
Creating user manuals
for use in collaborative design

Harold Thimbleby
Middlesex University
Bounds Green Road

London, UK
Tel: +44 181 362 6061; Email: harold@mdx.ac.uk

ABSTRACT computer support to guarantee the correctness (and
continuing editability) of their documentation. Serious
accidents have occurred with very simple manuals done by
hand [1]. Our own work has found further flaws in the
A320 Flight Crew Operating Manual (FCOM).

User manuals are usually written by technical authors after
the design of the device has been committed for
production. If the manual’s review leads to insight into the
design, it is too late. Meanwhile, if the design is modified,
the manual may be inaccurate. This paper describes an
example language for creating accurate and complete
manuals from formal specifications. We show how it can
be used to improve part of the Flight Crew Operating
Manual for the Airbus A320 fly-by-wire airplane. The
technique is easy to implement, can be generalised to other
domains, and contributes to concurrent engineering
practice—increasing common ground between engineers,
users and HCI practitioners.

PREVIOUS WORK
The work described here builds on earlier efforts:
HyperDoc [8] is an interactive device simulator that
generates interactive assistance, hypertext manuals, and
also supports sophisticated design analysis in Mathematica;
Manual Writer [9] is a simple program taking Prolog
system specifications and managing the technical authors’
and engineers’ concurrent revision and editing.

Keywords These approaches are restricted to finite state machine
(FSM) descriptions. This is not as problematical as it may
sound, since FSMs need never be represented explicitly by
the designers—they can be constructed in Mathematica or
Prolog. However, FSMs lack structure and the design of a
good manual is a hard problem. We have had some success
generating statechart-based manuals automatically, but it
seems better to use a higher level approach than FSMs.

User manuals, formal specification,
concurrent engineering.

INTRODUCTION
User manuals are the scapegoat of bad system design.
Systems with bad user interfaces are difficult to explain
clearly, how ever skillful the manual’s technical authors.
Many guidelines have been proposed to improve user
manuals, notably Carroll’s work [2]. It seems, however,
that most attempts to improve manuals take the design of
the system for granted. Maybe Carroll’s minimal manual
idea could be used to drive design: if a better manual is
shorter, then a better design might lend itself to being
explained in a briefer manual [7]. As pointed out in [7], to
do this assumes concurrent engineering practice. Writing
the manual after the design has been finalised is too late
(even if writing proceeds in parallel with system
implementation). Insights technical authors and others have
reading the manual are too late.

An alternative approach is to use sophisticated natural
language generation, such as IDAS [5]. There is scope for
both approaches in technical authoring, but in contrast to
us, these approaches typically rely on world knowledge
databases, whereas we wish to emphasise accuracy and
mathematical tractability, and simplicity.

EXAMPLE: ORIGINAL A320 MANUAL
We give a verbatim exerpt from the A320 FCOM Brakes
and Antiskid, 1.32.30, Rev 15, Seq 001 (quoted in [3]):

ALTERNATE BRAKING WITHOUT ANTI-SKID

The anti-skid system is deactivated:Computer science is increasingly moving towards formal
specification, where the design of a system is described
mathematically, analysed, and only then transformed into
software, firmware or hardware. Formal methods may be
required in military and safety critical applications. Though
this may improve the technical quality of the delivered
product, it adds yet another step in the design process, and
makes the inital design work even less accessible to users
and non-technical experts, including user interface
designers. What is required is a fast way to move from
formal specification to user manual.

• electrically (A/SKID and N/W STRG sw OFF or
power supply failure or BSCU failure)

• or hydraulically (Y+G sys to lo press, the
brakes are supplied by the brake
accumulators only).

Note unexplained abbreviations such as Y+G, and that the
phrase “A/SKID and N/W STRG sw OFF or power
supply failure or BSCU failure” has at least three
different interpretations.

Ladkin took the A320 FCOM and derived a specification
of the braking subsystem [3]. Part of this specification
looks like this: (A/S off and N/W STRG off) or power
supply failure or BSCU failure or (green
lowpress and yellow lowpress).

We propose an approach that takes a specification of the
device as a set of predicates (as in TLA [4]) and
automatically writes a (hypertext) minimal manual. As
systems become more complex it is essential to have

Ladkin’s reverse engineering exposed many problems with
the FCOM. Reverse engineering is not necessary where a
specification is otherwise available.

switching off. We are exploring the use of circuit design
tools to analyse user manuals to relate usability
requirements back to specifications.

CONCLUSIONSTHE MANUAL SPECIFICATION LANGUAGE
The approach easily generates an improved extract for the
A320 FCOM. Had such a system been available when the
A320 was designed, user interface specialists and pilots
would have been able to address some of the design issues
that are now so obvious. Had the A320 specification design
changed as a result of these insights, the manual could have
been updated almost instantaneously. This sort of leverage
must be a major contribution to the effectiveness and
acceptability of iterative design in industry.

The manual language allows arbitrary propositional
statements using Boolean connectives and other operators,
such as [e] which is true iff e is a contingency. An
example statement is: "Normal without A/S" = Normal
& ¬Antiskid

Explanations are generated in several ways. For example, ?
generates a tabular explanation, as illustrated below.

The explanation operators are not just print statements—
they are more sophisticated. Explaining Normal without
A/S means explaining Normal, which itself needs
explaining, involving further terms such as “…and not
BSCU failure…” The full explanation has to be minimised,
and we use the Quine-McCluskey Algorithm to do so [6].
Certain terms are rewritten, so we can explain ¬(failure1
or failure2…) as “All systems OK.” Similarly, the
engineers may wish to write in terms of Y or G (as in the
FCOM extract above!) but the user may prefer to read
clearer text. Designers require various checks, for instance
that all states of the device are covered by the manual; such
checks can now be made part of the manual.

Given that the approach is so simple to implement, one
wonders why similar methods are not yet available to
system designers to improve their effectiveness in
collaboration with user interface experts. Though the
arguments for the approach seem overwhelming in safety-
critical applications like the FCOM, the approach can also
increase quality in everyday devices such as consumer
electronics (cf, [9]).

Acknowledgements
Peter Ladkin contributed enormously to the approach
taken.

REFERENCESThis paper does not have space to show how rewrite rules
and tables are used to clarify factorisable expressions of the
form A(B+C), etc. These simplifications also require
computer support to be done correctly and well.

1. J. André, “Can structured formatters prevent train
crashes?” Electronic Publishing—Origination,
Dissemination and Design, 2(3):169–173, 1989.

EXAMPLE: AUTOMATICALLY GENERATED MANUAL 2. J. M. Carroll, The Nurnberg Funnel: Designing
Minimalist Instruction for Practical Computer Skill, MIT
Press, 1990.

ALTERNATE BRAKING WITHOUT ANTI-SKID
Alternate braking without anti-skid mode is
achieved when:

3. P. B. Ladkin, “Analysis of a technical description of the
Airbus A320 Braking System,” High Integrity Systems, in
press.

A/SKID switch set OFF and
N/W STRG switch set OFF

or BSCU failure
4. L. Lamport, “The Temporal Logic of Actions,” ACM
Transactions on Programming Languages and Systems,
16(3):872–923, 1994.

or power supply failure
or both green and yellow hydraulic pressure

insufficient and
autobrake is inoperative

5. E. Reiter, C. Mellish & J Levine, “Automatic generation
of technical documentation,” Applied Artificial
Intelligence, in press.

A table is used to unambiguously and clearly present the
logical expression (other forms are possible). Some text in
the original has been moved to reduce clutter, but is still
accessible via hypertext linking, e.g., every mention of
BSCU is linked to its explanation, “The double channel
Brake Steering Contol … has modes operative or
failure.”

6. W. V. Quine, “A way to simplify truth functions,”
American Mathematical Monthly, 62:627–631, 1955.

7. H. W. Thimbleby, User Interface Design, Addison-
Wesley, 1990.

8. H. Thimbleby & M. Addison, “Intelligent adaptive
assistance and its automatic generation,” Interacting with
Computers, in press.

As described here, there is no scope for fresh editorial
contributions from technical authors. If a phrase generated
by the process can be improved, once it is, the link from the
specification is lost, and with that, all guarantees that it was
correct. This problem has been solved elsewhere [9].

9. H. Thimbleby & P. B. Ladkin, “A Proper Explanation
When You Need One,” in M. A. R. Kirby, A. J. Dix & J. E.
Finlay (eds), Proceedings BCS Conference HCI’95,
X:107–118, 1995.

The Quine-McCluskey Algorithm finds use in simplifying
digital circuits. As well as being minimal (hence fast and
cheap), logic is usually designed to eliminate race
conditions and other problems. Race conditions occur in
user manuals: e.g., “Insert the plug and take care to switch
off first”—the user may insert the plug without first

