
Master of Engineering Thesis

Evaluation and Implementation of the
RTOS eCos

Author: Michael Labus
15512204

famlabus@gmx.de

First Supervisor: Prof Dr H Hoegl

Second Supervisor: Dr C Turner

Submission date: May 19, 2006

ii

Master of Engineering Thesis

University of Applied Sciences, Augsburg, Germany
Department of Electrical Engineering

University of Ulster Jordanstown, Newtownabbey, Northern Ireland
Faculty of Engineering
School of Electrical and Mechanical Engineering

I affirm that the Master of Engineering Thesis is my own work, and that it has never
been submitted for examination purposes before. All sources and citations used
have been quoted as such, and all utilized tools have been mentioned.

Michael Labus

M M Labus University of Ulster

iii

c© 2006 Michael Labus
All rights reserved.

First edition: 19 May 2006

This work is licensed under the Creative Commons Attribution-NonCommercial License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc/2.0/ or send a letter to Creative

Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

M M Labus University of Ulster

this page intentionally left blank

Abstract

The main topic of this project is the evaluation and implementation of the real-time
based operating system eCos.
eCos is a royalty free real time operating system which is highly configurable and has
a very small footprint. Within the scope of this thesis, the system was installed on an
ARM based microcontroller, using the Olimex LPC-E2294 development board. There-
fore the eCos hardware abstraction layer was ported to the custom hardware. Drivers
were partly designed to provide access to certain hardware interfaces and peripherals
including external flash, Ethernet, serial, and CAN. Furthermore an application was
implemented to demonstrate the threading capabilities of eCos and the control of the
serial and GPIO ports.

vi

Acknowledgements

I would like to thank my first supervisor Prof. Dr. Hubert Hoegl at the University
of Applied Sciences, Augsburg, for many ideas and suggestions, for great encourage-
ment, and for giving me the opportunity to conduct this thesis.

I would like to thank my second supervisor Dr. Colin Turner for his support during
my stay at the University of Ulster, Newtownabbey.

Furthermore I would like to thank Prof. Dr. Frank Owens at the University of Ulster,
Newtownabbey, for his help and accommodation in many organisational matters.
Among other favours together with Mr. Gilmore Wilf at the University of Ulster a
laboratory was established to offer sufficient working conditions.

Last but not least I would like to thank Timo Bruderek for his advices and hints con-
cerning diverse embedded system problems.

M M Labus University of Ulster

vii

Contents

Abbreviations x

1 Introduction 2
1.1 Motivation . 2
1.2 Aims and Objectives . 2
1.3 Structure of this Document . 3

2 Requirements Specification 4
2.1 Comprehension of eCos . 4
2.2 Development Setup . 4

2.2.1 Software . 5
2.2.2 Hardware . 5
2.2.3 Implementation of eCos . 5
2.2.4 Further miscellaneous Requirements 6

3 eCos 7
3.1 eCos Source Tree Roadmap . 8
3.2 The eCos Architecture . 8
3.3 Hardware Abstraction Layer . 8

3.3.1 HAL Start-up . 11
3.4 The Redboot ROM Monitor . 13
3.5 Kernel . 14

3.5.1 Kernel Startup . 15
3.5.2 Schedulers . 15
3.5.3 Interrupt Handling . 16
3.5.4 Exception Handling . 16

3.6 Thread Synchronisation . 18
3.6.1 Mutexes . 19
3.6.2 Semaphores . 19
3.6.3 Flags . 19
3.6.4 Spinlocks . 20
3.6.5 Condition Variables . 20

Contents viii

3.6.6 Message Boxes . 20
3.7 I/O Control System . 20

3.7.1 I/O Subsystem . 20
3.7.2 Device Drivers . 21

3.8 Configuration Tool . 21
3.9 eCos building process . 23
3.10 Third Party Support . 25

3.10.1 GoAhead Webserver . 25
3.10.2 Grafical User Interface . 25

3.11 eCos Support . 27

4 CAN-Bus Fundamentals 29
4.1 CAN Topology . 29
4.2 Object Identifier . 29
4.3 CAN-Messages . 30

5 Development Setup 32
5.1 Hardware Setup . 32

5.1.1 Development Host Platform . 32
5.1.2 Development Target Platform . 32

5.2 Software Setup . 37
5.2.1 OpenOCD - Debugger . 37
5.2.2 eCos CVS Repository . 39
5.2.3 Eclipse . 40
5.2.4 ARM-ELF GNU Toolchain . 40

6 Implementation of eCos 41
6.1 HAL Port . 41

6.1.1 Structure of the Port . 41
6.1.2 Platform Initialisation . 42
6.1.3 Memory Layout . 43
6.1.4 CDL-File . 45
6.1.5 Modification of the eCos database 45

6.2 Drivers . 46
6.2.1 Serial Interface Driver . 46
6.2.2 Flash ROM Driver . 46
6.2.3 Ethernet . 47
6.2.4 CAN Driver - lpccan . 48

6.3 Redboot . 52
6.4 LCD Application . 53

M M Labus University of Ulster

Contents ix

7 Conclusion and further Work 55

A eCos linking and building 58

B Comparison of GUI libraries 59

C CS8900 61

D CAN Driver Macros 62

E Threads using the LCD Example 65

F Flash Driver Extract 67

G CDL Files 68

H RedBoot Minimal Configuration File 70

M M Labus University of Ulster

x

Abbreviations

CAN Controller Area Network
CDL Configuration Definition Language
CPU Central Processing Unit
CVS Concurrent Versions System
eCos embedded Configurable operating system
ELF Executable and Linking Format
EMC External Memory Controller
GNU GNU’s Not Unix
GUI Graphical User Interface
HAL Hardware Abstraction Layer
IDE Intergarted Development Environment
JTAG Joint Test Action Group
LCD Liquid Crystal Display
MCU Microcontroller
RAM Random Access Memory
ROM Read Only Memory
RTOS Real Time Operating System

xi

List of Figures

3.1 eCos logo [5] . 7
3.2 eCos Roadmap . 9
3.3 The overall system architecture of eCos 10
3.4 eCos startup procedure . 11
3.5 Redboot ROM monitor architecture . 14
3.6 Kernel startup procedure . 15
3.7 eCos exception handling execution flow 18
3.8 The eCos I/O Subsystem Architecture 21
3.9 eCos Configtool Interface . 22
3.10 eCos Package Database Structure . 23
3.11 eCos Build Process . 24
3.12 Linking an Application . 25
3.13 MiniGui example application [13] . 26
3.14 MiniGui archictecture [13] . 27

4.1 CAN topology with the LPC2294 CAN Controller 29
4.2 Structure of a CAN message [17] . 30

5.1 The LPC-E2294 board of Olimex [18] . 33
5.2 Connection layout of the LCD [18] . 34
5.3 Signal Qualifier . 36
5.4 Memory Map of the Olimex LPCE2994 Board 38
5.5 OpenOCD layers and interfaces . 39

6.1 Write process . 51
6.2 Thread communication and synchronisation 54

C.1 cs8900 setup . 61

xii

List of Tables

3.1 I/O API calls . 22

5.1 LCD Pin Connections . 35
5.2 I/O Mode Mapping [26] . 37

B.1 Graphical Library Comparison [13] . 60

D.1 CAN_LOWLEVEL_FUNS Macro parameter description 62
D.2 SERIAL_CHANNEL_USING_INTERRUPTS macro parameter de-

scription . 63
D.3 DEVTAB_ENTRY macro parameter description 64

8.1 Revision history; . 73

Executive Summary

eCos is an open source real-time operating system developed by Redhat and its user
community. It, like other conventional operating systems, seeks to reduce the burden
of application development by providing convenient abstractions of physical devices
and highly tuned implementations of common functions [15]. eCos has been designed
in such a way that a small resource footprint can be constructed. It is extremely con-
figurable and allows developers to select components that satisfy basic application
requirements. eCos uses compile-time control methods, along with selective linking,
provided by the GNU linker, to give the developer control of its behaviour, allow-
ing the implementation itself to be built for the specific application for which it is
intended.

The motivation for this master thesis arose from the need to build a cheap device
with a network interface and software support for the TCP/IP protocol suit. Since
the computing power and memory resources were below the limit to run Embedded
Linux, the natural decision is to run the much more economical real-time operating
system eCos. This document gives advice for further developments related to the
build of the mentioned cheap network device and describes the conducted works
related with the port of eCos to a custom hardware platform.
During the conduction of this project several major aims were strived. The following
list gives a summerised overview about the aims and objectives.

• Evaluation of the eCos operating system regarding architecture, capabilities, and
footprint.

• Investigation of third party support like web server and GUIs

• Setup of the hardware and software development system

• Port of eCos to the target hardware

• Implementation of required drivers

• Integration of the HAL port and new drivers into the eCos component frame-
work

• Application development

The initial step of the project was a brief reading of relevant literature. All required
software components for host and target development has been obtained from the
eCos distributor’s internet resources. The hardware, besides the host PC, was pro-
vided by Prof. Hoegl, the first supervisor. The basic hardware for this project was

xiii

a Debian Sarge operating PC and the Olimex LPC-E2294 evaluation board. The in-
terface between the host and the target was established using the Chameleon POD
from Amontec [1]. The required software connection between host and target was
established using OpenOCD [25] which is a free JTAG software debugger for ARM7
and ARM9 CPUs. Several guides, all referenced in the bibliography, were considered
to port the system to the custom hardware. Furthermore the eCos mailing list gave
supporting answers to upcoming questions.

The first major task of the thesis was the port of the eCos HAL to the custom hard-
ware. This goal has been accomplished successfully. Out of the four aimed interface
drivers the serial and the flash memory driver have been implemented and tested
successfully. The Ethernet and the CAN driver need some further work to be en-
tirely integrated into the eCos system. Thereby the developed routines of the Ethernet
driver have to be debugged and tested to provide the demanded functionality. The
CAN driver lacks of the proper implementation of the read routines and some accom-
plishing works to provide a write access to the CAN bus. Nevertheless all drivers are
selectable and configurable using the eCos Configuration Tool. The conducted HAL
port and the drivers have been entirely adapted to the eCos component framework.

The implemented applications RedBoot and the LCD control example illustrate the
functionality of the eCos HAL, the serial driver and the usage of the GPIO ports of the
LPC2294 MCU.

Regarding further works the GoAhead web server and the graphical libraries
MiniGUI and Nano-X have been investigated and described.

1

2

1 Introduction

1.1 Motivation

For embedded systems some of the tasks of an implemented program might be man-
aging threads, controlling I/O interfaces, and reacting appropriate on exceptions or
interrupts. Since these functionalities can be usually offered by a common real-time
operating system, the design of own low-layer applications to configure the used
hardware and run tasks is not always required. Although self-designed routines can
be more efficient to resource management, available operating systems are a reason-
able alternative by offering higher portability, a generalized interface to upper appli-
cations and the usage of already implemented routines.

Once ported to a specific target own applications can use the provided interfaces
and routines to access the hardware functionality. Tasks can run in threads which are
automatically administrated and synchronised by the kernel and its scheduler.

The motivation for this master thesis arose from the need to build a cheap device
with a network interface and software support for the TCP/IP protocol suit. Since
the computing power and memory resources were below the limits to run Embedded
Linux, the natural decision was to run the much more economical real-time operating
system eCos

1.2 Aims and Objectives

The major aim and objectives are listed below.

• Evaluation of the eCos operating system, regarding architecture, capabilities,
and footprint

• Investigation of third party support as webserver or GUIs1

• Setup of the hardware and software development system

• Port of eCos to the target hardware

1Grafical User Interface

1.3 Structure of this Document 3

• Implementation of required drivers (Ethernet, CAN, Serial, Flash memory)

• Integration of the HAL port and new drivers in the eCos component framework

• Application development

• Within the scope of this master thesis only free, open-source software packages
and tools have to be used.

Furthermore the thesis has to be available to the public by choosing an open license,
e.g. the Creative Commons License.

1.3 Structure of this Document

The structure of this document is briefly described in the following. The next chap-
ter describes the requirements for this thesis due to the aims and objectives. The
necessary outcome is described in more detail and divided into subtasks. Chapter
3 provides information about the eCos system, its architecture, behaviour, and com-
ponents, down to the eCos Kernel features. Additionally crucial information about
linking and building of eCos and its applications are listed.

Since one of the objectives considers the design of a CAN driver for eCos, Chapter
4 deals with the most important fundamentals of this network protocol. In the 5th
chapter the required host and target side software and hardware components are
described. Since all utilised software has to be open source the setup of these tools
needs more attention than for commercial software packages.

Finally Chapter 6 covers the implementation of the eCos system to the development
platform containing the port itself and the implementation of drivers and applica-
tions. The last chapter contains a critical conclusion of the progressed works and an
outlook on further work.

M M Labus University of Ulster

4

2 Requirements Specification

The following requirements specification is derived from the main objectives of the
Final Year Project mentioned in Section 1.2.

2.1 Comprehension of eCos

A detailed comprehension of the eCos operating system is a fundamental require-
ment for the process of the whole implementation. The architecture of eCos has to be
analysed and the crucial components for the single steps of the eCos implementation
have to be mentioned. One of the core components of the eCos operating system is
the Hardware Abstraction Layer (HAL). This layer builds together with the driver
components the only hardware dependent part of eCos. Superior layers can use the
standardised interface of the HAL to access hardware functionality. Hence the at-
tributes of this module have to be described properly.

Interrupt and exception handling are important matters concerning the analysis
of an operating system. These functionalities have to be investigated and reflected.
Since the final aim of a port is the implementation of own applications the realisation
process of own tasks has to be described. Applications running on eCos are built in
threads, the handling of this software component has to be analysed.

The core component of each operating system is the Kernel. This module deals with
timing matters and offers scheduling mechanisms for thread administration. The at-
tributes and configuration options of the eCos scheduler have to listed and explained.

Furthermore all necessary attributes of eCos concerning the port and the implemen-
tation have to be given.

2.2 Development Setup

The bases of each development setup are the software packages, the host and tar-
get hardware components, and the interface components between host and target.
Primarily all used development components have to be mentioned and in addition
nontrivial installation and configuration steps have to be explained.

2.2 Development Setup 5

2.2.1 Software

As already mentioned eCos is a free, open source operating system. The open source
thought has to be kept from the beginning of the master thesis till the final report.
This means that all software and tools which are used have to be free. The host com-
puter for development ought to be a PC running Debian Linux. Concrete installation
steps and configuration settings of the host operating system have not to be described
since the host hardware is likely to be individual for each future developer. However
the used software packages have to be listed together with their current versions. The
setup of the development and debug environment for the eCos port, the driver devel-
opment and the design of applications has to described in detail but within the scope
of a final report. If the installation of certain software excesses the scope of the thesis
further literature has to be offered.

2.2.2 Hardware

Unless the host hardware guarantees proper interfaces for the communication to the
target hardware no other specifications are necessary for this component.

The target hardware needs to provide a sufficient amount of memory. It has to be
investigated which footprints are typical for eCos. Third party components and the
required memory demands have to be considered and listed.

Since an ARM7TDI-S CPU will be used in future developments this type of proces-
sor has to be regarded. It is mandatory that the platform offers the general interfaces
as ethernet, SPI, CAN, Serial, and I2C. For debugging purposes a JTAG interface has
to be provided.

Debugging has to be conducted using a raven dongle. A suggestion is the Amontec
Chameleon POD which is a programmable JTAG interface able to emulate specific
parallel to serial interfaces.

For the on going work the target platform design and layout has to be analysed and
determining attributes for the implementation progress and the driver development
have to be discussed.

2.2.3 Implementation of eCos

The first major requirement is the port of the eCos HAL to the target hardware. There-
fore the porting progress has to be analysed and a decision about the variant of the
port has to be made. The HAL must initialise the target hardware containing CPU,
memory, serial interface and GPIO setup. Furthermore the new port has to be fit-
ted into the eCos component framework. This makes the new board selectable and
configurable using the eCos Configuration Tool.

M M Labus University of Ulster

2.2 Development Setup 6

Drivers for the Ethernet and serial communication, the external flash access and
CAN messaging control have to be implemented. In particular the CAN driver has
to allow access to a bus sending and receiving messages. FullCAN abilities, i.e. hard-
ware filtering of messages, are not required.

As a first ROM application Redboot has to be built and run on the target hardware.
The GPIO abilities have to be demonstrated using a RAM application using

threads.

2.2.4 Further miscellaneous Requirements

A possible interface for MCUs is a graphical LCD and/or a touch panel. The thesis
has to evaluate which Graphical User Interface libraries are suitable and feasible for
eCos.

The generated source code and the Final Thesis have to be contributed under ap-
propriate open source licenses.

M M Labus University of Ulster

7

3 eCos

Real-time operating systems (RTOS) in general are designed for various kinds of real-
time applications and the development of such RTOS is becoming increasingly impor-
tant. Computers are used in cars, aircraft, manufacturing assembly lines, and other
control systems to provide the functionality of these real-time systems. Given ran-
dom inputs of the peripheral control devices must be processed by the computer and
the used operating system in a given amount of time and the resulting output has to
be provided within specified deadlines. Frequently and periodically required tasks
have to be started and stop at predefined times and have to run during determined
time intervals. The behaviour during processing has to be deterministic and unde-
fined states have to be intercepted. A RTOS is valued more for how quickly and
predictably it can respond to a particular event than for the given amount of work
performed over time. Therefore the key factors in a RTOS are minimal interrupt and
thread switching latency. The Kernel of the operating system has to deal with these
requirements and implement adequate scheduling mechanisms.

The amount of available RTOS is continuously growing, both for commercial distri-
butions and for open source variants. Compared to the commercial RTOS VxWorks,
Tornado or Windows CE, eCos is royalty free like Linux or µClinux. It was written by
Cygnus Solutions [3] with the motivation to develop a small, configurable real-time
operating system. eCos is able to deliver a comparable performance to commercial
products although it is totally open source. Nowadays eCos belongs to Redhat and
the development is due to the huge eCos community still in progress. A wide range
of ports to general platforms is already available [21]. eCos, like other conventional

Figure 3.1: eCos logo [5]

operating systems, seeks to reduce the burden of application development by provid-
ing convenient abstractions of physical devices and highly tuned implementations of
common functions [15]. It has been designed in such a way that a small resource
footprint can be constructed. It is extremely configurable and allows developers to

3.1 eCos Source Tree Roadmap 8

select components that satisfy basic application needs and to configure the OS for
the specific implementation requirements for the application. eCos uses compile-time
control methods, along with selective linking (provided by the GNU linker) to give
the developer control of its behaviour, allowing the implementation itself to be built
for the specific application for which it is intended. Thus, the small footprint size,
configurability and portability of eCos make it the RTOS of choice for this implemen-
tation.

3.1 eCos Source Tree Roadmap

In order to ease the usage of this document Figure 3.2 gives an overview which com-
ponents can be found in which part of the eCos source tree. Due to clarity reasons
only directories are listed which actually contain relevant files.

3.2 The eCos Architecture

eCos is based on a layered software architecture. Application portability and reuse
of software is enhanced by encapsulation of target specific hardware from the ap-
plication. As shown in Figure 3.3 all modules above the dashed line are absolutely
hardware independent. The Kernel, the networking stack and the file system build
together with the upper compatibility and library layers a consistent platform for the
application layer.

The RedBoot, the Hardware Abstraction Layer (HAL) and the device driver layer
have to be configured for any specific hardware. The effort for such a port depends
on how similar the new target platform is to former ported hardware.

The Redboot module itself uses the HAL to get access to the specific hardware,
therefore in some figures Redboot is placed above the HAL. Furthermore the hard-
ware independent modules already belong to the application layer. The web server,
networking stack, the Kernel and even the file system do not have to be implemented
in a configuration if this is not necessary. This fact shows the difference between eCos
and a common PC operation system. eCos does not require a file system using ex-
ecutable or editable directories. Compared to UNIX that fact is a special difference,
since UNIX even accesses CPU data (/proc) or hardware (/dev) using files.

3.3 Hardware Abstraction Layer

The HAL is a key component for the portability of the eCos system. Regardless to the
specific hardware the higher software layers can use the HAL interfaces to access the

M M Labus University of Ulster

3.3 Hardware Abstraction Layer 9

Figure 3.2: eCos Roadmap

M M Labus University of Ulster

3.3 Hardware Abstraction Layer 10

Figure 3.3: The overall system architecture of eCos

full functionality of the platform. The encapsulation allows portability of all others
infrastructure components and eases the port process.

The HAL is typically built up with three modules: the architecture, the variant, and
the platform module. The architecture sub-module contains all supported processor
families, e.g. the ARM7 family. For each family the sub-module includes, among
others, the code for CPU start-up, interrupt delivery and context switching.

A variant is a special processor within a family and is contained by the variant
sub-module, e.g. the ARM7TDMI-S variant. The variant sub-module activates CPU
features like caches, MMU or the floating point unit.

The most specific part of the HAL is the platform sub-module which contains the
code for a unique piece of hardware. Typical sources in this module are the platform
start-up routines and the chip select configuration. All HAL packages can be found
under the HAL subdirectory of the CVS repository. Listing 3.1 shows an example
how the HAL_ENABLE_INTERRUPTS() function is implemented for two differ-
ent architectures. The source code for the ARM and the PowerPC architectures is
totally different although it causes the same effect on both architectures.

1

#For the ARM:
#define HAL_ENABLE_INTERRUPTS()

asm volatile (
"mrs r3,cpsr;"

6 "bic r3,r3,#0xC0;"
"msr cpsr,r3"
:
:
: "r3"

11);

M M Labus University of Ulster

3.3 Hardware Abstraction Layer 11

.................................
#For the PowerPC:

16 #define HAL_ENABLE_INTERRUPTS()
CYG_MACRO_START

cyg_uint32 tmp1, tmp2;
asm volatile (
"mfmsr %0;"

21 "ori %1,%1,0x8000;"
"rlwimi %0,%1,0,16,16;"
"mtmsr %0;"
: "=r" (tmp1), "=r" (tmp2));

CYG_MACRO_END

Listing 3.1: Architecture dependent source code

3.3.1 HAL Start-up

Figure 3.4: eCos startup procedure

The most important file of the start-up is vectors.S which controls the whole sys-
tem initialisation. Most of the initialisation code can be found in different modules

M M Labus University of Ulster

3.3 Hardware Abstraction Layer 12

since all CPUs of an architecture use the same vectors.S file. The start-up process is
chronologically shown in Figure 3.4 and described as following1:

1. vectors.S:
Jump to the hardware initialisation code at the label reset_vector. The init code
can be found in the hal_platform_setup.h in the macro PLATFORM_SETUP1.

2. hal_platform_setup.h:
General hardware initialisation (refer to Section 6.1.2)

3. <PLATFORM>_misc.c:
This module includes a function, if a MMU is present, which setups the MMU
to the final memory layout.

4. vector.S:
In the next step CPU depending code is executed. The routines depend on the
type of the startup respectively whether a ROM-Monitor or an application is
started.

5. <PLATFORM>_misc.c:
In this file the hardware specific initialisation functions are implemented. The
function hal_hardware_init initialises among others the interrupt controller,
starts the timer of the system and calls hal_if.c::hal_hal_init.

6. hal_if.c:
In this module various "deamons" of the operating system are implemented.
hal_if_init initialises these "services" and registers them in a data structure.

7. vectors.S:
If a ROM-Monitor or a GDB-Stub is built the function generic-
stub.c::initialize_stub will be called.

8. generic-stub.c:
This module contains the functionality for remote-debugging.

9. vector.S:
If the support for ctrl-c break-support is activated for the debug mode, the func-
tion hal_if.c::hal_ctrlc_isr_init will be called.

10. hal_if.c:
hal_ctrlc_isr_init activates an interrupt handler which stops the application re-
ceived a break signal.

1The notation <FILE>::<FUNCTION> references the function <FUNCTION> in the file <FILE>

M M Labus University of Ulster

3.4 The Redboot ROM Monitor 13

11. vector.S:
Function hal_misc.c::cyg_hal_invoke_constructors is called.

12. hal_misc.c:
The function cyg_hal_invoke_constructors calls all constructors which are
marked in the constructor table. This one is labeled by the linker
(__CTOR_LIST_ and __CTOR_END__).

13. vector.S:
Depending whether a ROM-Monitor or an application is built the function
stubrom.c::cyg_start or the function startup.cxx::cyg_start is called.

14. stubrom.c:
The function cyg_start consists only of a endless loop which executes the break-
point function on each pass.

If an application is built the further start-up process can be seen in section 3.5.1.
Further information about the eCos startup on ARM devices can be found in "eCos
Portierung unter besonderer Beruecksichtigung der ARM-Architektur" from Andreas
Buergel [14].

3.4 The Redboot ROM Monitor

Redboot is an acronym for "Red Hat Embedded Debug and Bootstrap" [21]. This
phrase describes already the two most important functions of Redboot. On the one
hand it is used for the initialisation of the hardware components and for the start-up
of the operating system. On the other hand Redboot supports debugging which is
quite important on embedded systems. Some of the features provided by eCos are:

• Boot scripting support

• Command Line Interface (CLI) for monitor and control support

• Access via serial or Ethernet ports

• GDB support

• X/Y modem support

• Network bootstrap support using BOOTP or static IP address configurations

Redboot consists of a slimed version of eCos without Kernel and without any applica-
tions. However it includes the HAL and is therefore portable to all platforms which

M M Labus University of Ulster

3.5 Kernel 14

are supported by eCos. Figure 3.5 shows the block diagram architecture of some of
the features included with the RedBoot ROM monitor. The interaction between Red-
boot and the eCos application varies depending on the configuration option settings
in both images.

Figure 3.5: Redboot ROM monitor architecture

3.5 Kernel

The main feature of any RTOS is the Kernel. The eCos Kernel provides, among other
properties, selectable scheduling policies, mechanisms for thread synchronisation, in-
terrupt and exception handling, counters and clocks. These standard functionalities
of the eCos Kernel are highly configurable. This allows the RTOS to be adapted to
any specific needs and furthermore the footprint of the Kernel is kept at the lowest
possible level. The eCos Kernel was designed under special consideration of a low
interrupt latency2, a low task switching latency3 and a deterministic behaviour4.

Furthermore the eCos Kernel provides assertions that can be enabled or disabled
within the eCos package. Enabled assertions during debugging allow the perfor-
mance of certain error checking and ease the development process.

In the following the sub-sections 3.5.3 and 3.5.4 describe the interrupt and excep-
tion handling of eCos. Corresponding systems calls for the interrupt and exception

2the time an interrupt occurs and the ISR starts
3thread activation time
4Kernel performance must be predictable and bounded to real-time requirements

M M Labus University of Ulster

3.5 Kernel 15

management will not be listed. All required information about these can be found in
the eCos Reference [16] and in Anthony Massa’s eCos book [21].

3.5.1 Kernel Startup

Figure 3.6: Kernel startup procedure

After all hardware initialisation is complete, the Kernel start-up procedure is in-
voked by the HAL calling the core function cyg_start. This function calls further
start-up routines to handle various start-up tasks. All default initialisation functions
can be adapted for a specific application by using the same function name in the ap-
plication code.
The cyg_prestart function, which is first called by the cyg_start function, can be
used in order to initialise components needed prior to other system initialisation.
The cyg_package_start invokes the initialisation functions of other components as the
µTRON or ISO C library before the cyg_user_start functions is called. This is the
usual application entry point. cyg_user_start can be used in order to perform any
application-specific initialisation, create threads or register necessary interrupt han-
dlers. The scheduler is started when the cyg_user_start functions returns.

3.5.2 Schedulers

The scheduler is used to select the appropriate thread for execution, to provide syn-
chronisation methods and to control the effects of interrupts. To keep interrupt la-
tency low interrupts are not disabled during scheduling. Interrupts increase a lock
counter which disables the scheduler if the counter is nonzero. The lock counter val-
ues are manipulated on the one hand by the interrupt handlers provided by the HAL
and on the other hand by threads. eCos offers two types of schedulers a multilevel
queue scheduler and a bitmap scheduler.

M M Labus University of Ulster

3.5 Kernel 16

Multilevel Queue Scheduler

The multilevel queue scheduler allows threads to be assigned with a priority between
0 (highest priority) and 31 (lowest priority). Yet multiple threads can be assigned
to one priority level at the same time. Lower priority level threads are halted as
long threads with higher levels are processed. If two or more threads with the same
priority level occur time slicing mechanisms ensure that each thread is allowed to
process during its predetermined execution time.

Bitmap Scheduler

Like the multilevel queue scheduler the bitmap scheduler allows priority levels be-
tween 0 and 31. Although only one thread is allowed to execute at every level. This
makes the bitmap scheduler more efficient and simpler hence time slicing is not re-
quired.

3.5.3 Interrupt Handling

An interrupt is an asynchronous external event typically related to some hardware
action such as the push of a button or timer expiration. Since an interrupt can occur
at any time running Kernel threads have to be stopped in order to process the inter-
rupt. To avoid corrupt data states due to an aborted or paused thread and to reduce
interrupt latency in the system eCos employs a two step interrupt handling scheme.
The interrupt service routine (ISR) which belongs to the interrupt is processed imme-
diately to guarantee a fast interrupt handling. This routine owns only very restricted
rights, e.g. an ISR cannot start a thread avoiding the interruption of other critical
threads. If an ISR needs to start a thread this task is executed by a called Deferred
Service Routine (DSR). A DSR has a high priority, is allowed to start threads and is
therefore organized by the scheduler.

The occurred interrupt needs to be masked to avoid that it is not called again until
the DSR has not finished its processing. Usually the ISR masks the current interrupt
and the DSR unmasks it after processing.

3.5.4 Exception Handling

An exception is a synchronous event initiated by a process error during the execution
of a thread. A proper exception handling is extremely importing to avoid systems
failures and to improve the robustness of the software.
After an exception occurs, the processor jumps to a defined address (or exception
vector) and runs the instructions (exception handling code). Architectures may differ

M M Labus University of Ulster

3.5 Kernel 17

by its implementation of the jump process and the location of the exception handlers.
For an embedded system the simplest and most flexible method to handle excep-
tion is to call a function. The thread can restart its process after this function has
finished successfully. The called function needs some area to operate and some fur-
ther information like the exception number. eCos provides two methods for exception
handling.

HAL and Kernel Exception Handling

The first method (default) is a combination of HAL and Kernel exception handling.
The HAL offers a basic hardware level exception handling and passes the control to
the Kernel for further operations.

Every exception supported by a processor needs to have a corresponding exception
handler. If no handler is installed for a particular exception the processor jumps to an
address where no code is present. This can lead to significant problems for the whole
system.
The HAL uses a Vector Service Routine (VSR) which is defined in all HAL-packages.
The VSR is an array of pointers to exception handler routines. The processor gets the
required address of the relevant exception handler out of this table. The eCos HAL of-
fers a default VSR table that guarantees a basic operation of exceptions. These default
instructions store the current processor status, call the Kernel handlers for following
processes and restore the status of the processor. The only supported architecture
which does not use the HAL VSR table is the ARM architecture. The ARM archi-
tecture routines can be found in the vectors.S file, which defines separate handler
routines for each exception it supports.
If a ROM monitor was configured the cyg_hal_exception_handler5 calls the
__handle_exception routine which proceeds with the execution of the exception (Fig-
ure 3.7). The __handle_exception routine manages breakpoints, single stepping and
debug package protocol communication for debugging. The second Kernel-level con-
figuration option allows the application to install its own handler for exceptions to
take care of any further processing.

Application Exception Handling

Application Exception Handling is the second handling method provided by eCos. This
method allows the application to take over all or some control over the exception
handling. After an exception occurs the processor directly vectors to an application

5hal_misc.c under the HAL arch subdirectory

M M Labus University of Ulster

3.6 Thread Synchronisation 18

Figure 3.7: eCos exception handling execution flow

VSR. Afterwards the application handler is responsible for storing and restoring the
processor’s state.

3.6 Thread Synchronisation

eCos provides several mechanisms to coordinate the access to shared resources and
for synchronisation of threads. Corresponding systems calls for the interrupt and
exception management will not be listed. All required information about these can
be found in the eCos Reference [16] and in Anthony Massa’s eCos book [21].

M M Labus University of Ulster

3.6 Thread Synchronisation 19

3.6.1 Mutexes

Mutexes are used to allow different threads to share resources. Mutexes ensure that
only one thread at a time can use a data as long the data is locked. As long as a special
thread owns the mutex no other thread can access the data. Only the owning thread
is allowed to unlock a mutex. To avoid priority inversion, which can occur if threads
with different priorities share resources, the multilevel queue scheduler offers two
security mechanisms - the static priority ceiling or the dynamic priority inheritance. Both
security functions are based on the principle that a thread, which owns a mutex and
might potentially block another thread with a higher priority, gets a higher priority
for a short period of time. Using the priority ceiling mechanism the systems checks
which threads have ever owned the mutex. The currently owning thread gets the
highest registered priority. Although only already registered priorities are noted. The
priority inheritance mechanism checks the priority of a thread which tries to become
owner of the mutex and increases the priority of the current owner to the same level.
This procedure is more efficient since the priority of a thread is only increased if it is
necessary.

3.6.2 Semaphores

A Semaphore is a protected variable which restricts the access to a shared re-
source. Semaphores can be distinguished between to types - counting and binary
semaphores whereas the binary semaphore can be seen as a special case of the count-
ing semaphore. Counting semaphores increment their integer value when a thread
posts to it. If the semaphore value is not zero, the thread with the highest priority gets
access to the data and the other thread(s) have to wait. The resource is instantly avail-
able when the semaphore contains a zero. A binary semaphore can contain only two
values whereas "0" indicates that the resource is available and "1" locks the resource.

3.6.3 Flags

Flags signalize a waiting thread whether a special condition is given and therefore
the thread can start its process or if not the thread has wait for its starting condition.
Flags are 32 bits words which can be set by one or more threads. The initialisation
condition can be a single bit or a combination of several bits.

M M Labus University of Ulster

3.7 I/O Control System 20

3.6.4 Spinlocks

Spinlocks are flags used to lock a piece of code therewith the processor/thread has
to wait in a loop until the spinlock is unlocked. When the spinlock is unlocked the
processor sets the flag and continues its execution. Since the processor has nothing
to do while waiting, it is important that spinlock are not hold for longer than 10 to 12
instructions.[21]

3.6.5 Condition Variables

Condition variables are used together with mutexes to access shared resources. One
thread produces the data and signalizes one or more waiting threads that the data is
available. Thereby the message can be send to only one thread or via broadcast.

3.6.6 Message Boxes

Message boxes, also called mailboxes, are used by threads to send information to-
wards each other. Thereby one thread will produce a message, which usually consists
of more than one byte, and send it to other threads for processing.

3.7 I/O Control System

The eCos I/O Control System provides an interface to any application to access the tar-
get hardware functions. It consists of two major modules - the I/O subsystem module
and the device driver module. Applications use the I/O subsystem as a standardized
interface which manages the communication to the hardware specific device drivers.
As shown in Figure 3.8 this layered approach splits the I/O Control System into a
hardware independent API interface and hardware aligned driver layer. Both mod-
ules are configurable and selectable using the Configuration tool.

3.7.1 I/O Subsystem

The I/O Subsystem provides a standard API which uses handlers to access the low
level hardware. Each handler points to the device and its driver. The handler is linked
to the device in the device I/O table which is implemented in the I/O subsystem. An
application gets this handler by calling the cyg_io_lookup function by sending the
unique name of the device (e.g. "/dev/eth0") which is stored in the I/O device table.
The I/O subsystem offers four functions to any application, which are include in the
io/io.h header, listed in Table 3.1. More information, especially about the function

M M Labus University of Ulster

3.8 Configuration Tool 21

Figure 3.8: The eCos I/O Subsystem Architecture

parameters, can be found in the eCos Reference [16].

3.7.2 Device Drivers

A device driver is the entity which provides the implementation of the I/O function
to a specific piece of hardware. It also covers the control of the interrupt handling.
eCos supports, but does not require, a layered device driver architecture to enlarge
portability. Often a generic reusable driver provides the access to the device and the
upper layer then has the flexibility to add features and functions not found in the
lower layers. Otherwise a standardised hardware independent driver can be reused
and hardware specific routines can be provided by a low level driver.

3.8 Configuration Tool

One of the obvious advantages of eCos is its configurability. The developer can adapt
eCos very detailed to the given needs. The Configuration Tool, provided with the
eCos release, eases the selection and configuration of the software components. Each
single module of eCos can be selected or deselected using the Configuration Tool. On
the one hand it is even possible to choose single lines of code and on the other hand

M M Labus University of Ulster

3.8 Configuration Tool 22

I/O function Description

Cyg_ErrNo cyg_io_lookup(...) returns the handler linked to the called device.

Cyg_ErrNo cyg_io_write(...) sends data to the device

Cyg_ErrNo cyg_io_read(...) receives data from the device

Cyg_ErrNo cyg_io_get_config(...) obtains run-time configuration about a device

Cyg_ErrNo cyg_io_set_config(...) manipulates or changes the run-time configu-
ration of a device

Table 3.1: I/O API calls

Figure 3.9: eCos Configtool Interface

e.g. the TCP/IP stack support can be deselected with only one click. The amount
of configuration options increases with each package included to the repository. At
the moment there are over 1000 different options [21]. eCos uses the Configuration
Definition Language (CDL) to organize the resulting amount of information about
the supported packages. Especially the resulting dependencies of related packages

M M Labus University of Ulster

3.9 eCos building process 23

are organized and checked. Since the proper description of the CDL is beyond the
scope of this report further information can be found in The eCos Component Writer’s
Guide [10].

If a special package requires the implementation of another package this informa-
tion is contained in the CDL file of the package. Furthermore the Configuration Tool
displays fundamental information for each package and supports the developer to
understand the package coherences. Another feature of the Configuration Tool is

Figure 3.10: eCos Package Database Structure

the option to use predefined templates for various platforms and interfaces. These
templates are defined in the ecos.db database which can be found in the eCos CVS
repository under /ecos/packages. Each templates describes the target by listing all
packages which are included in the configuration of the target. As shown in FIGURE
3.10 the target descriptions are linked to actual hardware packages. Furthermore the
ecos.db lists all packages which are include in the eCos component framework. These
packages point to each CDL file which describes the component and its requirements
in more detail. An example for an ecos.db entry can be found in Section 6.

3.9 eCos building process

The building process for an eCos application consists of two major steps. At first an
eCos configuration is setup including all required components which will be used by
the application. The configuration is usually generated using the eCos Configuration
tool and saved as an eCos configuration file (.ecc). By this the Configuration tool
generates appropriate files for the build.

M M Labus University of Ulster

3.9 eCos building process 24

Figure 3.11: eCos Build Process

• filename_install contains libtarget.a and target.ld. The libtarget.a is the archived
eCos Kernel and the target.ld is a linker file specific to the target.

• filename_built contains object files and other files specific to the board.

• filename_mlt contains memory layout information.

The GNU cross-development tools are used to compile the source code files and pro-
duce the final libtarget.a output file. It has to be mentioned that the eCos Configtool
does not always clean the generated directories properly when a library has to be re-
build. Therefore it is recommended to consider a manual deletion of these files before
a rebuild, especially if odd compiler error messages appear.
The second major step is to link the specific application with the eCos library. There-

fore the application has to be compiled and linked using the matching GNU Cross
Compiler and Linker CPU variant. A generic make file can be found in the Appendix
A. Using the make file the INSTALL_DIR variable must be set to the install tree build
by the eCos Configtool. Additionally the name of the application has to be adjusted.

After this the generated ELF file can be uploaded to the target using GNU Debug-
ger (gdb) when a RAM application is designed. The binary image can be loaded on a
Flash memory using telnet together with openOCD (see section 5.2.1).

M M Labus University of Ulster

3.10 Third Party Support 25

Figure 3.12: Linking an Application

3.10 Third Party Support

Additionally to the generic eCos components third party distributors have ported
their software packages to eCos. Three of these are the GoAhead Webserver from
GoAhead Software and the open source GUI libraries - MiniGui and Nano-X.

3.10.1 GoAhead Webserver

The GoAhead Webserver is specifically designed for the use in embedded systems. It
is highly portable, has a small footprint and is, of course, open-source. All common
internet technologies are supported including ASP, CGI, HTTP 1.0, SSL 3.0, and DAA.

To run the GoAhead Webserver a TCP/IP stack, an event timer, and approximately
60KB of RAM are required. Since the GoAhead Webserver has been already ported
to eCos the main effort is to supply the requirements of the web server [20].

3.10.2 Grafical User Interface

Since no grafical interface has been realized in this project only a brief summary about
GUI libraries for embedded systems is given. Currently only two GUI libraries have

M M Labus University of Ulster

3.10 Third Party Support 26

been ported to eCos. The MiniGUI library from Feynman Software [8] and the Nano-
X library formerly known as Microwindows [9], but except of the name the same
system. A direct comparison of MinGUI and Nano-X can be found in Appendix B

MiniGUI

Figure 3.13: MiniGui example application [13]

MiniGUI is a free software project, led by Beijing Feynman Software Co., Ltd.. It
aims to provide a fast, stable, lightweight, and cross-platform Graphics User Inter-
face support system, which is especially fit for real-time embedded systems based-
on Linux/uClinux, eCos, and uC/OS-II. The minimal system resources needed by
MiniGUI itself are 700KB of static memory and 1MB of dynamic memory. The
MiniGUI datasheet V2.0 [11] specifies that MiniGUI ported to eCos requires 2 MB of
Flash and 2 MB of RAM when used with applications. For a recommended platform
configuration the values have to be doubled.

MiniGUI is capable of running on a system with 30 MHz CPU and 4MB RAM,
which can not be reached by Nano-X or Qt/Embedded according to Feynman Soft-
ware [8]. The relationship between MiniGUI and eCos or any other RTOS can be seen
from FIGURE 3.14. MiniGUI and the ANSI C library provide functions to a superior
application. Similar to the HAL of eCos the Portable layer of miniGUI encapsulates
the graphical library from specific hardware and operating systems. Hence the run-
ning application need not to take care of the output and input devices.[12]

M M Labus University of Ulster

3.11 eCos Support 27

Figure 3.14: MiniGui archictecture [13]

Microwindows/Nano-X

Nano-X is an open source project developed by Century Software [2]. It is aimed at
bringing the features of modern graphical windowing environments to smaller de-
vices. Nano-X is a GUI system based on a three layer architecture. The lowest layer
handles the access to graphics output, keyboard and touch screen. The intermedi-
ate layer provides an common interface to the hardware close layer. The top layer
provides APIs compatible with X Window and Win32 subset.

Designed as a replacement for the X Window System, Microwindows provides sim-
ilar functionality using much less RAM and file storage space: from 100K to 600K [7].
On 16 bit systems, the entire system, including screen, mouse and keyboard drivers
runs in less than 64k [9].

3.11 eCos Support

There are six different mailing lists available for the eCos project:

• Discussion List - Contains support and technical assistance on various topic
about the eCos project from developers. Most of the discussions are hold at this
place.

• Patches List - Used for submitting eCos patches for approval by the maintainers
before they are committed to the repository.

• Development List - Includes discussion about current enhancements being de-
veloped, such as new ports and new features.

• Announcement List - A low-volume list for significant news about eCos that is
also used to announce new eCos releases or major feature enhancements.

M M Labus University of Ulster

3.11 eCos Support 28

• CVS Web Pages List - Contains notifications of changes to the eCos web pages
that are maintained in the CVS.

• CVS List - A read-only list that gives notifications of changes made to the eCos
source code repository.

These lists and further information can be found at [6]

M M Labus University of Ulster

29

4 CAN-Bus Fundamentals

The Controller Area Network (CAN) is a serial communications protocol which effi-
ciently supports distributed real-time control offering a very high level of security. Its
field of application ranges from high speed networks to low cost multiplex wiring.

4.1 CAN Topology

The CAN network has a line topology as shown in Figure 4.1. Since all control de-
vices are connected in parallel to a central transmission line this structure offers the
advantage that the communication is only intercepted when the line itself fails. The

Figure 4.1: CAN topology with the LPC2294 CAN Controller

amount of devices connected to the bus is not specified and only restricted by the bus
drivers. The maximal data rate of a CAN bus is 1000 Kbit/s.

4.2 Object Identifier

The object identifier indicates the content of a CAN messages and not the transmitter
or Receiver. E.g. different identifiers can be defined for the temperature, the voltage
or the pressure in a control or measurement system. The receiver decides using the
identifier whether a particular message is relevant and will be received or not.

The CAN specification defines two different formats of identifiers:

4.3 CAN-Messages 30

• 11-bit identifier (Base/standard frame format)

• 29-bit identifier (Extended frame format)

Furthermore the identifier is used for prioritisation of messages. A high priority guar-
antees that the message is send with the shortest possible latency. Due to the specifi-
cation to avoid arbitrary conflicts two or more transmitters are not allowed to use the
same identifier.

4.3 CAN-Messages

Figure 4.2: Structure of a CAN message [17]

Generally the CAN communication is established using four different types of mes-
sages:

Data frames which transmit up to eight bytes of data.

Remote frames which request data frames from another device connected to
the bus.

Error frames which indicate an error via broadcast to all network
participants.

Overload frames which provide a timeout between data and remote frames.

A data frame has the following structure:

M M Labus University of Ulster

4.3 CAN-Messages 31

Start of Frame (SOF) 1 bit, always low, falling edge synchro-
nizes the nodes of the bus

Identifier 11 bits for standard frames and 29 bits + 2
bits for extended frames

Remote Transmission Request (RTR) for standard frames or Substitute Remote
Request (SSR) for extended frames

Control (CTRL) 6 bits (2 bit reserved + 4 bit length of data)

Data 0-64 bits (8 x 8 bits)

Checksum (CRC) 16 bits (15 bit CRC + recessive delimiter
bit)

Acknowledge (ACK) 2 bits (high)

End of Frame (EOF) 7 bits (high)

Intermission Frame Space (IFS) 3 bits (high) to separate following
messages

M M Labus University of Ulster

32

5 Development Setup

5.1 Hardware Setup

5.1.1 Development Host Platform

For the evaluation and implementation of eCos a Maxdata Pro 8000X notebook with
the following components was used.

CPU: Pentium M, 1500MHz
operating System: Debian GNU/Linux 3.1 "Sarge" and later "Etch"
Linux Kernel: 2.6.8 - 2.6.16
gcc: Version 4.0.3 (Debian 4.0.3-1)
arm-elf GNU toolchain: Version 3.2.1
openocd: Version preview060213
Eclipse: Version 3.2
Kdevelop: Version 3.2.2

Section 5.2 describes the setup of certain listed software packages.

5.1.2 Development Target Platform

Olimex LPC-E2294 Board

In order to evaluate the eCos operating system the Olimex LPCE2294 development
platform was chosen. This Platform uses the aimed processor architecture for fur-
ther developments and offers a generous amount of interfaces. The most important
features are given in the following list.

• MCU: LPC2294 16/32 bit ARM7TDMI-S with 256K Bytes Program Flash, 16K
Bytes RAM, RTC, 4x 10 bit ADC, 2x 32bit TIMERS, 7x CCR, 6x PWM, WDT, 5V
tolerant I/O, up to 60MHz operation,

• Interfaces: 2x UARTs, 4x CAN, I2C, SPI, JTAG, USB to RS232 converter, RS232,
Dallas i-Button

5.1 Hardware Setup 33

• External Memory: 1MB (256Kx32bit) 12 ns 71V416 SRAM;
4MB (512Kx16bit) 70ns TE28F320C3BD70 C3 Intel flash

• Ethernet controller with CS8900A and RJ45 connector

• LCD 16x2 display with backlight

• 2 buttons

Figure 5.1: The LPC-E2294 board of Olimex [18]

LPC2294

One of the newest members of the Philips LPC family is the LPC2294 chip imple-
menting the ARM7TDMI-S processor with real-time emulation and embedded trace
support. The CPU offers a maximum clock of 60MHz and is set to little endian mode
by the LPC2294 configuration. Two modes are selectable, the 32-bit ARM mode and
the memory saving 16-bit Thumb mode. The LPC2294 chip is provided with 256
kB internal Flash and 16 kB internal static RAM. The detailed memory setup is de-
scribed detailed below. Depending on the configuration 76 (with external memory,
this board) to 112 (single chip) GPIOs are available.

Additional features are various 32-bit timers, 8-channel 10-bit ADC, 4 advanced
CAN channels with acceptance filter, PWM channels and up to 9 external interrupt
pins [22].

LCD

One of the most common human interfaces for a MCU is a Liquid Crystal Display
(LCD). Furthermore such an interface can be used for testing purpose e.g. to test the

M M Labus University of Ulster

5.1 Hardware Setup 34

GPIO ports of a LPC2xxx device.
Common LCDs are 16x2 or 20x2 displays i.e. 16 characters per line by 2 lines and

20 characters per line by 2 lines, respectively. Fortunately, a very popular standard
exists which allows to communicate with the vast majority of LCDs regardless of their
manufacturer. The standard is referred to as HD44780U, which refers to the controller
chip which receives data from an external source and communicates directly with the
LCD. The standard requires 3 control signals (E, RS, and RW) and 4 or 8 I/O data

Figure 5.2: Connection layout of the LCD [18]

lines. The usage of only upper 4 data lines has the advantage that less GPIO ports of
the MCU are used. But the 8 bit messages between the MCU and the LCD controller
have to be send in two write accesses. Thereby the higher nibble is transmitted first
followed by the lower nibble. Some LCDs support the usage of a backlight. Therefore
two additional control lines are used (light+ and light+ , see table 5.1).

The Olimex LPC-E2294 board uses a 16x2 display and the 4 bit data transmission
mode. The connections of the LCD can be seen in Figure 5.2. When the board is
supplied with power the LCD backlight is, due to the light+ pin directly connected to
Vcc, automatically switched on. The light- signal is pulled down by a set LIGHT_LCD
(Pin 0.10 of the LPC2294) signal.

The Enable line E is used to tell the LCD that data will be send. Therefore the
line is set to low until data was written on the bus or the two other control lines are
manipulated. Then the enable signal is set high for a LCD dependent amount of time
until it is again brought to low.

M M Labus University of Ulster

5.1 Hardware Setup 35

PIN# LCD PIN Name Description LPC2294

1 Vss GND

2 VDD Power supply 5V

3 Vo contrast adjustment voltage Potentiometer

4 RS Register Select Signal 0 = instruction
register (then writing) busy flag and ad-
dress counter (then reading) 1= data
register then writing and reading)

P0.28

5 RW Read/Write 0 = writing 1 = reading P0.30

6 E Enable P0.29

7:10 DB0:3 Databit0:3 not connected

11:14 DB4:7 Databit4:7 P0.4 to P0.7

15 light+ Backlight 5V

16 light- Backlight P0.10

Table 5.1: LCD Pin Connections

A low signal on the Register Select (RS) line indicates that data send to the device
has to be treated as a command or instruction. When the RS signal is set high the
send data consists of text information.

The RW line is the Read/Write control line. When RW is low, the information on
the data bus is being written to the LCD. When RW is high the LCD status can be
read.

Section 6.4 describes amongst other the implementation of the code required for
the control of the LCD.

CAN Controller and Acceptance Filter

The LPC2294 contains four CAN controllers which provide data rates up to 1 Mbit/s
on each bus and a 32-bit register. The Global Acceptance Filter offers FullCAN-style
automatic reception for selected Standard identifiers. Additionally it can receive ex-
tended 29-bit identifiers [23]. The hardware architecture of the LPC2294 CAN module
is shown in Figure 4.1.

M M Labus University of Ulster

5.1 Hardware Setup 36

CS8900 Ethernet Controller

The ethernet interface of the Olimex LPC-E2294 board is provided by the Crystal LAN
CS8900A Ethernet controller. The hardware setup of the chip is shown in Figure C.1.
The controller is connected to operate in the default I/O Mode using the I/O Mode
Registers (Table 5.2) for communication with the LPC2294 controller. The interrupt
pins (INTRQ0-3) are not used. Since the AEN (Address Enable) and ChipSel pins are
connected to ground, read and write operations of the I/O registers are enabled by
the /IOR and /IOW signals. These signals reference the /OE and /WE signals of the
LPC2294. The CS2 signal qualifies these values as it can be seen in figure 5.3. Since

Figure 5.3: Signal Qualifier

the SBHE (Set Byte High Enabled) Pin is connected to Vcc only the default 8-bit mode
can be used, accidentally all 16 data pins have been connected to the LPC2294 data
pins by Olimex.

The address pins SA0 to SA3 of the CS8900 controller are connected to the pins A0
to A3 of the LPC2294 chip. The SA8 and SA9 pins are connected to Vcc which sets
the base address to 0x300 (typical IO base address for LAN peripherals [26]) since
all other address pins of the CS8900 are connected to ground. I.e. the LPC2294 MCU
addresses the CS8900 by writing to its memory space between 82xxxx00 and 82xxxx0F
(8-bit addressing).

Memory Map

In addition to the internal memories the Olimex board offers external Flash and Ram
memory. The memory is controlled by the LPC External Memory Controller (EMC),
which is is only available for LPC2219 and LPC2294 devices. Altogether four banks of
external memory can be addressed. Each memory bank may be 8, 16, or 32 bits wide.
The decoding among the four banks uses address bits A[25:24]. The native location

M M Labus University of Ulster

5.2 Software Setup 37

Offset Type Description

0000h Read/Write Receive/Transmit Data (Port 0)

0002h Read/Write Receive/Transmit Data (Port 1)

0004h Write only TxCMD (Transmit Command)

0006h Write only TxLength (Transmit Length)

0008h Read-only Interrup Status Queue

000Ah Read/Write PacketPage Pointer

000Ch Read/Write PacketPage (Port 0)

000Eh Read/Write PacketPage (Port 1)

Table 5.2: I/O Mode Mapping [26]

of the four banks is at the start of the External Memory area identified in Figure 5.4.
The external Ram has a size of 1MB and is connected to the CS1 of the LPC2294.

CS0 is used to call the external 4MB flash memory. It can also be used for initial
booting under control of the BOOT[1:0] pins. The Crystal LAN Ethernet controller is
addressed using the CS2 signal (see Section 5.1.2). The resulting memory map can be
found in Figure 5.4.

5.2 Software Setup

5.2.1 OpenOCD - Debugger

Amontec [1] offers the programmable JTAG Debugger Chameleon POD which can
operate as the Amontec Accelerator together with openOCD. OpenOCD is an open
source ARM JTAG debugger for targets based on the ARM7 and ARM9 family.
OpenOCD was developed by Dominic Rath as his diploma thesis [24] at the Uni-
versity of Applied Sciences Augsburg in Germany.
OpenOCD establishes a telnet port and a GDB remote target port which can be used
by the GNU debugger gdb compiled for the ARM architecture. In the direction to
the target a JTAG channel is opened. Besides debugging, OpenOCD can control any
JTAG-based operation, e.g. programming the FPGA based Chameleon POD by an
integrated XSVF player. In addition internal and external FLASH memory program-
ming is supported. OpenOCD was originally developed for Linux but can be used

M M Labus University of Ulster

5.2 Software Setup 38

Figure 5.4: Memory Map of the Olimex LPCE2994 Board

on Windows systems running Cygwin [4].
In order to enable access to the flash memory of the Olimex LPC-E2295 board the
openOCD configuration file needs to be completed with the code listed in listing 5.1.

#flash bank lpc2000 base size chipwidth buswidth /

#lpc_variant target# cclk calc_checksum

flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14765 calc_checksum

flash bank cfi 0x80000000 0x400000 2 2 0 0x40000000 0x4000

Listing 5.1: ARM Wiggler Configuration

The second line enables the access to the internal 256 MB flash bank of the board. The
third line allows the usage of the 4MB external flash memory. lpc2000 and cfi describe
the memory, whereas cfi means a Intel compatible memory. In both cases the next two
parameters describe the memory starting addresses and its size. Internal memory
needs no specified chip- and bus width (0 0). The flash writing algorithm uses the
internal 16kb on-chip SRAM located at 0x40000000 to accelerate flash writing [25]. It
is important that all parameters are only separated by one space for proper openOCD

M M Labus University of Ulster

5.2 Software Setup 39

Figure 5.5: OpenOCD layers and interfaces

functionality. Further information about openOCD and the command reference can
be found in [25].

5.2.2 eCos CVS Repository

The latest version of eCos can be downloaded and updated using the eCos CVS repos-
itory. A connection to the CVS server can be established anonymously using the linux
terminal or equal by the command:

� cvs -d :pserver:anoncvs@ecos.sourceware.org:/cvs/ecos login

Any password will be accepted. The complete repository can be downloaded using:

� cvs -z3 -d :pserver:anoncvs@ecos.sourceware.org:/cvs/ecos co -P ecos

For updates of the repository to the latest version use the command

� cvs -z3 update -d -P

in the base of the repository tree.
Once the sources have been checked out the ECOS_REPOSITORY environment vari-
able has to be set to the ecos/packages subdirectory. For example:

� ECOS_REPOSITORY=/ecoscvs/ecos/packages ;
� export ECOS_REPOSITORY
(for sh, ksh and bash users)
� setenv ECOS_REPOSITORY /ecoscvs/ecos/packages
(for csh and tcsh users)

M M Labus University of Ulster

5.2 Software Setup 40

5.2.3 Eclipse

The Eclipse IDE is a complete Integrated Development Environment platform similar
to Microsoft’s Visual Studio. Originally developed by IBM, it has been donated to the
open source community. By installing the CDT plug-ins, it can be used to edit and
debug C/C++ programs. The setup of the Eclipse environment using openOCD and
the arm-elf GNU debugger is described by James P. Lynch’s tutorial "ARM Cross De-
velopment with Eclipse" [19] in detail. For further instructions towards the setup and
usage of Eclipse as a debug and development environment consider this document.

5.2.4 ARM-ELF GNU Toolchain

The eCos 2.0 release features an installation script which simplifies the download and
installation of the eCos sources, host tools and documentation. Optionally the installa-
tion script can download one or more pre-built GNU cross tool chains. The command
�wget –passive-ftp ftp://ecos.sourceware.org/pub/ecos/ecos-install.tcl
downloads the required installation script. The installation tool may then be invoked
as follows:
� sh ecos-install.tcl
The used default installation directory is /opt/ecos. Since this install script down-
loads the official but obsolete eCos 2.0 release only the up-to-date CVS sources have
been used for the project. Adding the arm-elf executable directory to the system path
by calling
� PATH=$PATH:/opt/ecos/gnutools/arm-elf/bin/ && export PATH
eases the further usage of the tool chain.

M M Labus University of Ulster

41

6 Implementation of eCos

Depending on the CPU architecture, the variant and the platform there are three dif-
ferent types of eCos HAL ports. The easiest one is the platform port which requires
the implementation of the custom platform attributes. If a port to a special architec-
ture family exist but a special variant of this family is not supported a variant port is
required. The most large-scale port is the architecture port which requires a funda-
mental adaptation of the complete HAL.

eCos was already ported to the lpc2xxx architecture variant hence the HAL has to
be ported to the Olimex LPC-E2294 platform.

6.1 HAL Port

A platform port is the less complicated variant of an eCos HAL port. Five major
modifications and implementations have to be fulfilled. The main part of the porting
process is the implementation of the hal_platform_setup.h file which contains the ma-
jor platform initialisation code. For the Olimex platform the lpcE2294_misc.c file was
added with interface initialisation code. Furthermore setup routines for the interrupt
controller are usually placed in this file.

The third modification is the customisation of the memory layout. All new port
packages have to be described by their associated CDL-files. Finally the new pack-
ages have to be added to the eCos component database ecos.db to be available for the
eCos Configuration Tool.

Furthermore some common variant and architecture packages need to be slightly
modified or supplemented.

6.1.1 Structure of the Port

The LPC-E2294 port is placed in the CVS repository as a subdirectory of the HAL
package. Since the lpc2xxx CPU variant is already supported the new platform port is
placed under the /arm/lpc2xxx/lpcE2294 subdirectory. The lpcE2294 directory contains
the following subfolders:

6.1 HAL Port 42

cdl This folder contains the hal_arm_lpc2xxx_lpcE2294.cdl file
which describes the port. According to the naming conventions
the name of the CDL-file contains the type of the architecture,
the variant name, and the described platform.

include This folder contains all headers of the port. E.G. the
hal_platform_setup.h file for start-up initialisation and the
plf_io.h header which contains platform specific register
addresses.

include/pkgconf All files which determine the memory layout configuration are
placed in this sub-folder.

tests Simple development tests are placed in this directory, e.g. LCD
test and CAN driver test.

misc E.g. the minimal configuration files of RedBoot are located in
this folders

6.1.2 Platform Initialisation

hal_platform_setup.h

This setup file includes several macros written in arm assembler. The central macro is
the PLATFORM_SETUP1 macro which is called out of vectors.S1 during the system
start-up. The PLATFORM_SETUP1 macro itself calls, depending on the start-up
type, a sequence of further initialisation macros.

• The _pll_init macro initialises the programmable PLL of the LPC2294 MCU.
Thereby the multiplier value is set to its maximum of 4 and the divider is set to
1. Therefore a resulting CPU frequency of 58 MHz is calculated.

• The _mem_init macro copies and maps the interrupt vector table to the internal
RAM. Furthermore the CPU memory accelerator module is set fully enabled
for highest internal flash performance. The Bank Configuration Registers are
configured as well. The values for the BCFG2 register which belongs to the
ethernet controller have been adopted from the Olimex example [18]. Since the
external RAM is capable to work at 100MHz the fastest possible access time has
been chosen.

1refer Section 3.3.1

M M Labus University of Ulster

6.1 HAL Port 43

• All values for the pin select registers are set in the _gpio_init macro. Besides the
direction for the CS pins, the pins for the buttons and the pin for the backlight
control are set.

• The _lcd macro simply switches the backlight and is called during several times
during the start-up (vectors.S).

lpcE2294_misc.c

Depending on the configuration of the eCos HAL component in the eCos Con-
figuratio Tool the support of the LCD backlight control routine is defined in the
lpcE2294_misc.c file. Furthermore a simple routine is implemented which starts the
initialisation of the serial interface.

var_io.h

In var_io.h2 one line (refer line 7 in Listing 6.1) has to be added in order to define the
addresses of the external memory registers when a LPC2294 MCU is used.

1 ...

//==

// External Memory Controller

#if defined(CYGHWR_HAL_ARM_LPC2XXX_LPC2212) || \

6 defined(CYGHWR_HAL_ARM_LPC2XXX_LPC2214) || \

defined(CYGHWR_HAL_ARM_LPC2XXX_LPC2294)

#define CYGARC_HAL_LPC2XXX_REG_BCFG0 0xFFE00000

#define CYGARC_HAL_LPC2XXX_REG_BCFG1 0xFFE00004

11 ...

Listing 6.1: var_io.h extract

6.1.3 Memory Layout

For each specific platform the memory layout has to be adapted. The Windows ver-
sion of the eCos Configtool contains a graphical editor for the memory setup. This
editor generates all required memory layout files. The Linux dirstribution of this tool
does not use such a grafical interface. But since the editor is only usefull for less com-
plex layouts that does not influence the workflow notably. Hence the layout files can
be maniulated and adapted by hand pretty easy.

2located PATH_TO_ECOS/ecos/packages/hal/arm/lpc2xxx/var/current/include/

M M Labus University of Ulster

6.1 HAL Port 44

Three files describe the memory layout:

• mlt-file This file is generated by the graphical editor. Since the layout is config
without the graphical editor the mlt-file is unimportant.

• ldi-file This file is required for the linker scripts.

• h-file This file contains information about the memory layout (start addresses,
length)

As mentioned the files can be found under the /include/pkgconf directory of the port.
Each startup-type requires an own set of these files as e.g. for a RAM start-up no

information about the ROM mapping are necessary.
Since eCos has been already ported to the LPC-P2106 platform of Olimex the ex-

isting configuration files are manipulated and adapted to the new board. Listing 6.2
shows the code for the ROM start-up version of the ldi-file. Unlike the LPC-P2106
platform an external RAM bank is connected to the MCU. The additional memory is
defined as ram0. As the LPC2294 MCU offers only 16KB of internal RAM the support
of extra memory is crucial for a proper administration of the system.
// \textit{eCos} memory layout

// This is a generated file - do not edit
4 // external ram (ram) connected to CS1 81000000 - 81ffffff, 256Kx32bit

// external rom connected to CS0 80000000 - 80ffffff, 512Kx16bit

#include <cyg/infra/cyg_type.inc>

9 MEMORY
{

ram0 : ORIGIN = 0x40000000, LENGTH = 0x4000
ram : ORIGIN = 0x81000000, LENGTH = 0x100000
rom : ORIGIN = 0x00000000, LENGTH = 0x40000

14 }

SECTIONS
{

SECTIONS_BEGIN
19 SECTION_rom_vectors (rom, 0x00000000, LMA_EQ_VMA)

SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)
SECTION_fini (rom, ALIGN (0x4), LMA_EQ_VMA)
SECTION_rodata (rom, ALIGN (0x4), LMA_EQ_VMA)
SECTION_rodata1 (rom, ALIGN (0x4), LMA_EQ_VMA)

24 SECTION_fixup (rom, ALIGN (0x4), LMA_EQ_VMA)
SECTION_gcc_except_table (rom, ALIGN (0x4), LMA_EQ_VMA)
SECTION_fixed_vectors (ram0, 0x40000400, LMA_EQ_VMA)
SECTION_data (ram, 0x81000000, FOLLOWING (.gcc_except_table))
SECTION_bss (ram, ALIGN (0x4), LMA_EQ_VMA)

29 CYG_LABEL_DEFN(__heap1) = ALIGN (0x8);
SECTIONS_END

}

Listing 6.2: ldi-file for ROM startup

The ldi-file (listing 6.2) is processed to the target.ld linker script by the C preprocessor.
The syntax was adopted from existing ports and manipulated for the specific memory
layout.

The other memory layout files have been costumized accordingly.

M M Labus University of Ulster

6.1 HAL Port 45

6.1.4 CDL-File

Each component of the eCos framework has to be decribed by a description file (CDL).
The CDL file has to offers all required information for the eCos Configuration Ttool in
order to provide the further process of the module.

Listing 6.3 shows the first part of the implemented CDL file for the LPC-E2294
platform port. The CY GPKG_HAL_ARM_LPC2XXX_LPCE2294 identifier de-
termines the package name which is included in the ecos.db component database.
Since the platform port uses the variant port of the LPC2xxx CPU this information
has to be given by the "parent" entry. The define_header, include_dir, and compile
entries are information for the compiler. Package requirements are listed in the "re-
quires" entry. In this case the processor type has to be LPC2294. If this option is not
given the Configuration Tool will produce a conflict and suggest a solution.

cdl_package CYGPKG_HAL_ARM_LPC2XXX_LPCE2294 {
4 display "Olimex LPCE2294 eval board HAL"

parent CYGPKG_HAL_ARM_LPC2XXX
define_header hal_arm_lpc2xxx_lpcE2294.h
include_dir cyg/hal
hardware

9 description "
The LPCE2294 HAL package provides the support needed to run
\textit{eCos} on an Olimex LPCE2294 eval board."

compile lpcE2294_misc.c
14

requires { CYGHWR_HAL_ARM_LPC2XXX == "LPC2294" }

Listing 6.3: Port description file

The following further options have been implemented in the CDL file of the LPC-
E2294 Olimex port.

• Selection of the LCD backlight control availability

• Selection of the Start-up type

• Configuration of the serial channel

• Configuartion of the CPU speed

• Global C and LD flags settings

• Rom-Monitor configuration

6.1.5 Modification of the eCos database

The eCos Configuration Tool initialises for every start-up its repository using the
ecos.db database. In order to support a new port the new package has to be included
in this database. Therefore two entries were implemented.

M M Labus University of Ulster

6.2 Drivers 46

The first entry package CY GPKG_HAL_ARM_LPC2XXX_LPCE2294 links the
CDL file generated for the new port (refer Section 6.1.4) to the database. Furthermore
a description text of the package shown in the Configuration Tool is integrated.

The second entry target lpcE2294 defines the packages included in the template
which can be selected with the eCos Configtool. The syntax for these entries can be
found in the Appendix G, Listing G.1.

6.2 Drivers

6.2.1 Serial Interface Driver

The implementation of the serial interface is rather simple. Since eCos has already
been ported to the LPC2xxx family and the UART0 and UART1 serial hardware ports
are integrated in the same way for all controllers of the family only one modification
has to be done. The serial device drivers for 16x5x compatiple controllers3 and the
serial device driver for the ARM LPC2XXX family 4 have to be included in the target
specification of the LPC-E2294 board in the ecos.db database. The two line insertion
can be found in Appendix G, Listing G.1.

6.2.2 Flash ROM Driver

Compared to the Serial interface driver the effort for the flash memory support is not
significantly larger. eCos offers a generic support for flash memories which is include
in the package CYGPKG_IO_FLASH of the component framework. Hence only an
adaption to the given flash memory layout is required. Since the Intel 28Fxxx flash
memory series is already contained in the eCos repository solely an adaption to the
board memory layout has to be made.

Several modifiactions and additions therefore have to be done in the eCos reposi-
tory. First of all a header file has to be genarated which describes the layout of the
flash implemention on the Olimex board. The source code can be found extracted
in Appendix F, Listing F.1. Additionally this file needs to be described by a corre-
sponding CDL file (refer to Appendix G, Listing G.3). Both files are stored in the
devs/flash/arm/lpcE2294 directory of the eCos package source tree. The CDL file
contains additional information to the related Intel chipset support file.

Furthermore the new support package has to be added to the ecos.db as shown
in Appendix G, Listing G.2. Finally the support for the Intel chipset 5 and the board

3CDL package: CYGPKG_IO_SERIAL_GENERIC_16X5X
4CDL package: CYGPKG_IO_SERIAL_ARM_LPC2XXX
5CDL package: CYGPKG_DEVS_FLASH_INTEL_28FXXX

M M Labus University of Ulster

6.2 Drivers 47

specific support package6 have to be included in the target specification in the ecos.db
data base as shown in Appendix G, Listing G.1.

6.2.3 Ethernet

The Olimex board uses the Crystal LAN CS8900A ethernet controller as illustrated
in Section 5.1.2. The eCos repository offers a driver for this controller, however this
driver needs certain modifications and additions. The steps are described using the
processed files.

devs_eth_arm_lpcE2294.inl

This file has to be generated under the /devs/eth/arm/lpcE2294 directors in the eCos
packages source tree. It contains the Olimex LPC-E2294 ethernet definition. Amongst
other the ethernet driver is initialised in the I/O subsystem and the device table.
Other options have been taken over directly from the edb7xxx eCos port, which uses
the CS8900 chipset as well.

lpcE2294_eth_drivers.cdl

The CDL package describtion file is located in the same main directory as the
devs_eth_arm_lpcE2294.inl file mentioned above. The implemented code offers the
following configuration options in the eCos Configuration Tool.

• Definition of the etho interface name, e.g. "/eth0"

• Definition of the ethernet station address (ESA)

• Selection between interrupt and poll mode of the CS8900 driver

Since the Olimex hardware only supports the poll mode, this mode is pre-selected by
default.

cs8900.h and if_cs8900a.c

The cs8900.h and if_cs8900a.c files are located under the /devs/eth/cl/ directory of the
eCos repository. Since all access to the ethernet controller has been implemented us-
ing the 16 bit mode, two simple additional routines are added to the driver code as
demonstrated in Listing 6.4. These routines substitute the 16 bit access calls to the
ethernet controller when the driver is used for the Olimex board.

6CDL package: CYGPKG_DEVS_FLASH_ARM_LPCE2294

M M Labus University of Ulster

6.2 Drivers 48

// the olimex E2294 board accesses the cs8900 in 8bit mode;

// writing and reading have to in 8 bit operation (always)

void cs8900a_lpce2294_write_uint16(unsigned int Addr, cyg_uint16 uiData)

5 {

HAL_WRITE_UINT8(Addr, uiData);

HAL_WRITE_UINT8(++Addr, uiData>>8);

}

10 cyg_uint16 cs8900a_lpce2294_read_uint16(unsigned int Addr)

{

cyg_uint8 data_low, data_high;

cyg_uint16 data16;

HAL_READ_UINT8(Addr, data_low);

15 HAL_READ_UINT8(++Addr, data_high);

data16 = data_low;

data16 |= (data_high << 8);

return(data16);

}

Listing 6.4: Implementation of the CS8900 8-bit read and write access

As already described for the serial and the flash driver the new driver package has
to be included in the ecos.db file. The support for the CS8900 ethernet driver 7 and
the board specific driver package8 have to be included in the target specification in
the ecos.db data base as shown in Appendix G, Listing G.1.

Required further work

Up to the time of the generation of this report the described ethernet driver was not
completely implemented and tested. Further work has to be done on the basis of the
mentioned modification and development. The write and read access using the rou-
tines shown in Listing 6.4 to the CS8900 ethernet chip have been successfully tested
in a seperate application. Apparently the initialisation of the ethernet package in the
I/O subsystem and device table must contain certain malfunctions. This fact needs
further investigation.

6.2.4 CAN Driver - lpccan

The aimed functionality of the developed CAN driver at this point of the project is
summerized in the following list.

7CDL package: CYGPKG_DEVS_ETH_CL_CS8900A
8CDL package: CYGPKG_DEVS_ETH_ARM_LPCE2294

M M Labus University of Ulster

6.2 Drivers 49

Attributes of the CAN Driver

• Implementation in the eCos component framework

• Configurability and Selection in the eCos Configtool

• Provide write access to the CAN bus

• Reading and progress of incoming CAN messages

Since the CAN hardware, except the CAN bus controller, is completly integrated in
the LPC2294 MCU the hardware specific driver is called lpccan.

Hardware independent CAN driver

The standard CAN driver supplied with eCos is structured hardware independent. To
add support for the new CAN port this existing driver and a hardware specific driver
(lpccan) with an own interface to the actual CAN hardware is implemented. The
further interconnection between the hardware independent and dependent drivers is
described seperatelly for the initialisation, write and read calls.

Implementation in the eCos component framework

The functionality of the specific hardware CAN driver is implemented in three files
located under the /devs/can/arm/lpc2xxx/lpcE2294/ directory in the eCos package repos-
itory.

lpccan_lpc2294.h This file contains a list which links the CAN hardware ad-
dresses to usable defines. Additionally some low level lpc2294
interrupt functions are included.

lpccan_lpc2294.c All functionallity of the lpccan driver is contained in this file.

can_lpc2294.cdl All configuration options of the driver and device are imple-
mented in this package file.

Furthermore the CAN driver package is included in the ecos.db file to make it
available to the Configuration Tool. The hardware independant CAN driver 9 and
the board specific driver package10 are included in the target specification in the
ecos.db data base as shown in Appendix G, Listing G.1.

9CDL package: CYGPKG_IO_CAN
10CDL package: CYGPKG_DEVS_CAN_ARM_LPC2XXX_LPC2294

M M Labus University of Ulster

6.2 Drivers 50

Configurability and Selection in the eCos Configtool

The CDL file of the lpccan driver offers the following options in the Configuration
Tool.

• Selection of the debug message output on the debug port

• Selection of up to four supported CAN ports

• For each CAN port the following options can be selected:

Definition of the device name, e.g. "/can0"

Selection of the default baud rate

RX and TX queue size

Error and Channel interrupt vector number and priority

• Additional driver build options

The defines of the configuration are stored in the install tree of the eCos build (re-
fer Section 3.9) in the devs_can_arm_lpc2xxx_lpc2294.h automatically generated by the
configuration tool.

Initialisation of the CAN driver

The access to a CAN device is established in eCos by two components. The hardware
independent eCos CAN driver which offers the interface to the application layer and
the hardware specific CAN driver lpccan. The specific driver has to implement sev-
eral macros in order to be linked to the upper CAN driver and therefore to the I/O
subsystem. For the complete source code and parameter description of these macros
please refer to Appendix D Listings D.1, D.2, and D.3.

The CAN_LOWLEVEL_FUNS macro introduces the standard driver routines
(please refer Section 3.7 and Table 3.1) of the specific driver to the upper hardware
independent driver. Additional functions which start and stop the transmission of
the CAN port are included (lpccan_start_xmit and lpccan_start_xmit).

Each CAN device must have a "CAN channel". This is a set of data which describes
all operations on the device comparable to the endpoints for USB devices. It also
contains buffers, etc., if the device is to be buffered. The CAN channel is created
by the macro CAN_CHANNEL_USING_INTERRUPTS for each implemented CAN
device.

Finally the DEVTAB_ENTRY generates the device table entry in the I/O subsys-
tem which includes, amongst others, information about the device name, used CAN
channel and the function table.

M M Labus University of Ulster

6.2 Drivers 51

Initialisation of the CAN hardware

The lpccan_init driver function is called at bootstrap time and fulfilles the following
tasks:

• Initialisation of the driver independent driver by calling (chan->callback-
>can_init)(chan)

• Initialisation of the Vector Interrupt Controller

• Selection of the Pin select register of the LPC2294 chip

• Disabling of the acceptance filter, hence all CAN messages are accepted

• Set of CAN baudrate

• Linking of receive interrupt service routine and Vector table

• Enabling of the receive interrupt

Implementation of the write access

Figure 6.1: Write process

M M Labus University of Ulster

6.3 Redboot 52

A CAN message can be send by an application using the cgy_io_write function of
the I/O subsystem interface. Since the CAN access is managed by the cooperation
of the hardware independant CAN driver and the platform specific lpccan driver the
write call of the application starts the can_write function of the superior CAN driver.
This driver first enables the CAN transmitter of the LPC2294 MCU by calling the
lpccan_start_xmit function. This function initialises the can_xmt_msg function of the
superior can driver. The actual write access to the LPC2294 CAN transmit registers
is implemented in the lpccan_putmsg function of the lpccan driver. This function
is called out of the can_xmt_msg function as shown in Figure 6.1. Furthermore the
lpccan_putmsg routine kicks the transmitter to send the message to the bus. Finally
the can_xmit_msg function stops the transmitter.

At the current status of the project the written data on the CAN bus could be mea-
sured using an ociloscope. Further investigation and debbugging is required to as-
certain why a connected CAN receiver cannot detect the message on the bus.

Implementation of the read functionality

The implementation of the read access was not finished at the completion of this
document. The main stress has to be given to the lpccan_msg_rx_std_isr routine of
the lpccan driver. This function reads the receive registers of the LPC2294 MCU and
stores the data in a global buffer.

Further work

• Debugging of the write implementation

• Completition of the read implementation

• Implementation of the driver and device configuration "get" routine during run-
time

• Configuration setting call during runtime

6.3 Redboot

Once the eCos HAL and at least the serial or the ethernet driver have been ported
to the target RedBoot can be build. The eCos Configuration Tool offers therefore a
template which selects all required packages. Furthermore a minimal configuration
file is helpful to select the apropriate attributes for the RedBoot application. An ex-
ample code for a ROM startup minimal configuartion file can be found in Appendix

M M Labus University of Ulster

6.4 LCD Application 53

H, Listing H.1. This file has to be imported by the Configuration Tool and finally the
RedBoot image can be build. As a last step the Redboot image can be load to the static
memory of the Olimex board using openOCD and telnet.
If the driver for the external flash is implemented Redboot can be used to give infor-
mation about or manipulate this memory.

6.4 LCD Application

This LCD control example demonstrates several functionalaties and attributes of
eCos. The information gained by this demonstration are:

• Genaral structure of an eCos application

• Presentation of the GPIO functionality

• Serial device driver functionallity test

• Detemination of the footprint size

• Thread Management Example

Thread initialisation

Synchronisation with flags and message boxes

• LCD initialisation

The cyg_user_start function is the common entry point for each eCos application. In
this example the cyg_user_start function implements the following tasks:

• LCD initialisation

• LCD write

• Thread initialisation

• Message box initialisation

• Start of thread execution

After this initialisation process the cyg_user_start function ends and the eCos sched-
uler starts to run, hence both threads are started (cyg_thread_resume). The read
thread (rx_thread please refer extract of source code Appendix E Listing E.1) sends
a message box (cyg_mbox_put(mbox_handle, (void *)CURSOR_LEFT)) to the write
thread (tx_thread) when a buttons was pressed. The message box contains the in-
formation whether the left or right button has been used. By then the write thread

M M Labus University of Ulster

6.4 LCD Application 54

Figure 6.2: Thread communication and synchronisation

was stopped to wait for the message box (message = cyg_mbox_get(mbox_handle)).
After receiving the mail box the thread processes the information writing to the LCD,
sets the information flag for the read thread and starts to wait for the next message
box. The set flag indicates to the read thread that he can start his process again.

Furthermore during the process of the system several messages are send to the
serial interface i.e. to a terminal. Thereby eCos offers twoo different routines to send
information to a standard output. The common one is printf which requires the stdio
library. This library has to be added in the eCos configuration to the eCOs system.
Additionally several other I/O libraries (e.g. string handling, internationalisation)
are required by the stdio package of eCos. Hence the footprint of the eCos system has
a size using the printf routine of 32kB.

However eCos provides a more ellegant alternative to avoid the implementation
of all memory wasting I/O packages. The diag_printf function entirely requires the
io_diag library which is include in the I/O subsystem. No further implementations
are required. Hence the footprint of the eCos binary image shrinks to a size of 28kB.
That is an improvment of 8% in this case. Various modifications of this configura-
tion even allow a footprint of 21kB of the binary image. Amongst other exeception
handling, interrupt handling, debugging options and the multi-scheduler have been
disabled.

M M Labus University of Ulster

55

7 Conclusion and further Work

Within the scope of this Master Thesis the real time operating system eCos was ported
to the Olimex LPC-E2294 board. A detailed description of the real time operating
system is provided by this document. The collected information about eCos and the
development setup supported the conduction of the project and will help further eCos
related projects.

The first major task of the thesis was to port the eCos HAL to the custom hardware.
This goal has been accomplished successfully. Out of the four aimed interface drivers
the serial and the flash memory driver have been implemented and tested success-
fully. The Ethernet and the CAN driver need some further work to be entirely inte-
grated into the eCos system. Thereby the developed routines of the Ethernet driver
have to be debugged and tested to provide the demanded functionality. The CAN
driver lacks of the proper implementation of the read routines and some accomplish-
ing works to provide a write access to the CAN bus. Nevertheless all drivers can be
selected and configured using the eCos Configuration tool. The conducted HAL port
and the drivers have been entirely adapted to the eCos component framework.

The implemented applications RedBoot and the LCD control example illustrate the
functionality of the eCos HAL, the serial driver and the usage of the GPIO ports of
the LPC2294 MCU. Additional further works might include the integration of a GUI
library and of the GoAhead web server. Since the author of this thesis had no specific
experience in the usage of open source development solutions an unexpected hugh
amount of time was used to configure the development setup. Compared to commer-
cial tools the open source approach gains the experience in application development
significantly more and justifies the additional effort.

56

Bibliography

[1] Amontec. http://www.amontec.com.

[2] Century software. http://embedded.centurysoftware.com/.

[3] Cygnus solutions. http://www.cygnus.com.

[4] Cygwin - homepage. http://www.cygwin.com/.

[5] ecos - sourceware. http://ecos.sourceware.org.

[6] The ecos mailing lists. http://ecos.sourceware.org/intouch.html.

[7] Introduction to microwindows programming.
http://www.linuxjournal.com/article/4309.

[8] Minigui. http://www.minigui.org.

[9] Nano-x window system. http://www.microwindows.org.

[10] John Dallaway Bart Veer. The eCos Component Writer’s Guide. 2001.
http://ecos.sourceware.org/docs-2.0/.

[11] Ltd Beijing Feynman Software Technology Co. MiniGUI Datasheet. 2004.
www.minigui.com.

[12] Ltd Beijing Feynman Software Technology Co. MiniGUI User’s Manual. 2004.
www.minigui.com.

[13] Ltd Beijing Feynman Software Technology Co. MiniGUI White Paper. 2004.
www.minigui.com.

[14] Andreas Buergel. ecos portierung unter besonderer beruecksichtigung der arm-
architektur. http://www.andreas-buergel.de, April 2003.

[15] eCosCentric Ltd. eCos User Guide. 2003. http://ecos.sourceware.org/docs-2.0/.

[16] Nick Garnett et al. eCos Reference Manual. 2003.
http://ecos.sourceware.org/docs-2.0/.

Bibliography 57

[17] Wolfhard Lawrenz (Hrsg.). CAN Controller Area Network; Grundlagen und Praxis.
Huethig, 1994. ISBN 3-7785-2263-7.

[18] Olimex Ltd. Electronic design and PCB sub-contract assembly. 2006.
http://www.olimex.com.

[19] James P. Lynch. ARM Cross Development with Eclipse. 2006. International Business
Machines Corp.

[20] Anthony J. Massa. Integrating the goahead webserver and ecos. Dr. Dobb’s Jour-
nal, November 2002. http://www.ddj.com/documents/s=7644/ddj0211e/.

[21] Anthony J. Massa. Embedded Software Developement with eCos. Prentice Hall, 2003.
http://www.phptr.com/massa.

[22] Philips Semiconductor. LPC2119/2129/2194/2292/2294 User Manual, preliminary
user manual edition, May 2004.

[23] Philips Semiconductor. LPC2292/LPC2294 Product Data, rev. 02 edition, Decem-
ber 2004.

[24] Dominic Rath. openOCD Debugger. FH Augsburg, 2005.

[25] Dominic Rath. Open on-chip debugger. developer.berlios.de, January 2006.

[26] Cirrus Logic Product Data Sheet. Cs 8900a. Crystal LAN Ethernet Controller,
September 2004. http://www.cirrus.com.

M M Labus University of Ulster

58

A eCos linking and building

1 # Usage: make INSTALL_DIR=/path/to/ecos/install

INSTALL_DIR:= /home/michix/Studium/Masterarbeit/Software/ecos/images/arm/lpc2xxx/lpcE2294/@
ecos_lcd_install

include $(INSTALL_DIR)/include/pkgconf/ecos.mak
6

XCC = $(ECOS_COMMAND_PREFIX)gcc
XCXX = $(XCC)
XLD = $(XCC)

11 CFLAGS = -g -O0 -I$(INSTALL_DIR)/include
CXXFLAGS = $(CFLAGS)
LDFLAGS = -nostartfiles -L$(INSTALL_DIR)/lib -Ttarget.ld

RULES
16

.PHONY: all clean

all: lcd

21 clean:
-rm -f lcd lcd.o

%.o: %.c
$(XCC) -c -o $*.o $(CFLAGS) $(ECOS_GLOBAL_CFLAGS) $<

26

%.o: %.cxx
$(XCXX) -c -o $*.o $(CXXFLAGS) $(ECOS_GLOBAL_CFLAGS) $<

%.o: %.C
31 $(XCXX) -c -o $*.o $(CXXFLAGS) $(ECOS_GLOBAL_CFLAGS) $<

%.o: %.cc
$(XCXX) -c -o $*.o $(CXXFLAGS) $(ECOS_GLOBAL_CFLAGS) $<

36 lcd: lcd.o
$(XLD) $(LDFLAGS) $(CFLAGS) $(ECOS_GLOBAL_LDFLAGS) -o $@ $@.o

Listing A.1: Example Makefile for eCos Applications

59

B Comparison of GUI libraries

TableB.1 compares MiniGui, MicroWindows and additionally the QT embedded li-
brary. Since this information are directly taken from the MiniGui Whitepaper [13] the
outstanding advantages of MiniGui have to be used with caution.

B Comparison of GUI libraries 60

MiniGUI MicroWindows QT/Embedded

API Win32 style X, Win32 subset QT (C++)

API completence Yes incomplete with
Win32 support

Yes

Typical Size of
function base

500K 600K 1.5M

Portability Excellent Better Good

License GPL/Commercial MPL QPL/GPL/
Commercial

Multiprocess Good Good with X inter-
face, unavailable
in Win32

Good

Robustness/ Reli-
ability

Good Very poor Good

Configurability
and Custumability

Good Fair Poor

Consumption of
system Resources

Lowest< Higher
(the traditional
client/ server
architecture based
in UNIX socket,
featuring frequent
in-process com-
munications and
higher consump-
tion of system
resources)

Highest (C++)

Efficiency High Lower Lowest

Operating system
support

Linux, uClinux,
eCos, uC/OS-II,
VxWorks, ...

Linux, eCos Linux

Hardware plat-
form support

x86, ARM MIPS,
PowerPC, Stron-
gARM, Minimum
CPU frequency
30MHz

x86, ARM MIPS,
StrongARM,
Minimum CPU
frequency 70MHz

x86, ARM, Stron-
gARM , Minimum
CPU frequency
300MHz

Table B.1: Graphical Library Comparison [13]

M M Labus University of Ulster

61

C CS8900

Figure C.1: cs8900 setup

62

D CAN Driver Macros

CAN_LOWLEVEL_FUNS(lpccan_lowlevel_funs,
lpccan_putmsg,

3 lpccan_getevent,
lpccan_get_config,
lpccan_set_config,
lpccan_start_xmit,
lpccan_stop_xmit

8)

Listing D.1: CAN driver functions

Parameter Description

lpccan_lowlevel_funs The "C" label for this structure.

lpccan_putmsg This function sends one CAN message to the
interface.

lpccan_getevent This function fetches one CAN message from the in-
terface. It will be only called in a non-interrupt driven
mode, thus it should wait for a character by polling
the device until ready.

lpccan_set_config This function is used to configure the CAN port dur-
ing runtime.

lpccan_get_config This function is used to get the current configuration
of the CAN port.configure the port.

lpccan_start_xmit In interrupt mode, turn on the transmitter and allow
for transmit interrupts.

lpccan_stop_xmit In interrupt mode, turn off the transmitter.

Table D.1: CAN_LOWLEVEL_FUNS Macro parameter description

D CAN Driver Macros 63

// buffer for rx can events
2 cyg_can_event lpccan_can1_rxbuf[CYGNUM_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN1_QUEUESIZE_RX];

// buffer for tx can messages
cyg_can_message lpccan_can1_txbuf[CYGNUM_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN1_QUEUESIZE_TX];

CAN_CHANNEL_USING_INTERRUPTS
7 (lpccan_can1_chan,

lpccan_lowlevel_funs,
lpccan_can1_info,
CYG_CAN_BAUD_RATE(CYGNUM_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN1_KBAUD),
lpccan_can1_txbuf, CYGNUM_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN1_QUEUESIZE_TX,

12 lpccan_can1_rxbuf, CYGNUM_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN1_QUEUESIZE_RX
);

Listing D.2: CAN channel initialisation

Parameter Description

lpccan_can1_chan The "C" label for this structure.

lpccan_lowlevel_funs The set of interface functions (see below).

lpccan_can1_info A placeholder for any device specific data for this
channel.

CYG_CAN_BAUD_RATE The initial baud rate value.

lpccan_can1_txbuf Pointer to the output buffer. NULL if none required.

CYGNUM_DEVS_CAN
_ARM_LPC2XXX
_LPC2294_CAN1
_QUEUESIZE_TX

The length of the output buffer.

lpccan_can1_rxbuf pointer to the input buffer. NULL if none required.

CYGNUM_DEVS_CAN
_ARM_LPC2XXX
_LPC2294_CAN1
_QUEUESIZE_RX

The length of the input buffer.

Table D.2: SERIAL_CHANNEL_USING_INTERRUPTS macro parameter description

M M Labus University of Ulster

D CAN Driver Macros 64

DEVTAB_ENTRY(lpccan4_devtab,
2 CYGDAT_DEVS_CAN_ARM_LPC2XXX_LPC2294_CAN4_NAME,

0, // Does not depend on a lower level interface
&cyg_io_can_devio,
lpccan_init,
lpccan_lookup, // CAN driver may need initializing

7 &lpccan_can4_chan
);

Listing D.3: Device table insertion macro

Parameter Description

lpccan4_devtab The "C" label for this devtab entry

CYGDAT_DEVS
_CAN_ARM _LPC2XXX
_LPC2294 _CAN4_NAME

The "C" string for the device, e.g. /can1, defined us-
ing the Configuration tool

0 Used lower level interfaces, here none

&cyg_io_can_devio The table of I/O functions. This set is defined in the
hardware independent serial driver and should be
used.

lpccan_init The module initialization function.

lpccan_lookup The device lookup function. This function typically
sets up the device for actual use, turning on inter-
rupts, configuring the port, etc.

&lpccan_can4_chan This table (defined below) contains the interface be-
tween the interface module and the can driver proper.

Table D.3: DEVTAB_ENTRY macro parameter description

M M Labus University of Ulster

65

E Threads using the LCD Example

2 #ifdef __cplusplus
extern "C"
{
#endif

int cyg_user_start(void)
7 {

// Set counter GATE input low (0) to halt counter while it’s being setup
lcd_light_out();
lcd_init();

12 lcd_print("Press a BUTTON!!");
lcd_light_on();
lcd_cursor_on();
lcd_cursor_blink();

17 cyg_thread_create(
4, // thread priority
rx_thread, // thread routine
(cyg_addrword_t) "th_read", // thread specific data
"th_read", // name of thread

22 (void *) th_rx_stack, // pointer to thread stack

THREAD_STACK_SIZE, // size of stack
&th_rx_handle, // pointer to thread handle
&gThread_rx); // pointer to thread object

27

cyg_mbox_create(&mbox_handle,&mbox); // mbox allocation
...

32 cyg_thread_resume (th_rx_handle); // start execution
cyg_thread_resume (th_tx_handle);

}
#ifdef __cplusplus

37 }
#endif

42 // read thread
void rx_thread (cyg_addrword_t pThreadData)
{

...

...
47 // start tx thread since button is pressed

cyg_mbox_put(mbox_handle, (void *)CURSOR_LEFT);
// Wait for the appropriate bits to be set in the flag by tx_thread
cyg_flag_wait(&flag_var,
3,

52 CYG_FLAG_WAITMODE_OR |
CYG_FLAG_WAITMODE_CLR
);
lcd_wait_long();

}
57 ...

...

}
void tx_thread (cyg_addrword_t pThreadData)

E Threads using the LCD Example 66

62 {
void *message;
// Run this thread forever.
while (1)
{

67 // Wait for the message.
message = cyg_mbox_get(mbox_handle);
// Make sure we received the message before attempting
// to process it.
if (message != NULL)

72 {
if((*(int *)message) == CURSOR_RIGHT)
{

lcd_cursor_right();
}

77 else
{

lcd_cursor_left();
}

}
82 else

{
diag_printf("no message received!!\n");

}
// Set the appropriate flag bits to signal rx_thread

87 cyg_flag_setbits(&flag_var, 1);
}

}

Listing E.1: Extract of Thread example

M M Labus University of Ulster

67

F Flash Driver Extract

1 // The Olimex LPC-E2294 has one Intel 28F320C3 flash memory part.

#define CYGNUM_FLASH_INTERLEAVE (1)
#define CYGNUM_FLASH_SERIES (1)
#define CYGNUM_FLASH_WIDTH (16)

6 #define CYGNUM_FLASH_BASE (0x80000000)

Listing F.1: Extract of the LPC-E2294 specific flash driver support file

68

G CDL Files

package CYGPKG_HAL_ARM_LPC2XXX_LPCE2294 {
3 alias { "Olimex evaluation board LPCE2294 " hal_lpcE2294_arm }

directory hal/arm/lpc2xxx/lpcE2294
script hal_arm_lpc2xxx_lpcE2294.cdl
hardware
description "

8 The lpcE2294 HAL package provides the support needed to run eCos on an
the lpcE2294 evaluation board from Olimex."

}
target lpcE2294 {

alias { "Olimex evaluation board LPC-E2294" lpcE2294 }
13 packages { CYGPKG_HAL_ARM

CYGPKG_HAL_ARM_LPC2XXX
CYGPKG_HAL_ARM_LPC2XXX_LPCE2294
CYGPKG_DEVS_FLASH_INTEL_28FXXX
CYGPKG_DEVS_FLASH_ARM_LPCE2294

18 CYGPKG_DEVS_ETH_ARM_LPCE2294
CYGPKG_DEVS_ETH_CL_CS8900A
CYGPKG_IO_SERIAL_GENERIC_16X5X
CYGPKG_IO_SERIAL_ARM_LPC2XXX
CYGPKG_DEVICES_WATCHDOG_ARM_LPC2XXX

23 CYGPKG_DEVS_CAN_ARM_LPC2XXX_LPC2294
CYGPKG_IO_CAN

}
description "
The e2294 target provides the packages needed to run eCos on the

28 LPC-E2294 evaluation board from Olimex."
}

Listing G.1: ecos.db for the Olimex Platform

1 package CYGPKG_DEVS_FLASH_ARM_LPCE2294 {
alias { "Support for the external flash memory on the Olimex LPC-E2294 @

board" flash_lpcE2294 }
directory devs/flash/arm/lpcE2294
script flash_lpcE2294.cdl
hardware

6 description "
This package contains hardware support for flash memory
on the Olimex LPC-E2294 platform."

}

Listing G.2: ecos.db entry for the flash driver package

1 cdl_package CYGPKG_DEVS_FLASH_ARM_LPCE2294 {
display "ARM LPCE2294 FLASH memory support"

parent CYGPKG_IO_FLASH
active_if CYGPKG_IO_FLASH

6 requires CYGPKG_HAL_ARM_LPC2XXX_LPCE2294
implements CYGHWR_IO_FLASH_DEVICE

compile arm_lpcE2294_flash.c

11 cdl_interface CYGINT_DEVS_FLASH_INTEL_28FXXX_REQUIRED {
display "Generic Intel FlashFile driver required"

}
implements CYGINT_DEVS_FLASH_INTEL_28FXXX_REQUIRED

G CDL Files 69

requires CYGHWR_DEVS_FLASH_INTEL_28F320C3
16 }

Listing G.3: CDL package description for the LPC-E2294 flash Driver

M M Labus University of Ulster

70

H RedBoot Minimal Configuration
File

cdl_savefile_version 1;
cdl_savefile_command cdl_savefile_version {};
cdl_savefile_command cdl_savefile_command {};

4 cdl_savefile_command cdl_configuration { description hardware template package };
cdl_savefile_command cdl_package { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_component { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_option { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_interface { value_source user_value wizard_value inferred_value };

9

cdl_configuration eCos {
package CYGPKG_IO_FLASH current ;

};

14 cdl_option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE {
user_value 6144

};

cdl_option CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT {
19 user_value 0

};

cdl_option CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM {
inferred_value 0

24 };

cdl_option CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS {
inferred_value 1

};
29

cdl_option CYGSEM_HAL_ROM_MONITOR {
inferred_value 1

};

34 cdl_option CYGSEM_HAL_USE_ROM_MONITOR {
inferred_value 0 0

};

cdl_component CYG_HAL_STARTUP {
39 user_value ROM

};

cdl_component CYGBLD_BUILD_REDBOOT {
user_value 1

44 };

cdl_option CYGDAT_REDBOOT_CUSTOM_VERSION {
set rv {UNKNOW}

49 regsub {[$]Revision: (.*?) [$]} {$Revision: 1.1 $} {\1} rv
user_value 1 $rv
unset rv

};

54 cdl_component CYGBLD_BUILD_REDBOOT_WITH_THREADS {
user_value 1

};

H RedBoot Minimal Configuration File 71

cdl_option CYGBLD_BUILD_REDBOOT_WITH_IOMEM {
59 user_value 1

};

cdl_option CYGBLD_BUILD_REDBOOT_WITH_EXEC {
user_value 0

64 };

Listing H.1: RedBoot Minimal Configuration File

M M Labus University of Ulster

this page intentionally left blank

Document Revision History

Rev. Date Author Description

0.1 2006-03-20 M. Labus Initial Creation
0.2 2006-04-30 M. Labus Draft release
1.0 2006-05-18 M. Labus Final release

Table 8.1: Revision history;

this page intentionally left blank

	Contents
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Structure of this Document

	2 Requirements Specification
	2.1 Comprehension of eCos
	2.2 Development Setup
	2.2.1 Software
	2.2.2 Hardware
	2.2.3 Implementation of eCos
	2.2.4 Further miscellaneous Requirements

	3 eCos
	3.1 eCos Source Tree Roadmap
	3.2 The eCos Architecture
	3.3 Hardware Abstraction Layer
	3.3.1 HAL Start-up

	3.4 The Redboot ROM Monitor
	3.5 Kernel
	3.5.1 Kernel Startup
	3.5.2 Schedulers
	3.5.3 Interrupt Handling
	3.5.4 Exception Handling

	3.6 Thread Synchronisation
	3.6.1 Mutexes
	3.6.2 Semaphores
	3.6.3 Flags
	3.6.4 Spinlocks
	3.6.5 Condition Variables
	3.6.6 Message Boxes

	3.7 I/O Control System
	3.7.1 I/O Subsystem
	3.7.2 Device Drivers

	3.8 Configuration Tool
	3.9 eCos building process
	3.10 Third Party Support
	3.10.1 GoAhead Webserver
	3.10.2 Grafical User Interface

	3.11 eCos Support

	4 CAN-Bus Fundamentals
	4.1 CAN Topology
	4.2 Object Identifier
	4.3 CAN-Messages

	5 Development Setup
	5.1 Hardware Setup
	5.1.1 Development Host Platform
	5.1.2 Development Target Platform

	5.2 Software Setup
	5.2.1 OpenOCD - Debugger
	5.2.2 eCos CVS Repository
	5.2.3 Eclipse
	5.2.4 ARM-ELF GNU Toolchain

	6 Implementation of eCos
	6.1 HAL Port
	6.1.1 Structure of the Port
	6.1.2 Platform Initialisation
	6.1.3 Memory Layout
	6.1.4 CDL-File
	6.1.5 Modification of the eCos database

	6.2 Drivers
	6.2.1 Serial Interface Driver
	6.2.2 Flash ROM Driver
	6.2.3 Ethernet
	6.2.4 CAN Driver - lpccan

	6.3 Redboot
	6.4 LCD Application

	7 Conclusion and further Work
	A eCos linking and building
	B Comparison of GUI libraries
	C CS8900
	D CAN Driver Macros
	E Threads using the LCD Example
	F Flash Driver Extract
	G CDL Files
	H RedBoot Minimal Configuration File

