memory : 1

email : name@address

90

The que keyword specifies which pbs queue to submit the jobs to. Walltime
specifies the maximum time (in hours) the job can run for. If this time
is exceeded, the jobs are killed by the pbs cluster. Memory specifies the
maximum amount of memory (in G) that the jobs can use. If this memory
is exceeded by a job, the pbs cluster will kill the job. email specifies which
email to send a message to if the job terminates prematurely. The default
for all of these is whatever is the default on the pbs cluster.

If run in lsf mode, there are several options that may be necessary for
the lsf cluster. All of them can be left blank in which case they will not be
given to the lsf cluster. Here is an example of the options available:

Que : brody

Walltime : 1.5

Memory : 1

email : name@address

Project : project_name

The que keyword specifies which lsf queue to submit the jobs to. Walltime

specifies the maximum time (in hours) the job can run for. If this time is
exceeded, the jobs are killed by the lsf cluster. Memory specifies the maximum
amount of memory (in G) that the jobs can use. If this memory is exceeded
by a job, the lsf cluster will kill the job. email specifies which email to send
any messages t. The default for all of these is whatever is the default on the
lsf cluster.

Sleep time specifies the amount of time (in seconds) the batch script
waits before checking which jobs are done and updating the html progress
reports. If a very short test run is being done, then this should be low (say a
few seconds). However, if the job is very large and will take several hours or
days, this should be set very high (say minutes or tens of minutes or hours).
This will reduce the amount of cpu time the batch program uses. Here is an
example setting the sleep time to 1 minute:

sleep time : 60

The default is 3 seconds.
When jobs are run on the local computer, the keyword Nice level spec-

ifies what nice level the jobs should be run at. If other users are using the
same computer, this allows the job to be put into the background and run at

91

lower priority so as not to disturb the other users. This should be between
0 and 19 where 19 is the lowest priority and the nicest. Typically, it should
be run at level 19 unless the user is sure it will not disturb anyone. The nice
level should be set both for a local computer and for a pbs or lsf batch run.
The reason is that some jobs are run on the pbs or lsf queue computer even
on the pbs or lsf cluster. Here is an example:

Nice level : 19

Level 19 is the default.

Vegas

The number of vegas calls can be controlled with the keywords nSess_1,
nCalls_1, nSess_2 and nCalls_2. The values are the same as in CalcHEP.
Here is an example:

nSess_1 : 5

nCalls_1 : 100000

nSess_2 : 5

nCalls_2 : 100000

The defaults are the same as in CalcHEP.

Generator

The following parameters of the event generation can be modified:

sub-cubes : 1000

random search : 100

simplex search : 50

MAX*N : 2

find new MAX : 100

The defaults are the CalcHEP defaults.

92

7.3.2 Example of the bacth file

This example generates 1000 events (for each Mh) of the process p,p->W,b,B
for the model Standard Model(CKM=1).

##################################

Model Info

##################################

Model: Standard Model(CKM=1)

Model changed: False

Gauge: Feynman

##################################

Process Info

##################################

Process: p,p->W,b,B

Decay: W->le,n

Composite: p=u,U,d,D,s,S,c,C,b,B,G

Composite: W=W+,W-

Composite: le=e,E,m,M

Composite: n=ne,Ne,nm,Nm

Composite: jet=u,U,d,D,s,S,c,C,b,B,G

##################################

PDF Info

##################################

pdf1 : cteq6l (proton)

pdf2 : cteq6l (proton)

##################################

Momentum Info

##################################

p1 : 4000

p2 : 4000

##################################

Parameter Info

##################################

Parameter : Mtp=172.5

93

##################################

Run Info

##################################

Run parameter: Mh

Run begin: 120

Run step size: 5

Run n steps: 3

######################################

QCD Running Info

######################################

alpha Q : M45

######################################

Cut Info

#####################################

Cut parameter: M(b,B)

Cut invert: False

Cut min: 100

Cut max:

Cut parameter: J(jet,jet)

Cut invert: False

Cut min: 0.5

Cut max:

Cut parameter: T(jet)

Cut invert: False

Cut min: 20

Cut max:

Cut parameter: N(jet)

Cut invert: False

Cut min: -2.5

Cut max: 2.5

#####################################

94

Kinematics Info

#####################################

Kinematics : 12 -> 3, 45

Kinematics : 45 -> 4 , 5

#####################################

Regularization Info

#####################################

Regularization momentum: 45

Regularization mass: Mh

Regularization width: wh

Regularization power: 2

###

Distribution Info

###

Dist parameter: M(W+,b)

Dist min: 100

Dist max: 200

Dist n bins: 100

Dist title: p,p->W,b,B

Dist x-title: M(W+,b) (GeV)

#####################################

Event Info

##################################

Number of events: 1000

Filename : pp-Wbb-lnbb

##################################

Parallelization Info

##################################

Parallelization method : local

Max number of cpus : 2

sleep time : 3

##################################

95

Vegas Info

##################################

nSess_1 : 5

nCalls_1 : 100000

nSess_2 : 5

nCalls_2 : 100000

7.3.3 Monitoring of the calchep batch session

After the start of calchep bacth session with
./calchep_batch batch_file

command, the following information appears on the screen:

Processing batch:

Progress information can be found in the html directory.

Simply open the following link in your browser:

file:///WORK/html/index.html

You can also view textual progress reports in WORK/html/index.txt

and the other .txt files in the html directory.

where WORK denote the path to calchep working directory. Using browser, user
can monitor the progress of all stages of the calchep batch session and check
CalcHEP batch detals (Fig.12(a)), details of symbolic session (Fig.12(b)),
the progress in numerical session (Fig.12(c)) as well as the progress on event
generation (Fig.12(d)).

Further details on numerical session can be checked by clicking on par-
ticular value of the running parameter (Mh in our example), which opens
the window with detailed information shown in Fig.13. This page also
present the requested distributions. Moreover, the results shown in html
browser as also recorded in the ascii files located in the WORK/html direc-
tory. For example the results for numerical session are recorded in the file
WORK/html/numerical.txt as well as in the files in the WORK/html/runs

directory containing further details. For example after sucessful run of the
batch_file given in the example above, the user should get the
WORK/html/numerical.txt with the following info:

96

(a) (b)

(c) (d)

Figure 12: Monitoring of the CalcHEP batch session using through the web
browser:

CalcHEP Numerical Details

Done!

Runs sigma (fb) Running Finished Time (hr) N events

Mh120 8.9460e+02 0/13 13/13 0.02 1000

Mh125 8.8420e+02 0/13 13/13 0.02 1000

Mh130 8.7380e+02 0/13 13/13 0.02 1000

97

Figure 13: Monitoring of the CalcHEP batch session using through the web
browser:

98

7.3.4 Results Storage

After the events and/or distributions are generated, they are stored in the
Events directory. The prefix of the files is the name specified in the batch
file plus either ”-single” if no scans were specified or a string specifying the
run parameter values if one or more scans are specified. We will assume this
is filename in the following. If events are requested, they will be stored in
the files

filename.lhe

filename.nt

where filename.lhe is the event file in Les Houches format and filename.nt

is in PAW ntuple format. The ntuple file is only created if the keyword
NTuple is set to True and nt maker is present in the bin directory. If distri-
butions are requested, they will be stored in the files

filename.distr

filename_1.png

filename_2.png

...

where filename.distr is the raw distribution data and can be read by
show_distr in the bin directory. The distributions generated on the fly by
the batch script are stored in the files ending in .png.

99

8 Particle Interaction Model Implementation

A model of particle interaction in CalcHEP is stored in five tables, named
Parameters, Constrains, Particles, Vertices and Libraries. These ta-
bles are stored in the respective files varsN.mdl, funcN.mdl, prtclsN.mdl,
lgrngN.mdl, extlibN.mdl which are located in the models/ sub-directory
of the users work directory. The N in these file names refers to the model
number. Each model has a unique N. For all of these tables, a % at the be-
ginning of any row means that that row is a comment and CalcHEP ignores
it. We describe each of these tables in this section.

The SLHAplus [57] library contains external functions that allow CalcHEP to
read parameters from a SLHA file. We include it in the CalcHEP package.
A brief description can be found in Subsection 9.1.

Although it is possible to implement a new model of particle interactions
directly using the table definitions described here, for complicated models
with a large number of particles, parameters and Feynman rules, it is a
good idea to use an external program to generate the model files. We briefly
describe two programs that do this job at the end of this section: LanHEP[35]
and FeynRules[36].

8.1 Independent Parameters

The table Parameters contains all the independent parameters of the model.
It consists of the following three columns:

1. Name : This is where the name of the parameter belongs. It can contain
up to 11 characters. The first character must be a letter. The others
may be either letters or digits. The underscore symbol is also permitted
and CalcHEP is sensitive to the case of the characters. There is a set
of reserved names which cannot be used for parameter names:

• i is reserved for the imaginary unit;

• Sqrt2 is reserved for
√

2;

• p1,p2,p3,... are reserved for particle momenta;

• m1,...,M1,... are reserved for Lorentz indices;

• G5 is used for the γ5 Dirac matrix;

100

There is another subtelty that should be considered when naming pa-
rameters. Although CalcHEP is sensitive to the case of the parameters,
Reduce is not. Therefore, if the user would like to use the CalcHEP re-
sults in Reduce, he/she should distinguish all names by more than case.
Additionally, although CalcHEP allows underscores as part of param-
eter names, the underscore is treated differently by Mathematica. So,
if the user would like to use the CalcHEP results in Mathematica,
he/she shouldnot use underscores in the parameter names. Further-
more, CalcHEP allows parantheses in parameter names but Reduce
and Mathematica do not. The user should name their parameters ac-
cordingly.

2. Value : This is where the numerical value for the parameter is stored.
Dimensionful parameters should be in powers of GeV.

3. Comment : This is where the user can enter a description of the pa-
rameter. It is ignored by CalcHEP and is purely for informational
purposes.

8.2 Dependent Parameters

The table Constraints contains all the dependent parameters of the model.
It consists of two columns:

1. Name : This is where the name of the parameter belongs. The re-
strictions on the names are the same as for the independent parameter
names.

2. Expression : This is where the formula belongs which defines the
value of this dependent parameter. The formula can contain the fol-
lowing:

• integer and float point numbers,

• independent parameter names contained in the Parameters table,

• dependent parameter names defined above the current row,

• parentheses () and arithmetic operators +, -, /, *, ^,

• the symbols i and Sqrt2,

101

• standard functions from the C mathematics library such as sqrt(x)
and sin(x). The full list of these functions is contained in the
$CALCHEP/include/extern.h file,

• functions from the SLHAplus package,

• the function if(x, y, z) which returns y if x > 0 and z otherwise,

• any user defined functions. The code containing these functions
should be included in the Libraries table. Their prototypes
can also be included in the Libraries table. If their prototypes
are not included, CalcHEP assumes they return double type.
A list of the resulting auto-prototyped functions appears in the
results/autopot.h file after compilation of the numerical code.

Additionally, anything after the % symbol is considered a comment and ig-
nored. This can be used to enter a comment about the dependent parameters.
The user can follow the formula with a % and then a comment describing the
parameter.

Public and local dependent parameters. Some models can contain
thousands of dependent parameters. For a particular process, only a small
subset of these is used. For this reason, CalcHEP attempts to reduce the
file size by only including the dependent parameters that are used in the
numerical code that it generates. The way it does this is that it divides the
dependent parameters into two groups which we will call the public param-
eters and the local parameters. The public parameters are those parameters
that are required to calculate all the particle masses and widths, all pa-
rameters that depend on external functions (except the standard C math
functions) and all dependent parameters above any of these. In other words,
all the parameters from the top of the Constraints table down to the last
parameter required for the calculation are public and are included in the nu-
merical code. All dependent parameters below this are defined as local and
are not included in the numerical code.

If the user would like to force CalcHEP to include a larger subset of the
dependent parameters in the numerical code, he/she can place the comment
%Local! in the Constraints table in the first column. CalcHEP will
always include the parameters up to, at least, this point. (All the parameters

102

above the %Local! line will always be considered public.) An example of a
Constraints table with this comment is:

Name Expression
... ...
%Local!
... ...

where the ... refers to other entries in the Constraints table.
All the public constraints are compiled and calculated together and sep-

arately from the squared amplitude code. Thus, passing of parameters via
global variables between functions involved in the calculation of the depen-
dent parameters in user defined code is possible. The public parameters ap-
pear in the menus of the interactive sessions and can be used in the definition
of the QCD scale and in the limits of the cuts and histograms.

The local constraints, on the other hand, are only calculated when needed
by the squared amplitude. The code for these parameters is attached to the
squared amplitude code.

8.3 Particles

The particles are defined in the Particles table which consists of 11 columns.
Each particle anti-particle pair is described by one row of the table. The
columns are:

1. Full name: The full name of the particle can be entered here. It
is not used directly by CalcHEP . It is used to clarify what the short
particle names mean.

2&3. A and Ac : These columns are where the particle name and antiparti-
cle name belong. More precisely, these columns contain the quantum
field and its C-conjugate. The field operator acting on the vacuum
is understood to create the corresponding anti-particle. Self-conjugate
fields (such as photons and Majorana neutrinos) should contain the
same name in both columns. Any printing character can be used in the
particle name except white space, parentheses and the percent symbol
(%). The length of the particle name can not exceed 8 symbols. For
long particle names, we should note that the graphical representation
of the diagrams might contain overlapping symbols.

103

4. PDG : This is where the PDG code [58] belongs. This number is used
mainly for interfacing with other packages. For example, these codes
are included in event files [41] in order to communicate the particle
flavor to other programs. The parton distribution functions are also
applied according to this number. The conventional PDG codes should
be used for SM particles. For other particles, the user should ensure
that the code is not reserved for another particles such as a meson or
baryon. Otherwise, conflicts could arise when passing events to other
programs, such as Pythia.

5. 2*Spin : This is where the spin of the particle is specified. It should
be entered as the integer equal to twice the spin. In other words, 0
should be entered for a scalar field, 1 for a spin 1/2 fermion, 2 for a
vector boson, 3 for a spin 3/2 fermion and 4 for a spin-2 boson. Spin
3/2 and 2 particles should be massive.

6. Mass : This is where the mass of the particle is entered. If massless,
0 can be entered. Otherwise, it must be a parameter name which is
defined in either the Parameters table or the Constraints table.

7. Width : This is where the width of the particle is entered. If the
particle is stable, 0 can be entered. Otherwise, it must be a parame-
ter name. In this case, however, this parameter can be defined in the
Parameters table, the Constraints table or it can be preceeded with
the ! symbol. If it is preceeded with the ! symbol, CalcHEP will
automatically calculate it when needed. In this case, the parameter
should not appear in either the Parameters table or the Constraints

table. When automatically calculating the width, CalcHEP first at-
tempts the 1 → 2 decays. If none are found, it attempts the 1 → 3
decays. If none are still found, it attempts the 1 → 4 decays. If none
are found at this point, it takes the width as zero. If information about
particle widths was downloaded via SLHA file (See section 9.1), then
widths are not evaluated and CalcHEP substitutes downloaded values
in particle propagators.

8. Color : This is where the color (SU(3)) representation is specified.
Supported representations are the singlet (specified by a 1), the fun-
damental triplet (specified by a 3) and the octet (specified by a 8.) If

104

the particle is specified as a triplet, the antiparticle is treated as an
anti-triplet (the 3̄ representation.)

9. Aux : This field is used to modify the propagator of the field. For
most fields, this column will be left blank. The other possibilities are:

– * : specifies that the propagator should be point like (all mo-
mentum dependence is dropped.) This can be used to construct
4-fermion propagators, for example. These fields can not appear
as external states of processes.

– l and r : are used to specify that a fermion is purely left and
right handed respectively. This can only be applied to massless
fermions. The effect of this is that when CalcHEP averages over
the spin of the incoming fermion, it takes into account that there
is only one polarization for this particle. This is used, for example,
for the SM neutrinos.

– g : declares that the vector particle is treated as a gauge bo-
son. In this case t’Hooft-Feynman gauge is used for the vector
boson propagator and the ghost fields A.c and A.C (where A is
the name of the vector boson) as well as the Goldstone boson A.f

can contribute to the Lagrangian. A massless vertor particle must
be treated as a gauge boson. In the absence of g in this column,
the unitary gauge is always used for massive vector bosons and the
ghosts and Goldstones associated with it are not used in Feynman
diagrams.

The Formulaes for the particle’s propagators are presented in Section
(8.6).

The Aux column can also be used to specify a particle’s electric charge.
This charge is required by many external packages. CalcHEP already
knows the charge of the SM particles and assigns it according to the
particle’s PDG code. It can determine the charges of many BSM parti-
cles by analyzing the Feynman rules and assuming they conserve elec-
tric charge. However, for some particles, this will not be sufficient to
determine their charge. For this reason, CalcHEP allows to specify
the charge of any BSM particle. Specifically, three times the charge
should be entered in the Aux field. For example, a particle with electric

105

charge of −1 would be enetered as -3, a particle with electric charge
of 2/3 would be entered as 2 and so on. This charge must be written
before other symbols in this column (if there are any.) We reiterate
that this charge is not used to define the Feynman rules of the photon
in calculations done by CalcHEP . The interactions of the photon are
entered in the Vertices table along with all other Feynman rules (see
Subsection 8.4.) The electric charge defined in the Aux column of the
Particles table is only used to communicate with other programs that
require it.

10&11. LaTeX(A) and LaTeX(A+) : This is where the LATEX symbol for the
particle and antiparticle are entered. These symbols are used when
CalcHEP produces LATEX output for the Feynman diagrams that it
constructs.

8.4 Interaction Vertices

The Vertices table contains the Feynman rules for the model. The first four
columns (A1, A2, A3 and A4) specify the particles and antiparticles involved
in the interaction. These must be the particle and antiparticle names defined
in the Particles table. The last of these A4 may be empty, which specifies
a three-point vertex. The first three columns must be nonempty. (The
propagators are not specified in this table. They are hard coded. Section 8.6
contains further details.)

The last two columns, Factor and LorentzPart define the vertex. If S is
the action for a particular vertex, the vertex can be obtained by functionally
differentiating with respect to the fields in the vertex as in

δS

δA1[m1](p1) δA2[m2](p2) δA3[m3](p3) [δA4[m4](p4)]
= (7)

(2π)4δ4(p1 + p2 + p3 [+p4]) [C−1T
] ColorStructure · Factor · LorentzPart ,

where pi and mi refer to the 4-moment and Lorentz indices (if any.) The
square brackets ([and]) denote parts of the expression which only appear in
some vertices, but not others. The Fourier transform is defined as

A(x) =
∫ d4k

(2π)4 e−ik·xA(k) . (8)

106

The other pieces of Equation (8.4) will be discussed below.
The Factor column is where the Factor from Equation (8.4) belongs.

This must be a rational monomial constructed from the model parameters,
integer number and the imaginary unit (i). It is best to factor as much
as possible from the LorentzPart since the LorentzPart of the Feynman
diagrams is usually the most time consuming and memory intensive part of
the calculation.

The LorentzPart column is where the LorentzPart from Equation (8.4)
belongs. It must be a Lorentz tensor or a Dirac γ-matrix expression. The
coefficients of the terms in this expression can be polynomials of the model
parameters and scalar products of the momenta. The division operator (/)
is forbidden from this column. It must be transferred to the Factor column
or into a model parameter.

The notation for Lorentz indices, momenta, contractions, and the metric
tensor are similar to those in the Reduce package. The Lorentz indices of the
fields in the vertex are labeled by a m for the first index and a M for the second
index followed by the particle number for that vertex. For example, a vector
field in the third column would have Lorentz index m3 while a tensor field
in the second column would have Lorentz indices m2 and M2. The momenta
use the symbol p followed by the same number. For example, a scalar field
in column 1 would have momentum p1. A dot (.) is placed between two
momenta, a momentum and its Lorentz index, and between two Lorentz
indices (for the metric tensor.) Here are some examples:

p1.p2 means p1µ pµ
2

p1.M2 means pM2

1

m1.m2 means gm1m2
.

Dirac γ-matrices are written with a G and the momentum or Lorentz
index in parentheses, while the γ5 matrix has a 5 without parentheses. For
example, we have:

G(m1) means γm1

G(p2) means γµp2µ

G5 means γ5

The γ5 matrix is defined by

γ5 = i γ0γ1γ2γ3 .

107

The anti-commutation relation for the gamma matrices in CalcHEP notation
is

G(v1) G(v2) + G(v2) G(v1) = 2 v1.v2 ,

where v1 and v2 are either momenta or Lorentz indices.
In the case of anti-commuting fields the functional derivative in Equa-

tion (8.4) is assumed to act from the right. The number of fermion fields in
a vertex must be either two or zero. If the user would like to implement a
four-fermion interaction, he/she must use an unphysical auxiliary field with
a point-like propagator (see Subsections 8.3 and 8.6 for further details.)

CalcHEP interprets the anti-particle spinor field as a C-conjugated parti-
cle field, rather than the Dirac conjugated field. These definitions are related
to each other by

δ

δψc
= C−1T δ

δψ̄
(9)

which is the reason for the appearance of the C−1T
matrix in Eq. (8.4).

The particle and anti-particle fields can appear in the vertices in any order.
Vertices can also contain two particle fields or two antiparticle fields. In other
words, vertices that violate fermion number are allowed.

Any fermion vertex can be written in two forms which depend on the
order of the fermion fields. After permutation of the fermion fields, the
LorentzPart is transformed according to

G(v1) G(v2) . . . [G5] . . . G(vn) → (−G(vn)) . . . [G5] . . . (−G(v2)) (−G(v1)) ,
(10)

where the order of the gamma matrices is reversed and each gamma matrix
with a Lorentz index gets a sign change while the γ5 matrix does not get a
sign change.

We note that the definition in Eq. (8.4), the LorentzPart has the ap-
propriate symmetry property when identical particles appear in the vertex.
This symmetry is not checked by CalcHEP , and its absence will lead to
the wrong results. Equation 10 can be used to check this symmetry in the
case of two identical Majorana fields in one vertex. It should also be noted
that in the case of n identical particles, the functional derivative (8.4) gets a
corresponding factor of n! which should be included in the vertex.

108

The totally antisymmetric Levi-Civita tensor can be used in vertices. It
is given by eps(v1,v2,v3,v4), where v1, v2, v3, and v4 are either momenta
or Lorentz indices.

The ColorStructure from Eq. (8.4) is not included in the Vertices

table. CalcHEP substitutes it in automatically according to the following
rules: If all the particles in the vertex are color singlets, CalcHEP inserts
1. If the vertex contains one fundamental and one antifundamental (3 × 3̄),
the identity matrix is inserted. If the vertex contains two color octet fields
(8 × 8), the identity matrix is inserted. If the vertex contains three color
octet fields (8 × 8 × 8), it inserts

−if(a1, a2, a3)

where fa1
a2,a3 is the structure constant of SU(3) and the color adjoint indices

a1, a2, and a3 are taken in the same order they appear in the Vertices table.
If the vertex contains a fundamental, an antifundamental, and a color adjoint
field (3 × 3̄ × 8), CalcHEP inserts

1

2
λ(̄i, j, a),

where λ(̄i, j, a) are the Gell-Mann matrices. Other color structures are not
implemented in CalcHEP, however, it is possible to construct them by means
of an unphysical auxiliary field (see Subsections 8.3, 8.6 and 13 for further
details.)

8.5 External functions and libraries.

The Libraries table is used to link external code and declare external func-
tions. Lines beginning with a % are comments and are ignored by CalcHEP.
Lines beginning with the keyword extern are considered to be prototypes of
external functions defined in external code. These lines should include the
full function prototype (including the semicolon at the end) on one line in
the syntax of the C programming language. These functions can be used in
the definitions of the dependent parameters in the Constraints table (see
Subsection 8.2.)

External code and libraries can be linked to the numerical code by us-
ing this table as well. The user should enter a list of the external code,

109

libraries and any flags necessary for his/her model in this table. Some typ-
ical examples of external code are user defined kinematical variables which
can be used in cuts and histograms (see Subsection 5.7) and the LHAPDF
libraries (see Subsection 5.3.) All lines which do not start with % or extern
are concatenated and passed to the linker which creates the executable for
numerical calculations. These lines can make use of environment variables.
CalcHEP defines two in it’s startup scripts (calchep and calchep_batch)
that the user can make use of. They are $CALCHEP which is the path to the
CalcHEP root directory and $WORK which is the path to the user’s working
directory. The user can also make use of his/her own environment variables.
These environment variables can be used with or without parentheses (either
$CALCHEP or $(CALCHEP) is acceptable.) CalcHEP will translate between
the two depending on whether they are used in a Makefile or in a shell
environment.

For functions presented in the SLHAplus package (section (9.1) prototyp-
ing and special link instructions are not needed.

8.6 Propagators

CalcHEPdefines the propagators for particles of spin less than or equal to
two. These propagators are hard coded and not modifiable in by the user
unless specified below.
Spin 0: The spin-0 propagator is given by

< 0|T [A(p1), A
+(p2)]|0 >= ∆c(p1, p2,M) =

iδ(p1 + p2)

(2π)4(p2
1 − M2)

.

Spin 1/2: The spin-1/2 propagator is given by

< 0|T [A(p1), Ā(p2)]|0 >= (6 p1 + M) ∆c(p1, p2,M) ,

where 6 p = pµγµ. If the fermion is defined to be purely left or right handed
(see Subsection 8.3), the propagator is defined as

6 p1(1 ± γ5)

2
∆c(p1, p2,M) .

Spin 1: In unitary gauge, the propagator is given by

< 0|T [Am1(p1), (Am2)+(p2)]0 >= −(gm1m2 +
pm1

1 pm2

2

M2
)∆c(p1, p2,M), (11)

110

while in t’Hooft-Feynman gauge, it is given by

−gm1m2 ∆c(p1, p2,M) .

We remind the user that a massless vector particle must be defined as a gauge
boson (see Subsection 8.3.)
Spin 3/2: The spin-3/2 propagator is given by

< 0|T [Am1(p), Ām2(p′)]|0 >=
(
−3(6 p + M)(gm1m2 − pm1pm2

M2
) (12)

− (γm1 +
pm1

M
)(6 p − M)(γm2 +

pm2

M
)
)

∆c(p, p
′,M)

Spin 2: The spin-2 propagator is given by

< 0|T [Am1µ1(p), (Am2µ2)+(p′)]0 >=

(
(gm1m2 + 2

pm1pm2

M2
)(gµ1µ2 + 2

pµ1pµ2

M2
)

−3(gm1µ1pm2pµ2 + gm2µ2pm1pµ1 + gm1µ2pµ2pµ1 + gm2.µ1pm1pµ2)M−2

+3(gm1µ1gm2µ2 + gm1µ2gm2µ1 − gm1m2gµ1µ2)

)
∆c(p, p

′,M)

Auxiliary propagators: When massive particles are marked as auxiliary
fields (see Subsection 8.3) by putting a * in the Aux column, the momentum
dependence of the propagator is removed. ∆c(p1, p2,M) is replaced with

δ(p1 + p2)

(2π)4i M2

and all terms proportional to the particle momentum p in the numerator are
dropped. Auxiliary particles cannot appear as incoming or outgoing states.
They are only used to implement point-like interactions.

8.7 Ghost and Goldstone fields propagators

In addition to the fields enumerated in the Particles table, the Lagrangian
can depend on a few other fields. In particular, gauge theories have Faddeev-
Popov ghosts [48] and, if broken, Goldstone bosons. Furthermore, complex
color structures require a special tensor auxiliary field. All of these fields are
automatically generated by CalcHEPwhere appropriate by adding a final .c,
.C, .f, .t or .T as described below.

111

Faddeev-Popov ghosts and anti-ghosts are generated for any gauge
vector particle which is marked by a g in the ’Aux’ column of the Particles
table (see Subsection 8.3.) The names of the Faddeev-Popov ghosts and anti-
ghosts are constructed by adding a .c and .C, respectively, to the particle
name. For example, if the gluon is named G, the gluonic ghost is named
G.c and the gluonic anti-ghost is named G.C. The ghosts and anti-ghosts
corresponding with the W+ and W- gauge bosons are W+.c, W+.C, W-.c and
W-.C. Hermitian conjugation transforms a Faddeev-Popov ghost into a ghost
with the same sign whereas it changes the sign of the anti-ghost. For example,

(G.c)+ = G.c

(G.C)+ = −G.C

(W+.c)+ = W-.c

(W+.C)+ = −W-.C

Faddeev-Popov (anti)ghosts are anti-commuting, scalar fields 6. The nonzero
propagators for these fields are:

< 0|T [A+.c(p1), A.C(p2)]|0 >=< 0|T [A+.C(p1), A.c(p2)]|0 >= ∆c(p1, p2,M),

where A+ is the conjugate of A and M is the mass of the parent particle (we
are assuming Feynman gauge.)

The reason CalcHEP introduces the Faddeev-Popov ghosts at tree-level
is that it sums over the unphysical polarizations of the gauge bosons in the
external states as well as the physical polarizations (see Appendix C) in
order to reduce precision loss due to large cancellations. The Faddeev-Popov
ghosts (and the Goldstone bosons for a broken gauge theory) are required to
cancel the unphysical polarizations. (See [48] for further details.)

Goldstone boson are related to broken symmetries. In the case of bro-
ken gauge symmetries, they become the longitudinal degrees of freedom of
the gauge boson. CalcHEPautomatically generates these fields for massive
vector bosons by appending a .f to the end of the gauge boson name. For
example, the W+ and W- gauge bosons have the Goldstone bosons W+.f and
W-.f associated with them. These Goldstone bosons are commuting, scalar

6The well-known spin-statistics relation is not valid for unphysical fields.

112

fields that satisfy the same conjugation rules as the gauge boson they belong
with. For example, (W + .f)+ = W − .f . The nonzero propagators for these
fields are:

T [A+.f(p1), A.f(p2)] = ∆c(p1, p2,M),

where A+ is the conjugate of A and M is a mass of the gauge boson (again
we consider Feynman gauge.)

Auxiliary tensor field. Whereas the Faddeev-Popov ghosts and Gold-
stone bosons are standard elements of modern quantum field theory, this
auxiliary tensor field was invented by the original CalcHEP authors in order
to construct complicated color vertices such as the four-gluon vertex. These
auxiliary fields are automatically generated whenever a particle is defined
with a nontrivial SU(3) color representation by adding .t and .T to the
particle name. Two auxiliary tensor fields are generated automatically and
are typically used for a constraint and a Lagrange multiplier.

These auxiliary fields are commutative and satisfy the same conjugation
rule as the parent particle, while it is Lorentz-transformed like a tensor field.
The propagator is point like

< 0|T [A+.tm1M1(p1), A.tm2M2(p2)]|0 >=
1

(2π)4i
δ(p1 + p2) gm1m2 gM1M2 .

(13)
Further information about the use of the Faddeev-Popov ghosts, Gold-

stone bosons and auxiliary tensor fields can be found in Appendix (E).

113

9 Tools for model implementation.

9.1 The SLHAplus package

The SLHAplus[57] package included in CalcHEP allows to facilitate realiza-
tion of constraints. Initially the package was designed for SLHA interface.
In several models of elementary particles we have noticeable loop correc-
tions to particle masses. There are several packages which allow to perform
such calculations for MSSM-like models: Isajet, SoftSusy[59], Spheno[60],
SuSpect[61], NMSSMTools[62]. There is an agreement to pass input param-
eters and the calculated particles spectra and mixing matrices via text files
in a special format SLHA[37, 38]. Below is an example of a SLHA input file
for MSSM spectrum calculation with input parameters at GUT scale.

Block MODSEL # Select model

1 1 # sugra

Block SMINPUTS # Standard Model inputs

5 4.23000000E+00 # mb(mb) SM MSbar

6 1.73100000E+02 # mtop(pole)

Block MINPAR # Input parameters

1 1.20000000E+02 # m0

2 5.00000000E+02 # m1/2

3 1.00000000E+01 # tanb

4 1 # sign(mu)

5 -3.50000000E+02 # A0

In order to create such file one can use the following records in Constraints
table

open |openAppend("suspect2_lha.in")

input1|aPrintF("Block MODSEL # Select model\n")

input2|aPrintF(" 1 1 # SUGRA\n")

input3|aPrintF("Block SMINPUTS Standard Model inputs\n")

input4|aPrintF(" 5 %E #mb(mb) SM MSbar\n", MbMb)

input5|aPrintF(" 6 %E #mt(pole)\n",Mtp)

input6|aPrintF("BLOCK MINPAR # Input parameters\n")

input7|aPrintF(" 1 %E # m0\n",Mzero,Mhalf)

input8|aPrintF(" 2 %E # m1/2\n", Mhalf)

114

input9|aPrintF(" 3 %E # tb\n",tb)

input10|aPrintF(" 4 %d # sign(mu)\n", (int)sgn)

input11|aPrintF(" 5 %E # A0\n",A0)

The aPrintF command is similar to C-printf family functions. Its re-
turn value is a number of printed symbols and not useful. Instructions
above generate the file "suspect2 lha.in". Next instruction launches SuS-
pect which reads SLHA input file and writes in its turn SLHA output file
"suspect2 lha.out".

sys |System("%s/suspect2.exe",".")

Second argument of System command can be used to specify path to SuSpect.
Generated output file in case of SuSpect is "suspect2 lha.out". It contains
information stored in Blocks. For instance

BLOCK MASS # Mass Spectrum

PDG code mass particle

25 1.15987932E+02 # h

1000006 7.67852128E+02 # ~t_1

2000006 1.00613369E+03 # ~t_2

1000022 2.05916966E+02 # ~chi_10

1000023 3.89679950E+02 # ~chi_20

BLOCK STOPMIX # Stop Mixing Matrix

1 1 4.29327465E-01 # cos(theta_t)

1 2 9.03148896E-01 # sin(theta_t)

2 1 -9.03148896E-01 # -sin(theta_t)

2 2 4.29327465E-01 # cos(theta_t)

To read this file one can use record in Constraints table

rd |slhaRead("suspect2_lha.out",0)

The second argument of slhaRead specify kind of data to read. In general
case second argument is m1 + 2m2 + 4m4 + 8m8 where

m1 0/1 overwrite all / keep old data
m2 0/1 ignore mistake / stop in case of mistake in input file
m4 0/1 read DECAY / don’t read Decay
m8 0/1 read BLOCK / don’t read Blocks

To get values of parameters after reading one can use the slhaVal func-
tion

115

Mst1 | slhaVal(MASS,MZ,1,1000006) % mass of stop1

Mst2 | slhaVal(MASS,MZ,1,2000006) % mass of stop2

Zt11 | slhaVal("STOPmix",MZ,2,1,1) % stop mixing matrix

Zt12 | slhaVal("STOPmix",MZ,2,1,2)

Zt21 | slhaVal("STOPmix",MZ,2,2,1)

Zt22 | slhaVal("STOPmix",MZ,2,2,2)

Here the first argument of slhaVal is the name of Block, the second one
is the scale parameter (in this example the scale parameter is not specified in
BLOCK), the third parameter fixes the number of key parameters, the key
parameters themselves follow.

An SLHA file also can contain information about particle widths and
decays channels. If such information is downloaded (m4=0), CalcHEP uses
the downloaded values for particle widths instead of its automatic calculation.

The SLHAplus package in CalcHEP is considered as a collection of tools
for realization of Constraints. Except of SLHA interface it contains routines
for matrix diagonalizing adapted for direct implementation in CalcHEP ta-
bles. Using this part of SLHAplus one can diagonalize real symmetric matrix
(for multiplet of real scalar fields), complex self-conjugated matrix(for com-
plex boson fields), generic complex matrix (for spinor Dirac fields7), real
matrix (for spinor fields). For example

id| rDiagonal(d,M11,M12,..M1d,M22,M23...Mdd)

diagonalizes a real symmetric matrix of dimension d. The d(d + 1)/2 ma-
trix elements, Mij (i ≤ j), are given as arguments. The function returns
an integer number id which serves as an identifier of eigenvalues vector and
rotation matrix. Then MassArray(id, i) returns the eigenvalues mi or-
dered according to their absolute values, and MixMatrix(id,i,j) returns
the rotation matrix Rij where

Mij =
∑

k

RkimkRkj

Another part of SLHAplus package supports implementation of QCD
running couplings. It is initiated by the command

7For spinor field we can rotate independently left and right components. So, two unitary
rotation matrices need for diagonalizing of generic fermion mass matrix.

116

LamQCD | initQCD(alphaSMZ, McMc, MbMb,Mtot)

Here input parameters are running QCD coupling at MZ, running masses
for b- and c-quarks at their own scales: Mc(Mc), Mb(Mb), and t-quark
pole mass. Return value is λQCD. After initiation one can use functions
alphaQCD(Q) to calculate QCD coupling at any scale, McRun(Q), MbRun(Q),

MtRun(Q) -to calculate running masses, and McEff(Q), MbEff(Q), MtEff(Q)
which calculate quark masses for effective Yukawa couplings. These effective
couplings lead to automatic account of loop corrections for Higgs width cal-
culation. Functions presented in the next section also belong to SLHAplus
package.

9.2 Effective Higgs γ-γ and glu-glu interactions.

9.2.1 Construction of effective vertexes.

Higgs interaction with electric or color charged particle leads to loop induced
h-γ-γ and h-glu-glu effective vertexes which are responsible for very important
signal of Higgs decay and Higgs production in γγ and hadron colliders. At
the lowest pertutbative order these vertexes can be constructed by the rules
[63, 64]:

hψ̄ψ → α

8π
f c

ψq2
ψhF µνFµνA1/2(

Mh
2

4M2
ψ

)/Mψ (14)

Mvhv̄µv
µ → −α

16π
f c

vq
2
vhF µνFµνA1(

Mh
2

4M2
v

)/Mv (15)

Mshs̄s → α

16π
f c

sq
2
shF µνFµνA0(

Mh
2

4M2
s

)/Ms (16)

hψ̄iγ5ψ → α

16π
f c

ψq2
ψhF µνF̃µνÃ1/2(

Mh
2

4M2
ψ

)/Mψ (17)

Here α presents electromagnetic or strong coupling. f c is a color factor which
depends on color structure of virtual particle. In case of fundamental SU(3)
representation f c is 3 for photon vertexes and 1/2 for gluon ones. For adjoin
representation f c is 8 and (-2) correspondingly. q should be loop electric
charge for γγ and 1 for gluon channel.

Functions A1/2, A1A0, Ã1/2 are presented in [64]. These functions are
realized in SLHAplus package and have names HggF, HggV, HggS, HggA

117

correspondingly. In general these functions return complex value, the imag-
inary part appears if argument is larger than one.

In CalcHEP notation λhFµν(A)F µν(A) is realized as

P1 |P2 |P3 |P4 |> Factor <|>dLagrangian/dA(p1)dA(p2)dA(p3)

A |A |h | | -4*lambda |(p1.p2*m1.m2-p1.m2*p2.m1)

TP-odd interaction λhFµν(A)F̃ µν(A) reads

A |A |h | | -4*lambda |eps(p1,m1,p2,m2)

CalcHEP assumes that all vertexes are self-conjugated. From other side
affective hVV coupling can be complex. We propose to replace complex
coupling on it absolute value after summation of all amplitudes. One expects
exactly the same result after amplitude squaring.

9.2.2 QCD corrections to hγγ .

There are important QCD correction for hγγ effective vetrex if this vertex
is originated by color particles loop. This correction can be presented as a
overall factor for coupling

1 +
αs

π
Cl(

Mh
2

4M2
l

) (18)

where Ml is mass of loop particles. The Cl functions are known for vector,
pseudo-vector, and scalar interactions if loop particle has color dimension
3. The formulas are rather cumbersome and have simple analytical forms
only in asymptotic. SLHAplus contains HgamF(τ), HgamA(τ), HgamS(τ)
complex functions which interpolate tabulated data and present Cl functions
for fermion loop with scalar interaction, fermion loop with pseudo-scalar
interaction and scalar particle loop correspondingly. The HDECAY package
was used to generation these tables. The appropriate QCD scale for αs is
Mh/2. It allows effectively take into account large logarithmic corrections of
next orders [63].

9.2.3 QCD corrections for h-glu-glu

.

118

The h → GG process at NLO level contains radiative corrections which
are plagued by infrared divergence which in its turn cancel infrared divergence
of loop diagrams caused by virtual gluons attached to external legs. This is a
reason why QCD NLO corrections are presented for partial widths and cross
sections, but not for effective vertex as in the hγγ case. CalcHEP user has
to implement LNO factor to vertex in form

√
1 +

αs

π
Fnlo

where Fnlo presents NLO contribution for hGG partial width.
QCD correction for hGG interation induced by heavy quark loop are

known in NNLO precision. In case of scalar (14) and preudo-scalar (17)interaction
they are correspondingly [65], [66]

F q̄q
nlo =

(
95

4
− 7nf

6

)
+

αs

π

(
370. − 47.nf + 0.9n2

f − (
19

8
+

2nf

3
) log

M2
f

M2
h

)

(19)

F q̄γ5q
nlo =

221

12
+

αs

π

(
171.5 − 5 log

M2
f

M2
h

)
(20)

The last expression is presented for nf = 5. Here for quark masses one has
to use the pole values [67] and αs has to be calculated at Mh scale. The α3

s

QCD corrections to hgg vertex in case of massive fermion loop Mf ≫ Mh/2
was calculated in [68] and appears about ≈ 1%.

The NLO correction to scalar loop (16) (SUSY squars) is known with
NLO precision and appears to be 17/6 larger that F q̄q

nlo [69]

F ss
nlo =

(
319

12
− 7nf

6

)
(21)

Formulas (19, 20, 21) were obtained in the limit Mf,s << Mh/2. But a
posteriory it appears that they work well even out of this limit. See example of
implementation of loop induced Higg boson vertexes in the SM(CKM=1 with hGG/AA)

model.

9.3 LanHEP: automatic generation of models.

The LanHEP[35] package allows automatic generation of CalcHEP model files.
It starts from model definition in terms of particle multiplets and performs

119

substitution of physical particle fields in multiplets. LanHEP also checks
at the symbolic level the absence of linear terms and at the numerical level
the absence of off-diagonal terms in the quadratic part of Lagrangian. Also
LanHEP compares diagonal quadratic terms with declared particle masses.
LanHEP allows to avoid a large number of mistakes which could appear in
the derivation of Feynman rules by hand. The package is disposed at

http://theory.sinp.msu.ru/~semenov/lanhep.html

The downloaded lhepNNN.tgz file contains the source code and examples.
As an example we present here part of a LanHEP input file for the Inert
Doublet Model model describing only new particles and new interactions
beyond the Standard Model.

The IDM[70, 71] contains two SU(2) × U(1) scalar doublets. In the
unitary gauge

H1 =

(
0

〈v〉 + h/
√

2

)
, H2 =

(
H̃+

(X̃ + iH̃3)/
√

2

)
(22)

where H1 is the SM Higgs doublet and H2 is a new inert doublet which does
not couple to quarks and leptons. Unlike the SM scalar doublet it does not
develop a vacuum expectation value. H̃+, X̃, and H̃3 are the new fields of
the model. The IDM Lagrangian contains only even powers of the doublet
H2

L = (SM terms) + DµH∗

2DµH2 − µ2|H2
2 |2 (23)

−λ2H
2
2 − λ3H

2
1H

2
2 − λ4|H∗

1H2|2 − λ5Re[(H∗

1H2)
2]

Because of the H2 → −H2 symmetry, the lightest new particle is stable. In
the following example we will use the masses of new particles as well as λ2

and λL = (λ3 + λ4 + λ5)/2 as independent parameters, The couplings µ, λ3,
λ4, λ5 can be expressed in terms of the independent parameters.

LanHEP source file for IDM should contain description of new free pa-
rameters

parameter MHX=111,MH3=222,MHC=333. % Declaration of new masses

parameter laL=0.01, la2=0.01. % Declaration of new couplings

Declaration of constrained parameters.

120

%mu^2 as a function of masses

parameter mu2=MHX**2-laL*(2*MW/EE*SW)**2.

% constraints for couplings

parameter la3=2*(MHC**2-mu2)/(2*MW/EE*SW)**2.

parameter la5=(MHX**2-MH3**2)/(2*MW/EE*SW)**2.

parameter la4=2*laL-la3-la5.

New particles of the model

scalar ’~H3’/’~H3’:(’odd Higgs’,pdg 36, mass MH3, width wH3 = auto).

scalar ’~H+’/’~H-’:(’Charged Higgs’,pdg 37,mass MHC,width wHC=auto).

scalar ’~X’/’~X’:(’second Higgs’,pdg 35,mass MHX,width wHX=auto).

Now we use physical fields defined above to construct second doubet of
(23)

let h2 = { -i*’~H+’, (’~X’+i*’~H3’)/Sqrt2 },

H2 = { i*’~H-’, (’~X’-i*’~H3’)/Sqrt2 }.

At the next step we define covariant derivatives for new doublet. Below B1

is SM U(1) gauge field and WW={W-,W3,W+} is SM SU(2) triplet. g1 and g are
corresponding couplings; taupm is generator of SU(2) group in {W-,W3,W+}
basis.

let Dh2^mu^a = (deriv^mu+i*g1/2*B1^mu)*h2^a +

i*g/2*taupm^a^b^c*WW^mu^c*h2^b.

let DH2^mu^a = (deriv^mu-i*g1/2*B1^mu)*H2^a

-i*g/2*taupm^a^b^c*{’W-’^mu,W3^mu,’W+’^mu}^c*H2^b.

Terms of Lagrangian (23) can be written in LanHEP notation by

lterm DH2*Dh2. % Kinematic and other terms.

lterm -mu2*h2*H2.

lterm -la2*(h2*H2)**2.

lterm -la3*(h1*H1)*(h2*H2).

lterm -la4*(h1*H2)*(H1*h2).

lterm -la5/2*(h1*H2)**2 + AddHermConj.

where h1 and H1 present the SM Higgs doublet and its conjugation.
Indeed all models used by CaclHEP were constructed with LanHEP. Com-

pilation of LanHEP source file for CalcHEP can be done by the command

121

lhep <source file> -ca -evl 2

Other packagers which facilitate the implementation of complicated mod-
els for CalcHEP are FeynRules [36] and SARAH [72].

9.4 FeynRules

122

10 CalcHEP as a generator of matrix ele-

ments for other packages.

Here we present tools which allow to compile Squared Matrix Elements for
different processes and calculate them for needed values of input parame-
ters and momenta. Actually we presents tools which allow to construct such
packages as micrOMEGAs where matrix elements generated by CalcHEP are
used for calculation of different observables related to Dark Matter. We as-
sume that user writes a corresponding main program which can be compiled
by
$CALCHEP/bin/make_main mainProgram.c
See example of such main program in $CALCHEP/utile/main_22.c. Af-
ter compilation executable program mainProgram has to appear. Because
CalcHEP uses run-time generated code for width calculation, a tool which
works with CalcHEP matrix elements has to have an opportunity to generate
new matrix element. If so, it is quite naturally to provide user an option to
generate any matrix element in run-time. In the same time the user can link
preliminary generated matrix elements as well.

10.1 Choosing of model

The first command of the main routine should be
int setModel(char*modelFilesDisposition,int modelNumber)

For example, if ones prefer to work in CalcHEP working directory, the com-
mand can be setModel("models",1)

The setModel command generates aux subdirectory which is organised as
CalcHEP working directiry with subrirectories models, results, tmp and
directory so_generated to store compiled code of matrix elements. set-

Model has to generate VandP.so file in directory so_generated which con-
tains compiled constrains of the model, list of variables, and list of particles.
In case of problems not rezo value is returned.

The user can change a model from session to session or even during one
session, but any time he changes the model, codes of matrix elements ob-
tained before will be cleaned.

123

10.2 Setting of parameters and calculation of constraints.

Three functions can be used to set the value of independent parameters:
int assignVal(char*name,double val)

void assignValW(char*name,doube val)

assigns value val to parameter name. The function assignVal returns a non-
zero value if it cannot recognize a parameter name while assignValW writes
an error message.
int readVar(char*fileName)

reads parameters from a file. The file should contain two columns with the
following format

name value

readVar returns zero when the file has been read successfully, a negative value
when the file cannot be opened for reading and a positive value corresponding
to the line where a wrong file record was found.

After parameter assignment is completed, in has to call
int calcMainFunc(void)

routine with calculates public constraints. Zero return value of this routine
means that all constraints where sucsessfully calculated. It non-zero err

value is returned than there is a problem in calculation of varNames[err]
parameter.

The following routines are used to display the value of independent and
constrained public parameters: int findVal(char*name,double*val)

finds the value of variable name and assigns it to parameter val. It returns a
non-zero value if it cannot recognize a parameter name.
double findValW(char*name) just returns the value of variable name

and writes an error message if it cannot recognize a parameter name. The
variables accessible by these commands are all free parameters and the con-
strained parameters of the model (in file model/func1.mdl) treated as public.

For treating of independent and constrained physical parameters the basic
variables are:

int nModelVars;

int nModelFunc;

char**varNames; // contains nModelVars+nModelFunc+1 elements.

// The zero one is not used

124

REAL *varValues; // contains nModelVars+nModelFunc+1 elements.

// type REAL is defined in

Type REAL is defined in $CALCHEP/../../include/nType.h. By default
REAL means double

10.3 Testing of particle contents.

char* pdg2name(int nPDG)

returns the name of the particle whose PDG code is nPDG. If this particle
does not exist in the model the return value is NULL.
int pNum(char * name) returns PDG code of particle defined by name.

If the input parameters does not corresponds to any particle, then return
value is zero.
int qNumbers(char*pName,int*spin2,int*charge3,int*cdim)

returns the quantum numbers for the particle pName. Here spin2 is double
spin of the particle; charge3 is three times the electric charge; cdim is the
dimension of the representation of SU(3)c, it can be 1, 3,−3 or 8. The value
returned is the PDG code. If pName does not correspond to any particle of the
model then qNumbers returns zero.
double * pMass(char*pName)

returns numerical value of the particle mass.
Basic variables which defines particles are

int nModelParticles;

ModelPrtclsStr*ModelPrtcls;

Structure ModelPrtclsStr is defined in $CALCHEP/include/VandP.h

10.4 Decay widths and branching fractions.

The calculation of particle widths, decay channels and branching fractions
can be done by the function

double pWidth(char*pName, txtList branchings)

returns directly the particle width. If the 1->2 decay channels are kinemat-
ically accessible then only these channels are included in the width. If not,
pWidth compiles all open 1->3 channels and use these for computing the

125

width. If 1->3 channels are closed too, then 1->4 channels are considered.
An improved routine with a better matching between the 1->2, 1->3 and
1->4 calculations is kept for the future. The returned parameter branchings
gives an address where information about the decay channels is stored. The
txtList type is presented in
$CALCHEP/c_sources/dynamic_me/include/dynamic_cs.h

If SLHA file with decay information was used before pWidth call, then
pWidth will not calculate widths using CalcHEP matrix elements, but will
display information stored in the file.
void printTxtList(txtList branchings,FILE*f)

writes to open file branching fractions obtained by pWidth.
doouble findBr(txtList branchings , char * pattern)

finds the branching fraction for a specific decay channel specified in pattern,
a string containing the particle names in the CalcHEP notation. The names
are separated by commas or spaces and can be specified in any order.
int slhaDecayPrint(char * pname,FILE*FD)

Calculates the width and branching ratios of particle pname and writes down
the result in SLHA format. The return value is the PDG particles code. In
case of problem, for instance wrong particle names, this function returns zero.
This function just present another output format for pWidth/printTxtList.

10.5 Compilation of new processes.

Generic procedure for matrix element compilation reads

numout*getMEcode(

int twidth, // flag which forces Breit-Wigner form of t-channel

// propagators

int UG, // flag which forces Unitary gauge

char*Process, // process name

char*excludeVirtual,// list of particles which forbidden in propagators

char*excludeOut, // list of particles which forbidden as outgoing ones

char*libName) // name of shared library (without terminating ".so")

In case of success result of the compilation is stored in the library
aux/so-generated/libName.so.

If the library libName already exists, it is not recompiled and the corre-
spondence between the contents of the library and the Process parameter

126

is not checked. libName is also inserted into the names of routines in the
libName.so library. Thus libName can not contain symbols that cannot be
used in identifiers, for example the symbols {+ − ∗ /}.

The getMEcode return address of computer memory where compiled code
and auxilary programs are stored. If compilation was not successful then
return value is NULL. It can be in case when input process is absent in the
model. User can find definition of struct numout in file dynamic cs.h. We
will not explain this structure but give some examples of it usage.

Codes of matrix elements are not related directly with parameters of the
model describe above. So,before we start to work with SQME codes we have
to export numerical values of model variables to code of matrix elements. Let
cc is a variable of numout* type obtained by getMEcode procedure. Then
export of parameters can be done by the command

for(i=1;i<=cc->interface->nvar;i++)

if(cc->link[i]) cc->interface->va[i]=*(cc->link[i]);

Number of compiled subprocesses and number of incoming and outgoing
particles for these subprocesses can be detected by

int procInfo1(nuout*cc,int*nproc,int*nin,int*nout)

Particle contents for given subprocess (1 ≤ nsub ≤ ntot) can be obtained by
int procInfo2(numout*cc,nsub,char**pName,REAL*Masses)

Here pName and Masses are arrays of nin + nout elemennts which present
particle names and particle masses.

10.6 Calculation of matrix elements.

To calculate matrix element one has to fill particle momenta. Momenta are
presented by one dimention array of type REAL which contains in turn 4-
momenta of incoming and outgoing partices. 4-momenta are started from
energy (zeroth) component.

Value of squared matrix element can be obtained by

cc->interface->sqme(nsun,GG,pvect,&err);

where cc is a pointed for compiled process; nsub - number of subprocess;
GG is strong coupling (αqcd = GG2/(4π)); pvect - array of momenta; err

127

interger variable which contains error code after execution. Sumation over
outgoing polarization and avaraging over incomings ones is performed.

128

11 CalcHEP output for Reduce, Mathemat-

ica and Form

11.1 General structure

In addition to writing C code, which has already been described, CalcHEP can
output the results of the built-in symbolic calculation in a format suitable
for the Reduce package [45], the Mathematica package [73] and the Form
package []. We have attempted to present the results in a form which can
easily be used for different purposes.

All the squared diagram contributions for one subprocess are stored in one
file. The subprocess number is appended to the file name. For example, the
symb1.red and symb1.m files contain the symbolic expressions for the squared
diagrams in the first subprocess in the syntax of Reduce and Mathematica ,
respectively.

The output files have the following structure:

Initial declarations
initSum()

First diagram code
addToSum()

Second diagram code
addToSum()

.

.

.
finishSum()

Initial declarations includes the declaration of variables for the momenta
and conservation law relations for them, the declaration of the independent
parameters involved in the calculation and their numerical values, the decla-
ration of the dependent parameters and their substitution rules, and, finally,
the declaration of the process. The momenta are named p1,p2,p3,... where
p1 is the momentum of the first particle in the process, p2 is the momentum
of the second particle and so on. The signs of momenta are defined in such a
way that the sum of incoming momenta is equal to the sum of the outgoing
momenta. The list of substitutions of numerical values for the independent
parameters is stored in the variable parameters. The list of substitutions for

129

e M ! M e

==>==\ /==<====!==<==\ /==>==

P1 | | P4 ! P4 | | P1

| | ! | |

E | A | m ! m | A | E

==<==@-1---@==>====!==>==@---2-@==<==

P2 P5 P3 ! P3 -P6 P2

Figure 14: An example of a pseudo-graphic representation of a squared dia-
gram found in the symbolic expression code.

the dependent parameters is stored in the variable substitutions. The lists
of incoming and outgoing particles is stored in the variables inParticles and
outParticles, respectively.

After the initial declarations, the function initSum() is called. Then, the
expression for each squared diagram is presented. After each squared diagram
code, the function addToSum() is called. After all the squared diagrams
are finished, the funciton finishSum() is called. These three procedures
(initSum(), addToSum() and finishSum()) must be written by the user
and loaded before the the process code is loaded. In this way, the user can
decide how the code from the different diagrams is combined.

Now we shall explain the structure of each squared diagram contribution.
Each squared diagram begins with a pseudo-graphic image of the diagram
such as in the e+e− → µ+µ− example found in Fig. 14. This is followed by
the assignments:

• totFactor is a rational function depending on the model parameters;

• numerator is a polynomial of the model parameters and scalar products
of the momenta;

• denominator is a product of the propagator denominators

propDen(P,Mass,Width)

where P, Mass, and Width are, respectively, the momentum, mass, and
width of propagating particle. In the case that Width= 0, propDen

130

should be defined as (Mass2 − P2). The user can treat the Width argu-
ment as he/she likes.

The total contribution of a squared diagram is then:

totFactor
numerator

denominator
.

We note that, as was mentioned in Section 4.4, the result obtained by
the summation of the diagrams must be symmetrized in the case of identical
outgoing particles. This can be done, for example, by the finishSum()
procedure.

11.2 Reduce examples

We have prepared some example programs to work with the Reduce output.
They are:

• sum_cd.red which combines the expressions from the squared diagrams
and presents it in a form with a single common denominator;

• sum_22.red which combines the expressions from the squared diagrams
and presents it as a sum of pole terms;

• sum_int.red which combines the expressions fromt the squared dia-
grams and integrates it over the phase space and presents it as a total
cross section.

sum_22.red and sum_int.red only work with 2 → 2 processes. These files
are stored in the $CALCHEP/utile directory.

Suppose the symbolic output (symb1.red) for γµ scattering (A,m->A,m) is
prepared 8. We copy the sum_cd.red, sum_22.red and sum_int.red files
into our WORK directory and launch the Reduce program from within the
results directory. We display the outcome of using Reduce with each of
these example programs:

8If the electron is massless, it leads to a divergence in the total cross section. For the
purposes of this illustration, we therefore use a muon instead of an electron.

131

Example 1

If we use the sum_cd.red program, we will get:

in"../sum_cd.red"$ % to load the summation package

in"symb1.red"$ % to read the contributions of the diagrams

sum; % to write the answer

(32*ee**4*(2*p1.p2**4-4*p1.p2**3*p1.p3+3*p1.p2**2*p1.p3**2-2*p1.p2**2*p1.p3

*mm**2-p1.p2*p1.p3**3 + 2*p1.p2*p1.p3**2*mm**2 + p1.p3**2*mm**4))

/(propden(p1+p2,mm,0)**2*propden(p2-p3,mm,0)**2)$

Example 2

If we use the sum_22.red program, we will get:

in"../sum_22.red"$ % to load the summation package

in"symb1.red"$ % to read the contributions of the diagrams

sum; % to write the answer

2*ee**4*(4*sp(mm)**2*mm**4 + 8*sp(mm)*up(mm)*mm**4 + 4*sp(mm)*mm**2 +

sp(mm)*t+ 4*up(mm)**2*mm**4 + 5*up(mm)*mm**2 - up(mm)*s + 1)$

where s = (p1+p2)2, t = (p1−p3)2 and u = (p1−p4)2 are the Mandelstam
variables and the functions sp,tp,up are defined as

sp(x) = 1/(s − x2)

tp(x) = 1/(t − x2)

up(x) = 1/(u − x2)

Example 3

If we use the sum_int.red program, we will get:

in"../sum_int.red"$ % to load the summation package

in"symb1.red"$ % to read the contributions of the diagrams

sum; % to write the answer for total cross section

(ee**4*(2*s**4*log(s/mm**2) + s**4 - 12*s**3*log(s/mm**2)*mm**2 + 14*s**3*mm**2

- 6*s**2*log(s/mm**2)*mm**4 - 16*s**2*mm**4 + 2*s*mm**6 - mm**8))/(16*s

2*pi*(s3 - 3*s**2*mm**2 + 3*s*mm**4 - mm**6))$

132

Sometimes the result for the total cross-section includes a complicated
expression of kinematic variables under the square root which appears as a
result of the evaluation of the integrand limits:

be_= (tmax-tmin)/s

where s and t are Mandelstam variables. Substitution for be_ is not done.
Instead variable beSquared = be_**2 is defined.

11.3 Mathematica examples

There following packages for Mathematica : sum_cd.m, sum_22.m and sum_int.m

perform the same task as the Reduce packages did (see the previous subsec-
tion.) The following output was performed in Mathematica 3.0. SC[pi,pj]

is the scalar product of momentum pi and pj.

Example 1

If we use the sum_cd.m program, we will get:

In[1]:= <<"../sum_cd.m"

In[2]:= <<"symb1.m"

In[3]:= sum

4 4 3 4 2

Out[3]= (32 EE (2 SC[p1, p2] - 4 SC[p1, p2] SC[p1, p3] + Mm SC[p1, p3] +

2 2

> SC[p1, p2] (2 Mm - SC[p1, p3]) SC[p1, p3] +

2 2

> SC[p1, p2] SC[p1, p3] (-2 Mm + 3 SC[p1, p3]))) /

2 2

> (propDen[-p1 - p2, Mm, 0] propDen[p2 - p3, Mm, 0])

Example 2

If we use the sum_22.m program, we will get:

133

In[1]:= <<"../sum_22.m"

In[2]:= <<"symb1.m"

In[3]:= sum

4 2 2 4 4 4

2 EE (Mm + s) 2 EE t 8 EE Mm

Out[3]= ---------------- - ------- + --------------- +

2 2 2 2 2

(Mm - s) Mm - s (-Mm + s + t)

4 4 4 2 4 2

2 (3 EE Mm + 6 EE Mm s - EE s)

> ------------------------------------

2 2

(Mm - s) (-Mm + s + t)

Example 3

If we use the sum_int.m program, we will get:

In[2]:= <<"../sum_int.m"

In[3]:= <<"symb1.m"

In[4]:= sum

4 8 6 4 2 2 3 4

Out[4]= (EE (-Mm + 2 Mm s - 16 Mm s + 14 Mm s + s -

2

2 4 2 2 Mm 2 2 3

> 2 s (-3 Mm - 6 Mm s + s) Log[---])) / (16 pi s (-Mm + s))

s

134

11.4 Form

11.5 Reduce program

The original output of CalcHEP was for the Reduce program. CalcHEP would
generate the squared diagram expressions and have Reduce expand, con-
tract indices, trace gamma matrix chains and simplify the expressions. Later
on, when the CalcHEP build-in symbolic calculator was created, the Re-
duce output became unnecessary. However, we still keep this output for
testing purposes.

The user does not see the internal details of the CalcHEP symbolic calcu-
lator and, so, it appears as a black box. On the other hand, the Reduce code
that CalcHEP produces is written in a form that can be understood by
humans and followed step-by-step in Reduce . The results of the Reduce cal-
culation can then be compared with the results of the CalcHEP symbolic
calculator as a test of its correctness (see Appendix B for details about the
self tests.)

In this subsection, we describe the structure of the Reduce output. The
Feynman rules used in this output can be found in Appendix D.

CalcHEP generates a separate file for each squared diagram. The files
are named pNNN-MMM.red where NNN is the subprocess number and MMM is
the diagram number.

Each file begins with a declaration of the momenta and Lorentz indices.
For example,

% ----------- VARIABLES ------------------

vector A,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,ZERO_;

vector m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,m16;

%

%--------- Mass shell declarations -----------

MASS P1 = 0$ MSHELL P1$

MASS P2 = 0$ MSHELL P2$

MASS P3 = Mm$ MSHELL P3$

MASS P4 = Mm$ MSHELL P4$

%-------- Momentum substitutions --------

Let p4 = +p1+p2-p3$

Let p5 = +p1+p2$

135

Let p6 = -p1-p2$

The vector A is used by the Reduce package to construct the γ5 matrix
as in γ5 = G(ln,A). The vectors whose names begin with p are used for the
momenta. The vectors whose names begin with m are used for the Lorentz
indices. After the vector declarations comes the mass-shell declarations for
the incoming and outgoing particles. This is followed by substitution rules
that use momentum conservation to replace the internal momenta with the
external momenta.

The next thing in the file is a multiplicative factor for the diagram which
includes a symmetry factor, a factor for averaging over the initial state helic-
ities, a factor for the number of incoming fermions, a QCD factor and some
model parameters that were factored out of the diagram expression. For
example, in the case of e+e− → µ+µ− we have

%---------- Factors ---------------

SymmFact:=1/1$ % Diagram symmetry factor

AverFact:=1/4$ % Normalization factor of polarization average

FermFact:=1$ % (-1)**(number of in-fermion particles)

ColorFact:=1/1$ % QCD color weight of diagram

%

totFactor_:=EE**4$

totFactor_:=totFactor_*SymmFact*AverFact*FermFact*ColorFact$

For the most part, these declarations are self-explanatory except, perhaps,
for SymmFact. Generally, SymmFact = N/D where N is equal to 1 when the
two diagrams in the squared-diagram are identical. Otherwise, this factor
equals 2. D is a factorial connected with the presence of identical outgoing
particles and partially reduced by a number of various possibilities to assign
the momenta of the outgoing particles to the corresponding diagram lines.

Each file includes both the main squared diagram and any that are related
to it by replacement of a gauge boson with a Faddeev-Popov ghost or a
Goldstone boson according to the Feynman rules for the model. In unitary
gauge, these are removed. We note that all these diagrams have the same
denominator. The evaluation of the expression for the diagram is started
with an initialization of a variable for the sum of the numerators for these
diagrams:

136

numerator_:=0

This is followed by each diagram in this set. The code for each diagram
is preceded by a pseudo-graphical representation of the squared diagram (for
example, see Fig.14.) In these pseudo-graphical representations, the name of
each particle and it’s corresponding momentum are written down near it’s
line. It’s Lorentz index is written in the line.

The code for each diagram is started with the fermion loop evaluation.
CalcHEP moves along each fermion line, multiplying the vertex and propa-
gator terms. The nospur instruction is declared before each loop evaluation
to prevent Reduce from prematurely tracing the gamma matrix chains.

If the result of this multiplication contains Lorentz indices which can
be contracted, the program declares the corresponding vectors as indices by
means of the index instruction.

CalcHEP begins moving along the fermion lines in the direction opposite
to the direction of the fermion flow arrows. When it encounters a vertex, it
looks it up in the Vertex table. If it is moving against the fermion flow di-
rection and the incoming fermion comes after the antifermion in the Vertex

table, then CalcHEP enters the Lorentz part directly in the expression. If,
on the other hand, the fermion comes before the antifermion in the Vertex

table, then CalcHEP first transforms the vertex by means of the rule given
in Eq. (10) and writes a comment stating that it has done this. For exam-
ple, consider the vertex of a u, d̄ and a W−. Suppose it is encoded in the
Vertex table as |D |u |W- | (and its hermitian conjugate is encoded as
|U |d |W+ |). If CalcHEP is moving against the fermion flow direction
on a u quark line and because the u comes after the D in the Vertex table,
the Lorentz piece is inserted without change. If, however, the vertex was
encoded as |u |D |W- |, then the Lorentz piece would first be reversed,
using Eq. (10), before being inserted into the expression.

If, on the other hand, CalcHEP is moving with the fermion flow direction
(perhaps after a Majorana or fermion number violating vertex) and the in-
coming antifermion comes after the fermion in the vertex, CalcHEP , again,
enters the Lorentz part directly. If, however, the antifermion comes before
the fermion, CalcHEP first transforms the vertex by means of Eq. (10) and
writes a comment about the transformation. Using the same example ver-
tex above, if CalcHEP is moving with fermion flow on a u quark line and
the U comes before the d (as in |U |d |W+ |), the Lorentz piece is first

137

reversed before insertion.
Because a Majorana fermion is its own antiparticle, the order does not

matter in the case of a Majorana fermion vertex and the Lorentz piece is
inserted directly. The same is true for a C-conjugate operator.

Once the fermion chain is finished, the spur switch is restored and Re-
duce performs the γ-matrix trace. CalcHEP multiplies this trace by −4.
The 4 is required because Reduce leaves this out of the gamma matrix trace.
The −1 is due to the Feynman rules.

The next step is the multiplication of the other vertices and the contrac-
tion of the Lorentz indices . The Lorentz indices that need to be contracted
are declared by the Index instruction before the multiplication. An example
of this fragment of code is:

Index m2$

Vrt_3:=Vrt_3*Vrt_5$

RemInd m2$

This code instructs Reduce that vertex 3 is multiplied by vertex 5 and that
Lorentz index m2 is contracted. The result of this multiplication is stored in
the variable Vrt_3.

In order to make the Reduce code produced by CalcHEP manage memory
better, we declare the symbols m as vectors indices step by step as we perform
the calculation.

If two vertices are connected by the propagator of a massive vector par-
ticle treated in unitary gauge (see Eq. 11), the code is organized in the
following way. CalcHEP first writes the code for the product with the in-
dices contracted (the gµν piece of the propagator). It then writes the same
product but with the pµpν/M

2 piece of the propagator. It then adds the
pieces together. Below, we present an example of such a piece of code:

Index m1$

Vrt_0:=Vrt_1*Vrt_2$

RemInd m1$

Vrt_L:=Vrt_1$ Vrt_R:=Vrt_2$

Vrt_L:=(Vrt_L where m1=>(+P2+P3)/MZ)$

Vrt_R:=(Vrt_R where m1=>(+(-P2)+(-P3))/MZ)$

Vrt_0:=Vrt_0 + Vrt_L*Vrt_R$

The end of the code for any diagram contains the instruction

138

numerator_:=numerator_ +DiagramFactor*GhostFact*Vrt_1

which adds it’s contribution to the total. It also multiplies by the ghost
factor, if any, where GhostFact = (−1)l+v where l is the number of loops
of Faddeev-Popov ghosts and v is the number of vector field lines in the
diagram. The (−1)v factor appears because the evaluations described above
correspond to substituting (gµν − kµkν/M

2) for the propagator of the vector
field whereas the correct expression has the opposite sign.

The last step of the program is the assignment of the variable denominator_.
It is expressed as a product of the terms propDen(P,Mass,Width) as ex-
plained in Subsection 11.

Finally, the total result for the evaluated squared diagram is given by:

totFactor_
numerator

denominator

139

Appendix

A LATEX output

CalcHEP uses the Axodraw package by J.A.M. Vermaseren [44] to create
diagrams and plots in LATEX format. To use this package the Axodraw style
should be included in the documentstyle statement. For example,

\documentstyle[axodraw]{article}
With kind permission of the author, we include a copy of the axodraw.sty

file in the $CALCHEP directory.
The Axodraw syntax is straight forward and the user can modify the

CalcHEP output to fine-tune the picture. Other changes the user can make
are to the line width, the scale of the picture, and the size of the characters.
The LATEX and Axodraw instructions are located at the beginning of the
output. For example,

{ \small % letter size control

\SetWidth{0.7} % line width control

\SetScale{1.0} % line scale control

\unitlength=1.0 pt % text position control

............

}

Note that the \SetScale instruction influences the position of the lines,
whereas the \unitlength variable is responsible for the position of text. Con-
sequently, if the user would like to change the scale of the picture, he/she has
to modify both of these settings in a consistent manner. For instance, to in-
crease the size of the picture by a factor of two, use the following:

\SetScale{2.0} % picture size control

\unitlength=2.0 pt % picture size control

In the case of Feynman diagram output, CalcHEP substitutes the LATEX names
of the particles as they are defined in the Particle table (see Section 8.3).

B Self-check of the CalcHEP package

We have included a suite of tools for testing the CalcHEP package. Positive
results from these tests signal that the CalcHEP package is working properly.

140

The tests described here involve the symbolic calculation and have been
realized with the help of the Reduce [45] symbolic manipulation system.
These test routines are stored in the $CALCHEP/utile directory. To use
these tests, the user should, first, copy the test files into his/her working
directory. The commands to run the tests should be executed from the same
directory as the location of the test files (in the users working directory.)

B.1 Check of the built-in symbolic calculator

The first check is a comparison of the results of the CalcHEP symbolic
calculator (see Section 11) against the results of the Reduce calculator (see
Section 11.5). We take agreement between these results to mean that the
CalcHEP symbolic calculator is working correctly. We note that the results
of the Reduce code created by CalcHEP for the test can be viewed step
by step as the calculation is performed by Reduce . The result can then be
compared with the result of the CalcHEP symbolic calculator.

This check is realized by means of the program check.red which must
be started from within a Reduce session by the command

in "check.red";

When doing this, it is assumed that the Reduce code for the diagrams and
the corresponding symbolic expressions generated by CalcHEP are stored
in the results directory in advance. The results of this check are saved in
the message file. It consists of a list where each line contains a diagram
number accompanied by the label OK or Error depending on the result of the
comparison.

B.2 Comparison of results produced in two different

gauges

A comparison of results produced in unitary gauge and t’Hooft-Feynman
gauge is a very important, nontrivial test. Not only does this test check the
CalcHEP symbolic calculator, but also the model implementation. In fact,
we suggest that a test of gauge invariance always be performed for any new
model implementation.

To perform this test, we evaluate the symbolic sum of squared diagrams
in the two supported gauges (unitary and t’Hooft-Feynman) for the SM and

141

compare the results. If the difference between these two calculations is non-
zero, there is a mistake in the symbolic calculator or the model. The symbolic
summation of the squared diagrams is performed by Reduce. This summation
is the most difficult step of comparison because the sum of diagrams can be
an extremely large complicated expression which is not easily simplified.

To perform this test, a process should be calculated in unitary gauge
and the results should be stored in results_/symb1.red. Then, the same
process should be calculated in t’Hooft-Feynman gauge and the results should
be stored in results/symb1.red. Finally, Reduceshould be started from the
work directory (results_ and results should be subdirectories of the work
directory) and the program cmp.red should be read in as in

in "cmp.red";

This program will read in the expressions from results_/symb1.red and
sum the squared diagrams. It will then read the expressions from results/symb1.red

and sum the squared diagrams. It will then take the difference of the two
expressions. If, after simplification, the difference is zero, it will print OK in
the message file. Otherwise, it will write Error.

C Ghost fields and the squared diagram tech-

nique for the t’Hooft-Feynman gauge

C.1 The problem

Whenever we implement a new model with higher spin, we encounter a prob-
lem with asymptotic behavior of it’s propagator at high energy. This can be
solved in the case of a spin-1 gauge boson by use of the Goldstone bosons
and Faddeev-Popov ghosts associated with it as we describe in this appendix.
The unitary gauge propagator for a massive vector boson is given by

i

(2π)4

gµν − kµkν/m
2

m2 − k2
. (24)

where the (gµν − kµkν/m
2) projects out the unphysical polarizations and

leaves only the physical polarizations. This projection is necessary because
we have used a 4-component vector field to describe a particle with 3 degrees

142

of freedom. Unfortunately, the kµkν/m
2 term leads to a quadratic growth of

the amplitude at high energies which, if left uncancelled, leads to a violation
of unitarity and renormalizability.

This problem is solved for vector fields in the framework of gauge field
theories where the gauge symmetry leads to a cancellation between diagrams
of the bad high energy growth [48]. However, numerical calculations have
finite precision. If the cancellation is very large, although the cancelation
is perfect in theory, the finite precision arithmetic can lead to partial can-
cellation and, consequently, incorrect results. An accompanying problem is
that a symbolic calculation can lead to complicated expressions with the
appearance of mutually cancelling terms.

On the other hand, there is a freedom in the formulation of the Feynman
rules for gauge theories resulting from an ambiguity in the gauge fixing terms
[48]. These terms modify the quadratic part of the Lagrangian and, conse-
quently, may improve the vector particle propagator. Indeed, in the case of
t’Hooft-Feynman gauge, the propagator for vector particles takes the form

i

(2π)4

gµν

m2 − k2
. (25)

where the term with the bad high energy growth (kµkν/m2) is absent.
The price for this solution is the appearance of three additional unphysical

particles in the model. They consist of two Faddeev-Popov ghosts and one
Goldstone boson. All three of them have scalar type propagators (however
the ghosts have the opposite sign) with the same mass (m) as the gauge
boson. In contrast to Eq. (24), the propagator given by Eq. (25) is not
orthogonal to the temporal polarization state

e0 = k/m , (26)

which is another way to see the appearance of additional unphysical state.
The main principle of gauge invariance guarantees [48] that an expression for
the amplitude should be the same for any gauge if only physical incoming
and outgoing states are considered.

C.2 Incoming and outgoing ghosts

Generally, the t’Hooft-Feynman gauge solves the problem of large cancella-
tions for the internal states. But, when calculating processes with incoming

143

or outgoing massive vector particles, we meet a similar problem in the exter-
nal states. Each diagram is multiplied by the vector boson polarization vec-
tors. These polarization vectors (e1, e2, e3) constitute an orthonormal basis in
the sub-space orthogonal to the vector boson momentum k. By considering
the relation

e1
µe

1
ν + e2

µe
2
ν + e3

µe
3
ν = kµkν/m

2 − gµν (27)

we can see that at least one of the polarization vectors grows as k/m for any
choice of polarization basis. Let vector k have the components

k = (
√

m2 + p2, 0, 0, p) . (28)

Then, the polarization vectors can be chosen as

e1 = (0, 1, 0, 0) ; (29)

e2 = (0, 0, 1, 0) ; (30)

e3 = (p/m, 0, 0,
√

1 + p2/m2) , (31)

The first two vectors correspond to spatially transverse polarizations while
the third corresponds to the longitudinal polarization. We see that the lon-
gitudinal polarization grows as k/m and becomes large for large momentum.
It may imply a rapid increase in the cross-section in processes with longitu-
dinal polarizations at high energies for effective theories or the appearance
of large cancellations between various diagrams. Indeed, for a gauge theory,
the second case is realized and, hence, we again have a problem with finite
precision calculations. As in the previous case, we see that the problem is
related to the projection operator in Eq. (27) and wonder whether we might
use gauge invariance to solve this problem too.

One solution to this problem is similar to a chess sacrifice. The main
idea is to include unphysical polarizations in the incoming and outgoing
states and cancel them by use of the Fadeev-Popov ghosts and Goldstone
bosons. We consider the Faddeev-Popov ghosts and Goldstone boson states
as new polarizations, similar to the temporal polarization (see Eq. (26).)
We note that the Faddeev-Popov ghost states have a negative norm as does
the temporal polarization, whereas the Goldstone boson state has a positive
norm [48]. As a result, the unphysical fields can give both a positive and a
negative contribution to the polarization sum.

144

The main point is that the sum of the contributions of all unphysical
states and unphysical polarizations to the squared matrix element vanishes
[74]. As a result, ∑

i∈Sphys

AiA
∗

i =
∑

i∈Sall

σ(i)AiA
∗

i , (32)

where i is a multi-index for the polarization states, Ai is the amplitude of
the process, Sphys is the set of physical polarization states, Sall is the full
set of physical polarizations, unphysical polarizations and unphysical states,
and σ(i) = ±1 depending on the signature of the Hilbert space norm for the
polarization state i.

A drawback of enlarging the set of polarization states is that we have a
much greater number of squared matrix element terms for evaluation and
subsequent summation. However, to see the advantage of this trick, let us
sum the contributions from the temporal polarization (Eq. (26)) and the
longitudinal polarization (Eq. (31)). We note each of them, separately, grow
as k/m, but together, that k/m growth cancels

e0
µe

0
ν − e3

µe
3
ν =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 (33)

which can be achieved in a different basis

e0
µe

0
ν − e3

µe
3
ν = e′0µ e′0ν − e′3µ e′3ν , (34)

where

e′0 = (1, 0, 0, 0) ;

e′3 = (0, 0, 0, 1) .

In this new polarization basis, none of the polarization vectors grow with
energy. As a result, by inclusion of the temporal polarization, the sum over
polarization squares (see Eq. (27)) becomes

e0
µe

0
ν − e1

µe
1
ν − e2

µe
2
ν − e3

µe
3
ν = −gµν . (35)

which, again, does not lead to the bad high energy growth and loss of pre-
cision. In the case of an unpolarized calculation, we simply replace the sum

145

over polarizations by −gµν as in Eq. (35). In a gauge invariant theory, the
unphysical polarizations are canceled if we add Faddeev-Popov ghosts and
Goldstone bosons to the external states and we get the same result as if
we only included the physical polarizations. However, now we have better
behavior at high energy and much less loss from finite numerical precision.

C.3 Massless vector-particle case

Now that we have discussed the massive vector boson case, we turn to the
massless gauge boson. It, also, has a gauge symmetry which must be satisfied
in the calculation of the squared matrix element. The Feynman gauge leads,
in this case, to the propagator of Eq. (25), with m = 0. As in the case of
the massive gauge bosons, the massless gauge bosons, also, have Faddeev-
Popov ghosts [48]. However, in distinction to the massive case, there are no
Goldstone bosons associated with the massless gauge boson and the longi-
tudinal polarization becomes unphysical like the temporal polarization. We
can still extend the summation over physical polarizations to an enlarged set
of polarization as in Eq. (32) (see the proof in [75]).

C.4 Summation of ghost diagrams in CalcHEP

CalcHEP uses the squared diagram technique with a summation over the
polarizations. According to our counting, one squared diagram corresponds
to ∑

i∈Sall

Ak
i A

∗l
i (36)

in a squared matrix element, where Ak and Al are the amplitudes of two
Feynman diagrams in the set of all Feynman diagrams and i counts the
polarizations and unphysical states as described in the previous subsections.

Strictly speaking, when gauge bosons are replaced by unphysical states,
we have a much larger set of diagrams. For example, consider one squared
diagram for the process e−, γ → ne,W

−. The W− is associated with two
ghost and one Goldstone boson. Altogether, there are four diagrams (see Fig.
15) associated with this one parent diagram (see Fig. 15a). They all have
the same topology, and in fact, they all have the same denominators. The
numerators of these expanded diagrams are polynomials in scalar products
of the momenta and the powers of these polynomials are the same for each

146

e ne ! ne e e ne ! ne e

==>==@==>====!==>===@==>== ==>==@==>====!==>===@==>=

| ! | | ! |

W+| ! W+| W+| ! W+|

| ! | | ! |

-----@--<----!--<---@----- -----@--<----!--<---@-----

A W- W- A A W-.f W-.f A

a) b)

e ne ! ne e e ne ! ne e

==>==@==>====!==>===@==>== ==>==@==>====!==>===@==>==

| ! | | ! |

W+| ! W+| W+| ! W+|

| ! | | ! |

--<--@--<----!--<---@--<-- -->--@--<----!--<---@-->--

A.C W-.C W-.C A.C A.c W-.c W-.c A.c

c) d)

Figure 15: Ghost diagrams

147

expanded diagram. As a result, we might expect that after being summed
together, the total expression is roughly the same size as each individual
expression. CalcHEP takes advantage of this by summing up the expanded
diagram expressions and writes just one numerical code for this set.

C.5 Gauge symmetry and cancellations

Cancellation of diagram contributions is an essential point, both for sym-
bolic and numerical calculations, because a relatively small variation of one
diagram contribution may lead to a significant error. Such variations can
be caused either by finite precision calculations of floating point operations
or by modifications of Feynman rules, for instance, by including particle
widths or by removal of some diagram subset from the calculation. We would
like to stress the importance of these challenges to the user and encourage
him/her to think carefully about his/her calculation.

There are two well known examples of gauge cancellations. The first is
the ultraviolet cancellation of quickly growing terms originating from the
propagators of massive vector particles. This problem can be resolved by
the use of t’Hooft-Feynman gauge in the calculation of the squared matrix
element, as described in Appendix C.

The second example is the cancellation of double pole terms of the t-
channel photon propagator (of the form t−2) . For example, there is a wide
class of processes where the incoming electron continues in the forward direc-
tion emitting a virtual photon, as in Fig.17. These diagrams have a 1/t pole,
where t is the squared momentum of the virtual photon. For the described
kinematics, the photon appears very close to its mass shell (t ≈ 0), hence
this configuration gives a respectively large contribution to the cross section.

However, after summing the diagrams in the squared matrix element, we
expect the 1/t2 pole to be reduced to a 1/t pole [39] in the zero electron-mass
limit. This cancellation is caused by electro-magnetic U(1) gauge invariance.
If diagrams similar to that in Fig.17 contribute to your process, we strongly
recommend to set the Gauge invariance switch to ON (see Section 5.5) to
prevent the breaking of the gauge symmetry by width terms. Another way
to solve this problem is by using the Weizsaecker-Williams approximation
(see Appendix G.2).

148

D Feynman rules in CalcHEP

D.1 Lorentz part of diagram

Fermion loop calculation. Our algorithm for the evaluation of fermion
loops takes into account the possible appearance of vertices with fermion
number violation. CalcHEP chooses an arbitrary direction for the multi-
plication of vertices on a fermion line. The vertices and propagators are
multiplied according to this direction in order to evaluate the gamma-matrix
trace. For those vertices which have a fermion line coming in, the second
fermion is taken in the form it is presented in the Vertices table (see Sub-
section 8.4). Otherwise, we first rewrite them according to Eq. (10).

There are two kinds of fermion propagators: < ψ(p1)ψ̄(p2) > and <
ψc(p1)ψ̄c(p2) >. In the case of Dirac or Majorana fermions, both of them
are equal to

< ψ(p1)ψ̄(p2) >=< ψc(p1)ψ̄c(p2) >= (6 p1 + M)∆c(p1, p2,M)

were ∆c is the scalar part of the propagator. The propagators, thus, provide
a factor of (6 p + M) to a fermion line. The sign of p depends on the line
direction.

There is an exception to this rule in the case of a pure left/right handed,
massless fermion, which has the propagator:

< ψl/r(p1)ψ̄l/r(p2) >=
6 p1(1 ∓ γ5)

2
∆c(p1, p2, 0)

and

< ψc
l/r(p1)ψ̄c

l/r(p2) >=
6 p1(1 ± γ5)

2
∆c(p1, p2, 0) .

Furthermore, the result of the trace evaluation is multiplied by (−1).
We should also remark that in the case that a fermion vertex contains

two identical fermions, the Wick contraction can be done in two ways. We
remind the user (see Section (8.4)) that the expressions presented in the
Vertices table table of the model corresponds to the functional derivative
of the Lagrangian. Therefore, the symmetry property and the factor of 2
should already be present there. Consequently, a special treatment of these
vertices by CalcHEP is not needed. This also applies to other vertices. The

149

combinatorial factors, in the case of identical particles, should already be
present in the Vertices table.

We, also, note that a loop of Faddeev-Popov ghosts gives an extra factor
(−1). For convenience, CalcHEP uses a vector propagator with the wrong
sign to achieve this. The total sign of a diagram is corrected at the end of
the evaluation. Namely, the diagram is multiplied by GhostFact=(−1)ng+nv ,
where ng is the number of Faddeev-Popov loops and nv is the number of
vector particles.

D.2 Color factor

We, here, explain the method [76] of color factor evaluation that is used by
CalcHEP in the case of the QCD SU(Nc) group. We shall use the desig-
nations gluon (g), quark (q), and anti-quark (q̄) for colored particles which
belong to the adjoint, fundamental and conjugate fundamental representa-
tions, respectively. Following section (8.4), the color part of the ggg vertex
is given by the group structure constant −i · fabc, whereas, the color part of
the gqq̄ vertex is given by the fundamental representation matrix τ̂a of the
group9.

By means of the basic relations,

τ̂aτ̂b − τ̂bτ̂a = i · fabcτ̂c

and

tr(τ̂aτ̂b) =
1

2
δab

the ggg vertex can be expressed in terms of the gqq̄ vertex:

−i · fabc = 2 · tr(τ̂bτ̂aτ̂c) − 2 · tr(τ̂aτ̂bτ̂c) (37)

This vertex relation can also be achieved by a diagram substitution where
the ggg vertex is replaced by two diagrams with a quark loop:

= 2 −2 (37a)

9τ̂a = λ̂a/2, were λa are the Gell-Mann matrices.

150

The QCD group also has the following Fiertz identity

(τa)
i
j(τa)

k
l =

1

2
δi
lδ

k
j − 1

2Nc

δi
jδ

k
l (38)

which, at the diagram level, can be presented with a substitution which
removes gluon lines connecting quarks:

= 1
2

− 1
2Nc

(38a)

The final result is that we have only closed, separated lines of quark color
flows which are easily evaluated:

= tr(1̂) = Nc (39)

However, there is a complication in the separate determination of the color
and the Lorentz parts of the ggg vertex. This vertex contains a symmetry
corresponding to the permutation of identical legs. Altogether, it contains
a product of an anti-symmetric Lorentz part and an anti-symmetric color
part. Thus, in the case of separate calculations of the Lorentz and the color
parts, one has to take care that the orientation of the legs in the color and
the Lorentz diagrams are identical.

In the Nc → ∞ limit, the tree-level squared matrix element has the
asymptotic form

N (nq+nq̄+ng)/2
c (C + O(1/Nc)) (40)

where nq, nq̄, nq are the numbers of quarks, ant-quarks and gluons in the
diagram. CalcHEP provides the user with the possibility to calculate matrix
elements in the Nc → ∞ limit where only the leading term of Eq. (40) is used.
After the extraction of the leading term, we substitute Nc = 3. A significatn
subset of the interference diagrams are zero in this limit. Thus, this approach
simplifies the calculation. Moreover, the precision of this approach is not too
bad, especially in cases of QCD processes where loop corrections are at the
same order. See Section (4.6) for more details about this option.

151

D.3 Common factors.

The final squared diagram is multiplied by a set of factors which are10:

• SymmFact=n/d, where n = 1 if the left part of the squared diagram
is the same as the right part. Otherwise, n = 2. The denominator
d equals the number of symmetric permutations of identical outgoing
particles.

• AverFact=1/Na, were Na is the number of polarization and color states
of the incoming particles.

• FermFact= (−1)Nf , were Nf is a total number of incoming fermions
and anti-fermions.

E Examples of model realization.

E.1 Implementation of QCD Lagrangian

3-gluon vertex. The QCD Lagrangian contains the following 3-gluon
vertex:

S3G = −g

2

∫
(∂µG

α
ν−∂νG

α
µ)fα

βγG
β
µGγ

νd
4x = −g

∫
∂µ2Gα1

µ1
gµ1µ3fα1α2α3

Gα2

µ2
Gα3

µ3
d4x ,

where Gα
µ is the gluon field and g is the strong coupling constant. Applying

the Fourier transformation (8) we get

S3G = (2π)4g
∫

δ(p1+p2+p3) i fα1α2α3
pµ2

1 gµ1µ3Gα1

µ1
(p1)G

α2

µ2
(p2)G

α3

µ3
(p3)d

4p1d
4p2d

4p3 .

This vertex contains three identical fields, so the calculation of the func-
tional derivatives gives us six terms:

δS3g

δGα1

µ1
(p1)δGα2

µ2
(p2)δGα3

µ3
(p3)

= (2π)4δ(p1 + p2 + p3) i fα1α2α3

g(pµ2

1 gµ1µ3 − pµ2

3 gµ1µ3 + pµ3

2 gµ1µ2 − pµ3

1 gµ1µ2 + pµ1

3 gµ2µ3 − pµ1

2 gµ2µ3) .

10In notations of section (11.5).

152

Comparing this expression with it’s vertex representation in CalcHEP (8.4)
where the ColorFactor is (− i fα1α2α3

), we get

Factor·LorentzPart = − g
(
(pµ2

1 −pµ2

3)gµ1µ3+(pµ3

2 −pµ3

1)gµ1µ2+(pµ1

3 −pµ1

2)gµ2µ3

)
.

CalcHEP uses the notation GG for the strong coupling constant g. So,
for the 3-gluon vertex in CalcHEP format, we have

A1 A2 A3 A4 Factor Lorentz part
G G G GG m1.m2*(p1-p2).m3+m2.m3*(p2-p3).m1+m3.m1*(p3-p1).m2

Quark-gluon interaction. The interaction of a gluon with a quark is
described by the following action:

SQqG = g
∫

Gα
µ(x)q̄(x)γµt̂αq(x) d4x .

Applying the Fourier transformation and substituting q̄ = q+γ0, we get

SQqG = g(2π)4
∫

δ(p1 + p2 + p3)G
α
µ(p3)q̄(p1)γ

µt̂αq(p2) d4p1d
4p2d

4p3 ;

and
δSQqG

δq̄i(p1)δqj(p2)δGα
µ(p3)

= g(2π)4δ(p1 + p2 + p3)(t̂α)i
jγ

µ3 .

The factor (2π)4δ(p1 + p2 + p3)(t̂α)i
j is substituted by CalcHEP auto-

matically. The factor C−1T
appears in (8.4) according to (9) and is, also,

substituted by CalcHEP. Thus, the quark-gluon interaction is implemented
in the CalcHEP Vertex table as:

A1 A2 A3 A4 Factor Lorentz part
Q q G GG G(m3)

where q and Q are the designations for a quark and an antiquark.

Interaction of ghosts with gluon. This interaction is described by the
term

Sc̄cG = −g
∫

c̄α(x)∂µ(fα
βγG

β
µ(x)cγ(x))d4x .

153

Fourier transformation and subsequent evaluation of the functional deriva-
tives gives

Sc̄cG = −g(2π)4
∫

δ(p1+p2+p3)c̄α(p1)(−i p2−i p3)
µ3fα

βγG
β
µ3

(p3)c
γ(p2)d

4p1d
4p2d

4p3

and

δSc̄cG

δc̄α1
(p1)δcα2(p2)δGα3

µ3
(p3)

= g(2π)4δ(p1 + p2 + p3)p
µ3

1 i fα1

α2α3
.

Again, the factor (2π)4δ(p1+p2+p3)(− i fα1α2α3
) is substituted by CalcHEP.

Thus, this interaction may be implemented in the Vertex table as:

A1 A2 A3 A4 Factor Lorentz part
G.C G.c G -GG p1.m3

where G.C and G.c are the Faddeev-Popov anti-ghost (c̄) and ghost (c),
respectively.

4-gluon interaction. In addition to the 3-gluon interaction of QCD, the
Lagrangian, also, contains the following 4-gluon interaction:

S4G = − g2

4
gµµ′

gνν′

δαα′

∫
fα

βγG
β
µ(x)Gγ

ν(x)fα′

β′γ′G
β′

µ′(x)Gγ′

ν′(x)d4x .

Fourier transformation and functional differentiation lead us to an ex-
pression which contains three different SU(3) color structures:

δS4G

δGα1

µ1
(p1)δGα2

µ2
(p2)δGα3

µ3
(p3)δGα4

µ4
(p4)

= −g2(2π)4δ(p1 + p2 + p3 + p4)δǫǫ′ ×
(
f ǫ

α1α2
f ǫ′

α3α4
(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) + f ǫ

α1α3
f ǫ′

α2α4
(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+f ǫ
α1α4

f ǫ′

α2α3
(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)

)
. (41)

The complicated color structure of this vertex cannot be directly written
down in the CalcHEP Vertex table. To implement this vertex, we must use
the following trick. We introduce the auxiliary tensor field tαµν(x) and the
following Lagrangian for its interaction with the gluon field:

Saux =
∫ (

i g√
2
fα

βγtα
µν(x)Gβ

µ(x)Gγ
ν(x) − 1

2
tαµν(x)tα

µν(x)

)
d4x .

154

It can be seen that functional integration over the auxiliary field tαµν(x)
reproduces the 4-gluon interaction in the partition function:

ei S4G(G) =
∫

ei Saux(G,t)
∏

x,α,µ,ν

d tαµν(x) .

For each colored vector particle, CalcHEP automatically adds a tensor
field with the same color to the internal list of quantum fields. The propa-
gator for this field (13) corresponds to the Lagrangian (− 1

2
tαµν(x)tα

µν(x)).
Consequently, in order to realize the 4-gluon interaction we must introduce
the following vertex for the interaction of the gluon with this tensor field:

StGG =
i g√

2

∫
fα

βγtα
µν(x)Gβ

µ(x)Gγ
ν(x)d4x ;

δStGG

Gα1

µ1
(p1)Gα2

µ2
(p2)δtα3

µ3µ3′
(p3)

= (2π)4δ(p1 + p2 + p3)(− i fα1α2α3
)

× g√
2
(gµ2µ3gµ1µ3′ − gµ1µ3gµ2µ3′) .

In the CalcHEP Vertex table, this vertex looks like:

A1 A2 A3 A4 Factor Lorentz part
G G G.t GG/Sqrt2 m2.m3*m1.M3 -m1.m3*m2.M3

where G.t is the CalcHEP notation for the auxiliary tensor field tαµν associ-
ated with the vector field G. Capital M denotes the second Lorentz index of
the tensor field.

From the viewpoint of Feynman diagrams, this realization of the 4-gluon
interaction means that instead of one 4-gluon vertex we substitute three sub-
diagrams as shown in Fig.16. The contribution of each of these diagrams
corresponds to one of the terms of expression (41).

E.2 Neutrino as a Majorana fermion

In the Standard Model, only the left handed component of the neutrino field
takes part in the gauge interactions. In principle, the right handed component
can be omitted. However, such a model can not describe neutrino oscillations,
which have been detected at experiments. In the framework of the SM with

155

G1

G2

G3

G4

=

G1

G2

G3

G4

G.t
+

G1

G2

G3

G4

G.t +

G1

G2

G3

G4

G.t

Figure 16: Splitting of four-gluon vertex

right-handed neutrinos, the Yukawa interaction can give mass to the neutrino
and the left- and right-handed components of the neutrino can be written
as one Dirac 4-component spinor like the other SM fermions. However, in
distiction to the other SM fermions, the right handed neutrino has zero U(1)
hypercharge, and is, in fact, a singlet under the SM gauge group. As a result,
a mass term involving only the right-handed neutrinos is also allowed:

−1

2
MΨ̄ν(1 − γ5)Ψ

c
ν

The diagonalization of this combination of a Dirac mass term and a Majorana
mass term splits the neutrino into two Majorana eigenstates with different
masses. To see this explicitly, we express the 4-component Dirac neutrino
field in terms of two Majorana fields ψl and ψr,

Ψν =
1

2
(1 − γ5)ψl +

1

2
(1 + γ5)ψr ,

In terms of the chiral fields, the mass terms are

−mY Ψ̄νΨν −
1

2
MΨ̄ν(1 − γ5)Ψ

c
ν = −1

2
(mY ψ̄lψr + mY ψ̄rψl + 2Mψ̄rψr)

were mY is the mass generated by the Yukawa interaction 11. Choosing the
basis which diagonalize the mass matrix

ψl = − cos (α)ψ1 + sin (α)ψ2

ψr = sin (α)ψ1 + cos (α)ψ2

11Note that ψ̄rγ5ψr = 0

156

gives us the mixing angle α and the masses

tan 2α = 2mY /M

m1 = −mY tan α =
M

2
−

√
M2

4
+ m2

Y

m2 = mY / tan α =
M

2
+

√
M2

4
+ m2

Y

Negative masses are allowed and can be removed by the transformation

ψ1 → iγ5ψ1

This is the so-called see-saw mechanism which can potentially explain why
the neutrino mass is so small. Using this mechanism, the Yukawa constant
responsible for the value of mY can be of the same order as for the other
fermions. If M is very large and the mixing angle α is very small, the light
neutrino mass m1 will be tiny and the heavy neutrino mass m2 will be on
the order of M . Roughly, we will have

√
m1m2 ∼ mY .

To get the Feynman rules in terms of the Majorana fermions, we simply
substitute the new fermion basis into the interaction Lagrangian. CalcHEP only
supports 4-component fermion notation. In this notation, a Majorana fermion
is given by:

Full name A A+ 2*spin mass width color aux
neutrino MN MN 1 0 0 1

In terms of the Dirac 4-component spinor field Ψν a neutrino appears in
the Standard Model Lagrangian in the following way (see Eq. ??)12:

Lν =
i

2
(Ψ̄νγµ∂

µΨν − (∂µΨ̄ν)γµΨν) +
e

4 sin Θw cos Θw

ZµΨ̄νγ
µ(1 − γ5)Ψν

+
e

2
√

2 sin Θw

(
W−

µ Ψ̄eγ
µ(1 − γ5)Ψν + W+

µ Ψ̄νγ
µ(1 − γ5)Ψe

)
, (42)

where Ψe is the electron field. To rewrite this Lagrangian in terms of a
Majorana neutrino let us perform the substitution

Ψν =
1

2
(1 − γ5)ψl +

1

2
(1 + γ5)ψr ,

12where Y = −1, Ψ1 = Ψν , Ψ2 = Ψe, g2 = e/ sin Θw, g1 = e/ cos Θw.

157

where ψl and ψr are the Majorana fermions. Omitting the Lagrangian for
ψr (there are no interactions for ψr) and applying the following identities for
Majorana fermions

i

4
(ψ̄lγµγ

5∂µψl − (∂µψ̄l)γµγ
5ψl) = ψ̄lγ

µψl = 0

which can be obtained by means of Eq. (10), we get

Lν =
i

4
(ψ̄lγµ∂

µψl − (∂µψ̄l)γµψl) −
e

4 sin Θw cos Θw

Zµψ̄lγ
µγ5ψl

+
e

2
√

2 sin Θw

(
W−

µ Ψ̄eγ
µ(1 − γ5)ψl + W+

µ ψ̄lγ
µ(1 − γ5)Ψe

)
.

The first term is the free Lagrangian for a massless Majorana fermion while
the following terms define the interaction. Using the definition (8.4) we can
write them in the CalcHEP Vertex :

A1 A2 A3 A4 Factor Lorentz part
MN MN Z -EE/(2*SW*CW) G(m3)*G5
E MN W- EE/(2*Sqrt2*SW) G(m3)*(1-G5)
MN e W+ EE/(2*Sqrt2*SW) G(m3)*(1-G5)

We note that there are two identical neutrino fields in the Lagrangian
term which describes the interaction of neutrinos with a Z-boson. It leads to
an additional factor of 2 and to the symmetry property of the corresponding
vertex. One of the typical mistakes users make in the realization of this
vertex is the erroneous introduction of a G(m3)*(1-G5) term which breaks
the symmetry property. Correct evaluation of the functional derivative (8.4)
with the help of the identity (10) does not produce such a term.

E.3 Leptoquarks

In this section, we present an example of a Lagrangian which contains C-
conjugated fermions. These terms appear in interactions which violate fermion
number conservation. Let Ψe and Ψu be the fermion fields of the electron

158

and the u-quark, respectively and let these fields interact with a complex
scalar leptoquark field F with Lagrangian

L = λΨ̄c
u(1 + γ5)ΨeF + λΨ̄e(1 + γ5)Ψc

uF
+

where Ψ̄c
u = ΨT

u C and Ψc
e = CΨ̄T

e = C(γ0)T Ψ∗

e.
In the basis used by CalcHEP, the charge conjugation operator is given

by C = −γ0. The Lagrangian can then be written in the form

L = −λΨT
u γ0(1 + γ5)ΨeF − λΨ+

e γ0(1 + γ5)γ0(γ0)T Ψ+
u F+

= −λΨT
u γ0(1 + γ5)ΨeF + λΨ+

u γ0(1 + γ5)Ψ+
e F+ .

Direct implementation of the definition (8.4) gives us the Vertex table

A1 A2 A3 A4 Factor Lorentz part
u e F -lambda (1+G5)
E U F+ lambda (1+G5)

By means of equation (10) we can rewrite this table in the equivalent form:

A1 A2 A3 A4 Factor Lorentz part
e u F -lambda (1+G5)
U E F+ lambda (1+G5)

F Color string basis.

CalcHEP performs averaging/summation over color states of incoming/outgoing
quarks and gluons. But in order to describe the hadronization of outgoing
particles one needs to specify the color states in more detail.

CalcHEP passes the problem of hadronization to other programs such as
PYTHIA [54]. PYTHIA performs the hadronization in the framework of the
color string model. According to this model, pairs of outgoing partons with
opposite color are jointed into a colorless object, called strings. Partons are
attached at the ends of the string and, usually, move in different directions.
When the distance between the partons becomes large, the color string breaks
creating two strings, each with smaller energy than the parent string. This

159

process continues until the energy of each string is low enough to form a
stable composite particle and it is then treated as a meson.

If we consider a QCD amplitude diagram without external gluons, we can
use the rules from (37a) -(38a) to transform the amplitude’s color diagram
to one where separated quark lines connect qq̄ pairs. This corresponds to the
color string picture described above and used by PYTHIA.

It should be noted that these color states are orthogonal only in the Nc →
∞ limit. The orthogonality is required to treat the squared basis coefficients
as mutually independent probabilities of producing the corresponding color
strings. Thus, the color string model should be considered in the framework
of the 1/Nc approximation. In the same approximation, one can consider the
gluon color state as a qq̄ state (38a). Therefore, the gluon is a particle where
one color string is finished and another on begins.

During event sampling, CalcHEP generates a phase-space point according
to the exact Nc = 3 matrix element. At the same time, it also calculates the
leading coefficients of the 1/Nc expansion for the matrix element over the
color flow basis. The generated phase space point is accompanied with a
color flow with a probability proportional to the squared basis coefficient.

G Distribution functions and beam spectra

G.1 Backscattered photon spectrum

This function describes the spectrum of photons scattered backward from
the interaction of laser light with the high energy electron beam:

f(x) =

{
0, for x > xmax

N(1 − x + 1/(1 − x) (1 − 4x/x0 (1 − x/(x0(1 − x))))), for 0 < x < xmax

where x0 = 4.82, xmax = x0/(1 + x0), N is a normalization factor.
The above spectrum corresponds to the special initial condition when

unpolarized photons are created. See [77] for more details.

G.2 Weizsaecker-Williams approximation

Weizsaecker-Williams approximation is used to describe processes of electro-
production in the case of small angle of charged particle scattering. In this

160

case the virtual photon emitted by the scattering particle appears near to
the mass shell (see Fig.17). It gives a possibility to reduce the process of
electro-production to the photo-production one with an appropriate photon
spectrum:

f(x) = (q2 α/(2π))(log((1 − x)/(x2δ))(1 + (1 − x)2)/x − 2(1 − x − δ x2)/x),

where α is the fine structure constant, q is a charge of incoming particle, m
is its mass, δ = (m/Qmax)

2. Qmax sets out the region of photon virtuality
(P 2 > −Q2

max) which contributes to the process. It is assumed that region
of large virtuality can be taken into account by direct calculation of electro-
production. As a rule this contribution is small enough.

-e− µ
e−

¡¡

γ

-p1 -
p2

R
p3

Figure 17: Example of process with the 1/t2 pole cancellation.

Parameters q, m, and Qmax are defined by the user. See [39] for the
further explanations. In the case of CompHEP the Weizsaecker-Williams
photon spectrum is available for charged leptons only.

G.3 ISR and Beamstrahlung

ISR (Initial State Radiation) is a process of photon radiation by the incom-
ing electron due to its interaction with other collision particle. The resulting
spectrum of electron has been calculated by Kuraev and Fadin [78]. In Com-
pHEP we realize the similar expression by Jadach, Skrzypek, and Ward
[79]:

F (x) = exp(β(3/4 − Euler))β(1 − x)β−1

((1 + x2) − β((1 + 3x2) ln(x)/2 + (1 − x)2)/2)/(2Γ(1 + β)),

161

where

α = 1/137.0359895 is the fine structure constant;
β = α(2 ln(SCALE/m) − 1)/π
m = 0.00051099906 is the electron mass;
Euler = 0.5772156649 is the Euler constant;
Γ() is the gamma function;
SCALE is the energy scale of reaction.

In the Kuraev and Fadin article the parameter SCALE equals to the total
energy of the process because they considered the process of direct e+e−

annihilation. In order to apply this structure function to another processes
we provide the user with a possibility to define this parameter.

Beamstrahlung is a process of energy loss by the incoming electron due
to its interaction with the electron (positron) bunch moving in the opposite
direction. The key parameter of beamstrahlung is

Υ =
5 α N E

6 m3
eσz(σx + σy) ,

where
N is number particles in the bunch,
σx, σy, σz are sizes of bunch,
E is a center-of-mass momentum.

The effective energy spectrum of electrons we use approximated formulas
of P. Chen [80]. Namely for Υ < 1 we use formulas (17,18), and (22,23)
otherwise. Picture (18 presents comparision of implemented approach with
Monte Carlo simulation by Guinea Pig program for CLIC3000 design. Be-
cause singuarity (1 − x)

2

3 is expected for beamstrahlung, we have defived
spectra on this factor for proper comparision in x ≈ 1 region. Convolution
of beamstrahlung and ISR spectra is done automatically. ISR affect smooths
spectra and improve agreement of P.Chen formulas with Monte Carlo sim-
ulation. The Beamstrahlung spectrum cannot be integrated by the current
CompHEP version because it contains a δ-function.

162

x

F
(x

)*
(1

-x
)*

*(
2/

3)

Beamstrahlung for CLIC 3000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 18: Comparison of P.Chen approximed formula (implemented in the
CalcHEP, solid line) with Guinea Pig Monte Carlo for CLIC3000 (dashed
line).

H PDT - Particle Distribution Tables in CalcHEP.

H.1 CTEQ and MRST parton distributions

Both CTEQ and MRST groups store information about parton distributions
in two-dimensional tables and interpolate these tables. CalcHEP has its
own file format for parton tables but uses interpolation procedures of CTEQ
and MRST. Thus CalcHEP produces exactly the same results as original
CTEQ/MRST functions. The information about interpolation procedure is
stored in CalcHEP tables and is detected automatically.

Besides of parton distributions CalcHEP tables contain data for αs(q)

163

which correspond to the given parton set and this function is available to
CalcHEP user. See section (5.4).

The files containing parton distributions must have the ”pdt” extension.
n_calchep searches such files in the directories "$CALCHEP/pdTables", ”../”,
and ”./”. Usually the last two directories are the user’s working directory
and its sub-directory results.

"$CALCHEP/pdTables" contains the following parton sets: CTEQ6L, CTEQ6M
[81] andlo2002, mrst2002nlo, mrst2002nnlo [82]

We pass to the user the routines which transform CTEQ and MRST data
files to the CalcHEP format. By means of them the user can add other distri-
bution to the list. The primary c-files are stored in the $CALCHEP/pdTables

directory. In case of CTEQ the compilation instruction is
cc -o cteq2pdt cteq2pdt.c alpha.c -lm

The usage is
./cteq2pdt < cteq_file.tbl >calchep_file.pdt

for example
./cteq2pdt < cteq6m.tbl >cteq6m.pdt

The name of pdt file doesn’t play a role. The cteq2pdt routine can be ap-
plied to any CTEQ4, CTEQ5, CTEQ6 file. It automatically detects version
and αs formula stored in the CTEQ file.

In the case of MRST file the corresponding compilation instruction is
cc -o mrst2pdt msrt2pdt.c alpha.c -lm

The usage is
./mrst2pdt name < mrst_file.dat >calchep_file.pdt

or
./mrst2pdt name nf order α(MZ) < mrst_file.dat > calchep_file.pdt

For example
./mrst2pdt mrst2002nlo 5 nlo 0.1197 <mrst2002nlo.dat>mrstnlo.pdt

The number of parameters is increased in comparing with CTEQ case, be-
cause MRST tables don’t contain the corresponding information. Note that
name is the identifier of distribution that you will see in CalcHEP menu. If
the last four parameters are not specified then αs will not be included in the
table. See MRST documentation to find the proper parameters13

For simple checks of pdt files one can use the checkpdt program. The source
of this program is stored in $CALCHEP/utile. Compilation instruction is

13nf=5 always, the order is included in the file name.

164

cc -o checkpdt checkpdt.c pdf.c -lm

The usage
./checkpdt file.pdt parton x q

where parton is a parton symbol: ’G’ - for gluon, ’u’, ’d’, ’s’, ’c’, ’b’ - for
quarks; ’U’, ’D’, ’S’, ’C’, ’B’ - for anti-quarks. This program writes on the
screen the corresponding parton density and αs(q). See code checkpdt.c to
create more extended test.

H.2 Format of parton distribution tables.

The structure of pdt file in CalcHEP is closed to the CTEQ one, but is more
flexible and complete.

Generally distribution function depends on two arguments. They are the
Feynman parameter X and the energy scale Q. X is unitless and runs in
[0,1] interval. Q > 1GeV and traditionally is presented in GeV units. Thus
we describe grids for X and Q variables and tables of parton distributions
corresponding to the grids.

CalcHEP pdf file contains several items of information, Each item is
started by a keyword. A keyword is started from the ’#’ symbol. Numeri-
cal data following a keyword must be separated by white-space characters.
The appearance of new keywords designates the end of the previous item of
information. The keywords are

• #distribution
After this word the title of distribution function is disposed. The title
has been surrounded by the quotation marks (”) symbols. It can con-
tain space symbols inside. After that the incoming particle number and
numbers for partons are disposed. All particles and partons are numer-
ated according to the Monte Carlo numeration scheme [58]. Incoming
particle and its parton are separated by the "=>" string. Partons can
be combined into groups by the the brackets (). For example14

#distribution "cteq6m(proton)" 2212=>(5 -5) (4 -4) (3 -3) -1 -2 21 2 1

All partons in one group have the same distibution. Position of a parton
or of a group in the list correspond to number of table presented below.

141,2,3,4,5 are numbers of d,u,c,s,b quaks, 21 is the gluon number.

165

Say b and b̄ quark distributions will be disposed after the #1-parton

keywords.

One file can contain several, usually two, distribution items. It al-
lows to use one file both for the particle and for the anti-particle. For
example, the ”cteq6m.pdt” file contains also

#distribution "cteq6m(a-proton)" -2212=>(5 -5) (4 -4) (3 -3) 1 2 21 -2 -1

So #7-parton item describes u-quark in proton and ū in anti-proton.

• #x-grid

After this keyword the file has to contain a sequence of numbers which
specify the X grid. The number of points has exceed 2. Numbers must
increase from point to point and belong to interval [0,1].

• #q-grid

Specifies the beginning of Q grid. The data must be positive and in-
crease. This item is optional. Generally we can consider parton distri-
butions which do not depend on Q.

• #alpha

decignates beginning of data for alpha(Q) corresponding to Q-grid. The
item is optional and can not precede the q-grid item.

• #1-parton, #2-parton

These keywords mark the beginnings of data for distribution functions.
They can not precede the x-grid and q-grid items because the power
of data for these items must be the production of the x-grid and q-grid
powers. Date corresponding to ith position of x-grid and jth position
of q-grid is disposed on the (i+(j−1)nx)

th place, where nx is the power
of x-grid.

The reader of pdt file finishs its work when it has read the needed
parton item. Thus all other items described below should preceed the
parton one. These items are auxilaries and if it needs can be specified
separately before each n-parton item.

• #x-min, #q-min

specifies the minimum boundaries of ’x’ and ’q’ intervals where result of

166

interpolation should be correct. The correspoding number must follow
to the keyword. These keywords are optional. If one of them is absent
the first point of the corresponding grid is user to define the limit.
These limits do not influent on the work of the program. They are
used to collect statistics of points out of limits. These statistics also
count the number of points where Q exeeds the last point of q-grid.

• #mass

This keyword allows to introduce the mass of the composite particle.
The corresponding numerical value must follow the keyword. Default
value for mass parameter is 1 GeV.

• #Interpolation

It defines interpolation procedure. For current version the following
interpolations are available: CTEQ4, CTEQ6 , MRST200115. CTEQ6
interpolation procedure depends on λQCD parameter which must be
written after ”CTEQ6”.

• #q-threshold

Defines thresholds for c and b quarks. Used by MRST.

I Monte Carlo phase space integration

I.1 Parameterization of multi-particle phase space

I.1.1 Parameterization via decay scheme

The element of phase space volume for a n-particle state is equal to [58]

dΓn(q) = (2π)4δ4(q − p1 − p2 − p3 − ... − pn)
n∏

i=1

δ(p2
i − m2

i)

(2π)3
d4pi . (43)

The same expression is valid for both the decay of unstable particle with
momentum q and the interaction of two particles with momenta q1 and q2

such that q1 + q2 = q. For further discussion we need a designation for a

15CTEQ5 interpolation procedure is identical to CTEQ4

167

phase space volume of some subset S of the full n-particle set. According to
(43)

dΓ(q, S) = (2π)4δ4(q −
∑

i∈S

pi)
∏

i∈S

δ(p2
i − m2

i)

(2π)3
d4pi . (44)

Let S1 and S2 be two disjoint particle subsets, then

dΓ(q, S1 ∪ S2) =
∫

ds1ds2

(
(2π)4δ4(q − q1 − q2)

δ(q2
1 − s1)

(2π)3
d4q1

δ(q2
2 − s2)

(2π)3
d4q2

)

×dΓ(q, S1)

2π
× dΓ(q, S2)

2π
. (45)

The above formula expresses a multi-particle volume in terms of two-
particle one, the volumes dΓ(q1, S1) and dΓ(q2, S2) with a reduced number of
particles, and the virtual squared masses s1, s2 of clusters S1, S2.

Recursive application of this formula allows one to express the multi-
particle phase space in terms of two-particle phase space. In its turn the
two-particle phase space is explicitly described by spherical angle Ω of motion
of the first decaying particle in the rest frame of initial state [58].

dΓ(q, [1, 2])

2π
=

kdΩ

4(2π)3
√

q2
, (46)

where k is the absolute value of three-dimensional momentum of outgoing
particles in the rest frame. Thus, applying recursively (45) and (46) to (43)
we obtain an explicit expression for the phase space volume in terms of the
squared masses sj of virtual clusters and the two-dimensional spherical angles
Ωj, where j is an ordinal number of decay:

dΓn(q) =
k1d

2Ω1

4(2π)2
√

q2

n−1∏

j=2

kjd
2Ωj

4(2π)3√sj

.
n−1∏

j=2

dsj (47)

Here kj is a momentum of outgoing clusters produced by decay of the jth

cluster in its center-of-mass.
The expression (47) means some sequential 1->2 decay scheme which

starts from incoming state and finishes with outgoing particles of the pro-
cess. For example, the integration domain for sj parameters depends on this

168

scheme. Below we present two such schemes for a process with four outgoing
particles:

q Ω1, k1
¡

¡
¡s2

Ω2, k2
¡¡

p1

@@ p2

@
@

@
s3

Ω3, k3@@

p3

¡¡

p4

q Ω1, k1
¡¡

p1

A
A
A Ω2, k2

s2

¡¡
p2

A
A
A Ω3, k3

s3

¡¡
p3

@@ p4

In the case of CompHEP project such decay scheme is defined by the
user via the ‘Kinematics’ menu (see Section 5.9).

I.1.2 Polar vectors

To complete phase space parameterization we must fix a polar coordinate
system choosing the polar and the azimuthal angles for each of decays

d2Ωj = d cos ΘjdΦj (48)

We have an ambiguity in the choice of polar coordinate. Let us remind
that our goal is not only parameterization of phase space but also regulariza-
tion of the squared matrix element in the phase space manifold. The main
idea of such regularization is a cancellation of integrand sharp peaks by the
phase space measure. Originally the phase space measure (47) has no cancel-
lation factors, but we can create them by means of a Jacobian of transformed
variables. To get an appropriate Jacobian we need to have the initial phase
space variables related to poles of the squared matrix element.

In their turn the poles of squared matrix element are caused by virtual
particle propagators and generally have one of the forms (4), (5) or (6) (Sec-
tion 5.10) depending on a squared sum of momenta. Variables sj in (47) are
also equal to squared sums of momenta. So, the parameterization (47) allows
us to smooth some peaks of the matrix element.

It appears to be that the polar coordinates can be chosen in such a way
that all cosΘj have simple linear relations to the squared sums of momenta
[83, 84]. The polar angle Θj can be unambiguously fixed by the polar vector
Polej whose space components in the rest frame of decay correspond to the

169

Θj = 0 direction. Let qj1 and qj2 be the momenta of the first and the second
clusters produced by the jth decay. Then

(Polej + qj1)
2 = (Pole0

j + q0
j1)

2− | Polej |2 − | qj1 |2 −2cosΘj | Polej || qj1 |
(Polej + qj2)

2 = (Pole0
j + q0

j2)
2− | Polej |2 − | qj2 |2 +2cosΘj | Polej || qj2 |

Thus, in order to get cosΘj related to a squared sum of some particle
momenta we may construct the polar vector as a sum of particle momenta
[83, 84].

For the non-contradictory construction we need to set the decays in some
order with a natural requirement that the sub-decays of clusters produced
by the jth decay have the ordinal numbers larger than j. In giving such
ordering we can construct a polar vector for each decay based on the incoming
momenta and on those of particles produced by decays possessing smaller
ordinal numbers.

The following statements can be proved. In the framework of any ordered
scheme of decays and for any sum P of particle momenta one can find the
decay number j such that either P 2 = sj or P might be represented as Polej +
qj, where qj is the momentum of one of the clusters in the jth decay and Polej

is a polar vector constructed according to the above rule. In other words,
any of poles (4), (5), (6) can be expressed either in terms of sj parameters or
in terms some of cosΘj for an appropriate choice of the polar vector [83, 84].

In CompHEP the ordering is arranged automatically, so that all sub-
decays of the first cluster have smaller numbers than those of the second
cluster. Polar vectors are also constructed automatically according to the
list of peaks prepared by the user.

I.1.3 Smoothing

The general idea of the integrand smoothing is trivial. Let us need to evaluate

∫ b

a
F (x)dx , (49)

and let F (x) have a peak like f(x), where f(x) is a simple symbolically
integrable function in contrast to F (x):

g(x) =
∫ x

a
f(x′)dx′ . (50)

170

Now we may represent the integral (49) as

∫ b

a
F (x)dx =

∫ g(b)

0
dy

F (g−1(y))

f(g−1(y))
, (51)

where g−1(y) is the inverse function for g(x). The integrand is a smooth
function now.

We face very often squared matrix elements which have several poles in
one of variables. For example, the γ → b, b̄, Z → b, b̄ and H → b, b̄ vir-
tual subprocesses may contribute just to the same amplitude. Although in
this case we can evaluate the integral function g(x) symbolically, the in-
verse function g−1(y) can be computed only as a numerical solution of the
corresponding equation. To bypass the calculation of inverse function Com-
pHEP uses the multi-channel Monte Carlo (branching) method to smooth
a sum of peaks.

The idea of the branching method is the following. Let F (x) have two
peaks, one is similar to f1(x) and another to f2(x). f1(x) and f2(x) are
singular but elementary functions. Then, instead of one integration (49), we
could perform two ones:

∫
F (x)dx =

∫ F (x)f1(x)

f1(x) + f2(x)
dx +

∫ F (x)f2(x)

f1(x) + f2(x)
dx , (52)

but now each integration has only a single peak! It is easy to extend this
method for an arbitrary number of peaks.

The branching method was used in [85] to separate peaks which came
from various diagrams. In that paper there was also proposed to use the
expression (52) where fi(x) is replaced by αifi(x) with a subsequent search
for optimal coefficients αi. CompHEP passes on this weight optimization to
Vegas, combining two integrals in one Vegas hypercube.

As was mentioned above, CompHEP automatically searches for a polar
vector for each angle integration in order to reach a linear relation between
cosΘ and one of the squared sum of momenta which is responsible for the
peak. It could happen that various peaks need different polar vectors for
the same decay. In this case CompHEP uses the branching method again,
but now for the whole two-dimension sphere integration. In other words, we
use the branching equation (52) where x is the two dimensional sphere angle
[83, 84].

171

I.2 Adaptive Monte Carlo integration package Vegas

This section contains a short description of the adaptive Monte Carlo pro-
gram VEGAS. See for details [46, 47].

The Monte Carlo method reduces a task of integral evaluation to the task
of mean value calculation. Let g(x) is a density function satisfying

∫
g(x) dx = 1,

then
∫

f(x) dx =
∫

f(x)/g(x) g(x) dx = <f/g> = lim
N→∞

∑
(f(xi)/g(xi))/N,

where points xi are sampled with the probability density g(x) dx.
The uncertainty σN of <f/g> estimation by N sample points is propor-

tional to square root of function’s variance divided over N :

σN =
√

(<(f/g)2> − <f/g>2)/N .

VEGAS uses two techniques which allow to decrease the uncertainty of Monte
Carlo calculation, namely the importance sampling and the stratified sam-
pling.

I.2.1 Importance sampling

The idea of importance sampling technique is based on diminution of variance
by a proper choice of the density function g(x). The general solution of this
problem could be in choosing

g(x) = |f(x)| /
∫
|f(x)| dx.

However this solution is useless because it returns us to the problem of
evaluation of f(x) integral and requires a generation of sampling points for
complicated density function.

To bypass these problems VEGAS seeks this function in the factored form

g(x1, x2, . . . , xn) = g1(x1) g2(x2) . . . gn(xn).

The optimal functions gi(x) could be easily evaluated in terms of f(x) [46, 47].
VEGAS is an adaptive program. For the first iteration it puts gi(x) = 1. The

172

information about f(x) which VEGAS gets during the iteration is used to
refine the density function. Generally VEGAS performs several iterations
improving the density function after each of them.

The following parameters manage VEGAS work:

1. Itmx is a number of iterations;

2. Ncall is a number of integrand calls for one iteration.

I.2.2 Stratified sampling

The idea of stratified sampling method is to divide a volume of integration
into a large number of sub-volumes and calculate integrals separately in each
sub-volume. This method produces a smaller uncertainty comparing with
the direct Monte Carlo method because here the uncertainty is caused only
by a function variance in the sub-volumes, while the integrand variation from
one sub-volume to another does not contribute to the uncertainty.

The stratified sampling method is used to estimate the integral for any
VEGAS iteration. The larger number Ncall is chosen, the smaller size of
sub-volume becomes available and, consequently, the more successfully the
stratified sampling works.

I.3 Generation of events

CalcHEP generates events according to the Von Neumann algorithm. See
[58], p.202. Let the probability density f(x) is smaller that an easily gen-
erated density F (x)16. Then one can generate x according to distribution
F (x) and accept this event with probability f(x)/F (x). This procedure is
repeated in cycle until the needed number of events is generated.

To built F (x) CalcHEP divides the space volume on large number of sub-
cubes and in each sub-cube sets F (x) a constant which equals to max f(x).
CalcHEP has two strategies of detecting the corresponding maxima. First
one is a random search. The program generates random points in each sub-
cube and tests f(x) in these points. The second one is a search by the simplex
method [47]. Here the program analyzes function in vertices of some simplex
and tries to shift one vertex of this simplex to increase the function. This

16We assume f(x) and F (x) are not normalized.

173

method leads to fast converges to local maximum, but one has to take into
account that the distribution function can have several local maxima on the
cub-cube boundary. Thus, preliminary random search needs to define a good
start point for the search by the simplex method. The number of calls for
random search and the number of steps for simplex search are defined by the
user.

In general, the detected maxima are lower than the true ones. To satisfy
the inequality

f(x) ≤ F (x)

the function F (x) based on the detected maxima may be multiplied by some
factor, say 2. Of course, it decreases the efficiency of the generator just
on the same factor. Nevertheless, in some sub-cubes were the variance of
the function is large this factor may be not enough. If CalcHEP finds a
point x where f(x) > F (x) it accompany point with an integer weight w.
This weight is the integral part of f(x)/F (x) plus one with the probability
equal to the fraction part of f(x)/F (x). From view point of calculation of
various distributions one event with integer weight w should be treated as
w independent events with identical parameters. But for the evaluation of
statistical uncertainties a more careful treatment is needed.

I.4 Format of event file.

In general all needed comments are attached to the file. See below an exam-
ple of header of such file. The numbers which accompany particle symbols
are codes of Monte Carlo particle numbering scheme.

#CalcHEP version 2.3

#Type 2 -> 2

#Initial_state

P1_3=1.000000E+02 P2_3=-1.000000E+02

StrFun1="ISR(1.00S^.5 Beamstr.: OFF)" 11

StrFun2="ISR(1.00S^.5 Beamstr.: OFF)" -11

#PROCESS 11(e) -11(E) -> 5(b) -5(B)

#MASSES 0.00000E+00 0.00000E+00 4.62000E+00 4.62000E+00

#Cross_section(Width) 1.700425E+01

#Number_of_events 1000

174

After that the table of events is written. The first column presents weights
of events. Normal value for weight is 1. The reason of appearance weight 6= 1
is explained in the section (I.3). After that the columns which specify the
momenta of particles are presented. The first line of the table contains titles
for the columns. Say P3_2 means the second component of momentum of
the third particle. The zero, energy, components are not presented because
they can be calculated using the information about the particle masses. For
incoming particles only the third momentum component is presented because
other ones are zero.

After description of momentum the event record contains information
about color flows. Each color flow is presented by a couple of particle numbers
enclosed into brackets. It corresponds to propagation of color 3 from the
first particle to the second one. See section (F) for algorithm of color flows
generation.

Information about color flows is need to PYTHIA [54] to generate the
correct fragmentation of colored quarks and gluons.

175

J Table of exit codes

For both s and n calchep
0 normal termination
2,..6 9..,16 the process was killed by the corresponding signal.
59? error in edittab.c
65 error in writing on the disk
80 can not open X11 display
81 can not find ”fixed” X11 font
100 LOCK file was not removed
101* end of command sequence before end of program.

For s calchep only.
20 exit code for restart caused by user break or problem with memory.
22 exit code for restart to realize ” Make n calchep ”
55 runtime error in colorf.c
60 error in lagrangian detected in the time of symbolic evaluation
62 error in model detected in the time of symbolic evaluation
70 not enough memory.
90? debug exit for read func.c
99 A needed directory, say ”results”, is absent and can’t be created
102* LOCK file in ’results’ forbids to continue symbolical session
110* error in input of process
111* process of the type specified is absent

For n calchep only.
50 error in evaluation of QCD scale
51? can not recognize position of singularity
52? error in kinematics
53 runtime error caused by regularization(a pole in the phase space)
54 usrfun was not defined, but is used
121* wrong name of variable.
122* dependences can not be evaluated (NaN is produced)
123* energy is too small
124* can not evaluate cuts limlts
125* wrong format of table of regularizations

The ”*” symbol marks the exit codes which can be produced only in the
blind mode. The ”?” symbol marks exits included in the time of debugging.
They are not expected and presented only for completeness.

176

References

[1] A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation,
batchs, and generation of matrix elements for other packages (2004).
arXiv:hep-ph/0412191.

[2] H. Tanaka, T. Kaneko, Y. Shimizu, Numerical calculation of Feyn-
man amplitudes for electroweak theories and an application to e+
e- → W+ W- gamma, Comput. Phys. Commun. 64 (1991) 149–166.
doi:10.1016/0010-4655(91)90058-S.

[3] F. Yuasa, et al., Automatic computation of cross sections in HEP: Sta-
tus of GRACE system, Prog. Theor. Phys. Suppl. 138 (2000) 18–23.
arXiv:hep-ph/0007053.

[4] G. Belanger, et al., Automatic calculations in high energy physics
and Grace at one-loop, Phys. Rept. 430 (2006) 117–209. arXiv:hep-
ph/0308080, doi:10.1016/j.physrep.2006.02.001.

[5] H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity amplitude
subroutines for Feynman diagram evaluationsKEK-91-11.

[6] A. Pukhov, et al., CompHEP: A package for evaluation of Feynman
diagrams and integration over multi-particle phase space. User’s manual
for version 33 (1999). arXiv:hep-ph/9908288.

[7] E. Boos, et al., CompHEP 4.4: Automatic computations from La-
grangians to events, Nucl. Instrum. Meth. A534 (2004) 250–259.
arXiv:hep-ph/0403113, doi:10.1016/j.nima.2004.07.096.

[8] J. Kublbeck, M. Bohm, A. Denner, FEYN ARTS: COMPUTER AL-
GEBRAIC GENERATION OF FEYNMAN GRAPHS AND AMPLI-
TUDES, Comput. Phys. Commun. 60 (1990) 165–180. doi:10.1016/0010-
4655(90)90001-H.

[9] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts
3, Comput. Phys. Commun. 140 (2001) 418–431. arXiv:hep-ph/0012260,
doi:10.1016/S0010-4655(01)00290-9.

177

[10] T. Hahn, Automatic loop calculations with FeynArts, FormCalc, and
LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231–236. arXiv:hep-
ph/0005029, doi:10.1016/S0920-5632(00)00848-3.

[11] F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with
MadGraph, JHEP 02 (2003) 027. arXiv:hep-ph/0208156.

[12] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-
Graph 5 : Going Beyond, JHEP 06 (2011) 128. arXiv:1106.0522,
doi:10.1007/JHEP06(2011)128.

[13] A. Kanaki, C. G. Papadopoulos, HELAC: A package to compute elec-
troweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306–
315. arXiv:hep-ph/0002082, doi:10.1016/S0010-4655(00)00151-X.

[14] C. G. Papadopoulos, PHEGAS: A phase space generator for automatic
cross- section computation, Comput. Phys. Commun. 137 (2001) 247–
254. arXiv:hep-ph/0007335, doi:10.1016/S0010-4655(01)00163-1.

[15] A. Cafarella, C. G. Papadopoulos, M. Worek, Helac-Phegas: a generator
for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941–
1955. arXiv:0710.2427, doi:10.1016/j.cpc.2009.04.023.

[16] M. Moretti, T. Ohl, J. Reuter, O’Mega: An optimizing matrix element
generatorarXiv:hep-ph/0102195.

[17] W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle
Processes at LHC and ILC (2007). arXiv:0708.4233.

[18] T. Gleisberg, et al., SHERPA 1.alpha, a proof-of-concept ver-
sion, JHEP 02 (2004) 056. arXiv:hep-ph/0311263, doi:10.1088/1126-
6708/2004/02/056.

[19] T. Gleisberg, et al., Event generation with SHERPA 1.1, JHEP 02 (2009)
007. arXiv:0811.4622, doi:10.1088/1126-6708/2009/02/007.

[20] A. S. Belyaev, A. V. Gladyshev, A. V. Semenov, Minimal supersym-
metric standard model within CompHEP software packagearXiv:hep-
ph/9712303.

178

[21] G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micromegas: A
program for calculating the relic density in the mssm, Comput. Phys.
Commun. 149 (2002) 103–120. arXiv:hep-ph/0112278.

[22] G. Belanger, F. Boudjema, C. Hugonie, A. Pukhov, A. Semenov,
Relic density of dark matter in the NMSSM, JCAP 0509 (2005) 001.
arXiv:hep-ph/0505142, doi:10.1088/1475-7516/2005/09/001.

[23] G. Belanger, F. Boudjema, S. Kraml, A. Pukhov, A. Semenov,
Relic density of neutralino dark matter in the MSSM with CP
violation, Phys. Rev. D73 (2006) 115007. arXiv:hep-ph/0604150,
doi:10.1103/PhysRevD.73.115007.

[24] A. Belyaev, C.-R. Chen, K. Tobe, C. P. Yuan, Phenomenology
of littlest Higgs model with T-parity: including effects of T-odd
fermions, Phys. Rev. D74 (2006) 115020. arXiv:hep-ph/0609179,
doi:10.1103/PhysRevD.74.115020.

[25] A. Belyaev, C. Leroy, R. Mehdiyev, A. Pukhov, Leptoquark single and
pair production at LHC with CalcHEP/CompHEP in the complete
model, JHEP 09 (2005) 005. arXiv:hep-ph/0502067.

[26] A. Belyaev, et al., Technicolor Walks at the LHC, Phys. Rev. D79 (2009)
035006. arXiv:0809.0793, doi:10.1103/PhysRevD.79.035006.

[27] H.-J. He, et al., LHC Signatures of New Gauge Bosons in Minimal
Higgsless Model, Phys. Rev. D78 (2008) 031701. arXiv:0708.2588,
doi:10.1103/PhysRevD.78.031701.

[28] N. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, M. Her-
quet, F. Maltoni, S. Schumann, A Comprehensive approach to new
physics simulations, Eur. Phys. J. C71 (2011) 1541. arXiv:0906.2474,
doi:10.1140/epjc/s10052-011-1541-5.

[29] A. Datta, K. Kong, K. T. Matchev, Minimal Universal Extra Di-
mensions in CalcHEP/CompHEP, New J. Phys. 12 (2010) 075017.
arXiv:1002.4624, doi:10.1088/1367-2630/12/7/075017.

179

[30] B. A. Dobrescu, D. Hooper, K. Kong, R. Mahbubani, Spinless photon
dark matter from two universal extra dimensions, JCAP 0710 (2007)
012. arXiv:0706.3409, doi:10.1088/1475-7516/2007/10/012.

[31] B. A. Dobrescu, K. Kong, R. Mahbubani, Leptons and photons at
the LHC: Cascades through spinless adjoints, JHEP 07 (2007) 006.
arXiv:hep-ph/0703231, doi:10.1088/1126-6708/2007/07/006.

[32] G. Burdman, B. A. Dobrescu, E. Ponton, Six-dimensional gauge the-
ory on the chiral square, JHEP 02 (2006) 033. arXiv:hep-ph/0506334,
doi:10.1088/1126-6708/2006/02/033.

[33] G. Belanger, M. Kakizaki, A. Pukhov, Dark matter in UED : the role
of the second KK levelarXiv:1012.2577.

[34] G. Belanger, A. Pukhov, G. Servant, Dirac Neutrino Dark Matter, JCAP
0801 (2008) 009. arXiv:0706.0526, doi:10.1088/1475-7516/2008/01/009.

[35] A. Semenov, LanHEP - a package for the automatic generation of Feyn-
man rules in field theory. Version 3.0, Comput. Phys. Commun. 180
(2009) 431–454. arXiv:0805.0555, doi:10.1016/j.cpc.2008.10.012.

[36] N. D. Christensen, C. Duhr, FeynRules - Feynman rules made easy,
Comput. Phys. Commun. 180 (2009) 1614–1641. arXiv:0806.4194,
doi:10.1016/j.cpc.2009.02.018.

[37] P. Z. Skands, et al., SUSY Les Houches Accord: Interfacing
SUSY Spectrum Calculators, Decay Packages, and Event Genera-
tors, JHEP 07 (2004) 036. arXiv:hep-ph/0311123, doi:10.1088/1126-
6708/2004/07/036.

[38] B. C. Allanach, et al., SUSY Les Houches Accord 2, Comp. Phys. Com-
mun. 180 (2009) 8–25. arXiv:0801.0045, doi:10.1016/j.cpc.2008.08.004.

[39] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, The Two
photon particle production mechanism. Physical problems. Applica-
tions. Equivalent photon approximation, Phys. Rept. 15 (1975) 181–281.
doi:10.1016/0370-1573(75)90009-5.

180

[40] M. R. Whalley, D. Bourilkov, R. C. Group, The Les Houches Accord
PDFs (LHAPDF) and LhagluearXiv:hep-ph/0508110.

[41] J. Alwall, et al., A standard format for Les Houches event files,
Comput. Phys. Commun. 176 (2007) 300–304. arXiv:hep-ph/0609017,
doi:10.1016/j.cpc.2006.11.010.

[42] G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs2.0:
A program to calculate the relic density of dark matter in a generic
model, Comput. Phys. Commun. 176 (2007) 367–382. arXiv:hep-
ph/0607059, doi:10.1016/j.cpc.2006.11.008.

[43] G. Belanger, et al., Indirect search for dark matter with mi-
crOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842–856.
arXiv:1004.1092, doi:10.1016/j.cpc.2010.11.033.

[44] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994)
45–58. doi:10.1016/0010-4655(94)90034-5.

[45] A. C. Hearn, REDUCE 2 USERS MANUALSTAN-CS-70-181.

[46] G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integra-
tion, J. Comput. Phys. 27 (1978) 192. doi:10.1016/0021-9991(78)90004-
9.

[47] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical recipes
in C: the art of scientific computing, Cambridge University Press, 1999.

[48] J. Bjorken, S. Drell, Relativistic quantum mechanics, International series
in pure and applied physics, McGraw-Hill, 1964.

[49] U. Baur, J. A. M. Vermaseren, D. Zeppenfeld, Electroweak vector boson
production in high-energy e p collisions, Nucl. Phys. B375 (1992) 3–44.
doi:10.1016/0550-3213(92)90332-6.

[50] Y. Kurihara, D. Perret-Gallix, Y. Shimizu, e+ e- → e- anti-
electron-neutrino u anti-d from LEP to linear collider energies, Phys.
Lett. B349 (1995) 367–374. arXiv:hep-ph/9412215, doi:10.1016/0370-
2693(95)00298-Y.

181

[51] E. Boos, M. Dubinin, L. Dudko, Higgs boson production under the
resonance threshold at LEP II, Int. J. Mod. Phys. A11 (1996) 5015–
5026. arXiv:hep-ph/9602220, doi:10.1142/S0217751X96002315.

[52] E. Byckling, K. Kajantie, Particle kinematics, Wiley, 1973.

[53] V. A. Ilyin, D. N. Kovalenko, A. E. Pukhov, Recursive algorithm for the
generation of relativistic kinematics for collisions and decays with regu-
larizations of sharp peaks, Int. J. Mod. Phys. C7 (1996) 761. arXiv:hep-
ph/9612479, doi:10.1142/S0129183196000648.

[54] T. Sjostrand, High-energy physics event generation with PYTHIA
5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74–90.
doi:10.1016/0010-4655(94)90132-5.

[55] J. Alwall, et al., A Les Houches Interface for BSM Generator-
sarXiv:0712.3311, doi:10.2172/921331.

[56] S. Belov, L. Dudko, D. Kekelidze, A. Sherstnev, HepML, an XML-
based format for describing simulated data in high energy physics,
Comput. Phys. Commun. 181 (2010) 1758–1768. arXiv:1001.2576,
doi:10.1016/j.cpc.2010.06.026.

[57] G. Belanger, N. D. Christensen, A. Pukhov, A. Semenov (2010).
arXiv:1008.0181.

[58] Pardicle data group.
URL http://pdg.lbl.gov

[59] B. C. Allanach, Softsusy: A c++ program for calculating supersymmet-
ric spectra, Comput. Phys. Commun. 143 (2002) 305–331. arXiv:hep-
ph/0104145.

[60] W. Porod, Spheno, a program for calculating supersymmetric spectra,
susy particle decays and susy particle production at e+ e- colliders,
Comput. Phys. Commun. 153 (2003) 275–315. arXiv:hep-ph/0301101.

[61] A. Djouadi, J.-L. Kneur, G. Moultaka, Suspect: A fortran code for
the supersymmetric and higgs particle spectrum in the mssm, hep-
ph/0211331 (2002).

182

[62] U. Ellwanger, C. Hugonie, NMSPEC: A Fortran code for the sparticle
and Higgs masses in the NMSSM with GUT scale boundary conditions,
Comput. Phys. Commun. 177 (2007) 399–407. arXiv:hep-ph/0612134,
doi:10.1016/j.cpc.2007.05.001.

[63] A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The
Higgs boson in the standard model, Phys.Rept. 457 (2008) 1–216.
arXiv:hep-ph/0503172, doi:10.1016/j.physrep.2007.10.004.

[64] A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The
Higgs
bosons in the minimal supersymmetric model, Phys.Rept. 459 (2008)
1–241. arXiv:hep-ph/0503173, doi:10.1016/j.physrep.2007.10.005.

[65] K. Chetyrkin, B. A. Kniehl, M. Steinhauser, Decoupling relations to O
(alpha-s**3) and their connection to low-energy theorems, Nucl.Phys.
B510 (1998) 61–87. arXiv:hep-ph/9708255, doi:10.1016/S0550-
3213(97)00649-4.

[66] K. Chetyrkin, B. A. Kniehl, M. Steinhauser, W. A. Bardeen, Effective
QCD interactions of CP odd Higgs bosons at three loops, Nucl.Phys.
B535 (1998) 3–18. arXiv:hep-ph/9807241.

[67] M. Spira, A. Djouadi, D. Graudenz, P. Zerwas, Higgs boson produc-
tion at the LHC, Nucl.Phys. B453 (1995) 17–82. arXiv:hep-ph/9504378,
doi:10.1016/0550-3213(95)00379-7.

[68] P. Baikov, K. Chetyrkin, Higgs Decay into Hadrons to Order al-
pha**5(s), Phys.Rev.Lett. 97 (2006) 061803. arXiv:hep-ph/0604194,
doi:10.1103/PhysRevLett.97.061803.

[69] S. Dawson, A. Djouadi, M. Spira, Qcd corrections to susy higgs pro-
duction: The role of squark loops, Phys. Rev. Lett. 77 (1996) 16–19.
arXiv:hep-ph/9603423.

[70] R. Barbieri, L. J. Hall, V. S. Rychkov, Improved naturalness with a
heavy Higgs: An Alternative road to LHC physics, Phys.Rev. D74 (2006)
015007. arXiv:hep-ph/0603188, doi:10.1103/PhysRevD.74.015007.

183

[71] L. Lopez Honorez, C. E. Yaguna, The inert doublet model of
dark matter revisited, JHEP 09 (2010) 046. arXiv:1003.3125,
doi:10.1007/JHEP09(2010)046.

[72] F. Staub, SARAH, arXiv:0806.0538 [hep-ph]. arXiv:0806.0538.

[73] S. Wolfram, Mathematica: A System for Doing Mathematics by Com-
puter, 1988.

[74] L. Baulieu, Perturbative Gauge Theories, Phys. Rept. 129 (1985) 1.
doi:10.1016/0370-1573(85)90091-2.

[75] T. P. Cheng, L. F. Li, GAUGE THEORY OF ELEMENTARY PARTI-
CLE PHYSICSOxford, Uk: Clarendon (1984) 536 P. (Oxford Science
Publications).

[76] A. P. Kryukov, A. Y. Rodionov, COLOR: PROGRAM FOR CAL-
CULATION OF GROUP WEIGHTS OF FEYNMAN DIAGRAMS
IN NONABELIAN GAUGE THEORIES, Comput. Phys. Commun. 48
(1988) 327–334. doi:10.1016/0010-4655(88)90052-5.

[77] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo, V. I. Telnov, Colliding gamma
e and gamma gamma Beams Based on the Single Pass Accelerators (of
Vlepp Type), Nucl. Instr. Meth. 205 (1983) 47–68. doi:10.1016/0167-
5087(83)90173-4.

[78] E. A. Kuraev, V. S. Fadin, On Radiative Corrections to e+ e- Single
Photon Annihilation at High-Energy, Sov. J. Nucl. Phys. 41 (1985) 466–
472, [Yad.Fiz.41:733-742,1985].

[79] M. Skrzypek, S. Jadach, Exact and approximate solutions for the elec-
tron nonsinglet structure function in QED, Z. Phys. C49 (1991) 577–584.
doi:10.1007/BF01483573.

[80] P. Chen, Differential luminosity under multi - photon beamstrahlung,
Phys. Rev. D46 (1992) 1186–1191. doi:10.1103/PhysRevD.46.1186.

[81] J. Pumplin, et al., New generation of parton distributions with un-
certainties from global qcd analysis, JHEP 07 (2002) 012. arXiv:hep-
ph/0201195.

184

[82] A. D. Martin, R. G. Roberts, W. J. Stirling, R. S. Thorne, Un-
certainties of predictions from parton distributions. 1: Experimen-
tal errors, Eur. Phys. J. C28 (2003) 455–473. arXiv:hep-ph/0211080,
doi:10.1140/epjc/s2003-01196-2.

[83] V. A. Ilyin, D. N. Kovalenko, A. E. Pukhov, Recursive algorithm for the
generation of relativistic kinematics for collisions and decays with regu-
larizations of sharp peaks, Int. J. Mod. Phys. C7 (1996) 761. arXiv:hep-
ph/9612479, doi:10.1142/S0129183196000648.

[84] D. N. Kovalenko, A. E. Pukhov, Multiparticle phase space integration
with arbitrary set of singularities in CompHEP, Nucl. Instrum. Meth.
A389 (1997) 299–300. doi:10.1016/S0168-9002(97)00102-2.

[85] F. A. Berends, R. Pittau, R. Kleiss, Excalibur: A Monte Carlo pro-
gram to evaluate all four fermion processes at LEP-200 and beyond,
Comput. Phys. Commun. 85 (1995) 437–452. arXiv:hep-ph/9409326,
doi:10.1016/0010-4655(94)00138-R.

185

