CLUSTER

RESOURCES™

Maul Scheduler
Administrator's Guide

Verson 3.2

Copyright © 1999-2005 Cluster Resources, Inc All Rights Reserved
Distribution of this document for commercial purposesin either
hard or soft copy form is strictly prohibited without prior written
consent from Cluster Resources, Inc.

Maul Scheduler Administrator's
Guide

version 3.2

Copyright © 1999-2005 Cluster Resources, Inc All Rights Reserved
Distribution of this document for commercial purposesin either
hard or soft copy form is strictly prohibited
without prior written consent from Cluster Resources, Inc.

Overview

The Maui Scheduler is a policy engine which alows sites control over when, where, and
how resources such as processors, memory, and disk are allocated to jobs. In addition to this
control, it also provides mechanisms which help to intelligently optimize the use of these
resources, monitor system performance, help diagnose problems, and generally manage the
System.

Table of Contents:
1.0 Philosophy and Goals of the Maui Scheduler

2.0 Installation and Initial Configuration
2.1 Building and Installing M aui
2.2 Initial Configuration
2.3 Initial Testing

3.0 Scheduler Basics
3.1 Layout of Scheduler Components
3.2 Scheduling Environment and Obj ects
3.3 Scheduling Iterations and Job Flow
3.4 Configuring the Scheduler

4.0 Scheduler Commands
4.1 Client Overview
4.2 Monitoring System Status
4.3 Managing Jobs
4.4 Managing Reservations
4.5 Configuring Policies

4.6 End User Commands
4.7 Miscellaneous Commands

5.0 Prioritizing Jobs and Allocating Resour ces
5.1 Job Priority
5.2 Node Allocation
5.3 Node Access
5.4 Node Availability
5.5 Task Distribution

6.0 Managing Fairness- Throttling Policies, Fairshare, and Allocation M anagement
6.1 Fairness Overview
6.2 Throttling Policies
6.3 Fairshare
6.4 Allocation M anagement

7.0 Controlling Resour ce Access - Reservations, Partitions, and QoS Facilities
7.1 Advance Reservations
7.2 Partitions
7.3 QoS Facilities

8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption
8.1 Optimization Overview
8.2 Backfill
8.3 Node Sets
8.4 Preemption

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation
9.1 Scheduler Performance Evaluation Overview
9.2 Accounting - Job and System Statistics
9.3 Profiling Current and Historical Usage
9.4 Testing New Versionsand Configurations
9.5 Answering 'What If?' Questions with the Simulator

10.0 Managing Shared Resources- SMP | ssues and Policies
10.1 Consumable Resour ce Handling
10.2 L oad Balancing Features
10.3 Resource Usage Tracking
10.4 Resource Usage Limits

11.0 General Job Administration
11.1 Deferred Jobsand Job Holds
11.2 Job Priority Management
11.3 Suspend/Resume Handling
11.4 Checkpoint/Restart
11.5 Job Dependencies
11.6 Setting Job Defaultsand Per Job Limits
11.7 General Job Palicies
11.8 Using a L ocal Queue

12.0 General Node Administration
12.1 Node L ocation (Partitions, Frames, Queues, etc.)
12.2 Node Attributes (Node Features, Speed, etc.)
12.3 Node Specific Policies (M axJobPer Node, etc.)
12.4 Configuring Node-L ocked Consumable Generic Resour ces (tape drives,
node-locked licenses, etc.)

13.0 Resource Managers and I nterfaces
13.1 Resource Manager Overview
13.2 Resource Manager Configuration
13.3 Resource Manager Extensions
13.4 Adding Resource Manager | nterfaces

14.0 Trouble Shooting and System Maintenance
14.1 Internal Diagnostics
14.2 Logging Facilities
14.3 Using the M essage Buffer
14.4 Handling Eventswith the Notification Routine
14.5 Issueswith Client Commands
14.6 Tracking System Failures
14.7 Problemswith Individual Jobs

15.0 Improving User Effectiveness
15.1 User Feedback L oops
15.2 User Level Statistics
15.3 Enhancing Wallclock Limit Estimates
15.4 Providing Resour ce Availability I nfor mation
15.5 Job Start Time Estimates
15.6 Collecting Performance I nformation on Individual Jobs

16.0 Simulations
16.1 Simulation Overview
16.2 Resource Traces
16.3 Workload Traces
16.4 Simulation Specific Configuration

17.0 Miscellaneous
17.1 User Feedback
17.2 Grid Scheduling
17.3 Enabling High Availability Features
17.4 Using the Application Scheduling Library

Appendices
Appendix A: Case Studies
Appendix B: Extension Interface
Appendix C: Adding New Algorithms
Appendix D: Adjusting Default Limits
Appendix E: Security Configuration
Appendix F: Parameters Overview
Appendix G: Commands Overview
Appendix H: Interfacing to Maui
Appendix |: Considerationsfor Large Clusters
Appendix J. Differences Guide
Appendix K: Maui-Moab Comparison

1.0 Philosophy

The goal of a scheduler in the broadest sense is to make users, administrators, and managers
happy. Users desire the ability to specify resources, obtain quick turnaround on their jobs, and
receive reliable allocation of resources. Administrators desire happy managers and happy
users. They aso desire the ability to understand both the workload and the resources
avallable. Thisincludes current state, problems, and statistics as well as information about
what is happening under the covers. They need an extensive set of buttons and knobs to both
enable management enforced policies and tune the system to obtain desired statistics.

e« 1.1 Vaueof aBatch System
o 1.2 Philosophy and Goals of the Maui Scheduler

1.1 Value of a Batch System

Batch systems provide a mechanism for submitting, launching, and tracking jobs on a shared
resource. These services fullfil one of the mgor responsibilities of a batch system, providing
centralized access to distributed resources. This greatly simplifies the use of the cluster's
distributed resources allowing users a 'single system image' in terms of the management of
their jobs and the aggregate compute resources available. However, batch systems must do
much more than provide a global view of the cluster. Aswith many shared systems,
complexities arise when attempting to utilize compute resourcesin afair and effective
manner. These complexities can lead to poor performance and significant inequalitiesin
usage. With abatch system, a scheduler is assigned the job of determining, when, where, and
how jobs are run so as to maximize the output of the cluster. These decisions are broken into
three primary areas.

e« 1.1.1 Traffic Control
e 1.1.2 Mission Policies
e 1.1.3 Optimizations

1.1.1 Traffic Control

A scheduler isresponsible for preventing jobs from interfering with each other. If jobsare
allowed to contend for resources, they will generally decrease the performance of the cluster,
delay the execution of these jobs, and possibly cause one or more of the jobsto fail. The
scheduler isresponsible for internally tracking and dedicating requested resources to ajob,
thus preventing use of these resources by other jobs.

1.1.2 Mission Policies

When clusters or other HPC platforms are created, they are typically created for one or more
specific purposes. These purposes, or mission goals, often define various rules about how the
system should be used and who or what will be allowed to useit. To be effective, a scheduler
must provide a suite of policies which allow asite to map site mission policies into scheduling
behavior.

1.1.3 Optimizations

The compute power of acluster isalimited resource and over time, demand will inevitably
exceed supply. Intelligent scheduling decisions can significantly improve the effectiveness of
the cluster resulting in more jobs being run and quicker job turnaround. Subject to the
constraints of the traffic control and mission policies, it isthe job of the scheduler to use
whatever freedom is available to schedule jobs in such a manner so as to maximize cluster
performance.

1.2 Philosophy and Goals of the Maui Scheduler

Managers desire maximum return on investment often meaning high system utilization and
the ability to deliver various qualities of service to various users and groups. They need to
understand how the available resources are being delivered to the various users over time and
need the ability to have the administrators tune 'cycle delivery' to satisfy the current site
mission objectives.

How well a scheduler succeeds can only be determined if various metrics are established
and a means to measure these metrics are available. While statistics are important, their value
islimited unless optimal statistical values are also known for the current environment
including workload, resources, and policies. If one could determine that a site's typical
workload obtained an average queue time of 3 hours on a particular system, thiswould be a
good statistic. However, if one knew that through proper tuning, the system could deliver an
average gqueue time of 1.2 hours with minimal negative side effects, thiswould be valuable
knowledge.

The Maui Scheduler was devel oped with extensive feedback from users, administrators, and
managers. Atitscore, it isatool designed to truly manage resources and provide meaningful
information about what is actually happening on the system. It was created to satisfy
real-world needs of a batch system administrator as he tries to balance the needs of users, staff,
and managers while trying to maintain his sanity.

2.0 Installation

Maui installation consists of the following steps:
e 2.1 Maui Installation

e 2.2 Initia Maui Configuration
o 2.3 Testing

2.1 Maui Installation

 Building Maui

To install Maui, untar the distribution file, enter the maui-<VERSI ON> directory,
then run configur e and make as shown in the exampl e below:

gtar -xzvf maui-3.2.6.tar.gz
cd maui -3.2.6

./ configure

make

o Installing Maui (Optional)

>
>
>
>

When you are ready to use Maui in production, you may install it into the install
directory you have configured using make install

> nmake install

Note: Until the install step is performed, all Maui executables will be placed in
SMAUIHOMEDIR/bin. (i.e., maui-3.2.6/bin in the above example)

Note: Maui 3.2 contains a number of static parameter settings which may may need
adjustment for extreme installations. If the target cluster may fit in this category, see
Appendix D, Adjusting Default Limits and make any needed changes prior to issuing

the make command.

2.2 Initial Maui Configuration

After you install Maui, there are afew decisions which must be made and some
corresponding information which will need to be provided in the Maui configuration file,
maui.cfg. The configur e script automatically sets most of these parameters for you.
However, this document provides some additional information to allow further initial
configuration. If you are satisfied with the values specified in configur e then you can
probably skip this section. The parameters needed for proper initial startup include the
following:

- SERVERHOST

This specifies where Maui will run. It allows Maui client commands to locate the Maui
server. It must specify the fully qualified hostname of the machine on which Maui will run.
(Example: SERVERHOST cw. psu. edu)

- SERVERPORT

This specifies the port on which the Maui server will listen for client connections. Unless
the default port of 40559 is unacceptable, this parameter need not be set. (Example:
SERVERPORT 50001)

- ADMIN1

Maui has 3 major levels of admin access. Users which are to be granted full control of all
Maui functions should be indicated by setting the ADMIN1 parameter. Thefirst user in this
list is considered the primary admin. It isthe ID under which Maui should aways run. Maui
will only run under the primary admin user id and will shut itself down otherwise. In order for
Maui to properly interact with both PBS and Loadleveler, it isimportant that the primary Maui
admin also be configured as a resource manager admin within each of those systems.
(Example: ADM N1 j oe charl es)

- RMTYPE[X]

Maui must be told which resource manager(s) to talk to. Maui currently has interfaces to
Loadleveler, Wiki, and PBS. To specify aresource manager, typically only the resource
manager type needs to be indicated using the keywords LL, WIKI, or PBS (Example:
RMTYPE[0] PBS). The array index in the parameter name allows more than one resource
manager to be specified. In these multiple resource manager situations, additional parameters
may need to be specified depending on the resource manager type. Some of the related
resource management parameters are listed below. Further information about each is available
in the parameters documentation.

RMPORT
RMSERVER
RMTY PE
RMAUTHTY PE
RMCONFIGFILE

2.3 Initial Maui Testing

Maui has been designed with a number of key features that alow testing to occur in ano
risk environment. These features allow you to safely run Maui in test mode even with your old
scheduler running be it an earlier version of Maui or even another scheduler. In test mode,
Maui will collect real time job and node information from your resource managers and will act
asif it were scheduling live. However, its ability to actually affect jobs (i.e., start, modify,
cancel, etc) will be disabled.

Central to Maui testing is the parameter SERVERMODE. This parameter allows
administrators to determine how Maui will run. The possible values for this parameter are
NORMAL, TEST, and SSIMULATION. Aswould be expected, to request test mode
operation, the SERVERM ODE parameter must be set to TEST.

The ultimate goal of testing isto verify proper configuration and operation. Particularly, the
following can be checked:

« Maui possesses the minimal configuration required to start up.
o Maui can communicate with the resource manager(s).
« Maui isableto obtain full resource and job information from the resource manager(s).
« Maui isableto properly start anew job
Each of these areas are covered in greater detail below.
« 2.3.1 Minimal Configuration Required To Start Up

e 2.3.1.1 Simulation Mode
e 2.3.1.2 Test Mode
e« 2.3.1.3 Norma Mode

2.3.1 Minimal Configuration Required To Start Up

Maui must have a number of parameters specified in order to properly start up. There are three
main approaches to setting up Maui on anew system. These include the following:

2.3.1.1 Simulation Mode

Simulation mode is of value if you would simply like to test drive the scheduler
or when you have a stable production system and you wish to evaluate how or
even if the scheduler can improve your current scheduling environment.

Aninitia test drive simulation can be obtained via the following step:

> vi maui.cfg

(change 'SERVERMODE NORMAL'to'SERVERMODE SIMULATION)
(add 'SIMRESOURCETRACEFILE traces/Resource.Tracel’)
(add 'SIMWORKLOADTRACEFILE traces’Workload.Tracel")

> maui &

NOTE: Insimulation mode, the scheduler does not background itself like it
doesin both TEST and NORMAL mode.

The sample workload and resource traces files allow the simulation to emulate a
192 node IBM SP. Inthismode, all Maui commands can berun asif on a
normal system. The schedctl command can be used to advance the ssmulation

through time. The Simulation chapter describes the use of the simulator in detalil.

If you are familiar with Maui, you may wish to use the simulator to tune
scheduling policies for your own workload and system. The profiler tool can be

used to obtain both resource and workload traces and is described further in the
section 'Collecting Traces. Generally, at least a week's worth of workload should
be collected to make the results of the ssmulation statistically meaningful. Once
the traces are collected, the simulation can be started with some initial policy
settings. Typically, the scheduler is able to ssimulate between 10 and 100 minutes
of wallclock time per second for medium to large systems. Asthe simulation
proceeds, various statistics can be monitored if desired. At any point, the
simulation can be ended and the statistics of interest recorded. One or more
policies can be modified, the ssmulation re-run, and the results compared. Once
you are satisfied

with the scheduling results, the scheduler can be run live with the tuned policies.

2.3.1.2 Test Mode

Test mode alows you to evaluate new versions of the scheduler ‘'on the side'. In
test mode, the scheduler connects to the resource manager(s) and obtains live
resource and workload information. Using the policies specified in the maui.cfg
file, the test-mode Maui behavesidentical to alive 'norma’ mode Maui except the
code to start, cancel, and pre-empt jobsis disabled. Thisallows you to exercise
all scheduler code paths and diagnose the scheduling state using the various
diagnostic client commands. The log output can aso be evaluated to see if any
unexpected states were entered. Test mode can also be used to locate system
problems which need to be corrected. Like simulation mode, this mode can also
be used to safely test drive the scheduler as well as obtain confidence over time of
thereliability of the software. Once satisfied, the scheduling mode can be
changed from TEST to NORMAL to begin live scheduling.

To set up Maui in test mode, use the following step:

> vi maui.cfg
(change 'SERVERMODE NORMAL' to 'SERVERMODE TEST")
> maui

Remember that Maui running in test mode will not interfere with your
production scheduler, be it Loadleveler, PBS, or even another version of
Maui.

NOTE: If you are running multiple versions of Maui, be they in simulation,
normal, or test mode, make certain that they each reside in different home
directoriesto prevent conflicts with config and log files, statistics, checkpointing,
and lock files. Also, each instance of Maui should run using a different
SERVERPORT parameter to avoid socket conflicts. Maui client commands can

be pointed to the proper Maui server by using the appropriate command line
arguments or by setting the environment variable MAUIHOMEDIR.

2.3.1.3 Normal Mode

For the adventurous at heart (or if you ssmply have not yet been properly burned
by directly installing alarge, totally new, mission critical piece
of software) or if you are bringing up anew or development system, you may
wish to dive in and start the scheduler in NORMAL mode. This
admin manual and the accompanying man pages should introduce you to the
relevant issues and commands. To start the scheduler in NORMAL mode, take
the following step:

> maui

That should be all that is needed to get you started.

Appendix D: Adjusting Defaulting Limits

Maui is distributed in a configuration capable of supporting multiple architectures and
systems ranging from afew processors to several thousand processors. However, in spite of its
flexibility, it still contains a number of archaic static structures defined in header files. These
structures limit the default number of jobs, reservations, nodes, etc, which Maui can handle
and are set to values which provide a reasonable compromise between capability and memory
consumption for most sites. However, many sites desire to increase some of these settings to
extend functionality, or decrease them to save consumed memory. The most common
parameters are listed below and can be adjusted by ssmply modifying the appropriate #define

and rebuilding Maui.

Parameter

L ocation

Default

Max
Tested

Description

MMAX_ATTR

moab.h

128

512

total number of
distinct node attributes
(PBS node
attributes/LL node
features) which can be
tracked

MMAX_CLASS

moab.h

16

64

total number of
distinct job
classes/queues
available

MMAX_CLIENT

moab.h

64

total number of
simultaneous client
connections allowed

MMAX_FSDEPTH

moab.h

24

32

number of active
fairshare windows

MMAX_JOB

moab.h

4096

8192

maximum total
number of
simultaneous
idle/active jobs
alowed. NOTE: on
some releases of Maui,
MAX_ MJOB may
also need to be set and
synchronized with
MMAX JOB.

MMAX_NODE

moab.h

5120

8192

maximum number of
compute nodes
supported

MMAX_NODE_PER_JOB

msched-common.h

1024

1024

maximum number of
compute nodes which
can be adlocated to a
single job

MAX_MPAR

moab.h

16

maximum number of
partitions supported

MAX_MQOS

moab.h

128

128

total number of
distinct QOS objects
available to jobs

MMAX_RES DEPTH

moab.h

256

256

total number of
distinct reservations
allowed per node

MMAX_SRES

moab.h

128

256

total number of
distinct standing
reservations available

MMAX_TASK

moab.h

1560

10000

total number of tasks
allowed per job

Maui currently possesses hooks to allow sitesto create local algorithms for handling site
specific needsin several areas. The 'contrib’ directory contains a number of sample 'loca’
algorithms for various purposes. The 'Local.c’ module incorporates the algorithm of interest
into the main code. The following scheduling areas are currently handled viathe ‘Local.c’

hooks.

Local Job Attributes

L ocal Node Allocation Policies

Local Job Priorities
L ocal Fairness Policies

Overview of Major Structures (Under Construction)

Nodes
mnode t

Jobs
mjob _t

Reservations
mres t

Partitions
mpar_t

QOS
mgos _t

Appendix F: Maui Parameters

See the Parameters Overview in the Maui Admin Manual for further information about specifying parameters.

and purged.

Name Format Default Value Description Example
list of zero or more space delimited ACCOUNTCFQ proj ect X] MAXJOB=50
<ATTR>=<VALUE> pairswhere <ATTR> specifies account specific QDEF=hi ghpri o
isone of the following: attributes. Seetheflag
ACCOUNTCFG[<ACCOUNTID>] PRIORITY, FSTARGET, QLIST, QDEF, |[NONE] overview for adescription of |(Up to 50 jobs submitted under the account 1D
PLIST , PDEF, FLAGS, or afairness legal flag values. pr oj ect Xwill be allowed to execute simultaneously
policy specification. and will be assigned the QOS hi ghpr i o by default.)
specifies the priority weight to
b lied to th it
AFSWEIGHT <INTEGER> 0 teirerere factor. (See Reirchare. |AFSVEI GHT 10
Priority Factor)
specifies the priority weight to
ACCOUNTWEIGHT <INTEGER> o 'a’soi‘:ﬂt'%driﬁitge Tsfg'ed ACCOUNTVIEI GHT 100
Credential Priority Factor)
users listed under the parameter
ADMINL1 are alowed to
perform any scheduling
function. They havefull control |[ADM N1 raui user steve scott jenny
over the scheduler and access to (@l lited have ful . |
. . al data. Thefirst user listed in userslist ave full access to maui control
ADMIN1 space delimited list of user names root the ADMIN1 user list is commands and maui data. Maui must be started by
considered to be the 'primary and run under the 'mauiuser’ user id since mauiuser is
admin' and is the ID under the primary admin.
which maui must be started and
run. Valid valuesinclude user
names or the keyword 'ALL".
users listed under the parameter
ADMIN2 are allowed to change [ADM N2 j ack karen
all job attributes and are granted | o o .
ADMIN2 space delimited list of user names [NONE] access to all informational Maui |(jack and karen can modify jobs, i.e., ‘canceljob,
commands. Valid values setqos, setspri, etc.) and can run all Maui information
include user names or the commands).
keyword 'ALL".
users listed under the parameter
ADMINS3 are allowed access to
all informational maui ADM N3 ops
ADMIN3 space delimited list of user names [NONE] commands. They cannot change (user ops can run all informational command such as
schgduler or J'Ob attributes. 'checkjob’ or checknode')
Valid valuesinclude user names
or the keyword 'ALL".
specifies the interface and policy AMCFQ bank] TYPE=QBANK
one or more key-value pairs as described in CDQ;QLIIHEF for the HOST=supercl uster.org PORT=7111
AMCEG the Allocation Manager Configuration N/A isr?terf:o:_ Dggﬁﬂ?g in DEFERJOBONFAI LURE=FALSE
Overview the Allocation Manager (the QBank server will be contacted at port 7111 on
Configuration Overview host supercluster.org)
specifies the number idle jobs to
evaluate for backfill. The BACKFI LLDEPTH 128
BACKFILLDEPTH <INTEGER> 0 (nolimi backfill algorithm will evaluate
(no limit) the top <X> priority jobsfor [(evaluate only the top 128 highest priority idlejobs for
scheduling. By default, all jobs consideration for backfill)
are evaluated.
specifies the criteria used by the
one of the following PROCS, backfill algorithm to determine
BACKFILLMETRIC PROCSECONDS, SECONDS, PE, or PROCS the 'best’ jobs to backfill. Only |BACKFI LLMETRI C PROCSECONDS
PESECONDS applicable when using BESTFIT
or GREEDY backfill algorithms
one of the following: FIRSTFIT, specifies what backfill algorithm
BACKFILLPOLICY BESTFIT, GREEDY , or NONE FIRSTFIT will be used BACKFI LLPOLI CY BESTFI T
specifies the duration during
which freed resourceswill be |BECHUNKDURATI ON 00: 05: 00
aggregated for useby larger |BFCHUNKSI ZE 4
BFCHUNKDURATION [[[DD:]JHH:]MM:]SS 0 (chunking disabled) jobs. Used in conjunction with
BFCHUNKSIZE. See (aggregate backfillable resources for up to 5 minutes,
Configuring Backfill for more |[making resources available only to jobs of size 4 or
information. larger)
specifies the minimum job size
which can utilize chunked giagmﬁgﬁ%ﬂ N 20: 05: 00
BFCHUNKSIZE <INTEGER> 0 (chunking disabled) ﬁ”éﬁ%ﬁi‘ggg‘ﬂfgﬂ
S R " |(aggregate backfillable resources for up to 5 minutes,
See Configuring Backfill for | oting resources available only to jobs of size 4 or
more information larger)
specifies policy to use when BFPRI ORI TYPOLI CY DURATI ON
BFPRIORITYPOLICY one Of RANDON DURATION, or NONE prioritizing backfill jobs for i T -
preemption (use length of job in determining which backfill job to
preempt)
specifies the weight to be
applied to ajob's backfill bypass
BYPASSWEIGHT <INTEGER> 0 count when determining ajob's BYPASSVEI GHT 5000
priority
specifies how 'stale checkpoint |CHECKPOl NTEXPT RATI ONTI ME 1:00: 00: 00
CHECKPOINTEXPIRATIONTIME |[[[DD:]HH:]MM:]SS INFINITY data can be before it isignored

(Expire checkpoint data which has been stale for over
one day)

name (absolute or relative) of

CHECKPO NTFI LE /var/adnf maui / maui . ck

CHECKPOINTFILE <STRING> mavi.ck the Mavi checkpoint file. (Maintain the Maui checkpoint filein the file
specified)
b CHECKPO NTI NTERVAL 00: 15: 00
. . . .- time between automatic Maui
CHECKPOINTINTERVAL [[[DD:]HH:]MM:]SS 00:05:00 checkpoints (Maui should checkpoint state information every 15
minutes)
list of zero or morespacgdelimited B N CLASSCFQ bat ch] MAXJOB=50
<ATTR>=<VALUE> pairswhere <ATTR> specifies class specific QDEF=hi ghpri o
isone of the following: attributes. Seetheflag
CLASSCFG[<CLASSID>] PRIORITY, FSTARGET, QLIST, QDEF, [[NONE] overview for adescriptionof |(up to 50 jobs submitted to the class bat ch will be
PLIST , PDEF, FLAGS, or afairness legal flag values. allowed to execute simultaneously and will be assigned
policy specification. the QOS hi ghpr i o by default.)
specifies the weight to be
CLASSWEIGHT <INTEGER> 0 applied to the class priority of |CLASSWEI GHT 10
each job (See Cred Factor)
specifies the shared secret key
and encryption algorithm which .
one or more of the following: CSAL GO or Maui will useto communicate |CLI ENTCFGE si | ver B] CSKEY=appl e7
CLIENTCFG[<X>] CSKEY i [NONE] with the named peer daemon. |viayji will use the session key appl 7 for encrypting
NOTE: this parameter may only |ang decrypting messages sent from si | ver B)
be specified in the
maui-private.cfg config file)
time which Maui client L
commands will wait for a CLI ENTTI MEQUT 00: 15: 00
CLIENTTIMEOUT [[[DD:]HH:]IMM:]SS 00:00:30 respons.efrom the Maui SerVer |Maui clientswill wait up to 15 minutes for aresponse
(NOTE: may also be specified |from the server before timing out)
as an environment variable)
specifies the credential
CREDWEIGHT <INTEGER> 1 component weight CREDVEI GHT 2
specifies the default classes
space delimited list of one or more supported on each node for RM .
DEFAULTCLASSLIST <STRING>'s [NONE] systems which do not provide DEFAULTCLASSLI ST serial parallel
thisinformation
specifies the number of timesa
DEFERCOUNT <INTEGER> 24 job can be deferred before it will |[DEFERCOUNT 12
be placed in batch hold.
specifies number of time ajob
DEFERSTARTCOUNT <INTEGER> 1 will be allowed to fail in its start DEFERSTARTCOUNT 3
attempts before being deferred.
specifies amount of time ajob
- . 0N will be held in the deferred state -
DEFERTIME [[[DD:]HH:]IMM:]SS 1:00:00 before being released back to DEFERTI ME 0: 05: 00
the Idlejob queue

RESVEEI GHT 10
specifies the priority weight to | SKWEI GHT 100
be applied to the amount of

DISKWEIGHT <INTEGER> 0 dedicated disk space required |(if ajob requires 12 tasks and 512 MB per task of
per task by ajob (in MB) dedicated local disk space, Maui will increase the job's
priority by 10* 100 * 12 * 512)
one or more of the following values (space specifies flags which control
DISPLAYFLAGS defimited) [NONE] how maii client commands will |Dl SPLAYFLAGS NODECENTRI C
NODECENTRIC display variousinformation
]] DOWNNCDEDELAYTI ME 1: 00: 00
default time an unavailable node
DOWNNODEDELAYTIME* [[[DD:]HH:]MM:]SS 24:00:00 (Down or Drain) is marked (Maui will assume ‘down’ nodes will be available 1
unavailable hour after they go down unless a system reservation is
placed on the node)
specifies whether or not the
ENABLEMULTINODEJOBS <BOOLEAN> TRUE scheduler will allow jobs to span |ENABLEMULTI NODEJOBS FALSE
more than one node
specifies whether or not the
scheduler will allow jobsto
ENABLEMULTIREQJOBS <BOOLEAN> FALSE specify multipleindependent |-\ gy ety T) REQIOBS TRUE
resource requests (i.e., pbsjobs
with resource specifications
such as - nodes=3:fast+1:i0")
if set to TRUE, the scheduler
will allow job priority value to
range from -INFINITY to ENABLENEGIOBPRI ORI TY TRUE
ENABLENEGJOBPRIORITY[X] <BOOLEAN> FALSE MMAX_PRIO, otherwise, job | 300, cricrity may range from -INFINITY to
priority values are given alower

MMAX_PRIO.)
bound of '1'. (see
REJECTNEGPRIOJOBYS)

FEATURENCDETYPEHEADER xnt
specifies the header used to (il all node ith the lead
specify node type via node Maui will interpret all node features with the ing

FEATURENODETYPEHEADER <STRING> [NONE] features (ie, L1 features or PBS |Siring xnt. as anodetype specification - as used by
node attributes). QBank and other allocation managers, and assign the
associated value to the node. i.e., xntFast)
specifies the header used to FEATUREPARTI TI ONHEADER xpt
EEATUREPARTITIONHEADER <STRING> [NONE] specify node partition vianode (Maui will interpret all node features with the leading

features (ie, LL featuresor PBS
node attributes).

string xpt as a partition specification and assign the

associated value to the node. i.e., xptGold)

specifies the header used to
extract node processor speed via
node features (i.e., LL features
or PBS node attributes). NOTE:
Adding atrailing '$' character

FEATUREPROCSPEEDHEADER xps

FEATUREPROCSPEEDHEADER <STRING> [NONE] ; 1 (Maui will interpret all node features with the leading
will specifies that only features |qring xps as a processor speed specification and
with atrailing number be assign the associated value to the node. i.e., xps950)
interpreted. For example, the
header 'sp$' will match 'sp450'
but not 'sport'
specifies the name of the
PFOQT?TT! to b‘f% funhﬂ tge . FEEDBACKPROGRAM / var / maui / f b. pl
completion of each job. If not

FEEDBACKPROGRAM <STRING> [NONE] fully qualified, Maui will (Maui will run the specified program at the completion
attempt to locate this program in [of each job.)
the 'tools' subdirectory.
specifies the weight assigned to
the account subcomponent of

FSACCOUNTWEIGHT <INTEGER> 0 the fairshare component of FSACCOUNTWEI GHT 10
priority

FSCAP 10.0
specifies the maximum allowed (Mai wil al b ohted fairsh
value for ajob'stotal aui will not allow ajob's pre-weighted fairshare

FSCAP <DOUBLE> 0 (NO CAP) pre-weighted fairshare component to exceed 100,
component ie, Priority = FSWEIGHT *

MIN(FSCAP,FSFACTOR) +...)

FSCONFIGFILE <STRING> fs.cfg

FSDECAY <DOUBLE> 1.0
NOTE: The number of available
fairshare windows is bounded

FSDEPTH <INTEGER> 7 by the MAX_FSDEPTH value [FSDEPTH 12
(24 in Maui 3.2.6 and earlier, 32
in Maui 3.2.7 and later)

FSGROUPWEIGHT <INTEGER> 0 FSGROUPVIEI GHT 4

L. . . specifies the length of each FSI NTERVAL 12: 00: 00

FSINTERVAL [[[DD:]HH:IMM]SS 24:00:00 fairshare ' window ' (track fairshare usage in 12 hour blocks)
specifies the unit of tracking
fairshare Lsage. FSPOLI CY DEDI CATEDPES

FSPOLICY one of the following: DEDICATEDPS, |\ DEDICATEDPS tracks

DEDICATEDPES [NONE] icated processor seconds. |\ aui will track fairshare usage by dedicated
DEDICATEDPES tracks process-equivalent seconds)
dedicated processor-equivalent
seconds
specifies the priority weight

FSQOSWEIGHT <INTEGER> 0 assigned to the QOS fairshare
subcomponent
specifies the priority weight

FSUSERWEIGHT <INTEGER> 0 assigned to the user fairshare FSUSERVEI GHT 8
subfactor.
specifies the priority weight

FSWEIGHT <INTEGER> 0 assigned to the summation of FSWEI GHT 500
the fairshare subfactors

list of zero or morespace_delimited B - GROUPCF staff] MAXJOB=50
<ATTR>=<VALUE> pairswhere <ATTR> specifies group specific —hi i
f : - QDEF=hi ghpri o
is one of the following: attributes. Seethe flag

GROUPCFG[<GROUPID>] PRIORITY, FSTARGET, QLIST, QDEF, |[NONE] overview for adescriptionof |(Up to 50 jobs submitted by members of the group
PLIST , PDEF, FLAGS, or afairness legal flag values. st af f will be allowed to execute simultaneously and
policy specification. will be assigned the QOS hi ghpr i o by default.)

specifies the priority weight

GROUPWEIGHT <INTEGER> 0 assigned to the specified group |GROUPWEI GHT 20
priority (See Cred Factor)
specifies the minimum amount
of time the scheduler should
wait after receiving ajob event
until it should process that
event. This parameter allows
sites with bursty job JOBAGCGREGATI ONTI ME 00: 00: 04
submissions to process job RMPOLLI NTERVAL 00: 00: 30

JOBAGGREGATIONTIME [[[DD:]HH:IMM]SS 0 g/?tilerlig;'pups d(-lacreasdng totdl |6 scheduler will wait 4 seconds between scheduling
Jz;I)I SC tl:]lngr?ég?sa? ak cycles when job events have been received and will

owing the scheduler 10 Make | i+ 30 seconds between scheduling cycles otherwise
more intelligent choices by
aggregating job submissions and
choosing between the jobs. (See
Considerationsfor Large
Clusters)
length of time ajob isalowed
toremainin a'starting' state. If .
a'started' job does not transition JOBMAXSTARTTI ME 2: 00: 00

JOBMAXSTARTTIME [[[DD:]HH:]MM:]SS -1 (NOLIMIT) to arunning state within this (jobs may attempt to start for up to 2 hours before
amount of time, the scheduler |ing cancelled by the scheduler)
will cancel the job, believing a
system failure has occurred.
amount of time Maui will allow [JOBMAXOVERRUN 1: 00: 00

JOBMAXOVERRUN [[[DD:]HH:]IMM:]SS 0 ajob to exceed its wallclock

limit before it is terminated

(allow jobs to exceed their wallclock limit by up to 1
hour)

JOBNODEMATCHPOLICY

zero or more of the following:
EXACTNODE or EXACTPROC

[NONE]

specifies additional constraints
on how compute nodes are to be
selected. EXACTNODE
indicates that Maui should select
as many nodes as requested
even if it could pack multiple
tasks onto the same node.
EXACTPROC indicates that
Maui should select only nodes
with exactly the number of
processors configured as are
requested per node even if nodes
with excess processors are
available.

JOBNODEMATCHPCOLI CY EXACTNGODE

(In aPBSjob with resource specification
'nodes=<x>:ppn=<y>', Maui will alocate exactly <y>
task on each of <x> distinct nodes.)

JOBPRIOACCRUALPOLICY

one of the following: ALWAY'S,
FULLPOLICY, QUEUEPOLICY

QUEUEPOLICY

specifies how the dynamic
aspects of ajob's priority will be
adjusted. ALWAY Sindicates
that the job will accrue
queuetime based priority from
the timeit is submitted.
FULLPOLICY indicatesthat it
will accrue priority only when it
meets all queue AND run
policies. QUEUEPOLICY
indicates that it will accrue
priority so long asit satisfies
various queue policies, i.e.
MAXJOBQUEUED.

JOBPRI OACCRUALPOLI CY QUEUEPQLI CY

(Maui will adjust the job's dynamic priority
subcomponents, i.e.,, QUEUETIME, XFACTOR, and
TARGETQUEUETIME, etc. each iteration that the job
satisfies the associated 'QUEUE' policies such as
MAXJOBQUEUED.)

JOBSIZEPOLICY

<N/A>

[NONE]

<N/A>

<N/A>

JOBSYNCTIME

[[[DD:]JHH:]MM:]:SS

00:10:00

specifies the length of time after
which Maui will sync up ajob's
expected state with an
unexpected reported state.
IMPORTANT NOTE: Maui
will not allow ajob to run as
long asiits expected state does
not match the state reported by
the resource manager. NOTE:
this parameter is named
JOBSYNCDEADLINE in Maui
3.0.5 and earlier

JOBSYNCTI ME 00: 01: 00

LOGDIR

<STRING>

log

specifies the directory in which
log files will be maintained. If
specified as arelative path,
LOGDIR will berelative to
$(MAUIHOMEDIR) (see

Logging Overview)

LOGDIR /tnp

(Maui will record itslog files directly into the/ t np
directory)

LOGFACILITY

colon delimited list of one or more of the
following: fCORE, fSCHED, fSOCK,
ful, fLL, fSDR , fCONFIG, fSTAT, fSIM,
fSTRUCT, fFS, fCKPT, fBANK, fRM,
fPBS, fWIKI, fALL

fALL

specifies which types of events
to log (see Logging Overview)

LOGFACILITY fRMfPBS

(Maui will log only events involving general resource
manager or PBS interface activities.)

LOGFILE

<STRING>

maui.log

name of the maui log file. This
fileis maintained in the
directory pointed to by
<LOGDIR> unless
<LOGFILE> is an absolute path

(see Logging Overview)

LOGFI LE maui . test. | og

(Log information will be written to the file
maui . t est . | og located in the directory pointed to
by the LOGDIR parameter)

LOGFILEMAXSIZE

<INTEGER>

10000000

maximum allowed size (in
bytes) the log file before it will
be 'rolled (see Logging
Overview)

LOGFI LEMAXSI ZE 50000000

(Log fileswill be rolled when they reach 50 MB in
size)

LOGFILEROLLDEPTH

<INTEGER>

number of old log filesto
maintain (i.e., when full,
maui.log will be renamed
maui.log.1, maui.log.1 will be
renamed maui.log.2, ... (see

Logging Overview)

LOGFI LEROLLDEPTH 5
(Maui will maintain the last 5 log files.)

LOGLEVEL

<INTEGER> (0-9)

specifies the verbosity of Maui
logging where 9 is the most
verbose (NOTE: each logging
level is approximately an order
of magnitude more verbose than
the previous level) (see Logging
Overview)

LOGLEVEL 4

(Maui will write all Maui log messages with a
threshold of 4 or lower to the 'maui.log' file)

MAXJOBPERUSERCOUNT

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum number of active jobs
allowed at any given time.
(NOTE: This parameter is
deprecated, see note).

MAXJOBQUEUEDPERUSERCOUNT

<INTEGER>[<INTEGER>]

0 (No Limit)

maximum number of idle jobs
which can be considered for
scheduling and which can
acquire 'system queue time' for
increasing job priority. (NOTE:
This parameter is deprecated,
see note).

MAXNODEPERUSERCOUNT

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum allowed total PE
count which can be dedicated at
any giventime. (NOTE: This
parameter is deprecated, see
note).

MAXPEPERUSERCOUNT

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum allowed total PE
count which can be dedicated at
any giventime. (NOTE: This
parameter is deprecated, see
note).

MAXPROCPERUSERCOUNT

<INTEGER>[<INTEGER>]

0 (No Limit)

maximum allowed total
processors which can be
dedicated at any givetime.
(NOTE: This parameter is
deprecated, see note).

MAXPSPERUSER

<INTEGER>[<INTEGER>]

0 (No Limit)

maximum allowed sum of
outstanding dedicated
processor-second obligations of
al activejobs. (NOTE: This
parameter is deprecated, see

note).

MAXWCPERUSER

[[[DD:]HH:IMM:]SS[,[[[DD:]HH:]MM:]SS]

0 (No Limit)

maximum allowed sum of
outstanding walltime limits of
al activejobs. NOTE: only
availablein Maui 3.2 and
higher.

MEMWEIGHT[X]

<INTEGER>

specifies the coefficient to be
multiplied by ajob's MEM
(dedicated memory in MB)
factor

RESVEI GHT[0] 10
NEMAEI GHT[0] 1000

(each job's priority will beincreased by 10 * 1000 * its
MEM factor)

NODEACCESSPOLICY

one of the following: SHARED,
SINGLEJOB, SINGLETASK , or
SINGLEUSER

SHARED

specifies how node resources
will be shared by various tasks
(See the 'Node Access Overview
' for more information)

NODEACCESSPOLI CY SI NGLEUSER

(Maui will allow resources on a node to be used by
more than one job provided that the job's are all owned
by the same user)

NODEALLOCATIONPOLICY

one of the following: FIRSTAVAILABLE,
LASTAVAILABLE, MINRESOURCE,
CPULOAD, MACHINEPRIO, LOCAL,
CONTIGUOUS, MAXBALANCE, or
FASTEST

LASTAVAILABLE

specifies how Maui should
allocate available resources to
jobs. (Seethe Node Allocetion
section of the Admin manual for
more information)

NCODEALLOCATI ONPOLI CY M NRESCURCE

(Maui will apply the node allocation policy
'MINRESOURCE ' to al jobs by default)

<POLICY>[.<RESOURCETPYE>] ..

where
POLICY isone of COMBINED,

specifies how Maui will
eva uate node availability on a
per resource basis. (See the

NCODEAVAI LABI LI TYPQOLI CY
DEDI CATED: PROCS COVBI NED: MEM

COMBINED. R iy soncth
and Admin manua for more i ili i ioni
RESOURCETY PE is one of information) g?;ﬁﬁfgﬂq‘g:ﬁd;:ggmgo’mm0” n
PROC, MEM, SWAP, or DISK
list of space delimited <ATTR>=<VALUE>
pairswhere <ATTR> is one of the specifies node-specific attributes NopECFG nodeA] MAXJOB=2 SPEED=1. 2
following: for the node indicated in the
NODECFG[X] ACCESS, MAXJOB, [NONE] array field. Seethe Node (Maui will only only two simultaneous jobs to run on
MAXJOBPERUSER, MAXLOAD, Configuration Overview for ~ |node ‘nodeA " and will assign arelative machine speed
FRAME , SLOT, SPEED, PROCSPEED, more information. of 1.2 to this node.)
PARTITION, NODETYPE , FEATURES
length of time Maui will assume
down, drained (offline), or NODEDOWNSTATEDELAYTI ME 0: 30: 00
corrupt nodes will remain (Maui will assume down, drained, and corrupt nodes
unavailable for scheduling if & |3re not available for scheduling for at lesst 30 minutes
NODEDOWNSTATEDELAYTIME [[[DD:]HH:]MM:]SS 0:00:00 wagm reservation is not from the current time. Thus, these nodes will never be
explicitly created for thenode. || gcated to starting jobs. Also, these nodes will only
NOTE: This parameter is be available for reservations starting more than 30
enabled in Mavi 3.0.7 and minutesin the future.)
higher.
specifiesif anode'sload affects
its state or its available
processors. ADJUSTSTATE
tells Maui to mark the node busy
when MAXLOAD is reached.
ADJUSTPROCS causes the NODELQADPOLI CY ADJUSTSTATE
one of the following: ADJUSTSTATE or node's available procs to be
NODEL OADPOLICY ADJUSTPROCS 9 ADJUSTSTATE equivalent to P (Maui will mark a node busy if its measured load
MIN(ConfiguredProcs - exceedsits MAXLOAD setting)
DedicatedProcs,MaxL oad -
CurrentLoad) NOTE:
NODELOADPOLICY only
affects anodeif MAXLOAD
has been set.
specifies that maximum load on
aidle of running node. If the NODEMAXLOAD 0.75
NODEMAXLOAD <DOUBLE> 0.0 nqde's load reaqh&; or exceeds (Maui will adjust the state of al Idle and Running
this value, Mavi will mark the |nodes with aload >= .75 to the state 'Busy’)
node 'busy’
specifies the number of NODEPOLLFREQUENCY 5
NODEPOL L FREQUENCY <INTEGER> 0 (Poll Always) scheduling iterations between (Maui will update node manager based information

scheduler initiated node
manager queries.

every 5 scheduling iterations)

NODESETATTRIBUTE

one of FEATURE, MEMORY, or
PROCSPEED

[NONE]

specifies the type of node
attribute by which node set
boundaries will be established.
NOTE: enabled in Maui 3.0.7
and higher. (See Node Set
Overview)

NCDESETATTRI BUTE =~ PROCSPEED

(Maui will create node sets containing nodes with
common processor speeds)

NODESETDELAY

[[[DD:]HH:]IMM:]SS

0:00:00

specifies the length of time
Maui will delay ajob if
adequate idle resources are
available but not adequate
resources within node set
constraints. NOTE: in Maui 3.2
and higher, setting
NODESETDELAY to any
non-zero value will force Maui
to always use nodesets. A value
of zero will cause Maui to use
nodesets on a best effort basis.

(See Node Set Overview)

NODESETDELAY 0: 00: 00

(Maui will create node sets containing nodes with
COMmMON Processor speeds)

NODESETLIST

<STRING>

[NONE]

specifies the list of node
attribute values which will be
considered for establishing node
sets. NOTE: enabled in Maui
3.0.7 and higher. (See Node Set
Overview)

NCODESETPCLI CY ONECF
NCDESETATTRI BUTE FEATURE
NCODESETLI ST swi t chA switchB

(Maui will alocate nodes to jobs either using only
nodes with the 'switchA' feature or using only nodes
with the 'switchB' feature.)

NODESETPOLICY

one of ONEOF, FIRSTOF, or ANYOF

[NONE]

specifies how nodes will be
allocated to the job from the
various node set generated.
NOTE: enabled in Maui 3.0.7
and higher. (See Node Set
Overview)

NODESETPCLI CY ONECF
NCDESETATTRI BUTE NETWORK

(Maui will create node sets containing nodes with
common network interfaces)

NODESETPRIORITYTYPE

one of BESTFIT, WORSTFIT,
BESTRESOURCE, or MINLOSS

MINLOSS

specifies how resource sets will
be selected when more than one
feasible resource can can be
found. NOTE: This parameter
isavailablein Maui 3.0.7 and
higher. (See Node Set
Overview)

NODESETPRI ORI TYTYPE BESTRESCURCE
NCDESETATTRI BUTE PROCSPEED

(Maui will select the resource set containing the fastest
nodes available)

NODESETTOLERANCE

<FLOAT>

0.0 (Exact match only)

specifies the tolerance for
selection of mixed processor
speed nodes. A tolerance of X
allows arange of processors to
be selected subject to the
constraint

(Speed.Max - Speed.Min) /
Speed.Min <= X

NOTE: Tolerances are only
applicable when
NODESETFEATURE is set to
PROCSPEED. This parameter
isavailablein Maui 3.0.7 and
higher.

(See Node Set Overview)

NCDESETATTRI BUTE PROCSPEED
NODESETTOLERANCE 0. 5

(Maui will only allocate nodes with up to a 50%
procspeed difference.)

NODESYNCTIME

[[[DD:]HH:]IMM:]SS

00:10:00

specifies the length of time after
which Maui will syncup a
node's expected state with an
unexpected reported state.
IMPORTANT NOTE: Maui

will not start new jobs on anode
with an expected state which
does not match the state
reported by the resource
manager. NOTE: this parameter
is named
NODESYNCDEADLINE in
Maui 3.0.5 and earlier.

NCDESYNCTI ME 1: 00: 00

NODEWEIGHT

<INTEGER>

specifies the weight which will
be applied to ajob's requested
node count before thisvalueis
added to the job's cumulative
priority. NOTE : thisweight
currently only applies when a
nodecount is specified by the
user job. If the job only
specifies tasks or processors, no
node factor will be applied to
the job'stotal priority. (This
will berectified in future
versions.)

NCDEVEI GHT 1000

NOTIFICATIONPROGRAM

<STRING>

[NONE]

specifies the name of the
program to handle all
notification call-outs

NOTI FI CATI ONPROGRAM
t ool s/ notifynme. pl

PEWEIGHTI[X]

<INTEGER>

specifies the coefficient to be
multiplied by ajob's PE
(processor equivalent) priority
factor

RESVEI GHT[0] 10
PEVEI GHTT 0] 100

(each job's priority will beincreased by 10 * 100 * its
PE factor)

specifies the maximum number
of processors requested by jobs

PLOTM NPROC 1
PLOTMAXPROC 1024

PLOTMAXPROC <INTEGER> 512 to be displayed in matrix outputs
(as displayed by the showgrid or |(each matrix output will display datain rows for jobs
profiler commands) requesting between 1 and 1024 processors)
specifies the maximum duration E::g'v' NT: & é4080080

PLOTMAXTIME [[[DD:JHH:MM:]SS 68:00:00 Of Jops o be displayed i matrix e
outputs (asdisplayed by the | eaey maprix output will display datain columns for
showgrid or profiler commands) ;s requesting between 1 and 64 hours of run time)
specifies the minimum number PLOTM NPROC 1
of processors re_questeq by jobs |p| orMAXPROC 1024

PLOTMINPROC <INTEGER> 1 to be displayed in matrix outputs
(as displayed by the showgrid or |(each matrix output will display datain rows for jobs
profiler commands) requesting between 1 and 1024 processors)
specifies the minimum duration ﬁth NT: ﬁ (154080030

PLOTMINTIME [[[DD:]HH:]MM:]SS 00:02:00 Of{"gfto b’ffd'slplaé'de%'”ﬂznamx s
outp S.(BS ISplayed by the (each matrix output will display datain columns for
showarid or profiler commands) oy, requesting between 1 and 64 hours of run time)
specifies the number of rows ~ |PLOTM NPRCC 1
into which the range of PLOTMAXPROC 1024
processors requested per job will |PLOTPROCSCALE 10

PLOTPROCSCALE <INTEGER> 9 be divided when displayedin | oo maprix output will display job data divided into
matrix outputs (esdisplayed by |1 rows which are evenly spaced geometrically
the showarid or profiler covering the range of jobs requesting between 1 and
commands) 1024 processors)

PLOTM NTI ME 2: 00: 00
specifies the number of columns [PLOTMAXTI ME 32: 00: 00
into which the range of job PLOTTI MESCALE 5
PLOTTIMESCALE <INTEGER> 11 g_uraln og_mll t: _dlwtined \t/vhen (each matrix output will display job data divided into 5
d!spl it od Ibn r& r;i outpu ds (s columns which are evenly spaced geometrically
|sp_ay Y the snowgrid or covering the range of jobs requesting between 2 and 32
profiler commands) hours, i.e., display columns for 2, 4, 8, 16, and 32
hours of walltime)
one of the following: specifies how preempi t_)lejob_s PREEVPTPOLI CY - CHECKPQI NT

PREEMPTPOLICY REQUEUE, SUSPEND, CHECK POINT REQUEUE will _bepreempteq (Availablein (jobs that are to be preempted will be checkpointed and
Mavii 3.2.2 and higher) restarted at a later time)
specifies the coefficient to be

PROCWEIGHT[X] <INTEGER> 0 multiplied by ajob'srequested [PROCVEI GHT 2500
processor count priority factor
The amount of time Maui will
keep ajob or node record for an
object no longer reported by the
resource manager. Useful when |pURGETI ME 00: 05: 00
using aresource manager which o o .

PURGETIME [[[DD:]HH:]MM:]SS 0 "drops’ information about anode |(Matii will maintain ajob or node record for 5 minutes
or job dueto internal failures, [after the last update regarding that object received
NOTE: In Maui 3.2.0 an higher, |from the resource manager.)
this parameter is superseded by
JOBPURGETIME and
NODEPURGETIME
specifies QOS specific

. - attributes. Seetheflag

list of zero or more space delimited - P i -
<ATTR>=<VALUE> pairs where <ATTR> overview for adescription of Qhﬁ?;(?(]g{:zomgkglc]szggm ORI TY=1000
is one of the following: legal flag values. _

QOSCFG[<QOSID>] PRIORITY, FSTARGET, QTWEIGHT, [[NONE] NOTE: Availablein Maui 3.0.6 |(The scheduler will increase the priority of jobs using
QTTARGET, XFWEIGHT, XFTARGET, and higher. QOSCFG QOS commercial, and will alow up to 4 simultaneous
PLIST, PDEF, QFLAGS, or afairness S‘Qigesfp%g%gﬂSYNAM E, QOS commercial jobs with up to 80 total allocated

li ification. , processors.)
BOLLY specriication QOSFLAGS, and other 'QOS*'
parameters.
specifies which node features . . i
must be present on resources QOSFEATURES[2] wi de interactive
allocated to jobs of the ; ;

QOSFEATURES[X] one or more node feature values or [ANY] [[ANY] ’] (jobs with a QOS value of 2 may only run on nodes
associated QOS. This parameter iy the feature ‘wide' AND the feature 'interactive
takes a QOS name as an array set)
index.

one or more of the following (space

delimited)

IGNJOBPERUSER, IGNPROCPERUSER,

IGNNODEPERUSER, IGNPSPERUSER,

IGNJOBQUEUEDPERUSER,

IGNJOBPERGROUP,

IGNPROCPERGROUP, specifies the attributes of the

IGNPSPERGROUP, corresponding QOS value See

IGNJOBQUEUEDPERGROUP, the Admin Manual O0S QOSFLAGS[1] ADVRES | GNIVAXJ OBPERUSER
QOSFLAGS[X] :gmg%%?&i%%%'\” [NONE] Overview section for details (jobs with aQOS value of 1 must run in an advance

UNT, . reservation and can ignore the MAXJOBPERUSER
IGNPSPERACCOUNT, (NOTE: some flags are only policy)
IGNJOBQUEUEDPERACCOUNT, supported under Maui 3.1 and

IGNSYSMAXPROC, IGNSY SMAXTIME,
IGNSY SMAXPS, IGNSRMAXTIME,
IGNUSER, IGNGROUP, IGNACCOUNT,
IGNSYSTEM, IGNALL, PREEMPT,
DEDICATED, RESERVEALWAYS,
USERESERVED, NOBF,

NORESERVATION, RESTARTPREEMPT

later)

specifies the priority associated

QOSPRI ORI TY[2] 1000

QOSPRIORITY[X] <INTEGER> 0 with this QOS (NOTE: only L
used in Maui 3.0.x) (set the priority of QOS 2 to 1000)
specifies the target job
QOSQTTARGETI[X] [[[DD:]HH:]IMM:]SS [NONE] queuetime associated with this |QOSQTTARGET 2: 00: 00
QOS
specifies the '‘per QOS' queue
QOSQTWEIGHT[X] <INTEGER> 0 ime priority weight QOSQTVEEI GHT 5
QOSVEEI GHT[3] 10
specifies the expansion factor QOSXFTARGET[3] 5.0
QOSXFTARGET([X] <DOUBLE> [NONE] target Iused |n ajob's 'Ta’get (jobs requesting a QOS of 3 will have their priority
Factor' priority calculation grow exponentially as the job's minimum expansion
factor approaches 5.0)
XFACTORVEI GHT[0] 100
specifies the weight which will - |QOSXFWEI GHT[2] 1000
QOSXFWEIGHT[X] <INTEGER> o be added to the base - o i -
XFWEIGHT for all jobsusing |(jobs using QOS '2' will have an effective
QOs X' XFACTORWEIGHT of 1100 while jobs using other
QOS'swill have an XFACTORWEIGHT of 100)
QUEUETI MECAP[0] 10000
specifies the maximum allowed QUEUETI MEVEI GHT[0] 10
QUEUETIMECAP[X] <DOUBLE> 0 (NO CAP) pre-weighted queuetime priority (ajob that has been queued for 40 minutes will have its
factor. queuetime priority factor calculated as'Priority =
QUEUETIMEWEIGHT * MIN(10000,40)")
specifies multiplier appliedtoa |QUEUETI MEWEI GHT[0] 20
job's queue time (in minutes) to
QUEUETIMEWEIGHT(X] <INTEGER> 1 determine the job's queuetime [(ajob that has been queued for 4:20:00 will have a
priority factor queuetime priority factor of 20 * 260)
if enabled, the scheduler will ENABL ENEGI OBPRI ORI TY TRUE
refuse to start any job with a
REJECTNEGPRIOJOBS[X] <BOOLEAN> TRUE egative pri orityY(Jsee REJECTNEGPRI QUGBS TRUE
ENABLENEGJOBPRIORITY) | Ay job with a priority less than O will be rejected)
. specifies who can create admin RESCTLPOLI CY ANY
RESCTLPOLICY one of the following: ADMINONLY ions (Available in Maui : - ;
ADMINONLY, ANY reservations (Availablein Maui |y valid user can create an arbitrary admin
3.2 and higher) reservation)
specifies the maximum number
of reservations which can be on
any single node. IMPORTANT
NOTE: on large way SMP
systems, this value often must
RESDEPTH <INTEGER> 24 be incr To be on the safe RESDEPTH 64
side, this value should be
approximately twice the average
sum of admin, standing, and job
reservations present.
-~ - RESERVATI ONDEPTH[0] 4
specifies how many priority RESERVATI ONQOSLI ST[0] 1 3 5
RESERVATIONDEPTHI[X] <INTEGER> 1 reservations are allowed in the

associated reservation stack

(jobs with QOS values of 1, 3, or 5 can havea
cumulative total of up to 4 priority reservations)

RESERVATIONPOLICY

one of the following:
CURRENTHIGHEST, HIGHEST,
NEVER

CURRENTHIGHEST

specifies how Maui reservations
will be handled. (See aso
RESERVATIONDEPTH)

RESERVATI ONPOLI CY CURRENTHI GHEST
RESERVATI ONDEPTH 2

(Maui will maintain reservations for only the two
currently highest priority jobs)

RESERVATIONQOSLIST[X]

one or more QOS valuesor [ALL]

[ALL]

specifies which QOS levels have
access to the associated
reservation stack

RESERVATI ONDEPTH[0] 4
RESERVATI ONQUSLI ST[0] 1 3 5

(jobswith QOS valuesof 1, 3, or 5 can have a
cumulative total of up to 4 priority reservations)

RESERVATIONRETRYTIME[X]

[[[DD:]HH:]IMM:]SS

Period of time Maui will
continue to attempt to start ajob
in areservation when job start
failures are detected due to
resource manager corruption

RESCAP[X]

<DOUBLE>

0 (NOCAP)

specifies the maximum allowed
pre-weighted job resource
priority factor

RESCAP[0] 1000

(The total resource priority factor component of ajob's
priority will not be allowed to exceed 1000, i.e.,
'Priority = RESWEIGHT *
MIN(RESCAP,<RESOURCEFACTOR>) +...)

RESOURCELIMITPOLICY

<RESOURCE>:<POLICY>:<ACTION>
[:<VIOLATIONTIME>]...

where RESOURCE is one of PROC,
DISK, SWAP, or MEM, where POLICY is
one of ALWAYSor
EXTENDEDVIOLATIONand where
ACTION isone of CANCEL, REQUEUE,
or SUSPEND

no limit enforcement

specifies how the scheduler
should handle jobs which utilize
more resources than they
request. NOTE: Only available
in Maui 3.2 and higher.

RESOURCELI M TPOLI CY MEM ALWAYS: CANCEL

(Maui will cancel all jobs which exceed their requested
memory limits.)

RESWEIGHTI[X]

<INTEGER>

all resource priority components
are multiplied by thisvalue
before being added to the total
job priority.

RESVEI GHT[0] 5

MEMORYVEI GHT 0] 10
PROCWEI GHT 0] 100
SWAPVEI GHT[0] 0
RESCAP] 0] 2000

(the job priority resource factor will be calculated as

MIN(2000,5 * (10 * JobMemory + 100 * JobProc)))

one of CHECK SUM, PKI, or

specifies the security protocol to
be used in scheduler-resource

RVAUTHTYPE[0] CHECKSUM

RMAUTHTYPE[X] SECUREPORT CHECKSUM manager communication. (The scheduler will require a secure checksum
NOTE: deprecated in Mawii 3.2 |acsnciated with each resource manager message)
- use RMCFG
specifies the interface and policy
one or more key-value pairs as described in ;OQ&%T?ngggﬁ]an or RVCFQ bank] TYPE=PBS
RMCFG the Resource Manager Configuration N/A g

Overview

interface. Described in detail in
the Resource Manager
Configuration Overview

(the PBS server will be used for resource management)

RMNM PORT[X]

<INTEGER>

(any valid port number)

specifies anon-default RM node
manager through which
extended node attribute
information may be obtained.

NOTE: deprecated in Maui 3.2
- use RMCFG

RVNVPORTY 0]

(Maui will contact the node manager located on each
compute node at port 13001)

13001

specifiesinterval between RM

RMPCOLLI NTERVAL 60

RMPOLLINTERVAL [[[DD:]HH:]MM:]SS 00:01:00 ¥ (Maui will refresh its resource manager information
polls every 60 seconds. NOTE: this parameter specifiesthe
global poll interval for all resource managers)
specifies the port on which Maui
should contact the associated RMIYPE[0] PBS
resource manager. Thevalue'0' [RVHOST[0] cws
RMPORT[X] <INTEGER> o specifiesto use the appropriate |[RVPORT[0] 20001
default port for the resource o
manager type selected. NOTE: |(Maui will attempt to contact the PBS server daemon
deprecated in Maui 3.2-use 0N host cws, port 20001)
RMCFG
specifies the host on which
Maui should contact the
associated resource manager. RMIYPE[0] LL2
An empty value specifiesto use |RVHOST] 0]
the default hostname for the RMPORT[0] O
RMSERVER[X] <HOSTNAME> [NONE] resource manager selected. o .
NOTE: this parameter is (Maui will attempt to contact the Loadleveler version 2
renamed RMHOST in Maui Negotiator daemon on the default host and port, as
3.0.6 and higher. NOTE: specified in the LL config files)
deprecated in Maui 3.2 - use
RMCFG
seconds maui will wait for a RMIT MEQUT[1] 30
response from the associated |The scheduler will wait 30 seconds to receive a
RMTIMEOUTIX] <INTEGER> 15 resource manager. NOTE: response from resource manager '1' before timing out
deprecated in Mawi 3.2-use | and giving up. The scheduler will try again on the next
RMCFG iteration.)
RMTYPE[0] PBS
specifies type of resource Eng{ 8} igggger 1
<RMTYPE>[:<RMSUBTY PE>] where manager (o becontacted by | o\ UpET 1] PRS
<RMTY PE isone of the following: LL Maui. NOTE: for RMTYPE R TT 1 | 2
RMTYPE[X] PBS. of WIKI od <RMSUBTY PE> i one |- WIKI, RMAUTHTYPE must |RMHOST[1] cluster
of RMS be set to CHECK SUM. NOTE:|RVPORT[1] 15004
deprecated inMavii 32-use |(Mayi will interface to two different PBS resource
RMCFG. managers, one located on server clusterl at port 15003
and one located on server cluster2 at port 15004)
hostname of machine onwhich |SERVERHOST ger oni no. scc. edu
SERVERHOST <HOSTNAME> [NONE] maui will run. NOTE: this (Maui will execute on the host
parameter MUST be specified. ger oni . scc. edu)
I ecifies how Maui interacts
one of the following: P :
SERVERMODE NORMAL , TEST or SSMULATION NORMAL with t_he outsdewor_ld. See) SERVERMODE S| MULATI ON
<Testing> for more information
specifies the name the scheduler
will useto refer toitself in)
SERVERNAME <STRING> <SERVERHOST> communication with peer SERVERNAME maui A
daemons
hich il . |SERVERPORT 30003
) port on which maui will open its
SERVERPORT <INTEGER> (range: 1-64000) 40559 user interface socket (Maui will listen for client socket connections on port
30003)
if TRUE, the scheduler will end |s] MAUTOSHUTDOWN ON
simulations when the active
SIMAUTOSHUTDOWN <BOOLEAN> TRUE queue and idle queue become [(The scheduler simulation will end as soon as there are
empty no jobs running and no idle jobs which could run)
specifies whether to increase or
SIMCPUSCALINGPERCENT <INTEGER> 100 (no scaling) decrease the runtime and

wallclock limit of each jobin
the workload trace file.

SIMDEFAULTJOBFLAGS

zero or more of the following:
ADVRES, HOSTLIST, RESTARTABLE,
PREEMPTEE , DEDICATED,

[NONE]

cause Maui to force the
specified job flags on all jobs
supplied in the workload trace

S| MDEFAULTJOBFLAGS DEDI CATED
(Maui will set the' DEDICATED' job flag on all jobs

PREEMPTOR file loaded from the workload tracefile)
iteration on which a Maui
SIMEXITITERATION <INTEGER> 0 (no exit iteration) simulation will create a S| MEXI TI TERATI ON 36000

simulation summary and exit.

SIMFLAGS

zero or more of the following:
IGNHOSTLIST, IGNCLASS, IGNQOS,
IGNMODE, IGNFEATURES

[NONE]

controls how Maui handles trace
based information

S| MFLAGS | GNHOSTLI ST

(Maui will ignore hostlist information specified in the
workload trace file)

zero or more of the following:
ADVRES, HOSTLIST, RESTARTABLE,

cause Maui to ignore specified

SI M GNOREJOBFLAGS DEDI CATED

SIMIGNOREJOBFLAGS PREEMPTEE , DEDICATED, [NONE] jObﬂ@Sif s.lppl_iedinthe (Maui will ignorethe'DEDICATED'jobflagif
PREEMPTOR workload tracefile specified in any job trace)
SI'M N TI ALQUEUEDEPTH 64
S| MJOBSUBM SSI ONPCOLI CY
specifies how many jobsthe CONSTANTJ CBDEPTH
SIMINITIALQUEUEDEPTH <INTEGER> 16 sumylatqr will initially placein (Maui will initially place 64 idle jobsin the queue and,
theidlejob queue because of the specified queue policy, will attempt to
maintain this many jobsin the idle queue throughout
the duration of the simulation)
specifies how the simulator will
submit new jobsinto theidle
queue. (NORMAL mode causes
jobs to be submitted at the time
one of the following: ?T“”é’%d l\ll r;}rf &“?3@%83 érgﬁ_' S| MJOBSUBM SSI ONPOLI CY NORVAL
- ile,
SIMJOBSUBM I SSIONPOLICY NORMAL, CONSTANTJOBDEPTH, or |CONSTANTJOBDEPTH | & <SS\ sl e | Maui will submit jobs with the relative time
CONSTANTPSDEPTH i PR !
attempt to maintain an idle distribution specified in the workload tracefile.)
queue of
<SIMINITIALQUEUEDEPTH>
jobs and procseconds
respectively)
specifies whether or not maui
one of the following: will filter nodes based on
SIMNODECONFIGURATION UNIFORM or NORMAL NORMAL resource configuration while
running asimulation
specifies the maximum number
SIMNODECOUNT <INTEGER> 0 (no limit) of nodes maui will load from the
simulation resource file
specifies the file from which
maui will obtainnode S| MRESOURCETRACEFI LE traces/ nodes. 1
information when running in o . o
SIMRESOURCETRACEFILE <STRING> traces/resource.trace simulation mode. Maui will ~ |(Maui will obtain node traces when running in
attempt to |ocate the file relative [Simulation mode from the)
to <MAUIHOMEDIR> unless |<MAUIHOMEDIR>/ t r aces/ nodes. 1 file)
specified as an absolute path
specifies the random delay
added to the RM command base [S! MRVRANDOMDELAY 5
SIMRMRANDOMDELAY <INTEGER> 0 delay accumulated when maklng (Maui will add arandom delay of between 0 and 5
any resource manager call in |seconds to the simulated time delay of all RM calls)
simulation mode
specifies on which scheduling |S] MSTOPI TERATI ON 1
’ . iteration amaui simulation will
SIMSTOPITERATION <INTEGER> 0 (no stop iteration) stop and was for acommand to |{(Maui should stop &fter the first iteration of simulated
resume scheduling scheduling and wait for admin commands)
determineswall time speedup. [SI MIT MERATIO 10
. . Simulated Maui time will i g ion ti i i
SIMTIMERATIO <INTEGER> 0 (no time ratio) (Maui simulation time will advance 10 times faster
advance <SIMTIMERATIO> * |tk req| world wall time. For example, in 1 hour,
faster than real wall time. Maui will process 10 hours of simulated workload)
specifies the file from which
maui will obtain job information || MADRKLQADTRACEFI LE traces/ j obs. 2
when running in simulation o L L
SIMWORKLOADTRACEFILE <STRING> traces/workload.trace mode. Maui will attemptto |(Mauii will obtain job traces when running in
locate the file relative to simulation mode from the
<MAUIHOMEDIR> unless <MAUIHOMEDIR>/traces/jobs.2 fil€)
specified as an absolute path
If set to SHARED, alows a
standing reservation to utilize
SRACCESS X resources already allocatedto [SRACCESS[t est] SHARED
STQ’[]) ; other non-job reservations. : o
Deprecated in Maui 3.2 and higher DEDICATED or SHARED DEDICATED Otherwise. these other (Standing reservation ‘test’ may access resources
Refer to SRCFG oo allocated to existing standing and administrative
== reservations will block resource reservations)
access. (See Managing
Reservations)
SRACCOUNTLIST[X] s;)ecifiese[t‘hatjobswith the h SRACCOUNTLI ST[1] ops staff
. .] .) associated accounts may usethe | .
gg)erre;:gtggg:l\éw 3.2 and higher list of valid account names [NONE] resources contained within this _|(jobs using the account ops or st af f are granted
2 reservation access to the resources in standing reservation '1')
SRCHARGEACCOUNT[X] specifies the account towhich ~ [SRCHARGEACCOUNT[test] steve
Deprecated in Maui 3.2 and higher any valid accountname [NONE] m.""ﬁ'. erl1l chargeall |d|e_cy?]Ies (The scheduler will charge al idle cycles within
Refer to SRCFG within the reservation (viathe |reservations supporting standing reservation test to
— allocation bank) user 'steve’)
one or more of the following
<ATTR>=<VALUE> pairs
ACCESS
ACCOUNTLIST
CHARGEACCOUNT
CLASSLIST
DAYS
DEPTH
ENDTIME
FLAGS
GROUPLIST
HOSTLIST
JOBATTRLIST " . . SRCFQ fast] STARTTI ME=9: 00: 00 ENDTI ME=15: 00: 00
NODEFEATURES specifies attributes of astanding |23 (23] (T oy °
OWNER reservation. Availablein Maui
SRCFG[X] PARTITION [NONE] 3.2 and higher. See Managing |(Maui will creste a standing reservation running from

PERIOD
PRIORITY
QOSLIST
RESOURCES
STARTTIME
TASKCOUNT
TIMELIMIT
TPN
TRIGGER
USERLIST

NOTE: HOSTLIST and ACL list values
must be comma delimited. (i.e.,
HOSTLIST=nodeA ,nodeB)

Reservations for details.

9:00 AM to 3:00 PM on nodes 1 through 4 accessible
by jobs with QOS high or low.)

SRCLASSLIST[X]

specifies that jobs requiring any
of these classes may use the

SRCLASSLI ST[2] interactive

Deprecated in Maui 3.2 list of valid class names [NONE] . =>e e |(maui will allow all jobs requiring any of the classes
Refer to SRCFG resources contained within this | steq access to the resources reserved by standing
reservation reservation '2')
SRDAYS[X‘] . gg?r?]:tr;;;re of the following (space specifies which days of the SRDAYS[1] Mon Tue Wed Thu Fri
Deprecated in Mavi 3.2 Mon, Tue, Wed, Thu, Fri, Sat, Sun, [ALL] week the standing reservation | (stanging reservation '1' will be active on Monday thru
Refer to SRCFG will be active Frid
or [ALL] riday)
SRDEPTH[X] specifies the number of standing SRDEPTH[1] 7
Deprecated in Mavi 3.2 <INTEGER> 2 reservations which will be (specifies that standing reservations will be created for
Refer to SRCFG created (one per day) standing reservation '1' for today, and the next 6 days)
SRSTARTTI ME[2] 8: 00: 00
SRENDTIMEIX] specifiesthe timeof day the |SRENDTI ME[2] 17: 00: 00
Deprecated in Mavi 3.2 [[HH:IMM:]SS 24:00:00 standing reservation becomes
Refer to SRCFG inactive (standing reservation '2' is active from 8:00 AM until
5:00 PM)
SRFEATURESX i i
De’)rmw in '\j[aj 32 specifies the required node SRFEATURES[3] wi de fddi
Refer to SRCEG ' space delimited list of node features [NONE] features for nodes which will be (all nodes used in the standing reservation must have
Replaced with NODEFEATURES part of the standing reservation |th the ‘wide' and fddi' node attributes)
colon delimited list of zero or more of the
following flags: . . . SRFLAGS[1] BYNAME
SRFLAGS SINGLEUSE* specifies special reservation
Deprecated in Maui 3.2 BYNAME [NONE] attributes. See Managing (Jobs may qnly access th resources within this)
Refer to SRCFG PREEM PTEE* Reservations for details. reservation if they explicitly request the reservation ‘by
TIMEFLEX* name!
FORCE
SRGROUPLI ST[1] staff ops special
SRGROUPLIST[X] specifiesthe groups whichwill [SRCLASSLI ST[1] i nteractive
Deprecated in Maui 3.2 one or more space delimited group names [[ALL] be allowed access to this (Mavi will allow jobswith the listed group 1D's or
Refer to SRCFG standing reservation which request the job class ‘interactive' to use the
resources covered by standing reservation 1.)
specifies the set of host from
which Maii can search for SRHOSTLI ST[3] node001 node002 node003
resources to satisfy the SRRESOURCES[3] PROCS=2; MEM=512
SRHOSTLIST[X] reservation. If SRTASKCOUNT[3] 2
Deprecated in Maui 3.2 one or more space delimited host names [ALL] SRTASKCOUNT isaso

Refer to SRCFG

specified, only
<SRTASKCOUNT> tasks will
bereserved. Otherwise, all
hosts listed will be reserved.

(Maui will reserve 2 tasks - with 2 processors and 512
MB each, using resources located on node001,
node002, and/or node003)

SRMAXTIME[X]
Deprecated in Maui 3.2

[[[DD:]HH:]IMM:]SS

-1 (no time based access)

specifies the maximum allowed
overlap between athe standing

SRMVAXTI ME[6] 1: 00: 00

Refer to SRCFG reservation and ajob requesting (Maui wiII_ alow j_obs to access up to one hour of
Replaced with TIMELIMIT resource access resources in standing reservation 6)
SRNAME[X]]]
Deprecated in Maui 3.2 <STRING> [NONE] specifies name of standing SRNAME[1] interactive
Refer to SRCEG reservation <X> (The name of standing reservation '1' is 'interactive’)
SRNAME should no longer be used
SRPARTITION[X] specifies the partition inwhich [SRPARTI TI ON[0] OLD
Deprecated in Maui 3.2 <STRING> [ALL] the standing reservation should |(only select resource for standing reservation 0in
Refer to SRCFG be created partition 'OLD’)
SRPERIOD[X] - i SRPERI OD[1] WEEK
Deprecated in Maui 3.2 one of DAY, WEEK,, or INFINITY DAY pefies e periodicity of the
Refer to SRCFG standing reservation (each standing reservation covers a one week period)
SRQOSLIST[X] specifies that jobs with the listed [SRQOSLI ST[1] 1 3 4 5
Deprecated in Maui 3.2 zero or more valid QOS names [NONE] QOS names can access the (mai will allow jobs using QOS 1, 3, 4, and 5 to use
Refer to SRCFG reserved resources the reserved resources) o
specifies what resources
constitute a single standing
reservation task. (each task
must be able to obtain al of its
resources as an atomic unit on a ROCS=1:
SRRECS;E;J RCME S[X; 2 semicolon delimited <ATTR>=<VALUE> | ROCS=1 (A:Iabl single node) Supported SRRESQURCES[1] P 1 VEWESL2
epr inMaui 3. ; processors avallable on resources currently include the |(each standing reservation task will reserve one
Refer to SRCFG pairs node) Y (D

following:

PROCS (number of processors)
MEM (rea memory in MB)
DISK (local disk in MB)

SWAP (virtual memory in MB)

processor and 512 MB of real memory)

SRSTARTTIME[X]

specifies the time of day the

SRSTARTTI ME[1] 08: 00: 00
SRENDTI ME[1] ~ 17:00: 00

Deprecated in Maui 3.2 [[HH:IMM:]SS 00:00:00 standing reservation becomes
Refer to SRCFG active (standing reservation '1' is active from 8:00 AM until
5:00 PM)
SRRESOURCES| 2] PROCS=1; MEM=256
SRTASKCOUNT[X] specifies how may tasks should SRTASKGOUNT[2) 16
Deprecated in Maii 3.2 <INTEGER> 0 be reserved for the reservation |(standing reservation '2' will reserve 16 tasks worth of
Refer to SRCFG resources, in this case, 16 procs and 4 GB of real
memory)
specifies how SRMAXTIME
access status will be combined
with other standing reservation
access methods to determine job
access. If SRTIMELOGIC is
set10 OR, ajob is granted gSUSER:_I'\/]SE'[FF]S] éa?gl Oghar les
sTIvELoGICh] e LG 5] M
Deprecated in Mavi 3.2 AND or OR OR i
Refer to SRCEG criteria.or any other access (Maui will allow jobs from users carol and charlesto
o criteria (i.e, SRUSERLIST) If | q0 yn to one hour of resourcesin standing reservation
SRTIMELOGIC issetto AND, 5)
ajob is granted access to the
reserved resources only if it
meets the MAXTIME criteria
and at |east on other access
criteria
SRTPN[2] 4
SRRESOURCES[2] PROCS=2; MEM=256
SRTPN[X] specifies the minimum number
Deprecated in Maui 3.2 <INTEGER> 0 (no TPN constraint) of tasks per node which must be |(Maui must locate at |east 4 tasks on each node that is
Refer to SRCFG available on eligible nodes. to be part of the reservation. That is, each node

included in standing reservation '2' must have at least 8
processors and 1 GB of memory available)

SRUSERLIST[X]

specifies which users have

SRUSERLI ST[1] bob joe mary

Deprecated in Maui 3.2 space delimited list of users [NONE] access to the resources reserved (users bob, joe and mary can all access the resources
Refer to SRCFG by this reservation reserved within this reservation)
SRSTARTTI ME[1] 1: 08: 00: 00
SRWENDTIME[X] specifies the week offset at SRENDTI ME[1] 5: 17: 00: 00
Deprecated in Maui 3.2 [[[DD:]HH:]IMM:]SS 7:00:00:00 which the stand reservation) . .
Refer to SRCEFG should end (standing reservation '1' will run from Monday 8:00
AM to Friday 5:00 PM)
SRSTARTTI ME[1] 1: 08: 00: 00
SRWSTARTTIME[X] specifies the week offset at SRENDTI ME[1] 5:17: 00: 00
Deprecated in Maui 3.2 [[[DD:]JHH:]MM:]SS 0:00:00:00 which the standing reservation . . .
Refer to SRCEG should start (standing reservation '1' will run from Monday 8:00
AM to Friday 5:00 PM)
specifies the directory in which
STATDIR <STRING> stats Maui statistics will be STATDIR /var/adm nmaui /stats
maintained
list of zero or more space delimited o . .
<ATTR>=<VALUE> pairs where <ATTR> specifies system-wide default SYSCFG PLI ST=Partitionl QDEF=hi ghprio
is one of the following: attributes. Seethe ; ; iti
by default, al jobs will have access to partition
SYSCFG PRIORITY, FSTARGET, QLIST, QDEF, [[NONE] AttributelFlag Overview for |1 4 g o L e T o)
PLIST , PDEF, FLAGS, or afairness more information.
policy specification.
specifies the priority weight
SWAPWEIGHT <INTEGER> 0 assigned to the virtual memory |SWAPWEI GHT 10
request of ajob
specifies thewalltime for jobs |SYSTEMDEFAULTIOBWALLTI ME 1: 00: 00: 00
SYSTEMDEFAULTJOBWALLTIME ([[[DD:]JHH:]MM:]SS 10:00:00:00 which do not explicitly set this (Maui will assign awallclock limit of 1 day to jobs
value which do not explicitly specify awallclock limit)
specifies the maximum number SYSTEMVAXJGBPRCC 256
SYSTEMMAXPROCPERJOB <INTEGER> -1(NOLIMIT) of processors that can be (Maui will reject jobs requesting more than 256
requested by any single job processors)
SYSTEMVAXJ OBPROCSECOND 86400
specifies the maximum number |\ a4 will reject jobs requesting more than 86400
SYSTEMMAXPROCSECONDPERJOB [<INTEGER> -1(NOLIMIT) of proc-secondsthat canbe |nrocs seconds. i.e., 64 processors * 30 minutes will be
requested by any single job rejected, while a 2 processor * 12 hour job will be
allowed to run)
specifies the maximum amount |SYSTEMVAXJCBVALLTIT ME 1: 00: 00: 00
SYSTEMMAXJOBWALLTIME [[[DD:]HH:]MM:]SS -1(NOLIMIT) of wallclock timethat canbe | \1aui will reject jobs requesting more than one day of
requested by any single job walltime)
specifies the weight to be
TARGWEIGHT <INTEGER> 0 applied to ajob's queuetime and |\ por e GHT 1000
expansion factor target
components
specifies how job tasks should |TASKDI STRI BUTI ONPOLI CY DEFAULT
TASKDISTRIBUTIONPOLICY one of DEFAULT or LOCAL DEFAULT be mapped to allocated
resources. (Maui should use standard task distribution algorithms)
specifies the functions to be TRAPFUNCTI ON
TRAPFUNCTION <STRING> [NONE] trapped Updat eNodeUt i | i zat i on| Get NodeSResTi ne
TRAPJOB <STRING> [NONE] specifies the jobsto betrapped |TRAPJOB buf fy. 0023. 0
TRAPNODE <STRING> [NONE] specifies the nodes to be trapped |TRAPNCDE node001| node004| node005
TRAPRES <STRING> [NONE] ?ai%fa'd%the reservaionstobe |rpappes it eract i ve. 0. 1
specifies the weight assigned to
USAGEWEIGHT <INTEGER> 0 the percent and total job usage |USAGEWEI GHT 100

subfactors

USAGEPERCENTWEIGHT <INTEGER>
specifies whether or not job USEMACHI NESPEED ON
wallclock limits should be ; ifvi imi -00"
USEMACHINESPEED ON or OFF OFF - (job <X> specifying awallclock limit of 1:00:00
scaled by the machine speed of |, q1d be given only 40 minutesto run if started on a
the node(s) they are running on. |node with a machine speed of 1.5)
list of zero or more space delimited) . .
<ATTR>=<VALUE> pairswhere <ATTR> specifies user specific USERCFQ j ohn] MAXJ(GB=50 QDEF=hi ghprio
is one of the following: attributes. Seethe flag : ! : :
USERCFG[<USERID>] PRIORITY, FSTARGET, QLIST, QDEF, [NONE] overview for a description of (up to SOJobssubmlttec_i under the user ID j _ohn will
y VLV be allowed to execute simultaneously and will be
PLIST , PDEF, FLAGS, or afaimess legal flag values. assigned the QOS hi ghpr i o by default.)
policy specification.
specifies the weight assigned to
USERWEIGHT <INTEGER> 0 the specified user priority (see |USERWEI GHT 100
Credential Priority Factor)
specifies whether or not job
prioritization should be based on
the time the job has been
digibletorun, i.e, idleand USESYSTEMQUEUET! ME OFF
meets all fairness policies (ON) | (the queuetime and expansion factor components of a
USESYSTEMQUEUETIME ON or OFF OFF or the time the job has been ide job's priority will be calculated based on the length of
(OFF). NOTE: InMaui 3.0.8 ftime the job has been in the idle state.)
and higher, this parameter has | see QUEUETIMEFACTOR for moreinfo)
been superseded by the
JOBPRIOACCRUALPOLICY
parameter.
specifies the action to take when
ajob exceedsits wallclock limit. \wWCVI OLATI ONACTI ON PREENVPT
If set to cancel, thejobwill be |PREEMPTPOLI CY ~ REQUEUE
WCVIOLATIONACTION <one of CANCEL or PREEMPT> CANCEL terminated. If set to PREEMPT, o . . .
the action defined by (Maui will requeue jobs which exceed their wallclock
PREEMPTPOLICY parameter [limit)
will be taken.
specifies the maximum total
pre-weighted contribution to job
priority which can be XFACTORCAP 10000
XFACTORCAP <DOUBLE> 0 (NO CAP) contributed by the expansion (Maui will not allow ajob's pre-weighted X Factor
factor component. Thisvalueis |nority component to exceed the value 10000)
specified as an absolute priority
value, not as a percent.
(fiesthe mini b XFM NWCLIM T 0: 01: 00
specifies the minimum jol
. . . wallclock limit that will be (jobs requesting less than one minute of wallclock time
XFMINWCLIMIT [[[DD:JHHIMM]SS -1(NOLIMIT) considered in job expansion Will betreated asif their wallclock limit was set to one
factor priority calculations minute when determining expansion factor for priority
calculations)
specifies the weight to be
applied to ajob's minimum XFACTORVEI GHT 1000
XFACTORWEIGHT <INTEGER> 0 expansion factor beforeit is

added to the job's cumulative
priority

(Maui will multiply ajob's X Factor value by 1000 and
then add this value to its total priority

schedctl

Overview:

The 'schedctl' command controls various aspects of scheduling behavior. It is used to manage
scheduling activity, kill the scheduler, and create resource trace files.

Format:

schedctl { -k | -n | -r [<RESUMETIME>] |{ -s|-S} [<ITERATION>]}

Flags:
-k
shutdown the scheduler at the completion of the current scheduling iteration
-n
dump a node table trace to <STDOUT> (for use in simulations)
-t [<RESUMETIME>]
resume scheduling in <RESUMETIME> seconds or immediately if not specified
-s[<ITERATION>]

suspend scheduling at iteration <ITERATION> or at the completion of the current
scheduling iteration if not specified. If <ITERATION> isfollowed by the letter 'I', maui will
not process client requests until thisiteration is reached.

-S[<ITERATION>]

suspend scheduling in <ITERATION> more iterations or in one more iteration if not
specified. If <ITERATION> isfollowed by the letter 'I', maui will not process client requests
until <ITERATION> more scheduling iterations have been completed.

Example:
Shut maui down
> schedctl| -k

maui shutdown

Example:
Stop maui scheduling
> schedctl -s

maui will stop schedulingimmediately

Example:
Resume maui scheduling
> schedctl -r

maui will resume scheduling immediately

Example:

Stop maui scheduling in 100 more iterations. Specify that maui should not respond to client
requests until that point is reached.

> schedct| -S 100l

maui will stop scheduling in 100 iterations

16.0 Simulations

e 16.1 Simulation Overview

o 16.2 Resource Traces
o 16.3 Workload Traces
o 16.4 Simulation Specific Configuration

profiler

XXX INFO NOT YET AVAILABLE

Purpose

XXX

Permissions

This command can be run by any Maui Scheduler Administrator.

Parameters

Flags

Description

Example

Related Commands
Default File L ocation

[u/'l oadl / bgs/ bi n/
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

3.0 Maui Basics Overview

3.1 Layout of Maui Components

3.2 Scheduling Environments and Objects
3.3 Job Flow

3.4 Configuring the Scheduler

3.1 FileLayout

Maui isinitially unpacked into a simple one-deep directory structure as shown below.
Note that some of thefiles (i.e., log and statistics files) will be created as Maui is run.

$(MAUIHOMEDIR) maui.cfg (general config file containing information required by
both the Maui server and user interface clients)
| maui-private.cfg (config file containing private information
required by the Maui server only)
| fscfg (fairshare config file used in Maui 3.0.6 and

earlier)
| maui.ck (Maui checkpoint file)
| maui.pid (Maui 'lock’ file to prevent multiple instances)
| log (directory for Maui log files- REQUIRED BY
DEFAULT)

| maui.log (Maui log file)
| maui.log.1 (previous 'rolled’ Maui log file)
| stats (directory for Maui statisticsfiles- REQUIRED
BY DEFAULT)
| Maui statsfiles (in format
'stats.<YYYY> <MM> <DD>")
| Maui fairshare datafiles (in format 'FS.<EPOCHTIME>")
| tools (directory for local tools caled by Maui -
OPTIONAL BY DEFAULT)
| traces (directory for Maui simulation tracefiles -
REQUIRED FOR SIMULATIONS)
| resource.tracel (sample resource tracefile)
| workload.tracel (sample workload tracefile)
| bin (directory for Maui executable files- REQUIRED
BY DEFAULT)
| maui (Maui scheduler executable)
| maui_client (Maui user interface client executable)
| profiler (tool used to analyze Maui statistics)
| src (directory for Maui source code files - REQUIRED
FOR BUILD)
| spool (directory for temporary Maui files- REQUIRED
FOR ADVANCED FEATURES)
| contrib (directory containing contributed code in the areas
of GUI's, algorithms, policies, etc)

$(MAUIINSTDIR) bin (directory for installed Maui executables)
| maui (Maui scheduler executable)
| maui_client (Maui user interface client executable)
| profiler (tool used to analyze Maui statistics)

/etc/maui.cfg (optional file. Thisfileisused to override default
'$(MAUIHOMEDIR)' settings. it should contain the string ' MAUIHOMEDIR
$(DIRECTORY)' to override the 'built-in' §MAUIHOMEDIR)' setting.

When Maui is configured viathe configur e script, the user is queried for the location of the
Maui home directory and this directory, §MAUIHOMEDIR), is compiled in as the default
MAUIHOMEDIR directory when Maui is built. Unless specified otherwise, Maui will ook
in this directory for its various config files. If you wish to run Maui out of adifferent
directory, you can override the default home directory setting by creating a/etc/maui.cfg file
containing the string 'MAUIHOMEDIR <DIRECTORY >', by setting the environment
variable' MAUIHOMEDIR', or by specifying the configfile explicitly using the '-C' command
line option on Maui and the Maui client commands.

When Maui isrun, it creates alog file, 'maui.log' in the log directory and creates a statistics
filein the stats directory with the naming convention 'stats.YYYY_MM DD’ (i.e,,
'stats.2000 09 20". Additionally, acheckpoint file, maui.ck and lock file maui.pid are
maintained in the Maui home directory.

3.2 Scheduling Environment

o 3.2.1 Scheduling Objects
o 3.2.1.1 Jobs
= 3.2.1.1.1 Requirement (or Req)
o 3.2.1.2 Nodes
o 3.2.1.3 Advance Reservations
o 3.2.1.4 Policies
o 3.2.1.5 Resources
o 3.2.1.6 Task
o 3.21.7 PE
o 3.2.1.8 Class (or Queue)

3.2.1 Scheduling Objects

Maui functions by manipulating five primary, elementary objects. These are jobs, nodes,
reservations, QOS structures, and policies. In addition to these, multiple minor e ementary
objects and composite objects are also utilized. These objects are also defined in the
scheduling dictionary.

3.2.1.1 Jobs

Job information is provided to the Maui scheduler from a resource manager such
as Loadleveler, PBS, Wiki, or LSF. Job attributes include ownership of the job,
job state, amount and type of resources required by the job, and awallclock limit,
indicating how long the resources are required. A job consists of one or more
requirements each of which requests a number of resources of a given type. For
example, ajob may consist of two requirements, the first asking for '1 IBM SP
node with at least 512 MB of RAM' and the second asking for ‘24 IBM SP nodes
with at least 128 MB of RAM'. Each requirements consists of one or more tasks

where atask is defined as the minimal independent unit of resources. By default,
each task is equivalent to one processor. In SMP environments, however, users
may wish to tie one or more processors together with a certain amount of memory
and/or other resources.

3.2.1.1.1 Requirement (or Req)

A job requirement (or req) consists of arequest for a single type of
resources. Each requirement consists of the following components:

- Task Definition

A specification of the elementary resources which compose an
individual task.

- Resour ce Constraints

A specification of conditions which must be met in order for
resource matching to occur. Only resources from nodes which meet
all resource constraints may be allocated to the job reqg.

- Task Count

The number of task instances required by the req.
- Task List

The list of nodes on which the task instances have been located.
- Req Statistics

Statistics tracking resource utilization

3.2.1.2 Nodes

Asfar as Maui is concerned, anode is a collection of resources with a
particular set of associated attributes. In most cases, it fits nicely with the
canonical world view of anode such as aPC cluster node or an SP node. Inthese
cases, anode is defined as one or more CPU's, memory, and possibly other
compute resources such as local disk, swap, network adapters, software licenses,
etc. Additionally, this node will described by various attributes such as an
architecture type or operating system. Nodes range in size from small
uniprocessor PC's to large SMP systems where a single node may consist of
hundreds of CPU's and massive amounts of memory.

Information about nodesis provided to the scheduler chiefly by the resource
manager. Attributesinclude node state, configured and available resources (i.e.,
processors, memory, swap, €tc.), run classes supported, etc.

3.2.1.3 Advance Reservations

An advance reservation is an object which dedicates a block of specific
resources for a particular use. Each reservation consists of alist of resources, an
access control list, and atime range for which this access control list will be

enforced. The reservation prevents the listed resources from being used in away
not described by the access control list during the time range specified. For
example, areservation could reserve 20 processors and 10 GB of memory for
users Bob and John from Friday 6:00 AM to Saturday 10:00 PM'. Maui uses
advance reservations extensively to manage backfill, guarantee resource
avallability for active jobs, allow service guarantees, support deadlines, and
enable metascheduling. Maui also supports both regularly recurring reservations
and the creation of dynamic one time reservations for special needs. Advance
reservations are described in detail in the advance reservation overview.

3.2.1.4 Policies

Policies are generally specified viaa config file and serve to control how and
when jobs start. Policies include job prioritization, fairness policies, fairshare
configuration policies, and scheduling policies.

3.2.1.5 Resources

Jobs, nodes, and reservations all deal with the abstract concept of aresource. A
resource in the Maui world is one of the following:

processors

Processors are specified with a simple count value.
memory

Real memory or 'RAM" is specified in megabytes (MB).
swap

Virtua memory or 'swap' is specified in megabytes (MB).
disk

Local disk is specified in megabytes (MB).

In addition to these elementary resource types, there are two higher level
resource concepts used within Maui. These are the task and the processor
equivalent, or PE.

3.2.1.6 Task

A task isacollection of elementary resources which must be allocated together
within asingle node. For example, atask may consist of one processor, 512MB
or memory, and 2 GB of local disk. A key aspect of atask isthat the resources
associated with the task must be allocated as an atomic unit, without spanning

node boundaries. A task requesting 2 processors cannot be satisfied by allocating
2 uniprocessor nodes, nor can atask requesting 1 processor and 1 GB of memory
be satisfied by allocating 1 processor on one node and memory on another.

In Maui, when jobs or reservations request resources, they do so in terms of
tasks typically using atask count and atask definition. By default, atask maps
directly to a single processor within ajob and maps to afull node within
reservations. Inall cases, this default definition can be overridden by specifying a
new task definition.

Within both jobs and reservations, depending on task definition, it is possible to
have multiple tasks from the same job mapped to the same node. For example, a
job requesting 4 tasks using the default task definition of 1 processor per task, can
be satisfied by two dual processor nodes.

3217 PE

The concept of the processor equivalent, or PE, arose out of the need to
translate multi-resource consumption requests into a scalar value. Itisnot an
elementary resource, but rather, a derived resource metric. Itisameasure of the
actual impact of a set of requested resources by ajob on the total resources
avallable system wide. It iscalculated as:

PE = MAX(ProcsRequest edByJob /
Tot al Confi gur edPr ocs,
Menor yRequest edByJob /
Tot al Confi guredMenory,
Di skRequest edByJob /| Tot al Confi guredDi sk,
SwapRequest edByJob /| Tot al Confi gur edSwap)
* Tot al Confi guredProcs

For example, say ajob requested 20% of the total processors and 50% of the
total memory of a 128 processor MPP system. Only two such jobs could be
supported by this system. Thejob is essentially using 50% of all available
resources since the system can only be scheduled to its most constrained resource,
in this case memory. The processor equivalents for thisjob should be 50% of the
processors, or PE = 64.

L et's make the calculation concrete with one further example. Assume a
homogeneous 100 node system with 4 processors and 1 GB of memory per node.
A job is submitted requesting 2 processors and 768 MB of memory. The PE for
thisjob would be calculated as:

PE = MAX(2/ (100%4), 768/(100%1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the
memory on a4 processor node.

The calculation works equally well on homogeneous or heterogeneous
systems, uniprocessor or large way SMP systems.

3.2.1.8 Class (or Queue)

A class (or queue) isalogical container object which can be used to implicitly
or explicitly apply policiesto jobs. In most cases, aclassis defined and
configured within the resource manager and associated with one or more of the
following attributes or constraints:

Attribute IDescription

DefaLlt Job Attributes A queue may be associated with ade_fault job duration,
default size, or default resource requirements

Host Constraints ﬁogtieue may constrain job execution to a particular set of
A gueue may constrain the attributes of jobs which may

Job Constraints submitted including setting limits such as max wallclock
time, minimum number of processors, etc.

Access Ligt A queue may constrain who may submit jobs into it
based on user lists, group lists, etc.

, A queue may associate special privileges with jobs
Special Access including adjusted job priority.

As stated previously, most resource managers allow full class configuration
within the resource manager. Where additional class configuration is required,
the CLASSCFG parameter may be used.

Maui tracks class usage as a consumable resource allowing sitesto limit the
number of jobs using a particular class. Thisis done by monitoring class
initiators which may be considered to be aticket to run in a particular class. Any
compute node may simultaneously support several types of classes and any
number of initiators of each type. By default, nodes will have a one-to-one
mapping between class initiators and configured processors. For every job task
run on the node, one class initiator of the appropriate typeis consumed. For
example, a 3 processor job submitted to the class batch will consume three batch
classinitiators on the nodes where it is run.

Using queues as consumabl e resources allows sites to specify various policies
by adjusting the classinitiator to node mapping. For example, asite running

serial jobs may want to allow a particular 8 processor node to run any
combination of batch and special jobs subject to the following constraints:

- only 8 jobs of any type allowed simultaneously
- no more than 4 special jobs allowed simultaneously

To enable this policy, the site may set the node's MAXJOB policy to 8 and
configure the node with 4 special classinitiators and 8 batch classinitiators.

Note that in virtually all cases jobs have a one-to-one correspondence between
processors requested and class initiators required. However, thisisnot a
requirement and, with special configuration sites may choose to associate job
tasks with arbitrary combinations of class initiator requirements.

In displaying classinitiator status, Maui signifies the type and number of class
initiators available using the format [<KCLASSNAME>:<CLASSCOUNT>]. This
iIsmost commonly seen in the output of node status commands indicating the
number of configured and available class initiators, or in job status commands
when displaying classinitiator requirements.

Arbitrary Resource

Node can also be configured to support various ‘arbitrary resources. Information about
such resources can be specified using the NODECFG parameter. For example, anode may be

configured to have '256 MB RAM, 4 processors, 1 GB Swap, and 2 tape drives.

3.3 Scheduling Iterations and Job Flow

o 3.3.1 Scheduling Iterations
o 3.3.1.1 Update State Information
o 3.3.1.2 Refresh Reservations
o 3.3.1.3 Schedule Reserved Jobs
o 3.3.1.4 Schedule Priority Jobs
o 3.3.1.5 Backfill Jobs
o 3.3.1.6 Update Statistics
o 3.3.1.7 Handle User Requests
o 3.3.1.8 Perform Next Scheduling Cycle
o 3.3.2 Detailed Job Flow
o 3.3.2.1 Determine Basic Job Feasibility
o 3.3.2.2 Prioritize Jobs
o 3.3.2.3 Enforce Configured Throttling Policies
o 3.3.2.4 Determine Resource Availability
o 3.3.2.5 Allocate Resourcesto Job
o 3.3.2.6 Distribute Jobs Tasks Across Allocated Resources
o 3.3.2.7 Launch Job

3.3.1 Scheduling Iterations In any given scheduling iteration, many activities take place.
These are broken into the following major categories:

Update State Information
Refresh Reservations
Schedule Reserved Jobs
Schedule Priority Jobs
Backfill Jobs

Update Statistics

Handle User Requests

3.3.1.1 Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up
to date information on compute resources, workload, and policy configuration.

3.3.2

On most systems, these calls are to a centralized resource manager daemon which
possesses al information.

3.3.1.2 Refresh Reservations

3.3.1.3 Schedule Reserved Jobs

3.3.1.4 SchedulePriority Jobs
In scheduling jobs, multiple steps occur.

3.3.1.5 Backfill Jobs

3.3.1.6 Update Statistics

3.3.1.7 HandleUser Requests

User requests include any call requesting state information, configuration
changes, or job or resource manipulation commands. These requests may comein
the form of user client calls, peer daemon calls, or process signals.

3.3.1.8 Perform Next Scheduling Cycle

Maui operates on a polling/event driven basis. When all scheduling activities
are complete, Maui will process user requests until a new resource manager event
isreceived or an internal event is generated. Resource manager events include
activities such as a new job submission or completion of an active job, addition of
new node resources, or changes in resource manager policies. Internal events
include admin 'schedul €' requests, reservation activation/deactivation, or the

expiration of the RMPOLLINTERVAL timer.

Detailed Job Flow
3.3.2.1 Determine Basic Job Feasibility

Thefirst step in scheduling is determining which jobs are feasible. This step
eliminates jobs which have job holds in place, invalid job states (i.e., Completed,
Not Queued, Defered, etc), or unsatisfied preconditions. Preconditions may
include stage-in files or completion of preliminary job steps.

3.3.2.2 Prioritize Jobs
With alist of feasible jobs created, the next step involves determining the

relative priority of all jobswithin that list. A priority for each job is calculated

based on job attributes such as job owner, job size, length of time the job has been
gueued, and so forth.

3.3.2.3 Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many

jobs, nodes, processors, etc are allowed on a per credential basis. Jobs which
violate these policies are not considered for scheduling.

3.3.2.4 Determine Resour ce Availability

For each job, Maui attempts to locate the required compute resources needed
by thejob. In order for a match to be made, the node must possess al node
attributes specified by the job and possess adequate avail able resources to meet
the TasksPerNode job constraint (Default TasksPerNodeis1) Normally, Maui
determine a node to have adequate resources if the resources are neither utilized
by nor dedicated to another job using the calculation

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).

The RESOURCEAVAILABILITYPOLICY parameter can be modified to adjust
this behavior.

3.3.2.5 Allocate Resourcesto Job

If adequate resources can be found for ajob, the node allocation policy isthen
applied to select the best set of resources. These alocation policies alow
selection criteria such as speed of node, type of reservations, or excess node
resources to be figured into the allocation decision to improve the performance of
the job and/or maximize the freedom of the scheduler in making future scheduling
decisions.

3.3.2.6 Distribute Jobs Tasks Across Allocated Resour ces

With the resources selected, Maui then maps job tasks to the actual resources.
This distribution of tasksistypically based on simple task distribution algorithms
such as round-robin or max blocking, but can also incorporate parallel language
library (i.e., MPI, PV M, etc) specific patterns used to minimize interprocess
communication overhead.

3.3.2.7 Launch Job

With the resources selected and task distribution mapped, the scheduler then
contacts the resource manager and informs it where and how to launch the job.
The resource manager then initiates the actual job executable.

3.4 Configuring the Scheduler

Scheduler configuration is maintained using the flat text configfile maui.cfg. All config file
entries consist of simple '<PARAMETER> <VALUE>' pairs which are whitespace delimited.
Parameter names are not case sensitive but <VALUE> settings are. Some parameters are array
values and should be specified as'<PARAMETER>[<INDEX>]'", i.e., 'QOSCFG[hiprio]
PRIORITY=1000" The <VALUE> settings may be integers, floats, strings, or arrays of these.
Some parameters can be specified as arrays and in such, index values can be numeric or
alphanumeric strings. If no array index is specified for an array parameter, an index of '0' is
assumed. See the parameters documentation for information on specific parameters.

All config files are read when Maui is started up. Also, the schedctl -R command can be

used to reconfigure the scheduler at any time, forcing it to re-read all config files before
continuing (NOTE: Only availablein Moab 4.0 and later). The command changeparam can
be used to change individual parameter settings at any time, i.e. 'changepar am LOGLEVEL
3'. Changes made by the changeparam command are not persistent so will be overwritten the
next time the config file values are loaded. The current parameter settings can be viewed at
any time using the showconfig command.

3.4.1 Adjusting Server Behavior

Most any aspect of Maui's behavior can be configured. Thisincludes both scheduling
policy behavior and daemon behavior. Interms of configuring server behavior, the following
realms are most commonly modified.

34.1.1 Logging

LOGDIR
LOGFACILITY
LOGFILE
LOGHLEMAXSIZE
LOGFILEROLLDEPTH
LOGLEVEL

3.4.1.2 Checkpointing

Maui checkpointsitsinternal state. The checkpoint file records attributes in the following
areas.

Job: attributes, statistics
Node: attributes, statistics
Reservations. all aspects

Scheduler: attributes, statistics
Credentials: attributes, statistics (i.e., Credentials include user, group, account, QoS, and
class)

CPEXPIRATIONTIME

Indicates how long unmodified data should be kept after the associated object has
disappeared. ie, job priority for ajob no longer detected.

CPFILE
Indicates path name of checkpoint file
CPINTERVAL
Indicates interval between subsequent checkpoints.
3.4.1.3 ServicePort

SERVERHOST
SERVERMODE
SERVERNAME
SERVERPORT

Fairshare Config File

The fairshare config file, fs.cfg, is used to manage fairshare and QOS parameters. While still
supported, its use is largely superseded by the * CFG suite of parametersin later versions of
Maui (Maui 3.0.7 and higher). The file uses the following format:

<OBJECT> <ATTR>=<VALUE> [<ATTR>=<VALUE>]...
The following object types may be specified:

USER:<USER>
GROUP:<GROUP>
ACCOUNT:<ACCOUNT>
QOS.<QOSNAME>
SYSTEM

NOTE: The keyword 'DEFAULT' may be used in place of an actual user, group, account, or
QOS name to specify the default fairshare configuration for objects not explicitly specified, i.e.
USER:DEFAULT FSTARGET=5.0

The following attributes may be specified:

QDEF (default QOS)

QLIST (QOS access list)

PDEF (default partition)

PLIST (partition accesslist)

JOBFLAGS (special job attributes)
FSTARGET (target percent system utilization)

QDEF
DESCRIPTION: specifies default QOS value for jobs
FORMAT: <INTEGER>
DEFAULT: [NONE]
EXAMPLE: QDEF=3
DETAILS: Default QOS values are assigned to ajob in the following precedence

order: User -> Group -> Account -> System
(i.e., User QOS defaults overrule al others). If no default values are specified, the job will be
assigned QOS 0.

QLIST
DESCRIPTION: specifieslist of QOS values which jobs have accessto

FORMAT: <QOSINDEX>[,<QOSINDEX>]...

DEFAULT: [NONE]

EXAMPLE: QLIST=2,4-8

DETAILS: If the QLIST valueisfollowed by an ampersand, ‘&', QLIST values are
considered an 'AND' list rather than an 'OR' list.

PDEF
DESCRIPTION: specifies default partition in which jobs will run
FORMAT: <PARTITIONNAME>

DEFAULT: [ANY]

EXAMPLE: PDEF=0IdSP

DETAILS: Default partition values are assigned to a job in the following precedence
order: User -> Group -> Account -> System. If no default partition is specified, the job will be
assigned to any partition.

PLIST

DESCRIPTION: specifieslist of partitions which jobs have access to
FORMAT: <PARTITION>[:<PARTITION>]...

DEFAULT: [ALL]

EXAMPLE: PLIST=0ldSP:NewSP:02K

DETAILS: PLIST values are or'd together to determine the partitions a job may
access.
JOBFLAGS

DESCRIPTION: specifies default job flags

FORMAT: <FLAG>[:<FLAG>]...

where flag is one of the following:
BENCHMARK // maintain maximum locality
SPAN // alow job resources to cross partition boundaries
ADVRES /l dlocate only reserved resources
SHAREDNODE // share resources with other jobs
NOQUEUE Il cancel job if resources not immediately available

DEFAULT: [NONE]
EXAMPLE: JOBFLAGS=ADVRES;SPAN
FSTARGET

DESCRIPTION: specifiestarget fairshare utilization in percent (see FairShare.doc)

FORMAT: <DOUBLE>[+-]
DEFAULT: [NONE]

EXAMPLE: FSTARGET=10.0 // FairSharetarget is 10.0%
EXAMPLE: FSTARGET=25.5- // FairShare cap is 25.5%
EXAMPLE: FSTARGET=5+ // FairShare floor is 5%

Sample 'fs.cfg' file

SYSTEM PL1ST=0ldSP PDEF=0IdSP QLIST=0 QDEF=0
USER:DEFAULT FSTARGET=5.0-

USER:steve QLIST=2,3,4 QDEF=2

USER:bob QDEF=2 FSFLAGS=ADVRES

USER:charles FSTARGET=15+ QLIST=4,56 QDEF=4
GROUP:staff FSTARGET=10.0-

ACCOUNT:system FSTARGET=35.5+ PLIST=DevSP:OldSP PDEF=DevSP
QOS:3 FSTARGET=75.0

The above sample config file does the following:

- default jobs will be granted access to the partition OldSP and QOS 'O’

- jobs submitted by default will have only limited access to compute resources via a default
'per user' fairshare target cap of 5.0%

- user steve will have accessto QOS's'2, '3, and '4' and hisjobs will use QOS '2' unless he
explicitly requested a different QOS level.

- jobs submitted by user bob will default to using QOS '2' and all of bob's jobs may only run on
reserved nodes.

- user charles has afairshare floor of 15% of delivered resources, and has accessto QOS's '4',
'5', and '6' with his jobs defaulting to QOS '4'.

- jobs submitted by members of the group staff are given afairshare target cap of 10.0%.

- jobs submitted under the system account ID are given extensive access to resourcesviaa
fairshare target floor of 35.5%

- jobs running under QOS '3 will be given afairshare target of 75.0%

3.2.1 Scheduling Dictionary

Term Definition [Example |SSSv0.1 Token
A credential
aso known as
'project ID".
Multiple users
may be
associated a
Account single account |ACCOUNT=pr oj ect X account
ID and each
user may have
access to
multiple
accounts. (See
Credential)
Within the
scheduling AS (Access Statement)
world, an
access control Attributes:
listisused and
applied much as TYPE one of ALLOW DENY
itiselsewhere. OBJECT one of USER, GROUP,
An ACL ACCOUNT, QOS, CLASS, DURATI ON
defines what NANVE <STRI NG
credentials are Members:
regquired to
access or [NONE]
utilizes ; ;
particular Reservation META1 contains 4 access statements. Example:
objects. The |Allow jobs owned by user j ohn or bob <ASTYPE="ALLOW"
ACL (Access |ingiple Allow jobs with QOS pr eni um OBJECT="USER" NAME="john"/>
Control List) objects to which Deny jobsin classdebug <ASTYPE="ALLOW"
ACL'sare Allow jobs with aduration of lessthan 1 hour OBJECT="USER" NAME="bob"/>
applied are <ASTYPE="ALLOW"
reservations and OBJECT="QOS"
QOSs. ACL's NAME="premium"/>
may contain <ASTYPE="DENY"
both allow and OBJECT="CLASS'
deny NAME="debug"/>
statements, may <ASTYPE="ALLOW"
include OBJECT="DURATION"
wildcards, and NAME="1:00:00"/>
m&cﬁgnon (usedin _reﬁervation and job creation
multiple object and queries)
types.

Allocation

A logical, scalar
unit assigned to
userson a
credential basis,
providing
accessto a
particular
quantity of
compute
resources.
Allocations are
consumed by
jobs associated
with those
credentials.

ALLOCATI ON=30000

ALLOCATION
Attributes:
Members;

(usedin ?7??)

Class

(see Queue) A
classisalogica
container abject
which holds
jobs allowing a
site to associate
various
constraints and
defaults to these
jobs. Class
access can also
betied to
individual
nodes defining
whether or not a
particular node
will accept a
job associated
with agiven
class. Class
based access to
anodeisdenied
unless explicitly
dlowed via
resource
manager
configuration.
Within Maui,
classes are tied
tojobsasa
credential.

job cw.073 is submitted to class batch
node cl02 accepts jobsin class batch

reservation weekend allows access to jobsin class
batch

class
Attributes:
Name: <STRING>
Members:

[NONE]

(usedin ?7??)

CPU

A single
processing

unit. A CPU is
aconsumable
resource.
Nodestypically
consist of one
or more CPU's.
(same as

processor)

N/A

proc

Credential

An attribute
associated with
jobs and other
objects which
determines
object identity.
In the case of
schedulers and
resource
managers,
credential based
policies and
limits are often
established. At
submit time,
jobs are
associated with
anumber of
credentials such
asuser , group ,
account , QOS,
and class.
These job
credentials
subject the job
to various
polices and
grant it various
types of access.

In most cases,
credentials set
both the
privileges of the
job and the ID
of the actual job
executable .

Job cw.24001 possesses the following credentials:

USER=j ohn; GROUP=st af f ; ACCOUNT=[NONE] ;
QOS=[DEFAULT] ; CLASS=bat ch

Disk

A quantity of
local disk
available for
use by batch
jobs. Diskisa
consumable

resource .

N/A

disk

Execution
Environment

A description of
the environment
in which the
executableis
launched. This
environment
may include
attributes such
asthe
following:

an executable
command line
args

input file
output file

local user id
local group id
process
resource limits

Job cw.24001 possesses the following execution
environment:

EXEC=/ bi n/ sl eep; ARGS="60";
| NPUT=[NONE] ; OUTPUT=[NONE] ;
USER=| oadl| ; GROUP=st af f ;

Fairshare

IN/A

IN/A IN/A

Fairness

N/A

IN/A N/A

Group

A credential
typically
directly
mapping to a
user's UNIX
group ID.

N/A N/A

Job

The
fundamental
object of
resource
consumption.
A job contains
the following
components:

A list of
required
consumable
resources

A list of
resource
constraints
controlling
which resources
may be
alocated to the
job

A list of job
constraints
controlling
where, when,
and how thejob
should be run
A list of
credentials

N/A N/A

An execution
environment

Job
Constraints

A set of
conditions
which must be
fulfilled in
order for thejob
to start. These
conditions are
far reaching and
may include
one or more of
the following:
When the job
may run (i.e.,
after time X,
within'Y
minutes, &tc.)
Which
resources may
be dlocated
(i.e., Node must
possess at |east
512MB of
RAM, run only
in partition or
Partition C, or
run an HostA
and HostB)
Starting job
relativeto an
particular event
(i.e., start after
job X
successfully
completes)

RELEASETI ME>=' Fri Jun 06, 10: 00AM
DEPENDENCY=AFTERCOMPLETI ON: cw. 2004
NCDEMEMORY==256 VB

Memory

A quantity of
physical
memory
(RAM).
Memory is
provided by
compute nodes.
Itisrequired as
aconstraint or
consumed asa
consumable
resource by
jobs. Within
Maui, memory
istracked and
reported in
megabytes

(MB).

Node node001 provides the following resources
PROCS=1, MEMORY=512, SWAP=1024

Job cw.24004 consumes the following resources per
task
PROCS=1, MEMORY=256

N/A

Node

A nodeisthe
fundamental
object
associated with
compute
resources. Each
node contains
the following
components

A list of
consumable
resources

A list of node

attributes

N/A

N/A

Node
Attribute

A node attribute
isa
non-quantitative
aspect of a
node.

Attributes
typically
describe the
nodeitself or
possibly aspects
of various node
resources such
as processors or
memory. While
itis probably
not optimal to
aggregate node
and resource
attributes
together in this
manner, it is
common
practice.
Common node
attributes
include
processor
architecture,
operating
system, or
processor

speed. Jobs
often specify
that resources
be allocated
from nodes
possessing
certain node
attributes.

ARCH=ANMD, OS=LI| NUX24, PROCSPEED=950

N/A

Node
Feature

A node feature
isanode
attribute which
istypicaly
specified
locally viasome
form of
configuration
file. Node
features are
opaque strings
associated with
the node by the
resource
manager which
generally only
have meaning
to the end user
or possibly to
the scheduler.
Commonly, a
node feature
will be
associated with
asubset of
nodes allowing
end usersto
request use of
this subset by
requiring that
resources be
alocated from
nodes with this
feature present.
In many cases,
node features
are used to
extend the
information
provided by the
resource
manager.

FEATURE=s950, pl I |, geol ogy

(This may be used to indicate that the node possesses a
950 MHz Pentium 111 processor and that the node is
owned by the Geology dept)

N/A

Pr ocessor

A processing
unit. A
processor isa
consumable
resource.
Nodestypicaly
consist of one
or more
processors.
(same as CPU)

N/A

N/A

Quality of
Service
(QOYS)

An object
which provides
special services,
resources, etc.

N/A

N/A

Queue (see Class) IN/A N/A
RESERVATION
Attributes:
STARTTIME (optional)
DURATION (mandatory)
FLAGS (optional)
OWNER (optional)
An object NAME (optional)
which reserves Contains
aspeqflc AS (1+:required)
collection or RESOURCES (1+:required)
resourcesfor a |Reserve 24 processors and 8 GB of memory from time
Reservation |[specific T1ltotime T2 for use by user X or jobsin the class Example:
timeframefor |batch <RESERVATION
use by jobs STARTTIME="98066503"><AS
which meet TYPE="ALLOW" OBJECT="QOS"
specific NAME="premium"/><RES
conditions TYPE=PROC COUNT="4"
<CONSTRAINT
ATTR="PROCSPEED"
CMP=">=900"/></RESERVATION>
(use: reservation creation,
modification, destruction, and
reporting)
Resource N/A N/A N/A
All consumable
resources are
tracked and
managed in a
number of Node cl003 is configured with 4 processors and 512
ways. A MB of memory. Thisnode is executing 2 tasks of job
compute node's |clserver.0041 which is utilizing 1 processor and 60 MB
available of memory each. Additionally, it isalso running 1 task
Resour ce, resourcesis of job clserver.0047 which isusing 1 processor and
Available |calculated asits |[250 MB of memory. N/A
configured . Node ¢l003's avail able resources are thus
resources minus
the sum of the |processors=4 -(2*1+1*1) =1
resources memory =512-(2* 60+ 1* 250) =142 MB
actually utilized
by all job tasks
running on the
node.
Resource, —\\/a N/A N/A

Configured

Resour ce,
Consumable

Any object
which can be
utilized (i.e.,
consumed and
thus made
unavailable to
another job) by,
or dedicated to
ajobis
considered to be
aresource.
Common
examples of
resources are a
node's physical
memory or
local disk. As
these resources
may given to
onejob and
thus unavailable
to another, they
are considered
to be
consumable.
Other aspects of
anode, such as
its operating
system, are not
considered to be
consumable
sinceits use by
onejob does
not preclude its
use by another.

Note that some
node objects,
suchasa
network
adapter, may be
dedicated under
some operating
systems and
resource
managers and
not under
others. On
systems where
the network
adapter cannot
be dedicated N/A
and the network
usage per job
cannot be
specified or
tracked,

N/A

network
adapters are not
considered to be
resources, but
rather

atributes.

Nodes possess a
specific
quantity of
consumable
resources such
asreal memory,
local disk, or
processors. Ina
resource
management
system, the
node manager
may chooseto
report only
those
configured
resources
availableto
batch jobs. For
example, anode
may possess a
80 GB hard
drive but may
have only 20
GB dedicated to
batch jobs.
Consequently,
the resource
manager may
report that the
node has 20 GB
of local disk
available when
idle. Jobs may
explicitly
reguest acertain
quantity of
consumable
resources

Resource,
Constraint

A resource
constraint
imposes arule
on which
resources can
be be used to
match a
resource
reguest.
Resource
constraints
either specify a
required
quantity and
type of resource
or arequired
node attribute.
All resource
constraints must
be met by any
given nodein
order for a
match to be
established.

Resour ce,
Dedicated

A job may
regquest that a
block of
resources be
dedicated while
thejobis
executing. In
this case, the
scheduler is
responsible to
guaranteeing
that these
resources,
whether utilized
by the job or
not, are set
aside,
unavailable to
other jobs.

N/A

N/A

Swap

A quantity of
virtual memory
availablefor
use by batch
jobs. Swapisa
consumable
resource
provided by
nodes and
consumed by

jobs

N/A

N/A

Task

An atomic
collection of
consumable
resources.

N/A

N/A

User, Global

The user
credential used
to provide
access to
functions and
resources. In
local
scheduling,
global user IDs
map directly to
local user IDs.

N/A

N/A

User, Local

The user
credential under
which the job
executable will
be launched.

N/A

N/A

Workload

generalized
term

N/A

N/A

5.1 Job Prioritization

In general, prioritization is the process of determining which of many options best fulfills
overall goals. In the case of scheduling, asite will often have multiple, independent goals
which may include maximizing system utilization, giving preference to usersin specific
projects, or making certain that no job sitsin the queue for more than a given period of time.
The approach used by Maui in representing a multi-faceted set of site goalsisto assign
weights to the various objectives so an overall value or priority can be associated with each
potential scheduling decision. With the jobs prioritized, the scheduler can roughly fulfill site
objectives by starting the jobsin priority order.

e 5.1.1 Priority Overview

e 5.1.2 Priority Components

e« 5.1.3 Common Priority Usage
e 5.1.4 Prioritization Strategies
5.1.5 Manuadl Priority Management

changeparam

Overview:

The changeparam command is used to dynamically change the value of any parameter
which can be specified in the maui . cf g file. The changes take affect at the beginning of the
next scheduling iteration. They are not persistent, only lasting until Maui is shutdown.

Format:

changeparam <PARAMETER> <VALUE>

<PARAMETER> isany valid Maui parameter
<VALUE> isany valid value for <PARAMETER>

Flags:
[NONE]
Access.
This command can be run by any user with 'ADMIN1" authority.
Example:
Set Maui's LOGLEVEL to 6 for the current run:
> changeparam LOGLEVEL 6

parameter s changed

Example:
Set Maui's ADMIN1 userlist to 'sys mike peter’
> changeparam ADMIN1 sys mike peter

parameter s changed

showconfig

showconfig [-v] [-h]
Purpose

View the current configurable parameters of the Maui Scheduler.

Per missions

This command can berun by alevel 1, 2, or 3 Maui administrator.

Parameters

None.

Flags
-h Help for this command.

-v Thisoptiona flag turns on verbose mode, which shows all possible Maui Scheduler
parameters and their current settings. If thisflag is not used, this command operatesin
context-sensitive terse mode, which shows only relevant parameter settings.

Description

The showconfig command shows the current scheduler version and the settings of all 'in
memory' parameters. These parameters are set viainternal defaults, command line arguments,
environment variable settings, parameters in the maui.cfg file, and via the changeparam
command. Because of the many sources of configuration settings, the output may differ from
the contents of the maui.cfg file. The output is such that it can be saved and used as the
contents of the maui.cfg fileif desired.

Example
> showconfig
maui schedul er version 3.0.2.0 (PID: 11080)

BACKFI LLPQOLI CY FI RSTFI T
BACKFI LLMETRI C NODES

ALLOCATI ONPQOLI CY M NRESOURCE
RESERVATI ONPOLI CY CURRENTHI GHEST

IMPORTANT NOTE: the showconfig flag without the '-v' flag does not show the settings of
all parameters. It does show all major parameters and all parameters which are in effect and
have been set to non-default values. However, it hides other rarely used parameters and those
which currently have no effect or are set to default values. To show the settings of all
parameters, use the '-v' (verbose) flag. Thiswill provide an extended output. Thisoutput is
often best used in conjunction with the 'grep' command as the output can be voluminous.

Related Commands

Usethe changepar amcommand to change the various Maui Scheduler parameters.

Notes

See the Parameters document for details about configurable parameters.

© Copyright 1998, Maui High Performance Computing Center. All

4.0 Maui Commands

e 4.1 Client Overview

e 4.2 Monitoring System Status
« 4.3 Managing Jobs

e 4.4 Managing Reservations

e« 4.5 Configuring Policies

e 4.6 End User Commands

e 4.7 Miscellaneous Commands

@ The Commands Overview lists all available commands.

4.1 Client Overview

The Commands Overview lists all available commands.

4.2 Status Commands

Maui provides an array of commands to organize and present information about the current
state and historical statistics of the scheduler, jobs, resources, users, accounts, etc. Thetable
below presents the primary status commands and flags. The Commands Overview lists al

available commands.

|Command |Flags

IDescription

display job state, resource requirements, environment, constraints,

checkjob credentias, history, allocated resources, and resource utilization
checknode display node state, resources, attributes, reservations, history, and
- statistics

:] display summarized fairshare information and any unexpected
diagnose |-f configuration
diagnose |- display summarized job information and any unexpected state
diagnose |-n display summarized node information and any unexpected state
diagnose |-p display summarized job priority information
diagnose |-r display summarized reservation information
showarid display various aspects of scheduling performance across a job

duration/job size matrix

showq [-r]-i]

display various views of currently queued active, idle, and non-eligible
jobs

showstats |-f display historical fairshare usage on a per credential basis
showstats |-g display current and historical usage on a per group basis
showstats |-u display current and historical usage on a per user basis
showstats |-v display high level current and historical scheduling statistics

- The Moab Cluster Manager "™ working together with the Moab Workload Manager™

graphical displays information about jobs, queues, reservations, nodes, fairshare policies, etc.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mwm/
http://www.clusterresources.com/products/maui/mcm/main.shtml

4.3 Job Management Commands

Maui shares job management tasks with the resource manager. Typically, the scheduler
only modifies scheduling relevant aspects of the job such as partition access, job priority,
charge account, hold state, etc. The table below covers the available job management
commands. The Commands Overview lists all available commands.

|Command |Flags|Description

canceljob cancel existing job

cheoob | [0 istory, alocetedresources, end respurce uilization
diagnose |-j display summarized job information and any unexpected state
releasehold|[-a] removejob holds or defers

runjob start job immediately if possible

sethold set hold on job

setgos set/modify QoS of existing job

setspri adjust job/system priority of job

- The Moab Cluster Manager ™ allows administrators to control jobs, nodes,

reservations, etc. graphically. Furthermore, a user can view and modify their own job

information.

http://www.clusterresources.com/products/maui/mcm/

4.4 Reservation Management Commands

Maui exclusively controls and manages all advance reservation features including both
standing and administrative reservations. The table below covers the available reservation
management commands. The Commands Overview lists al available commands.

|Command |Flags [Description

diagnose |-r display summarized reservation information and any unexpected state
releaseres remove reservations

sefres Immediately create an administrative reservation

showres display information regarding location and state of reservations

- The Moab Cluster Manager ™ provides a graphical interface to view and control

reservations.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/reservationMgmt.shtml
http://www.clusterresources.com/products/maui/mcm/reservationMgmt.shtml

4.5 Policy/Config M anagement Commands

Maui alows dynamic modification of most scheduling parameters allowing new scheduling
policies, agorithms, constraints, and permissions to be set at any time. Changes made via
Maui client commands are temporary and will be overridden by values specified in Maui
config files the next time Maui is shutdown and restarted. The table below coversthe
available configuration management commands. The Commands Overview lists all available

commands.

|Command |Flags|Description

changeparam immediately change parameter value

schedctl control scheduling behavior (i.e., stop/start scheduling, recycle,
- shutdown, etc.)

showconfig display settings of all configuration parameters

4.6 End User Commands

Commands Overview lists all available commands.

|Command |Flags|Description

canceljob cancel existing job

: display job state, resource requirements, environment, constraints,
checkjob credentials, history, allocated resources, and resource utilization
showbf show resource availability for jobs with specific resource requirements
showq display detailed prioritized list of active and idle jobs
showstart show estimated start time of idle jobs
showstats show detailed usage statistics for users, groups, and accounts which the
- end user has accessto

- The Moab Cluster Manager ™ provides a graphical interface for users to manage their

own jobs.

http://www.clusterresources.com/products/maui/mcm/

4.7 Miscellaneous Commands

The table below covers a number of additional commands which do not fully fit in prior
categories. The Commands Overview lists all available commands.

|Command IFlags IDescription

resetstats | |reset internal statistics

Appendix G: Commands Overview

|ICommand |Description

canceljob |cancel job

changeparam (change in memory parameter setting

checkjob provide detailed status report for specified job

checknode |provide detailed status report for specified node

provide diagnostic report for various aspects of resources, workload, and

diagnose scheduling
mjobctl control and modify job
mprof profile historical system performance

releasehold [release job defers and holds

rel easeres rel ease reservations

resetstats reset scheduler statistics

runjob force ajob to run immediately

schedctl manage scheduler activity

sethold set job holds

setqos modify job QOS settings

setres set an admin/user reservation

setspri adjust system priority of jobs

showbf show backfill window - show resources available for immediate use

showconfig |show current scheduler configuration

showqrid show various tables of scheduling/system performance

showq show queued jobs
showres show existing reservations

showstart |show estimates of when job can/will start

showstate show current state of resources

showstats |show usage statistics

checkjob

checkjob [ARGS] <JOBID>

Purpose

Display detailed job state information and diagnostic output for specified job.

Per missions

This command can be run by any Maui admininstrator. Additionally, valid users may use
this command to obtain information about their own jobs.

Args Details
-A provide output in the form of parsable Attribute-Value pairs
-h display command usage help

check job start eligibility subject to specified throttling policy level.

- <POLICYLEVEL> o) | ey LEVEL > can be one of HARD, SOFT, or OFF

-r <RESID> check job access to specified reservation
-V display verbose job state and eligibility information
Description

This command allows any Maui administrator to check the detailed status and resources
requirements of ajob. Additionally, this command performs numerous diagnostic checks and
determinesif and where the could potentially run. Diagnostic checks include policy violations
(See the Throttling Policy Overview for details), reservation constraints, and job to resource
mapping. If ajob cannot run, atext reason is provided along with a summary of how many
nodes are and are not available. If the-v flag is specified, a node by node summary of
resource availability will be displayed for idle jobs.

If ajob cannot run, one of the following reasons will be given:

|Reason |Description
|j ob has hold in place |one or more job holds are currently in place
linsufficient idle procs

adequate idle processors are available but these do not

idle procs do not meet requirements meet job requirements

start date not reached

job has specified a minimum 'start date' which is still in

the future

lexpected state isnot idle ljob isin an unexpected state
stateisnot idle ljobisnot intheidle state
|dependency IS not met |j ob depends on another job reaching a certain state
rejected by policy ljob start is prevented by athrottling policy

If ajob cannot run on a particular node, one of the following ‘per node' reasons will be
given:
IClass INode does not allow required job class/queue
ICPU INode does not possess required processors
Disk INode does not possess required local disk
|Features INode does not possess required node features
IMemory INode does not possess required real memory
INetwor k INode does not possess required network interface
State INodeis not Idle or Running

The checkjob command displays the following job attributes:

|Attribute \Value IDescription
Account <STRING> jl\(;ame of account associated with
Length of time job actually ran.
Actual Run Time |[[[DD:]HH:]MM:]SS NOTE: Thisinfo only display in
simulation mode.
|Arch |<STRING> INode architecture required by job
[<CLASS NAME> <CLASS Name of classiqueue required by
Class job and number of classinitiators
COUNT>] :
required per task.
Dedicated
Resources Per Task SAXX>
Disk <INTEGER> Amo_unt of local disk required by
job (in MB)
|Exec Size |<INTEGER> |Size of job executable (in MB)
|Executable |<STRING> IName of job executable

Square bracket delimited list of . .
Features <STRING>S Node features required by job
Group <STRING> \I/\Ivia}[?jeo(g UNIX group associated
Holds Zero of more of User, System, and |Types of job holds currently
Batch applied to job
Image Size |<INTEGER> Size of job data (in MB)
Memory <INTEGER> O ey Y fexuires
Network <STRING> -klsll?gb()f network adapter required
INodecount |<INTEGER> INumber of nodes required by job
Opsys <STRING> jl\;gde operating system required by
Partition Mask ALIT_or colon delimited list of List of partitions the job has access
partitions to
Number of processor-equivalents
PE <FLOAT> requested by job
Q0S <STRING> j?)llJ)aI ity of Service associated with
QueueTime <TIME> Ea”r‘]%gg]‘é"nat‘s S?;tt’erln,r;“ed to resource
StartCount <INTEGER> g;rrpe%e{);fl\/tl'ami‘ﬂc’b has been
|StartPriority |<INTEGER> |Start priority of job
|State |One of Idle, Starting, Running, etc [Current Job State
|Total Tasks |<INTEGER> INumber of tasks requested by job
|User |<STRING> IName of user submitting job
WallTime: [[[DD:]HH:IMM:]SS 'r'uen”rf{trt‘g"f time job has been
\WallTimeLimit: [[[[DD:]HH:]MM:]SS IMaximum walltime allowed to job
In the above table, fields marked with an asterisk (*) are only displayed when set or when the -v flag is
specified.
Examples

Example 1

> checkj ob -v job05
checking job job05

State: ldle (User: john Goup: staff Account: [NONE])
Wal Il Tinme: 0:00:00 (Limt: 6:00:00)

Subm ssion Tine: Mon Mar 2 06:34: 04
Total Tasks: 2

Req[0] TaskCount: 2 Partition: ALL

Net wor k: hps_user Menory >= 0 Disk >= 0 Features: [NONE]
Opsys: Al X43 Arch: R6000 dass: [batch 1]

ExecSi ze: 0 |nmageSize: 0

Dedi cat ed Resources Per Task: Procs: 1

NodeCount: O

| VD: [NONE] Executable: cnd

Q0S: [DEFAULT] Bypass: 0 StartCount: O

Partition Mask: ALL

Hol ds: Bat ch

batch hold reason: Adnmin

PE: 2.00 StartPriority: 1

job cannot run (job has hold in place)

job cannot run (insufficient idle procs: 0 available)

Note that the example job cannot be started for two different reasons.

« It hasabatch hold in place.
e Thereareno idle resources currently available
See also:

diagnose -| - display additional detailed information regarding jobs

http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosejobs.shtml

checknode

checknode NODE [-h]

Purpose

Displays state information and stetistics for the specified node.
Permissions

This command can be run by any Scheduler Administrator.
Parameters

NODE Node name you want to check.

Flags
-h Help for this command.

Description

This command shows detailed state information and statistics for nodes that run jobs (those running LoadL_st art d).
NOTE
This command returns an error message if it is run against a scheduling node (one running schedd).

The following information is returned by this command:
Disk Disk space available
Memory Memory available
Swap Swap space available
State Node state
Opsys Operating system
Arch Architecture
Adapters Network adapters available
Features Features available
Classes Classes available
Frame IBM SP frame number associated with node
Node IBM SP node number associated with node
StateTime Time node has been in current state in HH:MM :SS notation
Downtime Displayed only if downtime is scheduled
Load CPU Load (Berkley one-minute load average)
Total Time Total time node has been detected since statistics initialization expressed in HH:MM:SS notation

UpTime Total time node has been in an available (Non-Down) state since statistics initialization expressed in
HH:MM:SS notation (percent of time up: UpTime/Total Time)

BusyTime Total time node has been busy (allocated to active jobs) since statistics initialization expressed in
HH:MM:SS notation (percent of time busy: BusyTime/Total Time)

After displaying thisinformation, some analysisis performed and any unusual conditions are reported.
Example

% checknode fr26n10

Checki ng Node fr26n10. usc. edu

Di sk (KB): 2076 Menory (MB): 512 Swap (KB): 470772
St at e: Down Opsys: Al X41 Arch: R6000
Adapters: [ethernet]

Features: [Thin][Dedi cat ed]

Cl asses: [batch][nmediun

Fr ame: 26 Node: 10

StateTinme: Node has been in current state for 5:02:23

DownTi me: (-26844 Seconds/-7.46 Hours) Thu Sep 4 09:00: 00

Load: 0. 009

Tot al Ti ne: 30:18: 29 UpTi ne: 23:28:51 (77.47% BusyTi ne: 19: 21: 46 (63.89%

Related Commands

Further information about node status can be found using the showst at e command.

Y ou can determine scheduling nodes with the LoadLeveler | | st at us command (nodes that have Avai | inthe
Schedd column).

Default File Location
/ u/ | oadl / maui / bi n/ checknode
Notes

None.

d | ag nose 'f Maui Fairshare Diagnostics

Synopsis
di agnose -f

Overview:

The 'diagnose -f' command is used to display 'at a glance' information about the fairshare
configuration. The affect of thisfairshare information is determined by the fairshare priority
weights as described in the ' Job Prioritization Overview'.

Examples:

> di agnose -f
Fai r Share I nformation

Depth: 8 intervals Interval Length: 12:00: 00 Decay Rate: 1.00

FS Policy: [NONE]
System FS Settings: Target Usage: 0.00 Fl ags: O

FSI nt er val % Tar get
FSWeight ---oeee oo
Tot al Usage 100.00 -------
GROUP

dal | as 0.00 15.00
sanj ose 0.00 15.00
seattl e 0.00 15.00
austin 0.00 15.00
bost on 0.00 15.00
or | ando 0.00 15.00
newyor k 0.00 15.00
ACCT

mar ket i ng 0. 00 5.00
it 0. 00 5.00

devel opnent
research

oo

ur gent
| ow
hi gh

eNeolNeoNoNe

cocooo

. 00
. 00
. 00
. 00
. 00

. 00
. 00
. 00

00

70.
10.
10.
10.

.00
. 00
50.
50.
50.

00
00
00

00
00
00
00

diagnose (Under Construction)

Overview:

The 'diagnose’ command is used to display information about various aspects of scheduling
and the results of internal diagnostic tests

Format:
di agnose [-a [<ACCOUNTI D>]] /1 Di agnose Accounts

[-f] /'l Di agnose Fairshare
[-9 [<GROUPI D>]] /1 Di agnose G oups
[-] [<JCBID>]] /1 Di agnose Job
[-m] /1 Di agnose Franes
[-n [-t <PARTITION>] [<NODEID>]] // Di agnose

Nodes

-t <PARTI TI ON>]] /'l Diagnose Priority
-1 <POLI CYLEVEL>]] /| Di agnose Job Queue

[-p [
[-g [

[-Q] /1 Di agnose QOS
Configuration
[-r] /1 Di agnose
Reservati ons
[-t] /1 Di agnose Partitions
[-u [<USERI D>]] /| Di agnose Users

Flags:
-a Show detailed information about accounts
-f Show detailed information about fairshare configuration and status
-] Show detailed information about jobs

Example:

> diagnose -r

http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnoseaccounts.shtml
http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosegroups.shtml
http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosejobs.shtml
http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosenodes.shtml
http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosepartition.shtml
http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnoseuser.shtml

d | ag nose 'p (Maui Priority Diagnostic)

Overview:

The'diagnose -p' command is used to display ‘at a glance' information about the job priority
configuration and its effects on the current idle jobs. The information presented by this

command includes priority weights, priority components, and the percentage contribution of
each component to the total job priority.

The command hides information about priority components which have been deactivated (ie,
by setting the corresponding component priority weight to 0). For each displayed priority
component, this command gives asmall amount of context sensitive information. The
following table documents this information. In all cases, the output is of the form
<PERCENT>(<CONTEXT INFO) where <PERCENT> is the percentage contribution of the
associated priority component to the job'stotal priority.

Priority Format Description

Component

| Target |<PERCENT>()
QOS: QOS
associated with

QOS <PERCENT>(<QOS>:<QOSPRI>) J((g)gspm-
Priority assigned
to the QOS
USR: user fs
usage - user fs
target
GRP: group
fs usage - group
fstarget
ACC:

FairShare <PERCENT>(<USR>:<GRP>:<ACC>:<Q0S>:<CL S>) |account fs usage -
account fstarget
QOS. QOS
fsusage- QOSfs
target
CLS classfs
usage - classfs
target

HOURS: job
gueue time which
Is applicable
towards priority

QueueTime <PERCENT>(<HOURS>)

VALUE: current
theoretical
Expansion minimum

Factor <PERCENT>(<VALUE>) X Factor i job
were to start
immediately

NDE: nodes
requested by job
PE:

Processor
Equivalents as
calculated by all
resources
requested by job
PRC:
processors
requested by job
MEM: rea
memory
requested by job

Resource <PERCENT>(<NDE>:<PE>:<PRC>:<MEM>)

BPCOUNT:
number of time
Bypass <PERCENT>(<BPCOUNT>) job was bypassed
by lower priority
jobs via backfill

|User
|Group

Examples:
> diagnose -p
di agnosing job priority information (partition: ALL)

Job PRI ORI TY* QOS(Q QOSPri)
FS(USR: GRP: ACC) QTi me(Hours) XFactor(Val ue) Resource(NDE:

PE: PRC. NEM
Wi ghts —-a-- - 1000(-:------) 100(1:

1: 1) 2(----

fr8n01. 1300. 0
0. 00(000: 000: 000)

98. 08(064: 064: 064:

fr8n01. 1301.0
0. 00(000: 000: 000)

96. 23(032: 032: 032:

frin04. 2068. 0
0. 00(000: 000: 000)

92.74(016: 016: 016:

frin04. 2067.0
0. 00(000: 000: 000)

86. 45(008: 008: 008:

frin04. 2059.0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

fri1n04. 2060. 0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

frin04. 2061.0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

fr8n01. 1289.0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

fr8n01. 1290.0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

frin04. 2062. 0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

fr8n01.1291.0
0. 00(000: 000: 000)

73. 95(004: 004: 004:

fr8n01. 1253. 0
0. 00(000: 000: 000)

75.74(004: 004: 004

fr8n01. 1256. 0
0. 00(000: 000: 000)

75.74(004: 004: 004:

fr8n01.1294.0

52203

0. 00(000. 0)
000)

26603

0. 00(000. 0)
000)

13802

0. 00(000. 0)
000)

7403

0. 01(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4328

0. 06(000. 0)
000)

4225

0. 25(000. 1)
000)

4225

0. 25(000. 1)
000)

4208

--) 800(O:

0. 00(1: 000000)
1. 92(001. 00)

0. 00(1: 000000)
3.77(001. 00)

0. 00(1: 000000)
7.25(001. 00)

0. 00(0: 000000)
13. 54(001. 00)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(5: 000000)
26.00(001. 12)

0. 00(1: 000000)
24.01(001. 01)

0. 00(0: 000000)
24.01(001. 01)

0. 00(0: 000000)

0:

0)

0. 00(000: 000: 000) 0.06(000.0) 23.89(001. 01)
76. 05(004: 004: 004: 000)

fr8nol.1293.0 1848 0. 00(0: 000000)
0. 00(000: 000: 000) 0.57(000.1) 56.14(001. 04)
43.29(001: 001: 001: 000)

fr8nol. 1260.0 1814 0. 00(0: 000000)
0. 00(000: 000: 000) 0.58(000.1) 55.32(001. 00)
44.10(001: 001: 001: 000)

Total s 100. 00
0. 00 0. 00 0. 04
11. 57 88. 39

* indicates systemprio set on job

Note that the above output isfairly lengthy. You may need to widen your browser to
properly read it. (Likewise, you may need to expand your terminal to read the actual
command output!) As mentioned previoudly, the 'diagnose -p' command only displays
information for priority components actually utilized. In the above example, QOS, Fairshare,
QueueTime, ExpansionFactor, and Resource components are all utilized in determining ajob's
priority. Other components, such as Service Targets, and Bypass are not used and thus are not
displayed. (Seethe'Priority Overview' for more information) The output consists of a header,

ajob by job analysis of idle jobs, and a summary section.

The header provides column labeling and provides configured priority component and
subcomponent weights. In the above example, QOSWEIGHT is set to 1000 and FSWEIGHT
isset to 100. When configuring fairshare, a site also has the option of weighting the individual
components of ajob's overall fairshare, including its user, group, and account fairshare
components. In this output, the user, group, and account fairshare weightsaresetto 5, 1, and 1
respectively.

Thejob by job analysis displays ajob'stotal priority and the percentage contribution to that
priority of each of the priority components. In this example, job 'fr8n01.1260.0" has a total
priority of 1814. Neither QOS nor Fairshare contribute to any of the job's in the queue because
there is not a QOS priority set for QOSO, 1, or 5. Also, no fairshare targets are set for any of
the users, groups, or accounts associated with any of the jobs currently idle. Thingsfinally get
interesting when we get to the queue time component column. Job 'fr8n01.1260.0" has only
been queued for 0.1 hours, contributing atotal of 0.58% of itstotal priority (ie, 0.0058 * 1814
= ~10 priority points). The Expansion Factor component is much more significant,
contributing 55.32% of thisjob's total priority or .5532 * 1814 = ~1004 priority points. (Note
the priority weights of 2 for Queuetime and 1000 for X Factor affecting the relative
contributions of each of these components) The fina priority component, 'Resource’, only has
one active subcomponent, processors (Note that nodes, PES, and memory are deactivated by

zero priority subcomponent weights). For the job we are analyzing, the resource component
contributes 44.1% of the job's total priority or .4410 * 1814 = ~800 priority points. As
expects, the percentages sum to 100 and the corresponding priority points sum to 1814.

At the end of the job by job description, a'Totals line is displayed which documents the
average percentage contributions of each priority component to the current idle jobs. In this
example, the queuetime, xfactor, and resource components contributed an average of 0.04%,
11.57%, and 88.39% to the idle jobs' total priorities.

d I a-g nose -r (Maui Reservation Diagnostics)

Synopsis
diagnose -r [reservationid]
Overview

The diagnose -r command allows administrators to look at detailed reservation information. It provides the name, type,
partition, starttime and endtime, proc and node counts, as well as actual utilization figures. It also provides detailed
information about which resources are being used, how many nodes, how much memory, swap, and processors are being
associated with each task. Administrators can also view the Access Control Lists for each reservation as well as any flags that
may be active in the reservation.

Example

di agnose -r
Di agnosi ng Reservati ons

Rsvl D Type Par StartTime EndTi e Durati on Node Task
Proc

engi neer. 0.1 User A -6:29:00 I NFI NI TY I NFI NI TY 0 0
7

Fl ags: STANDI NGRSV | GNSTATE OANERPREEMPT

ACL: CLASS==bat ch+: ==| ong+: ==f ast +: ==bi gnemt+ QOS==| ow- : ==hi gh+
JATTR==PREEMPTEE+

CL: RSV==engi neer. 0.1

Task Resources: PROCS: [ALL]

Attributes (Host Exp='fr10n0l1 fr10n03 fr10n05 fr10n07 fr10n09 fr10nll fr10nl3
fri0nls')

Active PH 43.77/45.44 (96.31%

SRAttributes (TaskCount: O StartTine: 00:00:00 EndTine: 1:00:00:00 Days: ALL)

research. 0.2 User A -6:29: 00 I NFI NI TY | NFI NI TY 0 0
8

Fl ags: STANDI NGRSV | GNSTATE OANERPREEMPT

ACL: CLASS==bat ch+: ==| ong+: ==f ast +: ==bi gmremt+ QOS==hi gh+: ==| ow
JATTR==PREEMPTEE+

CL: RSV==r esearch. 0. 2

Task Resources: PROCS: [ALL]

Attributes (Host Exp='fr3n0l1 fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 fr3nll fr3nl3
fr3nl5")

Active PH 51.60/51.93 (99.36%

SRAttributes (TaskCount: O StartTine: 00:00:00 EndTine: 1:00:00:00 Days: ALL)

fast.0.3 User A 00: 14: 05 5:14: 05 5:00: 00 0 0
16
Fl ags: STANDI NGRSV | GNSTATE OMNERPREEMPT
ACL: CLASS==f ast + QOS==hi gh+: ==| ow+: ==ur gent +: ==DEFAULT+ JATTR==PREEMPTEE+
CL: RSv==f ast. 0. 3
Task Resources: PROCS: [ALL]
Attributes (HostExp='"fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12nl10 fr12nll fr12nl12 fr12n13 fr12n14 fr12n1l5 fr12nl16')
SRAttri butes (TaskCount: O StartTime: 00:00:00 EndTine: 5:00:00 Days:
Mon, Tue, Wed, Thu, Fri)

fast. 1.4 User A 1:00:14:05 1:05:14:05 5:00: 00 0 0
16
Fl ags: STANDI NGRSV | GNSTATE OMNERPREEMPT
ACL: CLASS==f ast + QOS==hi gh+: ==| ow+: ==ur gent +. ==DEFAULT+ JATTR==PREEMPTEE+
CL: RSv==fast. 1.4
Task Resources: PROCS: [ALL]
Attributes (Host Exp='"fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07
fr12n08 fr12n09 fr12nl10 fri12nll fri12nl2 fr12nl13 fr12nl14 fr12nl5 fr12n16')
SRAttributes (TaskCount: O StartTine: 00:00:00 EndTine: 5:00:00 Days:
Mon, Tue, Wd, Thu, Fri)

j ob2411 Job A -00:01:00 00: 06: 30 00: 07: 30 0 0
6

ACL: JOB==j 0b2411=

CL: JOB==j 0b2411 USER==j i nf CGROUP==newyor k ACCT==it CLASS==bi gnem QOS==I ow
JATTR==PREEMPTEE DURATI ON==00: 07: 30 PROC==6 PS==2700

j ob1292 Job A 00: 00: 00 00: 07: 30 00: 07: 30 0 0
4

ACL: JOB==j 0b1292=

CL: JOB==j 0b1292 USER==j i nf CGROUP==newyor k ACCT==it CLASS==batch QUOS==DEFAULT
JATTR==PREEMPTEE DURATI ON==00: 07: 30 PROC==4 PS==1800

showgrid

showgrid STATISTICTYPE [-h]
Purpose
Shows table of various scheduler statistics.
Permissions
This command can be run by any Maui Scheduler Administrator.
Parameters
STATISTICTYPE Valuesfor this parameter:

AVGBYPASS Average bypass count. Includes summary of job-weighted expansion bypass and total
samples.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and total
samples.

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion factor,
node-weighted expansion factor, node-second-wei ghted expansion factor, and total
number of samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job percent
and total samples.

BFNHRUN Number of node-hours backfilled. Includes summary of job-weighted backfill
node-second percentage and total samples.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

JOBEFFICIENCY Job efficiency. Includes summary of job-weighted job efficiency percent and total
samples.

MAXBYPASS Maximum bypass count. |ncludes summary of overall maximum bypass and total
samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum expansion factor
and total samples.

NHREQUEST Node-hours requested. Includes summary of total node-hours requested and total
samples.

NHRUN Node-hours run. Includes summary of total node-hours run and total samples.

QOSDELIVERED Quality of service ddlivered. Includes summary of job-weighted quality of service
success rate and total samples.

WCACCURACY Wall clock accuracy. Includes summary of overall wall clock accuracy and total
samples.

NOTE
The STATISTICTYPE parameter value must be entered in uppercase characters.

Flags

-h Help for this command.

Description

This command displays atable of the selected Maui Scheduler statistics, such as expansion factor, bypass count, jobs,

node-hours, wall clock accuracy, and backfill information.
Example
% showgri d AVGXFACTOR

Aver age XFactor Gid

[NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00][02:08:00][
04:16:00][08:32:00 J[17:04:00][34:08:00][TOTAL]
] [

I [--e---- TR TREEEETEEE 1T -------- TR TREEEETEEE I
-------- R ST TR SEEEETEEES | AEEETEERE
[2 [-------- [[o-mmeee- I OREEEEEEE 1L - 1L --mmeee Lo I
-------- R ST T T e F SEEEETEEES | AEEETEERE
[4 [-------- TOEEEEEEEE T OEEEEEEEE 1o 10 - 1 [100 1]
-------- J[112 2J[--------][--------][1.10 3]
[8 J[-------- I REEEEEEEE IR RS 1o IR J[100 2][1.24
2)[-------- I SEEEEFEEE I SEEERFEEE 10 115 4]
[16][-------- TOEEEEEEEE TOEEEEEEEE [- [- 10 201 2] -------- I
-------- J[-=--c=- J0 -==---== J[=-------][L.01 2]
[32][-------- TOEEEEEEEE T OEEEEEEEE [- I EEEEEEEEE I REEEEEEEE I o----ee- I
-------- I | e | B TR [NEEEEETERN
[64][-------- TOEEEEEEEE T OEEEEEEEE EEEEREES T REEEEEEEE I REEEEEEEE I EEEEEEEE I
-------- I | e | BT e [EEEEETERN
[128 [-------- TOEEEEEEEE T OEEEEEEEE EEEEREES T EEEEEEEEE T REEEEEEEE I EEEEEEEE I
-------- O B R EEE TS | IEEEEEEEE
[256][-------- [TOEEEEEEEE TOEEEEEEEE TOEETEEEEE JREETEEEEE T REETEEEEE I REEEEEEEE I
-------- I | AT T IEEEEEEEES | IEEEEEERE
[TTOTI[-------- I SEEEEREEE I SEEESTEEE I OEEETREEE I SEEEPRREE Il 101 2] 1.00 3][1.24
2][112 2][-------- -]
Job Wi ghted X Factor: 1.0888
Node Wi ghted X Factor: 1.1147
NS Wei ghted X Factor: 1. 1900
Total Sanpl es: 9

Theshowgr i d command returns a table with datafor the specified STASTICTYPE parameter. The left-most column shows the
maximum number of nodes required by the jobs shown in the other columns. The column heads indicate the maximum wall
clock time (in HH:MM:SS notation) requested by the jobs shown in the columns. The data returned in the table varies by the
STATISTICTYPE requested. For table entries with one number, it is of the data requested. For table entries with two numbers,
the left number is the data requested and the right number is the number of jobs used to calculate the average. Table entries that
contain only dashes (-------) indicate no job has completed that matches the profile associated for thisinquiry. The bottom row
shows the totals for each column. Following each table is a summary, which varies by the STATISTICTYPE requested.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of information -- the
average expansion factor for all jobs that meet this dot's profile and the number of jobs that were used to calculate this average.
For example, the XFactors of two jobs were averaged to obtain an average XFactor of 1.24 for jobs requiring over 2 hours 8
minutes, but not more than 4 hours 16 minutes and between 5 and 8 nodes. Totals along the bottom provide overall X Factor
averages weighted by job, node, and node-seconds.

Related Commands

None.

Default File L ocation

/u/ | oadl / maui / bi n/ showgri d
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

showq

showq [-g][-c|-i|-r] [-p PARTITION] [-v]

Purpose

Displays information about active, eligible, blocked, and/or recently completed jobs.
Permissions

This command can be run by any user. However, the -c, -i, and -r flags can only be used by level 1, 2, or 3 scheduler
administrators.

Parameters

PARTITION partition for which job information should be displayed

Flags
-c display extended details about recently completed jobs.
-g display grid job and system id'sfor al jobs.
-i display extended details about idle jobs.
-p display only jobs assigned to the specified partition.
-r display extended details about active (running) jobs.
-v display extended date information including year.

Description

Since LoadL eveler is not actually scheduling jobs, the job ordering it displaysis no longer valid. The showg command displays
the actual job ordering under the Maui Scheduler. When used without flags, this command displays al jobsin active, idle, and
non-queued states.

Example 1

% showg

ACTIVE JOBS- - =--==-c=mcamcamn-
JOBNAME USERNANE STATE

:

REMAI NI NG STARTTI ME

fr28n13. 709.
fr28n07. 2303.
fr17n08. 1349.
fr28n15. 4355.
fr28n05. 2098.

dsheppar Runni ng
dsheppar Runni ng
dsheppar Runni ng
dsheppar Runni ng
ebyl aska Runni ng

55:09 Fri Aug 29 13:27:36
55:10 Fri Aug 29 13:27:37
02:29 Fri Aug 29 13:34:56
03: 08 Fri Aug 29 13:35:35
25:17 Fri Aug 29 11:57:45

=

fr28n05. 2095. kossi Runni ng 26:24 Fri Aug 29 03:58:51
fr28nl13. 683. Xzt ang Runni ng 23:01 Thu Aug 28 17:52:08
fr28nl5. 4354. noor ej t Runni ng 1 41:06 Fri Aug 29 12:18:33

fri17n08. 1341.
fr17n05. 1393.
fr28n05. 2097.
fr28n11. 3080.

mukho Runni ng
zhong Runni ng
zhong Runni ng
nmukho Runni ng

: Thu Aug 28 18:24:15
01:47 Fri Aug 29 04:39:14
50: 03 Fri Aug 29 05:27:30
12:21 Thu Aug 28 19: 54: 48

ook RRROOQ
D
'_\
D
I

fr28n13. 682. wengel Runni ng 3 23:51 Thu Aug 28 19: 56: 58
fr28n05. 2064. vertex Runni ng 29:55 Thu Aug 28 23:02: 22
fr28nll. 3037. vertex Runni ng 29: 55 Thu Aug 28 23:02: 22

fr28n09. 26. r anpi Runni ng 37:27 Thu Aug 28 11:09:54
fr17n08. 1328. vertex Runni ng 29:49 Fri Aug 29 02:02:16
fr17nl10. 1467. kossi Runni ng 10: 27: 10 Fri Aug 29 12:59:37

fr28n09. 49.
fri17n07. 1498.
fr17n05. 1384.
fr28n07. 2300.

hol dzkom Runni ng
j park Starting
zhong Runni ng
jimenez Runni ng

13:13: 08 Fri Aug 29 11:45:35
14:10: 05 Fri Aug 29 04:42:32
18:45:27 Fri Aug 29 14:22:54
18:54:12 Fri Aug 29 09:26: 39

[N
OO0 FRPRPEPEPNOOOOOOORORELRE

[ejolololojlololojoolololololololololoNoNeNe]

[N

fr17n09.529.0 vertex Runni ng 1 19:03:49 Fri Aug 29 11:36:16
fr28n01. 1851. 0 vertex Runni ng 1 19:09:49 Fri Aug 29 11:42:16
fr17nl11.1380.0 vertex Runni ng 1 19:41:22 Fri Aug 29 12:13:49
fr17nl16. 1533.0 vertex Runni ng 1 20: 04: 32 Fri Aug 29 12:36:59
fr17n06. 1502.0 vertex Runni ng 1 20:16:24 Fri Aug 29 12:48:51
fr17n10. 1466.0 wengel Runni ng 32 20:24: 04 Fri Aug 29 10:58:11

fr28n13.701.0 kudo Runni ng 8 20:25:46 Fri Aug 29 10:58:13
fr28n03.1689.0 vertex Runni ng 1 20:50: 31 Fri Aug 29 13:22:58

fr28n13.631.0 vertex Runni ng 1 21:17:40 Fri Aug 29 13:50:07

fr28n13.708.0 yshi Runni ng 8 22:49:10 Fri Aug 29 13:21:37
fr17n05. 1395.0 yshi Runni ng 8 23:36:36 Fri Aug 29 14:09: 03
fr17nl1. 1388. 0 j shoemak Runni ng 24 23:51: 10 Fri Aug 29 14:23:37
fr28n07.2304.0 rich001 Runni ng 1 26:09:44 Fri Aug 29 13:42:11
fr28n11. 3091.0 r anpi Runni ng 1 26:57: 00 Fri Aug 29 05:29:27

36 Active Jobs 251 of 254 Processors Active (Efficiency: 98. 82)
ELIGBLE JOBS----------------------

JOBNAME USERNAME STATE PROCC CPULIMT QUEUETI ME
fr28n03.1718.0 ozturan Idle 64 0:16: 40 Thu Aug 28 22:25:48
fr17n03. 1430.0 j ason Idle 128 2:00: 00 Wed Aug 27 00:56: 49
fr17n08. 1331.0 jason Idle 128 2:00: 00 Wed Aug 27 00:56:21
fr17n15.1393.0 noraiti Idle 128 3:20: 00 Fri Aug 29 09:58:56

fr17n09.534.0 kdeacon Idle 64 1: 00: 00 Fri Aug 29 04:38:48

fr28n13.697.0 j park Idle 16 24:00: 00 Fri Aug 29 03:44:45
fr17n07.1499.0 j park Idle 16 24:00:00 Fri Aug 29 04:42:31
fri17n06. 1517.0 chol i k Idle 16 24:00: 00 Fri Aug 29 06:45: 46

fr28n13.706.0 noorejt Idle 16 5:55: 00 Fri Aug 29 10:53:53
fri7nl6. 1550.0 noorejt Idle 16 7:55:00 Fri Aug 29 10:53:54
fr17nl12. 1528. 0 ebyl aska Idle 16 3:59:59 Fri Aug 29 12:11:30
fr28n15. 4356. 0 dsheppar Idle 16 3:00: 00 Fri Aug 29 14:01:42

fr28n09. 50. 0 dsheppar Idle 16 3:00: 00 Fri Aug 29 14:01:59
fr28n09.51.0 zhong Idle 8 13:55: 00 Fri Aug 29 14:07:16
fri7ni6. 1551. 0 j acob Idle 4 4:00:00 Fri Aug 29 12:51:19
15 Idl e Job(s)
BLOCKED JOBS----------------

JOBNAME USERNAME STATE PROC CPULIMT QUEUETI ME
fr17n02. 1476.0 vertex Idle 1 22:00: 00 Thu Aug 28 23:48:16
fr17n05.1392.0 vertex SystenHold 1 22:00: 00 Thu Aug 28 23:49:51
fr17n10. 1449.0 vertex Idle 1 22:00: 00 Tue Aug 26 23:49:51
fr28n03. 1674.0 maxi a User Hol d 8 23:56: 00 Mdn Aug 25 16:22:10
fr28n05. 1581. 0 si dt User Hol d 1 1:00: 00 Sun Jul 27 12:46:17
fr28n05.2092.0 vertex Idle 1 22:00: 00 Thu Aug 28 23:48:40

fr28n13. 705. 2 gi gi Not Queued 32 15:58: 00 Fri Aug 29 10:49:01

fr28n13. 705. 3 gi gi Not Queued 32 13:58: 00 Fri Aug 29 10:49:01
fr17n08. 1349. 7 dsheppar BatchHol d 1 2:00: 00 Fri Aug 29 13:34:44
fr28nl15. 4355. 1 dsheppar Idle 1 2:00: 00 Fri Aug 29 13:35:04
fr28n15. 4355. 2 dsheppar Def erred 1 2:00: 00 Fri Aug 29 13:35:04
fr28nl15. 4355. 3 dsheppar Idle 1 2:00: 00 Fri Aug 29 13:35:04

Total Jobs: 63 Active Jobs: 36 Eligi ble Jobs: 15 Bl ocked Jobs: 12

The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and Blocked Jobs.

Active jobs are those that are Running or Starting and consuming CPU resources. Displayed are the job name, the job's owner,
and the job state. Also displayed are the number of processors allocated to the job, the amount of time remaining until the job
completes (given in HH:MM:SS notation), and the time the job started. All active jobs are sorted in "Earliest Completion Time
First" order.

* NOTE: job id's may be marked with a single character to to specify the following conditions:

|Character |Description
_ (underbar) |job violates usage limit
* (asterisk) |job isbackfilled AND is preemptible |

1+ (plus) ljob is backfilled AND is NOT preemptible
- (hyphen) [jobis NOT backfilled AND is preemptible

Eligible Jobs are those that are queued and eligible to be scheduled. They are al in the Idle job state and do not violate any
fairness policies or have any job holdsin place. The jobs in the Idle section display the same information as the Active Jobs
section except that the wall clock CPULIMIT is specified rather than job time REMAINING, and job QUEUETIME is
displayed rather than job STARTTIME. The jobsin this section are ordered by job priority. Jobsin this queue are considered
eligible for both scheduling and backfilling.

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a number of states for the following
reasons:

Idle Job violates afairness policy. Use di agnose - q for more information.
UserHold A user holdisin place.
SystemHold An administrative or system hold isin place.

A scheduler batch hold isin place (used when the job cannot be run because the requested resources are not

BatchHold availablein the system or because the resource manager has repeatedly failed in attempts to start the job).

A scheduler defer hold isin place (atemporary hold used when ajob has been unable to start after a specified

Deferred number of attempts. This hold is automatically removed after a short period of time).

NotQueued Job isin the resource manager state NQ (indicating the job's controlling scheduling daemon in unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 2
% showg -r
JobName S Pa Effic XFactor Q User G oup Nodes Remaining StartTime

fr28n13.709.0 R 1 99.37 1.0 0 dsheppar daf 1 0:55:50 Fri Aug 29 13:27:36
fr28n07.2303.0 R 2 98.57 1.0 0 dsheppar daf 1 0:55:51 Fri Aug 29 13:27:37
fri7n08.1349.0 R 1 97.94 1.0 0 dsheppar daf 1 1: 03:10 Fri Aug 29 13:34:56
fr28n15.4355.0 R 3 98.91 1.0 0 dsheppar daf 64 1: 03:49 Fri Aug 29 13:35:35
fr28n05.2098.0 R 1 94.26 1.3 0 ebylaska dnavy 16 1:25:58 Fri Aug 29 11:57:45
fr28n05.2095.0 R 1 98.56 1.0 O kossi daf 1 1:27:05 Fri Aug 29 03:58:51
fr28n13.683.0 R 1 99.75 1.0 O xzt ang daf 8 2:23:42 Thu Aug 28 17:52:08
fr28n15.4354.0 R 3 98.90 1.2 0 noor ej t daf 16 3:41:47 Fri Aug 29 12:18:33
fri7n08.1341.0 R 2 99.67 1.0 O mukho dnavy 8 3:42:29 Thu Aug 28 18:24:15
fr28n05.2097.0 R 1 99.70 1.0 0 zhong govt 8 4:50:44 Fri Aug 29 05:27:30
fr28n13.682.0 R 3 99.83 1.1 0 wengel uni v 32 5:24:32 Thu Aug 28 19:56: 58
fr17n08.1328.0 R 3 99.69 2.5 0 vertex uni v 1 9:30:30 Fri Aug 29 02:02:16
fri17n10.1467.0 R 3 98.12 1.0 O kossi daf 1 10: 27: 51 Fri Aug 29 12:59: 37
fr28n07.2300.0 R 1 97.60 1.1 0 jinenez dnavy 16 18:54:53 Fri Aug 29 09:26: 39
fri7n09.529.0 R 1 99.10 2.9 0 vert ex uni v 1 19:04:30 Fri Aug 29 11:36:16
fr28n01.1851.0 R 1 98.01 2.9 0 vertex uni v 1 19:10: 30 Fri Aug 29 11:42:16
fri17n10.1466.0 R 1 99.51 1.2 0 wengel uni v 32 20:24:45 Fri Aug 29 10:58:11
fr28n13.701.0 R 3 98.91 1.2 0 kudo daf 8 20:26:27 Fri Aug 29 10:58:13
fr28n13.631.0 R 1 99.89 3.0 0 vertex uni v 1 21:18:21 Fri Aug 29 13:50: 07
fr17n05.1395.0 R 2 95.29 1.0 O yshi uni v 8 23:37:17 Fri Aug 29 14:09:03
fri7nl1.1388.0 R 2 63. 46 1.4 0 jshoemak daf 24 23:51:51 Fri Aug 29 14:23:37
fr28n07.2304.0 R 1 97.62 1.0 O ri ch0ol daf 1 26:10:25 Fri Aug 29 13:42:11
fr28n11.3091.0 R 1 98.87 1.0 O r anpi uni v 1 26:57:41 Fri Aug 29 05:29:27

23 Jobs 251 of 254 Processors Active (Efficiency: 98. 82)

Thefields are asfollows:
JobName Name of active job.
S Job State. Either "R" for Running or "S' for Starting.

Pa Partition in which job is running.

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Effic CPU efficiency of job.

Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Number of processors being used by the job.

Remaining Timethejob has until it has reached itswall clock limit. Time specified in HH:MM:SS notation.

StartTime Time job started running.

After displaying the running jobs, a summary is provided indicating the number of jobs, the number of allocated processors, and

the system utilization.
Example 3

% showg -i

JobNane
Syst emQueueTi ne

Priority XFactor

fr28n03. 1718. 0* 97615272 59.0

22:25:48
fr17n03. 1430.0 125372 11.0

18: 29: 26
fr28n13.634.0 125365 11.0

18: 30: 04
fr28n09. 32.0 118071 7.0

18: 32: 58
fr17n15.1393.0 110712 2.4

09: 58: 56
fr17n09.534.0 68841 10.9

04: 38: 48
fr28n13.697.0 21102 1.4

03: 44: 45
fr17n07.1499.0 20906 1.4

04: 42: 31
fr17n06. 1517.0 20604 1.3

06: 45: 46
fr28n13.706.0 20180 1.6

10:53: 53
fr17n16. 1550.0 20024 1.5

10: 53: 54
fri17nl12.1528.0 19916 1.6

12:11: 30
fr28n09.50.0 19097 1.2

14:01: 59
fr28n09.51.0 12547 1.0

14:07: 16
fr17nl6. 1551.0 9390 1.0

14: 22: 09

Jobs: 15 Total BackLog: 6434 Node Hours

Thefields are asfollows:
JobName
Priority Calculated job priority.

Name of job.

O

O O O O O O O o o o o o o o o

User

ozturan
jason
jason
nor ai t
nor ai t
kdeacon
j park
j park
chol ik
noor ej t
noor ej t
ebyl aska
dsheppar
zhong

j acob

G oup

govt
asp
asp
uni v
uni v
pdc
dnavy
dnavy
uni v
daf
daf
dnavy
daf
govt

uni v

(25.33 Hours)

Nodes

64
128
128
128
128

64

16

16

16

16

16

16

16

WCLi mi t

24
24

24

13

. 16:
: 00

: 00

120

: 20:
: 00:
00:
00:
00:
. 55:
: 55:
1 59:
. 00:
55:
. 00:

40
00
00
00
00
00
00
00
00
00
00
59
00
00
00

Cl ass

bat ch
medi um
medi um
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch
bat ch

bat ch

Thu
Thu
Thu
Thu
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Fri

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

28
28
28
28
29
29
29
29
29
29
29
29
29
29
29

Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Minimum number of processors required to run job.

WCLimit Wall clock limit specified for job. Time specified in HH:MM:SS notation.
Class Class requested by job.

SystemQueueTime Time job was admitted into the system queue.

An asterisk at the end of ajob (job fr28n03.1718.0* in this example) indicates that the job has a job reservation created for it.
The details of this reservation can be displayed using the checkj ob command.

After displaying the job listing, the command summarizes the workload in the idle queue and indicates the total workload
backlog in proc-hours. The value in parenthesis indicates the minimum amount of time required to run this workload using the
currently available nodes on the system.

Related Commands
Use the showbf command to display resource availability.
Usethedi agnose command to display partition configuration.

Usethe checkj ob command to check the status of a particular job.

showstats

showstats[FLAGS]
Purpose
Show resource usage statistics
Access
This command can be run by any Maui level 1, 2, or 3 Administrator.
Parameters
[NONE]
Flags

NOTE: thiscommand supports all generic maui command flags

IFlag |Description

|-a [<ACCOUNTID>] |display account statistics

-9 [<GROUPID>] |display group statistics

I-n [<NODEID>] |display node statistics

|-S |disp|ay summary information. NOTE: only valid with the'-n' flag
-s |display general scheduler statistics

|-u [RUSERID>] |display user statistics

l-v |display verbose information

Description

This command shows various accounting statistics for the system. Historical statistics cover the timeframe from the most
recent execution of the resetstats command.

Example 1

% showstats -a
Account Statistics Initialized Tue Aug 26 14:32:39

[----- Running ------ I R E R Conpl et ed
__________________________________ |
Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF MaxXF
AvgH Effic WCAcc
137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77 8.15
5.21 90.70 34.69
462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71 5.40
3.14 98.64 40.83
462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37 4.88
0.52 82.01 24.14
005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53 14.81
0.42 98.73 28.40
175436 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78 8.61
5.60 83.64 17.04
000102 0 0 0. 00 1 0.17 64 0.16 5.1 0.03 ----- 10.85 10.85
10.77 27.90 7.40
000023 0 0 0. 00 1 0.17 12 0.03 0.2 0.00 ----- 0.04 0.04

0.19 21.21 1.20

http://www.clusterresources.com/products/maui/docs/docsout/a.ggeneralcmdline.shtml

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include information about
jobs that are currently running. Completed statistics are compiled using historical information from both running and
completed jobs.

Thefields are as follows:

Account Account Number.

Jobs Number of running jobs.
Procs Number of processors allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by account.

PHReg* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by account.

PHDed Tota proc-hours dedicated to active and completed jobs. The proc-hours dedicated to ajob are calculated
by multiplying the number of allocated procs by the length of time the procs were allocated, regardless of
the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by account.

FSTgt Fairshare target. An account's fairshare target is specified inthef s. cf g file. This value should be
compared to the account's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.
AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used by
the job by the node-hours allocated to the job.

WCAcc* Averagewall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until an account has completed at least one job.

Example 2

% showstats -g
Group Statistics Initialized Tue Aug 26 14:32: 39

GroupNane d D Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF MaxXF
AvgQH Effic WCAcc
univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77 8.15
5.21 90.70 34.69
daf 204 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71 5.40
3.14 98.64 40.83
dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37 4.88
0.52 82.01 24.14

govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53 14.81
0.42 98.73 28.40
asp 227 0 0 0. 00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78 8.61
5.60 83.64 17.04
derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2.09 ----- 0.50 1.93
0.51 96.03 32.60
dchal |l 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00 0.52 0. 88
2.49 95.82 33.67
nih 239 0 0 0. 00 17 2.91 170 0.42 148.1 0.88 ----- 0.95 1.83
0.14 97.59 84.31
darmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25 0.14 0.59
0.07 81.33 12.73
syst ens 80 0 0 0. 00 6 1.03 67 0.16 22. 4 0.13 ----- 4.07 8.49
1.23 28.68 37.34
pdc 252 0 0 0.00 1 0. 17 64 0.16 5.1 0.08 ----- 10.85 10.85
10. 77 27.90 7.40
staf f 1 0 0 0. 00 1 0.17 12 0.03 0.2 0.00 ----- 0.04 0. 04

0.19 21.21 1.20
This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include information about
jobs that are currently running. Completed statistics are compiled using historical information from both running and
completed jobs.

Thefields are as follows:

GroupName Name of group.

GID Group 1D of group.
Jobs Number of running jobs.
Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by group.

PHReg* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to ajob are calculated

by multiplying the number of allocated procs by the length of time the procs were allocated, regardless of
the job's CPU usage.

% Percentage of total proce-hours dedicated that were dedicated by group.

FSTgt Fairshare target. A group's fairshare target is specified inthef s. cf g file. This value should be compared
to the group's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's X Factor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxX F* Highest expansion factor received by jobs completed.
AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used
by the job by the node-hours allocated to the job.

WCAcc* Average wall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until a group has completed at least one job.

Example 3

% showstats -n -S
Menmory Requi renent Breakdown:

Menory Nodes Percent Initial NH Percent NodeHours Percent

64 8 2.78 9799 794.92 1232 100. 00
128 144 50. 00 9162 41. 29 22190 100.00
256 32 11. 11 20290 411. 47 4931 100.00
512 96 33. 33 5080 34. 34 14793 100. 00

1024 8 2.78 48 3.89 1232 100. 00
2048 0 0.00 0 0.00 0 0. 00
TOTAL 288 100.00 44381 100.00 44381 100. 00

Node Statistics

Sunmmary: 8 64MB Nodes 99. 26% Avai | 79.18% Busy (Current: 100.00% Avail 100. 00% Busy)
Summary: 144 128MB Nodes 98. 99% Avai | 75.92% Busy (Current: 100.00% Avail 100. 00% Busy)
Sunmary: 32 256MB Nodes 97. 69% Avai | 85. 66% Busy (Current: 100.00% Avail 100.00% Busy)
Sunmmary: 96 512MB Nodes 96. 12% Avai | 82.92% Busy (Current: 98.96% Avai l 94. 79% Busy)
Summary: 8 1024MB Nodes 99. 87% Avai | 81.77% Busy (Current: 100.00% Avai | 75. 00% Busy)
System Summary: 288 Nodes 97. 92% Avai | 79.59% Busy (Current: 99.65% Avai l 97. 57% Busy)

This example shows a statistical listing of nodes and memory. Memory Requirement Breakdown portion shows
information about the current workload profile. In this example, the system monitored is a heterogeneous environment
consisting of eight 64 MB (RAM) nodes, 144 128 MB nodes, etc., with atotal of 288 nodes. The third column indicates
the percentage of total nodes that meet this memory criteria. For example, the eight 64 MB nodes make up 2.78% of the
288 total nodes in the system.

Theidle job queue monitored in this example consists of numerous jobs consisting of atotal of 44,381 node-hours of
work. The node-hour workload of jobs that have specific node memory requirements are assigned to the corresponding
memory class. If no specific memory requirement is specified, the job's node-hours are assigned to the lowest memory
class, in this case, the 64 MB nodes.

Example 4

% showst at s

Maui runni ng for 22:01:00 stats initialized on Mon Mar 26 17:43: 34
Eligible/ldle Jobs: 15/ 45 (33.333%
Active Jobs: 42

Successful / Conpl et ed Jobs: 873/ 875 (99. 7%
Avg/ Max QTi me (Hours): 2.71/4.50

Avg/ Max XFact or: 1.03/4.79

Dedi cat ed/ Total ProcHours: 4353. 55/ 4782. 10 (91.038%
Current Active/Total Procs: 183/ 192 (95.312%
Avg WVl | d ock Accuracy: 43. 25%

Avg Job Proc Efficiency: 98. 17%

Est/ Avg Backl og (Hours): 34.5/41.8

This example shows a concise summary of the system scheduling state. Note that showst at s and showst ats - s are
eguivalent.

Thefirst line of output indicates the number of scheduling iterations performed by the current scheduling process,

followed by the time the scheduler started. The second line indicates the amount of time the Maui Scheduler has been
scheduling in HH:MM:SS notation followed by the statistics initialization time.

Thefields are as follows:

Active Jobs Number of jobs currently active (Running or Starting).

Eligible Jobs Number of jobsin the system queue (jobs that are considered when scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the LoadLeveler Idle state.
Completed Jobs Number of jobs completed since statistics were initialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max X Factor Maximum expansion factor of completed jobs.

Max Bypass Maximum bypass of completed jobs.

Available ProcHours Tota proc-hours available to the scheduler.

Dedicated ProcHours Tota proc-hours made available to jobs.

Effic Scheduling efficiency (DedicatedProcHours / Available ProcHours).
Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.
Iteration Iteration on which the minimum scheduling efficiency occurred.
Available Procs Number of procs currently available.

Busy Procs Number of procs currently busy.

Effic Current system efficiency (BusyProcs/AvailableProcs).

WallClock Accuracy Average wall clock accuracy of completed jobs (job-weighted average).

Job Efficiency Average job efficiency (UtilizedTime/ DedicatedTime).
Est Backlog Estimated backlog of queued work in hours.
Avg Backlog Average backlog of queued work in hours.

Example5

% showstats -u
User Statistics Initialized Tue Aug 26 14:32:39

[----- Running ------ I LR E R

.................................. |
User Nane Ul D Jobs Procs ProcHours Jobs %

AvgQH Effic WCAcc
noorejt 2617 1 16 58. 80 2 0.34

0.14 99.52 100.00
zhong 1767 3 24 220.72 20 3.42

0.49 99.37 67.48

lui 2467 0 0 0. 00 16 2.74
0.25 98.96 57.72
evans 3092 0 0 0.00 62 10.60

5.04 87.64 30.62
wengel 2430 2 64 824.90 1 0. 17

4.26 99.63 0. 40
nmukho 2961 2 16 71. 06 6 1.03

0.

5.

4.

12.

%
54
65
82
14
.88
. 90

PHDed

1896.

1511.

1505.

1464.

630.

563.

6
3

Conpl et ed

%

FSTgt

AVgXF
1.02
0.71
1. 02
0.62
0.18
0.31

Max XF
1.04
0. 96
6. 33
1.64
0.18

0.20 93.15 30.28

jimenez 1449 1 16 302. 29 2 0.34 768 1.88 458.3 2.72 ----- 0. 80 0.98
2.31 97.99 70.30
neff 3194 0 0 0.00 74 12.65 669 1.64 352.5 2.09 10.0 0.50 1.93
0.51 96.03 32.60
chol i k 1303 0 0 0.00 2 0.34 552 1.35 281.9 1.67 ----- 1.72 3. 07
25.35 99.69 66.70
j shoermak 2508 1 24 572.22 1 0.17 576 1.41 229.1 1.36 ----- 0.55 0.55
3.74 99.20 39.20
kudo 2324 1 8 163. 35 6 1.03 1152 2.82 211.1 1.25 ----- 0.12 0.34
1.54 96.77 5. 67
xztang 1835 1 8 18.99 ---- ------ a-on aa-o-- 176. 3 1.05 10.0 ------ ------
------ 99.62 ------
feller 1880 0 0 0.00 17 2.91 170 0.42 148.1 0.88 ----- 0.95 1.83
0.14 97.59 84.31
maxi a 2936 0 0 0.00 1 0. 17 191 0.47 129.1 0.77 7.5 0. 88 0. 88
4.49 99.84 69.10
kt gnov71 2838 0 0 0. 00 1 0.17 192 0. 47 95.5 0.57 ----- 0.53 0.53

0.34 90.07 51.20
This example shows a statistical listing of all active users. Thetop line (User Statistics Initialized...) of the output indicates
the timeframe covered by the displayed statistics.

The statistical output is divided into two statistics categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical information from both
running and completed jobs.

The fields are as follows:

UserName Name of user.

uiD User ID of user.
Jobs Number of running jobs.
Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReg* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to ajob are calculated
by multiplying the number of allocated procs by the length of time the procs were allocated, regardless of
the job's CPU usage.

% Percentage of total prochours dedicated that were dedicated by user.

FSTgt Fairshare target. A user'sfairsharetarget is specified inthef s. cf g file. This value should be compared to
the user's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.
AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used by
the job by the node-hours allocated to the job.

WCAcc* Averagewall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until a user has completed at least one job.
Related Commands
Usether eset st at s command to re-initiaize statistics.

Notes
See the Statistics document for more detail s about scheduler statistics.

© Copyright 1998, Maui High Performance Computing Center. All

http://www.clusterresources.com/products/maui/docs/docsout/statistics.shtml

G.1: canceljob

canceljob JOB [JOB] ... [-h]

Purpose

Cancels the specified job(s).

Permissions

This command can be run by any Scheduler Administrator and by the owner of the job.
Parameters

JOB ID of job to be cancelled

Flags
--help Show help for this command.

Description

Thecancel j ob command is used to selectively cancel the specified job(s) (active, idle, or
non-queued) from the queue.

Example 1

> cancel j ob 6397

Related Commands

This command is equivalent to the local resource manager job cancel commands.

Notes

releasehold

releasehold [-h|-a]-b] JOBEXP

Purpose

Release hold on specified job(s).

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

JOBEXP Job expression of job(s) to release.

Flags
-a Release all types of holds (user, system, batch) for specified job(s).
-b Release batch hold from specified job(s).

-h Help for this command.

Description

This command allows you to release batch holds or all holds (system, user, and batch) on
specified jobs. Any number of jobs may be released with this command.

Example 1

> rel easehold -b fr17n02.1072.0
Batch hold rel eased on all specified jobs

In this example, a batch hold was released from this one job.
Example 2

> rel easehold -a fr17n02.1072.0 fr15n03. 1017.0
Al'l holds released on all specified jobs

In this example, all holds were released from these two jobs.
Related Commands

Y ou can place ahold on ajob using the set hol d command.
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All

runjob

runjob [ARGS] <JOBID>
Purpose

Immediately run the specified job.

Per missions

This command can be run by any Maui administrator.

Parameters

JOBID Name of thejob to run.

Args Description

Clear job parameters from previous runs (used to clear PBS neednodes

C attribute after PBS job launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-h Help for this command.

-n <NODEL |ST> Attempt to start the job using the specified nodelist where nodenames

are comma or colon delimited

-p <PARTITION> Attempt to start the job in the specified partition

-S Attempt to suspend the job
X Attempt to force the job to run, ignoring throttling policies, QoS
constaints, and reservations
Description

This command will attempt to immediately start ajob.

Example

> runjob cluster. 231
job cluster.231 successfully started

This example attempts to run job cluster.231.

See Also:

cancel | ob - cancel ajob.
checkj ob - show detailed status of ajob.
showg - list queued jobs.

sethold

sethold [-b | -h] JOB [JOB] [JOB] ...

Purpose

Set hold on specified job(s).

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

JOB Job number of job to hold.

Flags

-b Set abatch hold. Typically, only the scheduler places batch holds. Thisflag alows an
administrator to manually set a batch hold.

-h Help for this command.

Description
This command allows you to place a hold upon specified jobs.
Example

% sethold -b fr17n02.1072.0 fr15n03. 1017.0

Batch Hold Pl aced on Al Specified Jobs

In this example, a batch hold was placed on job fr17n02.1072.0 and job fr15n03.1017.0.
Related Commands

Release holdswith ther el easehol d command.

Default File L ocation
[u/ |l oadl / maui / bi n/ set hol d

Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

setqos

setgos [-h] QOS JOB
Purpose
Set Quality Of Service for a specified job.
Permissions
This command can be run by any user.
Parameters

JOB Job number.

QOS Quality Of Servicelevel. Rangeis 0 (lowest) to 8 (highest). Jobs default to a QOS
level of O, unless the user, group, or account has a different value specified in the
fairshare configuration file (f s. cf g). Users are allowed to set the QOS for their own
jobs in the range of 0 to the maximum value allowed by the user, group, and/or
account which owns the job.

Flags

-h Help for this command.

Description

This command allows you to set the Quality Of Service (QOS) level for a specified job. Users
are allowed to use this command to change the QOS of their own jobs.

Example

% setqos 3 fr28nl13.1198.0

Job QOS Adj ust ed

This example sets the Quality Of Service to avalue of 3 for job number fr28n13.1198.0.
Related Commands
None.

Default File L ocation

/ u/ | oadl / maui / bi n/ set gos
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

setspri

setspri [-r | PRIORITY JOB
Purpose
Set or remove absolute or relative system priorities for a specified job.
Permissions
This command can be run by any Maui Scheduler Administrator.
Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding
the policy generated priority value. Rangeis O to clear, 1 for lowest, 1000 for
highest. If the'-r' flag is specified, the system priority is relative, adding or
subtracting the specified value from the policy generated priority. If arelative
priority is specified, any value in the range +/- 1000000000 is acceptable.

Flags
-h Help for this command.

-r Set relative system priority on job.

Description

This command allows you to set or remove a system priority level for a specified job. Any job
with a system priority level set is guaranteed a higher priority than jobs without a system
priority. Jobs with higher system priority settings have priority over jobs with lower system
priority settings.

Example 1

% setspri 10 fr13n03.24.0

Job System Priority Adjusted

In this example, a system priority of 10 is set for job fr13n03.24.0.

Example 2

% setspri 0 fr13n03.24.0

Job System Priority Adjusted

In this example, system priority is cleared for job fr13n03.24.0.
Example 3

> setspri -r 100000 job. 00001

Job System Priority Adjusted

In this example, the job's priority will be increased by 100000 over the value determine by
configured priority policy.

Related Commands
Usethecheckj ob command to check the system priority level, if any, for agiven job.
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

releaseres

releaseres[ARGUMENTS] <RESERVATION D> [<RESERVATION ID]...
ARGUMENTS:
[-h] /| USAGE HELP

Purpose

Release existing reservation.

Access

Users can use this command to release any reservation they own. Level 1 and level 2 Maui
administrators may use this command to release any reservation.
This command can be run by any user.

Parameters

RESERVATION ID Name of reservation to release.

Flags

-h Help for this command.

Description

This command allows Maui Scheduler Administrators to release any user, group, account, job,
or system reservation. Users are allowed to release reservations on jobs they own. Note that
releasing areservation on an active job has no effect since the reservation will be automatically
recreated.

Example
Release two existing reservations.

% rel easeres system 1 bob. 2
rel eased User reservation 'system1'

rel eased User reservation 'bob. 2

Related Commands

Y ou can view reservations with the show es command.
Y ou can set areservation using theset r es command.

Notes

See the Reservation document for more information.

setres command overview

setres [ARGUMENTS] <RESOURCE_EXPRESSION>
ARGUMENTS:

[-a<ACCOUNT_LIST>]

[-c<CHARGE_SPEC>]

[-d <DURATION>]

[-e<ENDTIME>]

[-E]** //EXCLUSIVE

[-f <FEATURE_LIST>*

[-g<GROUP_LIST>]

[-n <NAME>]

[-0 <OWNER> J**

[-p <PARTITION>]

[- <QUEUE_LIST>]* //(ieCLASS LIST)
[-Q <QOSLIST>]

[-r <RESOURCE_DESCRIPTION>]
[-R <RESERVATION_PROFILE>]**
[-Ss<STARTTIME>]

[-T <TRIGGER>]**

[-u<USER_LIST>]

[-Xx<FLAGS>]

* NOTE: only availablein Maui 3.2 and higher.
* NOTE: only availablein Moab 4.0 and higher.

Purpose
Reserve resources for use by jobs with particular credentials or attributes.
Access

This command can berun by level 1 and level 2 Maui administrators,

Parameters

IName |Format IDefault IDescription
list of accounts
that will be

ACCOUNT LIST |<STRING>[:<STRING>]... [NONE] allowed access
to the reserved
resources

CHARGE_SPEC

<ACCOUNT>[,<GROUP>[,<USER>]]

[NONE]

specifies which
credentials will
be accountable
for unused
resources
dedicated to the
reservation

CLASS LIST

<STRING>[:<STRING>]...

[NONE]

list of classes
that will be
allowed access
to the reserved
resource

DURATION

[[[DD:]JHH:]MM:]SS

[[[DD:]JHH:]MM:]SS

duration of the
reservation (not
needed if
ENDTIME is
specified)

ENDTIME

[HH[:MM[:SS]]][_MO[/DDI[/Y Y]]]
or
+[[[DD:]HH:]MM:]SS

[INFINITY]

absolute or
relative time
reservation will
end (not
required if
Duration
specified)

EXCLUSIVE

N/A

N/A

requests
exclusive
access to
resources

FEATURE_LIST

<STRING>[:<STRING>]...

[NONE]

list of node
features which
must be
possessed by
the reserved
resources

FLAGS

<STRING>[:<STRING>]...

[NONE]

list of
reservation
flags (See
Managing
Reservations

for details)

GROUP _LIST

<STRING>[:<STRING>]...

[NONE]

list of groups
that will be
allowed access
to the reserved
resources

NAME

<STRING>

name set to first

namelisted in ACL

or SYSTEMIf no
ACL specified

name for new
reservation

OWNER

<CREDTY PE><CREDID> where
CREDTYPE isone of user, group, acct,
class, or gos

N/A

specifieswhich
credentia is
granted
reservation
ownership
privileges

PARTITION

<STRING>

[ANY]

partition in
which
resources must
be located

QOS LIST

<STRING>[:<STRING>]...

[NONE]

list of QOS's
that will be
allowed access
to the reserved
resource

RESERVATION_

PROFILE

existing reservation profile ID

N/A

requests that
default
reservation
attributes be
loaded from the
specified
reservation
profile (see
RSV PROFILE)

RESOURCE_
DESCRIPTION

colon delimited list of zer or more of
the following <ATTR>=<VALUE>
pairs

PROCS=<INTEGER>

MEM =<INTEGER>

DISK =<INTEGER>
SWAP=<INTEGER>

PROCS=-1

specifiesthe
resources to be
reserved per
task. (-1
indicates al
resources on
node)

RESOURCE_
EXPRESSION

ALL
or

TASK S{==[>=} <TASKCOUNT>
or

<HOST_REGEX>

Required Field. No
Default

specifiesthe
tasksto
reserve. ALL
indicates all
resources
available
should be
reserved.
NOTE: if
ALL or ahost
expression is
specified, Maui
will apply the
reservation
regardless of
existing
reservations
and
exclusitivity
issues. If
TASKS is used,
Maui will only
alocate
accessible
resources.

STARTTIME

[HH[:MM[:SS]]][_MO[/DDI[/YY]]]
or
+[[[DD:]HH:]MM:]SS

[NOW]

absolute or
relative time
reservation will
start

TRIGGER

<STRING>

N/A

comma
delimited
reservation
trigger list
following
format
described in the
trigger format

section of the
reservation
configuration
oVverview.

list of users
that will be
USER_LIST <STRING>[:<STRING>]... [NONE] allowed access
to the reserved
resources

Description

The setres command alows an arbitrary block of resources to be reserved for use by jobs which
meet the specifed access constraints. The timeframe covered by the reservation can be specified on
either an absolute or relative basis. Only jobs with credentialslisted in the reservation ACL (i.e.,
USERLIST, GROUPLIST,...) can utilize the reserved resources. However, these jobs still have
the freedom to utilize resources outside of the reservation. The reservation will be assigned a name
derived from the ACL specified. If no reservation ACL is specified, the reservation is created as a
system reservation and no jobs will be allowed access to the resources during the specified
timeframe (valuable for system maintenance, etc). See the Reservation Overview for more

information.

Reservations can be viewed using the showres command and can be released using the releaseres
command.

Example 1
Reserve two nodes for use by users john and mary for aperiod of 8 hours starting in 24 hours

% setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2
reservation 'john.1l" created on 2 nodes (2 tasks)

node001: 1
node005: 1

Example 2

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until Jun
22,5:00 PM.

% setres-s 8:00:00_06/20 -e 17:00:00_06/22 ALL
reservation 'system1l' created on 8 nodes (8 tasks)

node001:
node002:
node003:
node004:
node005:
node006:
node007:

RPRRPRRRR

node008: 1

Example 3

Reserve one processor and 512 MB of memory on nodes node003 through node 006 for members
of the group staff and jobs in the interactive class

% setres -r PROCS=1:MEM=512 -g staff -| interactive 'node00[3-6]'
reservation 'staff.1" created on 4 nodes (4 tasks)

node003: 1
node004: 1
node005: 1
node006: 1

Related Commands

Use the showres command to view reservations.
Use the rel easeres command to rel ease reservations.
Use the diagnose -r command to analyze and present detailed information about reservations.

showres

showres

[ARGS] [<RESID>]

Purpose: show detailed reservation information

Argument Description

-9
-h

show 'grep'-able output with nodename on every line

show usage help

display information regarding al nodes reserved by <RESID>

display all reservations which overlap <RESID> in time

display reservation timeframes in relative time mode

display summary reservation information

show verbose output. If used with the '-n' flag, the command will display all
reservations found on nodes contained in <RESID>. Otherwise, it will show long
reservation start dates including the reservation year.

Parameter
RESID

Access

This command can be run by any Maui administrator, or by any valid user if the parameter RESCTLPOLICY isset to

ANY.

Description

This command displays all reservations currently in place within the Maui Scheduler. The default behavior isto display

Description

ID of reservation of interest - optional

reservations on areservation-by-reservation basis.

Example 1

> show es

Reservati ons

Type

G

Job
Job
Job
Job
Job
Job
oup

User
System

ReservationlD S Start End Duration Nodes StartTime
fr4n01.902.0 S -0:02: 00 0: 08: 00 0: 10: 00 16 Sat Dec 14 08:29:09
fr5nll.176.0 S -0:01: 00 1:59: 00 2:00: 00 8 Sat Dec 14 08:30:09
fr5n11.177.0 S -0:01: 00 0: 02: 20 0: 03: 20 1 Sat Dec 14 08:30:09
fr5n12.179.0 S -0:00: 30 1:59: 30 2:00: 00 3 Sat Dec 14 08:30: 39
fr5n12.180.0 S -0:00: 30 0: 29: 30 0: 30: 00 4 Sat Dec 14 08:30:39
fr5n13.155.0 S 0: 00: 00 2:00: 00 2:00: 00 4 Sat Dec 14 08:31:09

daf #0 - 10: 00: 00 I NFINITY I NFINITY 16 Sat Dec 14 18:31:09
| oadl #0 0: 00: 00 30: 00: 00 30: 00: 00 16 Sat Dec 14 08:31:09
SYSTEMHO 20: 00: 00 30: 00: 00 10: 00: 00 40 Sun Dec 15 04:31:09

25 Reservations Located

This example shows all reservations on the system. The fields are as follows:

Type

Reservation Type. Thiswill be one of the following: Job, User, Group, Account, or System.

ReservationID Thisisthe name of the reservation. Job reservation names are identical to the job name. User, Group, or

Account reservations are the user, group, or account name followed by a number. System reservations are
given the name SY STEM followed by a number.

Start

End

Duration

Nodes
StartTime

Example 2

> showes -n
Reservati ons on Sat Dec 14 08:31:09

StartTi ne

frioOnll.
fr26n01.
fr5n09.

04: 31: 09

fr18nl5.
fr20n02.

08: 31: 09

18:31: 09

fr20nl15.

08:31: 09

18:31: 09

fr26nll.
fri7nll.
fr25nl12.
fr26nl6.

fr5nl2.

04:31: 09

fr5ni5.

This example shows reservations for nodes. The fields are as follows:

NodeName Type ReservationlD JobState Start Dur ati on
usc. edu Job fran02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
usc. edu Job fran02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
usc. edu Job fran02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
System SYSTEM#0 N A 20:00: 00 10: 00: 00 Sun Dec 15
usc. edu Job fr4an02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
usc. edu Job fr4n02.126.0 Starting -0: 02: 00 6: 00: 00 Sat Dec 14 08:29:
User | oadl #0 N A 0:00: 00 30:00:00 sSat Dec 14
G oup daf #0 N A 10: 00: 00 INFINITE Sat Dec 14
usc. edu Job fr4n02. 126.0 Starting -0: 02: 00 6: 00: 00 Sat Dec 14 08:29:
User | oadl #0 N A 0:00: 00 30:00:00 Sat Dec 14
G oup daf #0 N A 10:00: 00 INFINITE Sat Dec 14
usc. edu Job fr4an02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
usc. edu Job fr4n02. 126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
usc. edu Job fr4n02.126.0 Starting -0: 02: 00 6: 00: 00 Sat Dec 14 08:29:
usc. edu Job fr4n02.126.0 Starting -0: 02: 00 6: 00: 00 Sat Dec 14 08:29:
usc. edu Job fran02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14 08:29:
System SYSTEM{0 NA 20:00:00 10:00:00 Sun Dec 15
usc. edu Job fr4n02.126.0 Starting -0: 02: 00 6: 00: 00 Sat Dec 14 08:29:

State. Thisfield isvalid only for job reservations. It indicates whether the job is (S)tarting, (R)unning, or
(hdle.

Relative start time of the reservation. Timeis displayed in HH:MM:SS notation and is relative to the
present time.

Relative end time of the reservation. Time is displayed in HH:MM:SS notation and is relative to the
present time. Reservation that will not completein 1,000 hours are marked with the keyword INFINITY .

Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1,000 hours are marked

with the keyword INFINITY .
Number of nodes involved in reservation.

Time Reservation became active.

NodeName

Type
Reservationl D

JobState
Start

Node on which reservation is placed.
Reservation Type. Thiswill be one of the following: Job, User, Group, Account, or System.

Thisisthe name of the reservation. Job reservation names are identical to the job name. User, Group, or
Account reservations are the user, group, or account name followed by a number. System reservations are
given the name SY STEM followed by a number.

Thisfield isvalid only for job reservations. It indicates the state of the job associated with the reservation.

Relative start time of the reservation. Timeis displayed in HH:MM:SS notation and is relative to the
present time.

09

09

09
09

09

Duration Duration of the reservation in HH:MM :SS notation. Reservations lasting more than 1000 hours are marked
with the keyword INFINITY .

StartTime Time Reservation became active.

Example 3

> showr es fr35n08. 3360.0
Reservati ons

Type ReservationlD S Start End Duration Nodes StartTine
Job fr35n08.3360.0 S -8:24: 06 15: 35: 54 24:00: 00 16 Thu Mar 5 03:08: 38

1 reservation | ocated
In this example, information for a specific reservation (job) is displayed.

See Also:

set r es - create new reservations.
r el easer es - release existing reservations.

di agnose -r - diagnose/view the state of existing reservations.
Reservation Overview - description of reservations and their use.

showDbf

showbf
[-A] /I show information accessible by any user, group, or account
[-aACCOUNT]
[-c CLASS]

[-d DURATION]

[-D] /I show deep resource availability
[-f FEATURELIST]

[-g GROUP]

[-h]

[-m[MEMCMP] MEMORY]
[-n NODECOUNT]

[-p PARTITION]

[-0 QOS]

[-uUSER]

[-v] /l VERBOSE

Purpose

Shows what resources are available for immediate use. NOTE: if specific information is not specified, showbf will
return information for the user and group running but with global accessfor other fields. For example, if '-q <QOS>' is
not specified, Maui will return backfill information for ajob which could magically access all QOS based resources (ie,
resources covered by reservations with a QOS based ACL), if '-c <CLASS>' is not specifed, it will return the info for
resources accessible to any class.

Permissions

This command can be run by any user.

Parameters
ACCOUNT Account name.
CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in [DD:]JHH:MM:SS notation.
FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signsare >, >=, ==, <=, and <.

MEMORY Specifies the amount of required real memory configured on the node, (in MB), used with the -m
flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.
PARTITION Specify partition to check with -p flag.

QOS Specify QOS to check with -q flag.

USER Specify particular user to check with -u flag.
PARTITION Specify partition to check with -p flag.

Flags

-A Show resource availability information for all users, groups, and accounts. By default, showbf uses the default
user, group, and account 1D of the user issuing the command.

-a Show resource availability information only for specified account.
-d Show resource availability information for specified duration.

-D Display current and future resource availability notation.

-g Show resource availability information only for specified group.
-h Help for this command.

-m Allows user to specify the memory requirements for the backfill nodes of interest. It isimportant to note that if
the optiona MEMCMP and MEMORY parameters are used, they MUST be enclosed in singleticks (') to avoid
interpretation by the shell. For example, enter showbf -m ' ==256" to request nodes with 256 MB memory.

-n Show resource availability information for a specified number of nodes. That is, this flag can be used to force
showbf to display only blocks of resources with at least this many nodes available.

-p Show resource availability information for the specified partition.
-q Show information for the specified QOS.

-u Show resource availability information only for specified user.

Description

This command can be used by any user to find out how many processors are available for immediate use on the
system. It is anticipated that users will use this information to submit jobs that meet these criteria and thus obtain quick
job turnaround times. This command incorporates down time, reservations, and node state information in determining
the available backfill window.

Example 1

% showbf

backFi |l wi ndow (user: 'john' group: 'staff' partition: ALL) Mon Feb 16 08: 28: 54

partition Fast:
9 procs available for 4:54:18

partition Sl ow
34 procs available for 10:25:30
26 procs available for 7:00:19
1 proc available with no tinelimt

In this example, ajob requiring up to 34 processors could be submitted for immediate execution in partition 2 as long
asit required less than 10 hours, 25 minutes. Likewise, jobs requiring up to 26 processors that complete in less than 7
hours could also run in partition Sow. A single-processor job with arbitrary wallclock limits could also run in this
partition.

In this example, the window is specifically for user j ohn in group st af f . Thisinformation is important because
processors can be reserved for particular users and groups, thus causing backfill windows to be different for each
person. Backfill window information for a non-default user, group, and/or account can be displayed using the - u,

- g, and- a flags, respectively. A backfill window with global user, group, and account access can be displayed using
the - Aflag.

Example 2
% showbf -r 16 -d 3:00: 00

backFill w ndow (user: 'john' group: 'staff' partition: ALL) Mon Feb 16 08: 28: 54

partition ALL:
33 procs available with no tine limt

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour runtime and at least 16
processors. Specifying job duration is of value when time based access is assigned to reservations (i.e., using the
SRCFG TIMELIMIT ACL)

Example 3
% showbf -m'>=512"
backfill w ndow (user: 'john' group: 'staff' partition: ALL) Thu Jun 18 16: 03: 04

no procs avail able

In this example, aresource availability window is requested for processors located only on nodes with at least 512
MB of memory. Inthe example above, the command output reports that no processors are available for immediate use
which meet this constraint.

Related Commands
Use the showg command to show jobs in the various queues.
Usethedi agnose command to show the partitions.

Notes

showstart

showstart [-h] <JOBID>
Purpose
Display the earliest possible start and completion times for a specified job.
Permissions
This command can be run by any user.
Parameters
JOBID Job to be checked
Flags

-h Help for this command.

Description

This command displays the earliest possible start time of ajob. If the job already possesses
areservation, the start time of this reservation will be reported. If no such reservation exists,
this command will determine the earliest time areservation would be created assuming this job
was highest priority. If thisjob does not have areservation and it is not highest priority, the
value of returned information may be limited.

Example
>showstart | ob001

job Job001 requires 2 procs for 0:33:20

Earliest start is in 1:40: 00 on Thu Jan 1 01:16:40
Earliest Conpletion is in 2:13:20 on Thu Jan 1 01:50:00
Best Partition: DEFAULT

Related Commands

checkjob, showres

Notes

Since the information provided by thisjob is only highly accurate if the job is highest

priority or if the job has a reservation, sites wishing to make decisions based on this
information may want to consider using the RESERVATIONDEPTH parameter to increase the
number of priority based reservations. This can be set so that most, or even all idle jobs
receive priority reservations and make the results of this command generally useful. The only
caution of this approach is that increasing the RESERVATIONDEPTH parameter more tightly
constrains the decisions of the scheduler and may resulting in slightly lower system utilization
(typically less than 8% reduction).

resetstats

resetstats[-h]

Purpose

Resets statistics to start-up state.

Permissions

This command can be run by level 1 scheduler administrators.
Parameters

None.

Flags

-h Help for this command.

Description

This command resets all internally-stored Maui Scheduler statistics to the initial start-up state
as of the time the command was executed.

Example

O%b resetstats

Statistics Reset at tine Wed Feb 25 23:24:55 1998

Notes

5.0 Prioritizing Jobs and Allocating Resour ces
e 5.1 Job Priority
e 5.2 NodeAllocation
o 5.3 Node Access Palicies
o 5.4 Node Availahility
o 5.5 Task Distribution Policies

5.2 Node Allocation

While job prioritization allows a site to determine which job to run, node allocation policies
allow a site to specify how available resources should be allocated to each job. The algorithm
used is specified by the parameter NODEALLOCATIONPOLICY . There are multiple node

allocation policies to choose from allowing selection based on reservation constraints, node
configuration, available resource constraints, and other issues. These policies can be specified
with a system wide default value and on a per job override basis. The following algorithms are
available and described in detail below: FIRSTAVAILABLE , LASTAVAILABLE,

PRIORITY , CPULOAD , MINRESOURCE , CONTIGUOUS , MAXBALANCE , FASTEST
,and LOCAL.

e 5.2.1 Node Allocation Overview
« 5.2.2 Resource Based Algorithms
o 5.22.1 CPULOAD
o 5.2.2.2 FIRSTAVAILABLE
o 5223 LASTAVAILABLE
o 5.2.2.4 PRIORITY
o 5.2.25 MINRESOURCE
o 5.2.2.6 CONTIGUOUS
o 5.2.2.7 MAXBALANCE
o 5.2.2.8 FASTEST
o 5229 LOCAL
o 5.2.3 TimeBased Algorithms
e 5.2.4 Localy Defined Algorithms
« 5.2.5 Specifying 'Per Job' Resource Preferences

¢
- Node allocation policy, along with many many of settings can be set graphically with
the Moab Cluster Manager ™™,

5.2.1 NodeAllocation Overview

Node allocation is the process of selecting the best resources to allocate to ajob from allist
of available resources. Making this decision intelligently isimportant in an environment
which possesses one or more of the following attributes:

http://www.clusterresources.com/products/maui/mcm/

- heterogeneous resources (resources which vary from node to node in terms of quantity or
quality)

- shared nodes (nodes may be utilized by more than one job)
- reservations or service guarantees

- non-flat network (a network in which a perceptible performance degradation may
potentially exist depending on workload placement)

5.2.1.1 Heterogeneous Resources

If the available compute resources have differing configurations, and a subset of the
submitted jobs cannot run on all of the nodes, then allocation decisions can significantly affect
scheduling performance. For example, a system may be comprised of two nodes, A and B,
which areidentical in all respects except for RAM, possessing 256MB and 1GB of RAM
respectively. Two single processor jobs, X and Y, are submitted, one requesting at least 512
MB of RAM, the other, at least 128 MB. The scheduler could run job X on node A in which
case job Y would be blocked until job X completes. A more intelligent approach may beto
allocate node B to job X because it has the fewest available resources yet still meets the
constraints. Thisis somewhat of a'bestfit' approach in the configured resource dimension and
Isessentially what is done by the ' MINRESOURCE' agorithm.

5.2.1.2 Shared Nodes

Shared node systems are most often involve SMP nodes although this is not mandatory.
Regardless, when sharing the resources of a given node amongst tasks from more than one job,
resource contention and fragmentation issues arise.

Most current systems still do not do avery good job of logically partitioning the resources
(i.e., CPU, Memory, network bandwidth, etc.) available on agiven node. Consequently
contention often arises between tasks of independent jobs on the node. Thiscanresultina
slowdown for all jobs involved which can have significant ramificationsif large way parallel
jobs are involved.

On large way SMP systems (i.e., > 32 processors/node), job packing can result in
intra-node fragmentation. For example, again take two nodes, A and B each with 64
processors. Assume they are currently loaded with various jobs and have 24 and 12 processors
free respectively. Two jobs are submitted, Job X requesting 10 processors, and job Y
requesting 20 processors. Job X can start on either node but starting it on node A will prevent
job Y from running. An algorithm to handle intra-node fragmentation is pretty straightforward
for asingle resource case, but what happens when jobs request a combination of processors,
memory, and local disk. Determining the correct node suddenly gets significantly more

complex

5.2.1.3 Reservationsor Service Guarantees

A reservation based system adds the time dimension into the node allocation decision.
With reservations, node resources must be viewed in atype of two dimension 'node-time'
space. Allocating nodes to jobs fragments this node-time space and makes it more difficult to
schedule jobs in the remaining, more constrained node-time slots. Allocation decisions should
be made in such away as top minimize this fragmentation and maximize the schedulers ability
to continue to start jobs in existing slots. See the figure to hopefully remove a small amount of
the incoherency contained in the above sentences. Inthisfigure, Job A and job B are already
running. A reservation, X, has been created some timein the future. Assumethatjob A is?2
hourslong and job B is 3 hourslong. Again, two new single processor jobs are submitted, C
and D; job C requires 3 hours of compute time while job D requires 5 hours. Either job will
just fit in the free space located above Job A or in the free space located below job B. If job C
is placed above Job A, job D, requiring 5 hours of time will be prevented from running by the
presence of reservation X. However, if job C is placed below job B, job D can still start
immediately above Job A. Hopefully, this canned exampl e demonstrates the importance of
time based reservation information in making
node allocation decisions, both at the time of
starting jobs, and at the time of creating
reservations. The impact of time based issues
grows significantly with the number of
reservationsin place on agiven system. The
LASTAVAILABLE agorithm works on this
premise, locating resources which have the
smallest space between the end of ajob under
consideration and the start of afuture
reservation.

Nodes

5.2.1.4 Non-flat Network

On systems where network connections do not resemble aflat 'all-to-all' topology, the
placement of tasks may present a significant impact on the performance of communication
intensive parallel jobs. If latencies and bandwidth of the network between any two nodes vary
significantly, the node all ocation algorithm should attempt to pack tasks of a given job as close
to each other as possible to minimize the impact of these bandwidth and latency differences.

5.2.2 Resource Based Algorithms

Maui contains a number of allocation agorithms which address some of the needs described
above. Additional 'homegrown' allocation algorithms may also be created and interfaced into
the Maui scheduling system. The current suite of algorithmsis described below.

5221 CPULOAD

Nodes are selected which have the maximum amount of available, unused
cpu power, i.e. <#of CPU's> - <CPU load>. Good agorithm for timesharing node
systems. Thisalgorithm isonly applied to jobs starting immediately. For the
purpose of future reservations, the MINRESOURCE algorithm is used.

5.2.22 FIRSTAVAILABLE

Simplefirst come, first server algorithm where nodes are allocated in the
order they are presented by the resource manager. Thisisavery simple, and very
fast algorithm.

5223 LASTAVAILABLE

Algorithm which selects resources so as to minimize the amount of time after
the job and before the the trailing reservation. Thisalgorithm is a'best fit in time'
algorithm which minimizes the impact of reservation based node-time
fragmentation. It isuseful in systems where alarge number of reservations (job,
standing, or administrative) arein place.

5.2.24 PRIORITY

This algorithm allows a site to specify the priority of various static and
dynamic aspects of compute nodes and allocate them accordingly. Itishighly
flexible allowing node attribute and usage information to be combined with
reservation affinity. Using node allocation priority, the following priority
components can be specified:

|Component Name|Descr iption
IADISK llocal disk currently available to batch jobs
IAMEM real memory currently available to batch jobs

processors currently available to batch jobs (configured

APROCS procs - dedicated procs)

IASWAP virtual memory currently available to batch jobs
ICDISK total local disk allocated for use by batch jobs

ICMEM total real memory on node

ICPROCS ltotal processors on node

ICSWAP total virtually memory configured on node
IJJOBCOUNT Inumber of jobs currently running on node

ILOAD current 1 minute load average

IPREF Inode meets job specific resource preferences
IPRIORITY ladmin specified node priority

IRESAFFINITY |reservation affinity for job being evaluated

|SPEED lif set, node 'procspeed’. otherwise, relative node 'speed"
USAGE percentage of time node has been running batch jobs since

the last statisticsinitialization

The node alocation priority function can be specified on a node by node or
cluster wide basis. In both cases, the recommended approach is to specify the
PRIORITYF attribute with the NODECFG parameter. A few examples follow.

Example 1. Favor the fastest nodes with the most available memory which are
running the fewest jobs.

NCDEALLOCATI ONPOLI CY PRI ORI TY
NCDECFE DEFAULT] PRI ORI TYF=' SPEED + .01 * AMEM - 10 * JOBCOUNT'

Example 2: A site has a batch system consisting of two dedicated 'batchX' nodes,
as well as numerous desktop systems. The allocation function should favor batch
nodes first, followed by desktop systems which are the least |oaded and have
received the least historical usage.

NODEALLOCATI ONPOLI CY PRIORI TY

NODECFE DEFAULT] PRI ORI TYF='-LOAD - 5*USACE'

NODECF(J bat chl] PRI ORI TY=1000 PRI ORI TYF='" PRI ORI TY + APRCCS
NODECF(J bat ch2] PRI ORI TY=1000 PRI ORI TYF=' PRI ORI TY + APRCCS

Example 3: Pack tasks onto loaded nodes first.

NCDEALLOCATI ONPOLI CY PRI ORI TY
NODECFGE DEFAULT] PRI ORI TYF=JOBCOUNT

NOTE: Asinthe example above, if spaces are placed within the priority function
for readability, the priority function value will need to be quoted to allow proper

parsing.

5.2.25 MINRESOURCE

This algorithm priorities nodes according to the configured resources on each
node. Those nodes with the fewest configured resources which still meet the job's
resource constraints are selected.

5226 CONTIGUOUS

This algorithm will allocate nodes in contiguous (linear) blocks as required
by the Compag RM S system.

5.2.27 MAXBALANCE

This algorithm will attempt to allocate the most 'balanced' set of nodes
possibleto ajob. In most cases, but not all, the metric for balance of the nodesis
node speed. Thus, if possible, nodes with identical speeds will be allocated to the
job. If identical speed nodes cannot be found, the algorithm will alocate the set
of nodes with the minimum node speed 'span’ or range.

5.2.2.8 FASTEST

This algorithm will select nodesin 'fastest node first' order. Nodeswill be
selected by node speed if specified. If node speed is not specified, nodes will be
selected by processor speed. If neither is specified, nodes will be selected in a
random order.

5.2.2.9 LOCAL
Thiswill call thelocally created ‘contrib’ node allocation algorithm.
Seealso
N/A.

5.2.3 TimeBased Algorithms

Under Construction

5.2.4 Locally Defined Algorithms

Under Construction

5.2.5 Specifying '‘Per Job' Resource Preferences

While the resource based node allocation algorithms can make a good guess at what
compute resources would best satisfy ajob, sites often possess a subset of jobs which benefit
from more explicit resource allocation specification. For example one job may perform best
on a particular subset of nodes due to direct access to atape drive, another may be very
memory intensive. Resource preferences are distinct from node requirements. While the
former describes what ajob needsto run at all, the latter describes what the job needsto run
well. Ingeneral, ascheduler must satisfy ajob's node requirement specification, and then, as
best possible, should satisfy the job's resource preferences.

5.25.1 Specifying Resource Preferences

A number of resources managers natively support the concept of resource preferences (ie,
Loadleveler). When using these systems, the language specific preferences keywords may be
used. For systems which do not support resource preferences natively, Maui provides a
resource manager extension keyword, 'PREF' which may be utilized to specify desired
resources. This extension allows specification of node features, memory, swap, and disk space
conditions which define whether or not the node is considered to be 'preferred. (NOTE: Maui
3.2.5 only supports feature based preferences)

5.25.2 Selecting 'Preferred' Resources

Enforcing resource preferencesis not completely straightforward. A site may have a
number of potentially conflicting desires which the scheduler is asked to simultaneously
satisfy. For example, a scheduler may be asked to maximize the proximity of the allocated
nodes at the same time it is supposed to satisfy resource preferences and minimize node
overcommitment. To allow site specific ‘weighting' of these varying desires, Maui alows
resources preferences to be enabled through the 'Priority ' node allocation algorithm. For
example, to utilize resource preferences together with node load, the following configuration
might be used:

NODEALLOCATI ONPOLI CY PRIORITY
NCDECFGE DEFAULT] PRIORI TYF="5 * PREF - LQOAD

To request specific resource preferences, a user could then submit ajob indicating those
preferences. In the case of aPBS job, the following might work:

gsub -I nodes=4,walltime=1:00:00 -W x=PREF(FEATURE:FAST,FEATURE:TAPE)

5.3 Node Access Policies

Maui allocates resourcesto jobs on the basis of ajob task. As
described in the glossary, atask is an atomic collection of resources
which must be co-located on a single compute node. A given job may
request 20 tasks where each task is defined as 'one processor and 128 MB
of RAM'. Compute nodes with multiple processors often possess enough
resources to support more than one task simultaneously. Wheniitis
possible for more than one task to run on a node, node access policies
determine which tasks may share the compute nodes resources.

Maui supports four distinct node access policies which are listed in the
table below.

Policy Description

SHARED Tasks from any combination of jobs may utilize available resources

SINGLEUSER |Tasks from any jobs owned by the same user may utilize available
resources

SINGLEJOB |Tasksfrom asinglejob may utilize available resources
SINGLETASK |A single task from asingle job may run on the node

Node Access polices may be specified viathe parameter NODEACCESSPOLICY . The

global default may be overridden using QOS flags or on ajob-by-job basis using the resource
manager extension NACCESSPOL ICY . By default, nodes are accessible using the setting
of the system wide NODEACCESSPOL ICY parameter. However, jobs may override this
policy and subsequent jobs are bound to conform to the access policies of al jobs currently
running on agiven node. For example, if the NODEACCESSPOLICY parameter was set to
SHARED, anew job may be launched on an idle node with ajob specific access policy of
SINGLEUSER. Whilethisjob isrunning, subsequent job tasks may only be launched on this
node provided they were submitted by the same user. When all single user jobs have
completed on that node, the node

5.4 Node Availability Policies

Schedulerswill allow jobsto be launched on a given compute node aslong asthe node
isnot full or busy. The parameter NODEAVAILABILITYPOLICY allowsasiteto
determine what criteria constitutes a node being busy . Thelegal settingsarelisted in the
table below:

Availability Policy [Description

DEDICATED The nodeis considered busy if dedicated resources equal or exceed
configured resources

UTILIZED The node is considered busy if utilized resources equal or exceed
configured resources
COMBINED The node is considered busy if either dedicated or utilized resources

egual or exceed configured resources

The default setting for all nodesis COMBINED indicating that a node can accept
wor kload so long as the jobs which the node was allocated to do not request or utilize
mor e resour ces than the node has available. In aload balancing environment, this may
not bethe desired behavior. Settingthe NODEAVAILABILITYPOLICY parameter to
UTILIZED will allow jobsto be packed onto a node even if the aggr egate resour ces
requested exceeds the resour ces configured. For example, assume a scenario with a4
processor compute node and 8 jobsrequesting 1 processor each. |f the resource
availability policy was set to COMBINED , thisnode would only allow 4 jobsto start on
thisnode even if thejobsinduced aload of lessthan 1.0 each. With theresource
availability policy set to UTILIZED, the scheduler would continueto allow jobsto be
started on the node until the node's load aver age exceeded a per processor load value of
1.0 (in thiscase, atotal load of 4.0). To prevent a node from being over populated within
a single scheduling iteration, Maui will artificially raise the node'sload for one
scheduling iteration when starting a new job. On subsequent iterations, the actual
measur ed node load information will be used.

5.5 Task Distribution Policies

Under Construction

5.1.1 Priority Overview

Maui's prioritization mechanism allows component and subcomponent weights to be
associated with many aspects of ajob so as to enable fine-grained control over this aspect of
scheduling. To alow thislevel of control, Maui uses asimple priority-weighting hierarchy
where the contribution of each priority subcomponent is calculated as

<COMPONENT WEIGHT>* <SUBCOMPONENT WEIGHT>* <PRIORITY
SUBCOMPONENT VALUE>

Each priority component contains one or more subcomponents as described in the Priority
Component Overview. For example, the Resource component consists of Node, Processor,
Memory, Swap, Disk, and PE subcomponents. While there are numerous priority components
and many more subcomponents, a site need only focus on and configure the subset of
components related to their particular priority needs. In actual usage, few sites use more than a
small fraction (usually 5 or less) of the available priority subcomponents. Thisresultsin fairly
straightforward priority configurations and tuning. By mixing and matching priority weights,
sites may generally obtain the desired job-start behavior. At any time, the diagnose -p
command can be issued to determine the impact of the current priority-weight settingson idle
jobs. Likewise, the command showgrid can assist the admin in evaluating priority

effectiveness on historical system usage metrics such as queue time or expansion factor.

As mentioned above, ajob's priority is the weighted sum of its activated subcomponents.
By default, the value of all component and subcomponent weightsisset to 1 and O
respectively. The one exception isthe QUEUETIM E subcomponent weight which isset to 1.
Thisresultsin atotal job priority equal to the period of time the job has been queued, causing
Maui to act asasimple FIFO. Once the summed component weight is determined, this value
IS then bounded resulting in a priority ranging between 0 and MAX_PRIO_VAL whichis
currently defined as 1000000000 (one billion). In no case will ajob obtain a priority in excess
of MAX_PRIO_VAL through its priority subcomponent values.

Using the setspri command, site admins may adjust the base calculated job priority by either
assigning arelative priority adjust or an absolute system priority. A relative priority
adjustment will cause the base priority to be increased or decreased by a specified value.
Setting an absolute system priority, SPRIO, will cause the job to receive a priority equal to
MAX_PRIO_VAL + SPRIO, and thus guaranteed to be of higher value than any naturally
occurring job priority.

5.1.2 Job Priority Factors

Maui allows jobsto be prioritized based on arange of job related factors. These factors are
broken down into atwo-level hierarchy of priority factors and subfactors each of which can be
independently assigned aweight. This approach provides the administrator with detailed yet
straightforward control of the job selection process. The table below highlights the
components and subcomponents which make up the total job priority.

- With the Moab Cluster Manager ™, priority factors and subfactors can be controlled

with dliding bars and the click of the mouse. Also, the calculated priority, broken up by factors
and subfactors, is enumerated in atable to see their effects. (Click HERE for more

information)
|Component |SubComponent IMetric
CRED .
(job credentials) USER user specific priority (See USERCFG)
GROUP group specific priority (See GROUPCFG)
account specific priority (SEE
ACCOUNT ACCOUNTCFG)
QOS QOS specific priority (See QOSCFG)
class/queue specific priority (See
CLASS CLASSCFG)
FS_ ESUSER user based historical usage (See Fairshare
(fairshare usage) Overview)
ESGROUP group based hlst_oncal usage (See
Fairshare Overview)
ESACCOUNT account based hl_storlcal usage (See
Fairshare Overview)
FSQOS QOS base historical usage (See Fairshare
Overview)
FSCLASS cl a_ss/queue base_zd historical usage (See
Fairshare Overview)
RES NODE number of nodes requested
(requested job resources) €
|PROC |number of processors requested
IMEM total real memory requested (in MB)
ISWAP total virtual memory requested (in MB)

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/priority.shtml

IDISK total local disk requested (in MB)

IPS ltotal proc-seconds requested
IPE ltotal processor-equivalent requested
\WALLTIME total walltime requested (in seconds)
ii?r\e/nt sarvice levels) QUEUETIME time job has been queued (in minutes)
IXFACTOR Iminimum job expansion factor
BYPASS number (_)f times job has been bypassed
by backfill

TARGET _ TARGETQUEUETIME time until Queuetime target is reached
(target service levels) (exponential)

distance to target expansion factor

TARGETXFACTOR (exponential)
USAGE
(consumed resources-- |[CONSUMED proc-seconds dedicated to date
active jobs only)
IREMAINING Iproc-seconds outstanding
IPERCENT |percent of required walltime consumed

5.1.2.1 Credential (CRED) Component

The credential component allows a site to prioritize jobs based on political issues such asthe
relative importance of certain groups or accounts. This alows direct political prioritiesto be
applied to jobs.

The priority calculation for the credential component is:

Priority += CREDWEI GHT * (

USERWEI GHT * J->U->Priority +
GROUPVEI GHT * J->G>Priority +
ACCOUNTVEI GHT * J->A->Priority +
QOSWEI GHT * J->Q>Priority +
CLASSVEI GHT * J->C->Priority)

All user, group, account, QoS, and class weights are specified by setting the PRIORITY
attribute of using the respective * CFG' parameter, namely, USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, and CLASSCFG.

For example, to set user and group priorities, the following might be used.

CREDWVEI GHT 1

USERWEI GHT 1
GROUPWVEI GHT 1

USERCFE j ohn] PRI ORI TY=2000
USERCFE paul] PRI ORI TY=- 1000

GROUPCFQ st af f] PRI ORI TY=10000

@Clas (or queue) priority may also be specified via the resource manager where supported
(i.e., PBS queue priorities). However, if Maui class priority values are also specified, the
resource manager priority values will be overwritten.

All priorities may be positive or negative.

5.1.2.2 Fairshare(FS) Component

Fairshare components allow a site to favor jobs based on short term historical usage. The
Fairshare Overview describes the configuration and use of Fairshare in detail.

After the brief reprieve from complexity found in the QOS factor, we come to the Fairshare
factor. Thisfactor isused to adjust ajob's priority based on the historical percentage system
utilization of the jobs user, group, account, or QOS. This allows you to 'steer’ the workload
toward a particular usage mix across user, group, account, and QOS dimensions. The fairshare
priority factor calculation is

Priority += FSWElI GHT
FSUSERWEI GHT
FSGROUPWEI GHT
FSACCOUNTWEI GHT
FSQOSWVEI GHT
FSCLASSWEI GHT

M N(FSCAP, (

Del t aUser FSUsage +

Del t aG oupFSUsage +
Del t aAccount FSUsage +
Del t aQOSFSUsage +

Del t all assFSUsage))

* ok ok * * *

All *WEIGHT' parameters above are specified on a per partition basis in the maui.cfg file.
The 'Delta* Usage' components represents the difference in actual fairshare usage from a
fairshare usage target. Actual fairshare usage is determined based on historical usage over the
timeframe specified in the fairshare configuration. The target usage can be either atarget,
floor, or celling value as specified in the fairshare config file. The fairshare documentation
coversthisin detail but an example should help obfuscate things completely. Consider the
following information associated with calculating the fairshare factor for job X.

Job X
User A

Group B

Account C

QOSD

ClassE
User A

Fairshare Target: 50.0

Current Fairshare Usage: 45.0
Group B

Fairshare Target: [NONE]

Current Fairshare Usage: 65.0
Account C

Fairshare Target: 25.0

Current Fairshare Usage: 35.0
QOS3

Fairshare Target: 10.0+

Current Fairshare Usage: 25.0
ClassE

Fairshare Target: [NONE]

Current Fairshare Usage: 20.0
PriorityWeights:

FSWEIGHT 100

FSUSERWEIGHT 10

FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30

FSQOSWEIGHT 40
FSCLASSWEIGHT 0

In this example, the Fairshare component cal culation would be as follows:

Priority += 100 * (
10* 5+
20* 0+
30* (-10) +
40* 0+
0*0)

User A is5% below histarget so fairshare increases the total fairshare factor accordingly.
Group B has no target so group fairshare usage isignored. Account C is aboveits 10% above
its fairshare usage target so this component decreases the job's total fairshare factor. QOS 3is

15% over its target but the '+' in the target specification indicates that thisis a'floor' target,
only influencing priority when fairshare usage drops below the target value. Thus, the QOS 3
fairshare usage delta does not influence the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a
particular distribution of jobs. However, it isimportant to realize that fairshare can only favor
aparticular distribution of jobs, it cannot forceit. If user X has afairshare target of 50% of the
machine but does not submit enough jobs, no amount of priority favoring will get user X's
usage up to 50%. Seethe Fairshare Overview for more information.

5.1.2.3 Resource (RES) Component

Weighting jobs by the amount of resources requested allows a site to favor particular types
of jobs. Such prioritization may allow a site to better meet site mission objectives, improve
fairness, or even improve overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the resources
requested. Thisisgood in three main scenarios; first, when you need to favor large resource
jobs because its part of your site's mission statement; second, when you want to level the
response time distribution across large and small jobs (small jobs are more easily backfilled
and thus generally have better turnaround time); and finally, when you want to improve system
utilization. What? Y es, system utilization actually increases as large resource jobs are pushed
to the front of the queue. This keeps the smaller jobs in the back where they can be selected
for backfill and thus increase overall system utilization. Itsalot like the story about filling a
cup with golf ballsand sand. If you put the sand in first, it gets in the way when you try to put
in the golf balls. However, if you put in the golf balls first, the sand can easily be poured in
around them completely filling the cup.

The calculation for determining the total resource priority factor is:

Priority += RESWEI GHT * M N(RESCAP, (

NODEWEI GHT * Tot al NodesRequested +
PROCWEI GHT * Tot al Processor sRequested +
VEMAEI GHT * Tot al Menor yRequest ed +
SWAPWEI GHT * Tot al SwapRequested +

DI SKVWEI GHT * Tot al D skRequested +

PEWEI GHT * Tot al PERequest ed))

The sum of all weighted resources componentsis then multiplied by the RESWEIGHT
parameter and capped by the RESCAP parameter. Memory, Swap, and Disk are all measured
in megabytes (MB). The final resource component, PE, represents 'Processor Equivalents.

This component can be viewed as a processor-wei ghted maximum 'percentage of total

resources factor. For example, if ajob requested 25% of the processors and 50% of the total
memory on a 128 processor O2K system, it would have a PE value of MAX(25,50) * 128, or
64. The concept of PE's may be alittle awkward to grasp initially but it isa highly effective
metric in shared resource systems.

5.1.24 Service (SERV) Component

The Service component essentially specifies which service metrics are of greatest value to
the site. Favoring one service subcomponent over another will generally cause that service
metric to improve.

5.1.24.1 QueueTime (QUEUETIME) Subcomponent

In the priority calculation, ajob's queue time is a duration measured in minutes. Use of this
subcomponent tends to prioritize jobs in aFIFO order. Favoring queue time improves queue
time based fairness metrics and is probably the most widely used single job priority metric. In
fact, under the initial default configuration, thisisthe only priority subcomponent enabled
within Maui. It isimportant to note that within Maui, ajob's queue time is not necessarily the
amount of time since the job was submitted. The parameter JOBPRIOACCRUALPOLICY
allows a site to select how ajob will accrue queue time based on meeting various throttling
policies. Regardless of the policy used to determine ajob's queue time, this 'effective’ queue
time isused in the calculation of the QUEUETIME, XFACTOR, TARGETQUEUETIME, and
TARGETXFACTOR priority subcomponent values.

The need for adistinct effective queue time is necessitated by the fact that most sites have
pretty smart users and pretty smart users like to work the system, whatever system it happens
to be. A common practice at some long existent sitesis for some users to submit alarge
number of jobs and then place them on hold. These jobs remain with a hold in place for an
extended period of time and when the user is ready to run ajob, the needed executable and
datafiles are linked into place and the hold released on one of these 'pre submitted' jobs. The
extended hold time guarantees that this job is now the highest priority job and will be the next
to run. The use of the JOBPRIOACCRUALPOLICY parameter can prevent this practice as
well as preventing 'queue stuffers from doing similar things on a shorter time scale. These
‘queue stuffer' users submit hundreds of jobs at once so as to swamp the machine and hog use
of the available compute resources. This parameter prevents the user from gaining any
advantage from stuffing the queue by not allowing these jobs to accumulate any queue time
based priority until they meet certain idle and/or active Maui fairness policies. (i.e., max job
per user, max idle job per user, €tc.)

Asafinal note, the parameter QUEUETIMEWEIGHT can be adjusted on a per QOS basis
using the QOSCFG parameter and the QTWEIGHT attribute. For example, the line
'QOSCF(speci al] QI'VEI GHT=5000" will cause jobs utilizing the QOS speci al to

have their queue time subcomponent weight increased by 5000.
5.1.2.4.2 Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but favors
shorter jobs based on their
requested wallclock run time. Inits canonical form, the expansion factor (XFactor) metricis
calculated as

XFACTOR = 1 + <QUEUETI ME> / <EXECUTI ONTI VE>

However, a couple of aspects of this calculation make its use more difficult. First, the
length of time the job will actually run, 'Execution Time', is not actually known until the job
completes. All that is known is how much time the job requests. Secondly, as described in the
Queue Time Subcomponent section, Maui does not necessarily use the raw time since job
submission to determine 'QueueTime’ so as to prevent various scheduler abuses.

Consequently, Maui uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETI M=> / <WALLCLOCKLI M T>

In the equation above, EFFQUEUETI IVE is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and WALLCLOCKLI M T isthe user or system

specified job wallclock limit.

Using this equation, it can be seen that short running jobs will have an xfactor that will grow
much faster over time
than the xfactor associated with long running jobs. The table below demonstrates this favoring
of short running jobs.

\Job Queue Time |1 hour 2 hours 4 hours 8 hours |16 hours
XFactor for Lhour (1+(1/1) (1+(2/1)= [1+(@4/1)= [1+@8/1)= [1+(16/1)=
job =2.00 3.00 5.00 9.00 17.0
XFactor for4hour (1+(1/4) (1+(2/4)= [1+(4/4)= [1+(8/4)= |[1+(16/4)=
job =125 1.50 2.00 3.00 50

Since XFactor is calculated as aratio of two values, it is possible for this subcomponent to be
almost arbitrarily large potentially swamping the value of other priority subcomponents. This
can be addressed either by using the subcomponent cap XFACTORCAP, or by using the

XEMINWCLIMIT parameter. If the later is used, the calculation for the xfactor
subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETI Me> /
MAX(<XFM NWCLI M T>, <WALLCLOCKLI M T>)

The use of the XSFMINWCLIMIT parameter allows a site to prevent very short jobs from
causing the Xfactor subcomponent to grow inordinately.

Some sites consider X Factor to be amore fair scheduling performance metric than queue
time. At these sites, job XFactor is given far more weight than job queue time when
calculating job priority and consequently, job XFactor distribution tends to be fairly level
across awide range of job durations. (i.e., A flat XFactor distribution of 1.0 would resultina
one minute job being queued on average one minute, while a 24 hour job would be queued an
average of 24 hours).

Like queue time, the effective X Factor subcomponent weight is the sum of two weights, the
XFACTORWEIGHT parameter and the QOS specific XFWEIGHT setting. For example, the
line'QOSCF({ speci al] XFWElI GHT=5000" will cause jobs utilizing the QOS speci al
to have their expansion factor subcomponent weight increased by 5000.

5.1.2.4.3 Bypass(BYPASS) Subcomponent

The bypass factor is the forgotten stepchild of the priority subcomponent family. It was
originally introduced to prevent backfill based starvation. It isbased on the 'bypass count of a
job where the bypass count is increased by one every time the job is 'bypassed’ by alower
priority job via backfill. The calculation for thisfactor issimply. Over the years, the
anticipated backfill starvation has never been reported. The good newsisthat if it ever shows
up, Maui is ready!

5.1.25 Target Service (TARG) Component

The target factor component of priority takes into account job scheduling performance
targets. Currently, thisislimited to target expansion factor and target queue time. Unlike the
expansion factor and queue time factors described earlier which increase gradually over time,
the target factor component is designed to grow exponentially as the target metricis
approached. This behavior causes the scheduler to do essentially 'al in its power' to make
certain the scheduling targets are met.

The priority calculation for the target factor is:

Priority += TARGAEI CHT * (
QueueTi neConponent +
XFact or Conponent)

The queue time and expansion factor target are specified on a per QOS basis using the
'QOSXFTARGET' and 'QOSQTTARGET"' parameters. The QueueTime and XFactor
component calculations are designed produce small values until the target value beginsto
approach at which point these components grow very rapidly. If the target is missed, these
component will remain high and continue to grow but will not grow exponentially.

51.2.6 Usage(USAGE) Component
(Under Construction)

5.1.3 Common Priority Usage

Sitesvary wildly in the preferred manner of prioritizing jobs. Maui's scheduling hierarchy
allows sites to meet their job control needs without requiring them to adjust dozens of
parameters. Some sites may choose to utilize numerous subcomponents, others afew, and still
others are completely happy with the default FIFO behavior. Any subcomponent which is not
of interest may be safely ignored.

To help clarify the use of priority weights, a brief example may help. Suppose a site wished
to maintain the FIFO behavior but also incorporate some credential based prioritization to
favor aspecial user. Particularly, the site would like the userjohn to receive a higher initial
priority than all other users. Configuring this behavior would require two steps. First, the user
credential subcomponent would need to be enabled and second, john would need to have his
relative priority specified. Take alook at the example maui.cfg:

USERVEI GHT 1
USERCFQJ j ohn] PRI ORI TY=300

@ The'USER' priority subcomponent was enabled by setting the USERWEIGHT
parameter. Infact, the parameters used to specify the weights of al components and
subcomponents follow this same *WEIGHT' naming convention (i.e., RESWEIGHT,
TARGETQUEUETIMEWEIGHT, etc.).

The second part of the example involved specifying the actual user priority for the user
john. Thiswas accomplished using the USERCFG parameter. Why was the priority 300
selected and not some other value? Isthisvalue arbitrary? Asinany priority system, actual
priority values are meaningless, only relative values are important. In this case, we are
required to balance user priorities with the default queue time based priorities. Since
gueuetime priority is measured in minutes queued (see table above), the user priority of 300
will make ajob by user john on par with ajob submitted 5 minutes earlier by another user.

Isthiswhat the site wants? Maybe, maybe not. The honest truth is that most sites are not
completely certain what they want in prioritization at the onset. Most often, prioritizationisa
tuning process where an initial stab is made and adjustments are then made over time. Unless
you are an exceptionally stable site, prioritization is al'so not a matter of getting it right.
Cluster resources evolve, the workload evolves, and even site policies evolve, resulting in
changing priority needs over time. Anecdotal evidence indicates that most sites establish a
relatively stable priority policy within afew iterations and make only occasional adjustments
to priority weights from that point on.

Lets ook at one more example. A site wantsto do the following:

- favor jobsin the low, medium, and high QOS's so they will run in QOS order
- balance job expansion factor
- usejob queue timeto prevent jobs from starving

The sample maui.cfg is listed below:

QOSVEI GHT 1

XFACTORVE| GHT 1
QUEUETI NEVEI GHT 10
TARGETQUEUETI MEVEI GHT 1

QOSCFG | ow] PRI ORI TY=1000
QOSCFG nedi uni PRI ORI TY=10000
QOSCFd hi gh] PRI ORI TY=10000

USERCFE DEFAULT] QITARGET=4: 00: 00

Thisexampleis abit more complicated but is more typical of the needs of many sites. The
desired QOS weightings are established by enabling the QOS subfactor using the
QOSWEIGHT parameter while the various QOS priorities are specified using QOSCFG.
XFACTORWEIGHT isthen set as this subcomponent tends to establish a balanced
distribution of expansion factors across all jobs. Next, the queuetime component is used to
gradually raise the priority of all jobs based on the length of time they have been queued. Note
that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default value
of 1. Findly, the TARGETQUEUETIMEWEIGHT parameter is used in conjunction with
the USERCFG lineto specify a queue time target of 4 hours.

Assume now that the site decided that it liked this priority mix but they had a problem with
users ‘cheating' by submitting large numbers very short jobs. They would do this because very
short jobs would tend to have rapidly growing xfactor values and would consequently quickly
jump to the head of the queue. In this case, a'factor cap' would be appropriate. These caps
allow asiteto say | would like this priority factor to contribute to ajob's priority but only
within adefined range. This prevents certain priority factors from swamping others. Caps can
be applied to either priority components or subcomponents and are specified using the
'SCOMPONENTNAME>CAP parameter (i.e., QUEUETIMECAP, RESCAP, SERVCAP,
etc.) Note that both component and subcomponent caps apply to the 'pre-weighted' value asin
the following equation:

Priority =
C1VEI GAT * M N(C1CAP, SUM
S11VEI GHT * M N(S11CAP, S11S) +
S12VEI GHT * M N(S12CAP, S12S) +

...)) +

C2VEI GHT * M N(C2CAP, SUM
S21VEI GHT * M N(S21CAP, S21S) +
S22Vl GHT * M N(S22CAP, S22S) +

L))+

5.1.4 Prioritization Strategies

Each component or subcomponent may be used to accomplish different objectives.
WALLTIME can be used to favor (or disfavor) jobs based on their duration. Likewise,
ACCOUNT can be used to favor jobs associated with a particular project while
QUEUETIME can be used to favor those jobs which have been waiting the longest.

- QueueTime

- Expansion Factor
- Resource

- Fairshare

- Cred

- Target Metrics

Each priority factor group may contain one or more subfactors. For example, the Resource
factor consists of Node, Processor, Memory, Swap, Disk, and PE components. Figure <X>
shows the current priority breakdown. From the figure, it is quickly apparent that the
prioritization problem isfairly 'nasty' due to the fact that every site needsto prioritize a bit
differently. Fortunately, there has not yet been a site that has desired to use more than a
fraction of these priority factors, thus greatly simplifying the job priority tuning issue. When
calculating a priority, the various priority factors are summed and then bounded between 0 and
MAX_PRIO_VAL which s currently defined as 200000000 (one billion).

Each priority factor isreviewed in detail below. The command 'diagnose -p' is designed to
assist in visualizing the priority distribution resulting from the current job priority
configuration. Also, the showgrid command will help indicate the impact of the current
priority settings

5.1.5 Manual Job Priority Adjustment

Batch administrator's regularly find a need to adjust the calculated priority of ajob to meet
current needs. Current needs often are broken into two categories:

A) The need to run an admin test job as soon as possible
B) The need to pacify an irate user

Under Maui, the setspri command can be used to handle these issues in one of two ways.

This command allows the specification of either arelative priority adjustment, or the
specification of aabsolute priority. Using absolute priority specification, administrators can
set ajob priority which is guaranteed to be higher than any calculated value. Where
Maui-calculated job priorities are in the range of 0 to 1 billion, system admin assigned absolute
priorities start at 1 billion and go up. Issuing the command 'setspri <PRIO> <JOBID>', for
example, will assign apriority of '1 billion + <PRIO>' to the job. Thus, 'setspri 5 job.1294'
with set the priority of job 'job.1294' to 1000000005.

13.3 Resource Manager Extensions

All resource managers are not created equal. Thereisawide range in what capabilities are available from system to system. Additionally,
thereisalarge body of functionality which many if not all resource managers have no concept of. A good example of thisisjob QoS. Since
most resource managers do not have a concept of quality of service, they do not provide a mechanism for users to specify thisinformation. In
many cases, Maui is able to add capabilities at aglobal level. However, anumber of features require a'per job' specification. Resource

manager extensions allow this information to be associated with the job.

How thisis done varies with the resource manager. Both Loadleveler and Wiki allow the specification of acomment field. (In Loadleveler,
specified as #@ oment =" <X>"") PBS does not support this ability by default but is extensible viathe -W ' flag. (see the PBS Resource

Manager Extension Overview)

Using the resource manager specific method, the following job extensions are currently available:

Name

Format

Default
Value

Description

Example

ADVRES

[<RESID>]

[NONE]

specifies
that
reserved
resources
arerequired
to run the
job. If
<RESID> is
specified,
then only
resources
within the
specified
reservation
may be
alocated

ADVRES.meta.3

DMEM

<INTEGER>

dedicated
memory per
task in MB

DVEM 512

FLAGS

one or more of the following comma
separated keywords
ADVRES[:RESID], RESTARTABLE,
PREEMPTEE, PREEMPTOR,
NOQUEUE

[NONE]

associates
various
flags with
the job

FLAGS: ADVRES

GRES

comma delimited list of generic resources
where each resource is specified using the
format <RESTY PE>[@<COUNT>]

[NONE]

indicates
generic
resources
required by
thejobon a
per task
basis. If a
<COUNT>
isnot
specified,
the resource
count
defaultsto
1

GRES: t ape, mat | ab@

HOSTLIST

commadelimited list of hostnames

[NONE]

indicatesa
exact set,
superset, or
subset of
nodes on
which the
job must

run

HOSTLI ST: nodeA, nodeB, nodeE

NACCESSPOLICY

one of SHARED, SINGLEJOB,
SINGLETASK , or SINGLEUSER

[NONE]

specifies
how node
resources
should be
accessed

NACCESSPOLICY:SINGLEUSER

NALLOCPOLICY

one of the valid settings for the parameter
NODEALLOCATIONPOLICY

[NONE]

specifies
how node
resources
should be
selected and
dlocated to
the job

NALLOCPOLICY:MINRESOURCE

NODESET

<SETTYPE>:<SETATTR>[:<SETLIST>]

[NONE]

specifies
nodeset
constraints
for job
resource
alocation.
(Seethe
NodeSet
Overview
for more
information)

NODESET: ONEOF: PROCSPEED: 350, 400, 450

PARTITION

<STRING>[:<STRING>]...

[NONE]

specifiesthe
partition (or
partitions)
in which the
job must
run.

NOTE: the
job must
have access
to this
partition
based on
system wide
or credential
based
partition
access lists.

PARTI TI ON: mat h: geol ogy

(The job must only run in the mat h partition or the
geol ogy partition)

QOS

<STRING>

[NONE]

QCS: hi ghprio

QUEUEJOB

oneof TRUE or FALSE

TRUE

Indicates
whether or
not the
scheduler
should
queue the
job if
resources
are not
available to
run the job
immediately

QUEUEJOB: FALSE

SGE

<WINDOWCOUNT>:<DISPLAYNAME>

[NONE]

SGE: 8: pi nky

SID

<STRING>

[NONE]

SID: silverA

TPN

<INTEGER>

0

TPN: 4

TRL

<INTEGER>[,<INTEGER>]..

0

TRL: 2, 4, 8, 16

If more than one extension is required in a given job, extensions can be concatenated with a semicolon separator using the format
'<ATTR>: <VALUE>[; <ATTR>: <VALUE>] . ..'

See the following examples:

Example 1

Loadl evel er command file
#@omment =" HOSTLI ST: nodel, node2; QOS: speci al ; SID: sil ver A"

Job must run on nodesnodel and node2 using the QoS speci al . Thejobisalso associated with the systemid si | ver A allowing the
silver daemon to monitor and control the job.

Example 2

PBS conmand file
PBS - W x=\" NODESET: ONECF: NETWORK; DVEM 64\ "

Job will have resources allocated subject to network based nodeset constraints. Further, each task will dedicate 64 MB of memory.

Example 3

qgsub -1 nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES:john.1"

Job will be forced to run withinthej ohn. 1 reservation.
See Also:

Resource Manager Overview

6.0 Managing Fairness - Throttling Policies, Fairshare, and
Allocation M anagement

e 6.1 FairnessOverview

e 6.2 Throttling Policies

o 6.3 Fairshare

« 6.4 Allocation Management

6.1 Fairness Overview

The concept of fairness varies widely from person to person and siteto site. To someiit
implies giving all users equal accessto compute resources. However, more complicated
concepts incorporating historical resource usage, political issues, and job value are equally
valid. While no scheduler can handle al possible definitions of what fair means, Maui
provides some flexible tools that help with most common fairness management definitions and
needs. Particularly, fairness under Maui may be addressed by any combination of the facilities
described in the table below.

Facility |Description |Example

USERCF(J{ j ohn] MAXJ OB=3
GROUPCFE DEFAULT] MAXPROC=64
GROUPCF(st af f]

Specify limitson exactly |MAXPROC=128
Throttling Policies |what resources can be used _ _ _
at any given instant. (allow j ohn to only run 3 jobs at atime.

Allow the group st af f to utilizeupto
128 total processors and all other groups
to utilize up to 64 processors.)

Specify what is most

important to the

scheduler. Using Service SERVVEI GHT 1

based priority factors can QUEUETI MEVEI GHT 10
Job Prioritization allow a site to balance job

(cause jobsto increasein priority by 10

turnar O_U”d time, points for every minute they remain in the
expansion factor, or other queue.)

scheduling performance
metrics.

USERCF{ st eve]
FSTARGET=25. 0+
FSWEI GHT 1

Specify usagetargetsto |FSUSERWEI GHT 10
limits resource access or
adjust priority based on (enable priority based fairshare and
historical resource usage. |SPecify afairshare target for user st eve
such that hisjob'swill be favored in an
attempt to keep hisjob's utilizing at least
25.0% of delivered compute cycles.)

Fairshare

Allocation
M anagement

Specify long term,
credential-based resource
usage limits.

BANKTYPE QBANK
BANKSERVER ser ver. sys. net

(enable the QBank allocation
management system. Within the
allocation manager, project or account
based allocations may be configured.
These allocations may, for example, allow
project X to utilize up to 100,000
processor-hours per quarter, provide
various QoS sensitive charge rates, share
allocation access, €tc.)

6.2 Throttling Policies

Maui possesses a number of policies which allow an administrator to control the flow of jobs through the system. These
throttling policies work as filters allowing or disallowing ajob to be considered for scheduling by specifying limits regarding
system usage for any given moment. These policies may be specified as global or specific constraints specified on a per user,
group, account, QOS, or class basis.

o 6.2.1 Fairnessvia Throttling Policies

o 6.2.1.1 Basic Fairness Policies

o 6.2.1.2 Multi-Dimension Fairness Palicies
e 6.2.2 OverrideLimits
o 6.2.3 IdleJob Limits
o 6.2.4 Hard and Soft Limits

- The Moab Cluster Manager ™ displays the attributes of each credential that is used in throttling policies.

6.2.1 Fairness via Throttling Policies

Significant improvements in the flexibility of throttling policies were introduced in Maui 3.2. Those sites using versions
prior to this should consult the Maui 3.0 style throttling policy configuration documentation. At ahigh level, Maui alows

resource usage limits to be specified for in three primary dimensions:

6.2.1.1 Basic Fairness Policies

- Active Job Limits (Constrains the total cumulative resource available to active jobs at a given time)
- Idle Job Limits (Constrains the total cumulative resources available to idle jobs at a given time)
- System Job Limits (Constrains the maximum resource requirements of any single job)

These limits can be applied to any job credentia (user, group, account, QOS, and class), or on a system-wide basis. Using the
keyword DEFAULT, asite may also specify the default setting for the desired user, group, account, QOS, and class.
Additionally, QoS's may be configured to alow limit overrides to any particular policy.

For ajob to run, it must meet al policy limits. Limits are applied using the * CFG' set of parameters, particularly, USERCFG,
GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSTEMCFG. Limits are specified by associating the desired
limit to the individual or default object. The usage limits currently supported are listed in the table below.

|NAME |UNITS |DESCRIPTION |EXAM PLE
Limits the number of jobs
acredential may have _
MAXJOB |#of jobs active (Starting or m2§£g:g Zr
Running) at any given oo
time.

Limits the total number
of dedicated processors
MAXPROC |# of processors which can be alocated by [MAXPROC=32
active jobs at any given
time.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/usage.shtml

MAXPS

<# of processors> *
<walltime>

Limits the number of
outstanding
processor-seconds a
credential may have
dlocated at any given
time. For example, if a
user has a4 processor job
which will completein 1
hour and a 2 processor
job which will complete
in6 hours, hehas'4* 1*
3600 +2* 6* 3600 = 16
* 3600 outstanding
processor-seconds. The
outstanding
processor-second usage
of each credential is
updated each scheduling
iteration, decreasing as
job's approach their
completion time.

MAXPS=720000

MAXPE

of processor equivalents

Limits the total number
of dedicated
processor-equivalents
which can be allocated by
active jobs at any given
time.

MAXPE=128

MAXWC

job duration
[[[DDD:]HH:]MM:]SS

Limits the number of
outstanding seconds a
credential may have
associated with active
jobs. It behaves
identically to the MAXPS
limit above only lacking
the processor weighting.
Like MAXPS, the
outstanding second usage
of each credential isalso
updated each scheduling
iteration.

MAXWC=72:00:00

MAXNODE

of nodes

limits the total number of
compute nodes which can
bein use by active jobs at
any given time.

NOTE: on some systems
(including torque/pbs)
nodes have been softly
defined rather than
strictly defined; ie. ajob
may request 2 nodes but
torque will trandlate this
request to 1 node with 2
procs. This can prevent
moab from enforcing a

MAXNODE policy

MAXNODE=64

correctly for asingle job.
Correct behavior can be
achieved using
MAXPROC.

Limits the total amount
of dedicated memory (in
MB) which can be
alocated by a credentia's
active jobs at any given
time.

MAXMEM |total memory in MB MAXMEM=2048

The example below demonstrates a simple limit specification.

USERCFE DEFAULT] MAXJOB=4
USERCFG j ohn] MAXJ OB=8

This example will allow user john to run up to 8 jobs while all other users may only run up to 4.

Simultaneous limits of different types may be applied per credential and multiple types of credential may have limits
specified. The next example demonstrates this mixing of limits and is a bit more complicated .

USERCF(J st eve] MAXJOB=2 MAXNODE=30
GROUPCF(J st af f] MAXJ OB=5

CLASSCF{E DEFAULT] MAXNODE=16

CLASSCF({ bat ch] MAXNCDE=32

This configuration may potentially apply multiple limitsto asingle job. Limitsfor user steve will cause that jobs submitted
under his user ID will be constrained so that he may only run up to 2 simultaneous jobs with an aggregate node consumption of
30 nodes. However, if he submits ajob to a class other than batch, he may be limited further. Only 16 total nodes may be
used simultaneously by jobs running in any given class with the exception of the class batch. If steve submitted ajob to runin
the class interactive for example, and there were jobs already running in this class using atotal of 14 nodes, his job would be
blocked unless it requested 2 or fewer nodes by the default limit of 16 nodes per class.

6.2.1.2 Multi-Dimension Fairness Policies

Multi-dimensional fairness policies allow a site to specify policies based on combinations of job credentials. A common
example might be setting a maximum number of jobs allowed per queue per user or atotal number of processors per group per
QoS. Aswith basic fairness policies, multi-dimension policies are specified using the * CFG parameters. Maui 3.2 supports
the most commonly used multi-dimensional fairness policiesincluding the following:

MAXJOB[Class,User]
MAXNODE[Class,User]
MAXPROC[Class,User]

These limits are specified using the following format:
*CF X] <LIM T>[<CRED>] =<LI M T>

where <LIMIT> is one of the policieslisted in table in section 6.2.1.1 and <CRED> is of the format
<CREDTYPE>[:<VALUE>] with CREDTYPE being one of USER, GROUP, ACCOUNT, QOS, or CLASS. The optional
<VALUE> setting can be used to specify that the policy only applies to a specific credential value. For example, the config
below sets limits on the class fast controlling the maximum number of jobs any group can have active at any given time and
the number of processorsin use at any given time for user steve.

CLASSCF(J fast] MAXJOB[GROUP] =12
CLASSCF(fast] MAXPROC[USER: st eve] =50

allow class batch to run up the 3 simultaneous jobs
allow any user to use up to 8 total nodes within class
CLASSCF({ bat ch] MAXJOB=3 MAXNODE[USER] =8

all ow users steve and bob to use up to 3 and 4 total processors respectively within
cl ass
CLASSCF({ fast] MAXPROC[USER: st eve] =3 MAXPROC] USER: bob] =4

NOTE: Maui 3.2 does not fully support all multi-dimensional throttling policies. For such systems, a subset of these policies
can be specified using the attributes M AXNODEPERUSER, MAXJOBPERUSER, and MAXPROCPERUSER.

See Also:
N/A

6.2.2 Override Limits

Like al job credentials, the QOS object may be also be associated with resource usage limits. However, this credential can
aso be given specid override limits which supersede the limits of other credentials. Override limits are applied by preceding
the limit specification with the capita letter 'O'. The configuration below provides an example of this.

USERCF{ st eve] MAXJOB=2 MAXNODE=30
GROUPCF(st af f] MAXJ OB=5

CLASSCF{J DEFAULT] MAXNODE=16

CLASSCF({ bat ch] MAXNODE=32

QOSCFd hi pri 0] OVAXJOB=3 OVMAXNODE=64

This configuration isidentical to the example shown earlier with the exception of the final QOSCFG line. In this case, the
QOSCFG parameter does two things:

o Only 3 hiprio QOS jobs may run simultaneously
« hiprio QOS jobs may run with up to 64 nodes per credential ignoring other credential MAXNODE limits.
Given the above configuration, assume ajob was now submitted with the credentials, user steve, group staff, class batch,
and QOS hiprio.
Thisjob will be allowed to start so long as running it does not lead to any of the following conditions:
« total nodes used by user steve jobs do not exceed 64
« total active jobs associated with user steve does not exceed 2
« total active jobs associated with group staff does not exceed 5
« total nodes dedicated to class batch jobs do not exceed 64
« total active jobs associated with QOS hiprio does not exceed 3

While the above exampleis abit complicated for actual use at most sites, similar combinations may be needed to enforce
site policies on many larger systems.

6.2.3 Idle Job Limits

Idle job limits control which jobs are éligible for scheduling. To be eligible for scheduling, ajob must meet the following
conditions:

« be'idle asfar as the resource manager is concerned (no holds, etc)
« haveall job prerequisites satisfied (no outstanding job or data dependencies)
« meet al 'idle jab throttling policies

If ajob failsto meet any these conditions, it will not be considered for scheduling and will not accrue 'service' based job
prioritization (see service component and JOBPRIOACCRUALPOLICY). The primary purpose of idle job limitsis to ensure
fairness amongst competing users by preventing ‘queue stuffing' and other similar abuses. '‘Queue stuffing' occurs when a
single entity submits large numbers of jobs, perhaps thousands, all at once so the they begin accruing queuetime based priority
and remain first to run despite subsequent submissions by other users.

Idle limits are specified in amanner ailmost identical to active job limits with the insertion of the capital |etter 'I' into the
middle of the limit name. For example, to limit the number of idle (eligible) jobs a given user could have at once, the following
parameter could be used:

USERCFGE DEFAULT] MAXI JOB=20

As shown above, idle limits can constrain the total number of jobs considered to be eligible on a per credential basis. Further,
like active job limits, idle job limits can also constrain eligible jobs based on aggregate requested resources. This could, for
example, allow asite to indicate that for a given user, only jobs requesting up to atotal of 64 processors, or 3200
processor-seconds would be considered at any given time. Which jobs to select is accomplished by prioritizing al ‘idl€’ jobs,
and then adding jobsto the 'éligibl€e' list one at atime in priority order until jobs can no longer be added. This'éligible job
selection is done only once per scheduling iteration so consequently, idle job limits only support asingle ‘hard' limit
specification. Any specified 'soft' limit will be ignored.

All job limit types supported as active job limits are also supported asidle job limits. (See Basic Fairness Palicies).

Examples:

maui . cfg

USERCF(J st eve] MAXI JOB=2 NMAXI NOCDE=30
GROUPCF(st af f] MAXI JOB=5

CLASSCF{ DEFAULT] MAXI NODE=16

CLASSCF({ bat ch] MAXI NODE=32

QOSCFd hi pri 0] MAXI JOB=3 NMAXI NCDE=64

6.2.4 Hard and Soft Limits

Hard and soft limit specification allow a site to balance both fairness and utilization on a given system. Typically, throttling
limits are used to constrain the quantity of resources a given credential (user, group, etc) is alowed to consume. These limits
can be very effective in enforcing fair usage amongst a group of users. However, in alightly loaded system or one in which
there are significant swingsin usage from project to project, these limits can reduce system utilization by blocking jobs even
when no competing jobs are queued.

Soft limits help address this problem by providing additional scheduling flexibility. They allow sites to specify two tiers of
limits, the more constraining limits, soft limits, are basically in effect in heavily loaded situations and reflect tight fairness

constraints. The more flexible hard limits specify how flexible the scheduler can be in selecting jobs when there are idle
resources available after al jobs meeting the tighter soft limits have been started. Soft and hard limits are specified in the
format [<SOFTLIMIT>,]<HARDLIMIT>. For example, agiven site may want to use the following configuration:

maui . cfg
USERCFE DEFAULT] MAXJOB=2, 8

With this configuration, the scheduler would select all jobs which meet the per user MAXJOB limit of 2. It would then
attempt to start and or reserve resources for al of these selected jobs. If after doing so there till remain available resources, the
scheduler would then select al jobs which meet the less constraining hard per user M AXJOB limit of 8 jobs. These jobs
would then be scheduled and/or reserved as available resources allowed.

If no soft limit is specified or the soft limit is less constraining the the hard limit, the soft limit is set equal to the hard limit.
Examples:

#maui . cfg

USERCFJ st eve] MAXJOB=2, 4 MAXNODE=15, 30
GROUPCFQ staff] MAXJOB=2, 5

CLASSCFG DEFAULT] MAXNCDE=16, 32

CLASSCFQ bat ch] ~ MAXNODE=12, 32

QOSCFJ hi pri 0] MAXJOB=3, 5 MAXNODE=32, 64

6.3 Fairshare

Fairshare is a mechanism which allows historical resource utilization information to be
incorporated into job feasibility and priority decisions. Maui's fairshare implementation allows
site administrators to set system utilization targets for users, groups, accounts, classes, and QOS
levels.

e 6.3.1 Overview

e 6.3.2 Fairshare Parameters

e 6.3.3 Using Fairshare Information

- The Moab Cluster Manager ™ graphically organizes the fairshare values by credential for
easy navigation and provides a GUI to specify the Decay Factor, Depth, Interval Length and
Usage Metric.

6.3.1 Overview

Fairshare allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. This feature allows site administrators to set system utilization
targets for users, groups, accounts, classes, and QOS levels. Administrators can also specify the
timeframe over which resource utilization is evaluated in determining whether or not the goal is
being reached. Parameters allow sites to specify the utilization metric, how historical information
IS aggregated, and the effect of fairshare state on scheduling behavior. Fairshare targets can be
specified for any credentials (i.e., user, group, class, etc) which administrators wish to have
affected by thisinformation.

6.3.2 Fairshare Parameters

Fairshareis configured at two levels. Firgt, at a system level, configuration is required to
determine how fairshare usage information is to be collected and processed. Secondly, some
configuration is required at the credential level to determine how this fairshare information affects
particular jobs. The system level parameters are listed below:

Parameter Description

FSINTERVAL duration of each fairshare window

FSDEPTH number of fairshare windows factored into current fairshare utilization
FSDECAY decay factor applied to weighting the contribution of each fairshare window
FSPOLICY metric to use when tracking fairshare usage

Credential level configuration consists of specifying fairshare utilization targets using the
*CFG suite of parameters, i.e., ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and
USERCFG.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/fairshare.shtml
http://www.clusterresources.com/products/maui/mcm/fairshare.shtml

6.3.2.1 Metric of Consumption

As Maui runs, it records how available resources are being utilized. Each iteration
(RMPOLLINTERVAL seconds) it updates fairshare resource utilization statistics. Resource
utilization is tracked in accordance with the FSPOLICY parameter allowing various aspects of
resource consumption information to be measured. This parameter allows selection of both the
types of resources to be tracked and the method of tracking. It provides the option of tracking
usage by dedicated or consumed resources, where dedicated usage tracks what the scheduler
assignsto the job and consumed usage tracks what the job actually uses.

An example may clarify the use of the FSPOLICY parameter. Assume a4 processor jobis
running a paralel ‘'/bin/slegp’ for 15 minutes. It will have a dedicated fairshare usage of 1
proc-hour but a consumed fairshare usage of essentially nothing since it did not consume
anything. Most often, dedicated fairshare usage is used on dedicated resource platforms while
consumed tracking is used in shared SMP environments.

6.3.2.2 Specifying Fairshare Timeframe

When configuring fairshare, it isimportant to determine the proper timeframe that should be
considered. Many sites choose to incorporate historical usage information from the last one to
two weeks while others are only concerned about the events of the last few hours. The correct
setting is very site dependent and usually incorporates both average job turnaround time and site
mission policies.

With Maui's fairshare system, time is broken into a number of distinct fairshare windows. Sites
configure the amount of time they wish to consider by specifying two parameters,
FSINTERVAL, and FSDEPTH. The FSINTERVAL parameter specifies the duration of each
window while the FSDEPTH parameter indicates the number of windows to consider. Thus, the
total time evaluated by fairshareissimply FSINTERVAL * FSDEPTH.

Many sites want to limit the impact of fairshare data according to itsage. The FSDECAY

parameters alows this to be done, causing the most recent fairshare data to contribute more to a
credential's total fairshare usage than older data. This parameter is specified as a standard decay
factors which is applied to the fairshare data. Generally, decay factors are specified asavalue
between 1 and O where avalue of 1 (the default) indicates no decay should be specified. The
smaller the number, the more rapid the decay using the calculation WeightedValue = Value *
<DECAY> ~ <N> where <N> is the window number. The table below shows the impact of a
number of commonly used decay factors on the percentage contribution of each fairshare
window.

E:g?gr WindowOlWindowl|Window2|Window3|Window4|Window5|Window6|Window7

100 [100% [100% |100% [100% |100% [100% [100% |100%

080 [100% [80% [64% [51% [41% [33% [26% |21%

075 [100% [75% [56% [42% [31% [23% [17% |12%
050 [100% [50% [25% [13% [6% [3% 2% 1%

While selecting how the total fairshare timeframe is broken up between the number and length
of windows is amatter of preference, it isimportant to note that more windows will cause the
decay factor to degrade the contribution of aged data more quickly.

6.3.2.3 Managing Fairshare Data

Using the selected fairshare usage metric, Maui continues to update the current fairshare
window until it reaches a fairshare window boundary, at which point it rolls the fairshare window
and begins updating the new window. The information for each window is stored initsown file
located in the Maui statistics directory. Each fileis named 'FS. <EPOCHTI ME>' where
<EPCCHTI ME> isthe time the new fairshare window became active. Each window contains
utilization information for each entity as well asfor total usage. A sample fairshare datafileis
shown below:

Fairshare Data File (Duration: 172800 Seconds) Starting: Fri
Aug 18 18: 00: 00

User USERA 150000. 000
User USERB 150000. 000
User USERC 200000. 000
User USERD 100000. 000
G oup GROUPA 350000. 000
G oup GROUPB 250000. 000
Account ACCTA 300000. 000
Account ACCTB 200000. 000
Account ACCTC 100000. 000
QoS 0 50000. 000

Qs 1 450000. 000
Qs 2 100000. 000
TOTAL 600000. 00

Note that the total processor hours consumed in this time interval is 600,000 processor
seconds. Since every job in this example scenario had a user, group, account, and QOS assigned
to it, the sum of the usage of all members of each category should equal the total usage value (i.e.,
USERA + USERB + ... + USERD = GROUPA + GROUPB = ACCTA + ... + ACCTC = QOS0 +
..+ QOS2 =TOTAL)

When Maui needs to determine current fairshare usage for a particular credential, it calculates a
decay-weighted average of the usage information for that credential using the most recent
fairshare intervals where the number of windows evaluated is controlled by the FSDEPTH

parameter. For example, if the credential of interest is user John and the following parameters are
Set,

FSI NTERVAL 12: 00: 00
FSDEPTH 4
FSDECAY 0.5

and the fairshare data files contain the following usage amounts for the entity of interest:

John[0] 60.0
Tot al [O] 110.0
John[1] 0.0
Total [1] 125.0
John[2] 10.0
Tot al [2] 100.0
John[3] 50.0
Tot al [3] 150. 0

The current fairshare usage for user John would calculated as follows:
Usage=(60+ .5"1* 0+ .5"2* 10+ .5"3* 50) / (110 + .5"1*125 + .5 2*100 + .5" 3* 150)

Note that the current fairshare usage is relative to the actual resources delivered by the system
over the timeframe evaluated, not the resources available or configured during that time.

@ Historical fairshare data is organized into a number of datafiles, each file containing the
information for a length of time as specified by the FSINTERV AL parameter. Although

FSDEPTH, FSINTERVAL, and FSDECAY can be freely and dynamically modified, such
changes may result in unexpected fairshare status for a period of time as the fairshare datafiles
with the old FSINTERVAL setting are rolled out.

6.3.3 Using Fairshare Information

With the mechanism used to determine current fairshare usage explained above, the next step is
using this information to affect scheduling behavior. As mentioned in the Fairshare Overview,
sites have the ability to configure how fairshare information impacts scheduling behavior. Thisis
done through specification of the fairshare targets. These targets allow fairshare information to
either affect job feasibility or job priority.

6.3.3.1 Priority Based Fairshare

The most commonly used type of fairshareis priority based fairshare. In this mode, fairshare
information does not affect whether or not ajob can run, but rather only affects the job's priority
relative to other jobs. In most cases, thisisthe desired behavior. Using the standard fairshare

target, the priority of jobs of a particular user which has used too many resources over the
specified fairshare window islowered. Also, the standard fairshare target will increase the
priority of jobs which have not received enough resources.

While the standard fairshare target is the most commonly used, Maui also provides the ability
to specify fairshare caps and floors. These targets are like the default target only caps only adjust
priority down when usage is too high and floors only adjust priority up when usage istoo low.

Since fairshare usage information must be integrated with with Maui's overall priority
mechanism, it is critical that the corresponding fairshare priority weights be set. Specifically, the
FSWEIGHT component weight parameter and the target type subcompoent weight (i.e.,
FSUSERWEIGHT, FSGROUPWEIGHT, etc) be specified. If these weights are not set, the

fair share mechanism will be enabled but have no effect on scheduling behavior! Seethe
Priority Component Overview for more information on setting priority weights.

6.3.3.2 Feasibility Based Fairshare

In addition to the standard priority fairshare targets, Maui also allows a site to specify fairshare
caps. A capisspecified as either a hard absolute number of cycles allowed during the fairshare
window or as a percentage of total cycles delivered. If the fairshare cap isreached or exceeded,
the job is not allowed to run even if there are resources available.

See Also:
The 'diagnose -f' command was created to allow diagnosis and monitoring of the fairshare

facility.
FSENFORCEMENT

6.4 Allocation Management

ok
- The Moab Cluster Manager ™ allows global, external and internal Allocation Manager parameters to be set quickly and easily.

6.4.1 Allocation Management Overview

An allocation manager (also known as an alocation bank or cpu bank) is a software system which manages resource allocations where a resource allocation grants ajob aright to
use a particular amount of resources. Thisis not the right place for afull alocations manager overview but a brief review may point out the value in using such a system.

An alocation manager functions much like abank in that it provides aform a currency which allows jobs to run on an HPC system. The owners of the resource
(cluster/supercomputer) determine how they want the system to be used (often via an allocations committee) over a particular timeframe, often a month, quarter, or year. To enforce
their decisions, they distribute allocations to various projects via various accounts and assign each account an account manager. These allocations can be for use particular machines
or globally usable. They can also have activation and expiration dates associated with them. All transaction information is typically stored in a database or directory server allowing

extensive statistical and allocation tracking.

Each account manager determines how the alocations are made available to individual users within his project. Allocation manager managers such as PNNL's QBank allow the
account manager to dedicate portions of the overall alocation to individual users, specify some of allocations as 'shared' by all users, and hold some of the allocationsin reserve for

later use.

When using an allocations manager each job must be associated with an account. To accomplish this with minimal user impact, the allocation manager could be set up to handle
default accounts on a per user basis. However, asis often the case, some users may be active on more than one project and thus have access to more than one account. In these
situations, a mechanism, such as ajob command file keyword, should be provided to allow a user to specify which account should be associated with the job.

The amount of each job's allocation charge is directly associated with the amount of resources used (i.e. processors) by that job and the amount of time it was used for. Optionally,
the allocation manager can aso be configured to charge accounts varying amounts based on the QOS desired by the job, the type of compute resources used, and/or the time when
the resources were used (both in terms of time of day and day of week).

The allocation manager interface provides near real-time allocation management, giving agreat deal of flexibility and control over how available compute resources are used over
the medium and long term and works hand in hand with other job management features such as Maui's throttling palicies and fairshare mechanism.

6.4.2 Configuring the Allocation Manager Interface

Maui's allocation manager interface(s) are defined using the AMCFG parameter. This parameter allows specification of key aspects of the interface as shown in the table below.

Attribute

Format

Default

Description

Example

APPENDMACHINENAME

BOOLEAN

FALSE

if specified, the
scheduler will
append the machine
name to the
consumer account
to create a unique
account name per
cluster.

AMCF{J bank] APPENDVACH NENAVE=TRUE

(the scheduler will append the machine name to each account before making a
debit from the allocation manager.)

CHARGEPOLICY

one of
DEBITSUCCESSFULWC,
DEBITALLCPU,
DEBITALLPE,
DEBITSUCCESSFULWC,
DEBITSUCCESSFUL CPU,
DEBITSUCCESSFUL PE

DEBITALLWC

specifies how
consumed resources
should be charged
against the
consumer's
credentials.

AMCFQJ bank] CHARGEPCLI CY=DEBI TALLCPU

(alocation charges will be based on actual cpu usage only, not dedicate cpu
resources)

DEFERJOBONFAILURE

BOOLEAN

FALSE

if set to true, the
scheduler will defer
jobsif an allocation
manager failureis
detected.

AMCF{J bank] DEFERJOBONFAI LURE=TRUE

(allocation management will be strictly enforced preventing jobs from starting
if the allocation manager is unavailable.)

FALLBACKACCOUNT

STRING

[NONE]

if specified, the
scheduler will
verify adequate
alocations for all
new jobs. If
adequate allocation
arenot availablein
the job's primary
account, the
scheduler will
change the job's
credentialsto use
the fallback
account. If not
specified, the
scheduler will place
ahold on jobs
which do not have
adequate
alocationsin their

primary account.

AMCFJ bank] FALLBACKACCOUNT=freecycl e

(the scheduler will assign the account f r eecycl e to jobs which do not have
adequate allocations in their primary account.)

http://www.clusterresources.com/products/maui/mcm/
http://www.emsl.pnl.gov/docs/mscf/qbank/

FLUSHINTERVAL

[[[DD:]HH:]IMM:]SS

24:00:00

indicates the
amount of time
between allocation
manager debits for
long running
reservation and job
based charges.

AMCFJ bank] FLUSHI NTERVAL=12: 00: 00

(the scheduler will update its charges every twelve hours for long running jobs
and reservations)

HOST

STRING

N/A

specifies the name
of the host
providing the
allocation manager
service. NOTE:
deprecated in Maui
3.2.7 and higher.
Use SERVER
instead.

AMCFJ bank] HOST=ti ny. supercluster.org

PORT

INTEGER

N/A

specifies the port
used by the
allocation manager
service. NOTE:
deprecated in Maui
3.2.7 and higher.
Use SERVER
instead.

AMCF{J bank] PORT=5656

SERVER

URL

N/A

specifies the type
and location of the
allocation manager
service. If the
keyword 'ANY"is
specified instead of
aURL, the
scheduler will use
the local service
directory to locate
the allocation
manager. NOTE:
the SERVER
attribute is only
availablein Maui
3.2.7 and higher.
Earlier releases
should use the
HOST, PORT, and
TYPE attributes.

AMCFJ bank] SERVER=gbank://tiny. supercluster.org: 4368

SOCKETPROTOCOL

N/A

N/A

specifies the socket
protocol to be used
for
scheduler-allocation
manager
communication

AMCF{J bank] SOCKETPROTOCOL=SSS- CHALLENGE

TIMEOUT

[[[DD:]HH:]MM:]SS

10

specifiesthe
maximum delay
allowed for
scheduler-allocation
manager
communications

AMCFE bank] Tl MEOUT=30

TYPE

one of QBANK, GOLD,
RESD, or FILE

QBANK

specifiesthe
allocation manager
type. NOTE:
deprecated in Maui
3.2.7 and higher.
Use SERVER
instead.

AMCFQ bank] TYPE=QBANK

WIREPROTOCOL

N/A

N/A

specifiesthe wire
protocol to be used
for
scheduler-allocation
manager
communication

AMCFG bank] W REPROTOCOL=SSS2

Configuring the allocation manager consists of two steps. Thefirst step involves specifying where the allocation service can be found. In Maui 3.2.7 and higher, thisis
accomplished by setting the AMCFG parameter's SERVER attribute to the appropriate URL. In earlier releases, the HOST, PORT, and T PE attributes must be set.

Once the interface is specified, the second step involves the scheduler to allow secure communication. As with other interfaces, thisis configured using the CLIENTCFG
parameter within the mawui - pri vat e. cf g file asdescribed in the Security Appendix. In the case of an allocation manager, the CSKEY and CSAL GO attributes should be set to
values defined during initial allocation manager build and configuration asin the example below:

maui -private.cfg

CLI ENTCFQ bank] CSKEY=HMAC CSALGO=HVAC

6.4.2 Allocation Management Policies

In most cases, the scheduler will interface with a peer service. (If the protocol FILE is specified, the alocation manager transactions will be dumped to the specified flat file.)
With all peer services based allocation managers, the scheduler will check with the allocation manager before starting any job. For alocation tracking to work, however, each job
must specify an account to charge or the allocation manager must be set up to handle default accounts on a per user basis.

Under this configuration, when Maui decides to start ajob, it contacts the allocation manager and requests an allocation reservation, or lien be placed on the associated account.
This allocation reservation is equivalent to the total amount of allocation which could be consumed by the job (based on the job's wallclock limit) and is used to prevent the
possibility of alocation oversubscription. Maui then starts the job. When the job completes, Maui debits the amount of allocation actually consumed by the job from the job's
account and then releases the all ocation reservation or lien.

These steps transpire under the covers and should be undetectable by outside users. Only when an account has insufficient allocations to run a requested job will the presence of
the allocation manager be noticed. If desired, an account may be specified which isto be used when ajob's primary account is out of allocations. This account, specified using the
AM CFG parameter's FALLBACKACCOUNT attribute is often associated with alow QOS privilege set and priority and often is configured to only run when no other jobs are
present.

Reservations can also be configured to be chargeable. One of the big hesitations have with dedicating resources to a particular group is that if the resources are not used by that
group, they go idle and are wasted. By configuration a reservation to be chargeable, sites can charge every idle cycle of the reservation to a particular project. When the reservation
isin use, the consumed resources will be associated with the account of the job using the resources. When the resources are idle, the resources will be charged to the reservation's
charge account. In the case of standing reservations, this account is specified using the parameter SRCFG attribute CHARGEACCOUNT. In the case of administrative

reservations, this account is specified viaa command line flag to the setres command.

Maui will only interface to the allocation manager when running in NORMAL mode. However, this behavior can be overridden by setting the environment variable
'MAUIAMTEST to any value. With this variable set, Maui will attempt to interface to the allocation manager regardless of the scheduler's mode of operation.

The alocation manager interface allows a site to charge accounts in anumber of different ways. Some sites may wish to charge for all jobs run through a system regardless of
whether or not the job completed successfully. Sites may also want to charge based on differing usage metrics, such as walltime dedicated or processors actually utilized. Maui
supports the following charge policies specified viathe CHARGEPOLICY attribute:

« DEBITALLWC - chargefor al jobs regardless of job completion state using processor weighted wallclock time dedicated as the usage metric

« DEBITSUCCESSFULWC - charge only for jobs which successfully complete using processor weighted wallclock time dedicated as the usage metric
« DEBITSUCCESSFUL CPU - charge only for jobs which successfully complete using CPU time as the usage metric

« DEBITSUCCESSFUL PE - charge only for jobs which successfully complete using PE weighted wallclock time dedicated as the usage metric

NOTE: On systemswhere job wallclock limits are specified, jobs which exceed their wallclock limits and are subsequently cancelled by the scheduler or resource manager will be
considered as having successfully completed as far as charging is concerned, even though the resource manager may report these jobs as having been ‘removed' or 'cancelled'.

6.4.3 Allocation Manager Details
6.4.3.1 QBank Allocation Manager

QBank, developed at Pacific Northwest National Laboratory (PNNL), is adynamic cpu bank that allows system owners and funding managers to fine tune when, where, how and
to whom their resources are to be rationed. Much like a bank, but with the currency measured in computational creditsinstead of dollars, QBank provides an administrative interface
supporting familiar operations such as deposits, withdrawals, transfers and refunds. It provides balance and usage feedback to users, managers, and system administrators.
Computational resources are allocated to projects and users and full accounting is made of resource utilization.

QBank employs a debit (or credit) system in which ahold (reservation) is placed against a user's account before a job starts and a withdrawal occursimmediately after the job
completes. This approach ensures requestors of a resource can only use that which has been allocated to them. Allocations for a given account can be subdivided into portions
available toward different users, machines and timeframes. Presetting allocations to activate and expire in regular intervals minimizes year-end resource exhaustion and facilitates
capacity planning. QBank can manage and track the use of multiple systems from a central location. Additionally, support for job charge quotes and traceback debits allows QBank
to be used in meta-scheduling environments involving multiple administrative domains.

In high level summary, QBank provides the following features:

« real timeallocation tracking - tight scheduler integration to update allocations as jobs start and are completed

« guaranteed allocation enforcement - reservation based allocation tracking to prevent over-subscription

« project based allocation management - project managers alowed to dedicate or share allocations amongst account members

« allocation expiration - allocations can be granted with arbitrary expiration timeframes

» per machine allocations - allocations can be tied to specific compute resources or allowed to float granting access to any machine

« grid ready multi-site bank exchange - able to track and enfor ce resource usage amongst users of various sites

« QOSand nodetype billing - allowing sites to charge varying rates based on the quality of service and type of compute resource requested

« fliexible charging algorithm - site specific charge rates can be specified for period of time, number of processors, amount of memory, etc consumed by job
« Ssecurecommunication - secret key based communication with administrators, account managers, and peer services

» resource quotations - users and brokers can determine ahead of time the cost of using resources

« database independence - built on perl database abstraction layer allowing support for any commonly used commercial or opensource database
« allocation usage reports - provides detailed usage reports and summaries of exactly who used what and when over any specified timeframe

« role-based design - alows user, account manager, and bank manager service authorization levels

« mature suite of allocation management tools - commands provided allowing refunds, automatic account distributions, intra-project allocation transfers, and default project
management.

« user friendly commands - alows end-users to track historical usage and available allocations

« transparency - zero end-user involvement required to fully track job usage through proper batch scheduler configuration and user of bank based default accounts
« multi-project user support - if desired, users can explicitly specify job-to-project associations overriding project defaults

« support for both credit and debit based accounts - sites can base alocations on credit or debit models and even enable overdraft protection for specific projects

Additional information about QBank can be found on the QBank home page and in the QBank white paper Allocation Management with QBank.

6.4.3.2 Res Allocation Manager
N/A

6.4.3.3 File Allocation Manager

http://www.emsl.pnl.gov/docs/mscf/qbank/
http://www.emsl.pnl.gov/docs/mscf/qbank/Allocation_Management_with_QBank.pdf

N/A
6.4.3.4 Gold Allocation Manager

Gold is an accounting and allocation management system being developed at PNNL under the DOE Scalable Systems Software (SSS) project. Gold is similar to QBank in that it
supports a dynamic approach to allocation tracking and enforcement with reservations, quotations, etc. It offers more flexible controls for managing access to computational
resources and exhibits a more powerful query interface. Gold supports hierarchical project nesting. Journaling allows the preservation of all historical state information.

One of the most powerful featuresisthat Gold is dynamically extensible. New object/record types and their fields can be dynamically created and manipulated through the regular
query language turning this system into a generalized accounting and information service. This capability is extremely powerful and can be used to provide custom accounting,
meta-scheduler resource-mapping, or an external persistence interface.

Gold supports strong authentication and encryption and role based access control. A Web-accessible GUI is being developed to simplify management and use of the system. Gold
will support interaction with peer accounting systems with atraceback feature enabling it to function in a meta-scheduling or grid environment. It is anticipated that a beta version of
Gold will be released near 2Q04. More information about Gold can be obtained by sending email to the gold development mailing list.

Throttling Policies (Maui 2.3.0 - 3.0.6)

Maui's early style throttling policies are controlled via alarge number of independent parameters. Throttling policies
control and constrain instantaneous resource usage. They would, for example, allow asite to limit a user to running only 6
jobs at any given time or prevent agroup from utilizing more than 40 total processors at any giventime. They DO NOT
control historical usage. Thisishandled using Maui's Fairshare facility. Also, unlike Maui 3.0.7 and higher, early style

throttling did not allow credential specific limits.

Subject to the above constraints, Maui's early throttling policy facility is still avery useful tool in establishing fair
resource usage and may be used in conjunction with Fairshare, QOS, and Priority features to establish significant control

over cluster behavior. The table below lists the parameters associated with Maui's early style throttling.

NOTE: Inall cases, three parameters are grouped together. Thefirst, MAX*POLICY" must be set to ON in order for the
policy to be enforced. The second, ' MAX* COUNT', constrains the 'hard limit' which the scheduler must never violate under
any conditions. Thethird, 'SMAX*COUNT', iscalled a'soft limit' and if specified, will set alower, more constraining limit
which the scheduler should never violate unless no other jobs are available.

|Par ameter

|Details

Example

MAXJOBPERUSERPOLICY
MAXJOBPERUSERCOUNT
SMAXJOBPERUSERCOUNT

[imits the maximum total
number of jobs any given
user may have active

(running) simultaneously

MAXJ OBPERUSERPOLI CY ON
MAXJ OBPERUSERCOUNT 4

(allow each user to run up to 4 jobs
simultaneously)

MAXPROCPERUSERPOLICY
MAXPROCPERUSERCOUNT
SMAXPROCPERUSERCOUNT

[imits the maximum total
number of processors any
given user may have active
(allocated to running jobs)
simultaneously

MAXPROCPERUSERPCLI CY ON
MAXPROCPERUSERCOUNT 32

(allow each user to utilize up to 32
processors simultaneously)

MAXNODEPERUSERPOLICY
MAXNODEPERUSERCOUNT
SMAXNODEPERUSERCOUNT

[imits the maximum total
number of nodes any given
user may have active
(allocated to running jobs)
simultaneously

MAXNODEPERUSERPCLI CY ON
MAXNODEPERUSERCOUNT 16
SVAXNCDEPERUSERCCUNT 8

(allow each user to utilize up to 8 nodes
simultaneously by default. If no other jobs
can run and idle nodes are available, allow
each user to utilize up to 16 nodes
simultaneously.)

MAXPROCSECONDPERUSERPOLICY
MAXPROCSECONDPERUSERCOUNT
SMAXPROCSECONDPERUSERCOUNT

[imits the maximum total
number of
processor-seconds any
given user may have active
(allocated to running jobs)
simultaneously. NOTE:
processor-seconds
associated with any given
job is calculated as
PROCESSORS *
REMAININGWALLTIME

MAXPROCSECONDPERUSERPCOLI CY ON
MAXPROCSECONDPERUSERCOUNT
20000

(allow each user to utilize up to 20000
processor-seconds simultaneously)

MAXJOBQUEUEDPERUSERPOLICY
MAXJOBQUEUEDPERUSERCOUNT
SMAXJOBQUEUEDPERUSERCOUNT

limits the maximum total
number of idle jobs

associated with each user
which Maui will consider

eligible for scheduling

MAXJ OBQUEUEDPERUSERPOLI CY ON
MAXJ OBQUEUEDPERUSERCOUNT 3

(Maui will only consider 3 idle jobs per
user in each scheduling iteration)

MAXPEPERUSERPOLICY
MAXPEPERUSERCOUNT
SMAXPEPERUSERCOUNT

[imits the maximum total
number of
processor-equivalents any

given user may have active
(running) simultaneously

MAXPEPERUSERPCOLI CY ON
MAXPEPERUSERCOUNT 48

(allow each user have up to 48 PE's
alocated to active jobs simultaneously)

MAXJOBPERGROUPPOLICY
MAXJOBPERGROUPCOUNT
SMAXJOBPERGROUPCOUNT

[imits the maximum total
number of jobs any given
group may have active

(running) simultaneously

MAXJ OBPERGROUPPCLI CY ON
MAXJ OBPERGROUPCOUNT 4

(allow each group to run up to 4 jobs
simultaneously)

MAXPROCPERGROUPPOLICY
MAXPROCPERGROUPCOUNT
SMAXPROCPERGROUPCOUNT

[imits the maximum total
number of processors any
given group may have
active (allocated to running
jobs) simultaneously

MAXPROCPERGROUPPOLI CY ON
MAXPROCPERGROUPCOUNT 32

(allow each group to utilize up to 32
processors simultaneously)

MAXNODEPERGROUPPOLICY
MAXNODEPERGROUPCOUNT
SMAXNODEPERGROUPCOUNT

[imits the maximum total
number of nodes any given
group may have active
(allocated to running jobs)
simultaneously

MAXNODEPERGROUPPOLI CY ON
MAXNODEPERGROUPCOUNT 16
SVAXNCDEPERGROUPCOUNT 8

(allow each group to utilize up to 8 nodes
simultaneously by default. If no other jobs
can run and idle nodes are available, allow
each group to utilize up to 16 nodes
simultaneously.)

MAXPROCSECONDPERGROUPPOLICY
MAXPROCSECONDPERGROUPCOUNT
SMAXPROCSECONDPERGROUPCOUNT

[imits the maximum total
number of
processor-seconds any
given group may have
active (allocated to running
jobs) simultaneously.
NOTE: processor-seconds
associated with any given
job is calculated as
PROCESSORS *
REMAININGWALLTIME

MAXPROCSECONDPERGROUPPCOLI CY
ON
MAXPROCSECONDPERGROUPCOUNT
20000

(allow each group to utilize up to 20000
processor-seconds simultaneously)

MAXJOBQUEUEDPERGROUPPOLICY
MAXJOBQUEUEDPERGROUPCOUNT
SMAXJOBQUEUEDPERGROUPCOUNT

limits the maximum total
number of idle jobs
associated with each group
which Maui will consider
eligible for scheduling

MAXJ OBQUEUEDPERGROUPPCOLI CY ON
MAXJ OBQUEUEDPERGROUPCCOUNT 3

(Maui will only consider 3 idle jobs per
group in each scheduling iteration)

MAXPEPERGROUPPOLICY
MAXPEPERGROUPCOUNT
SMAXPEPERGROUPCOUNT

limits the maximum total
number of
processor-equivalents any

given group may have
active (running)
simultaneously

MAXPEPERGROUPPOLI CY ON
MAXPEPERGROUPCOUNT 48

(allow each group have up to 48 PE's
allocated to active jobs simultaneously)

MAXJOBPERACCOUNTPOLICY
MAXJOBPERACCOUNTCOUNT
SMAXJOBPERACCOUNTCOUNT

[imits the maximum total
number of jobs any given
account may have active

(running) simultaneously

MAXJ OBPERACCOUNTPOLI CY ON
MAXJ OBPERACCOUNTCOUNT 4

(allow each account to run up to 4 jobs
simultaneously)

MAXPROCPERACCOUNTPOLICY
MAXPROCPERACCOUNTCOUNT
SMAXPROCPERACCOUNTCOUNT

[imits the maximum total
number of processors any
given account may have
active (alocated to running
jobs) simultaneously

MAXPROCPERACCOUNTPCLI CY ON
MAXPROCPERACCOUNTCOUNT 32

(allow each account to utilize up to 32
processors simultaneously)

MAXNODEPERACCOUNTPOLICY
MAXNODEPERACCOUNTCOUNT
SMAXNODEPERACCOUNTCOUNT

[imits the maximum total
number of nodes any given
account may have active
(allocated to running jobs)
simultaneously

MAXNODEPERACCOUNTPOLI CY ON
MAXNODEPERACCOUNTCOUNT 16
SMAXNODEPERACCOUNTCOUNT 8

(allow each account to utilize up to 8 nodes
simultaneously by default. If no other jobs
can run and idle nodes are available, allow
each account to utilize up to 16 nodes
simultaneously.)

MAXPROCSECONDPERACCOUNTPOLICY
MAXPROCSECONDPERACCOUNTCOUNT
SMAXPROCSECONDPERACCOUNTCOUNT

[imits the maximum total
number of
processor-seconds any
given account may have
active (allocated to running
jobs) simultaneously.
NOTE: processor-seconds
associated with any given
jobiscalculated as
PROCESSORS *
REMAININGWALLTIME

MAXPROCSECONDPERACCOUNTPCLI CY
ON
MAXPROCSECONDPERACCOUNT COUNT
20000

(allow each account to utilize up to 20000
processor-seconds simultaneously)

MAXJOBQUEUEDPERACCOUNTPOLICY
MAXJOBQUEUEDPERACCOUNTCOUNT
SMAXJOBQUEUEDPERACCOUNTCOUNT

limits the maximum total
number of idle jobs
associated with each
account which Maui will
consider eigible for
scheduling

MAXJ OBQUEUEDPERACCOUNTPQOLI CY
ON
MAXJ OBQUEUEDPERACCOUNTCOUNT 3

(Maui will only consider 3 idle jobs per
account in each scheduling iteration)

MAXPEPERACCOUNTPOLICY
MAXPEPERACCOUNTCOUNT
SMAXPEPERACCOUNTCOUNT

[imits the maximum total
number of
processor-equivalents any

given account may have
active (running)

simultaneously

MAXPEPERACCOUNTPOLI CY ON
MAXPEPERACCOUNTCOUNT 48

(allow each account have up to 48 PE's
alocated to active jobs simultaneously)

Appendix E: Security
E.1 Role Based Security Configuration

Maui provides access control mechanismsto limit how the scheduling environment is
managed. The primary means of accomplishing thisis through limiting the users and hosts
which are trusted and have access to privileged commands and data.

With regards to users, Maui breaks access into three distinct levels.
E.1.1 Level 1 Maui Admin (Administrator Access)

A level 1 Maui Admin has global access to information and unlimited control over
scheduling operations. Heis alowed to control scheduler configuration, policies, jobs,
reservations, and all scheduling functions. He is also granted accessto all available statistics
and state information. Level 1 admins are specified using the ADMIN1 parameter.

E.1.2 Level 2 Maui Admin (Operator Access)

Level 2 Maui Admins are specified using the ADMINZ2 parameter. The users listed under

this parameter are allowed to change all job attributes and are granted access to all
informational Maui commands.

E.1.3 Level 3 Maui Admin (Help Desk Access)

Level 3 administrators users a specified viathe ADMIN3 parameter. They are allowed
access to all informational Maui commands. They cannot change scheduler or job attributes.

E.1.4 Admininstrative Hosts

If specified, the ADMINHOST parameter allows a site to specify a subset of trusted hosts.

All administrative commands (level 1-3) will be rejected unless they are received from one of
the hosts listed.

E.2 Interface Security

As part of the U.S Department of Energy SSS Initiative, Maui interface security is being
enhanced to allow full encryption of data and GSl-like security.

If these mechanisms are not enabled, Maui also provides a shared secret key based security
model. Under this model, each client request is packaged with the client ID, atimestamp, and
aencrypted key of the entire request generated using a secret site selected key (checksum
seed). A default key is selected when the Maui configur e script is run and may be regenerated

at any time by rerunning configur e and rebuilding Maui.
E.2.1 Configuring Peer Specific Keys

Peer-specific secret keys can be specified using the CLIENTCFG parameter. This key

information must be kept secret and consequently can only be specified in the
maui - pri vat e. cf g file. With regardsto security, there are two key attributes which can
be set. These attributes are listed in the table below:

|Attribute [Format |Description |Example

specifiesthe
encryption
agorithm to
use when CLI ENTCFG AM bank] CSALGO=HVAC
generating the
message
checksum.

one of
DES,
HMAC,
or MD5.

CSALGO

specifiesthe
shared secret
key to be used
to generate the
message
checksum.

CSKEY |STRING CLI ENTCF RM cl ust er A] CSKEY=banana6

The CLIENTCFG parameter takes a string index indicating which peer service will use the
specified attributes. In most cases, this string is simply the defined name of the peer service.
However, for the special cases of resource and all ocation managers, the peer name should be
prepended with the prefix RM: or AM: respectively, asin CLI ENTCFE AM bank] or
CLI ENTCFH RM devcl uster].

E.2.2 Interface Development Notes

Details about the checksum generation algorithm can be found in the Socket Protocol
Description document.

7.0 Controlling Resour ce Access - Reservations, Partitions, and QoS
Facilities

o 7.1 Advance Reservations

o 7.2 Partitions

e 7.3 QoS Facilities

7.1 Advance Reservations

Reservation Overview

An advance reservation is the mechanism by which Maui guarantees the availability of a set of
resources at a particular time. Every reservation consists of 3 major components, alist of
resources, atimeframe, and an access control list. It isthe job of the scheduler to make certain
that the access controal list is not violated during the reservation's lifetime (i.e., itstimeframe)
on the resources listed. For example, areservation may specify that node002 is reserved for
user Tom on Friday. The scheduler will thus be constrained to make certain that only Tom's
jobs can use node002 at any time on Friday. Advance reservation technology enables many
features including backfill, deadline based scheduling, QOS support, and meta scheduling.

o 7.1.1 Reservations Overview

e 7.1.2 Administrative Reservations

« 7.1.3 Standing Reservations

e 7.1.4 Reservation Policies

o 7.1.5 Configuring and Managing Reservations
« 7.1.6 Enabling Reservations for End Users

7.2 Partitions

Partitions are alogical construct which divide available resources. By default, agiven job
may only utilize resources within a single partition and any resource (i.e., compute node) may
only be associated with asingle partition. In general, partitions are organized along physical
or political boundaries. For example, acluster may consist of 256 nodes containing four 64
port switches. This cluster may receive excellent interprocess communication speeds for
parallel job tasks located within the same switch but sub-stellar performance for tasks which
span switches. To handle this, the site may choose to create four partitions, allowing jobsto
run within any of the four partitions but not span them.

While partitions do have value, it is important to note that within Maui, the standing
reservation facility provides significantly improved flexibility and should be used in the vast
majority of cases where partitions are required under other resource management systems.
Standing reservations provide time flexibility, improved access control features, and more
extended resource specification options. Also, another Maui facility called Node sets allows
intelligent aggregation of resources to improve per job node allocation decisions. In cases
where system partitioning is considered for such reasons, node sets may be able to provide a
better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability
to specify partition specific policies, limits, priorities, and scheduling algorithms although this
featureisrarely required. An example of this need may be a cluster consisting of 48 nodes
owned by the Astronomy Department and 16 nodes owned by the Mathematics Department.
Each department may be willing to allow sharing of resources but wants to specify how their
partition will be used. As mentioned earlier, many of Maui's scheduling policies may be
specified on a per partition basis allowing each department to control the scheduling goals
within their partition.

The partition associated with each node must be specified asindicated in the Node L ocation

section. With this done, partition access lists may be specified on a per job or per QOS basis
to constrain which resources a job may have access to (See the QOS Overview for more

information). By default, QOS's and jobs allow global partition access.

If no partition is specified, Maui creates a single partition named 'DEFAUL T into which all
resources are placed. In addition to the DEFAULT partition, a pseudo-partition named [ALL]
"Is created which contains the aggregate resources of al partitions. NOTE: While DEFAULT
isareal partition containing all resources not explicitly assigned to another partition, the
[ALL] partition isonly a convenience construct and isnot areal partition; thusit cannot be
requested by jobs or included in configuration ACL's.

e 7.2.1 Defining Partitions
e 7.2.2 Managing Partition Access

e 7.2.3 Reguesting Partitions
e 7.2.4 Miscellaneous Partition | ssues

7.2.1 Defining Partitions

Node to partition mappings are established using the NODECFG parameter as shown in the
example below.

NODECF{ node001] PARTI TI ON=ast r onony
NODECF{J node002] PARTI TI ON=ast r onony

NdDECFG{ node049] PARTI TI ON=mat h

NOTE: By default, Maui only alows the creation of 4 partitions total. Two of these
partitions, DEFAULT, and [ALL], are used internally, leaving only two additional partition
definition slots available. If more partitions will be needed, the maximum partition count
should be adjusted. See Appendix D, Adjusting Default Limits, for information on increasing

the maximum number of partitions.

£ I . .
-Partl ons can easily be created for by the Moab Cluster Manager™ for systems using the
Moab Workload Manager ™.

7.2.2 Managing Partition Access

Determining who can use which partition is specified using the * CFG parameters
(USERCFG , GROUPCFG , ACCOUNTCFG , QOSCFG , CLASSCFG , and SYSTEMCFG

). These parameters allow both a partition access list and default partition to be selected on a
credential or system wide basis using the PLIST and PDEF keywords. By default, the access
associated with any given job isthe logical or of all partition access lists assigned to the job's
credentials. Assume a site with two partitions, general, and test. The site management would
like everybody to use the general partition by default. However, one user, steve, needsto
perform the majority of hiswork on the test partition. Two special groups, staff and mgmt will
also need access to use the test partition from time to time but will perform most of their work
in the general partition. The example configuration below will enable the needed user and
group access and defaults for this site.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mwm/

SYSCF{ base] PLI ST=

USERCF{J DEFAULT] PLI ST=gener al

USERCF({ st eve] PLI ST=gener al : t est PDEF=t est
GROUPCFJ st aff] PLI ST=general : t est PDEF=gener al
GROUPCF(F ngnt] PLI ST=gener al : t est PDEF=gener al

NOTE: By default, the system partition access list allows global accessto all partitions. If
using logically or based partition access lists, the system partition list should be explicitly
constrained using the SY SCFG parameter.

While using alogical or approach allows sites to add access to certain jobs, some sites
prefer to work the other way around. In these cases, access is granted by default and certain
credentials are then restricted from access various partitions. To use this model, a system
partition list must be specified. See the example below:

SYSCF({ base] PLI ST=general ,test &
USERCF{ deno] PLI ST=t est &
CGROUPCFJ st aff] PLI ST=gener al &

In the above example, note the ampersand ('&"). This character, which can be located
anywherein the PLIST line, indicates that the specified partition list should be logically and'd
with other partition accesslists. In this case, the configuration will limit jobs from user demo
to running in partition test and jobs from group staff to running in partition general . All other
jobs will be allowed to run in either partition. NOTE : When using and based partition access
lists, the base system access list must be specified with SY SCFG.

7.2.3 Requesting Partitions

Users may request to use any partition they have accessto on aper job basis. Thisis
accomplished using the resource manager extensions since most native batch systems do not
support the partition concept. For example, on a PBS system, ajob submitted by a member of
the group staff could request that the job run in the test partition by adding the line '#PBS -W
x=PARTITION:test' to the command file. See the resource manager extension overview for

more information on configuring and utilizing resource manager extensions.

7.2.4 Miscdlaneous Partition I ssues

Special jobs may be allowed to span the resources of multiple partitionsif desired by
associating the job with a QOS which has the flag 'SPAN' set. (See the QOSCFG parameter)

A brief caution, use of partitions has been quite limited in recent years as other, more
effective approaches are selected for site scheduling policies. Consequently, some aspects of
partitions have received only minor testing. Still note that partitions are fully supported and
any problem found will be rectified.

See Also:

7.3 Quality of Service (QoS) Facilities

e 7.3.1 QoS Overview

e 7.3.2 QoS Enabled Privileges
o 7.3.2.1 Special Prioritization
o 7.3.2.2 Service Access and Constraints
o 7.3.2.3 Policy Exemptions

« 7.3.3 Managing QoS Access

7.3.1 QoS Overview

The QOS facility allows a site to give specia treatment to various classes of jobs, users, groups, etc. Each
QOS object can be thought of as a container of special privileges ranging from fairness policy exemptions, to
special job prioritization, to specia functionality access. Each QOS object also has an extensive access list
of users, groups, and accounts which can access these privileges.

Sites can configure various QOS's each with its own set of priorities, policy exemptions, and special
resource access settings. They can then configure user, group, account, and class access to these QOSs. A
given job will have a default QOS and may have access to several additional QOS's. Whenthejobis
submitted, the submittor may request a specific QOS (see the User's Manual for information on specifying
job QOS for the resource manager of interest) or just allow the default QOS to be used. Onceajobis
submitted, a user may adjust the QOS of hisjob's at any time using the 'setqgos command. The setqos
command will only allow the user to modify the QOS of his jobs and only change the QOS to a QOS that
this user has accessto. Maui administrators may change the QOS of any job to any value.

Jobs are currently granted access to QOS privileges by configuring QDEF (QOS Default) or QLIST (QOS
Access List) settingsin the fs.cfg file. A job may access a particular QOS if that QOS is listed in the system
default configuration QDEF or QLIST, or if the QOS is specified in the QDEF or QLIST of a user, group,
account, or class associated with that job.

The 'diagnose -Q' command can be used to obtain information about the current QOS configuration.

“With the Moab Cluster Manager™ , a QoS can be created, modifed and reports generated about
through a graphical interface.

7.3.2 QoS Enabled Privileges

The privileges enabled via QoS settings may be broken into one of the following categories
« Special Prioritization
« Service Access and Constraints
« Override Policies and Policy Exemptions

All privileges are managed viathe QOSCFG parameter.

7.3.2.1 Special Prioritization

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/qos.shtml
http://www.clusterresources.com/products/maui/mcm/reports.shtml

|Attribute Name IDescription

[FSTARGET

IPRIORITY |Assign priority to all jobs requesting particular QoS
|QTTARGET

|QTWEI GHT

|X|——I'ARGET

|XFWEIGHT

Example:

QOSCFQ geo] PRI ORI TY=10000

7.3.2.2 Service Access and Constraints

The QoS facility can ne used to enable special service and/or disable default services. All services are
enabled/disabled by setting the QoS QFL AGS attribute.

|Flag Name IDescription
jobs should not share compute resources with any other job.
These jobs will only run on nodes which are idle and will not
DEDICATED allow other jobs to use resources on allocated nodes even if
additional resources are available.
INOBF ljob cannot be considered for backfilled
|NORESERVATI ON |j ob should never reserve resources regardless of priority
|PREEMPTEE ljob may be preempted by higher priority PREEMPTOR jobs
|IPREEMPTOR ljob may preempt lower priority PREEMPTEE jobs
RESERVEALWAYS jp ??Oﬂwtgul d create resource reservation regardless of job
jobs can preempt restartable jobs by essentially requeueing
RESTARTPREEMPT them if this allows the QOS job to start earlier
job may only utilize resources within accessible reservations.
USERESERVEDI[:<RESID>] |If <RESID> is specified, job may only utilize resources within
the specified reservation.

Example:
QOSCF(J hi pri 0] QFLAGS=NOBF: PREEMPTEE

Example 2:

QOSCFF chem b] QFLAGS=USERESERVED: cheni stry

7.3.2.3 Policy Exemptions

Individual QoS's may be assigned override policies which will set new policy limits regardless of user,
group, account, or queue limits. Particularly, the following policies may be overridden:

MAXJOB
MAXPROC
MAXNODE

Example:
QOSCFG staff] MAXJOB=48

In addition to overriding policies, QoS's may also be used to allow particular jobs to ignore policies by
setting the QoS FLAG attribute

QOSFlags

IGNJOBPERUSER
IGNPROCPERUSER
IGNPSPERUSER
IGNJOBQUEUEDPERUSER
IGNJOBPERGROUP
IGNPROCPERGROUP
IGNPSPERGROUP
IGNJOBQUEUEDPERGROUP
IGNJOBPERACCOUNT
IGNPROCPERACCOUNT
IGNPSPERACCOUNT
IGNJOBQUEUEDPERACCOUNT
IGNSY SMAXPROC
IGNSYSMAXTIME

IGNSY SMAXPS

IGNSRMAXTIME

jobs should ignore standing reservation MAXTIME constraints
IGNUSER

jobs should ignore all user throttling policies
IGNGROUP

jobs should ignore al group throttling policies
IGNACCOUNT

jobs should ignore all account throttling policies
IGNSY STEM

jobs should ignore al system throttling policies
IGNALL

jobs should ignore al user, group, and account throttling policies
Example

QOSCF{ express] QFLAGS=I GNSYSTEM
7.3.3 Managing QoS Access

While defining the privileges alowed within a QoS is managed using the QOSCFG parameter, actual
access to the QoS is enabled via credential specific * CFG parameters. Specifically, the USERCFG,

GROUPCFG, ACCOUNTCEFG, and CLASSCFG parameters allow QoS access lists and QoS defaults to be

defined. To enable QoS access, the QLI ST and/or QDEF attributes of the appropriate user, group, account,
or queue should be specified as in the example below:

Example:

user john's jobs can access QOS geo, chem or staff with geo as default
USERCF{ | ohn] QDEF=geo QLI ST=geo, chem st af f

group system jobs can access the devel opnent gos
CROUPCF(syst ens] QDEF=devel opnent

cl ass batch jobs can access the normal gos
CLASSCF({ bat ch] QDEF=nor nal

NOTE: By default, jobs may request a QoS if access to that QoS is allowed by any of the job's credentials.
(i.e., in the example above, ajob from user j ohn submitted to the class bat ch could request QoS'sgeo,
chemstaff,ornormal)

See dso:
N/A

7.1.1 Reservation Overview

Every reservation consists of 3 mgjor components, a set of resources, atimeframe, and an
access control list. Additionally, areservation may also have a number of optional attributes
controlling its behavior and interaction with other aspects of scheduling. All reservation
attributes are described below.

7.1.1.1 Resources

Under Maui, the resources specified for areservation are specified by way of a
task description. Conceptually, atask can be thought of as an atomic, or

indivisible, collection of resources. The resources may include processors,
memory, swap, local disk, etc. For example, a single task may consist of one
processor, 2 GB of memory, and 10 GB of local disk. A reservation consists of
one or more tasks. In attempting to locate the resources required for a particular
reservation, Maui will examine all feasible resources and locate the needed
resources in groups specified by the task description. An example may help
clarify this concept:

Reservation A requires 4 tasks. Each task is defined as 1 processor and 1 GB
of memory.

Node X has 2 processors and 3 GB of memory available
Node Y has 2 processors and 1 GB of memory available
Node Z has 2 processors and 2 GB of memory available

In attempting to collect the resources needed for the reservation, Maui would
examine each node in turn. Maui finds that Node X can support 2 of the 4 tasks
needed by reserving 2 processors and 2 GB of memory, leaving 1 GB of memory
unreserved. Analysis of Node Y showsthat it can only support 1 task reserving 1
processor and 1 GB of memory, leaving 1 processor unreserved. Note that the
unreserved memory on Node X cannot be combined with the unreserved
processor on Node Y to satisfy the needs of another task because atask requires
all resources to be located on the same node. Finaly, analysis finds that node Z
can support 2 tasks, fully reserving all of its resources.

Both reservations and jobs use the concept of atask description in specifying
how resources should be allocated. It isimportant to note that although a task
description is used to allocate resources to a reservation, this description does not
in any way constrain the use of those resources by ajob. Inthe above example, a
job requesting resources simply sees 4 processors and 4 GB of memory available
in reservation A. If the job has accessto the reserved resources and the resources
meet the other requirements of the job, the job could utilize these resources
according to its own task description and needs.

Currently, the resources which can be associated with reservations include
processors, memory, swap, local disk, initiator classes, and any number of
arbitrary resources. Arbitrary resources may include peripherals such as tape
drives, software licenses, or any other site specific resource.

7.1.1.2 TimeFrame

Associated with each reservation isatimeframe. This specifies when the
resources will be reserved or dedicated to jobs which meet the reservation's ACL.
The timeframe ssimply consists of a start time and an end time. When configuring
areservation, thisinformation may be specified as a start time together with either
an end time or a duration.

7.1.1.3 AccessControl List

A reservation's access control list specifies which jobs can use areservation.
Only jobs which meet one or more of areservation's access criteria are allowed to
use the reserved resources during the reservation timeframe. Currently, the
reservation access criteriainclude the following: users, groups, accounts, classes,
QOS, and job duration.

7.1.1.4 Job to Reservation Mapping

While areservation's ACL will alow particular jobsto utilize reserved
resources, it does not force any job to utilize these resources. With each job,
Maui attempts to locate the best possible combination of available resources
whether these are reserved or unreserved. For example, in the figure below, note
that job X, which meets access criteriafor both reservation A and B, allocates a
portion of its resources from each reservation and the remainder from resources
outside of both reservations.

Although by default,
reservations make resources
available to jobs which
meet particular criteria,
Maui can be configured to
constrain jobs to only run
within accessible
reservations. This can be
requested by the user on a
job by job basisusing a
resource manager extension
flag or can be enabled
administratively viaa QoS flag. For example, assume two reservations were
created as shown below.

> setres -g staff -d 8:00:00 'node[1-4]"'

reservation 'staff.1" created on 4 nodes
> setres -u john tasks==
reservation 'john.1l" created on two nodes

If the user j ohn, who happened to also be a member of the group st af f,
wanted to force hisjob to run within a particular reservation, he could do so using
the FL AGS resource manager extension. Specificaly, in the case of aPBS job,
the following submission would force the job to run withinthest af f . 1
reservation.

> gqsub -1 nodes=1,wal I tinme=1:00:00 -W
Xx=FLAGS: ADVRES: staff. 1 testjob.cnd

Note that for thisto work, PBS will need to have resource manager extensions
enabled as described in the PBS Resource Manager Extension Overview. If the

user simply wants the job to run on reserved resources but does not care which, he
could submit the job with

>qgsub -1 nodes=1,wal |l tine=1:00: 00 -W x=FLAGS: ADVRES
testj ob. cnd

To enable job to reservation mapping via QoS, the QoS flag
'USERRESERVED' should be set in asimilar manner.

7.1.1.5 Reservation Specification

There are two main types of reservations which sitestypically deal with. The
first, administrative reservations, are typically one time reservations created for
special purposes and projects. These reservations are created using the setres
command. These reservations provide an integrated mechanism to allow graceful
management of unexpected system maintenance, temporary projects, and time
critical demonstrations. This command allows an administrator to select a
particular set of resources or just specify the quantity of resources needed. For
example an administrator could use aregular expression to request a reservation
be created on the nodes 'blue0[1-9]" or could simply request that the reservation
locate the needed resources by specifying a quantity based request such as
"TASKS==20'

The second type of reservation is called a standing reservation. It isof use
when there is arecurring need for a particular type of resource distribution. For
example, a site could use a standing reservation to reserve a subset of its compute
resources for quick turnaround jobs during business hours on Monday thru
Friday. Standing reservations are created and configured by specifying
parameters in the maui.cfg file. The Standing Reservation Overview provides

more information about configuring and using these reservations.

7.1.1.6 Reservation Behavior

As mentioned above, a given reservation may have one or more access criteria.
A job can utilize the reserved resources if it meets at |east one of these access
criteria. It ispossible to 'stack’ multiple reservations on the same node. In such a
situation, ajob can only utilize the given node if it meets at |east access criteria of
each active reservation on the node.

7.1.1.7 Other Reservation Attributes

Charge Account - Allows areservation to charge for resources which are
dedicated to the reservation but not used by any job.

See dso:
N/A

7.1.2 Administrative Reservations

Administrative reservations behave much like standing reservations but are generally created
to address non-periodic, ‘'one time' issues. All admin reservations are created using the setres

command and are persistent until they expire or are removed using the rel easeres command.

See also: Reservation Overview, Backfill

7.1.3 Standing Reservations

Standing reservations build upon the capabilities of advance reservations to enable asite to
enforce advanced usage policiesin an efficient manner. Standing reservations provide a
superset of the capabilities typically found in a batch queuing system's class or queue
architecture. For example, queues can be used to allow only particular types of jobs access to
certain compute resources. Also, some batch systems allow these queues to configured so that
they only alow this access during certain times of the day or week. Standing reservations
allow these same capabilities but with greater flexibility and efficiency than istypically found
in anormal queue management system.

Standing Reservations provide a mechanism by which a site can dedicate a particular block
of resources for a special use on aregular daily or weekly basis. For example, node X could be
dedicated to running jobs only from users in the accounting group every Friday from 4 to 10
PM. Seethe Reservation Overview for more information about the use of reservations. The
Managing Reservations section provides a detailed explanation of the concepts and steps
involved in the creation and configuration of standing reservations.

A standing reservation is a powerful means of
Controlling Access to Resources
Controlling Turnaround

see the following parameters for more information: SRNAME SRRESOURCES SRDAY S
SRFLAGS SRSTARTTIME SRENDTIME SRWSTARTTIME SRWENDTIME SRDEPTH
SRTASKCOUNT SRHOSTLIST SRTPN SRUSERLIST SRGROUPLIST
SRACCOUNTLIST SROOSLIST SRCLASSLIST SRMAXTIME SRTIMELOGIC
SRPARTITION SRACCESS

7.1.4 Reservation Policies

In addition to standing and administrative reservations, Maui can also create priority
reservations. These reservations are used to allow the benefits of out-of-order execution (such
asis available with backfill) without the side effect of job starvation. Starvation can occur in

any system where the potential existsfor ajob to be overlooked by the scheduler for an
indefinite period. In the case of backfill, small jobs may continue to be run on available
resources as they become available while alarge job sits in the queue never ableto find
enough nodes available simultaneously to run on. To avoid such situations, priority
reservations are created for high priority jobs which cannot run immediately. When making
these reservations, the scheduler determines the earliest time the job could start, and then
reserves these resources for use by thisjob at that future time.

By default, only the highest priority job will receive a priority reservation. However, this
behavior is configurable viathe RESERVATIONDEPTH policy. Maui's default behavior of
only reserving the highest priority job allows backfill to be used in aform known as liberal
backfill. Thisliberal backfill tends to maximize system utilization and minimize overall
average job turnaround time. However, it does lead to the potential of some lower priority
jobs being indirectly delayed and may lead to greater variance in job turnaround time. The
RESERVATIONDEPTH parameter can be set to avery large value, essentially enabling
what is called conservative backfill where every job which cannot run is given areservation.
Most sites prefer the liberal backfill approach associated with the default
RESERVATIONDEPTH of 1 or select adlightly higher value. It isimportant to note that to
prevent starvation in conjunction with reservations, monotonically increasing priority factors
such as queuetime or job xfactor should be enabled. See the Prioritization Overview for more

information on priority factors.

Another important consequence of backfill and reservation depth isits affect on job
priority. In Maui, all jobs are prioritized. Backfill allows jobs to be run out of order and thus,
to some extent, job priority to beignored. This effect, known as'priority dilution' can cause
many site policies implemented viaMaui prioritization policiesto be ineffective. Setting the
RESERVATIONDEPTH parameter to a higher value will give job priority 'more teeth' at the
cost of dightly lower system utilization. Thislower utilization results from the constraints of
these additional reservations, decreasing the scheduler's freedom and its ability to find
additional optimizing schedules. Anecdotal evidence indicates that these utilization losses are
fairly minor, rarely exceeding 8%.

In addition to RESERVATIONDEPTH, sites also have the ability to control how
reservations are maintained. Maui's dynamic job prioritization alows sitesto prioritize jobs so
that their priority order can change over time. It is possible that one job can be at the top of the
priority queue for atime, and then get bypassed by another job submitted later. The parameter
RESERVATIONPOLICY alows asite to determine what how existing reservations should be

handled when new reservations are made. The value HIGHEST will cause that al jobs which
have ever received a priority reservation will maintain that reservation until they run even if
other jobs later bypass them in priority value. The value CURRENTHIGHEST will cause
that only the current top <RESERVATIONDEPTH> priority jobs will receive reservations. |f
ajob had areservation but has been bypassed in priority by another job so that it no longer
qualifies as being amongst the top <RESERVATIONDEPTH> jobs, it will loseits
reservation. Finally, the value NEVER indicates that no priority reservations will be made.

QOS based reservation depths can be enabled viathe RESERVATIONQOSLIST
parameter. This parameter allows varying reservation depths to be associated with different
sets of job QoS's. For example, the following configuration will create two reservation depth
groupings:

RESERVATI ONDEPTH 0] 8
RESERVATI ONQOSLI ST[0] hi ghprio interactive debug

RESERVATI ONDEPTH 1] 2
RESERVATI ONQOSLI ST[1] bat ch

This example will cause that the top 8 jobs belonging to the aggregate group of hi ghpri o,
I nteracti ve, anddebug QoS jobswill receive priority reservations. Additionally, the top
2 bat ch QoS jobswill also receive priority reservations. Use of this feature allows sitesto
maintain high throughput for important jobs by guaranteeing the a significant proportion of
these jobs are making progress towards starting through use of the priority reservation.

A final reservation policy isin place to handle a number of real-world issues. Occasionally
when a reservation becomes active and ajob attempts to start, various resource manager race
conditions or corrupt state situations will prevent the job from starting. By default, Maui
assumes the resource manager is corrupt, releases the reservation, and attempts to re-create the
reservation after a short timeout. However, in the interval between the reservation release and
the re-creation timeout, other priority reservations may allocate the newly available resources,
reserving them before the original reservation gets an opportunity to reallocate them. Thus,
when the original job reservation is re-established, its original resource may be unavailable and
the resulting new reservation may be delayed several hours from the earlier start time. The
parameter RESERVATIONRETYTIME allows a site that is experiencing frequent resource

manager race conditions and/or corruption situations to tell Maui to hold on to the reserved
resource for a period of time in an attempt to allow the resource manager to correct its state.

See dlso: Reservation Overview, Backfill

7.1.5 Configuring and Managing Reservations

All reservations, whether they be administrative or standing, possess many similar traits.

- The Moab Cluster Manager™ provides a graphical interface to view and control reservations.
7.15.1 Reservation Attributes

All reservations possess a timeframe of activity, an access control list, and alist of resources to be reserved. Additionally, reservations may also possess a number of extension attributes including epilog/prolog
specification, reservation ownership and accountability attributes, and special flags which modify the behavior of the reservation.

7.1.5.1.1 Start/End Time

All reservations possess a start and an end time which define the reservation's active time. During this active time, the resources within the reservation may only be used as specified by the reservation ACL. This
active time may be specified as either a start/end pair or a start/duration pair. Reservations exist and are visible from the time they are created until the active time ends at which point they are automatically removed.

7.1.5.1.2 Access Control List (ACL)
For areservation to be useful, it must be able to limit who or what can access the resources it has reserved. Thisis handled by way of an access control list, or ACL.
7.1.5.1.3 Resources

When specifying which resources to reserve, the administrator has a number of options. These options allow control over how many resources are reserved and where they are reserved at. The following
reservation attributes allow the administrator to define resources

Task Description

A key concept of reservationsistheidea of atask. The scheduler uses the task concept extensively for its job and reservation management. A task is simply an atomic collection of resources, such as processors,
memory, or local disk, which must be found on the same node. For example, if atask requires 4 processors and 2 GB of memory, the scheduler must find all processors AND memory on the same node; it cannot
alocate 3 processors and 1 GB on one node and 1 processor and 1 GB of memory on another node to satisfy thistask. Tasks constrain how the scheduler must collect resources for use in a standing reservation,
however, they do not constrain the way in which the scheduler makes these cumulative resources available to jobs. A job can use the resources covered by an accessible reservation in whatever way it needs. If
reservation X allocated 6 tasks with 2 processors and 512 MB of memory each, it could support job Y which requires 10 tasks of 1 processor and 128 MB of memory or job Z which requires 2 tasks of 4 processors
and 1 GB of memory each. The task constraints used to acquire a reservation's resources are completely transparent to a job requesting use of these resources.

Taskcount
Using the task description, the taskcount attribute defines how many tasks must be allocated to satisfy the reservation request. To create areservation, a taskcount and/or a hostlist must be specified.
Hostlist

A hostlist constrains the set of resource which are available to areservation. If no taskcount is specified, the reservation will attempt to reserve one task on each of the listed resources. If ataskcount is specified
which requests fewer resources than listed in the hostlist, the scheduler will reserve only the number of tasks from the hostlist specified by the taskcount attribute. If ataskcount is specified which requests more
resources than listed in the hostlist, the scheduler will reserve the hostlist nodes first and then seek additional resources outside of thislist.

7.15.1.4 Flags

Reservation flags allow specification of special reservation attributes or behaviors. The following flags are supported:

[Flag Name [Description
BESTEFFORT N/A

reservation will only allow access to jobs which meet reservation
BYNAME ACL'sand explicitly request the resources of this reservation using the
job ADVRES flag

job's by the reservation owner are allowed to preempt non-owner jobs

OWNERPREEMPT using reservation resources
PREEMPTEE N/A
SPACEFLEX reservation is allowed to move from host to host over timein an

attempt to optimize resource utilization*

*NOTE: Reservations must now explicitly request the ability to 'float' for optimization purposes by using the SPACEFLEX flag. Previous versions enabled the 'float’ behavior by default if a hostlist was not
specified.

7.1.5.2 Configuring Standing Reservations

Standing reservations allow resources to be dedicated for particular uses. This dedication can be configured to be permanent or periodic, recurring at aregular time of day and/or time of week. Thereis extensive
applicability of standing reservations for everything from daily dedicated job runs to improved use of resources on weekends. All standing reservation attributes are specified via the SRCFG parameter using the
attributes listed in the table below.

Attribute Format Default Description Example

If set to SHARED, alows
a standing reservation to
utilize resources already [SRCFG t est] ACCESS=SHARED
ACCESS DEDICATED or SHARED DEDICATED |allocated to other non-job
reservations. Otherwise,
these other reservations
will block resource access.

specifies that jobs with the
associated accounts may SRCFJ t est] ACCOUNTLI ST=ops, st af f

(Standing reservation t est may access resources allocated to
existing standing and administrative reservations)

ACCOUNTLIST list of valid, comma delimited account names [NONE] use the resources (jobs using the account ops or st af f are granted accessto the
contained within this resources in standing reservationt est)
reservation

specifies the account to -
which maui will charge all SRCFJ t est] CHARGEACCOUNT=] upi t er

CHARGEACCOUNT [any valid accountname [NONE] idle cycleswithin the (The scheduler will charge all idle cycles within reservations

reservation (viathe supporting standing reservation t est to account j upi t er)
alocation manager)
specifies that jobs . .
requiring any of these SRCFE test] CLASSLI ST=i nteractive

CLASSLIST list of valid, commadelimited class names [NONE] classes may use the (The scheduler will allow all jobs requiring any of the classes listed

resources contained Within |arcess to the resources reserved by standing reservationt est)
this reservation
one or more of the following (comma delimited) specifieswhichdaysof |SRCF@ t est] DAYS=Mon, Tue, Ved, Thu, Fri
DAYS Mon, Tue, Wed, Thu, Fri, Sat, Sun, [ALL] the week the standing
or [ALL] reservation will be active |(Standing reservationt est will be active on Monday thru Friday)

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/reservationMgmt.shtml

Spec‘ijfiﬁthe number of |SRCFE t est] PERI OD=DAY DEPTH=7
standing reservations
DEPTH <INTEGER> 2 which will be created (one |(SPecifies that reservations will be created for standing reservation
per period) See PERIOD) [t est for today, and the next 6 days)
specifies the time of day
the standing reservation
period ends (end of day or
end of week depending on
E’AERI 220) f\(leTF: In SRCFE t est] STARTTI ME=8: 00: 00
. . . 00" aui 3.2 and earlier, week SRCFJ t est] ENDTI ME=17: 00: 00
ENDTIME [[[DD:]HH:]MM:]SS 24:00:00 mfvaﬂms. f SRGFG[to1] PER! OD=DAY
required specification o
the WSTARTTIME and |(Standing reservationt est isactive from 8:00 AM until 5:00 PM)
WENDTIME attributes to
indicate reservation start
and end offsets.
specifigsspecigl _
comma delimited list of zero or more of the following flags: reservation attributes. See SRCF test] FLAGS=BYNAMVE
FLAGS SINGLEUSE, BYNAME, OWNERPREEMPT, PREEMPTEE, [NONE] 7.1.5.1.4 Managing (Jobs may only access the resources within this resarvation if they
TIMEFLEX, or FORCE ieﬁ}lrvatlons - Flagsfor explicitly request the reservation by name)
etails.
SRCFJ t est] CGROUPLI ST=st af f, ops, speci al
specifies the groups which SRCFJ t est] CLASSLI ST=interactive
GROUPLIST one or more comma delimited group names [ALL] will be allowed accessto | The scheduler will allow jobs with the listed group 1D's or which
this standing reservation |request the job classi nt er act i ve to use the resources covered by
the standing reservation.)
specifies the set of host
from which the scheduler
can search for resourcesto |SRCF@ t est] HOSTLI ST=node001, node002, node003
satisfy the reservation. If |SRCFE t est] RESOURCES=PROCS: 2; MEM 512
HOSTLIST one or more comma delimited host names or host expressions [ALL] ;Aec?égdoé:],;‘yT isalso |SRCFQ test] TASKCOUNT=2
TASKCéUNT taskswill |(The scheduler will reserve atotal of 2 tasks - with 2 processors and
bereserved. Otherwise, |512 MB each, using resources located on node001, node002, and/or
all hosts listed will be node003)
reserved.
s - SRCFQ test] JOBATTRLI ST=PREEMPTEE
BATTRLI comma delimited list of one or more of the following job attributes NON Sp?'rf]'a.flc’b annbgt? q]
JO ST PREEMPTEE [NONE] which will grant ajob (Preemptible jobs can access the resources reserved within this
accessto the reservation | egenyati on)
fspecifi%fthe ﬁuireﬂlnﬁde SRCFE t est] NODEFEATURES=wi de, f ddi
Lo eatures for nodes whic
NODEFEATURES |commadelimited list of node features [NONE] will be part of the standing |(all nodes allocated to the standing reservation must have both the
reservation wi de and f ddi node attributes)
<CREDTY PE>:<CREDID> where <CREDTY PE> is one of USER, ccifiesthe owner of the |0 O L eSt] OMEREUSER tom
OWNER GROUP, ACCOUNT, QOS, or CLASS and <CREDTYPE> isavalid [[NONE] f&awion (user t omowns the reservation and may be granted special privileges
credential id of that type. associated with that ownership.)
spﬁ_cirf]i&:the pzr_tition in ISRCFG test] PARTI TI ON=OLD
. - which the standing
PARTITION avalid partition name [ALL] reservation should be (The standing reservation will only select resources from partition
created QOLD)
i ; SRCFG t est] PERI OD=VEEK
PERIOD one of DAY, WEEK, or INFINITY DAY sﬁec'f'%d.the peri od of
the standing reservation |(each standing reservation covers a one week period)
specifiesthepriority
PRIORITY <INTEGER> 0 of the standing r ation
ﬁpe;figsotgatjobswith the |SRCFG t est] QOSLI ST=hi , | ow, speci al
. .. ist names can
QOSLIST zero or more valid, comma delimited QOS names [NONE] access the reserved (The scheduler will allow jobs using the listed QOS's access to the
resources reserved resources)
specifies what resources
congtitute asingle
standing reservation task.
(each task must be able to
obtain al of its resources
PROCS=1 as an atomic unit on a
_ o _ @an single node) S“‘t’lp"”ed SROFG test] RESOURCES=PROCS: 1; MEM 512
RESOURCES semicolon delimited <ATTR>=<VALUE> pairswhere <ATTR> may be resources currently)))
one of PROCS, MEM, SWAP, or DI SK E\r/c;l?lessoabl er(s)n include the following: (each standing reservation task will reserve one processor and 512
node) PROCS (number of MB of real memory)
processors)
MEM (rea memory in
MB)
DISK (local disk in MB)
SWAP (virtual memory in
MB)
specifies the time of
day/week the standing
reservation becomes
active. Whether this
indicated atime of day or U
time of week dependson |SRCFQ] t est] STARTTI ME=08: 00: 00
00:00:00:00 the setting of SRPERIOD SRCFJ t est] ENDTI ME=17: 00: 00 SRCFJ t est]
STARTTIME [[[DD:]HHIMM:]SS (midnighyy [NOTE: InMaui 3.2and PERI CD=DAY

earlier, week based
reservations required
specification of the
WSTARTTIME and
WENDTIME attributes to
indicate reservation start
and end offsets.

(The standing reservation will be active from 8:00 AM until 5:00 PM
each day)

- SRCFJ t est] RESOURCES=PROCCS: 1; MEM 256

0 (unlimited specifieshow may tasks |SRCFG t est] TASKCOUNT=16

tasks) should be reserved for the .))
reservation (standing reservation t est will reserve 16 tasks worth of resources,

in this case, 16 procs and 4 GB of real memory)

TASKCOUNT <INTEGER>

specifies the maximum
allowed overlap between a SRCF{ test] TIMELIM T=1:00: 00

the standing reservation | The scheduler will allow jobs to access up to one hour of resources in
and ajob requesting the standing reservation)

resource access

specifies how
TIMELIMIT access status
will be combined with
other standing reservation
access methods to
determine job access. If
TIMELOGIC isset to OR,
ajobisgranted accessto
the reserved resources if it
meetsthe TIMELIMIT
criteriaor any other access
criteria (i.e, USERLIST)
If TIMELOGIC is et to
AND, ajob isgranted SRCF{ speci al] TI MELI M T=1: 00: 00

access to the reserved SRCF{ speci al] TI MELOG C=AND

resources only if it meets |SRCFQE speci al] QOSLI ST=hi gh | ow speci al -
the TIMELIMIT criteria |[SRCF{ speci al] ACCCOUNTLI ST=! proj ect X, 'Y
and at |east one other
access criteria (NOTE:
TIMELOGIC isnot
supported in Maui 3.2.6
and later. Instead, the
required ACL marker, ™',
should be used.
Equivalent functionality
can be enabled by setting
something like the
following

SRCF(J speci al]

TI MELI M T=1: 00: 00*

-1 (notime

TIMELIMIT [[[DD:]HH:]MM:]SS based access)

TIMELOGIC AND or OR OR

- = SRCFJF 2] TPN=4

specifiestheminimum |SRCFE 2] RESOURCES=PROCS: 2; MEM 256
0 (no TPN number of tasks per node
constraint) which must be available |(Maui must locate at least 4 tasks on each node that is to be part of the
on eligible nodes. reservation. That is, each node included in standing reservation '2'
must have at least 8 processors and 1 GB of memory available)

TPN (Tasks Per Node) |<INTEGER>

specifies event triggers to
be launched by the

<ETY PE>[+<OFFSET>][@<THRESHOLD>];<ATY PE>[@<ADATA>] scheduler under the
where scheduler'sid. These
ETYPE isone of create, start, end, or minload triggerscanbeusedto |SRCF(fast])
T RIGGER OFFSET isa relative time specified in [[HH:JMM:]SS format N/A conditionally cancel TRI GGER=st art +5: 00: 00: exec@usr /| ocal / donwi | . pl
THRESHOLD isafloating point value reservations or launch (Maui will launch the domai | . pl script 5 hours after any f ast
ATYPE isone of cancel, exec, or submit various actions at reservation is started.
ADATA isacontext sensitive string indicating an executable, submit specified event offsets.
script, or other action data NOTE: Thisfeatureis
only availablein Moab 4.0
and higher.
$mifi?¥hi0h usershave |SRCFG t est] USERLI ST=hob, j oe, mary
R access to the resources
USERLIST comma delimited list of users [NONE] reserved by this (usersbob, j oe and mar y can all access the resources reserved
reservation within this reservation)

7.1.5.2.1 Standing Reservation Overview

A standing reservation is similar to anormal administrative reservation in that it also places an access control list on a specified set of resources. Resources are specified on a per-task basis and currently include
processors, local disk, real memory, and swap. The access control list supported for standing reservations includes users, groups, accounts, job classes, and QOS levels. Standing reservations can be configured to be
permanent or periodic on adaily or weekly basis and can accept a daily or weekly start and end time. Regardless of whether a standing reservation is permanent or recurs on a daily or weekly basis, they are enforced
using a series of reservations, extending a number of periods into the future as controlled by the DEPTH attribute of the SRCFG parameter.

The examples below demonstrate possibles configuration specified with the SRCFG parameter.
Example 1 Basic Business Hour Standing Reservation

SRCFJ i nteractive] TASKCOUNT=6 RESOURCES=PRCCS: 1, MEM 512
SRCFJ i nteractive] PERI OD=DAY DAYS=MON, TUE, ED, THU, FRI
SRCFJ i nteractive] STARTTI ME=9: 00: 00 ENDTI ME=17: 00: 00
SRCFJ i nteractive] CLASSLI ST=interactive

@ when using the SRCFG parameter, attribute lists must be delimited using the comma, pipe, or colon characters (i.e., '), '[, or ':'), they cannot be space delimited. For example, to specify amulti-class ACL,
specify 'SRCFE t est] CLASSLI ST=cl assA, cl assB.

@ only one STARTTIME and one ENDTIME value can be specified per reservation. If varied start and end times are desired throughout the week, complementary standing reservations should be created. For
example, to establish areservation from 8:00 PM until 6:00 AM the next day during business days, two reservations should be created, one from 8:00 PM until midnight, and the other from midnight until 6:00 AM.
Jobs can run across reservation boundaries allowing these two reservations function a single reservation which spans the night.

The above example fully specifies a reservation including the quantity of resources requested using the TASK COUNT and RESOURCES attributes. In all cases, resources are allocated to areservation in units
called tasks where atask is a collection of resources which must be allocated together on asingle node. The TASK COUNT attribute specifies the number of these tasks which should be reserved by the reservation.
In conjunction with this attribute, the RESOURCES attribute defines the reservation task by indicating what resources must be included in each task. In this case, the scheduler must locate and reserve 1 processor

and 512 MB of memory together on the same node for each task requested.

As mentioned previously, a standing reservation reserves resources over agiven timeframe. The PERIOD attribute may be set to avalue of DAY, WEEK, or INFINITE to indicate the period over which this
reservation should recur. If not specified, a standing reservation recurs on adaily basis. If a standing reservation is configured to recur daily, the attribute DAY S may be specified to indicate which days of the week

the reservation should exist. This attribute takes a comma-delimited list of days where each day is specified as the first three letters of the day in all capital letters, i.e. MON or FRI. The above example specifies
that this reservation is periodic on adaily basis and should only exist on business days.

The time of day during which the requested tasks are to be reserved is specified using the STARTTIME and ENDTIME attributes. These attributes are specified in standard military time HH:MM:SS format and
both STARTTIME and ENDTIME specification is optional defaulting to midnight at the beginning and end of the day respectively. In the above example, resources will be reserved from 9:00 AM until 5:00 PM
on business days.

Thefinal aspect of any reservation is the access control list indicating who or what can utilize the reserved resources. In the above example, CLASSL I ST attribute is used to indicate that jobs requesting the class
interactive should be allowed to use this reservation.

7.1.5.2.2 Specifying Reservation Resources

In most cases, only asmall subset of standing reservation attributes must be specified in any given case. For example, by default, RESOURCES s set to PROCS=- 1 which indicates that each task should reserve
al of the processors on the node on which it islocated. This, in essence, creates a one task equals one node mapping. In many cases, particularly on uniprocessor systems, this default behavior may be easiest to
work with. However, in SMP environments, the RESOURCES attribute provides a powerful means of specifying an exact, multi-dimensional resource set.

@ An examination of the parameters documentation will show that the default value of PERIOD is DAY'S. Thus, specifying this parameter in the example above was unnecessary. It was used only to introduce
this parameter and indicate that other options exist beyond daily standing reservations.

Example 2: Host Constrained Standing Reservation

Although example 1 did specify aquantity of resources to reserve, it did not specify where the needed tasks were to be located. If thisinformation is not specified, The scheduler will attempt to locate the needed
resources anywhere it can find them. The example 1 reservation will essentially float to hosts where the needed resources can be found.

If asite wanted to constrain a reservation to a subset of available resources, this could be accomplished using the HOSTLI ST attribute. The HOSTLIST attribute is specified as acomma-separated list of
hostnames and constrains the scheduler to only select tasks from the specified list. This attribute can exactly specify hosts or specify them using host regular expressions. The example below demonstrates a possible
use of the HOSTLIST attribute.

SRCFJ i nteractive] DAYS=MON, TUE, VEED, THU, FRI

SRCFJ i nteractive] PERI OD=DAY

SRCFJ i nteractive] STARTTI ME=10: 00: 00 ENDTI ME=15: 00: 00
SRCFJ i nteractive] RESOURCES=PROCS: 2, MEM 256

SRCFJ i nteractive] HOSTLI ST=node001, node002, node005, node020
SRCFJ i nteractive] TASKCOUNT=6

SRCFJ i nteractive] CLASSLI ST=interactive

The example is now abit more complex. Note that the HOSTLIST attribute specifies a non-contiguous list of hosts. Any combination of hosts may be specified and hosts may be specified in any order. In this
example, the TASK COUNT attribute is also specified. These two attributes both apply constraints on the scheduler with HOSTL I ST specifying where the tasks can be located and TASK COUNT indicating how
many total tasks may be allocated. In the example above, 6 tasks are requested but only 4 hosts are specified. To handlethis, if adequate resources are available, the scheduler may attempt to allocate more than one
task per host. For example, assume that each host is a quad-processor system with 1 GB of memory. In such acase, the scheduler could allocated up to two tasks per host and even satisfy the TASK COUNT
constraint without using all of the hostsin the hostlist.

@ It isimportant to note that even if there is a one to one mapping between the value of TASK COUNT and the number of hostsin HOSTLI ST this does not necessarily mean that the scheduler will place one task
on each host. If, for example, node001 and node002 were 8 processor SMP hosts with 1 GB of memory, the scheduler could locate up to 4 tasks on each of these hosts fully satisfying the reservation taskcount
without even partially using the remaining hosts. (The scheduler will place tasks on hosts according to the policy specified with the NODEALLOCATIONPOLICY parameter.) If the hostlist provides more
resources than what is required by the reservation as specified viaTASK COUNT, the scheduler will simply select the needed resources within the set of hosts listed.

7.1.5.2.3 Enforcing Policies Via Multiple Reservations

Single reservations enable multiple capabilities. Combinations of reservations can further extend a site's capabilities to impose specific policies.
Example 3: Reservation Stacking

If HOSTLIST is specified but TASK COUNT is not, the scheduler will pack as many tasks as possible onto all of the listed hosts. For example, assume the site added a second standing reservation named debug
to its configuration which reserved resources for use by certain members of its staff using the configuration below:

SRCFG i nteractive] DAYS=MON, TUE, WD, THU, FRI

SRCFJ i nt eractive] PERI OD=DAY

SRCFJ i nteractive] STARTTI ME=10: 00: 00 ENDTI ME=15: 00: 00
SRCFJ i nteractive] RESOURCES=PRCCS: 2, MEM 256

SRCFJ i nteractive] HOSTLI ST=node001, node002, node005, node020
SRCFJ i nteractive] TASKCOUNT=6

SRCFJ i nteractive] CLASSLI ST=interactive

SRCFJ debug] HOSTLI ST=node001, node002, node003, node004
SRCFJ debug] USERLI ST=hel pdesk

SRCFJ debug] GROUPLI ST=oper ati ons, sysadmi n

SRCFQF debug] PERI OD=I NFI NI TY

The new standing reservation is quite simple. Since RESOURCES s not specified, it will allocate all processors on each host that is allocated. Since TASK COUNT is not specified, it will allocate every host
listed in HOSTLIST. Since PERIOD isset to INFINITY, the reservation is always in force and there is no need to specify STARTTIME, ENDTIME, of DAYS.

While the reservation resource and timeframe specification is simple, the reservation access specification is actually abit more complicated. Note that the standing reservation has two access parameters set using
the attributes USERL I ST and GROUPLIST. This configuration indicates that the reservation can be accessed if any one of the access lists specified is satisfied by the resource consumer (i.e., thejob). In essence,
reservation accessis logically OR'd alowing access if the requestor meets any of the access constraints specified. In this example, jobs submitted by either user hel pdesk or any member of the groups
oper at i ons or sysadmi n can use the reserved resources.

While accessis granted to the logical OR of access lists specified within a standing reservation, accessis only granted to the logical AND of access lists across different standing reservations. A comparison of the
standing reservationsi nt er act i ve and debug in the example above will indicate that they both can allocate hostsnode001 and node002. If node001 had both of these reservations in place simultaneously
and ajob attempted to access this host during business hours when standing reservationi nt er act i ve wasactive. Thejob could only use the doubly reserved resourcesiif it requested therun classi nt er act i ve
AND it met the constraints of reservation debug (i.e., was submitted by user hel pdesk or by amember of the group oper at i ons or sysadmi n).

Things may be further complicated by the presence of partially reserved resources. Asarule, the scheduler will not stack reservations unlessit hasto. If adequate resources exist, it can allocate reserved resources
side by sidein asingle SMP host rather than on top of each other. In the case of a 16 processor SMP host with two 8 processor standing reservations. Eight of the processors on this host will be allocated to the first
reservation, and eight to the next. Any configuration is possible. The 16 processor hosts can aso have 4 processors reserved for user John, 10 processors reserved for group Staff, with the remaining 2 processors
available for use by any job.

Stacking reservations is not usually required but some sites choose to do it to enforce elaborate policies. Thereisno problem with doing so so long as you can keep things straight. 1t really is not too difficult a
concept, just takes alittle getting used to. See the Reservation Overview section for a more detailed description of reservation use and constraints.

As mentioned earlier, by default the scheduler enforces standing reservations by creating a number of reservations where the number created is controlled by the DEPTH attribute. When the scheduler starts up,
and again each night at midnight, the scheduler updates its periodic, non-floating standing reservations. By default, DEPTH is set to 2, meaning when the scheduler starts up, it will create two 24 hour reservations
covering atotal of two days worth of time, (i.e. areservation for today and one for tomorrow.) For daily reservations, at midnight, the reservations will roll, meaning today's reservation will expire and be removed,
tomorrow's reservation will become today's and the scheduler will create anew reservation for the next day.

With this model, the scheduler continues creating new reservations in the future as time moves forward. Each day, the needed resources are always reserved. At first, all appears automatic but the standing
reservation DEPTH attribute isin fact an important aspect of reservation rolling which helps address certain site specific environmental factors. This attribute remedies a situation which might occur when ajob is
submitted and cannot run immediately because the system is backlogged with jobs. In such a case, available resources may not exist for several days out and the scheduler must reserve these future resources for this
job. With the default DEPTH setting of two, when midnight arrives, the scheduler attemptsto roll its standing reservations but a problem arises in that the job has now allocated the resources needed for the standing
reservation two days out. The scheduler cannot reserve the resources for the standing reservation because they are aready claimed by the job. The standing reservation reserves what it can but because all needed
resources are not available, the resulting reservation is now smaller than it should be or possibly even empty.

If astanding reservation is smaller than it should be, the scheduler will attempt to add resources each iteration until it is fully populated. However, in the case of this job, the job is not going to release its reserved
resources until it completes and the standing reservation cannot claim them until thistime. The DEPTH attribute allows a site to specify how deep into the future a standing reservation should reserve its resources
alowing it to claim the resources first and prevent this problem. If partial standing reservation us detected on a system, it may be an indication that the reservations DEPTH attribute should be increased.

In example 3 above, the PERIOD attribute is set to INFINITY. With this setting, asingle, permanent standing reservation is created and the issues of resource contention do not exist. While this eliminates the
contention issue, infinite length standing reservations cannot be made periodic.

Example 4: Multiple ACL Types

In most cases, access lists within areservation are logically OR'd together to determine reservation access. However, exceptions to this rule can be specified by using the required ACL marker, *' (i.e., the
asterisk). Any ACL marked with this symbol is required and ajob is only allowed to utilized areservation if it meets all required ACL's and at least one non-required ACL (if specified). A common use for this
facility isin conjunction with the TIMELIMIT attribute. This attribute controls the length of time ajob may use the resources within a standing reservation. This access mechanism can be AND'd or OR'd to the
cumulative set of al other access lists as specified by the required ACL marker. (NOTE: The required ACL marker is only enabled in Maui 3.2.6 and higher). Consider the following example configuration:

maui . cfg

SRCF({ speci al] TASKCOUNT=32

SRCF(J speci al] PERI OD=WEEK

SRCF{ speci al] STARTTI ME=1: 08: 00: 00

SRCF(J speci al] ENDTI ME=5: 17: 00: 00

SRCF(J speci al] NODEFEATURES=| ar genenory

SRCFJ speci al] TI MELI M T=1: 00: 00*

SRCF(J speci al] QOSLI ST=hi gh | ow speci al -

SRCFJ speci al] ACCCOUNTLI ST=! proj ect X, ! proj ectY

The above configuration requests 32 tasks which translate to 32 nodes. The PERIOD attribute makes this reservation periodic on aweekly basis while the attributes STARTTIME and ENDTIME specify the
week offsets when this reservation is to start and end. (Note that the specification format has changed to DD:HH:MM:SS) In this case, the reservation starts on Monday at 8:00 AM and runs until Friday at 5:00 PM.
Thereservation is enforced as a series of weekly reservations which only cover the specified timeframe. The NODEFEATURES attribute indicates that each of the reserved nodes must have the node feature
| ar genmenor y configured.

Asdescribed above, TIMELIMIT indicates that jobs using this reservation can only use it for one hour. This means the job and the reservation can only overlap for one hour. Clearly jobs requiring an hour or less
of wallclock time meet this constraint. However, afour hour job that starts on Monday at 5:00 AM or a 12 hour job which starts on Friday at 4:00 PM also satisfy this constraint. Also, notethe TIMELIMIT
required ACL marker, *'. It isset indicating that jobs must not only meet the TIMELIMIT access constraint but must also meet one or more of the other access constraints. In this example, the job can use this
reservation if it can utilize the access specified viaQOSLIST or ACCOUNTLIST, i.e, itisassigned aQOS of hi gh, | ow, or speci al , or the submitter of the job has an account which satisfiesthe! pr oj ect X
and! proj ect Y criteria(More on thishelow). NOTE: See the QOS Overview for more info about QOS configuration and usage.

7.1.5.2.4 Affinity

Reservation ACL's alow or deny access to reserved resources but they may be configured to also impact ajob's affinity for a particular reservation. By default, jobs gravitate towards reservations through a
mechanism known known as positive affinity. This mechanism allows jobs to run on the most constrained resources leaving other, unreserved resources free for use by other jobs which may not be able to access the
reserved resources. Normally thisis adesired behavior. However, sometimes, it is desirable to reserve resources for use only as alast resort, i.e., use the reserved resources only when there are no other resources
available. Thislast resort behavior is known as negative affinity. Note the'-' (hyphen or negative sign) following the'speci al ' inthe QOSLIST values above. This special mark indicates that QOS 'speci al *
should be granted access to this reservation but should be assigned negative affinity. Thus, the QOSLIST attribute specifies that QOS hi gh and | ow should be granted access with positive affinity (use the
reservation first where possible) and QOS speci al granted access with negative affinity (use the reservation only when no other resources are available).

Affinity statusis granted on a per access object basis rather than a per access list basis and always defaults to positive affinity. In addition to negative affinity, neutral affinity can also be specified using the '='
character, i.e, 'QOSLI ST[0] nor nal = hi gh debug= | ow".

In addition to affinity, ACL's may aso be of different types. Note the ACCOUNTLIST valuesin the previous example. They are preceded with an exclamation point, or NOT symbol. Thisindicates that all jobs
with accounts other than pr oj ect X and pr oj ect Y meet the account ACL. Notethat if a !<X> value (ie'lprojectX") appearsin an ACL line, that ACL is satisfied by any object not explicitly listed by aNOT
entry. Also, if an object matches a NOT entry, the associated job is excluded from the reservation even if it meets other ACL requirements. For example, a QOS 3 job requesting account ‘pr oj ect X' will be denied
access to the reservation even though the job QOS matches the QOS ACL. Note that the ability to specify 'NOT' ACLsisonly enabled in Moab 4.0.0 and higher.

7.1.5.2.5 Reservation Ownership

Reservation ownership allows asite to control who owns the reserved resources during the reservation timeframe. Depending on needs, this ownership may be identical to, a subset of, or completely distinct from
the reservation ACL. By default, reservation ownership implies resource accountability and resources not consumed by jobs will be accounted against the reservation owner. In addition, ownership can aso be
associated with special privileges within the reservation.

Ownership is specified using the OWNER attribute in the format <CREDTYPE>: <CREDI D>, asin O\MNER=USER: j ohn. To enable john's jobs to preempt other jobs using resources within his reservation, the
SRCFG attribute FL AG should be set to OWNERPREEMPT. Inthe example below, thej upi t er project chooses to share resources with the sat ur n project but only when it does not currently need them.

Example 5: Limited Shared Access

ACCTCFQ j upi ter] PRI ORI TY=10000

SRCFJ j upi ter] HOSTLI ST=nodeO[1- 9]

SRCFF j upi ter] PERI OD=I NFI NI TY

SRCFJ j upi ter] ACCOUNTLI ST=j upi ter, saturn-
SRCFJ j upi ter] OANER=ACCOUNT: j upi ter
SRCFQ j upi ter] FLAGS=OAERPREEMPT

SRCFF j upi ter] PERI OD=I NFI NI TY

7.1.5.2.5 Resource Allocation Behavior

As mentioned above, standing reservations can operate in one of two modes, floating, or non-floating (essentially node-locked). A floating reservation is created when a TASK COUNT is specified and
HOSTLIST iseither not specified or specified with more resources than are needed to fulfill the TASK COUNT requirement. If areservation is non-floating, the scheduler will allocate all resources specified by the
HOSTLIST parameter regardless of node state, job load, or even the presence of other standing reservations. The scheduler interprets the request for a non-floating reservation as stating, 'l want areservation on
these exact nodes, no matter what!"

If areservation is configured to be floating, the scheduler takes a more relaxed stand, searching through all possible nodes to find resources meeting standing reservation constraints. Only ldle, Running, or Busy
node will be considered and further, only considered if no reservation conflict is detected. The reservation attribute ACCESS can be used to modify this behavior slightly and allow the reservation to allocate
resources even if reservation conflicts exist.

Other standing reservation attributes not covered here include PARTITION and CHARGEACCOUNT. These parameters are described in some detail in the parameters documentation.

7.1.5.3 Configuring Administrative Reservations

A default reservation, with no ACL, istermed a SYSTEM reservation. It blocks access to all jobs because it possesses an empty access control list. It is often useful when performing administrative tasks but cannot
be used for enforcing resource usage policies.

Administrative reservations are created and modified using the setres command. With this command, all aspects of reservation timeframe, resource selection, and access control can be dynamically updated.

7.1.6 Enabling Reservationsfor End Users

By default, the power of advance reservationsis only available to scheduler administrators.
While admins may create and manage reservations to provide resource access to end users, end
users cannot create, modify, or destroy these reservations. Maui 3.2 extends the ability to
manage reservations to end users and provides control facilities to keep this feature
manageable.

7.1.6.1 Enabling User Reservation M anagement

The parameter RESCTLPOLICY controlswho is allowed to administer reservations using
the mresctl, setres, and releaser es commands. Valid settings are ADMINONLY and ANY
which, as would be expected, allows only scheduler administrators or any valid user to manage
reservations respectively. While scheduler administrators are allowed to manage any
reservation, users are only allowed to manage their own reservations. This parameter defaults
to ADMINONLY.

To alow genera batch usersto create and manage their own reservations, the following
parameter must be specified in the maui.cfg file:

RESCTLPCLI CY ANY

7.1.6.2 Reservation Accountability

Reservations can be optionally configured with a set of accountable credentials. These
credentials indicate the user, group, account, etc which is responsible for the resources
dedicated by the reservation. If resources are dedicated by areservation but not consumed by a
job, these resources can be charged against the specified accountable credentials.
Administrators are allowed to create reservations and specify the accountable credentials of
that reservation. While end users can also be allowed to create and otherwise modify an
advance reservation, they are not allowed to specify or modify the reservation's accountable
credentials. Anytime a user creates a reservation, the credentials of the requestor are associated
with the reservation. Currently, this accountablility only applies to throttling policies and
allocation management system chargeability. Support for fairshare and other forms of
accountability will be incorporated over time.

7.1.6.3 Reservation Limits

Allowing end users the ability to create advance reservations can lead to potentially unfair
and unproductive resource usage. This results from the fact that by default, there is nothing to
prevent a user from reserving all resources in a given system or reserving resources during
time slots in such away so to greatly impede the scheduler's ability to schedule jobs
efficiently. To address this, Maui provides the ability to impose scheduler throttling policies

onto reservations. With this capability, a site may constrain the total amount of resources
reserved by any particular user, group, or account at any given time. Thisfacility tracks
resources and enforces limits based on resources dedicated to both jobs and user reservations.

Reservation limits are disabled by default but may be enabled by setting the
RESLIMITPOLICY parameter. This parameter specifiesthe level of throttling policy to be
be enforced. For example, to limit user reservations by hard throttling policy limits, the
following may be specified:

RESLI M TPOLI CY HARD

While time spanning throttling policies are a significant step in the direction of end user
advance reservation management, it isimportant to track actual site usage of the advance
reservation facility. It is still likely that further usage policies will be required at each site to
prevent reservation misuse and provide an optimally useful system.

12.1 Node L ocation

Nodes can be assigned three types of location information based on partitions, frames,
and/or queues.

e 12.1.1 Partitions
e 12.1.2 Frames
e 12.1.3 Queues
o 12.1.3.1 OpenPBS Queue to Node Mapping

12.1.1 Partitions

The first form of location assignment, the partition, allows nodes to be grouped according to
physical resource constraints or policy needs. By default, jobs are not allowed to span more
than one partition so partition boundaries are often valuable if a underlying network topology
make certain resource allocations undesirable. Additionally, per-partition policies can be
specified to grant control over how scheduling is handled on a partition by partition basis. See
the Partition Overview for more information.

12.1.2 Frames

Frame based |ocation information is orthogonal to the partition based configuration and is
mainly an organizational construct. In general frame based location usage, a node is assigned
both a frame and a slot number. This approach has descended from the IBM SP2
organizational approach in which aframe can contain any number of slots but typically
contains between 1 and 64. Using the frame and slot number combo, individual compute
nodes can be grouped and displayed in a more ordered manner in certain Maui commands (i.e.,
showstate). Currently, frame information can only be specified directly by the system viathe
SDR interface on SP2/Loadleveler systems. In all other systems, this information must be
manually specified viathe NODECFG parameter.

Example:

maui . cfg

NODECF{ node024] FRAME=1 SLOT=1
NCDECFJ node025] FRAME=1 SLOT=2
NODECFJE node026] FRAME=2 SLOT=1 PARTI Tl ON=speci al

When specifying node and frame information, slot values must be in the range of 1 to 32
(limited to 1 to 16 in Maui 3.0 and earlier). and frames must be in the range of 1 to 64.

12.1.3 Queues

Some resource managers alow queues (or classes) to be defined and then associated with a
subset of available compute resources. With such systems, such as Loadleveler or PBSPro,
these queue to node mappings are automatically detected. On resource managers which do not
provide this service, Maui provides alternative mechanisms for enabling this feature.

12.1.3.1 OpenPBS Queueto Node Mapping

Under OpenPBS, gqueue to node mapping can be accomplished setting the
queueacl _host s parameter to the mapping hostlist desired within PBS.
Further, theacl _host enabl e parameter should be set to Fal se. NOTE:
Setting acl _host s and then settingacl _host _enabl e to Tr ue will
constrain the list of hosts from which jobs may be submitted to the queue. Prior
to Maui 3.0.7p3, queue to node mapping was only enabled when
acl _host _enabl e wassetto Tr ue, thus, for these versions, theacl _host
list should always include all submission hosts.

d | ag Nnose 'q (Maui QOS diagnostic)

Synopsis:
diagnose -q
Overview:

The 'diagnose -q' command is used to present information about the QOS settings. Information includes weights, flags,
and limits, as well as which groups, accounts, and classes are assigned to it.

Example:

> di agnose -Q

QOS St at us

System QOS Settings: Qist: DEFAULT (Def: DEFAULT) Flags: O

Nanme * Priority QTWeight QITarget XFWeight XFTarget QFl ags
JobFl ags Limts
DEFAULT 1 1 3 1 5.00 PREEMPTEE
[NONE] [NONE]

G oups: sanj ose

Accounts: it research

Cl asses: batch
[ALL] 0 0 0 0 0. 00 [NONE]
[NONE] [NONE]
ur gent 10000 1 1 1 7.00 PREEMPTOR
[NONE] [NONE]

G oups: dal | as austin boston

Accounts: engineering it devel oprent
| ow 100 1 5 1 1.00 PREEMPTEE
[NONE] [NONE]

G oups: sanj ose

Accounts: engineering marketing it devel opnent research

Cl asses: |ong bigmem
hi gh 0 0 0 0 0. 00 [NONE]
[NONE] [NONE]

G oups: dal | as austin boston

Accounts: engineering it devel opnent research

Cl asses: fast
1 0 0 0 0 0. 00 [NONE]
[NONE] [NONE]
5 0 0 0 0 0.00 [NONE]
[NONE] [NONE]

8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and
Preemption

o 8.1 Optimization Overview

. 8.2 Backfill

o 8.3 Node Sets

e 8.4 Preemption

8.1 Optimization Overview

Under Construction

8.2 Backfill

e« 8.2.1 Backfill Overview
o 8.2.2 Backfill Algorithm
o 8.2.3 Configuring Backfill

8.2.1 Backfill Overview

Backfill is a scheduling optimization which allows a scheduler to make better use of available
resources by running jobs out of order. When Maui schedules, it prioritizes the jobsin the
gueue according to a number of factors and then orders the jobs into a'highest priority first'
sorted list. It starts the jobs one by one stepping through the priority list until it reaches ajob
which it cannot start. Because all jobs and reservations possess a start time and a wallclock
limit, Maui can determine the completion time of all jobsin the queue. Consequently, Maui can
also determine the earliest the needed resources will become available for the highest priority
job to start.

Backfill operates based on this'earliest job start' information. Because Maui knows the
earliest the highest priority job can start, and which resources it will need at that time, it can also
determine which jobs can be started without delaying thisjob. Enabling backfill allows the
scheduler to start other, lower-priority jobs so long as they do not delay the highest priority job.
If Backfill is enabled, Maui, 'protects the highest priority job's start time by creating ajob
reservation to reserve the needed resources at the appropriate time. Maui then can any job
which not not interfere with this reservation.

Backfill offers significant scheduler performance improvement. In atypical large system,
enabling backfill will increase system utilization by around 20% and improve turnaround time
by an even greater amount. Because of the way it works, essentially filling in holesin node
space, backfill tends to favor smaller and shorter running jobs more than larger and longer
running ones. It is common to see over 90% of these small and short jobs backfilled.
Consequently, sites will see marked improvement in the level of service delivered to the small,
short jobs and only moderate to no improvement for the larger, long ones.

The question arises, is backfill apurely good feature. Doesn't there have to be a trade-off
some where? Doesn't there have to be adark side? Well, there are afew drawbacks to using
backfill but they arefairly minor. First of all, because backfill locates jobs to run scattered
throughout the idle job queue, it tends to diminish the influence of the job prioritization a site
has chosen and thus may negate any desired workload steering attempts through this
prioritization. Secondly, athough the start time of the highest priority job is protected by a
reservation, what is to prevent the third priority job from starting early and possibly delaying the
start of the second priority job? Ahh, aproblem. Actually, onethat is easily handled as will be

described |ater.

The third problem is actually alittle more subtle. Consider the following scenario involving
the 2 processor cluster shown in figure 1. Job A has a4 hour wallclock limit and requires 1
processor. It started 1 hour ago and will reach itswallclock limit in 3 more hours. Job B isthe
highest priority idle job and requires 2 processors for 1 hour. Job C isthe next highest priority
job and requires 1 processor for 2 hours. Maui examines the jobs and correctly determines that
job A must finish in 2 hours and thus, the earliest job B can start isin 2 hours. Maui also
determines that job C can start and finish in less than this amount of time. Consequently, Maui
startsjob C on the idle processor. One hour later, job A completes early. Apparently, the user
overestimated the amount of time hisjob would need by afew hours. Sincejob B is now the
highest priority job, it should be able to run. However, job C, alower priority job was started an
hour ago and the resources needed for job B are not available. Maui re-evaluates job B's
reservation and determines that it can be slid forward an hour. At time 3, job B starts.

Ok, now the post-game show. Job A is happy because it ran to completion. Job C is happy
because it got to start immediately. Job B is sort of happy because it got to run 1 hour sooner
than it originally was told it could. However, if backfill was not enabled, job B would have
been ableto run 2 hours earlier. Not abig deal, usually. However, the scenario described
above actually occursfairly frequently. Thisis because the user estimates for how long their
jobswill take is generally very bad. Job wallclock estimate accuracy, or wallclock accuracy, is
defined as the ratio of wall time required to actually run the job divided by the wall time
requested for the job. Wallclock accuracy varies from site to site but the site average is rarely
better than 40%. Because the quality of the walltime estimate provided by the user is so low,
job reservations for high priority jobs are often later than they need to be.

Although there do exist some minor drawbacks with backfill, its net performance impact on a
site'sworkload is very positive. Although afew of the highest priority jobs may get temporarily
delayed, they probably got to their position as highest priority as soon as they did because jobs
in front of them got to run earlier due to backfill. Studies have shown that only avery small
fraction of jobs are truly delayed and when they are, it is only by afraction of their total queue
time. At the same time, many jobs are started significantly earlier than would have occurred
without backfill.

8.2.2 Backfill Algorithm

The algorithm behind Maui backfill scheduling is mostly straightforward although there are a
number of issues and parameters of which you should be aware. First of al, Maui makes two
backfill scheduling passes. For each pass, Maui selectsalist of jobs which are eligible for
backfill. On thefirst pass, only those jobs which meet the constraints of the 'soft' fairness
throttling policies are considered and scheduled. The second pass expands this list of jobs to
include those which meet the *hard' (less constrained) fairness throttling policies.

The second important concept regarding Maui backfill is the concept of backfill windows.

The figure below shows a simple batch environment containing two running jobs and a
reservation for athird job. The present timeis represented by the leftmost end of the box with
the future moving to theright. The light grey boxes represent currently idle nodes which are
eligible for backfill. For this example, lets assume that the space represented covers 8 nodes
and a 2 hour timeframe. To determine backfill windows, Maui analyzes the idle nodes
essentially looking for 'largest node-time rectangles. It determines that there are two backfill
windows. The first window, Window 1, consists of 4 nodes which are available for only one
hour (because some of the nodes are blocked by the reservation for job C). The second window
contains only one node but has no time limit because this node is not blocked by the reservation
for job C. It isimportant to note that these backfill windows overlap.

Once the backfill
windows have been
determined, Maui begins to
traverse them. The current
behavior isto traverse
these windows 'widest
window first' (i.e., most
nodes to fewest nodes) As
each backfill window is
evaluated, Maui appliesthe
backfill algorithm
specified by the
BACKFILLPOLICY
parameter, be it
FIRSTFIT, BESTFIT,
efc.

Assuming the
BESTFIT agorithmis
applied, the following
steps are taken.

1) Thelist of feasible
backfill jobs isfiltered,
selecting only those which
will actually fitin the
current backfill window.

2) The'degree of fit' of
each job is determined
based on the
SCHEDULINGCRITERIA

Backfill Windows

<«— Nodes —

I

Time — |
Backfillable

Nodes

parameter (ie, processors,

seconds, processor-seconds, etc)
(ie, if processorsis selected, the job which requests the most processors will have the
best fit)
3) Thejob with the best fit is started.
4) While backfill jobs and idle resources remain, repeat step 1.

Other backfill policies behave in agenerally similar manner. The parameters documentation
can provide further details.

One final important note. By default, Maui reserves only the highest priority job resulting in
avery 'liberal' and aggressive backfill. This reservation guarantees that backfilled jobs will not
delay the highest priority job, athough they may delay the second highest priority job!
(Actually, due to wallclock inaccuracies, it is possible the the highest priority job may actually
get dightly delayed as well but we won't go into that!) The parameter
RESERVATIONDEPTH controls how conservative/liberal the backfill policy is. This
parameter controls how deep down the priority queue to make reservations. While increasing
this parameter will improve guarantees that priority jobs will not be bypassed, it reduces the
freedom of the scheduler to backfill resulting in somewhat lower system utilization. The value
of the trade-offs often need to be determined on a site by site basis.

8.2.3 Configuring Backfill
Backfill Policies

Backfill is enabled in Maui by specifying the BACKFILLPOLICY parameter. By default,

backfill isenabled in Maui using the FIRSTFIT algorithm. However, this parameter can also
be set to BESTFIT, GREEDY, or NONE (disabled).

Reservations

The number of reservations which protect the resources required by priority jobs can be
controlled using RESERVATIONDEPTH[<X>]. This depth can be distributed across job QOS

levels using RESERVATIONQOSLIST[<X>].

Backfill Chunking

In abatch environment saturated with serial jobs, serial jobs will, over time, dominate the
resources available for backfill at the expense of other jobs. Thisis dueto the time-dimension
fragmentation associated with running serial jobs. For example, given an environment with an
abundance of serial jobs, if amulti-processor job completes freeing processors, one of three
things will happen.

1. Thefreed resources are allocated to another job requiring the same number of processors
2. Additional jobs may complete at the same time allowing alarger job to allocate the

aggregate resources
3. Thefreed resources are allocated to one or more smaller jobs

In environments where the scheduling iteration is much higher than the average time between
completing jobs, case 3 occurs far more often than case 2 leading to smaller and smaller jobs
popul ating the system over time.

To address thisissue, the scheduler incorporates the concept of backfill chunking. Chunking
allows the scheduler to favor case 2 maintaining a more controlled balance between large and
small jobs. Theidea of chunking involves establishing atime-based threshold during which
resources available for backfill will be aggregated. Thisthreshold is set using the parameter
BFCHUNKDURATION. When resources are freed, they are made available only to jobs of a

certain size (set using the parameter BFCHUNKSIZE) or larger. These resources remain

protected from smaller jobs until either additional resources are freed up and alarger job can
use the aggregate resources, or until the BFCHUNKDURATION threshold timeis expired.
NOTE: backfill chunking is only activated when ajob of size BFCHUNKSIZE or larger is
blocked in backfill due to lack of resources.

It is important to note that the optimal settings for these parametersis very site specific and
will depend on the workload, (including the average job turnaround time, job size, and mix of
large to small jobs) cluster resources, and other scheduling environmental factors. Setting
values which are too restrictive will needlessly reduce utilization while settings which are too
relaxed will not allow the desired aggregation to occur. CAVEAT EMPTOR. (NOTE: backfill
chunking is only enabled in conjunction with the FIRSTFIT backfill policy.)

o b B
- The Moab Cluster Manager ™ aids in managing backfill policies by providing a
graphical interface for systems using the Moab Workload Manager ™.

See also:

Parameters BACKFILLDEPTHand BACKFILLMETRIC
Reservation Policy Overview.

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mwm/

8.3 Node Set Overview

While backfill improves the scheduler's performance, thisis only half the battle. The
efficiency of acluster, in terms of actual work accomplished, is afunction of both scheduling
performance and individual job efficiency. In many clusters, job efficiency can vary from
node to node as well as with the node mix allocated. Most parallel jobs written in popular
languages such as MPI or PVM do not internally load balance their workload and thus run
only asfast as the slowest node allocated. Consequently, these jobs run most effectively on
homogeneous sets of nodes. However, while many clusters start out as homogeneous, they
quickly evolve as new generations of compute nodes are integrated into the system. Research
has shown that this integration, while improving scheduling performance due to increased
scheduler selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without
specifying exactly what resources are required. Node set policy can be specified globally or
on a per-job basis and can be based on node processor speed, memory, network interfaces, or
locally defined node attributes. In addition to their use in forcing jobs onto homogeneous
nodes, these policies may also be used to guide jobs to one or more types of nodes on which a
particular job performs best, similar to job preferences available in other systems. For
example, an |/O intensive job may run best on a certain range of processor speeds, running
slower on slower nodes, while wasting cycles on faster nodes. A job may specify
ANY OF:PROCSPEED:450,500,650 to request nodes in the range of 450 to 650 MHz.
Alternatively, if a simple procspeed-homogeneous node set is desired, ONEOF:PROCSPEED
may be specified. On the other hand, a communication sensitive job may request a network
based node set with the configuration ONEOF:NETWORK :viamyrinet,ethernet, in which case
Maui will first attempt to locate adequate nodes where all nodes contain via network
interfaces. If such aset cannot be found, Maui will ook for sets of nodes containing the other
specified network interfaces. In highly heterogeneous clusters, the use of node sets have been
found to improve job throughput by 10 to 15%.

Node sets can be requested on a system wide or per job basis. System wide configuration is
accomplished viathe 'NODESET*' parameters while per job specification occurs viathe
resource manager extensions. In all cases, node sets are a dynamic construct, created on a per

job basis and built only of nodes which meet all of the jobs requirements.

As an example, let's assume alarge site possessed a Myrinet based interconnect and wished
to, whenever possible, alocate nodes within Myrinet switch boundaries. To accomplish this,
they could assign node attributes to each node indicating which switch it was associated with
(ie, switchA, switchB, etc) and then use the following system wide node set configuration:

NCDESETPOLI CY ONEOF

NODESETATTRI BUTE FEATURE
NODESETDELAY 0: 00: 00
NODESETLI ST switchA swtchB swtchC sw tchD

The NODESETPOLICY parameter tells Maui to allocate nodes within a single attribute set.
Setting NODESETATTRIBUTE to FEATURE specifies that the node sets are to be
constructed along node feature boundaries. The next parameter, NODESETDELAY, indicates
that Maui should not delay the start time of ajob if the desired node set is not available but
adequate idle resources exist outside of the set. Setting this parameter to zero basically tells
Maui to attempt to use anode set if it isavailable, but if not, run the job as soon as possible
anyway. (NOTE: In Maui 3.2, any non-zero value of NODESETDELAY will force thejob to
always run in acomplete nodeset regardless of the delay time.) Finally, the NODESETLIST
value of 'switchA switchB..." tells Maui to only use node sets based on the listed feature
values. Thisisnecessary since sites will often use node features for many purposes and the
resulting node sets would be of little use for switch proximity if they were generated based on
irrelevant node features indicating things such as processor speed or node architecture.

On occasion, sites may wish to allow aless strict interpretation of nodes sets. In particular,
many sites seek to enforce amore liberal PROCSPEED based node set policy, where almost
balanced node allocations are allowed but wildly varying node allocations are not. I1n such
cases, the parameter NODESETTOL ERANCE may be used. This parameter alows
specification of the percentage difference between the fastest and slowest node which can be
within a nodeset using the following calculation:

(Speed.Max - Speed.Min) / Speed.Min <= NODESETTOL ERANCE

Thus setting NODESETTOL ERANCE to 0.5 would alow the fastest node in a particular
node set to be up to 50% faster than the slowest node in that set. With a 0.5 setting, ajob may
allocate a mix of 500 and 750 MHz nodes but not a mix of 500 and 900 MHz nodes.
Currently, tolerances are only supported when the NODESETATTRIBUTE parameter is set
to PROCSPEED. The MAXBALANCE node allocation algorithm is often used in

conjunction with tolerance based node sets.

When resources are available in more than one resource set, the
NODESETPRIORITYTY PE parameter allows control over how the 'best’ resource set is

selected. Legal valuesfor this parameter are described in the table below.

IPriority Type |Description Details
select the smallest minimizes fragmentation of larger resource
BESTFIT :
resource set possible Sets.

only supported when NODESETATTRI BUTE is

resource set possible

BESTRESOURCE [et theresource set |, 3 ' opy~SpEED, Selects the fastest possible
with the 'best’ nodes .
nodes for the job.
select the resource set
"r;:‘r']m;l‘”\'l\'lgt Inthe |51y supported when NODESETATTRI BUTE
reSOUICES BSSUmind 1o Is set to PROCSPEED and
! : 9NO INODESETTOLERANCE is> 0. Thisagorithm
MINLOSS internal job load o : :) !
1 : is highly useful in environments with mixed
balancing is available. :
: speed compute nodes and a non load-balancing
(assumes parallel jobs
parallel workload.
only run asfast asthe
slowest allocated node)
WORSTEIT select the largest minimizes the creation of small resource set

fragments but fragments larger resource sets.

On aper job basis, each user can specify the equivalent of all parameters except
NODESETDELAY. Asmentioned previoudly, thisis accomplished using the resource

manager extensions.

See also:
N/A.

8.4 Preemption Policies

Many sites possess workloads of varying importance. While it may be critical that some jobs
obtain resources immediately, other jobs are less turnaround time sensitive but have an
insatiable hunger for compute cycles, consuming every available cycle for years on end.

These latter jobs often have turnaround times on the order of weeks or months. The concept of
cycle stealing, popularized by systems such as Condor, handles such situations well and
enables systems to run low priority, preemptible jobs whenever something more pressing is not
running. These other systems are often employed on compute farms of desktops where the
jobs must vacate anytime interactive system use is detected.

8.4.1 Preemption Triggers

Preemption can be enabled in one of three ways. These include manual intervention, QOS
based configuration, and use of the preemption based backfill algorithm.

8.4.1.1 Admin Preemption Commands

The mjobctl command can be used to preempt jobs. Specifically, the command can be used
to modify ajob's execution state in the following ways:

Action Flag |[Details

Cancel -C terminate and remove job from queue

Checkpoint -C terminate and checkpoint job leaving job in queue
Requeue -R terminate job leaving job in queue

Resume -r resume suspended job

Start (execute) -X start idlejob

Suspend -S suspend active job

In general, users are allowed to suspend or terminate jobs they own. Administrators are
allowed to suspend, terminate, resume, and execute any queued jobs.

8.4.1.2 QOS Based Preemption

Maui's QoS-based preemption system allows a site the ability to specify preemption rules
and control access to preemption privileges. These abilities can be used to increase system
throughput, improve job response time for specific classes of jobs, or other enable various
political policies. All policies are enabled by specifying some QOS's with the flag
PREEMPTOR , and other with the flag PREEMPTEE. For example, to enable acycle
stealing high throughput cluster, a QOS can be created for high priority jobs and marked with
the flag PREEM PTOR; another QOS can be created for low priority jobs and marked with

theflag PREEMPTEE . Findly, the RESERVATIONPOLICY parameter can be set to
NEVER. With this configuration, low priority, preemptee jobs can be started whenever idle
resources are available. These jobswill be allowed to run until a high priority job arrives, at
which point the necessary low priority jobs will be preempted and the needed resources freed.
This alows near immediate resource access for the high priority jobs. Using this approach, a
cluster can maintain near 100% system utilization while still delivering excellent turnaround
time to the jobs of greatest value.

It is important to note the rules of QoS based preemption. Preemption only occurs when the
following 3 conditions are satisfied:
« The preemptor job hasthe PREEMPTOR attribute set
« The preemptee job has the PREEM PTEE attribute set
« The preemptor job has a higher priority than the preemptee job

Use of the preemption system need not be limited to controlling low priority jobs. Other
uses include optimistic scheduling and development job support.

Example:

PREEMPTPOLI CY REQUEUE

QOSCFJ hi gh] QFLAGS=PREEMPTOR

QOSCFJ med]
QOSCFE | ow] QFLAGS=PREEMPTEE

Y — .
- The Moab Cluster Manager TM's graphical interface presents numerous choices for

configuration. For example, PREEMPTOR and PREEM PTEE attributes can be set when a
QoS is created.

8.4.1.3 Preemption Based Backfill

The PREEMPT backfill policy alows a site to take advantage of optimistic scheduling. By
default, backfill only allowsjobsto run if they are guaranteed to have adequate time to run to
completion. However, statistically, most jobs do not utilize their full requested wallclock
limit. The PREEMPT backfill policy alows the scheduler to start backfill jobs even if
required walltime is not available. If the job runstoo long and interferes with another job
which was guaranteed a particular timeslot, the backfill job is preempted and the priority job is
allowed to run. When another potential timeslot becomes available, the preempted backfill job
will again be optimistically executed. In environments with checkpointing or with poor
wallclock accuracies, this algorithm has potential for significant savings. See the backfill

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/qos.shtml

section for more information.
8.4.2 Types of Preemption

How the scheduler preempts ajob is controlled by the PREEMPTPOLICY parameter. This
parameter allows preemption to be enforced in one of the following manners:

8.4.2.1 Job Requeue
Under this policy, active jobs are terminated and returned to the job queue in an idle state.
8.4.2.2 Job Suspend

Suspend causes active jobs to stop executing but to remain in memory or the allocated
compute nodes. While a suspended job frees up processor resources, it may continue to
consume swap and/or other resources. Suspended jobs must be ‘resumed’ to continue
executing. NOTE:If 'suspend' based preemption is selected, then the signal used to initiate the
job suspend may be specified by setting the RM specific 'SUSPENDSIG' attribute, i.e.
'RMCFG[base] SUSPENDSIG=23'.

8.4.2.3 Job Checkpoint

Systems which support job checkpointing alow ajob to save off its current state and either
terminate or continue running. A checkpointed job may be restarted at any time and resume
execution from its most recent checkpoint.

8.4.2.4 RM Preemption Constraints

Maui isonly ableto utilize preemption if the underlying resource manager/OS combination
supports this capability. The following table displays current preemption limitations:

Table8.4.2.4 Resource Manager Preemption Constraints

Resour ce OpenPBS PBSPro Loadleveler (3.1) [LSF (5.2) SGE
M anager (2.3) (5.2 (5.3)
Cancel yes yes yes yes ?77?
Requeue yes yes yes yes 77
Suspend yes yes yes yes 77
Checkpoint (yeson IRIX) |(yeson yes (OS dependent) | 7??
IRIX)
See Also: N/A .

0OOS Overview

Managing QOS Access

9.0 Evaluating System Performance - Statistics, Profiling, Testing,
and Simulation

e 9.1 Maui Performance Evaluation Overview

e 9.2 Job and System Statistics

« 9.3 Profiling Current and Historical Usage

e 9.4 Testing New Versions and Configurations
e 9.5 Answering 'What If? Questions with the Simulator

9.1 Maui Performance Evaluation Overview

Under Construction

9.2 Accounting: Job and System Statistics

Maui provides extensive accounting facilities which allow resource usage to be tracked by
resources (i.e., compute nodes), jobs, users, and other objects. The accounting facilities may
be used in conjunction with and correlated with the accounting provided by the resource
manager.

Maui maintains a large number of statistics and provides several commands to allow easy
access to and helpful consolidation of thisinformation. These statistics are of three primary

types.
e 9.2.1 Accounting Overview

e 9.2.2 Red Time Statistics
e 9.2.3 Profiling Historical Usage
e 9.2.4 Fairshare Usage Statistics

9.2.1 Accounting Overview

Maui provides accounting data correlated to most major objects utilized within scheduling.
The records include job accounting, resource accounting, and credential based accounting.

9.2.1.1 Job Accounting

As each job completes, Maui records a complete job trace containing information about who
ran the job, when and where it ran, what resources it requested, what it actually utilized, and
other pieces of key information. A complete description of each of the job accounting data
fields can be found within section 16.3 Workload Traces of the admin manual.

7 _
- The Moab Cluster Manager "™ can generate reports, graphs and charts for accounting
and usage statistics.

9.2.1.2 Resource Accounting
N/A

9.2.1.3 Credential Accounting
N/A

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/reports.shtml

9.2.2 Real Time Statistics

Maui providesreal time statistical information about how the machine is running from a
scheduling point of view. The showstats commandsis actually a suite of commands providing
detailed information on an overall scheduling basis as well as a per user, group, account and
node basis. Thiscommand gets its information from in memory statistics which are loaded at
scheduler start time from the scheduler checkpoint file. (See the Checkpoint Overview for
more information) This checkpoint file is updated from time to time and when the scheduler is
shutdown allowing statistics to be collected over an extended timeframe. At any time, real
time statistics can be reset using the resetstats command.

In addition to the showstats command, the showgrid command also obtains its information
from the in memory stats and checkpoint file. This command display a processor-time based
matrix of scheduling performance for awide variety of metrics. Information such as backfill
effectiveness or average job queue time can be determined on ajob size/duration basis. See
the showgrid command documentation for more information.

9.2.3 Profiling Historical Usage

Historical usage information can be obtained for a specific timeframe, class of jobs, and/or
portion of resources using the profiler command. This command operates on the detailed job
trace information recorded at the completion of each job. These traces are stored in the
directory pointed to by the STATDIR parameter which defaults to
$(MAUIHOMEDIR)/stats. Within this directory, statistics files are maintained using the
format WAV MMM DD_YYYY (i.e, Mon_Jul_16 2001) with jobs traces being recorded in the
file associated with the day the job completed. Each job trace is white space delimited flat text
and may be viewed directly with any text reader.

When profiling statistics, stat files covering the time frame of interest should be aggregated
into asinglefile. Thisfile can be passed to the profiler command along with a number of
configuration flags controlling what data should be processed and how it should be display.
Command line flags allow specification of constraints such as earliest start date, or |latest
completion date. Flags can also be used to evaluate only jobs associated with specific users,
groups, accounts, or QOS's. Further, it is possible to specify that only jobs run on certain
nodes be processed. Because the trace files are flat text, smple UNIX text processing tools
such as awk, sed, or grep can be used to create more elaborate filters should they be needed.

The output of the profiler command provides extensive detailed information about what jobs
ran and what level of scheduling service they received. The profiler command documentation
should be consulted for more information.

9.2.4 Fairshare Usage Statistics

Regardless of whether of not fairshare is enabled, detailed credential based fairshare
statistics are maintained. Like job traces, these statistics are stored in the directory pointed to
by the STATDIR parameter. Fairshare stats are maintained in a separate statistics file using
the format FS.<EPOCHTIME> (i.e., FS.982713600) with one file created per fairshare
window. (See the Fairshare Overview for more information) These files are also flat text and
record credential based usage statistics. Information from these files can be seen viathe
diagnose -f command.

%

- The Moab Cluster Manager ™ graphically organizes the fairshare values by credential
for easy navigation and provides a GUI to specify the Decay Factor, Depth, Interval Length
and Usage Metric.

See Also:

Simulation Overview

SM P Aspects

Fairness Policies
Prioritization
Resour ce Allocation
Policies

Shared vs Dedicated

SMP nodes are often used to run jobs which do not use al available resources on that node.
How Maui handles these unused resources is controlled by the parameter
NODEACCESSPOLICY. If thisparameter is set to SHARED, Maui will allow tasks of other
jobsto use the resources. If this parameter is set to DEDICATED, Maui will mark these
resources unavailable for use by other jobs.

Reservations

http://www.clusterresources.com/products/maui/mcm/
http://www.clusterresources.com/products/maui/mcm/fairshare.shtml
http://www.clusterresources.com/products/maui/mcm/fairshare.shtml

9.3 Profiling Current and Historical Usage

Under Construction

9.4 Testing New Versions and Configurations
9.4.1 'TEST Mode

Maui supports a scheduling mode called TEST. In this mode, the scheduler initializes, contacts the resource
manager and other peer services, and conducts scheduling cycles exactly as it would if runningin NORMAL or
production mode. Job are prioritized, reservations created, policies and limits enforced, and admin and end-user
commands enabled. The key difference is that although live resource management information is loaded, TEST
mode disables Maui's ability to start, preempt, cancel, or otherwise modify jobs or resources. Maui continues to
attempt to schedule exactly asit would in NORM AL mode but its ability to actually impact the system is disabled.
Using this mode, a site can quickly verify correct resource manager configuration and scheduler operation. This
mode can also be used to validate new policies and constraints. In fact, Maui can be runin TEST mode on a
production system while another scheduler or even another version of Maui is running on the same system. This
unique ability can alow new versions and configurations to be fully tested without any exposure to potential failures
and with no cluster downtime.

To run Maui in TEST mode, simply set the M ODE attribute of the SCHEDCFG parameter to TEST and start
Maui. Normal scheduler commands can be used to evaluate configuration and performance. Diagnostic commands

can be used to look for any potential issues. Further, the Maui log file can be used to determine which jobs Maui
attempted to start, and which resources Maui attempted to allocate.

If another instance of Maui is running in production and a site wishes to evaluate an alternate configuration or new
version, thisis easily done but care should be taken to avoid conflicts with the primary scheduler. Potential conflicts
include statisticsfiles, logs, checkpoint files, and user interface ports. One of the easiest ways to avoid these
conflictsisto create anew 'test' directory with its own log and stats subdirectories. The new maui.cfg file can be
created from scratch or based on the existing maui.cfg file already in use. In either case, make certain that the PORT
attribute of the SCHEDCFG parameter differs from that used by the production scheduler by at least two ports. If
testing with the production binary executable, the MAUIHOMEDIR environment variable should be set to point to
the new test directory in order to prevent Maui from loading the production maui.cfg file.

9.4.1 'INTERACTIVE' Mode

INTERACTIVE mode alows for evaluation of new versions and configurations in a manner different from
TEST mode. Instead of disabling all resource and job control functions, Maui sends the desired change request to
the screen and asks for permission to complete it. For example, before starting ajob, Maui may print something like
the following to the screen

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets desired site
policies. Maui will then execute the specified command. This mode is highly useful in validating scheduler behavior
and can be used until configuration is appropriately tuned and al parties are comfortable with the scheduler's
performance. In most cases, sites will want to set the scheduling mode to NORMAL after verifying correct
behavior.

9.5 Answering 'What 1f?' Questionswith the Simulator

Under Construction, see 16.0 Simulations.

16.3 Workload Traces

Workload traces fully describe all scheduling relevant aspects of batch jobs including resources requested and utilized, time of all
major scheduling events (i.e., submission time, start time, etc), the job credentials used, and the job execution environment. Each
job trace is composed of asingle line consisting of 44 whitespace delimited fields as shown in the table below.

NOTE: Maui 3.2.6 and higher can be configured to provide thisinformation in XML format conforming to the SSS 1.0 job
description specification.

o 16.3.1 Workload Trace Format

o 16.3.2 Creating New Workload Traces

16.3.1 Workload Trace Format

Field Name ::rlmzlgx Data Format Default Value |Details

[NO . .
JoblD 1 <STRING> DEFAULT] Name of job, must be unique
Nodes Number of nodes requested (0 = no node request
Requested 2 <INTEGER> 0 count specified)
Tasks
Reguested 3 <INTEGER> 1 Number of tasks requested

[NO N
User Name |4 <STRING> DEFAULT] Name of user submitting job

[NO . o
Group Name |5 <STRING> DEFAULT] Primary group of user submitting job
\If\llr?lq:fl ock 6 <INTEGER> 1 Maximum allowed job duration in seconds
Job
Completion |7 <STRING> Completed One of Completed, Removed, NotRun
State
Required Class/queue required by job specified as square

< 8 <STRING> [DEFAULT:1] |bracket list of <QUEUE>[:<QUEUE INSTANCE>]
Class))]
requirements. (ie, [batch:1])
?ij rl;rglsa o g <INTEGER> 0 Epoch time when job was submitted
D_|spatch 10 |<INTEGER> 0 Epoch_tlme when scheduler requested job begin
Time executing
: Epoch time when job began executing (NOTE:

StartTime |11 |<INTEGER> 0 usually identical to ‘Dispatch Time)
_(I;ionr:llpletlon 12 |<INTEGER> 0 Epoch time when job completed execution
Required
Network 13 |<STRING> [NONE] Name of required network adapter if specified
Adapter
Required
Node 14 |<STRING> [NONE] Required node architecture if specified
Architecture
Required
Node . . . -
Operating 15 |<STRING> [NONE] Required node operating system if specified
System

Required

Node 16 loneof >, >=, =, <=, < o Com_parison for determining compliance with
Memory required node memory
Comparison
Required . . .
Node 17 <INTEGER> 0 :arcnr?%gtd gf required configured RAM (in MB) on
Memory
Required Comparison for determining compliance with
NodeDisk (18 |oneof >, >=, = <=,< >= . .
C . required node disk
omparison
Requi re_d 19 |<INTEGER> 0 Amount of required configured local disk (in MB) on
Node Disk each node
Required . .
Node 20 |<STRING> [NONE] uare i?rac'éceitf fendc'(‘i’s?ﬁc;g[‘;‘;r?;ﬂzt‘iga‘“m required
Attributes Y] »
System
Queue 21 |<INTEGER> 0 Epoch time when job met all fairness policies
Time
Number of tasks actually allocated to job (NOTE: in
Tasks 22 |<INTEGER> STASKS __ |most cases, thisfield isidentical to field #3, Tasks
Allocated REQUESTED>
Requested)
Required . . s
TasksPer 123 |<INTEGER> 1 Numbef of Tasks Per _Node required by job or -1' if
no requirement specified
Node
QOS requested/delivered using the format
QOSs 24 |<STRING>[:<STRING>] [NONE] <QOS REQUESTED>[:<QOS DELIVERED>] (ie,
‘hipriority:bottomfeeder’)
) sguare bracket delimited list of job attributes (i.e.,
JobFlags 25 |<STRING>[:<STRING>]... [NONE] [BACKFILL][BENCHMARK][PREEMPTEE])
Q;"gm 26 |<STRING> [NONE] Name of account associated with job if specified
Executable (27 |<STRING> [NONE] Name of job executable if specified
Resource manager specific list of job attributesif
Comment (28 |<STRING> [NONE] specified. Seethe Resource Manager Extension
Overview for moreinfo.
Bypass) Number of time job was bypassed by lower priority
Count 29 |<INTEGER> 1 i obs via backfill o *-1' if not specified
%ﬁ?&:&or‘ds 30 [<DOUBLE> 0 Number of processor seconds actually utilized by job
er;;gon 31 [<STRING> [DEFAULT] |Name of partition in which job ran
Dedicated
Processors |32 |<INTEGER> 1 Number of processors required per task
per Task
Dedicated
Memory per |33 |<INTEGER> 0 Amount of RAM (in MB) required per task
Task
Dedicated
Disk per 34 |<INTEGER> 0 Amount of local disk (in MB) required per task
Task
Dedicated
Swap per 35 |<INTEGER> 0 Amount of virtual memory (in MB) required per task
Task
Start Date |36 |<INTEGER> 0 |Epoch time indicating earliest time job can start

Epoch time indicating latest time by which job must

EndDate |37 |<INTEGER> 0
complete
Allocated colon delimited list of hosts alocated to job (i.e.,
. 38 [<STRING>[:<STRING>]... [NONE] node001:node004) NOTE: InMaui 3.0, thisfield
Host List . ey
only lists the job's master host.
Resource
Manager 39 [<STRING> [NONE] Name of resource manager if specified
Name
List of hosts required by job. (if taskcount > #hosts,
Required scheduler must use these nodes in addition to others,
Host Mask |10 [SSTRING>[<STRINGZ]... [NONE] if taskcount < #host, scheduler must select needed

hosts from this list)

|Reservation (41 |<STRING> [NONE] IName of reservation required by job if specified

Set constraints required by node in the form
<SetConstraint>:<SetType>[:<SetList>] where
SetConstraint is one of ONEOF, FIRSTOF, or

ge;cription 42 |<STRING>:<STRING>[:<STRING>] [NONE] ANY OF, SetType s one of PROCSPEED,
FEATURE, or NETWORK, and SetList isan
optional colon delimited list of allowed set attributes,
(i.e. 'ONEOF:PROCSPEED:350:450:500")

Application Name of application simulator module and associated

Simulator |43 |<STRING>[:<STRING>] [NONE] configuration data (i.e.,

Data 'HSM:IN=infile.txt: 140000;0UT=outfile.txt:500000")

RESCRVED 44 <sTRING> [NONE] RESERVED FOR FUTURE USE

NOTE: if no applicable value is specified, the exact string [NONE]' should be entered.

Sample Workload Trace:

'SP02.2343.0 20 20 570 519 86400 Renoved [batch:1] 887343658 889585185
889585185 889585411 ethernet R6000 AlX43 >= 256 >= 0 [NONE] 889584538 20 0 O
2 0 test.cnd 1001 6 678.08 0 1 0O 0 O O O [NONE| O [NONE] [NONE] [NONE]
[NONE] [NONE] '

16.3.2 Creating New Workload Traces

Because workload traces and workload statistics utilize the same format, there are trace fields which provide information that is
valuable to a statistical analysis of historical system performance but not necessary for the execution of a simulation.

Particularly, in the area of time based fields, there exists an opportunity to overspecify. Which time based fields are important
depend on the setting the the JOBSUBMISSIONPOLICY parameter.

]JOBSUBMISSIONPOLICY Value Critical Time Based Figlds
WallClock Limit
Submission Time
NORMAL StartTime
Completion Time
CONSTANTJOBDEPTH \étVaalrl%I;C;k Limit
CONSTANTPSDEPTH ! _
Completion Time

NOTE 1. Dispatch Time should always be identical to Start Time

NOTE 2: Inall cases, the difference of ‘Completion Time - Start Time' is used to determine actual job run time.

NOTE 3: System Queue Time and Proc-Seconds Utilized are only used for statistics gathering purposes and will not alter the
behavior of the simulation.

NOTE 4: Inall cases, relative time values are important, i.e., Start Time must be greater than or equal to Submission Time and less
than Completion Time.

Maui Trace File Format, version 310

Maui supports atrace format for workload (jobs) and another for resources (nodes).

16.3 Workload Traces

Workload traces fully describe all scheduling relevant aspects of batch jobs including resources requested and utilized, time of all
major scheduling event (i.e., submission time, start time, etc), the job credentials used, and the job execution environment. Each job
trace is composed of asingle line consisting of 44 whitespace delimited fields as shown in the table below.

Field

Field Name I ndex Data Format Default Value |Details

[NO . .
JoblD 1 <STRING> DEFAULT] Name of job, must be unique
Nodes Number of nodes requested (0 = no node request
Requested 2 <INTEGER> 0 count specified)
Tasks
Requested 3 <INTEGER> 1 Number of tasks requested

[NO e
User Name |4 <STRING> DEFAULT] Name of user submitting job

[NO . e
Group Name |5 <STRING> DEFAULT] Primary group of user submitting job
\(Yr?lq:fl ock 6 <INTEGER> 1 Maximum allowed job duration in seconds
Job
Completion |7 <STRING> Completed One of Completed, Removed, NotRun
State
Required Class/queue required by job specified as square

< 8 <STRING> [DEFAULT:1] |bracket list of <QUEUE>[:<QUEUE INSTANCE>]
Class))]
requirements. (ie, [batch:1])
.IS.tiJ rl;rglsg o g <INTEGER> 0 Epoch time when job was submitted
D_|spatch 10 |<INTEGER> 0 Epoch_tl me when scheduler requested job begin
Time executing
: Epoch time when job began executing (NOTE:

StartTime |11 |<INTEGER> 0 usually identical to ‘Dispatch Time)
.??rrlplalon 12 |<INTEGER> 0 Epoch time when job completed execution
Required
Network 13 |<STRING> [NONE] Name of required network adapter if specified
Adapter
Required
Node 14 |<STRING> [NONE] Required node architecture if specified
Architecture
Required
Node . . . -
Operating 15 [<STRING> [NONE] Required node operating system if specified
System
Required
Node 16 loneof >, >=, =, <=, < o Companson for determining compliance with
Memory reguired node memory
Comparison

Required

Amount of required configured RAM (in MB) on

Node 17 |<INTEGER> 0
each node
Memory
Reqired Comparison for determining compliance with
NodeDisk (18 |oneof >, >=, =, <=,< >= . .
C . required node disk
omparison
Required Amount of required configured local disk (in MB) on
Node Disk 19 |<INTEGER> 0 each node
Required . .
Node 20 |<STRING> [NONE] uare i?rac'éceitf fgdc'(‘i’:?g;;[‘;‘;r?;ﬂ;ﬁm“m required
Attributes ¥ $
System
Queue 21 |<INTEGER> 0 Epoch time when job met all fairness policies
Time
Number of tasks actually allocated to job (NOTE: in
Tasks 22 |<INTEGER> STASKS __ |most cases, thisfield isidentical to field #3, Tasks
Allocated REQUESTED>
Requested)
Required . : s
TasksPer 123 |<INTEGER> 1 Numbq of Tasks Per _Node required by job or "-1' if
no requirement specified
Node
QOS requested/delivered using the format
QOs 24 |<STRING>[:<STRING>] [NONE] <QOS REQUESTED>[:<QOS DELIVERED>] (ie,
'hipriority:bottomfeeder’)
. square bracket delimited list of job attributes (i.e.,
JobFlags 25 |<STRING>[:<STRING>]... [NONE] [BACKFILL][BENCHMARK][PREEMPTEE])
Q;&ognt 26 [<STRING> [NONE] Name of account associated with job if specified
Executable |27 [<STRING> [NONE] Name of job executableif specified
Resource manager specific list of job attributes if
Comment (28 |<STRING> [NONE] specified. See the Resource Manager Extension
Overview for more info.
Bypass) Number of time job was bypassed by lower priority
Count 29 |<INTEGER> 1 iobs via backfill o *-1' if not specified
%E[)i:l iEz eds:onds 30 [<DOUBLE> 0 Number of processor seconds actually utilized by job
ert]'qgo” 31 |<STRING> [DEFAULT] |Name of partition in which job ran
Dedicated
Processors |32 |<INTEGER> 1 Number of processors required per task
per Task
Dedicated
Memory per |33 [<INTEGER> 0 Amount of RAM (in MB) required per task
Task
Dedicated
Disk per 34 |<INTEGER> 0 Amount of local disk (in MB) required per task
Task
Dedicated
Swap per 35 |<INTEGER> 0 Amount of virtual memory (in MB) required per task
Task
Start Date |36 |<INTEGER> 0 |Epoch time indicating earliest time job can start
EndDate |37 |<INTEGER> 0 Epoch time indicating latest time by which job must
complete
Allocated) colon delimited list of hosts allocated to job (ie,
Host List 38 |<STRING>[:<STRING>]... [NONE] node001:node004)

Resource
Manager 39 [<STRING> [NONE] Name of resource manager if specified
Name
List of hosts required by job. (if taskcount > #hosts,
Required scheduler must use these nodes in addition to others,
Host Mask |10 [SSTRING>[<STRINGZ]... [NONE] if taskcount < #host, scheduler must select needed
hosts from this list)
IReservation (41 |<STRING> [NONE] IName of reservation required by job if specified
Set constraints required by node in the form
<SetConstraint>:<SetType>[:<SetList>] where
Set SetConstraint is one of ONEOF, FIRSTOF, or
Description 42 |<STRING>:<STRING>[:<STRING>] |[NONE] ANY OF, SetTypeis one of PROCSPEED,
FEATURE, or NETWORK, and SetList isan
optional colon delimited list of allowed set attributes,
(i.e. 'ONEOF:PROCSPEED:350:450:500")
Application Name of application simulator module and associated
Simulator |43 |<STRING>[:<STRING>] [NONE] configuration data (i.e.,
Data "HSM:IN=infile.txt:140000;0UT=outfile.txt:500000")
EIEESLEDR\{ED 44 |<STRING> [NONE] RESERVED FOR FUTURE USE

NOTE: if no applicable value is specified, the exact string [NONE]' should be entered.

Sample Workload Trace:

'SP02.2343.0 20 20 570 519 86400 Removed [batch:1] 887343658 889585185
889585185 889585411 ethernet R6000 AIX43 >= 256 >= 0 |[NONE] 889584538 20 0 O
2 0 test.cnd 1001 6 678.08 0 1 0O O O O O [NONE] O [NONE] [NONE] [NONE]
[NONE] [NONE]'

16.2 Resource Traces

Resource traces fully describe all scheduling relevant aspects of a batch system's compute resources. In most cases, each
resource trace describes a single compute node providing information about configured resources, node location, supported classes
and queues, etc. Each resource trace consists of a single line composed of 21 whitespace delimited fields. Each field is described in
detail in the table below.

Field Name ::r:‘jgx Data Format Default Value Details
Resource one of currently the only legal valueis
Type 1 COMPUTENODE COMPUTENODE 'COMPUTENODE
when AVAILABLE,
DEFINED, or DRAINED is
one of specified, node will start in the
AVAILABLE, state Idle, Down, or Drained
BventType 2 |bepiNED, or |[NONE] respectively.

DRAINED NOTE: node state can be
modified using the mnodectl
command.

Event Time |3 |<EPOCHTIME> |1 time event occurred. (currently
ignored)

for ' COMPUTENODE'
Resource ID (4 <STRING> N/A resources, this should be the
name of the node.
Resource name of resource manager
Manager 5 <STRING> [NONE] resource is associated with
Name
Configured amount of virtual memory (in
Swap 6 <INTEGER> 1 MB) configured on node
Configured amount of real memory (in MB)
Memory ! <INTEGER> 1 configured on node (i.e. RAM)
Configured amount of local disk (in MB) on
Disk 8 <INTEGER> 1 node available to batch jobs
Configured 9 <INTEGER> 1 num_ber of processors
Processors configured on node
Resource o
Frame 10 <INTEGER> 1 number of frame containing
L ocati node (SP2 only)
ocation
Resource .
Slot 11 |<INTEGER> |1 E'“rr:‘o%eé gggztr:‘lra)me slot used
Location y y
Resource
Sot Use 12 <INTEGER> 1 Number of frame slots used by
C node (SP2 only)
ount
Node
Operating (13 <STRING> [NONE] node operating system
System
NOdPT 14 |<STRING> [NONE] node architecture
Architecture
Configured square bracket delimited list of
Node 15 |<STRING> [NONE] node features/attributes (ie,
Features '[amd][s1200]")
. square bracket delimited list of
Configured .)
16 |<STRING> [batch:1] CLASSNAME:CLASSCOUNT
Run Classes pairs
Configured square bracket delimited list of
Network 17 |<STRING> [NONE] configured network adapters
Adapters (ie, Tatm][fddi][ethernet]”)
Relative
Resource |18 <DOUBLE> 10 relative machine speed value
Speed
RESERVED
FIELD 1 19 |<STRING> [NONE] [NONE]
RESERVED
FIELD 2 20 |<STRING> [NONE] [NONE]
RESERVED
FIELD 3 21 |<STRING> [NONE] [NONE]

NOTE: if no applicable value is specified, the exact string [NONE]' should be entered.

Sample Resource Trace:

'COVPUTENCDE AVAI LABLE O cl uster008 PBS1 423132 256 7140 2 -1 -1 1 LINUX62 Athl onK7

[s950] [comput €] [ethernet][atn] 1.67

[bat ch: 2]

[NONE] [NONE]

[NONE] *

14.1 Internal Diagnostics/Diagnosing System Behavior and
Problems

Maui provides a number of commands for diagnosing system behavior. These diagnostic
commands present detailed state information about various aspects of the scheduling problem,
summarize performance, and eval uate current operation reporting on any unexpected or
potentially erroneous conditions found. Where possible, Maui's diagnostic commands even
correct detected problemsif desired.

At ahigh level, the diagnostic commands are organized along functionality and object based
delineations. Diagnostic command exist to help prioritize workload, evaluate fairness, and
determine effectiveness of scheduling optimizations. Commands are also available to evaluate
reservations reporting state information, potential reservation conflicts, and possible corruption
issues. Scheduling is a complicated task. Failures and unexpected conditions can occur as a
result of resource failures, jobs failures, or conflicting policies.

Maui's diagnostics can intelligently organize information to help isolate these failures and
allow them to be resolved quickly. Another powerful use of the diagnostic commandsisto
address the situation in which there are no hard failures. In these cases, the jobs, compute
nodes, and scheduler are all functioning properly, but the cluster is not behaving exactly as
desired. Maui diagnostics can help a site determine how the current configuration is
performing and how it can be changed to obtain the desired behavior.

14.1.1 Diagnhose Command

The cornerstone of Maui's diagnostics is a command named, aptly enough, diagnose. This

command provides detailed information about scheduler state and also performs alarge
number of internal sanity checks presenting problems it finds as warning messages.

Currently, the diagnose command provides in depth analysis of the following objects and
subsystems

|Obj ect/Subsystem [Diagnose Flag|Use
|Account -a shows detailed account configuration information

FairShare i shows detailed fairshare configuration information as
- well as current fairshare usage

|Frame -m shows detailed frame information
|Group -9 shows detailed group information

shows detailed job information. Reports on corrupt job

Job 1 attributes, unexpected states, and excessive job failures
Node N shows detailed node information. Reports on unexpected

node states and resource allocation conditions.
|Partition -t shows detailed partition information
shows detailed job priority information including priority

Priority P factor contributionsto all idle jobs

|QOS -Q shows detailed QOS information

Queue -q indicates why ineligible jobs or not allowed to run
shows detailed reservation information. Reports on

Reservation -r reservation corruption of unexpected reservation
conditions

shows detailed resource manager information. Reports
configured and detected state, configuration,
performance, and failures of all configured resource
manager interfaces.

shows detailed scheduler state information. Indicatesif

Resource Manager |-R

Scheduler -S scheduler is stopped, reports status of grid interface,
identifies and reports high-level scheduler failures.
|User -u shows detailed user information

14.1.2 Other Diagnostic Commands

Beyond diagnose, the checkjob and checknode commands also provide detailed information
and sanity checking on individual jobs and nodes respectively. These commands can indicate
why ajob cannot start, which nodes can be available, and information regarding the recent
events impacting current job or nodes state.

14.1.3 Using Maui Logs for Troubleshooting

Maui logging is extremely useful in determining the cause of a problem. Where other
systems may be cursed for not providing adequate logging to diagnose a problem, Maui may
be cursed for the opposite reason. |If thelogging level is configured too high, huge volumes of
log output may be recorded, potentially obscuring the problemsin aflood of data. Intelligent
searching, combined with the use of the LOGLEVEL and LOGFACILITY parameters can
mine out the needed information. Key information associated with various problemsis
generally marked with the keywords WARNING, ALERT, or ERROR. Seethe Logging

Overview for further information.

14.1.4 Using a Debugger

If other methods do not resolve the problem, the use of a debugger can provide missing
information. While output recorded in the Maui logs can specify which routine isfailing, the
debugger can actually locate the very source of the problem. Log information can help you
pinpoint exactly which section of code needs to be examined and which datais suspicious.
Historically, combining log information with debugger flexibility have made locating and
correcting Maui bugs arelatively quick and straightforward process.

To use adebugger, you can either attach to arunning Maui process or start Maui under the
debugger. Starting Maui under a debugger requires that the MAUIDEBUG environment
variable be set to the value 'yes to prevent Maui from daemonizing and backgrounding itself.
The following example shows atypical debugging start up using gdb.

export MAU DEBUG=yes

cd <MAUI HOVEDI R>/ sr c/ noab
gdb ../../bin/mui

b MXSInitialize

;

>So - - -

VVVYVYV!'H

The gdb debugger has the ability to specify conditional breakpoints which make debugging
much easier. For debuggers which do not have such capabilities, the TRAP*' parameters are
of value allowing breakpoints to be set which only trigger when specific routines are
processing particular nodes, jobs or reservations. See the TRAPNODE, TRAPJOB,

TRAPRES, and TRAPFUNCTION parameters for more information.

14.1.5 Controlling behavior after a ‘crash’

The MAUICRASHM ODE environment variable can be set to control scheduler action in
the case of a catastrophic internal failure. Valid valusinclude trap, ignore, and die.

See also:
Troubleshooting I ndividual Jobs.

10.0 Managing Shared Resources- SMP Issues and Policies
o 10.1 Consumable Resource Handling
« 10.2 | oad Balancing Features

10.1 Consumable Resource Handling

Maui is designed to inherently handle consumable resources. Nodes possess resources, and
workload (jobs) consume resources. Maui tracks any number of consumable resources on a
per node and per jobs basis. Work is under way to alow 'floating' per system resources to be
handled aswell. When ajob is started on a set of nodes, Maui tracks how much of each
available resource must be dedicated to the tasks of the job. This allows Maui to prevent per
node oversubscription of any resource, be it CPU, memory, swap, local disk, etc.

Recent enhancements to Loadleveler (version 2.2 and above) finally provide aresource
manager capable of exercising thislong latent capability. These changes allow a user to
specify per task consumable resources and per node available resources. For example, ajob
may be submitted requiring 20 tasks, with 2 CPUs and 256 MB per task. Thus, Maui would
allow anode with 1 GB of Memory and 16 processors to allow run 4 of these tasks because 4
tasks would consume all of the available memory. Consumable resources allow more
intelligent allocation of resources alowing better management of shared node resources.

No steps are required to enable this capability, smply configure the underlying resource
manager to support it and Maui will pick up this configuration.

10.2 Load Balancing Features

Load balancing is generally defined as the incorporation of resource load information into
scheduling decisions. Maui supports load balancing in a number of ways allowing sites to use
node load information to both determine resource availability and to control job resource

allocation.

10.2.1 Resource Availability

Maui will only schedule jobs onto available nodes. Using Maui's node availability policies, a
site can specify exactly what criteria determine the node's availability. For load balancing
purposes, sites may wish to configure availability criteriafor processors, memory, and swap.
Various settings can enable overcommiting resources if desired while others can constrain
nodes to only accept jobs if resources exist to meet the maximum needs of all concurrent job
requests.

10.2.2 Prioritizing Node Allocation

The second major aspect of load balancing has to do with the selection of resources for new
jobs. With Maui, load information can be incorporated into the node all ocation decision by
using thePRIORITY node allocation policy. This policy allows specification of which
aspects of a node's configuration contribute to its allocation priority. For load balancing
purposes, a site would want to favor nodes with the most available processors and the lowest
load and job count. The node allocation priority function is set using the PRIORITYF
attribute of the NODECFG parameter as shown in the example below:

maui . cfg

NODEALLOCATI ONPOLI CY PRIORITY
NODECF{E DEFAULT] PRI ORI TYF="10 * APROCS - LOAD - JOBCOUNT'

Other node aspects which may be of value in configuring load-balancing based node
allocation include SPEED and CPROCS.

10.3 Resource Usage Tracking

Asfar as the resource manager will allow, Maui will track the aggregate usage of shared
resources on a per job basis.

10.4 Resource Usage Limits

Resource usage limits constrain the amount of resources a given job may consume. These
limits are generally proportional to the resources requested and may include walltime, any
standard resource, or any specified generic resource. The parameter
RESOURCELIMITPOLICY controls which resources are limited, what limit policy is
enforced per resource, and what actions the scheduler should take in the event of a policy
violation.

The RESOURCELIMITPOLICY parameter accepts a number of policies and actions
defined in the tables below.

|Policy |Description

|AL WAYS |take action whenever aviolation is detected

take action only if aviolation is detected and persists for greater

|EXTENDEDV' OLATION |than the specified timelimit

/Action IDescription

ICANCEL |terminate the job

IREQUEUE |terminate and requeue the job

suspend the job and leave it suspended for an amount of time defined by the X

|SU SPEND
parameter

Constraining Walltime Usage

Early releases of Maui 3.2 allowed jobs to exceed the requested wallclock limit by an amount
specified on aglobal basis using the JOBMAXOVERRUN parameter or on a per class basis

using the CLASSCFG parameter's OVERRUN attribute. Later releases of 3.2 allowed the
OVERRUN attribute to be associated with any job credential.

11.0 General Job Administration

11.1 Job Holds

11.2 Job Priority Management

11.3 Suspend/Resume Handling

11.4 Checkpoint/Restart Facilities

11.5 Job Dependencies

11.1 Job Holds
Holds and Deferred Jobs

A job hold is amechanism by which ajob is placed in a state where it is not eligible to be
run. Maui supports job holds applied by users, admins, and even resource managers. These
holds can be seen in the output of the showq and checkjob commands. A job with a hold
placed on it cannot be run until the hold isremoved. If ahold is placed on ajob viathe
resource manager, this hold must be released by the resource manager provided command (i.e.,
[lhold for Loadleveler, or ghold for PBYS).

Maui supports two other types of holds. Thefirst isatemporary hold known as a'defer’.
A jobisdeferred if the scheduler determines that it cannot run. This can be because it asks for
resources which do not currently exist, does not have alocations to run, is rejected by the
resource manager, repeatedly fails after start up, etc. Eachtime ajob gets deferred, it will stay
that way, unable to run for a period of time specified by the DEFERTIME parameter. If ajob
appears with a state of deferred, it indicates one of the previously mentioned failures has
occurred. Details regarding the failure are available by issuing the 'checkjob <JOBID>"
command. Once the time specified by DEFERTIME has elapsed, the job is automatically
released and the scheduler again attempts to scheduleit. The 'defer' mechanism can be
disabled by setting DEFERTIME to'0". To release ajob from the defer state, issue
'releasehold -a <JOBID>".

The second ‘Maui-specific' type of hold is known as a'batch' hold. A batch hold isonly
applied by the scheduler and is only applied after a serious or repeated job failure. If ajob has
been deferred and released DEFERCOUNT times, Maui will placeit in abatch hold. It will
remain in this hold until a scheduler admin examinesit and takes appropriate action. Likethe
defer state, the causes of a batch hold can be determined via checkjob and the hold can be

released via rel easehold.

Like most schedulers, Maui supports the concept of ajob hold. Actually, Maui supports
four distinct types of holds, user holds, system holds, batch holds, and defer holds. Each of
these holds effectively block ajob, preventing it from running, until the hold is removed.

User Holds

User holds are very straightforward. Many, if not most, resource managers provide
interfaces by which users can place a hold on their own job which basically tells the scheduler
not to run the job while the hold isin place. The user may utilize this capability because the
job's datais not yet ready, or he wants to be present when the job runs so as to monitor results.
Such user holds are created by, and under the control of a non-privileged and may be removed
at any time by that user. Aswould be expected, users can only place holds on their jobs. Jobs
with auser hold in place will have a Maui state of Hold or User Hold depending on the

resource manager being used.
System Holds

The second category of hold isthe system hold. This hold is put in place by a system
administrator either manually or by way of an automated tool. Aswith all holds, the job is not
allowed to run so long as thishold isin place. A batch administrator can place and release
system holds on any job regardless of job ownership. However, unlike a user hold, a normal
user cannot release a system hold even on his own jobs. System holds are often used during
system maintenance and to prevent particular jobs from running in accordance with current
system needs. Jobs with a system hold in place will have aMaui state of Hold or SystemHold
depending on the resource manager being used.

Batch Holds

Batch holds constitute the third category of job holds. These holds are placed on ajob by
the scheduler itself when it determines that ajob cannot run. The reasons for this vary but can
be displayed by issuing the ‘checkjob <JOBID>' command. Some of the possible reasons are

listed below:

No Resources - thejob requests resources of atype or amount that do not exist on
the system

System Limits - thejobislarger or longer than what is alowed by the specified
system policies

Bank Failure - theadlocations bank is experiencing failures

No Allocations - thejob requests use of an account which is out of allocations and no
fallback account has been specified

RM Reject - the resource manager refuses to start the job

RM Failure - theresource manager is experiencing failures

Policy Violation - thejob violates certain throttling policies preventing it from running

now and in the future
No QOSAccess - thejob doesnot have accessto the QOS level it requests

Jobs which are placed in a batch hold will show up within Maui in the state BatchHold.
Job Defer

In most cases, ajob violating these policies will not be placed into a batch hold
immediately. Rather, it will be deferred. The parameter DEFERTIME indicates how long it
will be deferred. At thistime, it will be allowed back into the idle queue and again considered
for scheduling. If it againisunableto run at that time or at any timein the future, itisagain
deferred for the timeframe specified by DEFERTIME. A job will be released and deferred up
to DEFERCOUNT times at which point the scheduler places a batch hold on the job and waits
for a system administrator to determine the correct course of action. Deferred jobs will have a
Maui state of Deferred. Aswith jobsin the BatchHold state, the reason the job was deferred

can be determined by use of the checkjob command.

At any time, ajob can be released from any hold or deferred state using the 'rel easehold’

command. The Maui logs should provide detailed information about the cause of any batch
hold or job deferral.

NOTE: Asof Maui 3.0.7, thereason ajob is deferred or placed in abatch hold is stored in
memory but is not checkpointed. Thusthisinfo isavailable only until Maui isrecycled at
which point the checkjob command will no longer display this 'reason’ info.

(under construction)

Controlling Backfill Reservation Behavior
Reservation Thresholds
Reservation Depth
Resource Allocation Method
First Available
Min Resource
Last Available
wallClock Limit
Allowing jobs to exceed wallclock limit
MAXJOBOVERRUN
Using Machine Speed for WallClock limit scaling
USEMACHINESPEED
Controlling Node Access
NODEACCESSPOLICY

11.2 Job Priority Management

Job priority management is controlled via both configured and manual intervention
mechanisms.

« Priority Configuration - see Job Prioritization

o Manual Intervention w/setspri

11.3 Suspend/Resume Handling

Maui supports both manual and automatic job preemption. These topics are covered in
greater detail in the following sections:

« manual preemption with the mjobctl command
o QOS based job preemption
« Preemption based backfill

11.4 Checkpoint/Restart Facilities

Under Construction

11.5 Job Dependencies
11.5.1 Basic Job Dependency Support

By default, basic single step job dependencies are supported through completed/failed step
evaluation. Basic dependency support does not require specia configuration and is activated
by default. Dependent jobs are only supported through a resource manager and therefore
submission methods depend upon the specific resource manager being used.

11.5.2 Task Scheduling of DAG's

Moab 4.0 and higher supports task scheduling. To enable this capability, the following steps
must be taken:

(under construction)

mjobctl

mjobctl [ARGS] <JOBID>
Purpose

manage jobs including starting, suspending, cancelling, and querying current state.

Per missions

This command can be run by any Maui administrator.

Parameters

JOBID Name of thejob to run.

Args Description

Clear job parameters from previous runs (used to clear PBS neednodes

-C attribute after PBS job launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-h Help for this command.

-n <NODEL | ST> Attempt to start the job using the specified nodelist where nodenames

are comma or colon delimited
-p <PARTITION> Attempt to start the job in the specified partition
-S Attempt to suspend the job

Attempt to force the job to run, ignoring throttling policies, QoS

-X . .
constaints, and reservations

Description

This command will attempt to immediately start a job.

Example

> nmj obctl cluster. 231
job cluster.231 successfully started

This example attempts to run job cluster.231.

See Also:
checkj ob - show detailed status of ajob.

showg - list queued jobs.

11.6 Job Defaults and Per Job Limits
11.6.1 Job Defaults

Job defaults can be specified on a per queue basis. These defaults are specified using the
CLASSCFG parameter. The table below show the applicable attributes:

Attribute |Format |Example

CLASSCF({ bat ch]

commadelimited list of |DEFAULT. FEATURES=f ast, i 0
node features (jobs submitted to classbat ch will
request nodes featuresf ast andi o

CLASSCF(J bat ch]

DEFAULT. WCLI M T=1: 00: 00

(jobs submitted to classbat ch will
request one hour of walltime by default.)

DEFAULT.FEATURES

DEFAULT.WCLIMIT |[[[DD:]HH:]MM:]SS

11.6.2 Per Job Maximum Limits

Job defaults can be specified on a per queue basis. These defaults are specified using t he
CLASSCFG parameter. The table below shows the applicable attributes:

|Attribute IFor mat [Example

CLASSCF{d bat ch] MAX. WCLI M T=1: 00: 00
(jobs submitted to class bat ch can request no more
than one hour of walltime.)

MAX.WCLIMIT [[[DD:]HH:]MM:]SS

11.6.3 Per Job Minimum Limits

Furthermore, minimum job defaults can be specified on with the CLASSCFG parameter.
The table below shows the applicable attributes:

|Attribute [Format [Example

CLASSCF({ bat ch] M N. PROC=10
(jobs submitted to class bat ch can request no less than ten
processors.)

MIN.PROC |<integer>

- The Moab Cluster Manager ™ provides an easy to use graphical interface to control job
limits.

http://www.clusterresources.com/products/maui/mcm/

11.7 General Job Policies

The default scheduler configuration enables a number of policies which control functionality
avallableto ajob. These policies are described in detail in the sections below.

11.7.1 Multi-Node Support

By default, resources allocated to a job are allowed to span multiple nodes. To disable this
behavior, the parameter ENABLEMULTINODEJOBS should be set to FAL SE.

11.7.2 Multi-Req Support

By default, jobs are only allowed to specify a single type of resource for allocation. For
example, ajob could request ‘4 nodes with 256 MB of memory' or '8 nodes with feature f ast
present’. However, the default behavior does not allow submission of asingle job which
requests both of these resource types. The parameter ENABLEMUL TIREQJOBS can be set

to TRUE to remove this constraint. (NOTE: only available in Moab 4.0.0 and higher)

11.7.3 Job Size Policy

Moab 4.0.0 and higher allow jobs to request resource ranges. Using this range information,
the scheduler is able to maximize the amount of resources available to the job while
minimizing the amount of time the job is blocked waiting for resources. The
JOBSIZEPOLICY parameter can be used to set this behavior according to local site needs.

NOTE: job resource ranges may only be specified when using alocal queue as described in
the Using a L ocal Queue section.

11.8 Using a Local Queue

Maui allows jobsto be submitted directly to the scheduler. With the local queue, the
scheduler is able to directly manage the job or translate it and resubmit it to a standard
resource manager queue. This capability allows sites to migrate resource managers without
re-training their users. Further, it allows the scheduler to dynamically modify various job
attributes in accordance with site scheduling constraints and optimization policies.

12.0 General Node Administration

Since Maui interoperates with a number of resource managers of varying capabilities, it
must possess a somewhat redundant set of mechanisms for specifying node attribute, location,
and policy information. Maui determines a node's configuration through one or more of the
following approaches:

- Direct resource manager specification

Some node attribute may be directly specified through the resource manager. For example,
Loadleveler allows a site to assign a'MachineSpeed' value to each node. If the site chooses to
specify this value within the Loadleveler configuration, Maui will obtain thisinfo viathe
Loadleveler scheduling APl and use it in scheduling decisions. The list of node attributes
supported in this manner varies from resource manager to resource manager and should be
determined by consulting resource manager documentation.

- Trandation of resource manager specified ‘'opaque’ attributes

Many resource managers support the concept of opague node attributes, allowing asite to
assign arbitrary stringsto anode. These strings are opague in the sense that the resource
manager passes them along to the schedul er without assigning any meaning to them. Nodes
possessing these opague attributes can then be requested by various jobs. Using certain Maui
parameters, sites can assign a meaning within Maui to these opague node attributes and extract
specific node information. For example, setting the parameter
'FEATUREPROCSPEEDHEADER xps will cause a node with the opaque string 'xps950' to

be a assigned a processor speed of 950 MHz within Maui.

- Default node attributes

Some default node attributes can be assigned on aframe or partition basis. Unless explicitly
specified otherwise, nodes within the particular node or partition will be assigned these default
attribute values. See the Partition Overview for more information.

- Direct maui parameter specification

Maui also provides a parameter named NODECFG which allows direct specification of

virtually all node attributes supported via other mechanisms and also provides a number of
additional attributes not found elsewhere. For example, a site may wish to specify something
like the following:

NCDECFJE node031] MAXJO0B=2 PROCSPEED=600 PARTI Tl ON=snal |

@ These approaches may be mixed and matched according to the site'slocal needs.
Precedence for the approaches generally follows the order listed above in cases where
conflicting node configuration information is specified through one or more mechanisms.

e 12.1 Node Location (Partitions, Frames, Queues, €tc.)
o 12.2 Node Attributes (Node Features, Speed, etc.)
o 12.3 Node Specific Policies (MaxJobPerNode, etc.)

12.2 Node Attributes

Nodes can possess a large number of attributes describing their configuration. The mgjority
of these attributes such as operating system or configured network interfaces can only be
specified by the direct resource manager interface. However, the number and detail of node
attributes varies widely from resource manager to resource manager. Sites often have interest
in making scheduling decisions based on scheduling attributes not directly supplied by the
resource manager. Configurable node attributes are listed below.

NODETYPE

The NODETY PE attribute is most commonly used in conjunction with an allocation
management system such as QBank. In these cases, each node is assigned a hode type and
within the allocation management system, each node type is assigned a charge rate. For
example, a site may wish to charge users more for using large memory nodes and may assign a
node type of 'BIGMEM' to these nodes. The allocation management system would then
charge a premium rate for jobs using BIGMEM nodes. (Seethe Allocation Manager Overview

for more information.)

Node types are specified as simple strings. |If no node type is explicitly set, the node will
possess the default node type of TDEFAULT]'. Node type information can be specified
directly using NODECFG or through use of the FEATURENODETY PEHEADER parameter.

Example:

maui . cfg

NCDECFJE node024] NODETYPE=BI GVEM

PROCSPEED

Knowing anode's processor speed can help the scheduler improve intra-job efficiencies by
allocating nodes of similar speeds together. This helps reduce losses due to poor internal job
load balancing. Maui's Node Set scheduling policies allow a site to control processor speed

based allocation behavior.

Processor speed information is specified in MHz and can be indicated directly using
NODECFG or through use of the FEATUREPROCSPEEDHEADER parameter.

SPEED

A node's speed is very similar to its procspeed but is specified as arelative value. In genera
use, the speed of a base node is determined and assigned a speed of 1.0. A node that is 50%
faster would be assigned avalue of 1.5 while a slower node may receive avalue whichis
proportionally lessthan 1.0. Node speeds do not have to be directly proportional to processor
speeds and may take into account factors such as memory size or networking interface.
Generally, node speed information is used to determine proper wallclock limit and CPU time
scaling adjustments.

Node speed information is specified as a unitless floating point ratio and can be specified
through the resource manager or with the NODECFG parameter.

@ The SPEED specification must be in the range of 0.01 to 100.0.

FEATURES

Not all resource managers alow specification of opaque node features. For these systems,
the NODECFG parameter can be used to directly assign alist of node features to individual

nodes.
NETWORK

The ahility to specify which networks are available to agiven node is limited to only afew
resource manager. Using the NETWORK attribute, administrators can establish this node to
network connection directly through the scheduler. The NODECFG parameter allows thislist

to be specified in acomma delimited list.

12.3 Node Specific Policies

Specification of node policiesisfairly limited within Maui mainly because the demand for
such policiesislimited. These policies allow asite to specify on a node by node basis what
the node will and will not support. Node policies may be applied to specific nodes or applied
system wide using the specification 'NODECFG DEFAULT] . .."' Notethat these policies
were introduced over time so not all policies are supported in all versions.

MAXJOB

This policy constrains the number of total independent jobs a given node may run
simultaneously. It can only be specified viathe NODECFG parameter.

MAXJOBPERUSER

This policy constrains the number of total independent jobs a given node may run
simultaneously associated with any single user. Like MAXJOB, it can only be specified via
the NODECFG parameter.

MAXLOAD

MAXL OAD constrains the CPU load the node will support as opposed to the number of
jobs. If the node's load exceeds the M AXL OAD limit and the NODELOADPOLICY

parameter is set to ADJUSTSTATE , the node will be marked busy. Under Maui 3.0, the max
load policy could be applied system wide using the parameter NODEMAXLOAD.

@ Node policies are used strictly as constraints. If anodeis defined as having asingle
processor or the NODEACCESSPOLICY isset to DEDICATED, and aMAXJOB policy of
3isspecified, Maui will probably not run more than one job per node. A node's configured
processors must be specified so that multiple jobs may run and then the M AXJOB policy will
be effective. The number of configured processors per node is specified on aresource
manager specific basis. PBS, for example, allows this to be adjusted by setting the number of
virtual processors, 'np' per node in the PBS 'nodes file.

Example:

maui . cfg

NODECFQ node024] MAXJOB=4 MAXJOBPERUSER=2
NODECFQ node025] MAXJOB=2

NODECFQ node026] MAXJOBPERUSER=1

NODECFQE DEFAULT] MAXLOAD=2. 5

Also See:
<N/A>

showstate

showstate [-h]

Purpose

Summarizes the state of the system.

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

None.

Flags

-h Shows help for this command.

Description

This command provides a summary of the state of the system. It displays alist of al active jobs and a text-based map of
the status of all nodes and the jobs they are servicing. Simple diagnostic tests are also performed and any problems found
are reported.

Example

% showst at e

BQS Sunmary on Tue May 20 21:18:08 1997

JobNane Nodes WCLimt JobSt at e

(A fri7nll. 942.0 16 600 Runni ng
(B) fri15n09.1097.0 32 14100 Starting
(O fri7n01.942.0 8 6900 Runni ng
(D) fr13n03.24.0 8 28800 Starting
(E) fri15n13.1018.0 8 28800 Starting
(F) fr17n05. 953.0 8 86400 Runni ng
(G fri15n09.1103.0 1 86340 Runni ng
(H fri3nll. 28.0 1 86400 Runni ng
(1) fr14n09. 21.0 24 86400 Starting

Usage Sunmary: 9 Active Jobs 106 Active Nodes

[Oo]fojfojfojfojfojfojfo]fo][1] (1] [1][1][1][1][1]

(1102103141 [5](6][71[8][91[01[1][2][3][4][5][6]
Franme 20 XXX T[AI[C] 1[AIIAIC[A
Frane s 10 10 10 10 10 JOAC et 10yt 10 30 10 10 1
Frane 4 (1010 10 10 JOA D 100 10 10 JCELD 1010 10E
Frane S [FIL JMEIL J0 J0 TCFRICAITFILYIL 10 1TEIT 1[ELEl
Frane 6 [TCHICVITEILID TOVIONID JLVILFIDETLNILIITT][F]
Frame 7oL IXXX TXXX]I XXX[] XXX b] XXX[T XXX T XXX[#] XXX
Frane R S 1 A 1 I A A A A O O A O O =
Frane 11010 1e e 1 tnrrr@r ICACHL 10FIE T0A
Frane 122 (AL I AL TT ITQIAL JICTATAT 10 10 11]
Franme 13: [D XXX] XXX] XXX[T XXX] XXX] T XXX T] XXX 1] XXX
Frane 14: [D] XXX 1] XXX 1] XXX[D] XXX] XXX] H XXX 1] XXX] XXX
Frame 15: [b] XXX[b] XXX[b] XXX[b] XXX[D] XXX[b] XXX[b] XXX[b] XXX
Franme 16: [b] XXX[] XXX b] XXX[] XXX[b] XXX[b] XXX[] XXX[b] XXX

Frame I N e R N A A A A O A A A N A
Fr ane 21: []XK b] XXX[b] XXX] XXX b] XXX[b] XXX[b] XXX[b] XXX
Fr ane 22: [b] XXX[b] XXX[b] XXX[] XXX[b] XXX[] XXX[b] XXX[b] XXX
Fr ame 27: [b] XXX[b] XXX[] XXX[b] XXX b] XXX[b] XXX[b] XXX[b] XXX
Fr ame 28: [G XXX] XXX[D] XXX[] XXX[O] XXX[D] XXX[D] XXX[] XXX
Fr ame 29: [AI[CTATALCL 11A [T XORXRNXNIIKHIIIHXXKK

Key: XXX: Unknown [*]:Down w/ Job [#]:Down [']:1dle wJob []:Idle [@:Busy w No Job [!]: Drained
Key: [a]:(Any lower case letter indicates an idle node that is assigned to a job)

Check Menory on Node fr3n07
Check Menory on Node fr4n06
Check Menory on Node fr4n09

Active Job[1] fri15n09. 1097.0 (Starting) Has Node fr7n09 Allocated which is in state 'Idle'
Active Job[1] fri15n09. 1097.0 (Starting) Has Node fr15n01 All ocated which is in state 'ldle'
Active Job[1] fri15n09. 1097.0 (Starting) Has Node fr15n03 All ocated which is in state 'ldle'
Active Job[1] fr15n09.1097.0 (Starting) Has Node fr15n05 Allocated which is in state 'ldle'
Active Job[1] fr15n09.1097.0 (Starting) Has Node fr15n07 Allocated which is in state 'ldle'
Node fr11n08 is Busy but Has No Job Schedul ed

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with a
letter. For example, job fr17n11.942.0 is associated with the letter "A." Thisletter can now be used to determine where the
jobiscurrently running. By looking at the system "map," it can be found that job fr17n11.942.0 (job "A") is running on
nodes fr2n10, fr2n13, fr2n16, fr3n06 ...

The key at the bottom of the system map can be used to determine unusual node states. For example, fr7nl5is currently in
the state down.

After the key, a series of warning messages may be displayed indicating possible system problems. In this case, warning
message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09. Also, warning messages
indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 isin state BUSY but has no job assigned to it.
(It possibly has arunaway job running on it.)

Related Commands

None.

Default File Location

[u/'l oadl / maui / bi n/ showst at e
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

12.4 Managing Node-Locked Consumable Generic Resources
12.4.1 Configuring Consumable Generic Resources

Consumabl e generic resources are fully supported in al releases of Moab with resource
manager level auto-detection. Within Maui 3.2, node-locked consumabl e generic resources (or
generic resources) are specified using the NODECFG parameter's GRES attribute. This
attribute is specified using the format <ATTR>: <COUNT> as i n t he exanpl e
bel ow.

maui . cfg

NODECFJ ti tan001] GRES=t ape: 4
NODECF(J | ogi n32] GRES=mat | ab: 2, prine: 4
NODECF(J{ | ogi n32] GRES=mat | ab: 2

12.4.1 requesting Consumable Generic Resources

Ceneric resources are requested on a per task basis using
resource nmnager extensions.

Al so See:

<N A>

http://www.clusterresources.com/moab

13.0 Resource Managers and Interfaces

o 13.1 Resource Manager Overview

o 13.2 Resource Manager Configuration

o 13.3 Resource Manager Extensions

o 13.4 Adding Resource Manager |nterfaces

13.1 Resource Manager Overview

Maui requires the services of aresource manager in order to properly function. This
resource manager provides information about the state of compute resources (nodes) and
workload (jobs). Maui also depends on the resource manager to manage jobs, instructing it
when to start and/or cancel jobs.

Maui can be configured to manage one or more resource managers simultaneously, even
resource managers of different types. However, migration of jobs from one resource manager
to another is not currently allowed. Or, in other words, jobs submitted onto one resource
manager cannot run on the resources of another.

o 13.1.1 Scheduler/Resource Manager Interactions

o 13.1.1.1 Resource Manager Commands

n 13.1.1.2 Resource Manager Flow
e 13.1.2 Resource Manager Specific Details (Limitations/Special Features)

13.1.1 Scheduler/Resource Manager Interactions Maui interacts with all
resource managersin the same basic format. Interfaces are created to translate Maui concepts
regarding workload and resources into native resource manager objects, attributes, and
commands.

Information on creation a new scheduler resource manager interface can be found in the
Adding New Resource Manager Interfaces section.

13.1.1.1 Resource Manager Commands

In the simplest configuration, Maui interacts with the resource manager using
the four primary functions listed below:

GETJOBINFO

Collect detailed state and requirement information about idle, running, and
recently completed jobs.

GETNODEINFO
Collect detailed state information about idle, busy, and defined nodes.
STARTJOB

Immediately start a specific job on a particular set of nodes.

CANCELJOB
Immediately cancel a specific job regardless of job state.

Using these four simple commands, Maui enables nearly its entire suite of
scheduling functions. More detailed information about resource manager specific
requirements and semantics for each of these commands can be found in the
specific resource manager overviews. (LL, PBS, or WIKI).

In addition to these base commands, other commands are required to support
advanced features such a dynamic job support, suspend/resume, gang scheduling,
and scheduler initiated checkpoint/restart.

13.1.1.2 Resource Manager Flow

Early versions of Maui (i.e., Maui 3.0.x) interacted with resource managersin a
very basic manner stepping through a serial sequence of steps each scheduling
iteration. These steps are outlined below:

1. load global resource information
load node specific information (optional)
load job information
load queue information (optional)
cancel jobs which violate policies
start jobs in accordance with available resources and policy constraints
handle user commands
. repeat
Each step would complete before the next step started. As systems continued
to grow in size and complexity however, it became apparent that the serial model
described above would not work. Three primary motivations drove the effort to

replace the serial model with a concurrent threaded approach. These motivations
were reliability, concurrency, and responsiveness.

Reliability

© N O~ WD

A number of the resource managers Maui interfaces to were unreliable to some
extent. Thisresulted in calls to resource management API's with exited or
crashed taking the entire scheduler with them. Use of athreaded approach would
cause only the calling thread to fail allowing the master scheduling thread to
recover. Additionally, a number of resource manager calls would hang
indefinitely, locking up the scheduler. These hangs could likewise be detected by
the master scheduling thread and handled appropriately in a threaded

environment.
Concurrency

As resource managers grew in size, the duration of each API global query call
grew proportionally. Particularly, queries which required contact with each node
individually became excessive as systems grew into the thousands of nodes. A
threaded interface allowed the scheduler to concurrently issue multiple node
queries resulting in much quicker aggregate RM query times.

Responsiveness

Finally, in the non-threaded serial approach, the user interface was blocked
while the scheduler updated various aspects of its workload, resource, and queue
state. In athreaded model, the scheduler could continue to respond to queries and
other commands even while fresh resource manager state information was being
loaded resulting in much shorter average response times for user commands.

Under the threaded interface, all resource manager information is loaded and
processed while the user interface is still active. Average aggregate resource
manager APl query times are tracked and new RM updates are launched so that
the RM query will complete before the next scheduling iteration should start.
Where needed, the loading process uses a pool of worker threads to issue large
numbers of node specific information queries concurrently to accelerate this
process. The master thread continues to respond to user commands until all
needed resource manager information is loaded and either a scheduling relevant
event has occurred or the scheduling iteration time has arrived. At this point, the
updated information is integrated into Maui's state information and scheduling is
performed.

13.1.2 Resource Manager Specific Details (Limitations/Special
Features)

(Under Construction)

LL/LL2
PBS
Wiki

Synchronizing Conflicting Information
Maui does not trust resource manager. All node and job information is reloaded
on each iteration. Discrepancies are logged and handled where possible.

NodeSyncDeadline/JobSyncDeadline overview.
Purging Stale Information
Thread
See Also:

Resource Manager Configuration, Resource Manager Extensions

13.2 Resource Manager Configuration

13.2.1 Configurable Resource Manager Attributes

The scheduler's resource manager interface(s) are defined using the RMCFG parameter. This parameter allows specification of key
aspects of the interface as shown in the table below.

Attribute

Format

Default

IDescription

Example

AUTHTYPE

one of CHECK SUM, PKI, or
SECUREPORT

CHECKSUM

specifiesthe
security protocol
tobeused in
scheduler-resource
manager
communication.
NOTE: Only
valid with WIKI
based interfaces.

RMCF{ base] AUTHTYPE=CHECKSUM

(The scheduler will require a secret key based
checksum associated with each resource manager

message)

CONFIGFILE

<STRING>

N/A

specifiesthe
resource manager
specific
configuration file
which must be
used to enable
correct API
communication.
NOTE: Only
validwith LL
based interfaces.

RMCFE base] TYPE=LL
CONFI GFI LE=/ hon®e/ | oadl /| oadl _confi g

(The scheduler will utilize the specified file when
establishing the resource manager/scheduler
interface connection)

EPORT

<INTEGER>

N/A

specifies the event
port to use to
receive resource
manager based
scheduling events.

RMCFJ base] EPORT=15017

(The scheduler will look for scheduling events from
the resource manager host at port 15017)

MINETIME

<INTEGER>

specifiesthe
minimum timein
seconds between
processing
subsequent
scheduling events.

RVCFQ base] M NETI ME=5

(The scheduler will batch-process scheduling events
which occur less than 5 seconds apart.)

NMPORT

<INTEGER>

(any valid port
number)

specifiesa
non-default RM
node manager
through which
extended node
attribute
information may
be obtained

RMCF{J base]

(The scheduler will contact the node manager
located on each compute node at port 13001)

NVPORT=13001

PORT

<INTEGER>

specifies the port
on which the
scheduler should
contact the
associated
resource
manager. The
value'0' specifies
that the resource
manager default
port should be
used.

RMCFJ base] TYPE=PBS HOST=cws
PORT=20001

(The scheduler will attempt to contact the PBS
server daemon on host cws, port 20001)

SERVER

<URL>

N/A

specifies the
resource
management
serviceto use. If
not specified, the
scheduler will
locate the resource
manager via
built-in defaults
or, if available,
with an
information
service. NOTE:
only availablein
Maui 3.2.7 and
higher.

RMCF{J base]
server=l1://supercluster.org: 9705

(The scheduler will attempt to utilize the
Loadleveler scheduling APl at the specified
location.)

SUBMITCMD

<STRING>

N/A

specifies the full
pathname to the
resource manager
job submission
client.

RMCF{J base]
SUBM TCVD=/ usr /| ocal / bi n/ qsub

(The scheduler will use the specified submit
command when launching jobs.)

TIMEOUT

<INTEGER>

15

time (in seconds)
the scheduler will
wait for a
response from the
resource manager.

RMCFJ base] TI MEQUT=30

(The scheduler will wait 30 seconds to receive a
response from the resource manager before timing
out and giving up. The scheduler will try again on
the next iteration.)

TYPE

<RMTY PE>[:<RMSUBTY PE>]
where <RMTY PE> is one of the
following: LL, L SF, PBS,
RMS, SGE, SSS, or WIKI and
the optional <RMSUBTY PE>
valueisoneof RMS

PBS

specifies type of
resource manager
to be contacted by
the scheduler.
NOTE: for TYPE
WIKI,
AUTHTYPE
must be set to
CHECKSUM
The
<RMSUBTY PE>
option is currently
only used to
support Compag's
RMS resource
manager in
conjunction with
PBS. Inthiscase,
the value
PBS: RVS should
be specified.
NOTE:
deprecated in
Maui 3.2.7 and
higher - use
server attribute.

RMCF{J cl ust er A] TYPE=PBS
HOST=cl| ust er A PORT=15003
RMCF(J cl ust er B] TYPE=PBS
HOST=cl| ust er B PORT=15005

(The scheduler will interface to two different PBS
resource managers, one located on server clusterA
at port 15003 and one located on server clusterB at
port 15004)

13.2.2.2 Resource Manager Configuration Details

Aswith al scheduler parameters, RM CFG follows the syntax described within the Parameters Overview.

Resource Manager Types

The parameter RMCFG allows the scheduler to interface to multiple types of resource managers using the TY PE or SERVER
atributes. Specifying these attributes, any of the resource managers listed below may be supported. To further assist in configuration,

Integration Guides are provided for PBS, SGE, and Loadleveler systems.

TY PE [Resour ce M anager s Details

LL |Loadleveler version 2.x and 3.x IN/A

LSF |Patform's Load Sharing Facility, version 5.1 and higher]N/A

PBS |OpenPBS (al versions), TORQUE (al versions), PBSPro (all versions) N/A

RMS |RMS (for Quadrics based systems) for development use only - not production quality
SGE |Sun Grid Engine version 5.3 and higher N/A

SSS [Scalable Systems Software Project version 0.5 and 2.0 and higher N/A

WIKI |Wiki interface specification version 1.0 and higher used for LRM, YRM, ClubMASK, BProc, and others

Resource Manager Name

Maui can support more than one resource manager simultaneously. Consequently, the RM CFG parameter takes an index value, i.e.,
RMCF{J cl ust er A] TYPE=PBS. Thisindex value essentially names the resource manager (as done by the deprecated parameter
RMNAME. The resource manager name is used by the scheduler in diagnostic displays, logging, and in reporting resource consumption to
the allocation manager. For most environments, the selection of the resource manager name can be arbitrary.

Resource Manager Location

The HOST, PORT, and SERVER attributes can be used to specify how the resource manager should be contacted. For many resource
managers (i.e., OpenPBS, PBSPro, Loadleveler, SGE, L SF, etc) the interface correctly establishes contact using default values. These
parameters need only to be specified for resource managers such as the WIKI interface (which do not include defaults) or with resources
managers which can be configured to run at non-standard locations (such as PBS). In all other cases, the resource manager is automatically
located.

Other Attribute

The maximum amount of time Maui will wait on a resource manager call can be controlled by the TIMEOUT parameter which defaults
to 30 seconds. Only rarely will this parameter need to be changed. The AUTHTY PE attribute allows specification of how security over
the scheduler/resource manager interface isto be handled. Currently, only the WIKI interface is affected by this parameter.

Another RM CFG attribute is CONFIGFI L E, which specifies the location of the resource manager's primary config file and is used
when detailed resource manager information not available via the scheduling interfaceis required. It is currently only used with the
Loadleveler interface and needs to only be specified when using Maui grid-scheduling capabilities.

Finally, the NMPORT attribute allows specification of the resource manager's node manager port and is only required when this port has
been set to a non-default value. It is currently only used within PBSto allow MOM specific information to be gathered and utilized by
Maui.

13.1.2 Scheduler/Resource Manager | nteractions

In the simplest configuration, Maui interacts with the resource manager using the four primary functions listed below:
GETJOBINFO

Collect detailed state and requirement information about idle, running, and recently completed jobs.
GETNODEINFO

Collect detailed state information about idle, busy, and defined nodes.
STARTJOB

Immediately start a specific job on a particular set of nodes.
CANCELJOB

Immediately cancel a specific job regardiess of job state.

Using these four simple commands, Maui enables nearly its entire suite of scheduling functions. More detailed information about
resource manager specific requirements and semantics for each of these commands can be found in the specific resource manager
overviews. (LL, PBS, or WIKI).

In addition to these base commands, other commands are required to support advanced features such a dynamic job support,

suspend/resume, gang scheduling, and scheduler initiated checkpoint restart. More information about these commands will be forthcoming.

Information on creation a new scheduler resource manager interface can be found in the Adding New Resource Manager Interfaces
section.

13.4 Adding New Resource Manager Interfaces

Maui interfaces with numerous resource management systems. Some of these interact
through a resource manager specific interface (i.e., OpenPBS/PBSPro, Loadleveler, SGE)
while others interact through generalized interfaces such as SSS or Wiki. (see the Wiki
Overview). For most resource managers, either route is possible depending on whereit is
easiest to focus development effort. Use of Wiki generally requires modifications on the
resource manager side while creation of a new resource manager specific Maui interface would
require more changes to Maui modules. If ascheduling API already exists within the resource
manager, creation of aresource manager specific scheduler interface is often selected.

Regardless of the interface approach selected, adding support for a new resource manager is
typically a straight forward process for about 95% of all supported features. The final 5% of
features usually requires abit more effort as each resource manager has a number of distinct
concepts which must be addressed.

o 13.4.1 Resource Manager Specific Interfaces
e 13.4.2 Wiki Interface
e 13.4.3 SSS Interface

13.4.1 Resource Manager Specific Interfaces

If the resource manger specific interface is desired, then typically a scheduling AP
library/header file combo isrequired. (i.e., for PBS, libpbs.a+ pbs ifl.h, etc.) Thisresource
manager provided APl provides calls which can be linked into Maui to obtain the raw resource
manager data including both jobs and compute nodes. Additionally, this APl should provide
policy information about the resource manager configuration if it is desired that such policies
be specified viathe resource manager rather than the scheduler and that Maui know of and
respect these policies. The new 'M<X>|.c' module would be responsible for loading
information from the resource manager, trandating this information, and then populating the
appropriate scheduler data structures. The existingMLLI.c, MPBSI.c and MWikil.c modules
provide templates indicating how to do this.

Thefirst step in this process is defining the new resource manager type. Thisis
accomplished by modifying moab.h and M Const.c files to define the new RMTY PE
parameter value. With this defined, the MRMI.c module must be modified to call the
appropriate resource manager specific calls which will eventually be created within the
'M<X>l.c' module. This processis straightforward and involves extending existing resource
manager specific case statements within the general resource manager calls.

The vast mgority of the development effort is entailed in creating the resource manager
specific data collection and job management calls. These calls populate Maui data structures,

and are responsible for passing Maui scheduling commands on to the resource manager. The
base commands are GetJobs, GetNodes, StartJob, and Cancel Job but if the resource manager
support is available, extended functionality can be enabled by creating commands to
suspend/resume jobs, checkpoint/restart jobs, and/or alow support of dynamic jobs.

If the resource manager provides aform of event driven scheduling interface, thiswill also
need to be enabled. The MPBSI.c module provides atemplate for enabling such an interface
within the MPB SProcessEvent() call.

13.4.2 Wiki Interface

The Wiki interface is agood aternative if the resource manager does not already support
some form of existing scheduling API. For the most part, use of this API requires the same
amount of effort as creating a resource manager specific interface but development effort
focused within the resource manager. Since Wiki is already defined as a resource manager
type, no modifications are required within Maui. Additionally, no resource manager specific
library or header fileisrequired. However, within the resource manager, internal job and node
objects and attributes must be manipulated and placed within Wiki based interface concepts as
defined in the Wiki Overview. Additionally, resource manager parameters must be created to

allow asite to configure this interface appropriately.

13.4.3 SSS Interface

The SSSinterface isanew XML based generalized resource manager interface. It provides
an extensible, scalable, and secure method of querying and modifying general workload and
resource information.

WikKi Interface Overview

o Wiki Interface
o Socket Level Interface
o Configuring Wiki

http://www.clusterresources.com/products/maui/docs/docsout/wiki/wikiinterface.shtml
http://www.clusterresources.com/products/maui/docs/docsout/wiki/wikiconfig.shtml

Wiki Interface Specification, version 1.1

COMMANDS:

All commands are requested via a socket interface, one command per socket connection. All fields and values are specified in ASCI| text. Maui is
configured to communicate via the wiki interface by specifying the following parameters in the maui.cfg file:

RMTYPE[X] WIKI
RMSERVER[X] <HOSTNAME>
RMPORT[X] = <PORTNUMBER>

Field values must backslash escape the following charactersif specified:
w o (e W)
Supported Commands are:
GETNODES, GETJOBS, STARTJOB, CANCELJOB, SUSPENDJOB, RESUMEJOB, JOBADDTASK, JOBRELEASETASK

GetNodes
send
CMD=GETNODES ARG={<UPDATETIME>:<NODEID>[:<NODEID>]... | <UPDATETIME>:ALL}

Only nodes updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is specified as the epoch time of interest. Setting
<UPDATETIME> to '0" will return information for &l nodes. Specify acolon delimited list of NODEID's if specific nodes are desired or use the keyword
"ALL" to receive information for all nodes.

receive

SC=<STATUSCODE>
ARG=<NODECOUNT>#<NODEID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...[#<NODEID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...] ...

or
SC=<STATUSCODE> RESPONSE=<RESPONSE>
STATUSCODE Values:

0 SUCCESS
-1 INTERNAL ERROR

FIELD is either the text name listed below or 'A<FIELDNUM>' (ie, 'UPDATETIME' or 'A2')
RESPONSE s a statuscode sensitive message describing error or state details
EXAMPLE:

send 'CMD=GETNODES ARG=0:node001:node002:node003'

receive 'SC=0 ARG=4#n0de001:UPDATETIME=963004212; STATE=Busy;0S=A1X43;ARCH=RS6000..."

Field Values
INDEX [NAME FORMAT DEFAULT [DESCRIPTION
" time node information
1 UPDATETIME* |[<EPOCHTIME> 0 was last updated
one of the following: Idle,
2 STATE* Running, Busy, Down state of the node
Unknown,Draining, or Down
3 0s <STRING> [NONE] |oPeraing system
running on node
compute architecture
4 ARCH <STRING> [NONE] | e
configured RAM on
5 CMEMORY <INTEGER> 0 node (in MB)
available/free RAM on
6 AMEMORY <INTEGER> 0 node (in MB)
configured swap on
7 CSWAP <INTEGER> 0 node (in MB)

available swap on

8 ASWAP <INTEGER> 0 node (in MB)
configured local disk
9 CDISK <INTEGER> 0 on node (in MB)
available local disk on
10 ADISK <INTEGER> 0 node (in MB)
configured processors
11 CPROC <INTEGER> 1 on node
available processors
12 APROC <INTEGER> 1 on node
one or more colon delimited .
13 |CNET <STRING>'s (i€, [NONE] |configured network
ETHER:FDDI:ATM)
Available network
one or more colon delimited ibr\]\tgflfbli ?Q;?gfé
14 ANET <STRING>'s (ie, [NONE] h hich
ETHER:ATM) are those which are
'up' and not already
dedicated to ajob.
15 |CPULOAD <DOUBLE> 00 one minute BSD load
average
Run classes supported
by node. Typicaly,
one classis 'consumed'
one or more bracket enclosed per task. Thus, an 8
16 CCLASS <NAME>:<COUNT> pairs |[NONE] |processor hode may
(ie, [batch:5][sge:3]) have 8 instances of
each classit supports
present, ie
[batch:8][interactive:8]
run classes currently
one or more bracket enclosed ﬁ\c/)?llaiief?gdnode. If
17 ACLASS <NAME>:<COUNT> pairs [[NONE] h:(? | 'IlI
(ie, [batch:5][sge:3]) scheduler will attempt
’ to determine actual
ACLASS vaue.
generic attributes,
one or more colon delimited often describing
18 FEATURE <STRING>'s (ie, [NONE] |hardware or software
WIDE:HSM) features, associated
with the node.
19 |[PARTITION |<STRING> DEFAUL T |[Patitionto which
node belongs
Event or exception
20 EVENT <STRING> [NONE] |which occurred on the
node
Number of tasks
21 CURRENTTASK [<INTEGER> 0 currently active on the
node
Maximum number of
22 MAXTASK <INTEGER> <CPROC> |tasks allowed on the
node at any given time
Relative processor
23 SPEED <DOUBLE> 1.0 speed of the node
o4 FRAME <INTEGER> 0 Frame location of the
node
25 |sLoT <INTEGER> 0 Slot location of the
node
one or more colon delimited fg&:ﬁg g;ﬁéﬂggl €
2% |CRES <NAME><VALUE>pairs - |\\oNE] |and tracked on the

(ie,
MATLAB,6:COMPILER,100)

node, ie software

licenses or tape drives.

one or more colon delimited
<NAME><VALUE> pairs
(ie,
MATLAB,6:COMPILER,100)

Arbitrary consumable
[NONE] |resources currently
available on the node

27 ARES

* indicates required field
NOTE 1: node states have the following definitions:

Idle: Node is ready to run jobs but currently is not running any.
Running: Node is running some jobs and will accept additional jobs
Busy: Node is running some jobs and will not accept additional jobs

Unknown: Nodeis capable of running jobs but the scheduler will need to determine if the node state is actually Idle, Running, or Busy.
Draining: Node isresponding but will not accept new jobs
Down: Resource Manager problems have been detected. Node is incapable of running jobs.

GetJobs
send
CMD=GETJOBS ARG={<UPDATETIME>:<JOBID>[:<JOBID>]... | <UPDATETIME>:ALL }

Only jobs updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is specified as the epoch time of interest. Setting
<UPDATETIME> to '0" will return information for all jobs. Specify acolon delimited list of JOBID'sif information for specific jobsis desired or use the
keyword 'ALL" to receive information about all jobs

receive

SC=<STATUSCODE>
ARG=<JOBCOUNT>#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>}]...[#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>}]..]...

or

SC=<STATUSCODE> RESPONSE=<RESPONSE>

FIELD iseither the text name listed below or 'A<FIELDNUM>'
(ie,'UPDATETIME or 'A2)

STATUSCODE values:

0 SUCCESS
-1 INTERNAL ERROR

RESPONSE s a statuscode sensitive message describing error or state details
EXAMPLE:
send 'CMD=GETJOBS ARG=0:LL'
receive 'ARG=2#nebo3001.0:UPDATETIME=9780000320; STATE=Idle;WCLIMIT=3600;...

Table of Job Field Values
INDEX [NAME FORMAT DEFAULT DESCRIPTION
1 UPDATETIME* <EPOCHTIME> 0 Time job was last updated
one of Idle, Running,
2 STATE* Hold, Suspended, Idle State of job
Completed, or Cancelled
3 WCLIMIT* <INTEGER> 864000 ﬁ;cjggds of wall time required
4 TASKS* <INTEGER> 1 J.':')Ember of tasks required by
5 NODES <INTEGER> 1 j'\c')‘t")mber of nodes required by
String describing task
6 GEOMETRY <STRING> [NONE] geomery required by job
7 QUEUETIME* <EPOCHTIME> 0 time job was submitted to
resource manager
8 STARTDATE <EPOCHTIME> 0 earliest time job should be
allowed to start
9 STARTTIME* <EPOCHTIME> 0 timejob was started by the
resource manager
10 COMPLETIONTIME* |<EPOCHTIME> 0 time job completed execution

UserID under which job will

11 |UNAME* <STRING> [NONE] un
12 |GNAME* <STRING> [NONE] vairl?Li?JInD under which job
13 ACCOUNT <STRING> [NONE] J{A(;ct;countl D associated with
colon delimited list List of features required on
14 |RFEATURES <STRING>'s [NONE] nodes
15 |RNETWORK <STRING> [NONE] J.”Oett)work adapter required by
network adapter which must
16 DNETWORK <STRING> [NONE] be dedicated to job
list of
<CLASSNAME>:<COUNT>
list of bracket enclosed pairs indicating type and
17 RCLASS <STRING>:<INTEGER> |[NONE] number of classinstances
pairs required per task. (ie,
"[batch:1]" or
"[batch:2][tape:1]")
18 |[ROPSYS <STRING> [NONE] J.O(ftfr ating system reqired by
19 RARCH <STRING> [NONE] architecture required by job
real memory (RAM, in MB)
20 RMEM <INTEGER> 0 required to be configured on
nodes allocated to the job
ot it 1t 1t real memory comparison (ie,
21 [RMEMCMP o of >=,">!, ==, <, or |, node must have >= 512MB
- RAM)
quantity of real memory
(RAM, in MB) which must
22 |PMEM <INTEGER> 0 be dedicated to each task of
the job
local disk space (in MB)
23 RDISK <INTEGER> 0 required to be configured on
nodes allocated to the job
et Tt Tt 1 local disk comparison (ie,
24 |RDISKCMP o of >=,">,'==, <, or | node must have > 2048 MB
- local disk)
quantity of local disk space
(in MB) which must be
25 DDISK <INTEGER> 0 dedicated to each task of the
job
virtual memory (swap, in
MB) required to be
26 RSWAP <INTEGER> 0 configured on nodes allocated
tothe job
ot il 1t 1t virtual memory comparison
27 |RSWAPCMP o of >=', > ==, < or | _ (ie, node must have ==4096
- MB virtua memory)
quantity of virtual memory
28 |DSWAP <INTEGER> 0 %?3&1& ':ﬂ)wht'gg(”gﬁlge
job
one or more colon list of partitionsin which job
29 PARTITIONMASK delimited <STRING>s [ANY] can run
30 EXEC <STRING> [NONE] job executable command
31 IWD <STRING> [NONE] job'sinitial working directory
general job attributes not
32 COMMENT <STRING> 0 described by other field
33 |[REJCOUNT <INTEGER> 0 :‘ggﬁ; of times job was
text description of reason job
34 REIMESSAGE <STRING> [NONE] was rejected
35 REJCODE <INTEGER> 0 reason job was rejected

event or exception
experienced by job
nodeid associated with each
37 |[TASKLIST gg?r%gtgofs‘%m Gss |[NONE] active task of job (ie, clOL,
cl02, cl01, cl02, cl03)

exact number of tasks

36 EVENT <EVENT> [NONE]

38 TASKPERNODE <INTEGER> 0 A
required per node
39 QOs <INTEGER> 0 quality of service requested
time by which job must
40 ENDDATE <EPOCHTIME> [ANY] complete
location of server which will
41 |CBSERVER <STRING>[:<INTEGER> |[NONE] handle callback requests in

<HOSTNAME>:<PORT>
format

one or more of the
following delimited by list of callback types

42 CBTYPE START:CANCEL

colons: CANCEL and requested by job
START
number of processors
43 DPROCS <INTEGER> 1 dedicated per task
44 |SUSPENDTIME <INTEGER> 0 Number of seconds job has
been suspended
45 |RESERVATION <STRING> [NONE] Name of reservation in which
job must run

* indicates required field
NOTE 1: job states have the following definitions:

Idle: job isready to run
Running: jobiscurrently executing
Hold: jobisin the queue but is not allowed to run

Suspended: job has started but execution has temporarily been suspended
Completed: job has completed
Cancelled: job has been cancelled

NOTE2: completed and cancelled jobs should be maintained by the resource manager for a brief time, perhaps 1 to 5 minutes, before being purged. This
provides the scheduler time to obtain all final job state information for scheduler statistics.

StartJob
The 'StartJob’ command may only be applied to jobsin the'ldI€ state. It causes the job to begin running using the resources listed in the Nodel D list.
send CMD=STARTJOB ARG=<JOBID> TASKLIST=<NODEID>[:<NODEID>]...
receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0indicates FAILURE
RESPONSE isatext message possibly further describing an error or state

EXAMPLE:
Start job nebo.1 on nodes cluster001 and cluster002
send 'CMD=STARTJOB ARG=nebo.1 TASKLIST=cluster001:cluster002'
receive 'SC=0;RESPONSE=job nebo.1 started with 2 tasks'

CancelJob

The 'CancelJob’ command, if applied to an active job, with terminate its execution. If applied to an idle or active job, the Cancel Job command will change
the job's state to 'Cancelled'.

send CMD=CANCELJOB ARG=<JOBID> TYPE=<CANCELTY PE>
<CANCELTY PE> is one of the following:

ADMIN (command initiated by scheduler administrator)
WALLCLOCK (command initiated by scheduler because job exceeded its specified wallclock limit)

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>
STATUSCODE >= 0 indicates SUCCESS

STATUSCODE < 0indicates FAILURE
RESPONSE isatext message further describing an error or state

EXAMPLE:
Cancel job nebo.2
send 'CMD=CANCELJOB ARG=nebo.2 TY PEEADMIN'
receive 'SC=0 RESPONSE=job nebo.2 cancelled'

SuspendJob

The 'SuspendJob’ command can only be issued against ajob in the state 'Running’. This command suspends job execution and results in the job changing
to the 'Suspended' state.

send CMD=SUSPENDJOB ARG=<JOBID>
receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0indicates FAILURE
RESPONSE isatext message possibly further describing an error or state

EXAMPLE:
Resume job nebo.3
send 'CMD=RESUMEJOB ARG=nebo.3'
receive 'SC=0 RESPONSE=job nebo.3 resumed'

Resumelob

The 'ResumeJdob’ command can only be issued against ajob in the state 'Suspended'. This command resumes a suspended job returning it to the '‘Running'
state.

send CMD=RESUMEJOB ARG=<JOBID>
receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0indicates FAILURE
RESPONSE isatext message further describing an error or state

EXAMPLE:
Resume job nebo.3
send 'CMD=RESUMEJOB ARG=nebo.3'
receive 'SC=0 RESPONSE=job nebo.3 resumed'

JobAddTask
The 'JobAddTask' command allocates additional tasks to an active job.
send
CMD=JOBADDTASK ARG=<JOBID> <NODEID> [<NODEID>]...
receive
SC=<STATUSCODE> RESPONSE=<RESPONSE>
STATUSCODE >= 0 indicates SUCCESS

STATUSCODE < 0indicates FAILURE
RESPONSE isatext message possibly further describing an error or state

EXAMPLE:
Add 3 default tasks to job nebo30023.0 using resources located on nodes cluster002, cluster016, and cluster112.
send 'CMD=JOBADDTASK ARG=neb030023.0 DEFAULT cluster002 cluster016 cluster112'
receive 'SC=0 RESPONSE=3 tasks added'

JobReleaseT ask
The 'JobReleaseTask' command removes tasks from an active job.
send
CMD=JOBREMOVETASK ARG=<JOBID> <TASKID> [<TASKID>]...
receive
SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0indicates FAILURE
RESPONSE isatext message further describing an error or state

EXAMPLE:
Free resources allocated to tasks 14, 15, and 16 of job nebo30023.0
send 'CMD=JOBREMOVETASK ARG=neb030023.0 14 15 16'
receive 'SC=0 RESPONSE=3 tasks removed'

Maui-PBS Integration Guide

Overview

Maui can be used as an external scheduler for the PBS resource management system. In this

configuration, PBS manages the job queue and the compute resources while Maui queries the
PBS Server and the PBS MOM 's to obtain up to date job and node information. Using this
information, Maui directs PBS to manage jobs in accordance with specified Maui policies,
priorities, and reservations.

Steps

Maui drives PBS viathe PBS scheduling API. To enable Maui scheduling, the following
steps must be taken:

1 Install PBS

- keep track of the PBS target directory, $PBSTARGDIR

2 Install Maui

- untar Maui distribution file.

- cd into the maui-<X> directory

- run ./configure

- specify the PBS target directory when queried by configure (Maui requires afew PBS
libraries and include files to enable the PBS scheduling interface)

@ If you have a non-standard PBS installation, Y ou may need to modify src/M akefile and
change PBSIP and PBSL P values and references as necessary for your local site
configuration.

@ The configur e script will automatically setup Maui so that the user running configure will
become the default Primary Maui Administrator, SMAUIADMIN. This can be changed by
modifying the'ADMIN <USERNAME>' line in the maui.cfg file. The primary administrator
isthefirst user listed after the ADM N1 parameter and isthe ID under which the Maui

daemon will run.

@ Some Tru64 and IRIX systems have alocal libnet library which conflicts with PBS's

http://www.clusterresources.com/pbsack.shtml

libnet library. To resolvethis, try setting PBSLIB to '${ PBSLIBDIR}/libnet.a-Ipbs in the
Maui Makefile.

@ Maui is 64 bit compatible. If PBSiscompiled in 64 bit mode, Maui will likewise need to
be compiled in this manner in order to utilize the PBS scheduling API. (i.e., for IRIX
compilers, add '-64' to OSCCFLAGS and OSLDFL AGS variablesin the Makefile)

3 Configure PBS

- make SMAUIADMIN aPBS admin. Maui communicates with both pbs_server and
pbs mom daemons. The SMAUIADMIN should be authorized to talk to both PBS daemons.

(suggestions)

@ For security purposes, sites may want to run Maui under a non-root user id, the
mom_priv/config files must be world-readable and contain the line '$restricted
* <YOURDOMAIN>'. (i.e,,'$restricted *.uconn. edu’)

- set default PBS queue nodecount and walltime attributes. (suggestions)

- (OPTIONAL) set PBS default queue (ie, in gmgr 'set system default_queue =
<QUEUENAME>)

3 PBS nodes can be configured as time shared or space shared according to local needs.

3 Maui utilizes PBS's scheduling port to obtain real-time event information from PBS
regarding job and node transitions. Leaving the default gmgr setting of 'set ser ver
schedul i ng=Tr ue' will allow Maui to receive and process this real-time information.

@ Do not start the TORQUE's pbs_sched daemon. Thisis the default scheduler for
TORQUE and Maui/Moabwill provide this service.

@ Maui's user interface port set using the parameter SCHEDCFG or SERVERPORT is
used for user-scheduler communication. This port must be different from the PBS scheduler
port used for resource manager-scheduler communication.

@ PBS supports the concept of virtual nodes. Using thisfeature, Maui can individually
schedule processors on SMP nodes. The PBS Administrator's Guide explains how to set up
the '$PBS HOME/server_priv/nodes file to enable this capability. (i.e., <NODENAME>

http://www.clusterresources.com/products/maui/docs/docsout/pbsaccess.shtml
http://www.clusterresources.com/products/maui/docs/docsout/pbsdefault.shtml

np=<VIRTUAL NODE COUNT>)

4 Configure Maui

- specify PBS as the resource manager:

This should be taken care of by ‘configur €, but if not, the following parameter must be
specified in the maui.cfg file:

RVCFQ base] TYPE=PBS

If anon-standard PBS configuration is being used, additional Maui parameters may be
required to point Maui to the right location:

RMCFJ base] HOST=$PBSSERVERHOST PORT=$PBSSERVERPORT

(See the Resource Manager Overview for more information)

Current Issues

- PBSfeaturesnot supported by Maui:
Maui 3.0 and earlier only supports the following node specifications:

nodes=+<HostList>[:ppn=<X>][+<HostList>[:PPN=<X>]]...
nodes=<NodeCount>[:PPN=<X>][:<FEATURE>][:<FEATURE>]...

Maui 3.2 supports basic scheduling of all PBS node specifications but will provide only
limited optimization services for these jobs.

@ Maui is by default very liberal initsinterpretation of <NODECOUNT>:PPN=<X>. Inits
standard configuration, Maui interprets this as 'give the job <NODECOUNT>* <X > tasks with
AT LEAST <X> tasks per node. Set the JOBNODEMATCHPOLICY parameter to

EXACTNODE to have Maui support PBS's default allocation behavior of <NODECOUNT>
nodes with exactly <X> tasks per node.

- Maui featuresnot supported by PBS:

PBS does not support the concept of ajob QOS or other extended scheduling features by
default. This can be fixed using the techniques described here. See the RM Extensions

Overview for more information.

- Earlier versions of PBS do not maintain job completion information. Thus, an
external scheduler cannot determine if the job completed successfully or if internal PBS

problems occurred preventing the job from being properly updated. This problem will not in
any way affect proper scheduling of jobs but may, potentially, affect scheduler statistics. |If
your site is prone to frequent PBS hangs, you may want to set the Maui PURGETIME
parameter to allow Maui to hold job information in memory for a period of time until PBS
recovers.

Trouble-shooting

Common Problems:
PBS versions prior to 2.4 hang when MOM's have troubles.

On TRU64 systems, the PBS 'libpbs' library does not properly export a number of symbols
required by Maui. This can be worked around by modifying the Maui Makefile to link the PBS
'rm.o’ object file directly into Maui.

See also:

Maui Administrators Guide
Maui Users Guide

http://www.clusterresources.com/products/maui/docs/docsout/mauiusers.shtml

Maui-SGE Integration Guide

Overview:

Maui can be used as an external scheduler for the Sun Grid Engine (SGE) resource
management system (requires SGE v5.3 source distribution). In this configuration, SGE
manages the job queue and the compute resources while Maui queries the SGE Server to
obtain up to date job, node, and configuration information. Using thisinformation, Maui
directs SGE to manage jobs in accordance with specified Maui policies, priorities, and
reservations.

Steps:

Maui drives SGE viathe SGE scheduling API. To enable Maui scheduling, the following
steps must be taken:

1) Install SGE
SGE Installation HowTo

SGE Build README

2) Install Maui

- untar Maui distribution file.
- cd into the maui-<X> directory
- run ./configure

@ The configure script will automatically setup Maui so that the user running configure will
become the default Primary Maui Administrator, SMAUIADMIN. This can be changed by
modifying the'ADMIN <USERNAME>' line in the maui.cfg file. The primary administrator
isthefirst user listed after the ADMIN1 parameter and is the ID under which the Maui

daemon will run.

3) Configure SGE

« Set default PE (i.e.,gconf -ap default and add line '-pe default 1' to file
$SCGE_ROOT/ def aul t/ conmon/ sge_r equest , See SGE man page sge_pe.5 for
more information)

o Optiona - Set default walltime for jobs (add line'-I h_rt=<limit>'to file
$SGE _ROOT/ def aul t / conmon/ sge_r equest)

http://gridengine.sunsource.net/unbranded-source/browse/~checkout~/gridengine/doc/INSTALL
http://gridengine.sunsource.net/unbranded-source/browse/~checkout~/gridengine/source/README.BUILD

« disable default SGE scheduler (edit $SGE_ROOT/ def aul t / common/ r csge and
coment out the line starting sge_schedd.)

« If not the same user, add Maui's Primary Admin User as SGE operator (use ‘gconf -am
<user>')

@ All jobs submitted to Maui must be assigned a PE. Jobs without an assigned PE will have
a batch hold placed upon them.

4) Configure Maui
- specify SGE as the resource manager:

This should be taken care of by ‘configur €, but if not, the following parameter must be
specified in the maui.cfg file:

RMCFJ base] TYPE=SGE

If you have a non-standard SGE configuration, you may need to specify additional
Maui parameters to point Maui to the right location:

RVMCFQ base] HOST=$SGESERVERHOST
RVCFQ base] PORT=$SGESERVERPORT

(See the Resource Manager Overview for more information)

5) Start Daemons
1. start SGE
0 issue command '$SGE_ROOT /default/common/r csge' as user root
2. start Maui
0 source $SGE_ROOT/ def aul t/ common/ set ti ngs. sh
o issue command 'maui’ as Primary Maui Admin user

Current Issues:

<N/A>

Trouble-shooting:
<N/A>

See also:

Maui Administrators Guide
Maui Users Guide

http://www.clusterresources.com/products/maui/docs/docsout/mauiusers.shtml

Maui-Loadleveler Integration Guide

Overview:

Maui can be used as an external scheduler for Loadleveler. In this configuration,
L oadleveler manages the job queue and the compute resources while maui queriesthe
Loadleveler negotiator viathe Loadleveler data API to obtain up to date job and node
information. Using thisinformation, maui directs Loadleveler to manage jobs in accordance
with specified maui policies, priorities, and reservations.

Steps.

Maui drives LL viathe Loadleveler scheduling API. To enable this api and thus the external
scheduler, the following steps must be taken:

- set'SCHEDULER_API=yes inthe'LoadL_config' file typically located in the user
'loadl' home directory.

- setthe'NEGOTIATOR_REMOVE_COMPLETED' parameter (also located in the
'‘LoadL_config' file) to avalue of at least 5 minutes, ie
'NEGOTIATOR_REMOVE_COMPLETED=300'. (This allows maui to obtain job info from
LL required to maintain accurate job statistics)

- recycle negotiator using the command 'llctl recycle' on the central manager node.
| ssues:

The Loadleveler scheduling API is not event driven so Maui has no way of knowing when a
new job is submitted. Under these conditions, it will not evaluate a newly submitted job until
its next scheduling iteration, typically within 15 to 30 seconds. Thislag can be removed by
utilizing Loadleveler's'SUBMITFILTER'. The Maui command 'schedctl -r 2' can be added as
the last statement in thisfilter causing Maui to ‘wake-up' and attempt to schedule new jobs
immediately. The 'schedctl' command is a administrative command and so may need an suid
wrapper in order to allow use by non-privileged users. (see example).

NOTE: You canreturn to Loadleveler default scheduling at any time by setting
'SCHEDULER_API=n0' in the LoadL_config file and re-issuing the 'llctl recycle’ command.

Maui supports interactive job hostlists but these hostlists must currently be specified using
the network interface Loadleveler utilizes. For example, an SP node may have two names,
node001e and node001sw representing its ethernet and switch interfaces respectively.
Loadleveler is configured to communicate with the nodes on one of these interfaces. (This can

http://www.clusterresources.com/products/maui/docs/docsout/schedctlwrapper.shtml

be determined by issuing 'listatus and observing the name used to specify each node.)
Interactive job hostlists must be specified using the same interface that Loadleveler is
configured to use. Efforts are underway to extend Maui interface tracking to remedy this.

13.3.1 PBS RM Extensions

RM extensions within PBS are utilized by using the -W' flag. To enable thisflag, some
versions of PBS must be rebuilt. (NOTE: TORQUE and recent OSCAR distributions come

with the flag enabled by default. Most other versions do not.)
The required steps are documented bel ow.

> gterm -t quick #shutdown PBS server (cd to the directory from which you executed the
PBS 'configure' at install time) > make distclean > ./configure<WITH OPTIONS>

create addparam script
(chmod +x addparam)

> addparam x S

(NOTE: in Maui 3.2.x, only the 'x' parameter needs to be added.)
> make

(backup current $PBS HOMEDIR directory contents, NOTE: $PBS HOMEDIR defaultsto
/usr/spool/PBYS)

> make install
(restore old $PBS_HOMEDIR directory contents)
> pbs server #restart PBS server

A job's QOS level can then be specified using qsub's '-W' flag, i.e., gsub -W x=i1QOS:hi -
nodes=4 ...

(addparam script follows)

#/bin/sh

#script: addparam

#usage: addparam $Parameter [SL]

NewParameter=$1
Parameter Type=x$2

if [! -d src/include]; then
echo "error: "basename $0° src/include doesn't exist, run configure" 1>& 2
exit 1

fi

http://www.clusterresources.com/products/maui/torque

run makein thisdirectory to pull over the template files
cd src/include

if make

then

if grep -q "\"$NewParameter\"" site_*.h 2>/dev/null; then
echo "parameter $NewParameter previously added"
exit 0
fi
fi

chmod +w site job attr enum.h
echo "

JOB SITE ATR $1,
" >>dte job attr enum.h

chmod +w site job_attr_def.h

if [$ParameterType = "xS"]
then
echo"
{ \"$NewParameter\",
decode _str,
encode_str,
set_str,
comp_str,
free str,
NULL_FUNC,
READ WRITE,
ATR TYPE_STR,
PARENT_TYPE JOB
I3
" >>dte job attr def.h
else
echo™
{ \"$NewParameter\",
decode |,
encode |,
set |,
comp_|,
free null,
NULL_FUNC,
READ WRITE,

ATR _TYPE_LONG,
PARENT_TYPE_JOB
}s
" >>dte job_attr_def.h
fi

14.0 Trouble Shooting and System M aintenance

14.1 Internal Diagnostics

14.2 Logqging Facilities

14.3 Using the M essage Buffer

14.4 Handling Events with the Notification Routine

14.5 |Issueswith Client Commands

14.6 Tracking System Failures

14.7 Problemswith Individual Jobs

14.2 Logging Overview

The Maui Scheduler provides the ability to produce detailed logging of all of its activities.
The LOGFILE and/or LOGDIR parameters within the maui.cfg file specify the destination of
thislogging information. Logging information will be written in the file
<MAUIHOMEDIR>/<LOGDIR><LOGFILE> unless <LOGDIR> or <LOGFILE> is
specified using an absolute path. If thelog file is not specified or pointsto an invalid file, all
logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in production.
By default, LOGDIR and LOGFILE are set to 'log' and 'maui.log' respectively, resulting in
scheduler logs being written to <M AUIHOM EDI R>/log/maui.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to become
beforeitisrolled andisset to 10 MB by default. When the log file reaches this specified size,
thelog fileisrolled. The parameter LOGFILEROLLDEPTH will control the number of old
logs maintained and defaultsto 1. Rolled log files will have a numeric suffix appended
indicating their order.

The parameter LOGLEVEL controls the verbosity of the information. Currently,

LOGLEVEL values between 0 and 9 are used to control the amount of information logged,
with O being the most terse, logging only the most server problems detected, while 9 isthe
most verbose, commenting on just about everything. The amount of information provided at
each log level is approximately an order of magnitude greater than what is provided at the log
level immediately below it. A LOGLEVEL of 2 will record virtually al critical messages,
whilealog level of 4 will provide general information describing all actions taken by the
scheduler. If aproblem is detected, you may wish to increase the LOGLEVEL value to get
more details. However, doing so will cause the logs to roll faster and will also cause alot of
possibly unrelated information to clutter up the logs. Also be aware of the fact that high
LOGLEVEL valueswill result in large volumes of possibly unnecessary file I/O to occur on
the scheduling machine. Consequently, it is not recommended that high LOGLEVEL values be
used unless tracking a problem or similar circumstances warrant the I/O cost. NOTE: If high
log levels are desired for an extended period of time and your Maui home directory is located
on a network filesystem, performance may be improved by moving your log directory to a
local file system using the 'LOGDIR' parameter.

A final log related parameter isLOGFACILITY. This parameter can be used to focus

logging on a subset of scheduler activities. This parameter is specified asalist of one or more
scheduling facilities aslisted in the parameters documentation.

The logging that occursis of five major types, subroutine information, status information,
scheduler warnings, scheduler alerts, and scheduler errors. These are described in detail
below:

1.Subroutine Information. Each subroutine is logged, along with all printable parameters.
Major subroutines are logged at lower LOGLEVELs while all subroutines are logged at higher
LOGLEVELs. Example:

CheckPolicies(fr4n01.923.0,2,Reason)

2.Status Infor mation. Information about internal statusislogged at all LOGLEVELSs.
Critical internal statusisindicated at low LOGLEVELswhile less critical and voluminous
status information is logged at higher LOGLEVELSs. Example:

INFO: Job fr4n01.923.0 Rejected (Max User Jobs)
INFO: Job[25] 'fr4n01.923.0' Rejected (M axJobPerUser Policy Failure)

3.Scheduler War nings. Warnings are logged when the scheduler detects an unexpected
value or receives an unexpected result from a system call or subroutine. They are not
necessarily indicative of problems and are not catastrophic to the scheduler. Example:

WARNING: cannot open fairshare data file '/home/l oadl/maui/stats/FS.87000'

4.Scheduler Alerts. Alerts are logged when the scheduler detects events of an unexpected
nature which may indicate problemsin other systems or in objects. They are typically of a
more severe nature than are warnings and possibly should be brought to the attention of
scheduler administrators. Example:

ALERT: job 'fr5n02.202.0' cannot run. deferring job for 360 Seconds

5.Schedulers Errors. Errors are logged when the scheduler detects problems of a nature of
which it is not prepared to deal. It will try to back out and recover as best it can, but will not
necessarily succeed. Errors should definitely be be monitored by administrators. Example:

ERROR: cannot connect to Loadleveler API

On aregular basis, use the command grep -E "WARNING|ALERT|ERROR" maui.log to get
alisting of the problems the scheduler is detecting. On a production system working normally,
thislist should usually turn up empty. The messages are usually self-explanatory but if not,
viewing the log can give context to the message.

If aproblem is occurring early when starting the Maui Scheduler (before the configuration
fileisread) maui can be started up using the -L LOGLEVEL flag. If thisisthe first flag on the
command line, then the LOGLEVEL is set to the specified level immediately before any setup
processing is done and additional logging will be recorded.

If problems are detected in the use of one of the client commands, the client command can
be re-issued with the -L <LOGLEVEL> command line arg specified. Thisargument causes
debug information to be logged to STDERR as the client command is running. Again,
<LOGLEVEL> valuesfrom0Qto 9 are

supported.

In addition to the log file, the Maui Scheduler reports all eventsit determinesto be critical to
the UNIX syslog facility viathe 'daemon’ facility using priorities ranging from 'INFO' to
'ERROR'. Thislogging is not affected by LOGLEVEL. In addition to errors and critical
events, all user commands that affect the state of the jobs, nodes, or the scheduler are also
logged via syslog.

The logging information is extremely helpful in diagnosing problems, but it can also be
useful if you are ssmply trying to become familiar with the "flow" of the scheduler. The
scheduler can be run with alow LOGLEVEL value at first to show the highest level functions,
This shows high-level data and control flow. Increasing the LOGLEVEL increases the number
of functions displayed as familiarity with the scheduler flow grows.

The LOGLEVEL can be changed "on-the-fly" by use of the changeparam command, or by
modifying the maui.cfg file and sending the scheduler process a SIGHUP. Also, if the
scheduler appears to be "hung" or is not properly responding, the LOGLEVEL can be
incremented by one by sending a SIGUSRL1 signal to the scheduler process. Repeated
SIGUSRL1 signals will continue to increase the LOGLEVEL. The SIGUSR2 signal can be used
to decrement the LOGLEVEL by one.

If an unexpected problem does occur, save the log file asit is often very helpful inisolating
and correcting the problem.

14.3 Using the M essage Buffer

Under Construction

14.4 Handling Eventswith the Notification Routine

Maui possesses a primitive event management system through the use of the notify
program. The program is called each time an event of interest occurs. Currently, most events
are associated with failures of some sort but use of this facility need not be limited in thisway.
The NOTIFICATIONPROGRAM parameter allows a site to specify the name of the program
to run. This program is most often locally developed and designed to take action based on the
event which has occurred. The location of the notification program may be specified as a
relative or absolute path. If arelative path is specified, Maui will ook for the notification
relative to the (M AUIHOM EDI R)/tools directory. In al cases, Maui will verify the
existence of the notification program at start up and will disableit if it cannot be found or is
not executable.

The notification program's action may include steps such as reporting the event via email,
adjusting scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with commandline argumentsin asimple
<EVENTTYPE>: <MESSAGE> format. The following event types are currently enabled:

[Event Type |Format |Description

Maui cannot
successfully
communicate with the
bank due to reasons
such as connection
fallures, bank
corruption, or parsing
faillures
Anactivejobisinan
unexpected state or
has one or more
allocated nodes which
are in unexpected
states

A job hold has been
placed on ajob

A job has exceeded its
wallclock limit

BANKFAILURE <MESSAGE>

JOBCORRUPTION <MESSAGE>

JOBHOLD <MESSAGE>

JOBWCVIOLATION <MESSAGE>

RESERVATIONCORRUPTION

<MESSAGE>

Reservation corruption
has been detected

RESERVATIONCREATED

<RESNAME> <RESTY PE>
<NAME> <PRESENTTIME>
MSTARTTIME> <ENDTIME>
<NODECOUNT>

A new reservation has
been created

RESERVATIONDESTROYED

<RESNAME> <RESTY PE>
<PRESENTTIME>
<STARTTIME> <ENDTIME>
<NODECOUNT>

A reservation has been
destroyed

RMFAILURE

<MESSAGE>

The interface to the
resource manager has
failed

Perhaps the most valuable use of the notify program stems from the fact that additional
notifications can be easily inserted into Maui to handle site specific issues. To do this, locate
the proper block routine, specify the correct conditional statement, and add a call to the routine

notify(<M ESSAGE>);
See Also:
N/A

14.5 Issueswith Client Commands
Client Overview:

Maui clients are implemented as symbolic links to the executable maui_client. When a
maui client command is run, the client executable determines the name under which it isrun
and behaves accordingly. At the time Maui was configured, a home directory was specified.
The Maui client will attempt to open the config file maui.cfg in this home directory on the
node where the client command is executed. This means that the home directory specified at
configure time must be available on all hosts where the maui client commands will be
executed. This also means that a maui.cfg file must be available in this directory. When the
clients open thisfile, they will try to load the MAUISERVER and MAUIPORT parameters
to determine how to contact the Maui server.

NOTE: The home directory value specified at configure time can be overridden by creating
an /etc/maui.cfg file or by setting the ' MAUIHOM EDIR' environment variable.

Once the client has determined where the Maui server islocated, it creates a message, adds
an encrypted checksum, and sends the message to the server. Note that the Maui client and
Maui server must use the same secret checksum seed for thisto work. When the Maui server
receives the client request and verifies the checksum, it processes the command and returns a

reply.
Diagnosing Client Problems:

The easiest way to determine where client failures are occurring isto utilize built in maui
logging. Ontheclient side, usethe'-L' flag. For example,

> showg - L9

NOTE: Maui 3.0.6 and earlier specified the desired client side logging level using the'-D' flag
(i.e,showg -D 9)

Thiswill dump out a plethora of information about loading the configfile, connecting to the
maui server, sending arequest, and receiving aresponse. Wading through thisinformation
almost always will reveal the source of the problem. If it does not, the next step isto look at
the maui server sidelogs. The easiest way to do thisisto use the following steps:

> schedct!| -s

(stop Maui scheduling so that the only activity is handling maui client requests)
> changepar am LOGLEVEL 7

(set the logging level to 'very verbose')
> tail -f log/maui.log | nore

(tail the maui.log activity)
(In another window)
> showqg
The maui.log file should record the client request and any reasons it was rejected.

If these steps do not reveal the source of the problem, the next step may be to check the
mailing list archives, post a question to the mauiusers list, or contact Maui support.

http://www.clusterresources.com/mailing.shtml
mailto:mauiusers@supercluster.org
mailto:support@supercluster.org

14.6 Tracking System Failures

14.6.1 System Failures

The scheduler has a number of dependencies which may cause failuresif not satisfied. These
dependencies are in the areas of disk space, network access, memory, and processor utilization.

14.6.1.1 Disk Space

The scheduler utilizes anumber of files. If the file system isfull or otherwise inaccessible,
the following behaviors might be noted:

|File [Failure

|maui pid]scheduler cannot perform single instance check

scheduler cannot store persistent record of reservations, jobs, policies, summary
statistics, etc.

Imaui.cfg [scheduler cannot load local configuration

llog/* scheduler cannot log activities

stats/* |scheduler cannot write job records

maui.ck*

14.6.1.2 Network

The scheduler utilizes a number of socket connections to perform basic functions. Network
failures may affect the following facilities.

|Network Connection |Fai|ure

|schedu|er client |schedu|er client commands fail
scheduler is unable to load/update information regarding nodes and
resource manager jobs
. scheduler is unable to validate account access or reserve/debit account
allocation manager balances

14.6.1.3 Memory

Depending on cluster size and configuration, the scheduler may require up to 50 MB of
memory on the server host. If inadequate memory is available, multiple aspects of scheduling
may be negatively affected. The scheduler log files should indicate is memory failures are
detected and mark any such messages with the ERROR or ALERT keywords.

14.6.1.4 Processor Utilization

On a heavily loaded system, the scheduler may appear sluggish and unresponsive. However

no direct failures should result from this slowdown. Indirect failures may include timeouts of
peer services (such as the resource manager or allocation manager) or timeouts of client
commands. All timeouts should be recorded in the scheduler log files.

14.6.2 Internal Errors

The Maui scheduling system contains features to assist in diagnosing internal failures. If the
scheduler exits unexpectedly, the scheduler logs may provide information regarding the cause.
If no reason can be determined, use of a debugger may be required.

14.6.2.1 Logs

Thefirst step in any exit failure isto check the last few lines of the scheduler log. 1n many
cases, the scheduler may have exited due to misconfiguration or detected system failures. The
last few lines of the log should indicate why the scheduler exited and what changes would be
required to correct the situation. If the scheduler did not intentionally exit, increasing the
LOGLEVEL parameter to 7 or higher, may help isolate the problem.

14.6.2.1 Tracing the Failure with a Debugger

If the scheduler did not intentionally exit due detected environmental conditions, use of a
debugger may assist in pursuing the problem further. The fastest method to isolate such
situations is to launch the scheduler under the debugger and run it until the failure occurs. Use
of the MAUIDEBUG environment variable will prevent the scheduler from backgrounding
itself and alow the debugger to remain attached. The example below describes a standard
debugging session.

> export MAUI DEBUG=yes
> gdb naui
(gdb) r

signal SIALL received

(gdb) where

#0 MPBSJobStart() MPBSI.c: 2013
#1 MRMIobStart () MRM c: 1107
#2 mai n() MSys. c: 372

The debugger output should locate the source of the failure and help isolate the root cause.
14.6.3 Reporting Failures

If an internal failure is detected on your system, the information of greatest value to
developersin isolating the problem will be the output of the gdb wher e subcommand and a

printout of al variables associated with the failure. In addition, alevel 7 log covering the
failure can also help in determining the environment which caused the failure. This
information should be sent to hel p@supercluster.org.

14.7 Problemswith Individual Jobs

To determine why a particular job will not start, there are several commands which can be
helpful.

checkjob -v

Checkjob will evaluate the ability of ajob to start immediately. Testsinclude resource
access, node state, job constraints (ie, startdate, taskspernode, QOS, etc). Additionally,
command line flags may be specified to provide further information.

-| <POLICYLEVEL> /I evaluate impact of throttling policies on job feasibility
-n<NODENAME> /[evaluate resource access on specific node
-r <KRESERVATION_LIST> // evaluate access to specified reservations

checknode
Display detailed status of node

diagnose -j

Display high level summary of job attributes and perform sanity check on job
attributes/state.

diagnose -q

Display various reasons job is considered 'blocked' or 'non-queued'.
showbf -v

Determine general resource availability subject to specified constraints.
See also:

Diagnosing System Behavior/Problems

diagnose -j (diagnose job)

Overview:

The 'diagnose -g' command is used to present information about user records maintained by
Maui. The information presented includes user name, UID, scheduling priority, default job
flags, default QOS level, List of accessible QOS levels, and list of accessible partitions.

Usage:

diagnose -u [<USERNAME>]
Example:
> di agnose -u

Di agnosi ng Users

Nane UDPriority Fl ags Def aul t QCS
QOSLi st PartitionList
] acksond 160 2223 [NONE] 4
31: 63 [NONE]
steve 345 0 [NONE] -1
[NONE] [NONE]
346 0 [NONE] -1
[NONE] [NONE]
susam 347 0 [NONE] -1
[NONE] [NONE]
studnt 01 351 10 [NONE] -1
[NONE] [NONE]
st udnt 04 354 10 [NONE] -1
[NONE] [NONE]
studnt05 355 10 [NONE] -1
[NONE] [NONE]

Note that only users with have jobs which are currently queued or have been queued since
Maui was most recently started are listed. For user statistics, see the showstats command.

d | ag NOSE 'q (Maui Queue Diagnostic)

Synopsis
diagnose -q

Overview:

This command presents information about the queues (classes), and the jobs in them.

Example:

> di agnose -q
Di agnosi ng bl ocked jobs (policylevel SOFT partition ALL)

job 67 has the following hold(s) in place: Defer
job 67 has non-idle expected state (expected state:
job 68 has the following hold(s) in place: Defer
job 68 has non-idle expected state (expected state:
job 69 has the following hold(s) in place: Defer

job 69 has non-idle expected state (expected state:

Def err ed)
Def err ed)

Def err ed)

diagnose -R (diaghose resource managers)

Overview:

The'diagnose -R' command is used to present information about resource manager state
maintained by Maui. The information presented includes user name, UID, scheduling priority,
default job flags, default QOS level, List of accessible QOS levels, and list of accessible

partitions.
Usage:
diagnose -u [<USERNAME>]
Example:
> di agnose -u

Di agnosi ng Users

Name UDPriority Fl ags Def aul t QOS
QOSLi st PartitionLi st
J acksond 160 2223 [NONE] 4
31: 63 [NONE]
st eve 345 0 [NONE] -1
[NONE] [NONE]
346 0 [NONE] -1
[NONE] [NONE]
susam 347 0 [NONE] -1
[NONE] [NONE]
st udnt 01 351 10 [NONE] -1
[NONE] [NONE]
st udnt 04 354 10 [NONE] -1
[NONE] [NONE]
st udnt 05 355 10 [NONE] -1
[NONE] [NONE]

Note that only users with have jobs which are currently queued or have been queued since
Maui was most recently started are listed. For user statistics, see the showstats command.

Testing

Testing is highly advised anytime you are updating your version of the scheduler, trying a
new configuration, or adding new resources. Maui gives you several options for safely testing
out your new environment. If you are running Maui for the first time,

It isdifficult to advise on all of the possible ways of testing. However, below are afew
generd tips.

- Multiple instantiations of Maui can run simultaneously, even on the same host. This can be
very helpful when testing new versions of code. The current 'production’ version of Maui can
continue to run the actual job scheduling, while you are simultaneously evaluating the new
code.

To do so, you must simply avoid conflicts. Thisincludes user interface port, logfiles,
checkpoint files, and stats files. Many sites handle this issue by creating a number of
directories parallel to the main 'maui’ directory. Of particular useis a'test' directory and a
‘'simulation’ directory.

- wheninitially installing maui, create a mauitest and mauisim directory parallel to

MAUIHOMEDIR

SERVERMODE
NORMAL
SIMULATION
TEST

15.0 Improving User Effectiveness

e 15.1 User Feedback Loops

o 15.2 User Level Statistics

« 15.3 Enhancing Wallclock Limit Estimates

« 15.4 Providing Resource Availability Information

o 15.5 Job Start Time Estimates

o 15.6 Callecting Performance Information on Individua Jobs

15.1 User Feedback Loops

In evaluating a given system, it isinteresting to note that almost invariably, real world
systems outperform simulated systems. Even when all policies, reservations, workload, and
resource distributions are fully captured and emulated. What isit about real world usage that
isnot emulated viaa simulation? The answer isthe 'user feedback' loop, the impact of users
making decisions to optimize their level of service based on real time information.

A user feedback loop is created any time information is provided to a user which modifies
his job submission or job management behavior. Asin amarket economy, the cumulative
effect of many users taking steps to improve their individual scheduling performance resultsin
better job packing, lower queue time, and better system utilization overall. Because this
behavior is beneficial to the system at large, system admins and management should encourage
this behavior and provide the best possible information to them.

There are two primary types of information which help users make improved decisions.
Cluster wide resource availability information and per job resource utilization information.

15.1.1 Improving Job Size/Duration Requests

Maui provides a number of informational commands which help users make improved job
management decisions based on real-time cluster wide resource availability information.
These commands include showbf, showgrid, and showq. Using these commands, a user can
determine what resources are available, and what job configurations statistically receive the
best scheduling performance.

15.1.2 Improving Resource Requirement Specification

A job's resource requirement specification tells the scheduler what type of compute nodes are
required to run the job. These requirements may state that a certain amount of memory is
required per node or that a node have a minimum processor speed. At many sites, users will
determine the resource requirements needed to run an initial job. Then, for the next several
years, they will use the same basic batch command file to run all of their remaining jobs even
though the resource requirements of their subsequent jobs may be very different from their
initial run. Users often do not update their batch command files even though these constraints
may be unnecessarily limiting the resources available to their jobs for two reasons: 1) users do
not know how much their performance will improve if better information were provided. 2)
users do not no exactly what resources their jobs are utilizing and are afraid to lower their job's
resource requirements since doing so might cause their job to fail.

To help with determining accurate per job resource utilization information, Maui provides
the FEEDBACKPROGRAM facility. Thistool allows sitesto send detailed resource
utilization information back to users viaemail, to store it in a centralized database for report
preparation, or use it in other ways to help users refine their batch jobs.

15.2 User Leve Statistics

Under Construction

15.3 Enhancing Wallclock Limit Estimates

Under Construction

15.4 Providing Resource Availability Information

Under Construction

15.5 Job Start Time Estimates

Under Construction

15.6 Collecting Performance I nformation on Individual Jobs

Under Construction

16.1 Simulation Overview
16.1.1 Test Drive

If you want to see what the scheduler is capable of, the ssmulated test driveis probably
your best bet. Thisallowsyou to safely play with arbitrary configurations and issue
otherwise'dangerous commands without fear of losing your job! :) In order torun a
simulation, you need a ssimulated machine (defined by a resourcetracefile) and a
simulated set of jobs (defined by a workload tracefile). Rather than discussing the

advantages of thisapproach in gory detail up front, let'sjust get started and discuss
thingsalong the way.

| ssue the following commands:

> vi maui.cfg
(change'SERVERMODE NORMAL' to'SERVERMODE SIMULATION')

(add 'SIMRESOURCETRACEFILE tracesResource.Tracel')
(add 'SIMWORKLOADTRACEFILE traces’Workload.Tracel')
(add 'SIMSTOPITERATION 1)

the steps above specified that the scheduler should do the following:
#1) Runin'Simulation' moderather than in 'Normal' or live mode.
#2) Obtain information about the smulated compute resourcesin the
file'tracessResource. Tracel'.

3) Obtain information about thejobsto berun in simulation in the
file'tracessWorkload.Tracel'

#4) Load thejob and nodeinfo, start whatever jobs can be started on
thenodes, and then wait for user commands. Do not advance

simulated time until instructed to do so.

> maui &

give the scheduler a few secondsto warm up and then look at the
list of jobscurrently in the queue. (To obtain afull description
of each of the commands used below, please see the command's man

page.)

> show(q

Thiscommand breaksthe jobsin the queueinto three groups, 'Active
#]obswhich are currently running, 'l dle' jobswhich can run as soon

astherequired resources become available, and 'Non Queued' jobs
#which arecurrently ineligible to be run because they violate some

configured policy.

By default, the simulator initially submits 100 jobs from the
#workload tracefile, '"Workload.Tracel'. Looking at the'showq'
output, it can be seen that the ssimulator was ableto start 11 of
#thesejobson the 195 nodes described in theresour ce tracefile,
#'Resource.Tracel'.

L ook at therunningjobs more closely.
> show(-r

Theoutput issorted by job completion time. We can seethat the
#first job will completein 5 minutes.

Look at theinitial statisticsto see how well the scheduler is
doing.

> showstats

#Look at theline'Current Active/Total Procs to see current system
utilization.

Deter mine the amount of time associated with each ssmulated time
step.

> showconfig | grep RMPOLLINTERVAL

Thisvalueis specified in seconds. Thus each time we advancethe

smulator forward one step, we advance the simulation clock forward
thismany seconds. 'showconfig' can be used to seethe current

value of all configurable parameters. Advance the simulator forward
one step.

> schedctl -S

'schedctl' allows you to step forward any number of stepsor to step
#forward to a particular iteration number. You can deter mine what
#iteration you are currently on using the 'showstats command's -V’
#flag.

> showstats -v

Theline'statisticsfor iteration <X>' specifiestheiteration you
#arecurrently on. You should now be on iteration 2. This means

simulation time has now advanced forward <RMPOLLINTERVAL > seconds.
use'showq -r' to verify thischange.

> show(-r

Note that thefirst job will now completein 4 minutesrather than

5 minutes because we have just advanced 'now' by one minute. Itis
#important to note that when the smulated jobs wer e created both the
#]ob'swallclock limit and itsactual run timewererecorded. The
#wallclock timetimeis specified by the user indicating his best

estimate for an upper bound on how long thejob will run. Therun
#timeishow long thejob actually ran before completing and
#releasing itsallocated resources. For example, ajob with a
#wallclock limit of 1 hour will be given the need resour cesfor up to

an hour but may completein only 20 minutes.

Theoutput of 'showq -r' showswhen thejob will completeif it runs
up toits specified wallclock limit. In the ssimulation, jobs actually

complete when their recorded 'runtime’ isreached. Let'slook at
#thisjob more closaly.

> checkjob fr8n01.804.0

We can wee that thisjob hasawallclock limit of 5 minutesand
#requires5nodes. We can also see exactly which nodes have been
allocated to thisjob. Thereisalot of additional infor mation

which the 'checkjob' man page describesin more detail.

Let'sadvance the simulation another step.

> schedct| -S

L ook at the queue again to seeif anything has happened.

> show(-r

#No surprises. Everything isoneminute closer to completion.
> schedctl -S

> show(-r

Job 'fr8n01.804.0" is still 2 minutes away from completing as

expected but notice that both jobs'fr8n01.191.0' and
#'fr8n01.189.0' have completed early. Although they had almost 24
hoursremaining of wallclock limit, they terminated. In reality,
#they probably failed on the real world system wherethetracefile
#was being created. Their completion freed up 40 processor s which
#the scheduler was ableto immediately use by starting two more

#jobs.
Let'slook again at the system statistics.
> showstats

Notethat afew morefieldsarefilled in now that somejobs have
completed providing information on which to gener ate statistics.

Advance the scheduler 2 more steps.
> schedctl -S 2

#The'2l' argument indicates that the scheduler should advance'2'
steps and that it should (I)gnore user input until it getsthere.

Thispreventsthe possibility of obtaining 'showq' output from
#iteration 5rather than iteration 6.

> showq -r

1t lookslikethe 5 processor job completed as expected while

another 20 processor job completed early. The scheduler was able
#to start another 20 processor job and five serial jobsto again

utilize all idleresources. Don't worry, thisisnot a'stacked’
#trace, designed to make the Maui scheduler appear omniscient.
#We havejust gotten lucky so far and have the advantage of a deep
default queue of idlejobs. Thingswill get wor se!

#Let'slook at theidleworkload more closaly.
> show(-i

Thisoutput islisted in priority order. We can seethat we have
#alot of jobsfrom a small group of users, many larger jobsand a
few remaining easily backfillable jobs.

#let'sstep awaysthrough time. To speed up the simulation, let's
decrease the default LOGLEVEL to avoid unnecessary logging.

> changeparam LOGLEVEL 0

'changeparam' can be used to immediately change the value of any
parameter. The changeisonly madeto the currently running Maui
and isnot propagated to the config file. Changescan also be made
by modifying the config file and restarting the scheduler or
#issuing 'schedctl -R" which for ces the scheduler to basically
#recycleitsdf.

Let'sstop at an even number, iteration 60.

> schedctl| -s 60l

#The'-s flagindicatesthat the scheduler should 'stop at' the
gpecified iteration.

> showstats -v

Thiscommand may hang a while asthe scheduler smulatesup to
#iteration 60.

The output of thiscommand shows usthe 21 jobs have now completed.
Currently, only 191 of the 195 nodes are busy. Letsfind out why
#thed4 nodesareidle.

#First look at theidlejobs.
> show(-i

The output shows usthat there are a number of single processor
jobswhich require between 10 hoursand over aday of time. Lets
#look at one of these jobs mor e closaly.

> checkjob fr 1n04.2008.0

#I1f ajob isnot running, checkjob will try to deter mine why it
#isn't. At the bottom of the command output you will seealine
#labeled 'Reection Reasons. It statesthat of the 195 nodes

#in the system, thejob could not run on 191 of them because they

werein thewrong state (i.e., busy running other jobs) and 4 nodes
could not be used because the configured memory on the node did
not meet thejobsrequirements. Looking at the'checkjob' output
further, we seethat thisjob requested nodes with '>= 512" M B of
RAM installed.

Let'sverify that theidle nodes do not have enough memory
configured.

> diagnose-n | grep -eldle-e Name

The grep getsthe command header and the ldle nodeslisted. All
#idle nodes have only 256 M B of memory installed and cannot be
allocated to thisjob. The'diagnose’ command can be used with

#variousflagsto obtain detailed information about jobs, nodes,

reservations, policies, partitions, etc. Thecommand also

performsa number of sanity checks on the data provided and will
present war ning messages if discrepancies ar e detected.

Let'sseeif theother single processor jobs cannot run for the
same reason.

>diagnose-j |grep Idle|grep” 1"

The grep above selects single processor Idlejobs. The 14th

indicatesthat most single processor jobs currently in the queue
#require'>=256" MB of RAM, but afew donot. Let'sexaminejob
#'fr8n01.1154.0'

> checkjob fr8n01.1154.0

Thergection reasonsfor thisjob indicate that the four idle

processor s cannot be used dueto 'ReserveTime'. Thisindicates
#that the processorsareidle but that they have a reservation

#in placethat will start beforethejob being checked could

complete. Let'slook at one of the nodes.

> checknode fr 10n09

The output of thiscommand shows that whilethe nodeisidle,
#it hasareservation in place that will start in alittle over

23 hours. (All idlejobswhich did not require'>=512' MB
#required over aday to complete.) It lookslikethereis

nothing that can start right now and we will haveto live with
#four idle nodes.

Let'slook at thereservation which isblocking the start of
our single processor jobs.

> showres

Thiscommand shows all reservations currently on the system.

Noticethat all running jobs have areservation in place. Also,
#thereisonereservation for an idlejob (Indicated by the'l'
#inthe'S, or 'State column) Thisisthereservation that is

blocking our serial jobs. Thisreservation was actually created
by the backfill scheduler for the highest priority idlejob as

a way to prevent starvation while lower priority jobswere being
backfilled. (Thebackfill documentation describesthe

mechanics of the backfill scheduling morefully.)

Let'sseewhich nodesare part of theidlejob reservation.

> showres -n fr8n01.963.0

All of our four idle nodes areincluded in thisreservation.
It appearsthat everything isfunctioning properly.

Let'sstep further forward in time.
> schedctl -s 1001
> showstats -v

#We now know that the scheduler is scheduling efficiently. So
far, system utilization asreported by 'showstats-v' looks
#very good. Oneof the next questionsis'isit scheduling
#fairly? Thisisavery subjective question. Let'slook at
#theuser and group statsto seeif thereareany glaring

problems.

> showstats-u

Let'spretend we need to now take down the entire system for
maintenance on Thursday from 2to 10 PM. To do thiswe would
create areservation.

> setres-S
Let's shutdown the scheduler and call it a day.
> schedctl -k

Using sampletraces
Collecting traces
using Maui
Under standing and manipulating workload traces
Under standing and manipulating resour ce traces
Running simulation 'sweeps
The'stats.sim' file
(Isnot erased at the start of each simulation run. It must be
manually cleared or moved if statisticsare not to be
concatenated)
Using the profiler tool
(profiler man page)

e 16.1 Simulation Overview

e 16.2 Resource Traces
e 16.3 Workload Traces

e 16.4 Simulation Specific Configuration

16.2 Resource Traces

Resource traces fully describe all scheduling relevant aspects of a batch system's compute
resources. |n most cases, each resource trace describes a single compute node providing
information about configured resources, node |ocation, supported classes and queues, etc. Each
resource trace consists of a single line composed of 21 whitespace delimited fields. Each fieldis
described in detail in the table below.

Field Name ::r:glgx Data Format Default Value Details
Resource one of currently the only legal valueis
Type 1 COMPUTENODE COMPUTENODE COMPUTENODE
one of when AVAILABLE,
AVAILABLE DEFINED, or DRAINED is
Event Type |2 ’ [NONE] specified, node will start in the
DEFINED, or state Idle, Down, or Drained
DRAINED L '
respectively.
EventTime |3 |<EPOCHTIME> |1 time event occurred. (currently
ignored)
for COMPUTENODE
Resource ID (4 <STRING> N/A resources, this should be the
name of the node.
Resource name of resource manager
Manager |5 |<STRING> [NONE] . - manag
resource is associated with
Name
Configured amount of virtual memory (in
Swap 6 <INTEGER> 1 MB) configured on node
. amount of real memory (in
ﬁc;rﬂgrured 7 <INTEGER> 1 MB) configured on node (i.e.
y RAM)
Configured amount of local disk (in MB)
Disk 8 <INTEGER> 1 on node available to batch jobs
Configured 9 <INTEGER> 1 num_ber of processors
Processors configured on node
Resolrce number of frame containin
Frame 10 |<INTEGER> 1 9
L ocat node (SP2 only)
ocation

Resource :
Slot 11 |<INTEGER> 1 E“;”O%eer gg‘zritrflre;me siot used
L ocation y y
Resource
Sot Use 12 |<INTEGER> 1 Number of frame slots used by
C node (SP2 only)

ount
Node
Operating (13 |[<STRING> [NONE] node operating system
System
Node .

: 14 |<STRING> [NONE] node architecture
Architecture
Configured square bracket delimited list of
Node 15 |<STRING> [NONE] node features/attributes (ie,
Features '[amd][s1200]")
: square bracket delimited list of
Configured))
16 [<STRING> [batch:1] CLASSNAME:CLASSCOUNT

Run Classes pairs
Configured square bracket delimited list of
Network 17 |[<STRING> [NONE] configured network adapters
Adapters (ie, '[atm][fddi][ethernet]’)
Relative
Resource |18 |<DOUBLE> 1.0 relative machine speed value
Speed
RESERVED
FELD1 |19 [<STRING> [NONE] [NONE]
RESERVED
FIELD 2 20 |<STRING> [NONE] [NONE]
RESERVED
AELD3 |21 |<STRING> [NONE] [NONE]

NOTE: if no applicable value is specified, the exact string [NONE]' should be entered.

Sample Resource Trace:

'‘COVPUTENCODE AVAI LABLE 0 cl uster008 PBS1 423132 256 7140 2 -1

-1 1 LINUX62 Athl onK7 [s950][conput e]
[ethernet][atn] 1.67

[NONE]

[NONE]

[bat ch: 2]
[NONE] *

16.4 Simulation Specific Configuration

Under Construction

17.0 Miscellaneous

e 17.1 User Feedback Overview
e 17.2 Grid Scheduling
e 17.2 Enabling High Availability Features

17.1 User Feedback Overview

The 'Feedback’ facility allows a site to provide job performance information to users at
job completion time. When ajob completes, the program pointed to by the
FEEDBACKPROGRAM parameter is called with a number of command line arguments. The
siteisresponsible for creating a program capable of processing and acting upon the contents of
the command line. The command line arguments passed are afollows

- job name

- user name

- NONE

- find job state

- QOSrequested

- epoch time job was submitted

- epoch timejob started

- epoch time job compl eted

- job XFactor

- jobwallclock limit

- processors requested

- memory requested

- average per task cpu load

- maximum per task cpu load

- average per task memory usage
- maximum per task memory usage

For many sites, the feedback script is useful as a means of |etting user's know that accuracy
of their wallclock limit estimate, as well as the cpu efficiency, and memory usage pattern of
their job. The feedback script may be used as a mechanism to do any of the following:

- emall usersregarding statistics of all completed jobs

- email users only when certain criteria are met (ie. "Dear John, you submitted job X
requesting 128MB of memory per task. It actually utilized 253 MB of memory per task
potentially wreaking havoc with the entire system! Please improve your resource usage
estimates in future jobs!")

- update system databases

- take system actions based on job completion statistics

NOTE: some of these fields may be set to zero if the underlying OS/Resource Manager
does not support the necessary data collection.

17.2 Grid Scheduling
17.2.1 Grid Scheduling Overview

Maui can participate in agrid environment providing functionality and information critical to
effective grid scheduling. Maui can provide information to grid schedulers about what
resources are available, how much the resources cost, and when remote jobs can run. Maui
also provides resource reservation and job staging facilities to allow grid scheduling systems
integrated support with Maui facilities.

Currently, the Silver Grid Scheduler is the most advanced grid scheduler taking advantage of

these capabilities. It provides automated data staging, account and allocation management,
and resource reservation optimizations. It provides an intuitive interface for job submission
and job management, using submission languages from popular resource management
systems. Thethe Silver Home Page for more information.

17.2.2 Configuring Maui to Inter-Operate with Grid Schedulers

To utilize cluster scheduler facilities, the grid scheduler must be authenticated and
authorized. Grid scheduler authentication is enabled by adding an entry to the
maui - pri vat e. cf g fileas shown in the Interface Security section of appendix E. Once
authentication is setup, the level of grid scheduler authorization is configured. In most cases,
the grid scheduler is assigned the role of alevel 1 admin using the ADMIN1 parameter.

In most cases, not only must the grid scheduler be authenticated to Maui, but Maui must also
be authenticated to the grid scheduler. In the case of Silver, thisis accomplished by naming
the instance of Maui by using the SCHEDCFG parameter and adding the shared secret key to

slver'ssi | ver. cf g file

17.2.3 Specifying Cluster Level Policies for Grid Jobs

The number and type of resources available for grid jobs can be constrained using policies
and/or reservations. All grid workload is assigned the job attribute GRID. Reservations and
policies can be configured to allow or deny access based on this attribute providing accessto
or exclusion from specific resources, limiting the quantity of grid jobs which can run at any
given time, or constraining access to other special functions such as preemption.

17.2.4 Evaluating Performance Impact of Grid Workload

Maui integrates the grid jobs into the standard job queue and, unless specifically directed by
special grid policies, treats grid jobs just like ordinary workload. In fact, aside from having the
GRID job attribute set, grid jobs are identical to locally submitted workload. & nbps;When a
grid job isreceived, Maui tracks two additional pieces of information. This information,

http://www.clusterresources.com/products/maui/mgs/docs/
http://www.clusterresources.com/products/maui/mgs/

System |d and System Job | d indicates the submitting grid scheduler and global job id
respectively. To determine ajob's global job id, the showg command can be run with the '-g'

flag.
17.2.5 Diagnosing Grid Based Issues

To address various grid specific failures, Maui provides integrated diagnostic tools. Among
the most useful is the diagnose -S command. This command provides information about the
status of required grid management modules and the status of grid scheduler interface. In
addition, it also reports on any grid level failures or discrepanciesit locates.

17.3 Enabling High Availability Features
17.3.1 High Availability Overview

(under construction)

17.4 Using the Application Scheduling Library
17.4.1 Application Scheduling Library Overview

Moab 4.0 and higher support an application scheduling library which alows locally
developed applications to directly utilize scheduler information and finctionality. This allows
the scheduler to be more aware of its environment and more capable of utilizing this
information to improve both productivity and fault tolerance.

(under construction)

Appendix A Case Studies

A.1l Casel. Mixed Parallel/Serial Heter ogeneous Cluster

A.2 Case2. Partitioned Timesharing Cluster

A.3 Case 3. Development O2K

A.4 Case4. Standard Production SP2

A5 Caseb5: Multi-Queue Cluster with QOS and Charge Rates

A.1 Case Study: Mixed Parallel/Serial
Homogeneous Cluster

Overview:

A multi-user site wishesto control the distribution of compute cycles while minimizing job
turnaround time and maximizing overall system utilization.

Resour ces:

Compute Nodes: 64 2 way SMP Linux based nodes, each with 512 MB of RAM and
16 GB local scratch space
Resource Manager: OpenPBS 2.3

Network: 100 MB switched ethernet
Workload:
Job Size: range in size from 1 to 32 processors with approximately the following

guartile job frequency distribution
1-2,3-8,9-24,and 25 - 32 nodes.

Job Length: jobs range in length from 1 to 24 hours

Job Owners: job are submitted from 6 major groups consisting of atotal of about 50
users

NOTES: During prime time hours, the majority of jobs submitted are smaller, short

running development jobs where users are testing out new code and new data sets. The owners
of these jobs are often unable to proceed with their work until a job they have submitted
completes. Many of these jobs are interactive in nature. Throughout the day, large, longer
running production workload is also submitted but these jobs do not have comparable
turnaround time pressure.

Constraints: (Must do)

The groups 'Meteorology' and 'Statistics should receive approximately 45 and 35% of the
total delivered cycles respectively. Nodes cannot be shared amongst tasks from different jobs.

Goals: (Should do)

The system should attempt to minimize turnaround time during primetime hours (Mon - Fri,
8:00 AM to 5:00 PM) and maximize system utilization during all other times. System

mai ntenance should be efficiently scheduled around

Analysis:

The network topology is flat and and nodes are homogeneous. This makes life significantly
simpler. Thefocusfor thissiteis controlling distribution of compute cycles without negatively
impacting overall system turnaround and utilization. Currently, the best mechanism for doing
thisis Fairshare. Thisfeature can be used to adjust the priority of jobs to favor/disfavor jobs
based on fairshare targets and historical usage. In essence, this feature improves the
turnaround time of the jobs not meeting their fairshare target at the expense of those that are.
Depending on the criticality of the delivered cycle distribution constraints, this site might also
wish to consider an allocations bank such as PNNL's QBank which enables more stringent

control over the amount of resources which can be delivered to various users.

To manage the primetime job turnaround constraints, a standing reservation would probably
be the best approach. A standing reservation can be used to set aside a subset of the nodes for
quick turnaround jobs. This reservation can be configured with atime based access point to
allow only jobs which will complete within some time X to utilize these resources. The
reservation has advantages over atypical queue based solution in this case in that these quick
turnaround jobs can be run anywhere resources are available, either inside, or outside the
reservation, or even crossing reservation boundaries. The site does not have any hard
constraints about what is acceptable turnaround time so the best approach would probably be
to analyze the site's workload under a number of configurations using the simulator and

observe the corresponding scheduling behavior.

For general optimization, there are a number of scheduling aspects to consider, scheduling
algorithm, reservation policies, node allocation policies, and job prioritization. It isamost
always agood ideato utilize the scheduler's backfill capability since this has atendency to
increase average system utilization and decrease average turnaround time in asurprisingly fair
manner. It doestend to favor somewhat small and short jobs over others which is exactly what
this site desires. Reservation policies are often best left alone unless rare starvation issues
arise or quality of service policies are desired. Node allocation policies are effectively
meaningless since the system is homogeneous. The final scheduling aspect, job prioritization,
can play asignificant role in meeting site goals. To maximize overall system utilization,
maintaining a significant Resource priority factor will favor large resource (processor) jobs,
pushing them to the front of the queue. Large jobs, though often only a small portion of a
site'sjob count, regularly account for the majority of asite's delivered compute cycles. To
minimize job turnaround, the XFactor priority factor will favor short running jobs. Finally, in

order for fairshare to be effective, a significant Fairshare priority factor must be included.

Configuration:

http://www.emsl.pnl.gov/docs/mscf/qbank/

For this scenario, a resource manager configuration consisting of a single, global
gueue/class with no constraints would allow Maui the maximum flexibility and opportunities
for optimization.

The following Maui configuration would be agood initial stab.

reserve 16 processors during prinmetinme for jobs requiring
|l ess than 2 hours to conplete

SRNANET 0] f ast

SRTASKCOUNT[0] 16

SRDAYS] 0] MON TUE VED THU FRI
SRSTARTTI ME[0] 8: 00: 00

SRENDTI MVE[0] 17: 00: 00

SRVAXTI VE[0] 2:00: 00

prioritize jobs for Fairshare, XFactor, and Resources

RESOURCEVEI GHT 20
XFACTORWEI GHT 100
FAI RSHAREWEI GHT 100

di sabl e SMP node shari ng
NODEACCESSPOLI CY DEDI CATED

G oup: Meterol ogy FSTARGET=45
Group: Statistics FSTARGET=35

Monitoring:

The command 'diagnose -f* will allow you to monitor the effectiveness of the fairshare
component of your job prioritization. Adjusting the Fairshare priority factor up/or down will
make fairshare more/less effective. Note that atradeoff must occur between fairshare and
other goals managed viajob prioritization. 'diagnose -p' will help you analyze the priority
distributions of the currently idle jobs. The 'showgrid AVGXFACTOR' command will provide
agood indication of average job turnaround while the 'profiler' command will give an excellent
analysis of longer term historical performance statistics.

Conclusions:

Any priority configuration will need to be tuned over time because the effect of priority
weightsis highly dependent upon the site specific workload. Additionally, the priority weights
themselves are part of afeedback loop which adjust the site workload. However, most sites
quickly stabilize and significant priority tuning is unnecessary after afew days.

A.2 Case Study: Semi-Partitioned
Heterogeneous Cluster Dedicated to Parallel
and Time-sharing Serial Jobs

Overview:

A site possessing a mixture of uniprocessor and dual processor nodes desires to dedicate a
subset of nodes to time-sharing serial jobs, a subset to parallel batch jobs, and provide a set of
nodes to be used as 'overflow'.

Resour ces:

Compute Nodes: Group A: 16 uniprocessor Linux based nodes, each with 128 MB
of RAM and 1 GB local scratch space
Group B: 8 2way SMP Linux based nodes, each with 256 MB
of RAM and 4 GB local scratch space
Group C: 8 uniprocessor Linux based nodes, each with 192 MB
of RAM and 2 GB local scratch space

Resource Manager: OpenPBS 2.3

Network: 100 MB switched ethernet
Workload:
Job Size: range in size from 1 to 32 processors with approximately the following

guartile job frequency distribution
1-2,3-8,9-24, and 25 - 32 nodes.

Job Length: jobs range in length from 1 to 24 hours

Job Owners: job are submitted from 6 major groups consisting of atotal of about 50
users

NOTES: During prime time hours, the majority of jobs submitted are smaller, short

running development jobs where users are testing out new code and new data sets. The owners
of these jobs are often unable to proceed with their work until a job they have submitted
completes. Many of these jobs are interactive in nature. Throughout the day, large, longer
running production workload is also submitted but these jobs do not have comparable
turnaround time pressure.

Constraints: (Must do)

Nodesin Group A must run only parallel jobs. Nodesin Group B must only run serial jobs,
with up to 4 seria jobs per node. Nodesin Group C must not be used unless ajob cannot
locate resources elsewhere.

Goals: (Should do)
The scheduler should attempt to intelligently load balance the timesharing nodes.

Analysis:

Asin Case Study 1, The network topology is flat and and nodes are homogeneous within
each group. Theonly tricky part of this configuration is the 'overflow' group. The easiest
configuration isto create two PBS queues, serial and parallel, with appropriate min and max
node counts as desired. By default, Maui interprets the PBS 'exclusive hostlist' queue attribute
as constraining jobs in the queue to run only on the nodes contained in the hostlist. We can
take advantage of this behavior to assign nodes in Group A and Group C to the queue 'parall€l’
while the nodes in Group B and Group C are assigned to the queue 'seria’ (The same can be
done with classes if using Loadleveler) Maui will incorporate this queue information when
making scheduling decisions.

The next step isto make the scheduler use the 'overflow' nodes of group C only as alast
resort. Thiscan be accomplished using a negative affinity standing reservation. This
configuration will tell the scheduler that these nodes can be used, but should only be used if it
cannot find compute resources el sewhere.

Thefinal step, load balancing, is accomplished in two parts. First, the nodesin group B
must be configured to allow up to 4 serial jobsto run at atime. Thisis best accomplished
using the PBS 'virtual nodes feature. To load balance, smply select the CPULOAD

allocation algorithm in Maui. This algorithm will instruct Maui to schedule the job based on
which node has the most available, unused idle CPU time.

Configuration:
This site requires both resource manager and scheduler configuration.

The following Maui configuration would be needed.

reserve 'overflow processors

SRNAME[0] overfl ow
SRHOSTLI ST[0] cnO[1- 8] # hostnane regul ar

expr essi on
SRCLASSLI ST[0] parallel- Dbatch- # use mnus sign to indicate
negative affinity

ALLOCATI ONPOLI CY CPULOAD
all ow SMP node sharing
NCODEACCESSPOLI CY SHARED

set queue serial resources_nmax. nodeccount =1
set queue serial acl_hosts=an0l1+an02+...anl16+cn01+cn02+...cn08
set queue serial acl _host enabl e=true

set queue parallel resources_m n.nodecount =2
set queue parall el

acl _hosts=bn01+bn02+. .. bn08+cn01+cn02+...cn08
set queue parallel acl_host enabl e=true

bn01 np=4
bn01 np=4
Monitoring:

Conclusions:

A.3 Case Study: Development O2K

Overview:
A 64 proc O2K system needs to be scheduled with a significant ‘background' load.
Resour ces:

Compute Nodes: 64 processor, 32 GB O2K system
Resource Manager: OpenPBS 2.3

Network: Internal SGI network
Workload:
Job Size: range in size from 1 to 32 processors.
Job Length: jobs range in length from 15 minutes to 48 hours.
Job Owners: various
NOTES: Thisis alogin/development machine meaning at any given time, there

may be a significant load originating with jobs/processes outside of the resource manager's
view or control. The major scheduling relevant impact of thisisin the area of cpu load and
real memory consumption.

Constraints: (Must do)

The scheduler must run the machine at maximum capacity without overcommitting either
memory or processors. A significant and variable background load exists from jobs submitted
outside of the resource manager's view or control. The scheduler must track and account for
thisload and allow space for some variability and growth of thisload over time. The
scheduler should also 'kill" any job which violates its requested resource allocation and notify
the associated user of this violation.

Goals: (Should do)

The scheduler should maximize the throughput associated with the queued jobs while
avoiding starvation as a secondary concern.

Analysis:

The background load causes many problems in any mixed batch/interactive environment.
One problem which will occur results from the fact that a situation may arise in which the
highest priority batch job cannot run. Maui can make areservation for this highest priority job
but because their are no constraints on the background load, Maui cannot determine when this
background load will drop enough to allow thisjob to run. By default, it optimistically
attempts a reservation for the next scheduling iteration, perhaps 1 minute out. The problemis

that this reservation now exists one minute out and when Maui attempts to backfill, it can only
consider jobs which request less than one minute or which can fit 'beside’ this high priority
job. The next iteration, Maui still cannot run the job because the background load has not
dropped and again creates a new reservation for one minute ou.

The background load has basically turned batch scheduling into an exercise in ‘resource
scavenging'. If the priority job reservation were not there, other smaller queued jobs might be
able to run. Thusto maximize the 'scavenging' effect, the scheduler should be configured to
allow this high priority job 'first dibs on all available resources but prevent it from reserving
these resources if it cannot run immediately.

Configuration:

The configuration needs to accomplish several main objectives including:

track the background load to prevent oversubscription

favor small, short jobs to maximize job turnaround

prevent blocked high priority jobs from creating reservations

interface to an allocation manager to charge for all resource usage based on utilized CPU

time
- cancel jobs which exceed specified resource limits
- notify users of job cancellation due to resource utilization limit violations

The following Maui config file should work.

allow jobs to share node
NODEACCESSPOLI CY SHARED

track background | oad
NODELQADPQOLI CY ADJUSTPROCS
NCODEUNTRACKEDLOADFACTOR 1.2

favor short jobs, disfavor |arge jobs
QUEUETI MEVEI GHT O

RESOURCEVEI GHT -10
PROCWVEI GHT 128
VEMAEI GHT 1
XFACTOR 1000

disable priority reservations for the default QOS
QOSFLAGS] 0] NORESERVATI ON

debit by CPU
BANKTYPE OBANK

BANKSERVER devel opl
BANKPORT 2334
BANKCHARGEMCODE DEBI TSUCCESSFULLCPU

kill resource hogs
RESOURCEUTI LI ZATI ONPOLI CY ALVWAYS
RESOURCEUTI LI ZATI ONACTI ON CANCEL

notify user of job events

NOTI FYSCRI PT t ool s/ notify. pl

Monitoring:

The most difficult aspects of this environment are properly ‘reserving' space for the
untracked 'background' load. Since thisload is outside the viewing/control of the
schedul er/resource manager, there are no constraints on what it can do. It could instant grow
and overwhelm the machine, or just as easily disappear. The parameter
'NODEUNTRACKEDLOADFACTOR' provides 'slack’ for this background load to grow and
shrink. However, since there is now control over the load, the effectiveness of this parameter
will depend on the statistical behavior of thisload. The greater the value, the more slack
provided, the less likely the system isto be overcommitted; however, alarger value also means
more resources are in this 'reserve’ which are unavailable for scheduling. Theright solution is
to migrate the users over to the batch system or provide them with a constrained resource 'box’
to play in, either through a processor partition, another system, or viaalogical software
system. Thevaluein the'box' isthat it prevents this unpredictable background load from
wreaking havoc with an otherwise sane dedicated resource reservation system. Maui can
reserve resource for jobs according to all info currently available. However the unpredictable
nature of the background load may mean those resources are not available when they should be
resulting in cancelled reservations and the inability to enforce site policies and priorities.

The second aspect of this environment which must be monitored is the trade-off between
high job throughput and job starvation. The 'locally greedy' approach of favoring the smallest,
shortest jobs will have a negative effect on larger and longer jobs. The large, long jobs which
have been queued for some time can be pushed to the front of the queue by increasing the
QUEUETIMEWEIGHT factor until a satisfactory balance is achieved.

Conclusions:

Mixed batch/non-batch systems are very, very nasty. :)

A.4 Case Study: Standard Production SP
(Under Construction)

Overview:

An 8 node, 32 processor heterogeneous SP2 system isto be scheduled in a shared node
manner.

Resour ces:

Compute Nodes: 8 node, 32 processor, 24 GB SP2 system
Resource Manager: Loadleveler

Network: IBM High Performance Switch (essentially All-to-All connected)
Workload:

Job Size: range in size from 1 to 16 processors.

Job Length: jobs range in length from 15 minutes to 48 hours.

Job Owners: various

Constraints: (Must do)
Goals: (Should do)
Analysis:
Configuration:
Monitoring:

Conclusions;

A.5 Case Study: Multi-Queue Cluster with QOS
and Charge Rates

Overview:

A 160 node, uniprocessor Linux cluster isto be used to support various organizations within
an enterprise. The ability to receive improved job turnaround time in exchange for a higher
chargerateisrequired. A portion of the system must be reserved for small development jobs at
all times.

Resour ces:

Compute Nodes: 128 800 MHz uniprocessor nodes w/512 MB each, running Linux 2.4
32 1.2 GHz uniprocessor nodes w/2 GB each, running Linux 2.4

Resource Manager: OpenPBS 2.3

Network: 100 MB ethernet
Workload:
Job Size: range in size from 1 to 80 processors.
Job Length: jobs range in length from 15 minutes to 24 hours.
Job Owners: various

Constraints: (Must do)

The management desires the following queue structure:

QueueNane Nodes MaxWal | Ti me Priority Char geRat e
Test <=16 00: 30: 00 100 1x
Seri al 1 2:00: 00 10 1x
Seri al - Long 1 24:00: 00 10 2X
Short 2-16 4:00: 00 10 1x
Short-Long 2-16 24:00: 00 10 2X
Med 17- 64 8: 00: 00 20 1x
Med- Long 17- 64 24:00: 00 20 2X
Lar ge 65- 80 24:00: 00 50 2X
Lar geMem 1 8: 00: 00 10 4x

For charging, management has decided to charge by job walltime since the nodes will not be
shared. Management has also dictated that 16 of the uniprocessor nodes should be dedicated to
running small jobs requiring 16 or fewer nodes. Management has aso decided that it would like
to allow only serial jobs to run on the large memory nodes and would like to charge these jobs at

arate of 4x. There are no constraints on the remaining nodes.
Goals: (Should do)

This site has goals which are focused more on a supplying a straightforward queue
environment to the end users than on maximizing the scheduling performance of the system.
The Maui configuration has the primary purpose of faithfully reproducing the queue constraints
above while maintaining reasonabl e scheduling performance in the process.

Analysis:

Since we are using PBS as the resource manager, this should be a pretty straightforward
process. It will involve setting up an allocations manager (to handle charging), configuring
gueue priorities, and creating a system reservation to manage the 16 processors dedicated to
small jobs, and another for managing the large memory nodes.

Configuration:

Thissite hasalot going on. There will be severa aspects of configuration, however, they are
not too difficult individually.

First, the queue structure. The best place to handle thisis viathe PBS configuration. Fire up
'‘gmgr' and set up the nine queues described above. PBS supports the node and walltime
constraints as well as the queue priorities. (Maui will pick up and honor queue priorities
configured within PBS. Alternatively, you can also specify these priorities directly within the
Maui 'fs.cfg' file for resource managers which do not support this capability.) We will be using
QBank to handle all alocations and so, will want to configure the the ‘per class charge rates
there. (Note: QBank 2.9 or higher isrequired for per class charge rate support.)

Now, two reservations are needed. The first reservation will be for the 16 small memory
nodes. It should only allow node access to jobs requesting up to 16 processors. Inthis
environment, thisis probably most easily accomplished with areservation class ACL containing
the queues which allow 1 - 16 node jobs.

Monitoring:

Conclusions:

Appendix B: Extension Interface

Maui supports an extension interface which allows external librariesto be linked to the
Maui server. Thisinterface provides these libraries with full access to and control over all

Maui objects and data. It also allows this library the ability to use or override most major
Maui functions.

The purpose of thislibrary isto alow the development and use of extension modules, or
plug-ins, similar to those available for web browsers.

Appendix C: Adding New Algorithms with the 'Local’ Interface

(Under Construction)

Maui Scheduler Socket Protocol Description

The Maui scheduler uses a simple protocol for socket connections to the user client and the resource
manager as described below:

<SIZE><CHAR>CK=<CKSUM><WS>TS=<TIMESTAMP><WS>AUTH=<AUTH><WS>DT=<DATA>

8 character decimal ASCII representation of the size of the packet following

<SIZE> '<SIZE><CHAR>' Leading zeroes must be used to pad this value to 8 characters
If necessary.
<CHAR> A single ASCII character

A 16 character hexadeciaml ASCII DES-based checksum cal culated using the
algorithm below* and <SEED> selected and kept secret by the site admins. The

<CKSUM> checksum is performed on the line from 'TS=' to the end of the message including
<DATA>.
WS> a series of 'white space' characters consisting of either ‘tabs' and/or 'space’

characters.

<TIMESTAMP> | ASCII reprentation of epoch time

<AUTH> Identifier of user requesting service (i.e.,, USERNAME)

<DT> Datato be sent

An example header follows:
00001057 CK=cdf 6d7a7ad45026f TS=922401962 AUTH=sched DT=<DATA>
where '<DATA>' is replaced by actual message data.

Checksum Algorithm ('C' version)

#define MAX_CKSUM _ITERATION 4 int GetChecksum(char *Buf, int BufSize, char * Checksum, char
CSKey) /I NOTE: passin secret key */{ unsigned int crc; unsigned int Iword; unsigned int irword; int
index; unsigned int Seed; Seed = (unsigned int)strtol (CSKey,NULL,0); crc = 0; for (index = O;index <
BufSize;index++) { crc = (unsigned int)DoCRC(crc,Buf[index]); } Iword = crc; irword = Seed;

PSDES(& Iword,& irword); sprintf(Checksum,"%08x%08x", lword, irword); return(SUCCESS); } unsigned
short DOCRC(unsigned short crc, unsigned char onech) { int index; unsigned int ans; ans = (crc ™ onech <<
8); for (index = O;index < 8;index++) { if (ans & 0x8000) ans = (ans <<= 1) * 4129; elseans<<=1; }
return(ans); } int PSDES(unsigned int *lword, unsigned int *irword) { int index; unsigned int ia; unsigned

int ib; unsigned int iswap; unsigned int itmph; unsigned int itmpl; static unsigned int

Ccl[MAX_CKSUM ITERATION] ={ Oxcba4e531, 0x537158eb, 0x145cdc3c, 0x0d3fdeb?2 } ; static
unsigned int c2[MAX_CKSUM_ITERATION] = { 0x12be4590, Oxab54ce58, 0x6954c7a6, 0x15a2ca46 } ;
itmph = O; itmpl = O; for (index = 0;index < MAX_CKSUM_ITERATION;index++) { iswap = *irword; ia
= iswap " c1[index]; itmpl = ia & Oxffff; itmph = ia>> 16; ib = itmpl * itmpl + ~(itmph*itmph); ia= (ib >>
16) | ((ib & Oxffff) << 16); *irword = (*Iword) * ((ia” c2[index]) + (itmpl * itmph)); *Iword = iswap; }
return(SUCCESS); }

Header Creation (PERL code)

(taken from PNNL's QBank client code)

H#
subroutine wiki(3COMMAND) # # Sends command to Maui server and returns the parsed result and status
sub

wiki { my($COMMAND,$REQUEST ,$result); my($sockaddr,$hostname);
my($name,$aliases,$proto,Sport, Sty pe, Sl en,Sthisaddr); my($thisport, Sthatport, Sresponse, result);
$COMMAND = shift; # # Establish socket connection # $sockaddr = 'S n a4 x8'; chop ($hostname =
“hostname’); ($name,$aliases,$proto)=getprotobyname(‘tcp’);

($name, $ali ases, Sty pe,$l en, $thi saddr)=gethostbyname($hostname);

($name,$ali ases, Sty pe, Bl en,$thataddr)=gethostbyname($BANKHOST); $thi sport=pack($sockaddr,
&AF_INET,0,$thisaddr); $thatport=pack($sockaddr, & AF_INET,$BANKPORT ,$thataddr); socket(S,
&PF _INET,& SOCK_STREAM,$proto) || die "cannot create socket\n"; bind(S,$thisport) || die "cannot bind
socket\n"; connect(S,$thatport) || die "cannot connect socket\n"; select(S); $| = 1; # Turn on autoflushing
select(stdout); $| = 1; # Select STDOUT as default output # # Build and send command #
SREQUEST="COMMAND=$COMMAND AUTH=3$AUTH"; chomp($CHECKSUM = "$QSUM
"$REQUEST""); $REQUEST .=" CHECKSUM=$CHECK SUM"; my $command=pack "a3 al

A*" sprintf("%08d" length(SREQUEST))," ", $REQUEST; print S "$command"; # Send Command to
server @REPLY =(); while (<S>) { push(@REPLY,$); } # Listen for Reply
$STATUS=grep(/STATUSCODE=(\d*)/& & $1,@REPLY); # STATUSCODE stored in $STATUS
grep(¢.*RESULT=//,@REPLY); # Parse out the RESULT return @REPLY ; }

Header Processing (PERL code)

sysread(NS,$length,8); # Read length string sysread(NS,$delimiter,1); # Read delimiter byte $DEBUG & &
print STDERR "length=[$length]\tdelimiter=[$delimiter]\n"; while($length) { $DEBUG & & print
STDERR "Awaiting $length bytes -- "."date’; $length-=sysread(NS,$request,$length); # Read request sleep
1; } REQUEST=(); chomp($request); foreach (@REQUEST=& shellwords($request)) # Parse arguments
into array { ($key,$value)=split(/=/,$_); SREQUEST{ $key} =$value unless defined SREQUEST{ $key}; }
$request =~ s\stCHECK SUM=.*//; # Strip off the checksum print STDERR "REQUEST=%request\n";
chomp($checksum="$QSUM "$request""); $me=$REQUEST{AUTH};

$command=$REQUEST{ COMMAND} ; if (!grep($command eq $_,@VALIDCMDS)) { $REPLY =
"STATUSCODE=0 RESUL T=%command is not avalid command\n";} elsif ($checksum ne

$REQUEST{ CHECKSUM}) { $REPLY = "STATUSCODE=0 RESUL T=Invalid Checksum\n";} else{
$REPLY = do $command(@REQUEST); } $len=sprintf("%08d",length($REPLY)-1); $delim=""; $SDEBUG
&& print STDERR "REPLY =${|en} ${ delim} $REPLY\n"; $buf="$len"."$delim"."$SREPLY";
syswrite(NS,$buf length($buf)); close NS;

© Copyright 1999, Maui High Performance Computing Center. All rights reserved.

Job Attributes

Job Attributes/Flags Overview

Attribute

Format

IDefault

IDescription

[Example

FLAGS

<FLAG>[;<FLAG>]...

[NONE]

specifies
job specific
flags

FLAGS=ADVRES; DEDI CATED

(The job should only utilize reserved resources
and should only use resources on hosts which can
be exclusively dedicated)

PDEF

<PARTITION_NAME>

[DEFAULT]

specifies
the default
partition
associated
with the
object.

PDEF=P1
(The object is assigned the default partition P1)

PLIST*

<PARTITION_NAME>["|&]
[:<PARTITION_NAME>["&]]...

[ALL]

specifies
thelist of
partitions
the object
can access.
If no
partition list
is specified,
the object is
granted
default
accessto all
partitions.

PLI ST=Q dSP: Cl uster 1: BK

(The object can access resources located in the
QA dSP, d ust er 1, and/or O3K partitions)

QDEF

<QOS_NAME>

[DEFAULT]

specifies
the default
QOs
associated
with the
object.

QDEF=pr enm um

(The object is assigned the default QOS
premnm um

QLIST*

<QOS_NAME>["&]
[:<QOS_NAME>["&]]...

<QDEF>

specifies
thelist of
QoS'sthe
object can
access. |If
no QOS list
is specified,
the object is
granted
access only
toits
default

partition/

QLI ST=pr eni um express: bott onf eeder

(The object can access any of the 3 QOS's listed)

*NOTE: By default, jobs may access QOS's based on the 'logical or' of the access lists associated with al job credentials. For example, ajob
associated with user John, group staff, and class batch may utilize QOS's accessible by any of the individual credentials. Thusthe job's QOS

accesslist, or QLIST, equalsthe 'or' of the user, group, and class QLIST's. (i.e., JOBQLIST = USERQLIST | GROUPQLIST |

CLASSQLIST).

If the ampersand symbol, ‘&', is associated with any list, thislist islogically and'd with the other lists.
symbol, V', is associated with any object QLIST, thislist isexclusively set, regardless of other object access lists using the following order of
precedence user, group, account, QOS, and class. These specia symbols affect the behavior of both QOS and partition accesslists.

Job Flags

[Flag

|Format

|Default

|Description |[Example

If the carat

ADVRES

ADVRES[:<RESID>]

Use available resources
where ever found,
whether inside a
reservation or not.

specifiesthe
job may only
utilize
accessible,
reserved
resources. |f
<RESID>is
specified, only
resources in the
specified
reservation
may be
utilized.

FLAGS=ADVRES: META. 1

(The job may only utilize resources located in
the META. 1 reservation)

BENCHMARK

BENCHMARK

N/A

N/A

FLAGS=BENCHVARK

BESTEFFORT

BESTEFFORT

N/A

N/A

FLAGS=BESTEFFORT

BYNAME

BYNAME

N/A

N/A

FLAGS=BYNANE

DEDICATED

DEDICATED

Use resources according
to the global
NODEACCESSPOLICY

specifies that
the job should
not share node
resources with
tasks from any
other job

FLAGS=DEDICATED

(The job will only allocate resources from
nodes which can be exclusively dedicated to
thisjob)

HOSTLIST

HOSTLIST=<HOSTNAME>
[:<HOSTNAME>]...

The job may utilize any
available resource
regardless of hosthame

specifies the
list of hosts
which should
be used by the
job. If more
hosts are
specified than
are needed to
meet the jobs
total task
requirements,
Maui will
select needed
hosts from the
list. If fewer
hosts are
specified than
are needed to
meet the job's
total task
reguirements,
Maui will
select dl listed
hosts and
attempt to
locate
additiona
resources
elsewhere.

HOSTLI ST=node003: node006: node009

(Maui will allocate resources using the
specified hosts)

NOQUEUE

NOQUEUE

Jobs remain queued until
the are able to run

specifies that
the job should
be removed it
isisunableto
dlocate
resources and
start execution

immediately.

FLAGS=NOQUEUE

(The job should be removed unlessit can start
running at submit time.)

Specifies that

the job may be _
PREEMPTEE |PREEMPTEE Jobs may not be prrewmptt?d by AR
preempted by other jobs other jobs (The job may be preempted by other jobs
which havethe |hich have the'PREEM PTOR' flag set)
PREEMPTOR
flag set.
Specifies that
the job may B
PREEMPTOR |PREEMPTOR Jobs may not preempt SR Ortmher S
other jobs JObS WhiC (The job may preempt other jobs which have
have the the'PREEMPTEE ' flag set)
PREEMPTEE
flag set
NOTE: used
only in
Jobs are qated only ~ |simulation)
PRESTART PRESTART after the first scheduling mode to FLAGS=PRESTART
Iteration pre-populate a
system.
ecifies jobs
" b] FLAGS=RESTARTABLE
RESTARTABLE |RESTARTABLE Jobsmay not be retarted|, 20 & v
if preempted. requeued and | The associated job can be preempted and
|ater restarted if |reqrarted at alater date)
preempted
SHAREDNODE |[SHAREDNODE N/A N/A N/A
Allows jobs to
i FLAGS=SPAN
Jobs may only access utilize f
SPAN SPAN resources within asingle | o ources IFOM |(The job can be allocated and utilize resources
partition multiple from more than one accessible partition
partitions simultaneously.)

simultaneously

Appendix I: Considerations for Large Clusters
There are severa key considerations in getting a batch system to scale.
.1 Resource Manager Scaling

Proper Resource Manager Configuration - TORQUE
Direct Node Communication - NODEPOL L FREQUENCY

(Under Construction)
.2 Handling Large Numbers of Jobs

Aggregating Scheduling Cycles - JOBAGGREGATIONTIME

(Under Construction)

http://www.clusterresources.com/products/maui/torque

NOTE:

For all Maui 3.0 versions, throttling policies must be specified using the old style
convention requiring two or more parameters. The first parameter, *POLICY, indicates
whether the policy isenabled. The* COUNT parameter specifies the policy hard limit. The
*SCOUNT parameter specifiesthe optional policy soft limit. For example, In Maui 3.2, you
might limit the number of jobs per user using the statement 'USERCFG DEFAULT]
MAXJOB=4, 6'. In Maui 3.0, you would do the same thing by specifying the following:

MAXJ OBPERUSERPOLI CY ON
MAXJOBPERUSERCOUNT 4
SMAXJ OBPERUSERCOUNT 6

The following translation must be used to specify policy X for credential Y
Maui 3.2

USERCFG<Y> <X> =<SOFTLI M T>[, <HARDLI M T>]

Maui 3.2

<X>PER<Y>PQOLI|I CY ON
<X>PER<Y>COUNT <HARDLIM T>
S<X>PER<Y>COUNT <SOFTLI M T>

If you have any questions, please send a note to us at help

mailto:brian@chpc.utah.edu

Appendix G: mjobctl

mjobctl [ARGS] <JOBID>

Purpose

modify attributes or perform operation on a specified job

Per missions

This command can be run by any Maui administrator or by the owner of the specified job.

Parameters

JOBID Name of the job to be affected.

Args

-n <NODELIST>

-p <PARTITION>

Description

Description
Cancel job

Attempt to force the job to run, ignoring throttling policies (Only valid
with the -r flag)

Help for this command.
Modify specified job. See details below.

Attempt to start the job using the specified nodelist where nodenames
are comma or colon delimited (Only valid with the -r flag)

Attempt to start the job in the specified partition. (Only valid with the
-r flag)

Attempt to start (run) the job
Attempt to suspend the job

Attempt to force the job to run, ignoring throttling policies, QoS
constraints, and reservations (only valid with the -r flag)

This command will attempt to alter a specified job

Example

> nmjobctl -r cluster. 231
job cluster.231 successfully started

This example attempts to run job cluster.231.

See Also:

checkj ob - show detailed status of ajob.
showg - list queued jobs.

Appendix H: Interfacing to Maui

Maui interfaces to systems providing various services and using various protocols. This
appendix is designed to assist users who wish to enable Maui in new environments using one
of the existing interfaces. It does not cover the steps required to create a new interface.

H.1 Utilizing Maui Client Services

The standard Maui distribution provides a scheduler server (maui) and a number of user
clients (showq, showres, etc). By default, these clients communicate with the scheduler using
an internal single use, 'byte count + secret key' based TCP connection protocol called ssmply
the 'SngleUseTCP' protocol. This protocol is documented in the Wiki 'Socket Interface’

section with an overview and sample code describing how to generate the byte count,
timestamp, encrypted checksum, etc. This protocol isfunctional but is not acommonly used
standard outside of the Maui project. A further issue with creating client interfacesis that even
though the socket interface is well defined, the data flowing through this interface to support
client requestsis not standardized. As of Maui 3.2.5, some clients receive raw binary data,
others raw text, and still others formatted text ready for display. This has resulted from the
evolutionary nature of the client interface which has not received a much needed design
'refresh’. The good newsisthat thisrefresh is now under way.

As part of the Department of Energy's 'Scalable Systems Software' initiative, there have
been significant enhancements to the scheduler/client protocol. Maui now supports multiple
socket level protocol standardsin communicating with its clients and peer services. These
including 'SingleUseTCP, 'SSS-HALF', and 'HTTP. The client socket protocol can be
specified by setting the MCSOCKETPROTOCOL parameter to SUTCP , SSS-HALF, or
HTTP. Further protocols are being defined and standardized over time and backwards
compatibility will be maintained. Documentation on the SSS-HALF implementation can be
found within the DOE's SSS Project Notebooks. NOTE: HTTP support is currently (Oct 24,

2002) in active development and is not expected to be in production use until Maui 3.2.6.

In addition to the socket protocol advances, there has also been work in the area of
standardizing the format in which the client datais actually transmitted. The SSS project has
selected XML as the meansto frame all inter-client data. To date, a number of Maui clients
have been ported over to enable optional use of XML based data framing. These clients
include mshow (showq), showstate, checknode , mjobctl (runjob, setjobhold, setspri,
canceljob), and mresct| (setres, releaseres). NOTE: The XML used in these clientsis still
evolving. Itisexpected to be finalized for the clients listed by mid December 2002. If thereis
interest in working with these protocols or defining specifications, please contact us so we can
coordinate any changes and take your needs into account when prioritizing future
devel opment.

H.2 Resource Management Interfaces

http://www.scidac.org/ScalableSystems
mailto:help@supercluster.org

(Under Construction)

H.3 Allocation Management Interfaces
(Under Construction)

H.4 Grid Scheduling System Interfaces
(Under Construction)

H.5 Information Service Interfaces
(Under Construction)

H.6 Event Management Services

(Under Construction)

2t 4] 4 up M aui Cluster Scheduler

Appendix J. Maui Differences Guide
Maui 3.2.6 patch 10

For full list of changes, see CHANGEL OG file included with distribution
« Scalability
o Added client data compression
I nter-oper ability
0 Added support for SSS 3.0.3 job structure
0 Added support for SSS suspend-resume features
0 Support PBS 'state-unknown' mapping
o Improved TORQUE 'status attribute auto-detection
Security
o Added client data encryption
0 Added client bounds checking to prevent buffer overflow
o Enhanced group ID mapping support
Features
0 Added scheduler-level config based node feature specification
0 Enabled Dynamic Hostlist Modification
o Enabled AM Job Failure Action Support
0 Added support for class/queue level feature requirement defaults
o Added support for dedicated resource specification w/in standing reservations
Fault Tolerance
0 Fixed TORQUE server data auto-detect
o Fixed data corruption server crash
o Improved logic for stale job handling with failing resource managers
Useability
0 Improved Node State Diagnostics
« Accounting

4] % =

it 4| Maui Cluster Scheduler

Appendix K: Maui-Moab Differences Guide

it] %

	Maui 3.2
	Maui Scheduler Administrator's Guide
	Maui Admin Guide - Philosophy
	Maui Admin Guide - Value of a Batch System
	http://www.clusterresources.com/products/maui/docs/docsout/1.2philandgoals.shtml
	Maui Admin Guide - Installation
	Maui Admin - Maui Installation
	Maui Admin Guide - Initial Maui Configuration
	Maui Admin - Initial Maui Testing
	Maui Admin - Appendix D: Adjusting Default Limits
	Maui Admin - Appendix F: Scheduler Parameters
	http://www.clusterresources.com/products/maui/docs/docsout/commands/schedctl.shtml
	Maui Administrator's Guide - Simulations
	http://www.clusterresources.com/products/maui/docs/docsout/commands/profiler.shtml
	Maui Admin - Maui Basics Overview
	Maui Admin - File Layout
	Maui Admin - Scheduling Environment
	Maui Admin - Scheduling Iterations and Job Flow
	Maui Admin - Configuring the Scheduler
	http://www.clusterresources.com/products/maui/docs/docsout/fsconfig.shtml
	Maui Admin - Scheduling Dictionary
	Maui Admin Manual - Job Prioritization
	http://www.clusterresources.com/products/maui/docs/docsout/commands/changeparam.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showconfig.shtml
	Maui Admin - Maui Commands
	http://www.clusterresources.com/products/maui/docs/docsout/4.1clientoverview.shtml
	Maui Administrator's Guide - Status Commands
	Maui Administrator's Guide - Job Management Commands
	Maui Administrator's Guide - Reservation Management Commands
	http://www.clusterresources.com/products/maui/docs/docsout/4.5policy-cmds.shtml
	Maui Administrator's Guide - End User Commands
	http://www.clusterresources.com/products/maui/docs/docsout/4.7misc-cmds.shtml
	Maui Admin - Appendix G: Commands Overview
	http://www.clusterresources.com/products/maui/docs/docsout/commands/checkjob.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/checknode.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosefairshare.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnose.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosepriority.shtml
	Maui Administrator's Guide - Commands - diagnose -r (reservation)
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showgrid.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showq.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showstats.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/canceljob.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/releasehold.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/runjob.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/sethold.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/setqos.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/setspri.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/releaseres.shtml
	Maui Administrator's Guide - setres
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showres.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showbf.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showstart.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/resetstats.shtml
	Maui Admin Guide - Prioritizing Jobs and Allocating Resources
	Maui Admin Manual - Node Allocation
	http://www.clusterresources.com/products/maui/docs/docsout/5.3nodeaccess.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.4nodeavailability.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.5taskdistribution.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.1.1priorityoverview.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.1.2priorityfactors.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.1.3priorityusage.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.1.4prioritystrategies.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/5.1.5prioritymanagement.shtml
	Maui Administrator's Guide - Resource Manager Extensions
	Maui Administrator's Guide - Managing Fairness - Throttling Policies, Fairshare, and Allocation Management
	Maui Administrator's Guide - Fairness Overview
	Maui Administrator's Guide - Throttling Policies
	Maui Administrator's Guide - Fairshare
	Maui Administrator's Guide - Allocation Management
	http://www.clusterresources.com/products/maui/docs/docsout/throttling306.shtml
	Maui Admin - Appendix E: Security
	Maui Administrator's Guide - Controlling Resource Access - Reservations, Partitions, and QoS Facilities
	Maui Administrator's Guide - Advance Reservations
	Maui Administrator's Guide - Partitions
	Maui Administrator's Guide - QOS Overview
	http://www.clusterresources.com/products/maui/docs/docsout/7.1.1resoverview.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/7.1.2adminreservations.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/7.1.3standingreservations.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/7.1.4reservationpolicies.shtml
	Maui Administrator's Guide - Managing Reservations
	http://www.clusterresources.com/products/maui/docs/docsout/7.1.6userreservations.shtml
	Maui Admin Guide - Node Location
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnoseqos.shtml
	Maui Administrator's Guide - Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption
	http://www.clusterresources.com/products/maui/docs/docsout/8.1optimizationoverview.shtml
	Maui Administrators Manual - Backfill
	http://www.clusterresources.com/products/maui/docs/docsout/8.3nodesetoverview.shtml
	Maui Administrator's Guide - Preemption Policies
	Maui Administrator's Guide - Evaluating System Performance - Statistics, Profiling, Testing, and Simulation
	http://www.clusterresources.com/products/maui/docs/docsout/9.1performanceevaluation.shtml
	Maui Administrator's Guide - Accounting: Job and System Statistics
	http://www.clusterresources.com/products/maui/docs/docsout/9.3profilingusage.shtml
	Maui Administrators Manual - Testing New Versions and Configurations
	http://www.clusterresources.com/products/maui/docs/docsout/9.5whatifquestions.shtml
	Maui Administrator's Guide - Workload Traces
	http://www.clusterresources.com/products/maui/docs/docsout/trace.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/14.1internaldiagnostics.shtml
	Maui Admin Guide - Managing Shared Resources - SMP Issues and Policies
	http://www.clusterresources.com/products/maui/docs/docsout/10.1consumableresourcehandling.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/10.2loadbalancingfeatures.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/10.3resourceusagetracking.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/10.4resourceusagelimits.shtml
	Maui Admin Guide - General Job Administration
	http://www.clusterresources.com/products/maui/docs/docsout/11.1jobholds.shtml
	Maui Admin - Job Priority Management
	Maui Admin - Suspend/Resume Handling
	http://www.clusterresources.com/products/maui/docs/docsout/11.4checkpointrestart.shtml
	Maui Administrator's Guide - Job Dependencies
	http://www.clusterresources.com/products/maui/docs/docsout/commands/mjobctl.shtml
	Maui Administrator's Guide - Job Defaults and Per Job Limits
	Maui Administrator's Guide - General Job Policies
	Maui Administrator's Guide - Using a Local Queue
	Maui Admin Guide - General Node Administration
	http://www.clusterresources.com/products/maui/docs/docsout/12.2nodeattributes.shtml
	Maui Administrator's Guide
	http://www.clusterresources.com/products/maui/docs/docsout/commands/showstate.shtml
	Maui Administrator's Guide - Managing Node-Locked Consumable Generic Resources
	Maui Administrator's Guide - Resource Managers and Interfaces
	Maui Admin Guide - Resource Manager Overview
	Maui Admin - Resource Manager Configuration
	Maui Administrator's Manual - Adding New Resource Manager Interfaces
	Maui Administrator's Guide = Wiki Interface Overview
	http://www.clusterresources.com/products/maui/docs/docsout/wikiinterface.shtml
	Maui-PBS Integration Guide
	Maui-SGE Integration Guide
	Maui-Loadleveler Integration Guide
	http://www.clusterresources.com/products/maui/docs/docsout/13.3.1pbsrmextensions.shtml
	Maui Admin Guide - Trouble Shooting and System Maintenance
	http://www.clusterresources.com/products/maui/docs/docsout/14.2logging.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/14.3messagebuffer.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/14.4eventmgmt.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/14.5troubleshootingclients.shtml
	Maui Administrator's Manual - Tracking System Failures
	http://www.clusterresources.com/products/maui/docs/docsout/14.7troubleshootingjobs.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosejob.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnosequeue.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/commands/diagnoserm.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/troubleshooting.shtml
	Maui Admin - Improving User Effectiveness
	http://www.clusterresources.com/products/maui/docs/docsout/15.1userfeedbackloops.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/15.2userlevelstatistics.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/15.3improvingwallclock.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/15.4resourceavailability.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/15.5jobstarttimeestimates.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/15.6profilingjobs.shtml
	Maui Administrator's Guide - Simulations Overview
	http://www.clusterresources.com/products/maui/docs/docsout/16.2resourcetrace.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/16.4simspecconfig.shtml
	Maui Admin - Miscellaneous
	Maui Admin - User Feedback Overview
	Maui Administrator's Guide - Grid Scheduling
	Maui Administrator's Guide - Enabling High Availability Features
	Maui Administrator's Guide - Using the Application Scheduling Library
	Maui Admin - Appendix A: Case Studies
	http://www.clusterresources.com/products/maui/docs/docsout/casestudies/case1.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/casestudies/case2.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/casestudies/case3.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/casestudies/case4.shtml
	http://www.clusterresources.com/products/maui/docs/docsout/casestudies/case5.shtml
	Maui Admin - Appendix B: Extension Interface
	Maui Admin - Appendix C: Adding New Algorithms
	Maui Scheduler Socket Protocol Description
	http://www.clusterresources.com/products/maui/docs/docsout/jobflagoverview.shtml
	Maui Admin - Appendix I: Considerations for Large Clusters
	http://www.clusterresources.com/products/maui/docs/docsout/policynote-3.0.shtml
	Maui Admin - Appendix G: mjobctl overview
	Maui Admin - Appendix H: Interfacing to Maui
	Maui Administrator's Guide - Appendix J: Maui Differences Guide
	Maui Administrator's Guide - Appendix K: Maui-Moab Comparison Guide

