AEDIT Text Editor

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIX[O is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

Quick Contents

Chapter 1. Introduction and Tutorial
Chapter 2. The Editor Basics
Chapter 3. Editing Commands
Chapter 4. AEDIT Invocation
Chapter 5. Macro Commands
Chapter 6. AEDIT Variables

Chapter 7. Calc Command

Chapter 8. Advanced AEDIT Usage
Chapter 9. Configuration Commands

Appendix A. AEDIT Command Summary

Appendix B. AEDIT Error Messages

Appendix C. Summary of AEDIT Variables
Appendix D. Configuring AEDIT for Other Terminals
Appendix E. ASCII Codes

Index

Service Information

AEDIT Text Editor 3

Notational Conventions
This manual uses the following conventions:
e Computer input and output appear in this font.

e Command names appear in this font.

|:| Note

Notes indicate important information.

Contents

Introduction and Tutorial

AEDIT TULOMAL .t
Activating the EditOr.........uuuiiiiiiiiieeeeeeeee e
Entering, Changing, and Deleting Text...........ccceeeeeeiiiiiiieeeee,
(070] o)V oo TN =" SO USSR
Using the Other Command..............oouvuiiiiiiiiiiiiiiiiiiineeeee e
EXIting the EditOr........oovvviiiiiiiii e

The Editor Basics

KEYDOAIT.o
AEDIT Display FOrmat............oooiiiiiiiiiiiiiiiiiiiiiirnss e e e e e e
PromMPt LINE .o

MENU Prompt ... e

Line-edited Prompt..........uuiiiiiiiiicee e
MESSAGE LINE ..eiiiiiiiiiiii et
BEEP WaINING ...ce et
Lines and Line TermiNatorscccuuuviiiiiiiieeeeee et e e e e
Printing and Nonprinting Charactersccccoeee e,
L= 1o L T PP TPPTTR

Delete RIght OF DeIr........vuvviiiiiiiiiiiiee e
Delete LiNe OF Delli......cuuiiiiiiiiiiiieie e
(0] aTo (o I @40] 40101 F=1 0T P
(R 1Y, o o [T RPN
XChANGE MOUEo

AEDIT Text Editor Contents

12
12
13
15
15
16

18
19
20
20
22
22
23
23
23
23
24
24

25
25

25

26

26
27
28
29

FIiNd COMMANG.... .ot e e e e e e et eees 30

SFINA COMMANG ... e 31
Replace CoOmMMANGcoooiiiiiiiii e e e e 32
?Replace COMMANoovviiiiiiiiiiiii e e e e e e e e e e e aeeeeens 3!
B IF-To J @10 o 1] .0 7=V o Uo F PR 34
JUMP COMMANG ...t e e e e e e e e e e eeeeeeeee 3L
BIOCK COMMANG ...ouiiiiiiciii e e e e e 36
21 [o Yo 1 =T 11 =] O PTRTR 36
Delete COMMEANG........iiiiii it e e e e e e e e e s aaaeees 38
Gt COMMANG ...uiiiii et e e e et e et e e et aeeees 30
VIEW COMMANG ..ot e e e e e e et e st esebaeees 40
Other COMMANG.......iiiiiiiie e e e e eaans 41
AGaIN COMMANGoeiiiiiiiieieii e a e e e e e e e e eeeeeeeee 42
St COMMEANG....euiiiiiiii e e e e e e e e e e e st e s et e eeeas 43
HEX COMMANG ...vvniiiiiiici et e e et eeea e e eaaeeens 52
(@ 10 11 A 0o 0] 1 1= 1 T 54
Paragraph Commandooiiiiiiiiiii e 5
WiINAOW COMMANGuiiiiiiiiiii e e e e e e e e e e e bt e eabaees 58
Kill_wnd COMMAaNdcooiiiiiiiieiie e e e e e e e 59
ISYStEM COMMAN......uiiiiiiii e e e e e e e s 6(
CalC COMMANG......iiiiiiiiiiie e et e e e e et e e e ra e e e aaeaens 61
EXECULe COMMANGciiiiiiiii et e et e et eeaa e eeas 62
MaCIO COMMAND.......uuiiiiiieiiiiieee e e e e et e e e e et e e e et e e e eaeeeeaaeees 63

AEDIT Invocation

)Y 0 oF=1 1 o] o NSRRI 65
INvocation Line EXamMPIES......ccooiiiiiiiiiiiiieeeeeeee e 66
INVOCATION CONLIOISuuiiiiiii it e e e e e e 67
(o] V7=V o (o] o1 Y USRI 69
VIBWONIY . .t e e e et e e e e e 70
ROV ... e 71
/= T o PN 72
Yo Yod (011 74 = PP 73
T (] 1 [P 74
Default MACIrO Filecovveiiii e 76
WWOTK FlB e i e e e e 76
IRMX-specific Informationcccceeii e, 76

Contents

5 Macro Commands

MACIrO COMMANGiiiiii et e et e e e e e e e e eeeanns 78
[D=T Y 1] o YT {01 R 82
Macros and AEDIT Variablesuuuuviiiiiiiiiiiiiiiiiiiiiiiiiees e 82
Y = Lol o TN 1Yo To 1= RS SSRPPPPPPPRRPRRIN 83
EXecute COMMANGccoeiiiiiiiiieiei e e e e e e 84
Single-Character MaAcCIOS..........ccooviiiiiiiiieee e e e e e 85
Y = Vo o T] o PSSR 86
Macro Execution After a Failureooovviiiiiiiiiiiiiiiiiieee e 88
Screen Display During Macro EXeCULION.............cevvvvvivieiiiiiiiiiieieeviiiieeinennnns 90
=) USSP 90
LT T= Lo = PP 90
[0] 1 11 0| PSP UPPPPTTRUPTPPPIN 91
WINAOW ... e e e e e e e e e e e eeeeeaanne 91
Y = Vo o B b= T o] o] L= USSR 92

6 AEDIT Variables

GloDAl Variablesoeeiii e 96
Global Numeric Variablesccocouuiiiiiiiiiiie e eee 96
Global String Variablesuuuviiiiiiiiiee e 97

LOCAl ValabIES ... i 99

Global Variables iN MACIOS.........ciiiuiiiiiiiee e 101

7 Calc Command

(@Y= a1 APPSR 103

NUMEIC CONSIANTSvuiiiiii et e e e e e e e e e s e e e ab e e abaes 105

SHNG CONSTANTS ..uutiiiiiiiie i e e e e e e aaaeaeas 105

(@] 017 =1 (0] = TP 106
Shift/ ROtate OPEratorS.......cooeeeeiiiiiiiiiiiiiii e e e e e e e e e e 107

EXPression Evaluation..............ouvviiiiiiiiiiiiinii e eeeeeeveeaeeeees 108
EXAMPIES ... 109

0] £ PN 110

8 Advanced AEDIT Usage
TheUSefulLMACFIlE...........uei e 112
TIPS fOr WIitiNg MaCIOS......cccoiiiiiiiiiieeeeeet e e e e e e e e e e e e e e e e e e e 114

AEDIT Text Editor Contents 7

9 Configuration Commands
INEFOTUCTION. ... 119
Configuration Command NOtEScceeeeeeiiiiiii, 120
Configuration ValUESoovviiiiiiiiiiiiiiiiiss e e e e e e e e e e e e e e e e e eeeeeeeeeeeaeanee 124
Delay COUES ..o i eiiiieeiieeee e a e e e e e e e e e 12/
Determining the Configuration Valuesuuuviiiiiiiiiiiiiiiiiinneneeens 124
A AEDIT Command Summary
FUNCLION KBYS .. et 127
AEDIT Editing COMMANASccevvviiiiiiiiiiiiniiieeenieeeeeeeeeeeeeeeeeee s s 129
B AEDIT Error Messages
INVOCALION EFTOIS....coiiiiiiiiiiiiiie e 133
Editing Command ErTOrS............uuvuiiiiiiiiiiiii e ee e e e eeeeeeeeeevaaeeeeeaaenee 134
CALC COmMMANT EFTOIS ..ccciiiiiiiiiiiiiiiiiiie ettt e e 136
MAIO FlE EITOIS ..uuiiiiiiiiiiiee ettt a e 137
C Summary of AEDIT Variables 139
D Configuring AEDIT for Other Terminals
Tested ConfiguratioNSuueiiiiiiiii e 143
DEC VT52 ittt ettt et e e e e e e e e 145
DEC VT100 and VTL02......cuiiiieeiiiiiie et e et 146
Hazeltine 1510E (with escape lead-in).........ccccceeeiiiiiiiiii, 147
Hazeltine 1510T (with tilde [ead-in)..........cccceeeeeieei 148
Lear Siegler ADMS3Aoooiiiieiiiiiiiie e e e e s 148
P e e e a e 149
QUME QVTLOZ ..o e aaaas 149
Televideo 910 PLUS ...t 150
Televideo 925 and 950ccooeeiiiiiiiiiiiiiiie e 150
WWVYSE 50 ..ttt eene 151
XoTOIMINAL ..ttt e e 151
Zentec Zepher and Cobraooovviiiiiiiiiiiiiiie e e 152
E ASCII Codes 153
8 Contents

Index

157

Service Information

Inside Back Cover

Tables

4-1. AEDIT INVOCAtION CONIOISuuiiiiieeie i 67

7-1. Operators' Precedence and ASSOCIAtIVILYevvvvvvvvvveiiiiiiiiiiiiiiiieneininnnes 106
9-1. Configuration COMMANSccooiiiiiiiiiiiiie e e e e e e e e e e e eae e 121
9-2. Configuration Default ValUes..............uceiiiiiiiiiiiiiiiiiiis e 125
A-1. FUNCHON KBYS .. ittt e e e e e e e e e e e e e e e e eeeeeeaes 127
A-2. AEDIT Editing COMMANASuuuiiiiiiiiiiiiieiiieeeeeeeeeee e e 129

C-1. AEDIT VaArabIeSuiiiiiiiiiiiiiee e 139
D-1. SWItCh SEeNGS .oooiiiiiiieiiieieeee e 143
E-1. ASCI COUE LISt ..uuttttiiiiiiiiieeeii ettt 153
E-2. ASCII Code Definition..........cccuuviiiiiiiieei e mmmmem 155
Figures

2-1. AEDIT DiISPIAY .. ceeiii ittt 19
2-2. MENU PrompPt LINES....ccci oottt e e e e e e e e e e e e e e e e e e eeeeeeaeaeaene 21

AEDIT Text Editor

Contents 9

Introduction and Tutorial

AEDIT is an interactive, screen-oriented text editor with menu-style command
prompts.

AEDIT enables you to:

Display and scroll text on the screen
Move to any position in the text file or to any point on the screen
Rewrite text by typing new characters over old ones

Make insertions and deletions easily

To simplify text editing, AEDIT also provides features allowing you to:

Find any string of characters
Substitute one string of characters for another string
Move or copy sections of text within a file or between files

Create macros to execute several commands at once, thereby simplifying
repetitive editing tasks

Perform arithmetic functions
Edit two files simultaneously
View lines over 80 characters long

Perform basic word processing operations

AEDIT Text Editor Chapter 1 11

AEDIT Tutorial

This session is a short tutorial that illustrates the most basic AEDIT commands.
These functions are covered:

e Activating the editor

e Entering text

e Changing text

e Deleting text

e Copying text

e Using theother command

« Exiting the editor

The purpose of this tutorial is to get you started, not to fully document AEDIT

commands. Only a few of the most basic AEDIT commands are presented in this
tutorial.

Activating the Editor

12

Activate AEDIT by typing:
AEDIT <CR>
The editor displays this prompt at the bottom of the screen:

-?7?- system-id AEDIT V x.y Copyright yyyy Intel Corp.
Again Block Calc Delete Execute Find -find --more--

The question marks (-??-) in frontgfstem-id indicate that AEDIT is waiting

for your input. When AEDIT is busy, the question marks are replaced by two
exclamation points (-!!-).System-id is a string identifying the operating system,
x.y is the AEDIT version number, anglyy is the copyright year(s). The vertical
bar () (initially in the upper left corner of the screen) marks the end of the file
(EOF). As you type text into the file, the vertical bar moves and continues to mark
the end of the file. The cursor initially covers the EOF marker.

When first invoked, AEDIT is at the main command level waiting for your input.
The menu prompt line displays a selection of main commands or matesi§e
andinsert are considered modes). AEDIT does not return automatically to the
main command level after executing some commands éogk). To return to

the main command level or to exit timsert or xchangemodes, press <Esc>.

To specify a menu selection for a command or mode, press the initial letter of the
selection (for instance for block).

The word--more-- on the prompt line indicates that there are more commands or
modes. Press <Tab> to display the next line of prompts. Pressing <Tab> at the la
line of prompts returns you to the first line of prompts.

Chapter 1 Introduction and Tutorial

Entering, Changing, and Deleting Text

Before typing text into the file, you must preéss enterinsert mode. The word
[insert] is displayed at the bottom of the screen, indicating that you arseirt
mode. Type a word but misspell it. To correct the typing error, press the key
configured tarubout. Each time you press the key configuredutoout, the
cursor backs up one column and erases the character. When the erroneous
character is erased, type the correct character.

The line you just typed may be deleted character-by-character with the key
configured tarubout, or in its entirety with the key configured delli, delete line
(usually configured to <Ctrl-Z>). Delete the line. The file is now empty, and the
EOF marker is back in the upper left-hand corner of the screen. The cursor,
however, remains in the same position on the screen until the next command is
given.

Now type this sentence, exactly as shown. Several words are deliberately
misspelled.

High-levell languages (Pacal in particular) more <CR>
closely modal the human thought process than <CR>
low-level languages such as assembly language.<CR>

The first word in the sentendeyell, is misspelled. To correct this error, use the
cursor control keys to position the cursor on the erronkolove the cursor by

the cursor control keys (arrows) in the direction indicated by the arrow. Press
<Up> twice to move the cursor to the first line. Then press <Left> followed by
<Home> to move the cursor to the first position in the line. The <Home> key is
used in conjunction with the cursor control keys for fast cursor movement. Press
<Right> nine times to position the cursor on the firsThen press the key
configured tadelch, delete character (usually <Ctrl-F>) to delete the dxtra

Thesin Pascalhas been omitted. To correct this error, position the cursor an the
in Pacaland types. Text automatically moves to the right as $he inserted.

Press <Esc> to leawesert mode and return to the main command level.

The wordmodelis misspellednodal To correct the error, typeto enter . The
word [exchange] is displayed at the bottom of the screen, indicating that you are
in xchangemode. Position the cursor on thand typee.

Press <Esc> to leawehangemode and return to the main command level.

AEDIT Text Editor Chapter 1 13

You have learned how to insert text, exchange text, and delete individual
characters. Now type this sentence exactly as shown. First) présen,

position the cursor below the lines you just typed. Move the cursor to the end of
the line using the right arrow key followed by <Home>, then press <Down> twice
and <CR> once. The cursor is now positioned at the end of the file and at the
beginning of an empty line. Type these lines exactly as shown:

Thus, high-level languages are easier and faster to <CR>
write than low-level languages, since one less less <CR>
translation step is required from concept to code. <CR>

Press <Esc> to leawesert mode and return to the main command level.

The wordlessis typed twice. To correct this error, position the cursor oh tfie

the secondess Because it appears at the end of the line, it may be deleted with
delr, delete right. Press the key configurediédr (usually <Ctrl-A>). Thedelr
command deletes all text to the right of the cursor.

Suppose you wish to delete the phrfieen concept to codgom the text, leaving

the period at the end of the sentence. To do this, block (i.e., delimit) this section
from the rest of the text using théock command followed by theelete
subcommand.

First, position the cursor over the first character of the section. In this case you
want the period to close the sentence, so position the cursor on the space before tt
finfrom. Then press for block. The@sign covers the space. Then position the
cursor one character past the end of the section you wish to block, in this case on
the period immediately after tleein code When you pressegifor block, the

menu displayed several alternative subcommahdsfer, delete, find, -find,

jump, andput.

To delete the phrase, prasfor delete

The phrase is deleted from the text and the space is closed automatically. The
result is:

High-level languages (Pascal in particular) more
closely model the human thought process than
low-level languages such as assembly language.
Thus, high-level languages are easier and faster to
write than low-level languages, since one less
translation step is required.

For faster cursor movement, use ¢hé find orjump command. In the example
above, to move the cursor to the wbrdnan(assuming that the current cursor
position is at the end of the file), press the hyphen. You will see this prompt for a
"target string":

-Find {Sh} *"

14 Chapter 1 Introduction and Tutorial

Typehuman(it will be between the quotation marks) and press <Esc>. The cursor
moves to thdr in human To move forward in the file with tHiexd command,

pressF, then type the target striniguman followed by <Esc>. Press <Esc> to
terminate thefind command.

To jump to the beginning or the end of the file, pre$ar jump followed bys for
start or E for end

Copying Text

Use theblock command to copy existing text. If you want to copy a section of text
to another part of your file, delimit the text using theck command and press

at the other end to specify thaffer subcommand. The text is held temporarily in

a buffer. Then, position the cursor where you want the text to appear an@,press
thegetcommand. This command prompts for an input file. Pressing <CR>
retrieves the contents of the buffer (where the text had been held temporarily) and
places it at the current cursor position.

To move a section of text to another part of your file and delete it from its present
position, delimit the text at one end using bheck command and pregsat the

other end to specify thdeletesubcommand. The text is held temporarily in a
buffer. Then, position the cursor where you want the text to appear ane,ptess
getcommand. The command prompts for an input file. Press <CR> to place the
buffer contents at the current cursor position. Copying or deleting a section of text
is controlled by either thieuffer or deletesubcommand under thdock command.

To copy a section of text to another file, delimit the text at one end usihiptiie
command, and pregsat the other end to specify that subcommand. The menu
prompts for an output file. Type in the filename and press <Esc> or <CR>. If the
specified file already exists, the messagawrite existing file? (y or

[n]) is displayed. The file is copied only if you respond withif the specified

file does not exist, it is created, and the text is copied to the specified file.

Using the Other Command

AEDIT has two distinct and equivalent files: the main file and the OTHER file.
This enables you to edit two files simultaneously. To enter the OTHER file, use
theother command. Pres3to enter the OTHER file. Pressa second time to
return to the main file.

See also: other command, Chapter 3.

AEDIT Text Editor Chapter 1 15

Exiting the Editor

16

To exit from the editor, presgfor quit.

This prompt appears at the bottom of the screen:
-??- no input file

Abort Init Write

There are three alternative subcommanglaborts the session amsaves the file.
If you do not want to save the contents of this practice session Apt@sdort the
session.

See also: init command, Chapter 3

This prompt is displayed:

all changes lost? (y or [n])
Pressingyr returns control to the operating system without saving the file.

If you want to save this file, preggand enter a name under which the file will be
saved, e.gmyfile. You can now exit using thiit abort sequence.

Chapter 1 Introduction and Tutorial

The Editor Basics

These editor basics are described in this chapter:

Keyboard

AEDIT display format

Message line

Text area

Beep warning

Lines and line terminators

Printing and nonprinting characters
Tags

Repeat function (count)

Buffers

AEDIT Text Editor Chapter 2

17

Keyboard

In AEDIT, certain keys are configured to perform functions. These function keys
are enclosed in angle brackets throughout this manual. Some of these functions ar
also configurable.

See also: Configuration commands, Chapter 9

Arrows The four keys labeled with directional arrows are the cursor control
keys <Left>, <Right>, <Up>, and <Down>.

Caps lock The Caps Lock key provides uppercase alphabetic characters.

Control The Control () key changes the function of some keys on the

<Ctrl> keyboard. For example, <Ctrl-C> serves asfhcommand abort
and is a configurable key. <Ctrl-C> is recognized as soon as it is
typed, even if a command is in progress.

<Esc> The <Esc> (escape) key exits modes, terminates commands, and
returns the editor to main command level.

<Home> The <Home> key allows faster cursor movement. Press an arrow
key followed by <Home> to page backward or forward through a
file, or to move rapidly to the beginning or end of a line. <Home>
is also used to enter the reedit mode for line-edit prompts.

<Return> The <Return> key moves the cursor to the beginning of the next
line ininsert andxchangemodes and at the main command level.
It also terminates the line-edit prompt except for the search
commands-{find and @)replace

<Tab> The <Tab> key rotates the menu prompt line to display the next
line of commands. lmsert orxchangemodes, <Tab> inserts the
Tab character (or optionally, replaces it with an equivalent number
of blank spaces).

18 Chapter 2 Editor Basics

AEDIT Display Format

AEDIT requires a CRT terminal (or a CRT section) with at least a 5-line,
80-column display screen (columns are numbered from 0 to 79). The screen is
divided into three sections (listed from the bottom up):

e Prompt line
* Message line
 Textarea

Figure 2-1 shows the screen after AEDIT is called but before any text has been

typed.
4 N\
EOF
Marker ;l
Cursor
Text Area —f———>
Message
Line—>| -22- system-id AEDIT Vxy Copyright yyyy Intel Corp.
Prompt —> Again Block Calc Delete Execute find -find --more--
Line _)

W-2860

Figure 2-1. AEDIT Display

AEDIT Text Editor Chapter 2 19

Prompt Line

The prompt line is the bottom line of the display. The first position of the prompt
line is blank. The prompt line contains information on the options of commands or
subcommands. The two types of prompts are menu prompts and line-edited
prompts.

Menu Prompt

20

When you start AEDIT, the editor is at the main command level and the menu
prompt is displayed. Menu prompts are a partial list of up to eight words indicating
available commands. Pressing <Tab> displays the next line of prompts. Figure 2-Z
shows the four prompt lines available at the main command level.

To select the desired command, type the first character of the prompt word.
Uppercase letters are used in Figure 2-1, but you can type the letter in either

uppercase or lowercase. The prompt for a command does not have to be visible to
invoke it.

Chapter 2 Editor Basics

—

27
Again Block Calc Delete Execute Find -find --more--
R

Get Hex Insert Jump Kill_wnd Macro Other --more--
27-

Paragraph Quit Replace ?replace set Tag

_27-
Window Xchange

--more--

|
|
|

AEDIT Text Editor

W-2859

Figure 2-2. Menu Prompt Lines

Chapter 2

21

Line-edited Prompt

Line-edited prompts ask for information (such as a filename) that requires more
than a single-character response. The response can be up to 60 characters. Itis
terminated and the information is sent by pressing <Esc>.

The prompt line always contains the parameters of the last command entered. To
edit this previously entered information, press <Home> to enter reedit mode. Press
<Esc> again when you are finished editing the parameters.

To enter a character using its ASCII value in the line-edit prompt,higsoe

(usually configured as <Ctrl-R>) followed by two hexadecimal digits. For
examplehex4l enters amh. This option enables you to enter control characters
(such a€£SCAPE(1BH)) into the text.

Entering <Ctrl-C> returns control to the main command level, leaving the original
edited string unchanged.

Message Line

22

The message line is directly above the prompt line. Status messages indicate the
command mode.

-??- The feature is on and AEDIT expects input.
-1- The feature is on and AEDIT is executing a command.

---- The feature has been turned off with an AEDIT configuration
command; or that the feature is on, but the message line is for the
nonactive window.

Following the busy/waiting indicator, one or more of these status words may
appear:

Macro Indicates that a macro is being defined.

Other Indicates that the OTHER file is being edited.
View Indicates that theiewonly control is in effect.
Forward Indicates that théorwardonly control is in effect.

This part of the message line does not change unlesshigre macro, or editing

mode of the file is changed. Other messages displayed on the message line are
status messages, count (repeat function), and the line-edit ptbioypé> to re-

edit .

AEDIT does not write past the last column of the message line. If a message does
not fit,! is printed as the last character.

Chapter 2 Editor Basics

Beep Warning
The editor beeps when you try to do something illegal, for example:
« Attempting to execute an illegal command
e Typing an invalid character duringsert or xchangemode
e Typing more than 60 characters in a line-edited prompt
* Entering a repeat count greater than the maximum value

The editor also beeps when displaying error messages.

Lines and Line Terminators

A line of text consists of a sequence of characters terminated by a carriage return
and line feed pair. This pair, called the line terminator, is entered in the file when
you press <CR>, and it is displayed on the screen as a blank at the end of the line.

If a line is over 80 characters long, an exclamation poinis(displayed in the last
column on the screen. The portion of the line that does not fit on the screen is not
displayed. To view the portion that is not displayed, uss¢hé&ftcolcommand.

See also: set leftcolcommand, Chapter 3

A line may contain any number of characters. AEDIT breaks lines longer than 255
characters into 255-character segments. A plus sigis ¢lisplayed at the end of
each segment.

Printing and Nonprinting Characters

In general, all characters except those with ASCII values under 20H and characters
with hexadecimal values equal to or above 7FH are displayed on the screen. All
characters that are not displayed on the screen print as a questior)narke

line terminator and tab print as blanks. If thghbit feature (described in Chapter

3) is set, characters with hexadecimal values over 7FH are displayed as-is.

See also: highbit feature, Chapter 3

Tags

Tags identify locations in a file. You can specify four locations, A through D, with
thetag command and use them as destinations fojuthe command. Tags are
invisible and are not saved when you exit the file.

AEDIT Text Editor Chapter 2 23

Repeat Function (Count)

Count is displayed on the message line and indicates the number of times to repea
a command. Some commands ignarent or, likedelch (delete character) limit
count . Entercount before typing a command letter. It is then displayed at the
left side of the message line. URabout to delete the value being entered for
count . The cursor position after a command has been executed times is its
location whercount is exhausted or no more occurrences are found. When the
message line containsaunt , thecount is blanked when the next prompt is
issued. The repeapunt is an optional decimal repetition factor in the range 0 to
65535 ([2** 16]-1). Any attempt to type a larger valuedount causes AEDIT

to beep. A forward slash (/) is accepted asumt and means repeat forever. The
defaultcount is one.

Buffers

AEDIT has three buffers: the main buffer, the OTHER buffer, antltek
buffer. All three buffers are allocated space in the user's free RAM.

The main buffer is the text area at startup. It always contains a portion of the main
file.

The OTHER buffer is accessed with tither command and always contains a
portion of the OTHER file (if one exists).

The buffer that is accessed and active is referred to as the current buffer; the one
that is not being edited is called the secondary buffer. For example, if you are
editing a file in the OTHER buffer, it would be referred to as the current buffer,
and the main buffer would be referred to as the secondary buffer.

If either the main or OTHER buffer is too small for the text file, AEDIT extends
the buffer with additional free RAM if it is available. When all free RAM is
exhausted, AEDIT writes to temporary files, usually on disk or diskette. AEDIT's
performance improves with the amount of free RAM available.

Theblock buffer is the storage area for text that you move, copy, or delete, using
theblock/deletecommands. Thblock buffer allows you to move text between

the main and the OTHER file. Thwock buffer has a fixed size of 2K bytes. If
more than 2K bytes are required, AEDIT uses a temporary file.

24 Chapter 2 Editor Basics

Editing Commands

This chapter describes all AEDIT commands.

Delete Commands and Function Keys

Each of thesdeletecommands are configurable to a keubout, delch, dell,
delr, delli. Each performs a specific delete function.

Rubout

Therubout command deletes the preceding character, including a carriage return if
present.

There is no recovery from this deletion.
Count: rubout ignorescount .

See also: count command, Chapter 2

Delete Character or Delch

Thedelete characteror delch command is configurable, usually as <Ctrl-F>. It
deletes the character that the cursor is on, including a following carriage return if
present.

There is no recovery from this deletion.

Count: This command limitsount to 32 to prevent accidental destruction of the
file. If count is greater than 32, the messagenot delete more than 32 is
displayed on the message line.

Delete Left or Dell

Thedelete leftor dell command is configurable, usually as <Ctrl-X>. It deletes all
characters to the left of the cursor on the line on which the cursor is positioned.

The deletion can be recovered with thielo command.
Count: thedelete leftcommand ignoresount .
Related Commands: undo

AEDIT Text Editor Chapter 3 25

Delete Commands and Function Keys

Delete Right or Delr

Thedelete right command is configurable, usually as <Ctrl-A>. It deletes all
characters to the right of the cursor on the line, excluding the carriage return.

The deletion can be recovered with thielo command.
Count: thedelete right command ignoresount .

Related Commands: undo

Delete Line or Delli

26

Thedelete lineor delli command is configurable, usually as <Ctrl-Z>. It deletes
the entire line on which the cursor is positioned. All lines below the deleted line
move up one row. The cursor is left in the same position on the new line.

The deletion can be recovered with thielo command.
Count: thedelete linecommand ignoresount .

Related Commands: undo

Chapter 3 Editing Commands

Undo Command

Undo Command

Theundo command restores characters deleted by thelédste left, delete right

or delete linecommand at the current cursor position. If the previous command
wasdelete ling the cursor moves to the beginning of the current line before the
restoration. Consecutivendo commands repeat the restoration of the same string.

Theundo command is configurable. On many terminals, <Ctrl-U> is the typical
default. However, AEDIT relies on the Terminal Support Code (TSC), and TSC
interprets a <Ctrl-U> as a command to empty the type-ahead buffer. Thus AEDIT
never receives a <Ctrl-U> command.

We suggest using <Ctrl-Y> as the Aediitdo command. To configure this, edit
the:config:termcapfile. At the end of the configuration for your terminal type,
add this configuration code:

AFXU =19;

See also: Configuration commands, Chapter 9
Count: theundo command ignoresount .

Related Commands: dell, delr, delli

AEDIT Text Editor Chapter 3 27

Insert Mode

Insert Mode

Insert mode enables you to enter text. To eiteert mode, press. To exit
insert mode and return to the main command level, press <Esc>.

Description
Presd ; AEDIT prompts:

[insert]

The promptipsert] is displayed whenever AEDIT is insert mode. Move the
cursor to any location in the text and begin typing; the characters are inserted into
the text.

<Esc> causes the editor to leansert mode and return to the main command
level.

<CR> inserts a carriage return and moves the cursor to the beginning of the next
line.

<Ctrl-C> deletes all text inserted since the beginningsgrt mode, or since

insert mode was restarted by one of cursor movement commands or delete
commands but does not restore characters deletedubibit, delch, delli, dell,
ordelr. After restoration, <Ctrl-C> returns the editor to the main command level.

In insert mode, macro execution usually restarts the insert process. The only
exceptions are non-modeless macros that contain non-restarting commands only.

See also: Macro modes, Chapter 5

Insert mode is modified if it is preceded by a forward slash (/). All text past the
cursor in the current line is moved down one line. The text is restored before any
delete or move subcommand (excegiout) or when insertion is complete.

Count: repeatount is not a valid option iinsert mode.

Related Commands: set indent, set autonl, hex, mexec, fetn, fets

28 Chapter 3 Editing Commands

Xchange Mode

Xchange Mode

Xchangemode enables you to overwrite existing text. To extbange pressx.
To exitxchangemode and return to the main command level, press <Esc>.

Description
Pressx; AEDIT prompts:
[exchange]

The prompt ¢xchange] is displayed whenever AEDIT is kthangemode. Move
the cursor to any location in the text and begin typing; characters are replaced on a
one-for-one basis. The carriage return is not replaced; instead, the line is extended.

<Esc> causes the editor to leasslhangemode and return to the main command
level.

Rubout works as normal except if the cursor is at the original replacement
location,rubout then moves one character to the left but does not delete the
character.

<Ctrl-C> restores original text (text before it was exchanged), however, once you
have exchanged text and pressed <Esc> or restattadigewith any of the cursor
movement commands, changes cannot be revoked by pressing <Ctrl-C>.

Count: repeatount is not a valid option ikchangemode.

Error : xchange limit is 100 is displayed if you attempt to exchange over
100 characters without restartirnghangemode. Xchangemode has a limit of 100
characters.

AEDIT Text Editor Chapter 3 29

Find Command

Find Command

Thefind command searches forward from the current cursor position to the end of
the file for a string of characters.

Description

30

Press=; AEDIT prompts:

---- <HOME> to re-edit
Find {mode} "target_string"

The lastarget_string (if any) is displayed within quotedode refers to the
setoptions currently in effect that may influence fimel command.

Pressing <CR> when specifying a target string inserts a carriage return into the
target string and adds the carriage return symnt#, , to the prompt line. You
must press <Esc> to complete the string specification and execfitedthe
command.

The cursor is placed immediately after the next occurrence of the target string. If
the string is not found, the messagefound: "target_string " is displayed
in the message line and tfied command is marked as failed.

The messag®und: (number) is displayed when the command is complete.
Number refers to the number of found strings.

These attributes affect how thied command works. Select them through the
mode value:

* Case- mode values

* Showfind - mode valuesh

« K _token - mode valugk

Case, showfind andk_token refer to features set through tetcommand.
See also: setcommand, described later in this chapter

Count: thefind command accepts aegunt wherecount indicates the number
of times to search for a target string. The search stops after the last occurrence of
the target string is found eount is exhausted.

Error : notfound: "target_string " is displayed if no match is found, and the
editor returns to the main command level.

Related Commands: set case, set k_token, set showfind

Chapter 3 Editing Commands

-Find Command

-Find Command
The-find command is identical to tHed command with these exceptions:

» -Find searches backward from the current cursor position to the beginning of
the file.

e Theshowfind option is ignored.

e The cursor is positioned on the first character of the matched string.

Description
Press the hyphen (-); AEDIT prompts:

---- <HOME> to re-edit
-find {mode} "target_string"

The lastarget_string (if any) is displayed within the quotation marks.

Related Commands: set case, set k_token

AEDIT Text Editor Chapter 3 31

Replace Command

Replace Command

Thereplacecommand is similar to thiind command except that it enables you to
replace the old target string with a new string. fdpace command also enables
you to delete a target string.

Description

32

PressR; AEDIT prompts:

---- <HOME> to re-edit
Replace {mode} "target_string"

The lasttarget string (if any) is displayed within the quotation marks.

The prompt line contains two line-edited arguments. The first argument is the
string to search for. After entering this string press <Esc> to enter the replacement
string. This prompt will appear:

---- <HOME> to re-edit
Replace {mode}"target_string" with "replacement_string"

PressingcEsc> finishes editing and starts the replacement process.

These attributes affect how theplace command works. Select them through the
mode value:

* Case- mode values

* Showfind - mode valueh

« K _token - mode valugk

Case, showfind andk_token refer to features set through tetcommand.
See also: setcommand, described later in this chapter

To abort aeplace command, press <Ctrl-C>.

The (?)replaceand(-)find commands share the same target string and each
changes the other's default target.

Count: thereplacecommand accepts aegunt wherecount indicates the
number of times to replace a target string. Replacement stops when there are no
more target strings.

Error : notfound: "target_string " is displayed if no match is found, and the
editor returns to the main command level.

Related Commands: set case, set k_token, set showfind

Chapter 3 Editing Commands

?Replace Command

?Replace Command

The?replacecommand is the conditione¢place command.

Description
Press?; AEDIT prompts:

---- <HOME> to re-edit
?Replace {mode} "target_string"

The?replaceworks exactly the same as tteplace command except that this
prompt is displayed on each find:

ok to replace? (y or [n])

If y (orY) is typed, the replacement is made. Any other key is considered a
negative response.

AEDIT Text Editor Chapter 3 33

Tag Command

Tag Command

Use thetag command to specify four locations in a file and, withjthmp

command, move the cursor to one of these locations.tatheommand relates to

the current cursor position. Tags are invisible and are not saved when you exit the
file. After the tag is set, the editor automatically returns to the main command
level.

Description
You can set four tags: A, B, C, and D.
The cursor's current position determines the tag location.
Pressr; AEDIT prompts:
A_tag B_tag C_tag D_tag
Set the tag by pressiigB, C, orD.

If the section containing the tag is deleted, AEDIT moves the tag to the first
position after the deleted section.

Each input file (main or OTHER) has its own set of tags.
Count: thetag command ignoresount .

Error : invalid command is displayed if a key other thagpB, C, orDis
pressed.

Related Commands: jump

34 Chapter 3 Editing Commands

Jump Command

Jump Command
Thejump command moves the cursor to a specified location in text. The editor
automatically returns to the main command level.
Description
Press); AEDIT prompts:
A tag B_tag C_tag D_tag Start End Line Position

Count: thejump command ignoresount .

A_tag, B_tag, C_tag, D_tag

Execute theéag subcommand by pressigB, C, orD. The cursor jumps to the
specified tag, previously set with tteg command.

Error: nosuchtag is displayed if the specified tag does not exist.

Related Commands: tag

S-Start
Thestart subcommand, executed by presstgnoves the cursor to the start of the
file.

E-End
Theend subcommand, executed by presgingnoves the cursor to the end of the
file.

L-Line
Theline subcommand, executed by presdingrompts for a line number to jump
to.
Error : illegal value is displayed if a value larger than the maximum value or

any other illegal value is entered.

P-Position

The position subcommand, executed by presglgrompts for a column position
to jump to.

Error : illegal value is displayed if a value larger than the maximum value or
any other illegal value is entered.

AEDIT Text Editor Chapter 3 35

Block Command

Block Command

Invoke theblock command by pressirj(or D; typing eitherB or D initially is
equivalent). Thélock command enables you to select a section of text to delete,
move, or copy. Thbuffer subcommand copies the section toliteek buffer.
Thedeletesubcommand deletes the section and places it inldlo& buffer. The

put subcommand copies the section to an external file.

Use theget command to retrieve text saved in tieck buffer (or in an external
file). Thegetcommand copies the contents of bheck buffer (or external file) at
the current cursor position in your file.

Block Buffer

Theblock buffer has a fixed maximum size of 2K bytes. If text copied to the
block buffer is over 2K bytes, the remainder is written to a temporary work file.
The contents of the buffer remain unchanged until you execute abdibkror
deletecommand, when a new section of text overwrites the old contents in the
buffer.

Description

36

To mark a section of text, first invoke the block command by pres&sifthis
prompt appears:

Buffer Delete Find -find Jump Put

Move the cursor to the first character of the section and presmark the

beginning of the block; th@sign marks the start. Then move the cursor to the end
of the section and pressto mark the end of the block. The section is copied into
theblock buffer and the@markers are removed. To delete a block of textDuse
mark the start and end points of the text to be deleted.

To copy the block from the buffer, move the cursor to the target location. ®ress
and the press <CR> at the prompt for the input file. The block will be copied to
the new location.

Count: theblock command ignoresount .

Related Commands: get

Chapter 3 Editing Commands

Block Command

B-Buffer

To execute théuffer subcommand, pre®s It copies text to thblock buffer.
The @signs are removed; the delimited section of text is copied toldhk buffer.
The delimited section of text is not affected.

D-Delete

To execute theeletesubcommand, press. It deletes the delimited section from
the text and moves it to thock buffer. If the deleted text does not fit in the
portion of theblock buffer that is in memory, the menu prompts:

cannot save in memory--save anyway? ([y] or n)

If n is specified, the delimited section of text is deleted, bublinek buffer is not
updated. If you press any other key, the delimited section is written to a temporary
file. Press <Ctrl-C> to abort the command.

F-Find
To execute théind subcommand, press It works the same as it does at the main
command level.

(-) -Find
To execute thefind subcommand, press the hypheh (It works the same as it
does at the main command level.

J-Jump
To execute theump subcommand, press It works the same as it does at the
main command level.

P-Put
Use theput subcommand to copy a section of text to a named output file.
Press; AEDIT prompts:

---- <HOME> to re-edit
Output file: filename

The filename of the previous command (if any) is displayed to the right of the
colon. You can copy the marked section of text to this file or a different filename
may be specified. The marked section is not affected.

The specified file can also be written to an output device supported by your system.

Aedit Text Editor Chapter 3 37

Delete Command

Delete Command

Invoke thedeletecommand by pressiriy Thedeletecommand enables deletion
of a section of text by typinD at both endpoints.

See alsoblock command, described in this chapter

38 Chapter 3 Editing Commands

Get Command

Get Command

Thegetcommand retrieves the contents of bheck buffer or an external file and
inserts it at the current cursor position in your file.

Description

Move the cursor to the point in your file where you want the contents of the buffer
(or external file) to be placed.

PressG, AEDIT prompts:

---- <HOME> to re-edit
Input file: filename

The filename previously specified for tgetcommand (if any) is displayed to the
right of the colon.

To insert the contents of thdock buffer at the current cursor location, press
<CR>. To insert the contents of an external file, type the name of the file, then
press <Esc> or <CR>.

The editor returns to the main command level with the cursor on the first inserted
character.

Count: this command accepts any number less than 64K. The named file is
copied to the current locatiaount times. The repeabunt /is not valid with
thegetcommand. IfG is typed, AEDIT returns to the main command level
without issuing an error message.

Related Commands: block

AEDIT Text Editor Chapter 3 39

View Command

View Command

40

To execute theiew command, pres¢. This command rewrites (move) the text on
the screen so that the row containing the cursor (the viewrow) is positioned on the
row that you have definedview is also useful to refresh the screen image. The
view row is set with theetviewrow command; the default ®/5, whereR is the
number of rows in the screen.

View also issues an abbreviated sign-on message, which includes the busy/ waiting
indicator, system-id, and AEDIT version number.

Count: theview command ignoresount .

Related Commands: set viewrow, window

Chapter 3 Editing Commands

Other Command

Other Command

AEDIT has two distinct buffers. The text area at startup is called the main buffer;
the other is called the OTHER buffer. Tatber buffer enables you to edit a

second file in the same way as the main buffer. To execut#itbecommand,
pressO. Use this command to switch from editing text in one buffer, the current
buffer, to editing text in the other or secondary buffer.

Pressingd a second time returns the editor to the main buffer.

The main and OTHER buffer text may be displayed simultaneously by splitting the
screen into two windows using théndow command. Typin@ displays the

OTHER file in one window. In this case, switching from one window to the other
results in switching from one text buffer to the other.

Description
Press0; the messagether Editing input file or, if no input file has been
specified,Other no input file is displayed at the start of the message line

whenever the secondary text is displayed:

---- Other Editing input file
Again Block Calc Delete Execute Find -find --more--

Each buffer has a separate set of taggumdp command is valid only within its
own buffer; it cannot jump to the other buffer. Also, each buffer has its own value
for set leftcol Theblock buffer is common to allow moving text between buffers.

Presg0to exit theother buffer and return to the main buffer.

Count: count has no meaning for thether command.

AEDIT Text Editor Chapter 3 41

Again Command

Again Command

To execute thagain command, presas. It causes the last command, or in some
cases the last subcommand, to be repeated.

In these commandagain repeats the entire command, including subcommand
arguments:

e paragraph
e (9find, (?)replace

In this commandagain repeats the entire command including subcommands, but
without its arguments:

* hexcommand

Count: count is thecount for the repeated command. The valueaint given
for the last command is ignored.

42 Chapter 3 Editing Commands

Set Command

Set Command

Thesetcommand enables you to set/reset several features that determine how
AEDIT will operate, e.qg., if case (upper case, lower case) should be considered in
the target string of a search command.

Most setsubcommands relate to switches. A switch is an option that has only two
states: yes or no. When a subcommand of this type is activated, a yes/no question
is displayed on the prompt line. The value currently in effect is enclosed in square
brackets. Each feature has a default value; this value is in effect until it is reset
using thesetcommand.

Description
PressS (press <Tab> to view the remaining prompt lines); AEDIT prompts:

Autonl Bak_file Case Display E_delimit Go Highbit --more--
Indent K_token Leftcol Margin Notab Radix Showfind --more--
Tabs Viewrow --more--

To specify an option, press the initial (upper case) letter of that option.

Count: thesetcommand ignoresount .

A-Autonl

This option automatically creates a new line at the right marginsért mode.
AEDIT prompts:

insert <nl> automatically? (y or [n])

* If y, a carriage return is inserted in the right margin whenever an attempt is
made to insert a character in that position. If the character to be inserted is not
a white space (i.e., not a space, tab, carriage return, or line feed), the carriage
return is inserted before the token, if possible. Trailing blanks and tabs are
deleted, and the carriage return is inserted between words. The right margin is
set usingset margin (described later).

e If n (the default), the option is turned off.

Related Commands: insert, set margin

AEDIT Text Editor Chapter 3 43

Set Command

B-Bak_file
Under this option, AEDIT saves a backup file that contains the last version of your
file. AEDIT prompts:

create .BAK files? ([y] or n)

« If y (the default), the file you are editing is renarfisdbak whenquit exit or
quit update is executed, before the edited text is written.

e If n, this option is turned off.

|:| Note

Keep this option turned on. If your file is accidentally lost or
damaged anbak_file isyes, the previous version of the file
would be saved in the backup file.

C-Case

Under this option, AEDIT uses case as a criteria when searching for a target string
in a search command. AEDIT prompts:

consider case of Find target? (y or [n])

« If y, you can type the target string in upper case, lower case, or a combination
of both, and the case is significant.

« If n, (the default), you can type the target string in upper case, lower case, or a
combination of both, but the case is ignored.

Related Commands: (-)find, (?)replace

D-Display

Use this option to display the text changes resulting from macro execgeéon.
e_delimitis used by théind/replace commands under token mode.

AEDIT prompts:
display macro execution? (y or [n])

e If y, during macro execution all cursor movements and text changes are
displayed on the screen.

« If n (the default), this option is turned off. Thus, when macro execution starts,
cursor movements or changes in the text outside the current screen are not
displayed on the screen.

44 Chapter 3 Editing Commands

Set Command

E-E_delimit

You can display and change the current delimiter set using this ojséin.
e-delimit is used by théind/replace commands under token mode.

AEDIT prompts:

---- <HOME> to re-edit
delimiter set: current delimiter set

All characters currently specified as delimiters are displayed to the right of the
colon on the prompt line.

Delimiters have these properties:
e A delimiter is always one character.

* Characters with hexadecimal values from 00H-20H, and 7FH or more are
predefined delimiters. They are not displayed, and they cannot be excluded
from the delimiter set.

e ASCII characters with the values 21H-7EH are displayed (if specified).
« Delimiters are displayed with no separating characters.

Delimiters specified bgete_delimit are used to define a token for the
(-)find/(?)replaceoperation. A token is any nonempty string surrounded by
delimiters.

When you specify a set of delimiters, you may include the same delimiter more
than once. For example, you may separate input delimiters with blanks.

The defaulie_delimit string is:

"#%& ' ()*+,-./1;<=>2@[\]" " {|}~

Related Commands: (-)find, (?)replace, sek_token

AEDIT Text Editor Chapter 3 45

Set Command

G-Go

This option relates to macro execution continuation aftejfiad/ (?)replace
command failed. AEDIT prompts:

continue macro execution after a failure? (y or [n])

This option is meaningful only in macro execution; it has no meaning at the main
command level. The default for tket gooption, when a macro is startednis

for all macros regardless of the current setting of the option. To use this option,
specifyset goyes in your macro. It may be reset within the same macro.s€éhe

go option affects only the current macro and not the enclosing or enclosed macros.

« Ifyisin effect for the current macro and-Hind/(?)replace command fails,
execution of the current macro continues, i.e., the next command is activated.

« If n (the default), is in effect for the current macro, arfdfand/(?)replace
command fails, execution of the current macro is terminated, and control is
returned to the caller, either a macro or the main command level.

During macro create theset gocommand is inserted into the macro definition, but
the macro currently defined is executed aseifgois yes .

Related Commands: macro create, execute

H-Highbit

46

Under this option, AEDIT displays characters with hexadecimal values over 7FH.
AEDIT prompts:

display parity-on characters as is? (y or [n])

« If y, all text characters with hexadecimal values over 7FH are written to the
screen as-is.

« If n (the default), all text characters with hexadecimal values over 7FH are
displayed as.

Chapter 3 Editing Commands

Set Command

I-Indent

Use this option when entering code in a structured language such as PL/M or
Pascal. AEDIT prompts:

automatically indent during insertion? (y or [n])

e If y is chosen, when <CR> is pressedhisert mode, the next line is
automatically indented to as the preceding line. When <CR> is pressed at the
main command level, the cursor moves to the first nonblank, nontab character
in the next line.

« If n (the default) is chosen, this option is turned off.
This option is not active iRchangemode.

Related Commands: <CR> (<Return>)insert

K-K_token

|:| Note

K-tokens are not the same as iRMX tokens.

This option enables you to find a string only if it is enclosed by delimiters and is
not part of a larger string. AEDIT prompts:

find only token strings? (y or [n])

Token characters are all the characters that are not delimiters. A token is defined
as a nonempty string surrounded by delimiters. Delimiters in this context are the
characters specified set e_delimit

« Ify, astring is found by thg)find or (?)replacecommand only if the string
fits the token definition.

A string in the text that is found kfy)find or (?)replacecommands wheget
k_tokenno is in effect will also be found wheset k_tokenyes is in effect
only if that string is a nonempty string surrounded by delimiters. In general,
delimiters include the beginning and end of a file, the cursor position, and
carriage return.

« If n (the default) is pressed, a string in the text is found regardless of the
characters that surround it.

Related Commands: (-)find, (?)replace, sete_delimit

AEDIT Text Editor Chapter 3 47

Set Command

L-Leftcol

Use this option to view lines over 80 characters long on the screen.
AEDIT prompts:
left column: current_left_column

The current left column is displayed to the right of the colon. This command
accepts any number from 0 to 175 (position count starts at 0). The number input
indicates the number of characters at the start of a line that should not be displayec

For example, if a line is 90 characters long, you calteftebl to 20 and the screen
will display the line from position 21 to the end of the line.

An exclamation point!() is printed in column 0 when characters to the left are not
displayed.

Leftcol can also be set by typing the plus sighdr the minus sign-() followed by
a valid decimal number. This sets the left column at the current value plus or
minus the number given.

AEDIT may have two different values ftaftcol simultaneously, one for the main
file and one for the OTHER file. The defaldftcol for both files is zero.

For example, if the left column is currently set at position 15 and youstigpe

L(eftcol) -10 , the new left column is position 5.
Error : bad Leftcol is displayed if you attempt to set a value out of range.
M-Margin

48

This option sets values for indenting left and right margins for reformatting a
paragraph. AEDIT prompts:

---- <HOME> to re-edit
indent, left, right: current indent, left and right margins

The current values for indent, left, and right are displayed to the right of the colon
separated by commas. The first number sets the indentation, the second the left
margin, and the third the right margin. Indent may be set at any value from 0-253;
left, from 0-253; and right, from 1-254. The value of the right margin must be
greater than the indentation and the left margin. When entering the values,
separate them by one or more blanks or a comma. The values of all three numbers
are absolute and offset from position 0. The default values are 4, 0, and 76.

Press <Esc> or <CR> to execute the command and return to the main command
level.

Chapter 3 Editing Commands

Set Command

To setindent to O, left to 5, and right to 70, type:
S(ET) M(argin) 0, 5, 70 <CR>

To reset the left margin to 2, type:
S(ET) M(argin), 2 <CR>

Related Commands: paragraph, set autonl

N-Notab

This option instructs the editor to replace inserted tabs with the appropriate number
of blanks. AEDIT prompts:

insert blanks for tabs? (y or [n])

* If y, blanks are inserted instead of tabs whenever you press the <Tab> key in
theinsert or xchangemode.

* If n (the default), this option is turned off.

This option does not affect tabs that are entered usinghie prefix (for
instance<HEX>09).

Related Commands: set tab

R-Radix

This option determines the radix (base) in which an AEDIT numeric variable will
be inserted in the text. AEDIT prompts:

---- current Radix: current radix
Alpha Binary Decimal Hex Octal

This option affects values inserted or exchanged bfetich operation. Theadix
default is decimal.

See also: radix operation, Chapter 6

Related Commands: insert, xchange

AEDIT Text Editor Chapter 3 49

Set Command

S-Showfind

T-Tabs

50

Use this option to display all lines containing the target stringimddreplace
command. AEDIT prompts:

list lines on multiple finds? (y or [n])

« If y, when you executefand or replace command andount is greater than
1, the screen is cleared, and each text line that contains the target string is
displayed on the screen.

« If n (the default), théind andreplace commands execute as usual, but the
screen is not cleared, and text lines that contain the string are not displayed on
the screen.

Related Commands: find, replace

This option sets tabs. AEDIT prompts:

---- <HOME> to re-edit
Tabs: current tab setting

The prompt line lists the current tab settings. If you want to inspect the tab
settings, type <Ctrl-C> to return to the main command level.

To enter tabs, type a list of decimal numbers separated by at least one blank or a
comma. Specify the numbers in increasing order, from 1-253. Changing the tab
settings does not change the file contents, but it may affect its display on the
screen.

The default tab settings are every fourth position, i.e., 4, 8, 12, and so on.

The difference between the last two numbers specified for tabs is repeated, up to
253.

For example:
4 sets tabs at 4, 8, 12, 16,...
5,6,10 setstabs at5, 6, 10, 14, 18,...

|:| Note

Columns start at 0, not 1. Therefore, FORTRAN tabs should be
6,10, not 7,11.

Error : bad tabs is displayed if you attempt to set an illegal tab.

Related Commands: insert, xchange

Chapter 3 Editing Commands

Set Command

V-Viewrow
This option selects a view row for rewriting the screen. AEDIT prompts:
row for View: current viewrow

The currenviewrow setting is displayed to the right of the colon. Type the

number of the row on which you wish the cursor to be positioned byehe

command. This value must be between 0 and the text size —1. If, for example,
your screen size is 25 rows, then text size is 23 (25 minus the message line and the
prompt line). Therefore, the legal values are 0-22.

The defaultviewrow setting is the number of rows in the screen, divided by 5,
(which means 5 on most terminals).

If the screen is split using thendow command, th@iewrow is determined
separately for each window.

Error : bad Viewrow is displayed if viewrow is illegal.

Related Commands: view, window

AEDIT Text Editor Chapter 3 51

Hex Command

Hex Command

Thehex command inserts the ASCII equivalents of hexadecimal values in the text.
This command also displays the hexadecimal values of text contents in the messag
line.

Description
PressH; AEDIT prompts:
Input Output

To specify a subcommand, press the initial letter of that subcommand.

I-Input
Presd ; AEDIT prompts:

---- <HOME> to re-edit
Hex value:

The last values entered fhexinput are displayed to the right of the colon. Legal
input values consist of one or more strings separated by one or more blanks. A
legal string has these characteristics:

« Every character is a valid hexadecimal digit (0-9, A-F)
« Contains 1 or an even number of characters

Values entered are regarded as hexadecimal; therefore, the suffix H is an illegal
character. The values may be separated by one or more blanks.

These are examples of legal input values:

9
5A5B60
3456 65 78F0 8 98C8A7

If the input is legal, the equivalent characters are inserted in the text at the cursor
position.

Error : invalid hex value is displayed if an illegal value is entered, and the
editor returns to the main command level.

52 Chapter 3 Editing Commands

Hex Command

O-Output
Press0.

The hexadecimal value of the character immediately to the right of the actual
cursor position is displayed on the message line. cbhet that preceded theex
command gives the number of bytes in hexadecimal format. Up to 10 bytes of
hexadecimal values can be displayed in the message line. If more bytes need
displaying, the messagit space to continue is displayed.

Press the space bar to display the next 10 bytes. Any other key returns AEDIT to
the main command level.

Examples
To insert the form-feed character (hexadecimal value 0C) to the current location,
type:
H(EX) I(nput) C <CR>
To insert the digits 1, 2, and 3 to the text, type:

H(EX) I(nput) 31 32 33 <CR>

Position the cursor over the one and tgp#(EX) O(utput) to display the
characters. The characters are displayed on the message line.

AEDIT Text Editor Chapter 3 53

Quit Command

Quit Command

Thequit command performs several functions depending on its subcommand. It
ends the editing session, it initializes processing a new input file, or it updates your
edited file. Quit has different prompts depending on whether or not a filename has
already been specified for the file you are editing.

Filename Specified
Pressy AEDIT prompts:

---- Editing input file [to output file]
Abort Exit Init Update Write

To specify a subcommand, press the initial letter of that subcommand.

A-Abort

Whenabort is activated, if any changes have been made to the current file, AEDIT
promptsall changes lost? (y or [n]) to avoid inadvertent loss of text. A

y continues the abort process; the same procedure is then applied to the secondan
file. Control returns to the operating system only after both questions have been
answered witly. All changes (if any) that were made to the input file(s) are lost.

If either question is answered with a response othenthAEDIT returns to the

main command level.

Note that:
* You are questioned concerning only input files that have been changed.

« The first question (if any) relates to the current file and the second one (if any)
relates to the secondary file.

« If you answely to the first question andto the second while AEDIT is still
active, the next time you typgit abort , you will not be asked further
about the file about which you have already answegnediess new changes
have been made.

E-Exit

Whenexit is activated, AEDIT rewrites the current file. Then, if the OTHER file
has also been changed, AEDIT automatically performsttier command and
asksall changes lost? (y or [n]). Ay returns AEDIT to the operating
system without rewriting the OTHER file. Any response other heeturns the
editor to the main command level.

54 Chapter 3 Editing Commands

Quit Command

I-Init

Use this option to start editing a new file without returning to the operating system.
If any changes have been made to the current file, the menu prampts

changes lost? (y or [n]). If y is answered (or if no changes have been
made since the last update), AEDIT prompts:

---- <HOME> to re-edit
enter [file [TO file | VO | FO]]:

Enter the input file (or <CR>) followed optionally either by an output file name or
by theVO or FO controls. VO is the abbreviation of the contrakbwonly; FO is

the abbreviation oforwardonly. File is the file you want to edif,O file

indicates the output file. THEO option can be used only when the input file exists.

See also: viewonly, forwardonly commands, Chapter 4

U-Update

Whenupdate is activated, the updated version of your file is written without
returning to the operating system.

After the file has been written, the messéilge has been written is
displayed.

After completing thequit update command, the editor is at thait prompt level,
not at the main command level. Press <Esc> to continue editing, or enter another
quit subcommand, such ast.

AEDIT Text Editor Chapter 3 55

Quit Command

W-Write

This option writes your file to the specified filename. This prompt is displayed:

---- <HOME> to re-edit
Output file:

Enter the output filename. If the specified file exists, the editor beeps and this
guestion is displayed;
overwrite existing file? (y or [n])

« If y, the entire text file is written to the named file, overwriting the existing
file. AEDIT returns to theuit prompt level.

e Any other response returns the editor todgh# write prompt level.

After the file has been written, the messélge has been written is
displayed.

Thequit prompt is always reissued after gpdate or write subcommand. Press
<Esc> or <Ctrl-C> to return to the main command level. Two points to remember
are:

e Quit abort andquit exit relate to the entire AEDIT session, i.e., to both the
current file and the secondary filQuit init, quit update, andquit write
relate only to the file you are currently editing.

e An output file indicated by th&O clause can be specified for a file in either
the invocation line or at thguit init command. Only the subcommands
update andexit relate to this output fileyrite does not.

Filename Not Specified

56

If you are editing a new file and have not yet specified a filenamexthand
update subcommands are not available as both subcommands require a filename.
The AEDIT prompt is altered as:

---- no input file
Abort Init Write

The subcommands function the same as discussed above.

Chapter 3 Editing Commands

Paragraph Command

Paragraph Command

To invoke theparagraph command, presB. Theparagraph command reformats
a paragraph using the values set for indent and left and right marginsiet the
margin command. The default is to reformat one paragraph.

|:| Note

Theparagraph command execution starts by identifying the
beginning of the current paragraph. AEDIT searches backward
for an empty line; then, AEDIT finds the end of the paragraph by
searching forward for an empty line. This implies that if your file
has no empty linegaragraph will process the entire file as one
paragraph, wherever the cursor is currently positioned in the file.

Description
Move the cursor to any position in the paragraph to be reformatted.
Press; AEDIT prompts:
Fill Justify
To specify an option, press the initial letter of that option.
Count: count defines the number of consecutive paragraphs to reformat.

Related Commands: set margin

F-Fill

Filling means that the white space sequences are reduced to one blank, and every
blank after a sentence terminator (such as a period or question mark) is extended to
two blanks. Words are moved to fill the line between the right and left margins or
from line to line if necessary. The first line is indented according to the value of
indent. Words are moved to the left as much as possible. Words are not split and
lines are not right-justified.

J-Justify

In justification, the first step is as described in the filling process. The second step
is performed separately for each line: words are shifted to the right (if necessary),
and the space between words expanded so that the last word of every line ends at
the right margin and the spaces between words are approximately even. The last
line of the paragraph is not right-justified.

AEDIT Text Editor Chapter 3 57

Window Command

Window Command

58

To invoke thewindow command, pres& It horizontally splits the text area of the
screen into two partitions. Each partition or window contains the text, message,
and prompt sections. Th@ndow command enables you to view two different

parts of the same file or two different files, using the main file and the OTHER file.

The screen is split above the cursor row. If the cursor is placed so that one
window's size is less than five rows, the screen is not split, and this message is
displayed:

window too small

After the screen is split, pressimgcauses the cursor to jump between the two
windows.

If the same file is displayed in both windows, a change in one window is not
reflected in the other window until you presand jump to the other window.

See also: kil wnd command

Related Commands: kill_wnd, set viewrow, view

Chapter 3 Editing Commands

Kill_wnd Command

Kill_wnd Command

Invoke thekill_wnd command by pressirg It returns the screen to one window.
The current (active) window is the dominant one.

Related Commands: window

AEDIT Text Editor Chapter 3 59

Isystem Command

Isystem Command

60

Thelsystemcommand enables you to execute a system command from within
AEDIT. Activate it by typing an exclamation point)(at the main command level.
The prompt line then displays the previous system command (if any). You may re-
edit the previous command or enter a new string. Terminate the input string or
command by entering either <Esc> or <CR>. Before the string is executed, the
command clears the text area of the screen.

Chapter 3 Editing Commands

Calc Command

Calc Command
To invoke thecalc command, press. It provides you with computation
capabilities.

Description
Pres<C; AEDIT prompts:

---- <HOME> to re-edit
Calc:

The last statement entered underdak command is displayed to the right of the
colon.

See also: calccommand, Chapter 7

AEDIT Text Editor Chapter 3 61

Execute Command

Execute Command

To invoke theexecutecommand, preds. Executeis used to execute macros.

Description
Press; AEDIT prompts:

---- <HOME> to re-edit
Macro name:

The last macro name entered for this command is displayed to the right of the
colon.

When the macro name is entered, the specified macro is executed.
See also: executecommand, Chapter 5

Related Commands: set display, set go

62 Chapter 3 Editing Commands

Macro Command

Macro Command

To invoke themacro command, pregd It is used for manipulating macros.

Description
Presav the menu prompts:
Create Get |Insert List Save
To specify a subcommand, press the initial letter of that subcommand.

When a macro file is specified in the invocation line (explicitly or implicitly), it is
read and processed immediately after the AEDIT invocation. This has the same
effect as using macro getas the first command after invocation.

See also: Macro files, Chapter 5

Related Commands: set go

AEDIT Text Editor Chapter 3 63

AEDIT Invocation

This chapter describes the AEDIT invocation and invocation controls, and
operation specific to IRMX OS. The iRMX OS may be used with various
terminals.

Invocation

This is the syntax that invokes AEDIT:

[directory]AEDIT [input_file [TO output_file|file_processing_mode]]
[recover]
[,other_input_file[TO other_output_file|file_processing_mode]]
[execution_mode]

Where:

input_file The file you want to edit. If a file is not specified, a
new file is created, and it is named when you call
thequit command.

output_file The name of the destination file for the file you are
editing. It is written when you cadjuit update or
quit exit. If you specifyiewonly or forwardonly
for the input file, you cannot specify an output file.

other_input_file Filenames for the OTHER input and output files.

other_output_file

file_processing_mode [viewonly | noviewonlyj
[forwardonly | noforwardonly]

recover [recover | norecovetl]

execution_mode [macro[(macro_file)]| nomacro]
[macrosizémacro_buffer_size) |

[batch | nobatch|

Use a comma to separate the main filename from the OTHER filename.

AEDIT Text Editor Chapter 4 65

Invocation Line Examples

1. Invoke AEDIT by itself to create a new file:

aedit<CR>

2. This example shows invoking AEDIT with an existing file:

aedit filename<CR>
3. This example shows invoking AEDIT with a main input file, an OTHER input
file, and a macro file:
aedit al.txt, 2.txt macro(txt.mac)<CR>
4. This example shows invoking AEDIT with a main input file, an OTHER input
file that isviewonly, and specifying a macro file and macro size:
aedit main.txt, second.txt vo macro(prog.mac)
macrosize(1024)<CR>

Error: Cannot Open Input File is displayed if an output file is specified and
the input file does not exist.

66 Chapter 4 AEDIT Invocation

Invocation Controls

AEDIT controls can be divided into three groups: file processing mode controls,
recover control, and execution mode controls. Table 4-1 lists the AEDIT
invocation controls. The remainder of this chapter explains each control in detail.

Table 4-1. AEDIT Invocation Controls

Control Name Abbreviation Default Meaning

File Processing Mode Controls

forwardonly FO NOFO Enables faster editing of large

noforwardonly NOFO files, but the files are
truncated.

viewonly VO NOVO Enables fast viewing of large

noviewonly NOVO files; no changes allowed.

Recover Control

recover RC NORC Enables file reconstruction
norecover NORC

Execution Mode Controls

macro MR MR(:HOME:aedit.mac) Specifies macro file.
nomacro NOMR

macrosize MS MS(3072) Defines macro buffer size
batch BA NOBA Activates AEDIT in

nobatch NOBA noninteractive mode; used if

AEDIT is activated from a
command file.

AEDIT Text Editor Chapter 4 67

The processing mode for an input file usesvilegvonly andforwardonly controls.

» Specify these controls for either the main input file, for the OTHER input file,
or both. Viewonly andforwardonly cannot be specified together for the same
file. However, if you specify either one in the negative form, any combination
is legal, e.g.noviewonly forwardonly .

» Give afilename if either of these controls is specified in the positive form in
the invocation line.

* When specifying an output file, these controls may only be used in their
negative form, e.gnoviewonly.

e Use only theviewonly andforwardonly controls undequit init .

The processing mode for the main input file usesegbever control. This control
may be specified only in the invocation line and only for the main input file.

The execution mode uses timacro, macrosize andbatch controls. These
controls may be specified once per AEDIT invocation. They cannot be specified
for a particular file, and they cannot be specified ungérinit .

A control may be specified only once, excepti@wonly andforwardonly,
which may be specified once for the main input file and once for the OTHER input
file.

68 Chapter 4 AEDIT Invocation

Forwardonly

Syntax
FORWARDONLY|NOFORWARDONLY

Abbreviation
[NOJFO

Default
NOFORWARDONLY

Control Type

Processing mode for an input file

Description

Forwardonly enables faster editing of large files because it instructs AEDIT to
allocate a fixed amount of memory for the file. If the file is larger than the amount
of memory allocated, some text may be lost. This loss applies only to the current
editing of the file; the original file is not affected.

Forwardonly can be specified for either the main input file or the OTHER input
file. Forwardonly can also be specified under tpgt init command.
Forwardonly cannot be specified simultaneously witawonly. When
forwardonly is in effect for the input file, an output file may not be specified.

While theforwardonly control is in effect, the message line displays the word
Forward.

Error: some text lost is displayed if text is lost during the current edit. If this
error is displayed, you are unable to exequtié update or quit exit; however,
you may executquit write .

AEDIT Text Editor Chapter 4 69

Viewonly

Syntax

VIEWONLY|NOVIEWONLY

Abbreviation

[NOJVO

Default

NOVIEWONLY

Control Type

Processing mode for an input file

Description

70

You can view a large file, such as a large listing file that you do not want to
change, much faster using thiewonly control. It is also an advantage to use
viewonly if you want to be certain that no changes are made unintentionally.

You can specifwiewonly for: the main input file, the OTHER input file, or under
thequit init command. It cannot be specified simultaneously feitvardonly .
Whenviewonly is in effect for the input file, an output file may not be specified.

If using theviewonly control, the input file may not be changed. These keys are
not valid withviewonly: rubout, delch, dell, delr, delli.

These commands are still displayed on the prompt line; however, they are not valid
with viewonly: (?)replace, block delete, get, hex input, insert, macro insert,
macro save, paragraph, quit exit, quit update, quit write andxchange

All other commands are legal. You may sawéesavonly file or a portion of it
using theblock put command.

While theviewonly control is in effect, the message line displays the wimd .

Error: illegal command is displayed if a command is given that is invalid with
viewonly.

Chapter 4 AEDIT Invocation

Recover

Syntax
RECOVER|NORECOVER

Abbreviation
[NOJRC

Default
NORECOVER

Control Type

Processing mode for the main input file on invocation

Description

Therecover option can be used to help you reconstruct edited files if a fatal system
error occurs during AEDIT operation, or if an unintentional termination of an
AEDIT session occurs usirguit abort.

If a crash occurs, reinvoke AEDIT with thecover control. Therecover control
can be specified only for the main input file and only in the invocation line.

Whenrecover is specified, AEDIT takes the entire memory contents as the input
file. If the memory contains previously edited file(s), your file must be
reconstructedRecoveris, however, only a means for the reconstruction. You
must identify, gather, and connect the relevant text portions in memory.

Recovermay be used only if the memory allocated to AEDIT in the current
activation is the same as that used in the previous activation. This implies that
recover is probably useless on virtual-memory-based systems or in a multitask
environment.

The reconstruction process is difficult or impossible if the edited file is so large that
it is spilled to extra memory or to temporary files. The memory content in such a
case does not reflect the entire file contents.

If an input file is specified, the input file is not read whiecover is in effect, but
it serves as an output file for tiyeit update command.

AEDIT Text Editor Chapter 4 71

Macro

Syntax
MACRO [(macro_file)][NOMACRO

Abbreviation
[NOJMR

Default
MACRO (AEDIT_filename .MAC)

Control Type

Execution mode

Description

Use themacro control to specify a macro file for the current AEDIT invocation.
Thenomacro option prevents AEDIT from reading a macro file. Not specifying
this control or just specifyinmacro is equivalent to the default. When using the
macro control with a filename, the filename can have any extension.

The default macro file iaedit.madn your:home:directory.

72 Chapter 4 AEDIT Invocation

Macrosize

Syntax

MACROSIZHmacro_buffer_size)

Abbreviation

MS

Default

Contro

MACROSIZE(3072)

| Type

Execution mode

Description

Use this control to allocate more macro buffer space if, for example, a huge batch
operation is implemented using macros. Also, more macro space may be required
if many macros or long macros are used.

Macrosize enables you to specify the macro buffer size for the current AEDIT
invocation. Macro_buffer_size is a decimal number specifying the number of
bytes to be allocated. The minimumacro_buffer_size is 1024 (400H) bytes;
the maximum allowed is 32767 (8000H) bytes. The default size is 3072 bytes.
The maximum size actually allowed also depends on the amount of RAM
available; therefore, it may be less than the maximum listed.

The buffer that is allocated for macros is not available for text; therefore, allocating
a large macro buffer is not recommended.

AEDIT Text Editor Chapter 4 73

Batch

Syntax
BATCH|NOBATCH

Abbreviation
[NOJBA

Default
NOBATCH

Control Type

Execution mode

Description

Use thebatch control to activate AEDIT in a noninteractive mode, usually from a
command file. Whebatch is in effect, AEDIT suppresses all output except the
MESSAGHine.

Although AEDIT may receive input from the consoléatch mode (implying a
semi-batch mode where input is from the keyboard), this is not recommended. For
example, in this mode yes/no questions (suabkas replace?) are

suppressed.

AEDIT commands specified after the invocation line can be given imithenacro

if it is present in the default or specified macro file. Executing batch commands
using theinit macro is preferable because it works equivalently on different
operating systems and different terminals.

Activation with Batch Control

If AEDIT is invoked from a command file, all input is from the command file. The
sequence of commands and characters should be exactly the same as if you were
executing AEDIT interactively. Input is echoed to the system console.

74 Chapter 4 AEDIT Invocation

Examples

1. If you want to changéog to cat throughout your file, you can create this

command file:

AEDIT EXAMPL.SRC BATCH

/Rdog<Esc>cat<Esc>QE

Where:

EXAMPL.SRC is the input file.

R means replace all occurrences.
QE is thequit exit command.

Insert <Esc> in the command file using thex input command or using the
function key forhex underinsert.

2. If all operations are defined in a macro, the command file requires only two
AEDIT commands. In this example, given a macro with the required operation
sequence callepassland a macro file callegass1l.macthe command file is
as follows:

AEDIT EXAMPLE.SRC BATCH
MGPASS1.MAC<Esc>EPASS1<Esc>

Where:

EXAMPLE.SRC is the input file.*

MG is themacro getcommand.

Pass1.MAC is the macro file.

E is theexecutecommand.

PASS1 is the file containing the operation sequence.

See also: Macro files, Chapter 5

AEDIT Text Editor Chapter 4 75

Default Macro File

The name of the default macro fileasdit.macit is assumed to be in the home
directory. Ifitis not, you must explicitly specify tineacro(flename) control.

Work File

The predefined filework: must be properly assigned when AEDIT is invoked.
This assignment should be done automatically when iRMX is booted.

See also: Logical Names Created by the Operating SyStemmand
Reference

IRMX-specific Information
When using AEDIT on iRMX Operating Systems, do not perform these operations:
» Do not use thattachfile facility to redefine the default directory.

* Do not press <Ctrl-C> more than once whéaygtemcommand is being
executed; pressing it twice in succession may abort AEDIT.

If you are using an integrated environment where upper and lower case characters
are significant in filenames, note that AEDIT always creates uppercase filenames.
You must manually convert the filenames to lowercase if your environment
requires it.

76 Chapter 4 AEDIT Invocation

Macro Commands

AEDIT macros are sequences of AEDIT commands (sequences of keystrokes) that
have been collected and given a nhame.

The AEDIT macro set uses these subcommands for processing macros. These
subcommands are listed under thacro command.

create create a macro interactively
get processes a macro file
insert create a macro directly
list displays all available macros

Additional information concerning deleting macros, executing macros, and
processing macro files is listed later in this chapter.

AEDIT Text Editor Chapter 5 77

Macro Command

Invoke themacro command by pressing which allows you to manipulate
macros.

A macro definition is a series of commands written in macro form. Define macros
interactively through thenacro createcommand, or directly through timeacro

insert command. To save interactively defined macros, you must write them to a
separate macro file in macro form. Use ttcro getcommand get the macro

file.

Description

Presavt AEDIT prompts:
Create Get Insert List Save

To specify a subcommand, press the initial letter of that subcommand.

C-Create Subcommand

78

Thecreate subcommand creates a macro interactively by accumulating a sequence
of keystrokes. The macro is executed and created concurrently.

Pres<C; AEDIT prompts:

---- <Home> to re-edit
Macro name:

The name of the last macro specifiedrfmacro create, macro saver execute(if
any) is displayed to the right of the colon. Type in the macro name followed by
<Esc> or <CR>.

A macro name can consist of either a single character or a character string of up to
60 characters. The macro name may contain any characters, for instance +, 6, a.

After you type the macro name, the waMedcro is displayed on the message line,
and remains there until the macro definition is complete. AEDIT returns to main
command level, and the entire set of AEDIT commands is now availabteafoo
create

All subsequent keystrokes are executed in the regular manner, but they are also
trapped by the editor. These keystrokes make up the macro definition. This
includes special keys like <Esc> and the keyhiex

Chapter 5 Macro Commands

Terminate the macro by typing one of these characters:

<Ctrl-C> Terminatesnacro mode without defining the macro; the
macro is deleted.

M(main level only) Successful termination of macro definition.

By defining a single-character macro, you can configure keys to execute the macro
in a single stroke, thus making them powerful new function keys.

See also: executecommand, described later in this chapter

Examples

This is an example that interactively creates the macro dot (.) that finds the next
occurrence of the last target string:

M(ACRO) C(reate)
Macro name:.<Esc>
F<Esc>M

This is an example that interactively creates a macro to configure <Ctrl-L> to mean
jump to start of line.

M(ACRO) C(reate)
Macro name:<Ctrl-L><Esc>
<Right><Left><Home>M

Error : no more room for macros is displayed on the message line if macros
exceed the amount of memory allocated to macros. The definition is terminated,
and the current incomplete macro definition is deleted.
G-Get Subcommand
Thegetsubcommand reads and processes a macro file, with the result that:
- The macro definitions in the file are available for execution.
- The configuration commands in the file are executed.
- Thesetcommands in the file are executed.

The new macro definitions are added to the current set of available macros. If a
macro in the new set has the same name as a macro already available, the new
macro overrides the previous one. Configuration commandseandmmands are
executed.

See also: Macro files

AEDIT Text Editor Chapter 5 79

PressG, AEDIT prompts:

---- <Home> to re-edit
Macro file:

The name of the last macro file read (if any) is displayed to the right of the colon.
Edit the macro filename, if required, then press <CR>.

You may insert an empty string as a filename (e.g., by tyyiagro)
G(et)<CR>); AEDIT gets the present text buffer as a macro file.

Errors: Errors may be issued duringreacro get The error is displayed, the area
causing the error is skipped, and processing continues.

Related Commands The invocation controlsiacro, macrosize

I-Insert Subcommand

Theinsert subcommand causes all subsequent input, including function keys (such
as <Esc>) to be inserted in the text in macro form and not executed. Use it to
change and correct macro files. For example, pressing <Upadro insert

inserts the character sequeft® in to the text. The macro definition may then be
saved in a macro file. This command is terminated by pressing <Ctrl-C>.

Presd ; AEDIT prompts:
Control C to stop

In macro insert, all keys are entered as-is (ef¢ind) is entered aB). Thus, keys
such as <Esc> do not perform a function but are inserted as their macro codes.
These are exceptions:

+ When<CR>is typed it is not converted tNL because the line terminator is
used to break macro definitions into more readable lines. Therefore, you must
type\NL if a line terminator is required in the definition.

- If the backslash is not a lead-in character, you must enter it twig¢e (
However, the backslash is not doubled when it is typed, which enables you to
type\MM to terminate the macro @iL for line terminator.

Type <Ctrl-C> to terminatenacro insert mode.

80 Chapter 5 Macro Commands

Example

This macro defines <Ctrl-L> to mean jump to start of line. Remember that what
you type does not execute but is inserted in macro form.

AEDIT filename
M(ACRO)I(nsert)M<Ctrl-L><Esc><Right><Left><Home>
\MM(end macro)

<Ctrl-C>

Q(UIT u(pdate) or Q(UIT) E(xit)

This text is inserted intfilename
M\0OC\BR\CR\CL\CH\MM
MMerminates the macro definition.

See also: Macro modes, described later in this chapter

L-List Subcommand

Thelist subcommand displays on the message line the names of all currently
available macros. If there are more macros available, press the space bar to
continue; any other character returns the editor to the main command level.

S-Save Subcommand

Thesavesubcommand translates an available macro to macro form and inserts the
definition at the current position in the text. The macro may subsequently be
modified or saved in a macro file. If you want to look at a macro definition, use
macro saveto translate and display the macro, review it, and delete it (if desired).

PressS; AEDIT prompts:

---- <Home> to re-edit
Macro name:

The name of the last macro specified {fmacro create, macro saver executg is
displayed to the right of the colon. Type a macro name followed by <Esc> or
<CR>. If the macro exists, it is inserted in the text at the current cursor location in
macro form.

You may use this procedure to save a new, interactively created macro for future
use:

Presto enter the OTHER buffer.
Use thequit init command to start editing your macro file.
Insert the macro in macro form using thacro savecommand.

PN PE

Update the modified macro file using tipgit update or quit exit command.

AEDIT Text Editor Chapter 5 81

Deleting Macros

To delete a macro from the set of available macros, usadhs create
command. Type:

M(ACRO)C(reate) macro_name <Esc><Ctrl-C>
Where:
macro_name is the name of the macro to be deleted.

This procedure does not delete a macro from a macro file. To delete from a macro
file, you should edit the macro file like any other file, and use the delete
commands.

Macros and AEDIT Variables

82

When AEDIT variables are referenced duringcro create the actual variable

value is fetched for the current activation of the macro, and a reference to this
variable is inserted into the macro definition. AEDIT variables provide a primitive
way to simulate passing a parameter to a macro.

Chapter 5 Macro Commands

Macro Modes

A macro may be either modeless (terminated itk after it is converted to

macro form) or non-modeless (terminated Wik1 after it is converted to macro
form). All macros created wittnacro createare modeless. You can create a
non-modeless macro by usingacro insert or by editing a saved modeless macro.

You can use any modeless or non-modeless macro at the main command level or in
eitherinsert or xchangemodes.

A modeless macro is independent of whether it is called from main command level,
insert or xchangemode. This enables you to use the same macro at the main
command level and imsert or xchangemode. When you execute a modeless
macro, it executes as if it is at the main command level.

When the macro finishes execution, it restores the moderf or xchangg that
was in effect when it was activated.

A non-modeless macro is executed at the AEDIT prompt level that was in effect
when the macro was activated. When the macro finishes execution, it does not
restore the mode that was in effect when it was activated. Instead, AEDIT remains
in the mode determined by the macro. Non-modeless macros provide compatibility
and upgrading with respect to AEDIT V1.0.

Modeless macro execution always gives the same result regardless of the mode
from which it was executed. Non-modeless macro execution results usually depend
on the context mode from which they were called. Use modeless macros whenever
possible.

For example, compare these macros:

MA\BRI*\BR\MM
MB\BRI*\BR\EM

The first macro is modeless. When it is executed, the charaistémserted
whether or not it was called from main command lenskert, or xchangemode;
when the macro finishes, the initial mode is retained.

The second macro is non-modeless. If it is called from the main command level,
the results are the same as for the first; i.e., the chararsténserted and the editor
remains at main command level. But, if it is called fiasert mode, for example,
the characterg are inserted into the text, and the <Esc> commeBRl) (causes

the editor to leavensert mode and return to the main command level.

AEDIT Text Editor Chapter 5 83

Execute Command

Theexecutecommand requests a macro hame and executes the specified macro.

In macro execution all input is taken from the macro except for answers to these
guestions/requests:

» ?Replace ok to replace?

e Quit init orquit abort: all changes lost ?

* Block delete cannot save in memory, save anyway?
* hit space to continue

e quit write orblock put: overwrite existing file?

In the prompts listed above, the response to the prompt is taken from the console.

Description

84

Press ¢ount | E; AEDIT prompts:

---- <Home> to re-edit
Macro name:

The name of the last macro specified {fmacro create, macro saveor executg
is displayed to the right of the colon. Type a macro name followed by <Esc> or
<CR>. If the macro exists, it is executed.

If the busy/waiting indicator is active, the prompt line displays -!!- when a macro is
being executed. This is important in single-character macro execution where there
may not be any other indication that a macro is still executing.

The macro terminates when it has been executed the specified number of times or
has failed. Macro execution termination is described in more detail later in this
chapter.

Macro activation may be nested up to eight levels.

Type <Ctrl-C> to force termination of macro execution.

Errors:

e nosuchmacro is displayed if the macro specified does not exist.

* macro nesting too deep is displayed if you attempt to nest macros to
more than eight levels.

Count: theexecutecommand accepts any count.

Related Commands set display, set go

Chapter 5 Macro Commands

Single-character Macros

You can write macros with single-character names. You can activate a single-
character macro by simply typing its name if this character has no other function in
the context from which it is being activated. Single-characters that can be used as
macro names are referred to as "free" charactersLgJgz, +

Single-character macros can be activated in these ways:

e Using theexecutecommand at the main command level (as in the case for all
macros).

« By pressing the macro character preceded by the kegnéotec
e By pressing the key itself, if the key is "free", as follows:

— Ininsert andxchangemodes: all nonconfigured control characters.
These control characters also cannot be used as macros in this way:
<Ctrl-M> (<CR>), <Ctrl-I> (<Tab>), and <Ctrl-J> (line feed).

— In the main command levels: the same asn®ert andxchangemodes
with the addition of all printable characters that are not used as AEDIT
commands.

The commandnexecis configurable to a key (usually <Ctrl-E>). To activate the
single-character macro, presstr-E> followed by the macro name. For
example, if you are using the macros froseful.madn insert mode, typing
<Ctrl-E>* converts the word that the cursor is on to uppercase letters.

A digit may not be used as a single-character macro at the main command level
because it is always interpreted amant . A function key may not be used as a
macro name because the key's function overrides the macro definition.

This is an example to demonstrate using a single-character maasetfinor
xchangemode. You can define a macro called <Ctrl-P> as the prackdure

and save this macro in a file callplin.mac If you are editing a PL/M source file,
you can calplm.macwith macro get then, each time you type <Ctrl-P> the word
procedurewill be inserted into the file. This saves having to type out the word
each time you want to insert it.

Errors:

¢ illegal command is displayed when you type a character that is not a
command abbreviation, a decimal digit, or a macro name, at the main
command level.

e nosuchmacro is displayed if the character following thgecutecommand
or themexeckey is not a macro name; i.e., no macro with that name exists.

AEDIT Text Editor Chapter 5 85

Macro Files
A macro file may consist of:
« Configuration commands
e Setcommands
* Macro definitions
* Macro comments

Setcommands and configuration commands are the only commands used in a
macro file. However, by using theit macro you can specify any command.

Using thesetcommands enables you to specify the mode of operation. For
example, you may include the commaad k_tokenyes if you want the AEDIT
search mode initialized to search for tokens only. In the macro file, this command
appears asKy.

A macro definition is a series of commands written in macro form. It has this
format:

M macro_name \BR characters_in_macro \MM

Where:

M declares that a macro definition follows.
macro_name is any name given to the macro being defined.
\BR stands for <Esc>.

characters_in_macro is the macro contents.

\MM signals the end of a modeless macro.

\EM signals the end of a non-modeless macro.

86 Chapter 5 Macro Commands

These representations of control characters and control codes are used in the macro

definitions:
Name
\BR
\CL
\CR
\CU
\CD
\CH
\NL
\RB
\TB
\XF
\XX
\XA
\XZ
\XU
\XH
\XE
\XN
\XS
\ Oh
\MM
\EM

Represents

<Esc>

<Left>

<Right>

<Up>

<Down>

<Home>

<CR>

rubout

<Tab>

delch, delete character

dell, delete left

delr, delete right

delli, delete line

<Undo>

hex, hex prefix character

mexeg macro execute

fetn, fetch numeric

fets, fetch string

hexadecimal value of a character
end of modeless macro definition
end of non-modeless macro definition

The backslash\() must appear twice if it is not used as a code lead.

A macro definition and configuration commands should be ended with either a
semicolon (;) or line terminateml> . The<nl> (as opposed toNL and\ 0A) is
ignored in a macro file, even within macro definitions. This enables you to split
the macro definition into lines so that it is easier to read.

Mark the beginning of a comment in a macro file with a backslash/asterisk
character pair {*) and end-mark with an asterisk/backslash paij.(

AEDIT Text Editor

Chapter 5 87

Macro Execution After a Failure

A command execution is marked as failed if:

[]

An attempt is made to move forward (<Right>, <Down>, <Home>, or <CR>)
at the end of the file.

An attempt is made to move backward (<Left>, <Up>, or <Home>) at the start
of the file.

Note
A cursor movement command prefixed-#yis never marked as
failed.

A command prefixed by a finite count is marked as failed if any of its
execution is thus marked.

A (-)find or (?)replacecommand fails to find the target string.

A (-)find or (?)replacecommand prefixed by is marked as failed only if it
fails on its first execution.

Note
If the set gooption is on, thé-)find and(?)replacecommands
are never marked failed.

When a command in a macro is marked as failed, macro execution is terminated,
and control is returned to the caller. If the caller is main command level, AEDIT
simply waits for the next command. If the caller itself is a macro, execution
continues with the caller's next command.

Examples
Macro A: /E(XECUTE)B
E(XECUTE)C
E(XECUTE)D
Macro B: J(UMP)S(tart)
/IR(EPLACE)"<nl><nl>" with "<nI>"
88 Chapter 5 Macro Commands

Macro C: S(ET) G(0) Y(es)
J(UMP)S(tart)
/R(EPLACE) "DCL" with "DECLARE"
J(UMP) S(tart)
/IR(EPLACE) "IS" with "LITERALLY"

A value forset goin macro A is meaningless, because it does not contéiyfiad
or (?)replacecommand. WherEXECUTE B is terminated either normally or
because macro B failed, macro C is executed. Likewise, when macro C is
terminated, macro D is executed.

Set gomust be set tao (the default) for macro B. Theplacecommand is
successful as long as the file contains at leaskor&nl> sequence. When the
file contains no<nl><nl> sequences, macro B fails, execution of macro B is
terminated, and macro C is executedsefgoisyes for macro B, it will never
fail, and execution of macro B would enter an infinite loop.

Set gomust be set tges for macro C. This option ensures that the seceptice
command is performed regardless of the results of thedptice command.
S(et) G(o) Y(es) could be placed after themp command, and the effect
would be the same.

If you are not careful in coding your macro, it might enter an infinite loop when it
executes. To exit from such a macro or to terminate any macro, press <Ctrl-C>.

AEDIT Text Editor Chapter 5 89

Screen Display During Macro Execution

Text

To speed up macro execution, the amount of data written to the screen while a
macro is executing is reduced to a minimum. Only selected text or information is
sent to the screen. The information in this section is given for reference.

If set displayno (the default) is in effect, changes in the text and cursor
movements are displayed on the screen as long as the cursor does not leave the
current display screen, or untiveew command (either explicit or implicit) is

issued. When the cursor leaves the screernvimwacommand is issued, screen
display is frozen until the macro execution terminates. Then, an impéeit
command is performed using the current logical cursor location.

If set displayyes is in effect, all changes and cursor movements are displayed on
the screen, even if the cursor leaves the screeriemecommand is given.

Regardless of theet displayvalue, the text is updated if you give tPreplace
command or théind/replace command andet showfindyes is in effect.

Message

90

The message line is updated only in these cases:

« Error message display. The error message display lasts for at least a second.
Thefind/replace command messaget found is not considered an error.

e Calc command messages. For an argument that is an expression rather than &
assignment statement (e.g., N3+1 versus N2=N3+1 or S9 versus S9="abc").

e Hex output andmacro list command messages.
e Quit orother command filename messages.

When macro execution is terminated, the last message remains on the screen.
However, the status (e.@ther, viewonly) is updated if needed.

Thefound : (humber) message is a special case; it is displayed only if it is the last
message of the macro execution at main command level.

Chapter 5 Macro Commands

Prompt

The prompt line is changed only when a macro requests an answer to one of the
questions listed in the earlier section onglkecutecommand in this chapter.

After macro execution terminates, the prompt line reflects the current mode of the
editor. This mode is either main command leiredert mode oxchangemode.

Window

When a new window is constructed, the text is updated immediately, which is an
exception to the previous description. The reason for this exception is to create a
place for a future message that may refer to the upper windowkillFined

command operates in the usual manner. That is, when the cursor leaves the screen,
the screen will be updated only when macro execution terminates.

AEDIT Text Editor Chapter 5 91

Macro Examples

92

1.

This example resets the left column. The single-character macro right square
bracket (]) sets the left column one position to the right each time it is
executed, and the single-character macro left square bracket () sets the left
column one position to the left each time it is executed:

M] \BRsl+1\NL \MM
M [\BRsI-1\NL \MM

These macros can be defined interactively usingrtaero createcommand.
For example, the first macro can be created by entering:

M(ACRO)C(reate)

Macro name:]<Esc>

S(ET) L(eftcol)+1<CR>

M(to terminate macro definition)

After you define these macros, typing a right square bracket (]) at main
command level, or the key fanexecand] ininsert or xchangemode, sets
leftcol one position to the right of its current setting; typing a left square
bracket ([) at main command level, or the keyrf@xecand [ininsert or
xchangemode, setteftcol one position to the left of its current setting.

These single-character macros, named dot (.) and comma (,) find the next
occurrence of the target string, or find the previous occurrence of the target
string, respectively.

MABRABR\MM
M,\BR -\BR\MM

You can define these macros interactively usingihero createcommand.
You could create, for example. the first macro as:

M(ACRO)C(reate)

Macro name:.<Esc>

F(IND)<Esc>

M (to terminate the macro definition)

After you define these macros, typing a dot (.) at main command level or the
mexeckey followed by a dot ifinsert or xchangemodes finds the next
occurrence of the target string; typing a comma (,) at main command or the
mexec key followed by a comma imsert or xchangemodes, finds the
previous occurrence of the target string.

Chapter 5 Macro Commands

3. This example sets visual breakpoints in programs. For example, you can use
comment lines filled with hyphens to separate procedures in a language. This
macro creates a break line:

(V1) T=] 1] ——————— *) \NL\BR\MM

You can create this macro interactively with these commands:

M(ACRO) C(reate)
Macro name: @ <CR>
[———— *)<CR><Esc>

After you define this macro, typin@at main command level, or tineexec
key and@in insert or xchangemode, inserts the break line at the current
cursor position in text.

4. This sequence of commands saves, in a new file narmegl.macan
interactively defined macro named asterisk (*) that allows you to scroll
backwards ten lines.

M(acro) C(reate) Creates macro * interactively

Macro name:*<CR> Command sequence

<Esc>10<UP>M

O(ther) Invokes themacro savecommand, which

prompts for the macro name.

Q(uit) I(nit)
EXMPL.MAC<CR>

M(acro) S(ave)

Macro name:*<CR> Executes thenacro savecommand, translates
the macror to macro form.

Q(uit) U(pdate) Updates the macro filexmpl.mag which now
includes the macro.

AEDIT Text Editor Chapter 5 93

AEDIT Variables

You can access a set of AEDIT variables with the following characteristics: string
variables versus numeric variables, read only variables versus read-write variables,
local variables versus global variables.

« Read-only variables reflect internal AEDIT values that you can retrieve but not
modify. Read-write variables can be modified freely. Read-write variable
assignment can be done only in tedc command.

* Local variables can be accessed only incidle command. Global variables
can be accessed in other contexts as well.

AEDIT Text Editor Chapter 6 95

Global Variables

The two types of global variables are numeric and string. The global numeric
variables are all read-write. The global string variables can be read-only or
read-write.

Global Numeric Variables

The ten global numeric read-write variabléss/ériables), ar&/0-N9, which are 32-
bit numbers. Values are assigned tofthariables only in thealccommand. To
fetch annvariable, type fetn>j , where fetn> is thefetch numeric key (usually
configured to <CTRL-N>), and is any digit from 0-9. When AEDIT is invoked,
the Nvariables are initialized to zero.

The Nvariables may be used in the following ways:

96

In any line-edit prompt such asrget-string or replacement-string ,
or for thegetcommand. The contents are inserted and displayed as signed
decimal numbers; leading zeros are suppressed.

As acount (or part of acount) for a command Count cannot be negative;
therefore, the absolute value of thigariable is used. In this case, the value of
the Nvariable should be in the valid ran@e65535 . The contents are
displayed as an unsigned decimal number; leading zeros are suppressed.

In insert andxchangemodes. For example, if you typéeth>1 , the contents
of N1 are inserted in the text according to the valugedfradix. For example,
if variable N1 contains the hexadecimal valggH, the following text would be
inserted:

If SET Radix is: Text inserted:

alpha E

binary 1000101
decimal 69

hex 45

octal 105

The value is inserted without a suffix and leading zeros are suppressed.

Under thecalc command. The variable may be retrieved as in any line-edit
prompt. Also, you can use the variable name as-is, for exampiestead of
<fetn>1. In this case the name, rather than the value, is displayed, for
example N1 instead of 45. The entire processing is done bydle

command, not by the line-editing mechanism. A variable may be modified
only if it appears ircalc with its name on the left-hand side of an assignment
statement.

When you press the key fgfetn>, the messageFETN>appears on the
message line. This message disappears on the next keystroke.

Chapter 6 AEDIT Variables

Global String Variables
The two groups of global string-variables\ariables) are:
e Read-write string variables

e Read-only string variables

Read-Write String Variables

The ten read-write variables a6-S9. Value assignment is done only in tedc
command. When AEDIT is invoked, these variables are initialized to a null string.

Read-Only String Variables

The following is an alphabetic list of the read-only variables. No assignment of
values is allowed.

SB Up to 60 characters of theock buffer. By usingSB a portion of the
text file may be used later as, for example, an argumeriirid a
command.

SE The name of the current edited file (as opposed to the secondary file).

SG The name of the last file specified in tiet command.

SI The name of the main input file.

SM The name of the last file specified for timacro getcommand.

SO The name of th©@THERInput file.

SP The name of the last file specified for thleck put command.

SR The replacement string ¢?P)replace

ST The target string of)find and(?)replace

sw The name of the last file specified in tipait write command.

AEDIT Text Editor Chapter 6 97

Using String Variables

To fetch the value of a string variable, tydets>x, where {ets> is the key
configured tdfetch string (usually <Ctrl-V>), and wherg is a digit 0-9) or a
letter appearing as the second letter in a name in the above lisB(€,g5). For
example, fets>7 fetches the value &7, and dets>Gfetches the value G An
Svariable contains a string of 0-60 characters.

The Svariables may be used in the following circumstances:

e In any line-edit prompt such asget-string , replacement-string , get
filename . The contents are inserted and displayed as an ASCII string.

* Ininsert andxchangemodes. For example, if you typéets>1, the contents
of S1 are inserted in the text.

Note that a character that is inserted in this way loses any special meaning it
may otherwise have. For exampd®His inserted as-is and not as a carriage
return, or01BH (<Esc>) does not cause mode termination.

* Under thecalccommand. The variable may be retrieved as with any line-
edit prompt. Also, you can use tBeariable name as is, for exampks
instead of #ets>B. In this case, the name rather than the value is displayed,
for example Smrather tharaedit.mac All processing is done by tlwalc
command and not by the line-editing mechanism.SAmariable may be
modified only if it appears inalc with its name on the left side of an
assignment statement.

An Svariable is always considered as if all its characters are literalized. This
means they are interpreted as regular characters even if in other cases they may
have a special meaning, such agx>. Thus ars variable is never searched to
determine if it fetches anothé&rvariable.

When you press the key fofets>, the messageFETS> appears on the message
line. This message disappears on the next keystroke.

98 Chapter 6 AEDIT Variables

Local Variables

All local variables are read-only numeric variables. Therefore, they cannot be
assigned, and they can be used only ircilecommand.

The following is an alphabetic list of positional values:
BOF Logical value: true if the cursor is at the beginning of file.

coL The current logical cursor position in the line. This value is not
affected by the setting d¢éftcol.

CURCH ASCII value of the current character.

CURWD ASCII value of the two bytes at the current cursor location.
EOF Logical value: true if the cursor is at the end of file.
INOTHR Logical value: true if you are in th@THERbuffer.

ISDEL Logical value: true if the character at the current position is in the
user-defined delimiter set.

ISWHTE Logical value: true if the character at the current position is
whitespace (space, tatf; or CR.

LOWCH If the current character is an uppercase charatter tpo 5AH), LOWCH
is the ASCII value of the lowercase character. OtherwiS&/Chs
the same aSURCH

NXTCH ASCII value of the next character.

NXTTAB The column number of the next tab position (to the right of the cursor)
as defined bgettab. If there are no tabs to the right of the cursor in
the current line, the value ofXTTABis zero.

NXTWD ASCII value of the second and third bytes following the current cursor

location.
ROW Current cursor row (actual row, not the logical line in the text).
UPCH If the current character is a lowercase charaétgt (o 7AH), UPCHS

the ASCII value of the uppercase character. OtherwiBEHs the
same a£URCH

AEDIT Text Editor Chapter 6 99

100

The following values are offset from the beginning of the currently processed input
file. If the file is edited using thi®rwardonly control, the offset is from the
current beginning of text. This position may vary as the cursor is moved forward.

CURPOS Offset of current location in file CURPOS$s zero for the first
character of the file.

TAGA Offset oftag A.
TAGB Offset oftag B.
TAGC Offset oftag C.
TAGD Offset oftag D.

The following value relates to th&variables:
SLx The length of the globed variable,SLx, wherex is 0-9 or the second
letter of a read-only string variable.

The following is an alphabetic list of counters that contain the actual number of
command repetitions from the last time the command was specified with count
greater than one. Th&NTprefix signifiesCOUNT

CNTEXE The number of times the macro that is currently executing has
executed in the current activation. The first execution is number one.
If none, the value is zero.

CNTFND Relates td-)find.

CNTMAC The number of times that the last macro (which has finished
executing) was executed.

CNTREP Relates td?)replace

The following values relate to the margin and indentation settings used by
paragraph andsetautonl commands:

IMARGN The value of current indent margin setting.

LMARGN The value or current left margin setting.

RMARGIN The value of current right margin setting.

The following values are returned using the system real-time clock services:
DATE Date in decimal forma¥yMDDYY

TIME Time decimal formatHHMMSS

Chapter 6 AEDIT Variables

The following are other values:

LSTFND Logical value: true if the target of the last find or replace string was
found. (Note that an infinitBnd (/f) sets this variable toRUEIf at
least ondind succeeded.)

NSTLVL Nesting level of the currently executing macro, console input is
level 0.

Global Variables in Macros

When the value of any AEDIT variable is fetched durmmagcro create the actual

value is used for the current activation. A reference to this variable is inserted into
the macro definition. Therefore, when you activate the macro at a later time, it will
use whatever the value of the variable is at that time. It will not use the value of
the variable at the time you created the macro.

For example, assume the following is a macro:

I(NSERT)<FETS>7<ESC>

If S7="abc" at the time the macro is definethc is inserted the first time the
macro is run. If the definition a#7is changed tayz and the macro is activated
again,xyz is inserted.

AEDIT Text Editor Chapter 6 101

Calc Command

Thecalc command provides you with computation capabilities. Using these
capabilities coupled with AEDIT variables, you can perform functions such as
centering a phrase on a line, finding the size of an input file, or changing a letter
from lower case to upper case or vice versa.

Overview

To execute thealc command, press; AEDIT prompts -

---- <Home> to re-edit
Calc:

The last statement entered undaic is displayed to the right of the colon.

Input to thecalc command is either a numeric statement or a string statement:
numeric_statement:==[N_variable =]...numeric_expression

or
string_statement:==[S_variable =]...string_expression

Thus, acalc statement can be a numeric (or string) expression, optionally assigned
to one or mord& (or S) variables.

Thecalc command evaluates the numeric or string expression and displays its
value in the message line. If the assignment form is usedNe.g.N2+1), the

left-side variable is assigned that value. As specified by the ellipsis you can
include multiple assignments in a single statement. Furthermore, you can embed a
numeric statement in a numeric expression if it is enclosed in parentheses.

A numeric expression can only be assigned tN aariable. Similarly, a string
expression can only be assigned tamriable.

Here are some simple examples:

S1 ="A simple string — string statement

assignment”

SB — an unassigned string expression
N1=N2=CURPOS +1 — multiple-assignment numeric statement

AEDIT Text Editor Chapter 7 103

104

The various components otalc statement are:

N_variable or S_variable
Indicates one of the 10(S) variables. It can have one of two forms:

— N ¢(orS) followed by a decimal digit, statically identifying the variable,
e.g.,N1, N8, S5

— N (orS) followed by a parenthesized numeric expression that yields a
value from 0-9. This sets the execution-time specification of a variable
and is best suited for macro definitions.

Example: N(N9+1)
Numeric expression is comparable to expressions in other high-level languages
like C, Pascal, and PL/M.
The operands of a numeric expression can be either:
— Numeric constants, e.g., 4, 100, 5FH
— Local or global numeric variables, e.glURPOSN4, N(N2+ 1)
— Parenthesized numeric statement, eNfL,{ CURPOS- 1)

The operators are the usual set of arithmetic, logical, relational and shift
operators. For exampl&I@SHL4) + 1, shifts the variabl&lOfour places to
the left, then adds to it.

String expressions can be either:

— String constants, e.g.THis is a constant
— Global string variables, e.g52, SM, SB, S(N2+N3)

Chapter 7 Calc Command

Numeric Constants

Thecalc command numeric constants are integer numbers. They can be binary,
octal, decimal, or hexadecimal. Tbalc command recognizes these constants by
the suffixB, O(orQ), D, orH, respectively. Numbers without a suffix are
considered decimal. A numeric constant may be in the range

- (2**31) to +([2**31]-1)

String Constants

A string constant may be 0-60 characters long with same delimiter at both ends.
The same delimiter means that there is no predefined string delimiter; rather, the
character immediately to the left of the string constant is identified as a delimiter.
Then the second occurrence of that character signifies the right end of the string.
To prevent ambiguity, the following characters may not serve as string delimiters:
letters, digits, blank, and tab.

A natural delimiter choice is a quotation mark. However, if the string constant
includes a quotation mark, then a different character, one that does not appear in
the string, should be used as the delimiter.

The case of the letters within the string is preserved.

AEDIT Text Editor Chapter 7 105

Operators

Table 7-1 displays a functional grouping of operators. The groups are: logical
operators, relational operators, shift/rotate operators, and arithmetic operators.

Table 7-1. Operators' Precedence and Associativity

Operator
Class Operator Interpretation Associativity
Parentheses () Controls evaluation order: From inside to outside
expressions in parentheses are
evaluated before the items in the
parentheses
Unary +-~ Single positive operator, From right to left,
I # Single negative operator, 1's e.g., #3is |(#3)
complement (~ or’) POS
operator (!) NEG operator (#)
Power *x Raising to the power of From right to left,
3**4**5 |S 3**(4**5)
Arithmetic * [\ Multiplication, division, mod From left to right,
(mul/div) (remainder) div e.g.,11*12*13is
(11*12)* 13
Arithmetic + - Addition, subtraction From right to left e.g.,
(add/sub) 2-3+4 is (2-3)+4
Shift/rotate SHL, SHR, Shift left, shift right, shift From left to right, e.g.,
SAL, SAR, algebraic left, shift algebraic 5SAR1SAR 1is
ROL, ROR right, rotate left, rotate right (5SAR1)SAR 1
Relational < <= == Less than, less than or equal to, From left to right, e.g.,
<> => > equal to, not equal to, greater 3<4<2is (3<4)<2
than or equal to, greater than
Logical &| 0O AND, OR, XOR From left to right, e.g.,
5&307is
(5&3)07
106 Chapter 7 Calc Command

Table 7-1 lists all thealc command operators with a brief description of the
semantics of each operator. These are more detailed descriptions of the nontrivial
operators:

e ~and'(1's complement) have the same meaning. The duplicate notation
prevents possible difficulties on terminals where one of these characters may
have a special meaning. 1's complement means for every 0 bit, a 1 bit is
returned and vice versa.

« land#:

ThePOSoperator (!) is defined as follows:
If number= 0 then return true- (1)
else return false (0).

TheNEGoperator (#) is defined as follows:
If number= 0 then return false (0)
else return true-(1).

« \ (modulo division) returns the remainder of an integer division, for example,
7\4=3;16\4=0.

e [O(XOR) returns true only if one operand is true and the other is false;
otherwise it returns false. This is done for each bit in the argument, for
example, 811 =4,

Shift/ Rotate Operators

In the shift/rotate operations, the left operand is handled as a pattern of 32 bits. It
is moved to the right or to the left by the number of bits specified by the right
operand.

In a shift, bits moved off one end of the pattern are lost, and 0 bits or 1 bits are
moved into the pattern from the other end. In a rotate, bits moved off of one end
move onto the other end.

SAL andSARare algebraic shift operators. This means that the high order bit is the
sign bit, and there is no shift of bits between the sign and the rest of the number. In
a left shift 6AL), O bits move into the pattern from the right. In a right sBifiR],

either 0 bits (if pattern is positive) or 1 bits (if pattern is negative) move into the
pattern from the left.

In every shift/rotate operation, the right operacalit) is always taken as modulo
256.

AEDIT Text Editor Chapter 7 107

Expression Evaluation

Operators in thealc command have an implied order that determines how
operands and operators are grouped and evaluated.

Table 7-1 lists thealc command operators from highest to lowest precedence (i.e.,
those that take effect first are listed first). Operators in the same line are of equal
precedence.

The evaluation order is the same as that used in most programming languages. It i
controlled first by parentheses, then by operator precedence, and finally by operato
associativity. Thealc command first evaluates operands and operators enclosed in
paired parentheses as subexpressions, working from innermost to outermost
parentheses pairs. The value of the subexpression is then used as an operand in t
remainder of the expression.

The precedence and associativity rules are demonstrated by these examples.

These two statements are equivalent:
nl+ n2*n3** —n4
nl + (n2 * (n3 ** (-n4)))

These two statements are equivalent:
N1 SHR 3 =n2 SHLN7 +4*#2
(N1 SHR 3) =(n2 SHL (n7 + (4 * (#2))))

These two statements are equivalent:
n2+3<>n4 —5&n4 —-2==nb5
((n2+3)<>(n4 —5)) &((n4 —2) ==nb)

Upper case and lower case letters are not distinguished from each other except in
string constants. For exampbeypos andCURPOSre interchangeable.

The value TRUE is represented by -1, i.e., OFFFFFFFFH, and the value FALSE is
represented by 0. Whenever an operator produces a logical (Boolean) value, that
value is either TRUE or FALSE.

108 Chapter 7 Calc Command

Examples

The two examples show how to use thands variables.
Example 1

S3

The value of theS variableS3is displayed at the message line; no assignment.
Example 2

nl = n(n(n2 = 2* n3))

Assuming thaN3 contains 3 andlié contains 8, and all othérvariables are O.
Then2 * N3 = 6; thereforeN2 gets 6, andi6 is the index for the "outeN because
N (6) is equivalent toN6, thus givingN1 = N (N6). N6 contains 8; thusi1 = N8.
BecauseN8 contains ON1 gets this value (0), and 0 is displayed on the message
line.

AEDIT Text Editor Chapter 7 109

Errors

Thecalc command returns these messages. When an error is detected, the
corresponding error message is displayed omE®SAGHine, followed by a
portion of the command where the error was detected.

Divide by zero error
An attempt was made to divide by zero.

Expression too complex
The expression is too complex; simplify the expression.

Floating point not allowed
Real values (e.g., 5.2) are not allowed.

lllegal exponential operation
Usually occurs when a negative value is used as the right operand. The illegal
exponential expression is displayed on the message line. Correct it andalerun

lllegal expression
The illegal expression is displayed on the message line. Correct it andakrun

Invalid base character
The base character is not valid, eL8A.

Invalid numeric constant
The numeric constant is not valid, elg.D.

MOD by zero error
An attempt was made to tak#Dwith zero.

Numeric constant too large
A numeric integer constant must be in the range —(2**31) to +([2**31] — 1).

Unbalanced parenthesis
Either the right or left parenthesis is missing.

Unrecognized identifier
The illegal identifier is displayed on the message line. Correct it anda&iain

110 Chapter 7 Calc Command

Advanced AEDIT Usage

Macros give AEDIT great flexibility and power. You can write macros to
incorporate thealc command and AEDIT variables. These macros can print

dates, directories, use an on-line calculator, and convert letters from upper case to
lower case and vice versa.

Several macros are included with AEDIT in the fikeful. mac You must have
AEDIT version 2.0 or later to use this macro file. To activate these macros, type:
M(ACRO) G(et) USEFUL.MAC

However, you should appendeful.mado your default macro fileagdit.mag, or
include the macros you find useful in your default macro file.

The macros iuseful.mamccupy about 1900 bytes of the macro buffer. The
default macro buffer size (3072 bytes) is usually sufficientigaful.mac

However, you may use the invocation contr@crosizeif you need to increase the
macro buffer capacity.

The macros iniseful.maase theN variablesN7, N8, andN9, and thes variables
S0 andS9. Use thecalc command to defin®l andS variables.

AEDIT Text Editor Chapter 8 111

The Useful.Mac File

These macros are containeduseful.mac They are listed by hame with a short
descriptive sentence.

112

Macro
Name

<Blank>

L

]

O
<Ctrl-w>
<Ctrl-K>

DM
<Ctrl-B>
PG

Description

The space bar may be used in addition to the <Tab> key to scroll the n
Find the next occurrence of the target string from thdilagtreplace.

Find the previous occurrence of the target string from thditagteplace.
Convert the character the cursor is on to a lower case character.
Convert the character the cursor is on to an upper case character.
Convert the word starting at the cursor from upper case to lower case I
Convert the word, starting at the cursor, from lower case to upper case
Move the cursor right to the next word.

Move the cursor left to the previous word.

Setleftcol one position to the left.

Setleftcol one position to the right.

Setleftcol three positions to the left.

Setleftcol three positions to the right.

If a white space, skip to the right to the next nonwhite character.

If a nonwhite character, skip to the right to the next white space.

If a blank, skip to the right to the next nonblank.

If a white space, skip to the left to the next nonwhite character.

If a nonwhite character, skip to the left to the next white space.

If a blank, skip to the left to the next nonblank.

Insert the date in mmm dd, yyyy format (e.g., July 24, 1984)

Insert the date in dd-mmm-yyyy format (e.g., 24-Jul-1984)

Insert the contents of thdock buffer into the text at the cursor position.

Page the text. Header is always written as Heading.

Chapter 8 Advanced AEDIT Usage

PP

CNTR
DETAB

ENTAB

SHL
SFL
SFC
SHP

SMP

NUM

N O oA W N O

AEDIT Text Editor

Page the text. Header is stored in the SO S variable.

PG and PP are meant for paging text. These macros attempt to put heade!
empty lines, if possible. They utey C andtag D for internal computations

Center the text in the current line.

Convert all tabs from the current position to the end of the file to blanks, us
current tab setting.

Convert all blanks from the current position to the end of the file to tabs. Tt
macro works very slowly.

Display the current line number.

Display the total number of lines in the file.
Display the total number of characters in the file.
Display the current position in the line.

On-line calculator. linsert or xchangemodes you may enter an arithmetic
expression. Press the key configurechiexeg then C, and the expression valt
is displayed at the cursor position.

Set the indentation and left and right margins according to the values for th
paragraph in which the cursor is currently positioned.

Insert line number prefix on each line in a text file. The macrotagel for
internal computations.

Set paragraph with indentation 0, left margin 0, right margin 70
Set paragraph with indentation 0, left margin 3, right margin 70
Set paragraph with indentation 3, left margin 3, right margin 70
Set paragraph with indentation 3, left margin 5, right margin 70
Set paragraph with indentation 5, left margin 5, right margin 70
Set paragraph with indentation 5, left margin 7, right margin 70

Set paragraph with indentation 7, left margin 7, right margin 70

Chapter 8 113

Tips for Writing Macros

The techniques described in this section will help you to understand the macros in
useful.maand to write your own macros.

Sending Text to the Message Line

Sending a message to the message line is done usicglcltemmand with an
expression, rather than an assignment statement, as the argument. As stated in
Chapter 7, when the argument is an expression, its value is output to the message
line even if it is executed within a macro.

Suppose, for example, tha® contains the current line number, and you want to
output this value, with an appropriate title, to the message line. This is done as
follows:

C(alc) N9 = expr
C(alc) S9 = "current line: <FETN>9"
C(alc) S9

Or in macro form:

...CN9= expr \NLCS9="current line:
\XN9"\NLCS9\NL\MM

Simulate "IF cond THEN RETURN?" (to the caller)

114

This construct is done by using the "fail" characteristic ofittte command.

Recall that searching an empty string always fails (assumingghgo naois in

effect), but searching zero times always succeeds, regardless of the operand. The
following method may thus be used:

C(ALC) N9= cond \ * cond is any logical expression * \
<fetn>9 F(ind) ~<rubout> <ESC>
\ * Find argument is an empty string * \

Or in macro form:
...CN9= cond \NL\AXN9F~\RB\BR...

Note thatcond must be a logical expression, so that it will have the value of 0
(false) or- 1 (OFFFFFFFFH, true). When it is used as a count, the absolute value, 0
(false) or 1 (true) is used.

Chapter 8 Advanced AEDIT Usage

Simulate "IF cond THEN statement "

In this casestatementis implemented as a separate macro (nastetdmeny.
This macro will be executed 0 or 1 times depending on the valemnat

C(alc) No= cond
<FETN>9 E(XECUTE) statement

Or in macro form:
...CN9= cond\NL\XNOE statement \NL...
Note again thatond must be a logical value to ensure that when used as a
count, is either 0 or 1.
Simulate "IF cond THEN statementl ELSE statement2"
This is based on the example given above:

C(alc) N8=I(N9= cond) *'!"isthe NEG operator *\
<FETN>9 E(XECUTE) statementl
<FETN>8 E(XECUTE) statement2

Or in macro form:
...CN8=!(N9=cond)\NL\XN9E statementl \XN8E statement2 \NL...

Note thatstatement1 may not chang®g; if it does,statement2 may be
executed unintentionally.

Simulate "Advance_While cond"

This construct is usually needed for macros like skip to next blank, skip to next
word, etc. This is done using the "¢bnd THEN RETURN" method described
above. Cond in this case must be a logical expression that involves the current
cursor location (e.gISDEL, CURCH=20H). The method consists of two nested
macros. The "low level" macro advances one character and fails when the
condition is not met (namextlvance_ong The "main" macro executes the first
one an infinite number of times and actually terminates when the condition is not
met, and continues with the next instruction:

Advance_While:.../E(xecute)Advance_One...

Advance_One:C(alc) N9=! cond
<fetn>9 F(ind)~<rubout><ESC>
<RIGHT>

AEDIT Text Editor Chapter 8 115

Or in macro form:
MAdvance_While\BR.../EAdvance_One\NL...
MAdvance_One\BRCN9=! cond \NL\XN9F~\RB\BR\CR...

If, for example, you want to implement skip to the next blank/tab, ¢bes is
CURCHC< >20H & CURCHC< >09H

To implemenBackward_While (cond), the same method is used, but the last
command iradvance_oneshould be<LEFT> (\ CL) instead of
<RIGHT> (\ CR).

Examples

The examples included in this section are macros treeful. mac They are
explained in greater detail to show the usage of the above techniques.

1. The following set of macros converts single letters or words from upper case to
lower case or vice versa. It executes nested macros (e.g., mealle macro
U2L), uses thealc command (e.gC(alc) n8=(n9=lowch) and read-only
variables (e.g.owch, curch, upch), calls thesetcommand $(et)
R(adix) A) and the fetch function (e.gfetn>8).

ML\BReu21\NL\CR\XN8eLU11\BR\MM; * [etter to lower case *\
MU\BRe12u\NL\CR\XN8eLU11\BR\MM; * letter to upper case *\
M_\BRe+W\NL/el12\NLe+W\BR\MM; * word to lower case *\
MU\BRe+W\NL/eu12\NLe+W\BR\MM; * word to upper case *\
MU2L\BRCN8=(N9=lowch)<>curch\NL\MM;
ML2U\BRCN8=(N9=upch)<>curch\NL\MM,;
MLU11\BR\CLsrax\XN9\BR\MM;

ML12\BRCN7=iswhte \NL\XN7f~\RB\BR\MM
MU12\BRCN7=iswhte \NL\XN7f~\RB\BRu\MM;

Note the use of the following techniques:
« The L Macro executdsU11 using the IFcond THEN statement

« The L12 Macro simulateedvance_whilethe current character is not a
white space. In this case, it also converts the character to lower case.

« The “_” (underscore) Macro useB to skip to the next nonwhite space
character.

116 Chapter 8 Advanced AEDIT Usage

2. The <Ctrl-W> Macro moves the cursor one word to the right. A word (in this
case) is defined as a sequence of characters enclosed by delimiters. Delimiters
are defined as white spaces or the user defined delimiters (listedsender
E_delimiter). The technique lleond THEN RETURN is used here. In the
nested macro$y9 defines whether or not the cursor is on a delimiter. If the
value fetched byfetn>9 is 0 (false), théind succeeds and the macro is
repeated. If the value fetched bigtn>9 is 1 (true), thdind fails and
execution returns to the calling macro.

M\017\BROf~\RB\BR/e\0171\NL/e\0172\NL\MM;

\ * word right macro *\
M\0171\BRcn9=iswhte\NL\XN9f\BR\CR\MM;
M\0172\BRcn9=!isde\NL\XN9AABR\CR\MM;

The <Ctrl-K> Macro differs from the <Ctrl-W> Macro only in that it moves
the cursor one word to the left.

M\00B\BROf~\RB\BR\CL/e\0111\NL/e\0112\NL\CR\MM;
\ * word left macro *\
M\0112\BRcn9=iswhte\NL\XN9ABR\CL\MM;
M\0111\BRcn9=!lisde\NL\XN9\BR\CL\MM;

Note that the macros are optimized to some exterfindfempty string is
issued first; therefore, a futufied command uses <Esc> as an argument, not
the sequencerabout<Esc>.

3. The CNTR Macro centers the text on the line. This macro strips all blanks
from the left side, then all blanks from the right side. It calculates the number
of blanks to be added and adds the blanks from the left margin to the first
character so that the text is centered on the line. Skipping blanks is done with
the+B and theB macros. The number of blanks to be added is calculated
using the read-only variablesargn , Imargn , andcol/ . +B and-B use
advance_whilemacro techniques.

MCNTR\BRjpO\NLe+b\NL\XXjp254\NLi\BR\CLe-b\NL\CR
\XA cn9=(rmargn+1+imargn-col)/2\NLcn9=-n9*(n9>0)\NLjpO\NLI\BRb
\CLb\XF\XN9g\NL\NL\MM;

M+B\BR/e+B1\BR\MM;
M+b1\BRcn9=!(curch= =20H)\NL\XN9f~\RB\BR\CR\MM,;

M-B\BR/e-B1\BR\MM,;
M-b1\BRcn9=!(curch= =20H)\NL\XN9f~\RB\BR\CL\MM,;

AEDIT Text Editor Chapter 8 117

Configuration Commands

Introduction

AEDIT is designed to run with various terminals. In some cases, for example
VT100, AEDIT is able to identify the host environment. In other cases, you should
specify the characteristics of your particular terminal.

For the iRMX version of AEDIT, specify the terminal characteristics with
configuration commands in theonfig:termcapfile. The parameters and control
sequences are listed in Table 9-1.

A configuration command must be terminated with a semicolon (;) or a carriage
return. For some terminals, such as the Series-Ill, Series-1V and ANSI/VT100
family of terminals, only the appropriate hardware identification configuration
commandAH=string , is required. Appendix D lists configurations for several
non-Intel terminals. If your terminal is not included in the list of tested terminals,
refer to your terminal user manual for the terminal characteristics and add the
appropriate commands to yoeonfig:termcagfile.

AEDIT requires that the terminal meet the following conditions:

« ASCII codes 20H - 7EH display some symbol that requires one column space.
Carriage return (ODH) and linefeed (OAH) perform their usual functions.

« The following cursor functions have cursor key input codes and CRT cursor
output codesleft, right, up, down, homeandcarriage return. Output codes
such aglear screen, clear rest of screen, clear line, clear rest of lirend
direct cursor addressingare desirable for faster screen plotting, but not
required. The codes, shown in Table 9-1, can be changed with the
configuration commands.

« The CRT accepts a blankout code that blanks out the former contents of the
screen location to which it is output. The default, 20H, can be changed with
the configuration commands.

- AEDIT automatically generates a linefeed each time a carriage return is
entered. Your terminal should not transmit a linefeed with a carriage return.
In some terminals, this feature can be switched on and off.

AEDIT Text Editor Chapter 9 119

Table 9-1 lists the configuration commands and their meanings. These commands
are divided into three groups:

- Terminal attributes and generals

« Input codes, which specify codes sent from the keyboard to the terminal (i.e.,
AEDIT)

« Output codes, which specify codes to be sent from the terminal (i.e., AEDIT)
to the display.

A configuration command may be used to set a value to a specific feature or to
indicate that the feature is not available. To indicate that the feature is not
available, the command is specified without an associated value, for example,
AFER=;.

Configuration Command Notes

AS It is highly recommended to set this feature 88<£F), if one of the
following is true:

« Your terminal does not have the direct cursor addressing feature
(e.g.,AH=S3 the terminal is a SERIES-II terminal).

- If your terminal operates at a relatively low baud-rate, less than
9600 baud.

« If the AT configuration command is ofAT=F). In this case,
settingAS=T causes the busy/waiting indicator to toggle for each
input character.

In all the cases listed above, settixg=T degrades performance due
to slow output or huge amounts of output to the screen.

AT SettingAF=F directs AEDIT to not support type-ahead. Wkdnis
off (AT=F), the AFCC function is not fully functional. The synonym
works only for synchronous operations (e.g., to termiimesert
mode), but not for asynchronous operations (e.qg., exit from a loop
within a macro).

AB The natural choice IESC (1BH). However, this value cannot be used
if other terminal input function begin witBSC (e.g., VT100).

AFCC AFCC is not fully functional ifAT is off (AT=F). See notes oAT
above.

120 Chapter 9 Configuration Commands

Table 9-1. Configuration Commands

Command

Meaning

Terminal Attributes and Generals

AH=string

Hardware Identification: where string is one of the following values,
implying a set of configuration commands

<null>

S3

S3E

S3ET

S4

ANSI

VT100

Equivalent to specifying the minimal default set, which is specified
with AH =;. The default set is not sufficient for interactive use and
must be completed with other explicit configuration commands.

Series Il systems. Equivalent to specifying all configuration
commands with the Series Il default values.
Equivalent to S3 with the following changes:
- New console output functions, including:
Various clear text functions
Direct cursor addressing
Local scrolling
- Fast block move command for data to the CRT
Equivalent to S3E without the fast-block-move command for

data to the CRT. S3ET is used when the Series IlIE is used as a
terminal.

Series IV systems. Equivalent to specifying all configuration
commands with the Series IV default values.

Equivalent to specifying all the configuration commands with the
default values according to ANSI X3.64 (1977).

Equivalent to specifying all the configuration commands with the
default values for the DEC VTIOO family of terminals.

AV=n (5:66)
AW=T or F

AS=Tor F
AT=TorF
AG=Tor F

Sets the number of rows in the display.

True if the terminal wraps when a character is printed in the last physical

column.

True to display the busy/waiting indicator.

True if type-ahead is to be done by AEDIT.

True if bell signal is to be issued along with warning messages (e.g.,
rewriting files on quit write).

Notes:
n(nl:n2)
h
hhhh
hhhh...
T
F

string

AEDIT Text Editor

an integer in the inclusive range, n1to n2.

a 1-byte hexadecimal number.

a 1-byte to 4-byte hexadecimal number.

the same as hhhh, but the length may be up to 40 bytes.
T or tindicates true.

For findicates false.

a 0- to 60-character string.

Chapter 9 121

Table 9-1. Configuration Commands (continued)

Command

Output Codes

Meaning

Cursor moves:

AFMB=hhhh Moves cursor to start of line

AFML=hhhh Moves cursor left

AFMR=hhhh Moves cursor right

AFMU=hhhh Moves cursor up

AFMD=hhhh Moves cursor down

AFMH=hhhh Moves cursor home

Erase:

AFES=hhhh Erases entire screen

AFER=hhhh Erases rest of screen

AFEK=hhhh Erases entire line

AFEL=hhhh Erases rest of line

Cursor addressing:

AFAC=hhhh Addresses cursor lead-in. When used, code will be followed by column
number (0 to max_col_value) and row number (0 to max_row_value).

AO=h Offset to add to both row and column number with address cursor
commands.

AX=TorF True if X (column) precedes Y (row) in address cursor command.

Delete/insert:

AFIL=hhhh Insert line code. Used in line O for reverse scrolling.

AFDL=hhhh Delete line code. Used to speed up display on the Hazeltine 1510 and
similar terminals.

Reverse video:

AFRV=hhhh Start reverse video character(s). Used on the PROMPT line display.

AFNV=hhhh Return to normal video characters. Used to restore the display after a
reverse video line.

Al=TorF True if the CRT has invisible attributes, or False if the attribute occupies a
position on the screen.

AC=TorF True if the CRT has attributes per character, or False if the attributes are

per field.

Initialization/t

ermination:

AFST=hhhh... Start-sequence. This sequence is output to the terminal when AEDIT
encounters it. Can be used to intialize the terminal, e.g., to initialize a
scrolling region.

AFEN=hhhh... End-sequence. Output to the terminal when AEDIT exists. Can be used
to unset values that have been set by AFST.

122 Chapter 9 Configuration Commands

Table 9-1. Configuration Commands (continued)

Input Codes
Command Meaning
Escape keys:
AB=hhhh Sets <ESC>
AFCC=h Sets <CTRL-C> synonym

Cursor move keys:

AFCL=hhhh Sets <LEFT>

AFCR=hhhh Sets <RIGHT>

AFCU=hhhh Sets <UP>

AFCD= hhhh Sets <DOWN>

AFCH=hhhh Sets <HOME>

Delete keys:

AR=hhhh Sets rubout

AFXF=hhhh Sets delete character -delch

AFXX=hhhh Sets delete left-dell

AFXA=hhhh Sets delete right-delr

AFXZ=hhhh Sets delete line-delli

AFXU=hhhh Sets undo

Prefix keys:

AFXE=hhhh Sets macro exec key-mexec

AFXH=hhhh Sets hex character-hex

AFXN=hhhh Sets fetch numeric-fetn

AFXS=hhhh Sets fetch string-fets

Others:

AFIG=h Sets character(s) to be ignored. This specification is needed on terminals
(such as the Hazeltine 1510) that have multiple character key codes for
up and down . AFIG should be set to the lead-in (tilde), and up and
down should be set to the second letter of the cursor up or down key
code. This avoids problems caused by the lack of a type-ahead buffer.

Notes:
n(ni:n2) an integer in the inclusive range, ni to n2.
h a 1-byte hexadecimal number.
hhhh a 1-byte to 4-byte hexadecimal number.
hhhh... the same as hhhh, but the length may be up to 40 bytes.
T T or tindicates true.
F For findicates false.
string a 0- to 60-character string.

AEDIT Text Editor

Chapter 9

123

Configuration Values

An AH command value implies a complete set of values for the entire
configuration command set. Table 9-2 lists the default configurations for various
terminals or systems.

Delay Codes

Some CRTs are too slow with respect to some AEDIT output functions. To enable
a smooth operation of AEDIT with these CRT types, AEDIT should be informed
how long it has to wait before it may issue a new output operation.

You can specify delay codes for the various output functions with configuration
commands of the formbDxx=n, wherexx is the function code in the corresponding
AFxx code, andi is a decimal number specifying the delay in milliseconds. For
example ADDL=30defines a delay of 30 milliseconds for the functédfDL

(delete line). AmDxx value may be specified for eveifxx output function.

Determining the Configuration Values

Table 9-2 lists the default configuration values. AEDIT processes configuration
commands in this order:

1. Sets the default value for each configuration command.

2. Checks to see if the system is one of the default types listed in Table 9-2. If
so, AEDIT sets the configuration as defined in Table 9-2.

3. Processes configuration commands in:toafig:termcapfile. For every valid
command under your terminal type, AEDIT overwrites the previous value with
the new one.

4. Checks the configuration to make sure these values are defined:

AFMB AFMD
AFMH AFML
AFMU AFMR

|:| Note

If any of the values in step 4 are undefined, AEDIT terminates
and displays the following message:

124 Chapter 9 Configuration Commands

Table 9-2. Configuration Default Values

AH=; AH=S3 |AH=S3E AH=S4 AH=ANSI
Command |Default (S 1lI) (S IE) (S1v) AH=VTIO0 | Meaning
Input Codes
AV= 24 25 25 25 24 Screen length
AW= T T T T T Terminal wraps?
AS= F F T F F Display busy/
waiting indicator

AT= T T T T T Type-ahead
AG= T T T T T Bell signal
Escape keys:

AB= 1B 1B 1B 1B 1B4F53@ | Sets <ESC>
AFCC= 03 03 03 03 03 Sets <CTRL-C>
Cursor move keys:

AFCL= -1 1F 1F 89 1B5B44 Sets <LEFT>
AFCR= -- 14 14 8A 1B5B43 Sets <RIGHT>
AFCU= -- 1E 1E 87 1B5B41 Sets <UP>
AFCD= -- 1C 1C 88 1B5B42 Sets <DOWN>
AFCH= | -- 1D 1D 81 1B4F500) | Sets <HOME>
Delete keys:

AR= 7F 7F 7F 7F 7F Sets rubout
AFXF= 06 06 06 80 06 Sets delch
AFXX= 18 18 18 18 18 Sets dell
AFXA= 01 01 01 01 01 Sets delr
AFXZ= 1A 1A 1A 82 1A Sets delli
AFXU= 15 15 15 15 15 Sets undo
Others:

AFIG= | -- | -- | -- | -- | -- | Ignore character
Prefix keys:

AFXE= |05 | 05 | 05 | 05 | 05 | sets mexec
AFXH= |12 | 12 | 12 | 12 | 12 | Sets hex
APXN= | OE | OE | OE | OE | OE | Sets fetn
AFXS= |16 | 16 | 16 | 16 | 16 | Sets fets
Notes:
1. -- means the feature is either unavailable or meaningless.

2. Because 1B is used as a prefix for input sequences on ANSI terminals, it may not be used as <ESC>
The choice of the FP4 key (for AH=VTIO0) or 04H (for AH=ANSI) is arbitrary and maybe changed.

3. Inthe absence of a "natural” <HOME> key, the choice of the FP1 key (for AH=VT100) or OCH (for
AH=ANS]) is arbitrary and may be changed.

AEDIT Text Editor

Chapter 9

125

Table 9-2. Configuration Default Values (continued)

AH=; AH=S3 |AH=S3E AH=S4 AH=ANSI
Command |Default (S lI) (S IE) (S1v) AH=VTIO0 | Meaning
Output Codes
Cursor moves:
AFMB= oD 0D 0D 0D 0D Carriage return
AFML= -- 1F 1F 08 1B5B44 Cursor left
AFMR= -- 14 14 1B43 1B5B43 Cursor right
AFMU= -- 1E 1E 1B41 1B5B41 Cursor up
AFMD= - 1C 1C 1B42 1B5B42 Cursor down
AFMH= -- 1D 1D 1B48 1B5B48 Cursor home
Erase:
AFES= - 1B45 1B45 1B45 1B5B324A | Entire screen
AFER= -- 1B4A 1B53 1B4A 1B5B4A Rest of screen
AFEK= -- 1B4B 1B4B 0D1B4B 1B5B324B | Entire line
AFEL= -- -- 1B52 1B4B 1B5B4B Rest of line
Cursor addressing:
AFAC= -- -- 1B59 1B59 1Bx; y48(*) | Address lead in
AO= -- -- 20 20 -- Row/column offset
AX= -- -- F F -- X (column) before
Y (row)
Delete/insert:
AFIL= - - 1B57603F | -- 1B5B4C®) | Insert line
AFDL= -- -- 1B573F60 | -- 1B5B4D®) | Delete line
Reverse video:
AFRV= -- -- 1B4C90 1B7C50 1B5B376D | Reverse video
AFNV= -- -- 1B4C80 1B4C40 1B5B6D Normal video
Al= -- -- F F T Invisible attributes
AC= -- -- F F T Character
attributes

Initialization/termination:

AFST= -- -- -- -- -- Start-sequence
AFEN= -- -- -- -- -- End-sequence
Notes:

4. The ANSI escape sequence for cursor addressing is hard-coded in AEDIT. The table shows the format
only. This format cannot be coded using AFAC.
5. Insert/Delete line functions, although available on the VT100, are disabled because of poor performance

[

126 Chapter 9 Configuration Commands

AEDIT Command Summary

This appendix lists the AEDIT commands and subcommands, with their formats
and functions. Angle brackets (< >) indicate a key configured for a function, and
<Ctrl> represents the Control key.

Function Keys

Execute these commands by pressing the specifically labeled key on the keyboard
or by typing the indicated <Ctrl> commands. Some function keys are configurable.
If so, the default is shown; if not, N/A is shown. These functions are also available,
where applicable, in line editing.

Table A-1. Function Keys

Key Default Function

<Left> N/A Left arrow, moves the cursor left.

<Right> N/A Right arrow, moves the cursor right.

<Up> N/A Up arrow, moves the cursor up.

<Down> N/A Down arrow, moves the cursor down.

<Home> N/A Allows fast cursor movement, permits entry into reedit mode.

rubout backspace Deletes the character to the left of the cursor at the main
(upper command level or insert mode. In xchange mode, rubout
back- exchanges the new character to the left of the cursor with the
arrow) original character.

delch <Ctrl-F> Deletes the character that the cursor is on.

delli <Ctrl-Z> Deletes the entire line on which the cursor is positioned.

dell <Ctrl-X> Deletes all characters to the left of the cursor.

delr <Ctrl-A> Deletes all characters to the right of the cursor.

undo <Ctrl-U> At the cursor position, restores the characters deleted by the last

dell, delr , or delli command.

AEDIT Text Editor Appendix A 127

Table A-1. Function Keys (continued)

Key Default Function

<Esc> <Esc> Terminates line editing input and sends the entire string, or exits
the mode and returns the editor to the main command level.

<Ctrl-C> <Ctrl-C> Aborts the command in progress and returns the editor to the
main command level.

<CR> N/A 1. Moves the cursor to the start of the next line.

2. In (-)find/(?)replace commands, adds a line terminator
character to the target string, displaying <nl> .

3. Inline editing input, terminates the line at the cursor position

and sends the string to the left of the cursor to be processed
by the command.

<Tab> N/A Rotates the menu prompt line to display the next line of
commands or, in insert or xchange mode, inserts tab or
equivalent number of blanks.

hex <Ctrl-R> Inserts a character in the text as its ASCII value. Should be
followed by two digits that are interpreted as the hexadecimal
value.

128 Appendix A AEDIT Command Summary

AEDIT Editing Commands

This table lists the AEDIT editing commands, with their subcommands, formats
and functions. The main commands are in alphabetical order.

Table A-2. AEDIT Editing Commands

Command Format Function

again [count] A Repeats the last command or subcommand.

block BorD Delimits a section of text that can then be deleted, moved, or
copied. Has the following subcommands:

buffer B Copies text to the Block buffer.

delete D Deletes the delimited section and moves it unchanged to the
Block buffer.

find F Same as in the main command level.

-find - Same as in the main command level.

jump J Same as in the main command level.

put P Copies the delimited section of text to a specified output file.

calc C Provides computing capabilities.

delete BorD Delimits a section of text that can then be deleted, moved, or
copied. (Same as in block command.)

execute [count] E Executes the specified macro.

find [count] F Searches forward from the current cursor position for string.
Moves the cursor if found.

-find [count] - Searches backward from the current cursor position for string.
Moves the cursor if found.

get [count] G Retrieves the contents of the Block buffer or external file;
places the contents at the current cursor position. Count must
be a number less than 64K.

hex [count] H Hex command

input I Inserts the ASCII equivalent of hexadecimal values in text.

output (0] Displays hexadecimal values of ASCII characters in the
message line.

AEDIT Text Editor Appendix A 129

Table A-2. AEDIT Editing Commands (continued)

Command Format Function
insert N1 Begins insert mode; inserts text at the cursor position.
jump J Moves the cursor to a specified location in text.
A_tag A Moves the cursor to tag A.
b_tag B Moves the cursor to tag B.
c_tag C Moves the cursor to tag C.
d_tag D Moves the cursor to tag D.
start S Moves the cursor to the start of the file.
end E Moves the cursor to the end of the file.
line L Moves the cursor to the start of the designated line.
position P Moves the cursor to the designated position in the current line.
kill_wnd K Deletes the secondary window and extends the current
window. The cursor remains at its current position.
macro M Allows you to manipulate macros with the following
subcommands:
create C Creates macros interactively by accumulating a sequence of
keystrokes.
get G Retrieves macros from an external file or from the current text
buffer.
insert I Inserts subsequent input in text in macro form.
list L Lists the names of all currently defined macros on the
message line.
save S Translates macros to macro form and inserts the definition at
the current position in the text.
other (0] Switches between the main and OTHER files.
paragraph [count] P Reformats the paragraph using the values for indentation, left
and right margins set with the set margin command.
fill F The paragraph is reformatted with no right-justification
justify J The paragraph is reformatted with right-justification.
quit Q Ends, updates, restarts, etc., the editing, depending on which
subcommands are used.
abort A Returns to the operating system; all changes are lost.
exit E Returns to the operating system; the file is updated.
init I Restarts editing; initializes a new file without returning to the
operating system.
update U Updates the file without returning to the operating system.
write w Writes the file to the output file specified without returning to
the operating system.
130 Appendix A AEDIT Command Summary

Table A-2. AEDIT Editing Commands (continued)

Command Format Function
replace [count] R Searches forward for target string; replaces it with new string if
found.
?replace [count]? Conditional replace command.
set S Sets several AEDIT features, with the following
subcommands:
autonl A While in insert mode, inserts a new line in the text
automatically when the line is full (default = no).
bak_file B Creates a backup file of the file being currently edited when
quit update or quit exit is executed (default=yes).
case C Tells the editor to consider case of strings during (-)find and
(?)replace commands (default=no).
display D Displays any movements in or changes to the text during
macro execution (default=no).
e_delimit E Defines the token delimiters (default=!"#% &' () *+,-./:;
<=>2@[\]" {l}~).
go G Continues macro execution even if a (-)find/(?)replace
command in the macro fails (default=no).
highbit H Displays all text characters with hexadecimal values over 7FH
as-is instead of ? (default=no).
indent I Indents inserted/exchanged text automatically (default = no).
k_token K A string in the text needs to be a token string to be found
(default=no).
leftcol L Enables you to view lines over 80 characters long (default =0).
margin M Sets indentation, and left and right margins used by the
paragraph and set autonl commands (default: indent=4,
left=0, right =76).
notab N Inserts blanks in place of tabs in insert or xchange mode
(default=no).
radix R Sets the radix by which a numeric variable is output by fetn in
insert or xchange mode (default = decimal).
Alpha A
Binary B
Decimal D
Hex H
Octal O
showfind S Lists target-string lines of multiple search commands
(default = no).

AEDIT Text Editor

Appendix A 131

Table A-2. AEDIT Editing Commands (continued)

Command Format Function

set subcommands (continued)

tabs T Sets tab positions (default = 4).
viewrow V Sets the row to which text is moved relative to the screen on
view command (default= row 5).
tag T Specifies locations in a file; used with the jump command.
These are valid tags:
A
a_tag
b_tag B
c_tag C
d_tag D
view \Y, Rewrites (moves) text on the screen leaving the cursor in
viewrow (default=row 5).
window w Splits the text area of the screen in two, enabling the user to
look at two different parts of the same file or two different files.
xchange X Enters xchange mode; replaces characters on a one-for-one
basis.
Isystem ! Allows executing system commands from within AEDIT,

executed by pressing the exclamation point (!).

132 Appendix A AEDIT Command Summary

AEDIT Error Messages

This appendix lists the error messages reported by AEDIT when a problem is
encountered in the invocation line, an editing commandgcdleecommand, or a
macro file.

Invocation Errors

When an error occurs in the invocation line, AEDIT displays the sign-on message
followed by the error message, and control returns to the operating system.

Invocation errors have the following form:

**ERROR: illegal invocation, NEAR: token
or

**ERROR: message
Where:
token is an invocation command specification.
message is one of the following error messages.

Conflicting controls
An illegal combination ofiewonly andforwardonly controls is used.

Insufficient configuration commands
The interactive session has been initialized; however, required configuration
commands of the typ&FMx or AFBK are undefined.

Insufficient memory
AEDIT does not have a large enough RAM partition.

Macro buffer too large
The macro buffer size specified is too large, and the buffer size remaining is
insufficient for the text to be edited.

Macro buffer too small
The macro buffer size specified is less than the minimum allowed.

AEDIT Text Editor Appendix B 133

Editing Command Errors

bad indent margin
Attempt to set indent margin out of the legal range. Editor returns to main
command level.

bad left margin
Attempt to set left margin out of the legal range. Editor returns to main command
level.

bad margins
Attempt to set margins out of the legal range. Editor returns to main command
level.

bad right margin
Attempt to set right margin out of the legal range. Editor returns to main command
level.

bad tabs
Attempt to set bad tabs; e.g., 4,2 is illegal since the second value is less than the
first. Editor returns to main command level.

bad Leftcol
Attempt to set bad left columteftcol accepts any number from 0 to 176. Editor
returns to main command level.

bad Viewrow
Attempt to set basliewrow. This value must be between 0 and (text size -1).
Editor returns to main command level.

block buffer too large for SB
Attempt to specifyfets B or SB when the currertlock buffer is greater than 60
characters.

cannot delete more than 32
Attempt to usecount greater than 32 wittlelch command. Editor returns to main
command level.

illegal command
Attempt to enter illegal and/or unknown command. Editor ignores command.

illegal invocation
Attempt to invoke AEDIT with an illegal invocation line, or an illegal invocation
underquit init .

insufficient terminal capabilities
Attempt to set windowing on a terminal that does not W€K or AFEL output
functions. Editor returns to main command level.

invalid hex value
Attempt to input an invalid hexadecimal value. Editor returns to main command
level.

134 Appendix B AEDIT Error Messages

invalid variable name
Attempt to input an invalid value fdets or fetn.

macro creation is forbidden while executing a macro
Attempt was made to define a macro while a macro was being executed.

macro nesting too deep
Nesting level for macros exceeded. A maximum of eight levels is allowed.

no more room for macros
Macro buffer is full.

no such macro
Attempt to execute macro that does not exist. Editor returns to main command
level.

not found: "target string"
Target string not found. Editor returns to main command level.

some text lost
In forwardonly, the file is larger than the allocated memory.

text does not fit
Attempt to edit a file that is too large under fhevardonly control. Editor
returns to main command level.

filename (error message supplied by operating system)
An error occurs during quit exit, quit init, quit update, get, or block put
command. Editor returns to main command level.

xchange limit is 100
Attempt to exchange over 100 characters without restattihgngemode. Editor
remains inxchangemode.

window too small
Attempt to split screen with one window size less than five lines.

AEDIT Text Editor Appendix B 135

CALC Command Errors

The following messages are issued only undecéhecommand. When an error is
detected, the corresponding error message is displayed ordbage line,
followed by a portion of the command where the error was detected.

Divide by zero error
An attempt was made to divide by zero.

Expression too complex
The expression is too complex; simplify the expression.

Floating point not allowed
Real values (e.g., 5.2) are not allowed.

lllegal exponential operation
Usually occurs when a negative value is used as the right operand. The illegal
exponential expression is displayed on the message line. Correct it andalerun

lllegal expression
The illegal expression is displayed on the message line. Correct it andakrun

Invalid base character
The base character is not valid; el@A.

Invalid numeric constant
The numeric constant is not valid; e BAD.

Mod by zero error
An attempt was made to takeod with zero.

Numeric constant too large
A numeric integer constant must be in the range -(2**3l) to +([2**31]-1).

Unbalanced parentheses
Either the right or left parenthesis is missing.

Unrecognized identifier
The illegal identifier is displayed on the message line. Correct it anda&iain

136 Appendix B AEDIT Error Messages

Maro File Errors

If any error is found in a macro file, one of the following messages is printed.
Macro file processing continues.

Macro errors have the following form:
Error in line nnn: < message>
Where:
nnn is the line number containing the error in the macro file.

<message> is one of the following error messages.

bad \ code
Backslash (\) is not followed by a valid value.

bad AC type
Illegal value configuration command.

bad AF type
Illegal AF configuration command.

bad AH type
Illegal value configuration command.

bad Al type
Illegal value configuration command.

bad AS value
Illegal value configuration command.

bad AT value
Illegal value configuration command.

bad AV value
Illegal value configuration command.

bad AW type
Illegal value configuration command.

bad AX value
Illegal value configuration command.

bad command
Macro file contains a bad command_ unknown control code or character; i.e., not
A, M orS.

bad hex value
Configuration command contains bad hex value, 8@.,

missing '='
A configuration command is missing an equal sign.

AEDIT Text Editor Appendix B 137

missing ;'
A configuration command is not terminated with a semicolon or line terminator.

NnO Macro name
Macro definition does not include macro name.

no more room for macros
Attempt to create a macro when macro buffer is full. Macro definition is
terminated.

138 Appendix B AEDIT Error Messages

Summary of AEDIT Variables C

The following table summarizes the string, Boolean, and numeric variables that
may be used in the various commands. Local variables can be used only within the
calc command.

Table C-1. AEDIT Variables

Name Type Scope Description
bof Boolean local True if the cursor is at the beginning of the file.
cntexe numeric local The number of times the macro that is currently

executing has executed in the current activation. The
first execution is number one. If none, the value is

zero.

cntfnd numeric local Relates to (-)find .

cntmac numeric local The number of times that the last macro (which has
finished executing) was executed.

cntrep numeric local Relates to (?)replace .

col numeric local The current logical cursor position in the line. (This
value is not affected by the setting of leftcol .)

curch numeric local ASCII value of the current character.

curpos numeric local The offset of current location in file.

curwd numeric local ASCII value of the two bytes at the current cursor
location.

date numeric local Date in decimal format MMDDYY.

eof Boolean local True if the cursor is at the end of file.

imargn numeric local The value of the current indent margin setting.

inothr Boolean local True if you are in the OTHER buffer.

isdel Boolean local True if the character at the current position is in the

user-defined delimiter set.

iswhite Boolean local True if the character at the current position is
whitespace (space, tab, LF or CR).

Imargn numeric local The value of the current left margin setting.

AEDIT Text Editor Appendix C 139

Table C-1. AEDIT Variables (continued)

Name Type Scope Description

ldwch numeric local If the current character is an uppercase character
(41H to 5AH), Idwch is the ASCII value of the
lowercase character. Otherwise ldwch is the same

as curch .

Istfnd Boolean local True if the last find or replace string was found.

n 0-9 numeric global Read-write n variables, assigned only in the calc
command.

nstivl numeric local The nesting level of the currently executing macro;
main command level is level zero.

nxtch numeric local ASCII value of the next character.

nxttab numeric local The column number of the next tab position (to the
right of the cursor) as defined by set tab .

nxtwd numeric local ASCII value of the second and third bytes following
the current cursor location.

rmargn numeric local The value of the current right margin setting.

row numeric local The current cursor row (the actual row, not the logical
line in the text).

sb string global Up to 60 characters of the block buffer.

se string global The name of the current edited file.

sg string global The name of the last file specified in the get
command.

Si string global The name of the main input file.

s 0-9 string global Read-write s variables, assigned only in the calc
command.

slx numeric local The length of the global s variable six , where x is 0-
9; or the second letter of a read-only string variable.

sm string global The name of the last file specified for the macro get
command.

so string global The name of the OTHER input file.

sp string global The name of the last file specified for the block put
command.

sr string global The replacement string of (?)replace .

st string global The target string of (-)find and (?)replace .

sw string global The name of the last file specified for the quit write
command.

140 Appendix C Summary of AEDIT Variables

Table C-1. AEDIT Variables (continued)

Name Type Scope Description

tagA numeric local The offset of tag A.

tagB numeric local The offset of tag B.

tagC numeric local The offset of tag C.

tagD numeric local The offset of tag D.

time numeric local Time in decimal format HHMMSS.

upch numeric local If the current character is a lowercase character (61H
to 7AH), upch is the ASCII value of the uppercase
character. Otherwise, upch is the same as curch .

AEDIT Text Editor

Appendix C 141

Configuring AEDIT
for Other Terminals

Tested Configurations

This appendix lists the configuration functions and values required to run AEDIT
on several terminals. Theonfig:termcagfile supplied with the IRMX OS

contains configuration commands for these terminals. You can add AEDIT
configuration commands for other terminals to that file.

Each terminal's configuration in theonfig:termcapfile has two parts, separated

by a blank line. The first part is used by both AEDIT and the CLI (Command Line

Interpreter). The second part is used only by AEDIT.

Most CRT terminals have switches to set certain screen or keyboard characteristics.

These switches must be set as in Table D-1 for AEDIT to function correctly.

Table D-1. Switch Settings

Switch Setting
Baud Rate Must match system. Use the maximum baud rate possible
Full Duplex On
RS232 On
Communication Conversational
Self Echo Off
Parity Inhibit if available, otherwise space or 0 (zero)
Parity Sense Even or odd (don't care)
Bits/Char 8
Stop Bits 1
Scrolling On
EOM (End Of Off
Message)
Auto Line Feed Off
or EOL Char CR Only
or New Line CR Only
or Return CR Only
DTR Off
25th Line Match your AEDIT configuration
Chars/Lines 80-255 (AEDIT only uses 80 characters/line)
Lines/Page 5-66

AEDIT Text Editor

Appendix D

143

Table D-1. Switch Settings (continued)

Unique to the Lear Seigler ADM3A

Switch Setting

Xon/Xoff Off (Xon/Xoff protocol should be disabled, if available.)

Wraparound On if AW=T, or off if AW=F (Wraparound must correspond to
the AW configuration command.)

Space/Advance Space (destructive space)

<CTRL-Z>Clear Screen

Enable

AEDIT Don't Care Settings

Switch

Setting

Scroll Type

Character Set

Cursor Style
Autorepeat
Margin Bell
Keyclick

Screen Background
Uppercase Only or
Upper-/Lowercase

Jump or Smooth

Underline, block, steady, blinking

Normal, reverse

144

Appendix D

Configuring AEDIT for Other Terminals

DEC VT52

This terminal displays 24 lines of 80 characters per line. The characters are
generated in a 7x9 dot matrix. The maximum transmission rate is 19.2K baud.
Note that the Escape character has to be changed so that the default Escape code
can be used; <Ctrl-K> is typed instead of <Esc>. This terminal does not have a
<Home> key; <Ctrl-O>is typed instead of <Home>.

AB = 0B; AR = 7F;

AFCL = 1B44; AFCR = 1B43; AFCU = 1B41; AFCD = 1B42; AFCH = 08;
AFML = 1B44; AFMR = 1B43; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 1B4B; BELL = 07;

AV = 24; AW = F;

AFMU = 1B41; AFMD = 1B42; AFMH = 1B48;
AFES = ; AFER = 1B4A,;

AFDL =; AFIL = 1B49;

AFAC = 1B59; AO = 20; AX = F;

|:| Note

<Ctrl-K> is used for <Esc>.
<Ctrl-O> is used for <Home>.

AEDIT Text Editor Appendix D 145

DEC VT100 and VT102

This terminal can be formatted with 132 characters per line or 80 characters per
line. The characters are generated in a 7x9 dot matrix. The maximum
transmission rate is 19.2K baud; do not use baud rates above 9600. You may
choose between the DEC VT52 compatible and the ANSI standard (X3.41-1974,
X3.64-1977) compatible terminal escape sequences for cursor control and screen
erase functions. See the DEC VT52 description for the VT52 codes. Note that the
Escape character has to be changed so that the default Escape code can be used;
<PF4> is typed instead of Escape. This terminal does not have a <Home> key;
<PF1> is typed instead of Home.

AB = 1B4F53; AR = 7F;

AFCL = 1B5B44; AFCR = 1B5B43; AFCU = 1B5B41; AFCD = 1B5B42; AFCH = 1B4F50;
AFML = 1B5B44; AFMR = 1B5B43; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK = 1B5B324B; AFEL = 1B5B4B,;

BELL = 07;

AV = 24;

AFMU = 1B5B41; AFMD = 1B5B42; AFMH = 1B5B48;
AFES = 1B5B324A; AFER = 1B5B4A;

AFDL =; AFIL =;

AFRV = 1B5B376D; AFNV = 1B5B306D;
Al=T,AC=T,

AH = VT100;

146

|:| Note

<PF4> is set as Escape.

<PF1> is set as Home.

Wraparound must be turned off.

Automatic Xon/Xoff must be turned off.

The delete/insert line output function codes are not used because
of poor performance, although they are available on the VT100
and VT102.

Appendix D Configuring AEDIT for Other Terminals

Hazeltine 1510E (with escape lead-in)

This terminal displays 24 lines of 80 characters per line. The characters are
generated in a 7X10 dot matrix. The maximum transmission rate is 19.2K baud.
You may choose between the Esc or the tilde (~) character as the control sequence
lead-in. It is advisable to use the tilde; if you use the Esc character, you must
change the Break character.

AB =7E; AR = 7F;

AFCL = 08; AFCR = 10; AFCU = 1BOC; AFCD = 1B0B; AFCH = 1B12;
AFML = 08; AFMR = 10; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 1BOF; BELL = 07;

AV = 24;

AFMU = 1BOC; AFMD = 1BOB; AFMH = 1B12;
AFES = ; AFER = 1B18;

AFDL = 1B13; AFIL = 1B1A;

AFAC = 1B11; AO = 0; AX = T;

AFRV = 1B1F; AFNV = 1B19; AC=T; Al = T;
ADDL = 20; ADIL = 20;

|:| Note

Tilde is used for <ESC>. <CTRL-V> is used for <HEX>.

AEDIT Text Editor Appendix D 147

Hazeltine 1510T (with tilde lead-in)

AB =1B; AR = 7F;

AFCL = 08; AFCR = 10; AFCU = 7EOC; AFCD = 7EOB; AFCH = 7E12;
AFML = 08; AFMR = 10; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 7EOF; BELL = 07;

AV = 24;

AFMU = 7EOC; AFMD = 7EOB; AFMH = 7E12;
AFES = ; AFER = 7E18;

AFDL = 7E13; AFIL = 7TE1A,

AFAC = 7E11; AO=0; AX=T;

AFRV = 7E1F; AFNV = 7E19; AC=T,; Al =T,
ADDL = 20; ADIL = 20;

|:| Note

<Ctrl-V> is used for <Hex>.

Lear Siegler ADM3A

This terminal displays 24 lines of 80 characters per line. The characters are
generated in a 5X7 dot matrix. The maximum transmission rate is 19.2K baud.

AB =1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 0A; AFCH = 1E;
AFML = 08; AFMR = 0C; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = ; BELL = 07;

AV = 24;

AFMU = 0B; AFMD = 0A; AFMH = 1E;
AFES = 1A; AFER =;

AFAC =1B3D; AO = 20; AX =F;
ADES = 5;\ * 19200 baud * \

|:| Note
<Ctrl-V> is used for <Hex>.
Switch Setting
Space/Advance Space
<Ctrl-Z> Clear Screen Enable

148 Appendix D Configuring AEDIT for Other Terminals

PC

This is the standard PC console used for iRMX for Windows or iRMX for PCs.

displays 25 lines with 80 characters per line.

AB =1B; AR = 7F;

AFCL = 1F; AFCR = 19; AFCU = 1E; AFCD = 1C; AFCH = 1D;
AFMB = 0D; AFML = 1F; AFMR = 19;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK = 02; AFEL = 03; BELL = 07,

AV = 25;

AFMU = 1E; AFMD = 1C; AFMH = 1D;

AFES = 0C; AFER = 01; AFEN = 05;

AFDL = 05; AFIL = 06; AFBK = 20;

AFAC = 04; AO = 20; AX = F;

AFRV = 0B5F; AFNV = 0BOA; AFST = 15010B0A; AFEN = 15021503;
AT=F;AC=T;Al=T;

Qume QVT102

This terminal displays 24 lines with 80 characters per line. The maximum
transmission rate is 19.2K baud.

AB =1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 0A; AFCH = 1E;
AFML = 08; AFMR = 0C; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 1B54; BELL = 07,

AV = 24;

AFMU = 0B; AFMD = 0A; AFMH = 1E;
AFES = 1B2B; AFER = 1B59;

AFDL = 1B52; AFIL = 1B45;

AFAC =1B3D; AO = 20; AX =F;
ADIL = 140; \ * 19200 BAUD *\

|:| Note

<Ctrl-V> is used for <Hex>.

AEDIT Text Editor Appendix D 149

It

Televideo 910 PLUS

This terminal displays 24 lines with 80 characters per line. The maximum
transmission rate is 19.2K baud.

AB =1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 16; AFCH = 1E;
AFML = 08; AFMR = 0C; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 1B54; BELL = 07,

AV = 24;

AFMU = 0B; AFMD = 16; AFMH = 1E;
AFES = 1B2B; AFER = 1B59;

AFDL = 1B52; AFIL = 1B45;

AFAC = 1B3D; AO = 20; AX = F;
ADIL = 20; \ * 19200 BAUD *\

|:| Note

<Ctrl-V> is used for <Hex>.

Televideo 925 and 950

This terminal displays 24 lines with 80 characters per line. The maximum
transmission rate is 19.2K baud.

AB =1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 16; AFCH = 1E;
AFMR = 0C; AFML = 08; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK =; AFEL = 1B54; BELL = 07;

AV = 24;

AFMU = 0B; AFMD = 0A; AFMH = 1E;

AFES = 1B2B; AFER = 1B59;

AFDL = 1B52; AFIL = 1B45;

AFAC =1B3D; AO = 20; AX =F;

AFRV = 1B4734; AFNV = 1B4730; AC = F; Al = F;
ADIL = 60; * 19200 baud *\

|:| Note

<Ctrl-V> is used for <Hex>.

150 Appendix D Configuring AEDIT for Other Terminals

Wyse 50
AB = 1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 0A; AFCH = 1E;

AFML = 08; AFMR = 0C; AFMB = 0D;
AFXA = 01; AFXF = 06; AFXX = 18;
AFEK = 0D1B54; AFEL = 1B74; BELL = 07,

AV = 24;

AFMU = 0B; AFMD = 0A; AFMH = 1E;
AFES = 1B2B; AFER = 1B59;

AFDL = 1B52; AFIL = 1B45;

AFAC =1B3D; AO = 20; AX =F;

ADIL = 140;

X-Terminal

AFCL = 1B5B44; AFCR =1B5B43; AFCU = 1B5B41; AFCD = 1B5B42;

AFML = 1B5B44; AFMR = 1B5B43; AFMB = 0D;
AFXA = 01; AFXF =06; AFXX =18;
AFEK = 1B5B324B; AFEL = 1B5B4B; BELL = 07;

AFMU = 1B5B41; AFMD = 1B5B42; AFMH = 1B5B48;
AFES = 1B5B324A; AFER = 1B5B4A;

AFDL =; AFIL =;

AFRV = 1B5B376D; AFNV = 1B5B306D;

Al =T; AC =T;

AH =VT100;
AB =1B; AR =08; AFCH =1B5B48;
AV =24,

AEDIT Text Editor

Appendix D

151

Zentec Zepher and Cobra

This terminal displays 24 lines of 80 characters per line. The maximum
transmission rate is 19.2K baud. To rub out a character on this terminal you must
use the <Shift>-<Esc> key sequence.

AB =1B; AR = 7F;

AFCL = 08; AFCR = 0C; AFCU = 0B; AFCD = 0A; AFCH = 1E;
AFML = 08; AFMR = 0C; AFMB = 0D;

AFXA = 01; AFXF = 06; AFXX = 18;

AFEK = 0D1B54; AFEL = 1B54; BELL = 07;

AV = 24;

AFMU = 0B; AFMD = 0A; AFMH = 1E;

AFES = 1B2B; AFER = 1B59;

AFDL = 1B52; AFIL = 1B45;

AFAC =1B3D; AO = 20; AX =F;

AFRV = 1B4734; AFNV = 1B4730; AC = F; Al = F;
ADIL = 60; \ * 19200 baud *\

|:| Note

The key (<Shift>-<Esc>) is used for <Rub-out>,
<Ctrl-V> is used for <Hex>.

152 Appendix D Configuring AEDIT for Other Terminals

ASCII Codes

This appendix lists ASCII codes. Table E-1 is a list of codes and Table E-2 is a list
of code functions.

Table E-1. ASCII Code List

Dec Hex Character Dec Hex Character
0 00 NULL 26 1A SUB
1 01 SOH 27 1B ESC
2 02 STX 28 1C FS
3 03 ETX 29 1D GS
4 04 EOT 30 1E RS
5 05 ENQ 31 1F us
6 06 ACK 32 20 SP
7 07 BEL 33 21 !

8 08 BS 34 22

9 09 HT 35 23 #

10 0A LF 36 24 $

11 0B VT 37 25 %
12 oC FF 38 26 &

13 oD CR 39 27 '

14 OE SO 40 28 (

15 OF Sl 41 29)

16 10 DLE 42 2A *

17 11 DC1 43 2B +

18 12 DC2 44 2C ,

19 13 DC3 45 2D -

20 14 DC4 46 2E .

21 15 NAK 47 2F /

22 16 SYN 48 30 0

23 17 ETB 49 31 1

24 18 CAN 50 32 2

25 19 EM 51 33 3

AEDIT Text Editor Appendix E 153

154

Table E-1. ASCII Code List (continued)

Dec Hex Character Dec Hex Character
52 34 4 90 5A Z
53 35 5 91 5B [
54 36 6 92 5C \
55 37 7 93 5D]
56 38 8 94 5E N
57 39 9 95 5F -
58 3A : 96 60

59 3B ; 97 61 a
60 3C < 98 62 b
61 3D = 99 63 c
62 3E > 100 64 d
63 3F ? 101 65 e
64 40 @ 102 66 f
65 41 A 103 67 g
66 42 B 104 68 h
67 43 C 105 69 i
68 44 D 106 6A j
69 45 E 107 6B k
70 46 F 108 6C I
71 47 G 109 6D m
72 48 H 110 6E n
73 49 | 111 6F 0
74 4A J 112 70 p
75 4B K 113 71 q
76 4C L 114 72 r
77 4D M 115 73 S
78 4E N 116 74 t
79 4F (e} 117 75 u
80 50 P 118 76 v
81 51 Q 119 77 w
82 52 R 120 78 X
83 53 S 121 79 y
84 54 T 122 TA z
85 55 U 123 7B {
86 56 \% 124 7C |
87 57 W 125 7D }
88 58 X 126 7E ~
89 59 Y 127 7F DEL

Appendix E

ASCII Codes

Table E-2. ASCII Code Definition

Abbreviation Meaning Dec Hex
NUL NULL Character 0 0
SOH Start of Heading 1 1
STX Start of Text 2 2
ETX End of Text 3 3
EOT End of Transmission 4 4
ENQ Enquiry 5 5
ACK Acknowledge 6 6
BEL Bell 7 7
BS Backspace 8 8
HT Horizontal Tabulation 9 9
LF Linefeed 10 0A
VT Vertical Tabulation 11 0B
FF Form Feed 12 ocC
CR Carriage Return 13 0D
SO Shift Out 14 OE
Sl Shift In 15 OF
DLE Data Link Escape 16 10
DC1 Device Control 1 17 11
DC2 Device Control 2 18 12
DC3 Device Control 3 10 13
DC4 Device Control 4 20 14
NAK Negative Acknowledge 21 15
SYN Synchronous Idle 22 16
ETB End of Transmission Block 23 17
CAN Cancel 24 18
EM End of Medium 25 19
SUB Substitute 26 1A
ESC Escape 27 1B
FS File Separator 28 1C
GS Group Separator 29 1D
RS Record Separator 30 1E
us Unit Separator 31 1F
SP Space 32 20
DEL Delete 127 7F

AEDIT Text Editor

Appendix E

155

Index

I lines and line terminators, 23
Isystem command, 60

/in Insert mode, 28

/ repeat function, 24

< > angle brackets, 127
<Ctrl>, 18

<Ctrl-A>, 26

<Ctrl-C>, 18

<Ctrl-F>, 25

<Ctrl-U>, 27

<Ctrl-X>, 25

<Ctrl-Y>, 27

<Ctrl-Zz>, 26

<fetn>, 96

<fets>, 98

? printing and nonprinting characters, 23
-?7?- busy/waiting indicator, 12
?replace command, 33

@ in block command, 14

@ sign, 36

-find command, 31

A

again command, 42
algebraic shift operator, 106
ascii codes, 153

B

backslash in macros, 80
BATCH control (BA), 74
beep warning, 23

block buffer, 36

AEDIT Text Editor

block command, 36
block buffer, 36
buffer, 37
delete, 37
find, 37
jump, 37
put, 37

buffer, 24
block, 24
current, 24
main, 24
other, 24
secondary, 24

busy/waiting indicator, 12

C

calc command, 61, 103
commands

jump, tags, 23

other, 15, 41
configuration command, 119
configuration values, 124
copying text, 15
count (repeat function), 22
current buffer, 41
current file, 54
cursor, 12

cursor control keys <Left>, <Right>, <Up>, and

<Down>, 18

D

DEC VT100 terminal, 146
DEC VT52 terminal, 145
delay codes, 124

delch command(<Ctrl-F>), 25
delete command, 38

delete commands, 25

Index

157

deleting

macros, 82

text, 13
dell command (<Ctrl-X>), 25
delli command(<Ctrl-Z>), 26
delr command(<Ctrl-A>), 26
display, 19

E

editing commands, 129
ending an editing session, 16
end-of-file (EOF), 12

error messages, 133

errors, AEDIT, 124

Esc key, 18

examples, macro, 92
Exchanging text, 29

execute command, 62
execute commands, 84

F

filenames, case, 76

find command, 30
Forwardonly control (FO), 69
function key, 18

function keys, 25, 127

G

get command, 39
global variables, 96

H

Hazeletine 1510E terminal, 147
Hazeletine 1510T terminal, 148

hex command, 52
input, 52
output, 53

Home key, 18

158 Index

insert command, 28
insert mode (I), 28
inserting text, 13, 28
invocation commands, 65
invocation controls, 67
forwardonly (FO), 69
macro (MR), 72
macrosize (MS), 73
recover (RC), 71
viewonly (VO), 70

J

jump command, 35
end, 35
line, 35
position, 35
start, 35
tags, 35

K

keyboard, 18
kil_wnd command, 59

L

Lear Siegler ADM-3A terminal, 148
line terminator, 23

line-edited prompt, 22

local variables, 99

M

macro
conditional statements, 115
control, 72

control codes, 87
definitions, 78
deleting, 82
examples, 92
failure, 88

files, 86
messages, 90

prompt, 91 Q
screen display, 90

single-character, 85 quit command, 54
useful.madile, 111 abort, 54
window, 91 exit, 54
writing, 114 init, 55
macro command, 63, 78 update, 55
create, 78 write, 56
get, 79 Qume QVT102 terminal, 149
insert, 80
list, 81
save, 81 R
macro modes, 83 radix (set subcommand), 96
modeless macro, 83 read-only variables, 97
non-modeless macro, 83 read-write variables, 97
macrosize control (MS), 73 recover control (RC), 71
main buffer, 24 reedit mode, 22
main command level, 14 repeat function (count), 24
mde, insert, 28 replace command, 32
menu prompt, 18 rubout command, 25
message line, 19
Mode, Exchange, 29 S
N S variables, 97
secondary
N variables, 96 buffer, 41
numeric constant, 105 file, 54
set command, 43
autonl, 43
O bak_file, 44
operators, 106 case, 44
algebraic shift, 106 display, 44
binary, 106 e_delimit, 45
shift/rotate, 106 go, 46
unary, 106 highbit, 46
Other buffer, 41 indent, 47
other command, 41 k_token, 47
leftcol, 48
P margin, 48
notab, 49
paragraph command, 57 radix, 49
fill, 57 showfind, 50
justify, 57 tabs, 50
PC terminal, 149 viewrow, 51
printing and nonprinting characters, 23 Set commands in macro files, 86
prompt line, 20 setdisplay command, 90

shift/rotate operator, 106

AEDIT Text Editor Index 159

single-character macros, 85
starting an Editing session, 12
string constant, 105
string-variables, 97

T

Tab key, 18
tag command, 34
Televideo 910 Plus terminal, 150
Televideo 925 and 950 terminal, 150
termcapfile, 143
terminal
Televideo 910 Plus, 150
Televideo 925 and 950, 150
Wyse 50, 151
X-terminal, 151
Zentec Zepher and Cobra, 152
terminal configuration, 143
terminals
DEC VT100, 146
DEC VT52, 145
Hazeletine 1510E, 147, 148
Lear Siegler ADM-3A, 148
PC, 149
Qume QVT102, 149
text area, 24
token, 47
tutorial, 12

160 Index

U

undo command, 27
uppercase filenames, 76
useful.maanacro, 111

Vv

variables
AEDIT, 82, 95
global, 96
numeric, 96
N-variables, 96
read-only, 97
read-write, 97
string, 97
S-variables, 98
variables in Aedit, 139
view command, 40, 90
viewonly control (VO), 70

w

window command, 58
Work files, 76
Wyse 50 terminal, 151

X

xchange command, 29
xchange mode, 13
X-terminal, 151

Z

Zentec Zepher and Cobra terminal, 152

iRMX® Programming Techniques and
Aedit Text Editor

469160-004

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	AEDIT Text Editor
	Quick Contents
	Contents
	1. Introduction and Tutorial
	AEDIT Tutorial
	Activating the Editor
	Entering, Changing, and Deleting Text
	Copying Text
	Using the Other Command
	Exiting the Editor

	2. The Editor Basics
	Keyboard
	AEDIT Display Format
	Prompt Line
	Menu Prompt
	Line-edited Prompt

	Message Line
	Beep Warning
	Lines and Line Terminators
	Printing and Nonprinting Characters
	Tags
	Repeat Function (Count)
	Buffers

	3. Editing Commands
	Delete Commands and Function Keys
	Rubout
	Delete Character or Delch
	Delete Left or Dell
	Delete Right or Delr
	Delete Line or Delli

	Undo Command
	Insert Mode
	Xchange Mode
	Find Command
	-Find Command
	Replace Command
	?Replace Command
	Tag Command
	Jump Command
	Block Command
	Block Buffer

	Delete Command
	Get Command
	View Command
	Other Command
	Again Command
	Set Command
	Hex Command
	Quit Command
	Paragraph Command
	Window Command
	Kill_wnd Command
	!system Command
	Calc Command
	Execute Command
	Macro Command

	4. AEDIT Invocation
	Invocation
	Invocation Line Examples
	Invocation Controls
	Forwardonly
	Viewonly
	Recover
	Macro
	Macrosize
	Batch

	Default Macro File
	Work File
	iRMX-specific Information

	5. Macro Commands
	Macro Command
	Deleting Macros
	Macros and AEDIT Variables
	Macro Modes
	Execute Command
	Single-character Macros
	Macro Files
	Macro Execution After a Failure
	Screen Display During Macro Execution
	Text
	Message
	Prompt
	Window

	Macro Examples

	6. AEDIT Variables
	Global Variables
	Global Numeric Variables
	Global String Variables

	Local Variables
	Global Variables in Macros

	7. Calc Command
	Overview
	Numeric Constants
	String Constants
	Operators
	Shift/ Rotate Operators

	Expression Evaluation
	Examples

	Errors

	8. Advanced AEDIT Usage
	The Useful.Mac File
	Tips for Writing Macros

	9. Configuration Commands
	Introduction
	Configuration Command Notes

	Configuration Values
	Delay Codes
	Determining the Configuration Values

	A. AEDIT Command Summary
	Function Keys
	AEDIT Editing Commands

	B. AEDIT Error Messages
	Invocation Errors
	Editing Command Errors
	CALC Command Errors
	Macro File Errors

	C. Summary of AEDIT Variables
	D. Configuring AEDIT for Other Terminals
	Tested Configurations
	DEC VT52
	DEC VT100 and VT102
	Hazeltine 1510E (with escape lead-in)
	Hazeltine 1510T (with tilde lead-in)
	Lear Siegler ADM3A
	PC
	Qume QVT102
	Televideo 910 PLUS
	Televideo 925 and 950
	Wyse 50
	X-Terminal
	Zentec Zepher and Cobra

	E. ASCII Codes
	Index
	Service Information

