
Mellanox Technologies

Mellanox OFED Stack for Linux
User’s Manual

 Rev 1.20

Rev 1.20 Mellanox Technologies

2

© Copyright 2008. Mellanox Technologies, Inc. All Rights Reserved.

Mellanox, ConnectX, InfiniBlast, InfiniBridge, InfiniHost, InfiniRISC, InfiniScale, and InfiniPCI are registered
trademarks of Mellanox Technologies, Ltd. Virtual Protocol Interconnect is a trademark of Mellanox Technologies,
Ltd.

Mellanox OFED Stack for Linux User’s Manual

Document Number: 2877

Mellanox Technologies, Inc.
2900 Stender Way
Santa Clara, CA 95054
U.S.A.
www.mellanox.com

Tel: (408) 970-3400
Fax: (408) 970-3403

Mellanox Technologies Ltd
PO Box 586 Hermon Building
Yokneam 20692
Israel

Tel: +972-4-909-7200
Fax: +972-4-959-3245

http://www.mellanox.com

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

3

Table of Contents

Table of Contents 3
List of Tables 7
Revision History 9
Preface 11

Intended Audience 11
Document Organization 11
Documentation Conventions 12

Typographical Conventions 12
Common Abbreviations and Acronyms 12

Related Documentation 13
Support and Updates Webpage 13

Chapter 1 Mellanox OFED Overview 15
1.1 Introduction to Mellanox OFED 15
1.2 Mellanox OFED Package 15

1.2.1 ISO Image 15
1.2.2 Software Components 15
1.2.3 Firmware 16
1.2.4 Directory Structure 16

1.3 Architecture 16
1.3.1 HCA Drivers 17
1.3.2 Mid-layer Core 17
1.3.3 ULPs 18
1.3.4 MPI 18
1.3.5 InfiniBand Subnet Manager 18
1.3.6 Diagnostic Utilities 19
1.3.7 Performance Utilities 19
1.3.8 Mellanox Firmware Tools 19

1.4 Quality of Service 20

Chapter 2 Installation 21
2.1 Hardware and Software Requirements 21

2.1.1 Hardware Requirements 21
2.1.2 Software Requirements 21

2.2 Downloading Mellanox OFED 22
2.3 Installing Mellanox OFED 22

2.3.1 Pre-installation Notes 22
2.3.2 Installation Script 22
2.3.3 Installation Procedure 23
2.3.4 Installation Results 27
2.3.5 Post-installation Notes 28

2.4 Updating Firmware After Installation 28
2.5 Uninstalling Mellanox OFED 29

Chapter 3 IPoIB 31
3.1 Introduction 31
3.2 IPoIB Configuration 31

3.2.1 IPoIB Configuration Based on DHCP 31
3.2.1.1 DHCP Server 32
3.2.1.2 DHCP Client 32

3.2.2 Static IPoIB Configuration 32

Rev 1.20 Mellanox Technologies

4

3.2.3 IPoIB Mode Configuration 33
3.3 Manually Configuring IPoIB 33
3.4 Subinterfaces 34

3.4.1 Creating a Subinterface 34
3.4.2 Removing a Subinterface 35

3.5 Verifying IPoIB Functionality 35
3.6 The ib-bonding Driver 36

3.6.1 Using the ib-bonding Driver 36
3.7 Testing IPoIB Performance 37

Chapter 4 RDS 41
4.1 Overview 41
4.2 RDS Configuration 41

Chapter 5 SDP 43
5.1 Overview 43
5.2 libsdp.so Library 43
5.3 Configuring SDP 43

5.3.1 How to Know SDP Is Working 44
5.3.2 Monitoring and Troubleshooting Tools 44

5.4 Environment Variables 46
5.5 Converting Socket-based Applications 46
5.6 Testing SDP Performance 53

Chapter 6 SRP 55
6.1 Overview 55
6.2 SRP Initiator 55

6.2.1 Loading SRP Initiator 55
6.2.2 Manually Establishing an SRP Connection 55
6.2.3 SRP Tools - ibsrpdm and srp_daemon 56
6.2.4 Automatic Discovery and Connection to Targets 58
6.2.5 Multiple Connections from Initiator IB Port to the Target 59
6.2.6 High Availability (HA) 59
6.2.7 Shutting Down SRP 61

Chapter 7 MPI 63
7.1 Overview 63
7.2 Prerequisites for Running MPI 63

7.2.1 SSH Configuration 63
7.3 MPI Selector - Which MPI Runs 64
7.4 Compiling MPI Applications 65
7.5 OSU MVAPICH Performance 65

7.5.1 Requirements 65
7.5.2 Bandwidth Test Performance 66
7.5.3 Latency Test Performance 66
7.5.4 Intel MPI Benchmark 67

7.6 Open MPI Performance 69
7.6.1 Requirements 69
7.6.2 Bandwidth Test Performance 69
7.6.3 Latency Test Performance 70
7.6.4 Intel MPI Benchmark 71

Chapter 8 Quality of Service 73
8.1 Overview 73
8.2 QoS Architecture 74
8.3 Supported Policy 74
8.4 CMA features 75
8.5 IPoIB 75
8.6 SDP 75

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

5

8.7 RDS 75
8.8 SRP 76
8.9 OpenSM Features 76

Chapter 9 OpenSM – Subnet Manager 77
9.1 Overview 77
9.2 opensm Description 77

9.2.1 Syntax 77
9.2.2 Environment Variables 81
9.2.3 Signaling 82
9.2.4 Running opensm 82

9.2.4.1 Running OpenSM As Daemon 82
9.3 osmtest Description 82

9.3.1 Syntax 82
9.3.2 Running osmtest 85

9.4 Partitions 85
9.4.1 File Format 85

9.5 Routing Algorithms 87
9.5.1 Effect of Topology Changes 88
9.5.2 Min Hop Algorithm 88
9.5.3 Purpose of UPDN Algorithm 89

9.5.3.1 UPDN Algorithm Usage 89
9.5.4 Fat-tree Routing Algorithm 90
9.5.5 LASH Routing Algorithm 91
9.5.6 DOR Routing Algorithm 92
9.5.7 Routing References 92
9.5.8 Modular Routine Engine 92

9.6 Quality of Service Management in OpenSM 93
9.6.1 Overview 93
9.6.2 Advanced QoS Policy File 94
9.6.3 Simple QoS Policy Definition 95
9.6.4 Policy File Syntax Guidelines 95
9.6.5 Examples of Advanced Policy File 95
9.6.6 Simple QoS Policy - Details and Examples 98

9.6.6.1 IPoIB 99
9.6.6.2 SDP 99
9.6.6.3 RDS 100
9.6.6.4 iSER 100
9.6.6.5 SRP 100
9.6.6.6 MPI 100

9.6.7 SL2VL Mapping and VL Arbitration 100
9.6.8 Deployment Example 102

9.7 QoS Configuration Examples 102
9.7.1 Typical HPC Example: MPI and Lustre 102
9.7.2 EDC SOA (2-tier): IPoIB and SRP 103
9.7.3 EDC (3-tier): IPoIB, RDS, SRP 104

Chapter 10 Diagnostic Utilities 107
10.1 Overview 107
10.2 Utilities Usage 107

10.2.1 Common Configuration, Interface and Addressing 107
10.2.2 IB Interface Definition 107
10.2.3 Addressing 108

10.3 ibdiagnet - IB Net Diagnostic 108
10.3.1 SYNOPSYS 108
10.3.2 Output Files 110
10.3.3 ERROR CODES 110

10.4 ibdiagpath - IB diagnostic path 111
10.4.1 SYNOPSYS 111

Rev 1.20 Mellanox Technologies

6

10.4.2 Output Files 112
10.4.3 ERROR CODES 112

Appendix A Boot over IB (BoIB) 113
A.1 Overview 113
A.2 Supported Mellanox HCA Devices 113
A.3 Tested Platforms 113
A.4 BoIB in Mellanox OFED 113
A.5 Burning the Expansion ROM Image 114
A.6 Preparing the DHCP Server 115
A.7 Subnet Manager – OpenSM 116
A.8 TFTP Server 117
A.9 BIOS Configuration 117
A.10 Operation 117
A.11 Diskless Machines 118
A.12 iSCSI Boot 121

Appendix B Performance Troubleshooting 135
B.1 PCI Express Performance Troubleshooting 135
B.2 InfiniBand Performance Troubleshooting 135

Appendix C ULP Performance Tuning 137
C.1 IPoIB Performance Tuning 137
C.2 MPI Performance Tuning 137

Glossary 139

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

7

List of Tables

Table 1: Chapters in Brief 11

Table 2: Typographical Conventions 12

Table 3: Abbreviations and Acronyms 12

Table 4: Reference Documents 13

Table 5: Useful MPI Links 63

Table 6: ibdiagnet Output Files 110

Table 7: ibdiagpath Output Files 112

Rev 1.20 Mellanox Technologies

8

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

9

Revision History

Printed on June 12, 2008.

Rev 1.20 (12-June-2008)
• Added the ‘--force’ flag to the installation script mlnxofedinstall (see Section 2.3.2 on

page 22)

Rev 1.10 (08-April-2008)
• Updated chapters: All
• New chapters: Quality of Service, Diagnostics, Glossary
• Deleted the SRP Target appendix

Rev 1.00 (12-March-2008)
• First release

Rev 1.20 Mellanox Technologies

10

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

11

Preface

This Preface provides general information concerning the scope and organization of this User’s
Manual. It includes the following sections:

• Intended Audience (page 11)
• Document Organization (page 11)
• Documentation Conventions (page 12)
• Related Documentation (page 13)
• Support and Updates Webpage (page 13)

Intended Audience

This manual is intended for system administrators responsible for the installation, configuration,
management and maintenance of the software and hardware of InfiniBand adapter cards. It is also
intended for and application developers.

Document Organization

Table 1 - Chapters in Brief

Chapter No. Title Brief Description

Chapter 1 Mellanox OFED Overview Provides an overview of the device’s interfaces and features

Chapter 2 Installation Describes the installation and uninstallation procedures

Chapter 3 IPoIB Describes the IP over IB API installed by Mellanox OFED

Chapter 4 RDS Describes the Reliable Datagram Sockets API installed by Mell-
anox OFED

Chapter 5 SDP Describes the Socket Direct Protocol API installed by Mellanox
OFED

Chapter 6 SRP Describes SRP in general and an SRP Initiator (Host) API that is
installed by Mellanox OFED

Chapter 7 MPI Describes two MPI implementations included in Mellanox OFED

Chapter 8 Quality of Service Describes Quality of Service over Mellanox OFED

Chapter 9 OpenSM – Subnet Manager Describes a Subnet Manager that is installed by Mellanox OFED

Appendix A Boot over IB (BoIB) Describes the gPXE Boot module included in Mellanox OFED

Appendix B Performance Troubleshooting Provides tips for troubleshooting machine performance on the PCI
Express and InfiniBand interfaces

Appendix C ULP Performance Tuning Provides tips for tuning the performance of ULPs

Rev 1.20 Mellanox Technologies

12

Documentation Conventions

Typographical Conventions

Common Abbreviations and Acronyms

Table 2 - Typographical Conventions

Description Convention Example

File names file.extension

Directory names directory

Commands and their parameters command param1

Optional items []

Mutually exclusive parameters { p1 | p2 | p3 }

Optional mutually exclusive parameters [p1 | p2 | p3]

Prompt of a user command under bash shell hostname$

Prompt of a root command under bash shell hostname#

Prompt of a user command under tcsh shell tcsh$

Environment variables VARIABLE

Code example if (a==b){};

Comment at the beginning of a code line !, #

Characters to be typed by users as-is bold font

Keywords bold font

Variables for which users supply specific values Italic font

Emphasized words Italic font These are emphasized words

Pop-up menu sequences menu1 --> menu2 -->... --> item

Note Note:

Warning Warning!

Table 3 - Abbreviations and Acronyms (Sheet 1 of 2)

Abbreviation / Acronym Whole Word / Description

B (Capital) ‘B’ is used to indicate size in bytes or multiples of bytes (e.g., 1KB = 1024
bytes, and 1MB = 1048576 bytes)

b (Small) ‘b’ is used to indicate size in bits or multiples of bits (e.g., 1Kb = 1024 bits)

FW Firmware

HCA Host Channel Adapter

HW Hardware

IB InfiniBand

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

13

Related Documentation

Support and Updates Webpage

Please visit http://www.mellanox.com/products/ofed.php for FAQ, troubleshooting, future updates
to this manual, etc.

LSB Least significant byte

lsb Least significant bit

MSB Most significant byte

msb Most significant bit

SW Software

Table 4 - Reference Documents

Document Name Description

 InfiniBand Architecture Specification, Vol. 1, Release 1.2.1 The InfiniBand Architecture Specification that is provided by IBTA

Firmware Release Notes for Mellanox HCA devices See the Release Notes PDF file relevant to your HCA device under
http://www.mellanox.com/support/custom_firmware_table.php

MFT User’s Manual Mellanox Firmware Tools User’s Manual. See under docs/ folder of
installed package

MFT Release Notes Release Notes for the Mellanox Firmware Tools included in the Mell-
anox OFED for Linux under docs/.

Table 3 - Abbreviations and Acronyms (Sheet 2 of 2)

Abbreviation / Acronym Whole Word / Description

Rev 1.20 Mellanox Technologies

14

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

15

1 Mellanox OFED Overview

1.1 Introduction to Mellanox OFED

Mellanox Technologies offers InfiniBand Host Channel Adapter (HCA) cards with 10, 20, and
40Gb/s InfiniBand ports, and a PCI-X or PCI Express 2.0 (up to 5GT/s) uplink to servers. The cards
deliver low-latency and high-bandwidth for performance-driven server and storage clustering
applications in Enterprise Data Centers (EDC), High-Performance Computing (HPC), and Embed-
ded environments. All Mellanox adapter cards are compatible with OpenFabrics-based RDMA pro-
tocols and software, and are supported with major operating system distributions.

The Mellanox OFED for Linux is a single software stack that operates across all available Mell-
anox InfiniBand (IB) devices and configurations, supporting the applications described above.

1.2 Mellanox OFED Package

1.2.1 ISO Image

Mellanox OFED for Linux (MLNX_OFED_LINUX) is provided as ISO images, one per a sup-
ported Linux distribution, that includes source code and binary RPMs, firmware, utilities, and doc-
umentation. The ISO image contains an installation script (called mlnxofedinstall) that
performs the necessary steps to accomplish the following:

• Discover the currently installed kernel
• Uninstall any InfiniBand stacks that are part of the standard operating system distribution or

another vendor's commercial stack
• Install the MLNX_OFED_LINUX binary RPMs (if they are available for the current kernel)
• Identify the currently installed InfiniBand HCAs and perform the required firmware updates

1.2.2 Software Components

MLNX_OFED_LINUX contains the following software components:

• HCA drivers
- mthca, mlx4

• Mid-layer core
- Verbs, MADs, SA, CM, CMA, uVerbs, uMADs

• Upper Layer Protocols (ULPs)
- IPoIB, RDS, SDP, SRP Initiator

• MPI
- Open MPI stack supporting the InfiniBand interface
- OSU MVAPICH stack supporting the InfiniBand interface
- MPI benchmark tests (OSU BW/LAT, Intel MPI Benchmark, Presta)

• OpenSM: InfiniBand Subnet Manager

Mellanox OFED Overview

Rev 1.20 Mellanox Technologies

16

• Utilities
- Diagnostic tools
- Performance tests

• Firmware tools (MFT)
• Source code for all the OFED software modules (for use under the conditions mentioned in the

modules' LICENSE files)
• Documentation

1.2.3 Firmware

The ISO image includes the following firmware items:

• Firmware images (.mlx format) for all Mellanox standard HCA devices
• Firmware configuration (.INI) files for Mellanox standard HCA adapter cards and custom cards

• Boot over IB (gPXE boot) for ConnectXTM IB, InfiniHostTM III Ex in Mem-free mode, and
InfiniHostTM III Lx HCA devices

1.2.4 Directory Structure

The ISO image of MLNX_OFED_LINUX contains the following files and directories:

• mlnxofedinstall This is the MLNX_OFED_LINUX installation script.
• uninstall.sh This is the MLNX_OFED_LINUX un-installation script.
• <CPU architecture folders>Directory of binary RPMs for a specific CPU architecture.
• firmware/ Directory of the Mellanox IB HCA firmware images (including

Boot-over-IB)
• src/ Directory of the OFED source tarball and the Mellanox Firmware

Tools (MFT) tarball
• docs/ Directory of Mellanox OFED related documentation

1.3 Architecture

Figure 1 shows a diagram of the Mellanox OFED stack, and how upper layer protocols (ULPs)
interface with the hardware and with the kernel and user spaces. The application level also shows
the versatility of markets that Mellanox OFED applies to.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

17

The following sub-sections briefly describe the various components of the Mellanox OFED stack.

1.3.1 HCA Drivers

Mellanox OFED includes two drivers for Mellanox HCA hardware: mthca and mlx4.

mthca

mthca is the low level driver implementation for the following Mellanox Technologies HCA
(InfiniBand) devices: InfiniHost, InfiniHost III Ex and InfiniHost III Lx.

mlx4

mlx4 is the low level driver implementation for Mellanox Technologies’ ConnectX adapters. The
ConnectX can operate as an InfiniBand adapter (HCA).

1.3.2 Mid-layer Core

Core services include: management interface (MAD), connection manager (CM) interface, and
Subnet Administrator (SA) interface. The stack includes components for both user-mode and ker-
nel applications. The core services run in the kernel and expose an interface to user-mode for verbs,
CM and management.

Figure 1: Mellanox OFED Stack

Mellanox OFED Overview

Rev 1.20 Mellanox Technologies

18

1.3.3 ULPs

IPoIB

The IP over IB (IPoIB) driver is a network interface implementation over InfiniBand. IPoIB encap-
sulates IP datagrams over an InfiniBand connected or datagram transport service. IPoIB pre-
appends the IP datagrams with an encapsulation header, and sends the outcome over the InfiniBand
transport service. The transport service is Reliable Connected (RC) by default, but it may also be
configured to be Unreliable Datagram (UD). The interface supports unicast, multicast and broad-
cast. For details, see Chapter 3, “IPoIB”.

RDS

Reliable Datagram Sockets (RDS) is a socket API that provides reliable, in-order datagram delivery
between sockets over RC or TCP/IP. For more details, see Chapter 4, “RDS”.

SDP

Sockets Direct Protocol (SDP) is a byte-stream transport protocol that provides TCP stream seman-
tics. SDP utilizes InfiniBand's advanced protocol offload capabilities. Because of this, SDP can
have lower CPU and memory bandwidth utilization when compared to conventional implementa-
tions of TCP, while preserving the TCP APIs and semantics upon which most current network
applications depend. For more details, see Chapter 5, “SDP”.

SRP

SRP (SCSI RDMA Protocol) is designed to take full advantage of the protocol offload and RDMA
features provided by the InfiniBand architecture. SRP allows a large body of SCSI software to be
readily used on InfiniBand architecture. The SRP driver—known as the SRP Initiator—differs
from traditional low-level SCSI drivers in Linux. The SRP Initiator does not control a local HBA;
instead, it controls a connection to an IO controller—known as the SRP Target—to provide access
to remote storage devices across an InfiniBand fabric. The SRP Target resides in an IO unit and
provides storage services. See Chapter 6, “SRP”.

1.3.4 MPI

Message Passing Interface (MPI) is a library specification that enables the development of parallel
software libraries to utilize parallel computers, clusters, and heterogeneous networks. Mellanox
OFED includes the following MPI implementations over InfiniBand:

• Open MPI – an open source MPI-2 implementation by the Open MPI Project
• OSU MVAPICH – an MPI-1 implementation by Ohio State University

Mellanox OFED also includes MPI benchmark tests such as OSU BW/LAT, Intel MPI Benchmark,
and Presta.

1.3.5 InfiniBand Subnet Manager

All InfiniBand-compliant ULPs require a proper operation of a Subnet Manager (SM) running on
the InfiniBand fabric, at all times. An SM can run on any node or on an IB switch. OpenSM is an
InfiniBand-compliant Subnet Manager, and it is installed as part of Mellanox OFED.1 See Chapter
 9, “OpenSM – Subnet Manager”.

1. OpenSM is disabled by default. See Chapter 9, “OpenSM – Subnet Manager” for details on enabling it.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

19

1.3.6 Diagnostic Utilities

Mellanox OFED includes the following two diagnostic packages for use by network and data-cen-
ter managers:

• ibutils – Mellanox Technologies diagnostic utilities
• infiniband-diags – OpenFabrics Alliance InfiniBand diagnostic tools

1.3.7 Performance Utilities

A collection of tests written over uverbs intended for use as a performance micro-benchmark. As an
example, the tests can be used for hardware or software tuning and/or functional testing. See
PERF_TEST_README.txt under docs/.

1.3.8 Mellanox Firmware Tools

The Mellanox Firmware Tools (MFT) package is a set of firmware management tools for a single
InfiniBand node. MFT can be used for:

• Generating a standard or customized Mellanox firmware image
• Querying for firmware information
• Burning a firmware image to a single InfiniBand node

MFT includes the following tools:

mlxburn

This tool provides the following functions:
- Generation of a standard or customized Mellanox firmware image for burning (in binary or .mlx

format)
- Burning an image to the Flash/EEPROM attached to a Mellanox HCA or switch device
- Querying the firmware version loaded on an HCA board
- Displaying the VPD (Vital Product Data) of an HCA board

flint

This tool burns a firmware binary image to the Flash(es) attached to an HCA board. It includes query
functions to the burnt firmware image and to the binary image file.

spark

This tool burns a firmware binary image to the EEPROM(s) attached to a switch device. It includes query
functions to the burnt firmware image and to the binary image file. The tool accesses the EEPROM and/or
switch device via an I2C-compatible interface.

ibspark

This tool burns a firmware binary image to the EEPROM(s) attached to a switch device. It includes query
functions to the burnt firmware image and to the binary image file. The tool accesses the switch device
and the EEPROM via vendor-specific MADs over the InfiniBand fabric (In-Band tool).

Debug utilities

A set of debug utilities (e.g., itrace, mstdump, isw, and i2c)

For additional details, please refer to the MFT User’s Manual docs/.

Mellanox OFED Overview

Rev 1.20 Mellanox Technologies

20

1.4 Quality of Service

Quality of Service (QoS) requirements stem from the realization of I/O consolidation over an IB
network. As multiple applications and ULPs share the same fabric, a means is needed to control
their use of network resources.

QoS over Mellanox OFED for Linux is discussed in Chapter 9, “OpenSM – Subnet Manager”.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

21

2 Installation

This chapter describes how to install and test the Mellanox OFED for Linux package on a single
host machine with Mellanox InfiniBand hardware installed. The chapter includes the following sec-
tions:

• Hardware and Software Requirements (page 21)
• Downloading Mellanox OFED (page 22)
• Installing Mellanox OFED (page 22)
• Uninstalling Mellanox OFED (page 29)

2.1 Hardware and Software Requirements

2.1.1 Hardware Requirements

Platforms

• A server platform with an adapter card based on one of the following Mellanox Technologies’
InfiniBand HCA devices:

- ConnectXTM IB (firmware: fw-25408)

- InfiniHostTM III Ex (firmware: fw-25218 for Mem-Free cards, and fw-25208 for cards with mem-
ory)

- InfiniHostTM III Lx (firmware: fw-25204)

- InfiniHostTM (firmware: fw-23108)

Note: For the list of supported architecture platforms, please refer to the Mellanox
OFED Release Notes file.

Required Disk Space for Installation

• 400 MB

2.1.2 Software Requirements

Operating System

• Linux operating system

Note: For the list of supported operating system distributions and kernels, please refer
to the Mellanox OFED Release Notes file.

Installer Privileges

• The installation requires administrator privileges on the target machine

Installation

Rev 1.20 Mellanox Technologies

22

2.2 Downloading Mellanox OFED

Step 1. Verify that the system has a Mellanox HCA installed by ensuring that you can see Con-
nectX or InfiniHost entries in the display.

The following example shows a system with an installed Mellanox HCA:
host1# lspci -v | grep Mellanox

06:01.0 PCI bridge: Mellanox Technologies MT23108 PCI Bridge (rev
a0) (prog-if 00[Normal decode])

07:00.0 InfiniBand: Mellanox Technologies MT23108 InfiniHost (rev
a0)

Subsystem: Mellanox Technologies MT23108 InfiniHost

Step 2. Download the ISO image to your host.

The image’s name has the format MLNX_OFED_LINUX-<ver>-<OS label>.iso. You can
download it from http://www.mellanox.com/ under Mellanox OFED.

Step 3. Use the md5sum utility to confirm the file integrity of your ISO image. Run the following
command and compare the result to the value provided on the download page.
host1$ md5sum MLNX_OFED_LINUX-<ver>-<OS label>.iso

2.3 Installing Mellanox OFED

The installation script, mlnxofedinstall, performs the following:

• Discovers the currently installed kernel
• Uninstalls any InfiniBand stacks that are part of the standard operating system distribution or

another vendor's commercial stack
• Installs the MLNX_OFED_LINUX binary RPMs (if they are available for the current kernel)

• Identifies the currently installed InfiniBand HCAs and automatically1 upgrades the firmware

2.3.1 Pre-installation Notes
• The installation script removes all previously installed Mellanox OFED packages and re-installs

from scratch. You will be prompted to acknowledge the deletion of the old packages.

Note: Pre-existing configuration files will be saved with the extension “.conf.saverpm”.

• If you need to install Mellanox OFED on an entire (homogeneous) cluster, a common strategy is
to mount the ISO image on one of the cluster nodes and then copy it to a shared file system such
as NFS. To install on all the cluster nodes, use cluster-aware tools (such as pdsh).

2.3.2 Installation Script

Mellanox OFED includes an installation script called mlnxofedinstall. Its usage is described
below. You will use it during the installation procedure described in Section 2.3.3, “Installation
Procedure,” on page 23.

1. The firmware will not be updated if you run the install script with the ‘--without-fw-update’ option.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

23

Usage
./mlnxofedinstall [OPTIONS]

Note: If no options are provided to the script, then all available RPMs are installed.

Options
-c|--config <packages config_file>

Example of the configuration file can be found under
docs

-n|--net <network config file>
Example of the network configuration file can be
found under docs

-p|--print-available Print available packages for the current platform
and create a corresponding ofed.conf file. The
installation script exits after creating ofed.conf.

--with-32bit Install 32-bit libraries (default). This is relevant
for x86_64 and ppc64 platforms.

--without-32bit Skip 32-bit libraries installation.

--without-depcheck Skip Distro's libraries check

--without-fw-update Skip firmware update

--force-fw-update Force firmware update

--force Force installation (without querying the user)

--all|--hpc|--basic Install all, hpc or basic packages respectively

-v|-vv|-vvv Set verbosity level

-q Set quiet - no messages will be printed

2.3.3 Installation Procedure

Step 1. Login to the installation machine as root.

Step 2. Mount the ISO image on your machine
host1# mount -o ro,loop MLNX_OFED_LINUX-<ver>-<OS label>.iso /mnt

Note: After mounting the ISO image, /mnt will be a Read Only folder.

Step 3. Run the installation script
host1# /mnt/mlnxofedinstall

This program will install the MLNX_OFED_LINUX package on your machine.

Note that all other Mellanox, OEM, OFED, or Distribution IB packages will be
removed.

Do you want to continue?[y/N]:y

Uninstalling the previous version of OFED

Starting MLNX_OFED_LINUX installation

Installing kernel-ib RPM

Preparing... ### [100%]

Installation

Rev 1.20 Mellanox Technologies

24

 1:kernel-ib ### [100%]

Installing kernel-ib-devel RPM

Preparing... ### [100%]

 1:kernel-ib-devel ### [100%]

Installing ib-bonding RPM

Preparing... ### [100%]

 1:ib-bonding ### [100%]

Installing mft RPM

Preparing... ### [100%]

 1:mft ### [100%]

Install user level RPMs:

Preparing... ### [100%]

 1:libibverbs ### [1%]

 2:libibcommon ### [3%]

 3:libibumad ### [4%]

 4:libibcommon ### [6%]

 5:libibumad ### [7%]

 6:libibverbs ### [9%]

 7:opensm-libs ### [10%]

 8:libibmad ### [12%]

 9:libibverbs-devel ### [13%]

 10:librdmacm ### [14%]

 11:opensm-libs ### [16%]

 12:libmthca ### [17%]

 13:libmlx4 ### [19%]

 14:libibcm ### [20%]

 15:libibcommon-devel ### [22%]

 16:libibumad-devel ### [23%]

 17:libibmad ### [25%]

 18:librdmacm ### [26%]

 19:mpi-selector ### [28%]

 20:libsdp ### [29%]

 21:mvapich_gcc ### [30%]

 22:openmpi_gcc ### [32%]

 23:ofed-scripts ### [33%]

 24:libibverbs-devel ### [35%]

 25:libibverbs-devel-static### [36%]

 26:libibverbs-devel-static### [38%]

 27:libibverbs-utils ### [39%]

 28:libmthca ### [41%]

 29:libmthca-devel-static ### [42%]

 30:libmthca-devel-static ### [43%]

 31:libmlx4 ### [45%]

 32:libmlx4-devel-static ### [46%]

 33:libmlx4-devel-static ### [48%]

 34:libibcm ### [49%]

 35:libibcm-devel ### [51%]

 36:libibcm-devel ### [52%]

 37:libibcommon-devel ### [54%]

 38:libibcommon-static ### [55%]

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

25

 39:libibcommon-static ### [57%]

 40:libibumad-devel ### [58%]

 41:libibumad-static ### [59%]

 42:libibumad-static ### [61%]

 43:libibmad-devel ### [62%]

 44:libibmad-devel ### [64%]

 45:libibmad-static ### [65%]

 46:libibmad-static ### [67%]

 47:ibsim ### [68%]

 48:librdmacm-utils ### [70%]

 49:librdmacm-devel ### [71%]

 50:librdmacm-devel ### [72%]

 51:libsdp ### [74%]

 52:libsdp-devel ### [75%]

 53:libsdp-devel ### [77%]

 54:opensm ### [78%]

 55:opensm-devel ### [80%]

 56:opensm-devel ### [81%]

 57:opensm-static ### [83%]

 58:opensm-static ### [84%]

 59:perftest ### [86%]

 60:mstflint ### [87%]

 61:sdpnetstat ### [88%]

 62:srptools ### [90%]

 63:rds-tools ### [91%]

 64:ibutils ### [93%]

 65:infiniband-diags ### [94%]

 66:qperf ### [96%]

 67:ofed-docs ### [97%]

 68:mpitests_mvapich_gcc ### [99%]

 69:mpitests_openmpi_gcc ### [100%]

Installation finished successfully.

Programming HCA firmware...

Device: /dev/mst/mt25418_pci_cr0

Running: mlxburn -d /dev/mst/mt25418_pci_cr0 -fw ./firmware/fw-25408/fw-25408-
rel.mlx -no

-I- Image burn completed successfully.

Please reboot your system for the changes to take effect.

Note: In case your machine has an unsupported HCA device, no firmware update will
occur and the error message below will be printed. Please contact your hardware
vendor for help on firmware updates.

 Error message:
-I- Querying device ...

-E- Can't auto detect fw configuration file: ...

Installation

Rev 1.20 Mellanox Technologies

26

Step 4. In case the installation script performed firmware updates to InfiniBand hardware, it will
ask you to reboot your machine.

Step 5. The script adds the following lines to /etc/security/limits.conf for the userspace
components such as MPI:
* soft memlock unlimited

* hard memlock unlimited

 These settings unlimit the amount of memory that can be pinned by a user space application.
 If desired, tune the value unlimited to a specific amount of RAM.

Step 6. For your machine to be part of the InfiniBand fabric, a Subnet Manager must be running
on one of the fabric nodes. At this point, Mellanox OFED for Linux has already installed
the OpenSM Subnet Manager on your machine. For details on starting OpenSM, see
Chapter 9, “OpenSM – Subnet Manager”.

Step 7. Run the hca_self_test.ofed utility to verify whether or not the InfiniBand link is up.
The utility also checks for and displays additional information such as

• HCA firmware version
• Kernel architecture
• Driver version
• Number of active HCA ports along with their states
• Node GUID

Note: For more details on hca_self_test.ofed, see the file hca_self_test.readme
under docs/.

 host1# /usr/bin/hca_self_test.ofed

---- Performing InfiniBand HCA Self Test ----

Number of HCAs Detected 1

PCI Device Check PASS

Kernel Arch x86_64

Host Driver Version OFED-1.3 1.3-2.6.9_42.ELsmp

Host Driver RPM Check PASS

HCA Firmware on HCA #0 2.3.0

HCA Firmware Check on HCA #0 PASS

Host Driver Initialization PASS

Number of HCA Ports Active 0

Port State of Port #0 on HCA #0 INIT

Port State of Port #0 on HCA #0 DOWN

Error Counter Check on HCA #0 PASS

Kernel Syslog Check PASS

Node GUID on HCA #0 00:02:c9:03:00:00:10:e0

------------------ DONE ---------------------

Note: After the installer completes, information about the Mellanox OFED installation
such as prefix, kernel version, and installation parameters can be retrieved by
running the command /etc/infiniband/info.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

27

2.3.4 Installation Results

Software

• The OFED and MFT packages are installed under the /usr directory.
• The kernel modules are installed under:

- InfiniBand subsystem:
/lib/modules/`uname -r`/updates/kernel/drivers/infiniband/

- mlx4 driver:
/lib/modules/`uname -r`/updates/kernel/drivers/net/mlx4/mlx4_core.ko

- RDS:
/lib/modules/`uname -r`/updates/kernel/net/rds/rds.ko

- Bonding module:
/lib/modules/`uname -r`/updates/kernel/drivers/net/bonding/bonding.ko

• The package kernel-ib-devel include files are placed under /usr/src/ofa_kernel/
include/. These include files should be used when building kernel modules that use the stack.
(Note that the include files, if needed, are “backported” to your kernel.)

• The raw package (un-backported) source files are placed under
/usr/src/ofa_kernel-<ver>

• The script openibd is installed under /etc/init.d/. This script can be used to load and
unload the software stack.

• The directory /etc/infiniband is created with the files info and openib.conf. The info
script can be used to retrieve Mellanox OFED installation information. The openib.conf file
contains the list of modules that are loaded when the openibd script is used.

• The file 90-ib.rules is installed under /etc/udev/rules.d/
• The file /etc/modprobe.conf is updated to include the following:

- alias ib<n> ib_ipoib (for each ib<n> interface)
- alias net-pf-27 ib_sdp (for SDP)

• If OpenSM is installed, the daemon opensmd is installed under /etc/init.d/ and
opensm.conf is installed under /etc.

• If IPoIB configuration files are included, ifcfg-ib<n> files will be installed under:
- /etc/sysconfig/network-scripts/ on a RedHat machine
- /etc/sysconfig/network/ on a SuSE machine

• The installation process unlimits the amount of memory that can be pinned by a user space appli-
cation. See Step 5.

• Man pages will be installed under /usr/share/man/

Firmware

• The firmware of existing HCA devices will be updated if the following two conditions are full-
filled:

1. You run the installation script in default mode; that is, without the option
 ‘--without-fw-update’.
2. The firmware version of the HCA device is older than the firmware version included with
 the Mellanox OFED ISO image

Installation

Rev 1.20 Mellanox Technologies

28

Note: If an HCA’s Flash was originially programmed with an Expansion ROM image,
the automatic firmware update will also burn an Expansion ROM image.

• In case your machine has an unsupported HCA device, no firmware update will occur and the
error message below will be printed. Please contact your hardware vendor for help on firmware
updates.
Error message:

-I- Querying device ...

-E- Can't auto detect fw configuration file: ...

2.3.5 Post-installation Notes
• Most of the Mellanox OFED components can be configured or reconfigured after the installation

by modifying the relevant configuration files. See the relevant chapters in this manual for details.
• The list of the modules that will be loaded automatically upon boot can be found in the /etc/
infiniband/openib.conf file.

2.4 Updating Firmware After Installation

In case you ran the mlnxofedinstall script with the ‘--without-fw-update’ option and now
you wish to (manually) update firmware on you adapter card(s), you need to perform the following
steps:

Note: If you need to burn an Expansion ROM image, please refer to “Burning the
Expansion ROM Image” on page 114.

Note: The following steps are also appropriate in case you wish to burn newer firmware
that you have downloaded from Mellanox Technologies’ Web site
(http://www.mellanox.com/support/firmware_download.php).

Step 1. Start mst.
 host1# mst start

Step 2. Identify your target InfiniBand device for firmware update.

a. Get the list of InfiniBand device names on your machine.
 host1# mst status

MST modules:

 MST PCI module loaded

 MST PCI configuration module loaded

 MST Calibre (I2C) module is not loaded

MST devices:

/dev/mst/mt25418_pciconf0 - PCI configuration cycles access.

 bus:dev.fn=02:00.0 addr.reg=88 data.reg=92

 Chip revision is: A0

/dev/mst/mt25418_pci_cr0 - PCI direct access.

 bus:dev.fn=02:00.0 bar=0xdef00000 size=0x100000

 Chip revision is: A0

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

29

/dev/mst/mt25418_pci_msix0 - PCI direct access.

 bus:dev.fn=02:00.0 bar=0xdeefe000 size=0x2000

/dev/mst/mt25418_pci_uar0 - PCI direct access.

 bus:dev.fn=02:00.0 bar=0xdc800000 size=0x800000

b. Your InfiniBand device is the one with the postfix “_pci_cr0”. In the example listed above, this will be
/dev/mst/mt25418_pci_cr0.

Step 3. Burn firmware.

a. Burning a firmware binary image using mstflint (that is already installed on your machine).

Please refer to MSTFLINT_README.txt under docs/.
b. Burning a firmware image from a .mlx file using the mlxburn utility (that is already installed on your

machine).

The following command burns firmware onto the ConnectX IB device with the device name
obtained in the example of Step 2.
host1$ mlxburn -dev /dev/mst/mt25418_pci_cr0 \

 -fw /mnt/firmware/fw-25408/fw-25408-rel.mlx

Warning! Make sure that you have the correct device name, firmware path, and firmware
file name before running this command. For help, please refer to the Mellanox
Firmware Tools (MFT) User’s Manual under /mnt/docs/.

Step 3. Reboot your machine after the firmware burning is completed.

2.5 Uninstalling Mellanox OFED

Use the script /usr/sbin/ofed_uninstall.sh. to uninstall the Mellanox OFED package. The
script is part of the ofed-scripts RPM.

Installation

Rev 1.20 Mellanox Technologies

30

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

31

3 IPoIB

3.1 Introduction

The IP over IB (IPoIB) driver is a network interface implementation over InfiniBand. IPoIB encap-
sulates IP datagrams over an InfiniBand Connected or Datagram transport service. This chapter
describes the following:

• IPoIB Configuration (Section 3.2)
• How to manually configure IPoIB (Section 3.3)
• How to create and remove subinterfaces (Section 3.4)
• How to verify IPoIB functionality (Section 3.5)
• The ib-bonding driver (Section 3.6)
• How to test IPoIB performance (Section 3.7)

3.2 IPoIB Configuration

Configuring IPoIB is done automatically by the installation script – see Section 2.3. The Configura-
tion of IPoIB requires assigning an IP address and a subnet mask to each HCA port. The first HCA
port on the first HCA in the host is called interface ib0, the second port is called ib1, and so on. It is
also possible to manually configure IPoIB. This is described in Section 3.3.

An IPoIB configuration can be based on DHCP (by default) or on a static configuration that you
need to supply.

3.2.1 IPoIB Configuration Based on DHCP

By default, the installation script uses an IPoIB interface configuration based on DHCP. Mellanox
OFED’s IPoIB configuration assumes DHCP v3.1.1rc1 (which is available for download via
www.ics.org).

Note: A special patch for DHCP is required for supporting IPoIB. The patch for DHCP
v3.1.1rc1, dhcp.patch, is available under the docs/ directory.

Standard DHCP fields holding MAC addresses are not large enough to contain an IPoIB hardware
address. To overcome this problem, DHCP over InfiniBand messages convey a client identifier
field used to identify the DHCP session. This client identifier field can be used to associate an IP
address with a client identifier value, such that the DHCP server will grant the same IP address to
any client that conveys this client identifier.

Note: Refer to the DHCP documentation for more details how to make this association.

The length of the client identifier field is not fixed in the specification. For Mellanox OFED for
Linux, it is recommended to have IPoIB use the same format that Boot over IB uses for this client
identifier – see Section A.6.1, “Configuring the DHCP Server,” on page 115.

IPoIB

Rev 1.20 Mellanox Technologies

32

3.2.1.1 DHCP Server

In order for the DHCP server to provide configuration records for clients, an appropriate configura-
tion file, dhcpd.conf, must be created and put under /etc. See an example under the docs/ of
the Mellanox OFED installation.

The DHCP server must run on a machine which has loaded the IPoIB module.

To run the DHCP server from the command line, enter:

dhcpd <IB network interface name> -d

Example:

host1# dhcpd ib0 -d

3.2.1.2 DHCP Client

In order to use a DHCP client identifier, you need to first create a configuration file that defines the
DHCP client identifier. Then run the DHCP client with this file using the following command:

dhclient –cf <client conf file> <IB network interface name>

Example:

The following configuration file defines a DHCP client identifier that has the format that Boot over
IB uses.

dhclient.conf:

The value indicates a hexadecimal number

interface "ib1" {

send dhcp-client-identifier 20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;

}

In order to use the configuration file, run:

host1# dhclient –cf dhclient.conf ib1

3.2.2 Static IPoIB Configuration

If you wish to use an IPoIB configuration that is not based on DHCP, you need to supply the instal-
lation script with a configuration file (using the ‘-n’ option) containing the full IP configuration.
The IPoIB configuration file can specify either or both of the following data for an IPoIB interface:

• A static IPoIB configuration
• An IPoIB configuration based on an Ethernet configuration

Note: See your Linux distribution documentation for additional information about con-
figuring IP addresses.

The following code lines are an excerpt from a sample IPoIB configuration file:

Static settings; all values provided by this file

IPADDR_ib0=11.4.3.175

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

33

NETMASK_ib0=255.255.0.0

NETWORK_ib0=11.4.0.0

BROADCAST_ib0=11.4.255.255

ONBOOT_ib0=1

Based on eth0; each '*' will be replaced with a corresponding octet

from eth0.

LAN_INTERFACE_ib0=eth0

IPADDR_ib0=11.4.'*'.'*'

NETMASK_ib0=255.255.0.0

NETWORK_ib0=11.4.0.0

BROADCAST_ib0=11.4.255.255

ONBOOT_ib0=1

Based on the first eth<n> interface that is found (for n=0,1,...);

each '*' will be replaced with a corresponding octet from eth<n>.

LAN_INTERFACE_ib0=

IPADDR_ib0=11.4.'*'.'*'

NETMASK_ib0=255.255.0.0

NETWORK_ib0=11.4.0.0

BROADCAST_ib0=11.4.255.255

ONBOOT_ib0=1

3.2.3 IPoIB Mode Configuration

IPoIB can run in two modes of operation: Connected mode and Datagram mode. By default, IPoIB
is configured to work in Connected mode. This can be changed to become Datagram mode by edit-
ing the file /etc/infiniband/openib.conf and setting ‘SET_IPOIB_CM=no’.

After changing the mode, you need to restart the driver by running:

/etc/init.d/openibd restart

It is also possible to change the mode of operation on the fly as described below.

Note: ib0 is used as an example of an IB interface.

To set the Datagram mode of operation, run:

echo datagram > /sys/class/net/ib0/mode

To set the Connected mode of operation, run:

echo connected > /sys/class/net/ib0/mode

3.3 Manually Configuring IPoIB

To manually configure IPoIB for the default IB partition, perform the following steps:

Step 1. To configure the interface, enter the ifconfig command with the following items:
• The appropriate IB interface (ib0, ib1, etc.)

IPoIB

Rev 1.20 Mellanox Technologies

34

• The IP address that you want to assign to the interface
• The netmask keyword
• The subnet mask that you want to assign to the interface

 The following example shows how to configure an IB interface:
host1$ ifconfig ib0 11.4.3.175 netmask 255.255.0.0

Step 2. (Optional) Verify the configuration by entering the ifconfig command with the appro-
priate interface identifier ib# argument.

 The following example shows how to verify the configuration:
host1$ ifconfig ib0

b0 Link encap:UNSPEC HWaddr 80-00-04-04-FE-80-00-00-00-00-00-00-
00-00-00-00

inet addr:11.4.3.175 Bcast:11.4.255.255 Mask:255.255.0.0

UP BROADCAST MULTICAST MTU:65520 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:128

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Step 3. Repeat Step 1 and Step 2 on the remaining interface(s).

3.4 Subinterfaces

You can create subinterfaces for a primary IPoIB interface to provide traffic isolation. Each such
subinterface (also called a child interface) has a different IP and network addresses from the pri-
mary (parent) interface. The default Partition Key (PKey), ff:ff, applies to the primary (parent)
interface.

This section describes how to

• Create a subinterface (Section 3.4.1)
• Remove a subinterface (Section 3.4.2)

3.4.1 Creating a Subinterface

To create a child interface (subinterface), follow this procedure:

Note: In the following procedure, ib0 is used as an example of an IB subinterface.

Step 1. Decide on the PKey to be used in the subnet. Valid values are 0-255. The actual PKey used
is a 16-bit number with the most significant bit set. For example, a value of 0 will give a
PKey with the value 0x8000.

Step 2. Create a child interface by running:
host1$ echo <PKey> > /sys/class/net/<IB subinterface>/create_child

Example:

host1$ echo 0 > /sys/class/net/ib0/create_child

 This will create the interface ib0.8000.

Step 3. Verify the configuration of this interface by running:

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

35

host1$ ifconfig <subinterface>.<subinterface PKey>

 Using the example of Step 2:
host1$ ifconfig ib0.8000

ib0.8000 Link encap:UNSPEC HWaddr 80-00-00-4A-FE-80-00-00-00-00-
00-00-00-00-00-00

BROADCAST MULTICAST MTU:2044 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:128

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Step 4. As can be seen, the interface does not have IP or network addresses. To configure those,
you should follow the manual configuration procedure described in Section 3.3.

Step 5. To be able to use this interface, a configuration of the Subnet Manager is needed so that
the PKey chosen, which defines a broadcast address, be recognized (see Chapter 9,
“OpenSM – Subnet Manager”).

3.4.2 Removing a Subinterface

To remove a child interface (subinterface), run:

echo <subinterface PKey> /sys/class/net/<ib_interface>/delete_child

Using the example of Step 2:
echo 0x8000 > /sys/class/net/ib0/delete_child

Note that when deleting the interface you must use the PKey value with the most significant bit set
(e.g., 0x8000 in the example above).

3.5 Verifying IPoIB Functionality

To verify your configuration and your IPoIB functionality, perform the following steps:

Step 1. Verify the IPoIB functionality by using the ifconfig command.
 The following example shows how two IB nodes are used to verify IPoIB functionality. In
 the following example, IB node 1 is at 11.4.3.175, and IB node 2 is at 11.4.3.176:

host1# ifconfig ib0 11.4.3.175 netmask 255.255.0.0

host2# ifconfig ib0 11.4.3.176 netmask 255.255.0.0

Step 2. Enter the ping command from 11.4.3.175 to 11.4.3.176.

 The following example shows how to enter the ping command:
host1# ping -c 5 11.4.3.176

PING 11.4.3.176 (11.4.3.176) 56(84) bytes of data.

64 bytes from 11.4.3.176: icmp_seq=0 ttl=64 time=0.079 ms

64 bytes from 11.4.3.176: icmp_seq=1 ttl=64 time=0.044 ms

64 bytes from 11.4.3.176: icmp_seq=2 ttl=64 time=0.055 ms

64 bytes from 11.4.3.176: icmp_seq=3 ttl=64 time=0.049 ms

64 bytes from 11.4.3.176: icmp_seq=4 ttl=64 time=0.065 ms

--- 11.4.3.176 ping statistics ---

IPoIB

Rev 1.20 Mellanox Technologies

36

5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt
min/avg/max/mdev = 0.044/0.058/0.079/0.014 ms, pipe 2

3.6 The ib-bonding Driver

The ib-bonding driver is a High Availability solution for IPoIB interfaces. It is based on the Linux
Ethernet Bonding Driver and was adapted to work with IPoIB. The ib-bonding package contains a
bonding driver and a utility called ib-bond to manage and control the driver operation.

The ib-bonding driver comes with the ib-bonding package (run “rpm -qi ib-bonding” to get
the package information).

3.6.1 Using the ib-bonding Driver

The ib-bonding driver can be loaded manually or automatically.

Manual Operation

Use the utility ib-bond to start, query, or stop the driver. For details on this utility, please read the
documentation for the ib-bonding package under

/usr/share/doc/ib-bonding-0.9.0/ib-bonding.txt on RedHat, and
/usr/share/doc/packages/ib-bonding-0.9.0/ib-bonding.txt on SuSE.

Automatic Operation

There are two ways to configure automatic ib-bonding operation:

1. Using the openibd configuration file, as described in the following steps:
a. Edit the file /etc/infiniband/openib.conf to define bonding parameters.

Example:
Enable the bonding driver on startup.

IPOIBBOND_ENABLE=yes

Set bond interface names

IPOIB_BONDS=bond0,bond8007

Set specific bond params; address and slaves

bond0_IP=10.10.10.1/24

bond0_SLAVES=ib0,ib1

bond8007_IP=20.10.10.1

bond1_SLAVES=ib0.8007,ib1.8007

b. Restart the driver by running:
/etc/init.d/openibd restart

2. Using a standard OS bonding configuration. For details on this, please read the documentation
for the ib-bonding package under

/usr/share/doc/ib-bonding-0.9.0/ib-bonding.txt on RedHat, and
/usr/share/doc/packages/ib-bonding-0.9.0/ib-bonding.txt on SuSE.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

37

Notes

• If the bondX name is defined but one of bondX_SLAVES or bondX_IPs is missing, then that
specific bond will not be created.

• The bondX name must not contain characters which are disallowed for bash variable names such
as ‘.’ and ‘-’.

• Using /etc/infiniband/openib.conf to create a persistent configuration is not recom-
mended. Do not use it unless you have no other option. It is not guaranteed that the first method
will be supported in future versions of OFED.

3.7 Testing IPoIB Performance

This section describes how to verify IPoIB performance by running the Bandwidth (BW) test and
the Latency test. These tests are described in detail at the following URL:

http://www.netperf.org/netperf/training/Netperf.html

Note: For UDP best performance, please use IPoIB in Datagram mode and not in Con-
nected mode.

To verify IPoIB performance, perform the following steps:

Step 1. Download Netperf from the following URL:
http://www.netperf.org/netperf/NetperfPage.html

Step 2. Compile Netperf by following the instructions at
http://www.netperf.org/netperf/NetperfPage.html.

Step 3. Start the Netperf server.
The following example shows how to start the Netperf server:

host1$ netserver

Starting netserver at port 12865

Starting netserver at hostname 0.0.0.0 port 12865 and family
AF_UNSPEC

host1$

Step 4. Run the Netperf client. The default test is the Bandwidth test.
The following example shows how to run the Netperf client, which starts the Bandwidth
test by default:
host2$ netperf -H 11.4.17.6 -t TCP_STREAM -c -C -- -m 65536

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 11.4.17.6
(11.4.17.6) port 0 AF_INET

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size Size Size Time Throughput local remote local remote

bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB

 87380 16384 65536 10.00 2483.00 7.03 5.42 1.854 1.431

Note: You must specify the IPoIB IP address when running the Netperf client.

IPoIB

Rev 1.20 Mellanox Technologies

38

The following table describes parameters for the netperf command:

Note that the run example above produced the following results:
• Throughput is 2.483 gigabits per second
• Client CPU utilization is 7.03 percent of client CPU
• Server CPU utilization is 5.42 percent of server CPU

Step 5. Run the Netperf Latency test.

Run the test once, and stop the server so that it does not repeat the test.
The following example shows how to run the Latency test, and then stop the Netperf server:

host2$ netperf -H 11.4.17.6 -t TCP_RR -c -C -- -r1,1

TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 11.4.17.6
(11.4.17.6) port 0 AF_INET

Local /Remote

Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem

Send Recv Size Size Time Rate local remote local remote

bytes bytes bytes bytes secs. per sec % S % S us/Tr us/Tr

16384 87380 1 1 10.00 19913.18 5.61 6.79 22.549 27.296

16384 87380

The following table describes parameters for the netperf command:

Note that the run example above produced the following results:

Option Description

-H Where to find the server

11.4.17.6 IPoIB IP address

-t <Test Name> Specify the test to perform. Options are TCP_STREAM, TCP_RR, etc.

-c Client CPU utilization

-C Server CPU utilization

-- Separates the global and test-specific parameters

-m Message size, which is 65536 in the example above

Option Description

-H Where to find the server

11.4.17.6 IPoIB IP address

-t <Test Name> Specify the test to perform. Options are TCP_STREAM, TCP_RR, etc.

-c Client CPU utilization

-C Server CPU utilization

-- Separates the global and test-specific parameters

-r 1,1 The request size sent and how many bytes requested back

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

39

• Client CPU utilization is 5.61 percent of client CPU
• Server CPU utilization is 6.79 percent of server CPU
• Latency is 25.11 microseconds. Latency is calculated as follows:

0.5*(1 / Transaction rate per sec) * 1,000,000 = one-way average latency in usec.

Step 6. To end the test, shut down the Netperf server.

host1$ pkill netserver

IPoIB

Rev 1.20 Mellanox Technologies

40

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

41

4 RDS

4.1 Overview

Reliable Datagram Sockets (RDS) is a socket API that provides reliable, in-order datagram delivery
between sockets over RC or TCP/IP. RDS is intended for use with Oracle RAC 11g.

For programming details, enter:

host1$ man rds

4.2 RDS Configuration

The RDS ULP is installed as part of Mellanox OFED for Linux. To load the RDS module upon
boot, edit the file /etc/infiniband/openib.conf and set “RDS_LOAD=yes”.

Note: For the changes to take effect, run: /etc/init.d/openibd restart

RDS

Rev 1.20 Mellanox Technologies

42

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

43

5 SDP

5.1 Overview

Sockets Direct Protocol (SDP) is an InfiniBand byte-stream transport protocol that provides TCP
stream semantics. Capable of utilizing InfiniBand's advanced protocol offload capabilities, SDP
can provide lower latency, higher bandwidth, and lower CPU utilization than IPoIB running some
sockets-based applications.

SDP can be used by applications and improve their performance transparently (that is, without any
recompilation). Since SDP has the same socket semantics as TCP, an existing application is able to
run using SDP; the difference is that the application’s TCP socket gets replaced with an SDP
socket.

It is also possible to configure the driver to automatically translate TCP to SDP based on the source
IP, the destination, or the application name. See Section 5.5.

The SDP protocol is composed of a kernel module that implements the SDP as a new address-fam-
ily/protocol-family, and a library (see Section 5.2) that is used for replacing the TCP address family
with SDP according to a policy.

This chapter includes the following sections:

• “libsdp.so Library” on page 43
• Configuring SDP (page 43)
• Environment Variables (page 46)
• Converting Socket-based Applications (page 46)
• Testing SDP Performance (page 53)

5.2 libsdp.so Library

libsdp.so is a dynamically linked library, which is used for transparent integration of applica-
tions with SDP. The library is preloaded, and therefore takes precedence over glibc for certain
socket calls. Thus, it can transparently replace the TCP socket family with SDP socket calls.

The library also implements a user-level socket switch. Using a configuration file, the system
administrator can set up the policy that selects the type of socket to be used. libsdp.so also has
the option to allow server sockets to listen on both SDP and TCP interfaces. The various configura-
tions with SDP/TCP sockets are explained inside the /etc/libsdp.conf file.

5.3 Configuring SDP

To load SDP upon boot, edit the file /etc/infiniband/openib.conf and set
“SDP_LOAD=yes”.

Note: For the changes to take effect, run: /etc/init.d/openibd restart

SDP

Rev 1.20 Mellanox Technologies

44

SDP shares the same IP addresses and interface names as IPoIB. See IPoIB configuring in Section
3.2 and Section 3.3.

5.3.1 How to Know SDP Is Working

Since SDP is a transparent TCP replacement, it can sometimes be difficult to know that it is work-
ing correctly. The sdpnetstat program can be used to verify both that SDP is loaded and is being
used:

host1$ sdpnetstat -S

This command shows all active SDP sockets using the same format as the traditional netstat pro-
gram. Without the ‘-S’ option, it shows all the information that netstat does plus SDP data.

Assuming that the SDP kernel module is loaded and is being used, then the output of the command
will show an error like the following:

host1$ sdpnetstat -S

Proto Recv-Q Send-Q Local Address Foreign Address

sdp 0 0 193.168.10.144:34216 193.168.10.125:12865

sdp 0 884720 193.168.10.144:42724 193.168.10.:filenet-rmi

The example output above shows two active SDP sockets and contains details about the connec-
tions.

If the SDP kernel module is not loaded, or it is loaded but is not being used, then the output of the
command will be something like the following:

host1$ sdpnetstat -S

Proto Recv-Q Send-Q Local Address Foreign Address

netstat: no support for `AF INET (tcp)' on this system.

To verify whether the module is loaded or not, you can use the lsmod command:

host1$ lsmod | grep sdp

ib_sdp 125020 0

The example output above shows that the SDP module is loaded.

If the SDP module is loaded and the sdpnetstat command did not show SDP sockets, then SDP
is not being used by the application.

5.3.2 Monitoring and Troubleshooting Tools

SDP has debug support for both the user space libsdp.so library and the ib_sdp kernel module..
Both can be useful to understand why a TCP socket was not redirected over SDP and to help find
problems in the SDP implementation.

User Space SDP Debug

User-space SDP debug is controlled by options in the libsdp.conf file. You can also have a local
version and point to it explicitly using the following command:

host1$ export LIBSDP_CONFIG_FILE=<path>/libsdp.conf

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

45

To obtain extensive debug information, you can modify libsdp.conf to have the log directive
produce maximum debug output (provide the min-level flag with the value 1).

The log statement enables the user to specify the debug and error messages that are to be sent and
their destination. The syntax of log is as follows:

 log [destination (stderr | syslog | file <filename>)] [min-level 1-9]

where options are:
 destination send log messages to the specified destination:

stderr: forward messages to the STDERR

syslog: send messages to the syslog service

file <filename>: write messages to the file
 /var/log/filename for root. For a regular
 user, write to /tmp/<filename>.<uid> if filename is
 not specified as a full path; otherwise, write to
 <path>/<filename>.<uid>

 min-level verbosity level of the log:

9: print errors only

8: print warnings

7: print connect and listen summary (useful for tracking
 SDP usage)

4: print positive match summary (useful for config file
 debug)

3: print negative match summary (useful for config file
 debug)

2: print function calls and return values

1: print debug messages

Examples:

To print SDP usage per connect and listern to STDERR, include the following statement:

log min-level 7 destination stderr

A non-root user can configure libsdp.so to record function calls and return values in the file
/tmp/libsdp.log.<pid> (root log goes to /var/log/libsdp.log for this example) by
including the following statement in libsdp.conf:

log min-level 2 destination file libsdp.log

To print errors only to syslog, include the following statement:

log min-level 9 destination syslog

To print maximum output to the file /tmp/sdp_debug.log.<pid>, include the following state-
ment:

log min-level 1 destination file sdp_debug.log

Kernel Space SDP Debug

The SDP kernel module can log detailed trace information if you enable it using the 'debug_level'
variable in the sysfs filesystem. The following command performs this:

SDP

Rev 1.20 Mellanox Technologies

46

host1$ echo 1 > /sys/module/ib_sdp/debug_level

Note: Depending on the operating system distribution on your machine, you may need
an extra level—parameters— in the directory structure, so you may need to direct
the echo command to /sys/module/ib_sdp/parameters/debug_level.

Turning off kernel debug is done by setting the sysfs variable to zero using the following command:

host1$ echo 0 > /sys/module/ib_sdp/debug_level

To display debug information, use the dmesg command:

host1$ dmesg

5.4 Environment Variables

For the transparent integration with SDP, the following two environment variables are required:

1. LD_PRELOAD – this environment variable is used to preload libsdp.so and it should point
to the libsdp.so library. The variable should be set by the system administrator to /usr/lib/
libsdp.so (or /usr/lib64/libspd.so).

2. LIBSDP_CONFIG_FILE – this environment variable is used to configure the policy for replac-
ing TCP sockets with SDP sockets. By default it points to: /etc/libsdp.conf.

5.5 Converting Socket-based Applications

You can convert a socket-based application to use SDP instead of TCP in an automatic (also called
transparent) mode or in an explicit (also called non-transparent) mode.

Automatic (Transparent) Conversion

The libsdp.conf configuration (policy) file is used to control the automatic transparent replace-
ment of TCP sockets with SDP sockets. In this mode, socket streams are converted based upon a
destination port, a listening port, or a program name.

Socket control statements in libsdp.conf allow the user to specify when libsdp should replace
AF_INET/SOCK_STREAM sockets with AF_SDP/SOCK_STREAM sockets. Each control state-
ment specifies a matching rule that applies if all its subexpressions must evaluate as true (logical
and).

The use statement controls which type of sockets to open. The format of a use statement is as fol-
lows:

use <address-family> <role> <program-name|*> <address|*>:<port range|*>

 where

<address-family>

can be one of

sdp: for specifying when an SDP should be used

tcp: for specifying when an SDP socket should not be matched

both: for specifying when both SDP and AF_INET sockets should be
used

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

47

Note that both semantics is different for server and client roles. For
server, it means that the server will be listening on both SDP and TCP
sockets. For client, the connect function will first attempt to use
SDP and will silently fall back to TCP if the SDP connection fails.

<role>

can be one of

server or listen: for defining the listening port address family

client or connect: for defining the connected port address family

<program-name|*>

Defines the program name the rule applies to (not including the
path). Wildcards with same semantics as ‘ls’ are supported (* and
?). So db2* would match on any program with a name starting with
db2. t?cp would match on ttcp, etc.

If program-name is not provided (default), the statement matches
all programs.

 <address|*>

Either the local address to which the server binds, or the remote
server address to which the client connects. The syntax for address
matching is:

<IPv4 address>[/<prefix_length>]|*

 IPv4 address = [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ each sub number < 255

 prefix_length = [0-9]+ and with value <= 32. A prefix_length of 24
 matches the subnet mask 255.255.255.0. A prefix_length of 32 requires
 matching of the exact IP.

<port range>

start-port[-end-port] where port numbers are >0 and <65536

Note that rules are evaluated in the order of definition. So the first match wins. If no match is made,
libsdp will default to both.

Examples:

• Use SDP by clients connecting to machines that belongs to subnet 192.168.1.*
use sdp connect * 192.168.1.0/24:*

• Use SDP by ttcp when it connects to port 5001 of any machine
use sdp listen ttcp *:5001

• Use TCP for any program with name starting with ttcp* serving ports 22 to 25
use tcp server ttcp* *:22-25

• Listen on both TCP and SDP by any server that listen on port 8080
use both server * *:8080

• Connect ssh through SDP and fallback to TCP to hosts on 11.4.8.* port 22
use both connect * 11.4.8.0/24:22

family

role

program

address:port[-range]

SDP

Rev 1.20 Mellanox Technologies

48

Explicit (Non-transparent) Conversion

Use explicit conversion if you need to maintain full control from your application while using SDP.
To configure an explicit conversion to use SDP, simply recompile the application replacing
PF_INET (or PF_INET) with AF_INET_SDP (or AF_INET_SDP) when calling the socket()
system call in the source code. The value of AF_INET_SDP is defined in the file sdp_socket.h
or you can define it inline:

#define AF_INET_SDP 27

#define PF_INET_SDP AF_INET_SDP

You can compile and execute the following very simple TCP application that has been converted
explicitly to SDP:

Compilation:

gcc sdp_server.c -o sdp_server

gcc sdp_client.c -o sdp_client

Usage:

Server:
 host1$ sdp_server

Client:
 host1$ sdp_client <server IPoIB addr>

Example:

Server:

host1$./sdp_server

accepted connection from 15.2.2.42:48710

read 2048 bytes

end of test

host1$

Client:

host2$./sdp_client 15.2.2.43

connected to 15.2.2.43:22222

sent 2048 bytes

host2$

sdp_client.c Code

/*

 * usage: ./sdp_client <ip_addr>

 */

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

49

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define DEF_PORT 22222

#define AF_INET_SDP 27

#define PF_INET_SDP AF_INET_SDP

#define TXBUFSZ 2048

uint8_t tx_buffer[TXBUFSZ];

int

main(int argc, char **argv)

{

 if (argc < 2) {

 printf("Usage: sdp_client <ip_addr>\n");

 exit(EXIT_FAILURE);

 }

 int sd = socket(PF_INET_SDP, SOCK_STREAM, 0);

 if (sd < 0) {

 perror("socket() failed");

 exit(EXIT_FAILURE);

 }

 struct sockaddr_in to_addr = {

 .sin_family = AF_INET,

 .sin_port = htons(DEF_PORT),

 };

 int ip_ret = inet_aton(argv[1], &to_addr.sin_addr);

 if (ip_ret == 0) {

 printf("invalid ip address '%s'\n", argv[1]);

 exit(EXIT_FAILURE);

 }

SDP

Rev 1.20 Mellanox Technologies

50

 int conn_ret = connect(sd, (struct sockaddr *) &to_addr,
sizeof(to_addr));

 if (conn_ret < 0) {

 perror("connect() failed");

 exit(EXIT_FAILURE);

 }

 printf("connected to %s:%u\n",

 inet_ntoa(to_addr.sin_addr),

 ntohs(to_addr.sin_port));

 ssize_t nw = write(sd, tx_buffer, TXBUFSZ);

 if (nw < 0) {

 perror("write() failed");

 exit(EXIT_FAILURE);

 } else if (nw == 0) {

 printf("socket was closed by remote host\n");

 }

 printf("sent %zd bytes\n", nw);

 close(sd);

 return 0;

}

sdp_server.c Code

/*

 * Usage: ./sdp_server

 */

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

51

#include <sys/epoll.h>

#include <errno.h>

#include <assert.h>

#define RXBUFSZ 2048

uint8_t rx_buffer[RXBUFSZ];

#define DEF_PORT 22222

#define AF_INET_SDP 27

#define PF_INET_SDP AF_INET_SDP

int

main(int argc, char **argv)

{

 int sd = socket(PF_INET_SDP, SOCK_STREAM, 0);

 if (sd < 0) {

 perror("socket() failed");

 exit(EXIT_FAILURE);

 }

 struct sockaddr_in my_addr = {

 .sin_family = AF_INET,

 .sin_port = htons(DEF_PORT),

 .sin_addr.s_addr = INADDR_ANY,

 };

 int retbind = bind(sd, (struct sockaddr *) &my_addr, sizeof(my_addr)
);

 if (retbind < 0) {

 perror("bind() failed");

 exit(EXIT_FAILURE);

 }

 int retlisten = listen(sd, 5/*backlog*/);

 if (retlisten < 0) {

 perror("listen() failed");

 exit(EXIT_FAILURE);

 }

SDP

Rev 1.20 Mellanox Technologies

52

 // accept the client connection

 struct sockaddr_in client_addr;

 socklen_t client_addr_len = sizeof(client_addr);

 int cd = accept(sd, (struct sockaddr *) &client_addr,
&client_addr_len);

 if (cd < 0) {

 perror("accept() failed");

 exit(EXIT_FAILURE);

 }

 printf("accepted connection from %s:%u\n",

 inet_ntoa(client_addr.sin_addr),

 ntohs(client_addr.sin_port));

 ssize_t nr = read(cd, rx_buffer, RXBUFSZ);

 if (nr < 0) {

 perror("read() failed");

 exit(EXIT_FAILURE);

 } else if (nr == 0) {

 printf("socket was closed by remote host\n");

 }

 printf("read %zd bytes\n", nr);

 printf("end of test\n");

 close(cd);

 close(sd);

 return 0;

}

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

53

5.6 Testing SDP Performance

This section describes how to verify SDP performance by running the Bandwidth (BW) test and the
Latency test. These tests are described in detail at the following URL:

http://www.netperf.org/netperf/training/Netperf.html

To verify SDP performance, perform the following steps:

Step 1. Download Netperf from the following URL:
http://www.netperf.org/netperf/NetperfPage.html

Step 2. Compile Netperf by following the instructions at
http://www.netperf.org/netperf/NetperfPage.html.

Step 3. Create libsdp.conf (configuration file).
host1# cat > $HOME/libsdp.conf << EOF

> match destination *:*

> match listen *:*

> EOF

Step 4. Start the Netperf server such that you force SDP to be used instead of TCP.

 host1# LD_PRELOAD=libsdp.so LIBSDP_CONFIG_FILE=$HOME/libsdp.conf netserver

Starting netserver at port 12865

Starting netserver at hostname 0.0.0.0 port 12865 and family AF_UNSPEC

 host1#

Step 5. Run the Netperf client such that you force SDP to be used instead of TCP. The default test
is the Bandwidth test.

 host2# LD_PRELOAD=libsdp.so LIBSDP_CONFIG_FILE=$HOME/libsdp.conf netperf \
 -H 11.4.17.6 -t TCP_STREAM -c -C -- -m 65536

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 11.4.17.6
(11.4.17.6) port 0 AF_INET

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size Size Size Time Throughput local remote local remote

bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB

 87380 16384 65536 10.00 5872.60 19.41 17.12 2.166 1.911

Note: You must specify the SDP/IPoIB IP address when running the Netperf client.

The following table describes parameters for the netperf command:

Option Description

-H Where to find the server

11.4.17.6 SDP/IPoIB IP address

-t <Test Name> Specify the test to perform. Options are TCP_STREAM, TCP_RR, etc.

-c Client CPU utilization

-C Server CPU utilization

SDP

Rev 1.20 Mellanox Technologies

54

Note that the run example above produced the following results:
• Throughput is 5.872 gigabits per second
• Client CPU utilization is 19.41 percent of client CPU
• Server CPU utilization is 17.12 percent of server CPU

Step 6. Run the Netperf Latency test such that you force SDP to be used instead of TCP.

Run the test once, and stop the server so that it does not repeat the test.
 host2# LD_PRELOAD=libsdp.so LIBSDP_CONFIG_FILE=$HOME/libsdp.conf netperf \
 -H 11.4.17.6 -t TCP_RR -c -C -- -r1,1

TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 11.4.17.6
(11.4.17.6) port 0 AF_INET

Local /Remote

Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem

Send Recv Size Size Time Rate local remote local remote

bytes bytes bytes bytes secs. per sec % S % S us/Tr us/Tr

16384 87380 1 1 10.00 37572.83 15.72 23.36 33.469 49.729

16384 87380

The following table describes parameters for the netperf command:

Note that the run example above produced the following results:
• Client CPU utilization is 15.72 percent of client CPU
• Server CPU utilization is 23.36 percent of server CPU
• Latency is 13.31 microseconds. Latency is calculated as follows:

0.5*(1 / Transaction rate per sec) * 1,000,000 = one-way average latency in usec.

Step 7. To end the test, shut down the Netperf server.

host1# pkill netserver

-- Separates the global and test-specific parameters

-m Message size, which is 65536 in the example above

Option Description

-H Where to find the server

11.4.17.6 SDP/IPoIB IP address

-t <Test Name> Specify the test to perform. Options are TCP_STREAM, TCP_RR, etc.

-c Client CPU utilization

-C Server CPU utilization

-- Separates the global and test-specific parameters

-r 1,1 The request size sent and how many bytes requested back

Option Description

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

55

6 SRP

6.1 Overview

As described in Section 1.3.3, the SCSI RDMA Protocol (SRP) is designed to take full advantage
of the protocol offload and RDMA features provided by the InfiniBand architecture. SRP allows a
large body of SCSI software to be readily used on InfiniBand architecture. The SRP Initiator con-
trols the connection to an SRP Target in order to provide access to remote storage devices across an
InfiniBand fabric. The SRP Target resides in an IO unit and provides storage services.

Section 6.2 describes the SRP Initiator included in Mellanox OFED for Linux. This package, how-
ever, does not include an SRP Target.

6.2 SRP Initiator

This SRP Initiator is based on open source from OpenFabrics (www.openfabrics.org) that imple-
ments the SCSI RDMA Protocol-2 (SRP-2). SRP-2 is described in Document # T10/1524-D avail-
able from www.t10.org/ftp/t10/drafts/srp2/srp2r00a.pdf.

The SRP Initiator supports

• Basic SCSI Primary Commands -3 (SPC-3)
(www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf)

• Basic SCSI Block Commands -2 (SBC-2)
(www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf)

• Basic functionality, task management and limited error handling

6.2.1 Loading SRP Initiator

To load the SRP module, either execute the “modprobe ib_srp” command after the OFED driver is
up, or change the value of SRP_LOAD in /etc/infiniband/openib.conf to “yes”.

Note: For the changes to take effect, run: /etc/init.d/openibd restart

Note: When loading the ib_srp module, it is possible to set the module parameter
srp_sg_tablesize. This is the maximum number of gather/scatter entries per I/O
(default: 12).

6.2.2 Manually Establishing an SRP Connection

The following steps describe how to manually load an SRP connection between the Initiator and an
SRP Target. Section 6.2.4 explains how to do this automatically.

• Make sure that the ib_srp module is loaded, the SRP Initiator is reachable by the SRP Target,
and that an SM is running.

• To establish a connection with an SRP Target and create an SRP (SCSI) device for that target
under /dev, use the following command:

SRP

Rev 1.20 Mellanox Technologies

56

 echo -n id_ext=[GUID value],ioc_guid=[GUID value],dgid=[port GID value],\

 pkey=ffff,service_id=[service[0] value] > \

 /sys/class/infiniband_srp/srp-mthca[hca number]-[port number]/add_target

See Section 6.2.3 for instructions on how the parameters in this echo command may be obtained.

Notes:
- Execution of the above “echo” command may take some time
- The SM must be running while the command executes
- It is possible to include additional parameters in the echo command:

> max_cmd_per_lun - Default: 63
> max_sect (short for max_sectors) - sets the request size of a command
> io_class - Default: 0x100 as in rev 16A of the specification
(In rev 10 the default was 0xff00)
> initiator_ext - Please refer to Section 9 (Multiple Connections...)

• To list the new SCSI devices that have been added by the echo command, you may use either of
the following two methods:
- Execute “fdisk -l”. This command lists all devices; the new devices are included in this listing.
- Execute “dmesg” or look at /var/log/messages to find messages with the names of the new

devices.

6.2.3 SRP Tools - ibsrpdm and srp_daemon

To assist in performing the steps in Section 6, the OFED 1.3 distribution provides two utilities,
ibsrpdm and srp_daemon, which

• Detect targets on the fabric reachable by the Initiator (for Step 1)
• Output target attributes in a format suitable for use in the above “echo” command (Step 2)

The utilities can be found under /usr/sbin/, and are part of the srptools RPM that may be
installed using the Mellanox OFED installation. Detailed information regarding the various options
for these utilities are provided by their man pages.

Below, several usage scenarios for these utilities are presented.

ibsrpdm

ibsrpdm is using for the following tasks:

1. Detecting reachable targets
a. To detect all targets reachable by the SRP initiator via the default umad device (/dev/umad0),

execute the following command:
 ibsrpdm

This command will output information on each SRP Target detected, in human-readable form.
Sample output:

 IO Unit Info:

 port LID: 0103

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

57

 port GID: fe800000000000000002c90200402bd5

 change ID: 0002

 max controllers: 0x10

 controller[1]

 GUID: 0002c90200402bd4

 vendor ID: 0002c9

 device ID: 005a44

 IO class : 0100

 ID: LSI Storage Systems SRP Driver 200400a0b81146a1

 service entries: 1

 service[0]: 200400a0b81146a1 / SRP.T10:200400A0B81146A1

b. To detect all the SRP Targets reachable by the SRP Initiator via another umad device, use the following
command:

 ibsrpdm -d <umad device>

2. Assistance in creating an SRP connection

a. To generate output suitable for utilization in the “echo” command of Section 6.2.2, add the
‘-c’ option to ibsrpdm:

ibsrpdm -c

Sample output:
 id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,

 dgid=fe800000000000000002c90200402bd5,pkey=ffff,
 service_id=200400a0b81146a1

b. To establish a connection with an SRP Target using the output from the ‘libsrpdm -c’ example
above, execute the following command:
echo -n id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,
service_id=200400a0b81146a1 > /sys/class/infiniband_srp/srp-mthca0-1/
add_target

The SRP connection should now be up; the newly created SCSI devices should appear in the listing
obtained from the ‘fdisk -l’ command.

srp_daemon

The srp_daemon utility is based on ibsrpdm and extends its functionality. In addition to the ibsrpdm
functionality described above, srp_daemon can also

• Establish an SRP connection by itself (without the need to issue the “echo” command described
in Section 6.2.2)

• Continue running in background, detecting new targets and establishing SRP connections with
them (daemon mode)

• Discover reachable SRP Targets given an infiniband HCA name and port, rather than just by
/dev/umad<N> where <N> is a digit

SRP

Rev 1.20 Mellanox Technologies

58

• Enable High Availability operation (together with Device-Mapper Multipath)
• Have a configuration file that determines the targets to connect to

1. srp_daemon commands equivalent to ibsrpdm:
 "srp_daemon -a -o" is equivalent to "ibsrpdm"

 "srp_daemon -c -a -o" is equivalent to "ibsrpdm -c"

Note: These srp_daemon commands can behave differently than the equivalent
ibsrpdm command when /etc/srp_daemon.conf is not empty.

2. srp_daemon extensions to ibsrpdm

- To discover SRP Targets reachable from the HCA device <InfiniBand HCA name> and the port
<port num>, (and to generate output suitable for 'echo',) you may execute:

 host1# srp_daemon -c -a -o -i <InfiniBand HCA name> -p <port number>

Note: To obtain the list of InfiniBand HCA device names, you can either use the
ibstat tool or run ‘ls /sys/class/infiniband’.

- To both discover the SRP Targets and establish connections with them, just add the -e option to the
above command.

- Executing srp_daemon over a port without the -a option will only display the reachable targets via
the port and to which the initiator is not connected. If executing with the -e option it is better to
omit -a.

- It is recommended to use the -n option. This option adds the initiator_ext to the connecting string.
(See Section 6.2.5 for more details).

- srp_daemon has a configuration file that can be set, where the default is /etc/srp_daemon.conf.
Use the -f to supply a different configuration file that configures the targets srp_daemon is allowed
to connect to. The configuration file can also be used to set values for additional parameters (e.g.,
max_cmd_per_lun, max_sect).

- A continuous background (daemon) operation, providing an automatic ongoing detection and con-
nection capability. See Section 6.2.4.

6.2.4 Automatic Discovery and Connection to Targets
• Make sure that the ib_srp module is loaded, the SRP Initiator can reach an SRP Target, and that

an SM is running.
• To connect to all the existing Targets in the fabric, run “srp_daemon -e -o”. This utility will

scan the fabric once, connect to every Target it detects, and then exit.

Note: srp_daemon will follow the configuration it finds in /etc/srp_daemon.conf. Thus,
it will ignore a target that is disallowed in the configuration file.

• To connect to all the existing Targets in the fabric and to connect to new targets that will join the
fabric, execute srp_daemon -e. This utility continues to execute until it is either killed by the user
or encounters connection errors (such as no SM in the fabric).

• To execute SRP daemon as a daemon you may run “run_srp_daemon” (found under
/usr/sbin/), providing it with the same options used for running srp_daemon.

Note: Make sure only one instance of run_srp_daemon runs per port.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

59

• To execute SRP daemon as a daemon on all the ports, run “srp_daemon.sh” (found under
/usr/sbin/). srp_daemon.sh sends its log to /var/log/srp_daemon.log.

• It is possible to configure this script to execute automatically when the InfiniBand driver starts
by changing the value of SRPHA_ENABLE in /etc/infiniband/openib.conf to “yes”.
However, this option also enables SRP High Availability that has some more features – see Sec-
tion 6.2.6).

Note: For the changes in openib.conf to take effect, run:
/etc/init.d/openibd restart

6.2.5 Multiple Connections from Initiator IB Port to the Target

Some system configurations may need multiple SRP connections from the SRP Initiator to the
same SRP Target: to the same Target IB port, or to different IB ports on the same Target HCA.

In case of a single Target IB port, i.e., SRP connections use the same path, the configuration is
enabled using a different initiator_ext value for each SRP connection. The initiator_ext value is a
16-hexadecimal-digit value specified in the connection command.

Also in case of two physical connections (i.e., network paths) from a single initiator IB port to two
different IB ports on the same Target HCA, there is need for a different initiator_ext value on each
path. The conventions is to use the Target port GUID as the initiator_ext value for the relevant path.

If you use srp_daemon with -n flag, it automatically assigns initiator_ext values according to this
convention. For example:

id_ext=200500A0B81146A1,ioc_guid=0002c90200402bec,\
dgid=fe800000000000000002c90200402bed,pkey=ffff,\
service_id=200500a0b81146a1,initiator_ext=ed2b400002c90200

Notes:

1. It is recommended to use the -n flag for all srp_daemon invocations.
2. ibsrpdm does not have a corresponding option.

3. srp_daemon.sh always uses the -n option (whether invoked manually by the user, or automati-
cally at startup by setting SRPHA_ENABLE to yes).

6.2.6 High Availability (HA)

Overview

High Availability works using the Device-Mapper (DM) multipath and the SRP daemon. Each ini-
tiator is connected to the same target from several ports/HCAs. The DM multipath is responsible
for joining together different paths to the same target and for fail-over between paths when one of
them goes offline. Multipath will be executed on newly joined SCSI devices.

Each initiator should execute several instances of the SRP daemon, one for each port. At startup,
each SRP daemon detects the SRP Targets in the fabric and sends requests to the ib_srp module to
connect to each of them. These SRP daemons also detect targets that subsequently join the fabric,
and send the ib_srp module requests to connect to them as well.

SRP

Rev 1.20 Mellanox Technologies

60

Operation

When a path (from port1) to a target fails, the ib_srp module starts an error recovery process. If this
process gets to the reset_host stage and there is no path to the target from this port, ib_srp will
remove this scsi_host. After the scsi_host is removed, multipath switches to another path to this tar-
get (from another port/HCA).

When the failed path recovers, it will be detected by the SRP daemon. The SRP daemon will then
request ib_srp to connect to this target. Once the connection is up, there will be a new scsi_host for
this target. Multipath will be executed on the devices of this host, returning to the original state
(prior to the failed path).

Prerequisites

Installation for RHEL4/5: (Execute once)

• Verify that the standard device-mapper-multipath rpm is installed. If not, install it from the
RHEL distribution.

Installation for SLES10: (Execute once)

• Verify that multipath is installed. If not, take it from the installation (you may use ‘yast’).
• Update udev: (Execute once - for manual activation of High Availability only)
• Add a file to /etc/udev/rules.d/ (you can call it 91-srp.rules). This file should have one line:
 ACTION=="add", KERNEL=="sd*[!0-9]", RUN+="/sbin/multipath %M:%m"

Note: When SRPHA_ENABLE is set to "yes" (see Automatic Activation of High
Availability below), this file is created upon each boot of the driver and is deleted
when the driver is unloaded.

Manual Activation of High Availability

Initialization: (Execute after each boot of the driver)

1. Execute modprobe dm-multipath
2. Execute modprobe ib-srp

3. Make sure you have created file /etc/udev/rules.d/91-srp.rules as described above.

4. Execute for each port and each HCA:
srp_daemon -c -e -R 300 -i <InfiniBand HCA name> -p <port number>

This step can be performed by executing srp_daemon.sh, which sends its log to /var/log/
srp_daemon.log.

Now it is possible to access the SRP LUNs on /dev/mapper/.

Note: It is possible for regular (non-SRP) LUNs to also be present; the SRP LUNs may
be identified by their names. You can configure the /etc/multipath.conf
file to change multipath behavior.

Note: It is also possible that the SRP LUNs will not appear under /dev/mapper/. This
can occur if the SRP LUNs are in the black-list of multipath. Edit the ‘blacklist’

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

61

section in /etc/multipath.conf and make sure the SRP LUNs are not black-
listed.

Automatic Activation of High Availability

• Set the value of SRPHA_ENABLE in /etc/infiniband/openib.conf to "yes".

Note: For the changes in openib.conf to take effect, run:
/etc/init.d/openibd restart

• From the next loading of the driver it will be possible to access the SRP LUNs on /dev/mapper/

Note: It is possible that regular (not SRP) LUNs may also be present; the SRP LUNs
may be identified by their name.

• It is possible to see the output of the SRP daemon in /var/log/srp_daemon.log

6.2.7 Shutting Down SRP

SRP can be shutdown by using “rmmod ib_srp”, or by stopping the OFED driver (“/etc/init.d/
openibd stop”), or as a by-product of a complete system shutdown.

Prior to shutting down SRP, remove all references to it. The actions you need to take depend on the
way SRP was loaded. There are three cases:

1. Without High Availability
When working without High Availability, you should unmount the SRP partitions that were mounted
prior to shutting down SRP.

2. After Manual Activation of High Availability

If you manually activated SRP High Availability, perform the following steps:

a. Unmount all SRP partitions that were mounted.

b. Kill the SRP daemon instances.

c. Make sure there are no multipath instances running. If there are multiple instances, wait for them to
end or kill them.

d. Run: multipath -F

5. After Automatic Activation of High Availability

If SRP High Availability was automatically activated, SRP shutdown must be part of the driver shutdown
("/etc/init.d/openibd stop") which performs Steps 2-4 of case b above. However, you still have to
unmount all SRP partitions that were mounted before driver shutdown.

SRP

Rev 1.20 Mellanox Technologies

62

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

63

7 MPI

7.1 Overview

Mellanox OFED for Linux includes the following MPI implementations over InfiniBand:

• Open MPI – an open source MPI-2 implementation by the Open MPI Project
• OSU MVAPICH – an MPI-1 implementation by Ohio State University

These MPI implementations, along with MPI benchmark tests such as OSU BW/LAT, Intel MPI
Benchmark, and Presta, are installed on your machine as part of the Mellanox OFED for Linux
installation. Table 5 lists some useful MPI links.

This chapter includes the following sections:

• Prerequisites for Running MPI (page 63)
• MPI Selector - Which MPI Runs (page 64)
• Compiling MPI Applications (page 65)
• OSU MVAPICH Performance (page 65)
• Open MPI Performance (page 69)

7.2 Prerequisites for Running MPI

For launching multiple MPI processes on multiple remote machines, the MPI standard provides a
launcher program that requires automatic login (i.e., password-less) onto the remote machines.
SSH (Secure Shell) is both a computer program and a network protocol that can be used for logging
and running commands on remote computers and/or servers.

7.2.1 SSH Configuration

The following steps describe how to configure password-less access over SSH:

Step 1. Generate an ssh key on the initiator machine (host1).
host1$ ssh-keygen -t rsa

Table 5 - Useful MPI Links

MPI Standard http://www-unix.mcs.anl.gov/mpi

Open MPI http://www.open-mpi.org

MVAPICH MPI http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

MPI Forum http://www.mpi-forum.org

MPI

Rev 1.20 Mellanox Technologies

64

Generating public/private rsa key pair.

Enter file in which to save the key (/home/<username>/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/<username>/.ssh/id_rsa.

Your public key has been saved in /home/<username>/.ssh/id_rsa.pub.

The key fingerprint is:

38:1b:29:df:4f:08:00:4a:0e:50:0f:05:44:e7:9f:05 <username>@host1

Step 2. Check that the public and private keys have been generated.

host1$ cd /home/<username>/.ssh/

host1$ ls

host1$ ls -la

total 40

drwx------ 2 root root 4096 Mar 5 04:57 .

drwxr-x--- 13 root root 4096 Mar 4 18:27 ..

-rw------- 1 root root 1675 Mar 5 04:57 id_rsa

-rw-r--r-- 1 root root 404 Mar 5 04:57 id_rsa.pub

Step 3. Check the public key.
host1$ cat id_rsa.pub

ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA1zVY8VBHQh9okZN7OA1ibUQ74RXm4zHeczyVxpYHaDPyDmq
ezbYMKrCIVzd10bH+ZkC0rpLYviU0oUHd3fvNTfMs0gcGg08PysUf+12FyYjira2P1xyg6mkHLG
GqVutfEMmABZ3wNCUg6J2X3G/uiuSWXeubZmbXcMrP/
w4IWByfH8ajwo6A5WioNbFZElbYeeNfPZf4UNcgMOAMWp64sL58tkt32F+RGmyLXQWZL27Synsn
6dHpxMqBorXNC0ZBe4kTnUqm63nQ2z1qVMdL9FrCma1xIOu9+SQJAjwONevaMzFKEHe7YHg6YrN
fXunfdbEurzB524TpPcrodZlfCQ== <username>@host1

Step 4. Now you need to add the public key to the authorized_keys2 file on the target
machine.

 host1$ cat id_rsa.pub | xargs ssh host2 \
"echo >>/home/<username>/.ssh/authorized_keys2"

<username>@host2's password: // Enter password

host1$

 For a local machine, simply add the key to authorized_keys2.
host1$ cat id_rsa.pub >> authorized_keys2

Step 5. Test.
host1$ ssh host2 uname

Linux

7.3 MPI Selector - Which MPI Runs

Mellanox OFED contains a simple mechanism for system administrators and end-users to select
which MPI implementation they want to use. The MPI selector functionality is not specific to any
MPI implementation; it can be used with any implementation that provides shell startup files that

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

65

correctly set the environment for that MPI. The Mellanox OFED installer will automatically add
MPI selector support for each MPI that it installs. Additional MPI's not known by the Mellanox
OFED installer can be listed in the MPI selector; see the mpi-selector(1) man page for details.

Note that MPI selector only affects the default MPI environment for future shells. Specifically, if
you use MPI selector to select MPI implementation ABC, this default selection will not take effect
until you start a new shell (e.g., logout and login again). Other packages (such as environment mod-
ules) provide functionality that allows changing your environment to point to a new MPI imple-
mentation in the current shell. The MPI selector was not meant to duplicate or replace that
functionality.

The MPI selector functionality can be invoked in one of two ways:

1. The mpi-selector-menu command.
This command is a simple, menu-based program that allows the selection of the system-wide MPI (usu-
ally only settable by root) and a per-user MPI selection. It also shows what the current selections are. This
command is recommended for all users.

2. The mpi-selector command.

This command is a CLI-equivalent of the mpi-selector-menu, allowing for the same functionality as mpi-
selector-menu but without the interactive menus and prompts. It is suitable for scripting.

7.4 Compiling MPI Applications

Note: A valid Fortran compiler must be present in order to build the MVAPICH MPI
stack and tests.

The following compilers are supported by Mellanox OFED's MVAPICH and Open MPI packages:
Gcc, Intel and PGI. The install script prompts the user to choose the compiler with which to install
the MVAPICH and Open MPI RPMs. Note that more than one compiler can be selected simulta-
neously, if desired.

Compiling MVAPICH Applications

Please refer to http://mvapich.cse.ohio-state.edu/support/mvapich_user_guide.html.

To review the default configuration of the installation, check the default configuration file:

/usr/mpi/<compiler>/mvapich-<mvapich-ver>/etc/mvapich.conf

Compiling Open MPI Applications

Please refer to http://www.open-mpi.org/faq/?category=mpi-apps.

7.5 OSU MVAPICH Performance

7.5.1 Requirements
• At least two nodes. Example: host1, host2
• Machine file: Includes the list of machines. Example:
host1$ cat /home/<username>/cluster

host1

MPI

Rev 1.20 Mellanox Technologies

66

host2

host1$

7.5.2 Bandwidth Test Performance

To run the OSU Bandwidth test, enter:

host1$ /usr/mpi/gcc/mvapich-<mvapich-ver>/bin/mpirun_rsh -np 2 \
-hostfile /home/<username>/cluster \
/usr/mpi/gcc/mvapich-<mvapich-ver>/tests/osu_benchmarks-<osu-ver>/osu_bw

OSU MPI Bandwidth Test v3.0

Size Bandwidth (MB/s)

1 4.62

2 8.91

4 17.70

8 32.59

16 60.13

32 113.21

64 194.22

128 293.20

256 549.43

512 883.23

1024 1096.65

2048 1165.60

4096 1233.91

8192 1230.90

16384 1308.92

32768 1414.75

65536 1465.28

131072 1500.36

262144 1515.26

524288 1525.20

1048576 1527.63

2097152 1530.48

4194304 1537.50

7.5.3 Latency Test Performance

To run the OSU Latency test, enter:

host1$ /usr/mpi/gcc/mvapich-<mvapich-ver>/bin/mpirun_rsh -np 2 \
-hostfile /home/<username>/cluster \
/usr/mpi/gcc/mvapich-<mvapich-ver>/tests/osu_benchmarks-<osu-ver>/osu_latency

OSU MPI Latency Test v3.0

Size Latency (us)

0 1.20

1 1.21

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

67

2 1.21

4 1.21

8 1.23

16 1.24

32 1.33

64 1.49

128 2.66

256 3.08

512 3.61

1024 4.82

2048 6.09

4096 8.62

8192 13.59

16384 18.12

32768 28.81

65536 50.38

131072 93.70

262144 178.77

524288 349.31

1048576 689.25

2097152 1371.04

4194304 2739.16

7.5.4 Intel MPI Benchmark

To run the Intel MPI Benchmark test, enter:

host1$ /usr/mpi/gcc/mvapich-<mvapich-ver>/bin/mpirun_rsh -np 2 \
-hostfile /home/<username>/cluster \
/usr/mpi/gcc/mvapich-<mvapich-ver>/tests/IMB-<IMB-ver>/IMB-MPI1

#---

Intel (R) MPI Benchmark Suite V3.0, MPI-1 part

#---

Date : Sun Mar 2 19:56:42 2008

Machine : x86_64

System : Linux

Release : 2.6.16.21-0.8-smp

Version : #1 SMP Mon Jul 3 18:25:39 UTC 2006

MPI Version : 1.2

MPI Thread Environment: MPI_THREAD_FUNNELED

#

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

#

MPI

Rev 1.20 Mellanox Technologies

68

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

#

#

List of Benchmarks to run:

PingPong

PingPing

Sendrecv

Exchange

Allreduce

Reduce

Reduce_scatter

Allgather

Allgatherv

Alltoall

Alltoallv

Bcast

Barrier

#---

Benchmarking PingPong

#processes = 2

#---

 #bytes #repetitions t[usec] Mbytes/sec

 0 1000 1.25 0.00

 1 1000 1.24 0.77

 2 1000 1.25 1.52

 4 1000 1.23 3.09

 8 1000 1.26 6.07

 16 1000 1.29 11.83

 32 1000 1.36 22.51

 64 1000 1.52 40.25

 128 1000 2.67 45.74

 256 1000 3.03 80.48

 512 1000 3.64 134.22

 1024 1000 4.89 199.69

 2048 1000 6.30 309.85

 4096 1000 8.91 438.24

 8192 1000 14.07 555.20

 16384 1000 18.85 828.93

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

69

 32768 1000 30.47 1025.75

 65536 640 53.67 1164.57

 131072 320 99.78 1252.80

 262144 160 191.80 1303.44

 524288 80 373.92 1337.19

 1048576 40 742.31 1347.14

 2097152 20 1475.20 1355.75

 4194304 10 2956.95 1352.75

#-- OUTPUT TRUNCATED

7.6 Open MPI Performance

7.6.1 Requirements
• At least two nodes. Example: host1, host2
• Machine file: Includes the list of machines. Example:
host1$ cat /home/<username>/cluster

host1

host2

host1$

7.6.2 Bandwidth Test Performance

To run the OSU Bandwidth test, enter:

host1$ /usr/mpi/gcc/openmpi-<ompi-ver>/bin/mpirun -np 2 \

--mca mpi_leave_pinned 1 -hostfile /home/<username>/cluster \
/usr/mpi/gcc/openmpi-<ompi-ver>/tests/osu_benchmarks-<osu-ver>/osu_bw

OSU MPI Bandwidth Test v3.0

Size Bandwidth (MB/s)

1 1.12

2 2.24

4 4.43

8 8.96

16 17.38

32 34.69

64 69.31

128 121.29

256 212.70

512 326.50

1024 461.78

2048 597.85

4096 543.06

8192 829.64

16384 1137.22

MPI

Rev 1.20 Mellanox Technologies

70

32768 1386.08

65536 1520.89

131072 1622.73

262144 1659.33

524288 1679.36

1048576 1675.35

2097152 1668.89

4194304 1671.78

7.6.3 Latency Test Performance

To run the OSU Latency test, enter:

host1$ /usr/mpi/gcc/openmpi-<ompi-ver>/bin/mpirun -np 2 \

--mca mpi_leave_pinned 1 -hostfile /home/<username>/cluster \
/usr/mpi/gcc/openmpi-<ompi-ver>/tests/osu_benchmarks-<osu-ver>/osu_latency

OSU MPI Latency Test v3.0

Size Latency (us)

0 1.23

1 1.37

2 1.55

4 1.54

8 1.55

16 1.58

32 1.59

64 1.59

128 1.78

256 2.05

512 2.69

1024 3.75

2048 6.14

4096 10.07

8192 12.77

16384 18.36

32768 30.52

65536 48.92

131072 93.18

262144 171.92

524288 341.08

1048576 737.97

2097152 1729.27

4194304 4226.58

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

71

7.6.4 Intel MPI Benchmark

To run the Intel MPI Benchmark test, enter:

host1$ /usr/mpi/gcc/openmpi-<ompi-ver>/bin/mpirun -np 2 \

--mca mpi_leave_pinned 1 -hostfile /home/<username>/cluster \
/usr/mpi/gcc/openmpi-<ompi-ver>/tests/IMB-<IMB-ver>/IMB-MPI1

#---

Intel (R) MPI Benchmark Suite V3.0, MPI-1 part

#---

Date : Mon Mar 10 12:57:18 2008

Machine : x86_64

System : Linux

Release : 2.6.16.21-0.8-smp

Version : #1 SMP Mon Jul 3 18:25:39 UTC 2006

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

#

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

#

List of Benchmarks to run:

PingPong

PingPing

Sendrecv

Exchange

Allreduce

Reduce

Reduce_scatter

Allgather

Allgatherv

Alltoall

Alltoallv

Bcast

Barrier

#---

Benchmarking PingPong

#processes = 2

#---

 #bytes #repetitions t[usec] Mbytes/sec

 0 1000 1.47 0.00

 1 1000 1.57 0.61

 2 1000 1.56 1.22

MPI

Rev 1.20 Mellanox Technologies

72

 4 1000 1.53 2.49

 8 1000 1.55 4.92

 16 1000 1.60 9.52

 32 1000 1.62 18.86

 64 1000 1.61 37.90

 128 1000 1.80 67.65

 256 1000 2.05 119.26

 512 1000 2.67 183.08

 1024 1000 3.74 260.97

 2048 1000 6.15 317.84

 4096 1000 10.15 384.74

 8192 1000 12.75 612.84

 16384 1000 18.47 845.85

 32768 1000 30.84 1013.28

 65536 640 48.88 1278.77

 131072 320 86.36 1447.43

 262144 160 163.91 1525.26

 524288 80 335.82 1488.90

 1048576 40 726.25 1376.94

 2097152 20 1786.35 1119.60

 4194304 10 4253.59 940.38

#-- OUTPUT TRUNCATED

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

73

8 Quality of Service

8.1 Overview

Quality of Service (QoS) requirements stem from the realization of I/O consolidation over an IB
network. As multiple applications and ULPs share the same fabric, a means is needed to control
their use of network resources.

Figure 2: I/O Consolidation Over InfiniBand

QoS over Mellanox OFED for Linux is discussed in Chapter 9, “OpenSM – Subnet Manager”.

The basic need is to differentiate the service levels provided to different traffic flows, such that a
policy can be enforced and can control each flow utilization of fabric resources.

The InfiniBand Architecture Specification defines several hardware features and management
interfaces for supporting QoS:

• Up to 15 Virtual Lanes (VL) carry traffic in a non-blocking manner
• Arbitration between traffic of different VLs is performed by a two-priority-level weighted round

robin arbiter. The arbiter is programmable with a sequence of (VL, weight) pairs and a maximal
number of high priority credits to be processed before low priority is served

• Packets carry class of service marking in the range 0 to 15 in their header SL field
• Each switch can map the incoming packet by its SL to a particular output VL, based on a pro-

grammable table VL=SL-to-VL-MAP(in-port, out-port, SL)
• The Subnet Administrator controls the parameters of each communication flow by providing

them as a response to Path Record (PR) or MultiPathRecord (MPR) queries

Administrator

Storage
IPC

IB-Ethernet
Gateway

QoS
Manager

Servers

Filer

Block Storage

InfiniBand Subnet

Net.

IB-Fibre
Channel
Gateway

Unified I/O

Quality of Service

Rev 1.20 Mellanox Technologies

74

DiffServ architecture (IETF RFC 2474 & 2475) is widely used in highly dynamic fabrics. The fol-
lowing subsections provide the functional definition of the various software elements that enable a
DiffServ-like architecture over the Mellanox OFED software stack.

8.2 QoS Architecture

QoS functionality is split between the SM/SA, CMA and the various ULPs. We take the “chronol-
ogy approach” to describe how the overall system works.

1. The network manager (human) provides a set of rules (policy) that define how the network is
being configured and how its resources are split to different QoS-Levels. The policy also define
how to decide which QoS-Level each application or ULP or service use.

2. The SM analyzes the provided policy to see if it is realizable and performs the necessary fabric
setup. Part of this policy defines the default QoS-Level of each partition. The SA is enhanced to
match the requested Source, Destination, QoS-Class, Service-ID, PKey against the policy, so cli-
ents (ULPs, programs) can obtain a policy enforced QoS. The SM may also set up partitions with
appropriate IPoIB broadcast group. This broadcast group carries its QoS attributes: SL, MTU,
RATE, and Packet Lifetime.

3. IPoIB is being setup. IPoIB uses the SL, MTU, RATE and Packet Lifetime available on the mul-
ticast group which forms the broadcast group of this partition.

4. MPI which provides non IB based connection management should be configured to run using
hard coded SLs. It uses these SLs for every QP being opened.

5. ULPs that use CM interface (like SRP) have their own pre-assigned Service-ID and use it while
obtaining PathRecord/MultiPathRecord (PR/MPR) for establishing connections. The SA receiv-
ing the PR/MPR matches it against the policy and returns the appropriate PR/MPR including SL,
MTU, RATE and Lifetime.

6. ULPs and programs (e.g. SDP) use CMA to establish RC connection provide the CMA the target
IP and port number. ULPs might also provide QoS-Class. The CMA then creates Service-ID for
the ULP and passes this ID and optional QoS-Class in the PR/MPR request. The resulting PR/
MPR is used for configuring the connection QP.

PathRecord and MultiPathRecord Enhancement for QoS:

As mentioned above, the PathRecord and MultiPathRecord attributes are enhanced to carry the Ser-
vice-ID which is a 64bit value. A new field QoS-Class is also provided.

A new capability bit describes the SM QoS support in the SA class port info. This approach pro-
vides an easy migration path for existing access layer and ULPs by not introducing new set of PR/
MPR attributes.

8.3 Supported Policy

The QoS policy, which is specified in a stand-alone file, is divided into the following four subsec-
tions:

I. Port Group

A set of CAs, Routers or Switches that share the same settings. A port group might be a partition
defined by the partition manager policy, list of GUIDs, or list of port names based on NodeDescrip-
tion.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

75

II. Fabric Setup

Defines how the SL2VL and VLArb tables should be setup.

Note: In OFED 1.3 this part of the policy is ignored. SL2VL and VLArb tables should
be configured in the OpenSM options file (opensm.opts).

III. QoS-Levels Definition

This section defines the possible sets of parameters for QoS that a client might be mapped to. Each
set holds SL and optionally: Max MTU, Max Rate, Packet Lifetime and Path Bits.

Note: Path Bits are not implemented in OFED 1.3.

IV. Matching Rules

A list of rules that match an incoming PR/MPR request to a QoS-Level. The rules are processed in
order such as the first match is applied. Each rule is built out of a set of match expressions which
should all match for the rule to apply. The matching expressions are defined for the following
fields:

• SRC and DST to lists of port groups
• Service-ID to a list of Service-ID values or ranges
• QoS-Class to a list of QoS-Class values or ranges

8.4 CMA features

The CMA interface supports Service-ID through the notion of port space as a prefix to the port
number, which is part of the sockaddr provided to rdma_resolve_add(). The CMA also allows the
ULP (like SDP) to propagate a request for a specific QoS-Class. The CMA uses the provided QoS-
Class and Service-ID in the sent PR/MPR.

8.5 IPoIB

IPoIB queries the SA for its broadcast group information and uses the SL, MTU, RATE and Packet
Lifetime available on the multicast group which forms this broadcast group.

8.6 SDP

SDP uses CMA for building its connections. The Service-ID for SDP is 0x000000000001PPPP,
where PPPP are 4 hexadecimal digits holding the remote TCP/IP Port Number to connect to.

8.7 RDS

RDS uses CMA and thus it is very close to SDP. The Service-ID for RDS is 0x000000000106PPPP,
where PPPP are 4 hexadecimal digits holding the TCP/IP Port Number that the protocol connects
to.

The default port number for RDS is 0x48CA, which makes a default Service-ID
0x00000000010648CA.

Quality of Service

Rev 1.20 Mellanox Technologies

76

8.8 SRP

The current SRP implementation uses its own CM callbacks (not CMA). So SRP fills in the Ser-
vice-ID in the PR/MPR by itself and use that information in setting up the QP.

SRP Service-ID is defined by the SRP target I/O Controller (it also complies with IBTA Service-ID
rules). The Service-ID is reported by the I/O Controller in the ServiceEntries DMA attribute and
should be used in the PR/MPR if the SA reports its ability to handle QoS PR/MPRs.

8.9 OpenSM Features

The QoS related functionality that is provided by OpenSM—the Subnet Manager described in
Chapter 9—can be split into two main parts:

I. Fabric Setup

During fabric initialization, the Subnet Manager parses the policy and apply its settings to the dis-
covered fabric elements.

II. PR/MPR Query Handling

OpenSM enforces the provided policy on client request. The overall flow for such requests is: first
the request is matched against the defined match rules such that the target QoS-Level definition is
found. Given the QoS-Level a path(s) search is performed with the given restrictions imposed by
that level.

Note: QoS in OpenSM is described in detail in Chapter 9.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

77

9 OpenSM – Subnet Manager

9.1 Overview

OpenSM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow execut-
able called opensm, accompanied by a testing application called osmtest. OpenSM implements an
InfiniBand compliant SM according to the InfiniBand Architecture Specification chapters: Man-
agement Model (13), Subnet Management (14), and Subnet Administration (15).

9.2 opensm Description

opensm is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs on top of
the Mellanox OFED stack. opensm performs the InfiniBand specification required task for initial-
izing InfiniBand hardware. One SM must be running for each InfiniBand subnet.

opensm also provides an experimental version of a performance manager.

opensm attaches to a specific IB port on the local machine and configures only the fabric con-
nected to it. (If the local machine has other IB ports, opensm will ignore the fabrics connected to
those other ports). If no port is specified, opensm will select the first “best” available port. opensm
can also present the available ports and prompt for a port number to attach to.

9.2.1 Syntax
opensm [OPTIONS]

where OPTIONS are:

-c, --cache-options

Write out a list of all tunable OpenSM parameters, including
their current values from the command line as well as
defaults for others, into the file OSM_CACHE_DIR/
opensm.opts (OSM_CACHE_DIR defaults to
/var/cache/opensm if the corresponding environment variable
is not set). The options file is then used for subsequent
OpenSM invocations but any command line options take prece-
dence.

-g, --guid This option specifies the local port GUID value with
which OpenSM should bind. OpenSM may be bound to 1 port at
a time. If the GUID given is 0, OpenSM displays a list
of possible port GUIDs and waits for user input. Without -g,
OpenSM tries to use the default port.

-l, --lmc This option specifies the subnet's LMC value. The number
of LIDs assigned to each port is 2^LMC. The LMC value must
be in the range 0-7. LMC values > 0 allow multiple
paths between ports. LMC values > 0 should only be used if
the subnet topology actually provides multiple paths

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

78

between ports, i.e. multiple interconnects between switches.
Without -l, OpenSM defaults to LMC = 0, which allows one path
between any two ports.

-p, --priority This option specifies the SMÂ´s PRIORITY. This will effect
the handover cases, where master is chosen by priority and
GUID. Range is 0 (default and lowest priority) to 15 (high-
est).

-smkey This option specifies the SMÂ´s SM_Key (64 bits). This
will affect SM authentication.

-r, --reassign_lids

This option causes OpenSM to reassign LIDs to all end
nodes. Specifying -r on a running subnet may disrupt subnet
traffic. Without -r, OpenSM attempts to preserve existing
LID assignments resolving multiple use of same LID.

-R, --routing_engine

This option chooses routing engine instead of Min Hop algo-
rithm (default). Supported engines: updn, file, ftree,
lash, dor

-z, --connect_roots

This option enforces a routing engine (currently up/down
only) to make connectivity between root switches and in this
way to be fully IBA complaint. In many cases this can violate
"pure" deadlock free algorithm, so use it carefully.

-M, --lid_matrix_file

This option specifies the name of the lid matrix dump file
from where switch lid matrices (min hops tables will be
loaded.

-U, --ucast_file This option specifies the name of the unicast dump file
from where switch forwarding tables will be loaded.

-S, --sadb_file This option specifies the name of the SA DB dump file from
where SA database will be loaded.

-a, --root_guid_file

Set the root nodes for the Up/Down or Fat-Tree routing algo-
rithm to the guids provided in the given file (one to a
line).

-u, --cn_guid_file

Set the compute nodes for the Fat-Tree routing algorithm to
the guids provided in the given file (one to a line).

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

79

-o, --once This option causes OpenSM to configure the subnet once,
then exit. Ports remain in the ACTIVE state.

-s, --sweep This option specifies the number of seconds between
subnet sweeps. Specifying -s 0 disables sweeping. Without
-s, OpenSM defaults to a sweep interval of 10 seconds.

-t, --timeout This option specifies the time in milliseconds used for
transaction timeouts. Specifying -t 0 disables timeouts.
Without -t, OpenSM defaults to a timeout value of 200 milli-
seconds.

-maxsmps This option specifies the number of VL15 SMP MADs allowed on
the wire at any one time. Specifying -maxsmps 0 allows
unlimited outstanding SMPs. Without -maxsmps, OpenSM
defaults to a maximum of 4 outstanding SMPs.

-console [off | local | socket | loopback]

This option brings up the OpenSM console (default off).
Note that the socket and loopback options will only be
available if OpenSM was built with --enable-console-socket.

-console-port <port>

Specify an alternate telnet port for the socket console
(default 10000). Note that this option only appears if
OpenSM was built with --enable-console-socket.

-i, -ignore-guids <equalize-ignore-guids-file>

This option provides the means to define a set of ports
(by guid) that will be ignored by the link load equalization
algorithm.

-x, --honor_guid2lid

This option forces OpenSM to honor the guid2lid file, when
it comes out of Standby state, if such file exists
under OSM_CACHE_DIR, and is valid. By default, this is
FALSE.

-f, --log_file This option defines the log to be the given file. By
default, the log goes to /var/log/opensm.log. For the log to
go to standard output use -f stdout.

-L, --log_limit <size in MB>

This option defines maximal log file size in MB. When spec-
ified the log file will be truncated upon reaching this
limit.

-e, --erase_log_file

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

80

This option will cause deletion of the log file (if it
previously exists). By default, the log file is accumula-
tive.

-P, --Pconfig This option defines the optional partition configuration
file. The default name is Â´/etc/ofa/opensm-partitions.conf.

-Q, --qos This option enables QoS setup. It is disabled by default.

-N, --no_part_enforce

This option disables partition enforcement on switch
external ports.

-y, --stay_on_fatal

This option will cause SM not to exit on fatal initializa-
tion issues: if SM discovers duplicated guids or a 12x link
with lane reversal badly configured. By default, the SM
will exit on these errors.

-B, --daemon Run in daemon mode - OpenSM will run in the background.

-I, --inactive Start SM in inactive rather than init SM state. This option
can be used in conjunction with the perfmgr so as to run
a standalone performance manager without SM/SA. However,
this is NOT currently implemented in the performance man-
ager.

-perfmgr Enable the perfmgr. Only takes effect if --enable-perfmgr
was specified at configure time.

-perfmgr_sweep_time_s <seconds>

Specify the sweep time for the performance manager in sec-
onds (default is 180 seconds). Only takes effect if --
enable-perfmgr was specified at configure time.

-v, --verbose This option increases the log verbosity level. The -v option
may be specified multiple times to further increase the
verbosity level. See the -D option for more information
about log verbosity.

-V This option sets the maximum verbosity level and forces
log flushing. The -V option is equivalent to ‘-D 0xFF -d 2’.
See the -D option for more information about log verbosity.

-D This option sets the log verbosity level. A flags field
must follow the -D option. A bit set/clear in the flags
enables/disables a specific log level as follows:

BIT LOG LEVEL ENABLED

---- -----------------

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

81

0x01 ERROR (error messages)

0x02 INFO (basic messages, low volume)

0x04 VERBOSE (interesting stuff, moderate volume)

0x08 DEBUG (diagnostic, high volume)

0x10 FUNCS (function entry/exit, very high volume)

0x20 FRAMES (dumps all SMP and GMP frames)

0x40 ROUTING (dump FDB routing information)

0x80 currently unused

Without -D, OpenSM defaults to ERROR + INFO (0x3). Specify-
ing ‘-D 0’ disables all messages. Specifying ‘-D 0xFF’
enables all messages (see -V). High verbosity levels may
require increasing the transaction timeout with the -t
option.

-d, --debug This option specifies a debug option. These options are
not normally needed. The number following -d selects
the debug option to enable as follows:

OPT Description

--- -----------------

-d0 Ignore other SM nodes

-d1 Force single threaded dispatching

-d2 Force log flushing after each log message

-d3 Disable multicast support

-h, --help Display this usage info then exit

-? Display this usage info then exit

9.2.2 Environment Variables

The following environment variables control opensm behavior:

• OSM_TMP_DIR
Controls the directory in which the temporary files generated by opensm are created. These files are:
opensm-subnet.lst, opensm.fdbs, and opensm.mcfdbs. By default, this directory is /var/log.

• OSM_CACHE_DIR
opensm stores certain data to the disk such that subsequent runs are consistent. The default directory
used is /var/cache/opensm. The following files are included in it:
- guid2lid – stores the LID range assigned to each GUID
- opensm.opts – an optional file that holds a complete set of opensm configuration options

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

82

9.2.3 Signaling

When opensm receives a HUP signal, it starts a new heavy sweep as if a trap was received or a
topology change was found.

Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate pur-
poses.

9.2.4 Running opensm

The defaults of opensm were designed to meet the common case usage on clusters with up to a few
hundred nodes. Thus, in this default mode, opensm will scan the IB fabric, initialize it, and sweep
occasionally for changes. To run opensm in the default mode, simply enter:

host1# opensm

Note that opensm needs to be run on at least one machine in an IB subnet.

By default, an opensm run is logged to two files: /var/log/messages and /var/log/
opensm.log. The first file, message, registers only general major events; the second file,
opensm.log, includes details of reported errors. All errors reported in opensm.log should be
treated as indicators of IB fabric health. Both log files should include the message “SUBNET UP”
if opensm was able to setup the subnet correctly.

Note: If a fatal, non-recoverable error occurs, opensm exits.

9.2.4.1 Running OpenSM As Daemon

OpenSM can also run as daemon. To run OpenSM in this mode, enter:

host1# /etc/init.d/opensmd start

9.3 osmtest Description

osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet Administrator.
osmtest provides a test suite for opensm. It can create an inventory file of all available nodes,
ports, and PathRecords, including all their fields. It can also verify the existing inventory with all
the object fields, and matches it to a pre-saved one. See Section 9.3.2.

osmtest has the following test flows:

• Multicast Compliancy test
• Event Forwarding test
• Service Record registration test
• RMPP stress test
• Small SA Queries stress test

9.3.1 Syntax
osmtest [OPTIONS]

where OPTIONS are:

-f, --flow This option directs osmtest to run a specific flow:

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

83

Flow Description:

c = create an inventory file with all nodes, ports and paths

a = run all validation tests (expecting an input inventory)

v = only validate the given inventory file

s = run service registration, deregistration, and lease test

e = run event forwarding test

f = flood the SA with queries according to the stress mode

m = multicast flow

q = QoS info: dump VLArb and SLtoVL tables

t = run trap 64/65 flow (this flow requires running of exter-
nal tool)

Default = all flows except QoS

-w, --wait This option specifies the wait time for trap 64/65 in sec-
onds. It is used only when running -f t - the trap 64/65 flow
Default = 10 sec

-d, --debug This option specifies a debug option. These options are
not normally needed. The number following -d selects the
debug option to enable as follows:

OPT Description

--- -----------------

-d0 Ignore other SM nodes

-d1 Force single threaded dispatching

-d2 Force log flushing after each log message

-d3 Disable multicast support

-m, --max_lid This option specifies the maximal LID number to be searched
for during inventory file build (Default = 100)

-g, --guid This option specifies the local port GUID value with
which OpenSM should bind. OpenSM may be bound to 1 port
at a time. If GUID given is 0, OpenSM displays a list of
possible port GUIDs and waits for user input. Without -g,
OpenSM tries to use the default port.

-p, --port This option displays a menu of possible local port GUID
values with which osmtest could bind

-i, --inventory This option specifies the name of the inventory file Nor-
mally, osmtest expects to find an inventory file, which
osmtest uses to validate real-time information received from
the SA during testing. If -i is not specified, osmtest
defaults to the file osmtest.dat.
See -c option for related information

-s, --stress This option runs the specified stress test instead of the
normal test suite Stress test options are as follows:

OPT Description

--- -----------------

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

84

-s1 Single-MAD response SA queries

-s2 Multi-MAD (RMPP) response SA queries

-s3 Multi-MAD (RMPP) Path Record SA queries

Without -s, stress testing is not performed

-M, --Multicast_ModeThis option specify length of Multicast test:

OPT Description

--- -----------------

-M1 Short Multicast Flow (default) - single mode

-M2 Short Multicast Flow - multiple mode

-M3 Long Multicast Flow - single mode

-M4 Long Multicast Flow - multiple mode

Single mode - Osmtest is tested alone, with no other apps
that interact with OpenSM MC

Multiple mode - Could be run with other apps using MC
with OpenSM. Without -M, default flow testing is performed

-t, --timeout This option specifies the time in milliseconds used for
transaction timeouts. Specifying -t 0 disables timeouts.
Without -t, OpenSM defaults to a timeout value of 200 milli-
seconds.

-l, --log_file This option defines the log to be the given file. By
default the log goes to /var/log/osm.log. For the log to go
to standard output use -f stdout.

-v, --verbose This option increases the log verbosity level. The -v
option may be specified multiple times to further
increase the verbosity level. See the -vf option for more
information about log verbosity.

-V This option sets the maximum verbosity level and forces
log flushing. The -V is equivalent to '-vf 0xFF -d 2'. See
the -vf option for more information about log verbosity.

-vf This option sets the log verbosity level. A flags field
must follow the -D option. A bit set/clear in the flags
enables/disables a specific log level as follows:

BIT LOG LEVEL ENABLED

---- -----------------

0x01 - ERROR (error messages)

0x02 - INFO (basic messages, low volume)

0x04 - VERBOSE (interesting stuff, moderate volume)

0x08 - DEBUG (diagnostic, high volume)

0x10 - FUNCS (function entry/exit, very high volume)

0x20 - FRAMES (dumps all SMP and GMP frames)

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

85

0x40 - ROUTING (dump FDB routing information)

0x80 - currently unused.

Without -vf, osmtest defaults to ERROR + INFO (0x3) Speci-
fying -vf 0 disables all messages Specifying -vf 0xFF
enables all messages (see -V) High verbosity levels may
require increasing the transaction timeout with the -t
option

-h, --help Display this usage info then exit.

9.3.2 Running osmtest

To run osmtest in the default mode, simply enter:

host1# osmtest

The default mode runs all the flows except for the Quality of Service flow (see Section 9.6).

After installing opensm (and if the InfiniBand fabric is stable), it is recommended to run the fol-
lowing command in order to generate the inventory file:

host1# osmtest -f c

Immediately afterwards, run the following command to test opensm:

host1# osmtest -f a

Finally, it is recommended to occasionally run “osmtest -v” (with verbosity) to verify that noth-
ing in the fabric has changed.

9.4 Partitions

OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By default,
OpenSM searches for the partitions configuration file under the name /usr/etc/opensm/par-
titions.conf. To change this filename, you can use opensm with the ‘--Pconfig’ or ‘-P’ flags.

The default partition is created by OpenSM unconditionally, even when a partition configuration
file does not exist or cannot be accessed.

The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is assigned
full membership in the default partition. All other end-ports are assigned partial membership.

9.4.1 File Format

Notes:

• Line content followed after ‘#’ character is comment and ignored by parser.

General File Format
<Partition Definition>:<PortGUIDs list> ;

Partition Definition:

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

86

[PartitionName][=PKey][,flag[=value]][,defmember=full|limited]

where

PartitionName string, will be used with logging. When omitted, an
empty string will be used.

PKey P_Key value for this partition. Only low 15 bits will
be used. When omitted, P_Key will be autogenerated.

flag used to indicate IPoIB capability of this partition.

defmember=full|limited

specifies default membership for port guid list. Default is
limited.

Currently recognized flags are:

ipoib indicates that this partition may be used for IPoIB, as a
result IPoIB capable MC group will be created.

rate=<val> specifies rate for this IPoIB MC group (default is 3
(10GBps))

mtu=<val> specifies MTU for this IPoIB MC group (default is 4 (2048))

sl=<val> specifies SL for this IPoIB MC group (default is 0)

scope=<val> specifies scope for this IPoIB MC group (default is 2 (link
local))

Note that values for rate, mtu, and scope should be specified as defined in the IBTA specifica-
tion (for example, mtu=4 for 2048).

PortGUIDs list:

PortGUID GUID of partition member EndPort. Hexadecimal numbers should
start from 0x, decimal numbers are accepted too.

full or limited indicates full or limited membership for this port. When
omitted (or unrecognized) limited membership is assumed.

There are two useful keywords for PortGUID definition:

• 'ALL' means all end-ports in this subnet
• 'SELF' means subnet manager's port

An empty list means that there are no ports in this partition.

Notes:

• White space is permitted between delimiters ('=', ',',':',';').
• The line can be wrapped after ':' after a Partition Definition and between.
• A PartitionName does not need to be unique, but PKey does need to be unique.
• If a PKey is repeated then the associated partition configurations will be merged and the first

PartitionName will be used (see also next note).

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

87

• It is possible to split a partition configuration in more than one definition, but then they PKey
should be explicitly specified (otherwise different PKey values will be generated for those defi-
nitions).

Examples:
Default=0x7fff : ALL, SELF=full ;
NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457,
 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited,
 0x12345d;

Note: The following rule is equivalent to how OpenSM used to run prior to the partition
manager:

Default=0x7fff,ipoib:ALL=full;

9.5 Routing Algorithms

 OpenSM offers five routing engines:

1. Min Hop algorithm
Based on the minimum hops to each node where the path length is optimized.

2. UPDN Unicast routing algorithm

Based on the minimum hops to each node, but it is constrained to ranking rules. This algorithm should be
chosen if the subnet is not a pure Fat Tree, and a deadlock may occur due to a loop in the subnet.

3. Fat Tree Unicast routing algorithm

This algorithm optimizes routing for a congestion-free “shift” communication pattern. It should be chosen
if a subnet is a symmetrical Fat Tree of various types, not just a K-ary-N-Tree: non-constant K, not fully
staffed, and for any CBB ratio. Similar to UPDN, Fat Tree routing is constrained to ranking rules.

4. LASH Unicast routing algorithm

Uses InfiniBand virtual layers (SL) to provide deadlock-free shortest-path routing while also distributing
the paths between layers. LASH is an alternative deadlock-free, topology-agnostic routing algorithm to
the non-minimal UPDN algorithm. It avoids the use of a potentially congested root node.

5. DOR Unicast routing algorithm

Based on the Min Hop algorithm, but avoids port equalization except for redundant links between the
same two switches. This provides deadlock free routes for hypercubes when the fabric is cabled as a
hypercube and for meshes when cabled as a mesh.

OpenSM also supports a file method which can load routes from a table – see Modular Routing
Engine below.

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

88

The basic routing algorithm is comprised of two stages:

1. MinHop matrix calculation
How many hops are required to get from each port to each LID? The algorithm to fill these tables is dif-
ferent if you run standard (min hop) or Up/Down. For standard routing, a "relaxation" algorithm is used
to propagate min hop from every destination LID through neighbor switches. For Up/Down routing, a
BFS from every target is used. The BFS tracks link direction (up or down) and avoid steps that will per-
form up after a down step was used.

2. Once MinHop matrices exist, each switch is visited and for each target LID a decision is made
as to what port should be used to get to that LID. This step is common to standard and Up/Down
routing. Each port has a counter counting the number of target LIDs going through it. When
there are multiple alternative ports with same MinHop to a LID, the one with less previously
assigned ports is selected.

If LMC > 0, more checks are added. Within each group of LIDs assigned to same target port:
a. Use only ports which have same MinHop

b. First prefer the ones that go to different systemImageGuid (then the previous LID of the same LMC
group)

c. If none, prefer those which go through another NodeGuid

d. Fall back to the number of paths method (if all go to same node).

9.5.1 Effect of Topology Changes

OpenSM will preserve existing routing in any case where there is no change in the fabric
switches unless the -r (--reassign_lids) option is specified.

-r, --reassign_lids

This option causes OpenSM to reassign LIDs to all end nodes.
Specifying -r on a running subnet may disrupt subnet traf-
fic. Without -r, OpenSM attempts to preserve existing LID
assignments resolving multiple use of same LID.

If a link is added or removed, OpenSM does not recalculate the routes that do not have to change.
A route has to change if the port is no longer UP or no longer the MinHop. When routing
changes are performed, the same algorithm for balancing the routes is invoked.

In the case of using the file based routing, any topology changes are currently ignored The 'file'
routing engine just loads the LFTs from the file specified, with no reaction to real topology. Obvi-
ously, this will not be able to recheck LIDs (by GUID) for disconnected nodes, and LFTs for non-
existent switches will be skipped. Multicast is not affected by 'file' routing engine (this uses min
hop tables).

9.5.2 Min Hop Algorithm

The Min Hop algorithm is invoked when neither UPDN or the file method are specified. The Min
Hop algorithm is divided into two stages: computation of minhop tables on every switch and
LFT output port assignment. Link subscription is also equalized with the ability to override based
on port GUID. The latter is supplied by:

-i <equalize-ignore-guids-file>

-ignore-guids <equalize-ignore-guids-file>

This option provides the means to define a set of ports (by
guid) that will be ignored by the link load equalization

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

89

algorithm. Note that only endports (CA, switch port 0, and
router ports) and not switch external ports are supported.

LMC awareness routes based on (remote) system or switch basis.

9.5.3 Purpose of UPDN Algorithm

The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the subnet. A
loop-deadlock is a situation in which it is no longer possible to send data between any two hosts
connected through the loop. As such, the UPDN routing algorithm should be used if the subnet is
not a pure Fat Tree, and one of its loops may experience a deadlock (due, for example, to high
pressure).

The UPDN algorithm is based on the following main stages:

1. Auto-detect root nodes - based on the CA hop length from any switch in the subnet, a statistical
histogram is built for each switch (hop num vs number of occurrences). If the histogram reflects
a specific column (higher than others) for a certain node, then it is marked as a root node. Since
the algorithm is statistical, it may not find any root nodes. The list of the root nodes found by
this auto-detect stage is used by the ranking process stage.

Note: The user can override the node list manually.

Note: If this stage cannot find any root nodes, and the user did not specify a guid list
file, OpenSM defaults back to the Min Hop routing algorithm.

2. Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0. Using the
BFS algorithm, the rest of the switch nodes in the subnet are ranked incrementally. This ranking
aids in the process of enforcing rules that ensure loop-free paths.

3. Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA or switch)
node in the subnet. During the BFS process, the FDB table of each switch node traversed by
BFS is updated, in reference to the starting node, based on the ranking rules and guid values.

At the end of the process, the updated FDB tables ensure loop-free paths through the subnet.

Note: Up/Down routing does not allow LID routing communication between switches
that are located inside spine “switch systems”. The reason is that there is no way
to allow a LID route between them that does not break the Up/Down rule.
One ramification of this is that you cannot run SM on switches other than the leaf
switches of the fabric.

9.5.3.1 UPDN Algorithm Usage

Activation through OpenSM

• Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.
• Use '-a <root_guid_file>' for adding an UPDN guid file that contains the root nodes for ranking.

If the `-a' option is not used, OpenSM uses its auto-detect root nodes algorithm.

Notes on the guid list file:

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

90

1. A valid guid file specifies one guid in each line. Lines with an invalid format will be discarded.
2. The user should specify the root switch guids. However, it is also possible to specify CA guids;

OpenSM will use the guid of the switch (if it exists) that connects the CA to the subnet as a root
node.

9.5.4 Fat-tree Routing Algorithm

The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be chosen if a
subnet is a symmetrical or almost symmetrical fat-tree of various types. It supports not just K-
ary-N-Trees, by handling for non-constant K, cases where not all leafs (CAs) are present, any CBB
ratio. As in UPDN, fat-tree also prevents credit-loop-deadlocks.

If the root guid file is not provided ('-a' or '--root_guid_file' options), the topology has to be pure
fat-tree that complies with the following rules:

• Tree rank should be between two and eight (inclusively)

• Switches of the same rank should have the same number of UP-going port groups1, unless they
are root switches, in which case the shouldn't have UP-going ports at all.

• Switches of the same rank should have the same number of DOWN-going port groups, unless
they are leaf switches.

• Switches of the same rank should have the same number of ports in each UP-going port group.
• Switches of the same rank should have the same number of ports in each DOWN-going port

group.
• All the CAs have to be at the same tree level (rank).

If the root guid file is provided, the topology doesn't have to be pure fat-tree, and it should only
comply with the following rules:

• Tree rank should be between two and eight (inclusively)

• All the Compute Nodes2 have to be at the same tree level (rank). Note that non-compute node
CAs are allowed here to be at different tree ranks.

Topologies that do not comply cause a fallback to min hop routing. Note that this can also occur
on link failures which cause the topology to no longer be a “pure” fat-tree.

Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the routing will
not be as balanced as in case of integer CBB ratio. In addition to this, although the algorithm
allows leaf switches to have any number of CAs, the closer the tree is to be fully populated, the
more effective the "shift" communication pattern will be. In general, even if the root list is pro-
vided, the closer the topology to a pure and symmetrical fat-tree, the more optimal the routing will
be.

The algorithm also dumps compute node ordering file (opensm-ftree-ca-order.dump) in the
same directory where the OpenSM log resides. This ordering file provides the CN order that
may be used to create efficient communication pattern, that will match the routing tables.

Activation through OpenSM

• Use ‘-R ftree’ option to activate the fat-tree algorithm.

1. Ports that are connected to the same remote switch are referenced as ‘port group’
2. List of compute nodes (CNs) can be specified by ‘-u’ or ‘--cn_guid_file’ OpenSM options.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

91

• Use ‘-a <root_guid_file>’ to provide root nodes for ranking. If the ‘-a’ option is not used, rout-
ing algorithm will detect roots automatically.

• Use ‘-u <root_cn_file>’ to provide the list of compute nodes. If the ‘-u’ option is not used, all
the CAs are considered as compute nodes.

Note: LMC > 0 is not supported by fat-tree routing. If this is specified, the default
routing algorithm is invoked instead.

9.5.5 LASH Routing Algorithm

LASH is an acronym for LAyered SHortest Path Routing. It is a deterministic shortest path routing
algorithm that enables topology agnostic deadlock-free routing within communication networks.

When computing the routing function, LASH analyzes the network topology for the shortest-path
routes between all pairs of sources / destinations and groups these paths into virtual layers in
such a way as to avoid deadlock.

Note: LASH analyzes routes and ensures deadlock freedom between switch pairs.
The link from HCA between and switch does not need virtual layers as deadlock
will not arise between switch and HCA.

In more detail, the algorithm works as follows:

1. LASH determines the shortest-path between all pairs of source / destination switches. Note,
LASH ensures the same SL is used for all SRC/DST - DST/SRC pairs and there is no guaran-
tee that the return path for a given DST/SRC will be the reverse of the route SRC/DST.

2. LASH then begins an SL assignment process where a route is assigned to a layer (SL) if the
addition of that route does not cause deadlock within that layer. This is achieved by main-
taining and analysing a channel dependency graph for each layer. Once the potential addition of
a path could lead to deadlock, LASH opens a new layer and continues the process.

3. Once this stage has been completed, it is highly likely that the first layers processed will con-
tain more paths than the latter ones. To better balance the use of layers, LASH moves paths from
one layer to another so that the number of paths in each layer averages out.

Note that the implementation of LASH in opensm attempts to use as few layers as possible. This
number can be less than the number of actual layers available.

In general LASH is a very flexible algorithm. It can, for example, reduce to Dimension Order
Routing in certain topologies, it is topology agnostic and fares well in the face of faults.

It has been shown that for both regular and irregular topologies, LASH outperforms Up/Down.
The reason for this is that LASH distributes the traffic more evenly through a network, avoiding
the bottleneck issues related to a root node and always routes shortest-path.

The algorithm was developed by Simula Research Laboratory.

Use ‘-R lash -Q’ option to activate the LASH algorithm

Note: QoS support has to be turned on in order that SL/VL mappings are used.

Note: LMC > 0 is not supported by the LASH routing. If this is specified, the default
routing algorithm is invoked instead.

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

92

9.5.6 DOR Routing Algorithm

The Dimension Order Routing algorithm is based on the Min Hop algorithm and so uses shortest
paths. Instead of spreading traffic out across different paths with the same shortest distance, it
chooses among the available shortest paths based on an ordering of dimensions. Each port must
be consistently cabled to represent a hypercube dimension or a mesh dimension. Paths are
grown from a destination back to a source using the lowest dimension (port) of available paths at
each step. This provides the ordering necessary to avoid deadlock. When there are multiple links
between any two switches, they still represent only one dimension and traffic is balanced across
them unless port equalization is turned off. In the case of hypercubes, the same port must be used
throughout the fabric to represent the hypercube dimension and match on both ends of the cable. In
the case of meshes, the dimension should consistently use the same pair of ports, one port on
one end of the cable, and the other port on the other end, continuing along the mesh dimension.

Use ‘-R dor’ option to activate the DOR algorithm.

9.5.7 Routing References

To learn more about deadlock-free routing, see the article “Deadlock Free Message Routing in
Multiprocessor Interconnection Networks” by William J Dally and Charles L Seitz (1985).

To learn more about the up/down algorithm, see the article “Effective Strategy to Compute For-
warding Tables for InfiniBand Networks” by Jose Carlos Sancho, Antonio Robles, and Jose
Duato at the Universidad Politecnica de Valencia.

To learn more about LASH and the flexibility behind it, the requirement for layers, performance
comparisons to other algorithms, see the following articles:

• “Layered Routing in Irregular Networks”, Lysne et al, IEEE Transactions on Parallel and Dis-
tributed Systems, VOL.16, No12, December 2005.

• “Routing for the ASI Fabric Manager”, Solheim et al. IEEE Communications Magazine,
Vol.44, No.7, July 2006.

• “Layered Shortest Path (LASH) Routing in Irregular System Area Networks", Skeie et al.
IEEE Computer Society Communication Architecture for Clusters 2002.

9.5.8 Modular Routine Engine

Modular routing engine structure allows for the ease of “plugging” new routing modules. Cur-
rently, only unicast callbacks are supported. Multicast can be added later.

One existing routing module is up-down "updn", which may be activated with '-R updn' option
(instead of old '-u').

General usage is:

host1# opensm -R 'module-name'

There is also a trivial routing module which is able to load LFT tables from a dump file.

Main features are:

• This will load switch LFTs and/or LID matrices (min hops tables)
• This will load switch LFTs according to the path entries introduced in the dump file

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

93

• No additional checks will be performed (such as “is port connected”, etc.)
• In case when fabric LIDs were changed this will try to reconstruct LFTs correctly if endport

GUIDs are represented in the dump file (in order to disable this, GUIDs may be removed from
the dump file or zeroed)

The dump file format is compatible with output of ‘ibroute’ utility and for whole fabric can be
generated with dump_lfts.sh script.

To activate file based routing module, use:

host1# opensm -R file -U /path/to/dump_file

If the dump_file is not found or is in error, the default routing algorithm is utilized. The ability to
dump switch lid matrices (aka min hops tables) to file and later to load these is also supported.

The usage is similar to unicast forwarding tables loading from dump file (introduced by 'file'
routing engine), but new lid matrix file name should be specified by -M or --lid_matrix_file
option. For example:

host1# opensm -R file -M ./opensm-lid-matrix.dump

The dump file is named ‘opensm-lid-matrix.dump’ and will be generated in the standard
opensm dump directory (/var/log by default) when OSM_LOG_ROUTING logging flag is
set. When routing engine 'file' is activated, but the dump file is not specified or cannot be opened,
the default lid matrix algorithm will be used.

There is also a switch forwarding tables dumper which generates a file compatible with
dump_lfts.sh output. This file can be used as input for forwarding tables loading by 'file' routing
engine. Both or one of options -U and -M can be specified together with ‘-R file’.

9.6 Quality of Service Management in OpenSM

9.6.1 Overview

When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags), OpenSM
looks for a QoS Policy file. During fabric initialization and at every heavy sweep, OpenSM parses
the QoS policy file, applies its settings to the discovered fabric elements, and enforces the provided
policy on client requests. The overall flow for such requests is as follows:

• The request is matched against the defined matching rules such that the QoS Level definition is
found

• Given the QoS Level, a path(s) search is performed with the given restrictions imposed by that
level

Figure 3: QoS Manager

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

94

There are two ways to define QoS policy:

• Advanced – the advanced policy file syntax provides the administrator various ways to match a
PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various QoS constraints on the
requested PR/MPR

• Simple – the simple policy file syntax enables the administrator to match PR/MPR requests by
various ULPs and applications running on top of these ULPs

9.6.2 Advanced QoS Policy File

The QoS policy file has the following sections:

I) Port Groups (denoted by port-groups)

This section defines zero or more port groups that can be referred later by matching rules (see
below). Port group lists ports by:

• Port GUID
• Port name, which is a combination of NodeDescription and IB port number
• PKey, which means that all the ports in the subnet that belong to partition with a given PKey

belong to this port group
• Partition name, which means that all the ports in the subnet that belong to partition with a given

name belong to this port group
• Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF (SM's

port).

II) QoS Setup (denoted by qos-setup)

This section describes how to set up SL2VL and VL Arbitration tables on various nodes in the fab-
ric. However, this is not supported in OFED 1.3. SL2VL and VLArb tables should be configured in
the OpenSM options file (default location - /var/cache/opensm/opensm.opts).

III) QoS Levels (denoted by qos-levels)

Each QoS Level defines Service Level (SL) and a few optional fields:

• MTU limit
• Rate limit
• PKey
• Packet lifetime

When path(s) search is performed, it is done with regards to restriction that these QoS Level param-
eters impose. One QoS level that is mandatory to define is a DEFAULT QoS level. It is applied to a
PR/MPR query that does not match any existing match rule. Similar to any other QoS Level, it can
also be explicitly referred by any match rule.

IV) QoS Matching Rules (denoted by qos-match-rules)

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

95

Each PathRecord/MultiPathRecord query that OpenSM receives is matched against the set of
matching rules. Rules are scanned in order of appearance in the QoS policy file such as the first
match takes precedence.

Each rule has a name of QoS level that will be applied to the matching query. A default QoS level is
applied to a query that did not match any rule.

Queries can be matched by:

• Source port group (whether a source port is a member of a specified group)
• Destination port group (same as above, only for destination port)
• PKey
• QoS class
• Service ID

To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria. However,
not all the fields of the PR/MPR query have to appear in the matching rule.

For instance, if the rule has a single criterion - Service ID, it will match any query that has this Ser-
vice ID, disregarding rest of the query fields. However, if a certain query has only Service ID
(which means that this is the only bit in the PR/MPR component mask that is on), it will not match
any rule that has other matching criteria besides Service ID.

9.6.3 Simple QoS Policy Definition

Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to the
advanced QoS policy, it has a list of match rules and their QoS Level, but in this case a match rule
has only one criterion - its goal is to match a certain ULP (or a certain application on top of this
ULP) PR/MPR request, and QoS Level has only one constraint - Service Level (SL).

The simple policy section may appear in the policy file in combine with the advanced policy, or as
a stand-alone policy definition. See more details and list of match rule criteria below.

9.6.4 Policy File Syntax Guidelines
• Leading and trailing blanks, as well as empty lines, are ignored, so the indentation in the exam-

ple is just for better readability.
• Comments are started with the pound sign (#) and terminated by EOL.
• Any keyword should be the first non-blank in the line, unless it's a comment.
• Keywords that denote section/subsection start have matching closing keywords.
• Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests that didn't

match any of the matching rules.
• Any section/subsection of the policy file is optional.

9.6.5 Examples of Advanced Policy File

As mentioned earlier, any section of the policy file is optional, and the only mandatory part of the
policy file is a default QoS Level.

Here's an example of the shortest policy file:

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

96

 qos-levels
 qos-level
 name: DEFAULT
 sl: 0
 end-qos-level
 end-qos-levels

Port groups section is missing because there are no match rules, which means that port groups are
not referred anywhere, and there is no need defining them. And since this policy file doesn't have
any matching rules, PR/MPR query will not match any rule, and OpenSM will enforce default QoS
level. Essentially, the above example is equivalent to not having a QoS policy file at all.

The following example shows all the possible options and keywords in the policy file and their syn-
tax:

 #
 # See the comments in the following example.
 # They explain different keywords and their meaning.
 #
 port-groups

 port-group # using port GUIDs
 name: Storage
 # "use" is just a description that is used for logging
 # Other than that, it is just a comment
 use: SRP Targets
 port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA
 port-guid: 0x1000000000FFFF
 end-port-group

 port-group
 name: Virtual Servers
 # The syntax of the port name is as follows:
 # "node_description/Pnum".
 # node_description is compared to the NodeDescription of the
node,
 # and "Pnum" is a port number on that node.
 port-name: vs1 HCA-1/P1, vs2 HCA-1/P1
 end-port-group

 # using partitions defined in the partition policy
 port-group
 name: Partitions
 partition: Part1
 pkey: 0x1234
 end-port-group

 # using node types: CA, ROUTER, SWITCH, SELF (for node that runs
SM)
 # or ALL (for all the nodes in the subnet)
 port-group
 name: CAs and SM
 node-type: CA, SELF
 end-port-group

 end-port-groups

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

97

 qos-setup
 # This section of the policy file describes how to set up SL2VL
and VL
 # Arbitration tables on various nodes in the fabric.
 # However, this is not supported in OFED 1.3 - the section is
parsed
 # and ignored. SL2VL and VLArb tables should be configured in the
 # OpenSM options file (by default - /var/cache/opensm/
opensm.opts).
 end-qos-setup

 qos-levels

 # Having a QoS Level named "DEFAULT" is a must - it is applied to
 # PR/MPR requests that didn't match any of the matching rules.
 qos-level
 name: DEFAULT
 use: default QoS Level
 sl: 0
 end-qos-level

 # the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet Lifetime
 qos-level
 name: WholeSet
 sl: 1
 mtu-limit: 4
 rate-limit: 5
 pkey: 0x1234
 packet-life: 8
 end-qos-level

 end-qos-levels

 # Match rules are scanned in order of their apperance in the policy
file.
 # First matched rule takes precedence.
 qos-match-rules

 # matching by single criteria: QoS class
 qos-match-rule
 use: by QoS class
 qos-class: 7-9,11
 # Name of qos-level to apply to the matching PR/MPR
 qos-level-name: WholeSet
 end-qos-match-rule

 # show matching by destination group and service id
 qos-match-rule
 use: Storage targets
 destination: Storage
 service-id: 0x10000000000001, 0x10000000000008-
0x10000000000FFF
 qos-level-name: WholeSet
 end-qos-match-rule

 qos-match-rule
 source: Storage
 use: match by source group only
 qos-level-name: DEFAULT

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

98

 end-qos-match-rule

 qos-match-rule
 use: match by all parameters
 qos-class: 7-9,11
 source: Virtual Servers
 destination: Storage
 service-id: 0x0000000000010000-0x000000000001FFFF
 pkey: 0x0F00-0x0FFF
 qos-level-name: WholeSet
 end-qos-match-rule

 end-qos-match-rules

9.6.6 Simple QoS Policy - Details and Examples

Simple QoS policy match rules are tailored for matching ULPs (or some application on top of a
ULP) PR/MPR requests. This section has a list of per-ULP (or per-application) match rules and the
SL that should be enforced on the matched PR/MPR query.

Match rules include:

• Default match rule that is applied to PR/MPR query that didn't match any of the other match
rules

• SDP
• SDP application with a specific target TCP/IP port range
• SRP with a specific target IB port GUID
• RDS
• iSER
• iSER application with a specific target TCP/IP port range
• IPoIB with a default PKey
• IPoIB with a specific PKey
• Any ULP/application with a specific Service ID in the PR/MPR query
• Any ULP/application with a specific PKey in the PR/MPR query
• Any ULP/application with a specific target IB port GUID in the PR/MPR query

Since any section of the policy file is optional, as long as basic rules of the file are kept (such as no
referring to nonexisting port group, having default QoS Level, etc), the simple policy section (qos-
ulps) can serve as a complete QoS policy file.

The shortest policy file in this case would be as follows:

 qos-ulps
 default : 0 #default SL
 end-qos-ulps

It is equivalent to the previous example of the shortest policy file, and it is also equivalent to not
having policy file at all. Below is an example of simple QoS policy with all the possible keywords:

 qos-ulps

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

99

 default : 0 # default SL
 sdp, port-num 30000 : 0 # SL for application running on
 # top of SDP when a destination
 # TCP/IPport is 30000
 sdp, port-num 10000-20000 : 0
 sdp : 1 # default SL for any other
 # application running on top of SDP
 rds : 2 # SL for RDS traffic
 iser, port-num 900 : 0 # SL for iSER with a specific
 # target port
 iser : 3 # default SL for iSER
 ipoib, pkey 0x0001 : 0 # SL for IPoIB on partition with
 # pkey 0x0001
 ipoib : 4 # default IPoIB partition,
 # pkey=0x7FFF
 any, service-id 0x6234 : 6 # match any PR/MPR query with a
 # specific Service ID
 any, pkey 0x0ABC : 6 # match any PR/MPR query with a
 # specific PKey
 srp, target-port-guid 0x1234 : 5 # SRP when SRP Target is located
 # on a specified IB port GUID
 any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
 # with a specific target port GUID
 end-qos-ulps

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of appear-
ance in the QoS policy file such as the first match takes precedence, except for the "default" rule,
which is applied only if the query didn't match any other rule. All other sections of the QoS policy
file take precedence over the qos-ulps section. That is, if a policy file has both qos-match-rules and
qos-ulps sections, then any query is matched first against the rules in the qos-match-rules section,
and only if there was no match, the query is matched against the rules in qos-ulps section.

Note that some of these match rules may overlap, so in order to use the simple QoS definition effec-
tively, it is important to understand how each of the ULPs is matched.

9.6.6.1 IPoIB

IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the multi-
cast group that OpenSM creates for each IPoIB partition.

Default PKey for IPoIB partition is 0x7fff, so the following three match rules are equivalent:

 ipoib : <SL>
 ipoib, pkey 0x7fff : <SL>
 any, pkey 0x7fff : <SL>

9.6.6.2 SDP

SDP PR query is matched by Service ID. The Service-ID for SDP is 0x000000000001PPPP, where
PPPP are 4 hex digits holding the remote TCP/IP Port Number to connect to. The following two
match rules are equivalent:

 sdp : <SL>

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

100

 any, service-id 0x0000000000010000-0x000000000001ffff : <SL>

9.6.6.3 RDS

Similar to SDP, RDS PR query is matched by Service ID. The Service ID for RDS is
0x000000000106PPPP, where PPPP are 4 hex digits holding the remote TCP/IP Port Number to
connect to. Default port number for RDS is 0x48CA, which makes a default Service-ID
0x00000000010648CA. The following two match rules are equivalent:

 rds : <SL>
 any, service-id 0x00000000010648CA : <SL>

9.6.6.4 iSER

Similar to RDS, iSER query is matched by Service ID, where the the Service ID is also
0x000000000106PPPP. Default port number for iSER is 0x035C, which makes a default Service-
ID 0x000000000106035C. The following two match rules are equivalent:

 iser : <SL>
 any, service-id 0x000000000106035C : <SL>

9.6.6.5 SRP

Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by the target
IB port GUID. The following two match rules are equivalent:

 srp, target-port-guid 0x1234 : <SL>
 any, target-port-guid 0x1234 : <SL>

Note that any of the above ULPs might contain target port GUID in the PR query, so in order for
these queries not to be recognized by the QoS manager as SRP, the SRP match rule (or any match
rule that refers to the target port guid only) should be placed at the end of the qos-ulps match rules.

9.6.6.6 MPI

SL for MPI is manually configured by MPI admin. OpenSM is not forcing any SL on the MPI traf-
fic, and that's why it is the only ULP that did not appear in the qos-ulps section.

9.6.7 SL2VL Mapping and VL Arbitration

OpenSM cached options file has a set of QoS related configuration parameters, that are used to con-
figure SL2VL mapping and VL arbitration on IB ports. These parameters are:

• Max VLs: the maximum number of VLs that will be on the subnet
• High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)
• VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template
• VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

101

• SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to SLs 0-
15 (Note that VL15 used here means drop this SL).

There are separate QoS configuration parameters sets for various target types: CAs, routers, switch
external ports, and switch's enhanced port 0. The names of such parameters are prefixed by
"qos_<type>_" string. Here is a full list of the currently supported sets:

• qos_ca_ - QoS configuration parameters set for CAs.
• qos_rtr_ - parameters set for routers.
• qos_sw0_ - parameters set for switches' port 0.
• qos_swe_ - parameters set for switches' external ports.

Here's the example of typical default values for CAs and switches' external ports (hard-coded in
OpenSM initialization):

qos_ca_max_vls=15
qos_ca_high_limit=0
qos_ca_vlarb_high=0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0
,13:0,14:0
qos_ca_vlarb_low=0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,
13:4,14:4
qos_ca_sl2vl=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls=15
qos_swe_high_limit=0
qos_swe_vlarb_high=0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:
0,13:0,14:0
qos_swe_vlarb_low=0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4
,13:4,14:4
qos_swe_sl2vl=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry contains a VL
number (values from 0-14), and a weighting value (values 0-255), indicating the number of 64 byte
units (credits) which may be transmitted from that VL when its turn in the arbitration occurs. A
weight of 0 indicates that this entry should be skipped. If a list entry is programmed for VL15 or for
a VL that is not supported or is not currently configured by the port, the port may either skip that
entry or send from any supported VL for that entry.

Note, that the same VLs may be listed multiple times in the High or Low priority arbitration tables,
and, further, it can be listed in both tables. The limit of high-priority VLArb table
(qos_<type>_high_limit) indicates the number of high-priority packets that can be transmitted
without an opportunity to send a low-priority packet. Specifically, the number of bytes that can be
sent is high_limit times 4K bytes.

A high_limit value of 255 indicates that the byte limit is unbounded.

Note: If the 255 value is used, the low priority VLs may be starved.

A value of 0 indicates that only a single packet from the high-priority table may be sent before an
opportunity is given to the low-priority table.

Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for 4KB MTU
a single packet will require 64 credits, so in order to achieve effective VL arbitration for packets of
4KB MTU, the weighting values for each VL should be multiples of 64.

Below is an example of SL2VL and VL Arbitration configuration on subnet:

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

102

qos_ca_max_vls=15
qos_ca_high_limit=6
qos_ca_vlarb_high=0:4
qos_ca_vlarb_low=0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_ca_sl2vl=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls=15
qos_swe_high_limit=6
qos_swe_vlarb_high=0:4
qos_swe_vlarb_low=0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_swe_sl2vl=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high prior-
ity VL, and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such configuration
would suilt VL that needs low latency and uses small MTU when transmitting packets. Rest of VLs
are defined as low priority VLs with different weights, while VL4 is effectively turned off.

9.6.8 Deployment Example

Figure 4 shows an example of an InfiniBand subnet that has been configured by a QoS manager to
provide different service levels for various ULPs.

9.7 QoS Configuration Examples

The following are examples of QoS configuration for different cluster deployments. Each example
provides the QoS level assignment and their administration via OpenSM configuration files.

9.7.1 Typical HPC Example: MPI and Lustre

Assignment of QoS Levels

• MPI
- Separate from I/O load
- Min BW of 70%

Figure 4: Example QoS Deployment on InfiniBand Subnet

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

103

• Storage Control (Lustre MDS)
- Low latency

• Storage Data (Lustre OST)
- Min BW 30%

Administration

• MPI is assigned an SL via the command line
host1# mpirun –sl 0

• OpenSM QoS policy file

Note: In the following policy file example, replace OST* and MDS* with the real port
GUIDs.

qos-ulps

 default :0 # default SL (for MPI)

 any, target-port-guid OST1,OST2,OST3,OST4:1 # SL for Lustre OST

 any, target-port-guid MDS1,MDS2 :2 # SL for Lustre MDS

end-qos-ulps

• OpenSM options file

 qos_max_vls=8

 qos_high_limit=0

 qos_vlarb_high=2:1

 qos_vlarb_low=0:96,1:224

 qos_sl2vl=0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

9.7.2 EDC SOA (2-tier): IPoIB and SRP

The following is an example of QoS configuration for a typical enterprise data center (EDC) with
service oriented architecture (SOA), with IPoIB carrying all application traffic and SRP used for
storage.

QoS Levels

• Application traffic
- IPoIB (UD and CM) and SDP
- Isolated from storage
- Min BW of 50%

• SRP
- Min BW 50%
- Bottleneck at storage nodes

Administration

• OpenSM QoS policy file

Note: In the following policy file example, replace SRPT* with the real SRP Target
port GUIDs.

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

104

qos-ulps

 default :0

 ipoib :1

 sdp :1

 srp, target-port-guid SRPT1,SRPT2,SRPT3 :2

end-qos-ulps

• OpenSM options file
qos_max_vls=8

 qos_high_limit=0

 qos_vlarb_high=1:32,2:32

 qos_vlarb_low=0:1,

 qos_sl2vl=0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

9.7.3 EDC (3-tier): IPoIB, RDS, SRP

The following is an example of QoS configuration for an enterprise data center (EDC), with IPoIB
carrying all application traffic, RDS for database traffic, and SRP used for storage.

QoS Levels

• Management traffic (ssh)
- IPoIB management VLAN (partition A)
- Min BW 10%

• Application traffic
- IPoIB application VLAN (partition B)
- Isolated from storage and database
- Min BW of 30%

• Database Cluster traffic
- RDS
- Min BW of 30%

• SRP
- Min BW 30%
- Bottleneck at storage nodes

Administration

• OpenSM QoS policy file

Note: In the following policy file example, replace SRPT* with the real SRP Initiator
port GUIDs.

qos-ulps

 default : 0

 ipoib, pkey 0x8001 : 1

 ipoib, pkey 0x8002 : 2

 rds : 3

 srp, target-port-guid SRPT1, SRPT2, SRPT3 : 4

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

105

end-qos-ulps

• OpenSM options file
 qos_max_vls=8

 qos_high_limit=0

 qos_vlarb_high=1:32,2:96,3:96,4:96

 qos_vlarb_low=0:1,

 qos_sl2vl=0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

• Partition configuration file
Default=0x7fff, ipoib, : ALL=full;

PartA=0x8001, ipoib, sl=1 : ALL=full;

PartB=0x8002, ipoib, sl=2 : ALL=full;

OpenSM – Subnet Manager

Rev 1.20 Mellanox Technologies

106

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

107

10 Diagnostic Utilities

10.1 Overview

The diagnostic utilities described in this chapter provide means for debugging the connectivity and
status of InfiniBand (IB) devices in a fabric. The tools are:

• ibdiagnet (described in Section 10.3)
• ibdiagpath (described in Section 10.4)

10.2 Utilities Usage

This section first describes common configuration, interface, and addressing for all the tools in the
package. Then it provides detailed descriptions of the tools themselves including: operation, synop-
sis and options descriptions, error codes, and examples.

10.2.1 Common Configuration, Interface and Addressing

Topology File (Optional)

An InfiniBand fabric is composed of switches and channel adapter (HCA/TCA) devices. To iden-
tify devices in a fabric (or even in one switch system), each device is given a GUID (a MAC equiv-
alent). Since a GUID is a non-user-friendly string of characters, it is better to alias it to a
meaningful, user-given name. For this objective, the IB Diagnostic Tools can be provided with a
“topology file”, which is an optional configuration file specifying the IB fabric topology in user-
given names.

For diagnostic tools to fully support the topology file, the user may need to provide the local system
name (if the local hostname is not used in the topology file).

To specify a topology file to a diagnostic tool use one of the following two options:

1. On the command line, specify the file name using the option ‘-t <topology file name>’
2. Define the environment variable IBDIAG_TOPO_FILE

To specify the local system name to an diagnostic tool use one of the following two options:

1. On the command line, specify the system name using the option ‘-s <local system name>’
2. Define the environment variable IBDIAG_SYS_NAME

10.2.2 IB Interface Definition

The diagnostic tools installed on a machine connect to the IB fabric by means of an HCA port
through which they send MADs. To specify this port to an IB diagnostic tool use one of the follow-
ing options:

1. On the command line, specify the port number using the option ‘-p <local port number>’ (see
below)

Diagnostic Utilities

Rev 1.20 Mellanox Technologies

108

2. Define the environment variable IBDIAG_PORT_NUM

In case more than one HCA device is installed on the local machine, it is necessary to specify the
device’s index to the tool as well. For this use on of the following options:

1. On the command line, specify the index of the local device using the following option:
‘-i <index of local device>’

2. Define the environment variable IBDIAG_DEV_IDX

10.2.3 Addressing

Note: This section applies to the ibdiagpath tool only. A tool command may require
defining the destination device or port to which it applies. The following address-
ing modes can be used to define the IB ports:

• Using a Directed Route to the destination: (Tool option ‘-d’)
This option defines a directed route of output port numbers from the local port to the destination.

• Using port LIDs: (Tool option ‘-l’):
In this mode, the source and destination ports are defined by means of their LIDs. If the fabric is config-
ured to allow multiple LIDs per port, then using any of them is valid for defining a port.

• Using port names defined in the topology file: (Tool option ‘-n’)
This option refers to the source and destination ports by the names defined in the topology file. (There-
fore, this option is relevant only if a topology file is specified to the tool.) In this mode, the tool uses the
names to extract the port LIDs from the matched topology, then the tool operates as in the ‘-l’ option.

10.3 ibdiagnet - IB Net Diagnostic

ibdiagnet scans the fabric using directed route packets and extracts all the available information
regarding its connectivity and devices. It then produces the following files in the output directory
(which is defined by the -o option described below).

10.3.1 SYNOPSYS
ibdiagnet [-c <count>] [-v] [-r] [-o <out-dir>] [-t <topo-file>]

 [-s <sys-name>] [-i <dev-index>] [-p <port-num>] [-wt]

 [-pm] [-pc] [-P <<PM>=<Value>>] [-lw <1x|4x|12x>] [-ls <2.5|5|10>]

 [-skip <ibdiag_check/s>] [-load_db <db_file>]

OPTIONS:

-c <count> Min number of packets to be sent across each link
(default = 10)

-v Enable verbose mode

-r Provides a report of the fabric qualities

-t <topo-file> Specifies the topology file name

-s <sys-name> Specifies the local system name. Meaningful only if
a topology file is specified

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

109

-i <dev-index> Specifies the index of the device of the port used to
connect to the IB fabric (in case of multiple
devices on the local system)

-p <port-num> Specifies the local device's port num used to con-
nect to the IB fabric

-o <out-dir> Specifies the directory where the output files will
be placed (default = /tmp)

-lw <1x|4x|12x> Specifies the expected link width

-ls <2.5|5|10> Specifies the expected link speed

-pm Dump all the fabric links, pm Counters into ibdiag-
net.pm

-pc Reset all the fabric links pmCounters

-P <PM=<Trash>> If any of the provided pm is greater then its pro-
vided value, print it to screen

-skip <skip-option(s)>Skip the executions of the selected checks. Skip
options (one or more can be specified): dup_guids
zero_guids pm logical_state part ipoib all

-wt <file-name> Write out the discovered topology into the given
file. This flag is useful if you later want to check
for changes from the current state of the fabric. A
directory named ibdiag_ibnl is also created by this
option, and holds the IBNL files required to load
this topology. To use these files you will need to
set the environment variable named IBDM_IBNL_PATH to
that directory. The directory is located in /tmp or
in the output directory provided by the -o flag.

-load_db <file-name>>Load subnet data from the given .db file, and skip
subnet discovery stage.
Note: Some of the checks require actual subnet dis-
covery, and therefore would not run when load_db is
specified. These checks are: Duplicated/zero guids,
link state, SMs status.

-h|--help Prints the help page information

-V|--version Prints the version of the tool

--vars Prints the tool's environment variables and their
values

Diagnostic Utilities

Rev 1.20 Mellanox Technologies

110

10.3.2 Output Files

In addition to generating the files above, the discovery phase also checks for duplicate node/port
GUIDs in the IB fabric. If such an error is detected, it is displayed on the standard output. After the
discovery phase is completed, directed route packets are sent multiple times (according to the -c
option) to detect possible problematic paths on which packets may be lost. Such paths are explored,
and a report of the suspected bad links is displayed on the standard output.

After scanning the fabric, if the -r option is provided, a full report of the fabric qualities is dis-
played. This report includes:

• SM report
• Number of nodes and systems
• Hop-count information: maximal hop-count, an example path, and a hop-count histogram
• All CA-to-CA paths traced
• Credit loop report
• mgid-mlid-HCAs multicast group and report
• Partitions report
• IPoIB report

Note: In case the IB fabric includes only one CA, then CA-to-CA paths are not
reported. Furthermore, if a topology file is provided, ibdiagnet uses the names
defined in it for the output reports.

10.3.3 ERROR CODES
1 - Failed to fully discover the fabric

2 - Failed to parse command line options

3 - Failed to intract with IB fabric

4 - Failed to use local device or local port

5 - Failed to use Topology File

6 - Failed to load requierd Package

Table 6 - ibdiagnet Output Files

Output File Description

ibdiagnet.log A dump of all the application reports generate according to the provided flags

ibdiagnet.lst List of all the nodes, ports and links in the fabric

ibdiagnet.fdbs A dump of the unicast forwarding tables of the fabric switches

ibdiagnet.mcfdbs A dump of the multicast forwarding tables of the fabric switches

ibdiagnet.masks In case of duplicate port/node Guids, these file include the map between masked Guid and real Guids

ibdiagnet.sm List of all the SM (state and priority) in the fabric

ibdiagnet.pm A dump of the pm Counters values, of the fabric links

ibdiagnet.pkey A dump of the the existing partitions and their member host ports

ibdiagnet.mcg A dump of the multicast groups, their properties and member host ports

ibdiagnet.db A dump of the internal subnet database. This file can be loaded in later runs using the -load_db option

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

111

10.4 ibdiagpath - IB diagnostic path

ibdiagpath traces a path between two end-points and provides information regarding the nodes
and ports traversed along the path. It utilizes device specific health queries for the different devices
along the path.

The way ibdiagpath operates depends on the addressing mode used on the command line. If
directed route addressing is used (-d flag), the local node is the source node and the route to the des-
tination port is known apriori. On the other hand, if LID-route (or by-name) addressing is
employed, then the source and destination ports of a route are specified by their LIDs (or by the
names defined in the topology file). In this case, the actual path from the local port to the source
port, and from the source port to the destination port, is defined by means of Subnet Management
Linear Forwarding Table queries of the switch nodes along that path. Therefore, the path cannot be
predicted as it may change.

ibdiagpath should not be supplied with contradicting local ports by the -p and -d flags (see syn-
opsis descriptions below). In other words, when ibdiagpath is provided with the options -p and -d
together, the first port in the direct route must be equal to the one specified in the “-p” option. Oth-
erwise, an error is reported.

Note: When ibdiagpath queries for the performance counters along the path between
the source and destination ports, it always traverses the LID route, even if a
directed route is specified. If along the LID route one or more links are not in the
ACTIVE state, ibdiagpath reports an error.

Moreover, the tool allows omitting the source node in LID-route addressing, in which case the local
port on the machine running the tool is assumed to be the source.

10.4.1 SYNOPSYS
ibdiagpath {-n <[src-name,]dst-name>|-l <[src-lid,]dst-lid>|

 -d <p1,p2,p3,...>} [-c <count>] [-v] [-t <topo-file>]
 [-s <sys-name>] [-ic<dev-index>]c[-p <port-num>] [-o <out-dir>]
 [-lw <1x|4x|12x>] [-ls <2.5|5|10>][-pm] [-pc]
 [-P <<PM counter>=<Trash Limit>>]

OPTIONS:

-n <[src-name,]dst-name>

Names of the source and destination ports (as defined in
the topology file; source may be omitted -> local port is
assumed to be the source)

-l <[src-lid,]dst-lid>

Source and destination LIDs (source may be omitted -->
the local port is assumed to be the source)

-d <p1,p2,p3,...> Directed route from the local node (which is the source)
and the destination node

-c <count> The minimal number of packets to be sent across each link
(default = 100)

-v Enable verbose mode

-t <topo-file> Specifies the topology file name

-s <sys-name> Specifies the local system name. Meaningful only if a
topology file is specified

Diagnostic Utilities

Rev 1.20 Mellanox Technologies

112

-i <dev-index> Specifies the index of the device of the port used to
connect to the IB fabric (in case of multiple devices on
the local system)

-p <port-num> Specifies the local device's port number used to connect
to the IB fabric

-o <out-dir> Specifies the directory where the output files will be
placed (default = /tmp)

-lw <1x|4x|12x> Specifies the expected link width

-ls <2.5|5|10> Specifies the expected link speed

-pm Dump all the fabric links, pm Counters into ibdiagnet.pm

-pc Reset all the fabric links pmCounters

-P <PM=<Trash>> If any of the provided pm is greater then its provided
value, print it to screen

-h|--help Prints the help page information

-V|--version Prints the version of the tool

--vars Prints the tool's environment variables and their values

10.4.2 Output Files

10.4.3 ERROR CODES
1 - The path traced is un-healthy

2 - Failed to parse command line options

3 - More then 64 hops are required for traversing the local port to the
 "Source" port and then to the "Destination" port

4 - Unable to traverse the LFT data from source to destination

5 - Failed to use Topology File

6 - Failed to load required Package

Table 7 - ibdiagpath Output Files

Output File Description

ibdiagpath.log A dump of all the application reports generated according to the provided flags

ibdiagnet.pm A dump of the Performance Counters values, of the fabric links

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

113

Appendix A: Boot over IB (BoIB)

A.1 Overview

This chapter describes “Mellanox Boot over IB” (BoIB), the software for Boot over Mellanox
Technologies InfiniBand HCA devices. BoIB enables booting kernels or operating systems (OS)
from remote servers in compliance with the PXE specification.

BoIB is based on the open source project Etherboot/gPXE available at http://www.etherboot.org.

Etherboot/gPXE first initializes the HCA device. Then, it connects to a DHCP server to obtain its
assigned IP address and network parameters, and also to obtain the source location of the kernel/OS
to boot from. The DHCP server instructs Etherboot/gPXE to access the kernel/OS through a TFTP
server, an iSCSI target, or other media.

Mellanox Boot over IB implements a network driver with IP over IB acting as the transport layer.
IP over IB is part of Mellanox OFED for Linux (see www.mellanox.com).

The binary code is exported by the device as an expansion ROM image.

A.2 Supported Mellanox HCA Devices

• ConnectX(TM) IB (Firmware: fw-25408)
• InfiniHost(TM) III Ex (Firmware: fw-25218)
• InfiniHost(TM) III Lx (Firmware: fw-25204)

A.3 Tested Platforms

See the Boot over IB Release Notes (boot_over_ib_release_notes.txt).

A.4 BoIB in Mellanox OFED

The Boot over IB binary files are provided as part of the Mellaox OFED for Linux ISO image. The
following binary files are included:

1. PXE binary files for Mellanox HCA devices
- HCA: ConnectX IB SDR (PCI DevID: 25408)

CONNECTX_SDR_PORT1_ROM-1.0.0.rom (IB Port 1)
CONNECTX_SDR_PORT2_ROM-1.0.0.rom (IB Port 2)
Location in ISO: firmware/fw-25408/exp_rom/

- HCA: ConnectX IB DDR (PCI DevID: 25418)
CONNECTX_DDR_PORT1_ROM-1.0.0.rom (IB Port 1)
CONNECTX_DDR_PORT2_ROM-1.0.0.rom (IB Port 2)

Rev 1.20 Mellanox Technologies

114

Location in ISO: firmware/fw-25418/exp_rom/
- HCA: InfiniHost III Ex in Mem-Free mode (PCI DevID: 25218)

IHOST3EX_PORT1_ROM-1.0.0.rom (IB Port 1)
IHOST3EX_PORT2_ROM-1.0.0.rom (IB Port 2)
 Location in ISO: firmware/fw-25218/exp_rom/

- HCA: InfiniHost III Lx (PCI DevID: 25204)
IHOST3LX_ROM-1.0.0.rom (single IB Port device)
Location in ISO: firmware/fw-25204/exp_rom/

2. Additional files:

- dhcpd.conf - sample DHCP configuration file
- dhcp.patch - patch file for DHCP v3.1.1rc1

Both files are available under the docs/ folder.

A.5 Burning the Expansion ROM Image

The binary code resides in the same Flash device of the device firmware. Note that the binary files
are distinct and do not affect each other. Mellanox’s mlxburn tool is available for burning, how-
ever it is not possible to burn the expansion ROM image by itself. Rather, both the firmware and
expansion ROM images must be burnt simultaneously.

mlxburn requires the following items:

1. MST device name
After installing the MFT package run:

 mst start

 mst status

The device name will be of the form: /dev/mst/mt<dev_id>_pci{_cr0|conf0}.

2. The firmware mlx file fw-25418-X_X_XXX.mlx

3. One of the expansion ROM binary files listed in Section A.4.

Firmware Burning Example

The following command burns a firmware image and an expansion ROM image to the Flash device
of a ConnectX IB HCA Card:

mlxburn -dev /dev/mst/mt25418_pci_cr0 -fw fw-25418-X_X_XXX.mlx -exp_rom \
CONNECTX_DDR_PORT1_ROM-RC1.bin

Firmware Update Example

To update the expansion ROM image, enter:

mlxburn -dev /dev/mst/mt25418_pci_cr0 -fw fw-25418-X_X_XXX.mlx -exp_rom AUTO

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

115

A.6 Preparing the DHCP Server

The DHCP server plays a major role in the boot process by assigning IP addresses for BoIB clients
and instructs the clients where to boot from. Please refer to Section 3.2.1 on page 31 for instruc-
tions on how to run the DHCP server.

A.6.1 Configuring the DHCP Server

When a BoIB client boots, it sends the DHCP server various information, including its DHCP cli-
ent identifier. This identifier is used to distinguish between the various DHCP sessions.

The value of the client identifier is composed of 21 bytes (separated by colons) having the follow-
ing components:

20:<QP Number - 4 bytes>:<GID - 16 bytes>

Note: Bytes are represented as two-hexadecimal digits.

Extracting the Client Identifier – Method I

The following steps describe one method for extracting the client identifier:

Step 1. QP Number equals 00:55:04:01 for InfiniHost III Ex and InfiniHost III Lx HCAs, and
00:55:00:41 for ConnectX IB HCAs.

Step 2. GID is composed of an 8-byte subnet prefix and an 8-byte Port GUID. The subnet prefix is
fixed for the supported Mellanox HCAs, and is equal to fe:80:00:00:00:00:00:00. The next
steps explains how to obtain the Port GUID.

Step 3. To obtain the Port GUID, run the following commands:

Note: The following MFT commands assume that Mellanox OFED has been properly
installed on the client machine.

host1# mst start

host1# mst status

The device name will be of the form: /dev/mst/mt<dev_id>_pci{_cr0|conf0}. Use this device
name to obtain the Port GUID via a query command.

flint -d <MST_DEVICE_NAME> q

Example with InfiniHost III Ex as the HCA device:
host1# flint -d /dev/mst/mt25218_pci_cr0 q

Image type: Failsafe

FW Version: 5.3.0

Rom Info: type=GPXE version=1.0.0 devid=25218 port=2

I.S. Version: 1

Device ID: 25218

Chip Revision: A0

Description: Node Port1 Port2 Sys image
GUIDs: 0002c90200231390 0002c90200231391 0002c90200231392 0002c90200231393

Board ID: (MT_0370110001)

VSD:

Rev 1.20 Mellanox Technologies

116

PSID: MT_0370110001

Assuming that BoIB is connected via Port 2, then the Port GUID is 00:02:c9:02:00:23:13:92.

Step 4. The resulting client identifier is the concatenation, from left to right, of 20, the
QP_Number, the subnet prefix, and the Port GUID.

 In the example above this yields the following DHCP client identifier:
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92

Extracting the Client Identifier – Method II

An alternative method for obtaining the 20 bytes of QP Number and GID involves booting the cli-
ent machine via BoIB. This requires having a Subnet Manager running on one of the machines in
the Infiniband subnet. The 20 bytes can be captured from the boot session as shown in the figure
below.

Concatenate the byte ‘20’ to the left of the captured 20 bytes, then separate every byte (two hexa-
decimal digits) with a colon. You should obtain the same result shown in Step 4 above.

Placing Client Identifiers in /etc/dhcpd.conf

The following is an excerpt of a /etc/dhcpd.conf example file showing the format of represent-
ing a client machine for the DHCP server.

host host1 {

 next-server 11.4.3.7;

 filename "pxelinux.0";

 fixed-address 11.4.3.130;

 option dhcp-client-identifier = \

 20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;

}

A.7 Subnet Manager – OpenSM

BoIB requires a Subnet Manager to be running on one of the machines in the IB network. OpenSM
is part of Mellanox OFED for Linux and can be used to accomplish this. Note that OpenSM may be
run on the same host running the DHCP server but it is not mandatory. For details on OpenSM, see
Chapter 9.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

117

A.8 TFTP Server

When you set the 'filename' parameter in your DHCP configuration to a non-empty filename, the
client will ask for this file to be passed through TFTP. For this reason you need to install a TFTP
server.

A.9 BIOS Configuration

The expansion ROM image presents itself to the BIOS as a boot device. As a result, the BIOS will
add ‘gPXE’ to the list of boot devices. The priority of this list can be modified through BIOS setup.

A.10 Operation

A.10.1 Prerequisites

• Make sure that your client is connected to the server(s)
• Burn your client machine with BoIB as described in Section A.5
• Start the Subnet Manager as described in Section A.7
• Configure the DHCP server as described in Section A.6 and start it
• Configure and start at least one of the services iSCSI Target (see Section A.12) and TFTP (see

Section A.8)

A.10.2 Starting Boot

Boot the client machine and enter BIOS setup to configure gPXE to be the first on the boot device
priority list – see Section A.9.

If gPXE was selected through BIOS setup, the client will boot from BoIB. The client will display
BoIB attributes and wait for IB port configuration by the subnet manager.

After configuring the IB port, the client attempts connecting to the DHCP server to obtain the
source location of the kernel/OS to boot from.

Rev 1.20 Mellanox Technologies

118

A.11 Diskless Machines

Mellanox Boot over IB supports booting diskless machines. To enable using an IB driver, the
(remote) kernel or initrd image must include and be configured to load the IB driver, including
IPoIB.

This can be achieved either by compiling the HCA driver into the kernel, or by adding the device
driver module into the initrd image and loading it.

The IB driver requires loading the following modules in the specified order (see Section A.11.1 for
an example):

• ib_addr.ko
• ib_core.ko
• ib_mad.ko
• ib_sa.ko
• ib_cm.ko
• ib_uverbs.ko
• ib_ucm.ko
• ib_umad.ko
• iw_cm.ko
• rdma_cm.ko
• rdma_ucm.ko
• mlx4_core.ko
• mlx4_ib.ko
• ib_mthca.ko
• ib_ipoib.ko

A.11.1 Example: Adding an IB Driver to initrd

Prerequisites

1. The BoIB image is already programmed on the HCA card.
2. The DHCP server is installed and configured as described in Section 3.2.1, “IPoIB Configura-

tion Based on DHCP” and Section A.6.1, “Configuring the DHCP Server”, and connected to the
client machine.

3. An initrd file.

4. To add an IB driver into initrd, you need to copy the IB modules to the diskless image. Your
machine needs to be pre-installed with a Mellanox OFED for Linux ISO image that is appropri-
ate for the kernel version the diskless image will run.

Note: The remainder of this section assumes that Mellanox OFED has been installed on
your machine. For installation details, please refer to Chapter 2, “Installation”.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

119

 Adding the IB Driver to the initrd File

Warning! The following procedure modifies critical files used in the boot procedure. It
must be executed by users with expertise in the boot process. Improper applica-
tion of this procedure may prevent the diskless machine from booting.

Step 1. Back up your current initrd file.

Step 2. Make a new working directory and change to it.
host1$ mkdir /tmp/initrd_ib

host1$ cd /tmp/initrd_ib

Step 3. Normally, the initrd image is zipped. Extract it using the following command:

host1$ gzip -dc <initrd image> | cpio -id

 The initrd files should now be found under /tmp/initrd_ib

Step 4. Create a directory for the InfiniBand modules and copy them.
host1$ mkdir -p /tmp/initrd_ib/lib/modules/ib

host1$ cd /lib/modules/`uname -r`/updates/kernel/drivers

host1$cp infiniband/core/ib_addr.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_core.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_mad.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_sa.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_cm.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_uverbs.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_ucm.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/ib_umad.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/iw_cm.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/rdma_cm.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/core/rdma_ucm.ko /tmp/initrd_ib/lib/modules/ib

host1$cp net/mlx4/mlx4_core.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/hw/mlx4/mlx4_ib.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/hw/mthca/ib_mthca.ko /tmp/initrd_ib/lib/modules/ib

host1$cp infiniband/ulp/ipoib/ib_ipoib.ko /tmp/initrd_ib/lib/modules/ib

Step 5. IB requires loading an IPv6 module. If you do not have it in your initrd, please add it
using the following command:
host1$ cp /lib/modules/`uname -r`/kernel/net/ipv6/ipv6.ko \

/tmp/initrd_ib/lib/modules

Step 6. To load the modules, you need the insmod executable. If you do not have it in your
initrd, please add it using the following command:
host1$ cp /sbin/insmod /tmp/initrd_ib/sbin/

Step 7. If you plan to give your IB device a static IP address, then copy ifconfig. Otherwise,
skip this step.
host1$ cp /sbin/ifconfig /tmp/initrd_ib/sbin

Rev 1.20 Mellanox Technologies

120

Step 8. If you plan to obtain an IP address for the IB device through DHCP, then you need to copy
the DHCP client which was compiled specifically to support IB;
Otherwise, skip this step.

To continue with this step, DHCP client v3.1.1rc1 needs to be already installed with the
patch, as described in Section 3.2.1.

Copy the DHCP client file and all the relevant files as described below.
host1# cp /sbin/dhclient /tmp/initrd_ib/sbin

host1# mkdir -p /tmp/initrd_ib/var/state/dhcp

host1# touch /tmp/initrd_ib/var/state/dhcp/dhclient.leases

host1# cp /sbin/dhclient-script /tmp/initrd_ib/sbin

host1# cp /bin/uname /tmp/initrd_ib/bin

host1# cp /usr/bin/expr /tmp/initrd_ib/bin

host1# cp /sbin/ifconfig /tmp/initrd_ib/bin

host1# cp /bin/hostname /tmp/initrd_ib/bin

 Create a configuration file for the DHCP client (as described in Section 3.2.1.2) and place it
 under /tmp/initrd_ib/sbin. The following is an example of such a file (called
 dclient.conf):

 dhclient.conf:

The value indicates a hexadecimal number

interface "ib1" {

send dhcp-client-identifier \
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;

}

Step 9. Now you can add the commands for loading the copied modules into the file init. Edit
the file /tmp/initrd_ib/init and add the following lines at the point you wish the IB
driver to be loaded.

Warning! The order of the following commands (for loading modules) is critical.

echo “loading ipv6”

/sbin/insmod /lib/modules/ipv6.ko

echo “loading IB driver”

/sbin/insmod /lib/modules/ib/ib_addr.ko

/sbin/insmod /lib/modules/ib/ib_core.ko

/sbin/insmod /lib/modules/ib/ib_mad.ko

/sbin/insmod /lib/modules/ib/ib_sa.ko

/sbin/insmod /lib/modules/ib/ib_cm.ko

/sbin/insmod /lib/modules/ib/ib_uverbs.ko

/sbin/insmod /lib/modules/ib/ib_ucm.ko

/sbin/insmod /lib/modules/ib/ib_umad.ko

/sbin/insmod /lib/modules/ib/iw_cm.ko

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

121

/sbin/insmod /lib/modules/ib/rdma_cm.ko

/sbin/insmod /lib/modules/ib/rdma_ucm.ko

/sbin/insmod /lib/modules/ib/mlx4_core.ko

/sbin/insmod /lib/modules/ib/mlx4_ib.ko

/sbin/insmod /lib/modules/ib/ib_mthca.ko

/sbin/insmod /lib/modules/ib/ib_ipoib.ko

Step 10. Now you can assign an IP address to your IB device by adding a call to ifconfig or to
the DHCP client in the init file after loading the modules. If you wish to use the DHCP
client, then you need to add a call to the DHCP client in the init file after loading the IB
modules. For example:

 /sbin/dhclient -cf /sbin/dhclient.conf ib1

Step 11. Save the init file.

Step 12. Close initrd.
host1$ cd /tmp/initrd_ib

host1$ find ./ | cpio -H newc -o > /tmp/new_initrd_ib.img

host1$ gzip /tmp/new_init_ib.img

Step 13. At this stage, the modified initrd (including the IB driver) is ready and located at
/tmp/new_init_ib.img.gz. Copy it to the original initrd location and rename it
properly.

A.12 iSCSI Boot

Mellanox Boot over IB enables an iSCSI-boot of an OS located on a remote iSCSI Target. It has a
built-in iSCSI Initiator which can connect to the remote iSCSI Target and load from it the kernel
and initrd. There are two instances of connection to the remote iSCSI Target: the first is for get-
ting the kernel and intird via BoIB, and the second is for loading other parts of the OS via ini-
trd.

Note: Linux distributions such as SuSE Linux Enterprise Server 10 SP1 and Red Hat
Enterprise Linux 5.1 can be directly installed on an iSCSI target. At the end of
this direct installation, initrd is capable to continue loading other parts of the OS
on the iSCSI target. (Other distributions may also be suitable for direct installa-
tion on iSCSI targets.)

If you choose to continue loading the OS (after boot) through the HCA device driver, please verify
that the initrd image includes the HCA driver as described in Section A.11.

A.12.1 Configuring an iSCSI Target

Prerequisites

Step 1. Make sure that an iSCSI Target is installed on your server side.

Tip You can download and install an iSCSI Target from the following location:
 http://sourceforge.net/project/showfiles.php?group_id=108475&package_id=117141

Rev 1.20 Mellanox Technologies

122

Step 2. Dedicate a partition on your iSCSI Target on which you will later install the operating sys-
tem

Step 3. Configure your iSCSI Target to work with the partition you dedicated. If, for example, you
choose partition /dev/sda5, then edit the iSCSI Target cofiguration file /etc/ietd.conf
to include the following line under the iSCSI Target iqn line:
Lun 0 Path=/dev/sda5,Type=fileio

Tip The following is an example of an iSCSI Target iqn line:
Target iqn.2007-08.7.3.4.10:iscsiboot

Step 4. Start your iSCSI Target.

 Example:
host1# /etc/init.d/iscsitarget start

Configuring the DHCP Server to Boot From an iSCSI Target

Configure DHCP as described in Section A.6.1, “Configuring the DHCP Server”.

Edit your DHCP configuration file (/etc/dhcpd.conf) and add the following lines for the
machine(s) you wish to boot from the iSCSI Target:

Filename "";

option root-path "iscsi:iscsi_target_ip::::iscsi_target_iqn";

The following is an example for configuring an IB device to boot from an iSCSI Target:

host host1{

filename "";

option dhcp-client-identifier = \
fe:00:55:00:41:fe:80:00:00:00:00:00:00:00:02:c9:03:00:00:0d:41;

option root-path "iscsi:11.4.3.7::::iqn.2007-08.7.3.4.10:iscsiboot";

}

A.12.2 iSCSI Boot Example of SLES 10 SP1 OS

This section provides an example of installing the SLES 10 SP1 operating system on an iSCI target
and booting from a diskless machine via BoIB. Note that the procedure described below assumes
the following:

• The client’s LAN card is recognized during installation
• The iSCSI target can be connected to the client via LAN and InfiniBand

Prerequisites

See Section A.10.1 on page 117.

Warning! The following procedure modifies critical files used in the boot procedure. It
must be executed by users with expertise in the boot process. Improper applica-
tion of this procedure may prevent the diskless machine from booting.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

123

Procedure

Step 1. Load the SLES 10 SP1 installation disk and enter the following parameters as boot
options:
netsetup=1 WithISCSI=1

Step 2. Continue with the procedure as instructed by the installation program until the “iSCSI Ini-
tiator Overview” window appears.

Rev 1.20 Mellanox Technologies

124

Step 3. Click the Add tab in the iSCSI Initiator Overview window. An iSCSI Initiator Discrovery
window will pop up. Enter the IP Address of your iSCSI target and click Next.

Step 4. Details of the discovered iSCSI target(s) will be displayed in the iSCSI Initiator Dis-
crovery window. Select the target that you wish to connect to and click Connect.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

125

Tip If no iSCSI target was recognized, then either the target was not properly
installed or no connection was found between the client and the iSCSI target.
Open a shell to ping the iSCSI target (you can use CTRL-ALT-F2) and verify that
the target is or is not accessible. To return to the (graphical) installation screen,
press CTRL-ALT-F7.

Step 5. The iSCSI Initiator Discovery window will now request authentication to access the iSCSI
target. Click Next to continue without authentication unless authentication is required.

Step 6. The iSCSI Initiator Discovery window will show the iSCSI target that got connected to.
Note that the Connected column must indicate True for this target. Click Next. (See figure
below.)

Rev 1.20 Mellanox Technologies

126

Step 7. The iSCSI Initiator Overview window will pop up. Click Toggle Start-Up to change start
up from manual to automatic. Click Finish.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

127

Step 8. Select New Intallation then click Finish in the Installation Mode window.

Step 9. Select the appropriate Region and Time Zone in the Clock and Time Zone window, then
click Finish.

Rev 1.20 Mellanox Technologies

128

Step 10. In the Installation Settings window, click Partitioning to get the Suggested Partitioning
window.

Step 11. Select Base Partition Setup on This Proposal then click Next.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

129

Step 12. In the Expert Partitioner window, select from the IET-VIRTUAL-DISK device the row
that has its Mount column indicating ‘swap’, then click Delete. Confirm the delete opera-
tion and click Finish.

Step 13. In the pop-up window click No to approve deleting the swap partition. You will be
returned to Installation Settings window. (See image below.)

Rev 1.20 Mellanox Technologies

130

Step 14. If you wish to change additional settings, click the appropriate item and perform the
changes, and click Accept when done.

Step 15. In the Confirm Installation window, click Install to start the installation. (See image
below.)

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

131

Step 16. At the end of the file copying stage, the Finishing Basic Installation window will pop up
and ask for confirming a reboot. You can click OK to skip count-down. (See image
below.)

Note: Assuming that the machine has been correctly configured to boot from BoIB via
its connection to the iSCSI target, make sure that gPXE has the highest priority in
the BIOS boot sequence.

Rev 1.20 Mellanox Technologies

132

Step 17. Once the boot is complete, the Startup Options window will pop up. Select SUSE Linux
Enterprise Server 10 then press Enter.

Step 18. The Hostname and Domain Name window will pop up. Continue configuring your
machine until the operating system is up, then you can start running the machine in normal
operation mode.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

133

Step 19. (Optional) If you wish to have the second instance of connecting to the iSCSI Target go
through the IB driver, copy the initrd file under /boot to a new location, add the IB
driver into it after the load commands of the iSCSI Initiator modules, and continue as
described in Section A.11 on page 118.

Warning! Pay extra care when changing initrd as any mistake may prevent the client
machine from booting. It is recommended to have a back-up iSCSI Initiator on a
machine other than the client you are working with, to allow for debug in case
initrd gets corrupted.

 In addition, edit the init file (that is in the initrd zip) and look for the following string
if ["$iSCSI_TARGET_IPADDR"] ; then

 iscsiserver="$iSCSI_TARGET_IPADDR"

fi

 Now add before the string the following line:
iSCSI_TARGET_IPADDR=<IB IP Address of iSCSI Target>

 Example:
iSCSI_TARGET_IPADDR=11.4.3.7

Rev 1.20 Mellanox Technologies

134

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

135

Appendix B: Performance Troubleshooting

B.1 PCI Express Performance Troubleshooting

For the best performance on the PCI Express interface, the adapter card should be installed in an x8
slot with the following BIOS configuration parameters:

• Max_Read_Req, the maximum read request size, is 512 or higher
• MaxPayloadSize, the maximum payload size, is 128 or higher

Note: A Max_Read_Req of 128 and/or installing the card in an x4 slot will signifi-
cantly limit bandwidth.

To obtain the current setting for Max_Read_Req, enter:

setpci -d "15b3:" 68.w

If the output is neither 2000 nor 2020, then a BIOS update is needed.

To obtain the PCI Express slot (link) width and speed, enter:

setpci -d "15b3:" 72

1. If the output is neither 81 nor 82 card, then the card is NOT installed in an x8 PCI Express slot.
2. The least significant digit indicates the link speed:

- 1 for PCI Express Gen 1 (2.5 GT/s)
- 2 for PCI Express Gen 2 (5 GT/s)

Note: If you are running InfiniBand at QDR (40Gb/s 4X IB ports), you must run PCI
Express Gen 2.

B.2 InfiniBand Performance Troubleshooting

InfiniBand (IB) performance depends on the health of IB link(s) and on the IB card type. IB link
speed (10Gb/s or SDR, 20Gb/s or DDR, 40Gb/s or QDR) also affects performance.

Note: A latency sensitive application should take into account that each switch on the
path adds ~200nsec at SDR, and 150nsec for DDR.

1. To check the IB link speed, enter:
 ibstat

Check the value indicated after the "Rate:" string: 10 indicates SDR, 20 indicates DDR, and 40 indicates
QDR.

Rev 1.20 Mellanox Technologies

136

2. Check that the link has NO symbol errors since these errors result in the re-transmission of pack-
ets, and therefore in bandwidth loss. This check should be conducted for each port after the
driver is loaded. To check for symbol errors, enter:

 cat /sys/class/infiniband/mthca0/ports/1/counters/symbol_error

The command above is performed on Port 1 of the module mthca0. The output value should be 0 if no
symbol errors were recorded.

3. Bandwidth is expected to vary between systems. It heavily depends on the chipset, memory, and
CPU. Nevertheless, the full-wire speed should be achieved by the host.

- With IB @ SDR, the expected unidirectional full-wire speed bandwidth is ~900MB/sec.
- With IB @ DDR and PCI Express Gen 1, the expected unidirectional full-wire speed bandwidth is

~1400MB/sec. (See Section B.1.)
- With IB @ DDR and PCI Express Gen 2, the expected unidirectional full-wire speed bandwidth is

~1800MB/sec. (See Section B.1.)
- With IB @ QDR and PCI Express Gen 2, the expected unidirectional full-wire speed bandwidth is

~3000MB/sec. (See Section B.1.)

To check the adapter's maximum bandwidth, use the ib_write_bw utility.
To check the adapter's latency, use the ib_write_lat utility.

Note: The utilities ib_write_bw and ib_write_lat are installed as part of Mellanox
OFED.

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

137

Appendix C: ULP Performance Tuning

C.1 IPoIB Performance Tuning

This section provides tuning guidelines of TCP stack configuration parameters in order to boost
IPoIB and IPoIB-CM performance.

Without tuning the parameters, the default Linux configuration may significantly limit the total
available bandwidth below the actual capabilities of the adapter card. The parameter settings
described below will increase the ability of Linux to transmit and receive data.

• Generally, if you increase the MTU (maximum transmission unit in bytes) you get better perfor-
mance. The following MTUs are suggested (use ifconfig to modify the MTU):
- IPoIB 2044 bytes
- IPoIB-CM 64K bytes

• Copy the following lines to (a new file) ipoib_perf.conf:
net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

Load the file using the following command:
sysctl -p <path>/ipoib_perf.conf

Note: The parameter settings above were tested using several benchmarks and yielded
performance improvements. However, some kernels may require different
parameter values.

C.2 MPI Performance Tuning

To optimize bandwidth and message rate running over MVAPICH, you can set tuning paramters
either using the command line, or in the configuration file:
/usr/mpi/<compiler>/mvapich-<mvapich-ver>/etc/mvapich.conf

Tuning Parameters in Configuration File

Edit the mvapich.conf file with the following lines:

VIADEV_USE_COALESCE=1

VIADEV_COALESCE_THRESHOLD_SQ=1

VIADEV_PROGRESS_THRESHOLD=2

Rev 1.20 Mellanox Technologies

138

Tuning Parameters via Command Line

The following command tunes MVAPICH parameters:

host1$ /usr/mpi/gcc/mvapich-<mvapich-ver>/bin/mpirun_rsh -np 2 \
-hostfile /home/<username>/cluster \

VIADEV_USE_COALESCE=1 VIADEV_COALESCE_THRESHOLD_SQ=1 \
VIADEV_PROGRESS_THRESHOLD=2 \
/usr/mpi/gcc/mvapich-<mvapich-ver>/tests/osu_benchmarks-<osu-ver>/osu_bw

The example assumes the following:

• A cluster of at least two nodes. Example: host1, host2
• A machine file that includes the list of machines. Example:
host1$ cat /home/<username>/cluster

host1

host2

host1$

 Mellanox OFED Stack for Linux User’s Manual

Mellanox Technologies Rev 1.20

139

Glossary

The following is a list of concepts and terms related to InfiniBand in general and to Subnet Manag-
ers in particular. It is included here for ease of reference, but the main reference remains the Infini-
Band Architecture Specification.

Channel Adapter (CA)

An IB device that terminates an IB link and executes transport functions. This may be an HCA (Host CA)
or a TCA (Target CA).

IB Devices

Integrated circuit implementing InfiniBand compliant communication.

IB Cluster/Fabric/Subnet

A set of IB devices connected by IB cables.

In-Band

A term assigned to administration activities traversing the IB connectivity only.

LID

An address assigned to a port (data sink or source point) by the Subnet Manager, unique within the sub-
net, used for directing packets within the subnet.

Local Device/Node/System

The IB Host Channel Adapter (HCA) Card installed on the machine running IBDIAG tools.

Local Port

The IB port of the HCA through which IBDIAG tools connect to the IB fabric.

Master Subnet Manager

The Subnet Manager that is authoritative, that has the reference configuration information for the subnet.
See Subnet Manager.

Multicast Forwarding Tables

A table that exists in every switch providing the list of ports to forward received multicast packet. The
table is organized by MLID.

Standby Subnet Manager

A Subnet Manager that is currently quiescent, and not in the role of a Master Subnet Manager, by agency
of the master SM. See Subnet Manager.

Subnet Administrator (SA)

An application (normally part of the Subnet Manager) that implements the interface for querying and
manipulating subnet management data.

Rev 1.20 Mellanox Technologies

140

Subnet Manager (SM)

One of several entities involved in the configuration and control of the subnet.

Unicast Linear Forwarding Tables (LFT)

A table that exists in every switch providing the port through which packets should be sent to each LID.

	Table of Contents
	List of Tables
	Revision History
	Preface
	Intended Audience
	Document Organization
	Documentation Conventions
	Related Documentation
	Support and Updates Webpage

	1 Mellanox OFED Overview
	1.1 Introduction to Mellanox OFED
	1.2 Mellanox OFED Package
	1.2.1 ISO Image
	1.2.2 Software Components
	1.2.3 Firmware
	1.2.4 Directory Structure

	1.3 Architecture
	1.3.1 HCA Drivers
	1.3.2 Mid-layer Core
	1.3.3 ULPs
	1.3.4 MPI
	1.3.5 InfiniBand Subnet Manager
	1.3.6 Diagnostic Utilities
	1.3.7 Performance Utilities
	1.3.8 Mellanox Firmware Tools

	1.4 Quality of Service

	2 Installation
	2.1 Hardware and Software Requirements
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Downloading Mellanox OFED
	2.3 Installing Mellanox OFED
	2.3.1 Pre-installation Notes
	2.3.2 Installation Script
	2.3.3 Installation Procedure
	2.3.4 Installation Results
	2.3.5 Post-installation Notes

	2.4 Updating Firmware After Installation
	2.5 Uninstalling Mellanox OFED

	3 IPoIB
	3.1 Introduction
	3.2 IPoIB Configuration
	3.2.1 IPoIB Configuration Based on DHCP
	3.2.1.1 DHCP Server
	3.2.1.2 DHCP Client

	3.2.2 Static IPoIB Configuration
	3.2.3 IPoIB Mode Configuration

	3.3 Manually Configuring IPoIB
	3.4 Subinterfaces
	3.4.1 Creating a Subinterface
	3.4.2 Removing a Subinterface

	3.5 Verifying IPoIB Functionality
	3.6 The ib-bonding Driver
	3.6.1 Using the ib-bonding Driver

	3.7 Testing IPoIB Performance

	4 RDS
	4.1 Overview
	4.2 RDS Configuration

	5 SDP
	5.1 Overview
	5.2 libsdp.so Library
	5.3 Configuring SDP
	5.3.1 How to Know SDP Is Working
	5.3.2 Monitoring and Troubleshooting Tools

	5.4 Environment Variables
	5.5 Converting Socket-based Applications
	5.6 Testing SDP Performance

	6 SRP
	6.1 Overview
	6.2 SRP Initiator
	6.2.1 Loading SRP Initiator
	6.2.2 Manually Establishing an SRP Connection
	6.2.3 SRP Tools - ibsrpdm and srp_daemon
	6.2.4 Automatic Discovery and Connection to Targets
	6.2.5 Multiple Connections from Initiator IB Port to the Target
	6.2.6 High Availability (HA)
	6.2.7 Shutting Down SRP

	7 MPI
	7.1 Overview
	7.2 Prerequisites for Running MPI
	7.2.1 SSH Configuration

	7.3 MPI Selector - Which MPI Runs
	7.4 Compiling MPI Applications
	7.5 OSU MVAPICH Performance
	7.5.1 Requirements
	7.5.2 Bandwidth Test Performance
	7.5.3 Latency Test Performance
	7.5.4 Intel MPI Benchmark

	7.6 Open MPI Performance
	7.6.1 Requirements
	7.6.2 Bandwidth Test Performance
	7.6.3 Latency Test Performance
	7.6.4 Intel MPI Benchmark

	8 Quality of Service
	8.1 Overview
	8.2 QoS Architecture
	8.3 Supported Policy
	8.4 CMA features
	8.5 IPoIB
	8.6 SDP
	8.7 RDS
	8.8 SRP
	8.9 OpenSM Features

	9 OpenSM - Subnet Manager
	9.1 Overview
	9.2 opensm Description
	9.2.1 Syntax
	9.2.2 Environment Variables
	9.2.3 Signaling
	9.2.4 Running opensm
	9.2.4.1 Running OpenSM As Daemon

	9.3 osmtest Description
	9.3.1 Syntax
	9.3.2 Running osmtest

	9.4 Partitions
	9.4.1 File Format

	9.5 Routing Algorithms
	9.5.1 Effect of Topology Changes
	9.5.2 Min Hop Algorithm
	9.5.3 Purpose of UPDN Algorithm
	9.5.3.1 UPDN Algorithm Usage

	9.5.4 Fat-tree Routing Algorithm
	9.5.5 LASH Routing Algorithm
	9.5.6 DOR Routing Algorithm
	9.5.7 Routing References
	9.5.8 Modular Routine Engine

	9.6 Quality of Service Management in OpenSM
	9.6.1 Overview
	9.6.2 Advanced QoS Policy File
	9.6.3 Simple QoS Policy Definition
	9.6.4 Policy File Syntax Guidelines
	9.6.5 Examples of Advanced Policy File
	9.6.6 Simple QoS Policy - Details and Examples
	9.6.6.1 IPoIB
	9.6.6.2 SDP
	9.6.6.3 RDS
	9.6.6.4 iSER
	9.6.6.5 SRP
	9.6.6.6 MPI

	9.6.7 SL2VL Mapping and VL Arbitration
	9.6.8 Deployment Example

	9.7 QoS Configuration Examples
	9.7.1 Typical HPC Example: MPI and Lustre
	9.7.2 EDC SOA (2-tier): IPoIB and SRP
	9.7.3 EDC (3-tier): IPoIB, RDS, SRP

	10 Diagnostic Utilities
	10.1 Overview
	10.2 Utilities Usage
	10.2.1 Common Configuration, Interface and Addressing
	10.2.2 IB Interface Definition
	10.2.3 Addressing

	10.3 ibdiagnet - IB Net Diagnostic
	10.3.1 SYNOPSYS
	10.3.2 Output Files
	10.3.3 ERROR CODES

	10.4 ibdiagpath - IB diagnostic path
	10.4.1 SYNOPSYS
	10.4.2 Output Files
	10.4.3 ERROR CODES

	Appendix A: Boot over IB (BoIB)
	A.1 Overview
	A.2 Supported Mellanox HCA Devices
	A.3 Tested Platforms
	A.4 BoIB in Mellanox OFED
	A.5 Burning the Expansion ROM Image
	A.6 Preparing the DHCP Server
	A.7 Subnet Manager - OpenSM
	A.8 TFTP Server
	A.9 BIOS Configuration
	A.10 Operation
	A.11 Diskless Machines
	A.12 iSCSI Boot

	Appendix B: Performance Troubleshooting
	B.1 PCI Express Performance Troubleshooting
	B.2 InfiniBand Performance Troubleshooting

	Appendix C: ULP Performance Tuning
	C.1 IPoIB Performance Tuning
	C.2 MPI Performance Tuning

	Glossary

