
1

iversity

3D Persistence
of Vision Display

Group 8

Senior Design II Documentation

University of Central Florida
Department of Electrical Engineering and Computer Science

Aaron Burlison
Patrick Srofe
Antonio Ortiz

Timothy Egan

Summer 2012 - Fall 2012

i

Table of Contents

1 Executive Summary: .. 1

2 Project Description: .. 1

2.1 Motivation: ... 1

2.1.1 Sponsorship: ... 1

2.1.2 Skill Sets: .. 2

2.1.3 Creativity: .. 2

2.2 Objectives: ... 3

2.2.1 Frame Rate: .. 3

2.2.2 Computer Interfacing: ... 3

2.2.3 High Resolution:.. 3

2.2.4 Portability: ... 3

2.2.5 Programmability: ... 3

2.3 Specifications: ... 4

3 Administrative Content: .. 4

3.1 Budget: .. 4

3.2 Finance: ... 6

3.3 Schedule and Milestones: ... 6

4 Research: ... 8

4.1 Power Supply: ... 9

4.1.1 AC Input: ... 9

4.1.1.1 Circuit Protection: ... 9

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection: 10

4.1.2 AC to DC Converter: ... 10

4.1.2.1 Diodes: ... 11

4.1.2.2 Resistors: ... 12

4.1.2.3 Potentiometers and Variable Resistors: 12

4.1.2.4 Capacitors: ... 12

ii

4.2 Video and Signal Processing: ... 12

4.2.1 VGA .. 13

4.2.1.1 VGA Signal Standards: .. 13

4.2.1.2 .Signal Sampling: ... 13

4.2.1.3 Analog to Digital Conversion: ... 16

4.2.2 HDMI: ... 16

4.2.2.1 HDMI Signal Standards: ... 17

4.2.2.2 Signal Sampling: .. 19

4.2.3 Video Processing (Stationary Controller): 19

4.2.3.1 Color Depth Reduction: .. 20

4.2.3.2 Frame Resizing: ... 20

4.2.3.3 Frame Skipping: ... 20

4.2.3.4 Video Compression: ... 21

4.3 LED Array:... 23

4.3.1 LEDs: .. 23

4.3.2 LED RGB Control: .. 24

4.3.2.1 Pulse Width Modulation: .. 24

4.3.2.1.1 TLC5971 LED Controller: ... 24

4.3.2.1.2 TLC5940 LED Controller: ... 24

4.3.2.2 Latch Control: ... 25

4.4 Communications: .. 26

4.4.1 Requirements ... 26

4.4.2 Wired Communications:.. 28

4.4.2.1 Fiber Optic Communications: ... 28

4.4.2.1.1 Fiber to Ethernet Conversion: .. 28

4.4.2.1.2 Fiber Optic Rotary Joints:... 29

4.4.2.2 Coaxial Copper Communications: .. 30

4.4.2.2.1 Coaxial to Ethernet Conversion: .. 30

4.4.2.2.2 Coax Rotating Joint: ... 31

4.4.2.3 Ethernet Protocols:... 33

iii

4.4.2.3.1 Ethernet Software Library: .. 33

4.4.2.4 Microprocessor Ethernet Hardware: ... 34

4.4.3 Wireless Communications: ... 34

4.4.3.1 WiFi: ... 35

4.4.3.1.1 WiFi Protocols: ... 35

4.4.3.2 Bluetooth .. 36

4.4.3.2.1 Bluetooth Protocols: ... 36

4.4.3.3 Effects of Rotational Speed: ... 37

4.5 Motor: .. 37

4.5.1 Torque Requirements: .. 38

4.5.1.1 AC Motor Application for Torque Requirements: 38

4.5.1.2 DC Motor Application for Torque Requirements: 38

4.5.2 RPM Requirements: .. 38

4.5.2.1 AC Motor Application for RPM Requirements: 39

4.5.2.2 DC Motor Application for RPM Requirements: 39

4.5.3 Sound Requirements: ... 39

4.5.4 AC and DC Motor Comparison: .. 39

4.5.5 Motor Control: ... 40

4.5.5.1 Variable Resistance Method to Motor Control: 40

4.5.5.2 Pulse Width Modulation Method for Motor Control: 40

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor Control

Method Comparison: .. 41

4.5.5.4 Sensor Reading Applications for Motor Control: 41

4.5.5.4.1 Infrared Sensor:.. 42

4.5.5.4.2 Hall Effect Sensor: .. 42

4.5.5.4.3 Motor Sensor Comparison: .. 43

4.6 Chassis: ... 43

4.6.1 Chassis Materials: ... 43

4.6.2 Chassis Rotating Interface: ... 44

4.7 Graphical User Interface: ... 45

iv

4.7.1 Required Functions: ... 45

4.7.2 Programming Language: .. 47

4.7.2.1 Image Format Conversion and Resizing: 48

4.7.3 GUI Communications to Microcontroller: .. 49

4.7.3.1 Serial Communication Software Library: 49

4.8 Microcontrollers: .. 50

4.8.1 Digilent Atlys (Stationary FPGA): .. 51

4.8.2 TI Launchpad (Rotating Microcontroller):.. 51

4.8.3 Arduino Uno REV 3 (Rotating Microcontroller): 51

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller): 52

4.8.5 Additional Microcontroller Concerns: .. 52

5 POV Design: .. 54

5.1 Hardware Design: ... 55

5.1.1 Chassis Hardware Design: ... 57

5.1.1.1 Chassis Dimensions: .. 57

5.1.1.2 Dimensions of LED Array: .. 57

5.1.1.3 Dimensions of Chassis Base: .. 57

5.1.1.4 Chassis Assembly: ... 58

5.1.1.5 Motor Interface: .. 61

5.1.1.6 Chassis Torque Calculations: .. 62

5.1.2 LED Array Hardware Design: ... 63

5.1.2.1 TLC5940 Pin Out and Wiring: .. 63

5.1.2.2 LED Array for Text Display: .. 66

5.1.3 Motor Hardware Design: ... 66

5.1.3.1 Motor Control Elements: .. 68

5.1.3.2 Motor Control Inputs: .. 70

5.1.4 Display Alignment Sensor: .. 71

5.1.5 Power Supply: .. 75

5.1.5.1 Stationary Power Supply: ... 76

5.1.5.2 Rotating Power Supply: .. 76

v

5.1.5.3 Slip Ring Design: .. 77

5.2 Software Design: ... 79

5.2.1 Computer Side Processing ... 79

5.2.1.1 Image Buffer Format: ... 80

5.2.1.2 Output Format Specification: .. 81

5.2.1.3 Frame Processing: ... 82

5.2.1.4 PC Wi-Fi Communications ... 87

5.2.1.5 Display Alignment Sensor Software: .. 88

5.2.2 Microcontroller Software Design: .. 88

5.2.2.1 Modes of Operation: ... 89

5.2.2.2 Outputting Data to LED Array: .. 89

5.2.2.3 Outputting Data to Text Array: .. 90

5.2.2.4 Microcontroller Wi-Fi Communications: 91

5.2.3 GUI Design: .. 92

5.2.3.1 Text Message Input: ... 93

5.2.3.2 Image Input: ... 94

5.2.3.3 GUI Wi-Fi Communications: ... 95

5.2.3.3.1 Wi-Fi Communications Class: .. 96

5.2.3.3.2 Wi-Fi Communications I/O: .. 96

5.2.3.4 GUI Class Summary: .. 97

6 Prototyping: .. 98

6.1 Slip Ring Power Transmission Prototype: ... 98

6.2 Scaled LED Array Prototype: ... 99

6.2.1 Scaled LED Array Hardware Prototype Design: 99

7 Testing: .. 100

7.1 Display Alignment Sensor Testing: .. 100

7.1.1 Sensor Hardware Test: ... 100

7.1.1.1 Sending/Receiving Signal Hardware Test: 101

7.1.1.2 CTRL Signal Calibration: .. 101

7.1.1.3 Sensor Sensitivity Test: .. 102

vi

7.2 KBRG-212D Calibration Tests: ... 102

7.2.1 Current Calibration Test:... 102

7.2.2 Speed Test: .. 102

7.2.3 Enable/Disable Switch Test: ... 103

7.3 Slip Ring Test: ... 103

7.3.1 Slip Ring Durability Test: .. 104

7.3.2 Ideal Power Transfer Test: ... 104

7.3.3 Rotational Power Transfer and Thermal Dissipation Test:............ 104

7.4 Wi-Fi Communication Testing: .. 105

7.5 Software Testing: .. 106

7.5.1 Prototype LED Array Capabilities Testing: 106

7.5.2 Micro SD Testing: ... 107

7.5.3 Wi-Fi Communications Testing: .. 108

7.5.4 GUI Testing: ... 108

7.5.5 Sensor Input Testing: ... 109

7.5.6 Integration Testing: ... 109

7.5.7 Feature Implementation Testing: .. 111

8 User Manual: ... 116

8.1 KBRG-212D Manual: .. 116

8.2 Display Alignment Manual: .. 117

8.3 Power Supply Manual: .. 118

8.4 GUI User Manual: ... 119

8.5 Switching Between RG and Text Array: .. 120

9 Conclusion: .. 121

10 Bill of Materials: .. 122

11 Appendix: ... 124

12 Bibliography: ... 125

vii

Table of Figures

Figure 4.1.2 Full Wave Rectifier Circuit .. 11

Figure 4.2.1.2.a VGA DB15 connector and pin assignment 14

Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs 14

Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows........................ 14

Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes 16

Figure 4.2.2.1 TMDS Input Flowchart ... 19

Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth 20

Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance 22

Figure 4.2.3.4.b Method for Interpolating Chrominance Values 22

Figure 4.3.1 OVS-33 Pin Information .. 24

Figure 4.3.1.2 Latch control Implementation .. 26

Figure 4.4.1 Data Array .. 27

Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces 32

Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison. ... 36

Figure 4.7.1.a Software Development Life Cycle – Waterfall Model 46

Figure 4.7.1.b Use case diagram for GUI ... 47

Figure 5: POV display ... 55

Figure 5.1 Hardware Flow Chart ... 56

Figure 5.1.1.4a Bearing Assembly .. 59

Figure 5.1.1.4b Chassis Base Assembly .. 60

Figure 5.1.1.4c Chassis Base Assembly .. 61

Figure 5.1.1.6a: Simplified LED Support Frame for Torque Calculations 62

Figure 5.1.2.1a TLC5940 LED Controller Pin Out .. 63

Figure 5.1.2.1b LED Controller Wiring .. 65

Figure 5.1.3a Motor Control Flow Chart ... 66

Figure 5.1.3b The KBRG-212D Regenerative Drive Chip 67

Figure 5.1.3c The Dayton 9FHD7 ... 68

Figure 5.1.3.1a Motor and Power Connection .. 69

Figure 5.1.3.1b Variable Potentiometer Presets ... 70

Figure 5.1.3.2a Speed Control Circuit .. 70

Figure 5.1.3.2b Enable Circuit .. 71

Figure 5.1.4a Display Alignment Sensor Flow Chart .. 72

Figure 5.1.4b Display Alignment Sending Circuit.. 73

Figure 5.1.4c Display Alignment Receiving Circuit ... 74

Figure 5.1.4d Display Alignment PCB Layout ... 75

Figure 5.1.4e Sensor With Reflective Surface .. 75

Figure 5.1.5.3a Slip Ring side and top view ... 77

viii

Figure 5.1.5.3b Slip Rings .. 78

Figure 5.2.1.1a Arrangement of Pixel Values in Memory 80

Figure 5.2.1.1b 16 Bit RGB Arrangement ... 80

Figure 5.2.1.3c Combining Grayscale values and storing in memory 84

Figure 5.2.1.3a Visualization of Isolating Red RGB Value 85

Figure 5.2.1.3b Visualization of Isolating Green RGB Value 86

Figure 5.2.1.3c Visualization of Isolating Blue RGB Value 86

Figure 5.2.1.3d Grayscale Mapping Diagram ... 86

Figure 5.2.1.3e Visualization of Combining Grayscale Values 87

Figure 5.2.1.4 Wi-Fi Transmission Flowchart ... 88

Figure 5.2.2.4 Wi-Fi Receiving Flowchart ... 92

Figure 5.2.3 Pipe and Filter Software Architecture ... 93

Figure 5.2.3.1 Text Input Tab ... 94

Figure 5.2.3.2 Image Input Tab .. 95

Figure 5.2.3.3.2 WiFiConnection Sequence Diagram .. 97

Figure 5.2.3.4 Class Diagram for the GUI .. 98

Figure 7.1 Power Transmission Prototype ... 99

Figure 7.5 Prototype LED Array used in testing. .. 106

Figure 7.5.7b: Text Display .. 114

Figure 7.5.7c: RGB Text Array displaying alternating color text. 115

Figure 7.5.7d: RGB Text Array red letters .. 116

Figure 8.1 KBRG-212D Input Switches .. 117

Figure 8.2 KBRG-212D Power Switch.. 118

Figure 8.4 POV GUI Text Message Tab ... 119

Figure 10.a Infrared Sensor Reference Circuit ... 124

ix

Table of Tables

Table 3.1 Project Budget .. 6

Table 3.3 Project Schedule .. 8

Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings 10

Table 4.2.2.1.a HDMI Pin Configuration ... 17

Table 4.2.2.1.b EDID Information and Requirements ... 18

Table 4.4.2.1.1 Fiber to Ethernet Converters.. 29

Table 4.4.2.1.2 MJX Part Numbers .. 30

Table 4.4.2.2.1 Coax to Ethernet Converters ... 31

Table 4.4.1.2.2: Coax to Ethernet Converters .. 33

Table 4.6.1 Typical Aluminum Pieces and Weight .. 44

Table 4.6.2 Extended-Ring Ball Bearings ... 45

Table 4.8.4 Microcontroller Comparison ... 52

Table 4.8.5 Possible Resolutions and Corresponding Data Rates 53

Table 5.1.2.1 TLC5940 LED Controller Pin Information 64

Table 5.2.1.1 Arrangement of Pixel Coordinates in a Frame 81

Table 5.2.1.2a Arrangement of Frame Sub-divisions ... 81

Table 5.2.1.2b Memory locations of the 12 output Bins 82

Table 5.2.1.3a: The Translate Frame Loop .. 83

Table 5.2.1.3b Range of pixel data as it is stored in memory 84

Table 5.2.1.4 Header Information ... 88

Table 10: Bill of Materials ... 124

1

1 Executive Summary:

Persistence of vision is a phenomenon that has motivated engineers for years to
create a variety of inventions. This has not changed even to this day. There are
still devices using this visual trick being constructed with a wealth of internet
examples available to show for it. These spinning devices that utilize LEDs to
create the illusion of one solid image come in a variety of shapes and sizes from
spheres and discs, to cylinders.

2 Project Description:

This chapter encompasses the motivations for why we chose one of these
devices as our project. It also touches on the objectives or goals for this project,
and the specifications for the device that we implemented.

2.1 Motivation:

The construction of these devices encompass a large spectrum of computer and
electrical engineering knowledge from embedded systems and electronics, to
digital systems processing and even electric machinery. Which our team felt
allowed us to effectively test and display our grasp of knowledge.

In the case of our group project, when determining which of our group's ideas we
wanted to tackle we found that the group had a split in interests. While some of
the group wanted to create something that displayed a level of creativity other
members wanted something within the scope of the group's skill sets. Finally, we
all desired a project that was either inexpensive enough for the group to fund on
their own or a project that was capable of acquiring sponsorship to fund it for us.
After some deliberation we all agreed on the persistence of vision project as the
best fit for all these concepts. The following sections help elaborate on why this
project was such a good fit for our group.

2.1.1 Sponsorship:

As mentioned above our team was seeking a project that was inexpensive or
capable of sponsorship. Since there are a variety of groups or organizations that
rely on public advertisement and these displays require attention getting
gimmicks our team felt that a persistence of vision device is a perfect fit. These
devices have adequate levels of scalability, visual attractiveness, and portability
that make it perfect for such a use.

2

A persistence of vision device is incredibly visually attractive with its various
colorful and active displays. They are great at pulling people's attention and
keeping it and in a scenario where a group is seeking to be both noticed and
remembered it is quite a useful device. In the case that we were adequately
funded we could make this device extremely attractive through high resolutions
of LEDs and wide ranges of colors. This would also allow us to create simplistic
to complex animations for the device that would draw people's attention.

These devices are also extremely scalable. We wanted to make the device easily
programmed and accessible to both the experienced and inexperienced. This
would allow someone experienced with programming to make a variety of their
own custom displays and animations on the device. Someone inexperienced with
programming would be capable of inputting various functions such as text inputs
for banners. Both of these functions are excellent for sponsorship since they
allow the user to easily set the device for any advertisement they desire.

Portability is obviously a concern for organizations that are advertising at booths
or displays. These devices are extremely portable and our design is to not only
make it portable but outlet friendly allowing you to plug it in to any standard
outlet.

2.1.2 Skill Sets:

With a group made up of two students of electrical engineering and two students
of computer engineering, we wanted a project that adequately displayed all of our
skill sets. This project not only has a significant level of electrical design in both
advanced and intermediate levels of electrical engineering but it has a significant
level of both advanced and intermediate levels of programming and computer
architecture requirements. This means that all four of the team members working
on the project would find adequate amount of both familiarity and challenge
within the project.

2.1.3 Creativity:

To be completely honest, if you are not interested in a project it is very difficult to
work on it. This is a very true statement and most of our group members wanted
a project that was entertaining enough to really keep their attention in addition to
test their knowledge. This project seemed entertaining to our team. It is as simple
as that. Not only would we be developing our skills as engineers but we would
also get to flex our creativity by programming and designing a variety of
interesting displays for this device. The final product would be bright, exciting,
and interesting to see once it was complete; which our team was very excited to
experience.

3

2.2 Objectives:

While in concept a persistence of vision device is good we needed to put to
words specifically what our objectives for this device were. Since we had some
ideas of what we wanted when choosing this project we also had a variety of
features we wanted to add besides the basic features these devices generally
come with. The following sections identify and describe these features in further
detail.

2.2.1 Frame Rate:

Since human vision is tricked to perceive motion around the rate of twenty-five
frames per second we needed a device to spin at a rate capable of recreating
this illusion. Since twenty-five was the bare minimum we decided to overshoot to
thirty frames per second, this would hopefully either make a more seamless
image or account for any variations that may occur within the device.

2.2.2 Computer Interfacing:

We also desired the project to interface easily with your computer so that the
user could upload customized code for their custom patterns, text, and
animations. We wanted this to be done during operation also so a method of
sending information from the stationary side to the rotating side was needed.

2.2.3 High Resolution:

We wanted to create a relatively high definition image so we designed the project
with a high pixel count. We specifically chose 32x384 as our target resolution.
This meant we needed a total of 32 LEDs. This also meant each LED had to be
capable of a large scale of colors in order to recreate the image being sent each
frame.

2.2.4 Portability:

Since we had decided the device needed to be portable it could be no heavier
than a small television and only about as bulky. This meant the materials we
chose to build this device out of need to be durable and light weight.

2.2.5 Programmability:

We wanted the device to be easily programmable and capable of at least simple
marquee text displays that would be implemented with our own self developed
program. This would allow the user to simply input a text banner or the time, and
have it displayed on the device instead of just the computer interface. In addition,
we also wanted the device to be complex enough that someone with experience
in programming could also program to the processor and create their own

4

custom images and animations. This would allow for a lot of space for user
development which seemed desirable to someone looking to advertise with the
device.

2.3 Specifications:

The following is a list of specifications that we have come up with based on both
our research, assumptions, and components that we have chosen during the
development of this product.

 32 RGB LEDs
 16 Green LEDs
 256 colors per LED
 60 Hz refresh rate for LEDs
 15-20 rps
 61 cm diameter (cylinder)
 80 cm height (cylinder)
 12 - 15 lbs
 Operates on 120V AC and a 9V DC battery
 2Mbits/s data transmission

3 Administrative Content:

Having a strong plan for administrating the budget and making due dates is
essential for completing any project successfully. Our senior design project is by
no means an exception. Our goal was to layout an administrative plan to govern
and guide our project through the various stages and be the foundation that
supported our work. Our administrative plan was laid out in three sections -
budget, finance and schedule and milestones.

3.1 Budget:

Understanding the cost associated with any project helps separate what is
feasible from what is unrealistic. As stated in our specifications section, the POV
display required 32 LED's each with a 256 color range. This required us to
procure 32 RGB capable LED's which came out to be about $1.51 each. With
one additional array of 16 LED’s for prototyping this came out to a total of $72.48.
The text display will require 16 green LEDs each at $0.27 for a total of $4.32. In
addition to the LED's, we needed to procure some way to control the LED's. We
used seven controllers total each costing $2.52 per controller with one extra for
prototyping. This came out to be about $20.16.

5

The POV display must be capable of rotating at 25-30 RPS, though we only
achieved 15-20 RPS. This required a sizable motor to insure we can operate at
the required toque values. As well, we required a chassis or frame to support the
LED array and on board controllers. The motor came out to be $35.00, while the
Chassis was donated to us.

In order to processes the incoming signals and display the image on the LEDs
we needed an onboard microcontroller. In addition, we needed a way to
communicate with this microcontroller during operation so a wireless chip was
also needed. The microcontroller came out to be $34.99, and the wireless chip
for the controller came out to be $49.99.

In order to tie the on-board controller to the LED array we needed to procure
PCB boards. We also needed to procure additional wire and cable to make all
the miscellaneous connections required. The PCB boards came out to about
$339.99 while the wires and cables came out to be around $89.98.

The final piece of the budget was the motor control and sensor circuit. The motor
control chip turned out to be $106.00. The sensor circuit included 2 High-Output
Infrared LEDs for $2.19 each. It also required 1 LM399 at $2.29. We purchased a
large pack of varied resistors to handle any possible application we would need
them for during the project at $9.99

The total cost associated with this project was about $1031.59. As seen in Table
3.1, a detailed summary of the budget and distributed cost can be complied.

Description Qty Cost (Each) Price

RGB LEDs 48 $1.51 $72.48

Green LEDs 16 $0.27 $4.32

LED Controllers 8 $2.52 $20.16

Motor 1 $35.00 $35.00

On Board Controller 1 $34.99 $34.99

Wireless Chip 1 $49.99 $49.99

Chassis 1 - Donated

IR LEDs 2 $2.19 $4.38

9V Battery 1 $4.99 $4.99

6

LM339 1 $2.29 $2.29

Copper Pipe [Slip Ring] 1 $6.99 $6.99

Misc. Equipment - - $150.00

Prototyping - - $200.00

PCB 4 - $339.99

Motor Driver Chip 1 $106.00 $106.00

 Total: $1031.59

Table 3.1 Project Budget

3.2 Finance:

The second portion of our administrative plan is to determine where the financial
backing will come from to support the design and development of our POV
display. Our goal was to be sponsored and we luckily did gain one sponsor
during the course of our work. Kemco fabricated and donated to us our Chassis
for the project. As for the rest of the costs associated with this project the cost
was split among the group members.

3.3 Schedule and Milestones:

The final portion of our administrative plan was to develop and follow a schedule,
which included major and minor milestones, to be a guide for keeping the
production of the project on time and finished by the due date.

Major milestones will be defined as events or task that must be completed before
the project can continue. A complete list of major milestones for the project is
below.

 Senior Design I Documentation Due
 Prototyping Completed
 Project Design Finalized
 Project Fabrication Completed
 Testing
 Senior Design II Documentation and Final Project Due

Minor milestones will be defined as events or task that are less critical on an
individual basis but must be completed before a Major milestone can be
completed.

7

 Project Research
 Project Preliminary Design Review (Prior to Senior Design I

Documentation Completed)
 Senior Design I Documentation Review
 Prototype Fabrication
 Prototype Testing
 Project Design Review from Prototype Results
 Fabrication of Chassis
 Fabrication of LED Array
 Project Assembly
 Preliminary Mechanical Operational Test
 Senior Design II Documentation Review

Finally, as seen in Table 3.3, a completed schedule was put together. The
schedule contains all predefined major and minor milestones as well as
completion by dates.

Milestone(Major/Minor)
Start
Date

Duration
(Days)

Finish
Date

Project Research (Minor): 05/27/12 46 07/12/12

Project Design Review (Minor): 07/15/12 4 07/19/12

Senior Design 1 Doc. Draft Review (Minor): 07/25/12 4 07/29/12

Senior Design 1 Documentation Printing (Minor): 07/30/12 1 07/31/12

Senior Design 1 Documentation Final (Major): 05/27/12 67 08/02/12

Prototype Fabrication (Minor): 08/19/12 14 09/02/12

Prototype Testing (Minor): 09/02/12 7 09/09/12

Project Design Review from Proto Results (Minor): 09/09/12 7 09/16/12

Project Design Finalized (Major): 09/16/12 7 09/23/12

Procurement of Equipment (Minor): 09/23/12 56 11/18/12

Fabrication of Chassis (Minor): 10/29/12 18 11/16/12

Fabrication of LED Array (Minor): 11/16/12 14 11/30/12

Programming of Processors (Minor): 11/16/12 14 11/30/12

Assembly of POV Display (Minor): 11/18/12 12 11/30/12

Preliminary Mechanical Operational Test (Minor): 11/16/12 14 11/30/12

Project Fabrication Completed (Major): 09/23/12 68 11/30/12

Complete Functional and Operational Testing (Major): 11/30/12 7 12/07/12

8

Senior Design 1 Doc. Draft Review (Minor): 09/23/12 75 12/07/12

Senior Design II Doc. and Final Project Due (Major): 12/07/12 3 12/10/12

Table 3.3 Project Schedule

4 Research:

Designing is both a matter of applying the best known solution for a problem and
creating new methods when the problem’s solution isn’t well known. In addition,
many times a solution has multiple methods that fit well for solving a problem. In
these cases we need to effectively narrow down the list and determine the
solution our group feels will work best for us. In the case of our project there were
eight key issues that we needed solutions to for our project that kept appearing in
our discussions of this project.

The first problem was supplying power to this device. We needed to know
whether we were going to use AC or DC power or some combination of both. Did
we need to do some sort of AC to DC conversion? Which one was best for the
purposes of our project? Section 4.1 discusses this topic and which one best
suits our needs.

The second issue was signal processing. Our group new we wanted to allow for
some way for this device to communicate with a computer. The question was
which medium was best for our purposes? Since none of us had any experience
in video processing this also meant we needed to figure out which format was
best suited for our project. Would it be better to process an HDMI signal, VGA
signal, or just do some form of file transfer through USB? Section 4.2 discusses
this topic and compares each of these signals and the processing method
needed to implement them for our project.

The third issue was LED implementation and control. Since we needed to blink
these LEDs at a rapid speed we needed to know how this would affect the LED.
What LED is best suited for this application? Will using pulse with modulation
effect our display rate? How do we effectively control over four hundred LEDs?
Section 4.3 will discuss these questions and determine the best fitting solution for
each of these problems.

The forth issue was communications. Since this device has two sides to it, a
stationary side and a rotating side, we need to determine how we are going to
send the above signal across these kinetic state changes. Is there a wired
solution for this problem? Would wireless be an effective solution to this
problem? Are there issues with wireless when dealing with a rapidly rotating

9

receiver? Section 4.4 discusses these issues and compares each of these
communication solutions.

The fifth issue is the motor itself. None of us had much experience with motors
so we needed to research specifically which motor would work best for our
purposes. Would a DC motor bet best or an AC motor? What is the most
effective way of controlling the motor for our purpose? How can we minimize the
noise commonly associated with motors? Section 4.5 discusses these topics and
compares both motor types, and which method of controlling the device is best
for our purposes.

The sixth issue is the actual structure of this project. This device is going to rotate
at a very fast rpm value and that means it needs to be both very stable and
balanced. What material is best suited for this project then? How do we balance
it? What will be the torque requirements of this device? Section 4.6 discusses
these questions and determines the best solution to each of them.

The seventh and final issue is our GUI. Since we want to develop a user
interface for communicating with our device we need to know the best way of
going about creating it. Would it be better to create it in C language or Java?
What classes, functions, and variables will we need to implement the project?
Section 4.7 will further discuss these concepts answering these questions and
more.

4.1 Power Supply:

Just like any machine, the POV display required a source of power to operate. As
discussed in the motivation, the POV display needed to be portable to require
movement between events and shows. However, due to the size of the POV
display and the power requirements of the motor, to operate the POV display
from a battery supply would require a significantly large battery. A large battery
deters from the portability of the POV display. As such, the power supply
research was focused on utilizing power from an AC outlet.

4.1.1 AC Input:

As previously stated, the POV display would draw all of its power from a standard
AC outlet. In the United States, the standard power for an outlet is 120 Vac at 60
Hz. In addition, the standard wiring practices for AC power in the United States
for wiring of a 120V system is for the black wire to be the hot or line, the white
wire to be the neutral and the green or bare cooper wire to be the ground.

4.1.1.1 Circuit Protection:

One additional design requirement for the AC input to the POV display that would
require research is circuit protection. Since we would be accepting 120V AC from

10

a wall outlet which is most likely rated for 15 to 20 amps into the POV display, a
good design criterion would be to protect the POV display from potential damage
caused by surge in current. Over current can occur anytime there is a short
circuit and since we will be most likely working with a metal chassis, adequate
protection against short circuits should be taken.

Currently two commonly used forms of over current protection are available,
fuses and circuit breakers. One disadvantage fuses have compared to circuit
breakers is once fuses are used or blown, they must be replaced with a new
fuse. In the case of circuit breakers, the breaker only needs to be reset and not
completely replaced. However, the upfront cost of circuit breakers generally is
greater than the initial cost of fuses. Two additional advantage fuses have over
circuit breakers is their size tends to be smaller than circuit breakers and the
flexibility to easily change a fuse to a higher or lower current rating without the
need to re-wire any equipment. Therefore, we would focus our research on
available fuse blocks or holders and fuses.

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection:

Cooper Bussmann is a well-known and commonly used manufacturer of fuse
blocks. The Bussmann Type BC and BCCM Series Class CC fuse blocks offer a
compact but reliable solution for fused circuit requirements. The BC and BCCM
series fuse blocks accept Class CC size fuses. As well, the fuse blocks are rated
for operations at 600 Volts and up to 30 Amps. Since we would be protecting the
incoming AC power, only the positive or line side of the AC power supply needs
protection. This means we would only require a single pole fuse block. The part
number for a single pole Bussmann type BC fuse block with screw connections is
BC6031S. As well, Table 4.1.1.1.1 shows some of the available Type CC fuses
offered by Bussmann and their corresponding current rating.

Part Number Current Ratings

LP-CC-1 1 Amps

LP-CC-2 2 Amps

LP-CC-3 3 Amps

LP-CC-4 4 Amps

LP-CC-5 5 Amps

LP-CC-10 10 Amps

LP-CC-15 15 Amps

LP-CC-20 20 Amps

Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings

4.1.2 AC to DC Converter:

11

The POV display required conversion of the AC power coming from the wall
outlet to DC in order to power the motor, the LED array and the microprocessors.
A simple full wave rectifier circuit as seen in Figure 4.2, would be used.

Figure 4.1.2 Full Wave Rectifier Circuit

Although the exact voltage required for the motor, LED array and
microprocessors is not known at this time, we do know that we would most likely
require the functionality to change the voltage output of the DC converter based
on the requirements. In order to change the DC output voltage of the converter,
we would vary the AC input by using a simple voltage divider circuit with a
potentiometer or variable resister. Therefore we focused our research on
determining what varieties of parts are available and their characteristics. In
particular, we researched diodes, resisters, variable resisters and capacitors that
have a maximum operating voltage of at least 150 volts and for the diodes, a
power rating of at least 1500 to watts. The equation below, where Vr equals the
ripple voltage and Vm equals the maximum voltage output, was used to
determine the ripple voltage of the rectifier circuit and help to determine the
correct combination of resistance and capacitance.

4.1.2.1 Diodes:

12

As previously stated, the diodes required for the AC to DC converter was needed
to operate at a maximum of 150 volts and 1500 watts. This design criterion was
allowed for a maximum of 10 amps to flow through the diodes and provide
adequate power to the motor and other circuits. One such diode is the MUR
Series diode manufactured by Multicomp. The diode was designed with the
purpose to be used in inverting and rectifying circuits. Part number MUR1560
has the maximum ratings of 420 Vrms and 15 A forward current. The diode
comes in TO-220A case allowing for easy integration into bread boards or PCB
boards. As well, the MUR1560 is readily available with over 3,000 available to
ship at a cost of less than $1.00 each.

4.1.2.2 Resistors:

The voltage requirements of the converter do not necessarily directly apply to the
resistor. The most important characteristic of the resistor will be the power rating.
Although the power rating for the resistors is less critical than the diodes, we still
required resistors with a power rating of at least 5 watts to allow for proper heat
dissipation. Vishay, a well known resistor manufacture, provides a type RS
resistor that is wirewound with axial leads that would work well with the bread
boards and PCB boards. One example of a complete resistor part number is
RS00510K00FE12, which is a resistor rated for 10 kohm, 5 watts and a tolerance
of +/- 1 percent.

4.1.2.3 Potentiometers and Variable Resistors:

After during some initial research, it was discovered that potentiometers and
variable resistors do not come readily available at the power ratings required for
the converter. Therefore, we used fixed valued resistors similar to the type RS
resistor previously discussed.

4.1.2.4 Capacitors:

One available capacitor that meets the required specifications is manufactured
by Vishay. Vishay offers an aluminum electrolytic type 53D capacitor that can
operate at 200 Volts. Although the tolerance is only +/- 10%, the capacitor is
available at rated capacitance range of 15 uF to 220,000 uF. Just like the
resistor, the capacitor has axial leads to allow for easy integration into bread
boards and PCB boards. Once again, the exact capacitance requirements are
not know at this time, but an example of a completed capacitor part number rated
for 350 uF is 53D351F200JL6.

4.2 Video and Signal Processing:

We intended to receive a live video stream from a laptop and display this video
on our LED array. There are two primary formats that computers output video
data in, VGA and HDMI. The research into these two different formats was to be

13

used to determine which format would be most appropriate for our needs and
what would be required to use that format. This section will look at various means
of video data compression and alteration.

4.2.1 VGA

We considered using the VGA output available from a computer as the video
source for our display. This section will focus on the VGA signal format and will
describe how video data is transmitted via VGA.

4.2.1.1 VGA Signal Standards:

In order for a computer to know what types of signal a display can handle, the
computer communicates with the display through the Data Display Channel. The
protocol used most commonly today is E-EDID, which has been defined by the
organization VESA. With the E-EDID protocol, the computer reads a binary file in
the display to determine what signal to send. It seems possible that we would
have needed to write or edit our own E-EDID or file.

The EDID file is 128 bytes and contains basic information such as the vendor ID,
serial number, manufacturing date of the display, and which EDID version is
being used. It also contains a Video Input Definition, which specifies analog or
digital. In the case of analog it contains several bits that specify which types of
syncing the display supports, as there are several ways of doing this. A section of
bits specify which of 16 predefined standard modes the display supports.
Detailed timing information is contained within the last section. The second to last
bit is a flag indicating whether or not there are any extensions to the file.

4.2.1.2 .Signal Sampling:

The video frames to be transmitted via VGA first start in a digital format on the
PC and are converted to analog though the use of DAC’s. Figure 4.2.1.2.a shows
the pin configuration for the VGA DB15 connector and a summary of each pins
function. The pins for Red, Green, and Blue (1 2 and 3) each carry a signal that
ranges between 0V and 7V referenced from their respective ground pins (6 7 and
8).

14

Figure 4.2.1.2.a VGA DB15 connector and pin assignment

Figure 4.2.1.2.b shows how the red voltage value could be generated from 4 bits,
allowing for 16 distinct voltages and therefore 16 colors of red. Combined with
Blue and Green, this allows for the representation of 212 different colors. There
are many color modes, each with varying amounts of bits defining red, green and
blue. The voltage range does not change, and when each RGB pin is read at the
same time, a single pixel’s color is defined.

Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs

The VGA signal transmits pixels one by one, starting in the top left of the frame,
going from left to right, and then down. This process is timed using two
synchronization pulses, HSYNC and VSYNC. The HSYNC pulse indicates the
start and end of a row of pixels being transmitted, and the VSYNC indicates the
start and end of a frame.

In addition to the VSYNC and HSYNC pulses, there are periods of time in which
no pixel data is transmitted, which are known as the blinking and blanking
intervals. As can be seen in Figure 4.2.1.2.c, these occur starting just before the
VSYNC and HSYNC signals and last longer, making them a little wider. The
period of blinking/blanking time before the SYNC signals is referred to as the
front door, and the period after the back door.

Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows

The VGA signal was designed to be displayed on CRT monitors, which is the
reason the blinking and blanking intervals exist, giving the monitor time for its
electron gun to realign itself. Additionally, because RGB values transmitted

15

through VGA are a continuous waveform after the initial DAC from the PC, the
number of horizontal pixels displayed by the CRT must be determined by a pixel
clock. The clock timing is determined based on which video display mode is
currently being used.

There are 3 other important VGA pins, the DDC clock, DDC data, and DDC
return, which allows the display to comminute with the PC and determine which
display mode will be used to transmit the data. Figure 4.2.1.2.d shows the timing
specifications of various video modes defined by the original IMB standard and
VESA standards.

As seen in Figure 4.2.1.2.c, a row of pixels is transferred in the time specified by
length A, which is the distance between the front edge of each HSYNC pulse. B
specifies the width of the HSYNC pulse. C and E are the front door and back
door times, respectively, which surround the HSYNC pulse signal. D is the time
during which actual pixel data is transmitted. The vertical timings can be
interpreted similarly to the horizontal timings, O being the time for a full frame, P
the VSYNC width, Q and S the front and back door times, and R the actual time it
takes to transmit the frame.

 IBM VESA

Measu
re

Un
it

640x4
80

720x4
00

640x4
80

640x4
80

800x6
00

800x6
00

1024x
768

1024x
768

60Hz 70Hz 75Hz 85Hz 75Hz 85Hz 75Hz 85Hz

F_HSY
NC

kH
z

31.46
9

31.46
9 37.5

43.26
9

46.87
5

53.67
4 60.023 68.677

A us
31.77
8

31.77
7

26.66
7

23.11
1

21.33
3

18.63
1 16.66 14.561

B us 3.813 3.813 2.032 1.556 1.616 1.138 1.219 1.016

C us 1.907 1.907 3.81 2.222 3.232 2.702 2.235 2.201

D us
25.42
2

25.42
2

20.31
7

17.77
8

16.16
2

14.22
2 13.003 10.836

16

E us 0.636 0.636 0.508 1.558 0.323 0.589 0.203 0.508

F_VSY
NC Hz 59.94

70.08
7 75

85.00
8 75

85.06
1 75.029 84.997

O ms
16.68
3

14.26
8

13.33
3

11.76
4

13.33
3

11.75
8 13.328 11.765

P ms 0.064 0.064 0.08 0.671 0.064 0.056 0.05 0.044

Q ms 1.048 1.08 0.427 0.578 0.448 0.503 0.466 0.524

R ms
15.25
3

12.71
1 12.8

11.09
3 12.8

11.17
9 12.795 11.183

S ms 0.318 0.413 0.027 0.023 0.021 0.019 0.017 0.015

Pixel
Clock

M
Hz

25.17
5

28.32
2 31.5 36 49.5 56.25 78.75 94.5

HSYN
C +/-

Neg

Neg Neg Neg Pos Pos Pos Pos

VSYN
C +/- Neg Pos Neg Neg Pos Pos Pos Pos

Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes

4.2.1.3 Analog to Digital Conversion:

In order to display frames transmitted through VGA on our LED array, we would
have needed to first obtain the signal in a digital format and build each frame.
This is because the VGA format transmits data in horizontal lines and our display
needs the data in vertical lines. After each frame is constructed, the data must
then be retransmitted a single column at a time. Additionally, this would have
allowed us to perform processing on each frame, which might include cropping
and resizing. Pre-buffered data can also be accommodated easier if we convert
the signal to digital because the VGA stream and pre-buffered frames would be
able to use the same output to the LED array.

For these reasons, ADCs would have been required. From timing diagrams in
Section 4.2.1.2, we can see that the pixel clock runs at 25.175 MHz at a
resolution of 640x48. At each of these pulses the analog RGB lines need to be
read so 3 ADCs would be needed in total. The voltage on each pin ranges from 0
to 7 volts. With these factors considered, the ADC0801S040 seems to be a good
choice for an ADC. The ADC0801S040, has an 8 bit output and operates
between 2.7 V and 5.5 V, so the input signal would have needed to be scaled
before going into the ADC It also has a maximum speed of 40MHz, and a clock
input which could be tied to the pixel clock. This ADC costs around $4, however,
it seems likely that enough could be obtained with free samples.

4.2.2 HDMI:

17

HDMI or High Definition Multimedia Interface is one of the possible inputs we had
considered supporting in our POV display project. HDMI input would have
allowed us to receive a signal in a format that is quickly gaining popularity and is
currently available on many devices. The main reason we considered HDMI
support is because Digilent has a Xilinx FPGA based board available with built in
HDMI support, and most modern DVD players and laptop computers have HDMI
outputs. This section is mainly focused on how we would have gone about
receiving the HDMI signal on the Digilent Atlys board and then translated that
signal into a format we can use to display it on our LED array.

4.2.2.1 HDMI Signal Standards:

The HDMI standard indicates that the term used to describe HDMI inputs is
“HDMI sink”, and the term used to describe HDMI outputs is “HDMI source”. Our
POV display would therefore have been the HDMI sink and any device
connected to our display would have been the HDMI source. HDMI has two
separate communication channel protocols that we must become familiar with:
DDC, and TMDS. Another important signal that must be considered is the TMDS
clock signal. HDMI provides content protection capabilities through HDCP or
High-bandwidth Digital Content Protection. HDCP will not be necessary for our
project so we will not consider it in our research. HDMI is also capable of sending
control signals in both directions, allowing the connected devices to send
commands to each other. We would have most likely not taken advantage of
HDMI control signals. Our main focus for HDMI signal standards will be on the
DDC and TMDS communication channels. The pin configuration for an HDMI
cable is shown in the following Table 4.2.2.1.a.

PIN Signal Assignment PIN Signal Assignment

1 TMDS Data2+ 2 TMDS Data2 Shield

3 TMDS Data2- 4 TMDS Data1+

5 TMDS Data1 Shield 6 TMDS Data1-

7 TMDS Data0+ 8 TMDS Data0 Shield

9 TMDS Data0- 10 TMDS Clock+

11 TMDS Clock Shield 12 TMDS Clock-

13 CEC 14 Reserved

15 SCL 16 SDA

17 DDC/CEC Ground 18 +5V Power

19 Hot Plug Detect

Table 4.2.2.1.a HDMI Pin Configuration

 DDC or Display Data Channel provides a way for the display to communicate
which resolutions are supported to the graphics output device. HDMI uses a
DDC protocol named Enhanced Extended Display Identification Data or E-EDID.
This is represented by a 256 byte binary file stored in ROM on the display. Since

18

we would have created the display we may have to create our own EDID data file
in order to properly have a device such as a DVD player send the correct
resolution picture. Creating a compatible EDID file may have proven beneficial to
us since it may eliminate the need for down scaling the resolution of the input
since the file would communicate to the HDMI source which resolution it should
be sending to the sink. Table 4.2.2.1.b below shows the structure and
requirements of EDID information.

Description Required

Block “0” Header Yes

ID Manufacturer Yes

ID Product Code Yes

ID Serial Number No

Week of Manufacture No

Year of Manufacture or Model Year Yes

EDID Version Yes

EDID Revision Yes

Basic Display Parameters and Features Yes

Display x, y Chromaticity Coordinates Yes

Established Timings No

Standard Timing Identifications No

Preferred Timing Descriptor Block Yes

Range Limits Descriptor Block No

Monitor Name Descriptor Block No

Other Descriptor Blocks No

Extension flag Yes

Checksum Yes

Table 4.2.2.1.b EDID Information and Requirements

TMDS or Transition Minimized Differential Signaling is an encoding protocol that
takes place for the HDMI audio and video data. “Transition Minimized” means
that the number of transitions in the digital signal is reduced as low as possible.
This means that the transition from 0 to 1 or vice versa will happen as few times
as possible in the transmitted signal. The reason for this is to minimize the
chance of the signal degrading along the transmission line. “Differential
Signaling” means that there are two different signals being sent, one on each
cable in a twisted pair. One of the signals is the audio and video data, and the
other signal is the inverse of the first. The receiving end compares the first signal
with the second and calculates the difference between the two; this data is then
used to make corrections when possible. There are three TMDS channels in an
HDMI cable; each channel has its own twisted pair. There is also a TMDS clock

19

signal, which itself is not a TMDS signal, but simply a digital signal to help
synchronize the TMDS signals and allow for the differential calculations needed
for error correction. The following Figure 4.2.2.1 shows a simple flowchart of how
we will be handling the HDMI TMDS signal with the HDMI input on an FPGA.

Figure 4.2.2.1 TMDS Input Flowchart

4.2.2.2 Signal Sampling:

If we were to use an HDMI input we would have used the Atlys board by Digilent.
The Atlys board is based on the Xilinx Spartan 6 FPGA, and has built in HDMI
inputs and outputs. The HDMI inputs and outputs on the Atlys board
automatically encode or decode the TMDS signals for input or output. There is a
given reference design available which uses the onboard switches to choose
which video mode to use (resolution and refresh rate). We would have used the
Atlys board exclusively as an HDMI sink. All of the data received from the HDMI
port would have then been sent by some communication method to the
secondary spinning microcontroller which would have organize the data into the
appropriate latches for display on the LED array.

4.2.3 Video Processing (Stationary Controller):

Various forms video processing may be required depending upon the required
format of the frames we build in the stationary controller, and how these frames
are obtained. The format in which we need the frame data is dependent on the
specifications for the LED array, including its size and how precise it can

20

represent RGB colors. This was determined by our choice of LED controllers,
which in turn determined what types of image processing was required.

4.2.3.1 Color Depth Reduction:

When building each frame, there was an RGB value for each pixel in that frame.
It is quite likely that these RGB values have a much higher color depth than our
display is capable of handling. In code, we needed to convert these RGB values
into a lower color depth. The simplest way of doing this is to truncate off the least
significant bits. If we expect that the RGB color data we obtain will be in ‘true
color’, or 24 bit color, then to reduce it to 8 bit color we would truncate the Red
and Green data to their 3 most significant bits each, and for the Blue data, to its 2
most significant bits. Since we only want 8 bits for the color, Blue is picked to be
the color with fewer bits because the human eye is less sensitive to changes in
blues when compared to red and green. Figure 4.2.3.1 shows the same picture in
various color resolutions.

Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth

4.2.3.2 Frame Resizing:

Since the possibility exists that we may not be able to receive the exact
resolution we desire for our display, we may need to resize the frames as they
are buffered. This can be accomplished most simply by truncating sections of the
frame and displaying a cropped version. In the most ideal scenario, we will
receive frames at a resolution of 640 x 480, which can then be easily cut in half
to a resolution of 320 x 240. It may also be possible to employ algorithms on the
entire 640 x 480 frame which would reduce it to 320 x 240 by using blurring
techniques, but this could have an effect on how nicely the images look on the
display, and they also come with a heavy processing cost.

4.2.3.3 Frame Skipping:

21

Assuming there is a certain amount of image buffering and that we are receiving
frames into this buffer at a particular rate, it is possible that we may receive more
frames than we need and might need. Our display is intended to show 30 frames
per second, and most video modes provide frames at around 60 Hz. In this
simple case we receive frames at twice the frequency we need them, we could
simply use every other frame. A more complicated frame skipping algorithm may
be needed frequency at which frames are buffered can’t simply be cut in half.

There is also the possibility of increasing or decreasing the rotation speed of the
display, which determines our number frames per second, to a value such that
that it even divides evenly with the frequency of frames being received. As an
example, if the video mode we are in is providing frames at 70 frames per
second, we could display this nicely if we changed our rotation speed to 35
frames per second and then simply used every other frame. It seems likely
however that we can receive 60 frames per second and display at the desired 30
frames per second.

4.2.3.4 Video Compression:

The real time requirement of transferring the frames between the stationary
board and the rotating board is of some concern. Calculations for the required
data rate seem to suggest that the amount of data we are transferring is small
compared to the bandwidth, if it does become an issue due to overhead from
various transfer protocols it would be good to have an efficient solution for
minimizing the amount of data that needs to be transferred.

Video compression is possible because within each frame exists redundant data
that could be described more efficiently, with or without loss of information.
Redundant data can exist in two forms, spatial and temporal. Spatial redundancy
occurs when there are repeated pixels in a single frame. Temporal redundancy
occurs when pixels values do not change from frame to frame.

One of the simplest forms of compression involves simply throwing away the
least significant bits of each RGB color, which would allow each pixel to be
represented by fewer bits. Since our display is a 256 color display, this form of
compression will almost certainly occur, and is discussed in more detail in
section 4.2.3.1 dealing with Color Depth Reduction.

Run length encoding is a very simple compression method that deals with spatial
redundancy. With run length compression, when a pixel color value C is identical
for some sequence of length L, it can be represented by (C, L). The type of
compression works best on computer generated images because of the
increased likelihood of unvarying pixels. Combined with the color depth reduction
that is to occur, the likelihood of identical pixels in sequence is increased and
could greatly reduce the size of the data.

22

Often in transferring the signal between the source and display, composite
formats are used instead of having 3 separate outputs for RGB. In the composite
format, instead of RGB values, a Luminance “Y” value and a Chrominance is
used to represent each pixel. Chrominance is represented by two signals, I and
Q if using NTSC video, or U and V if using PAL video. Figure 4.2.3.4.a shows
how the luminance and chrominance are calculating using the NTSC and PAL
video standards. This in it of itself does not compress the video, it merely
combines the RGB values into a single stream and it also allows compression
algorithms to take advantage of the properties of Luminance and Chrominance.
A simpler composite would involve concatenating the individual RGB values into
a single byte, since we are using 8-bit color.

NTSC video PAL video/Digital recorders

Y = 0.30R + 0.59G + 0.11B Y = 0.3R + 0.6G + 0.1B

I = 0.60R – 0.28G – 0.32B U = (B – Y) x 0.493

Q = 0.21R – 0.52G + 0.31B V = (R – Y) x 0.877

Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance

One form of compression relies on the premise that the human eye has poor
detection of changes in chrominance values, with heavier importance placed on
Luminance. Based on this nature, we could use a compression technique that
involves throwing away much of the chrominance data and uses interpolation to
determine the chrominance value at each pixel location instead. This method of
compression is referred to as an Interpolative compression scheme. As an
example of this method, we will throw out 3 out of 4 columns of chrominance
values and 3 out of 4 rows of chrominance values, reducing the total amount of
values by a factor of 4. Figure 4.2.3.4.b shows a matrix of chrominance values,
the blue dots representing values thrown out, and black dots representing values
to remain in the matrix. Shown also is a sample calculation using interpolation to
approximate the missing chrominance values.

Figure 4.2.3.4.b Method for Interpolating Chrominance Values

23

Using only spatial compression methods, the amount of data that is required to
be transferred can be vastly reduced, as has been seen. This helps to reduce
any issues involving the data transfer rate between the two microcontrollers
being too slow. It is important to note that using video compression involves a
significant tradeoff between the required processing time and data size. Some
forms of compression require additional processing power at the transmitting and
receiving side because of the mathematical calculations that would need to be
performed.

In our real time application, the right balance between compression and data rate
is critical. On the stationary processor, where we have a faster clock speed, we
can perform color depth reduction and combine the RGB values into a single
byte before transmitting. Using those two techniques alone, the rotating
processor would not need to perform any calculations to decode the video. The
rotating processor avoids any extra processing because it will receive the data in
the format that it ultimately needs. The rotating processor would be able to
dedicate its cycles fully to reading the frame buffer and writing to the LED array.

4.3 LED Array:

This section of research will cover the exploring the different possibilities of not
only what type of LEDs to use but different possibilities to control the LEDs as
well.

4.3.1 LEDs:

There are a several available RGB LEDs all with different characteristics and
specifications. Some important unique characteristics required by the POV
display include size and mounting options. In order to reduce the appearance of
streaking when the POV display is running, the distance between each vertical
LED needs to be minimized. This eliminates the most common and popular case
style of LEDs, T-1 3/4 package. The T-1 3/4 style LEDs have a width (as viewed
from the top) of 5.9mm. Therefore, we turned to researching available surface
mount LEDs. In general, surface mount devices or SMDs offer a much smaller
package and are design for use and easy integration into printed circuit boards.
One available surface mount type LED is manufactured by Multicomp.
Multicomp's OVS-33 Series SMD Super Bright LED is only 2.8mm wide as
viewed from the top. This is about half the size of the T-1 3/4 style LEDs. This will
allow us to group the LEDs on the array much closer reducing the appearance of
streaking as the POV display spins. Figure 4.3.1 shows the pin information for
the OVS-33 Series SMD Super Bright LED.

24

Figure 4.3.1 OVS-33 Pin Information

4.3.2 LED RGB Control:

There are several different methods for controlling RGB LEDs. Two methods that
we focused our research on were Pulse Width Modulated Controllers and using
latches with a resistor network.

4.3.2.1 Pulse Width Modulation:

The brightness of an LED is determined based on the amount of current the LED
receives during a sample period. Pulse Width Modulation is a form of controlling
the brightness of an LED by controlling the average current a LED receives
during one cycle or period by varying the width of a pulse. Several manufactures
offer a variety of LED controllers but during some preliminary research, it was
discovered that Texas Instruments offered the best selection and supporting
material for their line of LED controllers. Two LED controllers we focused our
research on will be the TLC5971 and the TLC5940.

4.3.2.1.1 TLC5971 LED Controller:

Texas Instruments TLC5971 LED Driver offers 12 Channel, 16 Bit pulse width
modulated control of LEDs. TI defines the design application of the TLC5971 is
for RGB LED cluster lamp displays. The TLC5971 allows control of up to 12
LEDs broken into groups of (4). Each group containing controls for (3) LEDs or
the RGB values of each LED. Each LED has individually adjustable output with
65,536 steps. As well, the TLC5971 allows for serial data communications and
cascading of an n number of controllers together with a maximum data rate
transfer of 20 MHz.

4.3.2.1.2 TLC5940 LED Controller:

Texas Instruments TLC5940 LED Driver offers 16 Channel, 12 Bit pulse width
modulated control of LEDs. TI defines the design application of the TLC5940 is

25

for full-color LED displays, LED signboards and a general high current LED
driver. The TLC5940 allows control of up to 16 LEDs but unlike the TLC5971, the
outputs are not broken into RGB groups. With the TLC5940, the 12 bit pulse
width allows for each LED to be individually adjusted with 4,096 steps. Like the
TLC5971, the TLC5940 allows for serial data communications and cascading of
an n number of controllers together with a maximum data rate transfer of 30
MHz. One additional useful feature of the TLC5940 is its XERR output. The
XERR output allows for notification if an LED goes out through its LED Open
Detection. As well, XERR also allows for notification of an over temperature. Both
features that may benefit the functionality of the POV display.

4.3.2.2 Latch Control:

Each LED in our LED array needs to flash its appropriate color at the exact same
time as all of the others, so the colors that each LED is to display must be stored
before outputting to that LED. One way of accomplishing this would involve using
latches. Each LED has 4 inputs, RGB colors and ground. One LED that we
considered using had a color depth of up to 256 colors. Each LED would then
require 8 bits of color data to determine which color it should output. If we are
displaying at 320 x 240 resolution, our LED array will have 240 individual LEDs,
and a latch will be required for each one of them.

Each latch would need to be able to contain 8 bits. We can use a resistor
scheme the VGA signal was generated in section 3.2.1.2 on VGA Signal
Sampling, which would reduce the 8 bits of information down 3 lines which would
connect directly to the LEDs. In order to address each of the 240 latches, we
could have used an 8 to 256 decoder, or combination of decoders. This approach
requires 8 addressing lines from the rotating processor, and 8 data lines, as well
as a line that would be used to update the output of the latches all at the same
time, requiring 17 output lines in total. One possible way to reduce the number of
required outputs from the rotating microcontroller would have been to use a
counter to address the decoders, as seen in Figure 4.3.1.2. An 8 bit counter
would require 2 output lines from the controller, one to increment it and one to
reset it. Its output would be used to address each decoder one by one. The 8
data lines will still be required, plus the two counter lines, and one final line used
to activate the latch output, so in total 11 outputs would be required from the
processor.

26

Rotating

Processor

Resistor

Network

8 to 256

Decoder

Address

Counter

LED Array

2 outputs:

Increment Counter

Reset Counter

8 outputs:

3 for Red

3 for Green

2 for Blue
256

Latches

8 outputs:

addressing bits

8 outputs:

8 voltages

4 outputs:

RGB

Ground

Enable line

Figure 4.3.1.2 Latch control Implementation

The resistor network would have used the 8 outputs from each of the latches,
which are 8 voltages, and would have converted the 8 bits of data into 4 lines
with specific voltage and current for the RGB and Ground connections LEDs
have. Overall this scheme involves the huge dilemma of wiring all of these
connections. In total there are 240 resistor networks which convert the 8 bits
down to 4, and then 4*240 (960) connections to the LEDs. Additionally, there are
240 connections from the decoder to the latches, and an 8 bit data bus which
must connect to each of the 240 latches.

4.4 Communications:

Since one of our objectives with this POV device was to send a signal encoded
with an image or frame of a video, we needed a way to transfer data from the
stationary side of the device to the rotating side of the device. For obvious
reasons the simple solution of a wire was not applicable without some special
configurations. There are two options we came up with to solve this issue: a co-
axel wire that is strung through the point of rotation with a rotatable joint or
wireless transmission via a medium like Wi-Fi or Bluetooth.

The following sections will cover our findings for both methods, and a comparison
of both methods and their pros and cons for our specifications. The final section
will sum up our eventual decision and explore the reasons for our choice.

4.4.1 Requirements

Before we can even discuss either method of communication to our rotating device we

need to discuss the data requirements that we needed in order to implement the system.

This is so we can effectively decide the best fit for our POV display.

First we needed to determine the number of bits required for one LED to display a single

color. Since we decided we wanted two-hundred-fifty-six colors we knew that we needed

27

about eight bits of information to display a specific color on a single LED. However, we

don't want to display on just a single LED so we need to be able to determine which LED

we want to send this color to. Since we planned on having four-hundred-eighty LEDs as

our vertical dimension we knew we needed nine bits of information to tell the processor

which LED we were addressing. That is seventeen bits total that is needed to turn a

single LED in the array a specific color, the eight bits needed for the color plus the nine

bits needed for the specific LED in the array. Figure 3.4.1 gives a visual representation

of this concept.

Figure 4.4.1 Data Array

This only turns a single LED in the array a single specific color. We need to turn
all four-hundred-eighty LEDs a variety of colors that means we need to send a
seventeen bit word to each LED at once for a single vertical line of our frame. We
also need to tell the device when a new line should be displayed, so we should
add two bits for an end of line message and a beginning of line message. For the
sake of discussion and since it is better generally to overestimate then under
estimate we will say two bits. This means we need to multiply the seventeen bit
word by four-hundred-eighty LEDs and add two bits to the end of that to get the
total bits needed for a single vertical line. In other words we need 8162 bits to
display a single vertical line of our frame. Now to display the full frame we need
to multiply this word by six-hundred-forty, since this is our horizontal dimension.
This brings the data we need to transfer up to about 5.3 megabytes. We aren't
done yet since we also need end and beginning of frame bits for this word, which
brings us up two more bits. This is just a single frame and we need to display
these frames reliably at thirty frames per second. This means we need to send
the above frame data thirty times per second. This means in one second we are
sending a little over a hundred-fifty-six megabytes, or more specifically:
156,710,460 megabytes.

This means no matter what form of communication we choose to use it has to be
at minimum capable of sending this much information reliably. That being the
case would have probably wanted a data transfer rate a little higher than this,
maybe even twice as high as this to make it reasonable that with errors we would
have still been able to maintain a steady transmission.

28

4.4.2 Wired Communications:

There are many forms of wired communications currently being implemented on
a daily basis in today's high speed world. There are several design criteria which
restricted some of the available forms of wired communications. From our
specifications and project design criteria, we knew that our platform would be
spinning at a rate of 1800 rotations per minute. Through some preliminary
research, it was found that the larger number of conductors being transmitted to
a rotating platform resulted in a smaller maximum allowed RPM's. In other words,
any conductor larger than four strands would have been unpractical for this
application. Therefore, the researched was focused on two types of wired
communications, Fiber Optics and Cooper Coaxial Cable. In both situations, the
wired communications needed to convert existing Ethernet communications ports
on the microprocessors to a form that can be transmitted over their respective
medium. With the idea of using the existing Ethernet ports and protocols of the
microprocessors one additional criterion of the wired communications would have
been transmission rates. Currently the standard threshold requirements for
Ethernet communications are 10 Mbs, 100 Mbs, and 1000 Mbs or 1 Gbs. An
additional design criterion for wired communications would have been to
implement the communications with inducing the minimal amount of interference
to the signal. The last design criteria for wired communications would have been
to evaluate cost benefits between coaxial cable and fiber optic cable. Below a
summary of the design criteria is listed and was a guide for determining the
vitality of each type of wired communications.

 Rotating Speed: 1800 RPM's
 Transmission Rates: 10/100/1000 Mbs
 Little to no induced interference
 Cost

4.4.2.1 Fiber Optic Communications:

In the following section we researched the requirements for using fiber optic
communications to transfer the data from the stationary side of the POV display
to the rotating side of the POV display.

4.4.2.1.1 Fiber to Ethernet Conversion:

The first portion of research on fiber optic communications was to determine the
requirements for converting Ethernet communications to fiber communications.
Fiber optic communications use either single mode or multimode fiber cable.
Therefore, in addition to determining how to convert Ethernet to fiber, a review of
single mode verse multimode was required to determine which is preferred for
Ethernet communications.

29

Single mode fiber optic communications have a smaller core size than multimode
fiber cables and, as the name implies, single mode fiber cables only operate with
one optical light. Generally, most single mode fiber systems operate at 1300 nm
or 1550 nm wavelengths. As well, single mode fiber systems require very strict
mechanical connections due to the smaller core size. Multimode fiber systems
operate at 850 nm or 1300 nm wavelengths and have a larger core size than
single mode fiber cables. However, due to the larger size of the multimode core,
multimode systems suffer from high attenuation can therefore cannot operate at
the same distance as single mode systems. One advantage the larger core size
of multimode systems is the high capacity and transmission data rates.
Multimode systems can transmit data at rates of 10 Mbs to 10 Gbs. As well, in
general, the cost of multimode fiber systems is less than the cost of single mode
fiber systems.

Upon reviewing the differences between multimode and singe mode fiber cable,
the research on fiber to Ethernet conversions will focus in multimode fiber
communications only. The difference in transmission length between multimode
and single mode is negligible for the application of the POV display as the
maximum transmission distance will not exceed more than ten feet. As well, the
higher cost and lower transmission rates of single mode fiber cable make
multimode fiber a clear choice for the application and use of the POV display.

Various Ethernet to fiber solutions exist on the market today. Ethernet to fiber
converters or media converters are used in various industries from substation
communications to bringing internet to homes across the nation. Several
manufactures provide fiber to Ethernet solutions all within the design criteria of
the POV display. Table 4.4.2.1.1 below list a few available solutions including
product specifications and cost.

Part
Number

Mfr.
Supported
Data Rates

Fiber
Connector

Ethernet
Connector

Cost

EIR102-MT
B&B
Electronics

10/100
Mbps

MM ST RJ-45 $199.00

FCU-
100SC

Aaxeon 200 Mbps MM SC RJ-45 $62.00

ME-1600-
MM2-ST

Support
Systems
Int.

10/100
Mbps

MM ST RJ-45 $69.50

Table 4.4.2.1.1 Fiber to Ethernet Converters

4.4.2.1.2 Fiber Optic Rotary Joints:

Fiber optic rotary joints or FORJs are used to make the junction between a
stationary fiber cable and a rotating fiber cable. As discussed in the main section,

30

the fiber optic rotary joints must be capable of rotating at speeds of 1800 RPM's
while not inducing a significant amount of inference. Several fiber optic rotary
joints are available on the market. One company providing a wide range of fiber
optic rotary joints is the Moog Components Group. Almost all available rotary
joints can support both multimode or single mode fiber cable and a wide
wavelength range. Therefore, the research on fiber optic rotary joints was
focused on the maximum rotating speed and minimum induced noise into the
signal.

Although Moog provides a variety of fiber optic rotary joints, the manufacture
however does not provide any FORJs that have a maximum rotating of 1800
RPMs or higher. Fortunately, other manufactures do provided FORJs that can
operate at the rotating speed required for the POV display. One alternative to
Moog is Princetel and their line-up of available FORJs. In particular, Princetel
offers the MJX series product line. The MJX series fiber optic rotary joints are
capable of rotating at speeds up to 2000 RPMs. In addition to a maximum
rotating speed of 2000 RPMs, Princetel's MJX series fiber optic rotary joints have
an insertion loss of less than 2 dB (less than 0.5 dB typical) with an insertion loss
ripple of less than plus/minus 0.25 dB.

It is evident that the MJX series fiber optic rotating joint met and exceeded all
design criteria for the POV display. Depending on what fiber connector and
wavelength is required to connect to the Ethernet convert, Table 4.4.2.1.2 below
shows available MJX rotating joints and their respective part number.

Part Number Fiber Connector Wavelength

MJX-850-ST ST 850

MJX-850-SC SC 850

MJX-131-ST ST 1310

MJX-131-SC SC 1310

Table 4.4.2.1.2 MJX Part Numbers

4.4.2.2 Coaxial Copper Communications:

In this section we researched the requirements for using a copper coaxial cable
to transfer the data from the stationary side of the POV display to the rotating
side of the POV display.

4.4.2.2.1 Coaxial to Ethernet Conversion:

Coaxial to Ethernet conversion is the back bone to modern cable modem
internet. Coaxial communications relay on a single copper core that is shielded
by an equal but opposite current. This provides one fundamental advantage over

31

fiber communications, the ability to conduct power over the same line as the data
signal. This allows the conversion of signals to coaxial using simple in-line
converters that do not require any additional power supply. One such in-line
convert is provided by EnConn. The EnConn EOC-IN-B Ethernet over Coax
allows for the transmission of Ethernet of coaxial cable at transmission rates up
to 10 Mbs. As stated early, the EOC-IN-B is an in-line or passive device. This
means the EOC-IN-B does not require any additional power. In addition, the
EOC-IN-B is a compact design allowing the device to be installed using less
space not only on the stationary platform but the rotating chassis of the POV
display. However, the EnConn EOC-IN-B only supports Ethernet
communications up to 10 Mbs. In the case that the communications to the LED
array will require a higher bandwidth additional research is required to determine
the best alternative.

One alternative from EnConn is their EOC-AN and EOC-IN Ethernet over Coax
extender allows for transmission of Ethernet at rates of 10 Mbps up to 100 Mbps.
The EOC-AN converter requires a DC power input of 12V but the EOC-IN does
not require any power input. This means we could use the EOC-AN converter on
the stationary side of the POV display and power the converter from the power
supply. We would then install the more compact EOC-IN on the rotating side of
the POV display. Another alternative would be Pulse Link's PL3302 Ethernet over
Coax bridge. The PL3302 allows Ethernet communications of 10 Mbps, 100
Mpbs and 1000 Mbps. Although the PL3302 allows for Ethernet communications
up to 1000 Mbps, the Ethernet bridge will require DC power on both the
stationary and the rotating side of the POV display. Another downside to the
PL3302 is its size. The PL3302 dimensions are 6" wide x 1.75" high x 4.75"
deep. Table 4.4.1.2.1 compares the differences between all converters.

Part
Number

Mfr.
Supported
Data Rates

Coax
Connector

Ethernet
Connector

EIR102-MT EnConn 10 Mbps BNC RJ-45

EOC-
AN/IN

EnConn
10/100
Mbps

MM SC RJ-45

PL3302
Pulse
Link

10/100/1000
Mbps

MM ST RJ-45

Table 4.4.2.2.1 Coax to Ethernet Converters

4.4.2.2.2 Coax Rotating Joint:

Once the Ethernet is converted to Coax, just like with fiber, the coax will require a
rotating joint to make the bridge between the stationary side and the rotating
side. Although extensive research was done, only one practical solution was
found. Mercotac manufactures a variety of rotating joints and slip rings. Included
Mercotac's product line is a two conductor Model 205 high speed, low torque

32

rotating joint. The joint is not explicitly design for coaxial communications but due
to the extremely low electrical noise induced by the joint and the fact that a
coaxial cable can be simplified to two conductor cable makes the Model 205 a
feasible solution for transmitting the coax cable from the stationary side to the
rotating side. Some other advantages of Mercotac's rotary joints are life
expectancy and maintenance requirements. The Model 205 rotary joint is
manufactured with a life expectancy of several hundred million revolutions. If a
rotary joint is installed and operated under all specified conditions, Mercotac
claims the joint can even last for over a billion revolutions. As well, the joints are
manufactured for to be maintenance free, meaning they will not deteriorate the
signal over the lifetime of the joint. Figure 4.4.1.2.2 below shows a typical
mounting and wiring of a Model 205 joint. As well, Table 4.4.1.2.2 list all models
and their corresponding specifications for the 205 joint. All Model 205 joints have
two terminals, operate at a voltage range of 0-250 V AC/DC and a current rating
of 4 Amps at 240 V AC.

Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces

Part Number Max. Freq Max RPM Ball Bearing Cost

205 200 MHz 2000 Steel $28.52

205-SS 200 MHz 2000 Stainless Steel $37.68

205-H 200 MHz 3600 Steel $29.62

205-HS 200 MHz 3600 Stainless Steel $38.37

33

Table 4.4.1.2.2: Coax to Ethernet Converters

4.4.2.3 Ethernet Protocols:

In order to determine which protocol is most appropriate for our purposes we
looked at the protocols TCP, UDP, and using our own. TCP is protocol that is
designed to reliability transmit a stream of bytes between two programs running
on separate systems. TCP allows a program to request the transmission of data
with a single request and then takes care of segmenting it into IP sized packets,
which contain a sequence of bytes and a header. TCP handles the scenarios
such as out of order transmission, duplicate packets, and lost packets. Out of
order packets are rearranged and lost packets and be requested to be resent.
Reassembly of the stream of bytes is handled by the TCP receiver, which then
passes the data to the program. The TCP protocol favors the accuracy of the
data over timely delivery, and uses positive acknowledgement to guarantee
reliability. In positive acknowledgement method, the receiver sends an
acknowledgement for each packet it receives, and the sender expects to receive
the acknowledgement within a certain amount of time, or it will resend the packet
because it may have been lost or corrupt. The favoring of accuracy over
transmission speed makes TCP generally a poor choice for a real time
application.

Another protocol option is to consider is UDP. UDP doesn’t use any handshaking
and does not guarantee that data is in order and not missing. Any reliability and
accuracy checking, as well as error handling must be performed at the
application level if it is a concern. In our case we could probably implement these
checks at the application level. For instance after each frame is transmitted to the
rotating board we could send a UDP datagram back to the stationary one
confirming its receipt. UDP is often used for real time systems where losing a
packet is preferable to waiting on it, which might make it lend itself better to our
application. This would require that we handle the scenario losing a packet
appropriately at the application level however, although ideally there will not be
any packet loss. Packet loss is unlikely because our two systems are connected
back to back via cross-over Ethernet cable, and the communication is limited to
those two systems. A UDP packet consists of a header which contains the
source port number, destination port number, length, and a checksum, all of
which is followed by the actual data.

4.4.2.3.1 Ethernet Software Library:

The stationary FPGA would have communicated with the rotating FPGA using
Ethernet wired communications. In this section we will be considering how the
Ethernet communications work. This includes software library identification, and
protocol selection. Software library identification for the FPGA was more
challenging than expected. The Atlys board was expected to come with built in
Ethernet functionality but it seems that this is not the case. Xilinx offers software

34

in the form of Intellectual Property (IP) cores to support Ethernet communications
but this core is not free. Licensing fees would cost us over $1,000. To keep the
costs of this project low we searched for alternate solutions. There is a website
opencores.org which has open source “cores” available for FPGA’s. Cores are
FPGA software packages that program the FPGA to function like a certain
hardware design. We were able to find a core which implements a 10/100
Ethernet MAC on the FPGA. Using this core we would have been able to use the
Ethernet ports on the FPGA’s for communication. If we used the Ethernet core
then we would have used the UDP protocol because flow control and
acknowledgements are unnecessary for our application. A live video feed cannot
afford to retransmit packets. It makes more sense to simply drop any lost packets
and continue transmitting the next frames.

Another alternative may have been to use the Ethernet ports in a non-standard
way. We could have used the pins on the RJ-45 connector to send the data using
our own design. If we picked that route we would not have been using any
Ethernet protocols but simply sending raw data through a wire. This would have
been the simplest method to design and implement because it would not have
required any complicated software library or IP cores. After looking at example
code using the Xilinx Ethernet MAC core it was obvious that many hours would
be required just to understand the example. The core available through the
opencores.org website was even more complex because it lacked documentation
and examples. Another fact worth mentioning is that the cores do not work in a
straightforward way like C programming. They are actual hardware
implementations and should be viewed as such. If we create our own method of
using the output pins for the RJ-45 connector we may have been able to simplify
communication greatly. We would have created our own header for the data
being sent to identify what is being sent. We would have most likely used a clock
speed of 200MHz for a 100Mbit/s data sampling rate.

4.4.2.4 Microprocessor Ethernet Hardware:

A possible component to implement Ethernet communication on our boards
could have been the Arduino Ethernet Shield, which would have required that we
use Arduino boards for the rotating and stationary controllers. The board has a
16 kilobyte buffer and has a connection speed of 10/100 Mb. The board supports
both TCP and UDP connections as well as simply transferring single bytes at a
time without any protocol. The board contains a library of functions including a
server class, client class, and an EthernetUDP class, as well as the main
Ethernet class and IPAddress class which allows you to assign the board an IP
address.

4.4.3 Wireless Communications:

We considered wireless communications in order to send information from the
stationary FPGA to the rotating microcontroller. The wireless communication

35

must support a high enough bit rate to send a 320x240 color video signal. The
color video signal would have had 256 possible colors per pixel, so 8 bits per
pixel would have been needed. We would have also liked to transmit 30 frames
per second. The minimum required bitrate that we would have needed in order to
achieve the desired frame rate would have been 320x240x8x30 which is
18.432Mbps. We considered a 480 LED array supporting a 640x480 resolution. If
we had used the higher resolution then our bandwidth requirements would be
640x480x8x30 which is 73.728 Mbps. Both WiFi and Bluetooth are capable of
these speeds so we considered both technologies. Generic RF communication
was not considered because we did not believe that it would support the
bandwidth that would be required for real time video. We also researched if the
rotation of the microcontroller would hinder wireless communications.

4.4.3.1 WiFi:

WiFi is the common name for the IEEE 802.11 wireless communication standard.
This technology most often uses a 2.4GHz frequency. A large advantage to using
WiFi for our wireless communications is that all modern laptop computers have
built in WiFi communication capabilities. It was possible for us to write software
for a PC that allowed direct WiFi communication between a PC and the rotating
microcontroller in order to send text messages or images to be displayed.

4.4.3.1.1 WiFi Protocols:

The specific WiFi protocol we considered is 802.11g. Devices that use this
protocol are commonly available and are capable of up to 54Mbps data transfer
rates, which is more than enough for our application. WiFi has two possible
modes of operation: infrastructure and ad-hoc. Infrastructure is the most
commonly used mode, but it requires an existing infrastructure including wireless
routers and/or wireless access points. We considered the ad-hoc mode for this
project since it does not require any other external hardware. Ad-hoc would allow
us to set up a direct wireless connection between the FPGA and the
microcontroller for bi-directional communication. Although bi-directional
communication would be supported we would only have to communicate in one
direction. The following Figure 4.4.3.1.1 shows a comparison between
infrastructure and ad-hoc modes of operation.

36

Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison.

Because of WiFi’s popularity there are many options for WiFi hardware. Digilent
offers a WiFi adapter for their boards although it only supports 2Mbps data rates.
Arduino shields are also available to add WiFi support. All modern laptop
computers and cell phones have WiFi built in. With WiFi supported by so many
devices it would be a convenient communication method for us to choose.

4.4.3.2 Bluetooth

Bluetooth may have also been possible as an alternative to WiFi. A possible
advantage that Bluetooth may have had is that it is a low power, short range
method of communication. Short range for our application would have been
desirable for security purposes. Anyone communicating with our display would
have to be within about 30 feet of the device. Bluetooth also works on the
2.4GHz frequency, and with the v3.0 specification can achieve data rates of up to
24Mbps. All modern cell phones have built in Bluetooth communication
capabilities and allow us the option of creating a mobile application to interface
with our POV display. If we could have found suitable Bluetooth hardware
compatible with our FPGA and microcontroller then this would most likely have
been our preferred method of wireless communication.

4.4.3.2.1 Bluetooth Protocols:

Bluetooth protocols are divided into two categories: controller stack and host
stack. The controller stack protocols are protocols built into the Bluetooth
module. The host stack protocols are what we will use to deal with our video data
to be sent. We looked at both the controller and the host stack protocols relevant
to our project in order to help facilitate communication programming during the
design phase. First we considered the relevant controller stack protocols which
are: Link Management Protocol (LMP), and Asynchronous Connection-oriented
Logical transport (ACL). The LMP protocol’s function is related to the name of the
protocol, it manages the links. More specifically the LMP protocol deals with how

37

Bluetooth devices can scan and discover each other and set up a link in order to
exchange data. Once a link has been set up, a new protocol can take over
communications between the devices, in our case this would have been most
likely ACL. The ACL protocol is designed to transmit general data packets on a
previously set up Bluetooth link. ACL supports Enhanced Data Rate or EDR for
increased bandwidth by changing the modulation technique. Theoretically
Bluetooth is capable of achieving 24Mbps data rates using EDR. As far as
hardware availability, the Digilent boards have a Bluetooth adapter available.
There are also shields available for Arduino boards to add Bluetooth support.
Adapters for PC’s are easy to find and affordable, if the PC doesn’t already have
a built in solution. All modern cell phones have built in Bluetooth support.

4.4.3.3 Effects of Rotational Speed:

According to a research paper concerning wireless sensor networks, rotational
speed is a factor in wireless signal quality. Some of the possible effects that we
had to consider are path loss, multipath fading, the Doppler effect, and
electromagnetic noise. Path loss is when the path may become interrupted due
to line of sight differences along the path that our rotating microcontroller would
travel through. Multipath fading could happen if the microcontroller receives the
same signal from different paths at the same time. The Doppler Effect is most
known for the frequency distortion of sound waves, but would have the same
effect on electromagnetic waves as well. Electromagnetic noise could be caused
by our mechanical components such as our motor, we probably do not need to
consider electromagnetic noise for our project. According to the research paper,
electromagnetic noise generated by mechanical components is usually in
frequency ranges less than 1.5GHz. We used WiFi and could have used
Bluetooth, both of which operated at the 2.4GHz frequency. It is safe to conclude
that any electromagnetic noise introduced to our system from the mechanical
components should not interfere with our wireless communications.

4.5 Motor:

In order to create the illusion of motion through the phenomena known as
persistence of vision it comes to no surprise that we need some sort of motor.
This motor needs to be able to rotate whatever apparatus we designed that
housed the LEDs, processor, and any other circuit elements we needed to
implement the system. It also needed to be able to rotate at the rpm needed to
‘trick’ the brain into seeing motion. In addition, under the considerations that this
project was designed for the use of advertisement we would also like to find a
motor that is as silent as possible so as to not be discomforting to those who
either work around it or potential customers whom are attracted to it

There are a variety of motors available for such a use but for the most part the
motors fall into two categories AC and DC motors. In the following sections we

38

will not only discuss the above design considerations but also discuss the pros
and cons for both the AC and DC motors for each consideration. This discussion
will eventually lead to which motor type we picked and the reasoning for the
choice. Finally, in the last two sections we will discuss the process of controlling
the motor we chose.

4.5.1 Torque Requirements:

As will be discussed further in the chassis design section it showed that we
needed about 0.4 Nm to get the motor to just initially spin the LED apparatus.
After that the torque requirements were much lower. This however, is actually a
pretty large requirement for motor standards considering most cheap motors are
rated for far lower ranges, somewhere in the 1/35 to 1/9 horse power range. This
proved to be a bit of an issue since that means we needed a high torque motor
that also could maintain our revolutions per second value.

4.5.1.1 AC Motor Application for Torque Requirements:

AC motors are perfect for this sort of activity. Our research showed that AC
motors tend to be used for high torque requirements and specifically maintained
high torque requirements.

4.5.1.2 DC Motor Application for Torque Requirements:

DC motors however, capable of getting high torque at start up but did not
maintain them as effectively as AC motors. This did show though that both
motors could be used for the application we desired it just seems that the DC
motors needed for this application were rather costly. These motors can range
from anywhere between two hundred dollars to a few thousand dollars. Used
motors that reach these requirements were difficult to acquire, with none at the
local Skycraft store available for purchase until we made a lucky break and found
one.

4.5.2 RPM Requirements:

Under the consideration that the human eye is tricked into seeing motion at a
rate of about twenty-five frames per second and a single rotation of the device is
a frame we know we needed a motor that can handle twenty-five rotations per
second. This is the bare minimum. We decided that we wanted to overshoot this
value by five frames or rotations in order to create a smoother image. Our group
thus decided that thirty rotations or frames per second would be adequate.

Thirty frames per second is equivalent to one-thousand-eight-hundred frames or
rotations per minute. This means we needed a motor that can make one-
thousand-eight-hundred rotations per minute to accomplish the desired frame
rate. This rpm value cannot vary much and must be maintained at a constant rate

39

otherwise there may be distortions in the image due to the increasing and
decreasing of the delay between each flash of an LED.

4.5.2.1 AC Motor Application for RPM Requirements:

Through some research it became apparent that AC motors were quite capable
of reaching these rpm values required. However, the real problem came in the
control aspect of the motor, or more specifically the ability to keep the motor at a
constant rpm value. The rpm value of an AC motor can only be varied through
either the number of poles the motor is built with or through the electric frequency
of the voltage being applied to it. This can be done through an inverter also
known as a variable-frequency drive, and this is a plausible solution. It is
however, an expensive solution with some inverters ranging from two-hundred to
two-thousand dollars. According to further research it also seemed like this
problem could be solve by just buying a DC motor since many DC motors are
actually AC motors with these variable-frequency drives pre-built within them.

4.5.2.2 DC Motor Application for RPM Requirements:

In the case of DC motors our research revealed that DC motors are generally
used for our purposes, and the rpm requirements could be met easily with these
motors. Considering DC motors are highly controllable and designed for constant
rpm output it makes for a perfect fit with our application since our device would
be running under one speed consistently and that speed must have minimal
variations.

Controlling a DC motor is actually a relatively simple process. We could either
achieve it through a variable resistor albeit this can generate a lot of heat, or we
can use some form of PWM circuit to control the rpm of the motor. This left us
with some options and both were relatively inexpensive solutions.

4.5.3 Sound Requirements:

Considering this product is for in-person advertisement uses we want minimal
obstructive noise. Especially since we planned on playing videos off the device
that include sound effects or music. This being the case there are two things that
can cause large amounts of obstructive sound and that is either the motor or
improper weighting. In the case of improper weighting the torque created by the
motor alone causes rattling since the device is not properly balanced or
fashioned down. This can be solved through the design of the chassis. However,
we still had to watch out for our motor being rather loud. Our research showed
that in this case DC motors trumped AC motors. AC motors tend to be much
louder than DC motors of all makes and models.

4.5.4 AC and DC Motor Comparison:

40

With the above considerations reviewed it seems that a DC motor was the best
fit. An AC motor, while capable of reaching the rpm values we need would have
drastically increase our costs in order to control the speed of the motor. A DC
motor is much easier and cheaper to control requiring only a simple variable
resistor or PWM circuit. An AC motor also leans to the noisy side of the spectrum
of motors, which is something we wanted to limit within our device. As for the
torque requirements it seems that both would have passed the needs of our
device, but with two thirds of the issues being solved either cheaper or better it
comes down to a DC motor being a better choice for our application.

4.5.5 Motor Control:

Since we decided that a DC motor was the best fit as a solution to our
mechanical needs, we needed to look further into the methods of controlling the
motor's rpm value. Luckily our needs for the motor were relatively simple. The
only thing we needed the motor to do was reach our desired rpm value and
maintain that value until the device was shut down. We did not need the POV
device to vary its speed which would have required more elaborate methods of
control.

There turned out to be two methods that were commonly used for DC motor
control and that was either using a variable resistor or potentiometer to control
the speed or to use a pulse with modulation circuit to control the speed of the
motor through the duty cycle. Both methods were found to be inexpensive but the
question was which one was better suited for our purposes.

4.5.5.1 Variable Resistance Method to Motor Control:

In the case of the variable resistance method we came to learn through our
research that it is the least liked method among motor users. There are quite a
few problems with this method, especially if you are looking to constantly vary the
speed of your motor or need to get a small speed but still turn on the motor.
Lucky for us we didn't want to do either of these so it was still a viable solution.

The main concept that turned us away from this solution though was the heating
issues that were common with it. In many cases the resistor had a chance of
burning out because of the high power strain on the resistor.

4.5.5.2 Pulse Width Modulation Method for Motor Control:

PWM turned out to be a little bit of an overkill for our project's design since we did
not need the motor to be highly controllable just stainable. The device only
needed to spin at a constant speed so there was no very high or very low speed
requirements for the device, just the ability to spin our apparatus and to spin it
consistently at the desired rpm value.

41

PWM was quite capable of doing this and had very low heating effects on the
system as long as you find the right components for the circuit. The biggest
drawback to this method however was the noise. When using PWM there is a
chance of causing mechanical noise within the system, or a humming sound.

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor
Control Method Comparison:

In the end, though we wanted to limit the noise, and while the PWM was capable
of doing far more then we needed the controller to do. It did cut back on heat
dissipation and we decided that this was the best method. With the motor
spinning at a high rpm value heat dissipation was a concern and this would help
minimize any additional heat factors within the circuit. In addition, for the sake of
scalability having the motor more controllable then our original purpose would
leave the device open to any future upgrades to the system that might desire a
stricter control system.

4.5.5.4 Sensor Reading Applications for Motor Control:

The final concept we needed to think about for motor control though was actually
tracking the rpm values of the motor so we could send a signal back to our
controller to vary the input and adjust the speed of the motor to keep it constant.
This was very important and had to be particularly accurate so that there were no
distortions created within the image due to an increase or decrease in the rpm
value and the predicted display rate. We had a couple of things to consider when
deciding what form of sensing we were going to do to keep track of any changes
in the rotation speed.

The first being the structure of the device itself or in other words the chasse. If
the actual apparatus that we rotated was directly pivoting on the motors shaft
then the rpm value would sync closely with the motor and there would likely be
minimal lose in rpm value. However, if we had decided a gearbox was required to
rotate it, such as in the case of using a wired transmission process, we would
have lost some rpm value in the translation between the motor and the gearbox.
If this was the case then our sensing side would have to be able to measure the
rpm value of the apparatus and not the actual motor itself.

The second consideration was our sampling rate. Sense we are taking in a
snapshot of this device’s motion we are going to want to know how frequently we
want to take that snapshot. This is very important because we need to measure
the rpm value rather frequently so that within one second we don’t lose or gain
information. To put it in perspective one second is thirty frames and if we are
losing even one percent of those we are losing point three frames. That doesn’t
seem large but point three frames can become eighteen frames in one minute
and ninety frames in five minutes. And each of those is a distortion in the

42

animation or image. This shows how important our sampling rate is to keep the
integrity of the image.

There are two options that seemed to be rather common for rotational speed
sensing when it comes to motors. These methods are the Hall effect and infrared
sensing methods. Both have their pros and cons so we will look into those and
whether they fit well for our application.

4.5.5.4.1 Infrared Sensor:

In the case of using infrared as a method for sensing and controlling the motor
the process seemed relatively straight forward. We would have an infrared
emitter on the rotating side of the device and an infrared receiver on the
stationary side. When the emitter crossed the receiver we would get a “hit” which
we could then use to calculate an rpm value. We could then send this value to a
micro-controller where we would then determine whether to increase or decrease
our motor's rpm value.

This method is very effective for any design we decide to go with. It can work for
any motor type and is unaffected by the use of a gear-box, and in fact ideal for
such a use. The only concern for this method was the accuracy. Considering we
are using an infrared sensor there is a possibility for some failed trips. This
means we needed to have a substantial number of samples in order to prevent
too many of these errors. This may mean we need more than one infrared sensor
in order to prevent these errors such as two or four sets of them.

As an added bonus, the use of this method is great for these projects for other
reasons. Since we would be using infrared sensors to create trip points along the
devices rotation we can use these trip points for other things besides just
calculating the apparatus' rpm value. We can also use this method to predict
points within its rotation and create finite starting points to our image, allowing us
to split the image where ever we want. This means we aren't just floating the
image anywhere the LED happens to start turning on in its trajectory. Uses of this
include splitting the “screen” of the device into two separate sides, or drifting
images or text in the opposite direction of our rotation.

4.5.5.4.2 Hall Effect Sensor:

The Hall Effect method for measuring and calculating the rpm value of the motor
is very efficient for this application. This process is both relatively inexpensive
and easy to implement and from our research seemed to also have a very small
error rate. There are however, a few issues with this method based on how we
decided to use it.

The first issue with this sensing method is its motor limitations. If we decide to
use this on the motor side, such as in the case of direct motor-apparatus rotation,

43

it is limited to motors that have a rotating magnetic pole within. This means AC
motors or certain DC motors are a better fit for this sensing method. Since we
have already ruled out AC motors because of the expense associated with
controlling them among other issues, this left us with a limited number of DC
motor types that can be applied to this sensing method. The most obvious type is
a brush-less DC motor. This however, is not actually that hindering to our design
since brush-less DC motors are actually good for this application and are
generally very silent running motors.

The second Issue with these sensors was kind of alluded to with the above
paragraph in that they require a moving magnetic pole to measure. This means it
would be difficult to implement this sensing method in the case of a gearbox
design. We would have to create some form of moving magnetic pole on the
rotating apparatus side that would cross the Hall Effect sensor in its rotation. This
is possible but there are some unforeseen issues that could occur with the
introduction of a moving magnetic field on the rotating side that is not being
produced naturally by the components that are there.

4.5.5.4.3 Motor Sensor Comparison:

After looking at both sensing methods and our over-arching design it seemed like
the most effective form of controlling our motor would be through infrared
sensing. While the accuracy of this method could prove to be an issue, with
enough sample points we would be able to make up for any errors that could
appear in our measurements. Considering we had already determined we were
going to do a wired design it seemed like the best method for solving the issue of
tracking the apparatus' rpm value instead of just the motor's rpm value. In
addition, it gave us some additional control over our display and flexibility in what
we could do with it.

4.6 Chassis:

In the following sections we researched the requirements for the chassis of the
POV display. Two topics that required research included what types of materials
will be best suited to construct the POV display and how best to transfer the
rotational power from the motor to the POV display.

4.6.1 Chassis Materials:

The chassis of the POV display was where a majority of the weight is located. In
order to maintain the portability of the POV display some materials we eliminated
from our research simply because their excessive weight. However, some weight
from the chassis is required and preferred as the chassis must not twist or move
while the POV display is running. As well, strength was an important factor as the
chassis would be put through a range of forces as the display goes from
stationary to full rotation speed. Steel and stainless steel both have high strength

44

values but weigh more than was desired for a portable device. Wood and plastics
would have reduced the weight of the display but did not offer the flexibility to
make a custom design that the display most likely would require. As well, wood
and plastics may have been more susceptible to twisting and moving while the
display is running. Therefore, we focused our research on aluminum as it
provides the best mix characteristics to meet the requirements of the chassis.
Table 4.6.1 below list several commonly used aluminum pieces, the type of
aluminum and their weight. The information in Table 4.6.1 was used to calculate
the torque requirements of the POV display during the design phase of the
chassis.

Type of Aluminum Weight

1/4" Plate (Type 6061-T6) 1.764 lbs per square ft.

1/4" x 1/4" Square Tubing (Type 6061 EXT) 0.294 lbs per lineal ft.

1" Solid Rounds (Type 6061 EXT) 0.924 lbs per lineal ft.

Table 4.6.1 Typical Aluminum Pieces and Weight

4.6.2 Chassis Rotating Interface:

The most challenging portion of the chassis design was determining the best
solution to rotate the POV display. If we had used wired communications, the
center point of rotation would have been left available to allow for the mounting of
either the fiber rotary joint or the coaxial rotary joint. Wireless communications
did not require the center of rotation to be left available but was not hindered
from operation with the center left available. Therefore, we researched options to
allow for high speed rotation using some form of a bearing allowing free access
to the center of rotation.

To research possible solutions for rotating the POV display with the center of
rotation left free, we turned to an online distributor, McMaster-Carr. McMaster-
Carr offers a wide range of industrial products at reasonable prices. One such
product, and the first feasible solution for rotating the POV display, was a plain
bearing turntable. Turntables allow for the rotation of devices mounted on top
while working on the device. One particular turntable, part number 8700K1,
rotates with the center free and available to be used by the wired
communications joint. The 8700K1 turntable can support loads up to 337 pounds,
well above the weight requirements of the POV display. As well, there are 8 inner
ring mounting holes and 8 outer ring mounting holes providing an adequate
surface to mount not only the rotating display but also station supports. However,
the turntable has two downsides that make it a less than desirable solution. The
first downside was the cost of the turntable at about $215. The second downside
of the turntable was there are no posted maximum rotating speeds. This meant
that the turntable may be capable of rotating at the required speed of the POV
display but no document exists to support it either way.

45

The second feasible solution from McMaster-Carr, and more promising than the
turntable, was an extended-ring steel ball bearing, Type ER. The extended-ring
ball bearings have an extended inner ring making installing the bearings easier.
Although the extended-ring ball bearing did not have any inner or outer mounting
holes, it did have two knurled cup set screws on the extended inner ring that
could be used to secure the rotating side of the POV display to the bearing. As
well, the bearings have a dynamic load capacity of 2,860 pounds and more
depending on the part number selected. All Type ER extended-ring bearings
have a max operating speed of 5,000 rpm, far exceeding the requirements of the
POV display. As well, the cost of the bearings started at about $30 and go up to
about $80 depending on the part number and size. Table 4.6.2 below shows
some available extended-ring ball bearings, there size and cost.

Bearing
No.

Shaft
Dia.

OD Wd. Load Part # Cost

ER10 5/8" 1.85" 1 7/32" 2,860 lbs 8090T11 $29.67

ER12 3/4" 1.85" 1 7/32" 2,860 lbs 8090T12 $32.61

ER16 1" 2.05" 1 3/8" 3,145 lbs 8090T13 $33.79

ER24 1 1/2" 3.15" 1 15/16" 6,535 lbs 8090T17 $59.40

Table 4.6.2 Extended-Ring Ball Bearings

4.7 Graphical User Interface:

We developed a GUI for use on a PC and researched the possibility of also
having one for an android device which would allow us to send either a text
message or image to be displayed on the POV display. When sending an image
to be displayed the image had to be in the correct resolution and format. If time
permitted we would have been able to have the software handle some basic
image formatting. First we will discuss the requirements of the application and
the method of communication. Last we will consider multiple programming
languages that will allow us to create the application effectively and efficiently.

4.7.1 Required Functions:

Part of the research for the GUI was the identification of the requirements. The
requirements must be identified before the design can begin. We are going to
use a simplified waterfall model for our software development life cycle. We are
going to list the requirements, design the software, and then finally implement
and test the software. In this section we will focus on the requirements
identification only. The design and testing portion will be discussed in the
corresponding section later in the paper. The following Figure 4.7.1.a shows a
diagram of the simplified waterfall model we researched using for developing the
GUI.

46

Figure 4.7.1.a Software Development Life Cycle – Waterfall Model

The GUI must provide an easy to understand and user friendly interface. The
interface should have very few elements to avoid confusion. The GUI should be
operable by anyone and not require any technical knowledge of our display. No
training should be necessary, and everything in the GUI should be properly
labeled and intuitive. The only functions necessary were to allow the user to
enter a text message to display, and to allow the user to select an image file to
display. The text field should support multiple lines of text and offer the user
multiple color choices. There should also be color options that the user can use
to select the color of the entire message and possibility of individual letters. The
text message input is discussed in more detail in the design section for the GUI.

The image input will only accept the correct format and resolution images to
display. If the selected image file is smaller than the maximum size than it will still
be accepted and the image will display centered in the LED display. This can
possibly be done by analyzing the size of the input image and calculating where
to put the image so that the space to the left and right of the image is equal, and
the same for the space above and below the image. If time permitted we may
have been able to further increase the functionality of our software to properly
scale images that are too large to be fully displayed. This would be a simple
algorithm that simply picks and chooses every other pixel to display or something
similar. The image input, like the text input, is also discussed in more detail in the
design section for the GUI. A simple use case diagram is shown in Figure 4.7.1.b
to highlight the main requirements of the GUI.

47

Figure 4.7.1.b Use case diagram for GUI

4.7.2 Programming Language:

We must choose a programming language to build the communication
application. We should consider multiple programming languages and choose
the best one suited to our task and also choose one which we are familiar with.
This application will have a user friendly GUI and allow simple serial
communications. All of the requirements listed above must be considered when
choosing the appropriate language. In order to efficiently create a GUI the
language will be required to have built in libraries that support agile GUI
development. The IDE should provide tools that will allow most of the
development to focus on coding the core functions of the application and not on
the GUI’s appearance and layout. We considered C++, Visual Basic, and Java.

The C++ programming language is something that we are all familiar with. C
programming is where we started our programming education and is where C++
is derived. This is an object oriented language with wide support and plenty of
documentation. We had no experience creating a GUI in C++ so further research
was needed in order to determine whether or not C++ would be worth
considering for the user friendly application that we were striving for. After some
research it was found that there are GUI libraries available to assist in developing
a GUI in C++ but there are multiple GUI libraries to choose from. Multiple choices
for a GUI library further complicated things since further research would have be
conducted in order to determine which would be the best library to use. There did
not seem to be a visual GUI editor for C++ available, and it seems that for most
GUI applications, C++ is not the language of choice. We believed it was safe to
say that C++ should not be the language we use to build our communications
GUI application. Even though C++ was not the best choice for developing the

48

GUI, C++ may be better suited to interface with the hardware for USB
communications.

Visual Basic is a programming language that is specifically designed to allow
agile development of GUI applications. The IDE, Visual Studio, has a visual GUI
editor for programs using Visual Basic. It is very easy to drag and drop text
boxes, labels, buttons, etc. onto each form of the application. Programming the
functions of the elements placed in the form becomes as simple as double
clicking that item and the IDE will jump to the code that controls it. This could
have been a good choice for quickly developing a GUI based application, but
only one member in our group is familiar with this programming language which
may not be adequate. It would most likely be more efficient to have more than
one group member to assist in the development of this application and having to
learn a new language may decrease productivity.

The Java programming language was the best language for both developing a
GUI for a PC and for an android device if we had enough time to implement it.
The Netbeans IDE has a built in visual GUI editor for Java which greatly
simplifies GUI design and implementation. The Netbeans GUI editor allowed us
to develop a GUI application in a similar way that Visual Basic would have
allowed us to. Java is a high level object oriented language and has many built in
classes to support agile development. There are also many open source Java
libraries available for download to provide further features and functionality. We
were also already familiar with the Java programming language. Java was the
obvious choice for a high level programming language that we already possess
enough knowledge to code in and had enough built in features and tools to allow
us to rapidly build the tools we need for our project. The only drawback to using
Java was the limited functionality when it comes to accessing connected
hardware. This could have been an issue for us since we were planning on using
communications through USB, or a connected wireless adapter. In order for us to
implement USB communications using Java we would have had to find a suitable
driver for our desired operating system and find a Java library that is capable of
interfacing with that driver. Since we found such a driver and software library
combination it was safe to say that we would be using java for our GUI
application development.

4.7.2.1 Image Format Conversion and Resizing:

Our GUI would allow users to select an image to be displayed and load it onto
the rotating processor. Without being too restrictive on the user, we wanted our
program to accept virtually any image file format that is common. The primary
information we needed from the image are the RGB values contained within it so
that we can format an output file that our device will understand. Each image
format is different and must be decoded via some method in order for us to
obtain this data.

49

In order to handle the various image types that the user could select, we had to
determine that functions within the java library would be able to handle this.
Several java classes would be used in order to do this, ImageIO, BufferedImage,
and indirectly ImageReader. Using the java ImageIO class, we open an image
file by using ImageIO.read() and supply an argument of a name/path. The
ImageIO class on its own will then search for an ImageReader that claims to be
able to read that type of image, and decode it. ImageIO.read() will return a java
BufferedImage, from which we can easily obtain the RGB values by calling the
function BufferedImage.getRGB() and supplying an x and y coordinate. Using
this library the user will not need to be concerned with the image file format, and
we will not need to code the tedious functions that would be required to decode
the many image format possibilities.

Another concern involved image resizing. Using the simplest solution we would
require that the user resize the image manually using image editing programs
before trying to upload it. However, because the BufferedImage class will tell us
the size of the image that has been selected by called BufferedImage.getHeight()
and BufferedImage.getWidth(), we could handle the scenarios where the image
is too small or too large in specific ways. In the case where it’s too large, we
could simply truncate the image, or offer various methods of cropping the image.
If the image is too small, it could be padded and centered, depending on user
specifications.

4.7.3 GUI Communications to Microcontroller:

The program will have to communicate with the microcontroller in order to get the
correct image to display on the LED array. The communication should either be
the wireless communication that we choose to use (WiFi or Bluetooth) or it
should be through a USB cable. The preferred method of communication would
be through WiFi or Bluetooth since this is also supported by android devices and
would allow us to send images to be displayed on the LED’s with our mobile
phones. It would be very convenient as well if we did not have to connect a
laptop to our display with any wires. If we use WiFi we will have to use the ad-
hoc mode of networking since it would not be very practical for this project to
require a wireless router as well. If Bluetooth had been used then Bluetooth
would be the communication method when using the mobile application, but
when using a PC a cable will be required. This is because most PC’s do not have
Bluetooth built in so it would be counter-productive to develop a PC application
that utilizes Bluetooth communications. If we have additional time we may be
able to include Bluetooth communication support for the PC application as well.

4.7.3.1 Serial Communication Software Library:

At first it seemed that Java would not have a way to access USB devices. There
are no built in methods to allow Java hardware access for serial communications.

50

There is a library created by Sun which allows serial communications, but it is
only supported on the Linux operating system. Further research allowed us to
find a community created Java library called RxTx which supports serial
communications on multiple platforms including Windows. In order for the RxTx
library to work however, we need to find a valid USB driver that will allow
windows to recognize the connected device for serial communications. If the
Digilent Atlys board does not include USB drivers for this purpose, we have
found a driver download as well. The driver is for the Universal Asynchronous
Receiver/Transmitter or UART chip that is on the Atlys board. The UART chip
allows the USB to function as a serial communication interface. With the proper
drivers installed communicating with the Atlys board using USB should be no
different than using the older RS-232 method. Once the RxTx Library is properly
added to the JDK we can than import the methods and use them for our project.
There are methods in the library to handle listing the available serial
communication ports. The library will then allow us to choose an available port
and use it for communication. Input and output streams will need to be declared
in order to send and receive data. Overall the library seems to make it rather
easy to send and receive serial communications. More details on how the serial
programming works are provided in the design section.

4.8 Microcontrollers:

There are many microcontrollers available with many different feature sets. This
research will focus on the different microcontrollers available and which ones we
should use in our POV display. We are going to need two microcontrollers, one is
going to have to deal with the video input and remain stationary in order to be
able to plug in a device such as a laptop or DVD player. The other
microcontroller will rotate along with the LED’s and provide all of the information
to the LED controllers so that they can send the PWM signals to each LED.

The stationary microcontroller is most likely going to be an FPGA since this has
been the only solution we have been able to find regarding a board that accepts
HDMI input. The cost of the FPGA is going to be considerable since it is a board
designed to take HDMI input and possibly process that video signal. HDMI is
most likely a high definition signal and therefore would require a powerful board
in order to effectively process that amount of data efficiently. We all have
academic experience programming an FPGA using Verilog so our biggest
challenge is going to be figuring out how to process the video input.

Our rotating microcontroller will be considerably cheaper; this microcontroller
does not have any special requirements other than having enough outputs to
service the latches and LED’s. For our rotating microcontroller we will focus on a
combination of cost, and ease of use. Ease of use is a factor because we do not
have the same experience working with microcontrollers that we do with FPGA
devices. We would want a microcontroller that will be easy to learn and easy to

51

work with. Because of the large number of LED’s we plan on using, we may also
have to consider the number of outputs that each microcontroller is able to
support.

4.8.1 Digilent Atlys (Stationary FPGA):

The Xilinx Spartan 6 FPGA available on the Digilent Atlys board. The Atlys board
has onboard HDMI input. The main reason for choosing this board is for the
HDMI input which will allow us to receive a video input in order to display it on the
LED array. The HDMI input on the Atlys board will automatically take care of the
TMDS decoding for us. We will have to figure out how to represent the video data
in such a way that our secondary microcontroller will be able to split up the data
and send it to the proper latches to control the LED’s. The Atlys board does not
seem to have built in pins in order to connect directly to the FPGA’s I/O’s. There
is a VMOD peripheral that would take care of this problem and allow us to
connect wires to any of the I/O’s, but this will increase the cost of an already
expensive board.

4.8.2 TI Launchpad (Rotating Microcontroller):

TI offers a very cheap microcontroller that we may be able to take advantage of.
The MSP-EXP430G2 or Launchpad is a development board for the
MSP430G2XXX series of microcontrollers. The board only costs $4.30 and
includes two MSP430 microcontrollers, and a USB cable. The board will allow us
to program the microcontrollers using the USB interface. This microcontroller has
very widespread support, documentation, and example projects. Possible
limitations include the limited number of I/O ports, 2KB of program memory, and
128B of SRAM. The microcontrollers that come with the Launchpad board only
have 10 available I/O pins. If we were to purchase a separate higher end
compatible microcontroller we can increase the number of outputs to 16. The low
number of I/O pins may require us to use more than 1 microcontroller, but as
stated earlier the Launchpad comes with 2 of them already, and the higher end
MSP430 controllers with 16 I/O ports are less than $2 each.

4.8.3 Arduino Uno REV 3 (Rotating Microcontroller):

The Arduino Uno board is another alternative to the TI Launchpad. This board
comes with an ATmega328 microcontroller on it. The Arduino Uno board takes
care of the USB interfacing and programming. This board is more expensive than
the TI Launchpad at $35. The higher price may be justified by the increased
performance and memory of the microcontroller included. The ATmega328 has
31.5KB available for program memory (0.5KB is used by the boot loader), 2KB of
SRAM, and 1KB of EEPROM. The ATmega328 also has 14 I/O pins, 6 of which
can be used for PWM. Another feature that may be useful is I2C support. I2C will
allow us to have serial communications to possibly another IC that will expand
the number of I/O’s available to us. This board is also widely available and

52

supported. There are many hobbyist projects with open source documentation
and examples for helping us get familiar with programming this board. The
additional program memory and RAM may not be necessary, but the additional
outputs that this board provides may make a difference. Another thing to
consider is the programming language. The Arduino Uno board allows the use of
a C-like language to program the ATmega328 microprocessor. If we were to use
the TI Launchpad we would have to use assembly. It may be easier and more
time efficient to use the Arduino Uno board.

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller):

The Digilent Cerebot MX7cK development board has a 32-bit PIC32
microprocessor. This is an expensive choice for the rotating microcontroller but it
has a much higher clock speed of 80MHz. This higher clock speed may be
required for our project if we are to process full motion video in real time. This
board also has a built in Ethernet interface which we can possibly use for
communications between the stationary FPGA and the rotating microcontroller.
Programming the Cerebot board should be similar to programming the Arduino.
Digilent advertises the fact that Arduino projects and code should be compatible
with their Cerebot boards. Although the Cerebot board seems to outperform the
other boards in every category it is much more expensive at $99. It may also be
necessary for us to buy additional Pmod accessories in order to access some of
the I/O pins further increasing the cost. We hope to find a microcontroller for the
rotating part of our project that can keep costs to a minimum while having the
required performance needed for a live video feed. The following Table 4.8.4
shows a simple comparison between all of the previously discussed
microcontrollers being considered for the rotating part of our project.

Microcontroller Comparison

 Digilent Atlys TI Launchpad Arduino Uno
Cerebot
MX7cK

Program
Memory

64MB 2KB 31.5KB 512KB

SRAM 128MB 128B 2KB 128KB

EEPROM 0B 0B 1KB 0B

I/O 48 10 14 85

Frequency 500MHz 16MHz 16MHz 80MHz

Programming Verilog HDL Assembly High-level High-level

Cost $199 $4.30 $35 $99

Table 4.8.4 Microcontroller Comparison

4.8.5 Additional Microcontroller Concerns:

53

This project is highly dependent on sponsorship funding in order to include all of
our intended features. Video input is not normally a feature found in a POV
display. Our research has indicated that the reason for this may be the costs
involved. The Atlys board described above is absolutely necessary for us to
consider live video input for our POV display but there are other considerations
that must be addressed as well. At first we decided that our secondary
microcontroller which will spin along with all of the LED’s need not be as complex
and expensive as the Atlys board. After much research it became apparent that
although we do not need an HDMI input on the rotating board, we do need a
substantial clock frequency in order to properly sample the large amounts of data
required for a live video feed. In previous sections we have mentioned possible
data rates that would be required to be sent through communications between
the two microcontroller boards. Regardless of the communication method we
choose, we must not consider if these microcontrollers can properly sample the
data at the required speeds to display a live video feed. Table 4.8.5 shows
possible resolutions we may consider for our display and the required data bit
rate necessary. The values in the table assume that the video data is not
compressed.

Resolution Data Rate

640x480 73.728 Mbit/s

320x240 18.432 Mbit/s

160x120 4.608 Mbit/s

80x60 1.152 Mbit/s

40x30 0.288 Mbit/s

Table 4.8.5 Possible Resolutions and Corresponding Data Rates

The data rate values in table 4.8.5.a are calculated using the simple formula HP
× VP × BPP × FPS where HP is Horizontal Pixels, VP is Vertical Pixels, BPP its
Bits Per Pixel, and FPS is Frames Per Second. According to the data sheet for
the ATmega328 microcontroller, the maximum data rate that the microcontroller
is capable of sampling with its 16MHz crystal is 2Mbit/s. This means that the
Arduino Uno and TI Launchpad development boards would only be able to
support a display with a resolution up to 80x60. The calculation to determine the
maximum data rate given the frequency of the microcontroller is given in the data
sheet for the ATmega328. The formula is shown next for reference.

Although formula above came from the ATmega328 data sheet it can still be
used as an approximation for the capabilities of the other processors too. The
baud rate for the ATmega328 is measured in bits per second which is why the
maximum data rate for the ATmega328 mentioned previously was in the units of

54

Mbit/s. Using formula 3.8.4-1 for an 80MHz clock frequency it can be said that
the maximum practical data rate that the Cerebot MX7cK microcontroller should
be able to effectively sample should be about 10Mbit/s. The higher clock speed
allows for a much higher data rate. The maximum resolution that we are
considering that can be implemented with 10Mbit/s maximum data rates is
160x120. This leads us to the conclusion that if we intend to implement any
resolution higher that 160x120 then we will have to use two of the Digilent Atlys
boards, one which will remain stationary to receive the video input, and the
second one to spin with the LED’s and send all of the data to the LED controllers.
Only the 500MHz clock on the Atlys board would be able to effectively sample
the high amounts of data associated with uncompressed high resolution video.

5 POV Design:

The persistence of Vision device required two major areas of design to
successfully create. The first section was our hardware design, which would
make up the Chassis, motor control circuit, motor, power supply, and display
alignment sensor. Each of these sections that we designed has subjections
within them that also needed to be designed for the project. The second major
section was the software design of the project. This section encompassed the
Wi-Fi server and connection processes, the image processing for both the text
and RGB arrays, the data structures for all the code, the handling of all the
hardware inputs such as the display alignment sensor’s output, and finally the
GUI that was needed to integrate many of these elements into a more user
friendly format. The following subsections will discuss the overall design of these
sections, including design elements that were thrown away during the testing
phase. Such elements that were thrown away for better methods will be indicated
both within this section and the testing sections as well as why the better
methods were chosen. Figure 5 is a photo graphic image of the final design of
the POV display that we will be discussing in this section. Within the image you
can see all the elements of the project, hardware-wise that went into the
construction of the final product.

55

Figure 5: POV display

5.1 Hardware Design:

The hardware of this device is broken into four major sections. The first section is
the stationary control section which consists entirely of the AC input, the KBRG-
212D motor control chip, Dayton 9FHD7 DC motor, the computer that will
connect via Wi-Fi to the rotating microcontroller, and the AC to DC variable

56

adapter. The second section is the power transfer section that consists entirely of
the slip ring and wires that connect from it to the rotating side. The third section,
the rotating control side consists of the PIC32 microcontroller, RGB and Text
LED arrays, and the 9V battery that powers the microcontroller. The final portion
of the hardware design is the Display Alignment Sensor which consists of the IR
sending and receiving circuit and the rotating apparatus it is attached to. Figure
5.1 gives a good visual representation of the flow of the hardware and how they
will be connected together.

Each of these sections of the device has a variety of different hardware
components needed in order to achieve the ultimate goal of creating this
persistence of vision device. The following sections will discuss more thoroughly
our final decisions on the hardware design of each portion of this device and the
actual hardware design themselves. This will include the specific components we
used to implement each of these designs. Also within this section will be a layout
of the structural design of the chassis which will house all of the electrical
hardware for this device.

Figure 5.1 Hardware Flow Chart

57

5.1.1 Chassis Hardware Design:

As discussed during the research section for the chassis, we constructed the
chassis from aluminum using a combination of aluminum plate, square tubing
and solid round rods.

5.1.1.1 Chassis Dimensions:

Before we were able to finalize our chassis design, some basic dimension
requirements had to be identified. The first, and most critical dimension
requirement was for the physical size of the LED array. We then needed to
determine the size of the chassis base and the space required to mount the
motor.

5.1.1.2 Dimensions of LED Array:

We used the Multicomp's SMD Super Bright LED, part number OVS-3309. The
LED has a vertical dimension of 2.8mm and a horizontal dimension of 3.2mm.
The horizontal dimension was required to properly mount the LEDs on a printed
circuit board but are not a dimension required or even necessary to determine
the size of the LED array and is therefore ignored for the chassis design. We
mounted the LEDs with a spacing of 1mm between each LED, allowing us to
determine that the spacing between each LED, as measured from center to
center, is 2.85mm. Therefore, the maximum allowed total vertical length of the
LED array is 2.85mm x 128 LEDs or 365mm. Converting the total vertical length
to inches gives a final dimension of approximately 15 inches to which we
constructed the LED array to.

Next, we needed to determine the diameter of the LED array. When the POV
display is running, we can simplify the LED array to cylinder. As well, since we
wanted the horizontal spacing of the LEDs to be the same as the vertical spacing
of the LEDs, we used the known pixel ratio of 128 to 384 to determine the length
required. Dividing 384 by 128 gives the ratio of horizontal pixels to vertical pixels,
which equals 3 or 3:1. For accuracy, we initially calculated the required horizontal
length in millimeters. Taking the ratio of 3:1 and multiplying by the known vertical
length of 365mm we got a required horizontal length of 121.67mm. Since the
LED array can be simplified to a cylinder, we were able to find the circumference
of the LED array. Using the formula of C = 2πr, we calculated the radius of the
LED array which is equal to 119mm. Converting the radius to inches, we got a
final dimension of approximately 6 inches.

5.1.1.3 Dimensions of Chassis Base:

58

Now that we knew the size of the LED array when the POV display is spinning,
we were able to determine an appropriate size for the chassis base. The chassis
base serves as two purposes for the POV display. The first and most obvious
purpose is to provide an adequate foundation for the display. The second
purpose and more important than the first, is to provide a visually marker to
signify where the limit is to approach the display while it is running. This is
especially important if, for example, the display is running but not displaying an
image. Therefore, we constructed the base of the POV display to extend just past
the fast rotating LED array. Since we knew the radius of the spinning LED array,
we determined that the base will needed to be at least a 6 inch by 6 inch square.
We then took into account the extend size of the secondary test LED array which
will extend approximately 2 inches past the primary image LED array. Adding an
extra inch between the spinning array and the base gave us a final dimension of
18 inches x 18 inches. Since constructed the chassis out of 1/4 inch aluminum
plate, a 18 inch square base provided plenty of weight and strength to fully
support the POV display while it is running.

The last dimension that was required before we were able to determine the final
design of the chassis was the physical size of the motor. Size the motor is
mounted on the base, it determined the height of the base. The overall length of
the motor was 8.8 inches. To allow room to mount and secure the motor to the
base, we designed the base with an internal height of 12 inches. Taking into
account the thickness of the aluminum plate, the total height for the base is 12.5
inches. Therefore, the total size of the chassis base is 18 inches x 18 inches x
12.5 inches.

5.1.1.4 Chassis Assembly:

Now that we knew the required dimensions of the chassis we began to design
the assembly of the chassis. A complete chassis model can be seen in Figure
5.1.1.4c below.

The first step to putting together our final design of the chassis was to determine
which rotating interface we will use to transfer the rotating power of the motor to
the LED array. As discussed in our research, we had two options. The first option
of the turntable provided the easiest solution for mounting the LED array and
base to the rotating interface. However, due to cost and no defined specification
of the maximum rotating speed, we choose to use the extended-ring bearing. In
order to provide the most space for feeding the power supply cable cable through
the rotating interface, we choose to use the extended-ring bearing with a one
inch shaft diameter, part number 8090T13. We then secured the bearing to the
base of the chassis by welding the extended-ring portion of the bearing to the top
of the base. Although welding does not allow for easy modifications, it provided a
strong and secure method that of holding the bearing in place during operation of
the POV display. In order to secure the LED array to the bearing, we inserted a
aluminum pipe through the inner ring of the bearing. The pipe was then secured

59

to the bearing using the two set screws that come installed on the bearing. This
allowed for the POV display to be easily disassembled when moving between
locations. Using this designed allowed us to use the pipe to mount the slip ring
for electrical power transfer. Lastly, we notched to top of the pipe to allow the
LED array support bar to be secured to the pipe. Figure 5.1.1.4a below shows a
model of the bearing and pipe assembly. The chassis base and LED array
support frame are removed for clarity.

Figure 5.1.1.4a Bearing Assembly

Next we designed the chassis base. As discussed, the chassis base needed to
be 19 inches x 19 inches x 12.5 inches. The base was constructed out of two 1/4
inch pieces of aluminum plate creating a top plate and a bottom plate. The two
plates were secured together by four solid aluminum rods, one in each corner,
cut to 12 inches lengths. The plates had counter sunk holes drilled in each
corner, three inches from each side. The rods were drilled and tapped in the

60

center to accept a 1/4-20 screw. The rods and plates were assembled by
screwing the plates and rods together. The counter sunk holes on the plates
allowed for the screws to be flush with the surface. In order to mount the bearing,
a hole was cut out from the center of the top plate. The diameter of the hole was
made larger than the diameter of the inner ring of the bearing but smaller than
the extended flange of the bearing. This allowed for the bearing to rest on the top
plate and provided a surface for the bearing to be welded to the plate. Figure
5.1.1.4b below shows a model of the base assembly, including the cut out on the
top plate for the bearing.

Figure 5.1.1.4b Chassis Base Assembly

The LED array support frame was constructed from 1/8 inch square tubing. From
the calculations for dimension requirements of the LED array, we knew that the
horizontal LED array support bar, the piece that will be connected to the notched
pipe, needs to be 14 inches long. This dimension needed to be exact as it will
directly affect the aspect ratio of the display. At each end of the horizontal LED
array support bar, vertical LED array support bars were welded. We know from

61

the LED array dimension requirements that the vertical support bars must be at
least 15 inches long.

Figure 5.1.1.4c Chassis Base Assembly

5.1.1.5 Motor Interface:

To transfer the power of the motor to the LED array, we mounted the support
pipe directly over the motor shaft. Then using a set screw we secured the pipe to

62

the shaft. This allowed for the motor to directly drive the LED array and simplified
to the fabrication process.

5.1.1.6 Chassis Torque Calculations:

Now that we have finalized our design for the POV display chassis, we needed to
estimate the torque requirements. To simplify the torque calculations we used the
simplified LED frame shown below in Figure 5.1.1.6a.

Figure 5.1.1.6a: Simplified LED Support Frame for Torque Calculations

We then used the values and equations shown below to estimate the torque
requirements of the POV display when operating at 15 RPMs. The mass M1 and
M2 were derived from the linear weight per foot of the aluminum square tubing
used to fabricate the LED support frame.

 ()
 ()

 () ()

 () ()

 ⁄ () () ()

 ⁄ () () ()

∑

∑

𝛼
[() (𝜋)]

[() () (𝜋)]

𝑻 ∑𝑰 𝒙 𝜶 𝟎 𝟒𝟎𝟐 𝑵 ∙ 𝒎

Our final calculated torque requirements came out to be 0.402 N•m which is
under the maximum torque of 0.49 N•m provided by the motor.

M1 M2

R1 R2

63

5.1.2 LED Array Hardware Design:

As discussed during the research section for the LED array, we had two options
for controlling the LEDs. One option was to use a latch control system and the
second option was to use pulse width modulation LED controllers manufactured
by Texas Instruments. Due to the easy integration of the LED controllers into the
microcontroller outputs and the built-in latch control we choose to control the LED
array using the PWM controllers. In particular, we used the TLC5940 16 channel
LED driver. The reason for choosing to use the TLC5940 is due to its high data
transfer rate of 30 MHz as well as allowing us to individually control each LED.
Additionally, the TLC5940 controllers allowed us to wire the controllers together
to cascade the serial communications required to write to each controller.

5.1.2.1 TLC5940 Pin Out and Wiring:

After selecting which method we wanted to use for controlling the LEDs, the next
step was for us to determine the pin out and wiring of the LED controllers. The
pin out information for a TLC5940 in a NT case can be seen in Figure 5.1.2.1a
below. Table 5.1.2.1 below shows all pins and their functions.

Figure 5.1.2.1a TLC5940 LED Controller Pin Out

Pin # Name Description

1 Out 1 Current Output to LED

64

2 Out 2 Current Output to LED

3 Out 3 Current Output to LED

4 Out 4 Current Output to LED

5 Out 5 Current Output to LED

6 Out 6 Current Output to LED

7 Out 7 Current Output to LED

8 Out 8 Current Output to LED

9 Out 9 Current Output to LED

10 Out 10 Current Output to LED

11 Out 11 Current Output to LED

12 Out 12 Current Output to LED

13 Out 13 Current Output to LED

14 Out 14 Current Output to LED

15 Out 16 Current Output to LED

16 XERR
Error Output
Low = Error

17 SOUT Serial Data Output

18 GSCLK Reference Clock for PWM Control

19 DCPRG
Dot Correction Switch
Low = DC Connected to EEPROM
High = DC Connection to DC Register

20 IREF Reference Current Terminal

21 VCC Power Input Terminal

22 GND Ground

23 BLANK
Turns all outputs on or off
Low = Outputs are controlled by PWM
High = All outputs forced off, GSCLK is reset

24 XLAT

Latch Signal
Low = Data in registers held constant
High = writes from shift register to DC or GS
register

25 SCLK Serial Data Shift Clock

26 SIN Serial Data Input

27 VPRG

Input Pin
GND = Controller is in GS Mode
VCC = Controller is in DC Mode
V(vprg) = DC register data can be programmed
into DC EEPROM

28 Out 0 Current Output to LED

Table 5.1.2.1 TLC5940 LED Controller Pin Information

To cascade the controllers together requires the SIN and SOUT pins to be wired
together in series. Meaning the SOUT from one controller was wired to the SIN

65

pin on another controller. The wiring required for the controllers can be seen in
Figure 5.2.1.b.

Figure 5.1.2.1b LED Controller Wiring

66

5.1.2.2 LED Array for Text Display:

The design for the LED array required for displaying text used the same LED
controller but we only used mono-color LEDs. The text display contains 16 LEDs
so only one controller was required. The wiring of the controller and LEDs was
similar to Figures 5.2.1.b.

5.1.3 Motor Hardware Design:

Our specific motor design encompasses two major sections a control elements
and control inputs section. The control elements section makes up the things that
need to be controlled: the motor control chip and the motor, while the control
inputs section encompasses the input signal controlling the speed and whether
the motor is enabled or disabled.

Figure 5.1.3a Motor Control Flow Chart

Figure 5.1.3 is a flow chart that gives a visual representation of how this process
was configured. In the following subsections both the Control Elements and
Control Inputs will be discussed.

The KBRG-212D is a regenerative driver chip for both permanent magnet and
field wound motors. This chip both powers and controls the Dayton 9FHD7
motor, but requires inputs to determine specifically what speed the motor should
be placed at. Figure 5.1.3b is a picture of the KBRG-212D chip while Figure
5.1.3c is the Dayton motor used for this project.

67

Figure 5.1.3b The KBRG-212D Regenerative Drive Chip

As seen in this image of the drive chip the input switches face out towards the
user. The white circular dials towards the bottom of the picture are the
electromechanical potentiometers that can be used to calibrate the KBRG-212D
chip and will be discussed further in this section. The power terminals and the
motor terminals can be seen on the top left of the picture where the four screws
can be seen.

As for the Dayton 9FHD7 you can see both the aluminum hoops used to mount
the stranded wire to the slip rings. Both of these are mounted to the motor with
two screws and washers to keep them in place. The relay that is also attached to
the motor is where the AC adaptors and the wire contacts for the slip ring will be
attached to.

68

Figure 5.1.3c The Dayton 9FHD7

5.1.3.1 Motor Control Elements:

The control elements section deals with the KBRG-212D chip and the Dayton
9FHD7 DC motor. The KBRG-212D is a regenerative driver chip for both
permanent magnet and field wound motors. This chip was used to both power
and control the Dayton 9FHD7 motor. Figure 5.1.3.1a shows visually these
components as placed within the final design.

The Dayton 9FHD7 DC motor is directly connected to the KBRG-212D via the
M1 and M2 terminals on the chip. The L1 and L2 terminals are connected to the
AC adapter. The M1 and M2 terminals supply 90V and 1.5A to the Dayton motor
as described in the Stationary Power Supply Section. The Dayton motor was
then mounted to the main Chassis’ inner section.

69

Figure 5.1.3.1a Motor and Power Connection

The KBRG-212D is partially enclosed in a wooden and steel enclosure that is
also used as a mounting system for the two input switches required to control the
Dayton motor. The partial enclosing was decided so that the KBRG-212D was
capable of being easily reconfigured and so that the OL indicator light was
capable of being observed during operation. There are two simple input circuits
connected to the KBRG-212D that will be discussed further in the Control Inputs
section that are connected to the SIG, +15V, COM, and EN terminals. On the
KBRG-212D there are eight variable potentiometers that can be used to
configure the KBRG-212D even further. For our purposes those potentiometers
are all set to the factory presets as outlined in Figure 5.1.3.1b, except for the

70

FWD CL potentiometer which is used to set the input current into the Dayton
motor down from the 1.7A preset to 1.5A. This process for calibrating the motor
is outlined in the KBRG-212D section of the user manual.

Figure 5.1.3.1b Variable Potentiometer Presets

5.1.3.2 Motor Control Inputs:

The KBRG-212D works on two simple input circuits: a 5kOhms variable
potentiometer and a Single Pull Single Throw switch. The Drive Chip is capable
of a variety of configurations including Unidirectional forward or reverse,
bidirectional, and even an analog signal input instead of a potentiometer input.
Due to time constraints an analog signal input was not used since it required
isolation from the circuit due to the fact that both of these inputs are not isolated
from the AC power taken in by the circuit. However, these portions of the circuit
means that the device can be scaled up to a digital input allowing for much more
control over the motor speed and even possible wireless control of the motor.
The enable input of the circuit can also be used in this method allowing for a
digital on/off signal.

Figure 5.1.3.2a Speed Control Circuit

71

For our purposes we used the simplest method of a potentiometer and a SPST
switch. For the potentiometer we used the forward configuration shown in Figure
5.1.3.2a. In this configuration the motor’s speed can be increased or decreased
by turning the electromechanical trimmer dial counter-clockwise [decrease
speed] or clockwise [increase speed]. The positive terminal of the potentiometer
is fed into the +15V terminal while the trimmer terminal is fed into the SIG
terminal.

The neutral terminal is fed into the COM terminal along with the neutral terminal
of the enable circuit. The switch as just mentioned has its neutral terminal in the
COM terminal and its live terminal fed into the EN terminal, this connection is
shown in Figure 5.1.3.2b. As seen in this image the J7 jumper is placed into the
CTS position. The KBRG-212D is capable of both a regenerative stop and a
coast to stop setting; we chose the coast to stop setting in order to have a much
smoother stop of the LED apparatus when the motor is powered off.

Figure 5.1.3.2b Enable Circuit

5.1.4 Display Alignment Sensor:

While our original plan was to both control the motor and align the display using a
sensor in our research this changed during the construction process and ended
up with the sensor only being needed for aligning the display. As discussed in the
research however, the best method to solve this issue was through the use of
infrared. In our case we used a pair of infrared LEDs. Figure 5.1.4a is a flowchart
of this process.

The circuits we created rely on a property common to LEDs in which when
subjected to light they produce a voltage deference across their leads. However,
this value is very small and can barely be detected. So in order to detect it we

72

used an LM358 op-amp to detect these small voltage changes. The intention was
to send an infrared signal to a reflective surface and receive it.

In order to create a signal spike in the sensor an aluminum plate was mounted
on the top surface of the Chassis that reflected the infrared beam back to the
receiving LED. This beam caused a voltage difference in the LED, this difference
in voltage on the LED causes the voltage difference within the op-amp to show a
voltage on the output of around 2.7-3.6V. This is instead of the usual voltage on
the output which is very small and considered as zero by the microcontroller.

Figure 5.1.4a Display Alignment Sensor Flow Chart

The microcontroller uses this signal as a hardware interrupt which is further
outlined in the software section of the project.

There are two circuits we used to implement this design. The first circuit,
displayed in Figure 5.1.4b, is the sending circuit. As seen in this circuit we used
the LM358 op-amp to implement this circuit. In this case a 5 volts Vin and Vcc is
required to power the circuit. The minus terminal of the op-amp reads about 2.5
volts. The CTRL line was connected to the rotating microcontroller and in
essence was always set to high when the device needed to align the display.
This high value was around 2.5 volts or more and caused the output of this op-
amp to go high, between 2.7-3.6 volts, which turned the infrared LED on and
caused it to begin sending signals.

This signal as stated above was sent to an aluminum plate that the circuit passed
over and reflected off the plate and into another circuit connected in parallel with
the sending circuit. Both IR LEDs were place next to each other on the housing

73

PCB so that they could better send and receive signals. The second circuit that
was implemented in our design is this receiving circuit, seen in Figure 5.1.4c.

Figure 5.1.4b Display Alignment Sending Circuit

The receiving IR LED is in an off state during operation of this circuit. When the
reflected infrared light hits this LED it reads a potential difference along its leads
and causes the output of the LM358 to go high. The positive terminal has a
potentiometer that was preset to read 2.5 volts on the positive terminal of the
LM358 comparator. This potentiometer allowed for the receiving circuit’s
sensitivity to be either increased or decreased by changing the voltage entering
the minus terminal of the LM358. When the infrared LED was hit by the beams of
its sister LED it created a voltage drop on the LED. This deference caused the
positive terminal to fall lower than the minus terminal’s signal and forced the
output of the op-amp high. When the op-amp goes high it sends a voltage drop
around 2.7-3.6 volts to the microprocessor. Since we are using infrared lights and
this whole process is invisible to the human eye we used a Green LED as an
added indicator to the circuit. This indicator blinks when a “hit” is read in the
receiver allowing us to see whether the sensor is working or not for trouble
shooting purposes.

74

Figure 5.1.4c Display Alignment Receiving Circuit

The Eagle board layout of this entire circuit that was used for the PCB of the final
circuit can be seen in Figure 5.1.4d. In this layout you can see the input and
output terminals on the left side that include the two inputs Vcc, and CTRL. Just
below that is the OUT terminal, and then finally the GND or common. Everything
is connected directly to the microcontroller on the rotating side, though the Vcc is
capable of being connected to an external power supply as long as the GNDs are
common between the microcontroller and this external Vcc. The Vcc required to
run the device is 5 volts. Also noticeable in this board layout are the two adjacent
IR LEDs. These through hole LEDs were solder into their ports with a little length
left on their leads. This allowed us to choose either to read from the z-axis
[Coming out of the board layout] or the positive x-axis of the board by bending
the leads to reface the LEDs.

In addition Figure 5.1.4e is a photographic image depicting the Display alignment
sensor and the reflective surface used in the final design of the product. In the
image you can see how the sensor would traverse over the reflective surface and
trip. The surface used as stated was a sheet of aluminum metal that was
attached to the surface of the chassis top with permanent double-sided tape. The
sensor as seen in the image was mounted to the bottom of the aluminum bar that
was rotated. It was mounted there with three screws and washers that created a
tight sandwiching effect preventing the board from shifting.

75

Figure 5.1.4d Display Alignment PCB Layout

Figure 5.1.4e Sensor With Reflective Surface

5.1.5 Power Supply:

76

While our original plans for the device were to entirely power the motor and the
rotating side via an AC outlet there were two major issues that appeared during
the construction process of our original design. First was powering the motor.
Our original PWM circuit effectively controlled the motor but being able to supply
90V and 1.5A without the power supply blowing due to the motor’s sudden
spiking during operation turned out to be a very difficult thing to do without extra
expenses we were unable to commit to. The second problem that showed itself
was that our slip ring had some inconsistencies in power transmission. While it
effectively transferred the power with little dissipation, even during rotation, it
would sometimes loose contact to the slip ring and fail to send any actual power.
This would have effectively repeatedly reset the microcontroller and caused
unforeseeable consequences to the lifetime of the device. Because of these
issues we altered our design slightly in the power transmission department, but
heavily in the motor control department. These changes are outlined in the
following subsections.

5.1.5.1 Stationary Power Supply:

The stationary power supply was only needed for the Dayton motor and was
completely controlled by the KBRG-212D as outlined in the motor control section.
AC power was transferred to the control circuit directly via an AC outlet plug with
a built in single pole single throw switch that turns the power transferred through
the plug off, this is primarily needed as an emergency off switch for the motor
controller.

The KBRG-212D has a built in power supply that can be used for a variety of
motor types. The settings we used are specifically for our motor selection, which
is on the lower end of the control circuits capabilities and could be scaled up with
a far more powerful motor if desired. Using the 115AC input configuration [J1]
and the 90V [J4], 1.7A [J3] output configuration we are capable of adjusting the
1.7A down to the 1.5A via the FWD CL variable potentiometer and thus power
the Dayton 9FHD7 with little difficulty. In order to get an exact measurement of
the current we plugged an amp meter in series with the motor and locked the
motor shaft. Then turning on the Driver Chip we quickly adjusted the FWD CL
potentiometer until the amp meter read around 1.5A. The KBRG-212D can be
scaled up to 230AC power setting and run both permanent magnet [as we are
doing] or field wound motors. It is also capable of running an 180V permanent
magnet motor.

5.1.5.2 Rotating Power Supply:

The rotating power supply consisted of three things, an AC to DC variable
converter plug, a slip ring, and a 9V battery. An AC to DC converter was used to
plug directly into a standard wall outlet and output 3.3V DC and 2A. This DC
power was then transferred directly through the slip ring to the RGB array
circuits. Due to time constraints and issues with regulating the DC power

77

transferred over the slip ring, a 9V battery connected using a DC plug was used
for the microcontroller to prevent damage to it via fluctuations caused by the slip
ring. The Text display LED array was powered directly off the microcontroller
while the RGB array was powered via DC transferred over the slip ring. This
design was chosen because the microcontroller could be damaged when
attempting to supply the 1.5-2.0A that the RGB LED array was capable of pulling
during sustained operation.

5.1.5.3 Slip Ring Design:

In order to transfer power to the rotating side of the device we needed two slip
rings. These rings consisted of two copper washers attached to the shaft of the
bottom section of the LED apparatus. Here two lengths of stranded copper wire
were mounted on the motor and wrapped around the shaft of the LED apparatus
but not attached to the shaft directly. An insulating material used for cable line
repair was placed between the copper washers and the shaft of the LED
apparatus. Two wires were soldered to the copper washers and wired through
the Apparatus’ center via a hole drilled through it. These wires were then lead up
through the Apparatus’s center to the control side of the LED apparatus and
connected to the RGB LED arrays as a live and neutral wire to complete the
circuit. Power was effectively applied to the copper washers from the wires as the
device rotated. There the power traveled from the washers to the RGB LED
arrays to support their operation. Figure 5.1.5.3a is a visual representation of the
design of a single slip ring. In this design you can get a basic idea of how we
planned out the slip ring’s construction. This image was created in DraftSight.

Figure 5.1.5.3a Slip Ring side and top view

78

The actual slip ring, depicted in Figure 5.1.5.3b had a lot more requirements to it.
As seen in the picture two aluminum hoops were used to elevate both the contact
wires and mounted by being threaded through a cable mounting piece and
attached to the aluminum hoops. These hoops were fashioned to the motor itself
to prevent movement. The wires that were threaded through the cable mounting
pieces were then attached to a relay via a lug attached to the stranded wire’s
end. This relay was where the DC power would be transferred to via the AC to
DC adapter. Between both copper washers electrical tape was wrapped to
prevent the wires from contacting the pipe and causing the pipe to become live,
or shorting both elements.

In order to prevent the aluminum hoops from being contacted also both wires
were wrapped in electrical tape from the point that they tied to create the hoop
that was wrapped around the shaft. This helped reinforce the contact around the
hoop and was used to thread through the cable mounting piece which helped
insulate the mounted wire from the aluminum hoops.

Figure 5.1.5.3b Slip Rings

79

5.2 Software Design:

There is a significant amount of software which had to be designed for this
project. We will be focusing on the software design for each individual part of the
project here. There are two primary software entities, the computer side GUI
which accepts user input and the microcontroller which receives commands and
data and writes to the LED controllers.

In the GUI design we will be discussing the design section of our software
development lifecycle. This section will focus on organizing the set of
requirements and specifications, deciding on a suitable architecture, and visually
designing the GUI. No implementation will be done here. This section serves as
a plan of action for the implementation and to answer all questions that may arise
during development. An effective design will make all of the decisions that need
to be made in order to make implementation straightforward and agile.

The microprocessor will receive data via Wi-Fi from a computer which has
connected to the server running on it. This data includes ASCII values for live
updating of the text display, as well as commands to turn the display on and off,
change what is being displayed, and to store data in Micro SD memory. User
input is received through computer side GUI and includes text messages and
image input. Image input has been designed to accept almost any image file
type. The GUI has been designed to be straightforward and agile, allowing for
easy implementation of new features that are already supported by it.

The microcontroller will also be writing to the LED controllers for the RGB array
and text array. This will require 5 signals from the microcontroller: data, data
clock, blank pulse, latch pulse, and grayscale clock. Data will be written using the
controllers SPI interface. The blank, latch, and grayscale clock signals are
generated using pulse width modulation which relies on output compare to be
generated. The output compare are set up using two hardware timers, one for
blank and latch, the other for GS clock, operating at 10 MHz and1220 Hz
respectively.

5.2.1 Computer Side Processing

This section will cover the various forums image processing that take place
before sending image and text data to the microcontroller. We want to handle the
various image formats that the user may try and use as input. To handle this,
several java classes were used: ImageIO, BufferedImage, and indirectly
ImageReader. Using the java ImageIO class, we open an image file by using
ImageIO.read() and supply an argument of a name/path. The ImageIO class on
its own will then search for an ImageReader that claims to be able to read that
type of image, and decode it. ImageIO.read() will return a java BufferedImage,
from which we can easily obtain the RGB values by calling the function

80

BufferedImage.getRGB() and supplying an x and y coordinate. Using these
library the user will not need to be concerned with the image file format, and we
will not need to code the tedious functions that would be required to decode the
many image format possibilities. Having obtained the raw RGB data from the
image, we will need to format so that the microcontroller can use it efficiently.

5.2.1.1 Image Buffer Format:

The frame buffer will begin receiving frames starting at the Frame Base Address.
The frame will be stored linearly starting with the pixel in the upper left hand
corner, going from left to right, and then down. Each pixel contains two bytes of
color data. Figure 5.2.1.1a shows the arrangement of pixels in memory. The size
of a single frame in memory can be calculated by multiplying the number of
pixels by the number of bytes per pixel: 480*640 pixels/frame * 2 bytes/pixel =
614400 bytes/frame.

Pixels Stored in Memory

Pixel 0 1 ... 639

0 0 1 2 3 … 1278 1279

1 1280 1281 1282 1283 … 2558 2559

2 2560 2561 2562 2563 … 3838 3839

.

.

479 613120 613121 614398 614399

Figure 5.2.1.1a Arrangement of Pixel Values in Memory

Each pixel is stored in memory as two bytes, containing the RGB color data. Red
and Blue both have a color depth of 5 bits, stored in Bits(11:15) and Bits(0:4),
respectively. Green has 6 bits of color depth, stored in Bits(5:10). Figure 5.2.1.1b
shows the ordering of the two byte pixel data, as well as which bit is the most
significant for each color.

Figure 5.2.1.1b 16 Bit RGB Arrangement

Each pixel, although stored linearly in memory, can be referred to by an X and Y
coordinate. X will refer to the column of a pixel and Y to the row. Table 5.2.1.1
shows the arrangement of pixels in a frame and how they will be referred to. In
order to calculate the memory location of a given point P(X,Y), we will use the
equation Pixel_Addr = Base_Frame_address + 2*x + 2*Line_Stride*y.

81

Arrangement of Pixel Values In a frame

Pixel 0 1 ... 639

0 P(0,0) P(0,1) … P(639,0)

1 P(0,1) P(1,1) P(639,1)

2 P(0,2) P(1,2) P(639,2)

. . . .

. . . .

479 P(0,479) P(1,479) ... P(639,479)

Table 5.2.1.1 Arrangement of Pixel Coordinates in a Frame

5.2.1.2 Output Format Specification:

The format the RGB frames are received in must be changed into a format that
will be useful to the rotating processor which will talk to the LED array controllers.
The LED controllers required Grayscale information as opposed to RGB data. A
Grayscale value is a 12 bit value between 0 and 4095 which will determine the
duration of time, and therefore the brightness, that an LED will be on for one of
its colors. Three Grayscale values can be correlated easily from the RGB color
data.

There are 4 groups of 45 LED controllers, for a total of 180. Each of those 4
groups is responsible for displaying the output of various sections of the screen.
Within each section of 45 controllers, 15 are dedicated to the Red outputs for that
section, 15 for the Green, and 15 for the blue. Table 5.2.1.2a shows the
arrangement of each of these sections, referred to as AA, AB, BA, and BB.

Arrangement of Sections

Pixel 0 1 2 3 … 638 639

0

AA BA AA BA … AA BA

1

.

.

239

240

AB BB AB BB … AB BB

241

.

.

479

Table 5.2.1.2a Arrangement of Frame Sub-divisions

82

It would be ideal if each section of controllers had all of the data that it needs
stored in order in memory as to minimize having to move any pointers around.
Because of this, 12 output bins will be created where the processed data will be
stored, which will allow the data to be accessed in a sequential manner. Table
5.2.1.2b shows these 12 bins and their starting and ending memory addresses
relative to some base address. The size of each bin can be calculated by first
determining the total size of a Grayscale frame. For each pixel, there are 3
Grayscale values, each of size 1.5 bytes; Size of frame in Grayscale = 480 * 640
* 3 * 1.5 = 1382400 Bytes. The size of one of the 4 sections would be 1/4th that,
and then broken up into 3 subsections for each color. So the size of a single
subsection or bin is: 1382400 * ¼ * 1/3 = 125200 Bytes.

Frame Output Format In Memory

Section/Color
Starting
Addr. …

Final
Addr.

AA_RED 0 … 115199

AA_GRN 115200 … 230399

AA_BLU 230400 … 345599

AB_RED 345600 … 460799

AB_GRN 460800 … 575999

AB_BLU 576000 … 691199

BA_RED 691200 … 806399

BA_GRN 806400 … 921599

BA_BLU 921600 … 1036799

BB_RED 1036800 … 1151999

BB_GRN 1152000 … 1267199

BB_BLU 1267200 … 1382399

Table 5.2.1.2b Memory locations of the 12 output Bins

5.2.1.3 Frame Processing:

This section will cover the various steps involved with converting a frame from
the input format to the output format that has been specified in the previous
sections. The TranslateFrame() function will translate a frame at a specified
address and store the output in 12 bins as described in the output specification.
TranslateFrame() begins by initializing the output pointers for each of the 12 bins.
The memory address for each bin can be calculated by adding an offset value
together with the base address in DDR2 memory where output is to be written.
The required calculation can be seen below:

BinPointer = FRAME_OUTPUT_BASE_ADDR+i*115200 where I = 1-11

TranslateFrame() has one outer loop and two inner loops. The outer loop counter
increments by two every iteration because we will be processing two columns of

83

the frame each pass through the loop. The columns include all for pixel sections
AA, AB, BA and BB.

The first inner loop handles the translation of pixels P(X,0)-P(X,239), which are
sections AA and BA. The second inner loop handles the translation of pixels
P(X,240)-P(X,480) which are sections AB and BB. Within each inner loop,
TranslateAndOutput is called on the current P(X,Y) pixel and P(X,Y+1) pixel. In
the first inner loop P(X,Y) is always part of section AA and P(X, Y+1) is always a
pixel from section BA. Table 5.2.1.3a shows what section of the frame each look
handles.

Translate Frame Loop

Pixel 0 1

Inner Loop

1

0

AA BA

.

.

.

239

Inner Loop

2

240

AB BB

.

.

.

479

Table 5.2.1.3a: The Translate Frame Loop

Similarly, TranslateAndOutput is twice called in the second inner loop for each in
pixel, each call corresponding to a pixel in section AB and BB. The inner loops
increment by 2 because each call to TranslateAndOutput will look at two pixels at
a time, which will be described in more detail in the description for
TranslateAndOutput(). Figure 6.1.4.b shows which inner loop L is responsible for
building up the contents of the bins, and what pixel data ends up in those bins.

Each Section Written to Memory

L
StartAddr
. Grayscale Data

1
AA_RE
D 0

P(0,0)-
P(0,239)

P(2,0)-
P(2,239) …

P(638,0)-
P(638,239)

84

1
AA_GR
N 115200

P(0,0)-
P(0,239)

P(2,0)-
P(2,239) …

P(638,0)-
P(638,239)

1 AA_BLU 230400
P(0,0)-
P(0,239)

P(2,0)-
P(2,239) …

P(638,0)-
P(638,239)

1
AB_RE
D 345600

P(0,240)-
P(0,479)

P(2,240)-
P(2,479) …

P(638,240)-
P(638,479)

1
AB_GR
N 460800

P(0,240)-
P(0,479)

P(2,240)-
P(2,479) …

P(638,240)-
P(638,479)

1 AB_BLU 576000
P(0,240)-
P(0,479)

P(2,240)-
P(2,479) …

P(638,240)-
P(638,479)

2
BA_RE
D 691200

P(1,0)-
P(1,239)

P(3,0)-
P(3,239) …

P(639,0)-
P(639,239)

2
BA_GR
N 806400

P(1,0)-
P(1,239)

P(3,0)-
P(3,239) …

P(639,0)-
P(639,239)

2 BA_BLU 921600
P(1,0)-
P(1,239)

P(3,0)-
P(3,239) …

P(639,0)-
P(639,239)

2
BB_RE
D 1036800

P(1,240)-
P(1,479)

P(3,240)-
P(3,479) …

P(639,240)-
P(639,479)

2
BB_GR
N 1152000

P(1,240)-
P(1,479)

P(3,240)-
P(3,479) …

P(639,240)-
P(639,479)

2 BB_BLU 1267200
P(1,240)-
P(1,479)

P(3,240)-
P(3,479) …

P(639,240)-
P(639,479)

Table 5.2.1.3b Range of pixel data as it is stored in memory

The TranslateAndOutput() function starts by obtaining the two pixels values
adjacent to each other in the same column. Table 5.2.1.3c shows pixel one and
two on the left side of the image. Three combined Grayscale values are then
obtained for each color, red, green, and blue from those two pixels. A combined
Grayscale value is a 3 byte data structure than contains two 12 bit Grayscale
values that have been melded together. The 3 byte combined Grayscale values
are then written to memory, stored in their appropriate bin, and following that the
output pointers are incremented by 3. Figure 6.1.4.b shows how the combined
Grayscale values are stored in memory as they are output.

Figure 5.2.1.3c Combining Grayscale values and storing in memory

85

GetRedCombinedGS() is used to obtain the combined red Grayscale value for

the two pixels it is called with as arguments. The red data is stored entirely in the

first byte of the pixel dat. The first byte of the color data contains the red values.

Using a logical shift right function with an argument of 3, the unwanted green

data is pushed out. The process of isolating the red value can be seen visually in

Figure 5.2.1.3a.

The red value is then converted to a grayscale value by calling a function to

convert the byte. The red data isolation process is then repeated for the second

pixel, and then also converted to grayscale. Following this, the two grayscale

values for each pixel are combined into a three byte structure using a combine

grayscale function which returns a 3 byte structure.

Two Byte RGB color:

R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1

First Byte Obtained:

R5 R4 R3 R2 R1 G6 G5 G4

Logical Right Shift x 3:

0 0 0 R5 R4 R3 R2 R1

Figure 5.2.1.3a Visualization of Isolating Red RGB Value

Obtaining the green pixel values entails a little more effort since its values are
spread across two bytes. The first byte of the pixel is obtained, which is then has
the logical AND performed on it with 0x07, which zeros out any red data in that
byte. The first byte is then shifted left 3, so that its three LSB are zero and able to
be combined with the 3 bits of green data from the second byte. The second byte
is obtained in a temporary variable and shifted to the right by 5. Combining the
first byte and the temp variable with a logical OR operation gives the complete
green data. Figure 5.2.1.3b gives a visualization of the logic used to isolate
green.

The color isolation process can then be repeated for the second pixel. The two
green RGB values are then converted to grayscale on lines 8 and 16. Following
this, they are combined into a single 3 byte structure that is then returned on
lines 18 and 19.

Two Byte RGB color:

R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1

First Byte Obtained in Temp:

R5 R4 R3 R2 R1 G6 G5 G4

86

AND with 0xF8:

0 0 0 0 0 G6 G5 G4

Logical Left Shift x 3:

0 0 G6 G5 G4 0 0 0

Obtain Second Byte in Temp2:

G3 G2 G1 B5 B4 B3 B2 B1

Logical Right Shift x 5:

0 0 0 0 0 G3 G2 G1

Combine Temp1 and Temp2 with AND

0 0 G6 G5 G4 G3 G2 G1

Figure 5.2.1.3b Visualization of Isolating Green RGB Value

The blue color data can be obtained from the second byte of the pixel data.
Because blue is already completely to the right, isolating it is as simple as
performing a logical AND on it with 1F, zeroing out any green data present. The
grayscale values are obtained using ToGrayscaleRB() and then combined.
Figure 5.2.1.3c provides a visualization of the logic for isolating the blue RGB
value from the pixel data.

 Two Byte RGB color:

R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1

Obtain Second Byte

G3 G2 G1 B5 B4 B3 B2 B1

AND with 0x1F

0 0 0 B5 B4 B3 B2 B1

Figure 5.2.1.3c Visualization of Isolating Blue RGB Value

Converting pixel data to Grayscale is accomplished using ToGrayscaleRB() and
ToGrayscaleG(). The need for a separate function for green is because green
contains an extra bit of color depth, and can be mapped to a more precise
grayscale value. A grayscale value ranges from 0 to 4095, represented by 12
bits. Figure 5.2.1.3d shows the mapping of values for both Red/Blue and Green.

Figure 5.2.1.3d Grayscale Mapping Diagram

87

The CombineGrayscale() function is used to combine two grayscale values into a
3 byte data type and then return those 3 bytes. A grayscale value is stored in 2
bytes even though it only contains 12 bits worth of information. Because of this,
the first 4 bits of every grayscale value are 0b0000, which is why it would be nice
to compact 2 of these grayscale values together to eliminate the wasted bits and
decrease the overall size of the date. The CombineGrayscale() functions
behavior can be visualized in Figure 5.2.1.3e.

Grayscale Value 1 Grayscale Value 2

0 0 0 0 24 23 22 21 0 0 0 0 12 11 10 9

20 19 18 17 16 15 14 13 8 7 6 5 4 3 2 1

Logical Left Shift x 4 Grayscale Value 1 Byte 1

24 23 22 21 0 0 0 0

Logical Right Shift x 4 on a copy of Grayscale Value 1 Byte 2

0 0 0 0 20 19 18 17

 AND Grayscale Value 1 Byte 1 with the copy

24 23 22 21 20 19 18 17

Logical Left Shift x 4 GS1 Byte 2

16 15 14 13 0 0 0 0

AND Byte 2 with GS2 Byte 1

16 15 14 13 12 11 10 G9

Return GS1 Byte 1 and 2, and GS2 Byte 2

24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9

8 7 6 5 4 3 2 1

Figure 5.2.1.3e Visualization of Combining Grayscale Values

5.2.1.4 PC Wi-Fi Communications

The PC will have to send messages to the microcontroller. For this we will be
using Wi-Fi in ad-hoc mode. We will be using the TCP protocol over Wi-Fi in
order to ensure that the packets are received without error. We will be designing
our own simple communication protocol that is suitable for our purpose. It must
be fast and it must have a way of differentiating between types of data. Since we
will be sending different types of data we will have to add a header to each data
stream. The possible types of data that we may send are: image, text (main),
text (small), and command. With four different possibilities we will need 2 bits for
the header. We will actually just send the first byte with our header data which
will be assigned the following possible values shown in Table 5.2.1.4.

88

Header Bits Data Type

000 Text(Small)

001 Text(Main)

010 Image

011 Command

Table 5.2.1.4 Header Information

The small text data is meant to appear on the secondary smaller display which
will give the effect of text on top of the current main image. The header simply
decides which display to send the data. Each data type has a fixed size that is
expected to be sent. For the small text display the expected size is 15 bytes, on1
byte is the header and then each character is one byte for a total of 14
characters. We are currently allowing 7 characters per line. The image data type
will be a single frame that will be displayed constantly on each rotation. Lastly, a
command signal can include commands to clear the main screen image or the
text screen image. We are also currently able to use a command signal to have
the microcontroller run the cycle test code which cycles through each LED in
order. A simple Wi-Fi transmission is shown in Figure 5.2.1.4. The figure
assumes the appropriate header is added from the PC.

Figure 5.2.1.4 Wi-Fi Transmission Flowchart

5.2.1.5 Display Alignment Sensor Software:

An IR sensor is being used as input into the microcontroller. The sensor

generates a high voltage when tripped. In software, we have set up a hardware

interrupt which looks for a rising edge on the pin for sensor input. When the

interrupt is generated, a flag is set to true and allows the display code to execute.

The display code sets this flag back to false upon completion and then waits for

the flag to be set true once again.

5.2.2 Microcontroller Software Design:

This section will cover the software design requirements for the rotating
microcontroller board. Software requirements include reading the preprocessed
data and image frames arriving at the board via Wi-Fi connection, and outputting
this data to the LED array.

89

5.2.2.1 Modes of Operation:

The controller has various modes of operation and is receiving various data and
commands via Wi-Fi from the stationary controller. Data includes processed
frames, which are to be stored in a frame buffer, processed still images, and text
data which will be displayed on a small text array. Sensor data is also received
and is used to determine when to start displaying the device. Additionally,
commands will be received that change the operation modes of the POV display.

The main LED array displays data that corresponds to a single image that has
been stored in memory. The main array output can either be in IMAGE_MODE,
or OFF_MODE. In the case of OFF_MODE the main LED array will not display
anything, however the text array could still be in use.

The text array is in use, it will be operating in TEXT_MODE. While in
TEXT_MODE various commands will alter the way in which text is being
displayed. For instance scrolling text can be enabled and the speed at which the
text scrolls can be calibrated via commands being received from the stationary
controller, which received those commands via USB from the GUI interface on
the computer. The text array can also be in an off mode when it is not in use
which is simply OFF_MODE. Figure 6.2.1 shows the various state combinations
the Main Array and Text Array can be in after receiving a single state change
command.

5.2.2.2 Outputting Data to LED Array:

The rotating microcontroller will be responsible for outputting the color data the
LED controllers. There are 180 LED controllers, 90 represented an A column,
and 90 representing a B column, although both columns output to the same
LEDs. Both the A column and B column will output to the LEDs at 22 frames per
second, staggered such that the LEDs will flash at 44 frames per second. Two
clock driven interrupt handlers will tell the A and B columns of LED controllers to
display at the appropriate times. After a column is displayed all of the controllers
in that column require a blanking pulse of 20ns in length. On lines 6 and 14 of the
interrupt handler pseudocode, the Column Written flag is set to false so that a
separate loop can begin writing the new pixel data to be displayed to the LED
controllers.

The A column has been instructed to start displaying by calling
DisplayAColumn(). A pulse is sent on the XLAT pin for the A column of duration
20 ns, which moves the data written in the controllers shift register to the
grayscale register. The controllers now require the GSCLK signal to tick 4096
times at 30 MHz. The values in the grayscale register will determine how long the
outputs from the LED controllers to the LEDs stay on, effectively determining the
color that will be displayed. On lines 2 and 13, XLAT is pulsed, and on lines 3
and 14 a grayscale counter is initialized. A loop is then entered that the program

90

will remain in until pulseGS has been set to true 4096 times. A clock interrupt
handler sets pulseGS to true at a rate of 30MHz, and each time it’s true, the
GSCLK for the column is pulsed for 16ns.

A loop will be running which writes the data to the LED controllers after each time
a column is displayed, because that column now requires new data. Lines 2 and
6 of this pseudocode check the Column Written flag to see if new data has been
written since the last flash of that column. If the new data has not been written
yet, a function is called on lines 3 and 7 which will write the new data to the LED
controllers. The Column Written flag is then set to true.

The Write Column functions handle writing data to the controllers one bit at a
time. There are 90 controllers in total used in column A. This is divided into two
groups, AA and AB, each with 45 controllers. AA and AB are each divided into 3
groups of 15 controllers for red, green, and blue. This makes for a total of 6
groups of 15 controllers. A single controller requires 192 bits and with each group
containing 15 controllers, 2880 bits will be written to each group. In line 2, a loop
will be entered that will continue until 2880 bits have been written to all 6 groups.
The rate at which the data can be written to the controllers is limited to 30MHz,
because of this a clock interrupt will set SCLKpulse to true at a rate of 30MHz.
Whenever this pulse occurs, the bits to be written for each group will be obtained
as seen on lines 4-9, and then written into memory at the addresses associated
with the A columns SOUT pins on lines 11-16. An SCLK pulse is then required so
that the LED controls read the new bit into their shift registers.

ObtainBit() returns either 0xFF or 0xFE depending upon whether the next bit of
data was a 1 or a 0. When a logical AND is performed between that byte and the
output pin address, only the last bit will be altered. The first loop lines up a 1 bit in
the temp variable with the index we are interested in, and then a logical AND is
performed zeroing out all other bits. In the second loop, the bit we are interested
in is shifted right until it is the LSB. A logical OR is then performed on that value
and 0xFE, which will guarantee the return value is either 0xFF or 0xFE.

5.2.2.3 Outputting Data to Text Array:

One design feature to be implemented is a text array which consists of 16 RGB
LEDs controlled by 3 LED controllers. This would in essence be a miniature of
the full miniature LED array. The addition of this display required modification of
the pin I/O's available to the full array, specifically the loss or XERR input. This
also requires that we use the A and B array columns latching signal which both
pulse at 7040 Hz to be combined into a separate output pin that pulses at 14080.
14080 Hz allows the text display to be flashed at 22 frames per second.

In order for this implementation to work, the interrupt handlers displaying column
A and column B of the primary array would effectively also be flashing the text
display at the same time. In the primary loop which handles writing to each

91

column, the text display would also need to be written to and made ready before
each of the display interrupts occur.

The text display will be capable of displaying text with various settings, such as
scrolling text left or right at different speeds, and color alteration. Allowing the text
to scroll involves incrementing certain pointers into memory while always keeping
track of the base pointer for the text data. After a certain amount of rotations of
the POV display, a pointer that points to the text data is incremented and
becomes the new reference base pointer. When writing the data, the reference
base pointer is incremented and a modulo operation is performed to wrap it back
around to the true base address of the text data. The speed at which the text will
rotate depends on how many rotations of the POV device are required before the
pointer is moved.

5.2.2.4 Microcontroller Wi-Fi Communications:

The microcontroller receives communications through the attached Wi-Fi shield.
This board will act as a server waiting for a client to connect. Header information
will have to be deciphered on this board so that this board knows where to send
the data. There is a single byte variable assigned to hold the header data. Once
the header has been received it is analyzed and the microcontroller is able to
decide where to send the rest of the data it receives. If a control signal header is
found then the data that is sent is considered an instruction to perform. If the
instruction is something the microcontroller recognizes then the proper action is
taken. For example, if the cycle signal is sent the microcontroller will begin
cycling through the LED’s until a new message is received that requests the
microcontroller to take a new action. The text messages were greatly simplified
by using a font table that we hard coded in the flash memory of the
microcontroller. There is a two dimensional byte array that holds all of the column
data for each letter and for most symbols. This font table uses standard ASCII
values less 32. For the main display the text signal is very similar, it still uses the
font table but we had to skip to every third LED since each RGB LED contains
three individual LED’s. The image header will signal an image of a fixed size. The
PC takes care of the image formatting and the microcontroller simply receives
the bytes and stores them in order to be displayed. Figure 5.2.2.4 shows a
simple flowchart detailing Wi-Fi communications on the receiving end.

92

Figure 5.2.2.4 Wi-Fi Receiving Flowchart

5.2.3 GUI Design:

The GUI was implemented on a windows PC using Java. The following bulleted
list will show a formal enumeration of the requirements which were implemented
in the final application. Most of the items in the list are repeated from the
requirements analysis in the research section. Some of the requirements are new
and have been discovered while executing the design.

 Intuitive user interface
 Multiple line text message entry
 Color options for text messages
 Animation options for text messages
 Image import with simple image processing
 Image positioning
 Image cropping option
 Image clear button

A pipe and filter architecture was used for this application. The user input should
be either the text message or image which will then pass through a software
“filter” before being output in the proper format. The following architecture
diagram in Figure 5.2.3 better illustrates the pipe and filter model we used:

93

Figure 5.2.3 Pipe and Filter Software Architecture

The GUI was designed using Java in the Netbeans IDE. This IDE was chosen for
its robust GUI editor which allowed us to quickly create an interface before
completing any coding. Designing the interface first also helped to serve as an
outline to facilitate the implementation. Creating the first visual draft of the GUI’s
appearance was the next step in the design. We considered the detailed designs
involved in both sending a text message and sending an image in order to create
a draft of the GUI’s appearance.

5.2.3.1 Text Message Input:

According to the requirements there should be either a single multi-line text box,
or multiple text boxes to accommodate multiple lines of text entry. We chose to
have multiple text boxes. Near the text input areas we included the color options,
which include preset colors as well as user defined colors. These colors will be
applied to the entire text message. The current GUI design for text input is shown
in Figure 5.2.3.1. This design takes all of the previously mentioned requirements
for text input into consideration.

The text input will be stored in a character array. The character array will contain
a pre-set length of characters. We chose to have 7 characters available for each
line, which means the character array sent will be 14 characters long. This
information will then be sent to the microcontroller using Wi-Fi. The information
that the microcontroller needs to receive is simply the ASCII value for each
character. The microcontroller is able to interpret each ASCII value and match it
with a font table that is stored in flash memory in order to display the message.

94

Figure 5.2.3.1 Text Input Tab

5.2.3.2 Image Input:

The image input option allows the user to select an image from the hard disk to
display. The Image input appears on the GUI as a button that will then open the
file chooser dialog allowing the user to select an image from the hard disk. Any
common image format is acceptable. The only image formats that should be
restricted are the ones that the built in ImageIO Java class is not capable of
parsing. The options for images include whether or not to crop the image (when
the image is too large). If the crop option is selected then only the portion of the
image that can fit on the screen will be shown, otherwise the image will be
shrunk to fit. Another option for image input is the position where the image is
displayed; this is for images that are too small. There are nine choices available
in a box shape from top left to bottom right. The current version does not fully
support image messages. The file chooser is available and the user can choose
an image. The selected image is then converted into a file that has the RGB data
from the image organized by column to be displayed on the POV display, but the
image is not sent to the microcontroller. The RGB LED array does not allow us to
use Wi-Fi communications so we cannot send an image at this time. Figure 6.3.2
shows a draft of the GUI design for the image input. The final GUI design will

95

contain a combination of both the text input tab shown in figure 6.3.1 and the
image input tab in Figure 5.2.3.2.

Figure 5.2.3.2 Image Input Tab

The Images are read using built in classes and methods for image handling.
These classes include ImageIO, BufferedImage, and ImageReader. We used an
ImageReader to interpret the image format and translate it. This allowed ImageIO
to read the image into a BufferedImage. We then used the getRGB method of the
BufferedImage class to get the pixel color values. The pixel color values were
very easy to convert to our format so that we can send the image using Wi-Fi.
Any blank pixels (no image data) are represented with a special value that lets
the microcontroller know not to overwrite any previous value in the flash memory
for that pixel. This allows us to overlay multiple images if they are small enough.
This is also the reason for the clear image button in the GUI. When the clear
image button is pressed, a special clear instruction is sent to the microcontroller.
This is done by sending a unique clear signal that will have the microcontroller
overwrite all pixels with black values.

5.2.3.3 GUI Wi-Fi Communications:

In this section we will consider how to communicate with the microcontroller
using Wi-Fi. We will also be considering how to properly format the user input so
that the microcontroller has all of the necessary data to update the display. We
used the built in Java networking classes to perform Wi-Fi communications
between the PC and the Chipkit uC32 board. The first step in Wi-Fi
communications is manually connecting the PC to the “POV Display” wireless
network and entering the correct security key.

96

5.2.3.3.1 Wi-Fi Communications Class:

Wi-Fi communications were handled in a separate WiFiConnection class. This
class has methods to connect to the POV display (assuming the PC is already on
the correct network), and send data. The constructor initializes a new
WiFiConnection class and sets the IP address and the port number. When the
connect method is called it will take the IP address and port number, and create
a new socket to establish the connection. The send method was designed to for
multiple input possibilities. We use a char array as an argument, which is the
case for when two lines of text are being sent.

5.2.3.3.2 Wi-Fi Communications I/O:

The Wi-Fi communications I/O operations take place within the WiFiConnection
class. The WiFiConnection class contains an instance of the Socket class from
the built in Java network library. The Socket class handles the communications
and allows the WiFiConnection class to send a payload to the microcontroller, as
well as receive acknowledgements. The acknowledgements will be optional. We
currently do not receive acknowledgements but it can be easily added if we need
them for debugging. Another use for the optional acknowledgments may also be
a loading bar which can continue to fill as the acknowledgements are received. A
simple sequence diagram shown in Figure 6.3.3.2 next should help to illustrate
the planned data flow for the WiFiConnection class.

97

Figure 5.2.3.3.2 WiFiConnection Sequence Diagram

Before Wi-Fi communication can occur the Socket must be properly initialized.
The Socket is either initialized by using the WiFiConnection class constructor or
by calling the connect method with an IP address and a port number as
arguments. Both the WiFiConnection constructor and the connect method throw
an UnknownHostException, or an IOException. The UnknownHostException is
thrown when the IP address and port number combination cannot be found on
the current network. IOExceptions may be thrown when the IO for the socket
does not initialize properly. After the socket initialization the input and output
streams need to be initialized. The input stream is created using a
BufferedReader class that is created using the getInputStream method of the
Socket class. Similarly the output stream is created using a PrintWriter class that
is created using the getOutputStream method of the Socket class. The creation
of both the input and output stream both have the possibility of throwing the
previously mentioned IOException. Now that the Socket and it’s input and output
streams are properly initialized the user is able to send messages to the POV
display. Simply print items to the PrintWriter object and read items from the
BufferedReader object. When all reading and writing is complete, the Socket and
both streams must be closed. This is simple to do and simply requires a call to
the close method for each object. The operating system will then have that port
back in a usable state and all resources devoted to the streams will be freed.

5.2.3.4 GUI Class Summary:

In this section we will consider all of the class interactions throughout all parts of
the GUI application. Classes that we will have to create include: POVGUI,
WiFiConnection, TextMessage, and ImageMessage. Image reading classes
include ImageReader, and BufferedImage, which will be used by the
ImageMessage class. The text message class will not need helper classes since
it is dealing with simple text data. The WiFiConnection class will need to contain
classes from the built in Java libraries including Socket, BufferedReader, and
PrintWriter. A class diagram showing these classes and their relationships to
each other is shown in Figure 6.3.4. It should be noted that either a text message
is sent or an image message is sent, but not both. Also the multiplicity shown for
each class is one, because only one of them should exist at a time. If multiple
messages are to be sent, the same class will be used with different values.

98

Figure 5.2.3.4 Class Diagram for the GUI

6 Prototyping:

In order to determine if our design worked under our specific conditions we
needed to test them. We expected them to work theoretically but theory doesn't
always work practically. This being the case we created a variety of prototypes of
each section of the device that we felt may be prone to failure. These prototypes
were used in the test procedure chapter to create and describe both the process
and the purpose of the tests that were applied to each of these prototypes.

6.1 Slip Ring Power Transmission Prototype:

While testing the slip ring we needed a prototype circuit that could be used to tell
if the slip ring was properly transferring the amount of power we needed to power
the LED apparatus and microprocessor without actually connecting the processor
so as to not cause any damage to either the processor or the LEDs. That being
the case we created a prototype circuit using one 60 watt bulb. Since the
expected amount of power needed on the opposite side of the device was
around 10 watts of power then if the slip ring could power while in motion 60
watts worth of power then we know that we should have no problem powering
the 10 watts. In addition, we were able to tell what the minimum amount of power
needed to power the 10 watts was so we could get an idea of the loss in the
system. This prototype circuit can be scaled up by adding more bulbs in series to

99

create larger power requirements in order to test for a scaled up version of the
final device. The circuit for this prototype is shown in Figure 7.1.

Figure 7.1 Power Transmission Prototype

6.2 Scaled LED Array Prototype:

In order to verify our LED array design works, we built two prototype of the LED
array. Both prototypes used the TL5940NT models instead of the surface mount
due to the difficulty of having to surface mount the IC just for testing. The first
array used 4 RGB LEDs and 4 Green LEDS. This was so that we could test both
the text array and RGB array LEDs with the TLC5940. The section prototype
used 6 RGB LEDS, 5 of which were fully functional while the last one could only
light up the red color.

6.2.1 Scaled LED Array Hardware Prototype Design:

The design for the LED array prototype was similar to the full scale LED array.
The only difference was that none of the controllers were cascaded, they were
single arrays. For the prototype version of the LED array did not need any

100

controllers cascaded. Although this did not help with testing the speed at which
we could address the cascaded controllers, f(sclk), this did provide a test of the
grayscale clock, f(gsclk).

7 Testing:

Since like any project it is unlikely to work exactly like we designed it the first time
we turn the device on it was best to create some testing procedures to fully
experiment with certain software and hardware features of the device that could
prove to not model exactly like the theoretical design. These testing procedures
helped us calibrate certain components of the device so that they worked more
effectively.

In the following sections of this chapter there are a series of tests that were
implemented with the prototypes described in the prototype chapter before. Each
test will identify the objective of the test, the prototype being used for the test and
a short paragraph of the results of the test.

7.1 Display Alignment Sensor Testing:

This section will cover the hardware and software test required to verify the
correct and desired operation of the display alignment sensor.

7.1.1 Sensor Hardware Test:

There are a few things that we needed to determine about the sensor’s hardware
that required testing to insure that it would best align the LED display so that we
could better control the location and spacing of the image. The objective of the
first test was to determine if the sensor would correctly show a voltage pulse
when it registered a movement change. The second test's objective was to
determine if varying the CTRL signal to the sending circuit would have an impact
on the efficiency of the sending and receiving process of the infrared LEDs. The
third test's objective was to determine whether the output of the receiver circuit
had a noticeable enough pulse or change in voltage. Finally the fourth test’s
objective was to determine what effects the potentiometer had on the sensor
circuit.

For all four of these tests we needed to use both circuits of the infrared sensor
outlined in the design section for the display alignment sensor, Section 5.2. The
circuit was left disconnected from the microprocessor for the purposes of these
tests.

101

7.1.1.1 Sending/Receiving Signal Hardware Test:

This test encompassed both the first and third test requirements. For this test a
voltmeter was connected to the OUT location on the PCB design figure 5.2d. We
then connected a voltage source to the CTRL pin. This source was used to turn
on the sender circuit. The IR LEDS were placed in such a way that it was
directed toward a surface with some reflectivity, an aluminum plate which was
the same surface that was used as the trip in the final design. Then the CTRL pin
was increased slowly until a hit was registered on the receiving circuit. This was
observed by tracking whether the LED turns on or off and whether a voltage was
registered on the voltmeter. Once a hit was received we then removed the
reflective surface and watched to see if the LED turned off or stayed on and
whether the voltage dropped or rose on the voltmeter.

The desired result of the test was to have the LED turn on when the CTRL was
turned on and reached a voltage of about 2.5 volts or larger, a value that would
be higher than the minus terminal of the op-amp, then to have the LED turn off
immediately upon removal of the reflective surface. The test was successful and
the sensor was extremely responsive to the reflective surface and most any other
surface in general. The only two things that the sensor was not responsive to
was a black surface or an abundance of distance between the sensor and the
surface. In addition, the voltage pulse on the OUT of the circuit proved to be
noticeably observable. In other words, if there was a reflective surface the OUT
read a clear 2.7-3.6 volts and while there was no reflective surface the voltage
was down in the low millivolts range.

7.1.1.2 CTRL Signal Calibration:

This test encompassed the second test requirements. For this test the set-up
was the same as the test in section 7.1.1.1. After the circuit was set-up and the
tachometer was directed away from the reflective surface, the voltage supply
connected to the control pin was slowly increased. Starting at 0V the voltage
from the power supply was increased by 0.5 volts up to 5V. During each increase
in voltage the reflective surface was passed in front of the infrared sensor slowly.
The voltage change on the voltmeter was observed during each increment.

The desired result of this test was to determine that the strength of the CTRL
signal is irrelevant when it comes to the effects of the strength of the receiver “hit”
signal. The result proved that below 2.5 volts the sensor did not register any
value and the CTRL signal had not effect on the sensor. However, once the
CTRL signal reached the 2.5 volts further increases to the CTRL line had some
impact on the OUT signal increasing its value slightly. This increase however,
required substantial increases in the CTRL signal in order to make an impact on
the OUT signal. The difference turned out to be around a 1 volt change in the
CTRL line amounting to a few millivolts change in the OUT signal.

102

7.1.1.3 Sensor Sensitivity Test:

The final test for the sensor was the sensor sensitivity test that used the
potentiometer. This test was setup exactly as the first test. In this test the
potentiometer was varied between detection tests to determine the best
calibration for the sensor sensitivity.

During this test it was found that there were two sensing locations for the sensor
circuit. One, which never changed with variation of the potentiometer, was right in
front of the sensor. The other changed slightly within a small range at a large
distance from the IR LEDs. This property was used to find the best distance at
which to place the reflective surface so as to obtain an effectively consistent “hit”
indication.

7.2 KBRG-212D Calibration Tests:

The motor control circuit required to control the motor required three tests to
effectively use for the device. Test one was a current calibration test, which was
needed to calibrate the KBRG-212D to the specific current needed for the Dayton
motor. The second test was the speed control test. This test was used to
determine how fast we could spin the motor before overcurrent through the motor
would be an issue. The final test was the enable line. This was to determine
whether the enable line would return the motor to the specific rpm value we left it
at after an off/on toggle. The following subsections will discuss the process of
each of these tests, the desired result, and our actual result from the test.

7.2.1 Current Calibration Test:

In this test the KBRG-212D was connected as seen in Figure 5.1.1a. The only
difference is that an amp meter was connected in series with the motor. FWD CL
variable potentiometer was then set to its lowest value, while all other
potentiometers were set to the factory conditions shown in Figure 5.1.1b. Then
the KBRG-212D was turned on and the FWD CL was quickly raised up until the
amp meter read 1.5 A. This should be done as quickly and accurately as possible
since damage to the motor can occur if the motor shaft is locked for too long.

The desired result of this was to test calibrating the motor for the Dayton. The
actual result was close to desirable though we found that the FWD CL was very
sensitive and prone to not being consistently accurate. This resulted in the FWD
CL needing to be recalibrated every so often in order to prevent overcurrent in
the motor.

7.2.2 Speed Test:

103

In this test the KBRG-212D was connected as seen in Figure 5.1.1a. In addition,
the LED apparatus frame was attached to the motor so as to get an accurate
speed assessment of the motor when rotating. The potentiometer was connected
in the forward setting as shown in figure 5.1.2a. The KBRG-212D was then
turned on and the potentiometer was raised from its lowest setting to its highest
setting slowly and back down again. Then the sensor circuit was turned on and
the microcontroller was set to count the number of hits in one second and store
the value, repeating this three times and then averaging the rps.

The desired result was to obtain an rps value between 25-30 rps and to be able
to control the motor speed from 0-100% of its rated value. This turned out to be
false on both accounts. The tests revealed that we could only reach between 15-
20 rps without sacrificing torque capabilities. The second issue we found is that
the potentiometer actually ranged between 0%-150% of the rated value. This
meant that going too high on the potentiometer caused overcurrent in the motor.

7.2.3 Enable/Disable Switch Test:

In this test the KBRG-212D was connected as seen in Figure 5.1.1a. The
potentiometer was connected in the forward setting as shown in figure 5.1.2a and
the enable line was connected as seen in Figure 5.1.2b. The KBRG-212D was
then turned on and the potentiometer raised to its expected running speed and
left to maintain this speed. The Enable line was first set to on and then flipped off
and left off for a few seconds before being turned on again. Before and after
these transitions the speed calculation code was run again to determine the
speed of the motor.

The desired result was to ensure that the rps was maintained when the
enable/disable switch was toggled. In each test the switch effectively maintained
its original rps value before the transition. This meant that we could set the rps
value of the motor and leave the potentiometer alone and just use the
enable/disable switch to control the off/on properties of the motor unless we
needed more or less rps. As per the recommendation of the KBRG-212D user
manual this enable line should NOT be used as an emergency turn off switch.

7.3 Slip Ring Test:

It can't be stated enough the importance of getting the slip ring to work for this
specific project. Without proper power management the rotating side would be
unable to do anything we had desired it to do. This is why we came up with a few
tests to insure that the slip ring design would work under our desired conditions.
The first test was nothing more than a durability test of the slip ring to determine
if it could handle both the electrical and physical demands of the device. The
second test was the power transfer test; it was to determine that under the most
ideal of conditions that power is at least properly transferred through the slip ring.

104

The final test was to determine if the slip ring can transfer power during rotation
and how much power loss is suffered due to thermal dissipation in the junction.

7.3.1 Slip Ring Durability Test:

This test required a completed motor and motor control circuit so that the motor's
speed could be varied. This meant that we had to connect the control elements
and control inputs discussed in the motor control section. Thus the Dayton motor
and the KBRG-212D were both used in addition to the slip ring. In essence, the
slip ring was attached to just the stranded wire with no power transfer. Then the
motor's revolutions per second were slowly increased and then maintained at its
maximum rotations. After a number of minutes had passed the motor's
revolutions per second were slowly decreased and then the motor was shut
down. After the device had been powered down the slip ring was checked for
damage.

The desire of this test was to have the slip ring capable of handling the maximum
possible revolutions per second that the motor could obtain and any variations in
this rotational speed. The test results proved just that with no damage to the slip
ring from the stranded wire.

7.3.2 Ideal Power Transfer Test:

This test required only the power supply, the slip ring shown, and a voltmeter.
The slip ring was connected to the power supply on the outside, and the
voltmeter was connected to the wire of the slip ring that was expected to be
threaded through the shaft of the LED apparatus. The power supplies voltage
was varied from a low to high DC value while the amount on the voltmeter side
was recorded.

The desire of this test was to see that all or a majority of the power applied to the
non-rotating side was seen on the side that would be rotating. This test proved
that there was almost exact power transfer through the slip ring when not being
rotated with only a very small resistive loss.

7.3.3 Rotational Power Transfer and Thermal Dissipation Test:

For this test we needed the motor control circuit, the motor, the slip ring design
and the prototype circuit in Figure 6.1 of the prototype section. In this test the slip
ring was connected to the power supply. Since we don't have a way to directly
measure the rotational side during its rotation we used this prototype circuit to get
an idea of how much power was being supplied to the rotational side. To begin
we started with a power input of around 55 watts DC and begin rotating the
device with the prototype circuit connected to the rotational portion of the device.
We then gradually increased the DC power supply until we got the light to just
turn on and recorded this value. Since the bulb required 60 watts to power the

105

difference between the 60 watts and what it took to power the bulb should be
close to the dissipation through the slip ring.

The desire of this test is to have the slip ring handle the physical and electrical
demands of the device with minimal power loss. The result of the test showed
that the slip ring could handle turning on the light bulb at the exact watt
requirements being sent over. So in other words 60 watts sent over had no
dissipation, or so minimal that it was not enough to prevent the bulb from lighting.
What was learned however, from this test was that the slip ring had contacting
issues and would cause the bulb to flicker on and off a little. This required us to
change our wire connection design from being just a straight contact to being tied
around the shaft creating a hoop around the shaft that the shaft scrapped
against.

7.4 Wi-Fi Communication Testing:

The Wi-Fi communication testing verified that the PC is able to communicate with

the microcontroller successfully. This testing required us to have a simple server

program on the microcontroller, and a client program on the PC. These testing

procedures were done with the microcontroller and the PC concurrently since in

order to test one we must communicate with the other. We tested the

effectiveness of our protocol and made adjustments to our design as necessary.

The main focus for the Wi-Fi communications was reliability since dropped

packets may mean artifacts appearing in the image.

Our first test consisted of a simple TCP echo server over Wi-Fi. The code for this

test came from the example code provided with the Wi-Fi library for the Wi-Fi

shield. In order to test this echo server we wrote a simple TCP echo client in

Java. In the Java application we set up the IP address and port number

according to the settings in the server. The first sign that the echo server was

working correctly was the appearance of the “POV Display” SSID on the PC. We

connected to the network before running the Java application. The Java

application was designed to receive a text input from the user and then send the

text through the network to be received on the server. The server receives the

text from the client and sends the same text back to the client. The client then

receives the text from the server and displays it. A working echo server should

appear to display whatever is typed in which means that the information was sent

successfully through the network and back again. The echo server and client

programs worked correctly the first time we tried them which verified that our

hardware was working properly.

106

7.5 Software Testing:

The prototype LED array has been used to test numerous aspects of the POV
display while sitting stationary, and can be seen in Figure 7.4. These tests
include LED manipulation, brightness levels, displaying various RGB colors, and
updating the controller at the fastest frequencies possible. In addition to testing
the capabilities of the LED controller itself, we also used to test programs
designed to display entire images and text. The prototype was also involved in
compatibility tests which were used to help integrate the use of Micro SD
Memory, Wi-Fi, and Sensor Input when combined with the LED array.

Figure 7.5 Prototype LED Array used in testing.

7.5.1 Prototype LED Array Capabilities Testing:

Basic Cycle Test: The basic cycle test was used as a baseline to determine that
without any possibility of programming error, the hardware configuration was
wired correctly and that the behavior of the LED array was as expected. In this
test, each LED would be lit up one by one in sequence, with only one LED on at
one time. After reaching the last LED, the first LED would be the next one to light
and this would continue in a loop endlessly. A one second delay between each
cycle was used causing the lit up LED to chance once per second.

Speed Cycle Test: This is a modification of the Basic Cycle Test. This test simply
increases the speed at which the LEDs cycle by decreasing the delay. The delay
value could be sent via Serial Monitor allowing for real time modification of the
speed of the cycling. The Serial Monitor allows for communication with the
program via USB interface.

Basic RGB Test: The prototype LED array included 4 RGB LEDs which were
used to test displaying various composite colors. In this code, we manipulated
only the first RGB led, which uses 3 inputs from the LED controller. The code

107

was designed to cycle very rapidly through 4096 colors values by using a triple
for loop. Each RGB value was represented by 24 bits, which is considered true
color and near the limit the human eye is capable of distinguishing two colors at.
Each color with 24 bit color had 8 bits of color depth.

Timer/Output Compare Test: The purpose of this test was to determine the
maximum frequencies that data could be written to the LED controllers. The
PIC32 microcontroller contains 2 hardware timers that are available to be set,
Timer2 and Timer3. Timer1 cannot be changed and operates at 80 MHz, the
clock speed of the PIC32. In addition to the timers, 5 output compare modules
are available and are used to generate the Blank, Latch, and GS Clock signals.
The grayscale clock needs to operate as fast as possible so that the full
brightness of each LED can be obtained very rapidly. Tests have indicated that at
20 MHz the microcontroller puts out a very clean signal with clear rising and
falling edges. Additionally, tests attempting to obtain a 26.66 MHz frequency
yielded inconsistent results. The signal would sometimes be useable, and
sometimes become deformed, indicating that outputting this frequency is beyond
the capabilities of the PIC32. The frequency used to test Blank and Latch were
much smaller, requiring only a few thousand Hertz. All measurements were
verified using an oscilloscope.

SPI Data Writing Speed Test: Similarly to testing the Grayscale Clock speed, we
needed to obtain the fastest possible data writing speeds. The faster the data
can be written the more often we would be able to update the display with a new
column of data, and thus the higher frame rate we would be able to achieve.
Data is being written using the SPI interface which is built into hardware on 4
pins, which include Data Out, Data In, Data Clock, and Slave Select. The SS pin
can actually be any pin that you choose, but this is one which is hardwired to be
one. By manipulating the SPI settings we were able to obtain a data writing
frequency of 20 MHz with zero errors. Any attempt to increase this speed to
26.66 MHz failed to work properly. Frequency measurements verified with an
oscilloscope

7.5.2 Micro SD Testing:

Basic SD Testing: MPIDE provides various example programs for accessing
micro SD memory and the files contained within it. The built in functions allow
you to open a file, read the contents within it byte by byte, as well as write bytes
to the file. The library also includes functions for seeking to a specific byte
location in the file. The library also provides functions for checking to see if a file
exists, and when attempting to open a file that does not, it will create it. In this
test, all of these functions are tested one at a time with serial print outs used to
verify the success of each individual sub part of this function.

Additional SD Testing: In order to further test the behavior of each of the
functions provided by the micro SD library, we performed additional tests

108

involving file creation and manipulation. The seeking function was given a more
rigorous test by finding specific known data within a large text file. We also tested
the behavior of the library when reading a non-text file, such as a binary file,
which behaved exactly as expected.

7.5.3 Wi-Fi Communications Testing:

The Wi-Fi communication testing verified that the PC is able to communicate with

the microcontroller successfully. This testing required us to have a simple server

program on the microcontroller, and a client program on the PC. These testing

procedures were done with the microcontroller and the PC concurrently since in

order to test one we must communicate with the other. We tested the

effectiveness of our protocol and made adjustments to our design as necessary.

The main focus for the Wi-Fi communications was reliability since dropped

packets may mean artifacts appearing in the image.

Our first test consisted of a simple TCP echo server over Wi-Fi. The code for this
test came from the example code provided with the Wi-Fi library for the Wi-Fi
shield. In order to test this echo server we wrote a simple TCP echo client in
Java. In the Java application we set up the IP address and port number
according to the settings in the server. The first sign that the echo server was
working correctly was the appearance of the “POV Display” SSID on the PC. We
connected to the network before running the Java application. The Java
application was designed to receive a text input from the user and then send the
text through the network to be received on the server. The server receives the
text from the client and sends the same text back to the client. The client then
receives the text from the server and displays it. A working echo server should
appear to display whatever is typed in which means that the information was sent
successfully through the network and back again. The echo server and client
programs worked correctly the first time we tried them which verified that our
hardware was working properly.

7.5.4 GUI Testing:

There are two basic main requirements that we will address: text message

formatting, and communications. The formatting of the messages will focus on

verifying that the user input is properly transformed into the proper data.

Communications will be tested by connecting the computer to the microcontroller

using Wi-Fi and verifying that the data is sent and received correctly. We will look

at each of these features individually for testing. If each one is tested individually

and verified to be working correctly, then the application as a whole will be

considered complete.

109

The first test of the GUI involved seeing how the data would look like that is to be

sent. This was done by organizing all of the data into an array and printing the

contents to the console. No networking code was used for this test. The data

printed to the console corresponded to the text contained in the text fields for line

1 and line 2. We performed this test for multiple text combinations and also for

blank text boxes. We also verified that symbols and spaces had the correct

output as well.

The final test for the GUI will be the integration test which involves sending text
messages through the network. After adding the network code we use the TCP
echo server on the microcontroller to act as a way to verify our data. The
microcontroller receives the bytes of the text entered in lines 1 and 2, then echo’s
the text back. After this simple test we added more functionality by saving the
text for line 1 into an array and the text for line 2 into a separate array. These
arrays were then used for the echo back to verify that they contained the proper
information. After this test was completed we were confident that our GUI worked
properly and should send the proper text messages to the microcontroller. The
next step from this point is integration testing including the microcontroller
displaying the message that it receives.

7.5.5 Sensor Input Testing:

Hardware Interrupt Test: The IR sensor provides a high signal when it is tripped,
and we wanted to use this signal to generate an interrupt in our program so that
a flag could be set indicating that it is time to display. The PIC32 has several pins
which can be used as hardware interrupt inputs, and ISRs can be created which
monitor the status of that pin and allow for various modes of triggering. The
supported modes by the PIC32 libraries are rising edge and falling edge
triggering. We set up an ISR with rising edge triggering and simply printed out a
statement to the serial monitor each time the sensor was triggered. We also
tested that using a volatile int as a flag would work properly without creating any
errors. The sensor worked flawlessly and provided hardware interrupts without
any need for sensitivity calibration to the sensor.

Program Flow Test: In order to see the sensor influencing the program flow in
some way, we created a test program where triggering the sensor would change
the behavior of the LED array prototype. This test demonstrated that the sensor
hardware interrupt was working correctly, and that the behavior of the display
could be properly influenced by the triggering signal. The test code involved a
onetime cycle through all of the LEDs with very short delay. Each time the sensor
was triggered, the LED array would cycle rapidly through each of its 16 outputs.

7.5.6 Integration Testing:

110

LED Array and Micro SD Testing: This test was to determine if writing to the LED
array and also reading from Micro SD Memory at the same time would cause any
conflicts. Both devices are using the SPI interface for communications and share
data lines, and data clock signals. This test involved simply reading and writing
various strings to micro SD memory while executing the basic cycle code
intermittently. The SD library properly handled sharing the SPI interface with the
LED array. The SD library accomplishes this by storing the current SPI settings
on a stack, loading in its own, and then restoring the previous settings once
compete.

Wi-Fi and Micro SD Testing: We had many problems during the Wi-Fi server
testing when including the SD card. At first the Wi-Fi server would work correctly,
but when it came time to write to the SD card, it was unable to open a file. We
were able to verify that the SD card initialized properly but for some reason a file
could not be opened. At first we suspected that the order that the libraries were
included may make a difference, so we tried including the SD library first. The
order of the library includes did not seem to make a difference so after much
online searching and troubleshooting we found some advice to initialize the SD
card before initializing the Wi-Fi connection. Again this did not seem to make a
difference. Our next guess was that the SPI bus was not being shared properly.
Our searches for information online seemed to point out that the SD and Wi-Fi
libraries are supposed to handle sharing the SPI bus on their own, but since we
are unable to open a file while using the Wi-Fi echo server, we suspected
otherwise. Our next attempt at fixing the problem included us finding out exactly
which registers store the SPI bus settings so that we could make sure they did
not get corrupted. We wrote functions to save and restore the SPI state which
allowed us to ensure that the SPI settings were not being corrupted at any point.
Unfortunately this also did not work. We were running out of ideas regarding why
we were unable to open a file, but we knew that according to multiple forum
postings the libraries were successfully working together without any problems.
Since the SD card example program worked by writing to a file named “test.txt”
we decided to match the file name for this integration test. Previously we were
using the filename “smallImage.bin”, after switching the filename to “test.txt” the
problem seemed to have been fixed. We were now somehow able to write and
read from the SD card in conjunction with running a TCP echo server via Wi-Fi.
This test, although extremely time consuming and frustrating showed us that the
SD card library only supports a small file name length. We are now using SI.bin
for the small image and LI.bin for the large image.

Wi-Fi and LED Array Testing: This was a test designed to find any compatibility
issues in using the Wi-Fi library and LED array library simultaneously. Both
libraries are using the SPI interface in order to communicate with the
microcontroller. The test consisted of running the basic cycle code at the same
time as a server is running and echoing the text sent to it. It was discovered
during this test that the libraries conflicted and were not sharing the SPI interface
properly. One cause of the problem was the use of Pin 10 by the LED array

111

library, as that pin is also used as the slave select line for the Wi-Fi chip.
Because of this issue, we needed to move the blank signal required by the LED
array off of pin 10 and onto a different pulse width modulation pin. This involved
simply using a differed output compare module since each one is associated with
a particular pin. Having moved the blank signal from pin 10 to pin 5, we resumed
compatibility testing. A second conflict involving the SPI interface also existed,
and this problem was related to the SPI settings themselves. Wi-Fi uses its own
data clock setting, and our array uses a different data clock setting. Because of
this, we implemented in the LED array library a way to restore its own SPI state
in a similar way that the Micro SD library maintains its own state. Having added
this restore SPI settings function to the LED array library, all issues were
resolved and we moved onto implementing live update features via Wi-Fi.

Wi-Fi/SD/Array Testing: This integration test includes all devices that are sharing
the SPI interface for communication. In this test we wanted to see that we could
display on the LED array, receive data via Wi-Fi, and store it on the Micro SD
Memory chip without any interference. In a previous test we added a restore SPI
settings function to the LED array code, which allowed it to use the SPI when it
wanted to, and let the Micro SD and Wi-Fi libraries handle restoring their own
settings. We determined that data was being received accurately and was being
written to the Micro SD Memory accurately, all while displaying the basic cycle
code in addition to other LED control programs. We did find that while using the
Wi-Fi communication junk data would occasionally be written into the LED array
and cause a slight flickering. This issue was reduced somewhat by restricting the
amount of Wi-Fi communication. In addition, the visual artifacts were minor and
uncommon, which did not necessitate further debugging. I speculate that if we
were to hold the blank signal high, driving all LED outputs off, during Wi-Fi
updates, all visual artifacts would be eliminated.

Wi-Fi/SD/Array/Sensor Testing: This was the final integration test, which used
Wi-Fi, Micro SD, LED array, and sensor input all simultaneously. The only
additional feature in this test as opposed to the previous was the addition of the
sensor. The sensor uses two pins from the microcontroller, once which provides
a Vcc, and another on a pin which can generate a hardware interrupt when
receiving input from an external device. Strangely, we found that the sensor was
causing difficulties with the Wi-Fi initialization, and after a bit of research we
discovered that the Wi-Fi module uses an assortment of pins in addition to the
pins used for SPI communication for various reasons, and one that we had
selected to use for the sensor was conflicting. By simply switching the sensor to
pins that the Wi-Fi chip does not interact with, we were able to resolve this
compatibility issue. At this point we were able to display test code which included
sensor influenced code, while reading and writing from SD and receiving Wi-Fi
updates, as well as displaying the basic cycle code on the LED array.

7.5.7 Feature Implementation Testing:

112

RGB Data from SD Test: The goal of this test was to determine whether or not an
image which has been preprocessed on the computer and stored in SD is lighting
the LEDs as expected. To determine this, a test image was created that was 16
LEDs tall and 384 wide. This test image is seen in figure 7.4.2. It contains a
rainbow of colors as the start and end of the image, seconds of solid red, and
sections of red and blue. In addition to this, the very last row of the image
contains a rainbow of pixels going horizontally for a short section. This image
was processed on the computer and loaded into SD memory. In the
microcontroller, we then read the data from memory and output the data to the
prototype LED array. This verified that the computer generated processed image
was formatted correctly, and that our code for displaying an image from micro SD
was also behaving correctly.

Figure 7.5.7a Test Image used for reading from Micro SD memory

Letter A Test: - This test was designed to test the code related to displaying a
single letter of text. It was also a test of the persistence of vision effect on our
display since this was the first shape displayed that had a predefined and
expected form. This test did not include the sensor, Wi-Fi, or micro SD code and
was a separate program. The letter A displayed in a verity of positions and
moved around because of the lack of the sensor. This test verified that we would
in fact need the sensor to act as a trip for when to start displaying. A second
version of the letter A code was designed which implemented the sensor and it
was at this point that we could see the first letter of text being clearly displayed
and with minimal shifting from side to side. It was noticed that the spacing
between columns of the letter seemed wider than desirable. We deduced that
this was because of the processing time involved with updating the grayscale
data array that is written out to the controllers. Because we were using a set
function designed to set a specific 12 bit value at a specified index, a lot of
calculations were taking place that were not necessary. We could instead just
transverse the array one time, setting bytes to either the values 0xFF, 0xF0,
0x0F, and 0x00. This optimized code was designed specifically for being able to
display text quicker and cause the displayed text to appear in higher resolution.
After implemented the optimized code we could see improved clarity in the
displayed text.

Column Test: In this test we have edited the ‘Letter A’ program to print two
separate letters, one on top of the other, so that a column of letters would
appear. This was a step towards being able to display multiple lines of text. The
sensor was not initially implemented for this test and was added after the logic
appeared to be correct. Having then implemented the sensor, we could see
clearly two letters displayed, one below the other, and holding their position
without moving side to side.

113

Word Test: - After successfully displaying a single letter on each line we decided
to try displaying a word on each line. We stored the values corresponding to the
font table entries in an array for each line. For line one the array contained data
for the word “HELLO” and line 2 contained data for the word “WORLD”. When we
ran this test the words successfully appeared but they were appearing in
inconsistent locations and the letters were lowercase instead of the intended
uppercase. After double checking the values in the font table and comparing
them with the values we were reading, it was determined that we were sending
the unmodified ASCII values. We changed to code to send modified ASCII
values which consist of the original ASCII value less 32 to index the proper part
of the font table. The letters also seemed to have a large gap between them but it
was hard to see with the words displaying in a different position every time. We
decided to include the hardware driven interrupt from the sensor in order to
ensure that the words would display in the same location each rotation.

Word Test with Sensor Test: When we added the functionality of the sensor
circuit the word test became much more legible. It also became clear that there
were large spaces in between each letter which did not look very good. We tried
optimizing the way that the microcontroller communicates with the LED
controllers by directly manipulating that data that is sent to them. This new
method of sending the data to the LED controllers replaced the functions we
were using from the TLC library. We knew that the optimized code should run
faster than the previous code but for some reason there were still large gaps
between each letter. We eventually figured out that the reason for the gaps was
due to serial communication being attempted. We had some serial print
statements to help with debugging which would send serial data to the PC over
USB. This allowed us to read messages and see where in the code the board
was currently executing, but it also slowed down the speed of communication
between the microcontroller and the LED controller. After removing the serial
print outs we saw that the spaces between the letters was now gone and the
image looked as intended.

Live Updating of Text: For our next test we wanted to be able to update the
message that is displayed in real time while the device is turned on and spinning.
For this we used Wi-Fi server code that was very similar to the echo server. The
Wi-Fi code for this test does not echo back any sort of response, it simply
receives data and stores that data into two byte arrays. We did not use the SD
card for this test in an effort to keep it simpler. The message that the display
shows defaults to “HELLO WORLD” with each word appearing on its own line.
There are two byte arrays, one for line 1 and the other for line 2. These arrays
are where the data for the default “HELLO WORLD” is read from. This is done
the same way as described in the word test. The main reason for this test was to
change what the display says by receiving data via Wi-Fi and saving that new
data into each of the byte arrays for line 1 and line 2. Since the software is
constantly displaying the message stored in the byte arrays, the message should

114

update if new data is stored in those arrays. After solving the problems of the
previous test we were able to successfully complete this test quickly.

We had one major problem while performing this test which involved the Wi-Fi
initialization to fail. The microcontroller would inconsistently initialize the Wi-Fi
server, or not. If the Wi-Fi server didn’t initialize we would sometimes be able to
reset the board until it initializes. This behavior was unexpected and extremely
hard to understand. We tried multiple different variations of initializing the TLC
library before Wi-Fi, then after Wi-Fi. We also including the SD card libraries
even though we weren’t using the SD card in an effort to force the libraries to
properly manage a shared SPI bus. We thought that without the SD card library
included the state of the SPI bus may not be properly managed because the
software may not think that the bus is shared. None of these things seemed to
help and the reliability of the Wi-Fi initialization remained unpredictable. We
eventually noticed that the server seemed to work better when we physically
disconnected the RGB LED array from the microcontroller. It seemed that having
the RGB LED’s connected introduced some sort of interference which caused the
microcontroller to behave unpredictably. This test finally became a success after
we solved this problem, but this made a new problem obvious: we will not be
able to send Wi-Fi updates to the RGB LED array if we cannot solve this
problem. The result of our testing can be seen in Figure 7.5.7b. The display
originally said “HELLO WORLD” and we were able to update it via Wi-Fi to read
“UCF KNIGHTS”.

Figure 7.5.7b: Text Display

Basic RGB Cycle Test: The basic RGB cycle test is a test very similar to the
Basic Cycle Test used on the prototype display. It is a base line for determining if
the RGB array has been correctly wired up and Is functioning properly. In this
test, each color in each LED Is flashed sequentially until reaching the last LED,
and then starting back over with the first LED.

115

Cascaded RGB Array Test: This test was intended to determine if any issues
arise when cascading several RGB PCB modules together. Although each
module already contains 3 LED controllers cascaded, this test verifies that the
data correctly passes through the entire module, and that the share controlled
signals also pass through. Additionally, this test was used to determine whether
or not any problems would arise from having too many controllers cascaded and
how it would affect the update rate of the display. With two modules attached
together, data is being written to 6 LED controllers. Initially upon testing this
configuration the grayscale clock signal and SPI data writing speed was not set
high enough to accommodate 6 controllers. For the text array, operating at 5
MHz for each was sufficient, however after testing we determined that at least 10
MHz is required when updating 6 LED controllers. The code for this test is the
basic RGB cycle code with the NUM_TLCS variable set to 6. After having fixed
the timing issues, we successfully cycled through all of the LEDs in the combined
array.

RGB Text: This test was designed to determine the capabilities of our RGB
display and to show the functionality of the RGB array when operating at real
time speeds. The test program is a modified version of the Word Test with
Sensor, with some convenient array indexing multipliers and a counter to change
the color between each letter. From this test we determined that the red LEDs
are the most visually appealing and that though the blue and green LEDs are
fainter, the words can still be clearly read by an observer.

Figure 7.5.7c: RGB Text Array displaying alternating color text.

Based on the previous results, we modified the test code to display the entire
word phrase in all Red, Green, and Blue, and to cycle between each color for
displaying the text. Each color displayed clearly, blue being the faintest and red
the brightest. Figure X.X.X shows the word test displayed in solid red.

116

Figure 7.5.7d: RGB Text Array red letters

8 User Manual:

The following section will discuss the process of setting up and using the various
hardware pieces outlined in the above design section along with the proper use
of the GUI and how to program the microcontroller directly. Each sub section will
deal with a specific hardware or software component of the device and outline
how to effectively use it alone with safety warnings to prevent injury.

8.1 KBRG-212D Manual:

The KBRG-212D has a very thorough user manual that describes the various
settings and features and how to use them. This section will discuss only the
features and settings used for the purposes of this project. It is recommended
that before use of the KBRG-212D you follow the current calibration process
outlined in the testing section and the user manual of the KBRG-212D chip,
especially after prolonged disuse of the chip and Dayton motor.

There are two major control inputs for the KBRG-212D for the purposes of this
project. The first is the speed control dial featured in Figure 8.1 on the left. This
dial controls the speed at which the motor is running at. Turning the dial counter-
clockwise decreases the speed of the motor, while turning the dial clockwise
increases the speed of the motor. The motor speed can be raised to the
maximum point on the potentiometer, though this is not recommended due to
overcurrent in the motor. It is recommended that if the OL light indicator turns on
while increasing the motor that the speed of the motor be decreased until the OL
indicator turns off so as to prevent damage to the motor.

117

Figure 8.1 KBRG-212D Input Switches

The second control input for the motor is the ENABLE switch featured in Figure
8.1 on the Right. The ENABLE switch is used to turn the motor off during
reprogramming of the onboard microcontroller or start-up. It is recommended that
the user turns the ENABLE switch off before turning AC power off and not re-
activate the ENABLE switch until ready for the motor to actually start running. It is
highly recommended that after setting the speed to the desired level the user
does not excessively mess with the speed dial and only uses the Enable switch
to control the operation of the Dayton motor. It should be noted that the KBRG-
212D should be handled with care during operation since no portion of the
KBRG-212D is isolated from the AC power.

8.2 Display Alignment Manual:

The display alignment sensor has four terminals used for operation. The Vcc
requires a constant 5V DC that is connected directly to the Chipkit
microprocessor's 5V pin. The CTRL line can be plugged into any of the output
terminals of the Chipkit microprocessor and requires a 2.5V constant signal that
is used to turn on the sensor, for our purposes we used the pin 8 terminal. The
OUT terminal can be plugged into any input terminal on the Chipkit

118

microprocessor and will read a high value when the sensor receives a hit from
passing over a reflective surface, for our purposes we used the pin 7 terminal.
The GND terminal should be plugged into any of the GND terminals of the
Chipkit microprocessor.

8.3 Power Supply Manual:

There are two AC adaptors and a 9 volt battery required for operation of the POV
display. The First AC adaptor controls the KBRG-212D drive chip and also has a
built in single pole single throw switch for purposes of turning off the motor and
control chip, feature in Figure 8.3. This switch can be used to turn off and on
power to the motor without pulling the AC adaptor, this switch should also be
used as an emergency off switch instead of the ENABLE switch outlined in the
KBRG-212D manual.

The second adaptor is an AC to DC variable adaptor and should be set to its
lowest setting 3.3V. The variable adaptor is designed such that if the user
decided to increase the number of RGB array modules they could also increase
the power required to power them. The final power supplier is a 9 volt battery
with a DC adaptor for plugging into the regulated port of the Chipkit
microprocessor. This is stationed on the rotating side and when replace should
be fashioned to the armature with the supplied zip ties. The 9 volt battery should
be replaced after about an hour to two hours use.

Figure 8.2 KBRG-212D Power Switch

119

8.4 GUI User Manual:

When executing the GUI the first screen that appears is the text message tab.

This is the screen that will allow you to send text messages to the POV display in

real time. The text message tab can be seen in Figure 8.4.

The first option is “Display”, this option lets you choose which LED array to

display the text on. The text display is the only option that is currently

implemented in this version. The next two options are “Color”, and “Animation”.

Color cannot be changed when the text display is selected since the text display

only uses green mono color LED’s.

Figure 8.4 POV GUI Text Message Tab

The Animation option is not fully implemented and may not work as intended.

The text boxes which say “LINE1” and “line2” are where you should enter the text

that you wish to send to the display. If you wish there to be a blank line, simply

delete the text from the text box before sending the message. After you are done

editing the contents of the two text boxes, pressing the “Send Text” button will

wirelessly send the data to the POV display. The last button available is the

120

“Clear Text” button, when this button is pressed it is the same as sending two

blank lines of text to the POV display, which means nothing will be displayed. If

sending a text message does not seem to be received by the POV display,

ensure that the PC running the GUI application is connected to the “POV

Display” wireless network, and that you are using the correct WEP key. The

“Image” tab was designed for sending an image to be displayed on the color

main display, but this has not been implemented since the main display cannot

support Wi-Fi communications.

8.5 Switching Between RG and Text Array:

Our POV display has two hardware configurations for displaying either from the

Text array or from the RGB array. In order to switch between these there are 5

lines coming from the microcontroller that will need to be changed. The pin

configuration from the controller is as follows:

Pin 3 – Grayscale Clock

Pin 5 – Blank signal

Pin 9 – Latch signal

Pin 11 – Sin (Data out)

Pin 13 – Data Clock

To operate in RGB mode, the text array should be entirely disconnected from the

controller. This includes removing its ground and Vcc lines. The RGB display

should then be wired to the controller for the 5 pinouts that have been specified.

Additionally, the ground line for the RGB display will need to be connected to the

microcontroller. The wall AC adapter must then be plugged in so that power can

be transferred through the slip ring.

When operating in Text display mode, the RGB display should be completely

disconnected from the microcontroller. This includes insuring that its ground line

is also removed, as it will affect the operation of the device. The 5 lines coming

from Text array should then be wired into the microcontroller based on the pin

out specified above. The Vcc and ground for the text array must also be wired

into the microcontroller.

121

9 Conclusion:

The process of designing a persistence of vision device turned out to be a far
more complicated endeavor then our team expected. While we had already
expected some complications in the power transmission process of this device a
whole slew of issues revealed themselves in other areas of the device that we
had initially thought to be simplistic. The process of choosing a motor and
controlling it seemed at first to be a simple idea but when we began to research
further into the process it turned out to be far more complex than expected,
specifically for the high rotational and torque requirements of our system.
Eventually we came to the design presented which accomplishes our goals for
this. However, this design did not hold over well since, while the pulse width
modulation circuit did effectively control the motor, powering the motor and
controlling it together became a substantial problem. The 90 volts and 1.5 A was
difficult to power on a low budget and ended up forcing us to scrap our original
design for a more integrated approach which resulted in the KBRG-212D chip
being the method to power and control the motor. This design change had drawl
backs as we were forced into a more electromechanical method to control the
motor instead of the original desire of having the motor controlled digitally with
your computer.

However, motor control was not the only unexpected challenge. The design of
the LED array turned into a rigorous design challenge when it turned out that
trying to address each and every LED would send our data transfer rates into the
nine digit figures. Which the Chipkit board was capable of handling only a fraction
of the LEDs we originally intended to have so we ended up having to significantly
scale back on our LED array design. This was not the only issue, though
because soon after acquiring the arrays we ended up with another issue with the
Chipkit, the frequency it could obtain. While the Chipkit theoretically could obtain
the frequency we needed to run our pixel count, it ended up only being able to
run 32 instead of the first attempt at scaling back which was 128.

These design challenges discussed above were overcome but at a substantial
increase in our first projected costs. This meant that the need for sponsorship
has tremendously increased. The entire design was under the expectation of an
almost limitless budget. However the loss of the expected sponsorship required
some rather extreme reductions in scale of the design. Specifically our team had
to drop the HDMI instantaneous streaming of the display device. This was
primarily for two reasons. The first reason was that the loss of a sponsor required
us to drop the LED count and thus drop the resolution to a level that would not be
cohesive with the idea of displaying a computer screen for video playback. The
second reason for this design cut was the ability to purchase less powerful and
thus less expensive micro processing boards for image processing. Without the
demands of the high data transfer associated with the instantaneous streaming
of the display device our display ended up having to project much more simplistic

122

animations and text, thus needed much less data transfer and processing. We
were unable to cut our motor demands however, but we were still able to find a
far less expensive motor then the one outlined in the design. However, with these
cuts it did not spell the end for scalability of the device. Since even with the
reduction in hardware features there are still a vast amount of room for software
features to more than make up for the loss of the instantaneous streaming of the
display device.

For the future of this device there are a variety of possible additions that can be
added to it. First the Driver chip can be modified to include a digital way to control
it, allowing for integration of a Wi-Fi chip on the stationary side also. This would
allow the user to turn the device on and off, and even vary the speed of the motor
all from the same program that is controlling the image processing. The LED
arrays are designed such that with a more powerful power supply and
microprocessor more arrays can be added to create a larger device with better
resolution. The processor could also be programed with additional functionality.

10 Bill of Materials:

As seen in Table 10, is a list of major items required to build the POV display.
Some components with a “-“ mark for part number were bought in bulk variety
packs and thus did not have any sort of Part number. In addition, some materials
were marked with “-“ quantity did not have unit prices and instead were bought in
bulk packaging, thus a quantity used could not be established.

Bill of Materials

Item
Number

Part Number Mfr. Description Qty

Microprocessor

101 uc32 Chipkit
Microprocessor, 80 MHz, 5V,
512K Flash, 32K SRAM

1

Motor and Chassis

201 9FHD7 Dayton
Motor, DC, Permanent
Magnet, 90 Volts, 1.5A,
0.49 N∙m Torque, 1800 RPMs.

1

202 KBRG-212D KB

Regenerative Drive Chip,
115/230 AC, Permanent
Magnet or Field Wound
Motors

1

203 8090T13
McMaster-
Carr

Bearing, Extended-Ring Type
ER, rated for 3,145 dynamic
load pounds and 5,000 RPMs

1

204
Custom
Metal Work

KEMCO
Industries

Custom Aluminum Metal to
include top plate, base plate

1

123

and support rods.

LED Array

301 OVS-3309 Multicomp LED, Type OVS, RGB, SMD 48

302 TLC5940 TI LED Controller, 16-Channel 7

303 TLC5940NT TI LED Controller, 16-Channel 2

304 - Multicomp LED, Green 20

Components

401 -
Radio
Shack

Resistor, 1 kΩ 4

402 -
Radio
Shack

Resistor, 300 Ω 1

403 -
Radio
Shack

Resistor, 3.8 kΩ 1

404 -
Radio
Shack

Resistor, 50 Ω 1

405 -
Radio
Shack

Trimmer, 10 kΩ 1

406 -
Radio
Shack

LED, Green 1

407 -
Radio
Shack

Resistor, 2.2 kΩ 6

408 -

Vishay

Resistor, 100 Ω 144

409 -
Radio
Shack

Trimmer, 5 kΩ 1

410 -
Radio
Shack

Switch, SPST 1

411 -
Radio
Shack

LED, Infrared 2

Miscellaneous Equipment

501 - enercell
Adapter, AC to DC, Variable:
3.3-7.5V

1

502 - Kintron
Adaptor, AC, SPST Switch
on/off

1

503 - enercell Battery, 9V 1

504 -
Radio
Shack

DC Plug 1

505 -
Home
Depot

Zip Ties -

506 -
Home
Depot

Metal Clamps, medium 2

507 -
Home
Depot

Aluminum Plate, Small 1

508 - Home Aluminum Plate, Medium 1

124

Depot

509 -
Radio
Shack

Electrical Tape -

510 -
Radio
Shack

Wire, Stranded, 18 gauge -

511 -
Radio
Shack

Wire, Solid, 18-22 gauge -

512 -
Radio
Shack

Aluminum Sheet Metal -

513 -
Home
Depot

Permanent Double-sided tape -

514 -
Home
Depot

Wood Plank -

515 -
Home
Depot

Lugs -

516 -
Home
Depot

Copper Pipe 1.5” Diameter 1

Table 10: Bill of Materials

11 Appendix:

Figure 10.a Infrared Sensor Reference Circuit

125

12 Bibliography:

"802.11 Wireless Standards." About.com. Web.

<http://compnetworking.about.com/od/wireless80211/80211_Wireless_S

tandards.htm>.

"Arduino - Ethernet." Arduino.cc. Web.

<http://arduino.cc/en/Reference/Ethernet>.

"BIT DEPTH TUTORIAL." Cambridgeincolour.com. Web.

<http://www.cambridgeincolour.com/tutorials/bit-depth.htm>.

"Bluetooth." Wikipedia. Wikimedia Foundation, 30 July 2012. Web.

<http://en.wikipedia.org/wiki/Bluetooth>.

"BufferedImage (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedI

mage.html>.

"Color Depth." Wikipedia. Wikimedia Foundation, 08 Jan. 2012. Web.

<http://en.wikipedia.org/wiki/Color_depth>.

"A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-

Fi." Http://eee.guc.edu.eg. Web.

<http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standa

rds.pdf>.

"Digilent Inc. - Atlys Spartan 6." Digilent Inc. Web.

<http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836>.

http://compnetworking.about.com/od/wireless80211/80211_Wireless_Standards.htm
http://compnetworking.about.com/od/wireless80211/80211_Wireless_Standards.htm
http://arduino.cc/en/Reference/Ethernet
http://www.cambridgeincolour.com/tutorials/bit-depth.htm
http://en.wikipedia.org/wiki/Bluetooth
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://en.wikipedia.org/wiki/Color_depth
http://eee.guc.edu.eg/
http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standards.pdf
http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standards.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836

126

"Digilent Inc. - VMOD-BB." Digilent Inc. Web.

<http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,648,847>.

"Effects of Mobile Rotational Movements in Wireless Propagation Channels."

Http://ieeexplore.ieee.org. Oct. 2008. Web.

<http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=463

5902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp

%3Fisnumber%3D4635901%26arnumber%3D4635902>.

"HANDBOOK OF WIRELESS NETWORKS AND MOBILE COMPUTING."

Http://www.nettech.in. Web.

<http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-

8f8c-d156a560a67a>.

"How Bluetooth Works." HowStuffWorks. Web.

<http://www.howstuffworks.com/bluetooth.htm>.

"How WiFi Works." HowStuffWorks. Web.

<http://computer.howstuffworks.com/wireless-network.htm>.

"IEEE 802.11." Wikipedia. Wikimedia Foundation, 31 July 2012. Web.

<http://en.wikipedia.org/wiki/IEEE_802.11>.

"ImageIO (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.ht

ml>.

"ImageReader (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageRead

er.html>.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,648,847
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://www.nettech.in/
http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-8f8c-d156a560a67a
http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-8f8c-d156a560a67a
http://www.howstuffworks.com/bluetooth.htm
http://computer.howstuffworks.com/wireless-network.htm
http://en.wikipedia.org/wiki/IEEE_802.11
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageReader.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageReader.html

127

Jeffay, Kevin. "Coding and Compression Basics." Http://www.cs.odu.edu. Web.

<http://www.cs.odu.edu/~cs778/jeffay/Lecture3.pdf>.

"The New Wi-Fi Protocol." Suite101.com. Web.

<http://suite101.com/article/wifi-protocols-a42024>.

"NXVGA." Digilent Inc. 9 Nov. 2006. Web.

<http://www.digilentinc.com/Data/Products/NXVGA/NXVGA_rm.pdf>.

"RGB Video Out." Eecg.toronto.edu. Web.

<http://www.eecg.toronto.edu/~tm4/rgbout.html>.

"A Robotic Wireless and Sensor Network Testbed." Cs.utah.edu. Web.

<http://www.cs.utah.edu/flux/papers/robots-infocom06.pdf>.

"Serial Port on Atlys." Danielbit.com. Web.

<http://www.danielbit.com/blog/microblaze/serial-port-on-atlys>.

"Serial Programming/Serial Java." En.wikibooks.org. Web.

<https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java>.

"VGA Video." MIT.edu. Web.

<http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml>.

"VGA Video Signal Format and Timing Specifications." Javier Valcarce's

Personal Website. Web.

<http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Tim

ing_Specifications>.

"VGA." Wikipedia. Wikimedia Foundation, 24 July 2012. Web.

<http://en.wikipedia.org/wiki/VGA>.

http://www.cs.odu.edu/
http://www.cs.odu.edu/~cs778/jeffay/Lecture3.pdf
http://suite101.com/article/wifi-protocols-a42024
http://www.digilentinc.com/Data/Products/NXVGA/NXVGA_rm.pdf
http://www.eecg.toronto.edu/~tm4/rgbout.html
http://www.cs.utah.edu/flux/papers/robots-infocom06.pdf
http://www.danielbit.com/blog/microblaze/serial-port-on-atlys
https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java
http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications
http://en.wikipedia.org/wiki/VGA

128

Westrelin, Roland. "TCP and Real-time." Blogs.oracle.com. Web.

<https://blogs.oracle.com/roland/entry/tcp_and_real_time>.

"Wi-Fi: The Most Commonly Used Wireless Technology." About.com. Web.

<http://voip.about.com/od/mobilevoip/p/wifi.htm>.

"Wi-Fi." Wikipedia. Wikimedia Foundation, 08 Jan. 2012. Web.

<http://en.wikipedia.org/wiki/Wi-Fi>.

"WIRELESS NETWORK COMMUNICATIONS OVERVIEW FOR SPACE

MISSION OPERATIONS." Public.ccsds.org. Web.

<http://public.ccsds.org/publications/archive/880x0g1.pdf>.

"Wireless Sensors on Rotating Structures: Performance Evaluation and Radio

Link Characterization." Http://dl.acm.org. Web.

<http://dl.acm.org/citation.cfm?id=1287770>.

"AC Motor." Wikipedia. Wikimedia Foundation, 30 July 2012. Web. 01 Aug.

2012. <http://en.wikipedia.org/wiki/AC_motor>.

"MICROMO." Micro Drive Systems- Brushless, Coreless & Linear DC Motors.

N.p., n.d. Web. 01 Aug. 2012. <http://www.micromo.com/>.

"DC Motor." Wikipedia. Wikimedia Foundation, 24 July 2012. Web. 01 Aug.

2012. <http://en.wikipedia.org/wiki/DC_motor>.

"DC Motor Calculations, Part 1." - Developer Zone. N.p., n.d. Web. 01 Aug.

2012. <http://zone.ni.com/devzone/cda/ph/p/id/46>.

"Go Green, Go Electric." DC Motor Speed Controller PWM 0-100% 400Hz-

3khz Freq., N.p., n.d. Web. 01 Aug. 2012.

https://blogs.oracle.com/roland/entry/tcp_and_real_time
http://voip.about.com/od/mobilevoip/p/wifi.htm
http://en.wikipedia.org/wiki/Wi-Fi
http://public.ccsds.org/publications/archive/880x0g1.pdf
http://dl.acm.org/
http://dl.acm.org/citation.cfm?id=1287770

129

<http://www.masinaelectrica.com/dc-motor-speed-controller-pwm-0-

100-400hz-3khz-freq/>.

"Passive Infrared Sensor." Wikipedia. Wikimedia Foundation, 30 July 2012.

Web. 01 Aug. 2012.

<http://en.wikipedia.org/wiki/Passive_infrared_sensor>.

"IKA-TACH." IKALOGIC. N.p., n.d. Web. 01 Aug. 2012.

<http://www.ikalogic.com/ika-tach/>.

"99 000 RPM Contact-Less Digital Tachometer." IKALOGIC. N.p., n.d. Web.

01 Aug. 2012. <http://www.ikalogic.com/99-000-rpm-contact-less-

digital-tachometer/>.

"Infra-Red Proximity Sensor Part 1." IKALOGIC. N.p., n.d. Web. 01 Aug.

2012. <http://ikalogic.cluster006.ovh.net/infra-red-proximity-sensor-

part-1/>.

"Carl Pisaturo - Electrical Notes: Slip Rings." Carl Pisaturo - Electrical Notes:

Slip Rings. N.p., n.d. Web. 01 Aug. 2012.

<http://www.carlpisaturo.com/_ElNo_SLIP.html>.

"Lighting and Display Solutions." TLC5940. Texas Instruments.

 N.p., n.d. Web. 01 Aug. 2012. <http://www.ti.com/product/tlc5940>.

"Lighting and Display Solutions." TLC5971. Texas Instruments.

 N.p., n.d. Web. 01 Aug. 2012. <http://www.ti.com/product/tlc5971>.

"Low Cost Slip Ring." Model 205. Mercotac.

130

 N.p., n.d. Web. 01 Aug. 2012.

<http://www.mercotac.com/html/205.html>.

