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1 Executive Summary: 
 
Persistence of vision is a phenomenon that has motivated engineers for years to 
create a variety of inventions. This has not changed even to this day. There are 
still devices using this visual trick being constructed with a wealth of internet 
examples available to show for it. These spinning devices that utilize LEDs to 
create the illusion of one solid image come in a variety of shapes and sizes from 
spheres and discs, to cylinders. 

2 Project Description: 
 
This chapter encompasses the motivations for why we chose one of these 
devices as our project. It also touches on the objectives or goals for this project, 
and the specifications for the device that we implemented. 

2.1 Motivation: 
 
The construction of these devices encompass a large spectrum of computer and 
electrical engineering knowledge from embedded systems and electronics, to 
digital systems processing and even electric machinery. Which our team felt 
allowed us to effectively test and display our grasp of knowledge. 
 
In the case of our group project, when determining which of our group's ideas we 
wanted to tackle we found that the group had a split in interests. While some of 
the group wanted to create something that displayed a level of creativity other 
members wanted something within the scope of the group's skill sets. Finally, we 
all desired a project that was either inexpensive enough for the group to fund on 
their own or a project that was capable of acquiring sponsorship to fund it for us. 
After some deliberation we all agreed on the persistence of vision project as the 
best fit for all these concepts. The following sections help elaborate on why this 
project was such a good fit for our group. 

2.1.1 Sponsorship: 
 
As mentioned above our team was seeking a project that was inexpensive or 
capable of sponsorship. Since there are a variety of groups or organizations that 
rely on public advertisement and these displays require attention getting 
gimmicks our team felt that a persistence of vision device is a perfect fit. These 
devices have adequate levels of scalability, visual attractiveness, and portability 
that make it perfect for such a use. 
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A persistence of vision device is incredibly visually attractive with its various 
colorful and active displays. They are great at pulling people's attention and 
keeping it and in a scenario where a group is seeking to be both noticed and 
remembered it is quite a useful device. In the case that we were adequately 
funded we could make this device extremely attractive through high resolutions 
of LEDs and wide ranges of colors. This would also allow us to create simplistic 
to complex animations for the device that would draw people's attention. 
 
These devices are also extremely scalable. We wanted to make the device easily 
programmed and accessible to both the experienced and inexperienced. This 
would allow someone experienced with programming to make a variety of their 
own custom displays and animations on the device. Someone inexperienced with 
programming would be capable of inputting various functions such as text inputs 
for banners. Both of these functions are excellent for sponsorship since they 
allow the user to easily set the device for any advertisement they desire. 
 
Portability is obviously a concern for organizations that are advertising at booths 
or displays. These devices are extremely portable and our design is to not only 
make it portable but outlet friendly allowing you to plug it in to any standard 
outlet. 

2.1.2  Skill Sets: 
 
With a group made up of two students of electrical engineering and two students 
of computer engineering, we wanted a project that adequately displayed all of our 
skill sets. This project not only has a significant level of electrical design in both 
advanced and intermediate levels of electrical engineering but it has a significant 
level of both advanced and intermediate levels of programming and computer 
architecture requirements. This means that all four of the team members working 
on the project would find adequate amount of both familiarity and challenge 
within the project. 

2.1.3  Creativity: 
 
To be completely honest, if you are not interested in a project it is very difficult to 
work on it. This is a very true statement and most of our group members wanted 
a project that was entertaining enough to really keep their attention in addition to 
test their knowledge. This project seemed entertaining to our team. It is as simple 
as that. Not only would we be developing our skills as engineers but we would 
also get to flex our creativity by programming and designing a variety of 
interesting displays for this device. The final product would be bright, exciting, 
and interesting to see once it was complete; which our team was very excited to 
experience. 
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2.2 Objectives: 
 
While in concept a persistence of vision device is good we needed to put to 
words specifically what our objectives for this device were. Since we had some 
ideas of what we wanted when choosing this project we also had a variety of 
features we wanted to add besides the basic features these devices generally 
come with. The following sections identify and describe these features in further 
detail. 

2.2.1  Frame Rate: 
 
Since human vision is tricked to perceive motion around the rate of twenty-five 
frames per second we needed a device to spin at a rate capable of recreating 
this illusion. Since twenty-five was the bare minimum we decided to overshoot to 
thirty frames per second, this would hopefully either make a more seamless 
image or account for any variations that may occur within the device. 

2.2.2  Computer Interfacing: 
 
We also desired the project to interface easily with your computer so that the 
user could upload customized code for their custom patterns, text, and 
animations. We wanted this to be done during operation also so a method of 
sending information from the stationary side to the rotating side was needed. 

2.2.3  High Resolution: 
 
We wanted to create a relatively high definition image so we designed the project 
with a high pixel count. We specifically chose 32x384 as our target resolution. 
This meant we needed a total of 32 LEDs. This also meant each LED had to be 
capable of a large scale of colors in order to recreate the image being sent each 
frame. 

2.2.4  Portability: 
 
Since we had decided the device needed to be portable it could be no heavier 
than a small television and only about as bulky. This meant the materials we 
chose to build this device out of need to be durable and light weight. 

2.2.5 Programmability: 
 
We wanted the device to be easily programmable and capable of at least simple 
marquee text displays that would be implemented with our own self developed 
program. This would allow the user to simply input a text banner or the time, and 
have it displayed on the device instead of just the computer interface. In addition, 
we also wanted the device to be complex enough that someone with experience 
in programming could also program to the processor and create their own 
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custom images and animations. This would allow for a lot of space for user 
development which seemed desirable to someone looking to advertise with the 
device. 

2.3 Specifications: 
 
The following is a list of specifications that we have come up with based on both 
our research, assumptions, and components that we have chosen during the 
development of this product. 
 

 32 RGB LEDs 
 16 Green LEDs 
 256 colors per LED 
 60 Hz refresh rate for LEDs 
 15-20 rps 
 61 cm diameter (cylinder) 
 80 cm height (cylinder) 
 12 - 15 lbs 
 Operates on 120V AC and a 9V DC battery 
 2Mbits/s data transmission 

3 Administrative Content: 
 
Having a strong plan for administrating the budget and making due dates is 
essential for completing any project successfully. Our senior design project is by 
no means an exception. Our goal was to layout an administrative plan to govern 
and guide our project through the various stages and be the foundation that 
supported our work. Our administrative plan was laid out in three sections - 
budget, finance and schedule and milestones. 
 

3.1 Budget:  
 
Understanding the cost associated with any project helps separate what is 
feasible from what is unrealistic. As stated in our specifications section, the POV 
display required 32 LED's each with a 256 color range. This required us to 
procure 32 RGB capable LED's which came out to be about $1.51 each. With 
one additional array of 16 LED’s for prototyping this came out to a total of $72.48. 
The text display will require 16 green LEDs each at $0.27 for a total of $4.32. In 
addition to the LED's, we needed to procure some way to control the LED's. We 
used seven controllers total each costing $2.52 per controller with one extra for 
prototyping. This came out to be about $20.16. 
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The POV display must be capable of rotating at 25-30 RPS, though we only 
achieved 15-20 RPS. This required a sizable motor to insure we can operate at 
the required toque values. As well, we required a chassis or frame to support the 
LED array and on board controllers. The motor came out to be $35.00, while the 
Chassis was donated to us. 
 
In order to processes the incoming signals and display the image on the LEDs 
we needed an onboard microcontroller. In addition, we needed a way to 
communicate with this microcontroller during operation so a wireless chip was 
also needed. The microcontroller came out to be $34.99, and the wireless chip 
for the controller came out to be $49.99. 
 
In order to tie the on-board controller to the LED array we needed to procure 
PCB boards. We also needed to procure additional wire and cable to make all 
the miscellaneous connections required. The PCB boards came out to about 
$339.99 while the wires and cables came out to be around $89.98. 
 
The final piece of the budget was the motor control and sensor circuit. The motor 
control chip turned out to be $106.00. The sensor circuit included 2 High-Output 
Infrared LEDs for $2.19 each. It also required 1 LM399 at $2.29. We purchased a 
large pack of varied resistors to handle any possible application we would need 
them for during the project at $9.99 
 
The total cost associated with this project was about $1031.59. As seen in Table 
3.1, a detailed summary of the budget and distributed cost can be complied.   
 

Description Qty Cost (Each) Price 

RGB LEDs 48 $1.51 $72.48 

Green LEDs 16 $0.27 $4.32 

LED Controllers 8 $2.52 $20.16 

Motor 1 $35.00 $35.00 

On Board Controller 1 $34.99 $34.99 

Wireless Chip 1 $49.99 $49.99 

Chassis 1 - Donated 

IR LEDs 2 $2.19 $4.38 

9V Battery 1 $4.99 $4.99 
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LM339 1 $2.29 $2.29 

Copper Pipe [Slip Ring] 1 $6.99 $6.99 

Misc. Equipment - - $150.00 

Prototyping - - $200.00 

PCB 4 - $339.99 

Motor Driver Chip 1 $106.00 $106.00 

  Total: $1031.59 

 
Table 3.1 Project Budget 

3.2 Finance: 
 
The second portion of our administrative plan is to determine where the financial 
backing will come from to support the design and development of our POV 
display. Our goal was to be sponsored and we luckily did gain one sponsor 
during the course of our work. Kemco fabricated and donated to us our Chassis 
for the project. As for the rest of the costs associated with this project the cost 
was split among the group members. 
  

3.3 Schedule and Milestones: 
 
The final portion of our administrative plan was to develop and follow a schedule, 
which included major and minor milestones, to be a guide for keeping the 
production of the project on time and finished by the due date.  
 
Major milestones will be defined as events or task that must be completed before 
the project can continue. A complete list of major milestones for the project is 
below. 

 Senior Design I Documentation Due  
 Prototyping Completed 
 Project Design Finalized  
 Project Fabrication Completed 
 Testing 
 Senior Design II Documentation and Final Project Due 

 
Minor milestones will be defined as events or task that are less critical on an 
individual basis but must be completed before a Major milestone can be 
completed.  
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 Project Research 
 Project Preliminary Design Review (Prior to Senior Design I 

Documentation Completed) 
 Senior Design I Documentation Review 
 Prototype Fabrication 
 Prototype Testing 
 Project Design Review from Prototype Results 
 Fabrication of Chassis 
 Fabrication of LED Array 
 Project Assembly 
 Preliminary Mechanical Operational Test 
 Senior Design II Documentation Review 

 
Finally, as seen in Table 3.3, a completed schedule was put together. The 
schedule contains all predefined major and minor milestones as well as 
completion by dates. 
 

Milestone(Major/Minor) 
Start 
Date 

Duration 
(Days) 

Finish 
Date 

Project Research (Minor): 05/27/12 46 07/12/12 

Project Design Review (Minor): 07/15/12 4 07/19/12 

Senior Design 1 Doc. Draft Review (Minor): 07/25/12 4 07/29/12 

Senior Design 1 Documentation Printing (Minor): 07/30/12 1 07/31/12 

Senior Design 1 Documentation Final (Major): 05/27/12 67 08/02/12 

Prototype Fabrication (Minor): 08/19/12 14 09/02/12 

Prototype Testing (Minor): 09/02/12 7 09/09/12 

Project Design Review from Proto Results (Minor): 09/09/12 7 09/16/12 

Project Design Finalized (Major): 09/16/12 7 09/23/12 

Procurement of Equipment (Minor): 09/23/12 56 11/18/12 

Fabrication of Chassis (Minor): 10/29/12 18 11/16/12 

Fabrication of LED Array (Minor): 11/16/12 14 11/30/12 

Programming of Processors (Minor): 11/16/12 14 11/30/12 

Assembly of POV Display (Minor): 11/18/12 12 11/30/12 

Preliminary Mechanical Operational Test (Minor): 11/16/12 14 11/30/12 

Project Fabrication Completed (Major): 09/23/12 68 11/30/12 

Complete Functional and Operational Testing (Major): 11/30/12 7 12/07/12 
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Senior Design 1 Doc. Draft Review    (Minor): 09/23/12 75 12/07/12 

Senior Design II Doc. and Final Project Due (Major): 12/07/12 3 12/10/12 

 
Table 3.3 Project Schedule 

4 Research: 
 
Designing is both a matter of applying the best known solution for a problem and 
creating new methods when the problem’s solution isn’t well known. In addition, 
many times a solution has multiple methods that fit well for solving a problem. In 
these cases we need to effectively narrow down the list and determine the 
solution our group feels will work best for us. In the case of our project there were 
eight key issues that we needed solutions to for our project that kept appearing in 
our discussions of this project. 
 
The first problem was supplying power to this device. We needed to know 
whether we were going to use AC or DC power or some combination of both. Did 
we need to do some sort of AC to DC conversion? Which one was best for the 
purposes of our project? Section 4.1 discusses this topic and which one best 
suits our needs. 
 
The second issue was signal processing. Our group new we wanted to allow for 
some way for this device to communicate with a computer. The question was 
which medium was best for our purposes? Since none of us had any experience 
in video processing this also meant we needed to figure out which format was 
best suited for our project. Would it be better to process an HDMI signal, VGA 
signal, or just do some form of file transfer through USB? Section 4.2 discusses 
this topic and compares each of these signals and the processing method 
needed to implement them for our project. 
 
The third issue was LED implementation and control. Since we needed to blink 
these LEDs at a rapid speed we needed to know how this would affect the LED. 
What LED is best suited for this application? Will using pulse with modulation 
effect our display rate? How do we effectively control over four hundred LEDs? 
Section 4.3 will discuss these questions and determine the best fitting solution for 
each of these problems. 
 
The forth issue was communications. Since this device has two sides to it, a 
stationary side and a rotating side, we need to determine how we are going to 
send the above signal across these kinetic state changes. Is there a wired 
solution for this problem? Would wireless be an effective solution to this 
problem? Are there issues with wireless when dealing with a rapidly rotating 
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receiver? Section 4.4 discusses these issues and compares each of these 
communication solutions. 
 
The fifth issue is the motor itself. None of us had much experience with motors 
so we needed to research specifically which motor would work best for our 
purposes. Would a DC motor bet best or an AC motor? What is the most 
effective way of controlling the motor for our purpose? How can we minimize the 
noise commonly associated with motors? Section 4.5 discusses these topics and 
compares both motor types, and which method of controlling the device is best 
for our purposes. 
 
The sixth issue is the actual structure of this project. This device is going to rotate 
at a very fast rpm value and that means it needs to be both very stable and 
balanced. What material is best suited for this project then? How do we balance 
it? What will be the torque requirements of this device? Section 4.6 discusses 
these questions and determines the best solution to each of them. 
 
The seventh and final issue is our GUI. Since we want to develop a user 
interface for communicating with our device we need to know the best way of 
going about creating it. Would it be better to create it in C language or Java? 
What classes, functions, and variables will we need to implement the project? 
Section 4.7 will further discuss these concepts answering these questions and 
more. 

4.1 Power Supply: 
 
Just like any machine, the POV display required a source of power to operate. As 
discussed in the motivation, the POV display needed to be portable to require 
movement between events and shows. However, due to the size of the POV 
display and the power requirements of the motor, to operate the POV display 
from a battery supply would require a significantly large battery. A large battery 
deters from the portability of the POV display. As such, the power supply 
research was focused on utilizing power from an AC outlet. 

4.1.1 AC Input: 
 
As previously stated, the POV display would draw all of its power from a standard 
AC outlet. In the United States, the standard power for an outlet is 120 Vac at 60 
Hz. In addition, the standard wiring practices for AC power in the United States 
for wiring of a 120V system is for the black wire to be the hot or line, the white 
wire to be the neutral and the green or bare cooper wire to be the ground. 

4.1.1.1  Circuit Protection: 
 
One additional design requirement for the AC input to the POV display that would 
require research is circuit protection. Since we would be accepting 120V AC from 
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a wall outlet which is most likely rated for 15 to 20 amps into the POV display, a 
good design criterion would be to protect the POV display from potential damage 
caused by surge in current. Over current can occur anytime there is a short 
circuit and since we will be most likely working with a metal chassis, adequate 
protection against short circuits should be taken.  
 
Currently two commonly used forms of over current protection are available, 
fuses and circuit breakers. One disadvantage fuses have compared to circuit 
breakers is once fuses are used or blown, they must be replaced with a new 
fuse. In the case of circuit breakers, the breaker only needs to be reset and not 
completely replaced. However, the upfront cost of circuit breakers generally is 
greater than the initial cost of fuses. Two additional advantage fuses have over 
circuit breakers is their size tends to be smaller than circuit breakers and the 
flexibility to easily change a fuse to a higher or lower current rating without the 
need to re-wire any equipment. Therefore, we would focus our research on 
available fuse blocks or holders and fuses. 

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection: 

 
Cooper Bussmann is a well-known and commonly used manufacturer of fuse 
blocks. The Bussmann Type BC and BCCM Series Class CC fuse blocks offer a 
compact but reliable solution for fused circuit requirements. The BC and BCCM 
series fuse blocks accept Class CC size fuses. As well, the fuse blocks are rated 
for operations at 600 Volts and up to 30 Amps. Since we would be protecting the 
incoming AC power, only the positive or line side of the AC power supply needs 
protection. This means we would only require a single pole fuse block. The part 
number for a single pole Bussmann type BC fuse block with screw connections is 
BC6031S. As well, Table 4.1.1.1.1 shows some of the available Type CC fuses 
offered by Bussmann and their corresponding current rating. 
 

Part Number Current Ratings 

LP-CC-1 1 Amps 

LP-CC-2 2 Amps 

LP-CC-3 3 Amps 

LP-CC-4 4 Amps 

LP-CC-5 5 Amps 

LP-CC-10 10 Amps 

LP-CC-15 15 Amps 

LP-CC-20 20 Amps 

 
Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings 

4.1.2 AC to DC Converter: 
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The POV display required conversion of the AC power coming from the wall 
outlet to DC in order to power the motor, the LED array and the microprocessors. 
A simple full wave rectifier circuit as seen in Figure 4.2, would be used.  

 
 

Figure 4.1.2 Full Wave Rectifier Circuit 
 
Although the exact voltage required for the motor, LED array and 
microprocessors is not known at this time, we do know that we would most likely 
require the functionality to change the voltage output of the DC converter based 
on the requirements. In order to change the DC output voltage of the converter, 
we would vary the AC input by using a simple voltage divider circuit with a 
potentiometer or variable resister. Therefore we focused our research on 
determining what varieties of parts are available and their characteristics. In 
particular, we researched diodes, resisters, variable resisters and capacitors that 
have a maximum operating voltage of at least 150 volts and for the diodes, a 
power rating of at least 1500 to watts. The equation below, where Vr equals the 
ripple voltage and Vm equals the maximum voltage output, was used to 
determine the ripple voltage of the rectifier circuit and help to determine the 
correct combination of resistance and capacitance. 
 

    
  

    
 

4.1.2.1  Diodes: 
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As previously stated, the diodes required for the AC to DC converter was needed 
to operate at a maximum of 150 volts and 1500 watts. This design criterion was 
allowed for a maximum of 10 amps to flow through the diodes and provide 
adequate power to the motor and other circuits. One such diode is the MUR 
Series diode manufactured by Multicomp. The diode was designed with the 
purpose to be used in inverting and rectifying circuits. Part number MUR1560 
has the maximum ratings of 420 Vrms and 15 A forward current. The diode 
comes in TO-220A case allowing for easy integration into bread boards or PCB 
boards. As well, the MUR1560 is readily available with over 3,000 available to 
ship at a cost of less than $1.00 each. 

4.1.2.2  Resistors: 
 
The voltage requirements of the converter do not necessarily directly apply to the 
resistor. The most important characteristic of the resistor will be the power rating. 
Although the power rating for the resistors is less critical than the diodes, we still 
required resistors with a power rating of at least 5 watts to allow for proper heat 
dissipation. Vishay, a well known resistor manufacture, provides a type RS 
resistor that is wirewound with axial leads that would work well with the bread 
boards and PCB boards. One example of a complete resistor part number is 
RS00510K00FE12, which is a resistor rated for 10 kohm, 5 watts and a tolerance 
of +/- 1 percent. 

4.1.2.3  Potentiometers and Variable Resistors: 
 
After during some initial research, it was discovered that potentiometers and 
variable resistors do not come readily available at the power ratings required for 
the converter. Therefore, we used fixed valued resistors similar to the type RS 
resistor previously discussed.  

4.1.2.4  Capacitors: 
 
One available capacitor that meets the required specifications is manufactured 
by Vishay. Vishay offers an aluminum electrolytic type 53D capacitor that can 
operate at 200 Volts. Although the tolerance is only +/- 10%, the capacitor is 
available at rated capacitance range of 15 uF to 220,000 uF. Just like the 
resistor, the capacitor has axial leads to allow for easy integration into bread 
boards and PCB boards. Once again, the exact capacitance requirements are 
not know at this time, but an example of a completed capacitor part number rated 
for 350 uF is 53D351F200JL6. 

4.2 Video and Signal Processing: 
 
We intended to receive a live video stream from a laptop and display this video 
on our LED array. There are two primary formats that computers output video 
data in, VGA and HDMI. The research into these two different formats was to be 
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used to determine which format would be most appropriate for our needs and 
what would be required to use that format. This section will look at various means 
of video data compression and alteration. 
 
 

4.2.1 VGA 
 
We considered using the VGA output available from a computer as the video 
source for our display. This section will focus on the VGA signal format and will 
describe how video data is transmitted via VGA. 

4.2.1.1 VGA Signal Standards: 
 
In order for a computer to know what types of signal a display can handle, the 
computer communicates with the display through the Data Display Channel. The 
protocol used most commonly today is E-EDID, which has been defined by the 
organization VESA. With the E-EDID protocol, the computer reads a binary file in 
the display to determine what signal to send. It seems possible that we would 
have needed to write or edit our own E-EDID or file. 
 
The EDID file is 128 bytes and contains basic information such as the vendor ID, 
serial number, manufacturing date of the display, and which EDID version is 
being used. It also contains a Video Input Definition, which specifies analog or 
digital. In the case of analog it contains several bits that specify which types of 
syncing the display supports, as there are several ways of doing this. A section of 
bits specify which of 16 predefined standard modes the display supports. 
Detailed timing information is contained within the last section. The second to last 
bit is a flag indicating whether or not there are any extensions to the file. 

4.2.1.2 .Signal Sampling: 
 
The video frames to be transmitted via VGA first start in a digital format on the 
PC and are converted to analog though the use of DAC’s. Figure 4.2.1.2.a shows 
the pin configuration for the VGA DB15 connector and a summary of each pins 
function. The pins for Red, Green, and Blue (1 2 and 3) each carry a signal that 
ranges between 0V and 7V referenced from their respective ground pins (6 7 and 
8).  
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Figure 4.2.1.2.a VGA DB15 connector and pin assignment 
 

Figure 4.2.1.2.b shows how the red voltage value could be generated from 4 bits, 
allowing for 16 distinct voltages and therefore 16 colors of red. Combined with 
Blue and Green, this allows for the representation of 212 different colors. There 
are many color modes, each with varying amounts of bits defining red, green and 
blue. The voltage range does not change, and when each RGB pin is read at the 
same time, a single pixel’s color is defined. 
 

 
 

Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs 
 
The VGA signal transmits pixels one by one, starting in the top left of the frame, 
going from left to right, and then down. This process is timed using two 
synchronization pulses, HSYNC and VSYNC. The HSYNC pulse indicates the 
start and end of a row of pixels being transmitted, and the VSYNC indicates the 
start and end of a frame. 
  
In addition to the VSYNC and HSYNC pulses, there are periods of time in which 
no pixel data is transmitted, which are known as the blinking and blanking 
intervals. As can be seen in Figure 4.2.1.2.c, these occur starting just before the 
VSYNC and HSYNC signals and last longer, making them a little wider. The 
period of blinking/blanking time before the SYNC signals is referred to as the 
front door, and the period after the back door.  
 

 
 

Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows 

 
The VGA signal was designed to be displayed on CRT monitors, which is the 
reason the blinking and blanking intervals exist, giving the monitor time for its 
electron gun to realign itself. Additionally, because RGB values transmitted 
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through VGA are a continuous waveform after the initial DAC from the PC, the 
number of horizontal pixels displayed by the CRT must be determined by a pixel 
clock. The clock timing is determined based on which video display mode is 
currently being used. 
 
There are 3 other important VGA pins, the DDC clock, DDC data, and DDC 
return, which allows the display to comminute with the PC and determine which 
display mode will be used to transmit the data. Figure 4.2.1.2.d shows the timing 
specifications of various video modes defined by the original IMB standard and 
VESA standards.  
 
As seen in Figure 4.2.1.2.c, a row of pixels is transferred in the time specified by 
length A, which is the distance between the front edge of each HSYNC pulse. B 
specifies the width of the HSYNC pulse. C and E are the front door and back 
door times, respectively, which surround the HSYNC pulse signal.  D is the time 
during which actual pixel data is transmitted. The vertical timings can be 
interpreted similarly to the horizontal timings, O being the time for a full frame, P 
the VSYNC width, Q and S the front and back door times, and R the actual time it 
takes to transmit the frame. 
 

 
 

  IBM VESA  

Measu
re 

Un
it 

640x4
80 

720x4
00 

640x4
80 

640x4
80 

800x6
00 

800x6
00 

1024x
768 

1024x
768 

60Hz 70Hz 75Hz 85Hz 75Hz 85Hz 75Hz 85Hz 

F_HSY
NC 

kH
z 

31.46
9 

31.46
9 37.5 

43.26
9 

46.87
5 

53.67
4 60.023 68.677 

A us 
31.77
8 

31.77
7 

26.66
7 

23.11
1 

21.33
3 

18.63
1 16.66 14.561 

B us 3.813 3.813 2.032 1.556 1.616 1.138 1.219 1.016 

C us 1.907 1.907 3.81 2.222 3.232 2.702 2.235 2.201 

D us 
25.42
2 

25.42
2 

20.31
7 

17.77
8 

16.16
2 

14.22
2 13.003 10.836 



 

16 

 

E us 0.636 0.636 0.508 1.558 0.323 0.589 0.203 0.508 

F_VSY
NC Hz 59.94 

70.08
7 75 

85.00
8 75 

85.06
1 75.029 84.997 

O ms 
16.68
3 

14.26
8 

13.33
3 

11.76
4 

13.33
3 

11.75
8 13.328 11.765 

P ms 0.064 0.064 0.08 0.671 0.064 0.056 0.05 0.044 

Q ms 1.048 1.08 0.427 0.578 0.448 0.503 0.466 0.524 

R ms 
15.25
3 

12.71
1 12.8 

11.09
3 12.8 

11.17
9 12.795 11.183 

S ms 0.318 0.413 0.027 0.023 0.021 0.019 0.017 0.015 

Pixel 
Clock 

M
Hz 

25.17
5 

28.32
2 31.5 36 49.5 56.25 78.75 94.5 

HSYN
C +/-  

    
Neg 

    
Neg Neg Neg Pos Pos Pos Pos 

VSYN
C +/-   Neg Pos Neg Neg Pos Pos Pos Pos 

 
Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes 

 

4.2.1.3 Analog to Digital Conversion: 
 
In order to display frames transmitted through VGA on our LED array, we would 
have needed to first obtain the signal in a digital format and build each frame. 
This is because the VGA format transmits data in horizontal lines and our display 
needs the data in vertical lines. After each frame is constructed, the data must 
then be retransmitted a single column at a time. Additionally, this would have 
allowed us to perform processing on each frame, which might include cropping 
and resizing. Pre-buffered data can also be accommodated easier if we convert 
the signal to digital because the VGA stream and pre-buffered frames would be 
able to use the same output to the LED array. 
 
For these reasons, ADCs would have been required. From timing diagrams in 
Section 4.2.1.2, we can see that the pixel clock runs at 25.175 MHz at a 
resolution of 640x48. At each of these pulses the analog RGB lines need to be 
read so 3 ADCs would be needed in total. The voltage on each pin ranges from 0 
to 7 volts. With these factors considered, the ADC0801S040 seems to be a good 
choice for an ADC. The ADC0801S040, has an 8 bit output and operates 
between 2.7 V and 5.5 V, so the input signal would have needed to be scaled 
before going into the ADC It also has a maximum speed of 40MHz, and a clock 
input which could be tied to the pixel clock. This ADC costs around $4, however, 
it seems likely that enough could be obtained with free samples. 

4.2.2 HDMI: 
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HDMI or High Definition Multimedia Interface is one of the possible inputs we had 
considered supporting in our POV display project. HDMI input would have 
allowed us to receive a signal in a format that is quickly gaining popularity and is 
currently available on many devices. The main reason we considered HDMI 
support is because Digilent has a Xilinx FPGA based board available with built in 
HDMI support, and most modern DVD players and laptop computers have HDMI 
outputs. This section is mainly focused on how we would have gone about 
receiving the HDMI signal on the Digilent Atlys board and then translated that 
signal into a format we can use to display it on our LED array.  

4.2.2.1 HDMI Signal Standards: 
 
The HDMI standard indicates that the term used to describe HDMI inputs is 
“HDMI sink”, and the term used to describe HDMI outputs is “HDMI source”. Our 
POV display would therefore have been the HDMI sink and any device 
connected to our display would have been the HDMI source. HDMI has two 
separate communication channel protocols that we must become familiar with: 
DDC, and TMDS. Another important signal that must be considered is the TMDS 
clock signal. HDMI provides content protection capabilities through HDCP or 
High-bandwidth Digital Content Protection. HDCP will not be necessary for our 
project so we will not consider it in our research. HDMI is also capable of sending 
control signals in both directions, allowing the connected devices to send 
commands to each other. We would have most likely not taken advantage of 
HDMI control signals. Our main focus for HDMI signal standards will be on the 
DDC and TMDS communication channels. The pin configuration for an HDMI 
cable is shown in the following Table 4.2.2.1.a. 
 

PIN Signal Assignment PIN Signal Assignment 

1 TMDS Data2+ 2 TMDS Data2 Shield 

3 TMDS Data2- 4 TMDS Data1+ 

5 TMDS Data1 Shield 6 TMDS Data1- 

7 TMDS Data0+ 8 TMDS Data0 Shield 

9 TMDS Data0- 10 TMDS Clock+ 

11 TMDS Clock Shield 12 TMDS Clock- 

13 CEC 14 Reserved 

15 SCL 16 SDA 

17 DDC/CEC Ground 18 +5V Power 

19 Hot Plug Detect   

 
Table 4.2.2.1.a HDMI Pin Configuration 

 
 DDC or Display Data Channel provides a way for the display to communicate 
which resolutions are supported to the graphics output device.  HDMI uses a 
DDC protocol named Enhanced Extended Display Identification Data or E-EDID. 
This is represented by a 256 byte binary file stored in ROM on the display. Since 
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we would have created the display we may have to create our own EDID data file 
in order to properly have a device such as a DVD player send the correct 
resolution picture. Creating a compatible EDID file may have proven beneficial to 
us since it may eliminate the need for down scaling the resolution of the input 
since the file would communicate to the HDMI source which resolution it should 
be sending to the sink. Table 4.2.2.1.b below shows the structure and 
requirements of EDID information. 
 
 
 
 

Description Required 

Block “0” Header Yes 

ID Manufacturer Yes 

ID Product Code Yes 

ID Serial Number No 

Week of Manufacture No 

Year of Manufacture or Model Year Yes 

EDID Version Yes 

EDID Revision Yes 

Basic Display Parameters and Features Yes 

Display x, y Chromaticity Coordinates Yes 

Established Timings No 

Standard Timing Identifications No 

Preferred Timing Descriptor Block Yes 

Range Limits Descriptor Block No 

Monitor Name Descriptor Block No 

Other Descriptor Blocks No 

Extension flag Yes 

Checksum Yes 

 
Table 4.2.2.1.b EDID Information and Requirements 

 
TMDS or Transition Minimized Differential Signaling is an encoding protocol that 
takes place for the HDMI audio and video data. “Transition Minimized” means 
that the number of transitions in the digital signal is reduced as low as possible. 
This means that the transition from 0 to 1 or vice versa will happen as few times 
as possible in the transmitted signal. The reason for this is to minimize the 
chance of the signal degrading along the transmission line. “Differential 
Signaling” means that there are two different signals being sent, one on each 
cable in a twisted pair. One of the signals is the audio and video data, and the 
other signal is the inverse of the first. The receiving end compares the first signal 
with the second and calculates the difference between the two; this data is then 
used to make corrections when possible. There are three TMDS channels in an 
HDMI cable; each channel has its own twisted pair. There is also a TMDS clock 
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signal, which itself is not a TMDS signal, but simply a digital signal to help 
synchronize the TMDS signals and allow for the differential calculations needed 
for error correction. The following Figure 4.2.2.1 shows a simple flowchart of how 
we will be handling the HDMI TMDS signal with the HDMI input on an FPGA. 
 

 

Figure 4.2.2.1 TMDS Input Flowchart 
 

4.2.2.2 Signal Sampling: 
 
If we were to use an HDMI input we would have used the Atlys board by Digilent. 
The Atlys board is based on the Xilinx Spartan 6 FPGA, and has built in HDMI 
inputs and outputs. The HDMI inputs and outputs on the Atlys board 
automatically encode or decode the TMDS signals for input or output. There is a 
given reference design available which uses the onboard switches to choose 
which video mode to use (resolution and refresh rate). We would have used the 
Atlys board exclusively as an HDMI sink. All of the data received from the HDMI 
port would have then been sent by some communication method to the 
secondary spinning microcontroller which would have organize the data into the 
appropriate latches for display on the LED array.  

4.2.3 Video Processing (Stationary Controller): 
 
Various forms video processing may be required depending upon the required 
format of the frames we build in the stationary controller, and how these frames 
are obtained. The format in which we need the frame data is dependent on the 
specifications for the LED array, including its size and how precise it can 
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represent RGB colors. This was determined by our choice of LED controllers, 
which in turn determined what types of image processing was required. 

4.2.3.1  Color Depth Reduction: 
 
When building each frame, there was an RGB value for each pixel in that frame. 
It is quite likely that these RGB values have a much higher color depth than our 
display is capable of handling.  In code, we needed to convert these RGB values 
into a lower color depth. The simplest way of doing this is to truncate off the least 
significant bits. If we expect that the RGB color data we obtain will be in ‘true 
color’, or 24 bit color, then to reduce it to 8 bit color we would truncate the Red 
and Green data to their 3 most significant bits each, and for the Blue data, to its 2 
most significant bits. Since we only want 8 bits for the color, Blue is picked to be 
the color with fewer bits because the human eye is less sensitive to changes in 
blues when compared to red and green. Figure 4.2.3.1 shows the same picture in 
various color resolutions. 
 

 
Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth  

4.2.3.2  Frame Resizing: 
 
Since the possibility exists that we may not be able to receive the exact 
resolution we desire for our display, we may need to resize the frames as they 
are buffered. This can be accomplished most simply by truncating sections of the 
frame and displaying a cropped version. In the most ideal scenario, we will 
receive frames at a resolution of 640 x 480, which can then be easily cut in half 
to a resolution of 320 x 240. It may also be possible to employ algorithms on the 
entire 640 x 480 frame which would reduce it to 320 x 240 by using blurring 
techniques, but this could have an effect on how nicely the images look on the 
display, and they also come with a heavy processing cost. 

4.2.3.3  Frame Skipping: 
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Assuming there is a certain amount of image buffering and that we are receiving 
frames into this buffer at a particular rate, it is possible that we may receive more 
frames than we need and might need. Our display is intended to show 30 frames 
per second, and most video modes provide frames at around 60 Hz.  In this 
simple case we receive frames at twice the frequency we need them, we could 
simply use every other frame. A more complicated frame skipping algorithm may 
be needed frequency at which frames are buffered can’t simply be cut in half.  
 
There is also the possibility of increasing or decreasing the rotation speed of the 
display, which determines our number frames per second, to a value such that 
that it even divides evenly with the frequency of frames being received. As an 
example, if the video mode we are in is providing frames at 70 frames per 
second, we could display this nicely if we changed our rotation speed to 35 
frames per second and then simply used every other frame. It seems likely 
however that we can receive 60 frames per second and display at the desired 30 
frames per second. 

4.2.3.4  Video Compression: 
 
The real time requirement of transferring the frames between the stationary 
board and the rotating board is of some concern. Calculations for the required 
data rate seem to suggest that the amount of data we are transferring is small 
compared to the bandwidth, if it does become an issue due to overhead from 
various transfer protocols it would be good to have an efficient solution for 
minimizing the amount of data that needs to be transferred.  
 
Video compression is possible because within each frame exists redundant data 
that could be described more efficiently, with or without loss of information. 
Redundant data can exist in two forms, spatial and temporal. Spatial redundancy 
occurs when there are repeated pixels in a single frame. Temporal redundancy 
occurs when pixels values do not change from frame to frame.  
 
One of the simplest forms of compression involves simply throwing away the 
least significant bits of each RGB color, which would allow each pixel to be 
represented by fewer bits. Since our display is a 256 color display, this form of 
compression will almost certainly occur, and is discussed in more detail in 
section 4.2.3.1 dealing with Color Depth Reduction. 
 
Run length encoding is a very simple compression method that deals with spatial 
redundancy. With run length compression, when a pixel color value C is identical 
for some sequence of length L, it can be represented by (C, L). The type of 
compression works best on computer generated images because of the 
increased likelihood of unvarying pixels. Combined with the color depth reduction 
that is to occur, the likelihood of identical pixels in sequence is increased and 
could greatly reduce the size of the data. 
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Often in transferring the signal between the source and display, composite 
formats are used instead of having 3 separate outputs for RGB. In the composite 
format, instead of RGB values, a Luminance “Y” value and a Chrominance is 
used to represent each pixel. Chrominance is represented by two signals, I and 
Q if using NTSC video, or U and V if using PAL video. Figure 4.2.3.4.a shows 
how the luminance and chrominance are calculating using the NTSC and PAL 
video standards. This in it of itself does not compress the video, it merely 
combines the RGB values into a single stream and it also allows compression 
algorithms to take advantage of the properties of Luminance and Chrominance. 
A simpler composite would involve concatenating the individual RGB values into 
a single byte, since we are using 8-bit color. 
 

NTSC video PAL video/Digital recorders 

Y = 0.30R + 0.59G + 0.11B Y = 0.3R + 0.6G + 0.1B 

I  = 0.60R – 0.28G – 0.32B U = (B – Y) x 0.493 

Q = 0.21R – 0.52G + 0.31B V = (R – Y) x 0.877 

 
Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance 

 
One form of compression relies on the premise that the human eye has poor 
detection of changes in chrominance values, with heavier importance placed on 
Luminance. Based on this nature, we could use a compression technique that 
involves throwing away much of the chrominance data and uses interpolation to 
determine the chrominance value at each pixel location instead. This method of 
compression is referred to as an Interpolative compression scheme. As an 
example of this method, we will throw out 3 out of 4 columns of chrominance 
values and 3 out of 4 rows of chrominance values, reducing the total amount of 
values by a factor of 4. Figure 4.2.3.4.b shows a matrix of chrominance values, 
the blue dots representing values thrown out, and black dots representing values 
to remain in the matrix. Shown also is a sample calculation using interpolation to 
approximate the missing chrominance values. 
 

 
Figure 4.2.3.4.b Method for Interpolating Chrominance Values 
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Using only spatial compression methods, the amount of data that is required to 
be transferred can be vastly reduced, as has been seen. This helps to reduce 
any issues involving the data transfer rate between the two microcontrollers 
being too slow. It is important to note that using video compression involves a 
significant tradeoff between the required processing time and data size. Some 
forms of compression require additional processing power at the transmitting and 
receiving side because of the mathematical calculations that would need to be 
performed.  
 
In our real time application, the right balance between compression and data rate 
is critical. On the stationary processor, where we have a faster clock speed, we 
can perform color depth reduction and combine the RGB values into a single 
byte before transmitting. Using those two techniques alone, the rotating 
processor would not need to perform any calculations to decode the video. The 
rotating processor avoids any extra processing because it will receive the data in 
the format that it ultimately needs. The rotating processor would be able to 
dedicate its cycles fully to reading the frame buffer and writing to the LED array. 

4.3 LED Array: 
 
This section of research will cover the exploring the different possibilities of not 
only what type of LEDs to use but different possibilities to control the LEDs as 
well. 

4.3.1 LEDs: 
 
There are a several available RGB LEDs all with different characteristics and  
specifications. Some important unique characteristics required by the POV 
display include size and mounting options. In order to reduce the appearance of 
streaking when the POV display is running, the distance between each vertical 
LED needs to be minimized. This eliminates the most common and popular case 
style of LEDs, T-1 3/4 package. The T-1 3/4 style LEDs have a width (as viewed 
from the top) of 5.9mm. Therefore, we turned to researching available surface 
mount LEDs. In general, surface mount devices or SMDs offer a much smaller 
package and are design for use and easy integration into printed circuit boards. 
One available surface mount type LED is manufactured by Multicomp. 
Multicomp's OVS-33 Series SMD Super Bright LED is only 2.8mm wide as 
viewed from the top. This is about half the size of the T-1 3/4 style LEDs. This will 
allow us to group the LEDs on the array much closer reducing the appearance of 
streaking as the POV display spins. Figure 4.3.1 shows the pin information for 
the OVS-33 Series SMD Super Bright LED. 
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Figure 4.3.1 OVS-33 Pin Information 

4.3.2 LED RGB Control: 
 
There are several different methods for controlling RGB LEDs. Two methods that 
we focused our research on were Pulse Width Modulated Controllers and using 
latches with a resistor network. 

4.3.2.1 Pulse Width Modulation: 
 
The brightness of an LED is determined based on the amount of current the LED 
receives during a sample period. Pulse Width Modulation is a form of controlling 
the brightness of an LED by controlling the average current a LED receives 
during one cycle or period by varying the width of a pulse. Several manufactures 
offer a variety of LED controllers but during some preliminary research, it was 
discovered that Texas Instruments offered the best selection and supporting 
material for their line of LED controllers. Two LED controllers we focused our 
research on will be the TLC5971 and the TLC5940. 

4.3.2.1.1  TLC5971 LED Controller: 

 
Texas Instruments TLC5971 LED Driver offers 12 Channel, 16 Bit pulse width 
modulated control of LEDs. TI defines the design application of the TLC5971 is 
for RGB LED cluster lamp displays. The TLC5971 allows control of up to 12 
LEDs broken into groups of (4). Each group containing controls for (3) LEDs or 
the RGB values of each LED. Each LED has individually adjustable output with 
65,536 steps. As well, the TLC5971 allows for serial data communications and 
cascading of an n number of controllers together with a maximum data rate 
transfer of 20 MHz. 

4.3.2.1.2 TLC5940 LED Controller: 

 
Texas Instruments TLC5940 LED Driver offers 16 Channel, 12 Bit pulse width 
modulated control of LEDs. TI defines the design application of the TLC5940 is 
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for full-color LED displays, LED signboards and a general high current LED 
driver. The TLC5940 allows control of up to 16 LEDs but unlike the TLC5971, the 
outputs are not broken into RGB groups. With the TLC5940, the 12 bit pulse 
width allows for each LED to be individually adjusted with 4,096 steps. Like the 
TLC5971, the TLC5940 allows for serial data communications and cascading of 
an n number of controllers together with a maximum data rate transfer of 30 
MHz. One additional useful feature of the TLC5940 is its XERR output. The 
XERR output allows for notification if an LED goes out through its LED Open 
Detection. As well, XERR also allows for notification of an over temperature. Both 
features that may benefit the functionality of the POV display. 

4.3.2.2 Latch Control: 
 
Each LED in our LED array needs to flash its appropriate color at the exact same 
time as all of the others, so the colors that each LED is to display must be stored 
before outputting to that LED. One way of accomplishing this would involve using 
latches. Each LED has 4 inputs, RGB colors and ground. One LED that we 
considered using had a color depth of up to 256 colors. Each LED would then 
require 8 bits of color data to determine which color it should output. If we are 
displaying at 320 x 240 resolution, our LED array will have 240 individual LEDs, 
and a latch will be required for each one of them. 
 
Each latch would need to be able to contain 8 bits. We can use a resistor 
scheme the VGA signal was generated in section 3.2.1.2 on VGA Signal 
Sampling, which would reduce the 8 bits of information down 3 lines which would 
connect directly to the LEDs. In order to address each of the 240 latches, we 
could have used an 8 to 256 decoder, or combination of decoders. This approach 
requires 8 addressing lines from the rotating processor, and 8 data lines, as well 
as a line that would be used to update the output of the latches all at the same 
time, requiring 17 output lines in total. One possible way to reduce the number of 
required outputs from the rotating microcontroller would have been to use a 
counter to address the decoders, as seen in Figure 4.3.1.2. An 8 bit counter 
would require 2 output lines from the controller, one to increment it and one to 
reset it. Its output would be used to address each decoder one by one. The 8 
data lines will still be required, plus the two counter lines, and one final line used 
to activate the latch output, so in total 11 outputs would be required from the 
processor. 
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Figure 4.3.1.2 Latch control Implementation 
 
The resistor network would have used the 8 outputs from each of the latches, 
which are 8 voltages, and would have converted the 8 bits of data into 4 lines 
with specific voltage and current for the RGB and Ground connections LEDs 
have. Overall this scheme involves the huge dilemma of wiring all of these 
connections. In total there are 240 resistor networks which convert the 8 bits 
down to 4, and then 4*240 (960) connections to the LEDs. Additionally, there are 
240 connections from the decoder to the latches, and an 8 bit data bus which 
must connect to each of the 240 latches.  

4.4 Communications: 
 
Since one of our objectives with this POV device was to send a signal encoded 
with an image or frame of a video, we needed a way to transfer data from the 
stationary side of the device to the rotating side of the device. For obvious 
reasons the simple solution of a wire was not applicable without some special 
configurations. There are two options we came up with to solve this issue: a co-
axel wire that is strung through the point of rotation with a rotatable joint or 
wireless transmission via a medium like Wi-Fi or Bluetooth.  
 
The following sections will cover our findings for both methods, and a comparison 
of both methods and their pros and cons for our specifications. The final section 
will sum up our eventual decision and explore the reasons for our choice. 

4.4.1 Requirements 
 
Before we can even discuss either method of communication to our rotating device we 

need to discuss the data requirements that we needed in order to implement the system. 

This is so we can effectively decide the best fit for our POV display.  

First we needed to determine the number of bits required for one LED to display a single 

color. Since we decided we wanted two-hundred-fifty-six colors we knew that we needed 
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about eight bits of information to display a specific color on a single LED. However, we 

don't want to display on just a single LED so we need to be able to determine which LED 

we want to send this color to. Since we planned on having four-hundred-eighty LEDs as 

our vertical dimension we knew we needed nine bits of information to tell the processor 

which LED we were addressing. That is seventeen bits total that is needed to turn a 

single LED in the array a specific color, the eight bits needed for the color plus the nine 

bits needed for the specific LED in the array. Figure 3.4.1 gives a visual representation 

of this concept. 

  

Figure 4.4.1 Data Array 
 
This only turns a single LED in the array a single specific color. We need to turn 
all four-hundred-eighty LEDs a variety of colors that means we need to send a 
seventeen bit word to each LED at once for a single vertical line of our frame. We 
also need to tell the device when a new line should be displayed, so we should 
add two bits for an end of line message and a beginning of line message. For the 
sake of discussion and since it is better generally to overestimate then under 
estimate we will say two bits. This means we need to multiply the seventeen bit 
word by four-hundred-eighty LEDs and add two bits to the end of that to get the 
total bits needed for a single vertical line. In other words we need 8162 bits to 
display a single vertical line of our frame. Now to display the full frame we need 
to multiply this word by six-hundred-forty, since this is our horizontal dimension. 
This brings the data we need to transfer up to about 5.3 megabytes. We aren't 
done yet since we also need end and beginning of frame bits for this word, which 
brings us up two more bits. This is just a single frame and we need to display 
these frames reliably at thirty frames per second. This means we need to send 
the above frame data thirty times per second. This means in one second we are 
sending a little over a hundred-fifty-six megabytes, or more specifically: 
156,710,460 megabytes.  
 
This means no matter what form of communication we choose to use it has to be 
at minimum capable of sending this much information reliably. That being the 
case would have probably wanted a data transfer rate a little higher than this, 
maybe even twice as high as this to make it reasonable that with errors we would 
have still been able to maintain a steady transmission. 



 

28 

 

4.4.2 Wired Communications: 
 
There are many forms of wired communications currently being implemented on 
a daily basis in today's high speed world. There are several design criteria which 
restricted some of the available forms of wired communications. From our 
specifications and project design criteria, we knew that our platform would be 
spinning at a rate of 1800 rotations per minute. Through some preliminary 
research, it was found that the larger number of conductors being transmitted to 
a rotating platform resulted in a smaller maximum allowed RPM's. In other words, 
any conductor larger than four strands would have been unpractical for this 
application. Therefore, the researched was focused on two types of wired 
communications, Fiber Optics and Cooper Coaxial Cable. In both situations, the 
wired communications needed to convert existing Ethernet communications ports 
on the microprocessors to a form that can be transmitted over their respective 
medium. With the idea of using the existing Ethernet ports and protocols of the 
microprocessors one additional criterion of the wired communications would have 
been transmission rates. Currently the standard threshold requirements for 
Ethernet communications are 10 Mbs, 100 Mbs, and 1000 Mbs or 1 Gbs. An 
additional design criterion for wired communications would have been to 
implement the communications with inducing the minimal amount of interference 
to the signal. The last design criteria for wired communications would have been 
to evaluate cost benefits between coaxial cable and fiber optic cable. Below a 
summary of the design criteria is listed and was a guide for determining the 
vitality of each type of wired communications. 
 

 Rotating Speed: 1800 RPM's 
 Transmission Rates: 10/100/1000 Mbs 
 Little to no induced interference  
 Cost 

4.4.2.1  Fiber Optic Communications: 
 
In the following section we researched the requirements for using fiber optic 
communications to transfer the data from the stationary side of the POV display 
to the rotating side of the POV display. 

4.4.2.1.1  Fiber to Ethernet Conversion: 

 

The first portion of research on fiber optic communications was to determine the 
requirements for converting Ethernet communications to fiber communications. 
Fiber optic communications use either single mode or multimode fiber cable. 
Therefore, in addition to determining how to convert Ethernet to fiber, a review of 
single mode verse multimode was required to determine which is preferred for 
Ethernet communications. 
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Single mode fiber optic communications have a smaller core size than multimode 
fiber cables and, as the name implies, single mode fiber cables only operate with 
one optical light. Generally, most single mode fiber systems operate at 1300 nm 
or 1550 nm wavelengths. As well, single mode fiber systems require very strict 
mechanical connections due to the smaller core size. Multimode fiber systems 
operate at 850 nm or 1300 nm wavelengths and have a larger core size than 
single mode fiber cables. However, due to the larger size of the multimode core, 
multimode systems suffer from high attenuation can therefore cannot operate at 
the same distance as single mode systems. One advantage the larger core size 
of multimode systems is the high capacity and transmission data rates. 
Multimode systems can transmit data at rates of 10 Mbs to 10 Gbs. As well, in 
general, the cost of multimode fiber systems is less than the cost of single mode 
fiber systems. 
 
Upon reviewing the differences between multimode and singe mode fiber cable, 
the research on fiber to Ethernet conversions will focus in multimode fiber 
communications only. The difference in transmission length between multimode 
and single mode is negligible for the application of the POV display as the 
maximum transmission distance will not exceed more than ten feet. As well, the 
higher cost and lower transmission rates of single mode fiber cable make 
multimode fiber a clear choice for the application and use of the POV display. 
 
Various Ethernet to fiber solutions exist on the market today. Ethernet to fiber 
converters or media converters are used in various industries from substation 
communications to bringing internet to homes across the nation. Several 
manufactures provide fiber to Ethernet solutions all within the design criteria of 
the POV display. Table 4.4.2.1.1 below list a few available solutions including 
product specifications and cost. 
 

Part 
Number 

Mfr. 
Supported 
Data Rates 

Fiber 
Connector 

Ethernet 
Connector 

Cost 

EIR102-MT 
B&B 
Electronics 

10/100 
Mbps 

MM ST RJ-45 $199.00 

FCU-
100SC 

Aaxeon 200 Mbps MM SC RJ-45 $62.00 

ME-1600-
MM2-ST 

Support 
Systems 
Int. 

10/100 
Mbps 

MM ST RJ-45 $69.50 

 
Table 4.4.2.1.1 Fiber to Ethernet Converters 

4.4.2.1.2  Fiber Optic Rotary Joints: 

 
Fiber optic rotary joints or FORJs are used to make the junction between a 
stationary fiber cable and a rotating fiber cable. As discussed in the main section, 
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the fiber optic rotary joints must be capable of rotating at speeds of 1800 RPM's 
while not inducing a significant amount of inference. Several fiber optic rotary 
joints are available on the market. One company providing a wide range of fiber 
optic rotary joints is the Moog Components Group. Almost all available rotary 
joints can support both multimode or single mode fiber cable and a wide 
wavelength range. Therefore, the research on fiber optic rotary joints was 
focused on the maximum rotating speed and minimum induced noise into the 
signal. 
 
Although Moog provides a variety of fiber optic rotary joints, the manufacture 
however does not provide any FORJs that have a maximum rotating of 1800 
RPMs or higher. Fortunately, other manufactures do provided FORJs that can 
operate at the rotating speed required for the POV display. One alternative to 
Moog is Princetel and their line-up of available FORJs. In particular, Princetel 
offers the MJX series product line. The MJX series fiber optic rotary joints are 
capable of rotating at speeds up to 2000 RPMs. In addition to a maximum 
rotating speed of 2000 RPMs, Princetel's MJX series fiber optic rotary joints have 
an insertion loss of less than 2 dB (less than 0.5 dB typical) with an insertion loss 
ripple of less than plus/minus 0.25 dB. 
 
It is evident that the MJX series fiber optic rotating joint met and exceeded all 
design criteria for the POV display. Depending on what fiber connector and 
wavelength is required to connect to the Ethernet convert, Table 4.4.2.1.2 below 
shows available MJX rotating joints and their respective part number. 
 
 
 

Part Number Fiber Connector Wavelength 

MJX-850-ST ST 850 

MJX-850-SC SC 850 

MJX-131-ST ST 1310 

MJX-131-SC SC 1310 

 
Table 4.4.2.1.2 MJX Part Numbers 

4.4.2.2  Coaxial Copper Communications: 
 
In this section we researched the requirements for using a copper coaxial cable 
to transfer the data from the stationary side of the POV display to the rotating 
side of the POV display. 

4.4.2.2.1  Coaxial to Ethernet Conversion: 

 
Coaxial to Ethernet conversion is the back bone to modern cable modem 
internet. Coaxial communications relay on a single copper core that is shielded 
by an equal but opposite current. This provides one fundamental advantage over 
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fiber communications, the ability to conduct power over the same line as the data 
signal. This allows the conversion of signals to coaxial using simple in-line 
converters that do not require any additional power supply. One such in-line 
convert is provided by EnConn. The EnConn EOC-IN-B Ethernet over Coax 
allows for the transmission of Ethernet of coaxial cable at transmission rates up 
to 10 Mbs. As stated early, the EOC-IN-B is an in-line or passive device. This 
means the EOC-IN-B does not require any additional power. In addition, the 
EOC-IN-B is a compact design allowing the device to be installed using less 
space not only on the stationary platform but the rotating chassis of the POV 
display. However, the EnConn EOC-IN-B only supports Ethernet 
communications up to 10 Mbs. In the case that the communications to the LED 
array will require a higher bandwidth additional research is required to determine 
the best alternative.  
 
One alternative from EnConn is their EOC-AN and EOC-IN Ethernet over Coax 
extender allows for transmission of Ethernet at rates of 10 Mbps up to 100 Mbps. 
The EOC-AN converter requires a DC power input of 12V but the EOC-IN does 
not require any power input. This means we could use the EOC-AN converter on 
the stationary side of the POV display and power the converter from the power 
supply. We would then install the more compact EOC-IN on the rotating side of 
the POV display. Another alternative would be Pulse Link's PL3302 Ethernet over 
Coax bridge. The PL3302 allows Ethernet communications of 10 Mbps, 100 
Mpbs and 1000 Mbps. Although the PL3302 allows for Ethernet communications 
up to 1000 Mbps, the Ethernet bridge will require DC power on both the 
stationary and the rotating side of the POV display. Another downside to the 
PL3302 is its size. The PL3302 dimensions are 6" wide x 1.75" high x 4.75" 
deep. Table 4.4.1.2.1 compares the differences between all converters. 
 

Part 
Number 

Mfr. 
Supported 
Data Rates 

Coax 
Connector 

Ethernet 
Connector 

EIR102-MT EnConn 10 Mbps BNC RJ-45 

EOC-
AN/IN 

EnConn 
10/100 
Mbps 

MM SC RJ-45 

PL3302 
Pulse 
Link 

10/100/1000 
Mbps 

MM ST RJ-45 

 
Table 4.4.2.2.1 Coax to Ethernet Converters 

4.4.2.2.2  Coax Rotating Joint: 

 
Once the Ethernet is converted to Coax, just like with fiber, the coax will require a 
rotating joint to make the bridge between the stationary side and the rotating 
side. Although extensive research was done, only one practical solution was 
found. Mercotac manufactures a variety of rotating joints and slip rings. Included 
Mercotac's product line is a two conductor Model 205 high speed, low torque 
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rotating joint. The joint is not explicitly design for coaxial communications but due 
to the extremely low electrical noise induced by the joint and the fact that a 
coaxial cable can be simplified to two conductor cable makes the Model 205 a 
feasible solution for transmitting the coax cable from the stationary side to the 
rotating side. Some other advantages of Mercotac's rotary joints are life 
expectancy and maintenance requirements. The Model 205 rotary joint is 
manufactured with a life expectancy of several hundred million revolutions. If a 
rotary joint is installed and operated under all specified conditions, Mercotac 
claims the joint can even last for over a billion revolutions. As well, the joints are 
manufactured for to be maintenance free, meaning they will not deteriorate the 
signal over the lifetime of the joint. Figure 4.4.1.2.2 below shows a typical 
mounting and wiring of a Model 205 joint. As well, Table 4.4.1.2.2 list all models 
and their corresponding specifications for the 205 joint. All Model 205 joints have 
two terminals, operate at a voltage range of 0-250 V AC/DC and a current rating 
of 4 Amps at 240 V AC. 

 
 

Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces 
 
 

Part Number Max. Freq Max RPM Ball Bearing Cost 

205 200 MHz 2000 Steel $28.52 

205-SS 200 MHz 2000 Stainless Steel $37.68 

205-H 200 MHz 3600 Steel $29.62 

205-HS 200 MHz 3600 Stainless Steel $38.37 
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Table 4.4.1.2.2: Coax to Ethernet Converters 

4.4.2.3  Ethernet Protocols: 
 
In order to determine which protocol is most appropriate for our purposes we 
looked at the protocols TCP, UDP, and using our own. TCP is protocol that is 
designed to reliability transmit a stream of bytes between two programs running 
on separate systems. TCP allows a program to request the transmission of data 
with a single request and then takes care of segmenting it into IP sized packets, 
which contain a sequence of bytes and a header. TCP handles the scenarios 
such as out of order transmission, duplicate packets, and lost packets. Out of 
order packets are rearranged and lost packets and be requested to be resent. 
Reassembly of the stream of bytes is handled by the TCP receiver, which then 
passes the data to the program. The TCP protocol favors the accuracy of the 
data over timely delivery, and uses positive acknowledgement to guarantee 
reliability. In positive acknowledgement method, the receiver sends an 
acknowledgement for each packet it receives, and the sender expects to receive 
the acknowledgement within a certain amount of time, or it will resend the packet 
because it may have been lost or corrupt.  The favoring of accuracy over 
transmission speed makes TCP generally a poor choice for a real time 
application.  
 
Another protocol option is to consider is UDP. UDP doesn’t use any handshaking 
and does not guarantee that data is in order and not missing. Any reliability and 
accuracy checking, as well as error handling must be performed at the 
application level if it is a concern. In our case we could probably implement these 
checks at the application level. For instance after each frame is transmitted to the 
rotating board we could send a UDP datagram back to the stationary one 
confirming its receipt. UDP is often used for real time systems where losing a 
packet is preferable to waiting on it, which might make it lend itself better to our 
application. This would require that we handle the scenario losing a packet 
appropriately at the application level however, although ideally there will not be 
any packet loss. Packet loss is unlikely because our two systems are connected 
back to back via cross-over Ethernet cable, and the communication is limited to 
those two systems.  A UDP packet consists of a header which contains the 
source port number, destination port number, length, and a checksum, all of 
which is followed by the actual data. 

4.4.2.3.1  Ethernet Software Library: 

 
The stationary FPGA would have communicated with the rotating FPGA using 
Ethernet wired communications. In this section we will be considering how the 
Ethernet communications work. This includes software library identification, and 
protocol selection. Software library identification for the FPGA was more 
challenging than expected. The Atlys board was expected to come with built in 
Ethernet functionality but it seems that this is not the case. Xilinx offers software 
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in the form of Intellectual Property (IP) cores to support Ethernet communications 
but this core is not free. Licensing fees would cost us over $1,000. To keep the 
costs of this project low we searched for alternate solutions. There is a website 
opencores.org which has open source “cores” available for FPGA’s. Cores are 
FPGA software packages that program the FPGA to function like a certain 
hardware design. We were able to find a core which implements a 10/100 
Ethernet MAC on the FPGA. Using this core we would have been able to use the 
Ethernet ports on the FPGA’s for communication. If we used the Ethernet core 
then we would have used the UDP protocol because flow control and 
acknowledgements are unnecessary for our application. A live video feed cannot 
afford to retransmit packets. It makes more sense to simply drop any lost packets 
and continue transmitting the next frames. 
 
Another alternative may have been to use the Ethernet ports in a non-standard 
way. We could have used the pins on the RJ-45 connector to send the data using 
our own design. If we picked that route we would not have been using any 
Ethernet protocols but simply sending raw data through a wire. This would have 
been the simplest method to design and implement because it would not have 
required any complicated software library or IP cores. After looking at example 
code using the Xilinx Ethernet MAC core it was obvious that many hours would 
be required just to understand the example. The core available through the 
opencores.org website was even more complex because it lacked documentation 
and examples. Another fact worth mentioning is that the cores do not work in a 
straightforward way like C programming. They are actual hardware 
implementations and should be viewed as such. If we create our own method of 
using the output pins for the RJ-45 connector we may have been able to simplify 
communication greatly. We would have created our own header for the data 
being sent to identify what is being sent. We would have most likely used a clock 
speed of 200MHz for a 100Mbit/s data sampling rate. 

4.4.2.4  Microprocessor Ethernet Hardware: 
 
A possible component to implement Ethernet communication on our boards 
could have been the Arduino Ethernet Shield, which would have required that we 
use Arduino boards for the rotating and stationary controllers. The board has a 
16 kilobyte buffer and has a connection speed of 10/100 Mb. The board supports 
both TCP and UDP connections as well as simply transferring single bytes at a 
time without any protocol. The board contains a library of functions including a 
server class, client class, and an EthernetUDP class, as well as the main 
Ethernet class and IPAddress class which allows you to assign the board an IP 
address. 

4.4.3 Wireless Communications: 
 
We considered wireless communications in order to send information from the 
stationary FPGA to the rotating microcontroller. The wireless communication 
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must support a high enough bit rate to send a 320x240 color video signal. The 
color video signal would have had 256 possible colors per pixel, so 8 bits per 
pixel would have been needed. We would have also liked to transmit 30 frames 
per second. The minimum required bitrate that we would have needed in order to 
achieve the desired frame rate would have been 320x240x8x30 which is 
18.432Mbps. We considered a 480 LED array supporting a 640x480 resolution. If 
we had used the higher resolution then our bandwidth requirements would be 
640x480x8x30 which is 73.728 Mbps. Both WiFi and Bluetooth are capable of 
these speeds so we considered both technologies. Generic RF communication 
was not considered because we did not believe that it would support the 
bandwidth that would be required for real time video. We also researched if the 
rotation of the microcontroller would hinder wireless communications. 

4.4.3.1 WiFi: 
 
WiFi is the common name for the IEEE 802.11 wireless communication standard. 
This technology most often uses a 2.4GHz frequency. A large advantage to using 
WiFi for our wireless communications is that all modern laptop computers have 
built in WiFi communication capabilities. It was possible for us to write software 
for a PC that allowed direct WiFi communication between a PC and the rotating 
microcontroller in order to send text messages or images to be displayed.  

4.4.3.1.1 WiFi Protocols: 

 
The specific WiFi protocol we considered is 802.11g. Devices that use this 
protocol are commonly available and are capable of up to 54Mbps data transfer 
rates, which is more than enough for our application. WiFi has two possible 
modes of operation: infrastructure and ad-hoc. Infrastructure is the most 
commonly used mode, but it requires an existing infrastructure including wireless 
routers and/or wireless access points. We considered the ad-hoc mode for this 
project since it does not require any other external hardware. Ad-hoc would allow 
us to set up a direct wireless connection between the FPGA and the 
microcontroller for bi-directional communication. Although bi-directional 
communication would be supported we would only have to communicate in one 
direction. The following Figure 4.4.3.1.1 shows a comparison between 
infrastructure and ad-hoc modes of operation. 
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Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison. 
 
Because of WiFi’s popularity there are many options for WiFi hardware. Digilent 
offers a WiFi adapter for their boards although it only supports 2Mbps data rates. 
Arduino shields are also available to add WiFi support. All modern laptop 
computers and cell phones have WiFi built in. With WiFi supported by so many 
devices it would be a convenient communication method for us to choose. 

4.4.3.2  Bluetooth 
 
Bluetooth may have also been possible as an alternative to WiFi. A possible 
advantage that Bluetooth may have had is that it is a low power, short range 
method of communication. Short range for our application would have been 
desirable for security purposes. Anyone communicating with our display would 
have to be within about 30 feet of the device. Bluetooth also works on the 
2.4GHz frequency, and with the v3.0 specification can achieve data rates of up to 
24Mbps. All modern cell phones have built in Bluetooth communication 
capabilities and allow us the option of creating a mobile application to interface 
with our POV display. If we could have found suitable Bluetooth hardware 
compatible with our FPGA and microcontroller then this would most likely have 
been our preferred method of wireless communication. 

4.4.3.2.1 Bluetooth Protocols: 

 
Bluetooth protocols are divided into two categories: controller stack and host 
stack. The controller stack protocols are protocols built into the Bluetooth 
module. The host stack protocols are what we will use to deal with our video data 
to be sent. We looked at both the controller and the host stack protocols relevant 
to our project in order to help facilitate communication programming during the 
design phase. First we considered the relevant controller stack protocols which 
are: Link Management Protocol (LMP), and Asynchronous Connection-oriented 
Logical transport (ACL). The LMP protocol’s function is related to the name of the 
protocol, it manages the links. More specifically the LMP protocol deals with how 
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Bluetooth devices can scan and discover each other and set up a link in order to 
exchange data. Once a link has been set up, a new protocol can take over 
communications between the devices, in our case this would have been most 
likely ACL. The ACL protocol is designed to transmit general data packets on a 
previously set up Bluetooth link. ACL supports Enhanced Data Rate or EDR for 
increased bandwidth by changing the modulation technique. Theoretically 
Bluetooth is capable of achieving 24Mbps data rates using EDR. As far as 
hardware availability, the Digilent boards have a Bluetooth adapter available. 
There are also shields available for Arduino boards to add Bluetooth support. 
Adapters for PC’s are easy to find and affordable, if the PC doesn’t already have 
a built in solution. All modern cell phones have built in Bluetooth support. 
 

4.4.3.3 Effects of Rotational Speed: 
 
According to a research paper concerning wireless sensor networks, rotational 
speed is a factor in wireless signal quality. Some of the possible effects that we 
had to consider are path loss, multipath fading, the Doppler effect, and 
electromagnetic noise.  Path loss is when the path may become interrupted due 
to line of sight differences along the path that our rotating microcontroller would 
travel through. Multipath fading could happen if the microcontroller receives the 
same signal from different paths at the same time. The Doppler Effect is most 
known for the frequency distortion of sound waves, but would have the same 
effect on electromagnetic waves as well. Electromagnetic noise could be caused 
by our mechanical components such as our motor, we probably do not need to 
consider electromagnetic noise for our project. According to the research paper, 
electromagnetic noise generated by mechanical components is usually in 
frequency ranges less than 1.5GHz. We used  WiFi and could have used 
Bluetooth, both of which operated at the 2.4GHz frequency. It is safe to conclude 
that any electromagnetic noise introduced to our system from the mechanical 
components should not interfere with our wireless communications. 

4.5 Motor: 
 
In order to create the illusion of motion through the phenomena known as 
persistence of vision it comes to no surprise that we need some sort of motor. 
This motor needs to be able to rotate whatever apparatus we designed that 
housed the LEDs, processor, and any other circuit elements we needed to 
implement the system. It also needed to be able to rotate at the rpm needed to 
‘trick’ the brain into seeing motion. In addition, under the considerations that this 
project was designed for the use of advertisement we would also like to find a 
motor that is as silent as possible so as to not be discomforting to those who 
either work around it or potential customers whom are attracted to it 
 
There are a variety of motors available for such a use but for the most part the 
motors fall into two categories AC and DC motors. In the following sections we 
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will not only discuss the above design considerations but also discuss the pros 
and cons for both the AC and DC motors for each consideration. This discussion 
will eventually lead to which motor type we picked and the reasoning for the 
choice. Finally, in the last two sections we will discuss the process of controlling 
the motor we chose. 

4.5.1 Torque Requirements: 
 
As will be discussed further in the chassis design section it showed that we 
needed about 0.4 Nm to get the motor to just initially spin the LED apparatus. 
After that the torque requirements were much lower. This however, is actually a 
pretty large requirement for motor standards considering most cheap motors are 
rated for far lower ranges, somewhere in the 1/35 to 1/9 horse power range. This 
proved to be a bit of an issue since that means we needed a high torque motor 
that also could maintain our revolutions per second value. 

4.5.1.1 AC Motor Application for Torque Requirements: 
 
AC motors are perfect for this sort of activity. Our research showed that AC 
motors tend to be used for high torque requirements and specifically maintained 
high torque requirements. 

4.5.1.2 DC Motor Application for Torque Requirements: 
 
DC motors however, capable of getting high torque at start up but did not 
maintain them as effectively as AC motors. This did show though that both 
motors could be used for the application we desired it just seems that the DC 
motors needed for this application were rather costly. These motors can range 
from anywhere between two hundred dollars to a few thousand dollars. Used 
motors that reach these requirements were difficult to acquire, with none at the 
local Skycraft store available for purchase until we made a lucky break and found 
one. 

4.5.2 RPM Requirements: 
 
Under the consideration that the human eye is tricked into seeing motion at a 
rate of about twenty-five frames per second and a single rotation of the device is 
a frame we know we needed a motor that can handle twenty-five rotations per 
second. This is the bare minimum. We decided that we wanted to overshoot this 
value by five frames or rotations in order to create a smoother image. Our group 
thus decided that thirty rotations or frames per second would be adequate.  
 
Thirty frames per second is equivalent to one-thousand-eight-hundred frames or 
rotations per minute. This means we needed a motor that can make one-
thousand-eight-hundred rotations per minute to accomplish the desired frame 
rate. This rpm value cannot vary much and must be maintained at a constant rate 
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otherwise there may be distortions in the image due to the increasing and 
decreasing of the delay between each flash of an LED. 

4.5.2.1 AC Motor Application for RPM Requirements: 
 
Through some research it became apparent that AC motors were quite capable 
of reaching these rpm values required. However, the real problem came in the 
control aspect of the motor, or more specifically the ability to keep the motor at a 
constant rpm value. The rpm value of an AC motor can only be varied through 
either the number of poles the motor is built with or through the electric frequency 
of the voltage being applied to it. This can be done through an inverter also 
known as a variable-frequency drive, and this is a plausible solution. It is 
however, an expensive solution with some inverters ranging from two-hundred to 
two-thousand dollars. According to further research it also seemed like this 
problem could be solve by just buying a DC motor since many DC motors are 
actually AC motors with these variable-frequency drives pre-built within them. 

4.5.2.2  DC Motor Application for RPM Requirements: 
 
In the case of DC motors our research revealed that DC motors are generally 
used for our purposes, and the rpm requirements could be met easily with these 
motors. Considering DC motors are highly controllable and designed for constant 
rpm output it makes for a perfect fit with our application since our device would 
be running under one speed consistently and that speed must have minimal 
variations. 
 
Controlling a DC motor is actually a relatively simple process. We could either 
achieve it through a variable resistor albeit this can generate a lot of heat, or we 
can use some form of PWM circuit to control the rpm of the motor. This left us 
with some options and both were relatively inexpensive solutions. 

4.5.3 Sound Requirements: 
 
Considering this product is for in-person advertisement uses we want minimal 
obstructive noise. Especially since we planned on playing videos off the device 
that include sound effects or music. This being the case there are two things that 
can cause large amounts of obstructive sound and that is either the motor or 
improper weighting. In the case of improper weighting the torque created by the 
motor alone causes rattling since the device is not properly balanced or 
fashioned down. This can be solved through the design of the chassis. However, 
we still had to watch out for our motor being rather loud. Our research showed 
that in this case DC motors trumped AC motors. AC motors tend to be much 
louder than DC motors of all makes and models. 

4.5.4 AC and DC Motor Comparison: 
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With the above considerations reviewed it seems that a DC motor was the best 
fit. An AC motor, while capable of reaching the rpm values we need would have 
drastically increase our costs in order to control the speed of the motor. A DC 
motor is much easier and cheaper to control requiring only a simple variable 
resistor or PWM circuit. An AC motor also leans to the noisy side of the spectrum 
of motors, which is something we wanted to limit within our device. As for the 
torque requirements it seems that both would have passed the needs of our 
device, but with two thirds of the issues being solved either cheaper or better it 
comes down to a DC motor being a better choice for our application. 

4.5.5 Motor Control: 
 
Since we decided that a DC motor was the best fit as a solution to our 
mechanical needs, we needed to look further into the methods of controlling the 
motor's rpm value. Luckily our needs for the motor were relatively simple. The 
only thing we needed the motor to do was reach our desired rpm value and 
maintain that value until the device was shut down. We did not need the POV 
device to vary its speed which would have required more elaborate methods of 
control. 
 
There turned out to be two methods that were commonly used for DC motor 
control and that was either using a variable resistor or potentiometer to control 
the speed or to use a pulse with modulation circuit to control the speed of the 
motor through the duty cycle. Both methods were found to be inexpensive but the 
question was which one was better suited for our purposes. 

4.5.5.1 Variable Resistance Method to Motor Control: 
 
In the case of the variable resistance method we came to learn through our 
research that it is the least liked method among motor users. There are quite a 
few problems with this method, especially if you are looking to constantly vary the 
speed of your motor or need to get a small speed but still turn on the motor. 
Lucky for us we didn't want to do either of these so it was still a viable solution. 
 
The main concept that turned us away from this solution though was the heating 
issues that were common with it. In many cases the resistor had a chance of 
burning out because of the high power strain on the resistor. 

4.5.5.2  Pulse Width Modulation Method for Motor Control: 
 
PWM turned out to be a little bit of an overkill for our project's design since we did 
not need the motor to be highly controllable just stainable. The device only 
needed to spin at a constant speed so there was no very high or very low speed 
requirements for the device, just the ability to spin our apparatus and to spin it 
consistently at the desired rpm value.  
 



41 

 
 

PWM was quite capable of doing this and had very low heating effects on the 
system as long as you find the right components for the circuit. The biggest 
drawback to this method however was the noise. When using PWM there is a 
chance of causing mechanical noise within the system, or a humming sound. 

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor 
Control Method Comparison: 

 
In the end, though we wanted to limit the noise, and while the PWM was capable 
of doing far more then we needed the controller to do. It did cut back on heat 
dissipation and we decided that this was the best method. With the motor 
spinning at a high rpm value heat dissipation was a concern and this would help 
minimize any additional heat factors within the circuit. In addition, for the sake of 
scalability having the motor more controllable then our original purpose would 
leave the device open to any future upgrades to the system that might desire a 
stricter control system. 

4.5.5.4  Sensor Reading Applications for Motor Control: 
 
The final concept we needed to think about for motor control though was actually 
tracking the rpm values of the motor so we could send a signal back to our 
controller to vary the input and adjust the speed of the motor to keep it constant. 
This was very important and had to be particularly accurate so that there were no 
distortions created within the image due to an increase or decrease in the rpm 
value and the predicted display rate. We had a couple of things to consider when 
deciding what form of sensing we were going to do to keep track of any changes 
in the rotation speed.  
 
The first being the structure of the device itself or in other words the chasse. If 
the actual apparatus that we rotated was directly pivoting on the motors shaft 
then the rpm value would sync closely with the motor and there would likely be 
minimal lose in rpm value. However, if we had decided a gearbox was required to 
rotate it, such as in the case of using a wired transmission process, we would 
have lost some rpm value in the translation between the motor and the gearbox. 
If this was the case then our sensing side would have to be able to measure the 
rpm value of the apparatus and not the actual motor itself. 
 
The second consideration was our sampling rate. Sense we are taking in a 
snapshot of this device’s motion we are going to want to know how frequently we 
want to take that snapshot. This is very important because we need to measure 
the rpm value rather frequently so that within one second we don’t lose or gain 
information. To put it in perspective one second is thirty frames and if we are 
losing even one percent of those we are losing point three frames. That doesn’t 
seem large but point three frames can become eighteen frames in one minute 
and ninety frames in five minutes. And each of those is a distortion in the 
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animation or image. This shows how important our sampling rate is to keep the 
integrity of the image. 
 
There are two options that seemed to be rather common for rotational speed 
sensing when it comes to motors. These methods are the Hall effect and infrared 
sensing methods. Both have their pros and cons so we will look into those and 
whether they fit well for our application. 

4.5.5.4.1  Infrared Sensor: 

 
In the case of using infrared as a method for sensing and controlling the motor 
the process seemed relatively straight forward. We would have an infrared 
emitter on the rotating side of the device and an infrared receiver on the 
stationary side. When the emitter crossed the receiver we would get a “hit” which 
we could then use to calculate an rpm value. We could then send this value to a 
micro-controller where we would then determine whether to increase or decrease 
our motor's rpm value. 
 
This method is very effective for any design we decide to go with. It can work for 
any motor type and is unaffected by the use of a gear-box, and in fact ideal for 
such a use. The only concern for this method was the accuracy. Considering we 
are using an infrared sensor there is a possibility for some failed trips. This 
means we needed to have a substantial number of samples in order to prevent 
too many of these errors. This may mean we need more than one infrared sensor 
in order to prevent these errors such as two or four sets of them. 
 
As an added bonus, the use of this method is great for these projects for other 
reasons. Since we would be using infrared sensors to create trip points along the 
devices rotation we can use these trip points for other things besides just 
calculating the apparatus' rpm value. We can also use this method to predict 
points within its rotation and create finite starting points to our image, allowing us 
to split the image where ever we want. This means we aren't just floating the 
image anywhere the LED happens to start turning on in its trajectory. Uses of this 
include splitting the “screen” of the device into two separate sides, or drifting 
images or text in the opposite direction of our rotation. 

4.5.5.4.2 Hall Effect Sensor: 

 
The Hall Effect method for measuring and calculating the rpm value of the motor 
is very efficient for this application. This process is both relatively inexpensive 
and easy to implement and from our research seemed to also have a very small 
error rate. There are however, a few issues with this method based on how we 
decided to use it. 
 
The first issue with this sensing method is its motor limitations. If we decide to 
use this on the motor side, such as in the case of direct motor-apparatus rotation, 
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it is limited to motors that have a rotating magnetic pole within. This means AC 
motors or certain DC motors are a better fit for this sensing method. Since we 
have already ruled out AC motors because of the expense associated with 
controlling them among other issues, this left us with a limited number of DC 
motor types that can be applied to this sensing method. The most obvious type is 
a brush-less DC motor. This however, is not actually that hindering to our design 
since brush-less DC motors are actually good for this application and are 
generally very silent running motors. 
 
The second Issue with these sensors was kind of alluded to with the above 
paragraph in that they require a moving magnetic pole to measure. This means it 
would be difficult to implement this sensing method in the case of a gearbox 
design. We would have to create some form of moving magnetic pole on the 
rotating apparatus side that would cross the Hall Effect sensor in its rotation. This 
is possible but there are some unforeseen issues that could occur with the 
introduction of a moving magnetic field on the rotating side that is not being 
produced naturally by the components that are there. 

4.5.5.4.3  Motor Sensor Comparison: 

 
After looking at both sensing methods and our over-arching design it seemed like 
the most effective form of controlling our motor would be through infrared 
sensing. While the accuracy of this method could prove to be an issue, with 
enough sample points we would be able to make up for any errors that could 
appear in our measurements. Considering we had already determined we were 
going to do a wired design it seemed like the best method for solving the issue of 
tracking the apparatus' rpm value instead of just the motor's rpm value. In 
addition, it gave us some additional control over our display and flexibility in what 
we could do with it. 

4.6 Chassis: 
 
In the following sections we researched the requirements for the chassis of the 
POV display. Two topics that required research included what types of materials 
will be best suited to construct the POV display and how best to transfer the 
rotational power from the motor to the POV display. 

4.6.1 Chassis Materials: 
 
The chassis of the POV display was where a majority of the weight is located. In 
order to maintain the portability of the POV display some materials we eliminated 
from our research simply because their excessive weight. However, some weight 
from the chassis is required and preferred as the chassis must not twist or move 
while the POV display is running. As well, strength was an important factor as the 
chassis would be put through a range of forces as the display goes from 
stationary to full rotation speed. Steel and stainless steel both have high strength 
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values but weigh more than was desired for a portable device. Wood and plastics 
would have reduced the weight of the display but did not offer the flexibility to 
make a custom design that the display most likely would require. As well, wood 
and plastics may have been more susceptible to twisting and moving while the 
display is running. Therefore, we focused our research on aluminum as it 
provides the best mix characteristics to meet the requirements of the chassis. 
Table 4.6.1 below list several commonly used aluminum pieces, the type of 
aluminum and their weight. The information in Table 4.6.1 was used to calculate 
the torque requirements of the POV display during the design phase of the 
chassis.  
 

Type of Aluminum Weight 

1/4" Plate (Type 6061-T6) 1.764 lbs per square ft. 

1/4" x 1/4" Square Tubing (Type 6061 EXT) 0.294 lbs per lineal ft. 

1" Solid Rounds (Type 6061 EXT) 0.924 lbs per lineal ft. 

 
Table 4.6.1 Typical Aluminum Pieces and Weight 

4.6.2 Chassis Rotating Interface: 
 
The most challenging portion of the chassis design was determining the best 
solution to rotate the POV display. If we had used wired communications, the 
center point of rotation would have been left available to allow for the mounting of 
either the fiber rotary joint or the coaxial rotary joint. Wireless communications 
did not require the center of rotation to be left available but was not hindered 
from operation with the center left available. Therefore, we researched options to 
allow for high speed rotation using some form of a bearing allowing free access 
to the center of rotation. 
 
To research possible solutions for rotating the POV display with the center of 
rotation left free, we turned to an online distributor, McMaster-Carr. McMaster-
Carr offers a wide range of industrial products at reasonable prices. One such 
product, and the first feasible solution for rotating the POV display, was a plain 
bearing turntable. Turntables allow for the rotation of devices mounted on top 
while working on the device. One particular turntable, part number 8700K1, 
rotates with the center free and available to be used by the wired 
communications joint. The 8700K1 turntable can support loads up to 337 pounds, 
well above the weight requirements of the POV display. As well, there are 8 inner 
ring mounting holes and 8 outer ring mounting holes providing an adequate 
surface to mount not only the rotating display but also station supports. However, 
the turntable has two downsides that make it a less than desirable solution. The 
first downside was the cost of the turntable at about $215. The second downside 
of the turntable was there are no posted maximum rotating speeds. This meant 
that the turntable may be capable of rotating at the required speed of the POV 
display but no document exists to support it either way. 
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The second feasible solution from McMaster-Carr, and more promising than the 
turntable, was an extended-ring steel ball bearing, Type ER. The extended-ring 
ball bearings have an extended inner ring making installing the bearings easier. 
Although the extended-ring ball bearing did not have any inner or outer mounting 
holes, it did have two knurled cup set screws on the extended inner ring that 
could be used to secure the rotating side of the POV display to the bearing. As 
well, the bearings have a dynamic load capacity of 2,860 pounds and more 
depending on the part number selected. All Type ER extended-ring bearings 
have a max operating speed of 5,000 rpm, far exceeding the requirements of the 
POV display. As well, the cost of the bearings started at about $30 and go up to 
about $80 depending on the part number and size. Table 4.6.2 below shows 
some available extended-ring ball bearings, there size and cost. 
 

Bearing 
No. 

Shaft 
Dia. 

OD Wd. Load Part # Cost 

ER10 5/8" 1.85" 1 7/32" 2,860 lbs 8090T11 $29.67 

ER12 3/4" 1.85" 1 7/32" 2,860 lbs 8090T12 $32.61 

ER16 1" 2.05" 1 3/8" 3,145 lbs 8090T13 $33.79 

ER24 1 1/2" 3.15" 1 15/16" 6,535 lbs 8090T17 $59.40 

 
Table 4.6.2 Extended-Ring Ball Bearings 

4.7 Graphical User Interface: 
 
We developed a GUI for use on a PC and researched the possibility of also 
having one for an android device which would allow us to send either a text 
message or image to be displayed on the POV display. When sending an image 
to be displayed the image had to be in the correct resolution and format. If time 
permitted we would have been able to have the software handle some basic 
image formatting. First we will discuss the requirements of the application and 
the method of communication. Last we will consider multiple programming 
languages that will allow us to create the application effectively and efficiently. 

4.7.1 Required Functions: 
 
Part of the research for the GUI was the identification of the requirements. The 
requirements must be identified before the design can begin. We are going to 
use a simplified waterfall model for our software development life cycle. We are 
going to list the requirements, design the software, and then finally implement 
and test the software. In this section we will focus on the requirements 
identification only. The design and testing portion will be discussed in the 
corresponding section later in the paper. The following Figure 4.7.1.a shows a 
diagram of the simplified waterfall model we researched using for developing the 
GUI. 
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Figure 4.7.1.a Software Development Life Cycle – Waterfall Model 
 
The GUI must provide an easy to understand and user friendly interface. The 
interface should have very few elements to avoid confusion. The GUI should be 
operable by anyone and not require any technical knowledge of our display. No 
training should be necessary, and everything in the GUI should be properly 
labeled and intuitive. The only functions necessary were to allow the user to 
enter a text message to display, and to allow the user to select an image file to 
display. The text field should support multiple lines of text and offer the user 
multiple color choices. There should also be color options that the user can use 
to select the color of the entire message and possibility of individual letters. The 
text message input is discussed in more detail in the design section for the GUI.  
 
The image input will only accept the correct format and resolution images to 
display. If the selected image file is smaller than the maximum size than it will still 
be accepted and the image will display centered in the LED display. This can 
possibly be done by analyzing the size of the input image and calculating where 
to put the image so that the space to the left and right of the image is equal, and 
the same for the space above and below the image. If time permitted we may 
have been able to further increase the functionality of our software to properly 
scale images that are too large to be fully displayed. This would be a simple 
algorithm that simply picks and chooses every other pixel to display or something 
similar. The image input, like the text input, is also discussed in more detail in the 
design section for the GUI. A simple use case diagram is shown in Figure 4.7.1.b 
to highlight the main requirements of the GUI. 
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Figure 4.7.1.b Use case diagram for GUI 

4.7.2 Programming Language: 
 
We must choose a programming language to build the communication 
application. We should consider multiple programming languages and choose 
the best one suited to our task and also choose one which we are familiar with. 
This application will have a user friendly GUI and allow simple serial 
communications. All of the requirements listed above must be considered when 
choosing the appropriate language. In order to efficiently create a GUI the 
language will be required to have built in libraries that support agile GUI 
development. The IDE should provide tools that will allow most of the 
development to focus on coding the core functions of the application and not on 
the GUI’s appearance and layout. We considered C++, Visual Basic, and Java. 
 
The C++ programming language is something that we are all familiar with. C 
programming is where we started our programming education and is where C++ 
is derived. This is an object oriented language with wide support and plenty of 
documentation. We had no experience creating a GUI in C++ so further research 
was needed in order to determine whether or not C++ would be worth 
considering for the user friendly application that we were striving for. After some 
research it was found that there are GUI libraries available to assist in developing 
a GUI in C++ but there are multiple GUI libraries to choose from. Multiple choices 
for a GUI library further complicated things since further research would have be 
conducted in order to determine which would be the best library to use. There did 
not seem to be a visual GUI editor for C++ available, and it seems that for most 
GUI applications, C++ is not the language of choice. We believed it was safe to 
say that C++ should not be the language we use to build our communications 
GUI application. Even though C++ was not the best choice for developing the 
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GUI, C++ may be better suited to interface with the hardware for USB 
communications.  
 
Visual Basic is a programming language that is specifically designed to allow 
agile development of GUI applications. The IDE, Visual Studio, has a visual GUI 
editor for programs using Visual Basic. It is very easy to drag and drop text 
boxes, labels, buttons, etc. onto each form of the application. Programming the 
functions of the elements placed in the form becomes as simple as double 
clicking that item and the IDE will jump to the code that controls it. This could 
have been a good choice for quickly developing a GUI based application, but 
only one member in our group is familiar with this programming language which 
may not be adequate. It would most likely be more efficient to have more than 
one group member to assist in the development of this application and having to 
learn a new language may decrease productivity. 
 
The Java programming language was the best language for both developing a 
GUI for a PC and for an android device if we had enough time to implement it. 
The Netbeans IDE has a built in visual GUI editor for Java which greatly 
simplifies GUI design and implementation. The Netbeans GUI editor allowed us 
to develop a GUI application in a similar way that Visual Basic would have 
allowed us to. Java is a high level object oriented language and has many built in 
classes to support agile development. There are also many open source Java 
libraries available for download to provide further features and functionality. We 
were also already familiar with the Java programming language. Java was the 
obvious choice for a high level programming language that we already possess 
enough knowledge to code in and had enough built in features and tools to allow 
us to rapidly build the tools we need for our project. The only drawback to using 
Java was the limited functionality when it comes to accessing connected 
hardware. This could have been an issue for us since we were planning on using 
communications through USB, or a connected wireless adapter. In order for us to 
implement USB communications using Java we would have had to find a suitable 
driver for our desired operating system and find a Java library that is capable of 
interfacing with that driver. Since we found such a driver and software library 
combination it was safe to say that we would be using java for our GUI 
application development. 

4.7.2.1  Image Format Conversion and Resizing: 
 
Our GUI would allow users to select an image to be displayed and load it onto 
the rotating processor. Without being too restrictive on the user, we wanted our 
program to accept virtually any image file format that is common. The primary 
information we needed from the image are the RGB values contained within it so 
that we can format an output file that our device will understand. Each image 
format is different and must be decoded via some method in order for us to 
obtain this data.  
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In order to handle the various image types that the user could select, we had to 
determine that functions within the java library would be able to handle this.  
Several java classes would be used in order to do this, ImageIO, BufferedImage, 
and indirectly ImageReader. Using the java ImageIO class, we open an image 
file by using ImageIO.read() and supply an argument of a name/path. The 
ImageIO class on its own will then search for an ImageReader that claims to be 
able to read that type of image, and decode it. ImageIO.read() will return a java 
BufferedImage, from which we can easily obtain the RGB values by calling the 
function BufferedImage.getRGB() and supplying an x and y coordinate. Using 
this library the user will not need to be concerned with the image file format, and 
we will not need to code the tedious functions that would be required to decode 
the many image format possibilities.  
 
Another concern involved image resizing. Using the simplest solution we would 
require that the user resize the image manually using image editing programs 
before trying to upload it. However, because the BufferedImage class will tell us 
the size of the image that has been selected by called BufferedImage.getHeight() 
and BufferedImage.getWidth(), we could handle the scenarios where the image 
is too small or too large in specific ways. In the case where it’s too large, we 
could simply truncate the image, or offer various methods of cropping the image. 
If the image is too small, it could be padded and centered, depending on user 
specifications. 

4.7.3  GUI Communications to Microcontroller: 
 
The program will have to communicate with the microcontroller in order to get the 
correct image to display on the LED array. The communication should either be 
the wireless communication that we choose to use (WiFi or Bluetooth) or it 
should be through a USB cable. The preferred method of communication would 
be through WiFi or Bluetooth since this is also supported by android devices and 
would allow us to send images to be displayed on the LED’s with our mobile 
phones. It would be very convenient as well if we did not have to connect a 
laptop to our display with any wires. If we use WiFi we will have to use the ad-
hoc mode of networking since it would not be very practical for this project to 
require a wireless router as well. If Bluetooth had been used then Bluetooth 
would be the communication method when using the mobile application, but 
when using a PC a cable will be required. This is because most PC’s do not have 
Bluetooth built in so it would be counter-productive to develop a PC application 
that utilizes Bluetooth communications. If we have additional time we may be 
able to include Bluetooth communication support for the PC application as well. 
 

4.7.3.1  Serial Communication Software Library: 
 
At first it seemed that Java would not have a way to access USB devices. There 
are no built in methods to allow Java hardware access for serial communications. 



 

50 

 

There is a library created by Sun which allows serial communications, but it is 
only supported on the Linux operating system. Further research allowed us to 
find a community created Java library called RxTx which supports serial 
communications on multiple platforms including Windows. In order for the RxTx 
library to work however, we need to find a valid USB driver that will allow 
windows to recognize the connected device for serial communications. If the 
Digilent Atlys board does not include USB drivers for this purpose, we have 
found a driver download as well. The driver is for the Universal Asynchronous 
Receiver/Transmitter or UART chip that is on the Atlys board. The UART chip 
allows the USB to function as a serial communication interface. With the proper 
drivers installed communicating with the Atlys board using USB should be no 
different than using the older RS-232 method. Once the RxTx Library is properly 
added to the JDK we can than import the methods and use them for our project. 
There are methods in the library to handle listing the available serial 
communication ports. The library will then allow us to choose an available port 
and use it for communication. Input and output streams will need to be declared 
in order to send and receive data. Overall the library seems to make it rather 
easy to send and receive serial communications. More details on how the serial 
programming works are provided in the design section. 

4.8 Microcontrollers: 
 
There are many microcontrollers available with many different feature sets. This 
research will focus on the different microcontrollers available and which ones we 
should use in our POV display. We are going to need two microcontrollers, one is 
going to have to deal with the video input and remain stationary in order to be 
able to plug in a device such as a laptop or DVD player. The other 
microcontroller will rotate along with the LED’s and provide all of the information 
to the LED controllers so that they can send the PWM signals to each LED. 
 
The stationary microcontroller is most likely going to be an FPGA since this has 
been the only solution we have been able to find regarding a board that accepts 
HDMI input. The cost of the FPGA is going to be considerable since it is a board 
designed to take HDMI input and possibly process that video signal. HDMI is 
most likely a high definition signal and therefore would require a powerful board 
in order to effectively process that amount of data efficiently. We all have 
academic experience programming an FPGA using Verilog so our biggest 
challenge is going to be figuring out how to process the video input. 
 
Our rotating microcontroller will be considerably cheaper; this microcontroller 
does not have any special requirements other than having enough outputs to 
service the latches and LED’s. For our rotating microcontroller we will focus on a 
combination of cost, and ease of use. Ease of use is a factor because we do not 
have the same experience working with microcontrollers that we do with FPGA 
devices. We would want a microcontroller that will be easy to learn and easy to 
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work with. Because of the large number of LED’s we plan on using, we may also 
have to consider the number of outputs that each microcontroller is able to 
support. 

4.8.1 Digilent Atlys (Stationary FPGA): 
 
The Xilinx Spartan 6 FPGA available on the Digilent Atlys board. The Atlys board 
has onboard HDMI input. The main reason for choosing this board is for the 
HDMI input which will allow us to receive a video input in order to display it on the 
LED array. The HDMI input on the Atlys board will automatically take care of the 
TMDS decoding for us. We will have to figure out how to represent the video data 
in such a way that our secondary microcontroller will be able to split up the data 
and send it to the proper latches to control the LED’s. The Atlys board does not 
seem to have built in pins in order to connect directly to the FPGA’s I/O’s. There 
is a VMOD peripheral that would take care of this problem and allow us to 
connect wires to any of the I/O’s, but this will increase the cost of an already 
expensive board. 

4.8.2 TI Launchpad (Rotating Microcontroller): 
 
TI offers a very cheap microcontroller that we may be able to take advantage of. 
The MSP-EXP430G2 or Launchpad is a development board for the 
MSP430G2XXX series of microcontrollers. The board only costs $4.30 and 
includes two MSP430 microcontrollers, and a USB cable. The board will allow us 
to program the microcontrollers using the USB interface. This microcontroller has 
very widespread support, documentation, and example projects. Possible 
limitations include the limited number of I/O ports, 2KB of program memory, and 
128B of SRAM. The microcontrollers that come with the Launchpad board only 
have 10 available I/O pins. If we were to purchase a separate higher end 
compatible microcontroller we can increase the number of outputs to 16. The low 
number of I/O pins may require us to use more than 1 microcontroller, but as 
stated earlier the Launchpad comes with 2 of them already, and the higher end 
MSP430 controllers with 16 I/O ports are less than $2 each. 

4.8.3 Arduino Uno REV 3 (Rotating Microcontroller): 
 
The Arduino Uno board is another alternative to the TI Launchpad. This board 
comes with an ATmega328 microcontroller on it. The Arduino Uno board takes 
care of the USB interfacing and programming. This board is more expensive than 
the TI Launchpad at $35. The higher price may be justified by the increased 
performance and memory of the microcontroller included. The ATmega328 has 
31.5KB available for program memory (0.5KB is used by the boot loader), 2KB of 
SRAM, and 1KB of EEPROM. The ATmega328 also has 14 I/O pins, 6 of which 
can be used for PWM. Another feature that may be useful is I2C support. I2C will 
allow us to have serial communications to possibly another IC that will expand 
the number of I/O’s available to us. This board is also widely available and 
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supported. There are many hobbyist projects with open source documentation 
and examples for helping us get familiar with programming this board. The 
additional program memory and RAM may not be necessary, but the additional 
outputs that this board provides may make a difference. Another thing to 
consider is the programming language. The Arduino Uno board allows the use of 
a C-like language to program the ATmega328 microprocessor. If we were to use 
the TI Launchpad we would have to use assembly. It may be easier and more 
time efficient to use the Arduino Uno board. 

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller): 
 
The Digilent Cerebot MX7cK development board has a 32-bit PIC32 
microprocessor. This is an expensive choice for the rotating microcontroller but it 
has a much higher clock speed of 80MHz. This higher clock speed may be 
required for our project if we are to process full motion video in real time. This 
board also has a built in Ethernet interface which we can possibly use for 
communications between the stationary FPGA and the rotating microcontroller. 
Programming the Cerebot board should be similar to programming the Arduino. 
Digilent advertises the fact that Arduino projects and code should be compatible 
with their Cerebot boards. Although the Cerebot board seems to outperform the 
other boards in every category it is much more expensive at $99. It may also be 
necessary for us to buy additional Pmod accessories in order to access some of 
the I/O pins further increasing the cost. We hope to find a microcontroller for the 
rotating part of our project that can keep costs to a minimum while having the 
required performance needed for a live video feed. The following Table 4.8.4 
shows a simple comparison between all of the previously discussed 
microcontrollers being considered for the rotating part of our project. 
 

Microcontroller Comparison 

 Digilent Atlys TI Launchpad Arduino Uno 
Cerebot 
MX7cK 

Program 
Memory 

64MB 2KB 31.5KB 512KB 

SRAM 128MB 128B 2KB 128KB 

EEPROM 0B 0B 1KB 0B 

I/O 48 10 14 85 

Frequency 500MHz 16MHz 16MHz 80MHz 

Programming Verilog HDL Assembly High-level High-level 

Cost $199 $4.30 $35 $99 

 
Table 4.8.4 Microcontroller Comparison 

4.8.5 Additional Microcontroller Concerns: 
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This project is highly dependent on sponsorship funding in order to include all of 
our intended features. Video input is not normally a feature found in a POV 
display. Our research has indicated that the reason for this may be the costs 
involved. The Atlys board described above is absolutely necessary for us to 
consider live video input for our POV display but there are other considerations 
that must be addressed as well. At first we decided that our secondary 
microcontroller which will spin along with all of the LED’s need not be as complex 
and expensive as the Atlys board. After much research it became apparent that 
although we do not need an HDMI input on the rotating board, we do need a 
substantial clock frequency in order to properly sample the large amounts of data 
required for a live video feed. In previous sections we have mentioned possible 
data rates that would be required to be sent through communications between 
the two microcontroller boards. Regardless of the communication method we 
choose, we must not consider if these microcontrollers can properly sample the 
data at the required speeds to display a live video feed. Table 4.8.5 shows 
possible resolutions we may consider for our display and the required data bit 
rate necessary. The values in the table assume that the video data is not 
compressed. 
 

Resolution Data Rate 

640x480 73.728 Mbit/s 

320x240 18.432 Mbit/s 

160x120 4.608 Mbit/s 

80x60 1.152 Mbit/s 

40x30 0.288 Mbit/s 

 
Table 4.8.5 Possible Resolutions and Corresponding Data Rates 

 
The data rate values in table 4.8.5.a are calculated using the simple formula HP 
× VP × BPP × FPS where HP is Horizontal Pixels, VP is Vertical Pixels, BPP its 
Bits Per Pixel, and FPS is Frames Per Second. According to the data sheet for 
the ATmega328 microcontroller, the maximum data rate that the microcontroller 
is capable of sampling with its 16MHz crystal is 2Mbit/s. This means that the 
Arduino Uno and TI Launchpad development boards would only be able to 
support a display with a resolution up to 80x60. The calculation to determine the 
maximum data rate given the frequency of the microcontroller is given in the data 
sheet for the ATmega328. The formula is shown next for reference. 
 

     
    
 

 

 
Although formula above came from the ATmega328 data sheet it can still be 
used as an approximation for the capabilities of the other processors too. The 
baud rate for the ATmega328 is measured in bits per second which is why the 
maximum data rate for the ATmega328 mentioned previously was in the units of 
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Mbit/s. Using formula 3.8.4-1 for an 80MHz clock frequency it can be said that 
the maximum practical data rate that the Cerebot MX7cK microcontroller should 
be able to effectively sample should be about 10Mbit/s. The higher clock speed 
allows for a much higher data rate. The maximum resolution that we are 
considering that can be implemented with 10Mbit/s maximum data rates is 
160x120. This leads us to the conclusion that if we intend to implement any 
resolution higher that 160x120 then we will have to use two of the Digilent Atlys 
boards, one which will remain stationary to receive the video input, and the 
second one to spin with the LED’s and send all of the data to the LED controllers. 
Only the 500MHz clock on the Atlys board would be able to effectively sample 
the high amounts of data associated with uncompressed high resolution video. 

5 POV Design: 
 
The persistence of Vision device required two major areas of design to 
successfully create. The first section was our hardware design, which would 
make up the Chassis, motor control circuit, motor, power supply, and display 
alignment sensor. Each of these sections that we designed has subjections 
within them that also needed to be designed for the project. The second major 
section was the software design of the project. This section encompassed the 
Wi-Fi server and connection processes, the image processing for both the text 
and RGB arrays, the data structures for all the code, the handling of all the 
hardware inputs such as the display alignment sensor’s output, and finally the 
GUI that was needed to integrate many of these elements into a more user 
friendly format. The following subsections will discuss the overall design of these 
sections, including design elements that were thrown away during the testing 
phase. Such elements that were thrown away for better methods will be indicated 
both within this section and the testing sections as well as why the better 
methods were chosen. Figure 5 is a photo graphic image of the final design of 
the POV display that we will be discussing in this section. Within the image you 
can see all the elements of the project, hardware-wise that went into the 
construction of the final product. 
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Figure 5: POV display 

5.1 Hardware Design: 
 
The hardware of this device is broken into four major sections. The first section is 
the stationary control section which consists entirely of the AC input, the KBRG-
212D motor control chip, Dayton 9FHD7 DC motor, the computer that will 
connect via Wi-Fi to the rotating microcontroller, and the AC to DC variable 
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adapter. The second section is the power transfer section that consists entirely of 
the slip ring and wires that connect from it to the rotating side. The third section, 
the rotating control side consists of the PIC32 microcontroller, RGB and Text 
LED arrays, and the 9V battery that powers the microcontroller. The final portion 
of the hardware design is the Display Alignment Sensor which consists of the IR 
sending and receiving circuit and the rotating apparatus it is attached to. Figure 
5.1 gives a good visual representation of the flow of the hardware and how they 
will be connected together. 
 
Each of these sections of the device has a variety of different hardware 
components needed in order to achieve the ultimate goal of creating this 
persistence of vision device. The following sections will discuss more thoroughly 
our final decisions on the hardware design of each portion of this device and the 
actual hardware design themselves. This will include the specific components we 
used to implement each of these designs. Also within this section will be a layout 
of the structural design of the chassis which will house all of the electrical 
hardware for this device. 
 

 

Figure 5.1 Hardware Flow Chart 
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5.1.1 Chassis Hardware Design: 
 
As discussed during the research section for the chassis, we constructed the 
chassis from aluminum using a combination of aluminum plate, square tubing 
and solid round rods. 

5.1.1.1 Chassis Dimensions: 
 
Before we were able to finalize our chassis design, some basic dimension 
requirements had to be identified. The first, and most critical dimension 
requirement was for the physical size of the LED array. We then needed to 
determine the size of the chassis base and the space required to mount the 
motor. 

5.1.1.2  Dimensions of LED Array: 
 
We used the Multicomp's SMD Super Bright LED, part number OVS-3309. The 
LED has a vertical dimension of 2.8mm and a horizontal dimension of 3.2mm. 
The horizontal dimension was required to properly mount the LEDs on a printed 
circuit board but are not a dimension required or even necessary to determine 
the size of the LED array and is therefore ignored for the chassis design. We 
mounted the LEDs with a spacing of 1mm between each LED, allowing us to 
determine that the spacing between each LED, as measured from center to 
center, is 2.85mm. Therefore, the maximum allowed total vertical length of the 
LED array is 2.85mm x 128 LEDs or 365mm. Converting the total vertical length 
to inches gives a final dimension of approximately 15 inches to which we 
constructed the LED array to. 
 
Next, we needed to determine the diameter of the LED array. When the POV 
display is running, we can simplify the LED array to cylinder. As well, since we 
wanted the horizontal spacing of the LEDs to be the same as the vertical spacing 
of the LEDs, we used the known pixel ratio of 128 to 384 to determine the length 
required. Dividing 384 by 128 gives the ratio of horizontal pixels to vertical pixels, 
which equals 3 or 3:1. For accuracy, we initially calculated the required horizontal 
length in millimeters. Taking the ratio of 3:1 and multiplying by the known vertical 
length of 365mm we got a required horizontal length of 121.67mm. Since the 
LED array can be simplified to a cylinder, we were able to find the circumference 
of the LED array. Using the formula of C = 2πr, we calculated the radius of the 
LED array which is equal to 119mm. Converting the radius to inches, we got a 
final dimension of approximately 6 inches. 

5.1.1.3 Dimensions of Chassis Base: 
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Now that we knew the size of the LED array when the POV display is spinning, 
we were able to determine an appropriate size for the chassis base. The chassis 
base serves as two purposes for the POV display. The first and most obvious 
purpose is to provide an adequate foundation for the display. The second 
purpose and more important than the first, is to provide a visually marker to 
signify where the limit is to approach the display while it is running. This is 
especially important if, for example, the display is running but not displaying an 
image. Therefore, we constructed the base of the POV display to extend just past 
the fast rotating LED array. Since we knew the radius of the spinning LED array, 
we determined that the base will needed to be at least a 6 inch by 6 inch square. 
We then took into account the extend size of the secondary test LED array which 
will extend approximately 2 inches past the primary image LED array. Adding an 
extra inch between the spinning array and the base gave us a final dimension of 
18 inches x 18 inches. Since constructed the chassis out of 1/4 inch aluminum 
plate, a 18 inch square base provided plenty of weight and strength to fully 
support the POV display while it is running. 
 
The last dimension that was required before we were able to  determine the final 
design of the chassis was the physical size of the motor. Size the motor is 
mounted on the base, it determined the height of the base. The overall length of 
the motor was 8.8 inches. To allow room to mount and secure the motor to the 
base, we designed the base with an internal height of 12 inches. Taking into 
account the thickness of the aluminum plate, the total height for the base is 12.5 
inches. Therefore, the total size of the chassis base is 18 inches x 18 inches x 
12.5 inches. 

5.1.1.4  Chassis Assembly: 
 
Now that we knew the required dimensions of the chassis we began to design 
the assembly of the chassis. A complete chassis model can be seen in Figure 
5.1.1.4c below.  
 
The first step to putting together our final design of the chassis was to determine 
which rotating interface we will use to transfer the rotating power of the motor to 
the LED array. As discussed in our research, we had two options. The first option 
of the turntable provided the easiest solution for mounting the LED array and 
base to the rotating interface. However, due to cost and no defined specification 
of the maximum rotating speed, we choose to use the extended-ring bearing. In 
order to provide the most space for feeding the power supply cable cable through 
the rotating interface, we choose to use the extended-ring bearing with a one 
inch shaft diameter, part number 8090T13. We then secured the bearing to the 
base of the chassis by welding the extended-ring portion of the bearing to the top 
of the base. Although welding does not allow for easy modifications, it provided a 
strong and secure method that of holding the bearing in place during operation of 
the POV display. In order to secure the LED array to the bearing, we inserted a 
aluminum pipe through the inner ring of the bearing. The pipe was then secured 
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to the bearing using the two set screws that come installed on the bearing. This 
allowed for the POV display to be easily disassembled when moving between 
locations. Using this designed allowed us to use the pipe to mount the slip ring 
for electrical power transfer. Lastly, we notched to top of the pipe to allow the 
LED array support bar to be secured to the pipe. Figure 5.1.1.4a below shows a 
model of the bearing and pipe assembly. The chassis base and LED array 
support frame are removed for clarity. 
 

 
 

Figure 5.1.1.4a Bearing Assembly 
 

Next we designed the chassis base. As discussed, the chassis base needed to 
be 19 inches x 19 inches x 12.5 inches. The base was constructed out of two 1/4 
inch pieces of aluminum plate creating a top plate and a bottom plate. The two 
plates were secured together by four solid aluminum rods, one in each corner, 
cut to 12 inches lengths. The plates had counter sunk holes drilled in each 
corner, three inches from each side. The rods were drilled and tapped in the 



 

60 

 

center to accept a 1/4-20 screw. The rods and plates were assembled by 
screwing the plates and rods together. The counter sunk holes on the plates 
allowed for the screws to be flush with the surface. In order to mount the bearing, 
a hole was cut out from the center of the top plate. The diameter of the hole was 
made larger than the diameter of the inner ring of the bearing but smaller than 
the extended flange of the bearing. This allowed for the bearing to rest on the top 
plate and provided a surface for the bearing to be welded to the  plate. Figure 
5.1.1.4b below shows a model of the base assembly, including the cut out on the 
top plate for the bearing. 
 

 
 

Figure 5.1.1.4b Chassis Base Assembly 
 
The LED array support frame was constructed from 1/8 inch square tubing. From 
the calculations for dimension requirements of the LED array, we knew that the 
horizontal LED array support bar, the piece that will be connected to the notched 
pipe, needs to be 14 inches long. This dimension needed to be exact as it will 
directly affect the aspect ratio of the display. At each end of the horizontal LED 
array support bar, vertical LED array support bars were welded. We know from 
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the LED array dimension requirements that the vertical support bars must be at 
least 15 inches long.  
 

 
 

Figure 5.1.1.4c Chassis Base Assembly 

5.1.1.5  Motor Interface: 
 
To transfer the power of the motor to the LED array, we mounted the support 
pipe directly over the motor shaft. Then using a set screw we secured the pipe to 
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the shaft. This allowed for the motor to directly drive the LED array and simplified 
to the fabrication process.  
 

5.1.1.6  Chassis Torque Calculations: 
 
Now that we have finalized our design for the POV display chassis, we needed to 
estimate the torque requirements. To simplify the torque calculations we used the 
simplified LED frame shown below in Figure 5.1.1.6a. 
 
 
 
 
 
 

Figure 5.1.1.6a: Simplified LED Support Frame for Torque Calculations 
 

We then used the values and equations shown below to estimate the torque 
requirements of the POV display when operating at 15 RPMs. The mass M1 and 
M2 were derived from the linear weight per foot of the aluminum square tubing 
used to fabricate the LED support frame. 
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Our final calculated torque requirements came out to be 0.402 N•m which is 
under the maximum torque of 0.49 N•m provided by the motor. 

  

M1 M2 

R1 R2 

 



63 

 
 

5.1.2  LED Array Hardware Design: 
 
As discussed during the research section for the LED array, we had two options 
for controlling the LEDs. One option was to use a latch control system and the 
second option was to use pulse width modulation LED controllers manufactured 
by Texas Instruments. Due to the easy integration of the LED controllers into the 
microcontroller outputs and the built-in latch control we choose to control the LED 
array using the PWM controllers. In particular, we used the TLC5940 16 channel 
LED driver. The reason for choosing to use the TLC5940 is due to its high data 
transfer rate of 30 MHz as well as allowing us to individually control each LED. 
Additionally, the TLC5940 controllers allowed us to wire the controllers together 
to cascade the serial communications required to write to each controller. 

5.1.2.1 TLC5940 Pin Out and Wiring: 
 
After selecting which method we wanted to use for controlling the LEDs, the next 
step was for us to determine the pin out and wiring of the LED controllers. The 
pin out information for a TLC5940 in a NT case can be seen in Figure 5.1.2.1a 
below. Table 5.1.2.1 below shows all pins and their functions. 
  

 
 

Figure 5.1.2.1a TLC5940 LED Controller Pin Out 
 

Pin # Name Description 

1 Out 1 Current Output to LED 
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2 Out 2 Current Output to LED 

3 Out 3 Current Output to LED 

4 Out 4 Current Output to LED 

5 Out 5 Current Output to LED 

6 Out 6 Current Output to LED 

7 Out 7 Current Output to LED 

8 Out 8 Current Output to LED 

9 Out 9 Current Output to LED 

10 Out 10 Current Output to LED 

11 Out 11 Current Output to LED 

12 Out 12 Current Output to LED 

13 Out 13 Current Output to LED 

14 Out 14 Current Output to LED 

15 Out 16 Current Output to LED 

16 XERR 
Error Output 
Low = Error 

17 SOUT Serial Data Output 

18 GSCLK Reference Clock for PWM Control 

19 DCPRG 
Dot Correction Switch 
Low = DC Connected to EEPROM 
High = DC Connection to DC Register 

20 IREF Reference Current Terminal 

21 VCC Power Input Terminal 

22 GND Ground 

23 BLANK 
Turns all outputs on or off 
Low = Outputs are controlled by PWM 
High = All outputs forced off, GSCLK is reset 

24 XLAT 

Latch Signal 
Low = Data in registers held constant 
High = writes from shift register to DC or GS 
register 

25 SCLK Serial Data Shift Clock 

26 SIN Serial Data Input 

27 VPRG 

Input Pin 
GND = Controller is in GS Mode 
VCC = Controller is in DC Mode 
V(vprg) = DC register data can be programmed 
into DC EEPROM 

28 Out 0 Current Output to LED 

 
Table 5.1.2.1 TLC5940 LED Controller Pin Information 

 
To cascade the controllers together requires the SIN and SOUT pins to be wired 
together in series. Meaning the SOUT from one controller was wired to the SIN 
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pin on another controller. The wiring required for the controllers can be seen in 
Figure 5.2.1.b. 
 

 
 

Figure 5.1.2.1b LED Controller Wiring 
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5.1.2.2  LED Array for Text Display: 
 
The design for the LED array required for displaying text used the same LED 
controller but we only used mono-color LEDs. The text display contains 16 LEDs 
so only one controller was required. The wiring of the controller and LEDs was 
similar to Figures 5.2.1.b. 

5.1.3  Motor Hardware Design: 
 
Our specific motor design encompasses two major sections a control elements 
and control inputs section. The control elements section makes up the things that 
need to be controlled: the motor control chip and the motor, while the control 
inputs section encompasses the input signal controlling the speed and whether 
the motor is enabled or disabled. 
 

 

Figure 5.1.3a Motor Control Flow Chart 
 
Figure 5.1.3 is a flow chart that gives a visual representation of how this process 
was configured. In the following subsections both the Control Elements and 
Control Inputs will be discussed. 
 
The KBRG-212D is a regenerative driver chip for both permanent magnet and 
field wound motors. This chip both powers and controls the Dayton 9FHD7 
motor, but requires inputs to determine specifically what speed the motor should 
be placed at. Figure 5.1.3b is a picture of the KBRG-212D chip while Figure 
5.1.3c is the Dayton motor used for this project. 
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Figure 5.1.3b The KBRG-212D Regenerative Drive Chip 
 

As seen in this image of the drive chip the input switches face out towards the 
user. The white circular dials towards the bottom of the picture are the 
electromechanical potentiometers that can be used to calibrate the KBRG-212D 
chip and will be discussed further in this section. The power terminals and the 
motor terminals can be seen on the top left of the picture where the four screws 
can be seen. 
 
As for the Dayton 9FHD7 you can see both the aluminum hoops used to mount 
the stranded wire to the slip rings. Both of these are mounted to the motor with 
two screws and washers to keep them in place. The relay that is also attached to 
the motor is where the AC adaptors and the wire contacts for the slip ring will be 
attached to. 



 

68 

 

 
 

Figure 5.1.3c The Dayton 9FHD7  

5.1.3.1 Motor Control Elements: 
 
The control elements section deals with the KBRG-212D chip and the Dayton 
9FHD7 DC motor. The KBRG-212D is a regenerative driver chip for both 
permanent magnet and field wound motors. This chip was used to both power 
and control the Dayton 9FHD7 motor. Figure 5.1.3.1a shows visually these 
components as placed within the final design.  
 
The Dayton 9FHD7 DC motor is directly connected to the KBRG-212D via the 
M1 and M2 terminals on the chip. The L1 and L2 terminals are connected to the 
AC adapter. The M1 and M2 terminals supply 90V and 1.5A to the Dayton motor 
as described in the Stationary Power Supply Section. The Dayton motor was 
then mounted to the main Chassis’ inner section. 
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Figure 5.1.3.1a Motor and Power Connection 
 
The KBRG-212D is partially enclosed in a wooden and steel enclosure that is 
also used as a mounting system for the two input switches required to control the 
Dayton motor. The partial enclosing was decided so that the KBRG-212D was 
capable of being easily reconfigured and so that the OL indicator light was 
capable of being observed during operation. There are two simple input circuits 
connected to the KBRG-212D that will be discussed further in the Control Inputs 
section that are connected to the SIG, +15V, COM, and EN terminals. On the 
KBRG-212D there are eight variable potentiometers that can be used to 
configure the KBRG-212D even further. For our purposes those potentiometers 
are all set to the factory presets as outlined in Figure 5.1.3.1b, except for the 
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FWD CL potentiometer which is used to set the input current into the Dayton 
motor down from the 1.7A preset to 1.5A. This process for calibrating the motor 
is outlined in the KBRG-212D section of the user manual. 
 
 

 
 

Figure 5.1.3.1b Variable Potentiometer Presets 

5.1.3.2 Motor Control Inputs: 
 
The KBRG-212D works on two simple input circuits: a 5kOhms variable 
potentiometer and a Single Pull Single Throw switch. The Drive Chip is capable 
of a variety of configurations including Unidirectional forward or reverse, 
bidirectional, and even an analog signal input instead of a potentiometer input. 
Due to time constraints an analog signal input was not used since it required 
isolation from the circuit due to the fact that both of these inputs are not isolated 
from the AC power taken in by the circuit. However, these portions of the circuit 
means that the device can be scaled up to a digital input allowing for much more 
control over the motor speed and even possible wireless control of the motor. 
The enable input of the circuit can also be used in this method allowing for a 
digital on/off signal. 
 

 
 

Figure 5.1.3.2a Speed Control Circuit 
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For our purposes we used the simplest method of a potentiometer and a SPST 
switch. For the potentiometer we used the forward configuration shown in Figure 
5.1.3.2a. In this configuration the motor’s speed can be increased or decreased 
by turning the electromechanical trimmer dial counter-clockwise [decrease 
speed] or clockwise [increase speed]. The positive terminal of the potentiometer 
is fed into the +15V terminal while the trimmer terminal is fed into the SIG 
terminal.  
 
The neutral terminal is fed into the COM terminal along with the neutral terminal 
of the enable circuit. The switch as just mentioned has its neutral terminal in the 
COM terminal and its live terminal fed into the EN terminal, this connection is 
shown in Figure 5.1.3.2b. As seen in this image the J7 jumper is placed into the 
CTS position. The KBRG-212D is capable of both a regenerative stop and a 
coast to stop setting; we chose the coast to stop setting in order to have a much 
smoother stop of the LED apparatus when the motor is powered off. 

 

 
 

Figure 5.1.3.2b Enable Circuit 

5.1.4  Display Alignment Sensor: 
 
While our original plan was to both control the motor and align the display using a 
sensor in our research this changed during the construction process and ended 
up with the sensor only being needed for aligning the display. As discussed in the 
research however, the best method to solve this issue was through the use of 
infrared. In our case we used a pair of infrared LEDs. Figure 5.1.4a is a flowchart 
of this process. 
 
The circuits we created rely on a property common to LEDs in which when 
subjected to light they produce a voltage deference across their leads. However, 
this value is very small and can barely be detected. So in order to detect it we 



 

72 

 

used an LM358 op-amp to detect these small voltage changes. The intention was 
to send an infrared signal to a reflective surface and receive it.  
 
In order to create a signal spike in the sensor an aluminum plate was mounted 
on the top surface of the Chassis that reflected the infrared beam back to the 
receiving LED. This beam caused a voltage difference in the LED, this difference 
in voltage on the LED causes the voltage difference within the op-amp to show a 
voltage on the output of around 2.7-3.6V. This is instead of the usual voltage on 
the output which is very small and considered as zero by the microcontroller.  
 

 

Figure 5.1.4a Display Alignment Sensor Flow Chart 
 

The microcontroller uses this signal as a hardware interrupt which is further 
outlined in the software section of the project.  
 
There are two circuits we used to implement this design. The first circuit, 
displayed in Figure 5.1.4b, is the sending circuit. As seen in this circuit we used 
the LM358 op-amp to implement this circuit. In this case a 5 volts Vin and Vcc is 
required to power the circuit. The minus terminal of the op-amp reads about 2.5 
volts. The CTRL line was connected to the rotating microcontroller and in 
essence was always set to high when the device needed to align the display. 
This high value was around 2.5 volts or more and caused the output of this op-
amp to go high, between 2.7-3.6 volts, which turned the infrared LED on and 
caused it to begin sending signals. 
 
This signal as stated above was sent to an aluminum plate that the circuit passed 
over and reflected off the plate and into another circuit connected in parallel with 
the sending circuit. Both IR LEDs were place next to each other on the housing 
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PCB so that they could better send and receive signals. The second circuit that 
was implemented in our design is this receiving circuit, seen in Figure 5.1.4c.  
 

 
 

Figure 5.1.4b Display Alignment Sending Circuit 
 
The receiving IR LED is in an off state during operation of this circuit. When the 
reflected infrared light hits this LED it reads a potential difference along its leads 
and causes the output of the LM358 to go high. The positive terminal has a 
potentiometer that was preset to read 2.5 volts on the positive terminal of the 
LM358 comparator. This potentiometer allowed for the receiving circuit’s 
sensitivity to be either increased or decreased by changing the voltage entering 
the minus terminal of the LM358. When the infrared LED was hit by the beams of 
its sister LED it created a voltage drop on the LED. This deference caused the 
positive terminal to fall lower than the minus terminal’s signal and forced the 
output of the op-amp high. When the op-amp goes high it sends a voltage drop 
around 2.7-3.6 volts to the microprocessor. Since we are using infrared lights and 
this whole process is invisible to the human eye we used a Green LED as an 
added indicator to the circuit. This indicator blinks when a “hit” is read in the 
receiver allowing us to see whether the sensor is working or not for trouble 
shooting purposes.  
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Figure 5.1.4c Display Alignment Receiving Circuit 
 

The Eagle board layout of this entire circuit that was used for the PCB of the final 
circuit can be seen in Figure 5.1.4d. In this layout you can see the input and 
output terminals on the left side that include the two inputs Vcc, and CTRL. Just 
below that is the OUT terminal, and then finally the GND or common. Everything 
is connected directly to the microcontroller on the rotating side, though the Vcc is 
capable of being connected to an external power supply as long as the GNDs are 
common between the microcontroller and this external Vcc. The Vcc required to 
run the device is 5 volts. Also noticeable in this board layout are the two adjacent 
IR LEDs. These through hole LEDs were solder into their ports with a little length 
left on their leads. This allowed us to choose either to read from the z-axis 
[Coming out of the board layout] or the positive x-axis of the board by bending 
the leads to reface the LEDs. 
 
In addition Figure 5.1.4e is a photographic image depicting the Display alignment 
sensor and the reflective surface used in the final design of the product. In the 
image you can see how the sensor would traverse over the reflective surface and 
trip. The surface used as stated was a sheet of aluminum metal that was 
attached to the surface of the chassis top with permanent double-sided tape. The 
sensor as seen in the image was mounted to the bottom of the aluminum bar that 
was rotated. It was mounted there with three screws and washers that created a 
tight sandwiching effect preventing the board from shifting. 
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Figure 5.1.4d Display Alignment PCB Layout 
 

 
 

Figure 5.1.4e Sensor With Reflective Surface 
 

5.1.5  Power Supply: 
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While our original plans for the device were to entirely power the motor and the 
rotating side via an AC outlet there were two major issues that appeared during 
the construction process of our original design. First was powering the motor. 
Our original PWM circuit effectively controlled the motor but being able to supply 
90V and 1.5A without the power supply blowing due to the motor’s sudden 
spiking during operation turned out to be a very difficult thing to do without extra 
expenses we were unable to commit to. The second problem that showed itself 
was that our slip ring had some inconsistencies in power transmission. While it 
effectively transferred the power with little dissipation, even during rotation, it 
would sometimes loose contact to the slip ring and fail to send any actual power. 
This would have effectively repeatedly reset the microcontroller and caused 
unforeseeable consequences to the lifetime of the device. Because of these 
issues we altered our design slightly in the power transmission department, but 
heavily in the motor control department. These changes are outlined in the 
following subsections. 

5.1.5.1 Stationary Power Supply: 
 
The stationary power supply was only needed for the Dayton motor and was 
completely controlled by the KBRG-212D as outlined in the motor control section. 
AC power was transferred to the control circuit directly via an AC outlet plug with 
a built in single pole single throw switch that turns the power transferred through 
the plug off, this is primarily needed as an emergency off switch for the motor 
controller.  
 
The KBRG-212D has a built in power supply that can be used for a variety of 
motor types. The settings we used are specifically for our motor selection, which 
is on the lower end of the control circuits capabilities and could be scaled up with 
a far more powerful motor if desired. Using the 115AC input configuration [J1] 
and the 90V [J4], 1.7A [J3] output configuration we are capable of adjusting the 
1.7A down to the 1.5A via the FWD CL variable potentiometer and thus power 
the Dayton 9FHD7 with little difficulty. In order to get an exact measurement of 
the current we plugged an amp meter in series with the motor and locked the 
motor shaft. Then turning on the Driver Chip we quickly adjusted the FWD CL 
potentiometer until the amp meter read around 1.5A. The KBRG-212D can be 
scaled up to 230AC power setting and run both permanent magnet [as we are 
doing] or field wound motors. It is also capable of running an 180V permanent 
magnet motor. 

5.1.5.2 Rotating Power Supply: 
 
The rotating power supply consisted of three things, an AC to DC variable 
converter plug, a slip ring, and a 9V battery. An AC to DC converter was used to 
plug directly into a standard wall outlet and output 3.3V DC and 2A. This DC 
power was then transferred directly through the slip ring to the RGB array 
circuits. Due to time constraints and issues with regulating the DC power 
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transferred over the slip ring, a 9V battery connected using a DC plug was used 
for the microcontroller to prevent damage to it via fluctuations caused by the slip 
ring. The Text display LED array was powered directly off the microcontroller 
while the RGB array was powered via DC transferred over the slip ring. This 
design was chosen because the microcontroller could be damaged when 
attempting to supply the 1.5-2.0A that the RGB LED array was capable of pulling 
during sustained operation. 

5.1.5.3 Slip Ring Design: 
 
In order to transfer power to the rotating side of the device we needed two slip 
rings. These rings consisted of two copper washers attached to the shaft of the 
bottom section of the LED apparatus. Here two lengths of stranded copper wire 
were mounted on the motor and wrapped around the shaft of the LED apparatus 
but not attached to the shaft directly. An insulating material used for cable line 
repair was placed between the copper washers and the shaft of the LED 
apparatus. Two wires were soldered to the copper washers and wired through 
the Apparatus’ center via a hole drilled through it. These wires were then lead up 
through the Apparatus’s center to the control side of the LED apparatus and 
connected to the RGB LED arrays as a live and neutral wire to complete the 
circuit. Power was effectively applied to the copper washers from the wires as the 
device rotated. There the power traveled from the washers to the RGB LED 
arrays to support their operation. Figure 5.1.5.3a is a visual representation of the 
design of a single slip ring. In this design you can get a basic idea of how we 
planned out the slip ring’s construction. This image was created in DraftSight. 
 

  
Figure 5.1.5.3a Slip Ring side and top view 
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The actual slip ring, depicted in Figure 5.1.5.3b had a lot more requirements to it. 
As seen in the picture two aluminum hoops were used to elevate both the contact 
wires and mounted by being threaded through a cable mounting piece and 
attached to the aluminum hoops. These hoops were fashioned to the motor itself 
to prevent movement. The wires that were threaded through the cable mounting 
pieces were then attached to a relay via a lug attached to the stranded wire’s 
end. This relay was where the DC power would be transferred to via the AC to 
DC adapter. Between both copper washers electrical tape was wrapped to 
prevent the wires from contacting the pipe and causing the pipe to become live, 
or shorting both elements. 
 
In order to prevent the aluminum hoops from being contacted also both wires 
were wrapped in electrical tape from the point that they tied to create the hoop 
that was wrapped around the shaft. This helped reinforce the contact around the 
hoop and was used to thread through the cable mounting piece which helped 
insulate the mounted wire from the aluminum hoops.  
 

 
 

Figure 5.1.5.3b Slip Rings 
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5.2 Software Design: 
 
There is a significant amount of software which had to be designed for this 
project. We will be focusing on the software design for each individual part of the 
project here. There are two primary software entities, the computer side GUI 
which accepts user input and the microcontroller which receives commands and 
data and writes to the LED controllers. 

 
In the GUI design we will be discussing the design section of our software 
development lifecycle. This section will focus on organizing the set of 
requirements and specifications, deciding on a suitable architecture, and visually 
designing the GUI. No implementation will be done here. This section serves as 
a plan of action for the implementation and to answer all questions that may arise 
during development. An effective design will make all of the decisions that need 
to be made in order to make implementation straightforward and agile. 
 
The microprocessor will receive data via Wi-Fi from a computer which has 
connected to the server running on it. This data includes ASCII values for live 
updating of the text display, as well as commands to turn the display on and off, 
change what is being displayed, and to store data in Micro SD memory. User 
input is received through computer side GUI and includes text messages and 
image input. Image input has been designed to accept almost any image file 
type. The GUI has been designed to be straightforward and agile, allowing for 
easy implementation of new features that are already supported by it. 
 
The microcontroller will also be writing to the LED controllers for the RGB array 
and text array. This will require 5 signals from the microcontroller: data, data 
clock, blank pulse, latch pulse, and grayscale clock. Data will be written using the 
controllers SPI interface. The blank, latch, and grayscale clock signals are 
generated using pulse width modulation which relies on output compare to be 
generated. The output compare are set up using two hardware timers, one for 
blank and latch, the other for GS clock, operating at 10 MHz and1220 Hz 
respectively. 

5.2.1  Computer Side Processing 
 
This section will cover the various forums image processing that take place 
before sending image and text data to the microcontroller. We want to handle the 
various image formats that the user may try and use as input.  To handle this, 
several java classes were used: ImageIO, BufferedImage, and indirectly 
ImageReader. Using the java ImageIO class, we open an image file by using 
ImageIO.read() and supply an argument of a name/path. The ImageIO class on 
its own will then search for an ImageReader that claims to be able to read that 
type of image, and decode it. ImageIO.read() will return a java BufferedImage, 
from which we can easily obtain the RGB values by calling the function 
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BufferedImage.getRGB() and supplying an x and y coordinate. Using these 
library the user will not need to be concerned with the image file format, and we 
will not need to code the tedious functions that would be required to decode the 
many image format possibilities. Having obtained the raw RGB data from the 
image, we will need to format so that the microcontroller can use it efficiently. 

5.2.1.1  Image Buffer Format: 
 
The frame buffer will begin receiving frames starting at the Frame Base Address. 
The frame will be stored linearly starting with the pixel in the upper left hand 
corner, going from left to right, and then down. Each pixel contains two bytes of 
color data. Figure  5.2.1.1a shows the arrangement of pixels in memory. The size 
of a single frame in memory can be calculated by multiplying the number of 
pixels by the number of bytes per pixel: 480*640 pixels/frame * 2 bytes/pixel = 
614400 bytes/frame. 
 

Pixels Stored in Memory 

Pixel 0 1 ... 639 

0 0 1 2 3 … 1278 1279 

1 1280 1281 1282 1283 … 2558 2559 

2 2560 2561 2562 2563 … 3838 3839 

. . .       . . 

. . .       . . 

479 613120 613121 . . ... 614398 614399 

 
Figure 5.2.1.1a Arrangement of Pixel Values in Memory 

 
Each pixel is stored in memory as two bytes, containing the RGB color data. Red 
and Blue both have a color depth of 5 bits, stored in Bits(11:15) and Bits(0:4), 
respectively. Green has 6 bits of color depth, stored in Bits(5:10). Figure 5.2.1.1b 
shows the ordering of the two byte pixel data, as well as which bit is the most 
significant for each color. 
 

 
 

Figure 5.2.1.1b 16 Bit RGB Arrangement 
  
Each pixel, although stored linearly in memory, can be referred to by an X and Y 
coordinate. X will refer to the column of a pixel and Y to the row. Table 5.2.1.1 
shows the arrangement of pixels in a frame and how they will be referred to. In 
order to calculate the memory location of a given point P(X,Y), we will use the 
equation Pixel_Addr = Base_Frame_address + 2*x + 2*Line_Stride*y.  
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Arrangement of Pixel Values In a frame 

Pixel 0 1 ... 639 

0 P(0,0) P(0,1) … P(639,0) 

1 P(0,1) P(1,1)   P(639,1) 

2 P(0,2) P(1,2)   P(639,2) 

. . .   . 

. . .   . 

479 P(0,479) P(1,479) ... P(639,479) 

 
Table 5.2.1.1 Arrangement of Pixel Coordinates in a Frame 

5.2.1.2  Output Format Specification: 
 
The format the RGB frames are received in must be changed into a format that 
will be useful to the rotating processor which will talk to the LED array controllers. 
The LED controllers required Grayscale information as opposed to RGB data. A 
Grayscale value is a 12 bit value between 0 and 4095 which will determine the 
duration of time, and therefore the brightness, that an LED will be on for one of 
its colors. Three Grayscale values can be correlated easily from the RGB color 
data. 
 
There are 4 groups of 45 LED controllers, for a total of 180. Each of those 4 
groups is responsible for displaying the output of various sections of the screen. 
Within each section of 45 controllers, 15 are dedicated to the Red outputs for that 
section, 15 for the Green, and 15 for the blue. Table 5.2.1.2a shows the 
arrangement of each of these sections, referred to as AA, AB, BA, and BB.  
 

Arrangement of Sections 

Pixel 0 1 2 3 … 638 639 

0 

AA BA AA BA … AA BA 

1 

. 

. 

239 

240 

AB BB AB BB … AB BB 

241 

. 

. 

479 

 
Table 5.2.1.2a Arrangement of Frame Sub-divisions 
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It would be ideal if each section of controllers had all of the data that it needs 
stored in order in memory as to minimize having to move any pointers around. 
Because of this, 12 output bins will be created where the processed data will be 
stored, which will allow the data to be accessed in a sequential manner. Table 
5.2.1.2b shows these 12 bins and their starting and ending memory addresses 
relative to some base address. The size of each bin can be calculated by first 
determining the total size of a Grayscale frame. For each pixel, there are 3 
Grayscale values, each of size 1.5 bytes; Size of frame in Grayscale = 480 * 640 
* 3 * 1.5 = 1382400 Bytes. The size of one of the 4 sections would be 1/4th that, 
and then broken up into 3 subsections for each color. So the size of a single 
subsection or bin is: 1382400 * ¼ * 1/3 = 125200 Bytes. 
 

Frame Output Format In Memory 

Section/Color 
Starting 
Addr. … 

Final 
Addr. 

AA_RED 0 … 115199 

AA_GRN 115200 … 230399 

AA_BLU 230400 … 345599 

AB_RED 345600 … 460799 

AB_GRN 460800 … 575999 

AB_BLU 576000 … 691199 

BA_RED 691200 … 806399 

BA_GRN 806400 … 921599 

BA_BLU 921600 … 1036799 

BB_RED 1036800 … 1151999 

BB_GRN 1152000 … 1267199 

BB_BLU 1267200 … 1382399 

 
Table 5.2.1.2b Memory locations of the 12 output Bins 

5.2.1.3  Frame Processing: 
 
This section will cover the various steps involved with converting a frame from 
the input format to the output format that has been specified in the previous 
sections. The TranslateFrame() function will translate a frame at a specified 
address and store the output in 12 bins as described in the output specification. 
TranslateFrame() begins by initializing the output pointers for each of the 12 bins. 
The memory address for each bin can be calculated by adding an offset value 
together with  the base address in DDR2 memory where output is to be written. 
The required calculation can be seen below: 

BinPointer = FRAME_OUTPUT_BASE_ADDR+i*115200 where I = 1-11 

TranslateFrame() has one outer loop and two inner loops. The outer loop counter 
increments by two every iteration because we will be processing two columns of 
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the frame each pass through the loop. The columns include all for pixel sections 
AA, AB, BA and BB.  

The first inner loop handles the translation of pixels P(X,0)-P(X,239), which are 
sections AA and BA. The second inner loop handles the translation of pixels 
P(X,240)-P(X,480) which are sections AB and BB. Within each inner loop, 
TranslateAndOutput is called on the current P(X,Y) pixel and P(X,Y+1) pixel. In 
the first inner loop P(X,Y) is always part of section AA and P(X, Y+1) is always a 
pixel from section BA.  Table 5.2.1.3a shows what section of the frame each look 
handles. 
 

Translate Frame Loop 

Pixel 0 1 

  
Inner Loop 

1 

0 

AA BA 

. 

. 

. 

239 

  
Inner Loop 

2 

240 

AB BB 

. 

. 

. 

479 
 

Table 5.2.1.3a: The Translate Frame Loop 
 

Similarly, TranslateAndOutput is twice called in the second inner loop for each in 
pixel, each call corresponding to a pixel in section AB and BB. The inner loops 
increment by 2 because each call to TranslateAndOutput will look at two pixels at 
a time, which will be described in more detail in the description for 
TranslateAndOutput(). Figure 6.1.4.b shows which inner loop L is responsible for 
building up the contents of the bins, and what pixel data ends up in those bins. 

 

Each Section Written to Memory 

L   
StartAddr
. Grayscale Data 

1 
AA_RE
D 0 

P(0,0)-
P(0,239) 

P(2,0)-
P(2,239) … 

P(638,0)-
P(638,239) 
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1 
AA_GR
N 115200 

P(0,0)-
P(0,239) 

P(2,0)-
P(2,239) … 

P(638,0)-
P(638,239) 

1 AA_BLU 230400 
P(0,0)-
P(0,239) 

P(2,0)-
P(2,239) … 

P(638,0)-
P(638,239) 

1 
AB_RE
D 345600 

P(0,240)-
P(0,479) 

P(2,240)-
P(2,479) … 

P(638,240)-
P(638,479) 

1 
AB_GR
N 460800 

P(0,240)-
P(0,479) 

P(2,240)-
P(2,479) … 

P(638,240)-
P(638,479) 

1 AB_BLU 576000 
P(0,240)-
P(0,479) 

P(2,240)-
P(2,479) … 

P(638,240)-
P(638,479) 

2 
BA_RE
D 691200 

P(1,0)-
P(1,239) 

P(3,0)-
P(3,239) … 

P(639,0)-
P(639,239) 

2 
BA_GR
N 806400 

P(1,0)-
P(1,239) 

P(3,0)-
P(3,239) … 

P(639,0)-
P(639,239) 

2 BA_BLU 921600 
P(1,0)-
P(1,239) 

P(3,0)-
P(3,239) … 

P(639,0)-
P(639,239) 

2 
BB_RE
D 1036800 

P(1,240)-
P(1,479) 

P(3,240)-
P(3,479) … 

P(639,240)-
P(639,479) 

2 
BB_GR
N 1152000 

P(1,240)-
P(1,479) 

P(3,240)-
P(3,479) … 

P(639,240)-
P(639,479) 

2 BB_BLU 1267200 
P(1,240)-
P(1,479) 

P(3,240)-
P(3,479) … 

P(639,240)-
P(639,479) 

 
Table 5.2.1.3b Range of pixel data as it is stored in memory 

 
The TranslateAndOutput() function starts by obtaining the two pixels values 
adjacent to each other in the same column. Table 5.2.1.3c shows pixel one and 
two on the left side of the image. Three combined Grayscale values are then 
obtained for each color, red, green, and blue from those two pixels. A combined 
Grayscale value is a 3 byte data structure than contains two 12 bit Grayscale 
values that have been melded together. The 3 byte combined Grayscale values 
are then written to memory, stored in their appropriate bin, and following that the 
output pointers are incremented by 3. Figure 6.1.4.b shows how the combined 
Grayscale values are stored in memory as they are output. 
 

 
 

Figure 5.2.1.3c Combining Grayscale values and storing in memory 
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GetRedCombinedGS() is used to obtain the combined red Grayscale value for 

the two pixels it is called with as arguments. The red data is stored entirely in the 

first byte of the pixel dat. The first byte of the color data contains the red values. 

Using a logical shift right function with an argument of 3, the unwanted green 

data is pushed out. The process of isolating the red value can be seen visually in 

Figure 5.2.1.3a. 

The red value is then converted to a grayscale value by calling a function to 

convert the byte. The red data isolation process is then repeated for the second 

pixel, and then also converted to grayscale. Following this, the two grayscale 

values for each pixel are combined into a three byte structure using a combine 

grayscale function which returns a 3 byte structure.  

 

Two Byte RGB color: 

R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 

First Byte Obtained: 

R5 R4 R3 R2 R1 G6 G5 G4                   

Logical Right Shift x 3: 

0 0 0 R5 R4 R3 R2 R1                   

 

Figure 5.2.1.3a Visualization of Isolating Red RGB Value 
 
Obtaining the green pixel values entails a little more effort since its values are 
spread across two bytes. The first byte of the pixel is obtained, which is then has 
the logical AND performed on it with 0x07, which zeros out any red data in that 
byte. The first byte is then shifted left 3, so that its three LSB are zero and able to 
be combined with the 3 bits of green data from the second byte. The second byte 
is obtained in a temporary variable and shifted to the right by 5. Combining the 
first byte and the temp variable with a logical OR operation gives the complete 
green data. Figure 5.2.1.3b gives a visualization of the logic used to isolate 
green.  

The color isolation process can then be repeated for the second pixel. The two 
green RGB values are then converted to grayscale on lines 8 and 16. Following 
this, they are combined into a single 3 byte structure that is then returned on 
lines 18 and 19. 
 

Two Byte RGB color: 

R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 

First Byte Obtained in Temp: 

R5 R4 R3 R2 R1 G6 G5 G4                   
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AND with 0xF8: 

0 0 0 0 0 G6 G5 G4                   

Logical Left Shift x 3: 

0 0 G6 G5 G4 0 0 0                   

Obtain Second Byte in Temp2: 

G3 G2 G1 B5 B4 B3 B2 B1                   

Logical Right Shift x 5: 

0 0 0 0 0 G3 G2 G1                   

Combine Temp1 and Temp2 with AND 

0 0 G6 G5 G4 G3 G2 G1                   

 
Figure 5.2.1.3b Visualization of Isolating Green RGB Value 

 
The blue color data can be obtained from the second byte of the pixel data. 
Because blue is already completely to the right, isolating it is as simple as 
performing a logical AND on it with 1F, zeroing out any green data present. The 
grayscale values are obtained using ToGrayscaleRB() and then combined. 
Figure 5.2.1.3c provides a visualization of the logic for isolating the blue RGB 
value from the pixel data. 
 
 Two Byte RGB color: 

R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 

Obtain Second Byte 

G3 G2 G1 B5 B4 B3 B2 B1                   

AND with 0x1F 

0 0 0 B5 B4 B3 B2 B1                   
 

 
Figure 5.2.1.3c Visualization of Isolating Blue RGB Value 

 
Converting pixel data to Grayscale is accomplished using ToGrayscaleRB() and 
ToGrayscaleG(). The need for a separate function for green is because green 
contains an extra bit of color depth, and can be mapped to a more precise 
grayscale value. A grayscale value ranges from 0 to 4095, represented by 12 
bits. Figure 5.2.1.3d shows the mapping of values for both Red/Blue and Green. 

 

 
 

Figure 5.2.1.3d Grayscale Mapping Diagram 
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The CombineGrayscale() function is used to combine two grayscale values into a 
3 byte data type and then return those 3 bytes. A grayscale value is stored in 2 
bytes even though it only contains 12 bits worth of information. Because of this, 
the first 4 bits of every grayscale value are 0b0000, which is why it would be nice 
to compact 2 of these grayscale values together to eliminate the wasted bits and 
decrease the overall size of the date. The CombineGrayscale() functions 
behavior can be visualized in Figure 5.2.1.3e. 
 

Grayscale Value 1   Grayscale Value 2 

0 0 0 0 24 23 22 21   0 0 0 0 12 11 10 9 

20 19 18 17 16 15 14 13   8 7 6 5 4 3 2 1 

Logical Left Shift x 4 Grayscale Value 1 Byte 1 

24 23 22 21 0 0 0 0                   

Logical Right Shift x 4  on a copy of Grayscale Value 1 Byte 2 

0 0 0 0 20 19 18 17                   

   AND Grayscale Value 1 Byte 1 with the copy 

24 23 22 21 20 19 18 17                   

Logical Left Shift x 4 GS1 Byte 2 

16 15 14 13 0 0 0 0                   

AND Byte 2 with GS2 Byte 1 

16 15 14 13 12 11 10 G9                   

Return GS1 Byte 1 and 2, and GS2 Byte 2 

24 23 22 21 20 19 18 17                   

16 15 14 13 12 11 10 9                   

8 7 6 5 4 3 2 1                   

 
Figure 5.2.1.3e Visualization of Combining Grayscale Values 

5.2.1.4  PC Wi-Fi Communications 
 
The PC will have to send messages to the microcontroller. For this we will be 
using Wi-Fi in ad-hoc mode. We will be using the TCP protocol over Wi-Fi in 
order to ensure that the packets are received without error. We will be designing 
our own simple communication protocol that is suitable for our purpose. It must 
be fast and it must have a way of differentiating between types of data. Since we 
will be sending different types of data we will have to add a header to each data 
stream. The possible types of data that we may send are:  image, text (main), 
text (small), and command. With four different possibilities we will need 2 bits for 
the header. We will actually just send the first byte with our header data which 
will be assigned the following possible values shown in Table 5.2.1.4. 
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Header Bits Data Type 

000 Text(Small) 

001 Text(Main) 

010 Image 

011 Command 

 

Table 5.2.1.4 Header Information 
 

The small text data is meant to appear on the secondary smaller display which 
will give the effect of text on top of the current main image. The header simply 
decides which display to send the data. Each data type has a fixed size that is 
expected to be sent. For the small text display the expected size is 15 bytes, on1 
byte is the header and then each character is one byte for a total of 14 
characters. We are currently allowing 7 characters per line. The image data type 
will be a single frame that will be displayed constantly on each rotation. Lastly, a 
command signal can include commands to clear the main screen image or the 
text screen image. We are also currently able to use a command signal to have 
the microcontroller run the cycle test code which cycles through each LED in 
order. A simple Wi-Fi transmission is shown in Figure 5.2.1.4. The figure 
assumes the appropriate header is added from the PC. 

 

Figure 5.2.1.4 Wi-Fi Transmission Flowchart 

5.2.1.5  Display Alignment Sensor Software: 
 
An IR sensor is being used as input into the microcontroller. The sensor 

generates a high voltage when tripped. In software, we have set up a hardware 

interrupt which looks for a rising edge on the pin for sensor input. When the 

interrupt is generated, a flag is set to true and allows the display code to execute. 

The display code sets this flag back to false upon completion and then waits for 

the flag to be set true once again. 

5.2.2  Microcontroller Software Design: 
 
This section will cover the software design requirements for the rotating 
microcontroller board. Software requirements include reading the preprocessed 
data and image frames arriving at the board via Wi-Fi connection, and outputting 
this data to the LED array.  
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5.2.2.1  Modes of Operation: 
 
The controller has various modes of operation and is receiving various data and 
commands via Wi-Fi from the stationary controller. Data includes processed 
frames, which are to be stored in a frame buffer, processed still images, and text 
data which will be displayed on a small text array. Sensor data is also received 
and is used to determine when to start displaying the device. Additionally, 
commands will be received that change the operation modes of the POV display. 
 
The main LED array displays  data that corresponds to a single image that has 
been stored in memory. The main array output can either be in IMAGE_MODE, 
or OFF_MODE. In the case of OFF_MODE the main LED array will not display 
anything, however the text array could still be in use. 
 
The text array is in use, it will be operating in TEXT_MODE. While in 
TEXT_MODE various commands will alter the way in which text is being 
displayed. For instance scrolling text can be enabled and the speed at which the 
text scrolls can be calibrated via commands being received from the stationary 
controller, which received those commands via USB from the GUI interface on 
the computer. The text array can also be in an off mode when it is not in use 
which is simply OFF_MODE. Figure 6.2.1 shows the various state combinations 
the Main Array and Text Array can be in after receiving a single state change 
command. 

5.2.2.2  Outputting Data to LED Array: 
 
The rotating microcontroller will be responsible for outputting the color data the 
LED controllers. There are 180 LED controllers, 90 represented an A column, 
and 90 representing a B column, although both columns output to the same 
LEDs. Both the A column and B column will output to the LEDs at 22 frames per 
second, staggered such that the LEDs will flash at 44 frames per second. Two 
clock driven interrupt handlers will tell the A and B columns of LED controllers to 
display at the appropriate times. After a column is displayed all of the controllers 
in that column require a blanking pulse of 20ns in length. On lines 6 and 14 of the 
interrupt handler pseudocode, the Column Written flag is set to false so that a 
separate loop can begin writing the new pixel data to be displayed to the LED 
controllers. 
 
The A column has been instructed to start displaying by calling 
DisplayAColumn(). A pulse is sent on the XLAT pin for the A column of duration 
20 ns, which moves the data written in the controllers shift register to the 
grayscale register. The controllers now require the GSCLK signal to tick 4096 
times at 30 MHz. The values in the grayscale register will determine how long the 
outputs from the LED controllers to the LEDs stay on, effectively determining the 
color that will be displayed. On lines 2 and 13, XLAT is pulsed, and on lines 3 
and 14 a grayscale counter is initialized. A loop is then entered that the program 
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will remain in until pulseGS has been set to true 4096 times. A clock interrupt 
handler sets pulseGS to true at a rate of 30MHz, and each time it’s true, the 
GSCLK for the column is pulsed for 16ns. 
 
A loop will be running which writes the data to the LED controllers after each time 
a column is displayed, because that column now requires new data. Lines 2 and 
6 of this pseudocode check the Column Written flag to see if new data has been 
written since the last flash of that column. If the new data has not been written 
yet, a function is called on lines 3 and 7 which will write the new data to the LED 
controllers. The Column Written flag is then set to true.  
 
The Write Column functions handle writing data to the controllers one bit at a 
time. There are 90 controllers in total used in column A. This is divided into two 
groups, AA and AB, each with 45 controllers. AA and AB are each divided into 3 
groups of 15 controllers for red, green, and blue. This makes for a total of 6 
groups of 15 controllers. A single controller requires 192 bits and with each group 
containing 15 controllers, 2880 bits will be written to each group. In line 2, a loop 
will be entered that will continue until 2880 bits have been written to all 6 groups. 
The rate at which the data can be written to the controllers is limited to 30MHz, 
because of this a clock interrupt will set SCLKpulse to true at a rate of 30MHz. 
Whenever this pulse occurs, the bits to be written for each group will be obtained 
as seen on lines 4-9, and then written into memory at the addresses associated 
with the A columns SOUT pins on lines 11-16. An SCLK pulse is then required so 
that the LED controls read the new bit into their shift registers. 
 
ObtainBit() returns either 0xFF or 0xFE depending upon whether the next bit of 
data was a 1 or a 0. When a logical AND is performed between that byte and the 
output pin address, only the last bit will be altered. The first loop lines up a 1 bit in 
the temp variable with the index we are interested in, and then a logical AND is 
performed zeroing out all other bits. In the second loop, the bit we are interested 
in is shifted right until it is the LSB. A logical OR is then performed on that value 
and 0xFE, which will guarantee the return value  is either 0xFF or 0xFE. 

5.2.2.3  Outputting Data to Text Array: 
 
One design feature to be implemented is a text array which consists of 16 RGB 
LEDs controlled by 3 LED controllers. This would in essence be a miniature of 
the full miniature LED array. The addition of this display required modification of 
the pin I/O's available to the full array, specifically the loss or XERR input. This 
also requires that we use the A and B array columns latching signal which both 
pulse at 7040 Hz to be combined into a separate output pin that pulses at 14080. 
14080 Hz allows the text display to be flashed at 22 frames per second.  
 
In order for this implementation to work, the interrupt handlers displaying column 
A and column B of the primary array would effectively also be flashing the text 
display at the same time. In the primary loop which handles writing to each 



91 

 
 

column, the text display would also need to be written to and made ready before 
each of the display interrupts occur. 
 
The text display will be capable of displaying text with various settings, such as 
scrolling text left or right at different speeds, and color alteration. Allowing the text 
to scroll involves incrementing certain pointers into memory while always keeping 
track of the base pointer for the text data. After a certain amount of rotations of 
the POV display, a pointer that points to the text data is incremented and 
becomes the new reference base pointer. When writing the data, the reference 
base pointer is incremented and a modulo operation is performed to wrap it back 
around to the true base address of the text data. The speed at which the text will 
rotate depends on how many rotations of the POV device are required before the 
pointer is moved. 

5.2.2.4  Microcontroller Wi-Fi Communications: 
 

The microcontroller receives communications through the attached Wi-Fi shield. 
This board will act as a server waiting for a client to connect. Header information 
will have to be deciphered on this board so that this board knows where to send 
the data. There is a single byte variable assigned to hold the header data. Once 
the header has been received it is analyzed and the microcontroller is able to 
decide where to send the rest of the data it receives. If a control signal header is 
found then the data that is sent is considered an instruction to perform. If the 
instruction is something the microcontroller recognizes then the proper action is 
taken. For example, if the cycle signal is sent the microcontroller will begin 
cycling through the LED’s until a new message is received that requests the 
microcontroller to take a new action. The text messages were greatly simplified 
by using a font table that we hard coded in the flash memory of the 
microcontroller. There is a two dimensional byte array that holds all of the column 
data for each letter and for most symbols. This font table uses standard ASCII 
values less 32. For the main display the text signal is very similar, it still uses the 
font table but we had to skip to every third LED since each RGB LED contains 
three individual LED’s. The image header will signal an image of a fixed size. The 
PC takes care of the image formatting and the microcontroller simply receives 
the bytes and stores them in order to be displayed. Figure 5.2.2.4 shows a 
simple flowchart detailing Wi-Fi communications on the receiving end. 
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Figure 5.2.2.4 Wi-Fi Receiving Flowchart 
 

5.2.3  GUI Design: 
 

The GUI was implemented on a windows PC using Java. The following bulleted 
list will show a formal enumeration of the requirements which were implemented 
in the final application. Most of the items in the list are repeated from the 
requirements analysis in the research section. Some of the requirements are new 
and have been discovered while executing the design. 

 Intuitive user interface 
 Multiple line text message entry 
 Color options for text messages 
 Animation options for text messages 
 Image import with simple image processing 
 Image positioning 
 Image cropping option 
 Image clear button 

A pipe and filter architecture was used for this application. The user input should 
be either the text message or image which will then pass through a software 
“filter” before being output in the proper format. The following architecture 
diagram in Figure 5.2.3 better illustrates the pipe and filter model we used: 



93 

 
 

 

Figure 5.2.3 Pipe and Filter Software Architecture 
 

The GUI was designed using Java in the Netbeans IDE. This IDE was chosen for 
its robust GUI editor which allowed us to quickly create an interface before 
completing any coding. Designing the interface first also helped to serve as an 
outline to facilitate the implementation. Creating the first visual draft of the GUI’s 
appearance was the next step in the design. We considered the detailed designs 
involved in both sending a text message and sending an image in order to create 
a draft of the GUI’s appearance.  

 

5.2.3.1  Text Message Input: 
 

According to the requirements there should be either a single multi-line text box, 
or multiple text boxes to accommodate multiple lines of text entry. We chose to 
have multiple text boxes. Near the text input areas we included the color options, 
which include preset colors as well as user defined colors. These colors will be 
applied to the entire text message. The current GUI design for text input is shown 
in Figure 5.2.3.1. This design takes all of the previously mentioned requirements 
for text input into consideration. 

The text input will be stored in a character array. The character array will contain 
a pre-set length of characters. We chose to have 7 characters available for each 
line, which means the character array sent will be 14 characters long. This 
information will then be sent to the microcontroller using Wi-Fi. The information 
that the microcontroller needs to receive is simply the ASCII value for each 
character. The microcontroller is able to interpret each ASCII value and match it 
with a font table that is stored in flash memory in order to display the message. 
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Figure 5.2.3.1 Text Input Tab 
 

5.2.3.2 Image Input: 
 

The image input option allows the user to select an image from the hard disk to 
display. The Image input appears on the GUI as a button that will then open the 
file chooser dialog allowing the user to select an image from the hard disk. Any 
common image format is acceptable. The only image formats that should be 
restricted are the ones that the built in ImageIO Java class is not capable of 
parsing. The options for images include whether or not to crop the image (when 
the image is too large). If the crop option is selected then only the portion of the 
image that can fit on the screen will be shown, otherwise the image will be 
shrunk to fit. Another option for image input is the position where the image is 
displayed; this is for images that are too small. There are nine choices available 
in a box shape from top left to bottom right. The current version does not fully 
support image messages. The file chooser is available and the user can choose 
an image. The selected image is then converted into a file that has the RGB data 
from the image organized by column to be displayed on the POV display, but the 
image is not sent to the microcontroller. The RGB LED array does not allow us to 
use Wi-Fi communications so we cannot send an image at this time. Figure 6.3.2 
shows a draft of the GUI design for the image input. The final GUI design will 
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contain a combination of both the text input tab shown in figure 6.3.1 and the 
image input tab in Figure 5.2.3.2. 

 

Figure 5.2.3.2 Image Input Tab 
 

The Images are read using built in classes and methods for image handling. 
These classes include ImageIO, BufferedImage, and ImageReader. We used an 
ImageReader to interpret the image format and translate it. This allowed ImageIO 
to read the image into a BufferedImage. We then used the getRGB method of the 
BufferedImage class to get the pixel color values. The pixel color values were 
very easy to convert to our format so that we can send the image using Wi-Fi. 
Any blank pixels (no image data) are represented with a special value that lets 
the microcontroller know not to overwrite any previous value in the flash memory 
for that pixel. This allows us to overlay multiple images if they are small enough. 
This is also the reason for the clear image button in the GUI. When the clear 
image button is pressed, a special clear instruction is sent to the microcontroller. 
This is done by sending a unique clear signal that will have the microcontroller 
overwrite all pixels with black values.  

5.2.3.3  GUI Wi-Fi Communications: 
 

In this section we will consider how to communicate with the microcontroller 
using Wi-Fi. We will also be considering how to properly format the user input so 
that the microcontroller has all of the necessary data to update the display. We 
used the built in Java networking classes to perform Wi-Fi communications 
between the PC and the Chipkit uC32 board. The first step in Wi-Fi 
communications is manually connecting the PC to the “POV Display” wireless 
network and entering the correct security key.  
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5.2.3.3.1 Wi-Fi Communications Class: 

 

Wi-Fi communications were handled in a separate WiFiConnection class. This 
class has methods to connect to the POV display (assuming the PC is already on 
the correct network), and send data. The constructor initializes a new 
WiFiConnection class and sets the IP address and the port number. When the 
connect method is called it will take the IP address and port number, and create 
a new socket to establish the connection. The send method was designed to for 
multiple input possibilities. We use a char array as an argument, which is the 
case for when two lines of text are being sent. 

5.2.3.3.2 Wi-Fi Communications I/O: 

 

The Wi-Fi communications I/O operations take place within the WiFiConnection 
class. The WiFiConnection class contains an instance of the Socket class from 
the built in Java network library. The Socket class handles the communications 
and allows the WiFiConnection class to send a payload to the microcontroller, as 
well as receive acknowledgements. The acknowledgements will be optional. We 
currently do not receive acknowledgements but it can be easily added if we need 
them for debugging. Another use for the optional acknowledgments may also be 
a loading bar which can continue to fill as the acknowledgements are received. A 
simple sequence diagram shown in Figure 6.3.3.2 next should help to illustrate 
the planned data flow for the WiFiConnection class.  
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Figure 5.2.3.3.2 WiFiConnection Sequence Diagram 
 

Before Wi-Fi communication can occur the Socket must be properly initialized. 
The Socket is either initialized by using the WiFiConnection class constructor or 
by calling the connect method with an IP address and a port number as 
arguments. Both the WiFiConnection constructor and the connect method throw 
an UnknownHostException, or an IOException. The UnknownHostException is 
thrown when the IP address and port number combination cannot be found on 
the current network. IOExceptions may be thrown when the IO for the socket 
does not initialize properly. After the socket initialization the input and output 
streams need to be initialized. The input stream is created using a 
BufferedReader class that is created using the getInputStream method of the 
Socket class. Similarly the output stream is created using a PrintWriter class that 
is created using the getOutputStream method of the Socket class. The creation 
of both the input and output stream both have the possibility of throwing the 
previously mentioned IOException. Now that the Socket and it’s input and output 
streams are properly initialized the user is able to send messages to the POV 
display. Simply print items to the PrintWriter object and read items from the 
BufferedReader object. When all reading and writing is complete, the Socket and 
both streams must be closed. This is simple to do and simply requires a call to 
the close method for each object. The operating system will then have that port 
back in a usable state and all resources devoted to the streams will be freed. 

5.2.3.4  GUI Class Summary: 
 
In this section we will consider all of the class interactions throughout all parts of 
the GUI application. Classes that we will have to create include: POVGUI, 
WiFiConnection, TextMessage, and ImageMessage. Image reading classes 
include ImageReader, and BufferedImage, which will be used by the 
ImageMessage class. The text message class will not need helper classes since 
it is dealing with simple text data. The WiFiConnection class will need to contain 
classes from the built in Java libraries including Socket, BufferedReader, and 
PrintWriter. A class diagram showing these classes and their relationships to 
each other is shown in Figure 6.3.4. It should be noted that either a text message 
is sent or an image message is sent, but not both. Also the multiplicity shown for 
each class is one, because only one of them should exist at a time. If multiple 
messages are to be sent, the same class will be used with different values. 
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Figure 5.2.3.4 Class Diagram for the GUI 

6 Prototyping: 
 
In order to determine if our design worked under our specific conditions we 
needed to test them. We expected them to work theoretically but theory doesn't 
always work practically. This being the case we created a variety of prototypes of 
each section of the device that we felt may be prone to failure. These prototypes 
were used in the test procedure chapter to create and describe both the process 
and the purpose of the tests that were applied to each of these prototypes. 
 

6.1 Slip Ring Power Transmission Prototype: 
 
While testing the slip ring we needed a prototype circuit that could be used to tell 
if the slip ring was properly transferring the amount of power we needed to power 
the LED apparatus and microprocessor without actually connecting the processor 
so as to not cause any damage to either the processor or the LEDs. That being 
the case we created a prototype circuit using one 60 watt bulb. Since the 
expected amount of power needed on the opposite side of the device was 
around 10 watts of power then if the slip ring could power while in motion 60 
watts worth of power then we know that we should have no problem powering 
the 10 watts. In addition, we were able to tell what the minimum amount of power 
needed to power the 10 watts was so we could get an idea of the loss in the 
system. This prototype circuit can be scaled up by adding more bulbs in series to 
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create larger power requirements in order to test for a scaled up version of the 
final device. The circuit for this prototype is shown in Figure 7.1. 
 

 

Figure 7.1 Power Transmission Prototype 
 

6.2 Scaled LED Array Prototype: 
 
In order to verify our LED array design works, we built two prototype of the LED 
array. Both prototypes used the TL5940NT models instead of the surface mount 
due to the difficulty of having to surface mount the IC just for testing. The first 
array used 4 RGB LEDs and 4 Green LEDS. This was so that we could test both 
the text array and RGB array LEDs with the TLC5940. The section prototype 
used 6 RGB LEDS, 5 of which were fully functional while the last one could only 
light up the red color. 

6.2.1 Scaled LED Array Hardware Prototype Design: 
 
The design for the LED array prototype was similar to the full scale LED array. 
The only difference was that none of the controllers were cascaded, they were 
single arrays. For the prototype version of the LED array did not need any 
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controllers cascaded. Although this did not help with testing the speed at which 
we could address the cascaded controllers, f(sclk), this did provide a test of the 
grayscale clock, f(gsclk).  

7 Testing: 
 
Since like any project it is unlikely to work exactly like we designed it the first time 
we turn the device on it was best to create some testing procedures to fully 
experiment with certain software and hardware features of the device that could 
prove to not model exactly like the theoretical design. These testing procedures 
helped us calibrate certain components of the device so that they worked more 
effectively. 
 
In the following sections of this chapter there are a series of tests that were 
implemented with the prototypes described in the prototype chapter before. Each 
test will identify the objective of the test, the prototype being used for the test and 
a short paragraph of the results of the test. 

7.1 Display Alignment Sensor Testing: 
 
This section will cover the hardware and software test required to verify the 
correct and desired operation of the display alignment sensor. 
 
 

7.1.1 Sensor Hardware Test: 
 
There are a few things that we needed to determine about the sensor’s hardware 
that required testing to insure that it would best align the LED display so that we 
could better control the location and spacing of the image. The objective of the 
first test was to determine if the sensor would correctly show a voltage pulse 
when it registered a movement change. The second test's objective was to 
determine if varying the CTRL signal to the sending circuit would have an impact 
on the efficiency of the sending and receiving process of the infrared LEDs. The 
third test's objective was to determine whether the output of the receiver circuit 
had a noticeable enough pulse or change in voltage. Finally the fourth test’s 
objective was to determine what effects the potentiometer had on the sensor 
circuit. 
 
For all four of these tests we needed to use both circuits of the infrared sensor 
outlined in the design section for the display alignment sensor, Section 5.2. The 
circuit was left disconnected from the microprocessor for the purposes of these 
tests. 
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7.1.1.1  Sending/Receiving Signal Hardware Test: 
 
This test encompassed both the first and third test requirements. For this test a 
voltmeter was connected to the OUT location on the PCB design figure 5.2d. We 
then connected a voltage source to the CTRL pin. This source was used to turn 
on the sender circuit. The IR LEDS were placed in such a way that it was 
directed toward a surface with some reflectivity, an aluminum plate which was 
the same surface that was used as the trip in the final design. Then the CTRL pin 
was increased slowly until a hit was registered on the receiving circuit. This was 
observed by tracking whether the LED turns on or off and whether a voltage was 
registered on the voltmeter. Once a hit was received we then removed the 
reflective surface and watched to see if the LED turned off or stayed on and 
whether the voltage dropped or rose on the voltmeter. 
 
The desired result of the test was to have the LED turn on when the CTRL was 
turned on and reached a voltage of about 2.5 volts or larger, a value that would 
be higher than the minus terminal of the op-amp, then to have the LED turn off 
immediately upon removal of the reflective surface. The test was successful and 
the sensor was extremely responsive to the reflective surface and most any other 
surface in general. The only two things that the sensor was not responsive to 
was a black surface or an abundance of distance between the sensor and the 
surface. In addition, the voltage pulse on the OUT of the circuit proved to be 
noticeably observable. In other words, if there was a reflective surface the OUT 
read a clear 2.7-3.6 volts and while there was no reflective surface the voltage 
was down in the low millivolts range. 

7.1.1.2  CTRL Signal Calibration: 
 
This test encompassed the second test requirements. For this test the set-up 
was the same as the test in section 7.1.1.1. After the circuit was set-up and the 
tachometer was directed away from the reflective surface, the voltage supply 
connected to the control pin was slowly increased. Starting at 0V the voltage 
from the power supply was increased by 0.5 volts up to 5V. During each increase 
in voltage the reflective surface was passed in front of the infrared sensor slowly. 
The voltage change on the voltmeter was observed during each increment. 
 
The desired result of this test was to determine that the strength of the CTRL 
signal is irrelevant when it comes to the effects of the strength of the receiver “hit” 
signal. The result proved that below 2.5 volts the sensor did not register any 
value and the CTRL signal had not effect on the sensor. However, once the 
CTRL signal reached the 2.5 volts further increases to the CTRL line had some 
impact on the OUT signal increasing its value slightly. This increase however, 
required substantial increases in the CTRL signal in order to make an impact on 
the OUT signal. The difference turned out to be around a 1 volt change in the 
CTRL line amounting to a few millivolts change in the OUT signal. 
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7.1.1.3  Sensor Sensitivity Test: 
 
The final test for the sensor was the sensor sensitivity test that used the 
potentiometer. This test was setup exactly as the first test. In this test the 
potentiometer was varied between detection tests to determine the best 
calibration for the sensor sensitivity.  
 
During this test it was found that there were two sensing locations for the sensor 
circuit. One, which never changed with variation of the potentiometer, was right in 
front of the sensor. The other changed slightly within a small range at a large 
distance from the IR LEDs. This property was used to find the best distance at 
which to place the reflective surface so as to obtain an effectively consistent “hit” 
indication. 

7.2  KBRG-212D Calibration Tests: 
 
The motor control circuit required to control the motor required three tests to 
effectively use for the device. Test one was a current calibration test, which was 
needed to calibrate the KBRG-212D to the specific current needed for the Dayton 
motor. The second test was the speed control test. This test was used to 
determine how fast we could spin the motor before overcurrent through the motor 
would be an issue. The final test was the enable line. This was to determine 
whether the enable line would return the motor to the specific rpm value we left it 
at after an off/on toggle. The following subsections will discuss the process of 
each of these tests, the desired result, and our actual result from the test. 

7.2.1  Current Calibration Test: 
 
In this test the KBRG-212D was connected as seen in Figure 5.1.1a. The only 
difference is that an amp meter was connected in series with the motor. FWD CL 
variable potentiometer was then set to its lowest value, while all other 
potentiometers were set to the factory conditions shown in Figure 5.1.1b. Then 
the KBRG-212D was turned on and the FWD CL was quickly raised up until the 
amp meter read 1.5 A. This should be done as quickly and accurately as possible 
since damage to the motor can occur if the motor shaft is locked for too long. 
 
The desired result of this was to test calibrating the motor for the Dayton. The 
actual result was close to desirable though we found that the FWD CL was very 
sensitive and prone to not being consistently accurate. This resulted in the FWD 
CL needing to be recalibrated every so often in order to prevent overcurrent in 
the motor. 

7.2.2  Speed Test: 
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In this test the KBRG-212D was connected as seen in Figure 5.1.1a. In addition, 
the LED apparatus frame was attached to the motor so as to get an accurate 
speed assessment of the motor when rotating. The potentiometer was connected 
in the forward setting as shown in figure 5.1.2a. The KBRG-212D was then 
turned on and the potentiometer was raised from its lowest setting to its highest 
setting slowly and back down again. Then the sensor circuit was turned on and 
the microcontroller was set to count the number of hits in one second and store 
the value, repeating this three times and then averaging the rps. 
 
The desired result was to obtain an rps value between 25-30 rps and to be able 
to control the motor speed from 0-100% of its rated value. This turned out to be 
false on both accounts. The tests revealed that we could only reach between 15-
20 rps without sacrificing torque capabilities. The second issue we found is that 
the potentiometer actually ranged between 0%-150% of the rated value. This 
meant that going too high on the potentiometer caused overcurrent in the motor. 

7.2.3  Enable/Disable Switch Test: 
 
In this test the KBRG-212D was connected as seen in Figure 5.1.1a. The 
potentiometer was connected in the forward setting as shown in figure 5.1.2a and 
the enable line was connected as seen in Figure 5.1.2b. The KBRG-212D was 
then turned on and the potentiometer raised to its expected running speed and 
left to maintain this speed. The Enable line was first set to on and then flipped off 
and left off for a few seconds before being turned on again. Before and after 
these transitions the speed calculation code was run again to determine the 
speed of the motor. 
 
The desired result was to ensure that the rps was maintained when the 
enable/disable switch was toggled. In each test the switch effectively maintained 
its original rps value before the transition. This meant that we could set the rps 
value of the motor and leave the potentiometer alone and just use the 
enable/disable switch to control the off/on properties of the motor unless we 
needed more or less rps. As per the recommendation of the KBRG-212D user 
manual this enable line should NOT be used as an emergency turn off switch. 

7.3  Slip Ring Test: 
 
It can't be stated enough the importance of getting the slip ring to work for this 
specific project. Without proper power management the rotating side would be 
unable to do anything we had desired it to do. This is why we came up with a few 
tests to insure that the slip ring design would work under our desired conditions. 
The first test was nothing more than a durability test of the slip ring to determine 
if it could handle both the electrical and physical demands of the device. The 
second test was the power transfer test; it was to determine that under the most 
ideal of conditions that power is at least properly transferred through the slip ring. 
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The final test was to determine if the slip ring can transfer power during rotation 
and how much power loss is suffered due to thermal dissipation in the junction. 

7.3.1  Slip Ring Durability Test: 
 
This test required a completed motor and motor control circuit so that the motor's 
speed could be varied. This meant that we had to connect the control elements 
and control inputs discussed in the motor control section. Thus the Dayton motor 
and the KBRG-212D were both used in addition to the slip ring. In essence, the 
slip ring was attached to just the stranded wire with no power transfer. Then the 
motor's revolutions per second were slowly increased and then maintained at its 
maximum rotations. After a number of minutes had passed the motor's 
revolutions per second were slowly decreased and then the motor was shut 
down. After the device had been powered down the slip ring was checked for 
damage. 
 
The desire of this test was to have the slip ring capable of handling the maximum 
possible revolutions per second that the motor could obtain and any variations in 
this rotational speed. The test results proved just that with no damage to the slip 
ring from the stranded wire. 

7.3.2  Ideal Power Transfer Test: 
 
This test required only the power supply, the slip ring shown, and a voltmeter. 
The slip ring was connected to the power supply on the outside, and the 
voltmeter was connected to the wire of the slip ring that was expected to be 
threaded through the shaft of the LED apparatus. The power supplies voltage 
was varied from a low to high DC value while the amount on the voltmeter side 
was recorded. 
 
The desire of this test was to see that all or a majority of the power applied to the 
non-rotating side was seen on the side that would be rotating. This test proved 
that there was almost exact power transfer through the slip ring when not being 
rotated with only a very small resistive loss. 

7.3.3  Rotational Power Transfer and Thermal Dissipation Test: 
 
For this test we needed the motor control circuit, the motor, the slip ring design 
and the prototype circuit in Figure 6.1 of the prototype section. In this test the slip 
ring was connected to the power supply. Since we don't have a way to directly 
measure the rotational side during its rotation we used this prototype circuit to get 
an idea of how much power was being supplied to the rotational side. To begin 
we started with a power input of around 55 watts DC and begin rotating the 
device with the prototype circuit connected to the rotational portion of the device. 
We then gradually increased the DC power supply until we got the light to just 
turn on and recorded this value. Since the bulb required 60 watts to power the 
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difference between the 60 watts and what it took to power the bulb should be 
close to the dissipation through the slip ring. 
 
The desire of this test is to have the slip ring handle the physical and electrical 
demands of the device with minimal power loss. The result of the test showed 
that the slip ring could handle turning on the light bulb at the exact watt 
requirements being sent over. So in other words 60 watts sent over had no 
dissipation, or so minimal that it was not enough to prevent the bulb from lighting. 
What was learned however, from this test was that the slip ring had contacting 
issues and would cause the bulb to flicker on and off a little. This required us to 
change our wire connection design from being just a straight contact to being tied 
around the shaft creating a hoop around the shaft that the shaft scrapped 
against. 

7.4 Wi-Fi Communication Testing: 
 
The Wi-Fi communication testing verified that the PC is able to communicate with 

the microcontroller successfully. This testing required us to have a simple server 

program on the microcontroller, and a client program on the PC. These testing 

procedures were done with the microcontroller and the PC concurrently since in 

order to test one we must communicate with the other. We tested the 

effectiveness of our protocol and made adjustments to our design as necessary. 

The main focus for the Wi-Fi communications was reliability since dropped 

packets may mean artifacts appearing in the image. 

Our first test consisted of a simple TCP echo server over Wi-Fi. The code for this 

test came from the example code provided with the Wi-Fi library for the Wi-Fi 

shield. In order to test this echo server we wrote a simple TCP echo client in 

Java. In the Java application we set up the IP address and port number 

according to the settings in the server. The first sign that the echo server was 

working correctly was the appearance of the “POV Display” SSID on the PC. We 

connected to the network before running the Java application. The Java 

application was designed to receive a text input from the user and then send the 

text through the network to be received on the server. The server receives the 

text from the client and sends the same text back to the client. The client then 

receives the text from the server and displays it. A working echo server should 

appear to display whatever is typed in which means that the information was sent 

successfully through the network and back again. The echo server and client 

programs worked correctly the first time we tried them which verified that our 

hardware was working properly. 
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7.5  Software Testing: 
 

The prototype LED array has been used to test numerous aspects of the POV 
display while sitting stationary, and can be seen in Figure 7.4. These tests 
include LED manipulation, brightness levels, displaying various RGB colors, and 
updating the controller at the fastest frequencies possible. In addition to testing 
the capabilities of the LED controller itself, we also used to test programs 
designed to display entire images and text. The prototype was also involved in 
compatibility tests which were used to help integrate the use of Micro SD 
Memory, Wi-Fi, and Sensor Input when combined with the LED array.  

 

Figure 7.5 Prototype LED Array used in testing. 

7.5.1 Prototype LED Array Capabilities Testing: 
 

Basic Cycle Test: The basic cycle test was used as a baseline to determine that 
without any possibility of programming error, the hardware configuration was 
wired correctly and that the behavior of the LED array was as expected. In this 
test, each LED would be lit up one by one in sequence, with only one LED on at 
one time. After reaching the last LED, the first LED would be the next one to light 
and this would continue in a loop endlessly. A one second delay between each 
cycle was used causing the lit up LED to chance once per second. 

Speed Cycle Test: This is a modification of the Basic Cycle Test. This test simply 
increases the speed at which the LEDs cycle by decreasing the delay. The delay 
value could be sent via Serial Monitor allowing for real time modification of the 
speed of the cycling. The Serial Monitor allows for communication with the 
program via USB interface. 

Basic RGB Test: The prototype LED array included 4 RGB LEDs which were 
used to test displaying various composite colors. In this code, we manipulated 
only the first RGB led, which uses 3 inputs from the LED controller. The code 
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was designed to cycle very rapidly through 4096 colors values by using a triple 
for loop. Each RGB value was represented by 24 bits, which is considered true 
color and near the limit the human eye is capable of distinguishing two colors at. 
Each color with 24 bit color had 8 bits of color depth. 

Timer/Output Compare Test: The purpose of this test was to determine the 
maximum frequencies that data could be written to the LED controllers. The 
PIC32 microcontroller contains 2 hardware timers that are available to be set, 
Timer2 and Timer3. Timer1 cannot be changed and operates at 80 MHz, the 
clock speed of the PIC32. In addition to the timers, 5 output compare modules 
are available and are used to generate the Blank, Latch, and GS Clock signals. 
The grayscale clock needs to operate as fast as possible so that the full 
brightness of each LED can be obtained very rapidly. Tests have indicated that at 
20 MHz the microcontroller puts out a very clean signal with clear rising and 
falling edges. Additionally, tests attempting to obtain a 26.66 MHz frequency 
yielded inconsistent results. The signal would sometimes be useable, and 
sometimes become deformed, indicating that outputting this frequency is beyond 
the capabilities of the PIC32. The frequency used to test Blank and Latch were 
much smaller, requiring only a few thousand Hertz. All measurements were 
verified using an oscilloscope.  

SPI Data Writing Speed Test: Similarly to testing the Grayscale Clock speed, we 
needed to obtain the fastest possible data writing speeds. The faster the data 
can be written the more often we would be able to update the display with a new 
column of data, and thus the higher frame rate we would be able to achieve. 
Data is being written using the SPI interface which is built into hardware on 4 
pins, which include Data Out, Data In, Data Clock, and Slave Select. The SS pin 
can actually be any pin that you choose, but this is one which is hardwired to be 
one. By manipulating the SPI settings we were able to obtain a data writing 
frequency of 20 MHz with zero errors. Any attempt to increase this speed to 
26.66 MHz failed to work properly. Frequency measurements verified with an 
oscilloscope 

7.5.2 Micro SD Testing: 
 

Basic SD Testing: MPIDE provides various example programs for accessing 
micro SD memory and the files contained within it. The built in functions allow 
you to open a file, read the contents within it byte by byte, as well as write bytes 
to the file. The library also includes functions for seeking to a specific byte 
location in the file. The library also provides functions for checking to see if a file 
exists, and when attempting to open a file that does not, it will create it. In this 
test, all of these functions are tested one at a time with serial print outs used to 
verify the success of each individual sub part of this function.  

Additional SD Testing: In order to further test the behavior of each of the 
functions provided by the micro SD library, we performed additional tests 
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involving file creation and manipulation. The seeking function was given a more 
rigorous test by finding specific known data within a large text file. We also tested 
the behavior of the library when reading a non-text file, such as a binary file, 
which behaved exactly as expected. 

7.5.3 Wi-Fi Communications Testing: 
 

The Wi-Fi communication testing verified that the PC is able to communicate with 

the microcontroller successfully. This testing required us to have a simple server 

program on the microcontroller, and a client program on the PC. These testing 

procedures were done with the microcontroller and the PC concurrently since in 

order to test one we must communicate with the other. We tested the 

effectiveness of our protocol and made adjustments to our design as necessary. 

The main focus for the Wi-Fi communications was reliability since dropped 

packets may mean artifacts appearing in the image.  

Our first test consisted of a simple TCP echo server over Wi-Fi. The code for this 
test came from the example code provided with the Wi-Fi library for the Wi-Fi 
shield. In order to test this echo server we wrote a simple TCP echo client in 
Java. In the Java application we set up the IP address and port number 
according to the settings in the server. The first sign that the echo server was 
working correctly was the appearance of the “POV Display” SSID on the PC. We 
connected to the network before running the Java application. The Java 
application was designed to receive a text input from the user and then send the 
text through the network to be received on the server. The server receives the 
text from the client and sends the same text back to the client. The client then 
receives the text from the server and displays it. A working echo server should 
appear to display whatever is typed in which means that the information was sent 
successfully through the network and back again. The echo server and client 
programs worked correctly the first time we tried them which verified that our 
hardware was working properly. 

7.5.4 GUI Testing: 
 

There are two basic main requirements that we will address: text message 

formatting, and communications. The formatting of the messages will focus on 

verifying that the user input is properly transformed into the proper data. 

Communications will be tested by connecting the computer to the microcontroller 

using Wi-Fi and verifying that the data is sent and received correctly. We will look 

at each of these features individually for testing. If each one is tested individually 

and verified to be working correctly, then the application as a whole will be 

considered complete. 
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The first test of the GUI involved seeing how the data would look like that is to be 

sent. This was done by organizing all of the data into an array and printing the 

contents to the console. No networking code was used for this test. The data 

printed to the console corresponded to the text contained in the text fields for line 

1 and line 2. We performed this test for multiple text combinations and also for 

blank text boxes. We also verified that symbols and spaces had the correct 

output as well. 

The final test for the GUI will be the integration test which involves sending text 
messages through the network. After adding the network code we use the TCP 
echo server on the microcontroller to act as a way to verify our data. The 
microcontroller receives the bytes of the text entered in lines 1 and 2, then echo’s 
the text back. After this simple test we added more functionality by saving the 
text for line 1 into an array and the text for line 2 into a separate array. These 
arrays were then used for the echo back to verify that they contained the proper 
information. After this test was completed we were confident that our GUI worked 
properly and should send the proper text messages to the microcontroller. The 
next step from this point is integration testing including the microcontroller 
displaying the message that it receives. 

7.5.5 Sensor Input Testing: 
 

Hardware Interrupt Test: The IR sensor provides a high signal when it is tripped, 
and we wanted to use this signal to generate an interrupt in our program so that 
a flag could be set indicating that it is time to display. The PIC32 has several pins 
which can be used as hardware interrupt inputs, and ISRs can be created which 
monitor the status of that pin and allow for various modes of triggering. The 
supported modes by the PIC32 libraries are rising edge and falling edge 
triggering. We set up an ISR with rising edge triggering and simply printed out a 
statement to the serial monitor each time the sensor was triggered. We also 
tested that using a volatile int as a flag would work properly without creating any 
errors. The sensor worked flawlessly and provided hardware interrupts without 
any need for sensitivity calibration to the sensor. 

Program Flow Test: In order to see the sensor influencing the program flow in 
some way, we created a test program where triggering the sensor would change 
the behavior of the LED array prototype. This test demonstrated that the sensor 
hardware interrupt was working correctly, and that the behavior of the display 
could be properly influenced by the triggering signal. The test code involved a 
onetime cycle through all of the LEDs with very short delay. Each time the sensor 
was triggered, the LED array would cycle rapidly through each of its 16 outputs.  

7.5.6 Integration Testing: 
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LED Array and Micro SD Testing: This test was to determine if writing to the LED 
array and also reading from Micro SD Memory at the same time would cause any 
conflicts. Both devices are using the SPI interface for communications and share 
data lines, and data clock signals. This test involved simply reading and writing 
various strings to micro SD memory while executing the basic cycle code 
intermittently. The SD library properly handled sharing the SPI interface with the 
LED array. The SD library accomplishes this by storing the current SPI settings 
on a stack, loading in its own, and then restoring the previous settings once 
compete. 

Wi-Fi and Micro SD Testing: We had many problems during the Wi-Fi server 
testing when including the SD card. At first the Wi-Fi server would work correctly, 
but when it came time to write to the SD card, it was unable to open a file. We 
were able to verify that the SD card initialized properly but for some reason a file 
could not be opened. At first we suspected that the order that the libraries were 
included may make a difference, so we tried including the SD library first. The 
order of the library includes did not seem to make a difference so after much 
online searching and troubleshooting we found some advice to initialize the SD 
card before initializing the Wi-Fi connection. Again this did not seem to make a 
difference. Our next guess was that the SPI bus was not being shared properly. 
Our searches for information online seemed to point out that the SD and Wi-Fi 
libraries are supposed to handle sharing the SPI bus on their own, but since we 
are unable to open a file while using the Wi-Fi echo server, we suspected 
otherwise. Our next attempt at fixing the problem included us finding out exactly 
which registers store the SPI bus settings so that we could make sure they did 
not get corrupted. We wrote functions to save and restore the SPI state which 
allowed us to ensure that the SPI settings were not being corrupted at any point. 
Unfortunately this also did not work. We were running out of ideas regarding why 
we were unable to open a file, but we knew that according to multiple forum 
postings the libraries were successfully working together without any problems. 
Since the SD card example program worked by writing to a file named “test.txt” 
we decided to match the file name for this integration test. Previously we were 
using the filename “smallImage.bin”, after switching the filename to “test.txt” the 
problem seemed to have been fixed. We were now somehow able to write and 
read from the SD card in conjunction with running a TCP echo server via Wi-Fi. 
This test, although extremely time consuming and frustrating showed us that the 
SD card library only supports a small file name length. We are now using SI.bin 
for the small image and LI.bin for the large image. 

Wi-Fi and LED Array Testing: This was a test designed to find any compatibility 
issues in using the Wi-Fi library and LED array library simultaneously. Both 
libraries are using the SPI interface in order to communicate with the 
microcontroller. The test consisted of running the basic cycle code at the same 
time as a server is running and echoing the text sent to it. It was discovered 
during this test that the libraries conflicted and were not sharing the SPI interface 
properly. One  cause of the problem was the use of Pin 10 by the LED array 
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library, as that pin is also used as the slave select line for the Wi-Fi chip. 
Because of this issue, we needed to move the blank signal required by the LED 
array off of pin 10 and onto a different pulse width modulation pin. This involved 
simply using a differed output compare module since each one is associated with 
a particular pin. Having moved the blank signal from pin 10 to pin 5, we resumed 
compatibility testing. A second conflict involving the SPI interface also existed, 
and this problem was related to the SPI settings themselves. Wi-Fi uses its own 
data clock setting, and our array uses a different data clock setting. Because of 
this, we implemented in the LED array library a way to restore its own SPI state 
in a similar way that the Micro SD library maintains its own state. Having added 
this restore SPI settings function to the LED array library, all issues were 
resolved and we moved onto implementing live update features via Wi-Fi. 

Wi-Fi/SD/Array Testing: This integration test includes all devices that are sharing 
the SPI interface for communication. In this test we wanted to see that we could 
display on the LED array, receive data via Wi-Fi, and store it on the Micro SD 
Memory chip without any interference. In a previous test we added a restore SPI 
settings function to the LED array code, which allowed it to use the SPI when it 
wanted to, and let the Micro SD and Wi-Fi libraries handle restoring their own 
settings. We determined that data was being received accurately and was being 
written to the Micro SD Memory accurately, all while displaying the basic cycle 
code in addition to other LED control programs. We did find that while using the 
Wi-Fi communication junk data would occasionally be written into the LED array 
and cause a slight flickering. This issue was reduced somewhat by restricting the 
amount of Wi-Fi communication. In addition, the visual artifacts were minor and 
uncommon, which did not necessitate further debugging. I speculate that if we 
were to hold the blank signal high, driving all LED outputs off, during Wi-Fi 
updates, all visual artifacts would be eliminated. 

Wi-Fi/SD/Array/Sensor Testing: This was the final integration test, which used 
Wi-Fi, Micro SD, LED array, and sensor input all simultaneously. The only 
additional feature in this test as opposed to the previous was the addition of the 
sensor. The sensor uses two pins from the microcontroller, once which provides 
a Vcc, and another on a pin which can generate a hardware interrupt when 
receiving input from an external device. Strangely, we found that the sensor was 
causing difficulties with the Wi-Fi initialization, and after a bit of research we 
discovered that the Wi-Fi module uses an assortment of pins in addition to the 
pins used for SPI communication for various reasons, and one that we had 
selected to use for the sensor was conflicting. By simply switching the sensor to 
pins that the Wi-Fi chip does not interact with, we were able to resolve this 
compatibility issue. At this point we were able to display test code which included 
sensor influenced code, while reading and writing from SD and receiving Wi-Fi 
updates, as well as displaying the basic cycle code on the LED array. 

7.5.7 Feature Implementation Testing: 
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RGB Data from SD Test: The goal of this test was to determine whether or not an 
image which has been preprocessed on the computer and stored in SD is lighting 
the LEDs as expected. To determine this, a test image was created that was 16 
LEDs tall and 384 wide. This test image is seen in figure 7.4.2. It contains a 
rainbow of colors as the start and end of the image, seconds of solid red, and 
sections of red and blue. In addition to this, the very last row of the image 
contains a rainbow of pixels going horizontally for a short section. This image 
was processed on the computer and loaded into SD memory. In the 
microcontroller, we then read the data from memory and output the data to the 
prototype LED array. This verified that the computer generated processed image 
was formatted correctly, and that our code for displaying an image from micro SD 
was also behaving correctly. 

 

Figure 7.5.7a Test Image used for reading from Micro SD memory 

Letter A Test: - This test was designed to test the code related to displaying a 
single letter of text. It was also a test of the persistence of vision effect on our 
display since this was the first shape displayed that had a predefined and 
expected form. This test did not include the sensor, Wi-Fi, or micro SD code and 
was a separate program. The letter A displayed in a verity of positions and 
moved around because of the lack of the sensor. This test verified that we would 
in fact need the sensor to act as a trip for when to start displaying. A second 
version of the letter A code was designed which implemented the sensor and it 
was at this point that we could see the first letter of text being clearly displayed 
and with minimal shifting from side to side. It was noticed that the spacing 
between columns of the letter seemed wider than desirable. We deduced that 
this was because of the processing time involved with updating the grayscale 
data array that is written out to the controllers. Because we were using a set 
function designed to set a specific 12 bit value at a specified index, a lot of 
calculations were taking place that were not necessary.  We could instead just 
transverse the array one time, setting bytes to either the values 0xFF, 0xF0, 
0x0F, and 0x00. This optimized code was designed specifically for being able to 
display text quicker and cause the displayed text to appear in higher resolution. 
After implemented the optimized code we could see improved clarity in the 
displayed text. 

Column Test: In this test we have edited the ‘Letter A’ program to print two 
separate letters, one on top of the other, so that a column of letters would 
appear. This was a step towards being able to display multiple lines of text. The 
sensor was not initially implemented for this test and was added after the logic 
appeared to be correct. Having then implemented the sensor, we could see 
clearly two letters displayed, one below the other, and holding their position 
without moving side to side.  
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Word Test: - After successfully displaying a single letter on each line we decided 
to try displaying a word on each line. We stored the values corresponding to the 
font table entries in an array for each line. For line one the array contained data 
for the word “HELLO” and line 2 contained data for the word “WORLD”. When we 
ran this test the words successfully appeared but they were appearing in 
inconsistent locations and the letters were lowercase instead of the intended 
uppercase. After double checking the values in the font table and comparing 
them with the values we were reading, it was determined that we were sending 
the unmodified ASCII values. We changed to code to send modified ASCII 
values which consist of the original ASCII value less 32 to index the proper part 
of the font table. The letters also seemed to have a large gap between them but it 
was hard to see with the words displaying in a different position every time. We 
decided to include the hardware driven interrupt from the sensor in order to 
ensure that the words would display in the same location each rotation. 

Word Test with Sensor Test: When we added the functionality of the sensor 
circuit the word test became much more legible. It also became clear that there 
were large spaces in between each letter which did not look very good. We tried 
optimizing the way that the microcontroller communicates with the LED 
controllers by directly manipulating that data that is sent to them. This new 
method of sending the data to the LED controllers replaced the functions we 
were using from the TLC library. We knew that the optimized code should run 
faster than the previous code but for some reason there were still large gaps 
between each letter. We eventually figured out that the reason for the gaps was 
due to serial communication being attempted. We had some serial print 
statements to help with debugging which would send serial data to the PC over 
USB. This allowed us to read messages and see where in the code the board 
was currently executing, but it also slowed down the speed of communication 
between the microcontroller and the LED controller. After removing the serial 
print outs we saw that the spaces between the letters was now gone and the 
image looked as intended. 
 
Live Updating of Text: For our next test we wanted to be able to update the 
message that is displayed in real time while the device is turned on and spinning. 
For this we used Wi-Fi server code that was very similar to the echo server. The 
Wi-Fi code for this test does not echo back any sort of response, it simply 
receives data and stores that data into two byte arrays. We did not use the SD 
card for this test in an effort to keep it simpler. The message that the display 
shows defaults to “HELLO WORLD” with each word appearing on its own line. 
There are two byte arrays, one for line 1 and the other for line 2. These arrays 
are where the data for the default “HELLO WORLD” is read from. This is done 
the same way as described in the word test. The main reason for this test was to 
change what the display says by receiving data via Wi-Fi and saving that new 
data into each of the byte arrays for line 1 and line 2. Since the software is 
constantly displaying the message stored in the byte arrays, the message should 
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update if new data is stored in those arrays. After solving the problems of the 
previous test we were able to successfully complete this test quickly.  
 
We had one major problem while performing this test which involved the Wi-Fi 
initialization to fail. The microcontroller would inconsistently initialize the Wi-Fi 
server, or not. If the Wi-Fi server didn’t initialize we would sometimes be able to 
reset the board until it initializes. This behavior was unexpected and extremely 
hard to understand. We tried multiple different variations of initializing the TLC 
library before Wi-Fi, then after Wi-Fi. We also including the SD card libraries 
even though we weren’t using the SD card in an effort to force the libraries to 
properly manage a shared SPI bus. We thought that without the SD card library 
included the state of the SPI bus may not be properly managed because the 
software may not think that the bus is shared. None of these things seemed to 
help and the reliability of the Wi-Fi initialization remained unpredictable. We 
eventually noticed that the server seemed to work better when we physically 
disconnected the RGB LED array from the microcontroller. It seemed that having 
the RGB LED’s connected introduced some sort of interference which caused the 
microcontroller to behave unpredictably. This test finally became a success after 
we solved this problem, but this made a new problem obvious: we will not be 
able to send Wi-Fi updates to the RGB LED array if we cannot solve this 
problem. The result of our testing can be seen in Figure 7.5.7b. The display 
originally said “HELLO WORLD” and we were able to update it via Wi-Fi to read 
“UCF KNIGHTS”. 

 

 

Figure 7.5.7b: Text Display 
 

Basic RGB Cycle Test: The basic RGB cycle test is a test very similar to the 
Basic Cycle Test used on the prototype display. It is a base line for determining if 
the RGB array has been correctly wired up and Is functioning properly. In this 
test, each color in each LED Is flashed sequentially until reaching the last LED, 
and then starting back over with the first LED.  
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Cascaded RGB Array Test: This test was intended to determine if any issues 
arise when cascading several RGB PCB modules together. Although each 
module already contains 3 LED controllers cascaded, this test verifies that the 
data correctly passes through the entire module, and that the share controlled 
signals also pass through. Additionally, this test was used to determine whether 
or not any problems would arise from having too many controllers cascaded and 
how it would affect the update rate of the display. With two modules attached 
together, data is being written to 6 LED controllers. Initially upon testing this 
configuration the grayscale clock signal  and SPI data writing speed was not set 
high enough to accommodate 6 controllers. For the text array, operating at 5 
MHz for each was sufficient, however after testing we determined that at least 10 
MHz is required when updating 6 LED controllers. The code for this test is the 
basic RGB cycle code with the NUM_TLCS variable set to 6. After having fixed 
the timing issues, we successfully cycled through all of the LEDs in the combined 
array. 

RGB Text: This test was designed to determine the capabilities of our RGB 
display and to show the functionality of the RGB array when operating at real 
time speeds. The test program is a modified version of the Word Test with 
Sensor, with some convenient array indexing multipliers and a counter to change 
the color between each letter. From this test we determined that the red LEDs 
are the most visually appealing and that though the blue and green LEDs are 
fainter, the words can still be clearly read by an observer.  

 

Figure 7.5.7c: RGB Text Array displaying alternating color text. 
 

Based on the previous results, we modified the test code to display the entire 
word phrase in all Red, Green, and Blue, and to cycle between each color for 
displaying the text. Each color displayed clearly, blue being the faintest and red 
the brightest. Figure X.X.X shows the word test displayed in solid red. 
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Figure 7.5.7d: RGB Text Array red letters 

8 User Manual: 
 
The following section will discuss the process of setting up and using the various 
hardware pieces outlined in the above design section along with the proper use 
of the GUI and how to program the microcontroller directly. Each sub section will 
deal with a specific hardware or software component of the device and outline 
how to effectively use it alone with safety warnings to prevent injury. 
 

8.1 KBRG-212D Manual: 
 
The KBRG-212D has a very thorough user manual that describes the various 
settings and features and how to use them. This section will discuss only the 
features and settings used for the purposes of this project. It is recommended 
that before use of the KBRG-212D you follow the current calibration process 
outlined in the testing section and the user manual of the KBRG-212D chip, 
especially after prolonged disuse of the chip and Dayton motor. 
 
There are two major control inputs for the KBRG-212D for the purposes of this 
project. The first is the speed control dial featured in Figure 8.1 on the left. This 
dial controls the speed at which the motor is running at. Turning the dial counter-
clockwise decreases the speed of the motor, while turning the dial clockwise 
increases the speed of the motor. The motor speed can be raised to the 
maximum point on the potentiometer, though this is not recommended due to 
overcurrent in the motor. It is recommended that if the OL light indicator turns on 
while increasing the motor that the speed of the motor be decreased until the OL 
indicator turns off so as to prevent damage to the motor.  
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Figure 8.1 KBRG-212D Input Switches 
 
The second control input for the motor is the ENABLE switch featured in Figure 
8.1 on the Right. The ENABLE switch is used to turn the motor off during 
reprogramming of the onboard microcontroller or start-up. It is recommended that 
the user turns the ENABLE switch off before turning AC power off and not re-
activate the ENABLE switch until ready for the motor to actually start running. It is 
highly recommended that after setting the speed to the desired level the user 
does not excessively mess with the speed dial and only uses the Enable switch 
to control the operation of the Dayton motor. It should be noted that the KBRG-
212D should be handled with care during operation since no portion of the 
KBRG-212D is isolated from the AC power. 

8.2 Display Alignment Manual: 
 
The display alignment sensor has four terminals used for operation. The Vcc 
requires a constant 5V DC that is connected directly to the Chipkit 
microprocessor's 5V pin. The CTRL line can be plugged into any of the output 
terminals of the Chipkit microprocessor and requires a 2.5V constant signal that 
is used to turn on the sensor, for our purposes we used the pin 8 terminal. The 
OUT terminal can be plugged into any input terminal on the Chipkit 
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microprocessor and will read a high value when the sensor receives a hit from 
passing over a reflective surface, for our purposes we used the pin 7 terminal. 
The GND terminal should be plugged into any of the GND terminals of the 
Chipkit microprocessor. 

8.3 Power Supply Manual: 
 
There are two AC adaptors and a 9 volt battery required for operation of the POV 
display. The First AC adaptor controls the KBRG-212D drive chip and also has a 
built in single pole single throw switch for purposes of turning off the motor and 
control chip, feature in Figure 8.3. This switch can be used to turn off and on 
power to the motor without pulling the AC adaptor, this switch should also be 
used as an emergency off switch instead of the ENABLE switch outlined in the 
KBRG-212D manual.  
 
The second adaptor is an AC to DC variable adaptor and should be set to its 
lowest setting 3.3V. The variable adaptor is designed such that if the user 
decided to increase the number of RGB array modules they could also increase 
the power required to power them. The final power supplier is a 9 volt battery 
with a DC adaptor for plugging into the regulated port of the Chipkit 
microprocessor. This is stationed on the rotating side and when replace should 
be fashioned to the armature with the supplied zip ties. The 9 volt battery should 
be replaced after about an hour to two hours use.  
 

 
 

Figure 8.2 KBRG-212D Power Switch 
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8.4 GUI User Manual: 
 

When executing the GUI the first screen that appears is the text message tab. 

This is the screen that will allow you to send text messages to the POV display in 

real time. The text message tab can be seen in Figure 8.4. 

The first option is “Display”, this option lets you choose which LED array to 

display the text on. The text display is the only option that is currently 

implemented in this version. The next two options are “Color”, and “Animation”.  

Color cannot be changed when the text display is selected since the text display 

only uses green mono color LED’s. 

 

Figure 8.4 POV GUI Text Message Tab 
 

The Animation option is not fully implemented and may not work as intended. 

The text boxes which say “LINE1” and “line2” are where you should enter the text 

that you wish to send to the display. If you wish there to be a blank line, simply 

delete the text from the text box before sending the message. After you are done 

editing the contents of the two text boxes, pressing the “Send Text” button will 

wirelessly send the data to the POV display. The last button available is the 
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“Clear Text” button, when this button is pressed it is the same as sending two 

blank lines of text to the POV display, which means nothing will be displayed. If 

sending a text message does not seem to be received by the POV display, 

ensure that the PC running the GUI application is connected to the “POV 

Display” wireless network, and that you are using the correct WEP key. The 

“Image” tab was designed for sending an image to be displayed on the color 

main display, but this has not been implemented since the main display cannot 

support Wi-Fi communications. 

8.5 Switching Between RG and Text Array: 
 

Our POV display has two hardware configurations for displaying either from the 

Text array or from the RGB array. In order to switch between these there are 5 

lines coming from the microcontroller that will need to be changed. The pin 

configuration from the controller is as follows: 

Pin 3 – Grayscale Clock 

Pin 5 – Blank signal 

Pin 9 – Latch signal 

Pin 11 – Sin (Data out) 

Pin 13 – Data Clock  

To operate in RGB mode, the text array should be entirely disconnected from the 

controller. This includes removing its ground and Vcc lines. The RGB display 

should then be wired to the controller for the 5 pinouts that have been specified. 

Additionally, the ground line for the RGB display will need to be connected to the 

microcontroller. The wall AC adapter must then be plugged in so that power can 

be transferred through the slip ring.   

When operating in Text display mode, the RGB display should be completely 

disconnected from the microcontroller. This includes insuring that its ground line 

is also removed, as it will affect the operation of the device. The 5 lines coming 

from Text array should then be wired into the microcontroller based on the pin 

out specified above. The Vcc and ground for the text array must also be wired 

into the microcontroller. 
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9 Conclusion: 
 
The process of designing a persistence of vision device turned out to be a far 
more complicated endeavor then our team expected. While we had already 
expected some complications in the power transmission process of this device a 
whole slew of issues revealed themselves in other areas of the device that we 
had initially thought to be simplistic. The process of choosing a motor and 
controlling it seemed at first to be a simple idea but when we began to research 
further into the process it turned out to be far more complex than expected, 
specifically for the high rotational and torque requirements of our system. 
Eventually we came to the design presented which accomplishes our goals for 
this. However, this design did not hold over well since, while the pulse width 
modulation circuit did effectively control the motor, powering the motor and 
controlling it together became a substantial problem. The 90 volts and 1.5 A was 
difficult to power on a low budget and ended up forcing us to scrap our original 
design for a more integrated approach which resulted in the KBRG-212D chip 
being the method to power and control the motor. This design change had drawl 
backs as we were forced into a more electromechanical method to control the 
motor instead of the original desire of having the motor controlled digitally with 
your computer. 
 
However, motor control was not the only unexpected challenge. The design of 
the LED array turned into a rigorous design challenge when it turned out that 
trying to address each and every LED would send our data transfer rates into the 
nine digit figures. Which the Chipkit board was capable of handling only a fraction 
of the LEDs we originally intended to have so we ended up having to significantly 
scale back on our LED array design. This was not the only issue, though 
because soon after acquiring the arrays we ended up with another issue with the 
Chipkit, the frequency it could obtain. While the Chipkit theoretically could obtain 
the frequency we needed to run our pixel count, it ended up only being able to 
run 32 instead of the first attempt at scaling back which was 128.   
 
These design challenges discussed above were overcome but at a substantial 
increase in our first projected costs. This meant that the need for sponsorship 
has tremendously increased. The entire design was under the expectation of an 
almost limitless budget. However the loss of the expected sponsorship required 
some rather extreme reductions in scale of the design. Specifically our team had 
to drop the HDMI instantaneous streaming of the display device. This was 
primarily for two reasons. The first reason was that the loss of a sponsor required 
us to drop the LED count and thus drop the resolution to a level that would not be 
cohesive with the idea of displaying a computer screen for video playback. The 
second reason for this design cut was the ability to purchase less powerful and 
thus less expensive micro processing boards for image processing. Without the 
demands of the high data transfer associated with the instantaneous streaming 
of the display device our display ended up having to project much more simplistic 
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animations and text, thus needed much less data transfer and processing. We 
were unable to cut our motor demands however, but we were still able to find a 
far less expensive motor then the one outlined in the design. However, with these 
cuts it did not spell the end for scalability of the device. Since even with the 
reduction in hardware features there are still a vast amount of room for software 
features to more than make up for the loss of the instantaneous streaming of the 
display device. 
 
For the future of this device there are a variety of possible additions that can be 
added to it. First the Driver chip can be modified to include a digital way to control 
it, allowing for integration of a Wi-Fi chip on the stationary side also. This would 
allow the user to turn the device on and off, and even vary the speed of the motor 
all from the same program that is controlling the image processing. The LED 
arrays are designed such that with a more powerful power supply and 
microprocessor more arrays can be added to create a larger device with better 
resolution. The processor could also be programed with additional functionality. 

10 Bill of Materials: 
 
As seen in Table 10, is a list of major items required to build the POV display. 
Some components with a “-“ mark for part number were bought in bulk variety 
packs and thus did not have any sort of Part number. In addition, some materials 
were marked with “-“ quantity did not have unit prices and instead were bought in 
bulk packaging, thus a quantity used could not be established. 
 

Bill of Materials 

Item 
Number 

Part Number Mfr. Description Qty 

Microprocessor 

101 uc32 Chipkit 
Microprocessor, 80 MHz, 5V, 
512K Flash, 32K SRAM 

1 

Motor and Chassis 

201 9FHD7 Dayton 
Motor, DC, Permanent 
Magnet, 90 Volts, 1.5A, 
0.49 N∙m Torque, 1800 RPMs. 

1 

202 KBRG-212D KB 

Regenerative Drive Chip, 
115/230 AC, Permanent 
Magnet or Field Wound 
Motors 

1 

203 8090T13 
McMaster-
Carr 

Bearing, Extended-Ring Type 
ER, rated for 3,145 dynamic 
load pounds and 5,000 RPMs 

1 

204 
Custom 
Metal Work 

KEMCO 
Industries 

Custom Aluminum Metal to 
include top plate, base plate 

1 
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and support rods. 

LED Array 

301 OVS-3309 Multicomp LED, Type OVS, RGB, SMD 48 

302 TLC5940 TI LED Controller, 16-Channel 7 

303 TLC5940NT TI LED Controller, 16-Channel 2 

304 - Multicomp LED, Green 20 

Components 

401 - 
Radio 
Shack 

Resistor, 1 kΩ 4 

402 - 
Radio 
Shack 

Resistor, 300 Ω 1 

403 - 
Radio 
Shack 

Resistor, 3.8 kΩ 1 

404 - 
Radio 
Shack 

Resistor, 50 Ω 1 

405 - 
Radio 
Shack 

Trimmer, 10 kΩ 1 

406 - 
Radio 
Shack 

LED, Green 1 

407 - 
Radio 
Shack 

Resistor, 2.2 kΩ 6 

408 - 
 
Vishay 
 

Resistor, 100 Ω 144 

409 - 
Radio 
Shack 

Trimmer, 5 kΩ 1 

410 - 
Radio 
Shack 

Switch, SPST 1 

411 - 
Radio 
Shack 

LED, Infrared 2 

Miscellaneous Equipment 

501 - enercell 
Adapter, AC to DC, Variable: 
3.3-7.5V 

1 

502 - Kintron 
Adaptor, AC, SPST Switch 
on/off 

1 

503 - enercell Battery, 9V 1 

504 - 
Radio 
Shack 

DC Plug 1 

505 - 
Home 
Depot 

Zip Ties - 

506 - 
Home 
Depot 

Metal Clamps, medium 2 

507 - 
Home 
Depot 

Aluminum Plate, Small 1 

508 - Home Aluminum Plate, Medium  1 
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Depot 

509 - 
Radio 
Shack 

Electrical Tape - 

510 - 
Radio 
Shack 

Wire, Stranded, 18 gauge - 

511 - 
Radio 
Shack 

Wire, Solid, 18-22 gauge - 

512 - 
Radio 
Shack 

Aluminum Sheet Metal - 

513 - 
Home 
Depot 

Permanent Double-sided tape - 

514 - 
Home 
Depot 

Wood Plank - 

515 - 
Home 
Depot 

Lugs - 

516 - 
Home 
Depot 

Copper Pipe 1.5” Diameter 1 

 
Table 10: Bill of Materials 

11 Appendix: 
 

 
 

Figure 10.a Infrared Sensor Reference Circuit 
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