Bijlage S

Introduction to MetaPost 89

I ntroduction to M etaPost*

John D. Hobby

AT& T Bell Laboratories
600 Mountain Ave.
Murray Hill, New Jersey 07974
hobby@ esear ch. att. com

Abstract

MetaPost is a picture-drawing language very much like METAFONT except with PostScript output.
The language provides access to all major features of Level 1 PostScript” and it has facilities for

integrating graphi cs with typeset text.

This paper gives a brief overview of the MetaPost language and how it can be used. A few of the

more interesting features are described in detail.

Keywords: Metapost, graphics languages, META-
FONT, PostScript

1 Introduction

Although METAFONT was originaly designed as a
font-making tool, many people have recognized that
it is aso a powerful graphics language. The problem
is that METAFONT's output is in the form of bitmap
images instead of graphics primitives. A diagram can
sometimes be created in METAFONT and typeset as
a single huge character, but this is cumbersome and
makes it difficult to deal with textua labels. A good
examples of work along these lines appears in [4] and

(8].

Another approach is to modify the METAFONT inter-
preter sothat it outputsPostScript. Previouswork along
theselinespresented in[1] and [10] has concentrated on
producing PostScript fontsrather than graphics. Unlike
these earlier systems, the MetaPost system involvesthe
creation of anew language similar to METAFONT, but
specifically designed for producing PostScript graphics.
Preliminary comments on MetaPost appeared in [2].

Since MetaPost is based on the public-domain META-
FONT sourcecode givenin[6], MetaPost has been able
to inherit all the features of METAFONT that make it a
powerful graphicslanguage:
¢ Theability to storeand manipul ate coordinate pairs,
straight and curved paths, coordinate transforma-
tions, pen shapes, and complete pictures.
¢ A Flexibleand powerful mechanisms for construct-
ing smooth curves and straight lines.
e Theability to draw straight and curved lines of any
thickness and to fill aregion given itsboundary.
e Mechanisms for solving linear equations so that

geometric information can be specified in alargely
declarative manner.

o A powerful macro facility that allows the language
to be extended syntactically and semanticaly.

o Operators for intersecting curves, finding tangent
lines, finding points on a curve that match a given
tangent direction, and extracting subpaths.

In addition to these features, MetaPost allows pictures
to contain text, dashed lines, clipping paths, and areas
filled with gray or other colors. There are aso data
types for colors and recipes for dashed lines. In ad-
dition, there are important facilities for generating and
manipulating typeset text. Readers familiar with other
graphics languages such as Kernighan's Pic [5] and
Wichura's PicTEX [9] will see that MetaPost is consid-
erably more powerful.

Section 2 gives a general idea of what the language
is like and what can be done with it. More detailed
discussions of interesting features follow in Section 3.
Thisincludes Section 3.1 on integrating text and graph-
ics, Section 3.2 on dedling with dashed lines, and Sec-
tion 3.3 on drawing arrows. Finaly, Section 4 deds
with macro packages and Section 5 presents some con-
cluding remarks.

2 Overview of the Language

MetaPost is a batch-oriented graphics language that
achieves great power and flexibility by giving up some
the ease of use found in interactive graphics editors
such as MacDraw. A MetaPost user prepares an input
file such as the one shown in Figure 1. Invoking the
MetaPost interpreter produces an encapsulated Post-
Script output file that can be included in a TEX doc-

*Presented at EuroTEX ' 92, September 14-18, Prague, Czechoslovakia.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

90 Introduction to MetaPost

draw (20, 20)--(0, 0)--(0, 30)--(30,0)--(0,0):

begi nfig(1);
endfi g;
end

BijlageS

Py

Figuur 1: A MetaPost input file and the resulting output

[] \]

[JISN

[Jaw]

(a)

Figuur 2: A sequence of pointsand a curve formed by connecting them.

2
3
1)
0
(a) (b) (¢)

Figuur 3: A closed curve and some effects that can be achieved by rescaling it.

ument or viewed with a PostScript interpreter such as
GhostScript. The input file in the figure has a single
begi nfig...endfi g block. There could be more
such blocks, in which case each would produce a sep-
arate output file

Since this paper is not intended to be a user’s manual,
no attempt will be made to show the exact syntax used
to create subsequent examples. Instead, we concen-
trate on general conceptswith the aim of showing what
MetaPost can do. The interested reader can refer to [3]
for details.

Another thing MetaPost can do isdraw curved lines. If
points Py, P1, ..., Py are asin Figure 2a, asking the
interpreter to connect them in order produces the curve
in Figure 2b.

Asking for asmooth closed curve through the same se-
quence of points produces Figure 3a. Since MetaPost
has data types and operators for objects like curved
lines, it is possible to store the curve in a path vari-
able p and use a statement like

draw p scaled s

Reprint MAPS#9 (92.2); Nov 1992

to draw rescaled versionsof p. Figure3bwasgenerated
by placing this statement in a loop that scans various
values of s.

There is also a fill statement that fills the interior of
a closed curve with a color or a shade of gray. The
filled regions in Figure 3c illustrate how overlapping
fills overwrite each other. The figure was generated by
filling the outermost curve with light gray, then filling
the next smaller curve with white, then the next smaller
curve with dark gray, etc.

The examples given so far suggest that MetaPost al-
lows drawing and filling, it has data types for num-
bers, coordinate pairs, and curved paths, it has oper-
ators for doing things like rescaling paths, and it has
programming-language constructions such as loops. It
also inherits from METAFONT the ability to solvelin-
ear equations and deal with abroad class of coordinate
transformations.

Figure 4 illustrates linear equations and coordinate
transformations. It was generated by introducing an
unknown transformation T, giving a pair of equations

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S

[1ON]

Introduction to MetaPost

2

<

4

91

o

Figuur 4: An example of repeated transformations.

Figuur 5: Alabeled diagram.

that declareit to be shape-preserving, and declaring that
it maps Point 1 into Point 2 and Point 3 into Point 4.
Thefigurewas created by generating asimpl e picture P
and repeatedly drawing P and transforming it by T.

3 Interesting Features

Anyone familiar with METAFONT can see that Sec-
tion 2 did not begin to cover al the language features
mentioned in the introduction. While it isimpractica
to give a detailed treatment of the entire language, we
can concentrate on afew of thefeaturesthat distinguish
MetaPost from METAFONT and from other graphics
languages.

3.1 Textin Pictures

MetaPost has a number of featuresfor including labels
and other text in the figuresit generates. The simplest
way to dothisistousethel abel statement to specify
the label text and the point to be labeled. If you are
labeling some feature of a diagram you probably want
to offset thelabel dightly to avoid overlapping. Thisis
illustrated in Figure 5 where statements of the form

| abel . top("a", (expression;));
label .Ift("b", (expressions));

putthe" a" label abovethemidpoint of thelineit refers
toand the" b" label istotheleft of the midpoint of its
line. (In additiontot op and | f t, there are six other
optiona suffixesfor other label positions.)

Thereisasoadot | abel command that marksapoint
with a dot and positionstext as thel abel command
does. For instance, the command

dot | abel . bot (*(0,0)", (0,0))

generates a dot marked “(0,0)” asin Figure 5.

For labeling statementssuch asl abel anddot | abel
that use a string expression for the label text, the string

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

gets typeset in a default font as determined by the
string variable def aul t f ont . The initid value of
def aul t f ont islikelytobe" cnr 10", but it can be
changed to a different font name by giving an assign-
ment such as

defaul tfont: ="Ti nes- Roman"

When you changedef aul t f ont , the new font name
should be something that TEX would understand since
MetaPost gets height and width information by read-
ing the t f mfile. (See[7]). It should be possible to
use built-in PostScript fonts, but the names for them
are system-dependent. Some systems may user pt nr
orps-tinmes-ronman instead of Ti mes- Ronan. A
TeX font such ascnr 10 isalittledangerous because it
does not have a space character or certain ASCIl sym-
bols. In addition, MetaPost does not use the ligatures
and kerning information that comes with a TEX font.

The MetaPost language does not need elaborate type-
setting abilities because there is a preprocessor that
extracts TeX commands, runs them through TeX (or
LaTeX), and trandates the output into a form that the
interpreter understands. There is even a separate pre-
processor that handles troff commands. Any time you

say
bt ex (typesetting commands) et ex

in aMetaPost input file, the preprocessor transates the
(typesetting commands) into a MetaPost picture ex-
pression that can be used in al abel or dot | abel
statement. For instance, a statement of the form

label . Irt(btex $\sqgrt x$ etex, (coordinates))

was used to placed the label /x in Figure 6.

Reprint MAPS#9 (92.2); Nov 1992

92 Introduction to MetaPost

BijlageS

JE

Figuur 6: A figurewith labels donein TeX.

y

y axis

2

- 1+ cosax

r axis

Figuur 7: An example of how typeset labels can be rotated

Figure7illustrates some of themore complicated things
that can be done with labels. Since the result of bt ex
...etex isapicture, it can be operated on like a pic-
ture. In particular, it is possibleto rotate the picture by
giving

btex y axis etex rotated 90

astheargument toal abel statement.

Here is how TEX material gets trandated into a form
MetaPost understands: The MetaPost processor skips
over bt ex ... et ex blocks and depends on a pre-
processor to trandate them into low level MetaPost
commands. If themainfileisfi g. np, the trandated
TeEX materia isplacedinafilenamed f i g. mpx. This
isnormally done silently without any user intervention
but it could fail if one of the bt ex ... et ex blocks
contains an erroneous TeX command. Then the erro-
neous TEX inputis saved inthefilempxer r . t ex and
the error messages appear in npxerr . | 0g.

TEX macro definitions or any other auxiliary TeX
commands can be enclosed in averbatintex ...
et ex block. The difference between bt ex and
ver bat i mt ex isthat the former generates a picture
expression whilethelatter only addsmaterial for TEX to
process. For instance, if you want TEX to typeset [abels
using macros defined in nymac. t ex, your MetaPost
input file would look something likethis:

verbatinmtex \input mymac etex

Reprint MAPS#9 (92.2); Nov 1992

begi nfig(1);

| abel (bt ex (TEX materia using mymac. t ex)
et ex, (coordinates));

MetaPost has an internal variable called pr ol ogues
that controls the handling of text in pictures. Giv-
ing thisinternal variable a positive val ue causes causes
output to be formatted as “structured PostScript” gen-
erated on the assumption that text comes from built-in
PostScript fonts. This makes MetaPost output much
more portable, but it generally does not work with TEX
fontsunlessyou have themin PostScript Type 1 format.
Many dvi -to-PostScript programs download bitmaps
for only those characters actually used in the document.
Such programs can handle MetaPost output if they un-
derstand the nonstandard PostScript comments that the
MetaPost interpeter uses to indicate which characters
need to be downloaded. Recent versions of Rokicki’s
dvi ps have thiscapability.

3.2 Dashed Lines

The MetaPost language provides many ways of chan-
ging the appearance of a line besides just changing
its width. Thisis done by specifying a dash pattern
when drawing astraight or curved line. Figure 8 shows
a few examples of dash patterns and the lines they

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S

Introduction to MetaPost 93

- withdots scaled 2
withdots
evenly scaled 4

evenly scaled 2

Figuur 8: Dashed lines each labeled with the dash pattern used to create it.

“+ e shifted (18bp,0)
—e ¢4 shifted (12bp,0)
— o ¢4 shifted (6bp,0)
°e4

Figuur 9: Dashed lines each labeled with the corresponding dash pattern, where e4 refers to the dash pattern

evenly scal ed 4.

H > 6 drawdblarrow z5..z6

3 - 4 drawarrow reverse(z3..z4)

> 2 drawarrow zl1..z2

Figuur 10: Three ways of drawing arrows.

generate. There is a predefined dash pattern called
evenl y that makes dashes 3 pointslong separated by
gaps of the same size. Another predefined dash pattern
wi t hdot s produces dotted lines with dots 5 points
apart. Asshown in the figure, scaling the dash pattern
produces dots further apart or longer dashes further

apart.

Another way to changeadash patternisto alter itsphase
by shifting it horizontally. Shifting to the right makes
the dashes move forward along the path and shiftingto
the left moves them backward. Figure 9 illustratesthis
effect. The dash pattern can be thought of as an infin-
itely repeating pattern strung out along ahorizontd line
where the portion of thelineto theright of they axisis
laid out along the path to be dashed.

When you shift adash pattern so that the y axis crosses
the middle of a dash, thefirst dash getstruncated. Thus
the line with dash pattern e4 starts with a dash of
length 12bp followed by a 12bp gap and another 12bp
dash, etc., whilee4 shifted (18bp, 0) produces
a 6bp dash, a 12 bp gap, then a 12bp dash, etc. This
dash pattern could be specified more directly via the
dashpat t er n function:

dashpattern(on 6bp off 12bp on 6bp)

Thismeans “draw thefirst 6bp of theline, then skip the
next 12bp, then draw another 6bp and repeat.” If the
line to be dashed is more than 30bp long, the last 6bp
of thefirst copy of the dash pattern will merge with the
first 6bp of the next copy to form adash 12bp long.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

3.3 Arrows

Drawing arrows like the ones in Figure 10 issimply a
matter of saying

dr awar r ow(path expression)

instead of dr aw (path expression). This draws the
given path with an arrowhead at the end. If you want
the arrowhead at the beginning of the path, there is
an operator that reverses a path. For double-headed
arrows, thereisadr awdbl ar r ow statement.

The size of the arrowhead is guaranteed to be larger
than the line width, but it might need adjusting if the
linewidthisvery large. Thisisdoneby assigninganew
value to the internal variable ahl engt h that determ-
ines arrowhead length as shown in Figure 11. Increas-
ing ahl engt h from the default value of 4 PostScript
pointsto 1.5 centimeters produces the large arrowhead
in Figure 11. There is aso an ahangl e parameter
that controlsthe angle at the tip of the arrowhead. The
default value of thisangleis 45 degrees as showninthe
figure.

The arrowhead iscreated by filling thetriangular region
that is outlined in white in Figure 11 and then draw-
ing the boundary with the current line width. Readers
familiar with METAFONT will recognize this as the
fill drawstatement.

4 Macro Packages

This section describes auxiliary macros not included in
Plain MetaPost. The macros described in Section 4.1

Reprint MAPS#9 (92.2); Nov 1992

94 Introduction to MetaPost

BijlageS

ahlength

~_,<\ahangle

s

ahlength

Figuur 11: Alarge arrowhead with key parameters label ed and paths used to draw it marked with white lines.

nw

ne

SW

se

Figuur 12: The relationship between the picture given to boxi t and the associated variables. The picture is

indicated by a gray rectangle.

Box «a

Box b

/
7/

-

Figuur 13: A“ well-targeted arrow” generated by trimming the dashed sections from a curved path.

make it convenient to do things that pic is good at
[5]. Section 4.2 makes some brief remarks about other
macro packages. In order to use amacro package, it is
necessary to give a MetaPost command that names the
macro file and asks the interpreter to read it.

41 Macrosfor Boxes

The box-making macros are contained in a macro file
caled boxes. np. Thisfile can be accessed by giv-
ingtheMetaPost commandi nput boxes beforeany
figures that use the box making macros.

The basic tool for making boxes is the command
boxi t .{box name) ({picture expression))

This creates variables (box name). ¢, {box name). n,
(box name). e, ... that can then be used for position-
ing the picture beforedrawingit. The actua drawingis
done by a separate command dr awboxed that takesa
list of box names.

If the command is boxi t . bb((picture}) , the box
name is bb and the contents of the box is the (pic-
ture). Inthiscase, bb. ¢ the position where the center

Reprint MAPS#9 (92.2); Nov 1992

of the picture is to be placed, and bb. sw, bb. se,
bb. ne, and bb. nw are the corners of a rectangular
path that will surround the picture. Variables bb. dx
and bb. dy give the spacing between the picture and
the surrounding rectangle, and bb. of f isthe amount
by which the picture hasto be shiftedto achieve all this.

When the boxi t macro is called with box name b,
it gives linear equationsthat force d. sw, b. se, b. ne,
and b. nwto bethe cornersof arectangleaigned onthe
x and y axes with the box contents centered inside as
indicated by thegray rectanglein Figure12. Thevaues
of b. dx, b. dy, and b. ¢ areleft unspecified so that the
user can give equationsfor positioningthe boxes. If no
such equationsare given, macros such asdr awboxed
can detect this and give default values. The default
values for dx and dy variables are controlled by the
internal variablesdef aul t dx and def aul t dy.

If b representsabox name, dr awboxed(b) drawsthe
rectangular boundary of box b and then the contents
of the box. This bounding rectangle can be accessed

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage S

Introduction to MetaPost

95

ndtable: |- --

g

i | i1

dig1 |- | ne | dr

hashtab:

_-ndblock

Figuur 15: The relationship between the picturegiventoci r cl ei t and the associated variables. The pictureis

indicated by a gray rectangle.

b
é

Figuur 16: Circular and oval boxes generated using theboxes. np macros.

separately asbpat h b, or in general
bpat h (box name)

Oneinteresting use of theboundingrectangleisfor gen-
erating “well-targeted arrows’ as shown in Figure 13.
Given a path from the center of Box a to the center of
Box b, there are MetaPost operators that make it con-
venient to chop off the parts of the path before the first
intersection with bpat h a and after the last intersec-
tionwithbpat h b.

Thereisaso aspecial command
boxj oi n({equation text))

that controlstherelative position of consecutive boxes.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Within the (equation text), a and b represent the box
names given in consecutive cals to boxi t and the
(equation text) gives equations to control the reletive
sizes and positions of the boxes. For example, the
MetaPost code for Figure 14 uses

boxj oi n(a. se=b. sw, a. ne=b. nw)

to causes boxesto lineup horizontally. (Itisinstructive
to compare this figure with the similar one in the pic
manud [9]).

The boxes. np macros aso provide for circular and
ova boxes. These are alot like rectangular boxes ex-
cept for the shape of the bounding path. Such boxes

Reprint MAPS#9 (92.2); Nov 1992

96 Introduction to MetaPost

areset up by theci r cl ei t macro:

ci rcl ei t (box name)((picture expression))

The circl eit macro defines pair variable just as
boxi t does, except that there are no corner points
(box name). ne, {(box name). sw, etc. A cal to

circleit.a(...)

givesrelationshipsamong pointsa. c,a. s, a. e,a. n,
a. w and distances a. dx and a. dy. Together with
a. c anda. of f, these variabl es describe how the pic-
ture is centered in an ova as can be seen from the
Figure 15.

The drawboxed and bpath macros work for
circleit boxesjust as they do for boxi t boxes.
By default, the boundary path for aci rcl ei t boxis
acirclelarge enough to surround the box contents with
asmall safety margin controlled by theinternal variable
ci rcmar gi n. Figure 16 gives an example. The oval
boundary pathsaround “ Start” and “ Stop” in the figure
are due to equations of the form

(box name).dx = (box name).dy
that force those boxes to be noncircular.

4.2 Other Packages

Why aren’t the boxes. np macros automatically pre-
loaded like the plain macros? Onereason is that they
are too speciaized to really be treated as part of the
core language. Another reason isthat boxes. nmp was
intended to be thefirst of several macro packages, each
one extending thelanguageto cover another speciaized
application.

In fact, there already is another macro package called
rboxes. np. This package builds on boxes. np
by providing another box shape: a rectangular box
with rounded corners. Other box shapes could aso
be provided if there were a demand for them.

There should aso be a macro package for drawing
graphs. No such package has been designed yet, but
there have been promising preliminary experiments
with the automatic generation of axis labels for uni-
form and logarithmic spacing.

5 Conclusion

Building on METAFONT has made MetaPost a very
powerful and flexible graphics language. It is espe-

Reprint MAPS#9 (92.2); Nov 1992

BijlageS

cialy well suited to generating figuresin technical doc-
uments which may involve mathematical constraints
that are best expressed symbolically. Such figureslack
the aesthetic requirements that make font design so
challenging.

This paper has introduced the MetaPost language via
examples concentrating on interesting features that dis-
tinguish the language from other graphics languages
and from METAFONT. Readers who want to use the
language should refer to [3]. The MetaPost interpreter
is currently available to academic ingtitutions under
non-disclosure agreement.

References

[1] Ledie Carr. Of METAFONT and PostScript. In
TeEX User’s Group Eighth Annual Meeting Confer-
ence Proceedings. TEX User'sGroup, Providence,
Rhode Island, 1988.

[2] John D. Hobby. A METAFONT-like system with
PostScript output. Tugboat, the TEX User’s Group
Newsletter, 10(4):505-512, December 1989.

[3] J D. Hobby. A user's manual for MetaPost.
Computing Science Technical Report no. 162,
AT&T Bell Laboratories, Murray Hill, New Jer-
sy, April 1992. Can be obtained by mail-
ing“send 162 fromresearch/cstr”to
netli b@esearch. att.com

[4] Alan Jeffrey. Labelled diagramsin METAFONT.
TUGboat, Communications of the TeEX User’s
Group, 12(2):227-229, June 1991.

[5] Brian W. Kernighan. Pic—a graphics language
for typesetting. In Unix Research System Papers,
Tenth Edition, pages 53—77. AT& T Bell Laborat-
ories, 1990.

[6] D.E.Knuth. METARFONT the Program. Addison
Wesley, Reading, Massachusetts, 1986. Volume
D of Computersand Typesetting.

[7] D. E. Knuth. The TeXbook. Addison Wedley,
Reading, Massachusetts, 1986. Volume A of
Computers and Typesetting.

[8] Richard O. Simpson. Nontraditional uses of
METAFONT. In Malcom Clark, editor, TEX Ap-
plications, Uses, Methods, pages 259-271. Ellis
Horwood, 1990.

[9] Michael J. Wichura. The PiCTeX Manual. TEX
User’'s Group, Providence, Rhode Island, 1987.

[10] Shimon Yanai and Daniel M. Berry. Environment
for trandating METAFONT to PostScript. TUG-
boat, Communications of the TEX User’s Group,
11(4):525-541, November 1990.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

