MC9S08AW60 Controller Board

User Manual

HCS08 Microcontrollers

DRM090 Rev.0 10/2007

freescale.com

Preface

0.1	Audience	5
0.2	Organization.	5
0.3	Notation Conventions.	6
0.4	Definitions, Acronyms, and Abbreviations	6
0.5	References.	7

Chapter 1 Introduction

1.1	MC9S08AW60 Controller Board Architecture	10
1.2	MC9S08AW60 Controller Board Configuration Jumpers	11
1.3	MC9S08AW60 Controller Board Connections	13

Chapter 2 Technical Summary

2.1	MC9S08AW60	16
2.2	RS-232 Serial Communications.	16
2.3	Clock Source	17
2.4	User LED	17
2.5	Debug Support	
2.5.1	BĂCKGROUND Header	18
2.6	RESET	18
2.7	General-Purpose Buttons and Run/Stop Switch	19
2.8	Power Supply	20
2.9	UNI-3 Interface	
2.9.1	UNI-3 BRAKE and PFC Signals.	
2.10	Motor Control PWM Signals and LEDs	22
2.11	Motor Protection Logic	
2.11.1	Over-Current and Over-Voltage Protection	
2.11.2	Temperature Sensing.	
2.12	DC Bus Current Sensing	
2.13	Back-EMF Current Sensing	
2.14	Quadrature Encoder/Hall-Effect Interface	27
2.15	Tacho-Generator Interface.	28
2.16	Peripheral Expansion Connectors	
2.16.1	Encoder Expansion Connector	
2.16.2	Tacho-Dynamo Expansion Connector	
2.16.3	Port A Header	
2.16.4 2.16.5	Port D Header	
2.16.5	PORT CE Header ADC Header	
2.16.7	PWM Header	
2.16.8	KBI Header.	
2.16.9	ZGB Header.	
2.17	Test Points	33

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0. Draft A

Appendix A. MC9S08AW60 Controller Board Schematics Appendix B. MC9S08AW60 Controller Board PCB Appendix C. MC9S08AW60 Controller Board Bill of Materials

Preface

This reference manual describes the hardware on the MC9S08AW60 controller board. The board is designed for motor/motion control demos and supports specific customer needs, including the PWM interface with dead-time insertion circuit and tacho-dynamo hardware interface.

0.1 Audience

This document is intended for application developers who are creating software for devices using the MC9S08AWXX.

0.2 Organization

This manual is organized into two chapters and three appendixes.

- Introduction provides an overview of the board and its features.
- Technical Summary describes the MC9S08AW60 controller board hardware.
- MC9S08AW60 Controller Board Schematics contains the schematics of the MC9S08AW60 controller board.
- MC9S08AW60 Controller Board PCB contains details on the MC9S08AW60 printed circuit board (PCB).
- MC9S08AW60 Controller Board Bill of Materials lists materials used on the MC9S08AW60 controller board.

Preface

0.3 Notation Conventions

This document uses the following conventions:

Term or Value	Symbol	Examples	Exceptions
Active high signals (logic one)	No special symbol attached to the signal name	MOSI1 SCL1	
Active low signals (logic zero)	Noted with an overbar in text and in most figures	RESET SS1	In schematic drawings, active low signals may be noted by a slash: /RESET
Hexadecimal values	Begin with a "\$" symbol	\$0FF0 \$80	
Decimal values	No special symbol attached to the number	10 34	
Binary values	Begin with the letter "b" attached to the number	b1010 b0011	
Numbers	Considered positive unless specifically noted as a negative value	5 -10	Voltage is often shown as positive: +3.3 V
Bold	Reference sources, paths, emphasis	see: http://www.freescale.com/ mcu	

Table 0-1. Notation Conventions

0.4 Definitions, Acronyms, and Abbreviations

Definitions, acronyms, and abbreviations used in this document are defined below.

A/D	Analog to digital
D/A	Digital to analog
FLL	Frequency-locked loop
GPIO	General-purpose input and output port on Freescale Semiconductor's family of microcontrollers
IC	Integrated circuit
LED	Light-emitting diode
LQFP	Low-profile quad flat pack
MCU	Microcontroller unit

References

MPIO	Multi-purpose input and output port on Freescale Semiconductor's family of microcontrollers; shares package pins with other peripherals on the chip and can function as a GPIO
PCB	Printed circuit board
PWM	Pulse-width modulation
Quadrature encoder	Sensor for the measurement of position and speed based on optical principles
RAM	Random access memory
R/C	Resistor/capacitor network
ROM	Read-only memory
SCI	Serial communications interface
SPI	Serial peripheral interface port on Freescale Semiconductor's microcontrollers
UART	Universal asynchronous receiver/transmitter

0.5 References

The following sources were referenced to produce this manual:

MC9S08AW60 Microcontroller Data Sheet, Freescale Semiconductor

Preface

Chapter 1 Introduction

The MC9S08AW60 controller board is used to demonstrate the abilities of the populated MC9S08AW60 part, which can be replaced by the pin compatible MC9S08AW48/32 in LQFP 64-pin footprint, based on an optimized PCB and power-supply design. The MC9S08AW60 contoller board provides a hardware tool allowing the development of applications that use the MC9S08AW60/48/32. This guide refers to MC9S08AW60.

The MC9S08AW60 controller board is an evaluation module board that includes a MC9S08AW60 part, PWM interface with hardware dead-time insertion circuit, encoder interface, tacho-generator interface, communication options, digital and analog power supplies, and peripheral expansion connectors. The expansion connectors are for signal monitoring and feature expansion. Test pads are provided for monitoring critical signals and voltage levels.

The MC9S08AW60 controller board is designed to:

- Familiarize you with the features of the HCS08 architecture.
- Serve as a platform for real-time software development. The tool suite enables you to develop and simulate routines, download the software to on-chip memory, run it, and debug it via the BACKGROUND port. The breakpoint features enable you to easily specify complex break conditions and to execute user-developed software at full speed, until the break conditions are satisfied. The ability to examine and modify all user accessible registers, memory, and peripherals through the BACKGROUND port facilitates the task of the developer.
- Serve as a platform for hardware development. The hardware platform enables you to connect external hardware modules. The BACKGROUND port's unobtrusive design makes all memory on the microcontroller chip available.

1.1 MC9S08AW60 Controller Board Architecture

The MC9S08AW60 controller board facilitates the evaluation of various MC9S08AW60 features. The MC9S08AW60 controller board can be used to develop real-time software and hardware products based on the MC9S08AW60. The MC9S08AW60 controller board provides the features necessary to write and debug software, demonstrate the functionality of that software, and interface with application-specific devices. The MC9S08AW60 controller board is flexible enough to allow you to exploit the MC9S08AW60's features to optimize the performance of the product, as shown in Figure 1-1.

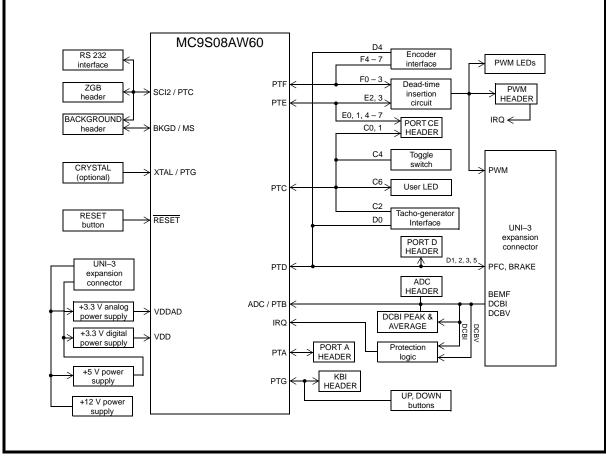


Figure 1-1. Block Diagram of the MC9S08AW60 Controller Board

1.2 MC9S08AW60 Controller Board Configuration Jumpers

Jumper groups and zero ohm resistors⁽¹⁾, shown in Figure 1-2, are used to configure various features on the MC9S08AW60 controller board.

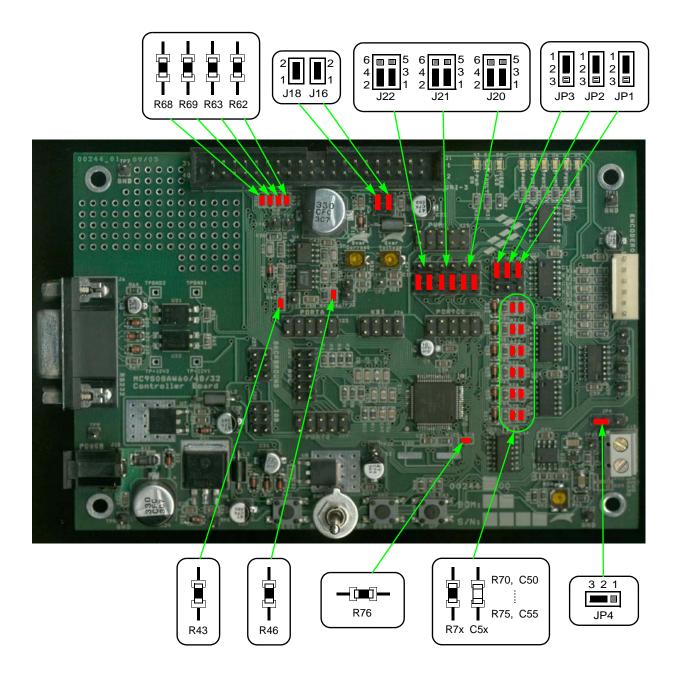
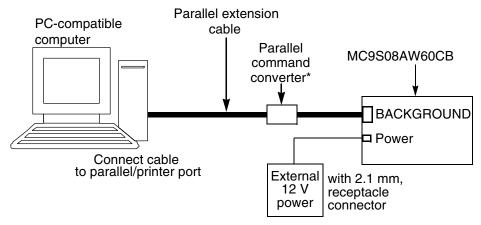


Figure 1-2. MC9S08AW60 Controller Board Jumper Options

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

^{1.} Zero ohm resistors are used instead of standard jumpers to minimize distortion of analog signals and to achieve high signal-to-noise ratio.


Introduction

#	Selector	Function	Connections
JP1	PWM	Odd PWM channels generated by hardware from even PWM channels	1–2
JP2 JP3	complementary mode		
JP4	Tacho-dynamo	Analog sensing by TACHO analog input (AD1P8)	1–2
JP4	measurement	Digital sensing by digital input (GPIO PTC2)	2–3
J16	UNI–3 +5 V	Controller board digital power supply from UNI-3 +5 V	closed
J18	UNI–3 +15 V	Controller board analog power supply from UNI-3 +15 V	closed
J20		Complementary PWM mode	1–3, 2–4
J21 J22	PWM mode	Independent PWM mode	3–5, 4–6
	D40	DC bus current peak value sensed by the AD1P2 analog input	R43 present
	R43	AD1P2 input used as a universal analog input on the ADC header	R43 absent
	D40	DC bus current average value sensed by the AD1P3 analog input	R46 present
	R46	AD1P3 input used as a universal analogue input on the ADC header	R46 absent
	R62	UNI-3 BRAKE signal controlled by the PTD1 output pin	R62 present
	N02	PTD1 used as a universal GPIO pin on PORT D header	R62 absent
	DCO	UNI-3 PFC PWM signal controlled by the PTD2 output pin	R63 present
	R63	PTD2 used as a universal GPIO pin on PORT D header	R63 absent
	DCO	UNI-3 PFC zero cross output signal connected to the PTD3 input pin	R68 present
	R68	PTD3 used as a universal GPIO pin on PORT D header	R68 absent
	R69	UNI-3 PFC enable signal controlled by the PTD5 output pin	R69 present
	ноэ	PTD5 used as a universal GPIO pin on PORT D header	R69 absent
	D70	Encoder output connected to the TPM2CLK/PTD4 input	R76 present
	R76	TPM2CLK/PTD4 used as a universal GPIO pin on PORT D header	R76 absent

Table 1-1. MC9S08AW60 Controller Board Jumper Options

1.3 MC9S08AW60 Controller Board Connections

Figure 1-3 shows the connection between the PC, external 12 V DC power supply, and the MC9S08AW60 controller board.

* Use optoisolated PCC for high-voltage applications

Figure 1-3. Connecting the MC9S08AW60 Controller Board Cables

When optoisolation is needed to isolate the computer from the motor driver board and the controller board, use the optoisolated parallel command converter instead of the non-isolated parallel command converter. Command converters with ISA, PCI, USB, and ETHERNET interfaces are available.

To connect the MC9S08AW60 controller board cables:

- 1. Connect the parallel extension cable to the parallel port of the host computer.
- Connect the other end of the parallel extension cable to the parallel command converter (see Figure 1-3) and connect it to the BACKGROUND header on the MC9S08AW60 controller board. Pin 1 on the command converter must be aligned with pin 1 on the controller board. This provides the connection that allows the host computer to control the board.
- 3. Connect the 2.1 mm output power plug from the external power supply into the power jack (see Figure 1-3) on the MC9S08AW60 controller board.
- 4. Apply power to the external power supply. The green power-on LED will illuminate when power is correctly applied.

Introduction

Chapter 2 Technical Summary

The MC9S08AW60 controller board is designed as a versatile development card for developing real-time software and hardware products to support a new generation of applications in servo and motor control, SMPS, and other general purpose applications. The power of the 8-bit MC9S08AW60 microcontroller unit, combined with the hall-effect/quadrature encoder interface, PWM interface with dead-time insertion circuit, tacho-generator interface for digital/analog sensing, motor over-current logic, and motor over-voltage logic, makes the MC9S08AW60 controller board ideal for developing and implementing many motor controlling algorithms, and for learning the architecture and instruction set of the MC9S08AW60 microcontroller.

The features of the MC9S08AW60 controller board include:

- MC9S08AW60 8-bit +3.3 V microcontroller operating at 40 MHz
- BACKGROUND interface header for an external debug host target interface
- RS-232 interface with galvanic isolation for easy connection to a host computer or PC master development tool
- Header allowing you to attach a port A GPIO compatible peripheral
- Header allowing you to attach a port D (GPIO, ADC, KBI, TPM) compatible peripheral
- Header allowing you to attach a port CE (GPIO, IIC, SCI, SPI) compatible peripheral
- Header allowing you to attach a ADC compatible peripheral
- Header allowing you to attach a PWM compatible peripheral
- Header allowing you to attach a KBI / port G GPIO compatible peripheral
- Header allowing you to attach the ZigBee module or other SCI compatible peripheral
- On-board power regulation from an external 12 V DC supplied power input
- Light-emitting diode (LED) power indicator
- Six on-board PWM monitoring LEDs
- One on-board PWM fault monitoring LED
- One on-board general-purpose LED
- UNI-3 motor interface
 - DC bus voltage sensing
 - DC bus current sensing
 - Back-EMF sensing
 - Temperature sensing
 - Pulse-width modulation
 - BRAKE, PFC PWM signals
- Encoder/gall-effect interface
- Tacho-generator interface
- PWM dead-time insertion circuit
- DC bus over-current and over-voltage protection logic
- DC bus current peak detector and average value sensing
- Manual reset push-button

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

Technical Summary

- General-purpose push-button for up on GPIO PTG1
- General-purpose push-button for down on GPIO PTG0
- General-purpose toggle switch for run/stop control on GPIO PTC4

2.1 MC9S08AW60

The MC9S08AW60 controller board uses a Freescale Semiconductor part, MC9S08AW60, MC9S08AW48, or MC9S08AW32, designated as U1 on the board and in the schematics. This part operates at a maximum speed of 40 MHz. The following documents provide a full description of the MC9S08AW60, including functionality information:

 MC9S08AW60 Data Sheet, (MC9S08AW60/D): Provides features list and specifications including signal descriptions, electrical and timing specifications, pin descriptions, device specific peripheral information, and package descriptions. Also provides an overview description of the microcontroller unit and detailed information about the on-chip components, including the memory and I/O maps, peripheral functionality, and control/status register descriptions for each subsystem.

Refer to these documents for detailed information about chip functionality and operation. They can be found at www.freescale.com/mcu.

2.2 RS-232 Serial Communications

The MC9S08AW60 controller board provides an RS-232 interface by the use of RS-232 level converter circuitry (see Figure 2-1). The RS-232 level converter transitions the SCI UART's +3.3 V signal levels to RS-232 compatible signal levels and connects to the host's serial port via the DB9F connector. Table 2-1 lists the pinout of the RS232 connector. The RxD and TxD signals are also wired to the BACKGROUND and ZGB headers so you can connect the external modules with 3.3 V signal levels logic to this SCI UART. If needed, the +12 V can be connected to the RS232 connector, pin number 1, by shorting the TP+12V1 and TP+12V2 test points. Also, the associated TPGND1 and TPGND2 test points have to be shorted.

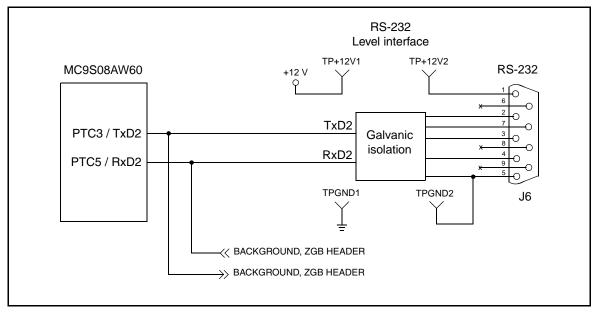


Figure 2-1. Schematic Diagram of the RS-232 Interface

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

	J6				
Pin #	Signal	Pin #	Signal		
1	+12 V (optional)	6	NC		
2	RxD	7	RTS		
3	TxD	8	NC		
4	DTR	9	NC		
5	GND				

Table 2-1. RS-232 Serial Connector Description

2.3 Clock Source

The MC9S08AW60 uses its internal 243 kHz reference generator and internal FLL to multiply the input frequency and achieve 40 MHz maximum operating frequency. This reference generator can be trimmed for finer accuracy via software when a precisely timed event is input to the MCU. This provides a reliable, low-cost clock source. As an MC9S08AW60 clock source, an optionally connected external crystal or resonator can also be used, attached to pins XTAL and EXTAL.

2.4 User LED

One on-board green LED D8 is provided to be controlled by your program. This diode is accessible via GPIO PTC6 port (see Figure 2-2). Setting GPIO PTC6 to a logic 1 value will turn on the LED.

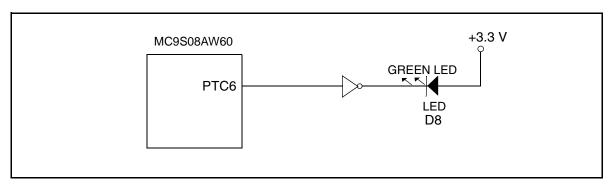


Figure 2-2. Schematic Diagram of LED Connection

2.5 Debug Support

The MC9S08AW60 controller board has a BACKGROUND interface connector for external target interface support.

2.5.1 BACKGROUND Header

The BACKGROUND header on the MC9S08AW60 controller board allows the connection of an external host target interface for downloading programs and working with the MC9S08AW60's registers. This header is used to communicate with an external host target interface passing information and data back and forth to a host processor running a debugger program. Table 2-2 shows the pinout for this header.

J29				
Pin #	Signal	Pin #	Signal	
1	BKGD/MS	2	GND	
3	RxD2	4	RESET	
5	TxD2	6	+3.3V	

Table 2-2. BACKGROUND Header Description

2.6 RESET

A RESET push-button is provided for asserting the MC9S08AW60 RESET signal (see Figure 2-3). The RESET signal is also attached to the BACKGROUND header J29, pin number 4.

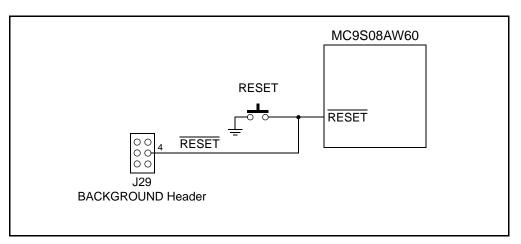


Figure 2-3. RESET Button

2.7 General-Purpose Buttons and Run/Stop Switch

Two on-board push-button switches and one toggle switch are provided for program control. The push-buttons (up, down) are directly connected to the port G GPIO signals PTG1 (up/SW2) and PTG0 (down/SW3). These signals are also attached to the KBI header. A run/stop toggle switch is connected to the port C GPIO signal PTC4 (see Figure 2-4).

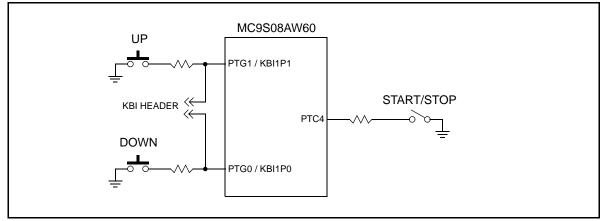


Figure 2-4. Schematic Diagram of the Buttons and Switch

SWITCH	SIGNAL
DOWN (SW3)	GPIO PTG0
UP (SW2)	GPIO PTG1
RUN/STOP (SW4)	GPIO PTC4

Table 2-3. Connection Descri	ption of the Buttons and Switch
	parent of the Batterie and officer

Technical Summary

2.8 Power Supply

The main power supply input 12 V DC to the MC9S08AW60 controller board is through a 2.1 mm coax power jack. The controller board requires less than 100 mA; the remaining current is available via the on-board connectors. The MC9S08AW60 controller board provides +3.3 V DC voltage regulation for the microcontroller and supporting logic. Power applied to the MC9S08AW60 controller board is indicated by a power-on LED. The controller board can also be powered from the UNI-3 interface by closing the J16 and J18 jumpers (see Figure 2-5).

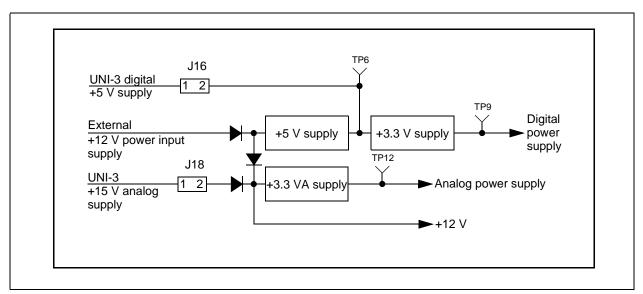


Figure 2-5. Power Supply

2.9 UNI-3 Interface

Motor control signals from a family of motor driver boards can be connected to the board via the UNI-3 connector/interface. The UNI-3 connector/interface contains all of the signals needed to drive and control the motor drive boards. These signals are connected to differing groups of the microcontroller's input and output ports: A/D, TIMER/PWM, and GPIO ports. Table 2-4 shows the pinout of the UNI-3 connector.

J1				
Pin #	Signal	Pin #	Signal	
1	PWM0	2	NC	
3	PWM1	4	NC	
5	PWM2	6	NC	
7	PWM3	8	NC	
9	PWM4	10	NC	
11	PWM5	12	GND	
13	GND	14	+5.0 V DC	
15	+5.0 V DC	16	NC	
17	Analog GND	18	Analog GND	
19	Analog +15V DC	20	NC	
21	Motor DC bus voltage sense	22	Motor DC bus current sense	
23	NC	24	NC	
25	NC	26	Motor drive temperature sense	
27	NC	28	NC	
29	Motor drive brake control	30	NC	
31	PFC PWM	32	PFC EN	
33	PFC ZC	34	NC	
35	NC	36	NC	
37	NC	38	Back-EMF phase A sense	
39	Back-EMF phase B sense	40	Back-EMF phase C sense	

Table 2-4. UNI-3 Connector Description

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

Technical Summary

2.9.1 UNI-3 BRAKE and PFC Signals

Four control signals are connected to the UNI-3 interface: BRAKE, PFC PWM, PFC ENABLE outputs, and PFC zero-cross input. These signals are connected to the MC9S08AW60 controller pins GPIO PTD1, PTD2, PTD3, and PTD5 through the zero-ohm resistors (see Figure 2-6). MC9S08AW60 controller pins GPIO PTD are also connected to the port D header. MC9S08AW60 has no other timer module, therefore the PFCPWM and PFCZC signals are connected to the GPIO for general use.

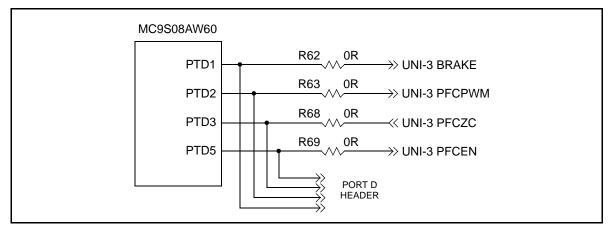


Figure 2-6. Schematic Diagram of the UNI-3 BRAKE and PFC Signals Connection

2.10 Motor Control PWM Signals and LEDs

The MC9S08AW60 controller has two dedicated TIMER/PWM units. The first unit contains six TIMER/PWM channels and the second unit contains two channels. On the MC9S08AW60 controller board, the first unit with the six TIMER/PWM channels is used as the PWM output generator. The PWM outputs can operate independently or in complementary pairs. Table 2-5 shows PWM jumper configuration. When the jumpers J20, J21, and J22 are in positions 1–3, 2–4, and the jumpers JP1, JP2, and JP3 are in position 1-2, the PWM outputs operate in complementary mode with hardware dead-time insertion (see Figure 2-7). All the PWM outputs are driven by the even TIMER/PWM channels TPM1CH0, TPM1CH2, and TPM1CH4 only. Odd PWM output channels complement their associated even channels. When jumpers J20, J21, and J22 are in positions 1–3, 2–4, and jumpers JP1, JP2, and JP3 are in position 2-3, the PWM outputs operate in complementary mode, but each PWM output is connected to its associated TPM1CHx channel (PWM0 is connected to TPM1CH0, PWM1 to TPM1CH1, etc.) with hardware dead-time insertion. The complementary PWM outputs are protected against even and odd active output TPM1CHx channels at the same time. When the even TPM1CHx channel is active, the odd PWM output is inactive, regardless of the state on the odd TPM1CHx channel. This PWM mode of operation can be useful while developing the software driver to control the PWM outputs in complementary mode without external hardware. When the jumpers J20, J21, and J22 are in positions 3-5 and 4-6, the PWM outputs operate independently without hardware dead-time insertion. PWM outputs are directly connected to their associated TPM1CHx channel outputs (PWM0 to TPM1CH0, PWM1 to TPM1CH1, etc.). Dead-time insertion can be done by the MC9S08AW60 software.

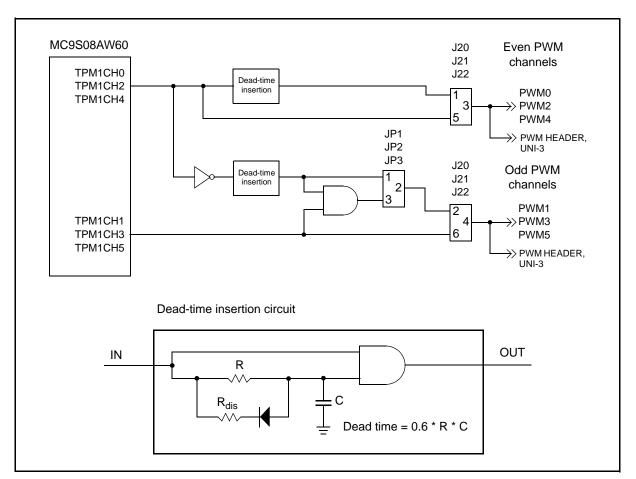


Figure 2-7. PWM Interface

J20, J21, J22	JP1, JP2, JP3	HW dead time	PWM Operation Mode
1–3 2–4	1–2	Yes	Complementary mode: the odd PWM outputs generated by PWM on-board circuitry
1–3 2–4	2–3	Yes	Complementary mode: each PWMx is generated by associated TPM1CHx
3–5 4–6	_	No	Independent mode: PWMx outputs directly connected to TPM1CHx

Dead time can be adjusted by changing the values of the associated R and C electronic components (see Table 2-6).

R	С	Associated PWM channel
R70	C50	PWM0
R71	C51	PWM1
R72	C52	PWM2
R73	C53	PWM3
R74	C54	PWM4
R75	C55	PWM5

Table 2-6. PWM Channels and Associated R and C Components

For calculating the inserted dead time, the following formula should be used:

Dead time = 0.6 * R * C

PWM output group lines are connected to the UNI-3 interface connector and to a set of six PWM LEDs via inverting buffers. These PWM LEDs indicate the status of the PWM group signals (see Figure 2-8).

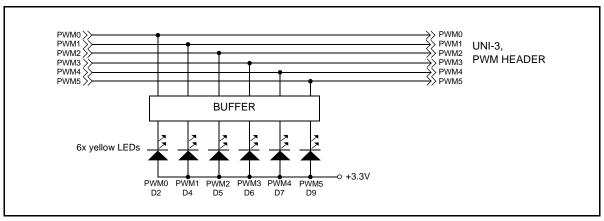


Figure 2-8. PWM LEDs

2.11 Motor Protection Logic

The MC9S08AW60 controller board contains a UNI-3 connector that interfaces with various motor drive boards. The microcontroller can sense error conditions generated by the motor power stage boards via signals on the UNI-3 connector.

2.11.1 Over-Current and Over-Voltage Protection

The motor driver board's DC bus voltage and DC bus current are sensed on the power stage board. The conditioned signals are transferred to the MC9S08AW60 controller board via the UNI-3 connector. DC bus voltage and DC bus current analog input signals are compared to a limit set by trimpots. If the input analog signals are greater than the limit set by the trimpot, a 0 V fault signal is generated. A fault LED monitors the fault states. The UNI-3 DC bus over-voltage and DC bus over-current fault signal is connected to the microcontroller's IRQ input (see Figure 2-9).

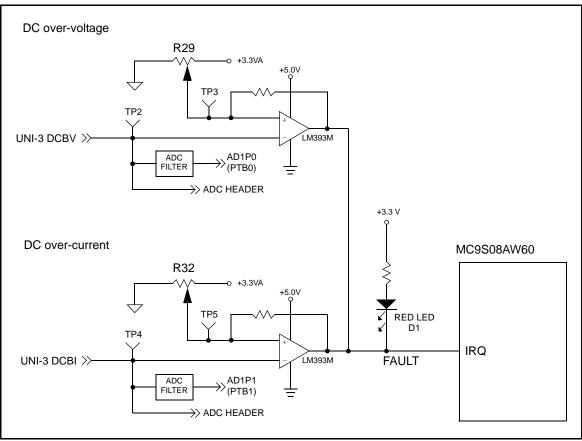


Figure 2-9. FAULT Protection Circuit

The DC bus over-voltage and DC bus over-current threshold levels can be adjusted by the trim-pots R29 and R32.

2.11.2 Temperature Sensing

Analog feedback signal for temperature of power module is transferred to the MC9S08AW60 controller board via the UNI-3 connector. This signal is connected to the controller's AD1P7 analog input.

2.12 DC Bus Current Sensing

The UNI-3 DC bus current value can be directly sensed by the ADC input pin AD1P1. The MC9S08AW60 controller board contains the hardware for sensing the peak and average values of the DC bus current. Figure 2-10 shows the DCBI peak detector and DCBI average value sensing circuitry. DCBI peak current value can be sensed by the ADC input pin AD1P2, and DCBI average value can be sensed by AD1P3. These ADC input pins can also be used as universal analog input pins on the ADC header when the zero ohm resistors R43 and R46 are not present.

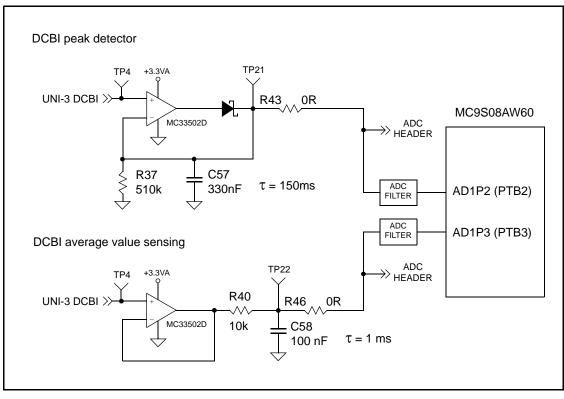


Figure 2-10. DCBI Peak Detector and Average Value Sensing

2.13 Back-EMF Current Sensing

The UNI-3 connector supplies three back-EMF current signals. These back-EMF signals on the UNI-3 connector are derived from a resistor divider network contained in the motor drive unit. These resistors scale down the attached motor's back-EMF voltages to a 0 to +3.3 V level. The back-EMF signals are connected to the controller's AD1P4, AD1P5, and AD1P6 analog inputs (see Table 2-7).

Back-EMF signal	Associated Analog Input		
BEMFA	AD1P4		
BEMFB	AD1P5		
BEMFC	AD1P6		

Table 2-7. Back-EMF Signals and Associated Analog Inputs

2.14 Quadrature Encoder/Hall-Effect Interface

The MC9S08AW60 controller board has a quadrature encoder/hall-effect interface connected to the microcontroller's input pins PTF5, PTF6, and PTF7 for the position sensing. When any position changes occur, the TPM2CH0 (PTF4) output turns over its logical value and can generate the interrupt for new position sensing. This output can be optionally connected to the controller's TPM2CLK (PTD4) input, when the zero-ohm resistor R76 is present. This TPM2CLK input can be used for the speed calculation (see Figure 2-11).

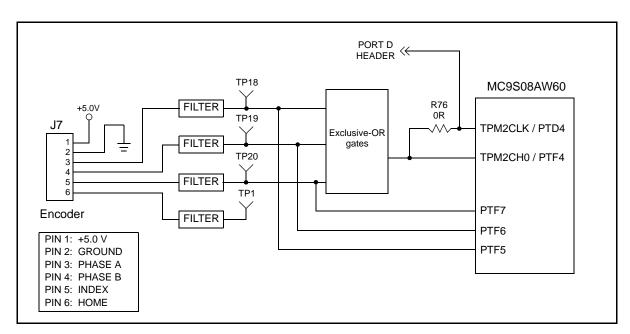


Figure 2-11. Encoder Interface

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

2.15 Tacho-Generator Interface

The MC9S08AW60 controller board contains a tacho-generator interface for digital/analogue sensing with the external tacho-dynamo input. Input noise filtering is supplied on the input path, then the signal passes through the voltage limiter to avoid damaging the follow on electrical circuitry. The signal can then be passed through jumper JP4 to the ADC analog input AD1P8 for analog sensing if the jumper is in position 1–2, or to the comparator with hysteresis to PTC2 input for digital sensing if the jumper is in position 2–3 (see Figure 2-12). When jumper JP4 is in position 2–3 (digital sensing), the analog input AD1P8 can be used as a universal analog input on the port D header.

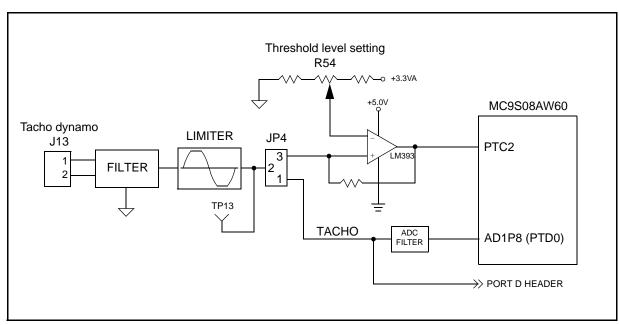


Figure 2-12. Tacho-Generator Interface

The R54 trimpot serves to adjust the working point of the comparator.

2.16 Peripheral Expansion Connectors

The MC9S08AW60 controller board contains a group of peripheral expansion connectors used to gain access to the MC9S08AW60 resources. The following signal groups have expansion connectors:

- Encoder
- Tacho-dynamo input
- Port A header
- Port D header
- Port CE header
- ADC header
- PWM header
- KBI header
- ZGB header

2.16.1 Encoder Expansion Connector

The quadrature encoder interface port is attached to this expansion connector. Table 2-8 shows connection information.

J7				
Pin #	Signal			
1	+5 V			
2	GND			
3	PHASE A			
4	PHASE B			
5	INDEX			
6	HOME			

Table 2-8. Encoder Connector Description

2.16.2 Tacho-Dynamo Expansion Connector

The tacho-generator interface includes the tacho-dynamo input expansion connector (see Table 2-9).

J13			
Pin # Signal			
1 Tacho-dynamo Input 1			
2 Tacho-dynamo Input 2			

Table 2-9. Tacho-Dynamo Connector Description

Technical Summary

2.16.3 Port A Header

The general-purpose input/output port A is attached to this header. Table 2-10 shows connection information

	J23					
Pin #	Signal	Pin #	Signal			
1	PTA0	2	PTA1			
3	PTA2	4	PTA3			
5	PTA4	6	PTA5			
7	PTA6	8	PTA7			
9	GND	10	+3.3 V			

Table 2-10. Port A Header Description

2.16.4 Port D Header

The general-purpose input/output port D is attached to this header. Eight pins are shared with ADC1, KBI1 modules, and TPM1 and TPM2 external clock inputs. Refer to Table 2-11 for connection information.

	J27					
Pin #	Signal	Pin #	Signal			
1	TACHO (PTD0 / AD1P8)	2	PTD1 / AD1P9			
3	PTD2 / AD1P10 / KBI1P5	4	PTD3 / AD1P11 / KBI1P6			
5	PTD4 / AD1P12 / TPM2CLK	6	PTD5 / AD1P13			
7	PTD6 / AD1P14 / TPM1CLK	8	PTD7 / AD1P15 / KBI1P7			
9	GND	10	+3.3 V			

Table 2-11. Port D Header Description

2.16.5 PORT CE Header

Two general-purpose input/output port C pins and six port E pins are attached to this header. Two port C pins are shared with IIC1 module, and six port E pins are shared with SCI1 and SPI1 modules. Table 2-12 shows connection information.

	J28					
Pin #	Signal	Pin #	Signal			
1	SCL1 / PTC0	2	SDA1 / PTC1			
3	TxD1 / PTE0	4	RxD1 / PTE1			
5	/SS1 / PTE4	6	MISO1 / PTE5			
7	MOSI1 / PTE6	8	SPSCK1 / PTE7			
9	GND	10	+3.3 V			

Table 2-12. Port CE Header Description

2.16.6 ADC Header

The eight input channels of the analog-to-digital conversion port are attached to this connector. Refer to Table 2-13 for connection information. There is an RC network on each of the analog port input signals; reference Figure 2-13.

J24					
Pin #	Signal	Pin #	Signal		
1	UNI-3 DCBV (AD1P0)	2	UNI-3 DCBI (AD1P1)		
3	DCBI PEAK (AD1P2)	4	DCBI AVERAGE (AD1P3)		
5	UNI-3 BEMFA (AD1P4)	6	UNI-3 BEMFB (AD1P5)		
7	UNI-3 BEMFC (AD1P6)	8	UNI-3 TEMP (AD1P7)		
9	GNDA	10	+3.3 V		

Table 2-13. ADC Header Description

Figure 2-13. Typical Analog Input RC Filter

MC9S08AW60 Controller Board Hardware User Manual, Rev. 0

Technical Summary

2.16.7 PWM Header

The six PWM interface output signals and one fault (IRQ) input signal are attached to this header. Table 2-14 shows connection information.

	J25					
Pin #	Signal	Pin #	Signal			
1	PWM0	2	PWM1			
3	PWM2	4	PWM3			
5	PWM4	6	PWM5			
7	NC	8	IRQ			
9	GND	10	+3.3 V			

Table 2-14. PWM Header Description

2.16.8 KBI Header

Five general-purpose input/output port G pins are attached to this header. These pins are shared with KBI1 module. Table 2-15 shows connection information.

	J26				
Pin #	Signal	Pin #	Signal		
1	KBI1P0 / PTG0	2	KBI1P1 / PTG1		
3	KBI1P2 / PTG2	4	KBI1P3 / PTG3		
5	KBI1P4 / PTG4	6	NC		
9	GND	10	+3.3 V		

Table 2-15. KBI Header Description

2.16.9 ZGB Header

This header serves to connect the ZigBee module or other external peripherals that use the serial communication protocol. Refer to Table 2-16 for connection information.

J30			
Pin #	Signal	Pin #	Signal
1	NC	2	GND
3	RxD2	4	NC
5	TxD2	6	+3.3V

Table 2-16. ZGB Header Description

2.17 Test Points

The MC9S08AW60 controller board has 18 test pins. The four test pins are located near the corners of the board and provide a digital ground (GND) signal for easy oscilloscope attachment.

Technical Summary

Appendix A. MC9S08AW60 Controller Board Schematics

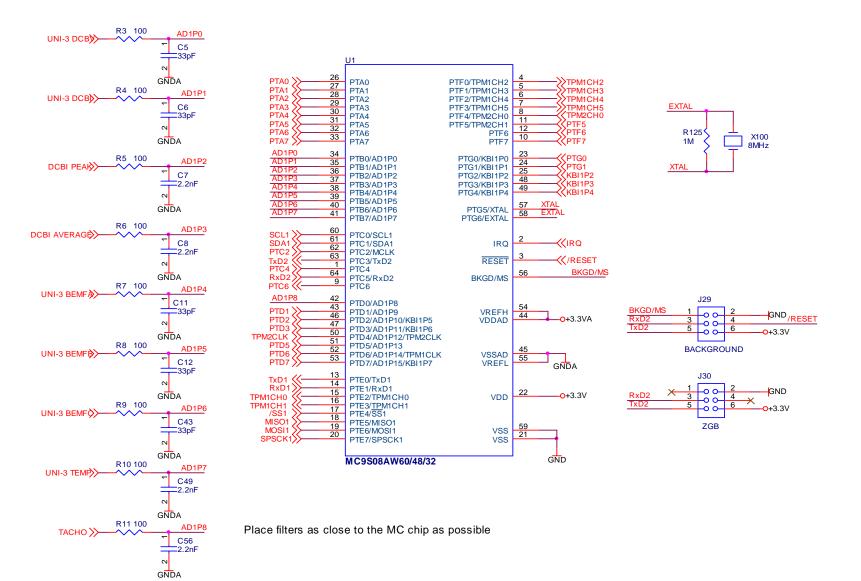


Figure A-1. MC9S08AW60 Controller

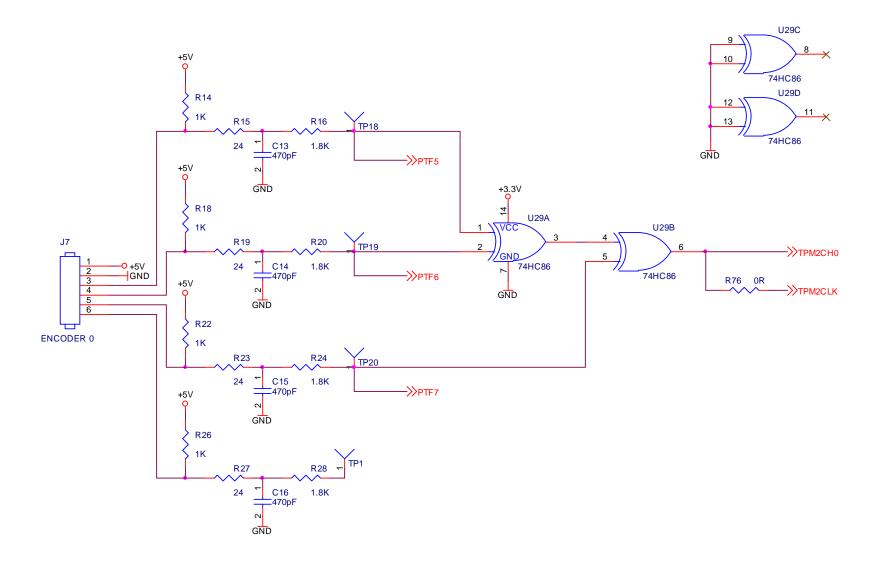


Figure A-2. Encoder Interface

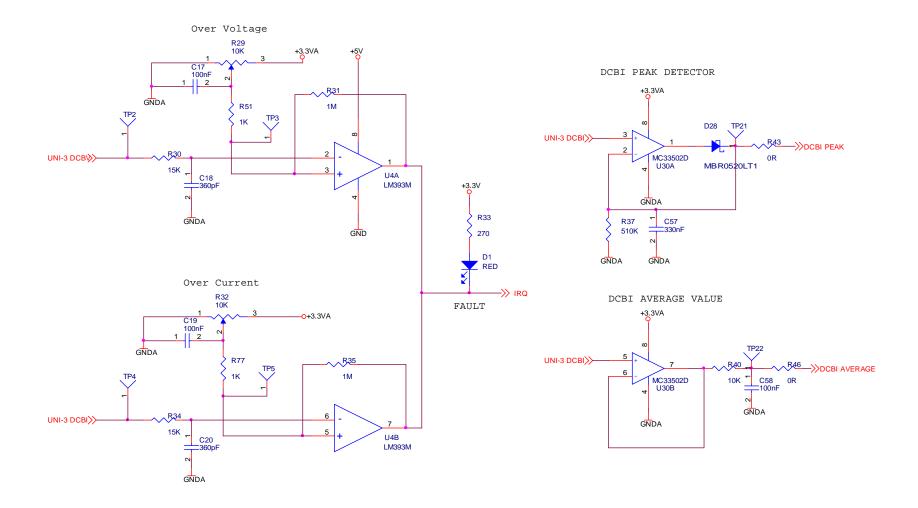
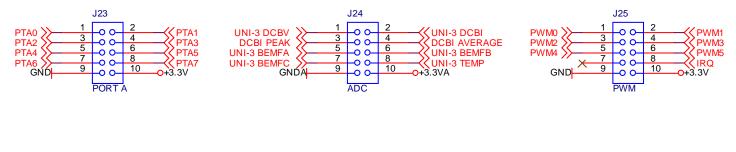



Figure A-3. Fault and DCBI

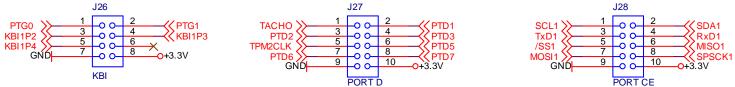


Figure A-4. Headers

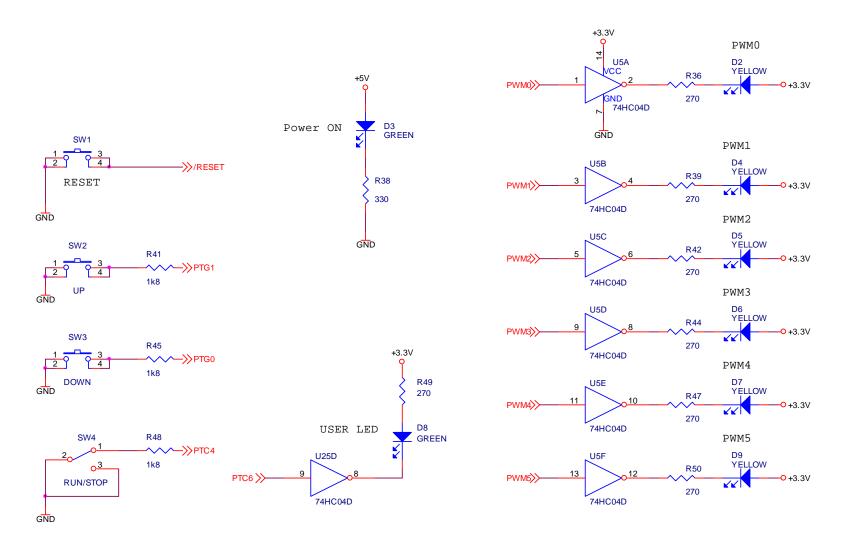
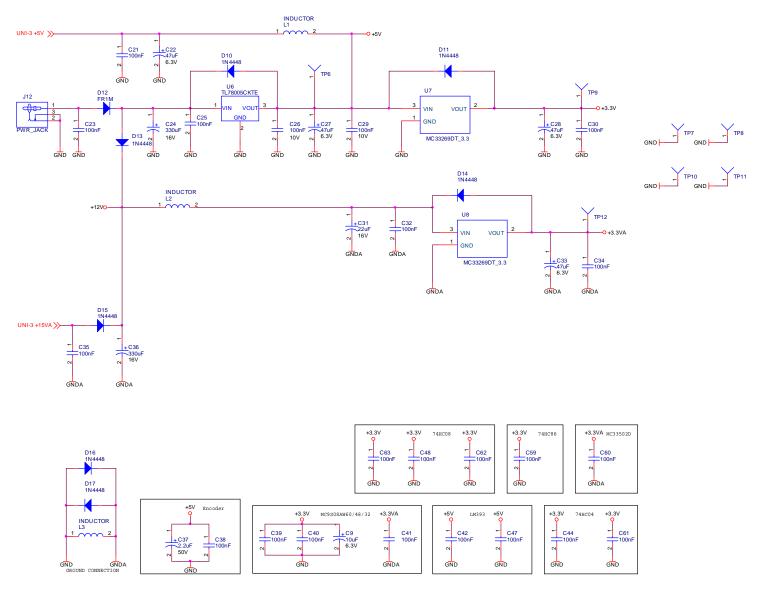



Figure A-5. LEDs and Buttons

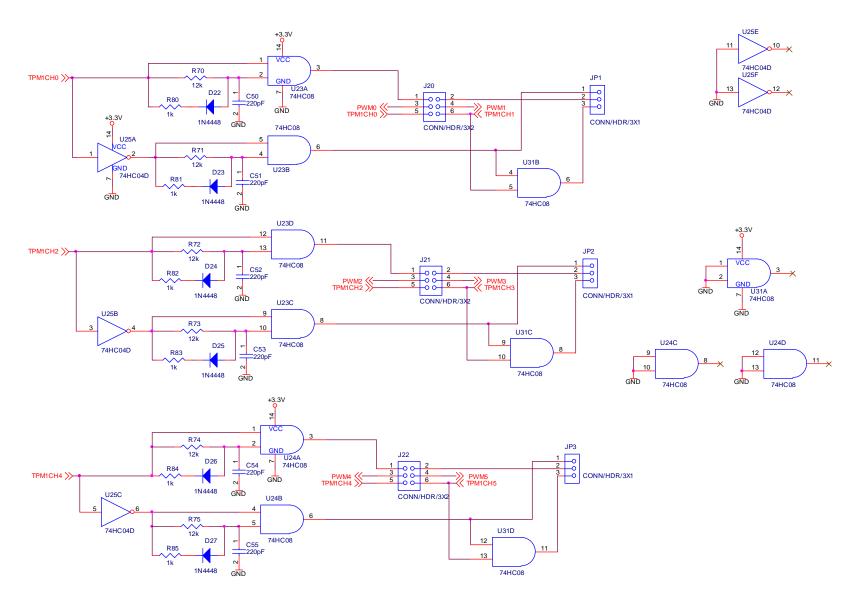


Figure A-7. PWM Interface

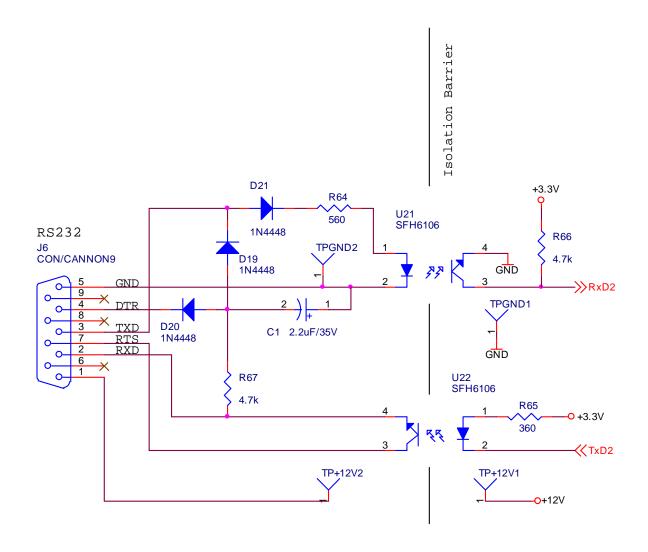


Figure A-8. RS232 Interface

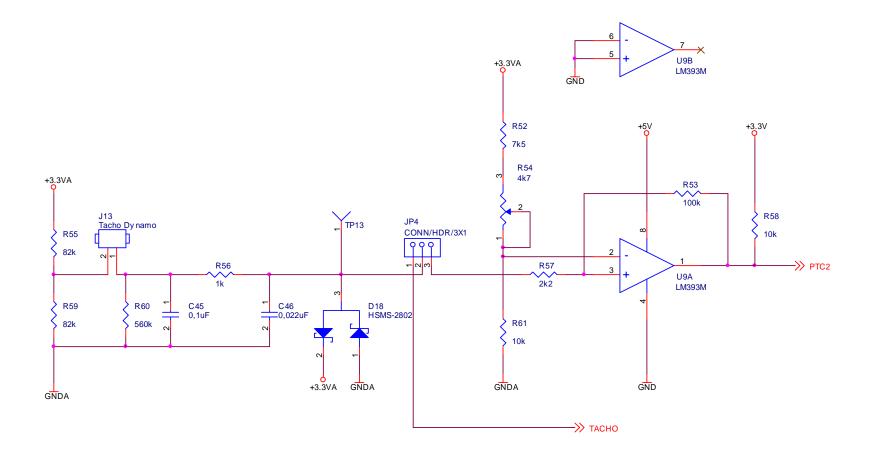
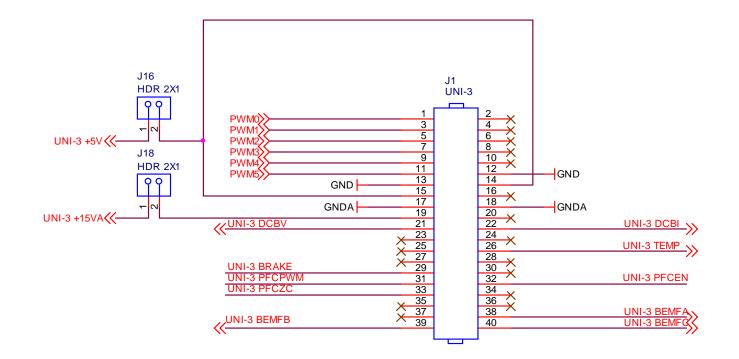
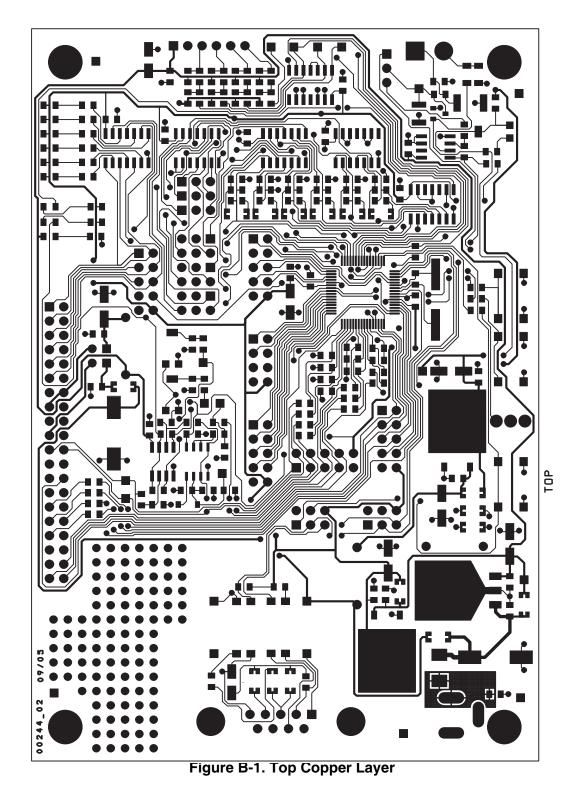
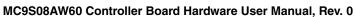


Figure A-9. Tacho-generator Interface

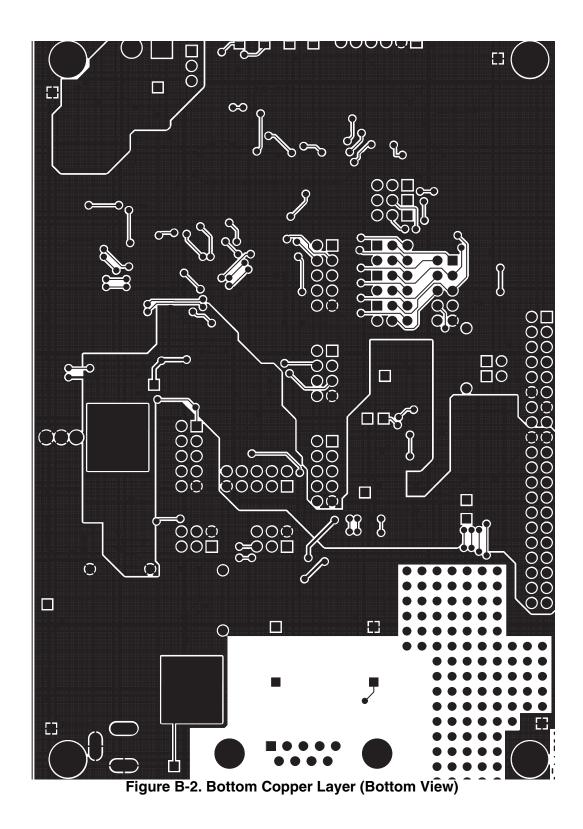


Figure A-10. UNI-3 Connector

Appendix B. MC9S08AW60 Controller Board PCB

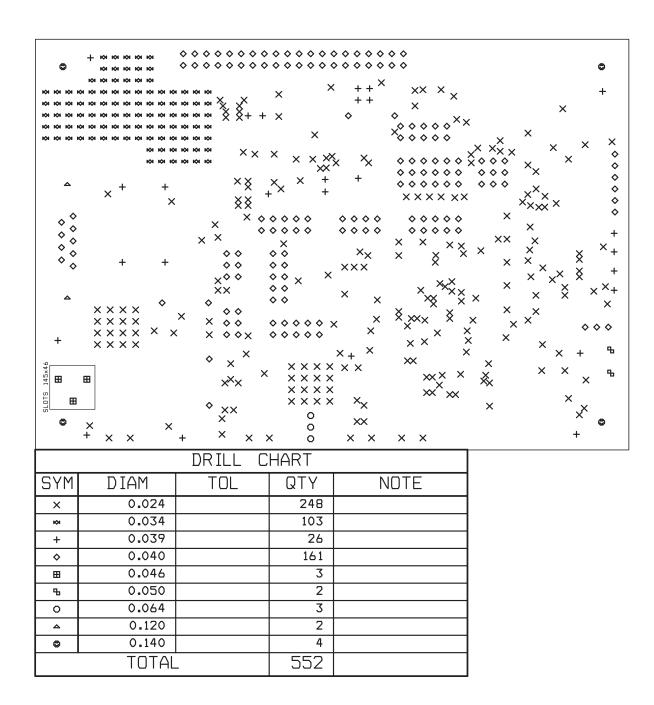


Figure B-3. Drill Copper Map

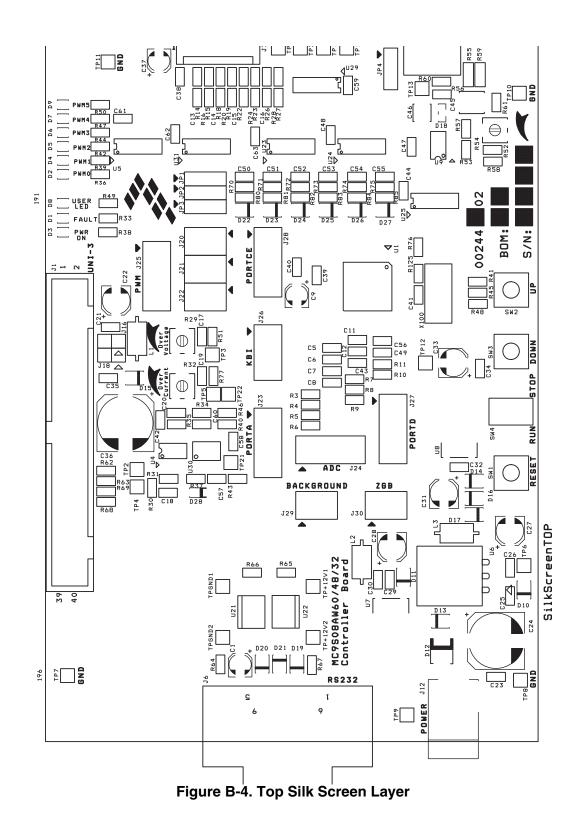


Figure B-5. Top Board View

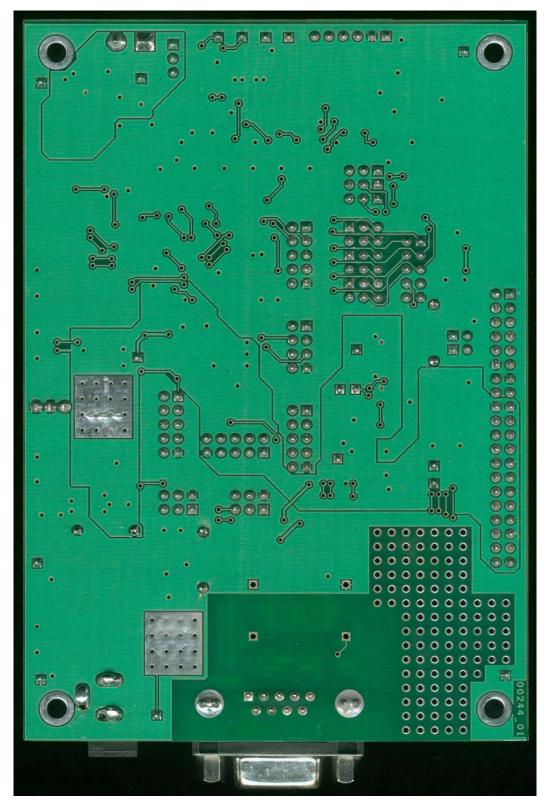


Figure B-6. Bottom Board View

Appendix C. MC9S08AW60 Controller Board Bill of Materials

Item	Qty	Description	Reference Designators	Part #/ Value	
Capacitors					
1	1	SMD, Polarized, Aluminum, size B	C1	2.2 uF/35 V	
2	5	SMD, Ceramic, size 0805	C5,C6,C11,C12,C43	33 pF	
3	4	SMD, Ceramic, size 0805	C7,C8,C49,C56	2. 2nF	
4	1	SMD, Polarized, Aluminium, size B	C9	10 uF/6.3 V	
5	4	SMD, Ceramic, size 0805	C13,C14,C15,C16	470 pF	
6	25	SMD, Ceramic, size 0805	C17,C19,C21,C23,C25,C26, C29,C30,C32,C34,C35,C38, C39,C40,C41,C42,C44,C47, C48,C58,C59,C60,C61,C62, C63	100 nF	
7	2	SMD, Ceramic, size 0805	C18,C20	360 pF	
8	4	SMD, Polarized, Aluminium, size C	C22,C27,C28,C33	47 uF/6.3 V	
9	1	SMD, Polarized, Aluminium, size C	C31	22 uF/16 V	
10	2	SMD, Polarized, Aluminium, size G	C24,C36	330 uF/16 V	
11	1	SMD, Polarized, Aluminium, size B	C37	2.2 uF/50 V	
12	1	SMD, Ceramic, size 1812	C45	0,1 uF	
13	1	SMD, Ceramic, size 1210	C46	0,022 uF	
14	6	SMD, Ceramic, size 0805	C50,C51,C52,C53,C54,C55	220 pF	
15	1	SMD, Ceramic, size 0805	C57	330 nF	
		Diod	es / LEDs		
16	1	SMD LED, size 0805	D1	RED	
17	6	SMD LED, size 0805	D2,D4,D5,D6,D7,D9	YELLOW	
18	2	SMD LED, size 0805	D3,D8	GREEN	
19	16	SMD, minimelf	D10,D11,D13,D14,D15,D16, D17,D19,D20,D21,D22,D23, D24,D25,D26,D27	1N4448	
20	1	DO-214AAD	D12	FR1M	
21	1	SMD, SOT-23	D18	HSMS-2802	
22	1	SMD, SOD-123	D28	MBR0520LT1	

Item	Qty	Description	Reference Designators	Part #/ Value		
	Connectors / Jumpers					
23	4	Header 3X1, male, 2.54 mm	JP1,JP2,JP3,JP4	CONN/HDR/3X1		
24	1	MLW40G, 20X2 connector, male, 2.54 mm	J1	UNI-3		
25	1	Cannon 9-pin DB9, 90° for PCB, female	J6	CON/CANNON9		
26	1	PSH02-06P, 6-pin connector with key and lock	J7	ENCODER 0		
27	1	Coax power connector, 2.1 mm, min. 8 A	J12	PWR_JACK		
28	1	ARK500/2, 2-pin connector	J13	Tach-dynamo		
29	2	Header 2X1, male, 2.54 mm	J16,J18	HDR 2X1		
30	5	Header 3X2, male, 2.54 mm	J20,J21,J22, J29, J30	CONN/HDR/3X2		
31	5	Header 5X2, male, 2.54 mm	J23, J24, J25, J27, J28	CONN/HDR/5X2		
32	1	Header 4X2, male, 2.54 mm	J26	CONN/HDR/4X2		
33	18	Header 1X1, male	TP1,TP2,TP3,TP4,TP5,TP6, TP7,TP8,TP9,TP10,TP11, TP12,TP13,TP18,TP19,TP20, TP21,TP22,	TEST POINT		
	Inductors					
34	3	TH/2PIN_400X140 Ferrite core bead, d3.8x5.3	L1,L2,L3	INDUCTOR		
		R	esistors			
35	9	SMD, size 0805	R3,R4,R5,R6,R7,R8,R9,R10, R11	100R		
36	13	SMD, size 0805	R14,R18,R22,R26,R51,R56, R77,R80,R81,R82,R83,R84, R85	1k		
37	4	SMD, size 0805	R15,R19,R23,R27	24R		
38	7	SMD, size 0805	R16,R20,R24,R28,R41,R45, R48	1.8K		
39	2	SMD, size 0805	R30,R34	15K		
40	2	SMD, size 0805	R31,R35	1M		
41	9	SMD, size 0805	R33,R36,R39,R42,R44,R47, R49,R50	270R		
42	1	SMD, size 0805	R38	330R		
43	1	SMD, size 0805	R37	510K		

Item	Qty	Description	Reference Designators	Part #/ Value		
44	3	SMD, size 0805	R40,R58,R61	10k		
45	7	SMD, size 0805	R43,R46,R62,R63,R68,R69,R 76	0R		
46	1	SMD, size 0805	R52	7k5		
47	1	SMD, size 0805	R53	100k		
48	2	SMD, size 1206	R55,R59	82k		
49	1	SMD, size 0805	R57	2k2		
50	1	SMD, size 0805	R60	560k		
51	1	SMD, size 0805	R64	560		
52	1	SMD, size 0805	R65	360		
53	2	SMD, size 0805	R66,R67	4.7k		
54	6	SMD, size 0805	R70,R71,R72,R73,R74,R75	12k		
	Trimmers					
55	2	SMD trimmer	R29,R32	10K		
56	1	SMD trimmer	R54	4k7		
		Switches	/ Push Buttons			
57	1	SMD microswitch, push-button	SW1	RESET		
58	1	SMD microswitch, push-button	SW2	UP		
59	1	SMD microswitch, push-button	SW3	DOWN		
60	1	Lever switch, MS244LC, P-B070B	SW4	RUN/STOP		
		Integra	ted Circuits			
61	1	SMD, LQFP64	U1	MC9S08AW60/48/32		
62	2	SMD, SOIC8	U4,U9	LM393M		
63	2	SMD, SOIC14	U5,U25	74HC04D		
64	1	SMD, D2PAK	U6	TL78005CKTE		
65	2	SMD, DPAK	U7,U8	MC33269DT_3.3		
66	2	SFH6106, Optocoupler, SMD	U21,U22	SFH6106		
67	3	SMD, SOIC14	U23,U24,U31	74HC08		
68	1	SMD, SOIC14	U29	74HC86		
69	1	SMD, SOIC8	U30	MC33502D		

Item	Qty	Description	Reference Designators	Part #/ Value	
NOT POPULATED PARTS					
70	4	Header 1X1, male	TPGND1,TPGND2,TP+12V1,T P+12V2		
71	1	SMD, size 0805	R125	1M	
72	1	8 MHz crystal, SD/HC49	X100	8 MHz	

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Bluetooth trademarks are owned by their proprietor and used by Freescale Semiconductor, Inc. under license.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

DRM090 Rev. 0 10/2007