
ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 1

ARLACON McBasic 3.2
programming environment

reference manual

SERVO-
AMPLIFIER

SPEED FEEDBACK

POSITION FEEDBACK

SERVOMOTOR

POSITION
REGULATORMOTION

CONTROL

McBASIC
PROGRAM

ARLACON MOTION CONTROL SYSTEM
SERVO DRIVE

Programming environment

Application program

McBasic

McDos

Arlacon Motion Controls, Control Techniques SKS Oy
 Martinkyläntie 50 01720 VANTAA

tel +358-9-852 678 fax +358-9-852 6740, email: arlacon@sksct.fi
23.1.2001, Ari Lindvall

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 2

Table of contents:

1. GENERAL 7
1.1 MCBASIC COMMANDS ...9
1.2 MCBASIC FUNCTIONS..12

2. GETTING STARTED 15
2.1 MCBASIC VERSIONS..15
2.2 STARTING THE SYSTEM..15
2.3 WRITING PROGRAMS ..15
2.4 COMMAND AND VARIABLE NAMES...16
2.5 VARIABLE TYPES ...16
2.6 LABELS..17
2.7 PROCEDURES ..18

3. CONTROL 19
3.1 ED ..19
3.2 HELP..19
3.3 DOS ...20
3.4 SYSTEM...20
3.5 NEW...21
3.6 RUN ...21
3.7 END..21
3.8 STOP ...21
3.9 BREAK ...22
3.10 NOBREAK..22
3.11 CONT ...22
3.12 TRACE ...23
3.13 DELETE ...23
3.14 REN..24
3.15 NUMBER..24
3.16 FREE..25

4. STRUCTURE 26
4.1 : ..26
4.2 GOTO...26
4.3 GOSUB ..27
4.4 RETURN ..27
4.5 ON GOTO ..28
4.6 ON GOSUB ..28
4.7 IF THEN [ELSE] ...29
4.8 FOR NEXT ...31
4.9 DO... UNTIL.... LOOP...32
4.10 TASK..33
4.11 TASKMAX ..33
4.12 PRIOR..34

5. MATHEMATICS 36
5.1 ARITHMETICAL OPERATIONS ...36
5.2 LOGICAL OPERATIONS..36
5.3 BINARY OPERATIONS..36
5.4 NUMBER INPUT FORMATS ..37
5.5 MATHEMATICAL FUNCTIONS ..37

5.5.1 ON ...37
5.5.2 OFF ...37

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 3

5.5.3 ABS ...38
5.5.4 SGN...38
5.5.5 INT...38
5.5.6 MIN ..39
5.5.7 MAX...39
5.5.8 RND...39
5.5.9 EXP..40
5.5.10 LOG ...40
5.5.11 SQR...40
5.5.12 PII ..41
5.5.13 SIN...41
5.5.14 COS...41
5.5.15 TAN ...42
5.5.16 ATAN ...42

6. STRINGS 43
6.1 EXEC..43
6.2 ASC..44
6.3 LEN ..44
6.4 VAL ..45
6.5 CHR$..45
6.6 STR$..46
6.7 BIN$...46
6.8 DEC$..47
6.9 HEX$..47
6.10 LEFT$..48
6.11 RIGHT$..48
6.12 MID$...49
6.13 INSTR ..49
6.14 STRING..50
6.15 UCASE$...50
6.16 ADDR$...50

7. VARIABLES AND ARRAYS 52
7.1 DIM...54
7.2 REAL..55
7.3 FLOAT..55
7.4 BIT ...56
7.5 BYTE..56
7.6 WORD..57
7.7 SHORT INTEGER ..57
7.8 INTEGER ...58
7.9 ADDR ...58
7.10 LOCAL..59
7.11 [LET]...59

8. FILES AND SERIAL COMMUNICATIONS 60
8.1 PROGRAM FILES ..60

8.1.1 SAVE ...61
8.1.2 LOAD...61
8.1.3 APPEND ..61

8.2 FILES AND DATA OUTPUT ...62
8.2.1 OPEN...62
8.2.2 CLOSE...64
8.2.3 INPUT ..64
8.2.4 PRINT ..65
8.2.5 LIST ...66
8.2.6 DIGITS...66

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 4

8.2.7 LINE...67
8.2.8 BYTE(#nn) ...67
8.2.9 WORD(#nn) ...68
8.2.10 FLOAT(#nn) ...68
8.2.11 REAL(#nn) ...69
8.2.12 IEEE ..70
8.2.13 DATE$...71
8.2.14 DATE ...72
8.2.15 PTR ...72
8.2.16 SIZE...73
8.2.17 DIR$...74
8.2.18 TAB..75
8.2.19 CURS$(column,row)...75
8.2.20 LINK...76

8.3 GRAPHICS CONTROL FUNCTIONS ...76
8.3.1 TEXT$..76
8.3.2 PNT$..77
8.3.3 LINE$...77
8.3.4 FILL$..78
8.3.5 COLOR$..78

9. TIMING AND REAL TIME CLOCK 80
9.1 REAL TIME CLOCK ...80
9.2 TIME MEASUMENTS...81

9.2.1 TIMER..81
9.2.2 DELAY ...82

10. OTHER COMMANDS 83
10.1 DATA LINES...83

10.1.1 DATA ...83
10.1.2 READ...83
10.1.3 RESTORE..84
10.1.4 DATAPTR@...84

10.2 USER DEFINED FUNCTIONS..84
10.2.1 DEF ...85
10.2.2 FNname ...85

10.3 COMMENTS...86
10.3.1 REM...86
10.3.2 '..86

11. MOTION CONTROL 87
11.1 ENCODER OPERATION..88

11.1.1 RES ...88
11.1.2 ENCSIZE ...89
11.1.3 OFFSET...90
11.1.4 ENCERR..91

11.2 POSITION CONTROL SETTINGS ...92
11.2.1 DRIVETYPE...92
11.2.2 LIMITTYPE ..93
11.2.3 PIDFREQ...94
11.2.4 GAIN..94
11.2.5 INTG ..95
11.2.6 DERV...96
11.2.7 SCOMP..97
11.2.8 ACOMP..98
11.2.9 DCOMP ...99
11.2.10 FILTERSIZE...100
11.2.11 SPEED...102

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 5

11.2.12 ACCEL...103
11.2.13 MAXERR..104

11.3 POSITION CONTROL FUNCTIONS...104
11.3.1 POS ...104
11.3.2 FPOS...105
11.3.3 RPOS...106
11.3.4 FSPEED ..106
11.3.5 RSPEED ..107
11.3.6 POSERR..107

11.4 HOME ..107
11.5 STOPMOVE ...108
11.6 MOVEREADY...109
11.7 TRANSLATIONS ..110

11.7.1 MOVE ..110
11.7.2 MOVER..110
11.7.3 MOVC AND MOVCR..111
11.7.4 MOVEBUFFER ..112

11.8 CREEP...113
11.9 FOLLOW [AT] ..115
11.10 FOLLOWRATIO ...116
11.11 PWR...116
11.12 OPWR..117
11.13 FAST POSITION CAPTURE ..118

11.13.1 CAPTTYPE..118
11.13.2 CAPTPOS..119

11.14 JOYSTICK OPERATION ..119
11.14.1 JOY..119
11.14.2 JOYINP..120

11.15 PROFILE CONTROLLED MOTION ..120
11.15.1 PROFSIZE...121
11.15.2 PROF...121
11.15.3 MOVEPROF ..122

11.16 POSITION CONTROL LOG..123
11.16.1 LOGSIZE ...123
11.16.2 LOG ...124
11.16.3 LOGDATA..124

12. I/O CONNECTIONS 126
12.1 I/O CONFIGURATION..126

12.1.1 WAYMOD$..127
12.1.2 WAYERR...128
12.1.3 MOTION CONTROL I/O LOGICAL ADDRESSES..128
12.1.4 I/O LOGICAL ADDRESSES ...129

12.2 DIGITAL I/O..129
12.2.1 INP...129
12.2.2 OUT ...130
12.2.3 EDGE...130

12.3 ANALOG I/O...131
12.3.1 INPA ..131
12.3.2 OUTA...132
12.3.3 IFREQ..133

13. ERRORS 134
13.1 ERROR ..135
13.2 ON ERROR ..135
13.3 RESUME ..136
13.4 ERR..136
13.5 ERL ..136

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 6

13.6 ERL$..136
13.7 ERR$..137
13.8 ERR@ ..137
13.9 ONERR@...137

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 7

1. GENERAL

This manual describes the use of McBasic programming language version 3.2 supplied with
ARLACON MC300 and MC400 control systems.

Since the programming environment is used under the McDos operating system we recommend
first studying the McDos 2.2 operating system documentation.

In the beginning of this manual there is a short summary of McBasic commands and functions in
alphabetic order, after which the startup and programming procedures are described.

Chapter CONTROL describes the commands used in the command mode of the programming
environment. The next chapters explain the syntax and operation of program commands and
functions for different areas of programming. Examples are provided to clarify operation and use.

In connection with each command and function there is a table describing the meaning of different
syntax elements.

Command Description of operation.

Syntax The exact form in which the command is written.

elements Description of the parameters and different forms of syntax.

Function Description of operation.

Syntax The exact form in which the function is written.

Type The type of value returned by the function.

elements Description of the arguments and different forms of syntax.

Value Description of values the function can return.

The following notation conventions have been used in this manual.

- Examples have been indented and a typewriterlike text has been used in them.

10 REM example

- The syntax elements in the commands and functions, that must be replaced with their
respective values, have been written in italics.

GOTO linenumber SIN(expression) MOVEaxes(expression)

- The following notations are used when describing optional parts of syntax

[] brackets, the syntax element is optional
... ellipsis, the syntax element can be repeated
{ | } braces, vertical line (or), alternative syntax elements

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 8

MOVEaxis[axis[...[axis]]] (expr1[,expr2[,...[,exprN]]])

or shorter

MOVEaxes...(expr..)

TRACE{ON|OFF|n}

In the examples the parts the user entries are written in normal text

PRINT "Text"

Text

The parts printed by the control system are written in bold text.

This programming manual has been inspected to be as accurate as possible when describing the
details of the McBasic programming language. As McBasic is continuously developed to meet new
demands of machine control, some functions may be added or changed in later versions of the
language. However, most new developments are designed to be compatible with old McBasic
programs to enable simple updating of equipment and software.

Because of the large number of commands and functions in the McBasic language it is probable,
that the careful reader finds some parts in this programming manual, where the operation is not
explained as accurately as possible.

The author is grateful for all notes and suggestions regarding this manual and will try to use them to
enhance the usefulness of this manual in future editions.

Vantaa 23.1.2001

Control Techniques SKS Oy
Arlacon Motion Controls

Ari Lindvall

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 9

1.1 MCBASIC COMMANDS

name description details in chapter

' text comment COMMENTS
command : command command delimiter STRUCTURE
var = expr set variable value VARIABLES AND ARRAYS
label [var,...,var] define jump or subroutine start address STRUCTURE
ACCELaxes..=expr set acceleration MOTION CONTROL
ACCEL(axnr,..,axnr)=expr set acceleration MOTION CONTROL
ACOMPaxes..=expr set acceleration feedforward MOTION CONTROL
ACOMP(axnr,..,axnr)=expr set acceleration feedforward MOTION CONTROL
ADDR var,....,var declare address variables VARIABLES AND TABLES
APPEND string append to program FILES
BIT arrayname(dim,..,dim), .. declare bit array VARIABLES AND TABLES
BREAK addr insert breakpoint in program CONTROL
BYTE(#devicenr)=expr write byte FILES
BYTE arrayname(dim,..,dim), .. declare byte array VARIABLES AND TABLES
CAPTTYPEaxes..=expr set position capture mode MOTION CONTROL
CAPTTYPE(axnr,...,axnr)=expr set position capture mode MOTION CONTROL
CLOSE #devicenr close file FILES
CONT continue program after stop CONTROL
CREEPaxes..(expr..) motion at constant speed MOTION CONTROL
CREEP(axnr :expr,..,axnr:expr) motion at constant speed MOTION CONTROL
DATA data,...,data data for READ command OTHER COMMANDS
DATE$(#devicenr)=datestring set date FILES,CLOCK
DCOMPaxes..=expr set deceleration feedforward MOTION CONTROL
DCOMP(axnr,..,axnr)=expr set deceleration feedforward MOTION CONTROL
DECELaxes..=expr set deceleration MOTION CONTROL
DECEL(axnr,..,axnr)=expr set deceleration MOTION CONTROL
DEF FNfnname.... define user function OTHER COMMANDS
DELAY expr delay TIMING
DELETE addr,addr remove program lines CONTROL
DERVaxes..=expr set position control derivation MOTION CONTROL
DERV(axnr,..,axnr)=expr set position control derivation MOTION CONTROL
DIGITS=expr set printing accuracy FILES
DIM variablename(dim,..,dim), .. declare variables or arrays VARIABLES AND TABLES
DO..UNTIL..LOOP repeat loop STRUCTURE
DOS return to operating system CONTROL
DRIVETYPEaxes..=type configure servo connections MOTION CONTROL
DRIVETYPE(axnr,..,axnr)=expr configure servo connections MOTION CONTROL
ED linenumber|label edit program CONTROL
EDGE(input)={0|1} input edge acknowledge INPUT/OUTPUT
ELSE ... alternate program part STRUCTURE
ELSEIF ... alternate conditional program part STRUCTURE
ENCSIZEaxes..=width set encoder range MOTION CONTROL
ENCSIZE(axnr,...,axnr)=width set encoder range MOTION CONTROL
END end program or task CONTROL
ENDIF end of IF structure STRUCTURE
ERROR errornr cause error ERRORS
EXEC(string) execute command STRINGS
FILTERSIZEaxes..=expr set position reference filter MOTION CONTROL
FILTERSIZE(axnr,...,axnr)=expr set position reference filter MOTION CONTROL
FLOAT(#devicenr)=.. write 4 byte floating point (real) number FILES
FLOAT variablename(dim,..,dim), .. declare 4 byte fp variables (arrays) VARIABLES AND TABLES
FOLLOWaxis1axis2(n1[,n2]) follow another axis position MOTION CONTROL

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 10

FOLLOW(axnr1,axnr2,n1[,n2]) follow another axis position MOTION CONTROL
FOR..TO..STEP repeat loop STRUCTURE
GAINaxes..=expr set position control gain MOTION CONTROL
GAIN(axnr,..,axnr)=expr set position control gain MOTION CONTROL
GOSUB [(expr,..,expr)] address call subroutine STRUCTURE
GOTO address jump to program line STRUCTURE
HELP [#devicenr] display command list CONTROL
HOMEaxes.. find axes home position MOTION CONTROL
HOME(axnr,...,axnr) find axes home position MOTION CONTROL
IEEE32(#devicenr)=expression write 4 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE32I(#devicenr)=expression write 4 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IEEE64(#devicenr)=expression write 8 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE64I(#devicenr)=expression write 8 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IF..THEN..ELSE.. conditional commands STRUCTURE
INPUT [#devicenr,].. input value fo variable FILES AND COMMUNICATIONS
INTEGER variablename(dim,..,dim), ..declare 16bit integer variables or arrays VARIABLES AND TABLES
INTGaxes..=expr set position control integration MOTION CONTROL
INTG(axnr,..,axnr)=expr set position control integration MOTION CONTROL
JOYINP#n1[,n2,n3] set joystick input MOTION CONTROL
LET variable=expression set value for variable OTHER COMMANDS
LIMITTYPEaxes..=type configure axes limit switches MOTION CONTROL
LIMITTYPE(axnr,..,axnr)=type configure axes limit switches MOTION CONTROL
LINE[(#n)]=expression set output line length FILES AND COMMUNICATIONS
LINK #dev1,dev2,dev3 link output to two other devices FILES AND COMMUNICATIONS
LIST [#n,]lnumber.. |label.. list program FILES AND COMMUNICATIONS
LOAD string load program FILES AND COMMUNICATIONS
LOCAL variable, ... declare variables local VARIABLES AND TABLES
LOGaxes..=n control motion control log operation MOTION CONTROL
LOG(axnr,...,axnr)=n control motion control log operation MOTION CONTROL
LOGDATAaxes=expr set analog input to attach to axis log MOTION CONTROL
LOGDATA(axnr,..,axnr)=expr set analog input to attach to axis log MOTION CONTROL
LOGSIZEaxes=expr set size of log array MOTION CONTROL
LOGSIZE(axnr,..,axnr)=expr set size of log array MOTION CONTROL
LOOP see DO .. UNTIL .. LOOP STRUCTURE
MAXERRaxes..=expr set position error limit MOTION CONTROL
MAXERR(axnr,...,axnr)=expr set position error limit MOTION CONTROL
MOVCaxes..(expr..) continuous absolute motion MOTION CONTROL
MOVC(axnr:expr,..,axnr:expr) continuous absolute motion MOTION CONTROL
MOVCRaxes..(expr..) continuous relative motion MOTION CONTROL
MOVCR(axnr:expr,..,axnr:expr) continuous relative motion MOTION CONTROL
MOVEaxes..(expr..) absolute motion MOTION CONTROL
MOVE(axnr:expr,..,axnr:expr) absolute motion MOTION CONTROL
MOVERaxes..(expr..) relative motion MOTION CONTROL
MOVER(axnr:expr,..,axnr:expr) relative motion MOTION CONTROL
MOVEPROFaxes..(axis) activate profile controlled motion MOTION CONTROL
MOVEPROF(axnr:axnr,.,axnr:axnr) activate profile controlled motion MOTION CONTROL
NEW clear program memory CONTROL
NEXT variable end of repeat loop STRUCTURE
NOBREAK address remove breakpoint CONTROL
NOBREAKS remove all breakpoints CONTROL
NUMBER lnum, lnum, addr, addr number unnumbered program lines CONTROL
OFFSETaxes=expression set offset value or move current position MOTION CONTROL
OFFSET(axnr,...,axnr)=expression set offset value or move current position MOTION CONTROL
OFREQ(outanr)=expr set frequency output ANALOG I/O
ON var GOSUB addr,..,addr select subroutine STRUCTURE
ON var GOTO addr,..,addr select jump address STRUCTURE
ON ERROR addr set error trap ERRORS
OPEN #devicenr,string open file or port FILES AND COMMUNICATIONS

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 11

OPWRaxes..=expression set servo axes reference output MOTION CONTROL
OPWR(axnr,..,axnr)=expression set servo axes reference output MOTION CONTROL
OUT(outputnr)={0|1} set binary output INPUT/OUTPUT
OUTA(outputnr)=expression set analog output ANALOG I/O
PIDFREQ=expression set position loop repeat rate MOTION CONTROL
POSaxes=expression set current axes position MOTION CONTROL
POS(axnr,..,axnr)=expression set current axes position MOTION CONTROL
PRINT [#devicename,]... data output FILES AND COMMUNICATIONS
PRIOR=n set task priority STRUCTURE
PROFaxes..(index)=expr write to profile table MOTION CONTROL
PROF(axnr,index)=expr write to profile table MOTION CONTROL
PROFSIZEaxes=expr set profile table size for axes MOTION CONTROL
PROFSIZE(axnr,..,axnr)=expr set profile table size for axes MOTION CONTROL
PTR(#devicenr)=expression set file pointer FILES AND COMMUNICATIONS
PWRaxes..=expression set servo axes reference limit MOTION CONTROL
PWR(axnr,..,axnr)=expression set servo axes reference limit MOTION CONTROL
READ var,..,var read data from DATA lines OTHER COMMANDS
REAL variablename(dim,..,dim), .. declare real variables or arrays VARIABLES AND TABLES
REM comment comment COMMENTS
REN lnum, lnum, addr, addr renumber program lines CONTROL
RESaxes..=expression set axes position counter resolution MOTION CONTROL
RES(axnr,..,axnr)=expression set axes position counter resolution MOTION CONTROL
RESTORE address set data pointer for READ OTHER COMMANDS (DATA)
RESUME return from error trap routine ERRORS
RESUME NEXT return from error trap routine ERRORS
RETURN return from subroutine STRUCTURE
RUN start program execution CONTROL
SAVE string save program FILES AND COMMUNICATIONS
SCOMPaxes..=expression set axes speed compensation MOTION CONTROL
SCOMP(axnr,..,axnr)=expression set axes speed compensation MOTION CONTROL
SHORT INTEGER varname(dim,...), . declare 8bit integer variables or arrays VARIABLES AND TABLES
SIZE(#devicenr)=size set file size FILES
SPEEDaxes..=expression set axes speed MOTION CONTROL
SPEED(axnr,..,axnr)=expression set axes speed MOTION CONTROL
STOP stop program execution CONTROL
STOPMOVEaxes.. stop motion MOTION CONTROL
STOPMOVE(axnr,..,axnr) stop motion MOTION CONTROL
STRING[(length)] varname$(dim, ..).. declare string variables STRINGS
SYMBOLS display symbols in use CONTROL
SYSTEM exit to McDos CONTROL
SYSTEM(string) execute McDos command CONTROL
TASK address create task STRUCTURE
TASKMAX=n set max. task number STRUCTURE
TIMER[(n)]=.. set timer TIMING
TRACE {ON|OFF|tasknr} trace program execution CONTROL
UNTIL condition see DO .. UNTIL .. LOOP STRUCTURE
WATCHDOG(outputaddr)=freq set watchdog operation INPUT/OUTPUT
WAYMOD$(n,m)= set McWay i/o configuration I/O CONFIGURATION
WORD(#devicenr)=.. write word FILES AND COMMUNICATIONS
WORD varname(dim,...), ... declare 16bit word variables or arrays VARIABLES AND TABLES

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 12

1.2 MCBASIC FUNCTIONS

name description details in chapter

ABS(expression) absolute value MATHEMATICS
ACCELaxis read axis acceleration MOTION CONTROL
ACCEL(axnr) read axis acceleration MOTION CONTROL
ACOMPaxis read acceleration feedforward MOTION CONTROL
ACOMP(axnr) read acceleration feedforward MOTION CONTROL
ADDR$(address) convert address to string STRINGS
AND boolean or binary AND function MATHEMATICS
ASC(string) ASCII character to number STRINGS
ATAN(expression) arcus tangent MATHEMATICS
BIN$(expression) expression to binary string STRINGS
BYTE(#devicenr) read byte FILES AND COMMUNICATIONS
CAPTPOSaxis read captured position MOTION CONTROL
CAPTPOS(axnr) read captured position MOTION CONTROL
CAPTTYPEaxis read position capture status MOTION CONTROL
CAPTTYPE(axnr) read position capture status MOTION CONTROL
CLOCK system timer TIMING
CHR$(expression) number to ASCII character STRINGS
COLOR$(colornumber) set display terminal color FILES AND COMMUNICATIONS
COS(expression) cosine MATHEMATICS
CURS$(xcoord,ykoord) set cursor position FILES AND COMMUNICATIONS
DATAPTR@ read data pointer OTHER COMMANDS
DATE$(#devicenr) read date FILES AND COMMUNICATIONS
DATE$(expression) convert number to long date string FILES AND COMMUNICATIONS
DATE(datestring) convert date to number FILES AND COMMUNICATIONS
DEC$(expression) expression to decimal string STRINGS
DECELaxis read axis deceleration MOTION CONTROL
DECEL(axnr) read axis deceleration MOTION CONTROL
DERVaxis read position control derivation MOTION CONTROL
DERV(axnr) read position control derivation MOTION CONTROL
DIR$(#devicenr,entry) read directory item FILES AND COMMUNICATIONS
DRIVETYPEaxis read axis type MOTION CONTROL
DRIVETYPE(axnr) read axis type MOTION CONTROL
EDGE(input) read edge detector state INPUT/OUTPUT
ENCERRaxis read encoder error counter MOTION CONTROL
ENCERR(axnr) read encoder error counter MOTION CONTROL
ENCSIZEaxis read encoder type MOTION CONTROL
ENCSIZE(axnr) read encoder type MOTION CONTROL
ERL read error line number ERRORS
ERL$ read error line ERRORS
ERR read error number ERRORS
ERR@ read error line address ERRORS
ERR$(errornumber) error message ERRORS
EXP(expression) power of e MATHEMATICS
FILL$ draw filled area FILES AND COMMUNICATIONS
FILTERSIZEaxis read axis position reference filter setting MOTION CONTROL
FILTERSIZE(axnr) read axis position reference filter setting MOTION CONTROL
FLOAT(#devicenr) read real number FILES AND COMMUNICATIONS
FNname(argument,..) user defined numerical function OTHER COMMANDS
FNname$(argument,..) user defined string function OTHER COMMANDS
FPOSaxis read position set value after filter MOTION CONTROL
FPOS(axnr) read position set value after filter MOTION CONTROL
FREE(n) user memory status CONTROL

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 13

FSPEEDaxis read position set value speed after filter MOTION CONTROL
FSPEED(axnr) read position set value speed after filter MOTION CONTROL
GAINaxis read position control gain MOTION CONTROL
GAIN(axnr) read position control gain MOTION CONTROL
IEEE32(#devicenr) read 4 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE32I(#devicenr) read 4 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IEEE64(#devicenr) read 8 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE32I(#devicenr) read 8 byte IEEE pc format fp number FILES AND COMMUNICATIONS
HEX$(expression) expression to hexadecimal string STRINGS
IFREQ(ainput) read frequency input ANALOG I/O
INP(input) read binary input INPUT/OUTPUT
INPA(input) read analog input ANALOG I/O
INSTR(expr,string,substring) locate substring STRINGS
INT(expression) integer part of number MATHEMATICS
INTGaxis read position control integration MOTION CONTROL
INTG(axnr) read position control integration MOTION CONTROL
JOY(n) joystick position MOTION CONTROL
JOYX joystick position = JOY(0) MOTION CONTROL
JOYY joystick position = JOY(1) MOTION CONTROL
LEFT$(string,expression) part of string (from end) STRINGS
LEN(string) length of string STRINGS
LIMITTYPEaxes read axis limit switch configuration MOTION CONTROL
LIMITTYPE(axnr) read axis limit switch configuration MOTION CONTROL
LINE$ draw line FILES AND COMMUNICATIONS
LOG(expression) natural logarithm MATHEMATICS
LOGDATAaxis(sample,data) read position control log data MOTION CONTROL
LOGDATA(axnr,sample,data) read position control log data MOTION CONTROL
LOGSIZEaxis read log array size MOTION CONTROL
LOGSIZE(axnr) read log array size MOTION CONTROL
MAX(expr1,expr2) greater of two numbers MATHEMATICS
MAXERRaxis read current position error limit MOTION CONTROL
MAXERR(axnr) read current position error limit MOTION CONTROL
MID$(string,expr1,expr2) part of string STRINGS
MIN(expr1,expr2) smaller of two numbers MATHEMATICS
MOVEBUFFERaxes.. read motion buffer memory status MOTION CONTROL
MOVEBUFFER(axnr,..,axnr) read motion buffer memory status MOTION CONTROL
MOVEREADYaxes.. read axis status MOTION CONTROL
MOVEREADY(axnr,..,axnr) read axis status MOTION CONTROL
NOT expression logical negation MATHEMATICS
OFF constant 0 MATHEMATICS
OFFSETaxis read axis offset value MOTION CONTROL
OFFSET(axnr) read axis offset value MOTION CONTROL
OFREQ(aoutput) read output frequency ANALOG I/O
ON constant 1 MATHEMATICS
ONERR@ read current error trap address ERRORS
OPWRaxis read axis reference output MOTION CONTROL
OPWR(axnr) read axis reference output MOTION CONTROL
OR boolean or binary OR function MATHEMATICS
OUT(output) read binary output status INPUT/OUTPUT
OUTA(output) read analog output status ANALOG I/O
PIDFREQ read position loop repeat rate MOTION CONTROL
PII constant pi (3.1415926..) MATHEMATICS
PNT$(xcoord,ycoord) graphics point FILES AND COMMUNICATIONS
POSaxis read axis position MOTION CONTROL
POS(axnr) read axis position MOTION CONTROL
POSERRaxis read axis position error MOTION CONTROL
POSERR(axnr) read axis position error MOTION CONTROL
PRIOR read current task priority STRUCTURE

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 14

PROFaxis(sample,data) read from profile table MOTION CONTROL
PROF(axnr,sample,data) read from profile table MOTION CONTROL
PROFSIZEaxis read axis profile table size MOTION CONTROL
PROFSIZE(axnr) read axis profile table size MOTION CONTROL
PTR(#devicenr) read file data pointer FILES AND COMMUNICATIONS
PWRaxis read position control output limit MOTION CONTROL
PWR(axnr) read position control output limit MOTION CONTROL
REAL(#devicenr) read 8 byte fp (real) number FILES AND COMMUNICATIONS
RESaxis read axis resolution MOTION CONTROL
RES(axnr) read axis resolution MOTION CONTROL
RIGHT$(string,expression) part of string (from beginning) STRINGS
RND(expression) random number MATHEMATICS
RPOSaxis read position set value before filter MOTION CONTROL
RPOS(axnr) read position set value before filter MOTION CONTROL
RSPEEDaxis read position set value speed before filter MOTION CONTROL
RSPEED(axnr) read position set value speed before filter MOTION CONTROL
SCOMPaxis read axis speed compensation MOTION CONTROL
SCOMP(axnr) read axis speed compensation MOTION CONTROL
SGN(expression) sign of number MATHEMATICS
SIN(expression) sine MATHEMATICS
SIZE(#devicenumber) read file size or output buffer free space FILES AND COMMUNICATIONS
SPEEDaxis read axis set speed MOTION CONTROL
SPEED(axnr) read axis set speed MOTION CONTROL
SQR(expression) square root MATHEMATICS
STR$(expression) number to string STRINGS
TAB(expression) set cursor on line FILES AND COMMUNICATIONS
TAN(expression) tangent MATHEMATICS
TASK current task number STRUCTURE
TASKMAX maximum task number STRUCTURE
TEXT$ return to text mode (end of graphics) FILES AND COMMUNICATIONS
UCASE$(string) convert string to uppercase STRINGS
TIMER[(n)] read timer value TIMING
VAL(string) string to number STRINGS
WAYERR(waynr) read McWay error counter I/O CONFIGURATION
WAYMOD$(waynr,modnr) read McWay configuration I/O CONFIGURATION
WORD(#devicenr) read word FILES AND COMMUNICATIONS
XOR boolean or binary XOR function MATHEMATICS

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 15

2. GETTING STARTED

McBasic is a control system oriented programming environment with efficient commands and
functions for utilising the hardware and connections of ARLACON machine control systems.

The commands and functions for standard data processing, calculations and output are essentially
compatible with many popular Basic language interpreters and compilers.

2.1 MCBASIC VERSIONS

Since McBasic is a control system oriented environment, different ARLACON control system
models are equipped with system specific versions of the system software.

Some properties of the environment, such as axis number and names and available i/o, are
dependent of the software and hardware configurations used.

The manufacturer configures the McBasic environment software for ARLACON control systems at
factory when installing the software in the control system.

Current versions of McBasic for McDOS include:

BASIC.CK plain McBasic for system utility
BAS0.CK McBasic without axes with CMOS memory features
BAS16.CK 16 logical axes version for MC400 (MC400 standard version)
BAS16X.CK As BAS16.CK but for use with McWay loop W0: connected

to CPU5 module port S1:
BAS100.CK 100 logical axes version for MC400
BAS300.CK 16 logical axes version for MC300 (MC300 standard version)

2.2 STARTING THE SYSTEM

At power up, the MC control system starts the McDOS operating system as described in the McDOS
user's manual. After this McDOS seeks for the WAKEUP.EX batch file from D1: ... D8: root
directories and, if found, executes the commands in the file. This way the startup procedure can be
defined to suit the application.

The McBasic environment is started from the McDOS operating system by typing the name of the
McBasic version used as command name:

BAS16 [progname1, ..., prognamen]

where progname.. are names of programfiles to be loaded and run when starting McBasic.

If no progname is specified, McBasic starts the execution of the program (if any) currently in its
work memory. If McBasic detects that a program previously in memory has been destroyed, it
searches and loads a backup copy from a file WAKEUP.BA as described in chapter FILES.

If there is no program in the memory, McBasic stays in the command mode.

2.3 WRITING PROGRAMS

McBasic programs can be written with many different tools.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 16

One way to write a program for the system is to use the command mode of the McBasic
environment. In this mode program lines can be entered from the console serial communications
(:CN) using a terminal, PC or ARLACON display terminal. Among other communications programs,
the Terminal program of the McBench programming environment for PC shipped with MC300 and
MC400 controllers is well suited for this. Program lines should be entered in the order of their
execution, if they are not numbered.

Other ways to work with programs are editing the program files with the TX text editor contained in
McDos as a command file or editing program files in a PC using the McBench program editor or
another editor suitable for editing ASCII files. Programs can then be loaded to the control system
either using a diskette, if applicable, or serial comms. (see McBench documentation).

Program lines can be marked with numbers, labels and be written without them. An empty line is
also interpreted as a program line. A line marked with a label should begin from the first position of
the line. Lines without labels or numbers must have at least one space character in the beginning of
the line. Lines can be numbered from 1 to 65535.

 10 PRINT "first line"
 30 PRINT "third line"
 20 PRINT "second line"
Lab1 PRINT "fourth line"
 PRINT "fifth line"

In McBasic command mode program lines with line numbers can be entered by just typing them
and ending the line with a <return>. They can also be replaced by typing a new line with the same
number. Any type of program lines can be entered and edited with the ED command described in
chapter 3. Editing a program causes current values of variables to be cleared.

By exiting McBasic to McDos operating system programs can be written and edited as text files
using the McDos TX screen editor. Programs can also be edited in other systems such as a PC
computer and loaded to the MC control system either using a diskette, if available, or via serial
communications with ASCII transfer.

2.4 COMMAND AND VARIABLE NAMES

When typing command and function names, both uppercase and lowercase characters can be used,
whereas variable names are case sensitive.

40 print sin(3.14);COS(1.65)

Variable names can be either “short” or “long”. A “short” numerical variable name consists of one
letter and optionally one number. A “short” string name consists of a letter followed by $.

Short numerical variable names:

A a A3 a9 z8 z Z b B0 B9

Short string names:

A$ a$ z$ Z$

Variables with “short” names can be used as global variables without declaring them, whereas
“long” variable names must be declared, as described in chapters 6 and 7, before using them in the
program.

2.5 VARIABLE TYPES

String and address variables are the only McBasic variables that McBasic does not automatically
convert according to use. Thus, for example, using a string variable when a command or a function
requires a numerical value, causes McBasic to display an error message.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 17

All McBasic numerical expressions can normally be used for commands and functions requiring
numerical values. However, care must be taken not to exceed the minimum and maximum value
allowed.

Some considerations:
- Any non-zero value is considered to be true. Only 0 is false.
- Using a non-integer value in a command or function requiring an integer value causes

normally McBasic to round the value to the nearest integer value.
- When using too high values in some integer operations McBasic normally uses the value

defined by the least significant bits.

When using long variable names or large arrays It is necessary to declare the variables before
using them. Declaration can also be used to limit the scope of the variable as described in chapter
7.

Examples of variable declarations:

STRING Abc$,C$(5),D$(8,8) ‘string of 80 characters
STRING(5) SymFirst$,SymArray(3) ‘string of an arbitrary length in the range 1...255,

 here 5 characters.
REAL A,Varia(4),B(3,3) ‘floating point numbers with a length of 8 bytes
ADDR A@(5),Jump@ 'address arrays and variables

Following types are used for arrays only:

FLOAT N(20),Dx(10,100) '4 byte floating point numbers
WORD a(5),c(5,5) ‘16 bit word, unsigned (0...65535)
INTEGER Abc(3), Cba(6,6) ‘16 bit word, signed (-32768...32767)
BYTE Abc(3), Cba(6,6) ‘8 bit byte, unsigned (0...255)
SHORT INTERGER Cba(6,6) ‘8 bit byte, signed (-128...127)
BIT Abc(3), Cba(6,6) ‘1 bit (0..1)

When numerical data is copied to an array of different type the values are rounded to nearest
integer if necessary. An error message is displayed if the value is not within valid limits.

2.6 LABELS

McBasic uses labels or line numbers to mark program lines to be referred to from applicable
commands. A label is a string of characters of arbitrary length starting with a letter. Upper and
lowercase characters, numbers (0...9) and characters: !#$%&@ can be used in a label.

A label must start at the first column and can be followed by a command.

For example

10 REAL Abc ‘some numbered lines
15 Abc=2
20 PRINT Abc ‘Print is a command

Label1 Abc=Abc+10 ‘Label1 is a label
 PRINT Abc ‘Print is command. Note spaces before PRINT

 2
12

Following error messages can be generated when misusing labels:
• error #44, when the command addresses a nondefined label
• error #45, when an attempt is made to define a label twice

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 18

Both labels and line numbers may be used in the following commands to determine the destination
of operation

GOTO, GOSUB, ON ERROR, ON... GOTO, ON...GOSUB, LIST, DELETE, ED, RESTORE, REN

 In most cases also mixed usage of labels and line numbers is possible in these commands.

 For example

 ON I GOTO 100, Lab2, 300, Lab4,500,600
Lab2 GOSUB 1000
Lab4 GOSUB CalSum

 DELETE 100,Lab1 ‘deletes lines from 100 to label Lab1

Additionally, address variables and expressions can also be used in conjunction with the above
listed commands excluding ON GOTO and ON GOSUB.

2.7 PROCEDURES

When using a label to call subroutines with the GOSUB command, it is also possible to define
parameters to be passed to the subroutine as local variables. A subroutine using parameter passing
is called a procedure.

For example

DispArea(R) R=R*R*PII
 PRINT “Area=“;R
 RETURN

The procedure is called by giving a list of parameters with the label. For example

GOSUB DispArea(100*X)

The parameter R is local within the procedure with the initial value passed when calling the
procedure.The defined parameters can have any name and are assumed real numbers, max. 80
character strings if ending in $ or addresses if ending in @. Up to 8 parameters can be defined for a
procedure.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 19

3. CONTROL

This chapter describes the operation of the commands controlling the operation on the McBasic
programming environment.

3.1 ED

Command Edit program.

Syntax ED[address]

address Place in program to start editing.

ED command allows typing in and editing program from McBasic command mode. While it is
possible to type in program lines with linenumbers without using ED, it allows editing of previously
entered lines and typing in lines without linenumbers.

When the command is issued, the referred line appears on the screen and can be edited. It is then
possible to move up and down in the program with arrow keys. The currently edited line is always
printed on the screen below the previous edited line independent ED returns to McBasic command
mode with the <return> key.

When in ED editing mode, using an ANSI compatible terminal, other functions are available as
follows:

ï Move left on line
ð Move right on line
ñ Previous line
ò Next line
F1 Insert character
F2 Delete character
F3 Insert line
F4 Delete line
F6 Insert line from buffer.

With the F6 function previously edited lines can be browsed and inserted in the program from the
250 characters long buffer. Moving to another line with ñò keys or exiting wiht <enter> completes
editing the line.

3.2 HELP

Command Print (list of) commands and functions.

Syntax HELP[#nn][searchstring]

nn The output device that is used. (default = CN:)

searchstring Optional string, a substring in the command/function to search for.
If omitted, all commands and functions are listed.

Prints a list of available commands and functions containing the specified substring to the specified
device. Short syntax descriptions are also included. HELP can be used for example to check the

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 20

commands and functions available in the McBasic version used. It can also be used as help when
programming.

B>HELP

HELP ...
LINE(#expression)=expression
RESUME_NEXT
.
.

OPEN#2,":LP" ' the printer is connected here
HELP#2 ' print the list...

Or to look for help on a specific subject:

B>HELP "BUF"
list of functions
MOVEBUFFER(expression, ..)
MOVEBUFFERaxles

3.3 DOS

Command Return to McDos operating system

Syntax DOS
SYSTEM
X

The operation has three alternate syntaxes

B>DOS

D4:/> (McDos prompt: current path+">",
 note the McBasic prompt "B>")

3.4 SYSTEM

Command Call resident McDos commands from program.

Syntax SYSTEM(string)

string Executable resident McDos command

For example create new directory from within an McBasic program.

SYSTEM("MKDIR D4:/TEMP")

Note that in McBasic command mode it is possible to execute McDOS commands using a period
before the command:

B>.DIR

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 21

3.5 NEW

Command Clear program memory.

Syntax NEW

Program memory is cleared, variables and program are erased.

B>NEW
McBasic16 3.2at
 Program
 System tables
 Variables & compilations
 Recycled
 719550 Free
B>

When the program memory has been cleared, a McBasic version/revision and memory status
message is displayed. The message shows that program and symbol areas are empty and all
available memory is free. The amount of the free memory depends on the control system model
and memory size and the McBasic version used.

3.6 RUN

Command Start program execution

Syntax RUN

Program starts at the first line. Variable values are cleared.

3.7 END

Command End of program or task

Syntax END

Ends program execution. END command can be used as the last command in the program.
However, the use of END in the end of the program is not obligatory.

When using the TASK command to create more than one simultaneous program tasks, END can be
used to end a task. Thus, a program can contain several END commands to end tasks.

3.8 STOP

Command Stop program execution.

Syntax STOP

Equivalent to stopping the program by sending a Ctrl-X in the console serial interface (CN:). A
STOP command can be included in the program for example to stop the program in a special
condition or they can be used as breakpoints for testing purposes.

The variables in the stopped program can be observed. Program execution can be continued with
the CONT command.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 22

3.9 BREAK

Command Set breakpoints in program.

Syntax BREAK addr

addr Address for the new breakpoint

The BREAK command allows setting breakpoints without altering the program. Therefore,
breakpoints can be inserted and removed when the program is stopped without loosing variable
values or having to restart the program.

Examples:

BREAK 100 ' set breakpoint at line 100 in a line numbered program
BREAK Skip ' set breakpoint at label MySub
BREAK Skip+5 ' set breakpoint at 5 lines after label Skip
BREAK Finish-2 ' set breakpoint at 2 lines befor label Finish
BREAK MySub() ' set breakpoint at procedure label starting

3.10 NOBREAK

Command Remove breakpoints from program

Syntax NOBREAK addr
or
NOBREAKS

addr Adress of the breakpoint to remove. Alternate syntax NOBREAKS
removes all breakpoints.

3.11 CONT

Command Continue program execution after a breakpoint, STOP or Ctrl-X.

Syntax CONT

The program continues from the next line (or lines if several tasks) after the point it was stopped.
Variable values are not affected.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 23

3.12 TRACE

Command Control program tracing.

Syntax TRACE {ON|OFF|n}

ON Program tracing on
OFF Program tracing off
n selected TASK:

0 Program tracing off
1 All TASKs
n Only TASK n

Program execution tracing. Executed lines are listed at console while running the program. If more
than one TASK is being used, only one TASK can be traced by selecting with its TASK number.

TRACE 3

TASKs are numbered 2....9. When the program starts, the first TASK is number 2. New tasks are
numbered in creating order.

Tracing program execution generates intense listing of program lines and therefore causes
programs to run slowly. In some cases it is also possible to insert TRACE commands in the program
to control partial tracing of program to preserve processing speed.

3.13 DELETE

Command Remove program lines.

Syntax DELETE [addr1][,addr2]

addr1 The address of the first line to be removed (default beginning of program).

addr2 The address of the last line to be removed (default end of program).

When used without parameters the DELETE command removes all program lines. This operation
can be done faster with the NEW command.

With the command DELETE addr1 line addr1 and the lines after it are removed.

With the command DELETE ,addr2 line addr2 and the lines before it are removed.

With the command DELETE addr1,addr2 line addr1 and addr2 and the lines between them are
removed.

If addr1 and addr2 are the same line, only that line is removed. In line numbered programs the
same operation can be performed by giving only the line number. A new line can also be given to
replace the old one.

The use of DELETE command clears the values of variables.

For example remove lines Lab1 and Lab2 and the lines between them.

DELETE Lab1,Lab2

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 24

3.14 REN

Command Renumber program lines.

Syntax REN [nn1[,nn2[,{nn3|label3}[,{nn4|label4}]]]]

nn1 The first line number of the area to be renumbered (default 10).

nn2 The step between new line numbers (default 10).

nn3|label3 The line number/label of the first line to be renumbered (default beginning
of program).

nn4|label4 The line number/label of the last line to be renumbered (default end of
program).

A REN command without any parameters renumbers the program lines beginning from line 10 using
steps of 10. The jump addresses etc. are updated automatically according to the new line
numbering.

Also only some of the parameters can be given and in this case the other parameters will use their
default values.

REN
REN 1000,10
REN 2000,,1000,2999
REN 2000,10,1000,2999

Numbering must be possible without changing the order of the program lines, otherwise McBasic
does not renumber any lines. If in the renumbered block lines without numbers are present, they will
not be affected by this command.

REN command does not set the variable values to zero. In some cases programs can be build
using the EXEC function so that renumbering changes or even prevents the execution of the
program. In these cases REN command must not be used in these part of the programs.

3.15 NUMBER

Command Numbers all program lines.

Syntax NUMBER [nn1[,nn2[,{nn3|label3}[,{nn4|label4}]]]]

nn1 The first line number of the program to be numbered (default 10).

nn2 The step between new line numbers (default 10).

nn3|label3 The line number/label of the first line to be numbered (default beginning of
program).

nn4|label4 The line number/label of the last line to be numbered (default end of
program).

A NUMBER command without any parameters numbers all program lines beginning from line 10
using steps of 10. The jump addresses etc. are updated automatically according to the new line
numbering.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 25

Also only some of the parameters can be given and in this case the other parameters will use their
default values.

NUMBER
NUMBER 1000,10

The operation of the NUMBER command resembles that of the REN command. The difference is
that the REN command only renumbers lines that are already numbered wherease the NUMBER
command numbers also lines that have no line number. Therefore, when using the NUMBER
command, the program cannot contain labels.

3.16 FREE

Function User memory status

Syntax FREE(n)

Type Integer

n -3 size of compressed program source code
-2 size of system tables like LOG, PROF
-1 size of variables and compiled program
0 size of free memory (recycled memory not included)
1 size of total recycled memory
2 size of recycled numerical variables
3 size of recycled string variables
4 size of recycled variables of mixed sizes, arrays, strings
5 size of recycled subroutine links
6 size of recycled task blocks

Value Size of memory occupied by different program components, determined
by n value.

The following relations are valid

FREE(1)=FREE(2)+FREE(3)+FREE(4)+FREE(5)+FREE(6)

Full memory = FREE(-3)+FREE(-2)+FREE(-1)+FREE(0)+FREE(1)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 26

4. STRUCTURE

The structure commands controlling the program operation are used as follows.

4.1 :

Command Command separator.

Syntax command : command [: command : ... : command]

command Commands written on same program line.

Several commands can be written on same program line when separated by command separator.

Some limitations:
- DATA command must always be at the beginning of the line.
- DEF command must always be at the beginning of the line.

4.2 GOTO

Command Jump to given program address.

Syntax GOTO addr

addr Line number or label, destination address.

Execution of the program will continue from line nnn or label nnn.

100 GOTO 290 ‘the program is continued from line 290
120 GOTO Lab1 ‘program is continued from line labeled Lab1

By using the GOTO command from command prompt the program can be started or continued from
some other than the very first line. The variable values are not affected.

GOTO 5000

starts the program from line 5000. Address expressions can also be used:

GOTO Label1+3
GOTO 10000+1

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 27

4.3 GOSUB

Command Sub-routine call.

Syntax GOSUB addr

or

GOSUB label(par1,par2,...)

addr The first line of the subroutine. Line number or label.

label() Label of the first line of a procedure using parameter passing.

par1,par2,. Values for local variables defined in conjunction with the label().

Max. 25 subroutine calls can be nested.

The program continues from addr. RETURN at the end of subroutine returns the operation to the
next command after GOSUB.

GOSUB command can be also used from command prompt, for example for testing the operation
of a subroutine. RETURN command at the end of subroutine returns the control back to command
prompt.

110 GOSUB 2000
120 GOSUB ArrayIni
 GOSUB Draw(100,200)
 GOSUB MoveArm(X(n),Y(n),A(n))

4.4 RETURN

Command Return from a subroutine.

Syntax RETURN

Return from a subroutine. The last command in a subroutine must always be a RETURN command.
After RETURN operation of the program continues from the next McBasic command after GOSUB
and all local variable space used in the subroutine is freed. For example:

1200 GOSUB 1400 : STOP
1400 PRINT "Subroutine"
1410 RETURN

>RUN

Subroutine

>

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 28

4.5 ON GOTO

Command Jump to a selected program line.

Syntax ON expression GOTO addr1,addr2,..,addrn

expression Integer defining which of the given addresses will be used as jump
address. This value must be between 1 and n.

addr1 Jump address, when expression is 1.

addr2 Jump address, when expression is 2.

addrn Jump address, when expression is n.

Selection structure that selects the jump address according to the value of expression.

1500 ON X0+1 GOTO 2000,3000,1000

If X0=0 the jump address is 2000, if X0=1 the jump address is 3000 and if X0=2 the jump address is
1000.

 ON X0+1 GOTO Lab1,Lab2,Lab3

If X0=0 the jump label is Lab1, if X0=1 the jump label is Lab2 and if X0=2 the jump label is Lab3.

If the value of expression is not between 0 ... N, the McBasic gives an error message.

4.6 ON GOSUB

Command Subroutine call to a selected program line.

Syntax ON expression GOSUB addr1,addr2,..,addrn

expression Integer defining which of the subroutines beginning at given linenumbers
or labels will called. The value must be between 1 and n.

addr1 Address of subroutine, when value of expression is 1.

addr2 Address of subroutine, when value of expression is 2.

addrn Address of subroutine, when expression is n.

Selection structure that selects the subroutine to be called according to the value of expression.
This structure cannot be used for calling subroutines with parameters (procedures).

1600 ON X0+1 GOSUB Lab1,Bal2,Res3

Operation is similar to ON .. GOTO structure.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 29

4.7 IF THEN [ELSE]

Command Conditional jump.

Syntax IF condition THEN linenumber1 [ELSE linenumber2]

condition Expression whose truth-value defines the jump address.

linenumber1 Jump address, when condition is true (<>0).

linenumber2 Jump address, when condition is false (=0).
If [ELSE linenumber2] part is not given, the program continues from
the next line.

Using this command the program operation can be directed according to a logical value.

IF A=7 THEN Label1 ELSE Label2

The same structure can also be used for conditional execution of alternative commands

Command Conditional commands structure (one line).

Syntax IF condition THEN commands [ELSE commands] [: ENDIF :]

IF condition When condition is true, allows the execution of commands after THEN.
Program execution then continues from next line or ENDIF, if used.

ELSE If condition was not true, allows the execution of commands after ELSE or
between ELSE and ENDIF, if used.

ENDIF Only necessary, if the program line continues with a part always executed
regardless of condition.

commands Commands to be executed. If several command are used, they must be
separated with colons (:).

2100 IF K=0 THEN PRINT "Zero division" ELSE GOTO 2300
2200 IF K><0 THEN GOTO 2900
2300 IF A<B THEN C=B-A ELSE C=A-B : ENDIF : A=0
 IF A=0 THEN PRINT "A=0" ELSE PRINT "A<>0"

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 30

Command Conditional commands structure.

Syntax IF condition THEN [:commands]
[command lines]
[ELSEIF condition THEN [:commands]
[command lines]
[ELSEIF condition THEN [:commands]
[command lines]
[ELSE [:commands]
[command lines]
ENDIF

IF condition THEN When condition is true, allows the execution of commands and command
lines after THEN until next ELSEIF or ELSE command. Program
execution then continues from after ENDIF

ELSEIF condition THEN If preceding conditions were false and condition is true, allows the
execution of commands and command lines after next THEN. Program
execution then continues from after ENDIF

ELSE If all preceding conditions were false, allows the execution of commands
and command lines between ELSE and ENDIF

commands Commands to be executed. Can be on the same line separated with
colons (:)

command lines Any number of command lines between IF, ELSEIF, ELSE and ENDIF
lines.

This command allows programming various case structures. ELSE and ELSEIF commands must be
the first commands on the line, whereas ENDIF can be written in the end of the last command line if
desired. When necessary, IF structures can be nested up to 20 deep.

IF A=>0 AND A<10 THEN
 PRINT "A small"
 ELSEIF A<0 THEN
 PRINT "A negative"
 ELSE
 PRINT "A LARGE"
 ENDIF

or shorter

IF A=>0 AND A<10 THEN : PRINT "A small"
 ELSEIF A<0 THEN : PRINT "A negative"
 ELSE : PRINT "A LARGE" : ENDIF

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 31

4.8 FOR NEXT

Command Beginning of repeat loop.

Syntax FOR variable=expression1 TO expression2 [STEP expression3]

variable Loop variable, that gets values according to expressions while repeating
the loop.

expression1 Value, that variable gets at first round.

expression2 When variable reaches the value of expression2, the repeating will
be finished.

expression3 If STEP part is used, expression3 defines increment of variable between
every round (default 1).

Command End of repeat loop.

Syntax NEXT variable

The program part between FOR and NEXT expressions will be repeated. For the first round of
execution the variable gets the value expression1.

After each repeating execution the variable is incremented in the NEXT statement by 1, or by
expression3 if given, until the finishing condition is reached.

If expression3 is positive the program part will be repeated until variable reaches a value greater
than expression2. For the last execution the value of variable is equal to expression2 or smaller.

If expression3 is negative the program part will be repeated until variable reaches a value smaller
than expression2. For the last execution the value of variable is equal to expression2 or greater.

When repeating is finished the variable keeps the value that it had during the last repetition.

The default value of expression3 is 1. The maximum number of nested FOR/NEXT loops is 10. The
variable used cannot be an array cell.

The repeat structure must always be terminated with a NEXT command which has the same
variable as the respective FOR command.

 FOR I=1.5 TO 4 STEP 1/2
 PRINT I;" ";
 NEXT I

RUN

1.5 2.0 2.5 3.0 3.5 4.0

A repeat loop cannot be exited in any other way than through a NEXT command. If repetition needs
to be finished without performing all of the rounds, this can be done by setting the value of variable
to a value greater or equal than expression2-expression3 and by jumping to the NEXT command.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 32

 100 FOR N=1 TO 100
 110 PRINT N
 120 IF INP(32) THEN N=100 : GOTO 140
 130 OUT(32)=NOT OUT(32)
 140 NEXT N

Alternatively the NEXT command can be executed elsewhere in the program, for example

 100 FOR N=1 TO 100
 110 PRINT N
 120 IF INP(32) THEN N=100 : NEXT N : GOTO 1000
 130 OUT(32)=NOT OUT(32)
 140 NEXT N
 150 END

1000 PRINT "Finished earlier."
1010 END

4.9 DO... UNTIL.... LOOP

Command Repeat loop.

Syntax DO [commands] UNTIL condition : LOOP

or

DO [commands]
 command lines
UNTIL condition1
 command lines
UNTIL conditionn
LOOP

commands Commands that are executed in the loop. If several, separated by colons.

command lines Command lines within the loop

UNTIL condition Exit point from loop. If condition is true, program continues from after
LOOP command.

LOOP Point where program execution returns to beginning of loop (DO).

Up to 20 loop commands may be nested in a program.

It is possible to use several UNTIL commands in one LOOP.

DO
 A=A+1 : UNTIL A>100
 OUT(32)=NOT OUT(32)
 UNTIL INP(32)=1
 LOOP

DO UNTIL BYTE(#1)=13 : LOOP
DO UNTIL MOVEREADYXY : LOOP

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 33

4.10 TASK

Command Create a task. Branches the program execution.

Syntax TASK address[expression,...]

address Starting point of the task to be created

expression,.. Values for variables local in the new task as defined in conjunction with
the label starting the new task address. Parameter passing is only possible
when address is a label.

This command allows several tasks to be executed simultaneously. Program execution continues
"simultaneously" both beginning from address, and continuing from the next line. The new task will
have the lowest available free task number, so generally tasks are numbered from 2 on according
to the sequence they were created in. However, a new task may get a lower number if a previously
created task has been killed leaving its number free.

The system can switch tasks after finishing a command line, or in conjunction with some commands
like DELAY, motion commands waiting for space in MOVEBUFFER or serial output commands
waiting for free space in buffer.

A task can be killed by an END command. Max. 32 tasks can be run simultaneously. The maximum
task number in the program is set by TASKMAX. Default value for TASKMAX is 9, resulting in max.
8 simultaneous tasks.

Function Current maximum task number.

Syntax TASK

Type Integer (2 ... TASKMAX)

Value Number of task in starting order. The number of the first task (main
program) is 2.

The number of the current task can be read using the TASK function. This may sometimes be
useful for reserving global resources like numbered timers or device numbers for subroutines that
can be called from several tasks.

4.11 TASKMAX

Command Set the maximum task number.

Syntax TASKMAX=n

n maximum task number for simultaneous tasks
2....33, default value is 9.

This command sets the maximum task number available for program tasks.

As the number of the first task is 2 (see 4.8 TASK) with TASKMAX=9 the valid task numbers will be
2...9. In case of TASKMAX=33 it is possible to use up to 32 simultaneous tasks.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 34

Increasing maximum number of tasks consumes memory in the system data structures, so it is
advisable to set TASKMAX to the value necessary for the application. TASKMAX must be set in the
beginning of the program, before any variables with local scope are declared.

Function Maximum number of tasks.

Syntax TASKMAX

Type Integer

Value By default number of tasks is 8. May change in the range 2...32.

The maximum task number can be read using the TASKMAX function.

4.12 PRIOR

Command Set the priority of current task.

Syntax PRIOR=expression

expression Value for priority. Integer 0 ... 127
0 lock to current task
1 .. 127 priority

The task having the smallest PRIOR value gets the most execution time. For non-critical tasks high
PRIOR values can be used.

Function Priority of current task.

Syntax PRIOR

Type Integer

Values 0 ... 127

Each task has its own priority (default value is the priority of the task that creates the new task, the
original priority of the main program is 3).

In a simple case a task gets execution turn after each n lines, where n is the priority value. If there
are several tasks with approximately same priority, the distribution of execution turns operates as
described later. Priority can have values between 0 and 127. 0 priority reserves all execution time
and thus prevents changing tasks.

Priority can be set in a task as many times as needed. Priority value 0 can be used if the task must
not be interrupted by another task.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 35

 TASK ToDo
 FOR I=1 TO 30
 PRINT PRIOR; : NEXT I
 END

ToDo
 PRIOR=2
 FOR J=1 TO 30
 PRINT PRIOR; : NEXT J
 END

 Switching tasks is based on a queue of executable tasks, where each task waits for its execution turn. Each task has its own so
called wait-counter which defines, how many program lines it has to wait for its execution turn. Each line change decrements the
wait-counters of the tasks in the queue.
 After the wait-counter of the first task is 0, task switching is performed, and the first task in the queue is put in execution. The task
ending its execution turn is put back to the queue according to its PRIOR setting so that the value in the wait counters of the tasks
before it smaller or equal to the PRIOR setting. The wait-counter of the task is set to its PRIOR value.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 36

5. MATHEMATICS

Mathematical calculations in McBasic 3.2 are performed with 8 byte floating point numbers with a
precision of 14 significant numbers. Operating range is 0, ±1.4*10-4897...7.1*104896.

The operations in the following chapters are listed in calculating order, this means that for an
expression, an earlier operation in the list is executed before a latter operation. Arithmetical
operations are executed first, comparisons second and logical operations last.

5.1 ARITHMETICAL OPERATIONS

() expressions in parenthesis
- sign
^ exponent
* / multiplication and division
+ - addition and subtraction

5.2 LOGICAL OPERATIONS

Comparisons can be done between numerical values or between character strings. Comparisons
return a truth value 0 (false) or 1 (true).

A string comparison returns a result using alphabetical order (according to ASCII code) so, that first
character in order is a "smaller" string. If the beginnings of the strings are equal, the longer string is
"greater".

Logical operations can be done between truth values 0 (false) and 1 (true). In this case the result is
also a truth value 0 or 1. Logical operations can also be performed between other values than 0 and
1. In this case the operations are considered binary (see next chapter).

Comparison operations

= equal to
< smaller than
> greater than
<= , =< smaller than or equal to
=> , >= greater than or equal to
<>, >< unequal from

logical operations

NOT logical negation
AND logical AND-function
OR logical OR-function
XOR logical absolute OR-function

Comparison and logical operations can be combined. Parenthesis can be used to indicate
calculation order. For example

200 IF A>B AND (INP(32) XOR INP(33)) THEN 300

5.3 BINARY OPERATIONS

Binary operations can be used also between other integers than 0 and 1 up to 47 bits as follows.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 37

AND AND-operation for a 47-bit integer
OR OR-operation for a 47 bit integer
XOR XOR-operation for a 47 bit integer

In this case the result is also a max. 47-bit integer. For example

PRINT %01010010 AND $0F

2

5.4 NUMBER INPUT FORMATS

Numerical values can be entered and programmed in McBasic in several ways.

1 23 -45 0 basic format
1.0 23.4 -0.0656 .77 decimal format
1E0 2.34E1 1E6 -0.2E-17 exponent format
$41 $BFC0 $0020 $100000 hexadecimal format
%11 %01110101 %1111111111 binary format

PRINT %1010,$0D,1E3

10 13 1000

5.5 MATHEMATICAL FUNCTIONS

5.5.1 ON

Function Constant 1.

Syntax ON

Can be used for example as truth value instead of 1.

TRACE ON

TRACE NOT ON

100 OUT(45)=ON

5.5.2 OFF

Function Constant 0.

Syntax OFF

Can be used for example as truth value instead of zero.

TRACE OFF

100 OUT(45)=OFF

200 IF INP(35)=OFF THEN 500

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 38

5.5.3 ABS

Function Absolute value.

Syntax ABS(expression)

Type Non-negative real number.

expression Real number.

Value Mathematical absolute value of expression

PRINT ABS(3.14), ABS(-3.14)

3.14 3.14

5.5.4 SGN

Function Sign

Syntax SGN(expression)

Type Integer

expression Real number.

Value 1, if expression is positive.
0, if expression is 0
-1, if expression is negative.

PRINT SGN(3.14);SGN(-3.14);SGN(0)

1.00 -1.00 0.00

5.5.5 INT

Function Rounding off to the next smaller integer.

Syntax INT(expression)

Type Integer

expression Real number.

Value An integer next smaller or equal integer to expression.

PRINT INT(3.14);INT(3.9);INT(-3.1)

3.00 3.00 -4.00

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 39

5.5.6 MIN

Function Smaller of two numbers.

Syntax MIN(expression1,expression2)

Type Real number.

expression1 Real number.

expression2 Real number.

Value expression1, if expression1<=expression2
expression2, if expression1>expression2

PRINT MIN(-1,-0.5),MIN(2,1)

-1.00 1.00

5.5.7 MAX

Function Greater of two numbers.

Syntax MAX(expression1,expression2)

Type Real number.

expression1 Real number.

expression2 Real number.

Value expression2, if expression1<=expression2
expression1, if expression1>expression2

PRINT MAX(-1,-0.5),MAX(2,1)

-0.50 2.00

5.5.8 RND

Function Random number.

Syntax RDN(expression)

Type Real number.

expression Real number, a seed for random number.

Value Random real number between 0 ... 1

Expression other than zero sets the seed for random number generator, zero returns the next
random number.

PRINT RND(7);RND(0);RND(0)

0.89 0.88 0.76

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 40

5.5.9 EXP

Function Power of Neper's constant e (2.71828).

Syntax EXP(expression)

Type Non-negative real number.

expression Exponent, real number. With values between approx. -81 ... 96 the
function value remains within number range.

Value eexpression

PRINT EXP(0);EXP(1);EXP(1.5)

1.00 2.72 4.48

5.5.10 LOG

Function Natural logarithm.

Syntax LOG(expression)

Type Real number.

expression Real number.

Value ln(expression)

Natural logarithm of expression. The radix of the logarithm is Neper's
constant e (2.71828).

With negative values of expression the function returns the absolute value
of the logarithm of expression.

PRINT LOG(1);LOG(EXP(1))

0.00 1.00

5.5.11 SQR

Function Square root.

Syntax SQR(expression)

Type Non-negative real number.

expression Real number to take square root from.

Value √expression
Square root of expression.
With negative values of expression the function returns the absolute value
of the square root of expression.

PRINT SQR(2);SQR(100);SQR(0.01)

1.41 10 0.10

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 41

5.5.12 PII

Function Constant π.

Syntax PII

Value π (3.14159.....)

PRINT PII,SIN(0.5*PII)

3.14 1.00

5.5.13 SIN

Function Trigonometric sine.

Syntax SIN(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value sin(expression)

PRINT SIN(0);SIN(1)

0.00 0.84

5.5.14 COS

Function Trigonometric cosine.

Syntax COS(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value cos(expression)

PRINT COS(0);COS(1)

1.00 0.54

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 42

5.5.15 TAN

Function Trigonometric tangent.

Syntax TAN(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value tan(expression)

PRINT TAN(0);TAN(1)

0.00 1.56

5.5.16 ATAN

Function Trigonometric arctangent.

Syntax ATAN(expression)

Type Real number.

expression Argument in radians (2π radians = 360 degrees).

Value atan(expression)

Return values between - π/2 ... π/2

PRINT ATAN(0);ATAN(1)

0.00 0.78

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 43

6. STRINGS

A string is an expression consisting of 0..255 characters. Thus a string is essentially a piece of text.
String values are assigned in quotes:

PRINT "Hello"

String variables are variables holding a string value. McBasic string variable names are consist of
characters beginning with a letter and followed by any number of letters or numbers and ending with
a $-character. Underline characters are also allowed in variable names.

For example

A$ B$ c$ SymVariable$ My_string$

String variables with single letter names are automatically defined as 80 character long and can be
used without declaring them. Other string variables must be declared using the DIM, STRING or
STRING(n) statements. The maximum length of a string variable is by default 80 characters. Other
lengths can be set using the STRING(n) command to declare 1...255 characters long variables.

STRING My_string$, YourString$
DIM String1$
STRING(150) LongString$

Arrays of strings can be declared similarly

STRING(10) StrArray$(10,50)

A string can be combined from substrings with "+"-sign.

"Hello "+N$+", how are you"

F$+".TX:D2"

A string may contain any characters, also control characters.

CtrlString$=CHR$(27)+"Ä101;0X" 'CHR$(27) is esc

6.1 EXEC

Command Execution of a command in a string.

Syntax EXEC(string)

string String containing an executable McBasic command.

A command in the form of a string is interpreted and executed. The string must consist of a
McBasic command without syntax errors.

Since the EXEC command must interpret the command contained in the string, it takes
significantly longer than normally to execute a command using EXEC. Thus, it is not advisable
to include EXEC commands in programs with critical timing, or in frequently performed loops.

Also, commands where task switching is possible during the command (DELAY, PRINT, MOV...)
should be avoided and at least care should be taken not to create a circumstance where task
swithcing would occur within EXEC.

!

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 44

DO
 INPUT "Enter a command ";A$
 EXEC(A$)
 LOOP

=>
Enter a command ? PRINT 2+3
5
Enter a command ?

6.2 ASC

Function Conversion from character to ASCII code.

Syntax ASC(string)

Type Integer

string Usually a string of one character. If string is longer than one character, the
character to be converted is the first character from left.

Value The ASCII code of the first character of the string (0 ... 255). Also an
empty string returns the value 0.

The function returns the ASCII code of the first character in the string. ASC function in the inverse
function of CHR$.

PRINT ASC("!");ASC("ABC")

33.00 65.00

6.3 LEN

Function Length of string.

Syntax LEN(string)

Type Integer

string String to be measured.

Value Length of the string 0 ... 255 (0 if empty).

LEN returns the current length of the string. Return value can be any integer between 0...255
depending of the contents of the string. However, a string variable always reserves memory
according to the declared length of the variable (or 80 bytes by default).

PRINT LEN("HELLO"+" AGAIN")

11.00

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 45

6.4 VAL

Function Type conversion. Converts a string containing a numerical value to
numerical form.

Syntax VAL(string)

Type Real number.

string String to be converted.

Value Numerical value in the string.

A string can contain a numerical value in some of McBasic numbers entry formats or for example
an expression combined from several number formats. For example:

 PRINT VAL("PII"),VAL("1E2"),
 X=PII
 Asym$="COS(X)*10+0.01"
 PRINT VAL(Asym$)

RUN

3.14 100.00 -9.99

VAL function is the inverse function of STR$.

6.5 CHR$

Function Type conversion. Converts a numerical ASCII code to one character
string.

Syntax CHR$(expression)

Type String

expression Code to be converted. ASCII code of the desired character (0 ... 255).

Value String containing one character, where the ASCII code of the character is
expression.

If expression is 0, function returns an empty string.

CHR$ function can be used for example to print characters using PRINT command or to add any
ASCII-character into a string. The value of expression must be between 0..255.

CHR$ function is the inverse function of ASC function.

PRINT CHR$(33)+CHR$(65)

!A

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 46

6.6 STR$

Function Type conversion. Converts a value of numerical expression to string
(decimal).

Syntax STR$(expression)

Type String

expression Real value to be converted.

Value String containing the value of the expression as printed with PRINT
command. DIGITS setting defines the number of decimals in string.

With the STR$ function the numerical value of expression can be converted to a string as it would
be printed using PRINT command. This way i.g. numerical data can be formatted using string
functions. Number of decimals set by DIGITS command defines the number of decimals in the
resulting string. STR$ function is the inverse function of the VAL function.

A$=STR$(SQR(2)) : PRINT A$

1.41
10 DIGITS=2
20 PRINT RIGHT$("000"+STR$(PII),5)

RUN

03.14

6.7 BIN$

Function Type conversion. Converts an integer value to a binary string.

Syntax BIN$(expression)

Type String

expression Integer value to be converted (-248 ... 248-1).

Value String containing the value of expression in binary (48 bit, 2's
complement). If expression is not an integer, it is rounded off to closest
integer. For numbers greater than number range the last 48 binary
numbers or a 0 value is returned.

The value of the BIN$ function is a string equivalent to the binary value of expression.

PRINT BIN$(9),BIN$(%100000+1)

1001 100001

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 47

6.8 DEC$

Function Type conversion. Converts an integer value to a decimal string.

Syntax DEC$(expression)

Type String

expression Value to be converted (-10^12 ... 10^13).

Value String containing the value of expression in decimal form. If expression is
not an integer, it is rounded off to closest integer. For numbers greater
than number range values in exponent form are returned.

The value of the DEC$ function is a string equivalent to hexadecimal value of expression.

PRINT DEC$($1000),DEC$(%100000)

4096 32

6.9 HEX$

Function Type conversion. Converts an integer value to a hexadecimal string.

Syntax HEX$(expression)

Type String

expression Integer value to be converted (-248 ... 248-1).

Value String containing the value of expression in hexadecimal form (48 bit, 2's
complement). If expression is not an integer, it is rounded off to closest
integer. For numbers greater than number range the last twelwe
hexadecimal numbers or a 0 value is returned.

The value of the HEX$ function is a string equivalent to hexadecimal value of expression.

PRINT HEX$(1000),HEX$($100000+1)

3E8 100001

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 48

6.10 LEFT$

Function Sub-string of a string.

Syntax LEFT$(string,expression)

Type String

string String to be divided.

expression Length of sub-string.

Value Sub-string of string, length expression characters, taken from beginning of
string.

PRINT LEFT$("ABCDEFG",3)

ABC

6.11 RIGHT$

Function Sub-string of a string.

Syntax RIGHT$(string,expression)

Type String

string String to be divided.

expression Length of sub-string.

Value Sub-string of string, length expression characters, taken from end of
string.

PRINT RIGHT$("ABCDEFG",3)

EFG

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 49

6.12 MID$

Function Substring of a string.

Syntax MID$(string,expression1,expression2)

Type String

string String from which the subtring is to be taken from.

expression1 The position of the first character of the substring as counted from the
beginning of the string (1 represents the first character).

expression2 Length of substring.

Value A substring of string, length expression2 characters, starting from the
character in position expression1.

PRINT MID$("ABCDEFG",2,4)

BCDE

6.13 INSTR

Function Location of substring in string.

Syntax INSTR(expression,string1,string2)

Type Integer

expression Position in string1, where search for substring begins. 1 represents the
first character position. (Whole string will be searched for).

string1 String, where substring is being searched.

string2 Substring to be searched for.

Value Position of the first character of sub-string string2 in string1.
If substring string2 is not found, value is 0.

100 PRINT INSTR(1,"ABCDEFGH","CD")

3.00

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 50

6.14 STRING

Command Declare string variables

Syntax STRING[(n)] var$,....

n Maximum length of a string n=1....255. If used without n, length will be 80
characters.

var$,... List of names of string variables to declare separated by commas.

The declared variables can be seen in the structure where they were defined and the structures
(subroutines and tasks) under it. This way variables can be defined to have the exact scope desired.

For example, declare a 125 character long string variable Abc$:

100 STRING(125) Abc$

6.15 UCASE$

Function Converts string to upper case.

Syntax UCASE$(string)

Type String

string String to be converted (up to 255 characters long).

100 First$="abcdef"
110 Second$=UCASE$(First$)
120 PRINT First$,Second$
abcdef ABCDEF

6.16 ADDR$

Function Convert address to string.

Syntax ADDR$(address)

Type String

address Address expression

ADDR$ function converts an address expression to a string to allow manipulation and printing
values of adress expressions. The result is the line number or the label at the address referred to, if
either exists. Otherwise the result is an address expression in brackets, consisting of the nearest
line number or label before the address plus followed by +n, where n is the number of lines the
address is down from the label or linenumber.

example program:

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 51

'
'
Label 1
 ' program line
 ' program line
Label 2
 ' program line

B>PRINT ADDR$(0)
(+0)
B>PRINT ADDR$(0+2)
Label1
B>PRINT ADDR$(0+3)
(Label1+1)
B>PRINT ADDR$(Label1+3)
Label2

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 52

7. VARIABLES AND ARRAYS

A variable name is a string of characters of arbitrary length beginning with a letter. Although both
upper and lowercase letters are allowed, it is advisable to use an uppercase letter to begin a (long)
variable name, followed by some lowercase letters as this makes it easier to distinguish variables
from other McBasic reserved words. Variable names are case sensitive, upper and lowercase letters
are considered different characters. A variable name can also contain numbers and _ characters.
Reserved McBasic function and command names must not be used as variable names. When using
variable names beginning with an uppercase letter and continuing with a lowercase letter, McBasic
can distinguish them from command and function names.

For example

Variable, Piix2, Profile, Velo34_56, Sin(3)

Numeric, string or address variables with long names must be declared by one of the following
declaration commands:

DIM var1,..,string1$,.,varn
REAL var1,...,varn
STRING string1$,....,stringn$
STRING(nn) string1$,....,stringn$
ADDR addr1@,...

Additionally, array variables can be declared as

BIT array1(a,b..),..
BYTE array1(a,b..),..
WORD array1(a,b..),..
FLOAT array1(a,b..),..
INTEGER array1(a,b..),..
SHORT INTEGER array1(a,b..),..

Declaration is not necessary for variables with short names, composed of one letter or a letter and a
number, for example

A a A3 a9 z8 z Z b B0 B9

All of the above names refer to different variables.

The name of a string variable ends with $. The maximum length of a string variable is set by
STRING(n) command (default 80 characters)

A$ a$ z$ Z$ Symbol$ ‘names of string variables

STRING Abc$ ‘defines 80 char. string variable
STRING(125) Abcd$ ‘defines 125 char. string variable
STRING(1) Abcde$ ‘defines 1 char. string variable

A numerical array name is a string of characters beginning with a letter (following characters may
be letters, _ or numbers with dimension range(s) in parenthesis

A(0,3) Arr(23) a2(3) z(a(4)) Z(z(2),z(3)) Zspeed_z(5,7)

A string array name has a $ before dimension range(s) in parenthesis.

A$(2) a$(17) SymArray$(18)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 53

Similarly, the name of an address variable ends with @. An address variable may have values
formed by a line numbe or a label with an offset if necessary. Address arrays can also be defined to
hold address values.

A@(15) AddrArray@(20)

The scope of a variable or array determines where the variable can be accessed. McBasic 3.2
variables have a scope according to the program structure where they were defined. All variables
declared in the beginning of the program, before creating any further tasks or calling subroutines,
have a global scope, so they may be referred to from any task or subroutine.

Variables created in other tasks or subroutines are only visible from them and from subroutines
called from them or tasks created from them. Variables with this kind of a local scope are created
with DIM, STRING, BIT, BYTE, WORD, SHORT INTEGER, INTEGER, REAL, FLOAT and ADDR
commands. They have an initial value zero (“”) and disappear when returning from the subroutine or
when the task ends. They can have the same name as used in some other scope. The memory
space occupied by the disappeared variables is freed and can be used again.

Thus, variables and arrays can be declared as local. In this case they
− Must be declared with appropriate commands in the (beginning of the) task or subroutine, where

the local variables are needed.
− If variables are declared local with the LOCAL command they inherit dimensions for arrays,

sizes for strings and values which they had (in case there were any) previously.
− In case of declaring with other declaration commands the array dimensions, string lengths and

variable values are not inherited.
− In a new task or subroutine all local variables of the creating task or calling subroutine are

visible unless redefined.
− Variable is local until END / RETURN command of the corresponding TASK / subroutine.
− On return from the level where variables were local, the values of variables existing at the

higher level have been preserved. Variables that did not exist at the higher level disappear.

Arrays are tables of values referenced by the same variable name. An array can have 1 to 7
dimensions. Array names are a strings of characters first of which is a letter followed by other
characters or numbers from 0 to 9 or u. As with variable names, short array names of one letter or
one letter followed by one number are automatically defined global when used in the program.

Array entries (cells) are being referenced using indexes separated with commas in parenthesis after
the array name.

For example ArrSamp(1,3,4,7,8) Block3(1) h(2,7) asize(1,3) K3(5,9) are entries in different arrays.

It is also possible to define an array for strings or addresses. For example SymArray$(3,6) b$(8) are
entries in different string arrays and Addr@(5,5) G@(3) are entries in address arrays.

Each entry in an array reserves memory according to the type of the array variable type.

Array size is defined by DIM or type declaration commands before an array is used. In case if
numerical array with the name of one letter or one letter and a number is not defined before its use
the default dimension of 10 or 10*10 is assumed. An array can be from one to seven dimensional,
and the only limit for array size is the size of memory available. An array index can have negative,
zero and positive interger values.

For example

DIM A(-3..2,2) : STRING(1) LetArray$(32)
LetArray(1)="A"
A(-2,0)=1
A(2,2)=1

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 54

7.1 DIM

Command Declare real, string or address variables or arrays, define array size.

Syntax DIM arrname(expression1[,..expressionn])[, var][, str$][, addr@].....

also

DIM arrname(expr1..expx2, ... ,expr3 .. expr4),

arrname Array variable name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

var Real number variable name

str$ String variable name. String variables declared using DIM are always 80
characters long.

addr@ Address variable name.

With DIM command variables and dimensions for one or more arrays can be defined in one
command.

10 DIM ArrOne(12),M(5,5),B$(5)
20 FOR I=0 TO 12
30 A(I)=-1
40 NEXT I
50 FOR I=0 TO 5
60 M(I,I)=1
70 NEXT I

It is also possible to define arrays with the type declaration commands (see 2.5 VARIABLES
TYPES). For example

STRING(125) SymArray$(5,5) : REAL Var(5), Var2(5)
WORD Var(5), Var2(5)
INTEGER Var(5), Var2(5) : BYTE Var(5), Var2(5)
BIT Var(5), Var2(5)
SHORT INTEGER Var(5), Var2(5)

Array index can take negative, zero or opositive integer values. By default the lower limit is
supposed to be 0.

DIM SamArr1(-10..10) ' one dimensional
' array with index from -10 to 10DIM

SamArr1(10..-10) ' same as in previous line
DIM Sam2(10) ' one dimension array with index from
 ' 0 to 10
DIM Sam3(7..1,54..89) ' two dimension array, first index

' from 1 to 7, second - 54-89

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 55

7.2 REAL

Command Declare double precision real (floating point) variables and arrays.

Syntax REAL name[(expression1,...,expressionn),],.....

or for arrays with specified index ranges

REAL name(expr1..expr2,...,expr3..expr4),

name Variable or array names.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Real number is the default number format of McBasic and thus both real variables and arrays can
be declared. It is possible to declare other format single variables also, but their internal format will
always be a real number. This can be done to show intended usage of a variable but declaring a
variable as BIT does not actually limit the range of values the variable can get, like when declaring
different format arrays. This arrangement has been made to allow as fast operation as possible
when using single variables while conserving memory space when using arrays.

Real numbers and array cells can get values from ±1.4E-4897 to ±7.1E4896 with a resolution of
1.4E-14.

For example:

REAL MyVar, BigArray(1000,5,3), YearArray(1900...2099)

7.3 FLOAT

Command Declare single precision real (floating point) arrays.

Syntax FLOAT arrname(expression1,...,expressionn),

or

FLOAT arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)
expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Single precision floating point array cells can get values from ±1.4E-42 to ±5.0E41 with a resolution
of 2.4E-7.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 56

7.4 BIT

Command Declare bit arrays.

Syntax BIT arrname(expression1,...,expressionn),

or

BIT arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

BIT array cells can get values between 0 or 1.

7.5 BYTE

Command Declare byte arrays.

Syntax BYTE arrname(expression1,...,expressionn),

or

BYTE arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Byte array cells can get integer values between 0 and 255.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 57

7.6 WORD

Command Declare word arrays.

Syntax WORD arrname(expression1,...,expressionn),

or

WORD arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Word array cells can get integer values between 0 and 65535.

7.7 SHORT INTEGER

Command Declare short integer arrays.

Syntax SHORT INTEGER arrname(expression1,...,expressionn),

or

SHORT INTEGER arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Short integer array cells can get integer values between -128 and 127.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 58

7.8 INTEGER

Command Declare integer arrays.

Syntax INTEGER arrname(expression1,...,expressionn),

or

INTEGER arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Integer array cells can get integer values between -32768 and 32767.

7.9 ADDR

Command Declare address variables and arrays.

Syntax ADDR name@[(expression1,...,expressionn),],.....

or for arrays with specified index ranges

REAL name@(expr1..expr2,...,expr3..expr4),

name@ Variable or array names.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Address variables and array cells can contain any address values in the program. Thus, the value of
an address variable can be a label or a line number existing in the program with an optional offset.

For example:
 ADDR Pointer@

StartOfData
 DATA 100,200,300
 DATA 110,210,310
 DATA 120,220,320
EndOfData

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 59

 Pointer@=StartOfData+2
 RESTORE Pointer@
 READ a,b,c
 PRINT A,B,C

RUN

110 210 310

>

7.10 LOCAL

Command Declare variables local

Syntax LOCAL varname, arrayname(), strname$

varname, arrayname(), strname$, addr@
Names of variables or arrays to be declared local. Arrays get dimensions
according to already existing arrays, giving dimensions is therefore
optional.

Declaring variables local create local instances of the given variables. These local instances get a
default value equal to the value of the variable before declaring local. Declaring local makes it
possible to import values to structures and thereafter alter them while preserving the value of the
original variable.

7.11 [LET]

Command Assign a value for a variable.

Syntax [LET] variable=expression

variable Numerical or string variable.

expression New value of variable.

An assign command. LET command is used for assigning a value expression to variable. Old value
of variable can be used in expression. The word LET is optional.

 A=123*5+9
 A(1,7)=A(7,1)
 LET A3=A+A(1,7)
 A$="string"+" and so on... "
 A=A+1
GetC B=BYTE(#1)
 IF B>0 THEN A$=A$+CHR$(B) ELSE GOTO GetC

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 60

8. FILES AND SERIAL COMMUNICATIONS

Data input and output can be done through serial ports or by reading and writing files.

When operating under McDos operating system every McBasic file and serial port must be opened
before use and closed after use unless operations are meant to point to the default port (console,
CN:).

Files are referred to with logical device names (device number) after opening them. In case of an
error message or when exiting McBasic all open files are automatically closed. Same commands
can be used for both files and serial ports.

Ports and files have both logical and physical device names. The syntax for logical device names is
#n, where n is an integer between 1..39. These are also called device numbers.

Physical device names can be opened for any logical name or device number with the OPEN
command. Similarly files can be opened for any logical name by giving a physical file name for a
logical name. The unopened device numbers refer automatically to the console port (:CN).

Opening and closing input and output files is explained in more detail in part 8.2 FILES AND DATA
OUTPUT.

8.1 PROGRAM FILES

Under McDos operating system the McBasic environment is called from disk or other memory
device by giving the name of the interpreter program, for example "BASIC", as a command. The
operating system loads and starts the McBasic programming environment, interpreter and compiler
stored in the command file such as BAS16.CK. The name of the McBasic command file may vary
according to the system type and version used. (See chapter 2.1, McBasic versions).

If a name or a list of names of McBasic program files is given simultaneously with the command,
McBasic loads and starts the program(s) automatically after starting itself. The use of the suffix .BA
in the names is optional

D8:\>BAS16 PROG1,PROG2,PROG3

If no program name is given and there is battery secured CMOS memory available, the interpreter
searches the McBasic workspace memory for an executable program. If a program is found in the
memory, it is started automatically.

If the memory is empty, McBasic looks for a file WAKEUP.BA from the current disk drive and
directory. This can also be a virtual drive, such as system flash memory (D6:) or CMOS RAM drive
(D7:) set to be the current drive before starting McBasic. McBasic can be started from the current
directory or some other directory specified in conjunction with the command or beforehand using
the McDOS PATH command.

If no WAKEUP.BA file is found from the current directory, the memory remains empty and McBasic
remains in command mode.

Under McDos operating system, start up can be automated by saving a WAKEUP.EX file on disk
(or virtual disk). WAKEUP.EX can contain commands such as

D8:/BAS300

or

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 61

PATH D0:,D8:/
BASIC PROGRAM

The first command loads McBasic version BAS300 (MC300 system) from system eprom D8: and
searches for program first in work memory and, if not found, for a WAKEUP.BA file on the current
directory, which may be the drive root directory holding the WAKEUP.EX file that controls the
starting of the system. The latter command set the search path to include D8: and always loads the
program file PROGRAM.BA.

Program execution can be stopped from console (:CN) with a control-X code. This causes the
system to output to console information about memory use: program size, variables and compiled
size of program as well as size of free memory.

8.1.1 SAVE

Command Save a program into a file.

Syntax SAVE string

string Program file name in the form [device:]name[.suffix]

Default suffix is .BA and default device is D0:, in other words the drive, that has been used last.
Program is saved with the given file name. If a file with the same name already exists, it is
overwritten.

SAVE "TEST7"
SAVE "D7:TEST8.BA"

8.1.2 LOAD

Command Load a program from a file.

Syntax LOAD string

string Program file name in the form [device:]name[.suffix]

Loads a program. Default suffix is .BA and default device is D0:. Previously loaded or written
programs and variables are destroyed.

LOAD "TEST2"
LOAD "D4:/TEST8"

8.1.3 APPEND

Command Append a program.

Syntax APPEND string

string Program file name in the form [device:]name[.suffix]

Appends a file into existing program. String is the name of the file to be appended. Default suffix is
.BA and default device is D0:.

Append adds the contents of the program file in the end of the already loaded program. If the file to
be appended contains numbered lines, they are put in sequence with existing numbered lines.
Append command sets all variables to zero.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 62

APPEND "NEWPART"

8.2 FILES AND DATA OUTPUT

8.2.1 OPEN

Command Open a file or port.

Syntax OPEN #nn,string

nn Device name (1 ... 39), for which the file or port is opened.

string Program file name in the form [device:]name[.suffix]
default suffix is .TX
default device is D0:
or device name in the form
device:

After opening, files and ports can be read and written with applicable commands and functions. At
the time of system start up (before opening files and ports) all device names refer to console CN:.

The most important suffixes :

.BA BASIC program file

.DT binary data file

.TX text file

The most important devices (MC400):

physical name device

CPU:
CN: console port (also MC300)
LP: second serial port (also MC300)
S0: third serial port
S1: fourth serial port

1. auxiliary serial module:
S2: auxiliary serial port
S3: auxiliary serial port
S4: auxiliary serial port
S5: auxiliary serial port

2. auxiliary serial unit:
S6: auxiliary serial port
S7: auxiliary serial port
S8: auxiliary serial port
S9: auxiliary serial port

MC300 and MC400 systems can have up to 8 physical memory drives D1: D8:. The current
drive is the default drive and can be referred to as D0:. Details of the memory device (disk drive)
setups can be found in the McDOS 2.2 Operating System User's Manual chapter 3.2, Memory
devices.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 63

Details of serial port settings can also be found in the McDOS 2.2 Operating System User's Manual
chapter 4.26, SET command.

In MC300 systems, a physical device names according to the type of the display (TR: = 320x240
greyscale lcd, ETR: = 640x400 EL) are available for referencing the inbuilt display and
keypad/board.

Additionally a device XX: is available for use as a "trash bin" to simulate a non-existing port for
example. Any output in XX: is always lost, no input is ever received from XX:.

Files are referenced after opening using device numbers. The default device in commands, that do
not require a device number, is #1. Console port, in other words the port where the programming
terminal is connected, is usually left as #1.

For example :

OPEN #2,"LP:" ' 2. serial port
LIST #2

15 INPUT "Which text file",N$
20 OPEN #3,"D1:"+N$+".TX" ' disk file

When opening serial ports it is possible to set communication parameters by adding the necessary
parameters in the control string after the device name.

OPEN #2, "LP:9K68E11"

where
device name
 CN:, LP:..

baud rate
 300,600,1K2,
 2K4,4K8,9K6,
 19K,38K

number of data bits
 7,8

parity
 0 space
 1 mark
 E even
 O odd
 N no
number of stop bits
 1,2
xon/xoff handshake
 0 not used
 1 used
 R xon repeated every 5s

A port can be locked so that interrupts are disabled and the related buffer is cleared as follows:

OPEN #2, "LP:OFF"

A port that is OFF will not send or receive characters until opened again.

If no communication parameter is given the operating system uses default values as follows:

baud rate 9600 baud (9K6)
data 8 bits (8)
parity no parity (N)
stop 1 bit (1)
xon/xoff hand shake on (1)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 64

8.2.2 CLOSE

Command Close a file or port.

Syntax CLOSE #nn

nn Device number (1 ... 39), for which the file or port was opened.

To finish using a file. The file is closed and possible data in buffer is written on disk. When closing
ports the communication parameters remain as set, input and output for device number are
redirected to CN:.

30 CLOSE #3

8.2.3 INPUT

Command Read data from a device.

Syntax INPUT[#nn],[string{,|;}]variable[,..,variable][;]

nn Device number (1 ... 39), for which file or port was opened. If no device
number is given, #1 is assumed (usually =CN:, the console port).

string If string is given, it will be echoed to the device as a prompt.

{,|;} If string is followed by a comma, the echoed prompt will be followed by a
question mark, if followed by a semicolon, no question mark is echoed.

variable.. Variables to be read (strings or numbers).

[;] If expression is followed by semi-colon, no line feed (cr+lf) is echoed after
reading from a port.

McBasic program stops when an INPUT command is encountered until necessary data is received
from device nn. When reading from serial ports (terminal etc.) this may stop program execution for
a relatively long time.

Because of this, INPUT command can only be used for reading from files in cases where the control
system should perform other operations or TASKs simultaneously. In these cases input data from
serial ports should be read using the BYTE(#n) function.

50 INPUT #4,X,Y,A$
60 INPUT #3,A$
65 ' semi-colon at the end
66 ' prevents line feed
70 INPUT "ENTER A NUMBER",N;
75 PRINT " number was ";N
78 ' semi-colon at the end
79 ' prevents echoing question mark
80 INPUT "ENTER ANOTHER NUMBER";N
85 PRINT N
RUN

ENTER A NUMBER? 3+2 number was 5.00
ENTER ANOTHER NUMBER 4
4.00

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 65

8.2.4 PRINT

Command Output to a device.

Syntax PRINT[#nn,][expression][{,|;}...{,|;}expression][,|;]

nn Device number (1 ... 39), for which the file or port has been opened. If no
device number is given, #1 is assumed (usually CN:, the console).

expression Numerical or string expressions to be output. Without expressions the
command can be used for line feed.

{,|;} A comma used between expressions sets the next output to next column.
Each column is 8 characters wide. A semi-colon used between
expressions sets the next output right next to the previous output.

[,|;] PRINT command performs an automatic line feed after output. If the last
expression is followed by a comma or a semi-colon, no line feed (cr+lf) is
printed. If the character is comma the cursor is tabulated to the next
column.

When printing strings the output can be formatted using string functions and expressions can be
combined by + sign.

PRINT "ABC"+CHR$(10)+"DEF" 'ASCII 10 is
 'line feed
ABC
DEF

When several tasks use the same output device it is necessary to control the output so that different
tasks do not print simultaneously as printed sequences might get mixed. This may be accomplished
by using flag variables to time the operation of tasks or by locking tasks with the PRIOR setting.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 66

8.2.5 LIST

Command List whole program.

Syntax LIST [#nn]

nn By giving device number nn program will be listed to device #nn,
otherwise to device #1.

Command List part of program.

Syntax LIST [#nn,][address1][,[address2]]

nn By giving device number nn program will be listed to device #nn,
otherwise to device #1.

address1 The first line to be listed. Default is linenumber=1 or start of program.

address2 The last line to be listed. Default is linenumber=65535 or end of program.
If only comma is given, program will be listed until next empty line.

LIST has following features:
• automatic nesting for commands FOR...NEXT, IF..THEN/ ELSEIF/ ELSE/ ENDIF, DO...LOOP;
• removes spaces from before ' on comment lines.
• in case the comment ends with ‘ the comment will be right aligned with a leader consisting of

characters similar to the character after the ' starting the comment.

LIST 'whole program to console
LIST #2 'whole program to #2
LIST 1000 'beginning from line 1000
LIST 1000,1000 'only line 1000
LIST Lab1,Lab2 'from line Lab1 to line Lab2 (including)
LIST Lab1, 'from line Lab1 to the next empty line
LIST #2,1000,1990 'lines 1000-1990 to #2
LIST #2 100, 'from line 100 to next empty line

8.2.6 DIGITS

Command Set the number of decimals used when printing.

Syntax DIGITS=expression

expression Number of decimals (0...9) to be printed in PRINT command when printing
numerical values. A value 0.5 can be added to prevent exponent notation
when printing small values.

Number of decimals used in printing is defined by the value of expression. Default number of
decimals when starting a McBasic program is 2 decimals.

Each task has its own setting for DIGITS so changing DIGITS setting in one task does not affect
printing formats in other tasks.

DIGITS=3 'print with 3 decimal places
DIGITS=2.5 'print with 2 decimal places and suppress exponent
 'format

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 67

4000 FOR I=0 TO 9
4005 DIGITS=I
4010 PRINT I;TAB(12);PII
4020 NEXT I

0 3
1.0 3.1
2.00 3.14
3.000 3.141
4.0000 3.1415
5.00000 3.14159
6.000000 3.141590
7.0000000 3.1415900
8.00000000 3.14159000
9.0000000003.141590000

8.2.7 LINE

Command Set length of output line.

Syntax LINE(#nn)=expression

nn The number of the device whose line length is set.

expression Length of line (integer 0...255). When set to 0 no automatic line feed is
performed (default). Other values cause automatic line feed (cr+lf) after
expression characters have been output.

500 LINE(#1)=132

8.2.8 BYTE(#nn)

Command Output a byte to a device.

Syntax BYTE(#nn)=expression

nn Device number. Can also be a variable or expression.

expression Value to be output, integer (0 ... 255, ASCII code).

Function Read a byte from a device.

Syntax BYTE(#nn)

Type Integer (0 .. 255, ASCII code)

nn Device number to read from. Can also be a variable or expression.

Value ASCII code (0 ... 255) of the received character. If there are no characters
in the buffer or the file has no more characters, function returns value -1.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 1.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 68

When writing numerical values to files using BYTE, WORD, FLOAT, REAL or IEEE.. commands,
they are saved in binary mode and therefore can not be inspected or edited for example with a text
editor. When reading the file it is advisable to use BYTE, WORD, FLOAT, REAL and IEEE..
functions.

120 BYTE(#3)=128
190 A=BYTE(#4) : IF A<>65 THEN 190

8.2.9 WORD(#nn)

Command Write a word (2 bytes) to a device.

Syntax WORD(#nn)=expression

nn Device number. Can also be a variable or an expression.

expression Value to be written, integer (0 ... 65535).

Function Read a word from a device.

Syntax WORD(#nn)

Type Integer (0 .. 65535)

nn Device number to be read from. Can also be a variable or an expression.

Value Value (0 ... 65535) of the received word. If there were not 2 bytes
available in device buffer or the file did not contain 2 more characters, the
function returns value -1.

When writing to or reading from a file the file pointer PTR(#nn) is automatically incremented by 2.

Because WORD requires 2 characters ready for reading, it can mainly be used with files. When
using serial ports, the use of BYTE function is recommended.

See BYTE(#nn).

130 WORD(#3)=64000
200 P=WORD(#4)

8.2.10 FLOAT(#nn)

Command Write a floating point number (4 bytes) to a device.

Syntax FLOAT(#nn)=expression

nn Device number to be read from. Can also be a variable or an expression.

expression Value to be written, real number.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 69

Function Read a floating point number (4 bytes) from a device.

Syntax FLOAT(#nn)

Type Real number

nn Device number to be read from. Can also be a variable or an expression.

Value Received real number. If there were not 4 bytes available in device buffer
or the file did not contain 4 more characters, the function returns 0.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 4.

Because FLOAT requires 4 character ready for reading, it can mainly be used with files. When
using serial ports, the use of BYTE function is recommended.

See BYTE(#nn).

130 FLOAT(#3)=1000*PII
200 P=FLOAT(#4)

8.2.11 REAL(#nn)

Command Write a floating point number (8 bytes) to a device.

Syntax REAL(#nn)=expression

nn Device number to be read from. Can also be a variable or an expression.

expression Value to be written, double precision real number.

Function Read a floating point number (8 bytes) from a device.

Syntax REAL(#nn)

Type Real number

nn Device number to be read from. Can also be a variable or an expression.

Value Received real number. If there were not 8 bytes available in device buffer
or the file did not contain 8 more characters, the function returns 0.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 8.

Because REAL requires 8 character ready for reading, it can mainly be used with files. When using
serial ports, the use of BYTE function is recommended.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 70

8.2.12 IEEE

Command Write a IEEE format floating point number (4 or 8 bytes) to a device.

Syntax IEEEnn[I](#devicenr)=expression

nn bits in format, 32 or 64

I PC style format indicator. If omitted, unix style is assumed

devicenr Device number to be read from. Can also be a variable or an expression.

expression Value to be written, real number.

Function Read a IEEE format floating point number (4 or 8 bytes) from a device.

Syntax IEEEnn[I](#nn)

nn bits in format, 32 or 64

I PC style format indicator. If omitted, unix style is assumed

Type Real number

nn Device number to be read from. Can also be a variable or an expression.

Value Received real number. If specified number of bytes was not available
from device buffer, the function returns 0.

IEEE format read/write can be used for floating point data exchange between Arlacon MC and other
systems.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 71

8.2.13 DATE$

Command Set file date.

Syntax DATE$(#nn)=string

nn Device number, for which the file has been opened.

string New date in form

yy[mmdd[hhmmss]]
yy = year 80..79 (80 = 1980, 79 = 2079)
mm = month 01..12 (01 = January)
dd = day 01..31
hh = hours 00 23
mm = minutes 00..59
ss = seconds 00..59

or alternatively

yyyy[mmdd[hhmmss]]
where yyyy = year (0000 9999)
other items as above

Function Read file date or convert date in number format to string.

Syntax DATE$(#nn)
or
DATE$(a)

Type String

nn Device number, for which the file has been opened.

a Date in number format (as produced by DATE function) to be converted to
string.

Value File or system date in form yymmddhhmmss (see above)
Converted number format date in form yyyymmddhhmmss (4 digit year).

Device CN: (console), usually #1, is the real time clock of the system (see chapter 9. REAL TIME
CLOCK.)

Disk files are automatically dated according to the console date when written to a disk.

For example string 900224123456 represents the date February 02, 1990 and the time 12:34:56

DATE(#1)="900224123456"
PRINT DATE$(#1)

900224123456

DATE$ function also provides means to convert date calculation results from number format back
to string format and to convert 2 digit year formats to 4 digits.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 72

Example:

PRINT DATE$(DATE(DATE$(#1)))
19990825135344

8.2.14 DATE

Function Convert date string to number.

Syntax DATE(date)

Type Real number

date Date to convert in form [yy]yy[mmdd][hhmmss]

Value A number representing the date in days from 2.1.2000. Dates before
2.1.2000 are negative numbers and after 2.1.2000 positive numbers.

The DATE function allows calculations with dates. The date 2.1.2000 (first Sunday of year 2000)
has been chosen to be the "zero" date. DATE gives the difference from this date in days, so the
integer part of the value represents full days while the fractional part tells the time. Thus time and
date differences can be calculated.

For example there are 236 days between 1.1.1999 and 25.8.1999 whereas there are 237 days
between 1.1.2000 and 25.8.2000 (2000 is a leap year):

PRINT DATE("990825")-DATE("990101"), DATE("000825")-DATE("000101")
236.00 237.00

DATE also allows week day calculations (0=Sunday, 1=Monday ...). 25.8.1999 is Wednesday:

X$="990825"
PRINT INT(DATE(X$)-7*INT(DATE(X$/7))
3.00

8.2.15 PTR

Command Set a file pointer.

Syntax PTR(#nn)=expression

nn Device number, for which the file has been opened.

expression New value of pointer. Value 0 points to the first byte of file, SIZE(#nn)-1
points to the last byte of file.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 73

Function Read a file pointer.

Syntax PTR(#nn)

Type Integer

nn Device number, for which the file has been opened.

Value Value of file pointer.

The value of the file pointer must be positive and smaller than or equal to the size of free memory
in the device.

The file pointer of a newly opened file is 0.

This command allows reading data from any part of a file and thus use the file as a random access
file.

 5 OPEN#3,"FILE.DT:D1"
10 PTR(#3)=0 'first character
20 A=BYTE(#3) 'is read to A
30 PTR(#3)=SIZE(#3)-1 'last character
40 B=BYTE(#3) 'is read to B
200 IF PTR(#3)>=SIZE(#3) THEN STOP

If the value of PTR is set greater than the current size of the file (see SIZE), the file size is
automatically increased accordingly. The new empty space at the end of the file is not set to zero,
so some data that has been deleted before, may become readable.

8.2.16 SIZE

Command Set file size.

Syntax SIZE(#nn)=expression

nn Device number, for which the file has been opened.

expression New size (bytes).

Function Read the file size.

Syntax SIZE(#nn)

Type Integer.

nn Device number, for which the file has been opened.

Value Size of file (bytes). When using for a serial port the function returns the
size of the free space in output buffer.

Value of the file size must be smaller than or equal to the size of free memory in the device..

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 74

This command can be used for example to destroy a file or part of a file. If the size of the file is set
to zero and the file is closed, the file will be removed from disk.

Output to a port with too little free space in the buffer can be avoided using the SIZE function thus
avoiding interrupting the program and task changing.

 SIZE(#3)=PTR(#3) 'let's destroy a file
 'beginning from PTR
 SIZE(#4)=0 : CLOSE(#4) 'delete the file

 OPEN#4,"FILE.TX"
 IF SIZE(#4)=0 THEN PRINT "File not found"

 'sub-routine, prints M$ to #2 when enough space
 DO WHILE SIZE(#2)<250 : LOOP
 PRINT#2,M$
 RETURN

8.2.17 DIR$

Function Read a directory entry.

Syntax DIR$(#nn,expression)

Type String

nn Device number, for which the memory device/directory has been opened.

expression Number of directory entry.

Value Contents of the directory entry in form "nnnnnnnnsss" (11 characters).
nnnnnnnn file name
sss suffix
A name of a subdirectory is an entry in form "nnnnnnnnsss/" (12
characters). Directory entries are filled from position 0. The first empty
entry indicates that the rest of the directory is empty.
If the directory entry is empty, the function returns an empty string "".

Maximum number of files on one memory device is dependent on the type of device. When reading
the directory cells it is possible for example to list the directory in desired order and format.

'DIR
OPEN #2,"D1:"
n=0
DO
 A$=DIR$(#2,n)
 UNTIL A$=""
 IF LEN(A$)=12 THEN
 PRINT LEFT$(A$,8)+" "+RIGHT$(A$,4)+" ";
 ELSE
 PRINT LEFT$(A$,8)+"."+RIGHT$(A$,3)+" ";
 ENDIF
 C=C+1
 IF C=5 THEN C=0 : PRINT
 LOOP

RUN

SUBDIR / DISK .CM MEM .CM DELETE .CM STRIP .BA
PROM .CM CMP .BA COMGEN .CM DOBACKUP.EX TX .CM

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 75

EXECUTES.TX LF .EX WAKEUP .EX VD011 .EX BTDDD51 .DT
BTDDD01 .DT BTD0011 .DT PAL .CM FOR27513.EX LILBUGHX.DT
FOR27011.EX NOZZLE .DT PIP4 .BA BTDD051 .DT MCDOS .CM
LIST .BA PIP5 .BA LINES .BA E .EX README .TX
P513 .EX UPLOAD .EX NOLF .EX DIR .CM ASM .CM
XDISK .CM EP .CM COPY .CM DATA .CM DEL .CM
BTD0051 .DT COLUMBIA.DT DOPROM .EX LOAD .EX BOOTS .TX
VD513 .EX BTDDDD1 .DT VDEMO .BA DIR .BA SETCLOCK.BA
P513T .EX

8.2.18 TAB

Function Set cursor on output line in PRINT command.

Syntax TAB(column)

column Column, where the next output is desired.

Set cursor on output line (1 ... 255). Used only with PRINT command. Moves cursor to desired
column. New column must higher than the current position of cursor.

350 PRINT X,Y,TAB(20+65*Y);"*"

8.2.19 CURS$(column,row)

Function Set cursor position on display.

Syntax CURS$(column,row)

Type String

column Column, where the next output is desired
0 leftmost column on screen

row Row, where the next output is desired
0 topmost line on screen

Value Cursor control sequence for Arlacon terminals.

Text output can be directed to desired position on a display screen with this function. Coordinate
range depend on the terminal type and settings used. Function can be used for example when
printing with PRINT command.

5 PRINT CURS$(40,12);"X: ";POSX;" ";

When cursor control is based on CURS$ or other control sequences, TAB function cannot be used.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 76

8.2.20 LINK

Command Link input/output of data to two devices.

Syntax LINK#n1,n2,n3

n1 Device number to which other devices are linked.

n2 Number of the first linked device

n3 Number of the second linked device

Printing to a device number n1 linked to two other device numbers copies the output to both
devices. Reading from n1 reads data from either linked device if available.

It is possible to link more that 2 devices to one device number by using more than one level of links.
Max. 30 links can be used simultaneously.

To break a link CLOSE#n1 command is used. It closes #n1, but not the devices linked to it. Devices
linked to another device number can be used also directly to their own device numbers. Several
links can also lead to one device.

 OPEN#2,"S2:"
 OPEN#3,"S3:"
 OPEN#7,"D7:RECORD.TX"
 LINK#10,2,3 'link channels #2 and #3 to #10
 LINK#11,10,7 'link channels #10 and #7 to #11
 PRINT#11,"START" 'print to #2, #3 and #7

 DO: B=BYTE(#10) 'read from #2 and #3
 UNTIL B<0 : LOOP 'if channels #2 and #3 are empty, loop

 CLOSE #3 : OPEN #3, "CN:" 'change of device in channel #3
 PRINT #11,"STOP"
 CLOSE #10 : CLOSE #11 'break links #10 and #11
 CLOSE #2 : CLOSE #3 : CLOSE #7 'closing primary channels

8.3 GRAPHICS CONTROL FUNCTIONS

Graphics control functions can be used for controlling graphics on ARLACON ETR and CGA
terminals and screens. These McBasic functions help to generate automatically the necessary
PLOT-10 control sequences required by terminals.

8.3.1 TEXT$

Function Display control to text mode.

Syntax TEXT$

Type String

Value Control sequence for terminal.

TEXT$ sets display to text mode. For example

10 PRINT TEXT$;

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 77

8.3.2 PNT$

Function Define a point in graphics.

Syntax PNT$(x,y)

Type String

x X (horizontal) coordinate. 0 is the left side of the screen, 1 is the right side
of the screen.

y Y (vertical) coordinate. 0 is the bottom of the screen, 1 is the top of the
screen.

Value Control sequence for terminal.

This function is used for entering points in connection with drawing functions. The function defines a
point on screen so that the x defines the horizontal position and the y defines the vertical position.

Further information about the use of PNT$ function in paragraphs LINE$ and FILL$.

8.3.3 LINE$

Function Set display to line draw mode.

Syntax LINE$

Type String

Value Control sequence for output.

LINE$ sets a graphics display to line draw mode. For example

 PRINT LINE$;

In the line draw mode jointed lines can be drawn with current color settings by giving points with
PNT$ function. For example

 PRINT COLOR$(1)+LINE$+PNT$(0,0)+PNT$(1,0);
 PRINT PNT$(1,1)+PNT$(0,1)+PNT$(0,0)+TEXT$

draws a frame on screen. In the line draw mode the PNT$ function is the only available function.
The color changes must be done in the text mode. The start point of a jointed line is defined by the
first PNT$ function and the end point with the last PNT$ function.

The TEXT$ function is used to return to text mode.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 78

8.3.4 FILL$

Function Set display to fill mode.

Syntax FILL$

Type String

Value Control sequence for output.

FILL$ sets a graphics display to fill mode. In this mode the drawn jointed lines are automatically
closed with a straight line and filled with the current color. Otherwise FILL$ operates as LINE$.

An area that has been filled with FILL$ function can be surrounded with a frame of different color by
drawing the frame with LINE$ command using the same points.

8.3.5 COLOR$

Function Color definition.

Syntax COLOR$(color)

Type String

color Color code for desired color. Available values depend on the display type.

Value Control sequence for output.

Color definition. Sets both the text color and the line color as well as the fill color for an area. This
function operates only in the text mode.

45 PRINT COLOR$(1); 'set color 1

For example in CGA02804 color display cause the following color numbers are available:

operation of LINE$ and FILL$
0 draw with the background color
1 draw with the foreground color
2 draw with shifted foreground and background color
3 draw with the complementary colors
4-7 halftone, only the background
8-11 halftone, only the foreground
12-15 halftone, both the background and the foreground

16 background black
17 background blue
18 background red
19 background magenta
20 background green
21 background cyan
22 background yellow
23 background white

32 foreground black
33 foreground blue
34 foreground red

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 79

35 foreground magenta
36 foreground green
37 foreground cyan
38 foreground yellow
39 foreground white

Halftones:
 4 -=-- 5 -=-- 6 -=-= 7 -===
 ---- ---x =-=- ==-=
 8 =*== 9 =*== 10 =*=* 11 =***
 ==== ===* *=*= **=*
12 -*-- 13 -*-- 14 -*-* 15 -***
 ---- ---* *-*- **-*

- background
= not changed
* foreground

The background color is the screen color behind the text and the foreground color is the color of the
text itself when printing the text to screen. When screen is cleared with a code such as CHR$(26)
the whole background of the screen is changed to the last defined background color. Further display
control sequences are discussed in respective display device documentation.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 80

9. TIMING AND REAL TIME CLOCK

If the system is equipped with a real time clock, all the files are dated automatically according to the
current time of the real time clock. The real time clock is set to current time by setting the console
date. The date and time can also be read from console (:CN, usually #1).

9.1 REAL TIME CLOCK

Clock is set with command:

Command Set date/time of the real time clock.

Syntax DATE$(#1)=string

string The new date in form

yy[mmdd[hhmmss]]
yy = year 80..79 (80 = 1980, 79 = 2079)
mm = month 01..12 (01 = January)
dd = day 01..31
hh = hours 00 23
mm = minutes 00..59
ss = seconds 00..59

or alternatively

yyyy[mmdd[hhmmss]]
where yyyy = year (0000 9999)
other items as above

100 DATE$(#1)="900224123456"

sets the date to 24/02 1990 and the time to 12:34:56.

Function Read the real time clock date/time.

Syntax DATE$(#1)

Type String

Value The current date and time in form yymmddhhmmss as described above.

Note that short/long date format conversions and date calculations are possible using the DATE$()
and DATE() conversion functions described in chapters 8.2.13.-14.

100 PRINT DATE$(#1)

900919161354

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 81

100 D$=DATE$(#1)
110 PRINT MID$(D$,5,2)+"."+MID$(D$,3,2)+".19";
120 PRINT MID$(D$,1,2)+" at ";
130 PRINT MID$(D$,7,2)+":"+MID$(D$,9,2);
140 PRINT " o'clock"

19.09.1990 at 16:13 o'clock

9.2 TIME MEASUMENTS

9.2.1 TIMER

Command Set a timer.

Syntax TIMER[(expression1)]=expression2

expression1 Timer number 0 ... 99
If used without timer number, refers to TIMER local for each task.

expression2 Value to set [s] 0 ...2.1E9

The resolution of a timer is <1µs. The maximum value to set is 2.1E9 seconds (about 68years).

There are 100 global timers available in McBasic. Additionally, there is an unnumbered local timer
for each task. Normally timer value is 0 when read. If a timer needs to be started, the timer must be
set to a positive non-zero value. This causes the timer to start counting downwards according to
time.

Timers can be used, for example, for generating delays and for measuring time intervals.

1000 TIMER(0)=5

Function Read a timer.

Syntax TIMER[(expression)]

Type Real number

expression Timer number 0 ... 99.
If used without timer number, refers to TIMER local for each task.

Value Status of a timer, remaining time [s]. If timer has stopped, value is 0.

The status of a timer can be read with this function.

For example measuring the execution time of the subroutine that begins from line 400:

 TIMER(3)=1000
 GOSUB Delay1
 PRINT 1000-TIMER(3)

For example to generate a delay of 3,5 seconds:

Delay1 TIMER(0)=3.5
 DO UNTIL TIMER(0)=0 : LOOP
 RETURN

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 82

9.2.2 DELAY

Command A delay.

Syntax DELAY expression

expression Time to wait [s]. Maximum delay is 2.1E9 seconds (about 68 years).

With DELAY command a delay can be generated using only one command. DELAY is independent
of timers.

Each of the simultaneous tasks started with TASK command have DELAY systems of their own. So
a delay in one task does not affect execution of another TASK. When more than one task is being
used, DELAY automatically passed the control to the next task in queue until the specified delay
has elapsed.

For example to list the program after 20 seconds to give the user time to connect a printer to
console port before listing begins.

DELAY 20 : LIST

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 83

10. OTHER COMMANDS

10.1 DATA LINES

Data lines form a program structure for defining data in the program. Data can contain numerical,
string or address data. Also expressions can be used as data.

10.1.1 DATA

Command DATA definition.

Syntax DATA expression,....,expression

expression Data entry. Expressions can be numerical, string or address data.

Data definitions of DATA expressions can be read during the program execution with READ
command.

DATA expressions can be located in any part of program.

100 DATA 10,13,15,"ARLACON MOTION CONTROLS","MANUFACTURER"
110 DATA 3,2,7,"AUTOMATIC MACHINE LTD","CLIENT"

10.1.2 READ

Command Read data from DATA lines.

Syntax READ variable,..,variable

variable Variables, where the data is read to. Types of variables must correspond
to the types of expressions in DATA lines.

Reading of data begins from the DATA line and variable where the read pointer is. If READ
command has not been used before, reading of data begins from the first DATA line in the program.

The division of the variables in DATA lines and the length of DATA lines are not significant. The
data is read from DATA expressions with READ command in the order in which the data is
encountered in DATA lines.

 DATA 120+3," HELLO",34.567,LEN(A$)
 READ A,A$
 PRINT A;A$,
 READ A,B
 PRINT A,B

123.00 HELLO 34.56 6

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 84

10.1.3 RESTORE

Command Set the read pointer in DATA expressions.

Syntax RESTORE [address]

address If address is given, the read pointer is set to the beginning of the line at it
If address is not given, the read pointer is set to the beginning of the first
DATA line in program.

This command can be used for pointing the DATA line where the next READ command starts to
read the data.

If no RESTORE command is used in a program, the read pointer is set to the beginning of the first
DATA line when the program starts.

Each task has an own read pointer for DATA lines so reading DATA lines or using RESTORE
command in one task does not affect other tasks.

 DATA 1
Data2 DATA 2,3
 RESTORE
 READ A1,A2
 RESTORE Data2
 READ B2,B3

10.1.4 DATAPTR@

Function Read current data pointer

Syntax DATAPTR@

Value Address of the DATA line where READ will read data next. If no DATA
lines exist or pointer is past them, value is: End of program.

DATAPTR@ function allows reading the current status of the data pointer in the current task.

10.2 USER DEFINED FUNCTIONS

Often used expressions can be defined as user functions using the following commands. This will
conserve memory and make programs more efficient, understandable and easier to modify.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 85

10.2.1 DEF

Command Define a user function.

Syntax DEF FNname[$|@][(var1[,..,varn])]=expression

name Function identification name. Name can be any lenght and
always starts with FN. Letters, numbers or_.can be used in name.

[$|@] If the value of expression is a string or an address, a $ or @ -character
must be added to the name of user function respectively (string or address
function).

var1 ... varn Internal variables of a user function. (0 .. 8 pcs).

expression Definition of the value returned by the user function. Both internal and
global variables as well as all the McBasic operators and functions
can be used (also previously defined user functions).

If function identification name is followed by $ or @, the user function is a string or address function
and returns a string or address value respectively. Otherwise return values of user functions are
numerical.

Maximum number of internal variables in a user function is eight. In addition to these variables all
McBasic global variables can be used. Internal variables (var1 ... varn) of a user function are
declared automatically local. String parameters are 80 characters long and numerical are of the
REAL type.

 DEF FNCasd(X,X$)=ASC(MID$(X$,X))
 A$="ABCDEFG"
 N=3
 PRINT FNCasd(N+1,A$)

68.00

10.2.2 FNname

Function A user defined function.

Syntax FNname[$|@][(expression1[,..,expressionN])]

name function identification name as in DEF FNname.

[$|@] $ or @ character indicates a string or address function returning a string or
address value respectively.

expression1 ... expressionN
Arguments of function. 0 .. 8 pcs numerical and/or string or address
expressions according to the definition in DEF command.

Call a user function. Expression1 .. expressionN are internal variables (arguments) of function that
must be given when the function is called. Also values of external variables (instances valid in the
structure where function is used) that were used in the user function definition affect the value of
user function. If no internal variables have been defined for a user function, it is not necessary to
give any arguments when calling the function.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 86

Note: The user function must be defined before it is called in a program.

 DEF FNS(X,Y)=X+Y
 PRINT FNS(3-1,2*3)

8.00

 DEF FNX=POSX-SIN(POSY)
 PRINT FNX

10.3 COMMENTS

10.3.1 REM

Command Comment line.

Syntax REM text

text Comments, can be any text.

Comment. This command is used for writing informative text between program lines in order to
make the program more readable. Comments do not affect the execution of a program.

 REM this line is a comment
 A=3 : REM this comment also works

10.3.2 '

Command Comment line.

Syntax ' text

text Comments, can be any text.

Comment. An alternative command for REM command. In addition comments separated by ' sign
can also be written after other commands without ":" -separator.

 ' this line is comment
 A=A+1 ' also this comment works

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 87

11. MOTION CONTROL

The control software for servo motors runs continuously in background of the McBasic environment.
The axes positions are controlled by PID algorithms with separately adjustable parameters for each
axis. The common refresh rate of the algorithms can be set with the PIDFREQ= command.

Motion commands initialize the execution of the desired motion and program execution can
continue immediately simultaneously with the motion. The system the takes care of the performing
of the motion in background. This way, the motion commands in the program actually only start
motion and do not represent the performing of the whole motion.

The available axes are labelled in two ways. The first 10 axes in the system have letter names
X,Y,Z,W,A,B,C,D,T and U. Axes can also be referred to with numbers starting from 0. The number
of axes X-U are 0 to 9 respectively. For all motion control commands and functions, two alternate
syntaxes for letter named and numerically referenced are available. Axes >9 have no letter names
and can only be referred to by their number.

Motion commands can be issued for a desired number of axes simultaneously. Thus, commands
such as

ACCELXYZ=10 : ACCEL(2)=20 : ACCEL(2,4,6)=30

are valid.

For some motion functions producing a single value only one axis can be used as argument. For
example to read current accelerations for axes 2 and 4 functions ACCEL(2) and ACCEL(4) should
be used. However, some functions, such as MOVEBUFFER(n1,n2) or MOVEBUFFERXYZ and
MOVEREADY(n1,n2) can also refer to the status of a combination of axes.

In combined motion commands (XYZ..) or (0:targ1,1:targ2,2:targ3,...) the axes move at speeds
resulting in simultaneous completion of the translation. With cartesian mechanisms this corresponds
to a straight line from starting point to end point (linear interpolation). With separate motion
commands X,Y,Z,.. or (0),(1),(2),.. axes can be controlled independently.

There are separate commands for control of continuous movement. Parameter settings of PID
algorithms have immediate effect on control. Speed and acceleration/deceleration settings affect
the next translation commands. However acceleration/deceleration has immediate effect for speed
controlled motion (CREEP).

Commands with no axis reference can be used to set some parameters for axes 0..9 (axes with
letter names). For example SPEED=100 affects axes 0...9, but SPEEDXZ=50 affects only X and Z
axes (0 and 2). SPEED(13)=100 affects only axis number 13. Accelerations and speeds of
combined axes motion commands are defined so that limitations (for speed and acceleration) for all
axes in the command are taken into account. This way for example the acceleration of a translation
is defined by the axis with the lowest acceleration or speed.

Also, a combination of axes can be configured to use specified combined (vector) speed and
acceleration. To do this the speeds and accelerations of the axes involved must be set using
combined commands such as:

SPEEDXYZ=50 : ACCELXYZ=100

This causes all motion using the X, Y or Z axes (for example XY, XZ, YZ, XYZ) to use the given
track speed and acceleration. An axis can be removed from a track speed group by setting its
speed or acceleration separately (for example SPEEDY=SPEEDY). In this case only X and Z axes
use the track speed setting given before.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 88

Motion control commands such as GAIN=, INTG=, DERV= , SCOMP=, ACOMP=, DCOMP= and
FILTERSIZE= set parameters for position control. Position controllers are used to keep the actual
position (measured from a position encoder) reasonably close to the set value (position generated
with motion commands). Accuracy, stability, softness, etc. of control can be tuned by setting control
parameters according to need. Parameters can be set for each axis separately and they can also be
set during motion.

Operation of position controllers is influenced by the properties of actuators and servo amplifiers as
well as by the properties and gear ratios of transmissions, mechanisms and the location and
resolution of speed and position sensors.

Therefore, the parameter settings of controllers may be quite different in different applications.
McBasic has default values for control parameters and for other parameters of motion control.
When started, McBasic uses these values until set in the program otherwise.

It is recommended that motion control parameters are set at the beginning of program even if some
of the default values could be used in the application. This makes the program easier to read and
modify.

11.1 ENCODER OPERATION

11.1.1 RES

Command Set resolution for position scale of axes.

Syntax RES[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose resolution is set. If not
defined resolution is set to all axes.

expression Value for resolution [pulse edges/measuring unit].

Function Read resolution for position scale of axis.

Syntax RES{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Resolution of position scale of axis [pulse edges/measuring unit].

Set resolution for axes. Expression defines the number of pulse edges (counts) for a distance or
angle unit (for example [edges/mm]).

1 encoder pulse cycle produces 4 pulse edges from two channels. This means that if a motor axis
has an encoder that gives 500 pulses/revolution and one revolution of the motor moves the
mechanism 5 mm, the resolution should be set to 4*500/5, or 400.

 RES(1,2,3)=4*500/5

or

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 89

 RES(1)=400
 PRINT "Resolution is about";1/RES(1);"mm"

RES command affects the position scale and, among other things, interpretation of speed and
acceleration.

Because RES affects many settings, it is advisable to set it at the beginning of the program, before
setting any other parameters.

Setting resolutions of several axes to same value can be done using the combined command

 RESXY=400

A combined RES command sets resolutions of different axes as they were set with separate
commands. The resolutions of all axes 0 thru 9 can be set to the same value using a command
such as:

 RES=400

11.1.2 ENCSIZE

Command Set encoder (counter) bitcount.

Syntax ENCSIZE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose encoder sizes are set.

expression New encoder size, bits

For incremental encoder -32...32 default 32 bits (max. counter range)
For absolute encoder -24 ... 24, default -24 (centered 24 bit).

Sign controls coordinate system:
positive positive coordinate system
negative centered coordinate system.

Function Read encoder (counter) bitcount.

Syntax ENCSIZE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current encoder setting.

ENCSIZE setting allows control of counter operation for incremental encoders and data decoding
for absolute encoders.

When using incremental encoders, setting ENCSIZE to a value less than 32 causes the position
counters to wrap around after reaching the specified counter size. Thus for example setting
ENCSIZEX=12 causes the position counter to return to 0 when reaching 4096 counts. Depending on
RESX this may mean any POSX. This feature can be used in connection with binary line count
encoders to wrap the position after for example 1 revolution to keep POSX between 0...1 in

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 90

mechanisms such as rotating knives etc. Wrapping can also be achieved after other (non-binary)
count numbers using a rational FOLLOW ratio and a virtual axis connected to the actual axis.

When using absolute encoders, ENCSIZE can be used to limit the bit count used to equal or less
than available from the encoder used.

With either encoder type, the sign of the ENCSIZE setting allows choosing a coordinate system
from 0 to 2ENCSIZE counts (positive system) or from -2ENCSIZE-1 to 2ENCSIZE-1 counts (centered system).
However, in ENCSIZE values 0 and 32 always set a 32 bit centered coordinate system as does
ENCSIZE=-32.

11.1.3 OFFSET

Command Set offset value or move current position

Syntax OFFSET[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose offset are set. If not defined
limits are set for axes 0...9 in the system.

expression Offset value for specified axes, dimension as defined by RES..=
command, for example [mm].

Function Read offset value of axis.

Syntax OFFSET{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current offset value for specified axes, dimension as defined by RES..=
command, for example [mm].

The offset value of an axis represents the difference between the actual position counter (or value
read from a position transducer) and the current position value (POSaxis) of the axis. When
McBasic starts, all OFFSET values are 0. Since the dimension of offset is dependent on the
resolution, it is necessary to set RES before setting offsets in the program.

In case an incremental encoder is being used, the position counters are also reset to 0 when power
is applied to the system, resulting in a zero current position value (POSn). Typically, the HOME..
command is then used in the program to find the correct zero position.

In case an absolute encoder is being used, the initial position at power up is determined by the
encoder. The OFFSET..= command can then be used to set the coordinate system as necessary.
Because the applicable offset value will remain the same unless the absolute encoder is replaced or
moved relative to the mechanism, it is not necessary to find the zero position every time the system
is started. However, it is possible to use the HOME.. command to determine the correct OFFSET
value as a commissioning or service procedure.

When using commands that set the current position such as POS..= or HOME... the value of
OFFSET is changed respectively. It is also possible to change the offset using a command like:

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 91

 OFFSETX=OFFSETX+100

which adds 100 to the current position of X-axis (POSX). Setting the offset rather than POSX
directly

 POSX=POSX+100

has the advantage that in case X-axis is moving during the operation, no inaccuracy is introduced
because of time difference between reading and writing the values.

Also, OFFSET can be used to "wrap" the position of an axis moving infinitely in one direction, such
as a roller in a converting machine, in order to keep the position between 0 and 1, for example. A
command like:

 IF POSX>1 THEN OFFSETX=OFFSETX-1

will operate correctly (and wrap around) even when the value of OFFSET exceeds its 32bit range.

11.1.4 ENCERR

Function Read encoder error counter.

Syntax ENCERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer 0...255

Value Number of errors in encoder decoding since last read.

ENCERR provides a tool for monitoring errors and interference in encoder operation of WAX2 and
WAX2A .

In conjunction with WAX2 (incremental encoder) ENCERR counts decoding errors where edges
have been detected simultaneously in both channels (A and B). This situation indicates that
accumulating errors probably result in encoder operation and therefore the system should be tested
for ENCERR to be always zero during normal operation (first read may report errors occurred during
power-up).

In conjunction with WAX2A (absolute encoder) ENCERR reports errors occurred in SSI
transmission from encoder to WAX2A. 3 succeeding errors automatically result in a position loop
error (MOVEREADY..=-64) and drive disable.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 92

11.2 POSITION CONTROL SETTINGS

11.2.1 DRIVETYPE

Command Configure operation of motion control.

Syntax DRIVETYPE[{axes...|(n,...,m)}]=type

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose type is set.

type Type setting:
0 DCD internal amplifier (AXE02704)
1 ±10V reference (AXE02703 or WAX[2][A] module)

with WAX2[A] enable at ENA2 only
2 0...10V reference with direction output at WAX2 ENA1
3 as 1 but for WAX2[A] enable both at ENA1 and ENA2

Additional type data can be added to type. Each of the following addition
removes the related function from axis:
addition disabled function

+16 limit switches, MAXERR and EMRG intervention
+32 encoder counter
+64 motion commands (MOVE,MOVER,MOVC,CREEP etc.)
+128 position controller

Function Read operation configuration of motion control.

Syntax DRIVETYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer

Value Type of axis as explained above.

The desired type is calculated by taking the sum of the basic type and additional type data.

For example axes to be controlled with normal ±10V reference output

10 DRIVETYPEXY=1

For example axis number 3 to be used as encoder input and analog output

10 DRIVETYPE(3)=1+16+64+128

McBasic has preset axis identifications, DRIVETYPE and LIMITTYPE default values (values which
are valid before they are set with DRIVETYPE= and LIMITTYPE= commands).

These settings are system specific and their values depend on the system model and McBasic
language version.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 93

11.2.2 LIMITTYPE

Command Configure axis limit switch operation.

Syntax LIMITTYPE[{axes...|(n,...,m)}]=type

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose type of limit switches is set.

type Type setting. Integer.

type function
1 no limit switches
2 NLIM and PLIM, normal closed
3 LIM (n.c.) and MASK (open in negative end)
6 NLIM and PLIM, normal open
7 LIM (n.o.) and MASK (closed in negative end)
9 only index pulse (CLKX, edge-activated)
10 as 2, with index pulse
11 as 3, with index pulse
14 as 6, with index pulse
15 as 7, with index pulse
where the signals are as follows:

signal function connect to

NLIM limit switch NLIM in negative end NLIM
PLIM limit switch PLIM in positive end PLIM
LIM common limit switch (activated in both ends) PLIM
MASK limit switch mask, indicates the section of motion area

where the servo is currently located NLIM
CLKX index pulse, the exact 0-position CLKX

Function Read axis limit switch configuration.

Syntax LIMITTYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer

Value Limit switch type of inspected axis as explained above.

McBasic can be configured with the LIMITTYPE command to use desired type of limit switch
signals. The setting affects also operation of HOME command. When a motion being performed
activates a limit switch while its reference is moving in the direction of the switch, servo power
(enable) is cut off for the axis. However, it is possible to use motion commands to move away from
the limit switch. In case a higher level of security is needed, the EMRG signal can be connected to
outer limits and emergency switch arrangement to disable the axis completely thus requiring
manual or mechanical override to get the axis back to operating area. In cases with high power or
dangerous mechanisms both precautions are often used for maximum safety. It is also advisable to
use power contactors to cut off servo system or motor power when EMRG is activated.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 94

11.2.3 PIDFREQ

Command Set refresh rate of position control loops.

Syntax PIDFREQ=expression

expression New refresh rate (50...2000). The feedback loop and position control
algorithms will be executed expression times per second.

Function Read refresh rate of position control loops.

Syntax PIDFREQ

Type Integer 50 ... 2000

Value Current refresh rate [cycles/second]

PIDFREQ setting provides means for setting the refresh rate of the position control loops. By
default PIDFREQ is 400 in standard McBasic versions. The setting is mutual for all axes in the
system. Because the setting affects all time based motion parameters, it is recommended that
PIDFREQ be set in the beginning of the program before any motion parameter settings.

11.2.4 GAIN

Command Set proportional gain of position control.

Syntax GAIN[{axes...|(n,...,m)}]=expression

{axes...|(n,..,m)} List of axes or (n,...,m) - axes numbers), whose GAIN is set.
If not defined, GAIN is set for axes XYZWABCDTU or 0..9 in the system.

expression Value for gain. Integer 0..65535. 0 prevents operation of the feedback
system. 65535 is the highest possible gain.

Function Read proportional gain of position control.

Syntax GAIN{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer 0 ... 65535

Value Gain value for position control of axis.

Proportional gain of the PID-control. GAIN defines the amount of output from the position controller
in proportion to the position error of the axis.

In other words, GAIN represents the P of PID-control, that is the amplification factor. If GAIN is set
to zero, operation of the controller is prevented and output (REF) is set to zero. However, even with
GAIN set to zero, the feedforward part (SCOMP) of the output of the controller remains operable
when using motion commands.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 95

Too low GAIN causes an inaccurate control and too high GAIN causes system oscillation.

GAINXY=400
GAIN(2,12,14)=300
PRINT GAINX,GAINY,GAINZ
PRINT GAIN(12),GAIN(14)

400 400 300
300 300

In ARLACON MC300 and MC400 control systems, McBasic uses a 32-bit counter for position error
in position control. Therefore the maximum position error is equal to the maximum operating area
of the position measurement system, +/-2147483648 encoder pulse edges (counts). However, the
proportional area, when the smallest available GAIN value (1) is used, equals to ±524288 encoder
counts.

When using very low GAIN values, SCOMP parameter must usually be adjusted to correspond to
drive full speed at 10V ref output to avoid excessive position lag. Using SCOMP values larger than
full speed allow for some lag if necessary for tuning positioning settling time (see also
FILTERSIZE).

11.2.5 INTG

Command Set integrating factor of position control.

Syntax INTG[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose INTG is set. If not defined,
INTG is set for all axes.

expression Value for INTG. Integer 0..255. 0 prevents integration. 255 is the quickest
possible integrating factor.

Function Read integrating factor of position control.

Syntax INTG{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer 0 ... 255

Value Intg value of position control of axis.

INTG defines the part of reference output the position controller gives in relation to position error
and time. The higher the INTG value and the position error are, the faster the reference output
increases during time.

Constant position error, which can not be eliminated by proportional control, can be eliminated by
using INTG. Because integrating increases the order the control system, it also increases the
tendency to oscillation. Therefore, the use of INTG usually requires lower GAIN value for stability.

A too low INTG causes slow error correction and a too high INTG causes oscillation of the system.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 96

In control systems already having one or more integrators, as usually when using a tacho generator
feedback speed control circuit, INTG is usually set to zero.

INTG(1,2)=4

INTGY=3

INTGZ=0

PRINT INTG(1),INTGY,INTGZ

4 3 0

In control loops accurately speed compensated with SCOMP parameter and with fast acting speed
loop, INTG can in some cases be used to reach better path accuracy without losing stability.

This kind of a control is usually possible in accurate and stiff mechanisms.

INTG value 0 removes the integrating operation. INTG represents the I in PID-control, that is, the
integrating factor.

11.2.6 DERV

Command Set derivation factor of position control.

Syntax DERV[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose DERV is set. If not defined,
DERV is set for all axes.

expression Value for DERV. Integer 0..255. 0 prevents operation of derivation.
255 is the highest possible derivation factor.

Function Read derivation factor of position control.

Syntax DERV{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer 0 ... 255

Value Derv value of position control of axis.

DERV defines the part of reference caused by quick change in position error for every axis. The
higher DERV is set the stronger the reaction to change is. By compensating for delays in actuators
and mechanisms and reducing the control output when the error is diminishing, DERV helps to
stabilize the operation of control circuits.

Usually a high inertia mass and/or slow reacting drive require higher DERV value. On the other
hand a too high DERV value may cause unstability or sluggish settling.

DERV value 0 removes derivative operation. DERV represents the D of PID-control, that is the
derivation factor.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 97

GAIN=10 : INTG=0 'affects all axes
DERVXY=7 : DERV(3)=6
PRINT GAINX,INTGX,DERVX
PRINT GAIN(3), INTG(3), DERV(3)

10 0 7
10 0 6

11.2.7 SCOMP

Command Set speed compensation of position control.

Syntax SCOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose SCOMP is set. If not
defined, SCOMP is set for axes 0....9 (XYZWABCDTU) in the system.

expression Value for speed compensation. 0 prevents operation of compensation.

Function Read speed compensation of position control.

Syntax SCOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value SCOMP value of position control of axis.

Speed feedforward or speed compensation for position control. Value of expression is greater or
equal than speed of axis when control output is set to maximum (=full speed).

SCOMP parameter can be used to add to the control (reference) output a part depending on the
theoretical instantaneous speed of the position set value.

The factor allows for accurate path control of motion even without integration in the position loop.
SCOMP parameter is often used, when the position controller is used in connection with a tacho
generator feedback speed control circuit. In this case the best possible control result is often
reached by setting INTG=0 and using SCOMP parameter as needed.

SCOMP setting is called critical, when the controlled axis follows the generated motion without
noticeable position error at all speeds.

Setting SCOMP according to the speed of the axis when the reference output reaches its maximum
value (for example 10V) results in critical SCOMP.

For example if X axis runs 400 mm/s when the servo amplifier is controlled with a 10V reference
voltage and RESX is set to [pulse edges/mm], the critical compensation is set with

SCOMPX=400

Setting SCOMP to a greater value results in undercritical compensation. Undercritical
compensation can be used for example to prevent overshoot at the end of a motion. A too low

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 98

SCOMP setting results in negative position lag, the axis is ahead of the position set value, which is
usually not applicable.

SCOMP value 0 removes the operation of speed compensation.

When calculating actual speed compensation out of the SCOMP setting, McBasic uses the current
RES values.

11.2.8 ACOMP

Command Set acceleration compensation of position control.

Syntax ACOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose ACOMP is set. If not
defined, ACOMP is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value for acceleration compensation. 0 prevents operation of
compensation.

Function Read acceleration compensation of position control.

Syntax ACOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value ACOMP value of position control of axis.

Acceleration feedforward or acceleration compensation for position control. Value of expression is
greater or equal than acceleration of the axis when 100% (10V) is added to the control output.

ACOMP parameter can be used to add to the control (reference) output a part depending on the
theoretical instantaneous acceleration of the position set value.

The factor allows for accurate path control of motion during acceleration even without integration in
the speed loop. ACOMP parameter is often used, when the position controller is used in connection
with a proportional speed control circuit without integration and with limited gain.

ACOMP setting is called critical, when the controlled axis follows the generated motion with similar
position error during acceleration and constant speed. In connection with a critical SCOMP value
this error is near zero.

For example if X axis requires an additional 2V (20% of full 10V scale) of reference in order to
accelerate at 400 mm/s2 and RESX is set to [pulse edges/mm], the critical compensation is set
with

ACOMPX=400/0.2
or
ACOMPX=2000

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 99

Thus 2000mm/s2 is the theoretical acceleration produced with a 10V (100%) reference at zero
speed (providing such current would be applicable to produce the acceleration).

Setting ACOMP to a greater value results in undercritical compensation. Undercritical
compensation can be used to compensate only partly for the lag caused by acceleration for
optimum dynamic performance. A too low ACOMP setting results in negative position lag during
acceleration, the axis is ahead of the position set value, which is usually not applicable.

ACOMP value 0 removes the operation of acceleration compensation.

When calculating actual acceleration compensation out of the ACOMP setting, McBasic uses the
current RES values.

11.2.9 DCOMP

Command Set deceleration compensation of position control.

Syntax DCOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose DCOMP is set. If not
defined, DCOMP is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value for deceleration compensation. 0 prevents operation of
compensation.

Function Read acceleration compensation of position control.

Syntax DCOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value DCOMP value of position control of axis.

Deceleration feedforward or deceleration compensation for position control. Value of expression is
greater or equal than deceleration of the axis when 100% (10V) is deducted from the control output.

The value of DCOMP is set to equal to ACOMP when ACOMP is set for the axis. DCOMP setting
can then be altered after the ACOMP has been set. The dimension of DCOMP is similar to that of
ACOMP, so DCOMP values differing from ACOMP can be used to adjust for differences caused by
friction and efficiency behaviour during acceleration and deceleration thus allowing optimisation of
the dynamic behaviour of the system during different phases of motion. Typically DCOMP must be
set to a somewhat greater value than ACOMP to allow less compensation during deceleration.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 100

11.2.10 FILTERSIZE

Command Set filter type and length for position set value to limit jerk or noise.

Syntax FILTERSIZE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose FILTERSIZE is set. If not
defined, FILTERSIZE is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value defining type and length of position set value filter.

Positive filter values represent averaging filters with a length of
(expression)*(position loop cycle time).

Negative values represent filters with zero position lag at constant speed
with a response length of (-expression)*(position loop cycle time)

0 prevents operation of compensation.

Maximum value is dependent on the filter lengths available in different
McBasic versions (256 in MC400 BAS16, 128 in MC400 BAS100 and 64
in MC300 BAS300)

Function Read position set value filter type and length.

Syntax FILTERSIZE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer.

Value Current FILTERSIZE setting for axis.

Position set value filtering is typically used for limiting the rate of change of acceleration (jerk) in
various types of motion. This is often referred to as using S-ramps in motion profiles. With
FILTERSIZE it is possible to define the time it takes for the acceleration to change during any type
of motion. The period of time used to reach the new acceleration after a change in the acceleration
is defined as a number of position loop cycles. Thus, for example a FILTERSIZE value of 10
corresponds to 25ms period for a system with PIDFREQ=400 (1s / 400 = 2.5ms). Limiting jerk
effectively allows limiting the rate of change of torque and current in the drive system. As in
practical drive systems rate of change of current is limited by the bandwidth of the current loop and
the maximum available voltage and the inductance of the motor, using suitable FILTERSIZE allows
generation of position profiles that the drive is able to follow. Also, it is often even more important to
limit the frequency content of motion to be performed by a given machanism. By using suitable
FILTERSIZE values unwanted oscillation and strain in mechanisms can be avoided.

Using positive FILTERSIZE values causes an axis to have a position lag compared to the original
position reference (before fitering). At constant speed this lag is equal to half of the filter period
multiplied by current speed. For example a 25ms filter at 1000mm/s would cause a 12.5mm lag.

Using a filter also causes the total time for a translation to be one filter period longer than the
original translation. Usually this is well compensated by the shorter actual settling time when using a
suitable filter.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 101

Negative FILTERSIZE values use a different digital FIR (finite response) filter to allow filtering of
measured position such as a reference encoder giving position or speed information for other axes.

A negative FILTERSIZE value causes overshoot when changes in acceleration and speed occur,
but has no position lag during motion at constant speed. While removing unwanted noise from
measured signals FILTERSIZE can also generate a higher resolution reference position from a low
resolution position encoder by adding a 16 bit fractional part to it and thus dividing the actual
increments in 65535 parts for extra resolution in generating new filtered position values every
position control cycle.

The following picture shows the effect of FILTERSIZE for a typical translation (MOVE).

Original
speed
reference

Acceleration
unfiltered

Speed
reference
with
FILTERSIZE=10

Speed
reference
with
FILTERSIZE=-10

Acceleration
with
FILTERSIZE=10

Acceleration
with
FILTERSIZE=-10

25msPIDFREQ=400
=> Position loop
cycle time= 1s /400
= 2,5ms

Fig. 11.2.10, The effect of FILTERSIZE

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 102

11.2.11 SPEED

Command Set motion speed.

Syntax SPEED[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose vector speed is set. If there
is only one axis, its speed is set. If not defined, SPEED is set for all axes.

expression Setting for speed.

Function Read motion speed.

Syntax SPEED{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Speed setting for MOVE and MOVC commands for specified axis.

Set the motion speed to value expression for the axes axes.. ([mm/s], if RES is set to [pulse
edges/mm]). Setting influences all future motion commands. SPEED command sets the speed the
translations started with MOVE and MOVC commands use between acceleration and deceleration
phases.

To reach the speed set with SPEED command the length of the translation must be long enough
and value of ACCEL high enough to allow for a constant speed phase between acceleration and
deceleration.

Speed can be set for a single axis, for example:

SPEEDX=750

SPEED(5)=523

The specified axis follows this setting when moved alone. If several axes, with speeds set with
different SPEED commands, are moved by common MOVE or MOVC command, the translation is
executed using linear interpolation and limiting the motion speeds so, that none of the axes exceed
their set speeds or accelerations.

Speed can also be set for a combination of axes, for example:

SPEEDXYZ=750

SPEED(2,5,6)=230

This setting affects the axes involved as if the speeds were set separately when any of the axes is
moved alone. If the axes are moved by common motion commands, the translation follows the set
track (vector) speed. The vector speed is calculated by taking the square root of the sum of squares
of every speed in the group, for example

Vxyz = (Vx2+Vy2+Vz2)0.5

When setting all axes available in the system the axis names may be left away. For example in a
two axis system the command SPEED=100 is equivalent to SPEEDXY=100.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 103

The maximum speed value for calculation of a motion is ±32767 counts/control cycle and resolution
is 2.3E-10 counts/control cycle. This means that for example in a normal MC300 or MC400 system
with a control cycle of 2,5ms with a resolution such as 100 edges/mm the maximum speed is about
131 m/s and minimum speed is about 0,00000007 mm/s. Same limitations are valid also for
CREEP command.

11.2.12 ACCEL

Command Set acceleration of motion.

Syntax ACCEL[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose vector acceleration is set. If
only one axis, its independent acceleration is set. If not defined
acceleration is set to all axes in the system.

expression Value for acceleration.

Function Read acceleration of motion.

Syntax ACCEL{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Acceleration used in MOVE, MOVC and CREEP commands with axis.

Sets motion acceleration and deceleration to value expression to axes.. ([mm/ss], if RES has been
set to [pulse edges/mm]).

Setting ACCEL affects motion commands executed after the setting.

110 SPEED=50 : ACCEL=250
115 SPEED(2)=60 : SPEEDX=45

310 PRINT SPEED(2),ACCEL(2),ACCELX,SPEEDX

60 250 250 45

ACCEL command affects the axes as SPEED command and therefore it must be set to same
combinations of axes as SPEED to achieve the desired vector speed and acceleration.

ACCEL setting is limited by the maximum change of speed being ±32767 counts/(control cycle)2
with a resolution of 1/16777216 counts/(control cycle)¨. This means that for example in a normal
MC300 or MC400 system with control cycle of 2,5ms and resolution such as 100 edges/mm the
maximum acceleration is about 52000m/s2 and minimum acceleration is about 3E-7mm/s2.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 104

11.2.13 MAXERR

Command Set limit for position controller position error intervention.

Syntax MAXERR[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose limits are set. If not defined
limits are set for all axes in the system.

expression Value for limit, for example [mm].

Function Read limit for position controller position error intervention.

Syntax MAXERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current maximum error limit.

Set limit for position controller position error intervention according to the value expression for axes
axes.. ([mm], if RES is set as [pulse edges/mm]).

If motor (=encoder) position differs from the position set value more than MAXERR, motor control is
automatically disabled. Setting MAXERR=0 prevents the intervention of MAXERR.

To ensure quick and reliable protection function MAXERR should be set to a value somewhat higher
than the practical position error during motion.

11.3 POSITION CONTROL FUNCTIONS

11.3.1 POS

Command Set position counter.

Syntax POS[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose positions are set. If not
defined position is set for axes 0...9 (X,Y,Z,W,A,B,C,D,T and U).

expression New position in units defined by RES..=, for example [mm].

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 105

Function Read position counter.

Syntax POS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current actual position of axis in units as set by RES..= command.

With POS command the position value of an axis can be set to desired value. Position of axis is set
to expression independent of position of axis at time of setting. In other words, POS command
moves the coordinates as specified.

POSZ=10 : POSX(2)=0

When desired, coordinates can be moved relative to the current position of axis by considering the
actual position, for example

POSX=POSX+100

moves the coordinates 100mm in negative direction; in other words the position value is increased
by 100mm.

The POS function can be used to read the current actual position. POS is also convenient for
reading encoder inputs not configured for position control.

IF POS(1)>200 THEN STOPMOVE(1)

The size of McBasic 3.2 position counters is 32 bits. This means, that for example with a resolution
of 100 [edges/mm] position can have values between ±214748364800 mm or ±214km. If position
exceeds either the maximum or minimum value of counter, it "wraps" over to the other end of the
range. This allows moving over the limits of position counters when for example using relative
motion commands or with FOLLOW or CREEP etc..

11.3.2 FPOS

Function Read filtered position set value.

Syntax FPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position set value of axis in units as set by RES..= command.

FPOS allows reading the position set value as seen by the position control algorithm. The effect of
FILTERSIZE..= ,if filtering is being used, is also seen in FPOS

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 106

11.3.3 RPOS

Function Read unfiltered position set value.

Syntax RPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position set value of axis before filtering in units as set by RES..=
command.

RPOS allows reading the position set value unfiltered. As the use of filtering causes a lag in the
response of FPOS, RPOS can be used for observing the operation of the filter. It may also be
preferred in algorithms programmed in the application requiring the unfiltered position as an input.

11.3.4 FSPEED

Function Filtered current speed.

Syntax FSPEED{axis|(n)}

Type Real number.

{axis|(n)} Identification letter or number of axis.

Values The instantaneous speed of the position set value of axis after filtering if
FILTERSIZEaxis set >0.

The true theoretical speed of an individual axis axis can be inspected with this function. If filtering
with the FILTERSIZE..= command is being used to limit the acceleration rise times (S-ramp), the
effect is also seen in FSPEED. See also RSPEED.

SPEEDX=500 : SPEED(1)=250
ACCELX=500 : ACCEL(1)=250
MOVEX 3000 : MOVE(1:1500)
DELAY .1
PRINT FSPEEDX, FSPEED(1)
DELAY 1
PRINT FSPEEDX, FSPEED(1)

50.00 25.00
500.00 250.00

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 107

11.3.5 RSPEED

Function Unfitered current speed.

Syntax RSPEED{axis|(n)}

Type Real number.

{axis|(n)} Identification letter or number of axis.

Values The instantaneous speed of the position set value of axis before filtering if
FILTERSIZEaxis set >0.

In case filtering with FILTERSIZE is being used for the axis, RSPEED can be used to observe the
position reference speed before the filter. This may be necessary for monitoring purposes or for
certain algorithms where extra delay caused by filtering may affect the operation of feedback loops
performed by the application program.

11.3.6 POSERR

Function Read value of position error.

Syntax POSERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position error, for example [mm].

The difference between the set value of position and the actual value of position can be read with
the POSERR function. When motion is stopped, POSERR is equal to the positioning error. During
motion POSERR represents the deviation from desired track along the axis. For example

320 IF ABS(POSERRX)>2 THEN STOPMOVE

stops motion if error of X-axis is more than 2 mm.

11.4 HOME

Command Automatic synchronization (zero point search) of coordinate system.

Syntax HOME{axes...|(n...)}

{axes...|(n...)} List of axes (or (n...) - axes numbers), participating in search.

Motion axes axes.. begin the zero point search sequence. MOVEREADYaxes..=0 until the zero
points are found and the motion has stopped. Speed when searching is one eight (1/8) of the speed
set with SPEED command.

The operation of HOME command is affected by the selected limit switch configuration
(LIMITTYPE) as follows:

No limit switches or index (LIMITTYPE 1)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 108

Position of axes axes is set to zero. Equal to POSaxes=0.

Limit switches (LIMITTYPE=2 or 6)

When only limit switches (NLIM and PLIM) are used the zero point search operates so, that the
HOME command causes motion into negative direction until the negative limit switch. When the
limit switch is influenced, the motion changes its direction and continues until the limit switch is no
longer influenced. The zero point is set to this position. The axis continues to move to the positive
direction for the deceleration distance.

Limit switches and index (LIMITTYPE=10 or 14)

If the index channel is also used, the axis continues after leaving the limit switch until a pulse is
received from index channel (CLKX). The origin of coordinates is set according to index pulse and
motion stops at the distance of deceleration in positive direction.

Only index (LIMITTYPE=9)

When using only index channel for search of origin the motion moves in the positive direction until a
pulse is received from the index channel. The origin of coordinates is set according to index pulse
and motion stops at the distance of deceleration in positive direction.

Limit switch and mask (LIMITTYPE=3 or 7)

Operation using index mask. In this case limit switch signals are connected so, that the limit
switches in both ends of motion influence the PLIM -input. A signal, which changes its state
somewhere in the motion area close to the position where origin is searched, is connected to NLIM-
output.

HOME function will then move the axis to the position where mask signal changes its state and set
origin to a location where mask signal changes its state when running to positive direction. The axis
stops after deceleration distance from this point. Motion speed while searching the edge of the
mask is as set with SPEED command, unlike in other motion performed by HOME command.

Limit switch, mask and index (LIMITTYPE=11 or 15)

If also the index channel used, the axis continues to move after it has passed the edge of mask until
a pulse is received from index channel (CLKX). The origin of coordinates is set at the index pulse
and the axis stops after deceleration to positive direction. Speed when searching the index is one
eight (1/8) of the speed set with SPEED command.

100 ' RUNNING HOME
110 HOMEXYZ
120 IF NOT MOVEREADYXYZ THEN 190
130 RETURN

11.5 STOPMOVE

Command Stop motion.

Syntax STOPMOVE[{axes...|(n...)}]

{axes...|(n...)} List of axes (or (n...) - axes numbers) to stop. If not defined, axes 0..9 are
stopped.

STOPMOVE stops motion generated by MOVE, MOVER, MOVC, MOVCR, CREEP or
MOVEPROF commands using the currently defined deceleration. If higher deceleration is required,

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 109

DECEL can be set before STOPMOVE command. Note that STOPMOVE does not cancel any
FOLLOW ratios.

Desired axes can be selected to be stopped. Stopping is performed with servo control active. Servo
control also remains active, unless MAXERR limit is not exceeded during stopping.

130 ACCELXZ=900 : STOPMOVEXZ

600 STOPMOVE ' axes 0 thru 9

STOPMOVE also provides a method to change the destination of a translation or to change the
type of motion performed. For example:

MOVEX 10000
DELAY 3
STOPMOVEX : MOVCX 1500

would cancel the first translation after 3 seconds and change the destination to 1500 without
stopping.

MOVEPROFXY
DELAY 3
STOPMOVEX : MOVCX 1500

would cancel the profile motion after 3 seconds and start a translation to position 1500 obeying set
ACCELX or DECELX to reach the set SPEEDX.

11.6 MOVEREADY

Function Read motion status.

Syntax MOVEREADY[{axes...|(n...)}]

Type Integer

{axes...|(n...)} List of axes (or (n...) - axes numbers). If not defined all axes are
considered.

Values 1 motion ready, axis enabled
0 motion not ready (busy)
-1 servo control disabled by setting PWRn=0
-2 negative limit NLIM exceeded
-4 positive limit PLIM exceeded
-8 emergency switch EMRG open
-16 MAXERRn exceeded
-32 excessive errors in McWay i/o loop (WAYERR)
-64 encoder errors in an absolute encoder (WAX2A)

Read motion status. With the MOVEREADY function it is possible to read whether motion with
defined axis or axes is not ready, ready or stopped (servo control disabled) for some other reason.

If more than one of the above mentioned conditions exist simultaneously, MOVEREADY gets a
value where different error values are added, for example MOVEREADYn=-10 if negative limit
switch is influenced and emergency stop is open.

MOVEREADY is -1 also when control is not yet enabled. Control is enabled for example with the
command

PWRaxis=1

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 110

or by performing any translation command. For example MOVERX(0) (relative translation of zero
length) starts the controller, but no motion is performed.

330 IF MOVEREADY<0 THEN STOP
340 IF MOVEREADYZ THEN PRINT "Z ready"

11.7 TRANSLATIONS

11.7.1 MOVE

Command Absolute translation.

Syntax MOVE{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} axes to perform the translation.

expr Destinations of translation, expressions in same order as the axis
identification letters are defined in the system.

Translation is performed using the given axis combination axes.. along a straight line (linear
interpolation) using accelerations and speeds set with ACCEL and SPEED commands.

Parameters expression must always be given in the order, in which the axes, that are used for the
translation, are defined in the control system. List axes.. defines the axes which are used to perform
the translation. For simplicity, it is recommended to follow the definition order of system. The axis
identification letters (if such type of axis identification is used) are usually in order
X,Y,Z,W,A,B,C,D,T,U.

140 MOVEXZ(X0,Z1+1)
144 MOVEY(20.050)
146 MOVEX100
MOVE(4:X0) : MOVE(1:Xcod0,2:Ycod0,3:Zcod0+Xcod0)

11.7.2 MOVER

Command Relative translation.

Syntax MOVER{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} List of axes used to perform the translation.

expr Lengths of translations, expressions in same order as the axis.

Similar to MOVE, with the difference that axes are moved a distance defined by expressions from
their current position.

140 MOVERXZ(X0,Z1+1)
144 MOVERY(20.050)
146 MOVERX100
MOVER(4:X0) : MOVER(1:Xcod0,2:Ycod0,3:Zcod0+Xcod0)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 111

Fig. 11.7.2, two axis translations

11.7.3 MOVC AND MOVCR

Command Absolute continuous translation.

Syntax MOVC {axes..(expr,..,expr)|(n1:expr,..., nn:expr)}

{axes..|n...} List of axes to perform the translation.

expr Destinations of translation, expressions in same order as the axis.

Command Relative continuous translation.

Syntax MOVCR{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} List of axes to perform the translation.

expr Lengths of translation, expressions in same order as the axis.

MOVC.. commands operate as MOVE.. commands, with the difference that the translation is started
before the previous translation has stopped.

Deceleration and acceleration phases of translations are combined so, that the result is continuous
motion.

When performing MOVC translations with several axes, the path does pass accurately through
every corner point. Instead, the path is "shaved" to allow for continuous motion. Amount of rounding
depends on speed and acceleration settings. Low speed with high acceleration produces sharp
corners and high speed with low acceleration produces smooth corners.

When performing motion commands McBasic calculates phases of translation and saves them into
the motion buffer (MOVEBUFFER). This is called initializing a translation. If no motion is being
executed by axes concerned, the translation is performed immediately.

If a translation is currently being executed, the new translation remains waiting in the buffer. For
continuous motion using MOVC commands, at least one initialized translation defined by a MOVC
command must be waiting in the buffer when the deceleration phase of the previous translation
begins. The maximum number of translations in the motion buffer is 4 for each axis combination.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 112

If a MOVC.. motion command is executed during the previous translation deceleration phase, the
acceleration phase for the new translation begins immediately after motion command has been
executed. This can be used for example to limit speed to a desired level in motion path corners.

150 FOR A=0 TO 2*PII STEP 0.1
160 MOVCXY(R*SIN(A),R*COS(A))
170 NEXT A

or the same in an other form

REAL Angle, Radius
:
FOR Angle=0 TO 2*PII STEP 0.1
MOVC(1:Radius*SIN(Angle),2: Radius*SIN(Angle))
NEXT Angle

Fig. 11.7.3, Speed profiles

11.7.4 MOVEBUFFER

Function Read motion buffer status.

Syntax MOVEBUFFER[{axes...|(n...)}]

Type Integer 0 .. 4

{axes...|(n...)} List of axis (or (n...) - axes numbers) combination to inspect. If not
defined, the buffer for axes 0..9 in the system is inspected.

Values 0 motion ready
n one translation not ready, n-1 waiting to start

Read motion buffer memory status. The number of initialized translations for a given axis
combination axes..(see MOVC -commands) can be read with this function.

if MOVEBUFFER is

0 motion is ready
1 1 translation not ready, none waiting
2 1 translation not ready, 1 in buffer
3 1 translation not ready, 2 in buffer
4 1 translation not ready, 3 in buffer (buffer full)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 113

Because there is not space for more than 4 translations in the motion buffer, giving a motion
command for an axis combination axes.. while MOVEBUFFERaxes.. is 4 causes the program to
stop at the motion command until free space is available in motion buffer (an unfinished translation
becomes ready). If this happens in a program with several tasks, the task waiting for space in
MOVEBUFFER passes control to the next task waiting to be put in execution.

 100 PWRXY=1
1000 R=100 ' CIRCLE, RADIUS R
1010 X0=50 : Y0=50 ' MIDDLE POINT X0,Y0
1020 FOR A=0 TO 2*PII STEP PII/8
1030 IF MOVEREADYXY<0 THEN STOP
1040 IF MOVEBUFFERXY>3 THEN 1030
1040 MOVCXY(X0+R*COS(A),Y0+R*SIN(A))
1050 NEXT A

or the same in an other form

 REAL Radius,Ang ‘Circle radius, current angle
 REAL Xorig,Yorig ‘coordinates of the center
 PWR(1,2)=1
 Radius=100 : Xorig=50 : Yorig=50
 FOR Ang=0 TO 2*PII STEP PII/8
 IF MOVEREADY(1,2)<0 THEN STOP
 IF
 MOVEREADY(1,2)>3
 THEN
 DO : UNTIL MOVEREADY(1,2)<4 : LOOP
 ENDIF
 MOVC(1:Xorig+Radius*COS(Ang),2:Yorig+Radius*SIN(Ang))
 NEXT Ang

11.8 CREEP

Command Start axis motion at given speed.

Syntax CREEP{axes..(expr,..,expr)|(n:expr,...,n:expr)}

{axes..|n...} List of axes, whose speed is set.

expr Speeds of motion, expressions in the same order as axes are.

With the CREEP command it is possible to produce servo axis motion according to speed setting
without destination. For example with command

CREEPX(10)
CREEP(2:100,3:X0*3.0)

X axis is set to run at 10mm/s (if RES is [edges/mm]). Acceleration and deceleration are performed
according to current ACCEL and DECEL values. Changes in parameters influence immediately,
also during acceleration and deceleration.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 114

CREEPXYZ(10,20,15)
 5 ACCELX=100 'see Fig. 11.8
 10 CREEPX100
 20 DELAY 3
 30 ACCELX=150
 40 CREEPX70
 50 DELAY 1
 60 ACCELX=50
 70 CREEPX30
 80 DELAY .5
 90 ACCELX=100
100 DELAY .75
110 ACCELX=75
120 CREEPX100
130 DELAY.2
140 CREEPX0

Fig. 11.8, motion with CREEP -command

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 115

11.9 FOLLOW [AT]

Command Set an axis to follow another axis.

Syntax real ratio:
FOLLOWaxis1axis2(i)
FOLLOW(axnr1,axnr2,i) [AT (axnr3,pos)]

or rational ratio:

FOLLOWaxis1axis2(n,m)
FOLLOW(axnr1,axnr2,n,m) [AT (axnr3,pos)]

axis1, axnr1 Axis, which follows.

axis2, axnr2 Axis, which is followed.

i Gear ratio between the axes. Setting gear ratio to 0 disables the follow
function between the axes and also resets any condition set with
FOLLOW AT.

n,m Gear ratio between axes as rational number. n is the number of teeth in
the primary gearwheel and m the number of teeth in the secondary
gearwheel. n and m can be integers between 1 to 8000000.

axnr3 Defines the axis that triggers the follow ratio to be activated when using
FOLLOW AT. If [AT (axnr3,pos)] is omitted, follow ratio is activated
immediately. Axnr3 can be same as axnr1 or axnr2 or any other axis in
the system.

pos Defines the position at which the follow ratio is activated when using
FOLLOW AT.

Set axis1 to follow position of axis2 with a gear ratio of i between axes. Axis1 has to be enabled.
FOLLOW can be also operate for example while other types of motion (translations, CREEP,
profile) is performed by these axes.

FOLLOWXY(.1) ' X follows Y with a ratio 1:10

The FOLLOW AT command can be used to start the follow function when a specified axis reaches
a specified position. This can be used to accurately syncronize axes also when using profile motion.

FOLLOW(0,1,17,23) AT (1,500) ' start axis 0 to follow 1 with
' ratio 17:23 when 1 reaches 500

Because the ratio used in FOLLOW command is defined internally as a fixed point binary number
with an 8 bit integer and 16 bit decimal part, the following limitations are valid its operation:

Maximum value of ratio i is ±128 counts/count with accuracy of 1/65536 counts.

To follow continuous reference motion without inaccuracy caused rounding error, at least the
reference encoder must be selected to have a power of 2 pulse number. (for example 512 or 1024
pulses/round).

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 116

11.10 FOLLOWRATIO

Function Read current follow ratio for axis.

Syntax FOLLOWRATIO(axis)

Type Real number

axis Identification number of axis.

Value The ratio with which axis is currently following some other axis. 0 if no
current ratio exists.

FOLLOWRATIO function can be used for example to test if a FOLLOW AT condition has been
reached.

11.11 PWR

Command Start and stop position control. Set maximum value of control output.

Syntax PWR[{axes...|(n...)}]=expression

[{axes...|(n...)}] List of axes. If not defined, axes 0...9

expression Value to set. (0 .. 1)
0 Control off.
0<a<1 Start with maximum output of a*physical maximum (a*10V)
1 Start normal operation

Function Read control output limit.

Syntax PWR{axis|(n)}

Type Real number (0 .. 1)

{axis|(n)} Identification letter or number of axis.

Values Maximum value of control output (ref), as explained above for expression.

PWRXYZ=1 ' enable XYZ
PWR=0 'all axes off

PWRX=0 'only X axis off

The output of a position controller can be limited by using values of expression between 0 <
expression < 1 for example to dampen the torque glitch when starting and stopping the controller or
to prevent damages when testing or during critical parts of work cycle, for example, in case of an
encoder fault.

1 represents the full output (for example +/-10V). 0.5 represents the half of maximum value (for
example +/-5V).

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 117

When using a drive in torque control mode, the maximum torque can be limited with PWR setting.

200 PWR=0
210 FOR N=0 TO 1 STEP .1
220 PWRX=N
230 TIMER(0)=.1
240 IF TIMER(0) THEN 240
250 NEXT N

11.12 OPWR

Command Forced set position control reference output.

Syntax OPWR[{axes...|(n...)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers). If not defined, outputs of all axes
are set.

expression Value to set. (-1 .. 1). Output is set to expression*physical maximum.

Function Read the position controller output.

Syntax OPWR{axis|(n)}

Type Real number (-1 .. 1)

{axis|(n)} Identification letter or number of axis.

Values State of reference output of axis. As expression above.

For example in a ±10V control output, the following values correspond to each other:

OPWR VREF
-1 -10V
-0.5 -5V
0 0V
0.5 5V
1 10V

Using OPWR= command disables the normal operation of position controller.

If limit switches are in use, they are also operable when using OPWR command. EMRG and
MAXERR also operate normally.

The state of the reference output can be read with the OPWR function also when the controller is
operating. This can be used to study load effects etc.

For example to set speed compensation of X axis automatically:

MOVERX1000 : DELAY 2 : SCOMPX=RSPEEDX/OPWRX

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 118

11.13 FAST POSITION CAPTURE

11.13.1 CAPTTYPE

Command Activate position capture operation.

Syntax CAPTTYPE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose capture operation is
activated.

expression Controls mode of operation (input and edge)
Capture position when:
0 encoder index channel falling edge
1 encoder index channel rising edge
2 inp0 falling edge
3 inp0 rising edge

The CAPTTYPE= command can be used with the WAX2 servo connection module with incremental
encoder to arm the fast position capture logic included in the module hardware. CAPTTYPE=
command allows use of the encoder index channel (X-channel) or WAX2 module first input (inp0)
falling or rising edge as a trigger for the capture event. Note that the inp0 referred to is the first input
on the WAX2 module with the encoder for the axis in question. It also has an input address as
defined by WAYMOD$..= command for use with the INP() function.

Function Read position capture status.

Syntax CAPTTYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current status of position capture of axis.
-2 not used
-1 ready (position captured)
0 waiting for index falling edge
1 waiting for index rising edge
2 waiting for inp0 falling edge
3 waiting for inp0 rising edge

Note that since the operation of the capture function involves communication between the
processor and the axis module, CAPTTYPE= command should only be executed once to arm the
logic. About 2 position loop cycles should be allowed for the logic to be active. When CAPTTYPE
function reports that a position has been captured (CAPTTYPE=-1), it takes some time (about 2
position loop cycles) for CAPTTYPE function to return the corresponding value. Thus it is advisable
to set CAPTTYPE only once and the ensure that the value of the CAPTTYPE function indicates that
the logic has been armed. Trying to arm the logic several times with a CAPTTYPE= command
without waiting for CAPTTYPE to reach the set value first may cause position loop malfunction.
Example:

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 119

DO
 CAPTTYPEX=0 'look for index rising edge
 DELAY .05 'wait for logic to be armed
 DO UNTIL CAPTTYPEX=-1 : LOOP 'wait for edge to be found
 IF CAPTTYPEX=-1 THEN X=CAPTPOSX 'read captured position to X
 LOOP

11.13.2 CAPTPOS

Function Read captured position.

Syntax CAPTPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Position captured from axis. 0, when no position has been captured yet.

CAPTPOS allows reading the position captured by WAX2 module fast position capture logic. It
should only be read after CAPTTYPE.. returns -1 (ready). The position thus acquired represents the
actual position at the trigger event.The accuracy with WAX2 using the index channel is
approximately ±1 encoder pulse edge, and . ±0.1 millisecond using inp0.

11.14 JOYSTICK OPERATION

11.14.1 JOY

Function Read joystick position.

Syntax JOY(n1) or JOY{X|Y}

Type Real number (-1 .. 1)

n1 Joystick channel (0...15)
0 (X) horizontal direction
1 (Y) vertical direction
n1 numbered joystick channels

Values 0 Joystick in center position.
-1 Joystick in left/down position.
1 Joystick in right/up position.

If a proportional control device, such as a joystick, is connected to the control system through a
control terminal, the position of the device can be read both in horizontal (for example JOY(0) or
JOYX) and in vertical (for example JOY(1) or JOYY) direction with this function.

The value of function varies between -1 ... +1. 0 represents the center position.

JOY function can be used for manual axis control. For example:

 V=100
DO
 CREEPX JOY(0)*V
 CREEPY JOY(1)*V
 LOOP

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 120

allows both X and Y axes manual speed control with a joystick with a maximum speed of 100.

11.14.2 JOYINP

Command Assign joystick channels and control joystick data transfer.

Syntax JOYINP#n1[,n2,n3]

n1 Device number, where the joystick data is read from. If n1 =0 joystick
channels n2 and n3 are disabled.

n2 Joystick channel number for x-data (0...15, default 0)

n3 Joystick channel number for y-data (0...15, default 1)

Maximum 8 devices can be connected to terminals with joysticks simultaneously

Defines the channel number (which may be in the range of 0...15) from which to read joystick data.
If for example a hand control terminal equipped with a joystick is connected to port #2, the
command

JOYINP#2

can be used to start serial port #2 joystick communication. When joystick communication is active,
the joystick position can be read with JOY(n1) function.

Command

JOYINP#0,n2,n3

ends the joystick communication. JOYINP#0 is also valid.

For example, display the position of a joystick in a device connected to #2:

10 OPEN#2,":LP"
20 JOYINP#2=1
30 PRINT JOY(0),JOY(1),CHR$(13);
40 GOTO 30

JOYINP#n1,n2,n3 is used to connect more then one joystick to system at the same time. It also
enables easy indexing of joystick inputs.

OPEN#2,"S1:"
OPEN#3,"S2:"
JOYINP#2,0,1 'x-data to 0, y-data to 1
JOYINP#3,2,3 'x-data to 2, y-data to 3
DO

FOR I=0 TO 3
CREEP(I:S0*JOY(I)) 'CONTROLS FOUR SPEEDS
NEXT I

LOOP

11.15 PROFILE CONTROLLED MOTION

With MOVEPROF commands it is possible to connect one or more axes to operate relative to
another axis according to a pre-programmed position profile.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 121

In this case the synchronizing axis controls an array pointer in the profile array of the axis to be
synchronized. The position of the synchronized axis is defined by the value in the profile array. The
values between array values are calculated using linear interpolation.

11.15.1 PROFSIZE

Command Set profile array size.

Syntax PROFSIZE{axes|(axnr,...}=expression

axis | axnr Axes, whose profile array size is being redefined.

expression New size for profile array. Must be a power of 2, max. 218 within limits of
available memory.

Function Read profile array size.

Syntax PROF{axis|(axnr)}

Type Real number

axis | axnr Axis, whose profile array size is being read.

Value Current profile array size of axis.

PROFSIZE provides a method for setting the size of the motion profile array of any axis
individually. By default the setting is 2048 when McBasic is started. McBasic reserves the memory
for the profile only after using the profile (writing to it), so profile settings for unused axes do not
reserve memory.

After using a profile it is not possible to redefine the profile size for the axis until McBasic is
restarted from McDOS or NEW command is used.

11.15.2 PROF

Command Write to a profile array.

Syntax PROF{axis(n)|(axnr,n)}=expression

axis, axnr Axis, whose profile array is being written to.

n Number of the profile array entry.

expression Value to write into cell (position).

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 122

Function Read from a profile array.

Syntax PROF{axis(n)|(axnr,n)}

Type Real number

axis, axnr Axis, whose profile array is being read from.

n Number of the profile array entry.

Value Value of cell (position).

The number of array entries for each axis is can be set with the PROFSIZEn= command.

For example, when using a 512 size profile, cells 0-511 form the actual motion profile. Array entry
512 is set in non-progressive motion equal to entry 0. In progressive motion the progression of the
profile is PROFaxis(512)-PROFaxis(0) for each cycle.

For example to set a sine formed profile for X axis and a cosine formed profile for Y axis
(circulating motion in a plane)

10 FOR N=0 TO 511
20 PROFX(N)=SIN(2*PII*N/512)
30 PROFY(N)=COS(2*PII*N/512)
40 NEXT N
50 PROFX(512)=PROFX(0)
60 PROFY(512)=PROFY(0) 'Note! PROF as function

11.15.3 MOVEPROF

Command Start profile motion.

Syntax MOVEPROFaxes(axis2)

MOVEPROF(axnr1:axnrp1,...,axnrn:axnrpn)

axes Axes, which are started to move according to their PROF arrays.

axis2 Axis controlling the array pointer.

axnr1 .. axnrn Axes, which are started to move according to their PROF arrays.

axnrp1 ... axnrpn Axes controlling the array pointers.

Moving by a profile array is performed by moving axis2 or axnrpn which may be same or different
axes. Usually the axes used as pointer axes are so called virtual axes, existing only theoretically
(DRIVETYPE=176). A virtual axis does not represent any real, physical axis.

A virtual axis is actually an axis, whose DRIVETYPE is set so, that only motion commands are
operable. Usually an axis that has no physical control connection is used as a virtual axis.

For example

DRIVETYPET=16+32+128

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 123

When starting profile motion the necessary axes must be active (in other words PWRaxis1=1 and
PWRT or PWRaxis2=1). It is recommended to set the resolution of the synchronizing axis to same
as the number of entries in profile array, for example REST=512. With this resolution a command
MOVERT(1) moves the axis (axes) one profile array cycle.

For example to start a circulating motion (see the profile tables generated in the example in
paragraph (12.28.1)) with axes X and Y:

100 REST=512 : ACCELT=2
120 PWRXYT=1
130 MOVEPROFXY(T)
140 CREEPT(2)

11.16 POSITION CONTROL LOG

11.16.1 LOGSIZE

Command Set motion control data log size.

Syntax LOGSIZEaxes=n
or
LOGSIZE(axnr,...)=n

axes Axis letter or a list of axis letters, whose log size is set.

axnr,... Axis number or a list of axis numbers, whose log size is set.

n Size of log array (samples) to be reserved for specified axes. Max. 65535
within available memory.

Function Read data log size.

Syntax LOGSIZE{axis|(axnr)}

Type Real number

axis | axnr Axis, whose log size is being read.

Value Current log array size (samples) of axis.

The LOGSIZE..= command is used before LOGDATA or LOG commands to set the size of the log
array used for storing logged data. The default value for the log array size is 400 samples.

McBasic reserves the memory for the log only after using it (LOG...=), so log size settings for axes
not logged do not reserve memory.

After using a log it is not possible to redefine the log size for the axis until McBasic is restarted from
McDOS or NEW command is used.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 124

11.16.2 LOG

Command Motion control data log control.

Syntax LOGaxes=k
or
LOG(axnr,...)=k

axes Axis letter or a list of axis letters, whose log is controlled.

axnr,... Axis number or a list of axis numbers, whose log is controlled.

k Logging interval expressed in control cycles (1/PIDFREQ). After each
interval the data is written into the log. If k =0, the log is stopped.

Start/stop motion control data log on specified axes. Value k specifies the log interval as a multiple
of position control cycles. If k is 1 the control data is saved for every control cycle (for example after
every 2,5 ms if PIDFREQ is set to 400). With higher values of k, data is saved after each k control
cycles. This way data can be logged for a longer period while not using more memory.

The array is always filled so, that the first entry in the array is the latest data. The older data is
automatically shifted in the log array. This way, history of data from the desired time period can
easily be maintained in the log array. If k is 0 data logging is stopped.

example:
LOGSIZEXY=1000 ' set log array sizes for X and Y
LOGXY=5 ' data logging every 5 cycles
SPEEDXY=100
ACCELXY=1000
MOVERXY(150,150)
DO UNTIL MOVEREADYXY : LOOP 'during motion
DELAY .1 'small delay
LOGXY=0 'stop logging

11.16.3 LOGDATA

Function Read motion control log data.

Syntax LOGDATAaxis(sample,data)
or
LOGDATA(axnr,sample,data)

Type Real number.

axis Identification letter axis.

axnr Number of axis when number reference is used

sample The number of sample read, integer (0..LOGSIZE-1). Sample 0 is the
latest sample, LOGSIZE-1 is the oldest sample.

data The number of data to read, integer (0..7, see below)

Read the data stored in log array gathered using the LOGaxes..=n command. With different values
of parameter data the following data can be read. Type of all data is real number. The variable
tsample means the time when sample was stored calculated backwards from latest sample.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 125

data content dimension

0 time t0-tsample s (gets value 0, if sample
 greater than size of log)

1 actual position mm
2 set position mm
3 position error mm
4 control output -1 ... 1 as OPWR
5 actual speed mm/s
6 set speed mm/s
7 analog channel -1 ... 1 as INPA()

In the above RES is assumed to be set as [pulse edges/mm].

To set an analog channel of a WIA analog input module to be logged synchronously with the other
data, use the LOGSIZE..= command before starting logging with the LOG..= command.

Logging an analog input can be used to monitor values such as motor torque or current that may be
available as analog signals from a drive or some other transducer.

Command Set analog input for LOGDATA data 7

Syntax LOGDATAaxis=a
or
LOGDATA(axnr)=a

axis Identification letter axis.

axnr Number of axis when number reference is used

a Analog input number. Number of analog input INPA(a) to be logged.

Each log entry uses 10 bytes of memory without and 14 bytes with analog data logging.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 126

12. I/O CONNECTIONS

The digital and analog inputs and outputs in Arlacon control systems are available for programming
with dedicated McBasic commands and functions.

Inputs and outputs exist in the control system both in various i/o -modules and for example in
motion control connection modules. These modules can reside in an MC400 rack or connected to a
McWay distributed i/o loop.

12.1 I/O CONFIGURATION

Before a McWay loop can be used, it must be initialised using the McBasic WAYMOD$ command.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 127

12.1.1 WAYMOD$

Command I/o system configuration.

Syntax WAYMOD$(n,m)=string

n Loop number.(0...7)

m module number (0...120)

string specification and information of module:
“END” end of modules in loop
“EMPTY” no modules in current position
"WIN INP(nn)" WIN with 24 inputs from nn (0..4x65535)
“WOU OUT(nn)” WOU with 32 outputs from nn (0..4x65535)
"WIO IO(nn)" WIO with 16 in/ 16 out from nn ((0..4x4095)
"WIO INP(n1) OUT (n2)" WIO with 16 in from n1 and

16 out from n2 (0..4x4095)
“WOA OUTA(nn)” WOA with 6 outputs from nn (0..65535)
"WIA INPA(nn)" WIA with 6 inputs from nn (0..65535)
"WIA6 INPA(nn)" WIA with 6 inputs from nn (0..65535)
"WIA4 INPA(nn)" WIA with 4 inputs from nn (0..65535)
"WIA2 INPA(nn)" WIA with 2 inputs from nn (0..65535)
"WAX INP(n1) [OUT(n2)] IO(n3)"

WAX 02006 (32bits)
"WAX2 INP(n1) [OUT(n2)] IO(n3)"

WAX2 (32bits)
"WAX2A INP(n1) [OUT(n2)] IO(n3)"

WAX2A for absolute encoder (40bits)
4 limit inputs starting from n1 (0..4x255)
4 control outputs starting from n2 (0..4x255)
8 digital i/o starting from n3 (0..4x65535)
n2 = n1 if OUT(n1) omitted

"WAX POS(n1) [OUTA(n2)] IO(n3)"
WAX for position input(32bits)
n1 position input (0..255)
n2 analog output (0..255)
12 digital i/o starting from n3 (0..4x65535)
n2 = n1 if OUT(n1) omitted

For further details of module specific syntaxes refer to chapter 3 of ‘ARLACON McWay I/O - system
user’s manual’.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 128

12.1.2 WAYERR

Function Read and reset McWay i/o loop error counter.

Syntax WAYERR(loopnr)

Type Integer 0...255

Value Number of failed refresh cycles after last read. Reading resets the
counter.

loopnr McWay loop number (0...7).

The WAYERR function gives access to an error counter in the control system that counts defective
transmissions in the McWay i/o loop. Each loop in the system has its own counter that can be
accessed using the number of the specific loop. In MC300 based systems loopnr is always 0.
MC400 systems can be configured to have up to 8 loops (0...7).

Each error counter advances when the controller sends a loop refresh message but does not
receive a correct response from the loop. Thus, WAYERR essentially counts failed refresh cycles.
The maximum error count can be 255. When reading the WAYERR function for a loop, the
respective counter is reset to zero. Therefore, if WAYERR is used in a program to monitor the
correct operation of the installation, it should only be read after suitable intervals, such as some
minutes, or the value should be accumulated in a separate variable. When starting a system,
several error may accumulate in the counters because of power-up sequencing. Therefore the first
read-reset of WAYERR should be ignored.

As 3 consecutive failed cycles cause axis position control to automatically switch off, error should
not occur regularly in any loop. In a correctly operating system no more than 1 error occurs within a
minute and no more than 10 errors occur within a day. While considerably higher error rates can
occur without affecting the operation of an application, it is a good practice to observe that the error
levels are within normal and even include error level check in the program.

Example of a simple WAYERR check routine:

CheckWay
 IF TIMER(5)=0
 IF WAYERR(0)>3 THEN PRINT "Wayerrors"
 TIMER(5)=300
 ENDIF
 RETURN

12.1.3 MOTION CONTROL I/O LOGICAL ADDRESSES

When using WAX2 connection modules, the motion control related inputs and outputs on the
modules are numbered according to the axis number. Each axis occupies four i/o addresses in and
out as follows.

axisnr address INP(address) OUT(address)

n n*4 ENCX encoder index n/a
n*4+1 NLIM negative limit switch ENA1 relay output
n*4+2 PLIM positive limit switch ENA2 relay output
n*4+3 EMRG emergency stop n/a

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 129

Signal names represent the physical signal located in WAX2 modules. Output addresses marked
n/a are not in use. In a limit switch configuration with index mask, nlim is the mask and plim is the
limit switch data.

The axes in the system are numbered starting from 0. The first I/O address for each axis is its
number multiplied by 4. This address is also used in conjunction with axis module settings
(WAYMOD$) to specify the axis for an axis connection module. Axes can be numbered freely within
the available axis count in the system (usually 16 axes). The first 10 axes numbered 0 thru 9 have
also letter names X,Y,Z,W,A,B,C,D,T,U in the same order.

12.1.4 I/O LOGICAL ADDRESSES

When PIA02301 i/o modules are used in MC400 systems, the addresses of inputs and outputs are
as follows.

I/o - units PIA02301 (8 inputs and 8 outputs)

1. unit INP(32-39) OUT(32-39) EDGE(32-39)
2. unit INP(40-47) OUT(40-47) EDGE(40-47)
3. unit INP(48-55) OUT(48-55) EDGE(48-55)
4. unit INP(56-63) OUT(56-63) EDGE(56-63)
5. unit INP(64-71) OUT(64-71) EDGE(64-71)
6. unit INP(72-79) OUT(72-79) EDGE(72-79)
7. unit INP(80-87) OUT(80-87) EDGE(80-87)
8. unit INP(88-95) OUT(88-95) EDGE(88-95)
9. unit INP(96-103) OUT(96-103) EDGE(96-103)
10. unit INP(104-111) OUT(104-111) EDGE(104-111)

Edge -commands available only in model PIA02301A.

Other i/o connected via McWay loops are configurable as described in McWay documentation.

12.2 DIGITAL I/O

12.2.1 INP

Function Read status of input.

Syntax INP(expression)

Type Truth value.

expression Input address

Values 0 input not active (off)
1 input active (on)

-1 Communications error (McWay
-2 Missing module (McWay)

INP function is used for reading the status of a binary input.

250 IF INP(3)=0 AND INP(4) THEN 250

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 130

12.2.2 OUT

Command Control an output.

Syntax OUT(expr1)=expr2

expr1 Address of output.

expr2 Value to set
0 output off
1 output on

Command sets a binary output on or off.

For example

110 OUT(35)=1
120 OUT(36)=ON

sets on outputs number 35 and 36.

Function Read output status.

Syntax OUT(expression)

Type Truth value.

expression Address of output.

Values 0 output off
1 output on

-1 Communications error (McWay
-2 Missing module (McWay)

OUT function is used for reading the status of an output. If the output has not been set previously,
its status is 0.

IF OUT(5)=0 THEN
 OUT(5)=1 : DELAY 0.5
 ENDIF
OUT(5)=0

12.2.3 EDGE

Command Control edge indicator of input.

Syntax EDGE(expr1)=expr2

expr1 Address of input.

expr2 Control data
0 acknowledge and inhibit
1 acknowledge and reset

Edge indicator operates by setting an edge flip-flop, when input INP(expr1) receives an edge (a
change in state). Direction of change that causes the transmission (rising/falling edge) depends on
settings of input unit.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 131

EDGE(1)=0

Operation of the edge flip-flop can be prevented by setting EDGE(expr1)=0. By setting
EDGE(expr1)=1 the flip-flop is reset to be set by the next edge received by the input. The edge flip-
flop status can be read with EDGE function.

Function Read status of edge indicator.

Syntax EDGE(expression)

Type Truth value.

expression Address of input.

Values 0 no edge detected
1 edge detected

With EDGE function it is possible to inspect if an edge has been detected in input INP(expression)
after it was last reset (see EDGE=).

DO
 IF EDGE(7) THEN EDGE(7)=1 : N=N+1
 UNTIL N=>N0
 LOOP

12.3 ANALOG I/O

Analog i/o is available for MC400 systems as modules in the rack and for all Arlacon MC systems
as McWay modules

MC400 analog input modules operate by converting the incoming analog signal to a frequency
signal in the control system. Similarly the outputs operate by converting the frequency signal
generated by the control system to an analog signal. Conversions are performed in conversion
modules isolated from control system logic and therefore possible interference is prevented from
disturbing the operation of the control system.

Analog i/o on McWay modules and other analog i/o is accessed using the INPA and OUTA
commands.

12.3.1 INPA

Function Read analog input.

Syntax INPA(expression)

Type Real number.

expression Address of analog input.

Values Status of input
-1 highest negative input voltage(current)
0 zero
1 highest positive input voltage(current)

The function can be used for reading the voltage or current that is connected to an analog input.

PRINT INPA(0)

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 132

0.54 (5.4V in input with ±10V scale)

Expression defines the address of the analog input to read. Function returns the value 0, if there is
0V/mA at the input.

For McWay analog i/o the values are read from the A/D converters on the i/o modules.

In MC400 rack analog inputs a VFC03603 V/F converter is used to convert the input voltage or
current to frequency. A frequencies 0/5000/10000Hz correspornd to -1/0/1 readings respectively

12.3.2 OUTA

Command Set analog output.

Syntax OUTA(expr1)=expr2

expr1 Address of analog output.

expr2 Value to set (-1 .. 1)

-1 highest negative value
0 zero
1 highest value

Function Read analog output.

Syntax OUTA(expression)

Type Real number.

expression Address of analog output.

Values Status of out
-1 highest negative input voltage(current)
0 zero
1 highest positive input voltage(current)

Analog outputs can be set using this command. When starting the control system, all analog outputs
are set to 0.

Expr2 is the value to be set to output and can vary between -1 .. 1. Value zero represents the
smallest output value (usually 0V or 0mA). Value 1 represents the highest positive value (for
example 10V or 20mA, depends on the scale of output). Value -1 represents the most negative
output value when using ± type output.

OUTA(2)=0.7

With McWay analog i/o outputs can also be read with the OUTA() function.

With the MC400 FVC03604 unit the analog output OUTA can not be read as a function.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 133

12.3.3 IFREQ

Function Read a frequency input.

Syntax IFREQ(expression)

Type Real number.

expression Number of frequency input.

Values Measured frequency [Hz]

0 underflow
min 20
max 200000

The frequency in an MC400 rack analog or frequency input can be read with the IFREQ function.
McBasic does not distinguish the analog an frequency inputs in program processing, so frequency
of an analog input converter module (5-10kHz or 0-10kHz) can also be read with IFREQ function.

PRINT IFREQ(0)

5420.00

Frequencies read with IFREQ function can vary between 20Hz and 200 kHz. When using high
frequencies the TMR unit must be equipped with fast optocouplers. Measuring period is 1
millisecond or one period with frequencies under 1000Hz.

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 134

13. ERRORS

When an error condition occurs, McBasic normally stops program execution, closes open files and
prints an error message and the address where the error was found. Program execution can be
continued from the error line by 'CONT' command. Usually it is not desirable to stop program
execution for example because of a mistake the user makes on keyboard. For this kind of cases an
error handling routine can be defined to sort the error situation and continue program execution.
However, if an error is encountered in the error handling routine, the program stops and a normal
error message is generated.

Error messages used in McBasic:

1 parameter overflow
2 'INPUT' error
3 strange character or variable
4 closing parenthesis missing
5 'DIM' error
6 strange expression
7 linenumber error
8 variable overflow
9 too many subroutines
10 strange 'RETURN'
11 strange variable
12 strange command
13 parenthesis error
14 too big program
15 index error
16 too many 'FOR'/'NEXT'-loops
17 odd 'NEXT'
18 'FOR'/'NEXT'-loop structure error
19 unfinished 'FOR'/'NEXT'-loop
20 'ON' error
21 Error #21
22 'DEF' structure error
23 function error
24 string error
25 string overflow
26 I/O error
27 strange address
28 address error
29 internal string error
30 '=' error
31 'IF' structure error
32 end of DATA
33 renumber error
34 cannot CONT
35 internal stack error
36 stack overflow
37 internal structure error
38 ','-error
39 odd 'RESUME'
40 too many TASKs
41 structure stack overflow
42 structure nesting error
43 'DO/LOOP' structure error
44 strange label

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 135

45 same label twice

53 file error
54 strange date
55 too many links
56 you can not use links here
57 loop in links

60 strange module
61 address error
62 I/O-loop full
63 address should be multiple of four

13.1 ERROR

Command Print an error message on console.

Syntax ERROR expression

expression Number of error message. (1 .. 127)

Error message. This command is used to generate an error message. Program execution stops or
jumps to error handling program (see ON ERROR). Number of error message is the value of
expression.

IF A>100 THEN ERROR 1

13.2 ON ERROR

Command Jump in case of an error. Set error trap.

Syntax ON ERROR address

address Address, where to jump in case of an error.

Defines the address of the error handling routine. If this command has been executed, an error
anywhere in the program causes a jump to line address. The error trap is task specific, so it can be
set differently for each task if necessary. By default, every new task inherits its error trap setting
from its parent task.

 ON ERROR ErrHandling

ErrHandling
 STOPMOVE
 FOR N=32 TO 47
 OUT(N)=0
 NEXT N
 PRINT "CALL FOR SERVICE"
 PRINT "ERROR ";ERR,ERR$(ERR)
 PRINT "ON LINE",ERL
 STOP

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 136

13.3 RESUME

Command Return from the error handling routine of ON ERROR command.

Syntax RESUME [NEXT]

[NEXT] If NEXT part is not used the return address is the beginning of the line
where the error occurred. If NEXT is used, return address is the beginning
of the next line.

RESUME
IF ERR=2 THEN RESUME NEXT

13.4 ERR

Function Number of the last occurred error.

Syntax ERR

Type Integer (0 .. 127)

13.5 ERL

Function Line number of the line, where an error last occurred.

Syntax ERL

Type Integer 0 ... 65535.

Values Line number of the line where the error occurred.
0 for line without linenumber
1..65535 program line

This function is not effective if line numbers are not used in the program. In this case it is always
equal to 0. For programs without line numbers, use the ERR@ function instead to obtain the
address of the line where the error last occurred.

10010 PRINT "Error #";ERR;
10020 PRINT " on line ";ERL

13.6 ERL$

Function Contents of the line, where an error last occurred.

Syntax ERL$

Type String 80 characters.

Values Contents of the line as text string.

PRINT "Error #";ERR;
PRINT " on line ";ERL$

ARLACON McBasic MCBASMAE.DOC

programming environment
reference manual 137

13.7 ERR$

Function Error message as string.

Syntax ERR$(expression)

Type String

expression Number of error message.

Values Error message as defined in error message table.

This function can be used for example to print the error message corresponding to an error number.

PRINT ERR$(ERR)
FOR I=1 TO 255
PRINT ERR,ERR$(I) : NEXT I

13.8 ERR@

Function Error line address.

Syntax ERR@

Type Address

Values Address of the line where an error last occurred.

For example:

PRINT ERR@

(Label+3)

13.9 ONERR@

Function Error trap current address.

Syntax ONERR@

Type Address

Value Current error trap address for current task. If error trap not set, value is
(+0).

ONERR@ function can be used to check the status of the error trap.

