
Joram 5.2
User’s Guide

Last modified 03/03/2009 by ScalAgent D.T. release 5.2.1

Joram 5.2.1 User's Guide

Contents
Contents..2

 Figures ...8

1.Installation..10

1.1.Requirements..10

1.2.Getting Joram binary distribution...10

1.2.1.Directory structure and description...11

2.Using samples..12

2.1.Compiling JORAM samples...12

2.2.Running Joram samples..12

2.2.1.The classic samples..12

2.2.2.The chat sample..14

2.2.3.The distributed sample...15

2.2.4.The dotcom demo...16

2.2.5.The perfs samples...18

2.3.Using scripts...19

2.3.1.First step..19

2.3.2.Launching a JORAM platform..19

2.3.3.Launching the JORAM administration and monitoring tool..................................19

2.3.4.Launching a JORAM client...19

2.3.5.Running the classic samples using script files..20

2.4.Administration through XML scripts...21

2.4.1.Classic sample administration using XML script...21

3.Administration Guide..22

3.1.Introduction...22

3.2.Administration concepts..22

3.2.1.Overall view...22

3.2.2.User..23

3.2.3.Destinations...24

3.3.Platform configuration...25

3.3.1.Centralized configuration...26

3.3.2.Distributed configuration...27

 - 2 -

Joram 5.2.1 User's Guide

3.3.3.Stopping a server..28

3.3.4.Dynamic configuration...28

3.3.5.Logging configuration..31

3.4.High level administration...31

3.4.1.Administration “session”...32

3.4.2.Managing a user..33

3.4.3.User connectivity..33

3.4.4.Managing a destination...35

3.4.5.Managing a Queue..37

3.4.6.Managing a Topic..38

3.4.7.Managing the platform..38

3.5.JMX administration of Joram...39

3.6.ScriptsXML ...40

3.6.1.Administrator connection...40

3.6.2.Naming...41

3.6.3.User and connectivity...41

3.6.4.Destination...41

3.6.5.Destination security and naming...42

3.6.6.Example...42

4.Specialized destinations...44

4.1.Dead Message Queue...44

4.1.1.Dead message queue..44

4.1.2.Managing a Dead Message Queue...47

4.1.3.Running the “Dead Message Queue” sample...48

4.2.Hierarchical Topic...49

4.2.1.Hierarchical topic..49

4.2.2.Managing a Hierarchical Topic...50

4.2.3.Running the topic tree sample...51

4.3.Clustered Topic..52

4.3.1.Introduction...52

4.3.2.Managing a clustered topic..53

4.3.3.Running the “Clustered Topic” Sample..55

4.3.4.Using XML Scripts...56

4.4.Clustered Queue...57

4.4.1.Introduction...57

4.4.2.Managing a clustered queue..59

4.4.3.Running the “Clustered Queue” Sample..60

4.4.4.Using XML Scripts...62

 - 3 -

Joram 5.2.1 User's Guide

4.5.SchedulerQueue...63

4.5.1.Introduction...63

4.5.2.Managing a SchedulerQueue...63

4.5.3.Using a schedulerQueue..64

4.6.Mail queue and topic..64

4.6.1.Introduction...64

4.6.2.Managing a mail queue or topic...65

4.6.3.Using a mail queue or topic..66

4.6.4.Running the sample..66

4.7.MonitoringTopic...68

4.7.1.Introduction...68

4.7.2.Managing a MonitoringTopic..69

4.7.3.Running the sample..70

4.8.Collector queue and topic..70

4.8.1.Introduction...70

4.8.2.Managing a Collector destination..70

4.8.3.Using a collector destination...71

4.8.4.Running the sample..72

4.9.FTPQueue..72

4.9.1.Introduction...72

4.9.2.Managing a FTPQueue..73

4.9.3.Using a FTPQueue destination..74

4.9.4.Running the sample..74

5.Using SOAP...76

5.1.Platform configuration ..77

5.1.1.Configuration...77

5.1.2.Running the platform..77

5.2.Administering...78

5.2.1.Introduction...78

5.2.2.Setting a user...78

5.2.3.SOAP ConnectionFactory object...78

5.2.4.SOAP administrator..79

5.2.5.Accessing JNDI through SOAP..79

5.3.Configuring Tomcat...80

5.3.1.Getting Tomcat..80

5.3.2.Needed resources...80

5.3.3.Configuring Tomcat..80

5.4.Running the Soap Sample...81

 - 4 -

Joram 5.2.1 User's Guide

5.5.Running kJoram sample..82

5.5.1.Environment..82

5.5.2.Compiling the samples files...83

5.5.3.Installing the samples on the Pocket PC...83

5.5.4.Starting and administering the JORAM platform..84

6.Using a collocated server..85

6.1.Introduction...85

6.2.Configure a collocated server...85

6.3.Start a collocated server..85

6.4.Connect to the collocated server..86

6.4.1.Create local connections..86

6.4.2.Connect the administration module..86

6.5.Stop the collocated server...86

6.6.Start the embedding Java application..86

7.High-Availability...87

7.1.Platform Configuration...87

7.1.1.Clustered ScalAgent server configuration..87

7.1.2.Group communication..88

7.1.3.Joram server configuration..88

7.2.Platform startup..89

7.2.1.Host clock synchronization..89

7.3.Programming an external HA Joram client..89

7.3.1.Joram administration..90

7.3.2.JMS programming...90

7.4.Programming a collocated Joram client...90

7.4.1.Joram administration..90

7.4.2.Collocated client process...91

7.4.3.JMS programming...91

7.5.Running the “Joram H.A.” Sample..91

8.JNDI..93

8.1.Overview..93

8.2.Replication..93

8.2.1.Master ownership strategy...93

8.2.2.Lazy propagation strategy..94

8.2.3.Replicas synchronization...94

8.3.Distribution of the naming servers...95

8.4.Distribution of the naming contexts...96

 - 5 -

Joram 5.2.1 User's Guide

8.4.1.Context creation..96

8.4.2.Context name resolution..96

8.5.Configuration..96

8.6.Loose coupling configuration...98

9.Joram in JBoss...99

9.1.Joram installation...99

9.1.1.Libraries Joram JARs...99

9.1.2.Connector Joram RAR..99

9.2.MDB activation..99

9.2.1.JMSContainerInvoker..100

9.2.2.Joram ActivationSpec...102

9.2.3.Jboss ActivationSpec...104

9.3.Send and receive JMS messages..104

9.3.1.Jboss managing Joram connections..105

9.3.2.Joram managed connection factory..105

9.3.3.Resolving the connection factory..106

9.3.4.Resolving the destinations...106

10.Using Joram in WebLogic...107

10.1.Integrating WebLogic server with Joram..107

10.1.1.Installation...107

10.1.2.Administration and Deployment..110

10.1.3.JMS Module / Foreign Server...114

10.1.4.JNDI view...118

10.1.5.Patch WSL92..119

10.2.Test with a simple MDB..119

10.2.1.Build the Message-Driven Bean...120

10.2.2.Deploy SimpleMDB..122

10.2.3.Results...123

11.Using JMS Bridge...125

11.1.Bridging Joram 5 and XMQ..125

11.2.Concepts and implementation..126

11.2.1.Message exchange..126

11.2.2.Acknowledgment policy...127

11.2.3.Message selection...129

11.2.4.Connection failure handling...130

11.3.User manual..130

11.3.1.Configuring the foreign platform...131

 - 6 -

Joram 5.2.1 User's Guide

11.3.2.Configuring JORAM..131

11.3.3.Steps..132

11.3.4.Failures..132

11.4.WebSphere-MQ example..132

11.4.1.Configuring and starting JORAM...133

11.4.2.WebSphere MQ setup...133

11.4.3.Administering JORAM..134

11.4.4.The JORAM subscriber...134

11.4.5.The WebSphere MQ sender..135

11.5.Running the bridge sample...136

11.6.JORAM – XMQ JORAM example..137

11.6.1.Configuring and starting JORAM...137

11.6.2.Administering JORAM..138

11.6.3.The XMQ JORAM producer...139

11.6.4.The JORAM consumer..140

12.Working with sources distribution...142

12.1.Getting Joram sources...142

12.1.1.Getting a packaged version of Joram..142

12.1.2.Getting Joram from SVN...142

12.1.3.Directory structure and description...142

12.2.Compiling and shipping Joram...143

12.2.1.Compiling Joram...144

12.2.2.Compiling kJoram ..146

12.2.3.Compiling the administration tool...146

12.2.4.Generating the javadoc...146

12.2.5.Generating a distribution..146

12.2.6.Cleaning...147

 - 7 -

Joram 5.2.1 User's Guide

 Figures

Figure 1 - Classic samples configuration..13

Figure 2 - Chat sample configuration..14

Figure 3 - Distributed sample configuration.......................................15

Figure 4 - Dotcom sample configuration...16

Figure 5 - Web Server's interface..17

Figure 6 - Inventory Server's and Control Server's interfaces............17

Figure 7 - Customer Server's interfaces...18

Figure 8 - Delivery Server's interface..18

Figure 9 - Applications exchanging data through messaging............22

Figure 10 - Joram platform and clients...23

Figure 11 - A client connected to a server “through” a standard
ConnectionFactory..24

Figure 12 - A client accessing a server destination”through” a
standard Destination...25

Figure 13 - Messages on a queue sent to a DMQ................................45

Figure 14 - Dead message queue sample...48

Figure 15 - A Hierarchical topic..49

Figure 16 - A distributed Hierarchical topic.......................................50

Figure 17 - Topic tree sample...52

Figure 18 - A clustered topic...53

Figure 19 - Cluster sample configuration..55

Figure 20 - A cluster of queues balancing heavy deliveries...............58

Figure 21 - The mail sample..68

 - 8 -

Joram 5.2.1 User's Guide

Figure 22 - A Joram platform providing a SOAP access.....................76

Figure 23 - SOAP sample configuration..82

Figure 24 - kSOAP sample configuration..83

Figure 25 - JNDI replication..93

Figure 26 - Lazy propagation...94

Figure 27 - Replicas synchronization..94

Figure 28 - Distributed configuration..95

Figure 29 - Adding a new server..96

Figure 30 - A 3 servers configuration..97

Figure 31 - The 3 servers configuration replicas................................98

Figure 32 - A JORAM client communicating with a XMQ client.......125

Figure 33 - Bridge communication diagram......................................126

Figure 34 - Delivery rolled back by the JORAM bridge destination..128

Figure 35 - Delivery rolled back by the JORAM client application...129

Figure 36 - How selectors operate..130

Figure 37 - Bridge sample..136

Figure 38: Bridge Joram-Joram sample..137

 - 9 -

Joram 5.2.1 User's Guide

1. Installation

 Joram 5.0 includes:

 A messaging server (or MOM), providing the messaging functionalities: basically hosting
and routing the messages exchanged by the client applications.

 A JNDI compliant naming server, distributed (since release 4.1) persistent and reliable.

 Client classes allowing applications to access the MOM functionalities. Those interfaces
are defined by the JMS 1.1 specifications.

 A graphical administration and monitoring tool, allowing to modify and visualise the
state of a JORAM platform (made of one or many interconnected servers).

 A specific set of classes usable by client applications running on a J2ME environment.
This set of classes is JMS 1.1 like, and is called kJoram.

 Samples illustrating the various features provided by Joram.

 JCA 1.5 connector allowing deployment in J2EE 1.4 platform.

1.1. Requirements
Joram can run on a wide variety of platform, a typical hardware and software platform is:

Hardware requirements

 Year 2000 compliant 32-bit Intel based PC hardware (or equivalent)

 256 Mb RAM, 5 Gb disk,

 Communication hardware supporting TCP/IP

Software requirements

 Operating system: Linux, Windows 2000 and XP, etc.

 Connectivity: TCP/IP.

 Java environment: JDK 1.4 and later.

1.2. Getting Joram binary distribution
The packages are downloadable from the following location:

 http://forge.objectweb.org/project/showfiles.php?group_id=4 .

For release x.y.z, the following tar file is provided:

 joram-x.y.z.tgz, including the client and server libraries, as well as the graphical tool
library, the J2ME client library, the javadoc and the samples sources.

A package is expanded by UNIX users with the gunzip and tar commands; Windows
developers can use the Winzip utility.

 - 10 -

http://forge.objectweb.org/project/showfiles.php?group_id=4

Joram 5.2.1 User's Guide

1.2.1. Directory structure and description

Joram binary distribution

The distribution is expanded in a joram-x.y.z/ directory. It includes the following directories:

 apidoc/
 samples/

o bin/…
o config/…
o src/

 joram/…
 kjoram/…

 ship/lib/
 ship/licenses/

 - 11 -

Joram 5.2.1 User's Guide

2. Using samples

This chapter describes the samples provided with JORAM and for each, the architecture of the
underlying platform. The samples are provided with the JORAM distributions under the samples/
directory. It’s a good way to verify the correctness of Joram installation.

The samples/src/joram directory includes the samples codes of JORAM clients. Compiling
and launching are done with the ant command.

Configuration files are located in the samples/config directory. They might be edited and
adapted to your environment. For more information, please refer to the administration part of this
document (chapter 3). This directory contains:

 a3config.dtd, the DTD for server configuration;
 a3debug.cfg, a default logger configuration file;
 centralized_a3servers.xml, a configuration file for a centralized server architecture;
 distributed_a3servers.xml, a configuration file for a distributed servers architecture;
 soap_a3servers.xml, the configuration file for the SOAP samples server architecture;
 jndi.properties, a default configuration file for JNDI’s clients.
 soap_jndi.properties, the configuration file for JNDI’s SOAP clients;

The samples/bin directory provides Unix and Windows script files for launching JORAM servers
and clients if you don’t want to use ant targets.

All examples creates a samples/run where logging files and the persistence root (if any) are
created. Current configuration files are copied in this directory. When starting a platform with a
new configuration, or when a clean platform is expected, this directory should be removed.

The samples/src/kjoram directory includes the samples codes of kJORAM clients. Compiling
is done with the ant command, utility files are provided to Pocket PC users.

2.1. Compiling JORAM samples
The Joram samples need to be compiled. Under the samples/src/joram directory, simply type:

ant clean compile

This creates a samples/classes/joram/ directory holding the compiled classes. For removing
this directory, type:

ant clean

2.2. Running Joram samples

2.2.1. The classic samples

The JMS API provides a separate domain for each messaging approach, point-to-point or publish/
subscribe:

 The point-to-point domain is built around the concept of queues, senders and receivers.

 - 12 -

Joram 5.2.1 User's Guide

 The publish/subscribe domain is built around the concept of topic, publisher and
subscriber

 Additionally it provides an unified domain with common interfaces that enable the use of
queue and topic. This domain is defines the concept of producers and consumers.

This sample demonstrates the different messaging domains of JMS, point-to-point with a sender,
a receiver and a queue browser, publish/subscribe with a subscriber and a publisher, and unified
with messages producers and consumers.

The classic sample uses a very simple configuration (centralized) made of one server hosting a
queue and a topic. The server is administratively configured for accepting connections requests
from the anonymous user.

The platform is run in non persistent mode (property “Transaction” is set to
“fr.dyade.aaa.util.NullTransaction” in a3servers.xml configuration file).

Figure 1 - Classic samples configuration

Running the demo with Ant:

 For starting the platform:
ant reset single_server

 As defined in the configuration file (run/a3servers.xml) it launches a Joram server
without persistency. It creates a ConnectionManager, a TCP/IP entry point and a
JndiServer (port 16400); the ConnectionManager defines a default administrator
(username “root”, password “root”). The reset target is used to removes all out-of-date
data in the run directory.

 For running the admin code:
ant classic_admin

 This client connects to the Joram’s server, then creates 2 JMS destinations (a
queue and a topic) and an anonymous user. It defines 3 different
ConnectionFactory, one for each messaging domain.

 Each administered objects is then bound in JNDI.

 Using the point-to-point messaging domain:

o It uses the QueueConnectionFactory “qcf”, and the Queue “queue” retrieved
from JNDI.

o For running the sender sample, type “ant sender”; each time, it sends 10
messages to the defined queue.

o For running the browser sample, type “ant browser”; it allows to look messages
on queue without removing them.

 - 13 -

Joram 5.2.1 User's Guide

o For running the receiver sample, type “ant receiver”; each time, it consumes
10 messages from the queue. If there is not enough messages, it stops until new
messages are produced.

 Using the publish/subscribe messaging domain:

o It uses the TopicConnectionFactory “tcf”, and the Topic “topic” retrieved
from JNDI.

o For running the subscriber sample, type “ant subscriber”. It subscribes to the
defined topic, and then receives all messages later published on this topic.

o For running the publisher sample, type “ant publisher”. It publishes 10
messages on the topic.

 Using the unified messaging domain:

o It uses the common ConnectionFactory “cf”, and the Destination “queue”
and “topic” retrieved from JNDI.

o For running the consumer sample, type ”ant consumer”. It continuously reads
messages sent to the queue or the topic.

o For running the producer sample, type “ant producer”. It sends 10 messages to
the queue, and 10 messages to the topic.

2.2.2. The chat sample

The chat sample uses a very simple configuration (centralized) made of one server hosting a
single queue. The server is administratively configured for accepting connections requests from
the anonymous user.

The platform is run in non persistent mode (property “Transaction” is set to
“fr.dyade.aaa.util.NullTransaction” in a3servers.xml configuration file).

Figure 2 - Chat sample configuration

Running the demo:
 For starting the platform:

ant reset single_server

 For running the admin code:
ant chat_admin

 This client connects to the Joram’s server, and then creates a topic
and an anonymous user. It defines a TopicConnectionFactory. Each
administered objects is then bind in JNDI.

 - 14 -

Joram 5.2.1 User's Guide

 To start a chat client, type “ant chat1”. It launches a chat client with user1 speudo, then
each message typed at console is sent to the topic, and each message published on the
topic is written to the console.

 To start a second chat client, type “ant chat2”. It simply launches a chat client with
user2 speudo.

2.2.3. The distributed sample

The distributed sample illustrates Joram under a distributed architecture. Its configuration involves
three servers. The clients producing messages (sender and publisher) connect to server 0. The
clients consuming the messages (receiver and subscriber) connect to server 2. The destinations
they interact with are deployed on server 1. The platform is run in persistent mode. The provided
configuration locates all three servers on “localhost” host.

Figure 3 - Distributed sample configuration

Running the demo:
 Starting the configuration, type “ant reset servers”. It cleans the run directory the launches

the 3 servers. You can start separately each servers by typing:
ant reset

ant server0

ant server1

ant server2

 Running the admin code:
ant archi_admin

 Running the producers:
ant archi_sender

 - 15 -

Joram 5.2.1 User's Guide

ant archi_pub

 Running the consumers:
ant archi_receiver

ant archi_sub

2.2.4. The dotcom demo

The dotcom demo simulates what could be a commercial transaction involving many participants:

 Web server: server on which a customer order items.
 Customer server: centralizes the processing of the orders.
 Inventory server: checks if the items ordered are available.
 Billing server: centralizes the processing of the bank references.
 Control server: checks the bank references of the customers.
 Delivery server: receives the order ready for delivery.

The next picture shows the actors of this simulation and the destinations through which they
interact. The provided architecture is centralized. The platform runs in persistent mode.

Figure 4 - Dotcom sample configuration

Scenario:
1. A customer buys an item on a web site. The Web Server publishes the order on a topic to which

the Customer Server, the Inventory Server and the Billing Server have subscribed.

2. The Inventory Server checks if the item ordered is available and sends his answer back to the
Customer Server. The Billing Server forwards the order to the Control Server who will check the
bank references of the customer and send his answer back to the Billing Server. Then, the
Billing Server forwards that answer to the Customer Server.

 - 16 -

Joram 5.2.1 User's Guide

3. If the order has been validated by both Inventory Server and Billing Server, the Customer Server
forwards it to the Delivery Server for delivery.

Running the demo:
 Starting the configuration:

ant reset single_server

 Running the admin:
ant dotcom_admin

 Running the servers:
ant webServers

 Running the client:
ant webClient

The dotcom sample’s GUI:
A GUI allows to interact with the demo. Each time a server receives a message, its window
appears.

The WebServer's interface simulates the choice the user has to make between items: shoes,
socks, trousers, shirt and hat. He must select one and then Send the order or set an Other order.
The Send button must be pressed after the last order. It commits all previous orders. For
cancellation, the Cancel button rollsback the orders. The Quit button sends the quit command to
the other participants, closes the connections of the Web Server and terminates the program. Quit
doesn't kill the middleware, thus it is possible to simply restart the application without having to
relaunch the Agent server and the Admin.

Figure 5 - Web Server's interface

The Inventory and Control Servers windows allow to simulate the work of those servers by
validating or not the order they received.

Figure 6 - Inventory Server's and Control Server's interfaces

According to the results of previous controls, the Customer Server either will be able to ask for
delivery, or won't.

 - 17 -

Joram 5.2.1 User's Guide

Figure 7 - Customer Server's interfaces

Finally, if sent by the Customer Server, the order reaches the Delivery Server.

Figure 8 - Delivery Server's interface

2.2.5. The perfs samples

The perfs samples have been developed for checking Joram’s performances. What is actually
measured is the messages mean travel time (travel from the producer to the consumer). The
configuration used is centralized, made of one queue and one topic. For testing PTP and Pub/Sub
modes, the available clients are a Sender, a Publisher, a Receiver and a Subscriber.

These clients, as provided, are non transactional, subscriber is non durable. Of course these
parameters may be changed for testing various configurations. Tests might be run on a persistent
platform or a non persistent one.

The receiver and subscriber samples produce a PerfsFile file containing the mean messages
travel time (computed for groups of 10 messages in the PTP case, 50 messages in the Pub/Sub
case).

Starting the platform:
 Persistent platform:

ant reset server0

 Or non persistent platform:
ant reset single_server

 Running the admin code:
ant perfs_admin

Testing the PTP mode:
 Running the receiver:

ant perfs_receiver

 Running the sender:
ant perfs_sender

Testing the Pub/Sub mode:
 Running the subscriber:

ant perfs_sub

 Running the publisher:

 - 18 -

Joram 5.2.1 User's Guide

ant perfs_pub

2.3. Using scripts
In the previous sections, it has been explained how to launch the provided samples through Ant
targets. It is also possible to use the script files located in the samples/bin directory. This
section explains how to use those scripts.

2.3.1. First step

The first step consists in fixing the JAVA_HOME and the JORAM_HOME environment variables.
The JAVA_HOME property value must point to your Java installation directory. The
JORAM_HOME value must point to your JORAM directory (the directory actually containing the
samples/ sub-directories).

2.3.2. Launching a JORAM platform

Launching a JORAM platform with the scripts has the same effects as using the Ant targets.

Depending on the script, it will set the appropriate configuration: copy the rigth a3servers.xml
and jndi.properties from config/ directory in the created run/ directory, etc.

Those scripts are:

 single_server.[sh/bat] : copies the config/centralized_a3servers.xml
file as a3servers.xml and config/jndi.properties in run directory. If not
already done, creates the run/ directory. Then launches the non persistent server 0.

 server.[sh/bat] x : copies distributed_a3servers.xml as a3servers.xml
and jndi.properties as jndi.properties if not already done, creates the run/
directory if it does not exist, and launches the persistent server x.

 clean.[sh/bat] : deletes the a3servers.xml and jndi.properties files, deletes
the run/ directory.

When starting a new persistent server, the clean script must be executed in order to remove any
existing persistence root which may alter the way the server starts. When re-starting a stopped or
crashed persistent server, the clean script should not be called in order to keep the needed
persistence root.

2.3.3. Launching the JORAM administration and monitoring tool

Launching the graphical admin and monitoring tool is simply done by executing the admin.
[sh/bat] script. The tool may be launched before or after starting the JORAM platform.

This supposes that the administration tool has been compiled (by the CVS and sources package
users), and that the joramgui.jar library is available in the ship/lib/ directory. Also, the
admin GUI tool requires to use a 1.4 jdk.

The JORAM platform may be administered either directly through the tool, or still by launching the
appropriate administration client. Nothing prevent you from running an admin code and watching in
the tool the configuration of the platform.

2.3.4. Launching a JORAM client

The jmsclient script may be used for launching a client. It takes as argument the class of the client
to execute. For example, for launching the classic sender class:

jmsClient classic.ClassicSender

 - 19 -

Joram 5.2.1 User's Guide

Of course, this supposes that the samples have been compiled (and that the JORAM platform has
been administered for the classic samples, either by running the ClassicAdmin client, or by
using the administration graphical tool).

2.3.5. Running the classic samples using script files

The example below use '.sh' scripts on a Linux platform; if you use a Windows™ platform you may
use the corresponding '.bat' scripts. All theses scripts need the definition of JAVA_HOME and
JORAM_HOME environment variable:

• Set JAVA_HOME to the directory where JDK is installed.

• Set JORAM_HOME to the directory that you installed Joram (the directory containing the
ship and samples directories.

First cleans the persistence directory and configuration settings, then launches the server.

$> cd $JORAM_HOME/bin
$> ./clean.sh
== Cleaning the persistence directories and configuration settings ==

$> ./single_server.sh
== Launching a non persistent server#0 ==
AgentServer#0 started: OK

You can create all needed administered objects through the ClassicAdmin class.

$> ./jmsclient.sh classic.ClassicAdmin
== Launching the classic.ClassicAdmin client ==

Classic administration...
Admin closed.

Then you can send or receive messages using the Sender/Receiver or Publisher/Subscriber
classes; for example:

$> ./jmsclient.sh classic.Sender
== Launching the classic.Sender client ==

Sends messages on the queue...
10 messages sent.

$> ./jmsclient.sh classic.Receiver
== Launching the classic.Receiver client ==

Requests to receive messages...
Msg received: Test number 0
Msg received: Test number 1
Msg received: Test number 2
Msg received: Test number 3
Msg received: Test number 4
Msg received: Test number 5
Msg received: Test number 6
Msg received: Test number 7
Msg received: Test number 8
Msg received: Test number 9

 - 20 -

Joram 5.2.1 User's Guide

10 messages received.
You can launch the administration GUI JAMT using the admin.sh (respectively admin.bat) script:

$> ./admin.sh
== Launching the graphical administration tool ==

2.4. Administration through XML scripts
There is three way to deploy Joram's administered objects: the administration API, the graphical
administration tool (JAMT) and now the XML scripting capability.

This feature use the AdminModule to execute the corresponding XML script. The script allows
describing the administration connection, creating and binding administered objects (see
chapter 3.6).

2.4.1. Classic sample administration using XML script

The ant target classic_adminxml uses the AdminModule main static method to execute the
administration script, this script is equivalent to the ClassicAdmin code.

$> ant classic_adminxml
Buildfile: build.xml

init:

classic_adminxml:
 [copy] Copying 1 file to C:\cygwin\home\freyssin\owjoram\joram\samples\run

BUILD SUCCESSFUL
Total time: 3 seconds

In the script (see file samples/src/joram/classic/joramAdmin.xml) we described:

• The connection to Joram's configuration: a default TCP connection with hostname, port,
username and password.

• The connection factory and the JNDI binding:

• an unified TCPConnectionFactory named “cf”,

• a QueueTCPConnectionFactory named “qcf”

• and TopicTCPConnectionFactory named “tcf”.

• The anonymous user.

• The destinations with their JNDI binding and security settings: a queue and a topic with
freereader and freewriter settings.

 - 21 -

Joram 5.2.1 User's Guide

3. Administration Guide

3.1. Introduction
JORAM provides a messaging platform allowing distributed applications to exchange data through
message communication (Figure 9).

Figure 9 - Applications exchanging data through messaging

The messaging system takes care of distributing the data produced by an application to another
application. Applications do not need to know each other, or to be present at the same time.

In order to provide a standardized way to access its messaging functionnalities, JORAM
implements the set of classes and methods defined by the JMS API. JMS “client” applications may
then, without any modification, use JORAM messaging platform.

This document presents how to configure and start the underlying messaging platform, and how to
administer it so that it is usable by standard JMS clients.

3.2. Administration concepts

3.2.1. Overall view

A Joram messaging platform is constituted by one or many servers, interconnected, possibly
running on remote nodes (Figure 10).

 A Joram server is a Java process providing the messaging functionalities, and hosting
messaging destinations.

 A Joram JMS client is a Java process using the messaging functionalities through the
JMS interfaces. In order to do so it connects to a Joram server.

 - 22 -

Joram 5.2.1 User's Guide

Figure 10 - Joram platform and clients

The goal of administration is to start and configure the messaging platform so that it provides all
the features needed by the “client” applications. It is also to administer this platform so that
standard JMS clients can access it and use it for their messaging operations.

The basic administration tasks are creating and deleting physical destinations on the messaging
platform, setting or removing user’s access to this platform.

To have the platform usable by standard JMS clients, the administration phase also consists in
creating the javax.jms.ConnectionFactory and javax.jms.Destination administered
objects (see JMS specification, §4.2), and to bind those instances to a JNDI compliant naming
server.

3.2.2. User

A user access to a JORAM platform is fully described by:

 server parameters (such as host name and port number), identifying to which server of the
platform the user will connect;

 a protocol, used for the client – server communication (usually TCP, might be SOAP or
“local”, for collocated client and server);

 a user identification (name and password).

The actual “physical” connection is wrapped by a javax.jms.Connection instance. A JMS
Connection is created by calling the createConnection method on a
javax.jms.ConnectionFactory instance. It is this ConnectionFactory instance which
wraps the server and communication protocol parameters. This standard object allows to isolate
clients from the proprietary parameters needed for opening a connection with a messaging
platform (Figure 11).

 - 23 -

Joram 5.2.1 User's Guide

Figure 11 - A client connected to a server “through” a standard ConnectionFactory

A connection is opened by calling the ConnectionFactory.createConnection method. You
can either use the method specifying an explicit user identity (login name and password) or
assume the default identity (login “anonymous”, password “anonymous”). The default identity may
be adjusted client side by setting the JoramDfltLogin and JoramDfltPassword properties.

If the user identification (either anonymous – anonymous, or name – password) is unknown
server side, the createConnection methods won’t succeed and will throw a
JMSSecurityException.

Allowing a client access to the platform requires then:

1. to create the appropriate ConnectionFactory instance wrapping the parameters of a server
of the plaform, and of the communication protocol;

2. to bind this instance in a name space such as JNDI server so that users may later retrieve it;

3. to set the client as a user on this server.

3.2.3. Destinations

Client applications exchange messages not directly but through destinations. A destination is,
server side, an instance of an object receiving messages from producers and answering to
consuming requests from consumers. As shown on Figure 12, a destination may be deployed on
any server of a configuration, whatever the servers the clients are connected to.

Server-side physical destinations are “represented” client side by javax.jms.Destination
instances. A Destination instance wraps the parameters of the corresponding physical
destination, and allows clients to be isolated from the proprietary parameters of a physical server
side destination (Figure 12).

 - 24 -

Joram 5.2.1 User's Guide

Figure 12 - A client accessing a server destination”through” a standard Destination

A destination might either be a “queue” or a “topic”. Messaging semantics is what makes the
difference (check any documentation about message-oriented-middleware or the JMS spec §5
and §6):

• Queue: each messages is read only by a single client.

• Topic: All clients that have previously subscribed to this topic are notified of the
corresponding message.

Beyond this main characteristic, each destination may have a particular semantic; Joram supply
many specific destinations : hierarchical or clustered destinations, bridge, etc.

The creation of a destination is then a three steps process:

1. first, creating the physical destination on a given server of the platform,

2. second, creating the corresponding javax.jms.Destination instance wrapping the
parameters of the server side destination,

3. third, binding the Destination instance in a name space such as a JNDI server, so that
clients may then retrieve it.

Once retrieved, a destination allows clients to perform operations according to their access rights.
A client set as a READER will be able to request messages from the destination (either as a
subscriber to a topic, or as a receiver or browser on a queue). A client set as a WRITER will be
able to send messages to the destination.

Dead Message Queue (DMQ)

The Dead Message Queue (DMQ) is a particular queue used to store the dead messages. A dead
message is a message that can not be delivered for various reasons (see chapter 4.1 below), The
DMQ can be configured at different levels: server, destination, etc.

3.3. Platform configuration
Configuring a JORAM messaging platform consists in defining the number of servers that will
constitute it, where they will run, and in defining services each will provide. The minimal
configuration is a single server configuration. A platform configuration is described by an XML
configuration file.

A dynamic configuration feature is available since Joram 4.2 , it allows to modify a Joram platform
at run-time by adding and removing servers.

Server services

The services a server may host are:

 - 25 -

Joram 5.2.1 User's Guide

 A connection manager service, managing the connection requests from “external”
clients. This service may also authorize the connection of an administrator client,
authenticated by a name and a password. It is required on any server accepting at least a
client connection. At the platform level at least one server must accept an administrator
connection, meaning that at least one server must host a connection manager service
authorizing an administrator connection.

 A TCP proxy service, allowing TCP clients to connect to the server. This service takes as
argument a port number, defining on which port the TCP connection requests should be
made.

 A JNDI service, listening to a given port, providing a naming server to clients for binding
and retrieving administered objects. It is required on one of the platform servers if clients
and administrators intend to use JORAM’s naming server. If this service is provided by
none of the platform’s servers, that means that clients and administrators do not intend to
use JNDI, or that they will use an other JNDI implementation than the one provided by
JORAM.

3.3.1. Centralized configuration

The example below sets a configuration made of one server running on host localhost. This
server, identified by the number 0, is named s0. It provides a connection manager service allowing
an administrator identified by root – root to connect, and a TCP proxy service listening on port
16010. A JNDI service is also provided, listening to JNDI requests on port 16400.

<?xml version="1.0"?>
<config>
 <property name=”Transaction” value=”fr.dyade.aaa.util.NullTransaction”/>
 <server id="0" name="S0" hostname="localhost">
 <service
 class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args=”root root”/>
 <service
 class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer"
 args="16400"/>
 </server>
 </config>

The above platform is non persistent, meaning that if it crashes and is then re-started, pre-crash
data is lost. To have a platform able to retrieve its pre-crash state when re-starting, it should run in
persistent mode. If message persistence is required, this is the mode to use (see below).

In order to allow a standard JNDI access to administrators and clients, a jndi.properties file
is provided. It must be accessible to the administrators and clients through their classpath.

For the above configuration, this file looks as follows:

java.naming.factory.initial fr.dyade.aaa.jndi2.client.NamingContextFactory
java.naming.factory.host localhost
java.naming.factory.port 16400

It allows retrieving the naming context through:

javax.naming.Context jndiCtx = new javax.naming.InitialContext();

 - 26 -

Joram 5.2.1 User's Guide

Running a platform

The configuration file is named a3servers.xml, and it must be accessible through the
classpath. Then, the server is launched by typing:

java fr.dyade.aaa.agent.AgentServer 0 ./s0

Configuring a persistent server

In order to configure a persistent server you have to change the Transaction property in
a3servers.xml configuration file. For example you may use fr.dyade.aaa.util.NTransaction
class.

When such a persistent server is stopped or crashes, there are two options when re-starting it:

 Either it is expected to resume the operations it was involved in before the crash, in which
case the persistence directory s0 should not be deleted; it may happen that a Lock file in
this directory remains and should be removed.

 Or it is a bright new server that is expected to start, in which case the persistence
directory s0 should be totally removed.

3.3.2. Distributed configuration

A distributed configuration made of three persistent server (as on figure 2) looks as follows:

<?xml version="1.0"?>
<config>
 <property name=”Transaction” value=”fr.dyade.aaa.util.NTransaction”/>
 <domain name="D1"/>
 <server id="0" name="S0" hostname="localhost">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer"
 args="16400"/>
 </server>
 <server id="1" name="S1" hostname="host1">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 </server>
 <server id="2" name="S2" hostname="host2">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"/>
 </server>
</config>

This configuration is made of 3 persistent servers, each running on a given node (host0, host1 and
host2). All are part of the same domain (multiple domains might be needed for very large
configurations). The server 0 of the configuration provides the same services as server 0 of the
previous centralized configuration. Server 1 allows TCP connection on its local 16010 port, no
administrator access, and no JNDI server. Server 2 allows client connections (thanks to the

 - 27 -

Joram 5.2.1 User's Guide

connection manager service) but the TCP protocol is not supported (the protocol might then be
SOAP or “local”).

The jndi.properties file needed by administrators and clients should look as follows:

java.naming.factory.initial fr.dyade.aaa.jndi2.client.NamingContextFactory
java.naming.factory.host host0
java.naming.factory.port 16400

Running a platform

Each host on which a server of the configuration will run must have a copy of the
a3servers.xml file, and this copy must be accessible through the classpath.

Then, the servers of the configuration are launched one by one:

 On node 0:
java fr.dyade.aaa.agent.AgentServer 0 ./s0

 On node 1:
java fr.dyade.aaa.agent.AgentServer 1 ./s1

 On node 2:
java fr.dyade.aaa.agent.AgentServer 2 ./s2

Warning: Be careful, removing the persistence directory of one server in a distributed
configuration may cause damages.

3.3.3. Stopping a server

A method is provided for stopping a given server of the administered JORAM platform. If the
server to stop is the server to which the administrator is connected, the admin session is
automatically terminated and closed.

Stopping server 0:

AdminModule.stopServer(0);

3.3.4. Dynamic configuration

The dynamic configuration feature is available from the Joram version 4.2. It allows to modify a
Joram platform at run-time by adding and removing servers. As the servers can be gathered into
several domains you can also add and remove domains.

Adding a new server

You can dynamically configure your Joram platform by adding new Joram servers. This is a two
steps operation:

1. define the new server in the platform configuration using the Joram administration API

2. start the new server

Let's take an example in order to illustrate how it works. This simple scenario starts from a very
simple Joram platform configuration that contains only one server called S0. This configuration is
defined in Joram user guide (chapter 3.3.1).

<?xml version="1.0"?>
<config>
 <property name="Transaction" value="fr.dyade.aaa.util.NullTransaction"/>
 <server id="0" name="S0" hostname="localhost">

 - 28 -

Joram 5.2.1 User's Guide

 <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root
root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
 </server>
</config>

Server definition
The definition of a new server is programmatically done using the class AdminModule from
Joram's administration API (package org.objectweb.joram.jms.admin).

import org.objectweb.joram.client.jms.admin.AdminModule;
First you need to connect the AdminModule to the Joram server S0:

AdminModule.connect("localhost", 16010, "root", "root", 60);
In order to define a new server you must specify in which domain the server is added. As the initial
configuration doesn't define any domain, you have to add a first domain to the platform
configuration.

A domain is defined by three parameters:

1. its name (unique inside a platform)

2. the name of an existing server that will be the first server belonging to this domain. When
this server already belongs to a domain, it becomes the router between this domain and
the new domain.

3. the port used by the first server to communicate with the other servers from this domain
(none at the beginning)

The following code adds the domain D0 that contains the server S0. The port used by S0 to
communicate inside D0 is 17770.

AdminModule.addDomain("D0", "S0", 17770);
Once the domain D0 is added you can add a new server S1 into this domain. A server is defined
by five parameters:

1. the identifier of the server (unique inside a platform)

2. the address or name of the host where the server is running

3. the name of the domain where the server is added

4. the port used by the server to communicate with other servers inside the domain

5. its name (may be not unique)

AdminModule.addServer("localhost", 1, "D0", 17771, "S1");
Now the server S1 has been added you need to get the overall configuration of the platform in
order to start S1.

String platformConfig = AdminModule.getConfiguration();
The configuration is returned as a String which content is:

<?xml version="1.0"?>
<!DOCTYPE config SYSTEM "a3config.dtd">

<config>

 <domain name="D0" network="fr.dyade.aaa.agent.SimpleNetwork"/>

 - 29 -

Joram 5.2.1 User's Guide

 <server hostname="localhost" id="1" name="S1">
 <network domain="D0" port="17771"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root
root"/>
 </server>

 <server hostname="localhost" id="0" name="S0">
 <network domain="D0" port="17770"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root
root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
 </server>

</config>
As you can see, the initial platform configuration has been extended with the definition of a new
domain D0 and a new server S1.

Store this configuration into a file a3servers_updated.xml. This file is necessary to start the
new server S1.

File platformConfigFile = new File("a3servers_updated.xml");
FileOutputStream fos = new FileOutputStream(platformConfigFile);
PrintWriter pw = new PrintWriter(fos);
pw.println(platformConfig);
pw.flush();
pw.close();
fos.close();

Server start
The server S1 is started in the same way as described in Joram user guide (see 3.3.2, running a
platform):

1. copy the file a3servers_updated.xml in the directory where you want to start S1 and
rename it to a3servers.xml. You also need to put the DTD file a3config.dtd in the
same directory.

1. customize the configuration of S1 by modifying the file a3servers.xml. For example,
you can add services (e.g. distributed JndiServer).

2. start the server with the following commands:
 cd <S1_Running_Dir>

 java fr.dyade.aaa.AgentServer 1 ./s1

Removing a server

This is a two steps operation:

1. stop the server

2. remove the server from the platform configuration using the Joram administration API

Notice that you can also remove it first from the configuration and then stop it.

 - 30 -

Joram 5.2.1 User's Guide

Server stop
To stop a server you need to specify the identifier of the server. Notice that this operation is not
synchronous, i.e. the server is asynchronously stopped. The server may still be running a while
after the method stopServer returned.

AdminModule.stopServer(1);
Server removal
To remove a server from the platform configuration, you need to give the identifier of the server.
This operation destroys all the pending messages sent to the removed server through the whole
platform.

AdminModule.removeServer(1);
You can also remove a domain even if it is not empty. In this last case, the servers inside this
domain are also removed. So you have to stop them.

AdminModule.removeDomain("D0");
This last operation removes the domain D0 but not the server S0 because it is used to make the
dynamic configuration.

When you manipulate configurations with multiple domains by removing servers and/or domains,
be careful not to split your platform into several parts.

3.3.5. Logging configuration

JORAM uses Monolog (see http://www.objectweb.org/monolog/) for logging. Monolog is an API
which abstracts log operations from their implementation.

Logging is configured in an a3debug.cfg file. It has to be in the classpath of the client and of the
server (the server’s process as well as the client’s might be logged).

The a3debug.cfg configuration file defines the appenders used to log. By defaults, it logs on the
standard output but a file is usable instead.

This file also defines all the categories which are available for logging. These categories are:

 Agent logs (categories starting with fr.dyade.aaa.agent): these categories log what
happens in the low level messaging platform.

 MOM logs (categories starting with org.objectweb.joram.mom): these categories log what
happens in a JORAM server, more particularly:

 in the server’s proxies (org.objectweb.joram.mom.Proxy),

 in the server’s destinations (org.objectweb.joram.mom.Destination).

 JORAM logs (org.objectweb.joram.client.jms.Client category): this category logs JMS
client operations.

 JNDI logs (fr.dyade.aaa.jndi2): this category logs all JNDI operations, more particularly:

 in JNDI’s server side (fr.dyade.aaa.jndi2.server),

 in JNDI’s client side (fr.dyade.aaa.jndi2.client).

3.4. High level administration
When the messaging platform has been configured and started, the situation looks as follows:

 one or many interconnected servers run;

 each server may provide services for connecting and administering.

 - 31 -

http://www.objectweb.org/monolog/

Joram 5.2.1 User's Guide

At that point an administrator client needs to connect to the platform and further configure it for
allowing JMS clients to access and use it.

This administrator works either through a Java application using proprietary JORAM administration
methods (described in this section), or through a graphical interface provided since release 3.7
and documented separately (Erreur : source de la référence non trouvée).

When the administration process is performed by a Java application, it uses JORAM’s proprietary
administration methods and objects. Those objects are:

 org.objectweb.joram.client.jms.admin.AdminModule
 org.objectweb.joram.client.jms.admin.AdminHelper
 org.objectweb.joram.client.jms.admin.User
 org.objectweb.joram.client.jms.Queue
 org.objectweb.joram.client.jms.Topic

And the various connection factory objects located in:

 org.objectweb.joram.client.jms.local
 org.objectweb.joram.client.jms.soap
 org.objectweb.joram.client.jms.tcp

Exceptions describing failing administration requests are of this class:

 org.objectweb.joram.client.jms.admin.AdminException

3.4.1. Administration “session”

Administration operations (calls to administration methods) may be performed within an
administration “session”. Such a session is started when an administration connection is
established with the JORAM platform to administer.

The utility class for managing administrator sessions is
org.objectweb.joram.client.jms.admin.AdminModule.

TCP administrator connection

Such a connection is opened as follows:

AdminModule.connect(“host1”, 16010, “root”, “root”, 60);
This connects an application to a JORAM server running on “host1” and listening to port 16010
through the TCP protocol. It will work if the target server on “host1” provides the following services:

 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>

The last parameter of the connecting method (60), is the timer in seconds during which connecting
to the server is attempted. This timer will be useful is the server is not yet started when the
administration code is launched.

It is also possible to establish a “default” TCP connection to the server running on “localhost” and
listening to port 16010 as follows:

AdminModule.connect(“root”, “root”, 60);
If the connecting request finally fails because the server is not reachable, the methods throw a
ConnectException. If the administrator identification is incorrect, the methods throw an
AdminException.

Disconnecting the administrator

The administration session ends by calling:

 - 32 -

Joram 5.2.1 User's Guide

AdminModule.disconnect();
Any call to any administration method outside the AdminModule.connect() and
AdminModule.disconnect() boundaries will fail (a ConnectException will be thrown).

3.4.2. Managing a user

User identity

Users are manipulated through the helper class User from package
org.objectweb.joram.jms.admin. An instance of this class represents a given user and
provides methods for administering it.

Creating a user

 User.create(String name, String password, int server) is a static
method setting a user with a given identification on a given server, and creating the
corresponding User instance.

 User.create(String name, String password) is similar to the previous method,
except that it creates the user on the server the administrator is connected to (local
server).

User user = User.create(“name”, “pass”, 0);
 An AdminException is thrown if the user creation fails server side or

if the server is not part of the platform. A ConnectException is
thrown if the admin connection with the server is closed or lost.

Updating a user identity

 User.update(String newName, String newPass): updates the user
identification.

user.update(“newName”, “newPass”);
 An AdminException is thrown if the user has been deleted server

side, or if its new identification is already taken on its server. A
ConnectException is thrown if the admin connection with the server
is closed or lost.

Deleting a user

 User.delete(): unsets the user.

user.delete();
 The request is not effective if the user has already been deleted server

side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

3.4.3. User connectivity

A given user accesses the JORAM platform by connecting to a given server (set when actually
creating the user, last section). The connection might be of different kinds:

 either a TCP connection;

 or a SOAP connection (documented in Using SOAP specific documentation);

 or “collocated” (documented in Using a collocated server specific documentation).

The javax.jms.ConnectionFactory class is meant to determine to which server and through
which protocol a client application will connect when calling the createConnection method.

 - 33 -

Joram 5.2.1 User's Guide

Creating a ConnectionFactory instance for the TCP protocol

 TcpConnectionFactory.create(String host, int port): static method
creating a ConnectionFactory instance for accessing a server running on a given host
and listening to a given port.

 TcpConnectionFactory.create(): static method creating a ConnectionFactory
instance for accessing the server the administrator is connected to.

ConnectionFactory cnxFact = TcpConnectionFactory.create(
“localhost”, 16010);
 QueueTcpConnectionFactory.create(String host, int port): static method

creating a QueueConnectionFactory instance for accessing a server running on a
given host and listening to a given port.

 QueueTcpConnectionFactory.create(): static method creating a
QueueConnectionFactory instance for accessing the server the administrator is
connected to.

 TopicTcpConnectionFactory.create(String host, int port): static method
creating a TopicConnectionFactory instance for accessing a server running on a
given host and listening to a given port.

 TopicTcpConnectionFactory.create(): static method creating a
TopicConnectionFactory instance for accessing the server the administrator is
connected to.

 XATcpConnectionFactory.create(String host, int port): static method
creating a XAConnectionFactory instance for accessing a server running on a given
host and listening to a given port.

 XATcpConnectionFactory.create(): static method creating a
XAConnectionFactory instance for accessing the server the administrator is
connected to.

 XAQueueTcpConnectionFactory.create(String host, int port): static
method creating a XAQueueConnectionFactory instance for accessing a server
running on a given host and listening to a given port.

 XAQueueTcpConnectionFactory.create(): static method creating a
XAQueueConnectionFactory instance for accessing the server the administrator is
connected to.

 XATopicTcpConnectionFactory.create(String host, int port): static
method creating a XATopicConnectionFactory instance for accessing a server
running on a given host and listening to a given port.

 XATopicTcpConnectionFactory.create(): static method creating a
XATopicConnectionFactory instance for accessing the server the administrator is
connected to.

Setting the factory parameters

The following parameters may be set on a factory:

 Connecting timer: time (in seconds) during which connecting is attempted in case of
failures.

 Transaction pending timer: time (in seconds) during which a transacted JMS session
might be inactive before being automatically rolled back.

 Connection pending timer: time (in milliseconds) between two “ping” requests sent by the
connection to the server; a connection is kept alive server side during twice the value of
this parameter.

 - 34 -

Joram 5.2.1 User's Guide

Those parameters are accessible through a FactoryParameters object (class
FactoryParameters in package org.objectweb.joram.client.jms), obtainable by
calling the getParameters() method on the factories.

When a client detects a connection failure, it automatically tries to reconnect every 2 seconds,
during the period defined by the connecting timer parameter.

3.4.4. Managing a destination

Destinations are manipulated through the classes org.objectweb.joram.jms.Queue and
org.objectweb.joram.jms.Topic. An instance of one of these classes represents a given
destination and provides methods for administering it. Specialized destination management
requires additional classes (see specific documentation: 4).

Creating a destination: Queue or Topic

 Queue.create(int server): static method creating a queue on a given server, and
creating the corresponding Queue instance.

 Queue.create()is similar to the previous method, except that it creates the queue on
the server the administrator is connected to (local server).

 Topic.create(int server): static method creating a topic on a given server, and
creating the corresponding Topic instance.

 Topic.create()is similar to the previous method, except that it creates the topic on the
server the administrator is connected to (local server).

Queue queue = Queue.create();
Topic topic = Topic.create();

 An AdminException is thrown if the destination deployment fails
server side, or if the server is not part of the platform. A
ConnectException is thrown if the admin connection with the server
is closed or lost.

Creating a destination with a specified name

When creating a destination, queue or topic, you can specify an internal name1; if a destination
exists with the specified name it is returned to the user, in the contrary case it is created and
registered in the internal naming service.

 Queue.create(int server, String name)
Queue.create(String name): creates a queue on the given or default server with the
specified name. If the named queue already exists it is simply returned.

 Topic.create(int server, String name)
Topic.create(String name): creates a topic on the given or default server with the
specified name. If the named topic already exists it is simply returned.

Setting the configuration parameters

Options can be set using properties at queue/topic creation time, by sending a message to the
collector queue/topic or by Mbean queue/topic component. The following options are available:

 "period": defines the time in millisecond to run tasks at regular interval: cleaning of out-of-
date messages, etc.

Setting free access on a destination

 Destination.setFreeReading(): grants the READ right to all on the destination.

1 Not a JNDI's name.

 - 35 -

Joram 5.2.1 User's Guide

dest.setFreeReading();
 Destination.setFreeWriting(): grants the WRITE right to all on the destination.

dest.setFreeWriting();
 An AdminException is thrown if the destination has been deleted

server side. A ConnectException is thrown if the admin connection
with the server is closed or lost.

Unsetting free access on a destination

 Destination.unsetFreeReading(): removes the READ right to all on the
destination.

dest.unsetFreeReading();
 Destination.unsetFreeWriting(): removes the WRITE right to all on the

destination.

dest.unsetFreeWriting();
 An AdminException is thrown if the destination has been deleted

server side. A ConnectException is thrown if the admin connection
with the server is closed or lost.

Setting a right for a user on a destination

 Destination.setReader(User user): sets a given user as a reader on the
destination.

dest.setReader(user);
 Destination.setWriter(User user): sets a given user as a writer on the

destination.

dest.setWriter(user);
 An AdminException is thrown if the destination or the user does not

exist server side. A ConnectException is thrown if the admin
connection with the server is closed or lost.

Unsetting a right for a user on a destination

 Destination.unsetReader(User user): unsets a given user as a reader on the
destination.

dest.unsetReader(user);
 Destination.unsetWriter(User user): unsets a given user as a writer on the

destination.

dest.unsetWriter(user);
 An AdminException is thrown if the destination does not exist server

side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

Getting the access rights

 Destination.isFreelyReadable(): returns true if the READ right is granted to all
on the destination.

 Destination.isFreelyWriteable(): returns true if the WRITE right is granted to
all on the destination.

 - 36 -

Joram 5.2.1 User's Guide

 Destination.getReaders(): returns a List of users granted with the READ right on
the destination.

 Destination.getWriters(): returns a List of users granted with the WRITE right
on the destination.

 An AdminException is thrown if the destination does not exist server
side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

Handling the DMQ setting (see chapter 4.1)

 Destination.setDMQ(DeadMQueue): sets the given Dead Message Queue as the
default DMQ for the destination.

 Destination.getDMQ(): returns the default Dead Message Queue instance set for the
destination, null if none.

 An AdminException is thrown if the destination does not exist server
side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

Deleting a destination

 Destination.delete(): deletes the destination.

dest.delete ();
 The request is not effective if the destination does not exist server side.

A ConnectException is thrown if the admin connection with the
server is closed or lost.

3.4.5. Managing a Queue

Getting the state

 Queue.getPendingMessages(): returns the number of messages on the queue
waiting to be delivered.

 Queue.getPendingRequests():returns the number of “receive” requests on the queue
waiting for matching messages.

 An AdminException is thrown if the queue does not exist server
side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

Handling the queue threshold

The threshold value determine the maximum number of times a message can be denied. It allows
to avoid an erroneous message to be delivered infinitely; the guilty message is then forwarded to
the Dead Message Queue if any (deleted otherwise).

 Queue.setThreshold(int threshold): sets the threshold value for the queue.

 Queue.getThreshold(): returns the threshold value set on the queue (-1 for none).

 An AdminException is thrown if the queue does not exist server
side. A ConnectException is thrown if the admin connection with the
server is closed or lost.

Handling the queue limit

A maximum number of undelivered messages can be set for the queue. Additional messages are
forwarded to the Dead Message Queue if any (deleted otherwise).

 - 37 -

Joram 5.2.1 User's Guide

 Queue.setNbMaxMsg(int nbMaxMsg): sets the maximum number of undelivered
messages for the queue (-1 for no limit).

 Queue.getNbMaxMsg(): returns the maximum number of undelivered messages value
set on the queue (-1 for none).

3.4.6. Managing a Topic

A topic manages subsciptions. Subscription can be retrieved from User objects.

Getting the state

 Topic.getSubscriptions(): returns the number of active subscriptions on the topic.

 Topic.getSubscriberIds(): returns the list of user's proxy ids registered.

 An AdminException is thrown if the topic does not exist server side.
A ConnectException is thrown if the admin connection with the
server is closed or lost.

3.4.7. Managing the platform

Methods are also provided for getting information about how the platform has been configured.
Data is available at the platform, server, destination and user levels.

Getting the servers of the platform

 AdminModule.getServersIds(): returns a List containing the identifiers of all the
servers involved in the monitored JORAM platform.

 A ConnectException is thrown if the admin connection to the server
is closed or lost.

Handling default DMQ settings

 AdminModule.getDefaultDMQ(int serverId): returns the DeadMQueue instance
representing the default DMQ of a given server, null if none.

 An AdminException is thrown if the target server does not belong to
the platform. A ConnectException is thrown if the admin connection
to the server is closed or lost.

 AdminModule.getDefaultDMQ() is similar to the previous method, except that it
returns the default DMQ of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server
is closed or lost.

 AdminModule.getDefaultThreshold(int serverId): returns the default
threshold value of a given server.

 An AdminException is thrown if the target server does not belong to
the platform. A ConnectException is thrown if the admin connection
to the server is closed or lost.

 AdminModule.getDefaultThreshold() is similar to the previous method, except
that it returns the default threshold of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server
is closed or lost.

Getting the destinations

 AdminModule.getDestinations(int serverId): returns a List containing
Destination instances representing all the destinations deployed on a given server.

 - 38 -

Joram 5.2.1 User's Guide

 An AdminException is thrown if the target server does not belong to
the platform. A ConnectException is thrown if the admin connection
to the server is closed or lost.

 AdminModule.getDestinations() is similar to the previous method, except that it
returns the destinations of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server
is closed or lost.

Getting the users

 AdminModule.getUsers(int serverId): returns a List containing User instances
representing all the users set on a given server.

 An AdminException is thrown if the target server does not belong to
the platform. A ConnectException is thrown if the admin connection
to the server is closed or lost.

 AdminModule.getUsers() is similar to the previous method, except that it returns the
users of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server
is closed or lost.

3.5. JMX administration of Joram
You can configure your Joram server to export some MXBean, so you can monitor and handle it
through a JMX console. This example is designed in a JDK 1.5 environment with the integrated
JMX 1.2 implementation.

To launch a Joram server with JMX capabilities enabled, you just have to fix the environment
variable MXServer; for example typing -DMXServer=com.scalagent.jmx.JMXServer in the
command line.

In order to allow a remote access to theses beans, you may either declare the JMXRIHttpService
(com.scalagent.jmx.JMXRIHttpService class) in a3servers.xml configuration file or use
a standard adapter. For example, if using JDK1.5, you can declare
-Dcom.sun.management.jmxremote in the command line and then use the jconsole graphical
tool to browse the beans:

 - 39 -

Joram 5.2.1 User's Guide

Jconsole View
At starting you there is two nodes added in the MBean's tree:

• The first one, named AgentServer, describes the ScalAgent platform: domains and
networks, engine and agents.

• The second one, named Joram, allows the handling of Joram's users and destinations.

3.6. ScriptsXML
This feature allows to execute administration operation using an XML script. It is possible to create
and bind in JNDI connection factories, destinations and users. The complete DTD is available in
CVS: “joram/src/org/objectweb/joram/client/jms/admin/joramAdmin.dtd”.

3.6.1. Administrator connection

First, it needs to define the administration connection through a connect tag; you can define
various attributes:

• host: the DNS name or IP address of the machine hosting the server (default localhost).

• port: the listen port of the Joram's TCP service (default 16010).

• name: the user identity of administrator (default root).

• password: the password for the administrator user (default root).

• cnxTimer: time-out value in seconds for the connection (default 60).

• reliableClass: implementation class for the protocol between the client and the server.
By default it use the TCP protocol:

 org.objectweb.joram.client.jms.tcp.ReliableTcpClient.

 - 40 -

Joram 5.2.1 User's Guide

3.6.2. Naming

If you want to register all created objects in a JNDI's repository you have to declare an
InitiallContext element defining properties java.naming.factory.initial,
java.naming.factory.host and java.naming.factory.host.

3.6.3. User and connectivity

ConnectionFactory

Each ConnectionFactory is defined by an element with an attribute class specifying the classname
of the implementation:

• name: the name of the ConnectionFactory needed for later use in the script (building of
clustered destination's for example).

• classname: the implementation class, by default a TcpConnectionFactory.

The ConnectionFactory is completed by a protocol element (local, tcp or soap for example) and
usually a jndi binding:

• local: empty element defining a colocated connection.

• tcp: define the tcp settings for a TCPConnectionFactory:

• host and port: host address and listen port for server, by default
localhost:16010.

• reliableClass: the class implementation.

• soap: define the protocol settings for a SoapConnectionFactory.

• host and port: host address and listen port for server, by default
localhost:8080.

User

A user definition is a simple XML element, you must at least define name and password
properties:

• name: the name of the user needed for later use in the script (handling of destination's
rights for example).

• login, password: login and password for user, if the login is not fixed the name is used
by default.

• serverId: unique identifier of location server. If not set the user is created on the server
the administrator is connected.

• dmq, threshold: Dead Message Queue settings for the user.

3.6.4. Destination

The syntax allows to create queue, topic and Dead Message Queue, specialized destinations can
be deployed specifying the MOM's implementation class of the destination:

Queue

A queue definition defines some optional properties, it can be completed by JNDI or security
elements:

• name: the Joram's internal name for the queue.

• serverId: unique identifier of location server. If not set the queue is created on the
server the administrator is connected.

 - 41 -

Joram 5.2.1 User's Guide

• dmq, threshold: Dead Message Queue settings for the queue.

• NbMaxMsg:

• className: the real class name of the MOM's destination. By default a simple queue,
org.objectweb.joram.mom.dest.Queue.

Topic

A topic definition defines some optional properties, it can be completed by JNDI or security
elements:

• name: the Joram's internal name for the topic.

• serverId: unique identifier of location server. If not set the topic is created on the server
the administrator is connected.

• parent: the internal name of the hierarchical parent of this topic.

• className: the real class name of the MOM's destination. By default a simple topic,
org.objectweb.joram.mom.dest.Topic.

DMQueue

• name: the Joram's internal name for the Dead Message Queue.

• serverId: unique identifier of location server. If not set the DMQ is created on the server
the administrator is connected.

3.6.5. Destination security and naming

Destination element can be completed by security or naming settings:

freeReader

Grants the read right to all on this destination.

freeWriter

Grants the write right to all on this destination.

reader

Sets a user as a potential reader on the destination, the user name is given in the attribute user.

writer

Sets a user as a potential writer on the destination, the user name is given in the attribute user.

jndi

Registers the destination in JNDI context. The symbolic name is given in the attribute name.

property

Additional properties can be defined for destinations. Each property is an element with two
attributes: name and value.

3.6.6. Example

In the example below (from the classic sample) we first define an administration connection
through TCP to the local host on port 16010. The administrator's login is “root” and the password
is “root”.

Remark: as their values are the default ones, these parameter's definitions can be omitted.

 - 42 -

Joram 5.2.1 User's Guide

A TCPConnectionFactory (localhost:16010) is defined and bind in JNDI (name “cf”).

A user named “anonymous is created (password “anonymous”), then a queue named “queue” and
a topic named “topic” are created. All these objects are created on the default server. The Read
and write right are granted for all, the queue is bind in JNDI with the name “queue”, and the topic
with the name “topic”.

<JoramAdmin>
 <AdminModule>
 <connect hostName="localhost" port="16010" name="root" password="root"/>
 </AdminModule>

 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.TcpConnectionFactory">
 <tcp host="localhost" port="16010"/>
 <jndi name="cf"/>
 </ConnectionFactory>

 <User name="anonymous" password="anonymous"/>

 <Queue name="queue">
 <freeReader/>
 <freeWriter/>
 <jndi name="queue"/>
 </Queue>

 <Topic name="topic">
 <freeReader/>
 <freeWriter/>
 <jndi name="topic"/>
 </Topic>
</JoramAdmin>

 - 43 -

Joram 5.2.1 User's Guide

4. Specialized
destinations

4.1. Dead Message Queue

4.1.1. Dead message queue

Introduction

A dead message queue is a destination where dead messages are sent. A dead message is a
message located server side and considered as undeliverable for various reasons. Those reasons
are:

 the target destination does not exist,

 the sender does not have the writing right on the target destination,

 the message expires before it is delivered,

 the message is constantly denied by the consuming client,

 the maximum number of messages in the queue has been reached,

 the message has been deleted on the queue.

An application may also consider a message it got as to be sent to the DMQ. This “manual”
sending is allowed to any application.

The Figure 13Erreur : source de la référence non trouvée shows an example of DMQ usage. A
DMQ has been set as the DMQ of a given queue. This queue receives a message from a
producer and tries to deliver it to a consumer. This consumer keeps denying the received
message. When the number of delivery attempts overtakes a given threshold value, the message
is removed from the queue and sent to the DMQ.

 - 44 -

Joram 5.2.1 User's Guide

Figure 13 - Messages on a queue sent to a DMQ

Creating and setting a dead message queue

As any destination, a dead message queue may be deployed on any server of the configuration,
even if it is intended to log dead messages of destinations located on other servers.

The setting of a dead message queue may take place at various levels. A dead message queue
may be set as the dead message queue for:

 the destinations and users on a given server (it is then considered as the default DMQ for
this server),

 a given destination,

 a given user.

A threshold value may also be set. If set, this value is the number of times a message may be
delivered to a consumer before being considered as undeliverable. Its setting takes place at the
same levels as for DMQs:

 as the default value for the queues and subscribers of a given server,

 for a queue,

 for a user.

The settings for a given destination and a given user precede the default settings (see the
scenarios). No setting means that message is indefinitely delivered, even to failing consumers.

Scenarios

1. the target destination does not exist: the produced messages are sent to the producer’s DMQ if
set, or to the default producer server’s DMQ if set.

 - 45 -

Joram 5.2.1 User's Guide

2. the target destination is not writable: the produced messages are sent to the producer’s DMQ if
set, or to the default producer’s server’s DMQ if set, or to the destination’s DMQ if set, or to the
default destination’s server’s DMQ if set.

3. a message expires on a queue: it is sent to the queue’s DMQ if set or to the queue’s server’s
default DMQ if set.

4. a message on a queue reaches the maximum delivery attempts: it is sent to the queue’s DMQ if
set, or to the queue’s server’s default DMQ if set; the threshold value is the queue’s one if set, or
the queue’s server’s default one if set.

5. a message for a given subscriber expires: it is sent to the subscriber’s DMQ if set, or to the
subscriber’s server’s default DMQ if set.

6. a message for a given subscriber reaches the maximum delivery attempts: it is sent to the
subscriber’s DMQ if set, or to the subscriber’s server’s default DMQ if set; the threshold value is
the subscriber’s one if set, or the subscriber’s server’s default one if set.

Watching a dead message queue

Accessing a dead message queue through a JMS client means that the DMQ has preliminary
been bound in a name space like JNDI, as any “normal” destination. Also, watching a dead
message queue requires a JMS client granted with a READ access on it.

The client may consume or browse the queue. A DMQ behaves exactly as a “normal” queue. It
can even log its own messages as dead messages on other DMQs.

Dead messages carry special properties describing why they were considered as “dead”. Those
properties are:

 JMS_JORAM_ERRORCOUNT, this property is mapped to an integer telling the number of
consecutive errors which happened.

 JMS_JORAM_ERRORCODE_X, with 1 ≤ X ≤ ERRORCOUNT returns the error code of the
error number X.

 JMS_JORAM_ERRORCAUSE_X, with 1 ≤ X ≤ ERRORCOUNT is mapped to a string
detailing the error. This can be one of the following:

 Deleted destination, if the target destination of the message
could not be found,

 Destination is not writable, if the target destination of the
message did not accept the sender as a WRITER,

 Expired at XXX, if the message expired before delivery. The XXX
stands for a long number holding the date when the message expired.

 Undeliverable after X tries, if the number of delivery
attempts of the message overtook the threshold. The X is replaced by
the threshold value.

 Message deleted by an admin, if the message being dead is the
result of an admin deletion with queue.deleteMessage(String
msgId) or queue.clear() methods.

 Queue full, if the queue has reached its maximum number of
messages.

 Unexpected error, if there was an unexpected error, for example a
connection problem while using a mail queue.

The JMSXDeliveryCount property is also available for getting the number of delivery attempts
of the message, including the delivery to the DMQ consumer. All those properties are available
trough the dedicated Message methods. A typical check can be as following:

 - 46 -

Joram 5.2.1 User's Guide

// Getting a dead message through a DMQ consumer:
Message deadM = (Message) deadMconsumer.receive();

int errorCount = deadM.getIntProperty("JMS_JORAM_ERRORCOUNT");
for (int i = 1; i <= errorCount; i++) {
 System.out.println(deadM.getIntProperty("JMS_JORAM_ERRORCODE_" + i));
 System.out.println(deadM.getIntProperty("JMS_JORAM_ERRORCAUSE_" + i));

 // Do specific things if the message has expired.
 if(deadM.getIntProperty("JMS_JORAM_ERRORCODE_" + i) ==

MessageErrorConstants.EXPIRED) {
 ...
 }
}

4.1.2. Managing a Dead Message Queue

Creating a dead message queue

 DeadMQueue.create(int server): creates a DMQ on a given server, and
instantiates the corresponding DeadMQueue object.

 DeadMQueue.create() is similar to the previous method, except that it creates the
dead message queue on the server the administrator is connected to.

DeadMQueue dmq = DeadMQueue.create(0);
 An AdminException is thrown if the destination deployment fails

server side, or if the server is not part of the platform. A
ConnectException is thrown if the admin connection with the server
is closed or lost.

Setting a dead message queue

 AdminModule.setDefaultDMQ(int serverId, DeadMQueue dmq): sets a given DMQ as the
default DMQ for the destinations and users on a given server (set DMQ as null for
unsetting it).

 AdminModule.setDefaultDMQ(DeadMQueue dmq) is similar to the previous method
except that it sets the DMQ on the server the administrator is connected to.

AdminModule.setDefaultDMQ(0, dmq);
 A ConnectException is thrown if the admin connection to the server

is closed or lost. An AdminException is thrown if the server is not
known in the platform, or if the DMQ has been deleted server side.

 Destination.setDMQ(DeadMQueue dmq): sets a given DMQ as the DMQ for the
destination (set DMQ as null for unsetting it).

 User.setDMQ(DeadMQueue dmq): sets a given DMQ as the DMQ for the user (set DMQ
as null for unsetting it).

topic.setDMQ(dmq);
user.setDMQ(null);

 An AdminException is thrown if the destination or the user has been
deleted server side. A ConnectException is thrown if the admin
connection to the server is closed or lost.

 - 47 -

Joram 5.2.1 User's Guide

Setting a threshold value

 AdminModule.setDefaultThreshold(int serverId, int threshold): sets a given value as the
default threshold for the queues and users on a given server (set threshold to -1 for
unsetting it).

 AdminModule.setDefaultThreshold(int threshold) is similar to the previous method except
that it sets the threshold on the server the administrator is connected to.

AdminModule.setDefaultThreshold(0, 5);
 A ConnectException is thrown if the admin connection to the server

is closed or lost. An AdminException is thrown if the server is not
known in the platform.

 Queue.setThreshold(int threshold): sets a given value as the threshold for the queue.

 User.setThreshold(int threshold): sets a given value as the threshold for the user.

queue.setThreshold(5);
user.setThreshold(-1);

 An AdminException is thrown if the queue or the user has been
deleted server side. A ConnectException is thrown if the admin
connection to the server is closed or lost.

4.1.3. Running the “Dead Message Queue” sample

The dead message queue sample simulates various cases where messages are considered as
undeliverable. It involves a message producer, a failing consumer, and a DMQ watcher actually
consuming the messages on the DMQ.

The next picture shows the DMQ configuration. The configuration used is centralized and the
server run in non persistent mode

Figure 14 - Dead message queue sample

Running the demo:
 For starting the platform:

 - 48 -

Joram 5.2.1 User's Guide

ant reset single_server

 For running the admin code:
ant dmq_admin

 For launching the watcher:
ant dmq_watcher

 For launching the producer and the consumer:
ant dmq_client

4.2. Hierarchical Topic

4.2.1. Hierarchical topic

Introduction

The JMS specification allows topics to have a hierarchical structure such as the one shown in
Erreur : source de la référence non trouvée. The interest of such a structure is to allow a
subscriber to specifically choose the type of information it is interested in, by allowing it to
subscribe to the corresponding subtopic. To the contrary, a subscriber may want to get all the sub
information by subscribing to the topic root or father.

Figure 15 - A Hierarchical topic

Example
The example of Figure 15 shows a hierarchy of news. A subscriber to the Tennis topic would only
get the news concerning tennis, whereas a subscriber to the Sports topic would get the news
concerning tennis and soccer and sports in general. Also, a subscriber to the Business topic would
get business information only, whereas a subscriber to the News topic will get the business related
news, the sports related news, and news in general.

Creation
Creating such a hierarchy requires first to create the topics that will constitute it, then to notify each
topic of the hierarchy it is part of.

Each topic of the hierarchy may be bound in a name space such as JNDI, so that clients may then
retrieve them. Access rights are managed individually, on each topic of the hierarchy.

 - 49 -

Joram 5.2.1 User's Guide

Distributed deployment
To be noted, a hierarchy may be spread over many servers (Figure 16). A distributed architecture
introduces flexibility and availability. If server 1 is down, for example, the News and Business leafs
of the hierarchy would go on working. Subscribers to the news and to the business would get
information related to news and business (News subscribers would get nothing related to sports
until server 1 is started again).

Figure 16 - A distributed Hierarchical topic

4.2.2. Managing a Hierarchical Topic

Creating a hierarchical topic

Creating a hierarchical topic requires first to create all the topics of the hierarchy. If we consider
the example shown on figure 6:

Topic news = Topic.create(0);
Topic business = Topic.create(0);
Topic sports = Topic.create(0);
Topic tennis = Topic.create(0);
Topic soccer = Topic.create(0);

The hierarchy needs then to be constructed. Topics are linked two by two with the following
method:

 Topic.setParent(Topic father): sets a given topic as the father of an other topic.

Going back to our example:

business.setParent(news);
sports.setParent(news);
tennis.setParent(sports);
soccer.setParent(sports);

An AdminException is thrown if one of the topics has been deleted server side, or is already
part of a cluster, or if the son parameter already has a father. A ConnectException is thrown if
the admin connection with the server is closed or lost.

 - 50 -

Joram 5.2.1 User's Guide

Modifying a hierarchy

A hierarchy might be modified either by adding a new branch, or by modifying the existing ones, or
by removing the existing ones. The following method is provided:

 Topic.unsetParent(): unsets the father of the topic.

For example, for unsetting the link between the sports related informations and the general news:

sports.unsetParent();
Subscribers to the sports topic would still get the tennis and soccer news, but subscribers to
the news topic would not get anything related to sports.

A ConnectException is thrown if the admin connection with the server is closed or lost. An
AdminException is thrown if the topic has been deleted server side or does not have a father.

Also, removing a topic of the hierarchy removes the links this topic was involved in. For example,
by calling:

sports.delete();
the tennis and soccer topics become independent. News subscribers won’t get anything
related to tennis or soccer.

Getting info about cluster or hierarchy

 Topic.getClusterFellows(): returns a List of Topic instances representing other
topics part of a same cluster.

 Topic.getHierarchicalFather(): returns a Topic instance representing the topic
set as hierarchical father.

An AdminException is thrown if the topic does not exist server side. A
ConnectException is thrown if the admin connection with the server is closed or lost.

4.2.3. Running the topic tree sample

The topic tree sample illustrates the use of a hierarchical topic. A producer produces various
informations destinated to the leafs of a hierarchical topic: news, business, sports, tennis. A
consumer subscribes to all these leafs. Its subscription to the news will get all the messages. Its
subscription to the business information will only get the messages related to business. Its
subscription to the sports will get all the sports-related messages, and its subscription to the tennis
news will only get the messages about tennis.

The next picture shows the topic tree configuration. The configuration used is centralized and the
server run in non persistent mode.

 - 51 -

Joram 5.2.1 User's Guide

Figure 17 - Topic tree sample

Running the demo:
 For starting the platform:

ant reset single_server

 For running the admin code:
ant tree_admin

 For launching the consumer:
ant tree_consumer

 To start the producer:
ant tree_producer

4.3. Clustered Topic

4.3.1. Introduction

A non hierarchical topic might also be distributed among many servers. Such a topic, to be
considered as a single logical topic, it made of topics representatives, one per server. Figure 18
shows such a topic located on three servers.

Such an architecture allows a publisher to publish messages on a representative of the topic. In
the example shown in Figure 18, the publisher works with the representative on server 1. If a
subscriber subscribed to any other representative (on server 2 in our example), it will get the
messages produced by the publisher.

 - 52 -

Joram 5.2.1 User's Guide

Figure 18 - A clustered topic

Added value

This special feature introduces more flexibility and availability to Publish/Subscribe
communication. If server 0 is down, for example, the other representatives of the topic would go
on working. The publisher would successfully send its messages to the representative on server 1,
and a subscriber to the representative on server 2 would go on getting those messages.

Whereas a regular topic totally depends on the server it is deployed on, a clustered topic still partly
works when some (not all) of the servers it is deployed on are down.

Creation and configuration

Creating a clustered topic requires first to create all its representatives. When it is done, each
representative must be notified of the cluster it is part of.

Each clustered topic representative must be bound in a name space such as JNDI, so that clients
may then retrieve them. Clients do not access the single logical topic, but a given representative of
the cluster. Access rights are managed individually, on each topic of the cluster.

4.3.2. Managing a clustered topic

Creating a cluster

Creating a cluster requires first to create all the topics of the cluster. If we consider the example
shown on figure 8:

Topic topic0 = Topic.create(0);
Topic topic1 = Topic.create(1);
Topic topic2 = Topic.create(2);

The cluster needs then to be constructed. Topics are linked two by two with the following method:

 Topic.addClusteredTopic(Topic addedTopic): adds a given topic to a cluster by
joining it to a topic already belonging to the cluster, or chosen as the initiator of the cluster.

Going back to our example:

 - 53 -

Joram 5.2.1 User's Guide

topic0.addClusteredTopic(topic1);
topic0.addClusteredTopic(topic2);

An AdminException is thrown if one of the topics has been deleted server side, or if one of the
topics is part of a hierarchy. If the joining topic is already part of a cluster the command is silently
ignored.

A ConnectException is thrown if the admin connection with the server is closed or lost.

Modifying a cluster

A cluster might be modified either by adding a new topic to it, or by removing a topic from it. The
following method is provided:

 Topic.removeFromCluster(): notifies a given topic to leave the cluster it is part of.

For example, for removing the representative on server 2 from the cluster:

topic2.removeFromCluster();
A ConnectException is thrown if the admin connection with the server is closed or lost. An
AdminException is thrown if the topic has been deleted server side, or is not part of any cluster.

This method is similar to removing the topic representative through the Topic.delete()
method, except that it does not remove the topic. It simply becomes independent.

Using clustered JNDI's object

An object representing the cluster, and which may be bound to a JNDI server, should be
instantiated once the cluster is set server side. This object wraps the information allowing a given
client application to access the right topic of the cluster according to the server it connects to.

The ClusteredTopic object may be handled either through the administration API or the XML
scripting capabilities.

Let assume that there is three existing clustered topics topic0 (server 0), topic1 (server 1) and
topic2 (server 2), and the corresponding ConnectionFactory cf0, cf1 and cf2. The
ClusterConnectionFactory and ClusterTopic objects allow to handle the clustered objects as a
whole through a single object; each object is registered with a property specific to its location.

ClusterConnectionFactory clusterCF = new ClusterConnectionFactory();
clusterCF.addConnectionFactory(“server0”, cf0);
clusterCF.addConnectionFactory(“server1”, cf1);
clusterCF.addConnectionFactory(“server2”, cf2);
ictx.rebind(“clusterCF”, clusterCF);

ClusterTopic clusterTopic = new ClusterTopic();
clusterTopic.addDestination(“server0”, topic0);
clusterTopic.addDestination(“server1”, topic1);
clusterTopic.addDestination(“server2”, topic2);
ictx.rebind(“clusterTopic”, clusterTopic);

These objects can be registered in JNDI, then retrieved by a JMS client. When the client creates
the JMS connection through the clustered ConnectionFactory, the connection is established
depending of the “location” JVM property2. Then the client can create the Session and the
MessageConsumer; the physical topic used will also depend of the “location” property so the
connection and the topic will formed a coherent pair.

ConnectionFactory cf = ictx.lookup(“clusterCF”);
Topic clusterTopic = ictx.lookup(“clusterTopic”);

2 This property must be fixed according to the client needs; if it is not fixed the location is randomly set for later
usage.

 - 54 -

Joram 5.2.1 User's Guide

..
Connection cnx = cf.createConnection(...);
Session session = cnx.createSession(...);
MessageConsumer consumer = Session.createConsumer(clusterTopic);

Setting the access rights

Access rights to the cluster may be set individually, for each topic. They may also be set for the
whole cluster, using the same methods. Simply, instead of manipulating Topic instances, you
have to manipulate the ClusterTopic instance.

clusterTopic.setFreeReading();
clusterTopic.setFreeWriting();

4.3.3. Running the “Clustered Topic” Sample

This sample illustrates the use of Joram’s clustered topic. A clustered topic is a group of topics
deployed on different servers behaving as a unique “logical” topic. This sample configuration is
made of 3 servers, each server hosting a topic part of the cluster. The platform is run in persistent
mode. The provided configuration locates all three servers on “localhost” host.

Figure 19 - Cluster sample configuration

This sample code is located in the samples/src/joram/cluster/topic directory. In order to
run the demo described below you must go to the samples/src/joram directory.

The publisher connects to a server and publishes messages on the local topic of this server. The
subscriber connects to a server and subscribes to the local topic of this server. You can either fix
dynamically the server used for the connection (giving its identification 0, 1 or 2 when ant prompt
for it) or use a randomly chosen server (using the '-' key at prompt).

 - 55 -

JMS

JMS

Server 2Publisher

Subscriber

Server 1

Topic

Server 0

Topic

Topic

Subscriber

JMS

Joram 5.2.1 User's Guide

Running the demo

 For compiling the sample code:
ant clean compile

 For starting the configuration:
ant reset servers

 For running the administration code:
ant topic_cluster_admin

or
ant topic_cluster_adminxml

 For running a subscriber:
ant topic_cluster_subscriber

 For running a publisher
ant topic_cluster_publisher

Scenario:
When you launch a publisher on any server, all subscribers receives the messages sent.

4.3.4. Using XML Scripts

The XML scripting facility allows to create and bind in JNDI clustered ConnectionFactory and
Destination.

ClusterConnectionFactory

A ClusterConnectionFactory is defined through a ClusterCF element. It is made up of a set of
predefined ConnectionFactory element pointed out by their names. It can be completed by a JNDI
declaration.

First we have to define each ConnectionFactory, one for each server of the cluster. The
declaration below defines three ConnectionFactory (TcpConnectionFactory by default), cf0 allows
the connection to server #0, cf1 to server #1 and cf2 to server #2. Each ConnectionFactory can be
bound individually in JNDI.

 <ConnectionFactory name="cf0">
 <tcp host="localhost" port="16010"/>
 <jndi name="cf0"/>
 </ConnectionFactory>

 <ConnectionFactory name="cf1">
 <tcp host="localhost" port="16011"/>
 <jndi name="cf1"/>
 </ConnectionFactory>

 <ConnectionFactory name="cf2">
 <tcp host="localhost" port="16012"/>
 <jndi name="cf2"/>
 </ConnectionFactory>

 - 56 -

Joram 5.2.1 User's Guide

Second we can define the ClusterConnectionFactory associating each ConnectionFactory with a
location property3. The declaration above defines a ClusterConnectionFactory made up of three
TcpConnectionFactory named cf0, cf1 and cf2. The resulted ConnectionFactory is bound in JNDI
with the name clusterCF.

 <ClusterCF>
 <ClusterElement name="cf0" location="server0"/>
 <ClusterElement name="cf1" location="server1"/>
 <ClusterElement name="cf2" location="server2"/>
 <jndi name="clusterCF"/>
 </ClusterCF>

ClusterTopic

A clustered topic is made up of a set of Topic elements; each destination needs to be created
separately. It can be completed by a JNDI declaration.

 <Topic name="topic0" serverId="0">
 <jndi name="topic0"/>
 </Topic>
 <Topic name="topic1" serverId="1">
 <jndi name="topic1"/>
 </Topic>
 <Topic name="topic2" serverId="2">
 <jndi name="topic2"/>
 </Topic>

The destinations must be linked in the cluster. The declaration below defines a ClusteredTopic
made up of three Topic objects named topic0, topic1 and topic2. The location property allows to
associate each Topic object with the corresponding ConnectionFactory of the clusterCF object
(see paragraph “Using clustered JNDI's object” above). The resulted queue is bound in JNDI with
the name clusterTopic.

 <ClusterTopic>
 <ClusterElement name="topic0" location="server0"/>
 <ClusterElement name="topic1" location="server1"/>
 <ClusterElement name="topic2" location="server2"/>
 <freeReader/>
 <freeWriter/>
 <jndi name="clusterTopic"/>
 </ClusterTopic>

4.4. Clustered Queue

4.4.1. Introduction

The clustered queue feature provides a load balancing mechanism. A clustered queue is a cluster
of queues (a given number of queue destinations, knowing each other), exchanging messages
depending on their load. The figure 9 shows an example of a cluster made of two queues. An
heavy producer accesses its local queue (queue 0) and sends messages. The queue is also
accessed by a consumer but requesting few messages. It quickly becomes loaded and decides to
forward messages to the other queue (queue 1) of its cluster, which is not under heavy load. Thus,

3 This property allows to choose the right association between the ConnectionFactory and the representative of
clustered destinations (see paragraph “Using clustered JNDI's object”).

 - 57 -

Joram 5.2.1 User's Guide

the consumer on queue 1 also gets messages, and messages on queue 0 are consumed in a
quicker way.

Figure 20 - A cluster of queues balancing heavy deliveries

Basic mechanism

Each queue of a cluster periodically re-evaluates its load factor and sends the result to the other
queues of the cluster. When a queue hosts more messages than it is authorized to do, and
according to the load factors of the cluster, it distributes the extra messages to the other queues.
When a queue is requested to deliver messages but is empty, it requests messages from the
other queues of the cluster. This mechanism guarantees that no queue is hyper-active while some
others are lazy, and tends to distribute the work load among the servers involved in the cluster.

Creation and configuration

Creating a cluster of queues consists first in setting the cluster’s parameters for load-balancing,
then in creating the queues one by one, and finally in linking them as part of a same cluster. The
needed configuration parameters are:

 a period of time before activating an automatic revaluation of the queues’ load factor;

 a number of messages above which a queue is considered as over-loaded;

 a number of pending “receive” requests above which an empty queue requests messages
from the other cluster queues;

 a period of time during which a queue which requested something from the cluster queues
should not do it again.

Access rights to the cluster may be managed individually, for each queue, or for the whole cluster.

 - 58 -

Joram 5.2.1 User's Guide

4.4.2. Managing a clustered queue

Setting the clustered queue parameters

Prior to creating the cluster, the following parameters must be set individually for each queue of
the cluster4:

 “period”: period in ms between two activations of the load factor evaluation routine for the
queue;

 “producThreshold”: number of messages above which a queue is considered loaded, a
load factor evaluation launched, messages forwarded to other queues of the cluster;

 “consumThreshold”: number of pending “receive” requests above which a queue will
request messages from the other queues of the cluster;

 “autoEvalThreshold”: set to “true” for requesting an automatic revaluation of the queues’
thresholds values according to their activity;

 “waitAfterClusterReq”: time (in ms) during which a queue which requested something from
the cluster is not authorized to do it again.

Properties are set in a java.util.Properties instance. For example:

java.util.Properties prop = new java.util.Properties();
prop.setProperty(“period”, “10000”);
prop.setProperty(“producThreshold”, “60”);
prop.setProperty(“consumThreshold”, “2”);
prop.setProperty(“autoEvalThreshold”, “true”);
prop.setProperty(“waitAfterClusterReq”, “500”);

Creating the clustered queues

Creating a clustered queue consists first in creating the queues that will be part of it. For a cluster
of three queues, let’s create queue0, queue1 and queue2 and servers 0, 1 and 2 through the
Queue.create method.

String className = “org.objectweb.joram.mom.dest.ClusterQueue”;

Queue queue0 = Queue.create(0, “queue0”, className, prop);
Queue queue1 = Queue.create(1, “queue1”, className, prop);
Queue queue2 = Queue.create(2, “queue2”, className, prop);

The next step consists in clustering the queues. Queues are linked two by two using Queue class
with the following method:

 addClustered(Queue addedQueue): adds a given queue to a cluster by joining it to a
queue already belonging to the cluster, or chosen as the initiator of the cluster.

Going back to our example:
queue0.addClusteredQueue(queue1);
queue0.addClusteredQueue(queue2);

An IllegalArgumentException is thrown by this latest method if one of the queues
parameters is not a valid Joram queue. An AdminException is thrown if one of the queues does
not exist server side, or if the joining queue is already part of a cluster. A ConnectException is
thrown if the connection with the server is lost.

4 Each queue can have a different configuration depending of the characteristics of the server, or the number of
producer/consumer, etc.

 - 59 -

Joram 5.2.1 User's Guide

Using clustered JNDI's object

An object representing the cluster, and which may be bound to a JNDI server, should be
instantiated once the cluster is set server side. This object wraps the information allowing a given
client application to access the right queue of the cluster according to the server it connects to.

The ClusteredQueue object may be handled either through the administration API or the XML
scripting capabilities.

Let assume that there is three existing clustered queues queue0 (server 0), queue1 (server 1)
and queue2 (server 2), and the corresponding ConnectionFactory cf0, cf1 and cf2. The
ClusterConnectionFactory and ClusterQueue objects allow to handle the clustered objects as a
whole through a single object; each object is registered in the clustered object with a property
specific to its location.

ClusterConnectionFactory clusterCF = new ClusterConnectionFactory();
clusterCF.addConnectionFactory("server0", cf0);
clusterCF.addConnectionFactory("server1", cf1);
clusterCF.addConnectionFactory("server2", cf2);
ictx.rebind("clusterCF", clusterCF);

ClusterQueue clusterQueue = new ClusterQueue();
clusterQueue.addDestination("server0", queue0);
clusterQueue.addDestination("server1", queue1);
clusterQueue.addDestination("server2", queue2);

These objects can be registered in JNDI, then retrieved by a JMS client. When the client creates
the JMS connection through the clustered ConnectionFactory, the connection is established
depending of the “location” JVM property5. Then the client can create the Session and the
MessageConsumer; the physical queue used will also depend of the “location” property so the
connection and the queue will formed a coherent pair.

ConnectionFactory cf = ictx.lookup(“clusterCF”);
Queue queue = ictx.lookup(“clusterQueue”);
..
Connection cnx = cf.createConnection(...);
Session session = cnx.createSession(...);
MessageConsumer consumer = Session.createConsumer(queue);

Setting the access rights

Access rights to the cluster may be set individually, for each queue. They may also be set for the
whole cluster, using the same methods. Simply, instead of manipulating Queue instances, simply
manipulate the ClusterQueue instance. For example:

clusterQueue.setFreeReading();
clusterQueue.setFreeWriting();

4.4.3. Running the “Clustered Queue” Sample

This sample illustrates the use of Joram's clustered queues. A cluster queue is a group of queues
deployed on different servers and handling the load-balancing.

This sample configuration is made of three servers, each server hosting a queue part of the
cluster. The platform is run in persistent mode. The provided configuration locates all three servers
on “localhost” host.

5 This property must be fixed according to the client needs; if it is not fixed the location is randomly set for later
usage.

 - 60 -

Joram 5.2.1 User's Guide

This sample code is located in the samples/src/joram/cluster/queue directory. In order to
run the demo described below you must go to the samples/src/joram directory.

Running the demo:

 Starting the configuration:
ant reset servers

 Running the administration code: ant queue_cluster_admin.

o This target creates and configures a cluster with 3 queues as described above.

 Running the consumers using the target queue_cluster_consumer.

o This target launches a message consumer connected to one of the server, it
indefinitely consumes messages on the corresponding queue.

 Running the producers using the target queue_cluster_producer.

o This target launches a message producer connected to one of the server, it sends
1000 messages to the corresponding queue.

 Using the queue_cluster_consumer or queue_cluster_producer targets you can
either fix dynamically the server used for the connection (giving its identification 0, 1 or 2
when ant prompt for it) or use a randomly chosen server (directly press the return key at
prompt).

In order to view the load-balancing mechanism we can run two different scenarios.

Scenario 1:
In this scenario there is three message consumers, one for each queue of the cluster. Messages
are all sent to queue0, the load-balancing mechanism dispatches them between the queues, then
the consumers.

 Launching three consumers on queue0, queue1 and queue2:

“ant queue_cluster_consumer” then type '0'.

“ant queue_cluster_consumer” then type '1'.

“ant queue_cluster_consumer” then type '2'.

 Launching multiples producers on queue0:

“ant queue_cluster_producer” then type '0'.

“ant queue_cluster_producer” then type '0'.

“ant queue_cluster_producer” then type '0'.

Scenario 2:
In this scenario there is only two message consumers listening on queue0 and queue1. Messages
are sent on queue1 and queue2, messages produced to queue2 by the second producer are
dispatched between the two consumers by the load-balancing mechanism.

 Launching two consumers on queue0 and queue1

“ant queue_cluster_consumer” then type '0'.

“ant queue_cluster_consumer” then type '1'.

 Launching two producers on queue1 and queue2

“ant queue_cluster_producer” then type '1'.

“ant queue_cluster_producer” then type '2'.

 - 61 -

Joram 5.2.1 User's Guide

4.4.4. Using XML Scripts

The XML scripting facility allows to create and bind in JNDI clustered ConnectionFactory and
Destination.

ClusterConnectionFactory

A ClusterConnectionFactory is defined through a ClusterCF element. It is made up of a set of
predefined ConnectionFactory element pointed out by their names. It can be completed by a JNDI
declaration.

 <ConnectionFactory name="cf0">
 <tcp host="localhost" port="16010"/>
 <jndi name="cf0"/>
 </ConnectionFactory>

 <ConnectionFactory name="cf1">
 <tcp host="localhost" port="16011"/>
 <jndi name="cf1"/>
 </ConnectionFactory>

 <ConnectionFactory name="cf2">
 <tcp host="localhost" port="16012"/>
 <jndi name="cf2"/>
 </ConnectionFactory>

The declaration below defines a ClusterConnectionFactory JNDI's object made up of three
TcpConnectionFactory named cf0, cf1 and cf2. Each ConnectionFactory is bound in the cluster
with a key depending of its location. The resulted ConnectionFactory is bound in JNDI with the
name clusterCF.

 <ClusterCF>
 <ClusterElement name="cf0" location="server0"/>
 <ClusterElement name="cf1" location="server1"/>
 <ClusterElement name="cf2" location="server2"/>
 <jndi name="clusterCF"/>
 </ClusterCF>

ClusterQueue

A clustered destination is made up of a set of Queue or Topic elements; each destination needs to
be created separately then linked. It can be completed by a JNDI declaration.

 <Queue name="queue0" serverId="0"
 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue0"/>
 </Queue>

 <Queue name="queue1" serverId="1"

 - 62 -

Joram 5.2.1 User's Guide

 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue1"/>
 </Queue>

 <Queue name="queue2" serverId="2"
 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue2"/>
 </Queue>

The declaration below defines a ClusteredQueue made up of three Queue objects named queue0,
queue1 and queue2. Each queue is bound in the cluster with a key according to its location6. The
location property allows to associate each Topic object with the corresponding ConnectionFactory
of the clusterCF object (see paragraph “Using clustered JNDI's object” above). The resulted
queue is bound in JNDI with the name clusterQueue.

 <ClusterQueue>
 <freeReader/>
 <freeWriter/>
 <ClusterElement name="queue0" location="server0"/>
 <ClusterElement name="queue1" location="server1"/>
 <ClusterElement name="queue2" location="sserver2"/>
 <jndi name="clusterQueue"/>
 </ClusterQueue>

4.5. SchedulerQueue

4.5.1. Introduction

A scheduler queue is a standard JMS queue extended with a timer behaviour. When a scheduler
queue receives a message with a property called 'scheduleDate' (typed as a long) then the
message is not delivered immediately but at the date specified by the property.

The scheduler queue feature is available since the Joram version 4.3.14.

4.5.2. Managing a SchedulerQueue

Joram server configuration

<?xml version="1.0" encoding="UTF-8"?>

6 This key must be the same that the key used for the corresponding ConnectionFactory.

 - 63 -

Joram 5.2.1 User's Guide

<config>
 <server id="0" name="s0" hostname="localhost">
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer"
 args="16400"/>
 </server>
</config>

Create a scheduler queue

A scheduler queue is created by using the Joram administration API, calling the Queue creation
method create from the class org.objectweb.joram.client.jms.Queue.

queue = Queue.create(0,
 "schedulerQ",
 "com.scalagent.joram.mom.dest.scheduler.SchedulerQueue",
 null);

4.5.3. Using a schedulerQueue

Schedule a message

Scheduling a message requires to add a property called "scheduleDate" to the message. The
value is the message delivery date typed as a long.

The following example shows how to schedule a message for 5 seconds later.

 long scheduleDate = System.currentTimeMillis() + 5000L;
 TextMessage msg = session.createTextMessage("hello");
 msg.setLongProperty("scheduleDate", scheduleDate);
 producer.send(msg);

Cancel a scheduled message

You can cancel a previously scheduled message by removing it from the scheduler queue. This
removal operation can be performed through the Joram administration API or the GUI (JAMT).

 queue.deleteMessage(msg.getJMSMessageID());

4.6. Mail queue and topic

4.6.1. Introduction

Mail queue and topic are special destinations usable to interconnect Joram and Internet email
system. They can be used to:

● forward Joram's messages to an external email account,

● import emails from external account and turn them in Joram's messages.

The mail queue and topic features are available since the Joram version 4.3.23.

 - 64 -

Joram 5.2.1 User's Guide

Mail queue

A mail queue acts as a queue so each message sent will be delivered to a unique consumer; if an
email receiver is defined all messages matching the selector will be delivered to this receiver. If
the queue is configured to acquire messages from an email account, the account will be regularly
scanned to get emails, each email will be turn into a Joram's message then delivered to a unique
JMS receiver.

Mail topic

A mail topic acts as a topic, so each message sent will be delivered to each subscriber including
the email receiver if defined. If the topic is configured to acquire messages from an email account,
the account will be regularly scanned to get emails, each email will be turn into a Joram's message
then delivered to all defined JMS subscribers.

4.6.2. Managing a mail queue or topic

This following code comes from the mail sample.

Setting the mail queue/topic parameters

Prior to creating the mail queue (or topic), parameters must be set depending of the role of the
destination. These parameters are set through a Properties object.

Incoming destination
If the destination is used to import email in the JMS world the following parameters must be set:

 “popServer”: the DNS name or IP address of the POP server;

 “popUser”: the login name for the email account;

 “popPassword”: the password for the email account;

 “popPeriod”: the period of activation of the mail retrieval mechanism;

 “expunge”: allows to remove or not email on the server.

 Properties prop = new Properties();
 prop.setProperty("popServer", popServer);
 prop.setProperty("popUser", popUser);
 prop.setProperty("popPassword", popPassword);
 prop.setProperty("popPeriod", "30000");
 prop.setProperty("expunge", "false");

Remark: The current mechanism does not allow the use of protocol other than POP. The
transformation is currently hard-coded it should be interesting to configure it.

Outgoing destination
If the destination is used to export Joram's messages to the Email world the following parameters
must be set:

 “smtpServer”: the DNS name or IP address of the SMTP server;

 “from”: the email address of the sender;

 “to”, “cc”, “bcc”: a comma separated list of recipients;

 “subject”: the subject of outgoing message;

 “selector”: additionally a selector can be added to filter the forwarded messages.

 Properties prop = new Properties();
 prop.setProperty("smtpServer", smtpServer);
 prop.setProperty("to", to);

 - 65 -

Joram 5.2.1 User's Guide

 prop.setProperty("from", from);
 prop.setProperty("subject", "JORAM MAIL");
 prop.setProperty(“selector”, “”);

Remark: The current mechanism does not allow the use of protocol other than SMTP. It could be
interesting to allow the overloading of the default sending parameters by message properties.

Creating the mail queue

A mail queue is created by using the Joram administration API, calling the Queue creation method
create from the class org.objectweb.joram.client.jms.Queue.

Queue queue = Queue.create(0, “mailQueue”,
 "com.scalagent.joram.mom.dest.mail.JavaMailQueue",
 prop);

This method allow to specify the location server, an internal name, the implementation class and
the configuration properties for the new queue.

Creating the mail topic

A mail topic is created by using the Joram administration API, calling the Topic creation method
create from the class org.objectweb.joram.client.jms.Topic.

Topic topic = Topic.create(0, “mailTopic”,
 "com.scalagent.joram.mom.dest.mail.JavaMailTopic",
 prop);

This method allow to specify the location server, an internal name, the implementation class and
the configuration properties for the new topic.

Administering a mail destination

A mail destination can be handled either through JMX or the administration API. The associated
MBean allows to watch and change the destination's parameters. Additionally the administration
API allows to add/change/remove the destination email account. This API allow to define more
than one email account eventually with different selector.

4.6.3. Using a mail queue or topic

Sending a message

When sending a message to a mail destination we can gently configure the produced email; if the
showProperties property is defined to true, all properties will be added to the message. Anyway
the body of the message will be added (be careful with non text message, it implies the availability
server-side of the associated classes.

 TextMessage msg = sess.createTextMessage();
 msg.setBooleanProperty("showProperties", true);
 msg.setText("Queue : Test number #" + i);
 producer.send(msg);

The above code will result in a multi-part email containing a first part with properties and a second
part with the associated text. The email's subject, sender and recipients will be fixed by the
configuration properties of the destination.

4.6.4. Running the sample

This sample illustrates the use of Joram's Mail destinations. It uses a mail topic to send email to a
predefined account, and a mail queue to receive email from this identical account.

 - 66 -

Joram 5.2.1 User's Guide

This sample configuration is made of a unique server located on “localhost” host. The platform is
run in non-persistent mode.

Before to run the sample you must change two properties file defining the mail configuration.
Theses files are pop.properties and smtp.properties, they are located in the joram/samples/config
directory.

Figure 21 - The mail sample
Running the demo: in the joram/samples/src/joram directory.

 Compiling the samples:
ant clean compile

 Starting the configuration:
ant reset servers

 Running the administration code: this target creates a TcpConnectionFactory, an
'anonymous' user, a mail topic for outgoing mail and a mail queue for incoming mail.
ant mail_admin

 Running the producer: this target sends 5 messages on the mail topic. Theses messages
will be forwarded using the SMTP protocol to the predefined mail account.
ant mail_producer

 Running the consumers: this target launches a message listener on the mail queue. At
defined interval the queue will scan the mail account to get new email, then forwards them
to the listener.
ant mail_consumer

 - 67 -

Mail Account

JMS producer
(anonymous, anonymous)

JMS producer
(anonymous, anonymous)

JMS producer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)Server 0

MailQueueMailTopic

Joram 5.2.1 User's Guide

4.7. MonitoringTopic

4.7.1. Introduction

A monitoring topic is a particular topic which periodically sends monitoring information to each
subscriber. Every message received by the topic will be analysed for new monitoring options and
dropped: it will not be forwarded to subscribers.

This topic is based on JMX monitoring so you must enable JMX monitoring to use it. See JMX
administration of Joram in order to do it.

The monitoring topic feature is available since the Joram 5.1.0 version.

4.7.2. Managing a MonitoringTopic

Setting the MonitoringTopic parameters

Topic options are set using properties at topic creation time or by sending a message to the topic.
The following options are available:

 "period": defines the time in millisecond between two monitoring messages. It is set to one
minute by default.

 "persistent": tells if produced messages are persistent. Default is false.

 "priority": shows the priority of produced messages. Default value is default JMS priority, 4.

 "expiration": indicates how long the message will live before being considered as expired.

Additionally, properties are used to indicate what will be monitored. Anything accessible with JMX
is available. The property key is the name of the MBean prefixed by "MBeanMonitoring:" and the
value is a comma separated list of monitored parameters. The * character is allowed to monitor
every parameter.

Accessing multiple MBeans is possible using wildcard characters, as defined in the
javax.management.ObjectName class. See here for JDK6 details.

Example at creation time:

Properties topicProps = new Properties();
topicProps.put("period", "2000");
topicProps.put("MBeanMonitoring:Joram#0:type=Destination,*","NbMsgsDeliverSinceCre
ation, NbMsgsReceiveSinceCreation, NbMsgsSentToDMQSinceCreation");
topicProps.put("MBeanMonitoring:AgentServer:server=AgentServer#0,cons=Transaction"
, "*");

Example sending a message to the topic:

Message msg = sessionp.createMessage();
msg.setStringProperty("MBeanMonitoring:AgentServer:server=AgentServer#0,cons=Trans
action", "LogMemorySize, GarbageRatio");
msg.setLongProperty("period", 10000);
producer.send(msg);

Creating the MonitoringTopic

A monitoring topic is created by using the Joram administration API, calling the Topic creation
method create from the class org.objectweb.joram.client.jms.Topic.

Topic topic = Topic.create(0, "MonitoringTopic",

 - 68 -

http://java.sun.com/javase/6/docs/api/javax/management/ObjectName.html

Joram 5.2.1 User's Guide

 "org.objectweb.joram.mom.dest.MonitoringTopic",
 topicProps);

This method allows to specify the location server, an internal name, the implementation class and
the configuration properties for the new topic.

The monitoring topic can also be created as a service in a3servers.xml with default monitoring
options and a default name JoramMonitoringTopic.

<service class="org.objectweb.joram.mom.dest.MonitoringTopic" />
And to get the topic:

Topic topic = Topic.create("JoramMonitoringTopic");

4.7.3. Running the sample

The sample shows how to monitor a single queue.

Running the demo: in the joram/samples/src/joram directory.

 Compiling the samples:
ant clean compile

 Starting the configuration:
ant reset single_server

 Running the administration code: this target creates a ConnectionFactory, an 'anonymous'
user, a queue, and a monitoring topic retrieving data about the queue.
ant monitoring_admin

 Running the monitor: this target connects to the monitoring topic in order to be notified
regularly about the queue parameters.
ant monitoring_monitor

 Running the producer: this target sends 10 messages on the queue.
ant monitoring_producer

 Running the consumer: this target tries to read 10 messages on the queue.
ant monitoring_consumer

You can launch multiple times the producer and the consumer to see the monitored parameters
evolve.

4.8. Collector queue and topic

4.8.1. Introduction

Collector queue and topic are special destinations usable to collect file, object,

They can be used to periodically :

● import a file from an URL to a Joram's message and store in this queue.

● import a file from an URL to a Joram's message and forward to each subscribers.

Every message received by the collector destination's will be analysed for new collector options
and dropped: it will not be store or forwarded to subscribers.

We provide an URL collector.

 - 69 -

Joram 5.2.1 User's Guide

The collector queue and topic features are available since the Joram version 5.1.x (x>0).

4.8.2. Managing a Collector destination

Setting the configuration parameters

The options are set using properties at collector queue/topic creation time or by sending a
message to the collector queue/topic or by Mbean collector queue/topic component. The following
options are available:

 "collector.period": defines the time in millisecond between two wake up the collector. It is
set to one minute by default.

 "collector.persistentMessage": tells if messages are persistent. Default is true.

 "collector.expirationMessage": indicates how long the message will live before being
considered as expired.

 "collector.type": indicates the type of the generated message. Default is Message.BYTES.

 "collector.ClassName": defines the collector class to be instantiated. The default class is
"com.scalagent.joram.mom.dest.collector.URLCollector".

 "collector.url": defines the file to keep and set as body message.

Additionally, properties can be used to indicate specific behaviour. Anything accessible with JMX is
available.

Creating the destination

A collector queue/topic is created by using the Joram administration API, calling the Queue/Topic
creation method create from the class org.objectweb.joram.client.jms.Queue/Topic.

Properties props = new Properties();
prop.setProperty("collector.expirationMessage", "0");
prop.setProperty("collector.persistentMessage", "true");
prop.setProperty("collector.period", "300000");
prop.setProperty("collector.type", "" + Message.BYTES);
prop.setProperty("collector.ClassName",

 "com.scalagent.joram.mom.dest.collector.URLCollector");
prop.setProperty("collector.url", url);

Queue queue = Queue.create(0, "CollectorQueue",
 "com.scalagent.joram.mom.dest.CollectorQueue",
 props);

Topic topic = Topic.create(0, "CollectorTopic",
 "com.scalagent.joram.mom.dest.CollectorTopic",
 props);

This method allows to specify the location server, an internal name, the implementation class and
the configuration properties for the new collector queue/topic.

 - 70 -

Joram 5.2.1 User's Guide

4.8.3. Using a collector destination

Sending a message

Send a message to the collector destination is only used to set new properties.

When destination receive the message, the destination implantation update the properties and
immediately run a new task and schedule a new task.

After update, the message is drop.

Message msg = sess.createMessage();

msg.setStringProperty("collector.expirationMessage", "0");
msg.setStringProperty("collector.persistentMessage", "true");
msg.setStringProperty("collector.period", "30000");
msg.setStringProperty("collector.url", url);
msg.setStringProperty("collector.type", "" + Message.BYTES);

producer.send(collectorQueue, msg);

Receiving a message

You receive periodically a message containing the file you specify with the URL.

4.8.4. Running the sample

The sample shows how to collect the “http://svn.forge.objectweb.org/cgi-
bin/viewcvs.cgi/*checkout*/joram/trunk/joram/history" file and store in the collector queue.

A consumer consume the message and print the file.

A producer send message to the collector queue to update some properties.

Running the demo: in the joram/samples/src/joram directory.

 Compiling the samples:
ant clean compile

 Starting the configuration:
ant reset single_server

 Running the administration code: this target creates a ConnectionFactory, an 'anonymous'
user and a collector queue.
ant collector_admin

 Running the collector: this target connects to the collector queue in order to be notified
regularly about the collected file.
ant collector_consumer

 Running the producer: this target update some properties on the collector queue.
ant collector_producer

 - 71 -

Joram 5.2.1 User's Guide

4.9. FTPQueue

4.9.1. Introduction

Ftp queue is special destinations usable to transfer file by FTP.

The sender send the URL information file to the destination FTPQueue. This destination get the
file, store in the local directory and generate a message who contain the URI localisation of the
file.

The Consumer receive a message who contain the URI localisation of the file.

4.9.2. Managing a FTPQueue

 - 72 -

FTP Queue

URI

Client

Send file
(URL)

Site 1

Site 2

FTP

URL

FTP Queue

URI

Client

URI

receive

URI

Site 1

Joram 5.2.1 User's Guide

Setting the FTPQueue parameters

The options are set using properties at FTPQueue creation time.

 user: the user name for the FTP.

 pass: the user password for FTP.

 path: the local directory to store the file transferred. Default is the running directory
(path=null).

 ftpImplName: The implantation of FTP module. We provide tow implantations the first
(default com.scalagent.joram.mom.dest.ftp.TransferImplRef) is the JDK
URL and the second is based on JFTP
(com.scalagent.joram.mom.dest.ftp.TransferImplJftp).

The user and pass options are optional, because you can set this information in the sender URL
request, like this:

msg.setStringProperty("url", "ftp://user:pass@host/file;type=i");

Creating the FTPQueue

A FTPQueue is created by using the Joram administration API, calling the Queue creation method
create from the class org.objectweb.joram.client.jms.Queue.

prop = new Properties();
prop.setProperty("user", "my_FTP_name"); // optional
prop.setProperty("pass", "my_FTP_pass"); // optional
prop.setProperty("path", "the_local_path"); // optional
Queue queue = Queue.create(0, "ftpQueue",
"com.scalagent.joram.mom.dest.ftp.FtpQueue", prop);

This method allows to specify the location server, an internal name, the implementation class and
the configuration properties for the new FTPQueue.

4.9.3. Using a FTPQueue destination

Sending a message

Specify the fileName and user / password if the administrator don't set.

TextMessage msg = sess.createTextMessage();
msg.setText("transfer " + fileName);
if (user != null && pass != null)
 msg.setStringProperty("url", "ftp://user:pass@host/fileName;type=i");
else
 msg.setStringProperty("url", "ftp://host/fileName;type=i");
msg.setLongProperty("crc", new File(fileName).length());
msg.setBooleanProperty("ack", false);

When the FTPQueue destination receive the message, it run a task to get the file specify by the
URL and store this file in a local directory. The sending message is drop and a new message
containing the URI file location is generate and store in the FTPQueue.

4.9.4. Running the sample

The sample shows how to get the “welcome.msg” file from ftp.kernel.org.

 - 73 -

ftp://ftp.kernel.org/

Joram 5.2.1 User's Guide

Running the demo: in the joram/samples/src/joram directory.

 Compiling the samples:
ant clean compile

 Starting the configuration:
ant reset single_server

 Running the administration code: this target creates a ConnectionFactory, an 'anonymous'
user and a FTPQueue with user=anonymous and pass=anonymous.
ant ftp_admin

 Running the producer: this target send a message to the FTPQueue with this URL
“ftp://ftp.kernel.org/welcome.msg”.
ant ftp_producer

 Running the receiver: this target connects to the FTPQueue and consume the message
and print the file URL, crc and ack..
ant ftp_receiver

 - 74 -

Joram 5.2.1 User's Guide

5. Using SOAP

The Joram client – server protocol may be based on SOAP. This allows clients to rely on HTTP
rather on TCP for communicating with a JORAM platform. It also allows applications running on
lightweight devices (J2ME environment) to use the JORAM platform through the kJoram libraries.

The SOAP protocol (more info on http://www.w3.org/TR/SOAP/) defines a way to remotely access
services methods by exchanging XML messages on HTTP connections. Supporting the SOAP
protocol means that:

 server side, a proxy developed as a SOAP service provides an access to SOAP clients;

 client side, a specific client Connection relies on HTTP and XML/SOAP format for
writing and routing requests and replies.

The SOAP implementation used by JORAM is Apache’s (http://ws.apache.org/soap/index.html)
and works with the servlet container Tomcat (http://jakarta.apache.org/tomcat/). Developing a
JORAM proxy as a SOAP service led to consider a specific platform configuration with a server
running embedded in Tomcat’s JVM (Figure 22), and acting as a router between Tomcat and the
other servers of the platform.

Figure 22 - A Joram platform providing a SOAP access

This document presents how to set a JORAM platform providing an access to SOAP clients, and
how to administer it. The configuration of Tomcat for this specific usage is explained in the last
section of the doc.

 - 75 -

http://jakarta.apache.org/tomcat/
http://ws.apache.org/soap/index.html
http://www.w3.org/TR/SOAP/

Joram 5.2.1 User's Guide

5.1. Platform configuration

5.1.1. Configuration

Though it is possible to have a configuration made of a single embedded server, we will describe
the configuration shown on figure 1. It is a reasonable situation, with a server embedded in
Tomcat’s JVM (server s1), and the s0 server providing a TCP proxy service and hosting a
destination.

The following file describes this configuration. Server 0 and server 1 both provide access to
external clients through their connection manager service. Server 0 also hosts a TCP proxy
service listening on port 16010 and a JNDI service. Server 0 and server 1 accept administrator’s
connections with identification root – root.

<?xml version="1.0"?>
<config>
 <domain name="D1"/>
 <server id="0" name="s0" hostname="localhost">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service class="fr.dyade.aaa.jndi2.server.JndiServer"
 args="16400"/>
 </server>

 <server id="1" name="s1" hostname="localhost">
 <network domain="D1" port="16302"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 </server>
</config>

5.1.2. Running the platform

Starting the non embedded server

The non embedded server is started as any normal server (check administration documentation).
It should be started in a transaction mode consistent with the embedded server’s, that is
persistent.

Starting Tomcat

Tomcat’s bin/ directory contains the start scripts. Use one of them for starting Tomcat once it is
correctly configured (check the installation chapter), and once the appropriate a3servers.xml
and a3debug.cfg configuration files have been put in Tomcat’s conf/ directory.

Starting the embedded server

The org.objectweb.joram.client.jms.soap.SoapServiceStarter utility class is
provided for starting the embedded server. Its main() method takes for parameters the name of
the host hosting Tomcat, Tomcat’s HTTP port (generally 8080), the embedded server identifier
and its name. It causes the instantiation of JORAM’s SOAP service by Tomcat and requests the

 - 76 -

Joram 5.2.1 User's Guide

starting of the embedded server. The embedded server successfully starts if the a3servers.xml
platform configuration file has been put in the conf/ directory of Tomcat.

 Server 1 of the above configuration would be launched that way:

java fr.dyade.aaa.joram.soap.SoapServiceStarter localhost 8080 1 S1

5.2. Administering

5.2.1. Introduction

Administering a platform providing a SOAP access is similar to administering a non SOAP
platform. A user access must be created on the target server, and an appropriate
ConnectionFactory object must be created so that the client will access the embedded server
through the SOAP protocol.

5.2.2. Setting a user

Setting a user is done as explained in the administration document:

org.objectweb.joram.client.jms.admin.User user;
user = org.objectweb.joram.client.jms.admin.User.create(“name”, “pass”, 1);

An AdminException is thrown if the user creation fails server side or if the server is not part of
the platform. A ConnectException is thrown if the admin connection with the server is closed or
lost.

5.2.3. SOAP ConnectionFactory object

SOAP connection factory objects are located in the
org.objectweb.joram.client.jms.soap package.

The following creation methods are static methods:

 SoapConnectionFactory.create(String host, int port, int timer):

 creates a ConnectionFactory instance for accessing a server
embedded in a Tomcat JVM running on a given host and listening to a
given port, with a given timer value in seconds for pending SOAP
connections.

 SoapConnectionFactory.create(int timer):

 creates a ConnectionFactory instance for accessing a server
embedded in the Tomcat JVM the administrator is connected to, with a
given timer value in seconds for pending SOAP connections.

ConnectionFactory cnxFact =
 SoapConnectionFactory.create(“localhost”, 8080, 60);

 QueueSoapConnectionFactory.create(String host, int port, int
timer) : creates a QueueConnectionFactory instance for accessing a server
embedded in a Tomcat JVM running on a given host and listening to a given port, with a
given timer value in seconds for pending SOAP connections.

 QueueSoapConnectionFactory.create(int timer):

 creates a QueueConnectionFactory instance for accessing a
server embedded in the Tomcat JVM the administrator is connected to,
with a given timer value in seconds for pending SOAP connections.

 - 77 -

Joram 5.2.1 User's Guide

javax.jms.QueueConnectionFactory cnxFact =
 admin.createQueueSoapConnectionFactory(“localhost”, 8080, 60);

 TopicSoapConnectionFactory.create(String host, int port, int
timer): creates a TopicConnectionFactory instance for accessing a server
embedded in a Tomcat JVM running on a given host and listening to a given port, with a
given timer value in seconds for pending SOAP connections.

 CreateTopicoapConnectionFactory.create(int timer):

 creates a TopicConnectionFactory instance for accessing a
server embedded in the Tomcat JVM the administrator is connected to,
with a given timer value in seconds for pending SOAP connections.

javax.jms.TopicConnectionFactory cnxFact =
 admin.createTopicSoapConnectionFactory(“localhost”, 8080, 60);

Pending SOAP connections
Contrary to a TCP connection which is opened by a connecting client (calling the
ConnectionFactory.createConnection(…) method), and closed by the closing client
(calling the Connection.close() method), the HTTP connection the SOAP connection is
based on is opened and closed for each client – platform request / reply exchange. Thus, it is
impossible from the server point of view to detect a connection failure. If a given SOAP connection
is never closed by the Connection.close() method, its context is kept forever server side, and
this could lead to memory leaks.

This is why a timer parameter is set when creating a SOAP ConnectionFactory. It sets the
duration in seconds between two “ping” requests sent by the client JMS connection to the server. If
the server does not receive any “ping” request during timer * 2 seconds, it acts as it does when
detecting a TCP connection failure: the connection’s resources are cleaned, its non acknowledged
messages are rolled back, temporary destinations are deleted, temporary subscriptions are
removed, etc.

Setting this value to 0 means that no timer is set. Such a factory’s connections never die, this is a
dangerous situation.

5.2.4. SOAP administrator

The above administration tasks might be performed by a TCP administrator or a SOAP
administrator.

Connecting a TCP administrator to the server 0 of the platform would look like:

AdminModule.connect(“localhost”, 16010, “root”, “root”, 60);
Connecting a SOAP administrator to the server 1 of the platform looks like:

TopicSoapConnectionFactory cnxFact =
 TopicSoapConnectionFactory.create(“localhost”, 8080, 60);

AdminModule.connect(cnxFact, “root”, “root”);

5.2.5. Accessing JNDI through SOAP

SOAP administrators and clients also need to access JNDI through the SOAP protocol. This does
not change the way JNDI is set in the a3servers.xml configuration file, but the
jndi.properties must be modified as follows:

java.naming.factory.initial
 fr.dyade.aaa.jndi2.client.SoapExt_NamingContextFactory
java.naming.factory.soapservice.host localhost

 - 78 -

Joram 5.2.1 User's Guide

java.naming.factory.soapservice.port 8080
java.naming.factory.host localhost
java.naming.factory.port 16400

This file says that the JNDI server is hosted on localhost and reachable through port 16400, and
that SOAP clients access it through the
fr.dyade.aaa.jndi2.client.SoapExt_NamingContextFactory class, the servlet
container running on localhost and listening on port 8080.

5.3. Configuring Tomcat
The JORAM platform includes a SOAP proxy, accepting connection requests from SOAP clients.
This proxy requires the installation and the setting of Apache servlet container, Tomcat.
JORAM has been successfully tested with tomcat-3-3, tomcat-4-0 and tomcat-4-1 and Tomcat-5.0.
This section describes how those versions should be configured.

5.3.1. Getting Tomcat

Tomcat can be downloaded from http://jakarta.apache.org/tomcat/. Documentation is available at
the same location.

5.3.2. Needed resources

Libraries and configuration files must be added in the Tomcat environment. The jar and war files
must be taken from the lib/ directory of your JORAM installation. The configuration files must be
taken from the samples/config directory of your JORAM installation.

5.3.3. Configuring Tomcat

Tomcat 4.1

 Files to modify in the bin/ directory:
o catalina.bat or catalina.sh: add the conf/ directory in the classpath building.

 Libraries to add in the common/lib directory:
o jms.jar,
o joram-client.jar,
o joram-shared.jar,
o joram-mom.jar,
o ow_monolog.jar.
o jakarta-regexp-1.2.jar,
o JCup.jar,

 Files to add in the conf/ directory :
o a3debug.cfg and a3config.dtd,
o soap_a3servers.xml renamed a3servers.xml.

 File to add in the webapps/ directory:
o soap.war.

Tomcat 5.0

 Files to modify in the bin/ directory:
o catalina.bat or catalina.sh: add the conf/ directory in the classpath building.

 - 79 -

http://jakarta.apache.org/tomcat/

Joram 5.2.1 User's Guide

 Libraries to add in the common/lib directory:
o jms.jar,
o joram-client.jar,
o joram-shared.jar,
o joram-mom.jar,
o ow_monolog.jar.
o jakarta-regexp-1.2.jar,
o JCup.jar,

 Libraries to add in the shared/lib directory:
o mail.jar,
o activation.jar.

 Files to add in the conf/ directory :
o a3debug.cfg and a3config.dtd,
o soap_a3servers.xml renamed a3servers.xml.

 File to add in the webapps/ directory:
o soap.war.

Tomcat 5.5

 Files to modify in the bin/ directory:
o catalina.bat or catalina.sh: add the conf/ directory in the classpath building.

 Libraries to add in the shared/lib directory:
o jms.jar,
o joram-client.jar,
o joram-shared.jar,
o joram-mom.jar,
o ow_monolog.jar.
o jakarta-regexp-1.2.jar,
o JCup.jar,
o mail.jar,
o activation.jar.

 Files to add in the conf/ directory :
o a3debug.cfg and a3config.dtd,
o soap_a3servers.xml renamed a3servers.xml.

 File to add in the webapps/ directory:
o soap.war.

5.4. Running the Soap Sample
The SOAP samples are a simple message producer and consumer pair. Their goal is to show that
JORAM successfully integrates and supports SOAP as an other communication protocol than
TCP. Running these samples requires to have installed and configured Apache’s Tomcat servlet
container (check above).

The following picture illustrates the platform architecture. Server 1 is embedded in Tomcat’s JVM
and holds the proxy for the SOAP clients. Server 0 runs in an other JVM and hosts the
destinations the clients actually interact with.

 - 80 -

Joram 5.2.1 User's Guide

Figure 23 - SOAP sample configuration

Running the demo:
 Starting a correctly configured Tomcat instance:

o 4.1/5.0: in tomcat/bin remove any remaining persistence directory (s1/) and
launch startup.sh or startup.bat.

o 5.5: in tomcat/bin remove any remaining persistence directory (s1/) and launch
tomcat.exe

 Launching the server 0 of the configuration:

o Under samples/src/joram: ant soap_server
 Launching the server 1, embedded in Tomcat’s JVM:

o Under samples/src/joram: ant soap_start
 Running the administration:

o Under samples/src/joram: ant soap_admin
 Launching the consumer:

o Under samples/src/joram: ant soap_consumer
 Launching the producer:

o Under samples/src/joram: ant soap_producer

5.5. Running kJoram sample

5.5.1. Environment

Let’s consider the JORAM distribution is installed in a JORAM_HOME/ directory, whereas the
kJORAM distribution is in a kJORAM_HOME/ directory. Both distributions have been compiled if
needed, and Tomcat has been configured.

 - 81 -

Joram 5.2.1 User's Guide

Applications running in a J2ME environment are able to connect and use JORAM messaging
platform functionalities. For doing this, they use specific JORAM client libraries and resources,
which are available in the JORAM CVS distribution or by downloading the kJORAM packages.

The provided sample allows to run an application on a Pocket PC and make it communicate
through a JORAM platform with an other Pocket PC application, or a “normal” Java application.
The platform used for this demonstration is exactly similar to the one used for the SOAP sample
(see Figure 24 and section 5.4. Running the Soap Sample).

The kJORAM samples directory provides utility files valid for J9 users on Pocket PCs. The
configuration information provided in this section is only valid for those users. Launching the
samples on other devices requires some specific configuration users should be aware of.

Figure 24 - kSOAP sample configuration

5.5.2. Compiling the samples files

The samples source files in kJORAM_HOME/samples/src/kjoram/classic need first to be
edited. In the KConsumer and KProducer classes, the X.X.X.X fields must be replaced by the
actual IP number of the machine which will host the JORAM server.

Once this is done, the samples in the kJORAM packages and in the CVS distribution need to be
compiled. Under the samples/src/kjoram directory, simply type:

ant clean compile

This creates a samples/classes/kjoram/ directory holding the compiled classes. For
removing this directory, type:

ant clean

As kJORAM sources, the samples are compiled with target 1.1 for J2ME compliance;

5.5.3. Installing the samples on the Pocket PC

The following files and libraries must be transferred on the Pocket PC:

 kjoram.jar and kxml.jar from kJORAM_HOME/lib to “My Documents/WSDD”;

 the samples classes from kJORAM_HOME/samples/classes/kjoram to
“My Documents/WSDD”;

 - 82 -

Joram 5.2.1 User's Guide

 the “.jad“ files from kJORAM_HOME/samples/src/kjoram/classic to
“My Documents/WSDD”;

 the “.lnk“ files from kJORAM_HOME/samples/src/kjoram/classic to
“Windows/Start Menu”.

5.5.4. Starting and administering the JORAM platform

On the server’s host:

 Starting a correctly configured Tomcat instance:

 in tomcat/bin remove any remaining persistence directory (s1/) and
launch

 startup.sh or startup.bat.

 Launching the server 0 of the configuration:

 Under JORAM_HOME/samples/src/joram: ant soap_server
 Launching the server 1, embedded in Tomcat’s JVM:

 Under JORAM_HOME/samples/src/joram: ant soap_start
 Running the administration:

 Under JORAM_HOME/samples/src/joram: ant soap_admin

Launching the demo between a Pocket PC and a PC

 First start the consumer, either on the Pocket PC, or on the PC:

 on the Pocket PC, in the Start Menu select kconsumer
 on the PC, under JORAM_HOME/samples/src/joram, type: ant

soap_consumer

 Then start the producer, on the device which is not hosting the consumer:

 on the Pocket PC, in the Start Menu select kproducer
 on the PC, under JORAM_HOME/samples/src/joram, type: ant

soap_producer

Launching the demo between two Pocket PCs

 First start the consumer, on Pocket PC 1 for example:

 on the Pocket PC, in the Start Menu select kconsumer
 Then start the producer, on Pocket PC 2:

 on the Pocket PC, in the Start Menu select kproducer

 - 83 -

Joram 5.2.1 User's Guide

6. Using a collocated
server

6.1. Introduction
A collocated Joram server is a standard Joram server running inside the same process (JVM) as
one or more Joram clients. If your Java application needs to start such an embedded server you
must configure this server, start it inside your application and connect your JMS clients to it.

A collocated Joram server can be part of a distributed configuration of multiples collocated or not
servers, it can eventually be reach by other client through the TCP protocol.

6.2. Configure a collocated server
A collocated server is configured exactly like a non-collocated server, i.e. you don't need to declare
any extra services to use a collocated server.

A typical configuration would be:

<?xml version="1.0"?>
<config>
 <property name=”Transaction” value=”fr.dyade.aaa.util.NullTransaction”/>
 <server id="0" name="S0" hostname="localhost">
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args=”root root”/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 </server>
</config>

Notice that:

• in the above configuration, the collocated server can also be accessed from remote clients
through the TCP protocol. If you don't need the TCP access point you can remove the
service TcpProxyService.

• you can include a collocated server inside a distributed Joram platform: a collocated
server is a server just like any other.

6.3. Start a collocated server
A collocated server must be pro grammatically started inside the same process as your Java client
application.

The following code starts the server #0:

fr.dyade.aaa.agent.AgentServer.init((short) 0, "./s0", null);

 - 84 -

Joram 5.2.1 User's Guide

fr.dyade.aaa.agent.AgentServer.start();
The method init initializes the server with three parameters:

1. its identifier: 0

2. the directory where its persistent state is stored: ./s0

3. the monolog logger factory: leave it to null if you want the server to configure it itself.

The method start actually starts the server.

You can also initialize and start a server by calling the method AgentServer.main which
aggregates the initialization and the start into a single operation:

String args[] = {"0", "./s0"};
fr.dyade.aaa.agent.AgentServer.main(args);

6.4. Connect to the collocated server

6.4.1. Create local connections

The class LocalConnectionFactory enables you to create local connections to the collocated
server:

import org.objectweb.joram.client.jms.local.*;

ConnectionFactory cnxFact = LocalConnectionFactory.create();
In the same package you can find several factories that you can use to create more specific
connections: <XA><Topic|Queue>LocalConnectionFactory.

6.4.2. Connect the administration module

The class AdminModule provides a method collocatedConnect that must be called before
doing administration operations through the collocated server.

import org.objectweb.joram.client.jms.admin.*;

AdminModule.collocatedConnect(“root”, “root”);

6.5. Stop the collocated server
If you need to stop the collocated server without stopping the entire embedding Java application
you must call the method stop provided by the class AgentServer:

fr.dyade.aaa.agent.AgentServer.stop();
You can then restart the server with the following code:

fr.dyade.aaa.agent.AgentServer.start();

6.6. Start the embedding Java application
You must ensure that the classpath contains:

• the jar files expected by a Joram server: joram-mom.jar, Jcup.jar, etc.

• the directory where the a3servers.xml configuration file is located.

 - 85 -

Joram 5.2.1 User's Guide

7. High-Availability

7.1. Platform Configuration
A HA Joram server is launched on a cluster of ScalAgent servers. So the configuration of a HA
Joram server implies to configure a clustered ScalAgent server.

7.1.1. Clustered ScalAgent server configuration

A clustered ScalAgent server is defined by the element “cluster”. A cluster owns an identifier and a
name defined by the attributes “id” and “name” (exactly like a standard server). Two properties
must be defined:

• “Engine” must be set to “fr.dyade.aaa.agent.HAEngine” which is the class name of the
engine that provides high availability (set by default in a next version ?).

• “nbClusterExpected” defines the number of replicas that must be connected to the
group communication channel used before this replica starts

<?xml version="1.0"?>
<config>
 <domain name="D1"/>
 <cluster id="0" name="s0">
 <property name="Engine"
 value="fr.dyade.aaa.agent.HAEngine"/>
 <property name="nbClusterExpected" value="3"/>

For each replica an element “server” must be added. The attribute “id” defines the identifier of the
replica inside the cluster. The attribute “hostname” gives the address of the host where the replica
is running. A server replica is defined exactly like a standard server. For example this one owns a
network and two services. The network is used by the replica to communicate with external agent
servers, i.e. servers located outside of the cluster and not replicas.

 <server id="0" hostname="localhost">
 <network domain="D1" port="16301"/>
 </server>

Two other replicas are defined in the clustered ScalAgent server s0. Notice that they define their
network with a different port value because they work on the same host (localhost).

 <server id="1" hostname="localhost">
 <network domain="D1" port="16302"/>
 </server>
 <server id="2" hostname="localhost">
 <network domain="D1" port="16303"/>
 </server>
 </cluster>
</config>

 - 86 -

Joram 5.2.1 User's Guide

7.1.2. Group communication

There are two properties to configure the address and the port of the IP multicast used by
JGroups: JGroups.MCastAddr and JGroups.McastPort.

The group communication semantic configuration requires to understand exactly how the
replication algorithm works. However, you can change the Jgroups protocol stack using the
JgroupsProps property; its default value is:

UDP(mcast_addr=224.0.0.35;mcast_port=25566;ip_ttl=32;mcast_send_buf_size=150000;mc
ast_recv_buf_size=80000):PING(timeout=2000;num_initial_members=3):MERGE2(min_inter
val=5000;max_interval=10000):FD_SOCK:VERIFY_SUSPECT(timeout=1500):pbcast.NAKACK(gc
_lag=50;retransmit_timeout=300,600,1200,2400,4800):UNICAST(timeout=5000):pbcast.ST
ABLE(desired_avg_gossip=20000):FRAG(frag_size=4096;down_thread=false;up_thread=fal
se):pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;shun=false;print_local_ad
dr=true)

7.1.3. Joram server configuration

A Joram server is started by a ScalAgent service called “ConnectionManager” (see Joram
documentation).

<service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>

This service must be added to all the replicas. Some more services can be added to each replicas
according to the entry points needed by the clients: Tcp, Soap and collocated.

TCP entry point

The service “TcpProxyService” starts a TCP entry point to the Joram server.

<service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2560"/>

Soap entry point

Not yet available (in HA mode)

Collocated entry point

The service “HALocalConnection” provides a collocated entry point to the replica which is the
master. On the other replicas, this service blocks the collocated connections until the local replica
becomes the master.

<serviceclass="org.objectweb.joram.client.jms.ha.local.HALocalConnection"/>

Configuration example

The following configuration defines a HA Joram server “s0” that provides two entry points: Tcp and
collocated. It is replicated three times on the same host (localhost).

<config>
 <domain name="D1"/>
 <cluster id="0" name="s0">
 <property name="Engine" value="fr.dyade.aaa.agent.HAEngine"/>
 <property name="nbClusterExpected" value="3"/>
 <server id="0" hostname="localhost">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>

 - 87 -

Joram 5.2.1 User's Guide

 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2560"/>
 <service class="org.objectweb.joram.client.jms.ha.local.HALocalConnection"/>
 </server>
 <server id="1" hostname="localhost">
 <network domain="D1" port="16302"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2561"/>
 <service class="org.objectweb.joram.client.jms.ha.local.HALocalConnection"/>
 </server>
 <server id="2" hostname="localhost">
 <network domain="D1" port="16303"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2562"/>
 <service class="org.objectweb.joram.client.jms.ha.local.HALocalConnection"/>
 </server>
 </cluster>
</config>

7.2. Platform startup
A server replica is started exactly like a standard agent server. The arguments are:

 server id: identifier of the clustered server (not the identifier of the replica)

 storage directory path: path of the directory where the persistence files are created

 replica id: identifier of the replica inside the clustered server

java fr.dyade.aaa.agent.AgentServer <server id> <storage directory path> <replica id>

The replicas can be started in any order. The first master replica elected is the first replica
connected to the group communication channel.

7.2.1. Host clock synchronization

The clocks of the hosts from the cluster should be quite synchronized if the “heart beat” feature is
used.

7.3. Programming an external HA Joram
client

The only available protocol for an external client is TCP. The protocol Soap is not yet available.

 - 88 -

Joram 5.2.1 User's Guide

7.3.1. Joram administration

Create a connection factory

There are several types of HA TCP connection factory depending on the destination reached
(generic, queue or topic) and the transactional mode (XA or none):

• <XA|none><Queue|Topic|none>HATcpConnectionFactory

These connection factories belong to the package org.objectweb.joram.client.jms.ha.tcp. To
instantiate a connection factory, call the static method create defined in the class of the connection
factory to instantiate. A parameter must be given specifying the URL of the HA Joram server. This
URL defines the list of the TCP entry points owned by each replicas of the HA Joram server.

For example to create a generic (neither Queue nor Topic, unified JMS1.1) non-transactional (no
XA) connection factory you need to call:

ConnectionFactory cf;

cf = org.objectweb.joram.client.jms.ha.tcp.HATcpConnectionFactory.create(
 "hajoram://localhost:2560,localhost:2561");

Configure the connection factory

It is also necessary to set the connectionTimer of the connection according to the switching time
required by the Joram server cluster, i.e. the delay needed to elect a new master replica and to
activate it. If the connectionTimer is too short, then the external client may not be able to connect
to the new master replica. So the failure of a Joram server replica may break the HA connection
between the external client and the HA Joram server.

((org.objectweb.joram.client.jms.ConnectionFactory)cf).
GetParameters().connectingTimer = 30;

7.3.2. JMS programming

The JMS programming is completely standard. A HA server behaves exactly the same as a
standard server. However there is a slight difference about the naming of the destination. Just like
with a standard Joram, you can choose to use JNDI or the internal Joram naming. But if you use
JNDI then you have to configure a replicated JNDI server. This operation is available but not
documented here as it is simpler to use the Joram internal naming.

7.4. Programming a collocated Joram
client

7.4.1. Joram administration

Create a connection factory

There are several types of HA local connection factory depending on the destination reached
(generic, queue or topic) and the transactional mode (XA or none):

• <XA|none><Queue|Topic|none>HALocalConnectionFactory

These connection factories belong to the package org.objectweb.joram.client.jms.ha.local. To
instantiate a connection factory, call the static method create defined in the class of the connection
factory to instantiate.

 - 89 -

Joram 5.2.1 User's Guide

For example to create a generic (not Queue either Topic) non-transactional (no XA) connection
factory you need to call:

ConnectionFactory cf;

cf = org.objectweb.joram.client.jms.ha.local.HALocalConnectionFactory.create();

7.4.2. Collocated client process

A collocated client must be instantiated inside the same JVM processes as the Joram server
replicas. It also must use the same class loader (or a child) as the server’s class loader. A simple
way to do this is to write a main class that starts an agent server replica and then creates one or
more HA local connections.

In the following code example, an unified non-transactional (not XA) connection is opened. It is
important to notice that the connection creation blocks until the server replica becomes master.

public static void main(String[] args) throws Exception {
 ConnectionFactory cf;

 AgentServer.init(args);
 AgentServer.start();
 cf= org.objectweb.joram.client.jms.ha.local.HALocalConnectionFactory().create();

 // The next line blocks until the server replica becomes master
 Connection cnx = cf.createConnection("root", "root");

7.4.3. JMS programming

The JMS programming is completely standard. A HA server behaves exactly the same as a
standard server. However there is a slight difference about the naming of the destination. Just like
with a standard Joram, you can choose to use JNDI or the internal Joram naming. But if you use
JNDI then you have to configure a replicated JNDI server. This operation is available but not
documented here as it is simpler to use the Joram internal naming.

7.5. Running the “Joram H.A.” Sample
This sample illustrates the use of a Joram's H.A platform.

This sample configuration is made of a cluster of three servers. The platform is run in non-
persistent mode as the reliability is provided by the replication mechanism. The provided
configuration locates all three servers on “localhost” host.

Running the demo:
 Cleans and compiles:

ant clean compile

 Resets the run directory, then starts 2 replicas:
ant reset

ant ha_server0

ant ha_server1

 Runs the administration code: ant ha_admin.

o This target creates a user and a topic.

 - 90 -

Joram 5.2.1 User's Guide

 Runs the subscriber using the target ha_sub.

o This target launches a message consumer that indefinitely consumes messages
on the corresponding topic.

 Runs the publisher using the target ha_pub.

o This target launches a message producer that sends 1000 messages to the
corresponding topic.

In order to view the high-availability mechanism we can play the scenario below:

 Starts the replica #2:
ant ha_server2

The replica is initialized from the state of the master, the user and the topic are
replicated.

 Stops the replica #0 (master), the replica #1 becomes the master, each client
automatically reconnects to the new master and the application continue.

 Stops the replica #1, the replica #2 can not be elected as the replication degree is not
ensured. The application is frozen.

 Starts the replica #0
ant ha_server0

The server is initialized from the state of the master, the user and the topic are
replicated. The application restarts.

 - 91 -

Joram 5.2.1 User's Guide

8. JNDI

8.1. Overview
The goals of the ScalAgent JNDI are to distribute and replicate the naming contexts among
various servers in order to provide load balancing and fail over.

A

A

Master copy

Replica

Client

Server 1

A

C

B

D

Server 2

A

C

B

D

Server 3

A

C

B

D

JNDI Distribution & Replication Control

ScalAgent Platform

Figure 25 - JNDI replication

The chosen replication follows the master-copy scheme. The master copies are distributed among
the servers. The following figure gives an overview of the ScalAgent JNDI architecture. The client
sends requests to a server that may communicate with one or more servers of the JNDI
configuration. This communication is handled by a control layer responsible for distribution and
replication built on top of the ScalAgent platform.

8.2. Replication

8.2.1. Master ownership strategy

The naming contexts are replicated with a master copy replication scheme. Each naming context
has one unique master server. Only the master can update the primary copy of the naming
context. All other replicas are read-only. Other servers wanting to update the context (bind, rebind,
create/destroySubcontext) request the master to do the update.

 - 92 -

Joram 5.2.1 User's Guide

8.2.2. Lazy propagation strategy

Figure 26 - Lazy propagation

All updates emanate from the master copy of a naming context. The updates are propagated in a
lazy way. The master copy is updated in a local transaction that updates the copy and broadcasts
the updating notifications to the replicas. Those updates are asynchronously propagated and
performed in a separate transaction for each server.

8.2.3. Replicas synchronization

Once a client has done several write requests, he may see different naming data depending on
the requested server because updates are asynchronous. The resulting errors are: name not
found and stale (out of date) data.

Figure 27 - Replicas synchronization

The name not found error is handled by synchronizing the replica with the master copy of the
context. Once synchronized, the request is retried. If the name is still not found, then the client
gets the error.

The stale data error cannot be detected. It is inherent to the lazy propagation strategy.

 - 93 -

update

bind

Client Replica 1 Master Replica 2

begin
Write
commit

begin
Write
commit

begin
Write
Broadcast updates
commit

update

sync ack

sync

NameNotFoundlookup

Client Replica Master

update

Joram 5.2.1 User's Guide

However an explicit synchronization operation for a specific naming context (as described above)
could be provided in a JNDI extension interface, enabling the client to get the latest naming data.
This extension is still not available.

8.3. Distribution of the naming servers
The naming servers are completely interconnected through the ScalAgent platform. A server owns
two entry points: a TCP entry point through which client requests are transmitted and an Agent
entry point used to send and receive notifications from the other servers (request forwards, replica
updates …).

The following figure displays a JNDI distributed configuration that includes 4 servers.

Figure 28 - Distributed configuration

A new naming server is added into a JNDI configuration by assigning it one or more references of
other servers already included into the configuration. When a naming server discovers another
server, it sends to it an initialization notification containing its master copies and a list of the known
servers. In this way a server discovers all the servers of a JNDI configuration.

The following figure displays a sequence diagram of the entrance of a new server into a JNDI
configuration. The new server S3 initially knows S1, so it sends to it an initialization notification
containing its master copies contexts[S3]. S1 replies with its contexts[S1] and the reference of the
server S2. S3 stores the contexts[S1] as replicas, registers the reference of S2 and sends to it an
initialization notification.

 - 94 -

Server1

Server2

Server4

Server3

ScalAgent platform

Client requests

Client requests TCP entry point

Agent entry point

Joram 5.2.1 User's Guide

Figure 29 - Adding a new server

A JNDI configuration is wholly replicated. All the servers contain the same (differed) naming data.
Some replication groups could be defined in order to reduce the number of updates.

The servers are implemented with the ScalAgent programming model which is asynchronous and
reliable. This model is particularly well adapted for the loose coupling of a lazy replication strategy.
Moreover this model simply controls the isolation by serializing the operations performed by a
server.

8.4. Distribution of the naming contexts

8.4.1. Context creation

When a server (called “local”) creates a subcontext of a naming context which master copy is
owned by a remote server, it must ask the remote server to create the subcontext. But this
subcontext is owned by the server that initiates the creation. So the master copy of this new
context belongs to the local server.

8.4.2. Context name resolution

A naming context is accessed by its name which is a path leading from the root naming context to
the final name of the context.

Names are not resolved from their path but directly using an index that returns the identifier of the
context from its name. In this way a server can handle JNDI requests which path cannot be
resolved because of missing intermediate contexts (still not initialized), but which final context
locally exists.

This feature is useful if a naming server is started whereas there is a network partition that
prevents it from getting the root context. But it can receive some contexts from local surrounding
servers and immediately begin to reply to its clients.

8.5. Configuration
A ScalAgent JNDI configuration gathers several JNDI servers. Each server is defined as a
ScalAgent service. The class name is DistributedJndiServer from the package
fr.dyade.aaa.jndi2.distributed. The argument line has the following syntax:

<listening port> <root owner id> [<server id> …]

 listening port: the port used by the JNDI server to listen to clients requests
 root owner id: the identifier of the JNDI server that owns the root naming context

 - 95 -

init(contexts[S2])

init(contexts[S3], S1)

init(contexts[S1], S2)

init(contexts[S3])

new Server S3 Server S1 Server S2

Joram 5.2.1 User's Guide

 server id: the identifier of a JNDI server

 The listening port and the root owner identifier are mandatory. The list
of server identifiers is optional.

A server needs to know the identifier of the root owner in order to compare this identifier with its
own identifier. If it is the same, it means that the server is the root owner and must initially create
the root naming context. If it is not the same, it means that the server is not the root owner and
must register itself with the root owner in order to receive the copies of the naming data owned by
the root owner.

The list of JNDI server identifiers is optional. It is useful if the root owner server is not available. In
this case the naming data owned by those servers may be accessed (read and write) even if the
root server is not available.

The following configuration includes three JNDI servers:

<?xml version="1.0"?>
<!DOCTYPE config SYSTEM "a3config.dtd">

<config>
 <domain name="D0" network="fr.dyade.aaa.agent.SingleCnxNetwork"/>
 <server id="0" name="s0" hostname="localhost">
 <network domain="D0" port="27300"/>
 <service class="fr.dyade.aaa.jndi2.distributed.DistributedJndiServer"
args="16400"/>
 </server>
 <server id="1" name="s1" hostname="localhost">
 <network domain="D0" port="27301"/>
 <service class="fr.dyade.aaa.jndi2.distributed.DistributedJndiServer"
 args="16401 0"/>
 </server>
 <server id="2" name="s2" hostname="localhost">
 <network domain="D0" port="27302"/>
 <service class="fr.dyade.aaa.jndi2.distributed.DistributedJndiServer"
 args="16402 0 1"/>
 </server>
</config>

Figure 30 - A 3 servers configuration

The server 0 is the root owner (note that it could have another identifier), the server 1 only knows
the root owner server and the server 2 knows both 0 and 1. In this way, if the server 0 is not
available when the server 2 starts, it can get the naming data owned by the server 1 anyway.

Let’s say that the servers 0 and 1 are first started. The client 0 asks the server 0 to create a
subcontext A in the root context. Then the client 1 creates the context B in A. Notice that if the

 - 96 -

Server0

Server1 Server2

Joram 5.2.1 User's Guide

client 1 creates B before the server 1 received the naming data from the server 0, the request is
blocked. When the server 1 receives the copy of A, it retries all the requests waiting for this
context (e.g. the creation of B).

If the server 2 is started when the server 0 is unavailable, it can’t receive the naming context A. So
the client 2 can’t do any requests (read and write) in the context A. But the server 2 knows the
server 1 so its receives the naming data owned by server 1 (context B). So the client 2 can do a
request in B, e.g. create a sub context C.

Figure 31 - The 3 servers configuration replicas

The following figure shows the final states of the JNDI servers once the previous scenario has
been executed. The server 2 will get the naming data from server 0 as soon as it is available. At
this time the server 0 will also get the naming data owned by server 2 (context C).

8.6. Loose coupling configuration
In some cases it can be useful to inhibit the coherency mechanism. The default configuration of
the distributed JNDI implies a master / slave behaviour: each JNDI context is controlled by a single
server and this server must be alive and reachable in order to allow an insertion or a modification.
Setting the fr.dyade.aaa.jndi2.impl.LooseCoupling property true allows to inhibit the master / slave
behaviour, this property can be set either as a Java environment variable or in the a3servers.xml
configuration file (see below).

<property name="fr.dyade.aaa.jndi2.impl.LooseCoupling" value="true" />

 - 97 -

A

A

Master copy

Replica

Client 0

Server 0

A

B

createSubcontext(/A)

Client 1

Server 1

A

CB

createSubcontext(/A/B)

Client 2

Server 2

CB

createSubcontext(/A/B/C)

Joram 5.2.1 User's Guide

9. Joram in JBoss

This chapter describes how to connect JBoss to a Joram server.

This documentation has been tested with JBoss 4.0.1 and Joram 4.3.14.

9.1. Joram installation
You can either install Joram as a set of Jars or as a single RAR.

9.1.1. Libraries Joram JARs

Copy the following JARS into the directory jboss/server/<server name>/lib:

• joram/ship/lib/JCup.jar

• joram/ship/lib/ow_monolog.jar

• joram/ship/lib/joram-shared.jar

• joram/ship/lib/joram-client.jar

• joram/ship/lib/joram-config.jar

These JARs enables JBoss to be a client of a remote Joram server.

If you need to start an embedded Joram server into JBoss then you have to use the RAR.

9.1.2. Connector Joram RAR

If the Joram server is embedded into Jboss choose the exhaustive connector joram.rar (built with
the Ant target ship.adapter).

If the Joram server is remote then choose the remote connector joram.rar (built with the Ant target
ship.remoteadapter).

Copy the Joram RAR into the directory jboss/server/<server name>/deploy/joram:

• joram/ship/joram.rar

9.2. MDB activation
There are two ways to activate the MDBs:

• JMSContainerInvoker

• JCA ActivationSpec

 - 98 -

Joram 5.2.1 User's Guide

9.2.1. JMSContainerInvoker

This container implements the JMS ASF interfaces (ServerSession and ServerSessionPool) in
order to activate MDBs. It also provides some more activation features like the reconnection to the
JMS server or the maximum delivery number.

First, link the MDB to an invoker called “joram-mdb-invoker” in the deployment descriptor
jboss.xml:
<message-driven>

 <ejb-name>MyMDB</ejb-name>
 <destination-jndi-name>myDestination</destination-jndi-name>
 <invoker-bindings>
 <invoker>
 <invoker-proxy-binding-name>
 joram-mdb-invoker
 </invoker-proxy-binding-name>

 </invoker>
 </invoker-bindings>

 </message-driven>
Then define the invoker into the JBoss configuration file jboss/server/<server
name>/conf/standardjboss.xml.
<invoker-proxy-bindings>
...
<invoker-proxy-binding>
 <name>joram-mdb-invoker</name>
 <invoker-mbean>does-not-matter</invoker-mbean>
 <proxy-factory>
 org.jboss.ejb.plugins.jms.JMSContainerInvoker
 </proxy-factory>
 <proxy-factory-config>
 <JMSProviderAdapterJNDI>JoramJMSProvider</JMSProviderAdapterJNDI>
 <ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
 <MinimumSize>1</MinimumSize>
 <KeepAliveMillis>30000</KeepAliveMillis>
 <MaximumSize>15</MaximumSize>
 <MaxMessages>1</MaxMessages>
 <MDBConfig>
 <ReconnectIntervalSec>10</ReconnectIntervalSec>
 <DLQConfig>
 <DestinationQueue>collector-converter-queue</DestinationQueue>
 <MaxTimesRedelivered>10</MaxTimesRedelivered>
 <TimeToLive>0</TimeToLive>
 </DLQConfig>
 </MDBConfig>

 - 99 -

Joram 5.2.1 User's Guide

 </proxy-factory-config>
 </invoker-proxy-binding>

The next step is to define the JMS provider “JoramJMSProvider” in the file jboss/server/<server
name>/jms/joram-jms-ds.xml
<server>
...
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
 name="jboss.mq:service=JoramJMSProviderLoader,name=JoramJMSProvider">
 <attribute name="ProviderName">JoramJMSProvider</attribute>

 <attribute name="ProviderAdapterClass">
 org.jboss.jms.jndi.JNDIProviderAdapter</attribute>

 <attribute name="FactoryRef">JoramXAConnectionFactory</attribute>
 <attribute name="QueueFactoryRef">JoramXAQueueConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">JoramXATopicConnectionFactory</attribute>
 <attribute name="Properties">
 java.naming.factory.initial=fr.dyade.aaa.jndi2.client.NamingContextFactory
 java.naming.factory.host=localhost
 java.naming.factory.port=16400
 </attribute>
</mbean>

It relies on the use of XA connection factories which are resolved through the Joram JNDI. These
factories must have been created and bound into Joram JNDI before starting the Jboss server.

You can create and bind these factories either manually with the Joram administration GUI (JAMT)
or automatically with the XML file joramAdmin.xml.

JoramAdmin.xml example:
<ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.XATcpConnectionFactory">
 <tcp host="localhost"
 port="16010"/>
 <jndi name="JoramXAConnectionFactory"/>
 </ConnectionFactory>

 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.XATopicTcpConnectionFactory">
 <tcp host="localhost"
 port="16010"/>
 <jndi name="JoramXATopicConnectionFactory"/>
 </ConnectionFactory>

 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.XAQueueTcpConnectionFactory">
 <tcp host="localhost"

 - 100 -

Joram 5.2.1 User's Guide

 port="16010"/>
 <jndi name="JoramXAQueueConnectionFactory"/>
 </ConnectionFactory>

Remarks:

• The default user/password is chosen by Joram connection factories:
anonymous/anonymous. It seems that the JMSContainerInvoker doesn't allow to modify
the user identity.

9.2.2. Joram ActivationSpec

The JCA ActivationSpec is implemented by Joram resource connector (RAR). It provides the
same basic functionalities as the JMSContainerInvoker, i.e. threads and sessions pooling. The
difference is that the ASF interfaces are implemented by the JCA connector and that the activation
mechanisms (and roles) are specified by the JCA API.

It implies that you installed Joram with its RAR (exhaustive or remote) and not with the JARs.

However notice that the Jboss specific features (provided by the JMSContainerInvoker) are not
provided by the JCA ActivationSpec. For example the reconnection policy is currently not
implemented by Joram connector. The DLQ mechanism is provided by Joram but is configured in
another way.

First, link the MDB to an invoker called “joram-mdb-invoker” in the deployment descriptor
jboss.xml:
<message-driven>

 <ejb-name>MyMDB</ejb-name>
 <destination-jndi-name>myDestination</destination-jndi-name>
 <resource-adapter-name>joram.rar</resource-adapter-name>
 <invoker-bindings>
 <invoker>
 <invoker-proxy-binding-name>
 joram-mdb-invoker
 </invoker-proxy-binding-name>

 </invoker>
 </invoker-bindings>
 </message-driven>
The resource adapter used to activate the MDB is defined in the file jboss.xml.

Then define the invoker into the JBoss configuration file jboss/server/<server
name>/conf/standardjboss.xml.
<invoker-proxy-binding>
 <name>joram-mdb-invoker</name>
 <invoker-mbean>default</invoker-mbean>
 <proxy-factory>
 org.jboss.ejb.plugins.inflow.JBossJMSMessageEndpointFactory
 </proxy-factory>
 <proxy-factory-config>
 <activation-config>

 - 101 -

Joram 5.2.1 User's Guide

 ...
 </activation-config>
 <endpoint-interceptors>
 <interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
 <interceptor>
 org.jboss.ejb.plugins.inflow.MessageEndpointInterceptor
 </interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </endpoint-interceptors>
 </proxy-factory-config>
 </invoker-proxy-binding>
The activation-config can be defined above or/and can be overridden into the MDB deployment
descriptor ejb-jar.xml.

 <activation-config-property>
 <activation-config-property-name>
 destinationType</activation-config-property-name>
 <activation-config-property-value>
 javax.jms.Topic</activation-config-property-value>
</activation-config-property>
<activation-config-property>
 <activation-config-property-name>
 messageSelector</activation-config-property-name>
 <activation-config-property-value></activation-config-property-value>
</activation-config-property>
<activation-config-property>
 <activation-config-property-name>
 acknowledgeMode</activation-config-property-name>
 <activation-config-property-value>
 Auto-acknowledge</activation-config-property-value>
</activation-config-property>
<activation-config-property>
 <activation-config-property-name>
 subscriptionName</activation-config-property-name>
 <activation-config-property-value>
 mySubscription</activation-config-property-value>
</activation-config-property>
<activation-config-property>
 <activation-config-property-name>
 subscriptionDurability</activation-config-property-name>
 <activation-config-property-value>
 Durable</activation-config-property-value>
 </activation-config-property>

 - 102 -

Joram 5.2.1 User's Guide

 <activation-config-property>
 <activation-config-property-name>
 maxNumberOfWorks</activation-config-property-name>
 <activation-config-property-value>
 0</activation-config-property-value>
 </activation-config-property>

 <activation-config-property>
 <activation-config-property-name>
 userName</activation-config-property-name>
 <activation-config-property-value>
 foo</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 password</activation-config-property-name>
 <activation-config-property-value>
 foo</activation-config-property-value>
 </activation-config-property>
</activation-config>

Remarks:

• The property 'maxMessages' is currently not provided by Joram connector (always set to
1).

• The property 'maxNumberOfWorks' is actually the maximum number of sessions
(maxSessions) allowed in the pool.

9.2.3. Jboss ActivationSpec

The Jboss JCA connector can be used on top of a Joram client.

You just have to configure the MDB to be activated by the jms-ra.rar adapter and add the following
property in the activation configuration.
<activation-config-property>
 <activation-config-property-name>
 providerAdapterJNDI</activation-config-property-name>
 <activation-config-property-value>
 JoramJMSProvider</activation-config-property-value>
</activation-config-property>

9.3. Send and receive JMS messages
If you need to send and receive (explicitly, in a synchronous way) JMS messages then you have to
get a connection factory.

 - 103 -

Joram 5.2.1 User's Guide

There are several ways to get a Joram connection factory. You can get a non-managed one by
simply querying the Joram JNDI. You can also get a managed connection factory, i.e. A
connection factory that handles a pool of connections.

A Joram connection can be managed by the Jboss connector or by the Joram connector.

9.3.1. Jboss managing Joram connections

You can define in the file deploy/jms/joram-jms-ds.xml an XA connection factory called “
JoramJmsXA”. This is a Jboss managed connection factory (it uses Jboss jms-ra.rar). But it
actually uses Joram as specified by the property 'JmsProviderAdapterJNDI'.

<tx-connection-factory>
 <jndi-name>JoramJmsXA</jndi-name>
 <xa-transaction/>
 <track-connection-by-tx/>
 <rar-name>jms-ra.rar</rar-name>
 <connection-definition>
 org.jboss.resource.adapter.jms.JmsConnectionFactory
 </connection-definition>
 <config-property name="SessionDefaultType"
 type="java.lang.String">javax.jms.Topic</config-property>
 <config-property name="JmsProviderAdapterJNDI"
 type="java.lang.String">java:/JoramJMSProvider</config-property>
 <config-property name="UserName" type="java.lang.String">sqp</config-property>
 <config-property name="Password" type="java.lang.String">sqp</config-property>
 <max-pool-size>20</max-pool-size>
</tx-connection-factory>

9.3.2. Joram managed connection factory

You can define in the file deploy/jms/joram-jms-ds.xml an XA connection factory called “
JoramJmsXA”. This is a Joram managed connection factory (it uses joram.rar).

<tx-connection-factory>
 <jndi-name>JoramJmsXA</jndi-name>
 <xa-transaction/>
 <track-connection-by-tx/>
 <rar-name>joram.rar</rar-name>
 <connection-definition>
 javax.jms.ConnectionFactory
 </connection-definition>
 <config-property name="UserName" type="java.lang.String">sqp</config-property>
 <config-property name="Password" type="java.lang.String">sqp</config-property>
 <max-pool-size>20</max-pool-size>
</tx-connection-factory>

 - 104 -

Joram 5.2.1 User's Guide

9.3.3. Resolving the connection factory

You can resolve this connection factory with the following line code in your EJB:
ConnectionFactory cf = (ConnectionFactory)ctx.lookup("java:/JoramJmsXA");

9.3.4. Resolving the destinations

If the destinations have been bound into the Joram JNDI then you have to mount it into Jboss
JNDI. The file deploy/joram/joram-service.xml defines a Joram JNDI external context.

<server>
...

<mbean code="org.jboss.naming.ExternalContext"
 name="jboss.jndi:service=ExternalContext,jndiName=external/joram">
 <attribute name="JndiName">external/joram</attribute>
 <attribute name="CacheContext">true</attribute>
 <attribute name="Properties">
 java.naming.factory.initial=fr.dyade.aaa.jndi2.client.NamingContextFactory
 java.naming.factory.host=localhost
 java.naming.factory.port=16400
 </attribute>
 <attribute name="InitialContext">javax.naming.InitialContext</attribute>
 <attribute name="RemoteAccess">true</attribute>
</mbean>
Remark:

• If you installed Joram with the RAR then you will have to add the Joram JNDI client JAR
into jboss libraries. If you installed Joram with the JARs then the JNDI client is already
packaged into joram-client.jar.

If the destination is bound in Joram JNDI with the name 'myDestination' (at the root context) then
you can resolve it with the following code line:
Queue q = (Queue)ctx.lookup("/external/joram/myDestination");

 - 105 -

Joram 5.2.1 User's Guide

10.Using Joram in
WebLogic

This chapter describes how to use a Joram server with a BEA WebLogic server, it has been tested
with WebLogic 9.2 MP2 and Joram 4.3.32.

10.1. Integrating WebLogic server with
Joram

This chapter shows how to create a new WebLogic domain and to connect it to a Joram's JMS
provider.

10.1.1. Installation

Create a simple WebLogic domain by using the wizard:

● Click Start > All Programs > BEA Products > tools > Configuration Wizard.
● The first form of the wizard allows to create a new domain or to extend an existing one. Choose Create a

new WebLogic domain (default choice) then click the Next button.
● In the next form choose Generate a domain configured automatically to support the following BEA

products, keep all the default options (see figure below) then click the Next button.

 - 106 -

Joram 5.2.1 User's Guide

● The next form asks you to configure the administrator role. Enter the user name and
password then click the Next button.

● The following form allow to configure server start mode and JDK : choose Development
mode in the left pane, and select a JDK in the list of the right pane.

 - 107 -

Joram 5.2.1 User's Guide

● The next form (see figure above) allows to customize environment and services settings
of the created domain. Select No then click the Next button.

● The last form will create the WebLogic domain. Enter the name and the location where
you want to install the server, in our example the domain name is <DOMAIN_NAME>
('base_domain' in our example) and the base directory <DOMAIN_DIR>
('G:\bea\user_projects\domains' in the example) then click the Create button.

 - 108 -

Joram 5.2.1 User's Guide

After the above command has completed click the Done button, then execute the following
actions:

1. Create the directory <DOMAIN_DIR>\<DOMAIN_NAME>\lib\joram.

○ In our example 'G:\bea\user_projects\domains\base_domain\lib\joram'.

2. Unzip the file joram.rar in the created directory.

3. Edit the file <DOMAIN_DIR>\<DOMAIN_NAME>\lib\joram\META-INF\MANIFEST.MF file
and remove the following lines:

Implementation-Title: Joram
Implementation-Version: 5.0.6
Implementation-Vendor: ScalAgent D.T.
Specification-Version: 1.1

4. Copy the following files needed for Joram administration in the directory <DOMAIN_DIR>\
<DOMAIN_NAME>.

1. a3config.dtd

2. a3debug.cfg

3. a3servers.xml

4. joramAdmin.xml

You are now ready to start the Joram server in WebLogic.

10.1.2. Administration and Deployment

Start the new WebLogic domain:

● Click Start > All Programs > BEA Products > User Projects > <DOMAIN_NAME>.

Then connect to the administration console with your usual browser:

 - 109 -

Joram 5.2.1 User's Guide

● Connect to http://localhost:7001/console/console.portal , enter the user name and password defined at the
previous stage, then click Log In.

● In the Domain Configurations panel select Deployments (under Your Deployed
Resources subtitle).

● Click Lock & Edit button in the left panel of the Administration Console.

● Then in the Control tabpane of the right panel (Summary of Deployments) click the
Install button; the right panel displays the Install Application Assistant (figure below).

● In the Right panel select the file path of the created domain:

○ <DOMAIN_DIR>\<DOMAIN_NAME> directory.

○ In our example 'G:\bea\user_projects\domains\base_domain\lib' directory.

● Then select joram, and click Next.

● In the next form choose “Install this deployment as an application" then click Next.
● The next form (see figure below) allows to fix optional settings, accept the defaults clicking Next, Then click

Finish.

 - 110 -

http://localhost:7001/console/console.portal

Joram 5.2.1 User's Guide

● The right panel displays basic information about the resource adapter deployment, click
the Activate Change button in the left panel.

● In the right panel a message indicates "All changes have been activated. No restarts
are necessary", at the top of this panel select Summary of Deployments in the path
Home > Summary of Deployments > joram.

● The right panel displays (see Figure below) a summary of all modules that have been
installed to this domain, select joram then click the Start > servicing all requests
button.

● A confirmation is asked click the Yes button.

 - 111 -

Joram 5.2.1 User's Guide

● In the right panel a message indicates "Start requests have been sent to the selected
Deployments". The Joram Resource Adapter is now Active, we will try to test it.

● In the control tabpane select select joram.

● The right panel now displays a summary of settings for the joram Deployments, choose
the testing tab (see figure below), then select each outbound connection in the list and
click the Test button. Normally the 'Test Result' column should display 'Passed' for each
outbound connection.

 - 112 -

Joram 5.2.1 User's Guide

Joram RA tests view

10.1.3. JMS Module / Foreign Server

In order to allow a MDB to consume from a remote JMS provider we have to configure it with
foreign JMS server definitions. We will now create a Foreign Server in "JMS Module" to wrap
foreign factories and destinations.

You do use wrappers, specify the Foreign Connection Factory and the Foreign Destination you set
up in your local JNDI tree that corresponds the foreign JMS provider's connection factory.

● In the right panel the history path is displayed at the top of this panel: Home > Summary
of Deployments > joram..., select home.

● In the Domain Configurations panel select JMS Modules (under Messaging subtitle).

● The next page summarizes the JMS system resources of the domain, click the Lock &
Edit button in the left panel, then click the New button in the JMS Modules panel.

● The next page (figure below) shows the creation of a new JMS System Module Resource.
Specify a name (SMJoram in our example) for the module then click the Next button.

 - 113 -

Joram 5.2.1 User's Guide

Creation of a new JMS module

● Follow the wizard selecting AdminServer then click the Finish button. At the top of the
right panel a message indicates “The JMS module was created successfully”.

● The messages at the top of the right panel indicates “All changes have been activated.
No restarts are necessary”. In the JMS Modules array select the created JMS Module
(SMJoram) then click the Lock & Edit button in the left panel.

● The next page displays information about the JMS Module and its resources, in the right
panel click the New button in Summary of Resources.

● In the new window select "Foreign Server" (see Figure below) and click the Next button.

● Give the name of the module you want to create (ForeignServer-Joram in our example)
then click again the Next button, then the Finish one.

● The next page displays the message “The foreign server was created successfully”,
click the Activate Change button in the left pane.

 - 114 -

Joram 5.2.1 User's Guide

Configuration of a JMS module – step 1

The next view resumes the information about the new created JMS module. Now you are ready to
create and configure the ConnectionFactory and Destination objects in the newly created foreign
JMS provider.

● The message at the top of the next page indicates “All changes have been activated.
No restarts ares necessary”, select ForeignServer-Joram in the summary of resources
then click the Lock & Edit button (see figure below).

 - 115 -

Joram 5.2.1 User's Guide

Configuration of a JMS module – step 2

● In the Configuration tabpane (general submenu) specify the JNDI Initial Context Factory
and the JNDI connection URL, then click the Save button:

○ fr.dyade.aaa.jndi2.client.NamingContextFactory

○ scn://localhost:16400

● The next page displays the message “Settings updated successfully”, click the Activate
Change button in the left pane.

● The message indicates now “All changes have been activated. No restarts are
necessary”.

● Select Destinations at the top of the tabpane Configuration then click the Lock & Edit
button. Click the New button in the Foreign Destinations array, enter the following values
and click the Ok button:

○ Name = ForeignQueue

○ Local JNDI Name = eis/foreignQueue

 - 116 -

Joram 5.2.1 User's Guide

○ Remote JNDI Name = queue

● Select Connection Factories at the top of the tabpane Configuration then click the New
button in the Foreign Connection Factories array, enter the following values and click
the Ok button :

○ Name = ForeignCF

○ Local JNDI Name = eis/foreignCF

○ Remote JNDI Name = cf

● click the Activate Change button in the left pane. The message indicates now “All
changes have been activated. No restarts are necessary”.

10.1.4. JNDI view

You can now see in JNDI the Joram Factories and Destinations (eis context). Use your usual Web
browser and connect to the following URL:

● http://localhost:7001/console/consolejndi.portal?
_nfpb=true&_pageLabel=JNDIHomePage&server=AdminServer

The figure above shows the administered objects at this step.

 - 117 -

http://localhost:7001/console/consolejndi.portal?_nfpb=true&_pageLabel=JNDIHomePage&server=AdminServer
http://localhost:7001/console/consolejndi.portal?_nfpb=true&_pageLabel=JNDIHomePage&server=AdminServer

Joram 5.2.1 User's Guide

JNDI view

10.1.5. Patch WSL92

For testing MDB sample with Weblogic 9.2 MP2, you must apply the patch 7KCW:

BEA_HOME\utils\bsu> bsu -prod_dir=BEA_HOME\weblogic92 -patchlist=7KCW
-patch_download_dir=BEA_HOME\utils\bsu\cache_dir -verbose -install

You can also use the 'Smart Update' wizard:

● Click Start > All Programs > BEA Products > Smart Update.

● Then follow the instructions.

10.2. Test with a simple MDB
In order to test the Joram JMS module we will create and deploy a sample MDB. There is three
steps:

 - 118 -

Joram 5.2.1 User's Guide

1. Build and compile the MDB.

2. Deploy the MDB.

3. Send messages to observe the MDB behavior.

10.2.1. Build the Message-Driven Bean

This simple MDB prints the JMS message content (JMS Message ID and text message) for each
onMessage invocation7. The code of this sample MDB is in the figure below.

package mdb;

import javax.ejb.CreateException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class SimpleMDB implements MessageDrivenBean, MessageListener {
 private MessageDrivenContext context;

 // Required - public constructor with no argument
 public SimpleMDB() {
 System.out.println("=== SimpleMDB");
 }

 // Required - ejbRemove
 public void ejbRemove() {
 System.out.println("=== ejbRemove");
 context = null;
 }

 public void setMessageDrivenContext(MessageDrivenContext mycontext) {
 System.out.println("=== setMessageDrivenContext(" + mycontext + ')');
 context = mycontext;
 }

 // Required - ejbCreate() with no arguments
 public void ejbCreate() throws CreateException {
 System.out.println("=== ejbCreate");
 }

 // Implementation of MessageListener - throws no exceptions
 public void onMessage(Message msg) {
 try {
 System.out.println("SimpleMDB got JMS message: " + msg.getJMSMessageID());
 if (msg instanceof TextMessage)
 System.out.println(" msg = " + ((TextMessage) msg).getText());

7 When a JMS Queue or Topic receives a message, the WebLogic Server calls the associated message-driven
bean onMessage() method.

 - 119 -

Joram 5.2.1 User's Guide

 } catch (Exception e) {
 // Catch any exception
 e.printStackTrace();
 }
 }
}

SimpleMDB.java

To write and compile this MDB you can use the Eclipse IDE for BEA WebLogic:

● Start > All Programs > BEA Products > Workshop for Weblogic Platform

The figures below display the XML descriptors 'ejb-jar.xml' and weblogic-ejb-jar.xml'
<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" version="2.1">
 <enterprise-beans>
 <message-driven>
 <ejb-name>SimpleMDB</ejb-name>
 <ejb-class>mdb.SimpleMDB</ejb-class>
 <transaction-type>Container</transaction-type>

 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destination</activation-config-
property-name>
 <activation-config-property-value>eis/foreignQueue</activation-config-
property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-
property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-
property-value>
 </activation-config-property>
 </activation-config>

 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SimpleMDB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <message-destination>

 - 120 -

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://java.sun.com/xml/ns/j2ee

Joram 5.2.1 User's Guide

 <message-destination-name>destination</message-destination-name>
 </message-destination>
 </assembly-descriptor>
</ejb-jar>

ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-ejb-jar
 xmlns="http://www.bea.com/ns/weblogic/90"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/90 http://www.bea.com/ns/webl
ogic/90/weblogic-ejb-jar.xsd">
 <weblogic-enterprise-bean>
 <ejb-name>SimpleMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>1</max-beans-in-free-pool>
 <initial-beans-in-free-pool>1</initial-beans-in-free-pool>
 </pool>

 <destination-jndi-name>eis/foreignQueue</destination-jndi-name>
 <connection-factory-jndi-name>eis/foreignCF</connection-factory-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>

 <message-destination-descriptor>
 <message-destination-name>destination</message-destination-name>
 <destination-jndi-name>eis/foreignQueue</destination-jndi-name>
 </message-destination-descriptor>
</weblogic-ejb-jar>

weblogic-ejb-jar.xml

10.2.2. Deploy SimpleMDB

We have now to deploy the MDB in the server:

● Copy SimpleMDB.class in <DOMAIN_DIR>\<DOMAIN_NAME>\lib\simpleMDB\mdb, in
our example: G:\bea\user_projects\domains\base_domain\lib\simpleMDB\mdb.

● Copy ejb-jar.xml and weblogi-ejb-jar.xml in
<DOMAIN_DIR>\<DOMAIN_NAME>\lib\simpleMDB\META-INF, in our example: G:\bea\
user_projects\domains\base_domain\lib\simpleMDB\ META-INF.

● Launch Start > All Programs > BEA Products > User Projects > base_domain > Start
Admin Server for Weblogic Server Domain.

You can then connect to the administration console with your usual browser using the following
URL: http://localhost:7001/console/console.portal

● In the Domain Configurations panel select Deployments (under Your Deployed
Resources subtitle).

 - 121 -

http://localhost:7001/console/console.portal
http://www.bea.com/ns/webl
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://www.bea.com/ns/weblogic/90

Joram 5.2.1 User's Guide

● In the left panel, click the Lock & Edit button, then in the right panel click the Install
button in the Control tabpane.

● In the Install Application Assistant panel select the installation path of the MDB:

○ <DOMAIN_DIR>\<DOMAIN_NAME>\lib directory,

○ G:\bea\user_projects\domains\base_domain\lib in our example.

● select simpleMDB and click the Next button.

● In the next form choose Install this deployment as an application" then click Next.
● The next form (see figure below) allows to fix optional settings, accept the defaults clicking

Next, Then click Finish.

● The right panel displays basic information about the resource adapter deployment, click
the Activate Change button in the left panel.

● In the right panel a message indicates "All changes have been activated. No restarts
are necessary", at the top of this panel select Summary of Deployments in the path
Home > Summary of Deployments > simpleMDB.

● The right panel displays a summary of all modules that have been installed to this
domain, select simpleMDB then click the Start > servicing all requests button.

● A confirmation is asked click the Yes button.

Now the simpleMDB waits messages from the Joram Destination named queue.

10.2.3. Results

You can use the sample classic to send 10 messages to this queue (see chapter 2.2.1).

10 messages sent.
Result from Classic.Sender

The console of the WebLogic server will display:

...
SimpleMDB got JMS message: ID:0.0.1026c5m0
 msg = Test number 0
SimpleMDB got JMS message: ID:0.0.1026c5m1
 msg = Test number 1
SimpleMDB got JMS message: ID:0.0.1026c5m2
 msg = Test number 2
SimpleMDB got JMS message: ID:0.0.1026c5m3
 msg = Test number 3
SimpleMDB got JMS message: ID:0.0.1026c5m4
 msg = Test number 4
SimpleMDB got JMS message: ID:0.0.1026c5m5
 msg = Test number 5
SimpleMDB got JMS message: ID:0.0.1026c5m6
 msg = Test number 6
SimpleMDB got JMS message: ID:0.0.1026c5m7
 msg = Test number 7
SimpleMDB got JMS message: ID:0.0.1026c5m8
 msg = Test number 8
SimpleMDB got JMS message: ID:0.0.1026c5m9
 msg = Test number 9

 - 122 -

Joram 5.2.1 User's Guide

Results from SimpleMDB

 - 123 -

Joram 5.2.1 User's Guide

11.Using JMS Bridge

11.1. Bridging Joram 5 and XMQ
The JORAM 5 release has introduced a bridge feature. This bridge allows a JORAM client
application to communicate with a JMS destination hosted by a foreign JMS server (let’s call it
XMQ) in a completely standard way.

The link between the JORAM and XMQ heterogeneous platforms is provided by a specifically
configured JORAM destination (a queue or a topic), connected to a XMQ destination as a
standard (JMS 1.1) client application (as illustrated by Figure 32).

Figure 32 - A JORAM client communicating with a XMQ client

When the JORAM client sends a message on the JORAM bridge destination, the message is
actually forwarded to the XMQ destination. If the JORAM client requests a message from the
JORAM bridge destination, the request is forwarded to the XMQ destination. The XMQ destination
answers by returning a JMS message, which is stored in the JORAM bridge destination and
eventually consumed by the JORAM client.

From the JORAM client perspective, the target destination is a JORAM destination accessed
through the JMS interfaces. It is a fully standard client. The facts that the messages it produces
finally reach the XMQ destination, and that the messages it consumes originally come from the
XMQ destination, are totally transparent to the JORAM user.

 - 124 -

JORAM client

XMQ

Dest

Joram server

Dest

Joram server

Dest

JMS 1.1JMS 1.1JMS 1.1

JM
S 1.1

JM
S 1.1

XMQ client

Joram 5.2.1 User's Guide

This document presents how the JORAM bridge feature works, how to use it, and finally shows
sample codes for bridging JORAM with IBM’s WebSphere MQ platform and an other with JORAM.

11.2. Concepts and implementation
As said in the introduction, the JORAM JMS bridge feature is provided by specialized JORAM
destinations. The communication between a JORAM client and a JORAM bridge destination is
standard. It is the processing of the client requests within the bridge destination that is specialized.

A bridge destination has 3 main roles:

 as a JORAM destination, it receives messages sent by JORAM JMS producers, and
requests sent by JORAM JMS consumers;

 as a XMQ JMS producer, it forwards the received messages to the XMQ destination; as a
XMQ JMS consumer, it requests messages from the XMQ destination;

 as a XMQ JMS consumer, it consumes messages coming from the XMQ destination; as a
JORAM destination, it delivers those messages to the JORAM JMS consumers.

The JMS resources involved in the JORAM client – XMQ client communication are illustrated by
the next picture.

Figure 33 - Bridge communication diagram

11.2.1. Message exchange

Communication modes
The JORAM bridge destination may either be a queue or a topic. And in both cases it may either
communicate with a foreign queue or a foreign topic. A JORAM client application may then interact
with a XMQ destination normally incompatible with the communication mode. For example, a
JORAM client can interact with a XMQ queue in a Publish/Subscribe way.

 - 125 -

Joram 5.2.1 User's Guide

Message sending
A message sent by a JORAM client application first reaches the bridge destination. It is then
forwarded to the XMQ destination. Once successfully delivered to the XMQ platform, it is removed
from the bridge destination. While the message was hosted by the JORAM bridge destination
(between its arrival and its delivery to the foreign platform), it has never been available for delivery
to a JORAM client. Even if the bridge destination had pending consumers requests, they wouldn’t
have been answered with this message. Messages arriving on a bridge destination and coming
from a JORAM client application are only deliverable to a foreign JMS destination.

Message consumption
 A consuming request sent by a JORAM client application first reaches the bridge destination. It is
then forwarded to the XMQ destination. When the XMQ target destination is a topic, the JORAM
bridge destination, when receiving the first consuming request, durably subscribes to the XMQ
topic. This for not loosing messages if the JMS connection between the bridge destination and the
XMQ platform fails (connection failures handling is addressed section 2.4). Messages delivered by
the XMQ platform are consumed by the JORAM bridge destination. At that point they are
converted into JORAM JMS messages (if the conversion fails, the delivery is rolled back, see
section 2.2). Finally, those messages are consumed by the JORAM client applications.

Queue browsing
The JMS API allows a client application to browse the messages available for delivery on a queue.
When requesting to browse a JORAM queue bridge, the “browse” request is forwarded to the
XMQ destination if it is a queue. It eventually returns an enumeration of messages, converted into
JORAM JMS messages. The enumeration is finally forwarded to the original requester. If the
bridge destination is connected to a XMQ topic, the request is directly answered by an empty
enumeration.

11.2.2. Acknowledgment policy

Acknowledgements are managed between the JORAM client and the JORAM bridge destination,
and between the JORAM bridge destination and the XMQ destination, independently.

Figure 34 shows a first scenario of message rollback. In fact, it is the only possible case of
message denying between the JORAM bridge destination and the XMQ platform. It occurs when
the JMS message delivered by the XMQ destination appears not to be readable and thus can not
be converted into a JORAM JMS message.

 - 126 -

Joram 5.2.1 User's Guide

Figure 34 - Delivery rolled back by the JORAM bridge destination

This situation will likely evolve towards the “poison” message scenario, where a JMS client rolls
back its session each time it receives the redelivered failing message. In order to avoid this, it is
hoped that XMQ provides a way to log such messages into a dead message queue. If yes, XMQ
should be configured for doing so.

Once a message delivered by the XMQ destination has been successfully converted into a
JORAM JMS message, the delivery is acknowledged. XMQ does not hold the message any more,
it is JORAM which is now responsible for safely distributing it.

Figure 35 shows the second possible scenario involving a rollback or message denying. It occurs
when the JORAM client application, which finally consumes the message, either fails before
acknowledging the message or explicitly rolls back its session.

 - 127 -

Joram 5.2.1 User's Guide

Figure 35 - Delivery rolled back by the JORAM client application

The consequence of this message denying is the same as between any JORAM client and
JORAM destination. The message is available again for delivery, or logged to a dead message
queue if any. In all cases the message stays on the JORAM platform, the XMQ destination is not
notified of the JORAM client acknowledgements or denials.

11.2.3. Message selection

As for acknowledgements, message selection is handled separately between a JORAM client and
the JORAM bridge destination it interacts with, and between the JORAM bridge destination and
the XMQ destination. Selectors set-up is done at different times. The selector used for filtering the
messages on the XMQ destination is set at administration time, when configuring the JORAM
bridge destination. It can not be changed once the bridge destination has been created. The
selector used by the JORAM client is set as a standard selector, when creating the
MessageConsumer instance.

Figure 36 shows how those selectors operate. The bridge’s selector selects messages with a
given property value above 2. As a consequence, only the messages which property value is
above 2 will actually be transferred from XMQ to JORAM.

 - 128 -

Joram 5.2.1 User's Guide

Figure 36 - How selectors operate

The JORAM client application selects messages with the same property value above 4. It then
consumes the corresponding messages available on the bridge destination. Other clients may
consume the other messages by setting different selectors.

11.2.4. Connection failure handling

From an architectural point of view, the XMQ server might be seen as a JORAM server of a
JORAM distributed configuration. It might happen that the JMS connection between the JORAM
bridge destination and the XMQ platform breaks. This case is processed as any connection failure
case between two JORAM servers. An automatic reconnection process is launched when the
failure is detected (through the setting of a javax.jms.ExceptionListener by the JORAM
bridge destination). When the JORAM bridge destination finally reconnects, the pending
messages or requests are re-routed to the XMQ platform.

As a consequence, disconnections between JORAM and XMQ are totally transparent to the user,
as disconnections between JORAM servers of a distributed JORAM platform.

The reconnection process is as follows:

1. first step: 30 connection trials, one per second;

2. second step: 55 connection trials, one every 5 seconds;

3. last step: infinite connection trials, one every minute.

11.3. User manual
A JORAM bridge client is a fully standard JMS client which has no visibility of the foreign XMQ
platform. Of course achieving this requires to properly configure and administer the JORAM and
XMQ platforms.

 - 129 -

Joram 5.2.1 User's Guide

11.3.1. Configuring the foreign platform

Prerequisites

The prerequisites on the foreign JMS server to bridge with JORAM are as follows:

 full implementation of the JMS 1.1 API;

 particularly, the javax.jms.ExceptionListener must be supported.

Configuration and administration

The foreign XMQ platform should be appropriately configured for hosting a destination, and
authorizing the connection of an external client.

JMS administered objects (javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory and javax.jms.Destination) that will be used by the
JORAM bridge to connect to the XMQ platform and access the right destination should be created
and bound to a JNDI compliant naming server.

11.3.2. Configuring JORAM

Configuration

JORAM’s server classpath must provide access to the following libraries:

 all XMQ client jars;

 a jms.jar library compatible with the XMQ JMS implementation;

 the client jars of the used JNDI server;

 a jndi.jar library compatible with the naming server used for binding the XMQ
administered objects.

Administration

Creating a JORAM bridge destination is done through the
org.objectweb.joram.client.jms.Queue.create and
org.objectweb.joram.client.jms.Topic.create static methods.

The parameters of these methods are:

 int serverId: identifier of the server on which deploying the destination;
 String className: name of the bridge’s class:

o “org.objectweb.joram.mom.dest.jmsbridge.JMSBridgeQueue” for a queue,
o “org.objectweb.joram.mom.dest.jmsbridge.JMSBridgeTopic” for a topic;

 java.util.Properties prop: properties configuring the bridge destination.

The following properties are required for setting the bridge destination:

 “connectionFactoryName”: JNDI name used to bound the XMQ JMS
ConnectionFactory or XA ConnectionFactory object;

 “destinationName”: JNDI name used to bound the XMQ JMS Destination object;

The following properties are optional:

 “userName”: user identification that should be used by the bridge destination for opening a
connection to XMQ; if not provided, the connection will be opened with no identification.

 “password”: user password that should be used by the bridge destination for opening a
connection to XMQ; if not provided, the connection will be opened with no identification.

 - 130 -

Joram 5.2.1 User's Guide

 “jndiFactory”: name of the JNDI initial context factory class (for example
“fr.dyade.aaa.jndi2.client.NamingContextFactory”); if not provided, it is expected that
environment variables are set or that a jndi.properties file is accessible through the
server’s classpath.

 “jndiUrl”: URL of the JNDI server (for example “scn://localhost:16400”); if not provided, it is
expected that environment variables are set or that a jndi.properties file is
accessible through the server’s classpath.

 “clientId”: provided if XMQ requires the setting of such an identifier on its client connection.

 “selector”: selector expression used for filtering messages on the XMQ destination.

 “automaticRequest”: provide an automatic request between XMQ and JORAM. The XMQ
messages are automatically forward in JORAM Destination.

11.3.3. Steps

In order to be able to bind the foreign JMS provider administered objects, a naming server is the
first thing to start. And in order to be able to successfully deploy a JORAM bridge destination, the
foreign JMS administered objects must have been bound. As a consequence, the start-up steps
are as follows:

1. starting a JNDI server;

2. creating the foreign JMS administered objects, binding them to the JNDI server;

3. starting and administering JORAM.

If the JNDI server used is hosted by the JORAM server, then the JORAM server is the first thing to
start (in order to start the JNDI service). Then the XMQ JMS administered objects should be
created and bound. Finally, the JORAM server should be administered, and particularly the bridge
destination should be created.

11.3.4. Failures

If one of the mandatory configuration properties is missing, the bridge destination creation will fail
(the static create method will throw an AdminException).

If the provided properties do not allow to successfully set a link with the foreign JMS server, the
bridge won’t be usable. But as the initialisation process is asynchronous, the administrator won’t
get any information about this failure.

Simply, when sending or requesting messages to/from this bridge, ERROR messages will be
logged. The possible error cases are:

 JNDI server not reachable (due to invalid “jndiFactory” or “jndiUrl” values);

 the administered objects could not be retrieved from the JNDI server (invalid
“cnxFactoryName” or “destinationName” values);

 missing XMQ client libraries in JORAM server’s classpath, preventing the successful re-
construction of the retrieved administered objects;

 incorrect JMS user identification (“userName and “password” values).

11.4. WebSphere-MQ example
This example links JORAM with IBM’s WebSphere MQ platform (formerly MQ Series). It shows a
JORAM topic bridge linked to a WebSphere MQ queue.

 - 131 -

Joram 5.2.1 User's Guide

11.4.1. Configuring and starting JORAM

Configuring JORAM

We will consider a simple JORAM platform made of one standard server (hosting a JNDI service).
It is described by the following a3servers.xml file:

<?xml version="1.0"?>
<config>
 <property name=”Transaction” value=”fr.dyade.aaa.util.NTransaction”/>
 <server id="0" name="S0" hostname="localhost">
 <service
 class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service
 class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>
 <service
 class="fr.dyade.aaa.jndi2.server.JndiServer"
 args="16400"/>
 </server>
</config>

The following WebSphere MQ libraries must be added to JORAM’s server lib/ directory:

 com.ibm.mqjms.jar
 com.ibm.mqbind.jar
 com.ibm.mq.jar
 connector.jar
 fscontext.jar

The JORAM distribution already provides the needed jms.jar, jndi.jar and
jndi.properties. No need to add those in the lib/ directory.

Starting JORAM

Starting JORAM is required first because the JORAM server provides the JNDI service needed for
binding WebSphereMQ’s administered objects.

Launching the JORAM server is done as usual:

java fr.dyade.aaa.agent.AgentServer 0 ./s0

11.4.2. WebSphere MQ setup

The WebSphere MQ administration tool should be used for creating a queue. Let’s call this queue
“foreignQueue”.

JMS administered objects should then be created. They will eventually be bound to JORAM’s
JNDI. For that, WebSphere MQ JMSAdmin.config file must be edited as follows:

INITIAL_CONTEXT_FACTORY=fr.dyade.aaa.jndi2.client.NamingContextFactory
PROVIDER_URL=scn://localhost:16400

The JMSAdmin command should then be launched and the JMS objects created and bound to
JNDI (with names “foreignCF” and “foreignDest”):

InitCtx> DEFINE QCF(foreignCF)

 - 132 -

Joram 5.2.1 User's Guide

InitCtx> DEFINE Q(foreignDest) QUEUE(foreignQueue)

11.4.3. Administering JORAM

Administering JORAM consists in creating and configuring the required bridge destination, and
authorizing a client access to it. The following code is proposed:

public class AdminSample
{
 public static void main(String[] args) throws Exception
 {
 AdminModule.connect("root", "root", 60);

 Properties prop = new Properties();
 // Setting the JNDI names of the WebSphere MQ
 // administered objects
 prop.setProperty("connectionFactoryName", "foreignCF");
 prop.setProperty("destinationName", "foreignDest");

 // Creating the bridge topic on JORAM server 0
 String className = "org.objectweb.joram.mom.dest.jmsbridge.JMSBridgeTopic";
 Topic bridgeTopic = Topic.create(0, className, prop);

 // Providing free access to it
 bridgeTopic.setFreeReading();
 bridgeTopic.setFreeWriting();

 // Creating an anonymous user access on JORAM server 0
 javax.jms.ConnectionFactory cf =
 TcpConnectionFactory.create("localhost", 16010);
 User user = User.create("anonymous", "anonymous", 0);

 // Binding the JORAM administered objects
 javax.naming.Context jndiCtx =
 new javax.naming.InitialContext();
 jndiCtx.bind("bridgeDest", bridgeDest);
 jndiCtx.bind("cf", cf);

 jndiCtx.close();

 AdminModule.disconnect();
 }
}

11.4.4. The JORAM subscriber

The development of the JORAM subscriber is fully standard. The JORAM application is apparently
in relationship with a pure JORAM topic destination, but in fact it consumes messages coming
from the WebSphere MQ queue destination, in a JMS 1.1 way, through the Publish/Subscribe
communication mode.

 - 133 -

Joram 5.2.1 User's Guide

The following code is proposed:

public class ConsumerSample
{
 public static void main(String[] args) throws Exception
 {
 // Retrieving the JORAM administered objects
 javax.naming.Context jndiCtx =
 new javax.naming.InitialContext();
 Destination dest = (Destination) jndiCtx.lookup("bridgeDest");
 ConnectionFactory cnxFact =
 (ConnectionFactory) jndiCtx.lookup("cf");
 jndiCtx.close();

 Connection cnx = cnxFact.createConnection();
 Session sess =
 cnx.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer cons = sess.createConsumer(dest);
 cons.setMessageListener(new MsgListener());

 cnx.start();
 System.in.read();
 cnx.close();
 }
}

11.4.5. The WebSphere MQ sender

The WebSphere MQ sender is a JMS 1.1 standard sender, sending messages to the WebSphere
MQ queue through a MessageProducer resource.

The following code is proposed:

public class SenderSample
{
 public static void main(String[] args) throws Exception
 {
 // Retrieving the WebSphere MQ administered objects
 javax.naming.Context jndiCtx =
 new javax.naming.InitialContext();
 Queue queue = (Queue) jndiCtx.lookup("foreignDest");
 ConnectionFactory cnxFact =
 (ConnectionFactory) jndiCtx.lookup("foreignCF");
 jndiCtx.close();

 Connection cnx = cnxFact.createConnection();
 Session sess = cnx.createSession(true, 0);
 MessageProducer sender = sess.createProducer(queue);
 TextMessage msg = sess.createTextMessage();

 // Sending 10 messages to the queue
 for (int i = 1; i < 11; i++) {

 - 134 -

Joram 5.2.1 User's Guide

 msg.setText(“WebSphere MQ message “ + i);
 sender.send(msg);
 }
 // Commiting the session
 sess.commit();

 cnx.close();
 }
}

11.5. Running the bridge sample
This sample provides an administration code configuring a single JORAM server with a bridge
topic, linked to a foreign JMS queue. A JORAM producer and a JORAM consumer actually interact
with this foreign JMS destination through the JORAM bridge.

The sample requires then a foreign JMS server to be running and to have been administered so
that the JORAM bridge is usable. How to achieve this is explained in the bridge documentation.

The next picture shows the bridge configuration. The configuration used is centralized and the
server run in non persistent mode. The bridge is a topic with which application interact through the
JMS 1.1 unified interfaces. This topic is linked with a foreign queue with which it interacts through
the JMS 1.1 PTP specific interfaces.

Figure 37 - Bridge sample

Running the demo:
1. Starting JORAM:

ant reset single_server

2. Administering the foreign JMS server, binding its administered objects.

3. Administering JORAM:
ant bridge_admin

4. Sending messages to the foreign JMS destination:
ant bridge_producer

5. Consuming messages on the foreign JMS destination:

 - 135 -

Joram 5.2.1 User's Guide

ant bridge_consumer

11.6. JORAM – XMQ JORAM example

11.6.1. Configuring and starting JORAM

Configuring JORAM servers

We will consider a JORAM platform made of two server (hosting a JNDI service). It is described by
the following a3servers.xml file:

<config>

 <property name="java.naming.factory.initial"
 value="fr.dyade.aaa.jndi2.client.NamingContextFactory"/>

 <property name="java.naming.factory.port" value="16400"/>
 <property name="java.naming.factory.host" value="localhost"/>
 <property name="Transaction" value="fr.dyade.aaa.util.NTransaction"/>

 <domain name="D1" network="fr.dyade.aaa.agent.SimpleNetwork"/>

 <server hostname="localhost" id="0" name="S0">
 <network domain="D1" port="16301"/>

 - 136 -

Figure 38: Bridge Joram-Joram sample

XMQ = JORAM

Queue

Joram server

BridgeQueue

Joram server

BridgeQueue

JORAM producerJORAM producerJORAM consumerJORAM consumer

Joram 5.2.1 User's Guide

 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>

 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/>

 <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
 </server>

 <server hostname="localhost" id="1" name="S1">
 <network domain="D1" port="16302"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"

 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"

 args="16011"/>
 </server>

</config>

The JORAM distribution already provides the needed jms.jar, jndi.jar and
jndi.properties. No need to add those in the lib/ directory.

Starting JORAM servers

Starting JORAM server 0 is required first because the JORAM server 0 provides the JNDI service
needed for binding administered objects.

Launching the JORAM server 0 is done as usual:

java fr.dyade.aaa.agent.AgentServer 0 ./s0
Launching the JORAM server 1 is done as usual:

java fr.dyade.aaa.agent.AgentServer 1 ./s1

11.6.2. Administering JORAM

Administering JORAM consists in creating and configuring the required bridge destination (Queue)
server 0, and authorizing a client access to it. Creating and configuring JORAM Queue on server
1, and authorizing a client access to it. The following code is proposed:

public class XABridgeAdmin {
 public static void main(String[] args) throws Exception {
 System.out.println();
 System.out.println("XA Bridge administration...");

 AdminModule.connect("root", "root", 60);

 User.create("anonymous", "anonymous", 0);
 User.create("anonymous", "anonymous", 1);

 javax.naming.Context jndiCtx = new javax.naming.InitialContext();

 // create The foreign destination and connectionFactory

 - 137 -

Joram 5.2.1 User's Guide

 Queue foreignQueue = Queue.create(1, "foreignQueue");
 foreignQueue.setFreeReading();
 foreignQueue.setFreeWriting();
 System.out.println("foreign queue = " + foreignQueue);

 javax.jms.XAConnectionFactory foreignCF =

XATcpConnectionFactory.create("localhost", 16011);

 // bind foreign destination and connectionFactory
 jndiCtx.rebind("foreignQueue", foreignQueue);
 jndiCtx.rebind("foreignCF", foreignCF);

 // Setting the bridge properties
 Properties prop = new Properties();
 // Foreign QueueConnectionFactory JNDI name: foreignCF
 prop.setProperty("connectionFactoryName", "foreignCF");
 // Foreign Queue JNDI name: foreignDest
 prop.setProperty("destinationName", "foreignQueue");
 // automaticRequest
 prop.setProperty("automaticRequest", "true");

 // Creating a Queue bridge on server 0:
 Queue joramQueue =

Queue.create(0,
 "org.objectweb.joram.mom.dest.jmsbridge.JMSBridgeQueue",
 prop);
 joramQueue.setFreeReading();
 joramQueue.setFreeWriting();
 System.out.println("joram queue = " + joramQueue);

 javax.jms.ConnectionFactory joramCF = TcpConnectionFactory.create();

 jndiCtx.rebind("joramQueue", joramQueue);
 jndiCtx.rebind("joramCF", joramCF);

 jndiCtx.close();

 AdminModule.disconnect();
 System.out.println("Admin closed.");
 }
}

11.6.3. The XMQ JORAM producer

The JORAM (server 1) sender is a JMS 1.1 standard sender, sending messages to the JORAM
foreignQueue through a MessageProducer resource with XA transaction.

The following code is proposed:

public class XAForeignProducer {

 - 138 -

Joram 5.2.1 User's Guide

 public static void main(String[] args) throws Exception {
 javax.naming.Context jndiCtx = new javax.naming.InitialContext();
 Destination foreignDest = (Destination) jndiCtx.lookup("foreignQueue");
 XAConnectionFactory foreignCF =

(XAConnectionFactory) jndiCtx.lookup("foreignCF");
 jndiCtx.close();

 XAConnection foreignCnx = foreignCF.createXAConnection();
 XASession foreignSess = foreignCnx.createXASession();
 MessageProducer foreignSender = foreignSess.createProducer(foreignDest);
 XAResource producerRes = foreignSess.getXAResource();

 // Creating Xid.
 Xid xid =

new XidImpl(new byte[0],
 1,
 new String(""+System.currentTimeMillis()).getBytes());

 // start XA resource
 producerRes.start(xid, XAResource.TMNOFLAGS);

 TextMessage foreignMsg = foreignSess.createTextMessage();

 for (int i = 1; i < 11; i++) {
 foreignMsg.setText("Foreign message number " + i);
 System.out.println("send msg = " + foreignMsg.getText());
 foreignSender.send(foreignMsg);
 }

 // resource end, prepare and commit.
 producerRes.end(xid, XAResource.TMSUCCESS);
 producerRes.prepare(xid);
 producerRes.commit(xid, false);

 foreignCnx.close();
 }
}

11.6.4. The JORAM consumer

The JORAM (server 0) consumer is a JMS 1.1 standard consumer, consume messages to the
JORAM bridgeQueue through a MessageConsumer resource.
The following code is proposed:

public class BridgeConsumer {
 public static void main(String[] args) throws Exception {
 javax.naming.Context jndiCtx = new javax.naming.InitialContext();
 Destination joramDest = (Destination) jndiCtx.lookup("joramQueue");
 ConnectionFactory joramCF = (ConnectionFactory) jndiCtx.lookup("joramCF");

 - 139 -

Joram 5.2.1 User's Guide

 jndiCtx.close();

 Connection joramCnx = joramCF.createConnection();
 Session joramSess = joramCnx.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer joramCons = joramSess.createConsumer(joramDest);
 joramCons.setMessageListener(new MsgListener("joram"));
 joramCnx.start();

 System.in.read();

 joramCnx.close();
 }
}

public class MsgListener implements MessageListener {
 String who;

 public MsgListener(String who) {
 this.who = who;
 }

 public void onMessage(Message msg) {
 try {
 if (msg instanceof TextMessage)
 System.out.println(who + " receive : " + ((TextMessage) msg).getText());
 }
 catch (JMSException exc) {
 System.err.println("Exception in listener: " + exc);
 }
 }
}

 - 140 -

Joram 5.2.1 User's Guide

12.Working with
sources distribution

12.1. Getting Joram sources

12.1.1. Getting a packaged version of Joram

The packages are downloadable from the following location:

 http://forge.objectweb.org/project/showfiles.php?group_id=4 .

For release x.y.z, the following tar file is provided:

 joram-x.y.z-src.tgz, including the client and server sources, as well as the graphical
tool sources, the J2ME client sources and the samples sources.

A package is expanded by UNIX users with the gunzip and tar commands; Windows
developers can use the Winzip utility.

12.1.2. Getting Joram from SVN

JORAM SVN page is located at: http://forge.objectweb.org/plugins/scmsvn/index.php?group_id=4.
The module to extract is joram. A nightly snapshot is generated each day at 00:00 AM CEST and
can be downloaded at ???.

12.1.3. Directory structure and description

Joram sources distribution

The distribution is expanded in a joram-x.y.z-src/ directory. It includes the following
directories:

 lib/
 licenses/
 samples/

o bin/…
o config/
o src/

 joram/…
 kjoram/…

 src/
o com/scalagent/…
o fr/dyade/aaa/…

 - 141 -

http://forge.objectweb.org/plugins/scmsvn/index.php?group_id=4
http://forge.objectweb.org/project/showfiles.php?group_id=4

Joram 5.2.1 User's Guide

o org/objectweb/joram/…

lib/ directory

Contains the libraries needed for compiling the distribution, and running the samples.

 activation.jar, JavaBeans activation framework (neede by soap);
 commons-logging-api.jar, Apache's logger API (used by Jgroups);
 connector-1_5.jar, the JCA 1.5 API;
 jakarta-regexp-1.2.jar, Jakarta’s regular expression parser;
 JCup.jar, javaCup Java parser generator;
 jgroups-all.jar, JGroups library (used for H.A. Implementation)
 jms.jar, the JMS API;
 jmxri.jar, JMX reference implementation (used for JDK prior 1.5);
 jmxtools.jar, JMX tools (used for JDK prior 1.5);
 jndi.jar, the JNDI API;
 jta.jar, the JTA API;
 kxml.jar, Enhydra’s kXML implementation (needed for kJoram);
 mail.jar, the JavaMail API;
 midpapi.jar, Sun’s MIDP API (needed for kJoram).
 ow_monolog.jar, ObjectWeb’s logger API and its wrappers;
 soap.jar, Apache’s SOAP implementation;
 soap.war, Apache’s SOAP web archive file;
 versions, reference version for libraries.

licenses/ directory

Contains the LGPL header displayed on top of each source file, as well as the licences of the
external softwares provided in the distribution.

samples/ directory

Contains the Joram samples sources, configuration files, UNIX and Windows scripts for launching
JORAM servers and clients (how to use them is explained in chapter 2).

src/com/scalagent/ directory

Contains the sources of specific ScalAgent component: scheduler queue, kJORAM client, etc.

src/fr/dyade/aaa/ directory

Contains the sources of the agent platform.

src/org/objectweb/joram directory

Contains the sources of JORAM server and client.

12.2. Compiling and shipping Joram
JORAM distribution is ready for compiling with Apache Ant utility. Ant can be downloaded from
http://jakarta.apache.org/ant/. Documentation is available at the same location.

In the src/ directory the build.xml files provides the main targets for convenience. The
available Ant targets can be listed by typing:

$ ant -projecthelp
Buildfile: build.xml
Main targets:

 - 142 -

http://jakarta.apache.org/ant/

Joram 5.2.1 User's Guide

 clean cleans the generated shipments
 javadoc generates the Joram javadoc
 ship.joram builds and ships Joram

Default target: ship.joram
The default target creates a ship/ directory with a typical Joram binary distribution.

JORAM distribution is ready for compiling with Apache Ant utility. Ant can be downloaded from
http://jakarta.apache.org/ant/. Documentation is available at the same location. In the src/
directory, 3 build files are provided:

 build.xml specifies the main targets for convenience, it has been described in 12.2.

 joram.xml specifies the targets for compiling and shipping the MOM classes, the Joram
client classes and the graphical admin tool classes;

The available Ant targets for joram.xml can be listed for each build files by typing:

$ ant -buildfile joram.xml -projecthelp
Buildfile: joram.xml
Main targets:

 build.joram --> Builds Joram server and client jars.
 build.kjoram --> Builds kjoram jars.
 compile --> Compiles sources.
 javadoc --> Generates the Joram's client and server JavaDoc.
 javadoc.all --> Generates the complete JavaDoc.
 release.jar --> Builds a Joram binary distribution.
 release.src --> Builds a Joram source distribution.
 releases --> Builds a Joram complete distribution.
 ship --> Creates a Joram shipment.
 ship.adapter --> Ships a JORAM JCA adapter
 ship.jonasadapter --> Ships a JORAM JCA adapter for JOnAS
 ship.remoteadapter --> Ships a JORAM JCA adapter for non collocated use

Default target: ship
The main targets are:

 ship builds from src/ and lib/ directories a directory ship/ with all the jars needed to
launch Joram's client and server.

 javadoc builds a doc/ directory with Joram's client and server javadoc.

 release;jar, release.src and release respectively build a binary distribution
(joram-x.y.z.tgz), a source distribution (joram-x.y.z-src.tgz) and a complete distribution (all
files available for download on ObjectWeb). Theses files are produced in releases/
directory.

12.2.1. Compiling Joram

The best way to build Joram is :
• ant -f joram.xml ship (see below)

$ ant -f joram.xml ship
Buildfile: joram.xml

 - 143 -

http://jakarta.apache.org/ant/

Joram 5.2.1 User's Guide

init:
setver:
init.joram:
 [echo] Joram 4.3.11

prepare:
 [mkdir] Created dir: C:\owjoram\joram\classes

compile:
 [javac] Compiling 611 source files to C:\owjoram\joram\classes
 [javac] Note: * uses or overrides a deprecated API.
 [javac] Note: Recompile with -Xlint:deprecation for details.

build.joram:
 [mkdir] Created dir: C:\owjoram\joram\build\META-INF
 [jar] Building jar: C:\owjoram\joram\build\joram-shared.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-mom.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-client.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-connector.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-raconfig.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-config.jar
 [jar] Building jar: C:\owjoram\joram\build\joram-gui.jar

build.kjoram:
 [javac] Compiling 129 source files to C:\owjoram\joram\
classes
 [jar] Building jar: C:\owjoram\joram\build\joram-kclient.jar

ship:
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib
 [copy] Copying 1 file to C:\owjoram\joram\ship\lib

BUILD SUCCESSFUL
Total time: 35 seconds

The release number (in our case Joram 4.3.11) is printed at starting; this number is fixed in the
src/build.properties file, you can overload it with a -Dversion=x.y.z in the command line.

This creates the classes/, build/ and doc/ directories when compiling is requested for the
first time or after a clean. The classes/ directory holds the compiled classes, the build/
directory contains jar files related to joram, then the ship/ directory contains a binary distribution of
Joram with all needed jars :

• joram-client.jar, needed by Joram's client, it contains all classes implementing the JMS
API.

• joram-mom.jar, needed by Joram's server, it contains all classes to launch a MOM
instance.

 - 144 -

Joram 5.2.1 User's Guide

• joram-shared.jar, contains classes shared between Joram's client and server. Essentially
the classes for communication object between the client and the server.

• joram-kclient.jar, contains all Joram's classes needed for J2ME client.

The classes specific to the administration tool are in a separate jar's file :

• joram-gui.jar

And there is 3 jars related to the JCA adapter :

• joram-config.jar

• joram-connector.jar

• joram-raconfig.jar

It contains also all 'external' jars needed to execute Joram's client or server.

You can also, either choose to build separately each component or directly the release files as
available for download (see below).

12.2.2. Compiling kJoram

Building kJoram requires to use a 1.3 or 1.4 JDK, and to generates 1.1 bytecode. Then, type:
ant –buildfile kjoram.xml build.kjoram

It creates the classes/, build/ and doc/ directories when compiling is requested for the
first time or after a clean. The classes/ directory holds the compiled classes, the joram-
kclient.jar library is created in the build/ directory.

12.2.3. Compiling the administration tool

Compiling the administration tool requires to use jdk 1.4. It is done by typing:
ant –buildfile joram.xml ship.gui

This creates the classes/ and javadoc/ directories when compiling is requested for the first
time or after a clean. The generated joramgui.jar library is created in the lib/ directory, the
classes/ directory holds the compiled classes.

12.2.4. Generating the javadoc

Simply type:
ant –buildfile joram.xml javadoc

This creates the classes/, build/ and apidoc/ directories when generating the javadoc is
requested for the first time or after a clean. The classes/ and build/ directories stays empty,
javadoc/ holds the doc.

The javadoc.all target allows to produce the documentation for all classes, not only Joram's
client and server (org.objectweb.joram packages), but also the agent platform’s
(fr.dyade.aaa packages) or the additional features (com.scalagent packages).

12.2.5. Generating a distribution

You can build source, binary or complete distribution of Joram using release.src,
release.jar and release target. The related files are copied in the releases directory, they
are equivalent to the one available for download on Joram's web server.

 - 145 -

Joram 5.2.1 User's Guide

12.2.6. Cleaning

To remove the generated classes and libraries:
ant clean (equivalent to ant –buildfile joram.xml clean and ant

–buildfile kjoram.xml clean)

This removes the classes/ and javadoc/ directories if they exist, the joram.jar,
kjoram.jar, joramgui.jar and mom.jar libraries from the lib/ directory if they exist.

 - 146 -

	1. Installation
	1.1. Requirements
	1.2. Getting Joram binary distribution
	1.2.1. Directory structure and description

	2. Using samples
	2.1. Compiling JORAM samples
	2.2. Running Joram samples
	2.2.1. The classic samples
	2.2.2. The chat sample
	2.2.3. The distributed sample
	2.2.4. The dotcom demo
	2.2.5. The perfs samples

	2.3. Using scripts
	2.3.1. First step
	2.3.2. Launching a JORAM platform
	2.3.3. Launching the JORAM administration and monitoring tool
	2.3.4. Launching a JORAM client
	2.3.5. Running the classic samples using script files

	2.4. Administration through XML scripts
	2.4.1. Classic sample administration using XML script

	3. Administration Guide
	3.1. Introduction
	3.2. Administration concepts
	3.2.1. Overall view
	3.2.2. User
	3.2.3. Destinations

	3.3. Platform configuration
	3.3.1. Centralized configuration
	3.3.2. Distributed configuration
	3.3.3. Stopping a server
	3.3.4. Dynamic configuration
	Server definition
	Server start
	Server stop
	Server removal

	3.3.5. Logging configuration

	3.4. High level administration
	3.4.1. Administration “session”
	3.4.2. Managing a user
	3.4.3. User connectivity
	3.4.4. Managing a destination
	3.4.5. Managing a Queue
	3.4.6. Managing a Topic
	3.4.7. Managing the platform

	3.5. JMX administration of Joram
	3.6. ScriptsXML
	3.6.1. Administrator connection
	3.6.2. Naming
	3.6.3. User and connectivity
	3.6.4. Destination
	3.6.5. Destination security and naming
	3.6.6. Example

	4. Specialized destinations
	4.1. Dead Message Queue
	4.1.1. Dead message queue
	4.1.2. Managing a Dead Message Queue
	4.1.3. Running the “Dead Message Queue” sample

	4.2. Hierarchical Topic
	4.2.1. Hierarchical topic
	Example
	Creation
	Distributed deployment

	4.2.2. Managing a Hierarchical Topic
	4.2.3. Running the topic tree sample

	4.3. Clustered Topic
	4.3.1. Introduction
	4.3.2. Managing a clustered topic
	4.3.3. Running the “Clustered Topic” Sample
	4.3.4. Using XML Scripts

	4.4. Clustered Queue
	4.4.1. Introduction
	4.4.2. Managing a clustered queue
	4.4.3. Running the “Clustered Queue” Sample
	4.4.4. Using XML Scripts

	4.5. SchedulerQueue
	4.5.1. Introduction
	4.5.2. Managing a SchedulerQueue
	4.5.3. Using a schedulerQueue

	4.6. Mail queue and topic
	4.6.1. Introduction
	4.6.2. Managing a mail queue or topic
	Incoming destination
	Outgoing destination

	4.6.3. Using a mail queue or topic
	4.6.4. Running the sample

	4.7. MonitoringTopic
	4.7.1. Introduction
	4.7.2. Managing a MonitoringTopic
	4.7.3. Running the sample

	4.8. Collector queue and topic
	4.8.1. Introduction
	4.8.2. Managing a Collector destination
	4.8.3. Using a collector destination
	4.8.4. Running the sample

	4.9. FTPQueue
	4.9.1. Introduction
	4.9.2. Managing a FTPQueue
	4.9.3. Using a FTPQueue destination
	4.9.4. Running the sample

	5. Using SOAP
	5.1. Platform configuration
	5.1.1. Configuration
	5.1.2. Running the platform

	5.2. Administering
	5.2.1. Introduction
	5.2.2. Setting a user
	5.2.3. SOAP ConnectionFactory object
	Pending SOAP connections

	5.2.4. SOAP administrator
	5.2.5. Accessing JNDI through SOAP

	5.3. Configuring Tomcat
	5.3.1. Getting Tomcat
	5.3.2. Needed resources
	5.3.3. Configuring Tomcat

	5.4. Running the Soap Sample
	5.5. Running kJoram sample
	5.5.1. Environment
	5.5.2. Compiling the samples files
	5.5.3. Installing the samples on the Pocket PC
	5.5.4. Starting and administering the JORAM platform

	6. Using a collocated server
	6.1. Introduction
	6.2. Configure a collocated server
	6.3. Start a collocated server
	6.4. Connect to the collocated server
	6.4.1. Create local connections
	6.4.2. Connect the administration module

	6.5. Stop the collocated server
	6.6. Start the embedding Java application

	7. High-Availability
	7.1. Platform Configuration
	7.1.1. Clustered ScalAgent server configuration
	7.1.2. Group communication
	7.1.3. Joram server configuration

	7.2. Platform startup
	7.2.1. Host clock synchronization

	7.3. Programming an external HA Joram client
	7.3.1. Joram administration
	7.3.2. JMS programming

	7.4. Programming a collocated Joram client
	7.4.1. Joram administration
	7.4.2. Collocated client process
	7.4.3. JMS programming

	7.5. Running the “Joram H.A.” Sample

	8. JNDI
	8.1. Overview
	8.2. Replication
	8.2.1. Master ownership strategy
	8.2.2. Lazy propagation strategy
	8.2.3. Replicas synchronization

	8.3. Distribution of the naming servers
	8.4. Distribution of the naming contexts
	8.4.1. Context creation
	8.4.2. Context name resolution

	8.5. Configuration
	8.6. Loose coupling configuration

	9. Joram in JBoss
	9.1. Joram installation
	9.1.1. Libraries Joram JARs
	9.1.2. Connector Joram RAR

	9.2. MDB activation
	9.2.1. JMSContainerInvoker
	9.2.2. Joram ActivationSpec
	9.2.3. Jboss ActivationSpec

	9.3. Send and receive JMS messages
	9.3.1. Jboss managing Joram connections
	9.3.2. Joram managed connection factory
	9.3.3. Resolving the connection factory
	9.3.4. Resolving the destinations

	10. Using Joram in WebLogic
	10.1. Integrating WebLogic server with Joram
	10.1.1. Installation
	10.1.2. Administration and Deployment
	10.1.3. JMS Module / Foreign Server
	10.1.4. JNDI view
	10.1.5. Patch WSL92

	10.2. Test with a simple MDB
	10.2.1. Build the Message-Driven Bean
	10.2.2. Deploy SimpleMDB
	10.2.3. Results

	11. Using JMS Bridge
	11.1. Bridging Joram 5 and XMQ
	11.2. Concepts and implementation
	11.2.1. Message exchange
	Communication modes
	Message sending
	Message consumption
	Queue browsing

	11.2.2. Acknowledgment policy
	11.2.3. Message selection
	11.2.4. Connection failure handling

	11.3. User manual
	11.3.1. Configuring the foreign platform
	11.3.2. Configuring JORAM
	11.3.3. Steps
	11.3.4. Failures

	11.4. WebSphere-MQ example
	11.4.1. Configuring and starting JORAM
	11.4.2. WebSphere MQ setup
	11.4.3. Administering JORAM
	11.4.4. The JORAM subscriber
	11.4.5. The WebSphere MQ sender

	11.5. Running the bridge sample
	11.6. JORAM – XMQ JORAM example
	11.6.1. Configuring and starting JORAM
	11.6.2. Administering JORAM
	11.6.3. The XMQ JORAM producer
	11.6.4. The JORAM consumer

	12. Working with sources distribution
	12.1. Getting Joram sources
	12.1.1. Getting a packaged version of Joram
	12.1.2. Getting Joram from SVN
	12.1.3. Directory structure and description

	12.2. Compiling and shipping Joram
	12.2.1. Compiling Joram
	12.2.2. Compiling kJoram
	12.2.3. Compiling the administration tool
	12.2.4. Generating the javadoc
	12.2.5. Generating a distribution
	12.2.6. Cleaning

