
EMBEDDED TEST SOLUTIONS

USER’S MANAUAL

Overton Instruments, Inc
5431 Auburn Blvd. #196
Sacramento, CA 95841

www.microATE.net

CHECK-MATE
Multifunction DAQ Module

CHECK-MATE USER’S MANUAL

www.dut-mate.com Overton Instruments 2

NOTICE The information contained in this document is subject to change
without notice. To the extent allowed by local law, Overton Instru-
ments (OI), shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the fur-
nishing, performance, or use of this material. No part of this docu-
ment may be photocopied, reproduced, or translated to another
language without the prior written consent of OI.

WARNING The instrument you have purchased and are about to use may
NOT be an ISOLATED product. This means that it may be sus-
ceptible to common mode voltages that could cause damage to
the instrument. SUCH DAMAGE IS NOT COVERED BY THE
PRODUCT’S WARRANTY. Please read the following carefully
before deploying the product. Contact OI for all questions.

WARRENTY OI warrants that this instrument will be free from defects in materi-
als and workmanship under normal use and service for a period of
90 days from the date of shipment. OI obligations under this war-
ranty shall not arise until the defective material is shipped freight
prepaid to OI. The only responsibility of OI under this warranty is
to repair or replace, at it’s discretion and on a free of charge ba-
sis, the defective material. This warranty does not extend to prod-
ucts that have been repaired or altered by persons other than OI
employees, or products that have been subjected to misuse, ne-
glect, improper installation, or accident. OVERTON INSTRU-
MENTS SHALL HAVE NO LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DEMAGES OF ANY KIND ARISING OUT OF
THE SALE, INSTALLATION, OR USE OF ITS PRODUCTS.

SERVICE POLICY 1. All products returned to OI for service, regardless of warranty
status, must be on a freight-prepaid basis.

2. OI will repair or replace any defective product within 10 days
of its receipt.

3. For in-warranty repairs, OI will return repaired items to buyer
freight prepaid. Out of warranty repairs will be returned with
freight prepaid and added to the service invoice.

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 3

Table Of Contents

1.0 INTRODUCTION 4

 1.1 Overview 4

 1.2 Highlights 5

 1.3 Specifications 6

2.0 DESCRIPTION 7

 2.1 Board Layout 7

 2.2 Connections 8

 2.3 J6 Consolidated 9

3.0 OPERATION 10

 3.1 Embedded Control 10

 3.1.1 Embedded Configuration 11

 3.1.2 Embedded Programming 12

 3.1.3 Embedded Program Example 13

 3.2 PC Control 14

 3.2.1 PC Programming 15

 3.2.1.1 HyperTerminal 15

 3.2.1.2 Virtual Instrument Panel 16

 3.2.1.3 PC Programming Example 17

APPENDIX A. SERIAL COMMAND SET 18

APPENDIX B. SCHEMATIC 20

APPENDIX C. MECHANICAL DIMENSIONS 21

CHECK-MATE USER’S MANUAL

1. Introduction

1.1 Overview

The Check-MATE has all the primary features you expect in a general purpose
data acquisition board, but for a fraction of the cost. It offers 8 single-ended
analog inputs with 12-bit resolution (and a sampling rate of 110KHz). Each of
the analog inputs can be programmed for unipolar or bipolar operation. Like-
wise, the analog output uses a 12-bit DAC (and operates in unipolar or bipolar
modes). In addition, there are 8 digital input/output lines (which are independ-
ently programmable).

The Check-MATE is made available is two versions, a standard model or with a
USB option. The standard model is designed for embedded applications and
provides a simple SPI-bus interface for control by a external microcontroller.
With the USB option, many test solutions can be quickly built by connecting the
Check-MATE to a PC laptop or desktop, and then running our GUI software.
No external power source is required, since power is supplied through the USB
interface. Any either case, easy access to the hardware is made available
through a convenient collection of screw terminal connectors.

.

www.chk-mate.info Overton Instruments 4

12-BIT A/D
CONVERTER

IN
P
U
T

M
U
X
 ANALOG

INPUTS
8 SE

ANALOG
OUTPUT

12-BIT D/A
CONVERTER

D
IG
IT
A
L
 I
/O

DIGITAL I/O
8-BITS

+15V

-15V
DC/DC +5V

USB
INTERFACE
(OPTIONAL)

EMBEDDED
INTERFACE

CONTROL
INTERFACE

CHECKCHECKCHECKCHECK----MATE BLOCK DIAGRAMMATE BLOCK DIAGRAMMATE BLOCK DIAGRAMMATE BLOCK DIAGRAM

CHECK-MATE USER’S MANUAL

BENEFITS APPLICATIONS FEATURES

• A flexible, low-cost alterna-
tive to expensive PC-based
DAQ cards

• Supports a wide-array of
mix-signal test applications

• Great for embedded solu-
tions - place inside mechani-
cal test fixtures, instrument
boxes or rack-mount enclo-
sures

• Burn-In

• Engineering

• Depot Repair

• Production Test

• QA/QC Quality Control

• OEM Test Instruments

• 8-Analog Input Channels
(SE), 12-bit Resolution,
110Khz sample rate

• 1-Channel, Digital-to-Analog
converter, 12-bit Resolution,
Unipolar/Bipolar modes

• 8 Digital Input/Output Bits,
Independently programmable

• USB or embedded control
interface

• Low Cost

• Compact size, a 2.5” x 2.5”
PCB, with four #4 mounting
holes in each corner (spacers
and hardware included)

1.2 Highlights

www.chk-mate.info Overton Instruments 5

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 6

1.3 Specifications

Analog Inputs

Number of inputs 8 12-bit, single-ended

Input Ranges 0-5V, 0-10V, ±5V, ±10V

Max Sample Rate 110KHz

Nonlinearity ±1LSB, no missing codes

Analog Output

Resolution 12-bit

Range 0-10V, ±10V

Current ±5mA max

Settling Time 4uS max to ±1/2 LSB

Relative Accuracy ±1 LSB

Digital I/O

Number of lines 8 bits, bidirectional

Logic Levels TTL compatible

Embedded SPI-bus & control logic

USB Interface Optional USB module

General

Power Supply +5VDC±10%@3mA

Operating Temp 0-50ºC

Dimensions 1.5” x 1.5”

Input Control

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 7

2. I/O Description

2.1 Board Layout

J1 - 10 Pin Interface

Provides access for
remote control via an
Embedded controller.

USB Interface

Connectors USB-1 and
USB-2 replaces J1,
and allows connection
to the USB-MATE.

J4 - 9 Pin Terminal

Provides access to
the analog input.

J5 - 5 Pin Terminal

Provides access to SPI-
bus control signals.

J2 - 10 Pin Terminal

Provides access to
the digital I/O.

J4 - 2 Pin Terminal

- DAC output -

Pin 1, (+)

Pin 2, (-)

LED to indicate
active circuit.

Convenient GND
test point.

Pin Name Dir. Description

1 VCC �
A regulated +5Vdc input .
Current should be limited
to roughly 100mA.

2 SCLK �

Part of a 3-wire SPI-Bus,
SCLK synchronizes the
serial data transfer for the
DIN and DOUT signals.

3 ADC_CS\ �
A TTL active-low “input’
signal that provides a
chip-select for the ADC.

4 DIN �

Part of a 3-wire SPI-Bus,
DIN is serial command
and control data for the,
ADC, DAC and DIO cir-
cuits.

5 DAC_CS\ �
A TTL active-low “input’
signal that provides a
chip-select for the DAC..

6 DOUT 

Part of a 3-wire SPI-Bus,
DIN is serial command
and control data for the,
ADC, DAC and DIO cir-
cuits.

7 DIO_CS\ �
A TTL active-low “input’
signal that provides a
chip-select for the DIO.

8 UNI/BIP\ �
A TTL active-low “input’
signal that determines
unipolar (1), bipolar (0).

9 DGND � Digital Ground

10 INT 
A TTL active-high “input’
signal that indicates a
interrupt from the DIO.

J1

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 8

2.2 Connections

Pin Name Dir. Description

1 VCC  +5V Power

2 DIO-0 � Bit 0

3 DIO-1 � Bit 1

4 DIO-2 � Bit 2

5 DIO-3 � Bit 3

6 DIO-4 � Bit 4

7 DIO-5 � Bit 5

9 DIO-7 � Bit 7

10 DGND  Digital Ground

8 DIO-6 � Bit 6

J2

J5

Pin Name Dir. Description

1 DAC-OUT  Voltage Output

2 AGND  Analog Ground

Pin Name Dir. Description

1 AI-0 � Input CH 0

2 AI-1 � Input CH 1

3 AI-2 � Input CH 2

4 AI-2 � Input CH 3

5 AI-4 � Input CH 4

6 AI-5 � Input CH 5

7 AI-6 � Input CH 6

8 AI-7 � Input CH 7

9 AGND � Analog Ground

J4

Pin Name Dir. Description

1 VCC  +5V Power

2 SCLK �
Part of a 3-wire SPI-Bus.
Use with DIO for possible
external control

7 DIN �
Part of a 3-wire SPI-Bus.
Use with DIO for possible
external control

9 DOUT 
Part of a 3-wire SPI-Bus.
Use with DIO for possible
external control

10 DGND � Digital Ground

J3

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 9

 J6

Pin Name Dir. Description

1 VCC  +5V Power

2 DIO-0 � Bit 0

3 DIO-1 � Bit 1

4 DIO-2 � Bit 2

5 DIO-3 � Bit 3

6 DIO-4 � Bit 4

7 DIO-5 � Bit 5

9 DIO-7 � Bit 7

10 DGND  Digital Ground

8 DIO-6 � Bit 6

13 AI-0 � Input CH 0

14 AI-1 � Input CH 1

15 AI-2 � Input CH 2

16 AI-2 � Input CH 3

17 AI-4 � Input CH 4

18 AI-5 � Input CH 5

19 AI-6 � Input CH 6

20 AI-7 � Input CH 7

11 DAC-OUT  Voltage Output

12 AGND  Analog Ground

2.3 J6 Consolidated

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 10

3. Operation

3.1 Embedded Control

In section 3.1.1 (on the next page), the Check-MATE is shown integrated with
other ETS Series components that collectively form a complete Embedded Test
Solution. The diagram shows the Check-MATE being driven by the Mini-MATE.
The Mini-MATE is a low-cost “Embedded Test Controller”, which stores a special
program that is designed to exercise the device-under-test and generate Go/No-
Go test results. The Mini-MATE also provides a sizable breadboard area to sup-
port the development of custom circuits. Adjacent to the breadboard area is a
series of wire-wrap pins that comprise a goodly amount of general purpose Digi-
tal I/O. The schematic below shows the wire-wrap connections which create the
interface between the Mini-MATE and the Check-MATE (J1, 10-pin header con-
nector).

Actually the Check-MATE can be easily driven by most microcontrollers
(including an ARM, AVR, PIC or even a STAMP). When developing an interface
for the Check-MATE, it is recommended the designer start-by reviewing the inter-
face requirements as outlined in the J1 Table (which is provided in the I/O De-
scription section). The next step is to review the Check-MATE schematic, which
is provided in Appendix A. What could be the most challenging aspect of the
design effort is controlling the SPI-bus devices. The Check-MATE contains 3
SPI-bus devices which include an ADC, DAC and DIO circuits. The ADC is a 12-
bit 8-channel data acquisition chip from Maxim (part number MAX1270). The
DAC is a 12-bit digit-to-analog converter from Maxim (part number MAX5312).
The DIO is an 8-bit device from MicroCHIP (part number MCP230S08). Details
for specific device performance and SPI-bus operation can be found in their re-
spective data sheets. Go to the manufacturers website to download said docu-
ments.

D
U
T
-M
A
T
E

P
o
w
e
r
C
o
n
tr
o
l
M
o
d
u
le

R
e
la
y
-M
A
T
E
 I
n
te
rf
a
c
e

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 11

Device-Under-Test

 3.1.1 Embedded Configuration

MINI-MATE

D
U
T
-M
A
T
E
 I
n
te
rf
a
c
e

EMBEDDED
TEST CONTROLLER

BREAD-BOARD AREA

Panel-MATE
Operator Interface

12Vdc
POWER
SUPPY

C
H
E
C
K
-M
A
T
E

M
u
lt
if
u
n
c
ti
o
n

D
A
Q
 M
o
d
u
le

LOCATOR- I I

Mechanica l
Test F ix ture

BED-OF-NAILS

R
e
la
y
-M
A
T
E

S
ig
n
a
l
S
w
it
c
h
in
g

&
 R
o
u
ti
n
g

R
S
4
8
5
 I
n
te
rf
a
c
e

R
S
2
3
2
 I
n
te
rf
a
c
e

S
ig
n
a
l
G
e
n
e
ra
to
r

TEST CONTROL UNIT

Alpha---- ● ONE

24Vdc
POWER
SOURCE

C
h
e
c
k
-M
A
T
E
 I
n
te
rf
a
c
e

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 12

 3.1.2 Embedded Programming

To build-on the PCB board test example (shown in section 3.1.1), we have con-
structed a demo program using BASCOM. BASCOM is a BASIC language com-
piler that includes a powerful Windows IDE (Integrated Development Environ-
ment), and a full suite of “QuickBASIC” like commands and statements. The
demo program (which is outlined in section 3.2.3), illustrates the ease of control-
ling the Check-MATE via the Mini-MATE microcontroller.

The program starts by initialing the Mini-MATE for proper operation. You will note
that the BASCOM software provides excellent bit-manipulation capabilities, as
evident by the use of the ALIAS statement. The Mini-MATE (P1 port bits) are
assigned unique label names (i.e., SCLK, DOUT), which are used to support
various Check-MATE functions. In the “Main” program section, the Mini-MATE
receives “high level” serial commands from a host PC, parses them and then
executes accordingly. When (for example), the “CK_CS4” command is entered,
the program selects analog channel number 4. And then when command
“CK_AR1” is entered, the program selects the analog channel range (which is
±5Vdc). Finally, when the command “CK_RA?” is entered, the program call’s
subroutine “Chk_rd_adc(chk_adc_val , Chk_ch , Chk_adc_range)”. This causes
the Check-MATE to take an analog measurement and return the results in a 4
character hexadecimal “ASCII” string.

Independent of the microcontroller hardware or programming language you
choose, the program sequence described above will likely resemble the way you
implement your Check-MATE application. For this reason, we suggest that you
go to our website and download the “Check-MATE.zip” file. In the Documents
folder will contain more extensive examples of routines to control the Check-
MATE.

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 13

 3.1.3 Embedded Program Example

' Program: CHECK-MATE Demo
'
---[Initialization]--
'
$large
$romstart = &H2000
$default Xram

Dim Chk_adc_word As Word
Dim Chk_adc_val As Single
Dim A_num, A_byte, A_cnt As Byte
Dim Chk_ch, Chk_adc_range, Chk_num, Chk_cnt, Chk_cntl-byte As Byte
Dim S As String * 10, A_resp AS String * 10, A_str AS String * 10
Dim Sf_str As String * 1, Sf_str AS String * 10
Dim A_word as Word
Dim A_val as Single
Dim True As Const 1
Dim False As Const 0

Sclk Alias P1.0 ‘ SPI-bus serial clock
Dout Alias P1.1 ‘ SPI-bus serial data output
Din Alias P1.2 ‘ SPI-bus serial data input
Adc_cs Alias P1.3 ‘ ADC chip select
Dac_cs Alias P1.4 ‘ DAC chip select
Dio_cs Alias P1.5 ‘ DIO chip select
Dac_mode Alias P1.6 ‘ DAC mode, (1) unipolar, (0) bipolar

Declare Sub Print_ic ‘ print invalid command
Declare Sub Print_orr ‘ print out-of-range
Declare Sub Print_ur ‘ print under range
Declare Sub Print_ok ‘ print command is OK
Declare Sub Chk_rd_adc(chk_adc_val As Single , Chk_ch As Byte , Chk_adc_range As
Byte)

---[Main]--
' In the Main the Operator or Host, is prompted to enter a command. The command is
parsed and then executed if valid. Only two command examples are ‘ shown.

Set Sclk, Dout, Adc_cs, Dac_cs, Dio_cs, Dac_mode ‘ Set to logic ‘1’

Do
 Input "Enter command " , S
 S = Ucase(s)
 A_resp = Left(s , 3)
 If A_resp = "CK_" Then
 A_resp = Mid(s , 4 , 2)
 Select Case A_resp

 Case "AR": 'Set ADC Range

 A_resp = Mid(s , 6 , 1)
 If A_resp = "?" Then
 If Chk_adc_range = Chk_adc_5v Then A_str = "0"
 If Chk_adc_range = Chk_adc_10v Then A_str = "1"
 If Chk_adc_range = Chk_adc_5v5v Then A_str = "2"
 If Chk_adc_range = Chk_adc_10v10v Then A_str = "3"
 Print "<" ; A_str ; ">"
 Print
 Else
 A_num = Val(a_resp)
 If A_num < 0 Or A_num > 3 Then
 Call Print_oor ' out-of-range
 Else
 If A_num = 0 Then Chk_adc_range = Chk_adc_5v
 If A_num = 1 Then Chk_adc_range = Chk_adc_10v
 If A_num = 2 Then Chk_adc_range = Chk_adc_5v5v
 If A_num = 3 Then Chk_adc_range = Chk_adc_10v10v
 End If
 End If

 Case "SC": 'Set ADC channel

 A_resp = Mid(s , 6 , 1)
 If A_resp = "?" Then
 A_str = Str(chk_ch)
 Print "<" ; A_str ; ">"
 Print
 Else
 A_num = Val(a_resp)
 If A_num < 0 Or A_num > 7 Then
 Call Print_oor ' out-of-range
 Else
 Chk_ch = A_num
 End If
 End If

 Case "RV": ' read voltage

 A_resp = Mid(s , 6 , 1)
 If A_resp = "?" Then
 Call Chk_rd_adc(chk_adc_val , Chk_ch , Chk_adc_range)
 A_str = Str(chk_adc_val)
 Print "<" ; A_str ; ">"
 Print
 Else
 Call Print_ic ' invalid command
 End If

 Case Else
 Call Print_ic ' invalid command
 End Select
 Else
 Call Print_ic ' invalid command
 End If
 Loop
End

'---[Sub-Routines]--
'
Sub Print_ic ‘ print invalid command
 Print "><"
End Sub

Sub Print_oor ‘ print out-of-range
 Print ">>"
End Sub

Sub Print_ur ‘ print under range
 Print "<<"
End Sub

Sub Print_ok ‘ print command is OK
 Print "<>"
End Sub

Sub Chk_rd_adc(chk_adc_val As Single , Chk_ch As Byte , Chk_adc_range As Byte)
 Chk_adc_val = &H0000
 ' Select range
 If Chk_adc_range = Chk_adc_5v Then Chk_cntl_byte = Chk_adc_5v
 If Chk_adc_range = Chk_adc_10v Then Chk_cntl_byte = Chk_adc_10v
 If Chk_adc_range = Chk_adc_5v5v Then Chk_cntl_byte = Chk_adc_5v5v
 If Chk_adc_range = Chk_adc_10v10v Then Chk_cntl_byte = Chk_adc_10v10v
 ' Select analog channel
 Chk_cntl_byte = Chk_cntl_byte || Chk_ch
 Reset Sclk
 ' take X measurements
 For Chk_cnt = 1 To Chk_m_cnts
 Chk_adc_word = &H0000
 Chk_num = 7
 Chk_num_2 = 11
 ' Select device
 Reset Adc_cs
 For Chk_cnt_2 = 1 To 24
 If Chk_cnt_2 < 9 Then
 ' Send control byte
 Dout = Chk_cntl_byte.chk_num
 Set Sclk
 Reset Sclk
 Decr Chk_num
 Elseif Chk_cnt_2 > 12 Then
 ' Get ADC value
 Set Sclk
 Reset Sclk
 Chk_adc_word.chk_num_2 = Din
 Decr Chk_num_2
 Else
 ' dummy clocks
 Set Sclk
 Reset Sclk
 End If
 Next Chk_num
 ' disable device
 Set Adc_cs
 ' collect results
 Chk_adc_val = Chk_adc_val + Chk_adc_word
 Waitms 1
 Next Chk_cnt
 ' compute average
 Chk_adc_val = Chk_adc_val / Chk_m_cnts

End Sub

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 14

3.2 PC Control

For those who are more comfortable building traditional PC-based “Automated
Test Equipment” (ATE), the Check-MATE offers many features that are well
suited for that environment as well.

Controlling the Check-MATE from a PC, requires that it be equipped with an op-
tional USB-MATE module. The USB-MATE module contains a USB bridge-chip
and a PIC microcontroller. On the PC side, the USB bridge-chip receives a spe-
cial set of serial commands. On the Check-MATE side, the PIC controller proc-
esses the serial commands and then drives the Check-MATE accordingly. In
order to be recognized by the PC, the USB-MATE module requires a set of Win-
dows’ drivers be installed. To do so, go to “www.Check-MATE.com”, click
“Download”, select the “OI VCP Interface” file and follow the prompts. The letters
VCP stands for “Virtual COM Port”, and is a method by-which the USB interface
can appear to the PC as a standard serial COM port. With the drivers installed
and the USB-MATE connected to the PC, go to the Device Manager (click on
Ports) and verify “OI Serial Interface (COM#)” is included.

The diagram below provides a basic illustration of a PC-driven configuration. As
shown, the Check-MATE is used to stimulate a hybrid module in a test & meas-
urement application. The hybrid module is a mix-signal device that requires Ana-
log I/O, as well as Digital I/O to function properly.

PC Control

Control
GUI

HyperTerminal

Add a USB Hub/s to
drive multiple Check-
MATEs and/or other
OI instruments

Typical Hybrid Circuit Module

A
n
a
lo
g
 I
n

D
ig
it
a
l
I/
O

A
n
a
lo
g
 O
u
t

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 15

 3.2.1 PC Programming

The starting point for developing code to control the Check-MATE, begins with
acquainting yourself with its Serial Command Set. The serial commands are a
sequence of ASCII characters that originate from the PC and are designed to
instruct the Check-MATE to perform specific functions. The complete serial com-
mand set is detailed in Appendix B. There are two ways to exercise the serial
commands, (1) using HyperTerminal or (2), run our Virtual Instrument Panel soft-
ware (Control GUI).

HyperTerminal is a serial communica-
tions program that comes with the Win-
dows OS and is located in the Accesso-
ries folder. Use the USB cable to con-
nect the PC to the Check-MATE. Run
HyperTerminal and configure the settings
for 19200 bps, 8 data bits, no parity, 1
stop bit and no flow control. Select the
COM port based on the available COM
port as indicated in the Device Manager
(example shown below). Press the
‘Enter’ key and the ‘�’ prompt should
appear on the screen (as demonstrated
in the example on the right). Refer to the
table in Appendix B, to begin to experi-
ment with the serial commands.

�
� CM_ID?
<Check_MATE vx.x>

� CM_SC6
<>

� CM_RV?
<0000>

 3.2.1.1 HyperTerminal

 3.2.1.2 Virtual Instrument Panel

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 16

The Virtual Instrument Panel (or Control GUI), removes the hassle of “manually “
typing ASCII commands and provides the User a more efficient method to inter-
act and control the Check-MATE. Download the panel from our website at
www.check-mate.com, click on downloads and select “Check-Matexxx.exe”.

First Step: The User must
select a COM Port. Refer to
the Device Manage to iden-
tify an available COM port.

Second Step: Push the Initialize
button. This will cause the module
to initialize itself and attempt to
establish a communications link.

Third Step: After initializing, the module
should send back a unique ID code. If no
response has occurred within 10 seconds,
the program will time-out , and generate a
No Response message.

This ‘Range’ function selects
(1 of 4) specific analog input
modes. Each ‘Analog
Input CH’ can be set to a
different range setting.

The ‘Analog Input CH’ func-
tion selects an individual
analog channel (1 to 8).

This ‘Range’ function selects
either Unipolar or Bipolar
operation.

The ‘Enable’ function updates
the analog output settings.

The ‘DIO Trigger’ function
updates the DIO configura-
tion settings.

The ‘Volt Meter’, displays a
voltage measurement
based the current analog
channel and range setting.

The ‘ACQUIRE’ function
updates the analog con-
figuration settings, and
displays a measurement
every 100msec.

The ‘Output Voltage’ func-
tion updates the analog
configuration settings, and
displays a measurement
every 100msec.

This function panel allows
the User to control the DIO
circuit. The top section
provides a tool for setting
the ‘bit’ direction. A blank-
circle (indicates input), and
a dot-circle (indicates out-
put). The middle section
includes a set of eight LED’s
(which indicate input status).
The bottom section includes
eight push-button switches
(which allow the setting of
output bits). When the
switch is the out position
(that represents a logic ’0’).
When the switch is in the in
position (that represents a
logic ‘1’).

The ‘STATUS’ message box
summarizes results of the
serial commands.

 3.2.1.3 PC Programming Example

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 17

 // Set DIO direction & weak pull-up

 sprintf (send_data, "%s%s\r", set_dio_dir, "10000000");
 PutString(port,send_data); // send CK_PD10000000
 sprintf (send_data, "%s%s\r", set_dio_pullup, "10000000");
 PutString(port,send_data); // send CK_PU10000000

 // Execute test sequence

 for (dut_ch = 0; dut_ch >= 7; dut_ch++) {

 // set check-mate ADC channel & range

 sprintf (send_data, "%s%d\r", set_adc_ch, dut_ch);
 PutString(port,send_data); // send CK_SC
 sprintf (send_data, "%s%d\r", set_adc_range, 1);
 PutString(port,send_data); // send CK_AR - 0-10Vdc

 // exercise DUT gain performance

 for (gain_sel = 0; >= 3; gain_sel++) {
 if (gain_sel == 0) dut_gain = 4095; // x1 range
 if (gain_sel == 1) dut_gain = 409; // x10
 if (gain_sel == 2) dut_gain = 40; // x100
 if (gain_sel == 3) dut_gain = 4; // x1000

 // build dio control byte

 a_byte = dut_ch + (gain_sel + 8)
 for (idx = 0; idx <= 7; idx++) {
 dio_bit[idx] = a_byte % 2;
 a_byte = a_byte / 2;
 sprintf (dio_byte[idx], "%d", dio_bit[idx]);
 }

 // Select DUT, gain & amp ch

 sprintf (send_data, "%s%s\r", set_dio_port, dio_byte);
 PutString(port,send_data); // send CK_PBxxxxxxxx

 do { // Get DIO input - check DUT ready

 sprintf (send_data, "%s\r", get_dio_port);
 PutString(port,send_data); // send CK_PB?
 GetString(port,sizeof(read_data),read_data);

 } while (atoi (read_data[1])); // loop while msb = '0', DUT not ready

 do { // Set check-mate DAC output

 sprintf (send_data, "%s%04d\r", set_dac_out, dut_gain);
 PutString(port,send_data); // send CK_SAnnnn

 // Get check-mate ADC input

 sprintf (send_data, "%s\r", get_adc_ch);
 PutString(port,send_data); // send CK_SA?
 GetString(port,sizeof(read_data),read_data);
 for (idx = 1; idx <= 4; idx++) {
 results[idx] = read_data[idx];
 }
 // determine pass/fail results

 Value = atoi(results);
 if (gain_sel == 1) dut_gain = dut_gain * 10;
 if (gain_sel == 2) dut_gain = dut_gain * 100;
 if (gain_sel == 3) dut_gain = dut_gain * 1000;
 limit = asb(value - dut_gain);
 if (limit > (0.001 * 4096)) {
 printf ("Test Failed - ADC Ch:", "%d", " Gain Range:",
 "%d", " Gain Value", "%d", dut_ch, gain_sel, dut_gain);
 exit(1);
 {
 dut_gain--;

 } while (dut_gain != 0);

 // De-select DUT

 sprintf (send_data, "%s%s\r", set_dio_port, "00000000");
 PutString(port,send_data); // send CK_PB00000000
 }
 }
 printf ("Test Passed");
}

// Check-MATE programming example in ‘C’
//
// The following program provides a Go/No Go test sequence for testing
// a hypothetical electronic module. The electronic module is a mix-
// signal hybrid device that contains 8 programmable amplifiers. The
// electronic module is controlled by a Check-MATE via the DIO lines. DIO
// bits 0-3 (select one of 8 DUT amplifiers). DIO bits 4 & 5 (selects the
// gain range). DIO bit 6 is active-low (provides a DUT chip-select). DIO
// bit 7 is active-high (which indicates the DUT is ready). The outputs of
// the DUT amplifiers are connected to the inputs of the Check-MATE ana-
// log channels. The objective for the program is to verify each of the 8
// amplifiers will perform properly at each gain setting and over a varying
// range of input voltage levels. During the test sequence, the program
// first selects both the DUT amplifier and the Check-MATE ADC chan-
// nel. Then the DUT gain is selected and the Check-MATE updates the
// DUT by writing the control byte (which asserts the chip-select). The
// Check-MATE then reads the DIO-bit-7 to determine if the DUT is
// ready. Once the DUT is ready, the Check-MATE will stimulate the
// DUT amplifier input by supplying a voltage from the DAC output. To
// verify the DUT amplifier, the program reads the Check-MATE analog
// channel and determines the PASS/FAIL results.

#define MSWIN // serial comm libraries from
#define MSWINDLL // www.wcscnet.com

#include <comm.h>
#include <stdlib.h>
#include <stddio.h>

int stat, port=0, a_byte = 0, a_cnt = 0, int idx = 0;
int dut_ch = 0, dut_gain =0, gain_sel = 0;
int dio_bit[10] = 0;

long value = 0, limit = 0;

char dio_byte[10], dir_byte[10], results[64];
char send_data[64], read_data[64];

char set_adc_range[] = "CK_AR"; // set ADC voltage range
char set_adc_ch[] = "CK_SC"; // set ADC channel
char get_adc_volts[] = "CK_RV?"; // read voltage
char set_dac_range[] = "CK_DM"; // set DAC voltage range
char set_dac_out[] = "CK_SA"; // set DAC output voltage
char set_dio_dir[] = "CK_PD"; // set DIO port direction
char set_dio_pullup[] = "CK_PU"; // set DIO port pull-up
char set_dio_port[] = "CK_PB"; // set DIO port write
char get_dio_port[] = "CK_PB?"; // get DIO port
char get_device_id[] = "CK_ID?"; // get module ID
char master_clear[] = "CK_MC"; // master clear

main()
{
 port=OpenComPort(1,256,64); // Open COM 1, rx_buff = 256 bytes, tx_buff = 64

 if ((stat = SetPortCharacteristics(port,BAUD19200,PAR_EVEN,
 LENGTH_8,STOPBIT_1,PROT_NONNON)) != RS232ERR_NONE) {
 printf("Error #%d setting characteristics\n",stat);
 exit(1);
 }
 CdrvSetTimerResolution(port,1); // 1 msec ticks
 SetTimeout(port,2000); // 2000 ticks = 2 sec time-out
 FlushReceiveBuffer(port); // clear receiver buffer
 FlushTransmitBuffer(port); // clear transmit buffer

 // Get device prompt

 sprintf (send_data, "%s\r", "");
 PutString(port,send_data); // send CR
 if ((resp_len = GetString(port,sizeof(read_data),read_data)) == 0); {
 printf("Time-out error\n");
 exit(1);
 }
 if (strcmp("-> ", read_data)) {
 printf("Incorrect promt\n");
 exit(1);
 }
 // Master Clear

 sprintf (send_data, "%s\r", master_clear);
 PutString(port,send_data); // send CK_MC

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 18

Appendix A. Serial Command Set

Command Function Response Description

CM_BRn Set baud rate code <n>

Select one of 4 different baud rates by chang-
ing -n-code. 0 = 1200, 1 = 2400, 2 = 9600 & 3
= 19200. Baud will remain set. Default code
is 3 (19200).

CM_BR? Get baud rate code <n>
Get current baud rate code (-n- is the return
code 0 to 3).

CM_ID? Get module ID <CHECK-MATE vx.x> Get current identification and version number.

CM_MR Maser Reset <> Reset & initialize the module

CM_WC
Write

configuration
<>

Store current instrument settings in EEPROM.
Save settings related to the ADC, DAC and
DIO hardware.

CM_RC
Recall

configuration
<> Retrieve stored instrument settings

CM_SCn Set ADC channel <>
Select a ADC voltage channel. The -n- repre-
sents a channel number from 1 to 8.

CM_SC? Get ADC channel <n> Get the current ADC voltage channel.

CM_ARn Set ADC range <>
Set the ADC range code (-n- is 0 = 0-5Vdc, 1
= 0-10Vdc, 2 = ±5Vdc, and 3 = ±10Vdc).

CM_AR? Get ADC range <n> Get the current ADC range code.

CM_RV?
Get voltage
measurement

<nnnn>

Get a voltage measurement based on the
current ADC channel and range selection. The
measurement contains 4 ASCII bytes repre-
senting a 12-bit decimal value (0-4095).

CM_CS? Scan all ADC ch’s <ch1,ch2,...,ch8>

Measure and output 8 ADC channels. Each
channel contains 4 ASCII bytes representing a
12-bit decimal value (0-4095). A comma ‘,’
separates each channel

To facilitate remote control for the Check-MATE, a USB interface is required. When connected to a host
PC, the USB connection appears as a “Virtual Com Port”, which establishes a serial data communica-
tions link between the two. The default protocol is 19200 baud rate, no parity, 1 stop bit and no flow con-
trol. The Check-MATE will respond to a unique set of ASCII serial data commands (listed below). The
first three bytes of the command string starts with the prefix ‘CM_’, followed by a code that represents
the actual command. All commands are upper case sensitive and are terminated with a carriage-return.
If the command is valid, the Check-MATE will return either a ‘<>’, or a bracketed result (i.e. ‘<2108>’. If
the Check-MATE receives a carriage-return or line-feed alone (without a command), then a ‘����’ is re-
turned (this response is a “prompt” to signal the Check-MATE is ready). If the Check-MATE detects an
incorrect command then one of three error symbols will be generated, (1) invalid command then a ‘><’ is
returned, (2) a command that is out-of-limits then a ‘>>’ is returned, and (3) a command that prematurely
times-out then a ‘<<‘ is returned. In some cases the error symbol will include a bracketed result (i.e.
‘>1<’), which defines a specific error code.

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 19

Appendix A. Serial Command Set cont.

Command Function Response Description

CM_SAnnnn Set voltage output <>
Set the DAC output voltage. The DAC value
is contained in -nnnn-, which comprises a 12-
bit decimal, 4-byte ASCII string.

CM_SA? Get voltage output <nnnn> Get the current DAC output voltage.

CM_PDbbbbbbbb Set DIO direction <>

Set (or write) the DIO port direction. The di-
rection byte is represented by eight ASCII
bytes starting with the most-significant-bit (-b-
left most) to the least-significant-bit (-b- right
most). A logic ‘1’ is input and ‘0’ is output.

CM_PD? Get DIO direction <bbbbbbbb>
Get (or read) the current DIO port direction
setting.

CM_PUbbbbbbbb Set weak pull-ups <>

Set (or write) pull-ups on the DIO port inputs.
The pull-up byte is represented by eight ASCII
bytes starting with the most-significant-bit (-b-
left most) to the least-significant-bit (-b- right
most). A logic ‘1’ is active and ‘0’ is not.

CM_PU? Get weak pull-ups <bbbbbbbb>
Get (or read) the current DIO port pull-up
status.

CM_PBbbbbbbbb Set DIO port <>

Set (or write) the DIO port output bits. De-
pending on the condition of the direction byte,
the output bits are represented by eight ASCII
bytes starting with the most-significant-bit (-b-
left most) to the least-significant-bit (-b- right
most). The -b- bit is a logic ‘1’ or ‘0’.

CM_PB? Get DIO port <bbbbbbbb> Get (or read) the current DIO port status.

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 20

Appendix B. Schematic

CHECK-MATE USER’S MANUAL

www.chk-mate.info Overton Instruments 21

Appendix C. Mechanical Dimensions

