User's Manual

Type DTWG Web Server Version 1.1

Russelectric Inc. South Shore Park, Hingham, Massachusetts 02043 Service 800 654-3020 www.russelectric.com

90E1730002 rev. A03

Table of Contents

SECTION 1 Hazard Categories and Special Symbols	5
SECTION 2 Introduction	
Overview	
SECTION 3 Installation.	7
Accessing the DTWG	
Login and Configuration	
Modifying Login and DTWG Configuration Settings	8
Settings Configuration	. 10
System Time and Date	. 10
Configure Network Settings	. 11
Configure Email Alerts	. 12
About	. 13
SECTION 4 Graphical User Interface	. 14
Source Status	. 14
Graphical Indicator	. 15
System Status	. 17
Real-Time Trends	. 19
General Information	. 21
Event Data	. 22
Trend History	. 23
Timers	. 24
Exerciser	. 25
SECTION 5 Left Panel	
Bypass ATS Timer	
Load Test	. 27
No Load Test	
Commit/No Commit	. 29
Manual Xfer to S1	
SECTION 6 Alarms	
SECTION 7 SCADA Pass Through	

List of Figures

Figure 1 Login Dialog Box	. 8
Figure 2 HW_Cfg.xml File	
Figure 3 TWS_Config.xml File	
Figure 4 PWL General Info	
Figure 5 Real Time Data Excel File	
Figure 6 Configuration Settings	
Figure 7 Date Change Window	
Figure 8 Time Change Window	
Figure 9 Configuration Tab	
Figure 10 Network Settings	12
Figure 11 Email Settings	
Figure 12 About Window	13
Figure 13 Source Status Window	14
Figure 14 System Status Window	17
Figure 16 Real Time Trends	19
Figure 17 Real Time Trends Data Point	19
Figure 18 General Info	21
Figure 19 Event Data	22
Figure 20 Trend History	23
Figure 21 Timers Window	
Figure 22 Exerciser Window	25
Figure 23 Left Panel Buttons	26
Figure 24 Bypass ATS Timer On	26
Figure 25 Load Test Button	27

Russelectric

User's Manual –90E1730002

Figure 26 Start of Load Test	
Figure 27 No Load Test Button	
Figure 28 Start of No Load Test	
Figure 29 Commit On	
Figure 30 Manual Xfer to S1 Enabled	

SECTION 1 Hazard Categories and Special Symbols

Read these instructions carefully and look at the equipment to become familiar with the equipment before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A WARNING

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

Please Note: Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Russelectric Inc. for any consequences arising out of the use of this material.

SECTION 2 Introduction

Overview

The following manual provides an overview on the Installation, configuration and use of the DT WebServer Gateway (DTWG) for the Russelectric RPTCS Controller.

SECTION 3 Installation

The following section explains the methods of accessing the DTWG, logging in, as well as changing the various login features such as username and password.

Accessing the DTWG

The DTWG resides on the DT7000 I/O Gateway board and can be accessed by connecting to the DT7000 through Ethernet. The only requirement is that the user has the latest version of *Java* installed on their PC. If *Java* is not installed you will be prompted to install it when accessing the DTWG. The WebServer can simply be accessed by typing in the IP Address of the DTWG into the URL bar of a web browser. The DTWG can operate with many popular browsers including Internet Explorer, Google Chrome, and Mozilla.

Once the IP address is successfully entered, the following main webpage is displayed.

The default IP for the DTWG is **192.168.0.5.**

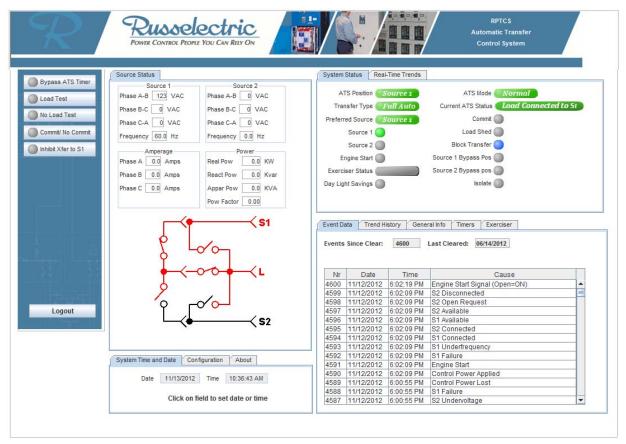


Figure 1 DTWG

Login and Configuration

Without logging in it is possible to monitor the status of the transfer switch, view events, and view trend history. In order to run tests on the attached Automatic Transfer Switch and configure various settings in the DTWG, the user must be logged in. To login, use the following steps:

- 1. Click on the **Login** button.
- 2. A dialog box will appear, as shown in Figure 2. Type in the username and password, then click **Login**

Login			×
Username: Password:			
	Login	Cancel	

Figure 1 Login Dialog Box

The default login information is as follows:

Username: RussElectric Password: Russ2012

The DTWG is shipped with a default configuration. This configuration can be changed by the user using the webpage interface and also via modification of the XML configuration files. The methods to modify these settings are explained in the following sections.

Modifying Login and DTWG Configuration Settings

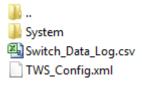
To modify the default password settings, follow these steps:

- 1. Click on the Configuration tab in the bottom of the WebServer page.
- 2. Select the **Configure Login** button.
- 3. You will be prompted to enter your login information in the following window,

Login
Username: Password:
Login Cancel

4. Once logged in, you will be able to change your password in a new window as shown

<u></u>	×
Username:	RussElectric1
New Password:	
Confirm Password:	
Commit	Cancel


5. Your current username will be displayed, which can be modified by inputting a new one. Type in your new password, and retype the password into the second field. Finally, select Commit to confirm your new settings. The password is now changed.

The previous steps were to modify the existing login information. If the user lost his or her password, there is another way to reset the username and password, found in various configuration files. In order to modify the configuration files, an FTP client must be used. It is possible to use the command line FTP available as part of Windows. However a graphical FTP client such as *Filezila* simplifies the process. The XML files can be edited with any text editor including *Notepad*. An XML editor can be used and assures proper format of the XML files. The user must connect to the DTWG FTP site using the current IP address. The default username and password to login to the DTWG FTP site is as follows:

Username: root
Password: password

The password for the root account to access the DTWG FTP site can be changed by making a telnet connection to the DTWG.

Once logged in, the user will observe the following files:

The System subfolder contains the following files:

The *HW_Cfg.xml* file contains configuration values for the DTWG, including the username and password. This file can be transferred to the local computer via the FTP client, modified and then transferred back to the DTWG to make changes to the configuration. The majority of the settings in the *HW_Cfg.xml* file can be modified through the configuration webpages. Only the username and password needs to be modified by editing the XML file. With a XML editor, the XML document will open as shown in figure 3.

```
<?xml version="1.0" encoding="UTF-8"?>
<TWS_CFG>
+ <System_CFG>
+ <Network_CFG>
+ <TWS_EMAIL>
</TWS_CFG>
```

Figure 2 HW_Cfg.xml File

Navigate through the editor to the username and password field and make any desired changes. Make sure to save the new edits before closing out of the XML editor. Finally, transfer the new XML document to the DTWG system directory.

The information displayed in the General info (*Section 3.5*), Timers (*Section 3.8*), and Exerciser (*Section 3.9*) tabs is also configurable. These can be modified . by editing the *TWS_Config.xml* file. Figure 4 shows the xml file that represents the data displayed under these three tabs. If the user modifies these settings the data displayed in the respective tabs on the DTWG displays will be modified.

<?xml version="1.0" encoding="UTF-8"?>
- <TWS_CONFIG>
- <Device Type="RPTCS">
+ <General_Info>
+ <Timer_Status_Setup>
+ <Exerciser_Setup>
</Device>
</TWS_CONFIG>

Figure 3 TWS_Config.xml File

In order for <u>General Info</u> to be modified, the PWL value within the *General_Info* tab must be set to 1. In the below Figure, PWl is set to 0. In order for modifications to General Info to be made within the WebServer itself (and not the XML), this value must be modified to 1.

```
<General_Info>
- <Data_Row Nr="1">
- <Data_Row Nr="1">
- <Column Nr="1" PWL="0">Serial Nr.</Column>
- <Column Nr="2" PWL="0" Data_Length="6" Data_Address="30008"
Data_Format="22">123456789</Column>
```

Figure 4 PWL General Info

The data collected in the Historical Trends window (as further described in *Section 3.4*) is also stored inside of the DTWG in CSV file format. The file can be copied from the DTWG FTP Site and can then be opened through a CSV compatible application such as Microsoft Excel. The file stores up to 30 days of data. Figure 5 shows a portion of a trend CSV file opened in Microsoft Excel.

Date	Time	I Phase A(I Phase B(I Phase C	(Src 1 Vab(Src 1 Vbc(Src 1 Vca(Src 1 Freq	Src 2 Vab(Src 2 Vbc(Src 2 Vca(v	Src 2 Freq	Power Fa	Real Pow	Reactive	Apparent	Power(kVA
########	2:53:05	0	0	() 123	0	0	60.01	0	0	0	0	0	0	0	0	
*****	2:54:05	0	0	(123	0	0	60.02	0	0	0	0	0	0	0	0	
*****	2:55:05	0	0	(123	0	0	60.04	0	0	0	0	0	0	0	0	
*****	2:56:05	0	0	(123	0	0	60.02	0	0	0	0	0	0	0	0	

Figure 5 Real Time Data Excel File

Settings Configuration

Settings, such as the date, time, network settings, and email alerts can be configured directly on the DTWG through the webpages. The settings can be modified by accessing the tabs on the bottom left side of the main web page as show in figure 6 below.

ĺ	System Time and	d Date Conf	iguration	About				
	Date	11/20/2012	Time	10:37:07 AM				
	Click on field to set date or time							
L								

Figure 6 Configuration Settings

System Time and Date

The system time and date can be configured by clicking on the System Time and Date tab shown above. Then, by simply clicking the desired field, the user may modify the time and date on the transfer switch. This is shown below in Figures 7 and 8. Note the user must be logged in to access the configuration settings. To change the time and date, the user can follow these steps:

- 1. Click on the **System Time and Date** tab.
- 2.Next click on either User wants to alter.
- 3. The date or time of the local PC will automatically be filled into the field. This can be modified as

needed to the desired value, then click Set ATS Time or Set ATS Date

4. If the user wishes to leave the values unchanged, simply click **Cancel** and the settings will remain unchanged.

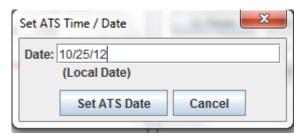


Figure 7 Date Change Window

Set ATS Time / Date					
Time: 5:31 PM (Local Time)					
Set ATS Time	Cancel				

Figure 8 Time Change Window

Configure Network Settings

The user may also configure various network settings as well as email alerts using the Configuration tab. To set new configuration settings, use the following steps:

1. Click on the **Configuration** tab, as shown in Figure 10.

2. To change the network settings, click on Configure Network Settings

3. Figure 11 shows the Configure Network Settings window. The default IP address as well as default Gateway are shown in this window. The user may alter any values by simply inputting the desired

values, then clicking	Commit	to confirm the changes. To cancel any changes made, simply
click on Cancel		

Configure Network Settings Configure Email Alerts	System Time and Date Configuration	About
	Configure Network Settings	Configure Email Alerts

Figure 9 Configuration Tab

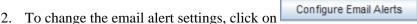

IP v4 Address:	192.168.000.005
Subnet Mask:	255.255.255.000
efault Gateway:	192.168.000.001
Modbus ID:	3
Baud Rate:	115200 💌
Device Type:	RPTCS 💌
Cancel	Commit

Figure 10 Network Settings

Configure Email Alerts

The purpose of **Email Alerts** is to keep the user up to date on the status of the ATS. If any manual changes are made, or if any failures occur, a specified recipient or recipients will receive an email of the changes occurring. To configure the sender of these emails as well as the recipients and message, follow these steps:

1. Click on the **<u>Configuration</u>** tab.

- 3. The window shown in Figure 12 will appear.
- 4. The user must input the IP address of their Standard Mail Transfer Protocol (SMTP) mail server. They must then input the username and password for their email account. Finally, for a user to receive alerts, they must input the desired email addresses in the **Recipients**:

5. The user may also enter a title or subject under the Subject: area. The Signature: area may be used to input a message the recipients will receive.

6. Once all the desired inputs have been set, the user must click **Commit** to confirm the changes. To cancel the changes, simply click **Cancel**.

SMTP Address:	074.220.215.228	Recipients:
SMTP Port:	25	
User Name:		
ender Address:		
Password:		
Subject:	RPTCS ALERT!	
Signature:	Message Sent From RPT	CS\nDemo\n

Figure 11 Email Settings

About

Clicking on the <u>About</u> tab in the bottom left window will bring up the Firmware Version information for the DTWG, as shown below in Figure 13.

System Time and Date	Configuration	About	
Version: 1.7			Copyright 2012
	Developed	l by Diamo	nd Technologies

Figure 12 About Window

SECTION 4 Graphical User Interface

The following sections describe in detail the Graphical User Interface of the DTWG

Source Status

Source Status	
Source 1	Source 2
Phase A-B 122 VAC	Phase A-B 0 VAC
Phase B-C 0 VAC	Phase B-C 0 VAC
Phase C-A 0 VAC	Phase C-A 0 VAC
Frequency 60.0 Hz	Frequency 0.0 Hz
Amperage	Power
Phase A 0.0 Amps	Real Pow 0.0 KW
Phase B 0.0 Amps	React Pow 0.0 Kvar
Phase C 0.0 Amps	Appar Pow 0.0 KVA
	Pow Factor 0.00
	<pre></pre>

Figure 13 Source Status Window

Figure 14 shows the Source Status of source 1 and 2. The following criteria are displayed.

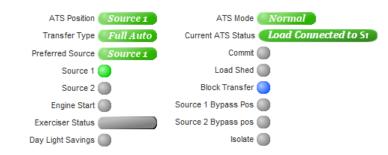
- Source 1 & Source 2 phase-to-phase voltages
- Source 1 & Source 2 frequency
- Watts
- Amps
- Power Factor

All of the above can be graphed in the Real-Time Trends (Section 3.3) and Trend History (Section 3.4) windows.

Graphical Indicator

The Graphic Indicator in the Source Status window has 3 nodes: Source 1 ("S1"), Source 2 ("S2"), and the Facility Load ("L). Its colors are red for power available and black for power unavailable. Depending on how the user indicates the preferred source, the following positions are possible:

Source	Indicator	Description
Source 1/ Emergency Failure		 Source 1 is switched ON and is the preferred source Source 2 is switched OFF This graphical representation is also shown during an Emergency Failure (when source 2 fails)
Source 2		 Source 1 is switched OFF but still has small amounts of power going through it (indicated by the red) Source 2 is switched ON and is the preferred source
Normal Failure	S1 COCL S2	 During a Normal Failure, Source 1 is turned OFF. Source 2 is switched ON


The above graphical table is a representation of a Standard Open Bypass switch. The user may have a different ATS switch and the following table is a simplified representation of all possible switches.

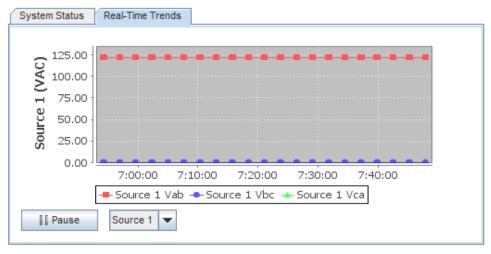
Russelectric

User's Manual -90E1730002

Russelecuti	User's Manual –90E 1730002
Indicator	Switch
S1 S2	 Standard Open Transition Switch Dual Transition Switch Closed Transition Switch Delayed CB Type Switch
	 Dual Bypass Switch Closed Transition Bypass
	• This image shows a fail to transfer load that occurs in multiple different scenarios.
S1 BYPS1 C LB C C LB C C LB C C LB C C C C C S2 BYPS2 C S2 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1	• This image shows a bypass switch in the isolation position.

System Status

Figure 14 System Status Window


Indicator	Status	Description	Function
	Source 1	Power is currently being driven by Source 1	
ATS		Power is currently being driven by Source 2	Section 3.1
Position	Source 2		
	Normal	Transfer switch is in Normal mode	
		When a Load Test is initiated by the user, the status of the	
	Load Test	transfer switch changes to Load Test mode	
	No Load	When a No Load Test is initiated by the user, the status of	S (* 20
	Test	the transfer switch changes to No Load Test	Sections 3.9,
	No Load	The transfer switch is conducting a pre-scheduled Exerciser	4.2,
. — ~	Exer	No Load Test	and 4.3
ATS Mode	Load Exer	The Transfer switch is conducting a pre-scheduled Exerciser Load Test	
	Failed To	Generator failed to transfer from Source to Source.	
	Transfer		
	Full Auto	The device automatically transfers during transfers-to-	
		emergency and retransfers-to-normal	
Transfer Type	Semi Auto	User has control over transfers while still leaving	G (* 22
		emergencies to the generator	Section 3.2
	Manual	User can manually conduct transfers using the generator	
	Load	The load is currently connected to Source 1	
	Connected		
	to S1		
	Load	The load is currently connected to Source 2	Sections 3.2
Current	Connected		120
ATS Status	to S2		and 3.8
112 54440	Waiting to	Delay before generator stops	
	Stop Gen		
	Waiting to	Delay before generator starts	
	Start Gen	A year initiated Test is in magness	
	Test in	A user initiated Test is in progress.	
	Progress		
Preferred	Source 1	User selected preferred source is Source 1	Section 3.1
Source	Source 2	User selected preferred source is Source 2	
		In <i>Commit</i> mode, the TDES timer begins timing. When the	G
	On	TDES timer expires, the generator starts, reaches its proper	Section 4.4
		rated values, and the load is transferred to the emergency	

Indicator	Status	Description	Function
		source. Even if normal power is restored before the	
		transfer-to-emergency sequence initiates, the transfer	
		sequence is committed and still occurs. In <i>No Commit</i> mode, the TDES timer begins timing. When	
		the TDES timer expires, the generator starts, and the load is	
	Off	transferred to the emergency source. Even if normal power	
Commit	OII	is restored before the transfer-to-emergency sequence	
Commut		initiation, the transfer sequence is not committed and the	
	On	device remains in the Normal position. Power to Source 1 is available	
Source 1	Off	Power to Source 1 is unavailable	Section 3.1
	On	Power to Source 2 is available	<i>a</i>
Source 2	Off	Power to Source 2 is unavailable	Section 3.1
	On	The load shed signal from the generator control switchgear	
		is on. The ATS is placed in <i>Load Shed</i> mode.	Accessed
	Off	The load shed signal from the generator control switchgear	Through
Load Shed	Off	is off. The <i>Load Shed</i> mode previously initiated by the LSR On function is terminated.	Generator
		The BTR signal enables a transfer-to-emergency. This	
		function is on when the signal from the generator control	
	On	switchgear is on, or when the BTR accessory is not	Sections 3.8,
		installed.	3.9
		The Block Transfer Status (BTR) signal from the generator	and 4.1
Block	Off	control switchgear is off. The DTWG cannot transfer to the emergency source until the BTR signal is on, or until a	una 7.1
Transfer		block bypass transfer operation occurs.	
	0	The engine start relay is de-energized and signaling the	
	On	engine generator to start.	
Engine Start	Off	The engine start relay is energized and signals the engine	Sections 4.2
	OII	generator to stop.	and 4.3
	On	The user can choose to bypass the current route of energy	Accessed
Source 1		and go straight to Source 1.	Through
Bypass Pos	Off	The Bypass is turned off, and the flow of energy is in the Normal position.	Generator
		The user can choose to bypass the current route of energy	
	On	and go straight to Source 2.	A
Source 2		The Bypass is turned off, and the flow of energy is in the	Accessed Through
Bypass Pos	Off	Normal position.	Generator
		The EXCERCISER STATUS switch is in the <i>In progress</i>	
	I D	mode. When a programmed exerciser event begins, the	
Exerciser	In Progress	engine generator starts. The load is transferred to the	Section 3.9
Status		emergency source.	Section 5.9
20000	Off	The EXCERCISER STATUS switch is off and ignores all	
		programmed exerciser events.	
	On	The Daylight Savings function is on. The system adds one hour to its time clock to compensate for regional areas that	
Day Light		observe Daylights Savings Time.	Section 2.4.1
Savings	Off	The Daylight Savings function is turned off.	

Pusselectric

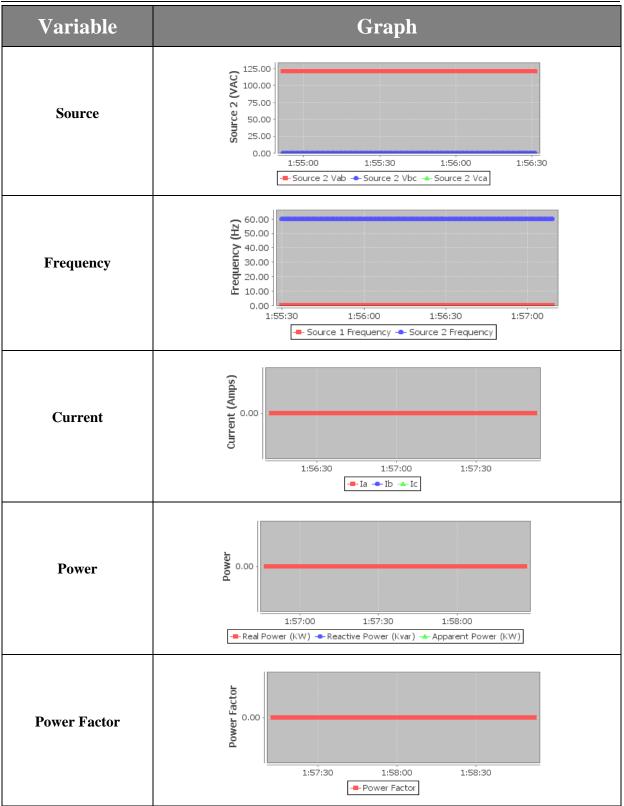
Indicator	Status	Description	Function
	On	ATS is racked out and isolated from the bypass switch	Accessed
Isolate	Off	When <i>Isolate</i> is off, the sources receive power and the	Through
	UII	switch is in normal operation.	Generator

Real-Time Trends

Figure 15 Real Time Trends

Access the Real Time Trends Window in the top right corner by clicking <u>Real-Time Trends tab.</u> On average readings are updated less than once every five seconds.

The graph, shown in Figure 16, displays in real time the variables in the Source Status Window, and is organized as a pull down menu with the following options: Source 1, Source 2, Frequency, Current, Power, Power Factor. Additionally, multiple plots are graphed based off which phase the user wishes to observe (Phase A-B, Phase B-C, Phase C-A). A table on the following page shows sample graphs for these variables.


Clicking the **Pause** button will pause the graph in the exact moment the user presses the button, pressing Pause a second time will continue displaying real time trends.

The user can also observe specific values on the Real Time Trends graph. To do so, it is easier to pause the graph first. Once paused, hover the mouse pointer over a specific point on one of the lines. Asmall dialog box will appear with the value of the point as well as the date and time the point was recorded. Figure 17 below shows an example of this. Data from Real Time Trends is stored in a CSVfile that can be accessed using the instructions found in *Section 2.3* of this manual.

Figure 16 Real Time Trends Data Point

General Information

1	Commit Selected		
	Value	Property	Sel
•	MMHA08	Serial Nr.	
	South Shore Park, Hingham	Location	
1	Single Phase	Phase	
	Three Poles	Poles	
1_	100 Amps	Amperage	
	RPTCS-GELS3BBAKL	Order Code	
	11/28/2012		
	6:20:34 PM	Last Primary Source Fail	
	1005	Total Primary Source Fail	
1	Outage	Last Transfer Reaseon	
1	11/28/2012	Last Transfer to S2 Date	
	6:23:13 PM	Last Transfer to S2 Time	
-	11/28/2012	Last Transfer to S1 Date	

Figure 17 General Info

To access the General Info display, click on the <u>General Info</u> tab on the bottom right corner of the main DTWG page.

The general information window shows the following

- Serial Number
- Location
- Phase
- Poles
- Amperage
- Order Code
- Last Primary Source Failure Date
- Last Primary Source Failure Time
- Total Primary Source Failures
- Last Transfer Reason
- Last Transfer to S2 Date
- Last Transfer to S2 Time
- Last Transfer to S1 Time
- Last Transfer to S1 Time
- Time Load w/o Power (seconds)
- Total Time on S1 (minutes)
- Total Time on S2 (minutes)
- Total Transfers (S1-S2 S2-S1)

Information in the General Info window can be modified using the methods described in *Section 2.3*. This allows for more or less data to be displayed.

Event Data

vents	Since Clear:	3610 I	ast Cleared: 06/14/2012	
Nr 🔺	Date	Time	Cause	
3430	11/22/2012	06:40:11 AM	S2 Close Request	•
3431	11/22/2012	06:40:11 AM	S2 Connected	
3432	11/22/2012	1:32:35 PM	Alternate Source Fail to Start	
3433	11/22/2012	1:32:35 PM	S2 Underfrequency	
3434	11/22/2012	1:32:35 PM	S2 Open Request	
3435	11/22/2012	1:35:10 PM	Center Off Position	
3436	11/22/2012	1:35:10 PM	S2 Disconnected	
3437	11/22/2012	1:35:10 PM	S2 Available	
3438	11/22/2012	1:35:14 PM	S1 Close Request	
3439	11/22/2012	1:35:14 PM	S1 Connected	
3440	11/22/2012	1:35:14 PM	Xfer to Alternate Source	
3441	11/22/2012	1:35:14 PM	Transfer Alert to S2	
3442	11/22/2012	2:28:47 PM	S1 Open Request	
3443	11/22/2012	2:28:47 PM	S1 Disconnected	-

Figure 18 Event Data

To access the Event Data display, click on the **Event Data** tab on the bottom right corner of the main DTWG page.

The Event Data window logs transfer events, the most recent event being posted at the top. The events are categorized under four separate options: Number of the Event, Date and Time of the event, as well as the Cause.

The user can organize the data through one of the four options above by clicking on the desired tab criteria.

 Nr
 Date
 Time
 Cause

Resetting the Event Data is done by the ATS and cannot be reset through the DTWG web pages.

Russelectric

Trend History

Event Data	Trend History General Info Timers Exerciser
1.00	-
800,025 Source 1 (VAC)	_
0.50 June 1	-
<mark>ช</mark> 0.25	-
0.00 7:(00:00 Source 1 Vab Source 1 Vbc Source 1 Vca
Date	Time Duration
11/26/201	12 9:05:11 PM 30 Mins 💌 Update Source 1 💌

Figure 19 Trend History

To access the Historical Trend display, click on the <u>**Trend History**</u> tab on the bottom right corner of the main DTWG page. The Trend History tab allows you to display historically collected data from a specific point in time. Readings are updated at different time periods (1-5 minutes) depending on the time duration that is chosen.

To observe a specific history report, do the following:

- 1. Type in the start date (mm/dd/yyyy format) and the start time (hh:mm:ss am and pmformat). These two inputs are variable; you can either utilize both of them or one of them.
- 2. Select the duration of the trend history from the pull-down menu.
- 3. Select the trend history polling value from its pull-down menu.
- 4. Click Update to receive the data.

Similar to Real Time Trends, the user can also click on a specific point on the graph to display the data for that point. A dialogue box displaying the points value as well as date and time of collection will be displayed See *Section 3.4* for more information. Retrieving large amounts of data may take several seconds.

Timers

10	Timer	Code	Preset	Actual	Units
Se		Code			
	Delay for Engine Cooldown	AUT	10	0	SEC
	Delay for Generator Start	TDES	30	0	SEC
	Delay - Xfer to Preferred Src	TD2	100	0	SEC
	Delay - Xfer to Non-Preferred Src	TD3	200	0	SEC
	Pre-load Control 1 Timer	TDBT	300	0	SEC
	Delay-Cntr Off Pos. to Non-Pref.	TETD	3	0	SEC
	Delay-Cntr Off Pos. to Pref.	TNTD	10	0	SEC
	Post Load Control 1 Timer	TDMI	0	0	SEC

Figure 20 Timers Window

To access the Timers display, click on the <u>**Timers**</u> tab on the bottom right corner of the main DTWG page. The following timers are always enabled (unless they are bypassed, further explained in *Section 4.1*. The information under the Timer tab as well as some other values can be modified. This is further explained in *Section 2.3*.

Timer	Code	Description
Delay for Engine Cool down	AUT	Delays the engine being shut down until it can cool
Delay for Generator Start	TDES	Delay the engine from starting during normal power outages
Delay – Xfer to Preferred Src	TD2	Stabilizes the normal source by holding the transfer-to-normal sequence
Delay – Xfer to Non-Preferred Src	TD3	Stabilizes the emergency source by holding the transfer-to- emergency sequence
Pre-load Control 1 Timer	TDBT	Signals the equipment in the building that a transfer between the normal and emergency sources is about to occur
Delay-Cntr Off Pos. to Non-Pref	TETD	Controls main contact transition time on re-transfer to the emergency source
Delay-Cntr Off Pos. to Pref.	TNTD	Controls main contact transition time on retransfer to the normal source
Post Load Control 1 Timer	TDMI	Signals the equipment in the building that a transfer from the ATS is about to occur

usselectric

Exerciser

Mode: Daily Commit Selected Sel Evt # Weekday Date Start Time Duration Load 1 Friday 8/15 08:00:00 AM 10 Min 0 Sec Image: Commit Selected 2 Not Set Not Set 12:00:00 AM 0 Min 0 Sec Image: Commit Selected 3 Not Set Not Set 12:00:00 AM 0 Min 0 Sec Image: Commit Selected	Event Data Trend History General Info Timers Exerciser Last: 04/26/2013 08:00:00 AM Next: 04/29/2013 08:00:00 AM						
1 Friday 8/15 08:00:00 AM 10 Min 0 Sec Image: Constraint of the sec 2 Not Set Not Set 12:00:00 AM 0 Min 0 Sec Image: Constraint of the sec	Mode: Daily Commit Selected						
2 Not Set Not Set 12:00:00 AM 0 Min 0 Sec	Sel	Evt#	Weekday	Date	Start Time	Duration	Load
		1	Friday	8/15	08:00:00 AM	10 Min 0 Sec	
3 Not Set Not Set 12:00:00 AM 0 Min 0 Sec		2	Not Set	Not Set	12:00:00 AM	0 Min 0 Sec	
		3	Not Set	Not Set	12:00:00 AM	0 Min 0 Sec	

Figure 21 Exerciser Window

To access the *Exerciser* setup, click on the **Exerciser** button on the bottom rigt hand corner of the main DTWG page. The Exerciser page allows the user to initiate a No Load or Load Test at a given date and time, with options of multiple occurrences. Load and No Load Tests are described in detail in sections 4.2 and 4.3.

To initiate a Load or No Load Test at a given date and time, follow these steps:

1. Once in the Exerciser Window, click on the Select button in the specific row to be modified.

Clicking the Select box will make a check mark appear as shown here . Once checked, this will allow the user to modify all other columns in this respective row.

- 2. The user must then choose the date and time for the test to occur. To do this, simply double click on the box under the desired column to be modified.. To change the day of the week the test occurs, double click the box under the Weekday tab and type in the desired weekday. To change the date the test occurs, double click under the Date tab and type in the desired date. To change the Start Time of the test, double click the box under the Start Time tab and type in the desired time (NOTE: DESIGNATE AM OR PM). Finally, to change the duration in which the test occurs, double click the box under the desired duration time.
- 3. Once all alterations are made, the user then must decide which type of test to perform. To perform a Load

Load Test, the user must check the box under the Load Tab as shown, $\boxed{\square}$. To perform a No Load Test, simply leave the box unchecked.

- 4. Finally, the user can select Mode in which the test occurs. This indicates how often the test occurs. The options include Off, Daily, Weekly, 14 Days, 28 Days, or 365 Days.
- 5. Once All the above steps are complete, click the **Commit Selected** button to confirm the test.

usselectric

SECTION 5 Left Panel

The following sections describe the functionality of the buttons found on the left side panel of the main DTWG display as shown below.

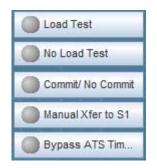


Figure 22 Left Panel Buttons

Bypass ATS Timer

The Bypass ATS Timer functionality deactivates timers TD2 and TD3 (*Section 3.8*). In this case, when a failure occurs, the emergency source will be immediately activated with no delay coming from the generator.

To bypass these timers, navigate to the left side panel and select the **Bypass ATS Timer** button,

Bypass ATS Timer

. To confirm that it is on, the button should appear as in Figure 23. Note you need to be logged in to access this functionality.

Bypass ATS Timer

Figure 23 Bypass ATS Timer On

To turn the Bypass ATS Timer off, simply select the button again.

usselectric

Load Test

A Load Test performs a normal source failure and transfers the load to the emergency source.

To start a load test, click on the **Load Test** icon on the menu bar on the left hand side of the screen as shown below.

Figure 24 Load Test Button

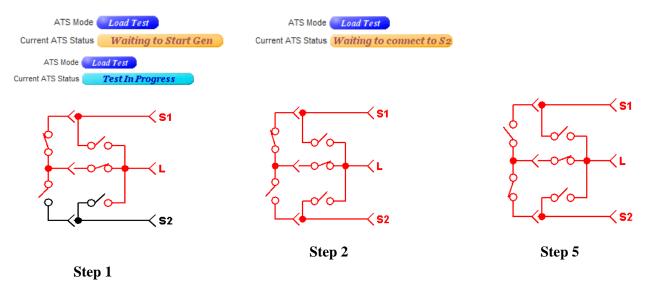

Once selected, the grey button will turn green as shown in Figure 25.

Figure 25 Start of Load Test

Once the Load Test begins, the following steps will occur:

- 1. Immediately after the Load Test begins, the ATS Mode will change to "Load Test" while the ATS Current ATS Status will change to "Waiting to Start Gen."
- 2. Assuming Source 1 is currently the preferred source, the ATS Current Status will change to "Waiting to Connect to S2."
- 3. The Normal Failure Timer times out.
- 4. The Transfer to Emergency Timer times out.
- 5. The switch transfers to the emergency source and the ATS Current Status changes to "Test in Progress." To stop the Load Test, simply click the *Load Test* button again.

Note: You need to be logged in to access this functionality.

Pusselectric

No Load Test

A *No Load Test* starts the engine-generator without a load transfer. In this case, Source 2 has power available but is not connected to the load.

To start a No Load Test, click on the <u>No Load Test</u> icon on the menu bar on the left hand side of the screen as shown below.

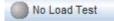


Figure 26 No Load Test Button

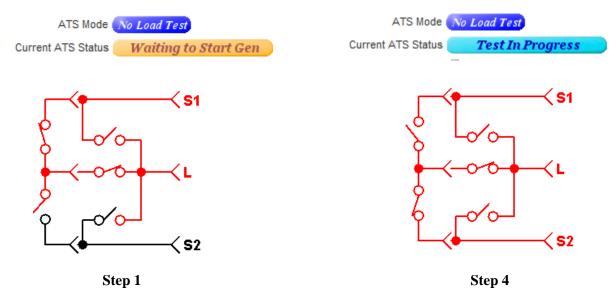

Once selected, the grey button will turn green as shown in Figure 27.

Figure 27 Start of No Load Test

Once the No Load Test begins, the following steps will occur:

- 1.Immediately after the No Load Test begins, the ATS Mode will change to "No Load Test" while the ATS Current Status will change to "Waiting to Start Gen."
- 2. Once the generator turns on, the "No Load Test" will begin. The switch remains on the original source, but the other source is now energized. ATS Current Status changes to "Test in Progress." To end the test, click the *No Load Test* button again.

usselectric

Commit/No Commit

The Commit function puts the switch into Commit mode. In Commit mode, whenever the engine-generator starts as a result of a normal power failure, the ATS transfers the load to the emergency source, and the transfer-to-emergency occurs even if normal power is restored.

To enable Commit mode, locate the Commit/No Commit button	Commit/ No Commit	on the left menu bar
as shown.		

The button will turn green once it is clicked to show that Commit mode is now enabled. Additionally, Figure 28 in the status window will also change color indicating that Commit mode is enabled.

Commit (
----------	--

Figure 28 Commit On

The No Commit function turns the switch to No Commit mode. In No Commit mode, whenever the normal source fails, the TD1 timer begins timing and subsequently starts the engine-generator. The tranfer switch does not transfer the load to the emergency source until it reaches its proper rated values. If the normal source returns prior to the transfer-to-emergency sequence initiation, the transfer sequence aborts and the ATS remains in the Normal position. The transfer switch is in No Commit mode by default. To remain in this mode, simply do not click the button and leave it as grey, or off.

Note: You need to be logged in to access this functionality.

Manual Xfer to S1

To switch the RPTCS into Semi-Auto mode, locate the <u>Manual Xfer to S1</u> button Manual Xfer to S1 on the left side panel. To enable this functionality, simply click on this button. It is enabled once the button turns green, as shown in the Figure 28 below.

Manual Xfer to S1

Figure 29 Manual Xfer to S1 Enabled

To turn this functionality off, simply click the button again and wait for the green to turn grey.

Russelectric

SECTION 6 Alarms

Alarms are triggered as a result of conditions within the ATS. Notifications of these Alarms are sent through email (as described in *Configure Email Alerts*). The following is a list of the various Alarms the DTWG generates.

- Xfer to Alternate Source
- S1 S2 Auto Xfer Alert
- S2 S1 Auto Xfer Alert
- S1 Failure
- Alternate Source Fail to Start
- Power Failure Fault
- S1 Failure to Disconnect
- S2 Failure to Disconnect
- S1 Failure to Connect
- S2 Failure to Connect

SECTION 7 SCADA Pass Through

It's possible to access the RPTCS via MODBUS through the DTWG, either using Modbus RTU over RS485 through the SCADA port, or using Modbus TCP over Ethernet. Modbus requests received either on the SCADA port or over Ethernet with the Modbus ID of the RPTCS are passed through to the RPTCS, and responses to these messages from the RPTCS are passed back through the SCADA port or over Ethernet. This allows a Modbus master, such as a SCADA system, to access data in the RPTCS simultaneously with the DTWG webserver operation.

The SCADA port baud and the Modbus TCP port number can be configured in the network settings tab of the DTWG. This is described in section Configure Network Settings section of this manual.

