
INFORMIX-CLI

Programmer’s Manual

INFORMIX-OnLine Dynamic Server, Version 7.2x
INFORMIX-OnLine Workgroup Server, Version 7.2x
INFORMIX-OnLine XPS, Version 8.1x
INFORMIX-SE, Version 7.2x
INFORMIX-Universal Server, Version 9.1x

®

Version 2.8
October 1997
Part No. 000-4165

ii INFORMIX-CLI Progra
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright 1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

This book incorporates text that is copyright 1994 Microsoft Corporation. This text was taken by permission
from Microsoft’s Programmer’s Reference: Microsoft Open Database Connectivity Software Development Kit, Version
2.0.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

INFORMIX®; INFORMIX®-OnLine Dynamic Server; DataBlade®

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Microsoft Corporation: Microsoft; Windows; Windows NT; Windows 95; Windows for Workgroups;
ODBC

X/Open Company Ltd.: UNIX®; X/Open®

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Twila Booth, Lynne Casey, Jennifer Leland

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
mmer’s Manual

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Types of Users 3
Software Dependencies 4
Demonstration Database 4

Documentation Conventions 5
Typographical Conventions 5
Icon Conventions 6
Screen-Illustration Conventions 8

Additional Documentation 9
On-Line Manuals 9
Printed Manuals 9
On-Line Help 10
Error Message Files 10
Documentation Notes and Release Notes 11

Compliance with Industry Standards 12
Informix Welcomes Your Comments 12

Chapter 1 Overview of INFORMIX-CLI
What Is INFORMIX-CLI? 1-3

Architecture 1-3
Advantages of Using INFORMIX-CLI 1-7

Isolation and Lock Levels 1-8
INFORMIX-CLI Libraries 1-8
Environment Variables on UNIX 1-9

Setting Environment Variables in a File 1-9
Setup File . 1-10

iv INFOR
GLS . 1-11
Client Locale 1-11
Database Locale 1-12
Translation Library 1-12
Translation Option 1-12
VMB Character 1-13

Chapter 2 Configuring Data Sources
Configuring Data Sources on Windows 2-3

Adding a Data Source 2-4
Modifying a Data Source 2-7

Configuring Data Sources on UNIX 2-9
File Format for odbc.ini 2-10
File Format for odbcinst.ini 2-14
Adding a Data Source 2-14
Modifying a Data Source 2-15

Chapter 3 Guidelines for Calling INFORMIX-CLI Functions
Conformance Levels 3-3

API Conformance Levels 3-3
SQL Conformance Levels 3-5
Verifying INFORMIX-CLI Conformance Levels 3-6

Using the Driver Manager 3-7
Calling Functions 3-8

Buffers . 3-8
Environment, Connection, and Statement Handles 3-11
Using Data Types. 3-12
Function Return Codes. 3-12

How an Application Uses the INFORMIX-CLI API 3-13

Chapter 4 Connecting to a Data Source
Initializing the Environment 4-3
Allocating a Connection Handle 4-4
Connecting to a Data Source 4-4

Using SQLConnect 4-4
Using SQLDriverConnect 4-5
Using SQLBrowseConnect 4-7
Connection Strings 4-7

Related Functions 4-15
MIX-CLI Programmer’s Manual

Chapter 5 Executing SQL Statements
SQL Statements and INFORMIX-CLI 5-3
Allocating a Statement Handle 5-5
Executing an SQL Statement 5-5

Prepared Execution 5-6
Direct Execution 5-7

Setting Parameter Values 5-7
Performing Transactions 5-9

Retrieving Information About the Data-Source Catalog 5-10
Sending Parameter Data at Execution Time 5-10
Specifying Arrays of Parameter Values. 5-11
Related Functions 5-12

Chapter 6 Retrieving Results
Result Sets and INFORMIX-CLI 6-3
Assigning Storage for Results (Binding) 6-4
Determining the Characteristics of a Result Set 6-5
Fetching Result Data 6-5
Using Cursors . 6-6

Retrieving Data from Unbound Columns 6-7
Assigning Storage for Row Sets (Binding). 6-7
Retrieving Row Set Data. 6-9
Using Block and Scrollable Cursors 6-9
Positioned Update and Delete Statements. 6-12
Processing Multiple Results 6-13

Chapter 7 Retrieving Status and Error Information
Function Return Codes 7-3
Error Messages 7-4

Error Text Format 7-5
Sample Error Messages 7-6

Processing Error Messages 7-7
Retrieving Error Messages 7-8

Chapter 8 Terminating Transactions and Connections
Terminating Statement Processing 8-3
Terminating Transactions 8-4
Terminating Connections 8-4
Table of Contents v

vi INFOR
Chapter 9 Constructing an INFORMIX-CLI Application
Static SQL Example 9-4
Interactive Ad-Hoc Query Example 9-7

Chapter 10 Designing Performance-Oriented Applications
Connecting to a Data Source 10-3

Making One Connection 10-3
Using Statement Handles 10-4

Retrieving Information About a Data Source 10-4
Minimizing the Use of Catalog Functions 10-4
Supplying Non-Null Arguments to Catalog Functions 10-5
Determining Table Characteristics 10-6

Retrieving Data 10-7
Retrieving Long Data 10-7
Using SQLSetStmtOption to Reduce the Size of Data Retrieved . 10-8
Using SQLBindCol to Reduce the Call Load 10-9
Using SQLExtendedFetch Versus SQLFetch 10-10

Executing Calls 10-11
Using SQLPrepare and SQLExecute Versus SQLExecDirect . . 10-11

Updating Data 10-12
Using Positioned Updates and Deletes 10-12
Determining the Optimal Set of Columns 10-12

Committing Data 10-14

Chapter 11 Function Summary
INFORMIX-CLI Function Summary 11-3

Connecting to a Data Source 11-4
Retrieving Information About a Driver and Data Source . . . 11-5
Setting and Retrieving Driver Options 11-5
Preparing SQL Requests 11-6
Submitting SQL Requests 11-6
Retrieving Results and Information About Results 11-7
Retrieving Information About Data-Source System Tables . . 11-8
Terminating a Statement 11-9
Terminating a Connection. 11-10

Setup Shared-Library Function Summary 11-10
Translation Shared-Library Function Summary 11-11
MIX-CLI Programmer’s Manual

Chapter 12 INFORMIX-CLI Function Reference
Arguments . 12-4
INFORMIX-CLI Include Files 12-7
Diagnostics . 12-7
Tables and Views 12-7
Catalog Functions 12-7
Search Pattern Arguments 12-8

Chapter 13 Setup Shared Library Function Reference
ConfigDSN . 13-3
ConfigTranslator 13-7

Appendix A INFORMIX-CLI Error Codes

Appendix B Data Types

Appendix C Comparison of
INFORMIX-CLI and Embedded SQL

Index
Table of Contents vii

Introduction

Introduction
About This Manual 3
Types of Users 3
Software Dependencies 4
Demonstration Database 4

Documentation Conventions 5
Typographical Conventions 5
Icon Conventions 6

Comment Icons 6
Feature, Product, and Platform Icons 7
Compliance Icons 8

Screen-Illustration Conventions 8

Additional Documentation 9
On-Line Manuals 9
Printed Manuals 9
On-Line Help 10
Error Message Files 10
Documentation Notes and Release Notes 11

Compliance with Industry Standards 12

Informix Welcomes Your Comments 12

2 INFOR
MIX-CLI Programmer’s Manual

R eadthis introduction for an overview of the information provided
in this manual and for an understanding of the documentation conventions
used.

About This Manual
This manual is a user guide and reference manual for INFORMIX-CLI, which
is the Informix implementation of the Microsoft Open Database Connectivity
(ODBC) interface, Version 2.5. This manual explains how to use the
INFORMIX-CLI application programming interface (API) to access an
Informix database and interact with an Informix database server.

Types of Users
This manual is for C programmers who are using INFORMIX-CLI to access
Informix relational databases. This manual assumes that you know C
programming and are familiar with the structure of relational databases.

If you have limited experience with relational databases, SQL, or your
operating system, see the Getting Started manual for your database server for
a list of supplementary manuals.
Introduction 3

Software Dependencies
Software Dependencies
This manual assumes that you are using INFORMIX-CLI, Version 2.8, on either
a Windows NT, Windows 95, or UNIX platform. In addition, you must use
one of the following Informix database servers:

■ INFORMIX-OnLine Dynamic Server, Version 7.2x

■ INFORMIX-OnLine Workgroup Server, Version 7.2x

■ INFORMIX-OnLine XPS, Version 8.1x

■ INFORMIX-SE, Version 7.2x

■ INFORMIX-Universal Server, Version 9.1x

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a script to build a demonstration database called stores7
that contains information about a fictitious wholesale sporting-goods
distributor. Sample command files are also included. Some database server
software allows you to build other demonstration databases as well.

Many examples in Informix manuals are based on the stores7 demonstration
database. For more information about installing stores7, see the DB-Access
User Manual for your database server.
4 INFORMIX-CLI Programmer’s Manual

Documentation Conventions
Documentation Conventions
This section describes the following conventions:

■ Typographical conventions

■ Icon conventions

■ Screen-illustration conventions

Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
Introduction 5

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.
6 INFORMIX-CLI Programmer’s Manual

Icon Conventions
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-, product-, or platform-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-, product-, or platform-
specific information.

Icon Description

Identifies information that is specific to the Informix Global
Language Support (GLS) feature.

Identifies information that is specific to
INFORMIX-Universal Server.

Identifies information that is specific to INFORMIX-OnLine
Dynamic Server.

Identifies information that is specific to INFORMIX-OnLine
Workgroup Server.

Identifies information that is specific to INFORMIX-SE.

Identifies information that is specific to the UNIX operating
system.

Identifies information that is specific to both Windows NT
and Windows 95 environments.

Identifies information that is specific to INFORMIX-OnLine
XPS.

GLS

IUS

ODS

OWS

SE

UNIX

Windows

XPS
Introduction 7

Screen-Illustration Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Screen-Illustration Conventions
The illustrations in this manual represent a generic rendition of various
windowing environments. The details of dialog boxes, controls, and
windows were deleted or redesigned to provide this generic look. Therefore,
the illustrations in this manual depict the ODBC Administrator graphical
interface a little differently than the way it appears on your screen. ♦

Icon Description

Identifies that a function supports the Core ODBC API
conformance level.

Identifies that a function supports the Level 1 ODBC API
conformance level.

Identifies that a function supports the Level 2 ODBC API
conformance level.

Core

Level 1

Level 2

Windows
8 INFORMIX-CLI Programmer’s Manual

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ On-line help

■ Error message files

■ Documentation notes and release notes

■ Related reading

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. When you place an order, please provide the
following information:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number
Introduction 9

On-Line Help
On-Line Help
The ODBC Administrator graphical interface contains Help screens that
provides information on how to configure a data source. ♦

Error Message Files
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. The finderr utility
displays these error messages on the screen. See the Introduction to the
Informix Error Messages manual for a detailed description of these error
messages.

To read the error messages in the ASCII file, Informix provides scripts that let
you display error messages on the screen (finderr) or print formatted error
messages (rofferr). For a detailed description of these scripts, see the
Introduction to the Informix Error Messages manual. ♦

Informix Find Error is a graphical tool. This utility has been created with
Microsoft help facilities. For more information, see the Introduction to the
Informix Error Messages manual. ♦

Windows

UNIX

Windows
10 INFORMIX-CLI Programmer’s Manual

Documentation Notes and Release Notes
Documentation Notes and Release Notes
In addition to printed documentation, the following on-line files supplement
the information in this manual. For UNIX, these files are located in the
$INFORMIXDIR/release/en_us/0333 directory. For Windows, these files are
located in the $INFORMIXDIR\release\en_us\04e4 directory.

Please examine these files because they contain vital information about
application and performance issues.

On-Line File Purpose

CLIDOC_2.8 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication. For Windows, click the INFORMIX-CLI
Document Notes icon.

CLIENTS_2.0 The CLIENTS_2.0 file lists the release-notes files for the 2.0
Client SDK. These release-notes files describe feature differ-
ences from earlier versions of Informix products and how
these differences might affect current products. These files
also contain information about any known problems and
their workarounds. For Windows, click the INFORMIX-CLI
Release Notes icon.

CLI_2.8 The machine notes file describes any special actions that are
required to configure and use Informix products on your
computer. ♦

UNIX
Introduction 11

Compliance with Industry Standards
Compliance with Industry Standards
INFORMIX-CLI is based on Version 2.5 of the Microsoft Open Database
Connectivity specification, which in turn is based on the X/Open Group SQL
Access Call-Level Interface (CLI) specification. The ODBC and CLI specifica-
tions provide a common and open interface through which ANSI-compliant
SQL is passed.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

650-926-6571

We appreciate your feedback.
12 INFORMIX-CLI Programmer’s Manual

1
Chapter
Overview of INFORMIX-CLI
What Is INFORMIX-CLI?. 1-3
Architecture . 1-3

Architecture with a Driver Manager 1-4
Architecture Without a Driver Manager 1-6
What Is a Data Source? 1-7

Advantages of Using INFORMIX-CLI 1-7

Isolation and Lock Levels 1-8

INFORMIX-CLI Libraries 1-8

Environment Variables on UNIX 1-9
Setting Environment Variables in a File 1-9
Setup File . 1-10

GLS . 1-11
Client Locale. 1-11
Database Locale 1-12
Translation Library 1-12
Translation Option 1-12
VMB Character 1-13

1-2 INFO
RMIX-CLI Programmer’s Manual

This chapter introduces INFORMIX-CLI, describes the conformance,
isolation, and lock levels, and discusses the UNIX environment variables.

What Is INFORMIX-CLI?
INFORMIX-CLI is the Informix implementation of the Microsoft Open
Database Connectivity (ODBC) standard. INFORMIX-CLI is a Call Level
Interface that supports SQL statements with a library of C functions. An
application calls these functions to implement ODBC functionality.

Architecture
INFORMIX-CLI consists of the following parts:

■ The INFORMIX-CLI libraries

These libraries provides the functions and values for the
INFORMIX-CLI application programming interface (API).

■ A driver manager

A driver manager provides an interface between an INFORMIX-CLI
application and the INFORMIX-CLI driver. It also checks parameters
and transitions. The following table describes the driver manager
requirements and options for each platform.

Environment Driver Manager

UNIX On UNIX, a driver manager is optional. You may purchase
a UNIX driver manager from a third-party vendor.

Windows In Windows environments, INFORMIX-CLI provides the
driver manager, which is mandatory.
Overview of INFORMIX-CLI 1-3

Architecture
■ The INFORMIX-CLI driver

The driver provides an interface between a data source and either a
driver manager or an application, depending on whether or not the
system architecture includes a driver manager. If a driver manager is
not included, the INFORMIX-CLI driver performs the driver manager
functions.

Architecture with a Driver Manager

Figure 1-1 on page 1-5 shows the INFORMIX-CLI architecture when a driver
manager is included in the system. In such a system, the driver and driver
manager look like a single unit that processes INFORMIX-CLI function calls.
1-4 INFORMIX-CLI Programmer’s Manual

Architecture
Figure 1-1
INFORMIX-CLI Architecture with a Driver Manager

Informix data source

Database

Operating system and
network software

DBMS (including
database server)

Informix data source

Database

Operating system and
network software

DBMS including
database server)

Server

INFORMIX-CLI

Client

Driver
manager

INFORMIX-CLI
driver

Application that
uses
INFORMIX-CLI
Overview of INFORMIX-CLI 1-5

Architecture
Architecture Without a Driver Manager

Figure 1-2 shows the INFORMIX-CLI architecture without a driver manager.
In this type of system, the application needs to link to the INFORMIX-CLI
libraries. See “INFORMIX-CLI Libraries” on page 1-8.

Figure 1-2
INFORMIX-CLI Architecture Without a Driver Manager

Informix data source

Database

Operating system and
network software

DBMS (including
database server)

Informix data source

Database

Operating system and
network software

DBMS including
database server)

Server

Client

INFORMIX-CLI
driver

Application that
uses
INFORMIX-CLI
1-6 INFORMIX-CLI Programmer’s Manual

Advantages of Using INFORMIX-CLI
What Is a Data Source?

A data source consists of the following parts:

■ A database management system (DBMS), including a database server

■ A database

■ The operating system and network software necessary for accessing
the database

Advantages of Using INFORMIX-CLI
INFORMIX-CLI has the following advantages:

■ It lets you develop applications that:

❑ connect to and disconnect from data sources.

❑ retrieve information about data sources.

❑ retrieve information about INFORMIX-CLI.

❑ set and retrieve INFORMIX-CLI options.

❑ prepare and send SQL statements.

❑ retrieve SQL results and process the results dynamically.

❑ retrieve information about SQL results and process the infor-
mation dynamically.

■ It is straightforward for application developers who are familiar
with function libraries

■ It does not use a preprocessor

■ It lets you allocate storage for results before or after the results are
available. This feature lets you determine the results and the action
to take without the limitations that predefined data structures
impose.
Overview of INFORMIX-CLI 1-7

Isolation and Lock Levels
Isolation and Lock Levels
If an INFORMIX-CLI application is connected to INFORMIX-Universal Server
or INFORMIX-OnLine Dynamic Server, INFORMIX-CLI supports the
following isolation levels:

■ 0 (Read Uncommitted)

■ 1 (Read Committed)

■ 3 (Serializable)

The default is 1. ♦

INFORMIX-CLI also supports an alternative isolation level 1, called cursor
stability. For information about this option, see “SQLSetConnectOption” on
page 12-281.

INFORMIX-CLI supports transactions only if transaction logging has been
enabled for your database. The driver is always in auto-commit mode which
treats each statement as a single transaction.

INFORMIX-CLI Libraries
For the locations and filenames of the INFORMIX-CLI libraries, see the Release
Notes.

INFORMIX-CLI provides two versions of its libraries: shared and static. To
link an application with an INFORMIX-CLI library, specify an additional link-
library search path for the INFORMIX-CLI library and other library names. For
example:

cc -L$INFORMIXDIR/lib/cli -libifcli -laio -lm -lnsl -lsocket

This command finds the archive library, the shared library, and other system-
dependent libraries. ♦

ODS

IUS

UNIX
1-8 INFORMIX-CLI Programmer’s Manual

Environment Variables on UNIX
Environment Variables on UNIX
Set the INFORMIXDIR environment variable to the full path of the directory
where your Informix product is installed. The UNIX environment variable,
PATH, indicates the directories that are searched for executable programs.
Your PATH setting must include the path to your $INFORMIXDIR/bin
directory.

Setting Environment Variables in a File
If you set these variables at the command line, you must reset them whenever
you log on to your system. If you set these variables in a file, they are set
automatically when you log on to your system.

For example, if your Informix directory path is /usr/informix, in the C shell
you can add the following lines to your .cshrc file to set the INFORMIXDIR
and PATH environment variables:

setenv INFORMIXDIR /usr/informix
setenv PATH ${PATH}:${INFORMIXDIR}/bin

In the Bourne or Korn shells, you can add the following lines to your .login
or .profile file:

INFORMIXDIR=/usr/informix; export INFORMIXDIR
PATH=${PATH}:$INFORMIXDIR/bin; export PATH

UNIX
Overview of INFORMIX-CLI 1-9

Setup File
Setup File
INFORMIX-CLI provides a sample setup file called setup.odbc in
$INFORMIXDIR/etc. You can use this file to set up environment variables for
the INFORMIX-CLI driver. This file includes the following environment
variables:

■ INFORMIXDIR

INFORMIXDIR specifies the directory where the INFORMIX-Enter-
prise Client Software Developer’s Kit is installed.

■ INFORMIXSQLHOSTS

INFORMIXSQLHOSTS is optional. It specifies the directory that
contains sqlhosts. By default, sqlhosts is in $INFORMIXDIR/etc. Set
INFORMIXSQLHOSTS if you want sqlhosts to be in a different
directory.

For more information about environment variables, see the Informix Guide to
SQL: Reference.

For information about the Global Language Support (GLS) environment
variables, see the Informix Guide to GLS Functionality. ♦

GLS
1-10 INFORMIX-CLI Programmer’s Manual

GLS
GLS
Informix products can support many languages, cultures, and code sets. GLS
provides support for all language- and culture-specific information. The
following table describes how to set the GLS options depending on your
platform..

The rest of this section describes the GLS options for INFORMIX-CLI. For more
information about GLS and locales, see the Informix Guide to GLS
Functionality.

Client Locale

Environment How to Set GLS Options

UNIX Specify the GLS options in the odbc.ini file. For more information,
see “Configuring Data Sources on UNIX” on page 2-9.

Windows Specify the GLS options in the INFORMIX-CLI DSN Setup dialog
box. For more information, see “Configuring Data Sources on
Windows” on page 2-3.

Description: Locale and codeset that the application runs
in

Format: locale.codeset@modifier

odbc.ini field for UNIX: CLIENT_LOCALE

Default value for Windows: en_us.1252

GLS
Overview of INFORMIX-CLI 1-11

Database Locale
Database Locale

Translation Library

Translation Option

Important: Do not set this option for an Informix translation library. An Informix
translation library determines the translation option based on the client locale and
database locale values.

Description: Locale and codeset that the database was
created in

Format: locale.codeset@modifier

odbc.ini field for UNIX: DB_LOCALE

Default value for Windows: en_us.1252

Description: Performs the codeset conversion

Format: Path to the file for the library. The translation
DLL must follow the ODBC standard for trans-
lation libraries. For more information, see
“SQLSetConnectOption” on page 12-281.

odbc.ini field for UNIX: TRANSLATIONDLL

Default value for Windows: %INFORMIXDIR%\bin\igo4n304.dll

Description: Option for a non-Informix translation library

Format: Determined by the vendor

odbc.ini field for UNIX: TRANSLATION_OPTION

Default value for Windows: Determined by the vendor
1-12 INFORMIX-CLI Programmer’s Manual

VMB Character
VMB Character

♦

Description: Varying multibyte character length reporting
option that specifies how to set pcbValue when
rgbValue (the output area) is not large enough
for the code-set-converted data. The possible
values are:

Estimate = INFORMIX-CLI makes a worst-case
estimate of the storage space needed to return
the data. This is the default value.

Exact = INFORMIX-CLI writes the code-set-
converted data to disk until all of the data is
converted. Because this option can degrade
performance, Informix recommends that you
do not use this option unless your application
does not work with the Estimate option.

When you use a multibyte code set (in which
characters vary in length, ranging from 1 to 4
bytes) as either the database or client locale,
the length of a character string or simple large
object (TEXT) in the database locale does not
indicate the length of the string after it is
converted to the client locale.

Possible values for UNIX: 0 = Estimate
1 = Exact

Possible values for Windows: Estimate
Exact

odbc.ini field for UNIX: VMBCHARLENEXACT

Default value for Windows: Estimate
Overview of INFORMIX-CLI 1-13

2
Chapter
Configuring Data Sources
Configuring Data Sources on Windows 2-3
Adding a Data Source 2-4
Modifying a Data Source 2-7

Configuring Data Sources on UNIX 2-9
File Format for odbc.ini 2-10

ODBC Data Sources 2-11
Data Source Specification 2-12

File Format for odbcinst.ini. 2-14
Adding a Data Source 2-14
Modifying a Data Source 2-15

2-2 INFO
RMIX-CLI Programmer’s Manual

This chapter explains how to configure data sources. Before you can
connect to a data source, you must configure it. For information about data
sources, see “What Is a Data Source?” on page 1-7.

Configuring Data Sources on Windows
In Windows environments, INFORMIX-CLI provides the ODBC Adminis-
trator, which lets you configure data sources. The ODBC Administrator
provides a graphical user interface (GUI) that simplifies the process of adding
and modifying data sources. After you add or change data-source configu-
ration information, the ODBC Administrator updates the appropriate files to
reflect the specified values.

Warning: To be compatible with other Informix connectivity products,
INFORMIX-CLI no longer stores the data source configuration information in the
odbc.ini file. Instead, Informix products store data source configuration information
in a set of files. Therefore, modifying odbc.ini has unpredictable system results. Use
the ODBC Administrator to add or modify data sources. This warning applies only
to Windows environments.

Windows
Configuring Data Sources 2-3

Adding a Data Source
Adding a Data Source
When you add a data source, you must provide the name of the data source
and the name of the database to which you want to connect to by default. All
other connection information is optional.

The following table lists the required information that you must set when
you add a data source.

The following table lists optional information that you can set when you add
a data source.

Keyword-Attribute Description

Data Source Name Name of a data source as returned by SQLDataSources or the
data sources dialog box of SQLDriverConnect

Database Name of the database to which you want to connect by default

Attribute Description

Host The name of the computer on which the Informix database
server resides

Protocol The protocol used to communicate with the database server

In Windows environments, values can be xxSOCTCP or
xxSOCSPX where xx represents OL, ON, or SE.

PWD The user’s password for the database server

Server The name of the Informix database server on which the
database that you want to access resides

Service The name assigned to the Informix database server process that
runs on your UNIX computer

Confirm the service name with your system administrator.

UID The user ID or account name for access to the data source
2-4 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
To add a data source

1. Start the ODBC Administrator.

The Data Sources dialog box appears, as Figure 2-1 illustrates.

2. Click Add.

The Add Data Source dialog box appears, as Figure 2-2 illustrates.

3. Select Informix 2.80 from the Installed ODBC Drivers list.

Figure 2-1
Data Sources

Dialog Box

Figure 2-2
Add Data Source

Dialog Box

Options Drivers

User Data Sources (Driver)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete

Select which ODBC Driver you want to use

Add Data Source

OK

Cancel

Help

from the list, then choose OK.

Installed ODBC Drivers

INFORMIX 2.80
Configuring Data Sources 2-5

Adding a Data Source
4. Click OK.

The INFORMIX-CLI DSN Setup dialog box appears, as Figure 2-3
illustrates.

5. In the Data Source Name text box, enter the name of the data source
to access.

You define the Data Source Name; that is, it can be any name that
you choose. The Data Source Name is like an envelope that contains
all relevant connection information about the data source.

6. In the Database text box, enter the name of the database to which you
want to connect by default.

You now have entered enough information to connect to the data
source.

7. Enter any additional information that you want to specify about this
data source. For a description of optional data, see “Adding a Data
Source” on page 2-4.

Figure 2-3
INFORMIX-CLI DSN

Setup Dialog Box

Data Source Name:

Database:

Server:

Host:

INFORMIX CLI DSN Setup

Service:

Protocol:

UID:

PWD:

Change data source name, description, or options.
Then Choose OK

Note: UID and PWD are Optional.
If specified, PWD will be encrypted.

OK Cancel
2-6 INFORMIX-CLI Programmer’s Manual

Modifying a Data Source
8. Click OK.

The Data Sources dialog box appears again.

9. To add another data source, click Add. To exit the Data Sources
dialog box, click Close.

When you click OK in the INFORMIX-CLI DSN Setup dialog box, the ODBC
Administrator updates the data source information in the appropriate files.

When you use a dialog box or connection string to connect to this data source,
the values that you entered are the default entries for the data-source
connection.

Modifying a Data Source
Data sources that you configured with earlier versions of INFORMIX-CLI are
not valid because they specify an earlier version of the INFORMIX-CLI library.
To use the features in INFORMIX-CLI, Version 2.8, delete the old data sources
and configure new data sources with the INFORMIX-CLI 2.8 driver.

To modify a data source

1. Invoke the ODBC Administrator.

The Data Sources dialog box appears, as Figure 2-4 illustrates.

Figure 2-4
Data Sources

Dialog Box

Options Drivers

User Data Sources (Driver)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete

Publications (Informix 2.80)
Accounts (Informix 2.80)
Configuring Data Sources 2-7

Modifying a Data Source
2. In the Data Sources dialog box, select the Informix data source that
you want to modify and click Setup.

The INFORMIX-CLI DSN Setup dialog box appears, as Figure 2-5
illustrates. The values that appear are the default entries specified for
this data-source connection.

3. Modify the applicable data-source text boxes. For more information
regarding available options, see “Adding a Data Source” on
page 2-4.

4. When you finish, click OK.

The ODBC Administrator updates the data source information in the
appropriate files.

When you connect to this data source using either a dialog box or connection
string, the values that you entered appear as the new default entries for the
data-source connection. ♦

Figure 2-5
A Completed

INFORMIX-CLI DSN
Setup Dialog Box

Data Source Name:

Database:

Server:

Host:

INFORMIX CLI DSN Setup

Service:

Protocol:

UID:

PWD:

Change data source name, description, or options.
Then Choose OK

Note: UID and PWD are Optional.
If specified, PWD will be encrypted.

eng_accounts

server1

bear

turbo

olsoctcp

eng12

Accounts

OK Cancel
2-8 INFORMIX-CLI Programmer’s Manual

Configuring Data Sources on UNIX
Configuring Data Sources on UNIX
Configuring a data source on UNIX involves the following files:

■ odbc.ini

The odbc.ini initialization file provides configuration information
about data sources. Every data source to which your application
connects must have an entry in this file. The information in odbc.ini
describes the following items:

❑ The database to access

❑ The server associated with the database

❑ The host on which the DBMS resides

❑ The network protocol used to access that platform

■ odbcinst.ini

The odbcinst.ini file provides configuration information about
ODBC drivers. You need to modify this file only if you are using an
ODBC driver manager from a third-party vendor.

■ sqlhosts

The sqlhosts file describes the following items:

❑ The database server name

❑ The type of connection

❑ The name of the host computer

❑ The service name

For more information about sqlhosts, see the Administrator’s Guide
for your database server.

UNIX
Configuring Data Sources 2-9

File Format for odbc.ini
You can use a text editor to modify these files. The following table explains
where the files are located.

File Format for odbc.ini
The following table describes the sections in the odbc.ini file.

File Description

odbc.ini When you install INFORMIX-CLI, the installation script installs
a sample odbc.ini file in $INFORMIXDIR/etc. Copy the sample
odbc.ini file to your HOME directory.

odbcinst.ini Use the odbcinst.ini file that the installation script placed in
$INFORMIXDIR/etc.

sqlhosts Use the sqlhosts file that the installation script placed in
$INFORMIXDIR/etc.

Section Description Status

ODBC Data Sources This section lists the data sources and
associates them with the INFORMIX-CLI
driver. You need to provide this section only
if you use an ODBC driver manager from a
third-party vendor.

Optional

Data Source
Specification

Each data source listed in the ODBC Data
Sources section has a Data Source Specifi-
cation section that describes the data source.

Required
2-10 INFORMIX-CLI Programmer’s Manual

File Format for odbc.ini
ODBC Data Sources

Each entry in the ODBC Data Sources section lists a data source and the
INFORMIX-CLI driver name. You need to provide this section only if you use
an ODBC driver manager from a third-party vendor.

Format

[ODBC Data Sources]
data_source_name = INFORMIX-CLI 2.8 Driver
data_source_name = INFORMIX-CLI 2.8 Driver
.
.
.

Example

The following example defines a data source called EmpInfo:

[ODBC Data Sources]
EmpInfo = INFORMIX-CLI 2.8 Driver

Field Description Status

data_source_name Data source that an INFORMIX-CLI appli-
cation can access. Use any data source name
that you choose.

Required
Configuring Data Sources 2-11

File Format for odbc.ini
Data Source Specification

Each data source in the ODBC Data Sources section has a Data Source Speci-
fication section.

Format

[data_source_name]
Driver = driver_path
Description = data_source_description
Database = database_name
UID = user_id
PWD = user_password
Server = database_server
CLIENT_LOCALE = application_locale
DB_LOCALE = database_locale
TRANSLATIONDLL = translation_path
VMBCHARLENEXACT = output_option

Field Description Status

data_source_name Data source specified in the ODBC Data
Sources section

Required

driver_path Path for the INFORMIX-CLI driver Required

data_source_description Description of the INFORMIX-CLI driver Optional

database_name Name of the database that is associated with
the data source

Required

user_id User ID for connecting to the data source Optional

user_password Password for connecting to the data source Optional

database_server Name of the database server that is
associated with the data source

Required

application_locale Locale and code set in which the application
runs

Default value: en_us.8859-1

Optional

 (1 of 2)

GLS
2-12 INFORMIX-CLI Programmer’s Manual

File Format for odbc.ini
For more information about the GLS fields, see “GLS” on page 1-11.

Example

The following example shows the configuration for a data source called
EmpInfo:

[EmpInfo]
Driver = /informix/lib/cli/iclis09a.so
Description = Demo data source
Database = stores7
UID = admin
PWD = tiger
Server = ifmx_91
CLIENT_LOCALE = en_us.8859-1
DB_LOCALE = de_de.646de
TRANSLATIONDLL = /opt/informix/lib/esql/igo4a304.so
VMBCHARLENEXACT = 0

database_locale Local and code set in which the database
was created

Default value: en_us.8859-1

Optional

translation_path Performs the code-set conversion.

Default value:
$INFORMIXDIR/lib/esql/ig04a304.xx, where
xx represents a platform-specific file
extension

Optional

output_option Varying multibyte character length
reporting option that specifies how to set
pcbValue when rgbValue (the output area) is
not large enough for the code-set-converted
data. Possible values:

■ 0 = Estimate

■ 1 = Exact

Default value: 0♦

Optional

Field Description Status

 (2 of 2)
Configuring Data Sources 2-13

File Format for odbcinst.ini
File Format for odbcinst.ini
The following table describes the sections in the odbcinst.ini file.

Adding a Data Source
1. Add a Data Source Specification section for the data source to

odbc.ini.

2. If necessary, add an entry for the database server to sqlhosts.

3. If you use an ODBC driver manager from a third-party vendor:

a. If the ODBC Data Sources section does not already exist in
odbc.ini, create it.

b. Add an entry for the data source to the ODBC Data Sources
section in odbc.ini.

c. If odbcinst.ini does not already have an entry for the
INFORMIX-CLI driver in the ODBC Drivers section, add the entry.

d. If odbcinst.ini does not already have a Driver Specification
section for the INFORMIX-CLI driver, add the section.

Section Description Status

ODBC Drivers Lists the INFORMIX-CLI driver. Required

Driver Specification Describes the INFORMIX-CLI driver. Required

Default Driver
Specification

Specifies the driver to use when none is
specified. The default driver is the
INFORMIX-CLI driver.

Required

ODBC Translators Lists each available translator. Required

Translator Specification Each translator listed in the ODBC Trans-
lators section has a Translator Specification
section that describes the translator.

Required
2-14 INFORMIX-CLI Programmer’s Manual

Modifying a Data Source
Modifying a Data Source
To modify a data source, modify the Data Source Specification section for the
data source in odbc.ini. ♦
Configuring Data Sources 2-15

3
Chapter
Guidelines for Calling
INFORMIX-CLI Functions
Conformance Levels 3-3
API Conformance Levels 3-3
SQL Conformance Levels 3-5
Verifying INFORMIX-CLI Conformance Levels. 3-6

Using the Driver Manager 3-7

Calling Functions 3-8
Buffers . 3-8

Input Buffers 3-9
Output Buffers 3-10

Environment, Connection, and Statement Handles 3-11
Using Data Types 3-12
Function Return Codes 3-12

How an Application Uses the INFORMIX-CLI API 3-13

3-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes the conformance levels, the driver manager,
the general characteristics of INFORMIX-CLI functions, and the basic
procedure for using the API.

Conformance Levels
This section describes the API and SQL conformance levels for the
INFORMIX-CLI driver.

API Conformance Levels
API conformance refers to the functions that an ODBC driver supports. The
API conformance standard consists of three levels: Core, Level 1, and Level 2.
The Core level consists of functions that correspond to the functions in the
CLI specification. Level 1 and Level 2 functions extend the core functionality.
Guidelines for Calling INFORMIX-CLI Functions 3-3

API Conformance Levels
The following table lists the functions that the ODBC standard defines.
INFORMIX-CLI supports all the Core functions and Level 1 functions.
INFORMIX-CLI supports the Level 2 functions except those marked with an
asterisk (*).

Core Level Functions Level 1 Functions Level 2 Functions

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact

SQLBindParameter

SQLColumns

SQLDriverConnect

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTables

SQLBrowseConnect

SQLColumnPrivileges

SQLDataSources

SQLDescribeParam *

SQLDrivers

SQLExtendedFetch

SQLForeignKeys

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLParamOptions *
SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLSetPos *
SQLSetScrollOptions

SQLTablePrivileges
3-4 INFORMIX-CLI Programmer’s Manual

SQL Conformance Levels
SQL Conformance Levels
SQL conformance refers to the SQL grammar that an ODBC driver supports.
The SQL conformance standard consists of three levels: Minimum, Core, and
Extended. INFORMIX-CLI supports all Minimum and Core SQL grammar,
which includes the following statements, expressions, and data types:

■ Data Definition Language (DDL) statements:

❑ CREATE TABLE

❑ DROP TABLE

❑ ALTER TABLE

❑ CREATE INDEX

❑ DROP INDEX

❑ CREATE VIEW

❑ DROP VIEW

❑ GRANT

❑ REVOKE

■ Data Manipulation Language (DML) statements:

❑ Full SELECT

❑ INSERT

❑ UPDATE

❑ SEARCHED

❑ DELETE SEARCHED

❑ Positioned UPDATE

❑ Positioned DELETE

❑ Outer joins

❑ Unions

■ Expressions:

❑ Simple (such as A>B+C)

❑ Subquery

❑ Set functions such as SUM and MIN

■ Data types:

See Appendix B.
Guidelines for Calling INFORMIX-CLI Functions 3-5

Verifying INFORMIX-CLI Conformance Levels
INFORMIX-CLI supports the following extended SQL grammar:

■ Numeric functions:

■ Date functions:

■ String functions:

■ System function sysusername

■ Procedure calls

■ Data types:

See Appendix B.

For more information about the numeric, date, string, and system functions,
see the Informix Guide to SQL: Syntax.

Verifying INFORMIX-CLI Conformance Levels
To verify the API conformance level, call SQLGetInfo with the
SQL_ODBC_SAG_CLI_CONFORMANCE and SQL_ODBC_API_CONFORMANCE
flags.

To verify the SQL conformance level, call SQLGetInfo with the
SQL_ODBC_SQL_CONFORMANCE flag. To verify SQL conformance for a
specific SQL extension, call SQLGetInfo with a flag for that extension. To
verify SQL conformance for a specific SQL data type, call SQLGetTypeInfo.

abs acos asin atan
atan2 cos cot exp
log log10 mod power
round sin sqrt tan
truncate

curdate dayofweek now
dayofmonth month year

concat LTRIM
length RTRIM
3-6 INFORMIX-CLI Programmer’s Manual

Using the Driver Manager
Using the Driver Manager
A driver manager is a shared library that provides an interface between an
INFORMIX-CLI application and the INFORMIX-CLI driver. It also checks
parameters and transitions. The following table describes the driver manager
requirements and options for each platform.

The following table describes the actions that the driver manager performs
for each function.

Environment Driver Manager

UNIX On UNIX, a driver manager is optional. You may purchase a
UNIX driver manager from a third-party vendor.

Windows In Windows environments, INFORMIX-CLI provides the driver
manager, which is mandatory. The driver manager file is
odbc32.dll.

Functions Action

SQLDataSources
SQLDrivers

The driver manager processes the call. It does not pass
the call to the driver.

SQLGetFunctions The driver manager passes the call to the driver
associated with the connection.

SQLAllocEnv
SQLAllocConnect
SQLSetConnectOption
SQLFreeConnect
SQLFreeEnv

The driver manager calls SQLAllocEnv,
SQLAllocConnect, and SQLSetConnectOption in
the driver when the application calls a function to
connect to the data source (SQLConnect,
SQLDriverConnect, or SQLBrowseConnect). The
driver manager calls SQLFreeConnect and
SQLFreeEnv in the driver when the application calls
SQLDisconnect.

SQLConnect
SQLDriverConnect
SQLBrowseConnect
SQLError

The driver manager performs initial processing and
then passes the call to the driver that is associated with
the connection.

All other functions The driver manager passes the call to the driver.
Guidelines for Calling INFORMIX-CLI Functions 3-7

Calling Functions
If requested, the driver manager records each called function in a trace file. It
records the name of the function, the values of the input arguments, and the
names of the output arguments as listed in the function definitions.

Tip: For improved performance, your application can bypass the driver manager and
link directly to the driver. This solution reduces computational overhead. If your
application takes advantage of this solution, however, it cannot use multiple drivers.

Calling Functions
Every INFORMIX-CLI function name starts with the prefix SQL. Each function
accepts one or more arguments. Arguments are defined as input (to the
driver) or output (from the driver).

An INFORMIX-CLI application must include the sql.h and sqlext.h header
files. These files define INFORMIX-CLI constants and types and provide
function prototypes for the INFORMIX-CLI functions.

Buffers
An application passes data to the driver in an input buffer. The driver returns
data to the application in an output buffer. The application must allocate
memory for both input and output buffers. If the application uses the buffer
to retrieve string data, the buffer must contain space for the null termination
byte.

Some functions accept pointers to buffers that are used later by other
functions. The application must ensure that these pointers remain valid until
all applicable functions have used them. For example, the argument rgbValue
in SQLBindCol points to an output buffer where SQLFetch returns the data
for a column.
3-8 INFORMIX-CLI Programmer’s Manual

Buffers
Input Buffers

An application passes the address and length of an input buffer to the driver.
The length of the buffer must be one of the following values:

■ A length greater than or equal to zero

This value is the actual length of the data in the input buffer. For
character data, a length of zero indicates that the data is an empty
(zero length) string. A length of zero is different from a null pointer.
If the application specifies the length of character data, the character
data does not need to be null-terminated.

■ SQL_NTS

This value specifies that a character data value is null-terminated.

■ SQL_NULL_DATA

This value tells the driver to ignore the value in the input buffer and
use a NULL data value instead. It is valid only when the input buffer
provides the value of a parameter in an SQL statement.

For character data that contains embedded null characters, the operation of
INFORMIX-CLI functions is undefined; for maximum interoperability, it is
better not to use them. Informix database servers treat null characters as end-
of-string markers or as indicators that no more data exists.

Unless it is specifically prohibited in a function description, the address of an
input buffer can be a null pointer. In such cases, the value of the corre-
sponding buffer-length argument is ignored. For more information about
input buffers, see “Converting Data from SQL to C” on page B-19.
Guidelines for Calling INFORMIX-CLI Functions 3-9

Buffers
Output Buffers

An application passes the following arguments to the driver so that the
driver can return data in an output buffer:

■ The address of the output buffer, to which the driver returns the data

Unless it is specifically prohibited in a function description, the
address of an output buffer can be a null pointer. In such cases, the
driver does not return anything in the buffer and, in the absence of
other errors, returns SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver
always null-terminates character data before returning it.

■ The length of the buffer

The driver ignores this value if the returned data has a fixed length
in C, as with an integer, real number, or date structure.

■ The address of a variable in which the driver returns the length of the
data (the length buffer)

The returned length of the data is SQL_NULL_DATA if the data is a
NULL value in a result set. Otherwise, the returned length of the data
is the number of bytes of data that are available to return. If the driver
converts the data, the returned length of the data is the number of
bytes that remain after the conversion; for character data, it does not
include the null-termination byte that the driver added.

If the output buffer is too small, the driver attempts to truncate the data. If the
truncation does not cause a loss of significant data, the driver returns the
truncated data in the output buffer, returns the length of the available data
(as opposed to the length of the truncated data) in the length buffer, and
returns SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of signif-
icant data, the driver leaves the output and length buffers untouched and
returns SQL_ERROR. The application calls SQLError to retrieve information
about the truncation or the error.

For more information about output buffers, see “Converting Data from SQL
to C” on page B-19.
3-10 INFORMIX-CLI Programmer’s Manual

Environment, Connection, and Statement Handles
Environment, Connection, and Statement Handles
When an application requests them to, the driver and the driver manager
allocate storage for information about the environment, each connection, and
each SQL statement. The handles to these storage areas are returned to the
application, which uses one or more handles in each call to a function.

The INFORMIX-CLI API uses the following types of handles:

■ Environment handles identify memory storage for global information,
including the valid connection handles and the current active
connection handle. The environment handle is an HENV variable
type. An application uses one environment handle. It must request
this handle before it connects to a data source.

■ Connection handles identify memory storage for information about
particular connections. A connection handle is an HDBC variable
type. An application must request a connection handle before it
connects to a data source. Each connection handle is associated with
the environment handle. However, the environment handle can be
associated with multiple connection handles.

■ Statement handles identify memory storage for information about SQL
statements. A statement handle is an HSTMT variable type. An appli-
cation must request a statement handle before it submits SQL
requests. Each statement handle is associated with exactly one
connection handle. However, each connection handle can be
associated with multiple statement handles.

For more information about requesting a connection handle, see “Connecting
to a Data Source” on page 4-4. For more information about requesting a
statement handle, see “Executing an SQL Statement” on page 5-5.
Guidelines for Calling INFORMIX-CLI Functions 3-11

Using Data Types
Using Data Types
Data stored on a data source has an SQL data type. The INFORMIX-CLI driver
maps Informix-specific SQL data types to ODBC SQL data types, which are
defined in the ODBC SQL grammar. (The driver returns these mappings
through SQLGetTypeInfo. It also uses the ODBC SQL data types to describe
the data types of columns and parameters in SQLColAttributes and
SQLDescribeCol.)

Each SQL data type corresponds to an ODBC C data type. By default, the
driver assumes that the C data type of a storage location corresponds to the
SQL data type of the column or parameter to which the location is bound. If
the C data type of a storage location is not the default C data type, the appli-
cation can specify the correct C data type with the fCType argument in
SQLBindCol, SQLGetData, or SQLBindParameter. Before the driver returns
data from the data source, it converts the data to the specified C data type.
Before the driver sends data to the data source, it converts the data from the
specified C data type.

For more information about data types, see Appendix B. The C data types are
defined in the sql.h and sqlext.h header files.

Function Return Codes
When an INFORMIX-CLI application calls a function, the driver executes the
function and returns a predefined code. The following return codes indicate
success, warning, or failure status:

■ SQL_SUCCESS

■ SQL_SUCCESS_WITH_INFO

■ SQL_NO_DATA_FOUND

■ SQL_ERROR

■ SQL_INVALID_HANDLE

■ SQL_STILL_EXECUTING

■ SQL_NEED_DATA

When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the
application can call SQLError to retrieve additional information about the
error. For a complete description of return codes and error handling, see
Chapter 7, “Retrieving Status and Error Information.”
3-12 INFORMIX-CLI Programmer’s Manual

How an Application Uses the INFORMIX-CLI API
How an Application Uses the INFORMIX-CLI API
An application uses the INFORMIX-CLI API to make a connection to a data
source, issue SQL statements to a data source, process result data dynami-
cally, and terminate a connection.

1. Connect to the data source. While connecting, specify the data-
source name and any additional information needed to complete the
connection.

2. Process one or more SQL statements:

a. Place the SQL text string in a buffer. If the statement includes
parameter markers, set the parameter values.

b. If the statement returns a result set, either assign a cursor name
for the statement or let the driver assign one.

c. Submit the statement for prepared or immediate execution.

d. If the statement creates a result set, you can inquire about the
attributes of the result set, such as the number of columns and
the name and type of a specific column. For each column in the
result set, assign storage and fetch the results.

e. If the statement causes an error, retrieve error information from
the driver and take the appropriate action.

3. End each transaction by committing it or rolling it back.

4. Terminate the connection when it finishes interacting with the data
source.
Guidelines for Calling INFORMIX-CLI Functions 3-13

How an Application Uses the INFORMIX-CLI API
Figure 3-1 shows the function calls that a basic application makes.
Depending on your needs, your application can call other functions.

Figure 3-1
Sample Listing of

Function Calls That
an INFORMIX-CLI
Application Makes

Process SQL statements

Receive results

CLOSE option

DROP option

SQLAllocEnv

SQLAllocConnect

SQLConnect

SQLAllocStmt

SQLFreeStmt

SQLDisconnect

SQLFreeConnect

SQLFreeEnv
3-14 INFORMIX-CLI Programmer’s Manual

4
Chapter
Connecting to a Data Source
Initializing the Environment 4-3

Allocating a Connection Handle 4-4

Connecting to a Data Source 4-4
Using SQLConnect 4-4
Using SQLDriverConnect 4-5
Using SQLBrowseConnect 4-7
Connection Strings 4-7

Exclusive Database-Use Connection 4-10
Server-Only Connection 4-10
Example . 4-11

Related Functions 4-15

4-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes the different ways that an application can
establish a connection to a data source.

Initializing the Environment
Before an application can use any other function, it must initialize the
INFORMIX-CLI API and associate an environment handle with the
environment.

To initialize the API and allocate an environment handle

1. Declare a variable of type HENV.

For example, you could use the following declaration:
HENV henv1;

2. Call SQLAllocEnv and pass it the address of the variable.

The driver initializes the environment, allocates memory to store
information about the environment, and returns the environment
handle in the variable.

SQLAllocEnv supports one or more connections to data sources; however,
your application should perform these steps only once.
Connecting to a Data Source 4-3

Allocating a Connection Handle
Allocating a Connection Handle
Before your INFORMIX-CLI application can connect to the driver, it must
allocate a connection handle for the connection.

To allocate a connection handle

1. Declare a variable of type HDBC.

For example, you could use the following declaration:
HDBC hdbc1;

2. Call SQLAllocConnect and pass it the address of the variable.

The driver allocates memory to store information about the
connection and returns the connection handle in the variable.

Connecting to a Data Source
After the application allocates a connection handle, it must specify a data
source name or the appropriate connection information. INFORMIX-CLI
provides functions that let you use different methods for connecting to a data
source.

Using SQLConnect
Your INFORMIX-CLI application passes the following information to the
driver in a call to SQLConnect:

■ The data-source name is the name of the data source that the appli-
cation is requesting.

■ The user ID is the login ID or account name for access to the data
source. This value is optional if it was specified in the configuration
information. Otherwise, this value is required.

■ The password is a character string associated with the user ID that
lets the user access the data source. This value is optional if it was
specified in the configuration information. Otherwise, this value is
required.
4-4 INFORMIX-CLI Programmer’s Manual

Using SQLDriverConnect
If the application specifies a data-source name that was not configured, or if
the application does not specify a data-source name, INFORMIX-CLI searches
for the default data-source specification. If it finds the default data source,
INFORMIX-CLI loads the default driver shared library and passes the appli-
cation-specified data-source name to that library. If INFORMIX-CLI cannot
find a default data source, it returns an error.

Using SQLDriverConnect
Your application can connect to a data source by calling SQLDriverConnect.

SQLDriverConnect supports the following features:

■ Data sources that require more connection information than the three
arguments in SQLConnect

■ Dialog boxes to prompt the user for all connection information

■ Data sources that have not been configured

An application calls SQLDriverConnect in one of the following ways:

■ Specifies a connection string that contains a data-source name

INFORMIX-CLI retrieves the full path of the driver shared library
associated with the data source. To retrieve a list of data-source
names, an application calls SQLDataSources.

■ Specifies a connection string that contains a driver description

INFORMIX-CLI retrieves the full path of the driver shared library. To
retrieve a list of driver descriptions, an application calls SQLDrivers.

■ Specifies a connection string that does not contain a data-source
name or a driver description

INFORMIX-CLI displays a dialog box from which the user selects a
data-source name. INFORMIX-CLI then retrieves the full path of the
driver shared library associated with the data source.

INFORMIX-CLI then loads the driver shared library and passes the
SQLDriverConnect arguments to it.
Connecting to a Data Source 4-5

Using SQLDriverConnect
The application can pass all the connection information that the driver needs.
It can also request that the driver always prompt the user for connection
information or only prompt the user for information it needs. Finally, if a data
source is specified, the driver can read connection information from the
appropriate section of the registry.

After the driver connects to the data source, it returns the connection infor-
mation to the application. The application can store this information for
future use.

If the application specifies a data-source name that was not configured,
INFORMIX-CLI searches for the default data-source specification. If it finds
the default data source, it loads the default driver shared library and passes
the application-specified data-source name to it. If no default data source
exists, INFORMIX-CLI returns an error.

When the application calls SQLDriverConnect and requests that the user be
prompted for information, INFORMIX-CLI displays the INFORMIX-CLI DSN
Setup dialog box, as Figure 4-1 illustrates.

Figure 4-1
INFORMIX-CLI DSN

Setup Dialog Box

Data Source Name:

Database:

Server:

Host:

INFORMIX CLI DSN Setup

Service:

Protocol:

UID:

PWD:

Change data source name, description, or options.
Then Choose OK

Note: UID and PWD are Optional.
If specified, PWD will be encrypted.

stores7

odbc

demo_database

OK Cancel
4-6 INFORMIX-CLI Programmer’s Manual

Using SQLBrowseConnect
Using SQLBrowseConnect
SQLBrowseConnect supports an iterative method of listing and specifying
the attributes and attribute values that are required to connect to a data
source. For each level of a connection, an application calls
SQLBrowseConnect and specifies the connection attributes and attribute
values for that level. First-level connection attributes always include the
data-source name or driver description; the connection attributes for later
levels are data-source dependent but might include the host, user name, and
database.

Whenever an application calls SQLBrowseConnect, it validates the current
attributes, returns the next level of attributes, and returns a user-friendly
name for each attribute. It can also return a list of valid values for those
attributes. After an application has specified each level of attributes and
values, SQLBrowseConnect connects to the data source and returns a
complete connection string, which SQLDriverConnect can use to connect to
the data source at a later time.

Connection Strings
Connection strings are used with both the SQLDriverConnect and the
SQLBrowseConnect functions.

With these functions, a connection string contains the following information:

■ Data-source name or driver description

■ Zero or one user ID

■ Zero or one password

■ Zero or more data-source-specific parameter values

The connection string is a more flexible API than the data source name, user
ID, and password that SQLConnect uses. The application can use the
connection string for multiple levels of login authorization or to convey other
data-source-specific connection information.
Connecting to a Data Source 4-7

Connection Strings
With these functions, a connection string has the following syntax:

connection-string ::= empty-string[;] | attribute[;] |
attribute; connection-string
empty-string ::=
attribute ::= attribute-keyword=attribute-value |
DRIVER={attribute-value}
(The braces ({}) are literal; the application must specify
them.)
attribute-keyword ::= DSN | UID | PWD| CONNECTDATABASE |
EXCLUSIVE| HOST| PROTOCOL| SERVER| SERVICE
attribute-value ::= character-string

In this example, character-string has zero or more characters; identifier has one
or more characters; attribute-keyword is case insensitive; attribute-value might
be case sensitive; and the value of the DSN keyword does not consist solely
of blanks. Because of connection-string and initialization-file grammar, avoid
keywords and attribute values that contain the characters []{ }(),;?*=!@\ .
Because of the registry grammar, keywords and data-source names cannot
contain the backslash (\).

If any keywords are repeated in the connection string, the driver uses the
value associated with the first occurrence of the keyword. If the DSN and
DRIVER keywords are included in the same connection string, INFORMIX-CLI
uses the keyword that appears first.

The following table describes the attribute-keywords available in
INFORMIX-CLI. These attributes are available with both SQLDriverConnect
and SQLBrowseConnect.

Attribute Keyword Attribute Value Description

DSN Name of a data source as returned by SQLDataSources or the
data sources dialog box of SQLDriverConnect

DRIVER Description of the driver as returned by the SQLDrivers
function

UID The user ID or account name for access to the data source

PWD The password that corresponds to the user ID, or an empty
string if no password exists for the user ID (PWD=;)

(1 of 2)
4-8 INFORMIX-CLI Programmer’s Manual

Connection Strings
ConnectDatabase * A character string
This option is available inside a connection string only.

Yes= Connect to the database that is specified in the DSN
setup or in the configuration string. This is the default setting.

No= Connect to the database server only.

Database Name of the database to which you want to connect by default

Exclusive * A character string
This option is available inside a connection string only.

Yes= Specify that the application has exclusive use of the
database.

No= Share database access. This is the default setting.

Host The name of the computer on which the Informix database
server resides

Protocol The protocol used to communicate with the database server

In Windows environments, values can be xxSOCTCP or
xxSOCSPX where xx represents OL, ON, or SE. ♦

Server The name of the database server on which the database that
you want to access resides

Service The name assigned to the database-server process that runs on
your UNIX computer

Confirm the service name with your system administrator. ♦

* INFORMIX-CLI provides two enhanced connection options with the
SQLDriverConnect and SQLBrowseConnect functions. These options let your
application perform the following special connections:

■ Exclusive database-use connection

■ Server-only connection

These options are available only inside a connection string.

Attribute Keyword Attribute Value Description

(2 of 2)

Windows

UNIX
Connecting to a Data Source 4-9

Connection Strings
Exclusive Database-Use Connection

An exclusive database-use connection allows the application to lock out all
other users and applications. When this parameter is set to Yes, the user or
application has exclusive use of the database. When it is set to No, other users
and applications can access the database.

Server-Only Connection

A server-only connection lets you open a connection between the driver and
the database server without connecting to a database. This option lets you
create new databases or drop existing databases within an application.
However, when you use this option, you can execute only the CREATE
DATABASE and DROP DATABASE SQL statements.

To use the server-only connection in an application

1. Enter a connection string that specifies the database server where
you want to create or drop a database and set CONNECTDATABASE to
NO.

2. Allocate a statement handle (Hstmt).

3. Execute SQLExecDirect or SQLPrepare and SQLExecute with the
desired CREATE DATABASE or DROP DATABASE SQL statements.

For more information on these SQL statements, see the Informix Guide
to SQL: Syntax.

4. Disconnect from the database server-only connection.

5. Reconnect to the desired database as a normal connection (that is,
with the default setting of the ConnectDatabase option).

Either the configuration information or the connection string must
specify the database to which you are connecting.
4-10 INFORMIX-CLI Programmer’s Manual

Connection Strings
Example

The following code shows how to use the server-only connection:

/*
** createdb.c
**
** INFORMIX-CLI CREATE Database Example
**
**
** OBDC Functions:
** SQLAllocEnv
** SQLAllocConnect
** SQLAllocStmt
** SQLConnect
** SQLFreeEnv
** SQLFreeect
** SQLFreeStmt
** SQLDisconnect
** SQLExecDirect
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <io.h>
#include <windows.h>
#include <conio.h>

#include "infxcli.h"

UCHAR defDbName[] = "imydsn";

#define ErrMsgLen 200
UCHAR ErrMsg[ErrMsgLen];

void printError(
 HENV henv,
 HDBC hdbc,
 HSTMT hstmt,
 char *SqlState)
{
 RETCODE rc = SQL_NO_DATA_FOUND;
 SWORD pcbErrorMsgLen = 0;
 SDWORD pfNativeError;
 short i;
Connecting to a Data Source 4-11

Connection Strings
 for(i = 1; i <= 3 && rc == SQL_NO_DATA_FOUND || rc ==
SQL_INVALID_HANDLE; i++)
 {
 switch(i)
 {
 case 1:
 rc = SQLError(NULL, NULL, hstmt, (UCHAR
*)SqlState, &pfNativeError, (UCHAR *)ErrMsg,
 ErrMsgLen, &pcbErrorMsgLen);
 break;

 case 2:
 rc = SQLError(NULL, hdbc, NULL, (UCHAR
*)SqlState, &pfNativeError, (UCHAR *)ErrMsg,
 ErrMsgLen, &pcbErrorMsgLen);
 break;

 case 3:
 rc = SQLError(henv, NULL, NULL, (UCHAR
*)SqlState, &pfNativeError, (UCHAR *)ErrMsg,
 ErrMsgLen, &pcbErrorMsgLen);
 break;
 }
 }

 if(rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
 {
 fprintf(stdout, "ERROR: %d : %s : %s \r\n",
pfNativeError, SqlState, ErrMsg);
 }
 else
 {
 fprintf(stdout, "ERROR: Severe Error in ODBC Driver
");
 }
}

int main (
 long argc,
 char *argv[])
{
 // UCHAR db[20];
 RETCODE rc = 0;
 HENV henv = NULL;
 HDBC hdbc = NULL;
 HSTMT hstmt = NULL;
 char SqlState[6];
 UCHAR ConnStrIn[250];
4-12 INFORMIX-CLI Programmer’s Manual

Connection Strings
 UCHAR *ConnStrInp = &ConnStrIn[0];
 UCHAR ConnStrOut[250];
 UCHAR *ConnStrOutp = &ConnStrOut[0];
 UCHAR CmdText[] = "create database test1 with log";
 UCHAR *CmdTextp = &CmdText[0];
 short pcbConnStrOut;
 int in;

 fprintf(stdout, "\n");

 /* Allocate the Environment handle */
 rc = SQLAllocEnv(&henv);
 if(rc)
 {
 /* note: SQLError cannot be used unless SQLAllocEnv
succeds */
 fprintf(stdout, "Environment Allocation failed\n");
 goto Exit;
 }

 /* Allocate the Connection handle */
 rc = SQLAllocConnect(henv, &hdbc);
 if(rc)
 {
 /* note: use SQLError from here on */
 printError(henv, hdbc, hstmt, SqlState);
 goto Exit;
 }

 sprintf(ConnStrInp, "dsn=%s;connectdatabase=no",
defDbName) ;

 /* Establish the server connection */
 rc = SQLDriverConnect(hdbc, NULL, ConnStrInp, SQL_NTS,
 ConnStrOutp, 250, &pcbConnStrOut,
 SQL_DRIVER_NOPROMPT);
 if(rc == SQL_ERROR)
 {
 printError(henv, hdbc, hstmt, SqlState);
 goto Exit;
 }

 /* Allocate the statement handle */
 rc = SQLAllocStmt(hdbc, &hstmt);
 if(rc == SQL_ERROR)
 {
 printError(henv, hdbc, hstmt, SqlState);
 goto Exit;
 }
Connecting to a Data Source 4-13

Connection Strings
 fprintf(stdout, "Creating database ... \n");

 /* Create database stores20 */
 rc = SQLExecDirect(hstmt, CmdTextp, SQL_NTS);
 if(rc == SQL_ERROR)
 {
 printError(henv, hdbc, hstmt, SqlState);
 goto Exit;
 }

 fprintf(stdout, "Database successfully created!!!\n");

 Exit:
 SQLFreeConnect(hdbc);
 SQLFreeEnv(henv);

 fprintf(stdout,"\n\nBye!\n\n");
 in = getch();
 return(rc);
}

4-14 INFORMIX-CLI Programmer’s Manual

Related Functions
Related Functions
The following functions are related to connections, drivers, and data sources.
For more information about these functions, see Chapter 12, “INFORMIX-
CLI Function Reference.”

Function Description

SQLDataSources Retrieves a list of available data sources.
INFORMIX-CLI retrieves this information from the
initialization files. An application can present this
information to a user or automatically select a data
source.

SQLDrivers Retrieves a list of installed drivers and their attributes.
INFORMIX-CLI retrieves this information from the
odbcinst.ini file. An application can present this infor-
mation to a user or automatically select a driver.

SQLGetFunctions Retrieves functions supported by a driver. This
function allows an application to determine at runtime
whether a particular function is supported by a driver.

SQLGetInfo Retrieves general information about a driver and data
source, including filenames, versions, conformance
levels, and capabilities.

SQLGetTypeInfo Retrieves the SQL data types supported by a driver and
data source.

SQLSetConnectOption

SQLGetConnectOption

Sets or retrieves connection options, such as the data-
source access mode, automatic transaction
commitment, time-out values, function tracing, data-
translation options, and transaction isolation.
Connecting to a Data Source 4-15

5
Chapter
Executing SQL Statements
SQL Statements and INFORMIX-CLI 5-3

Allocating a Statement Handle 5-5

Executing an SQL Statement 5-5
Prepared Execution 5-6
Direct Execution 5-7

Setting Parameter Values 5-7

Performing Transactions 5-9
Retrieving Information About the Data-Source Catalog 5-10
Sending Parameter Data at Execution Time 5-10
Specifying Arrays of Parameter Values 5-11
Related Functions 5-12

5-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes the different ways an application can execute
SQL statements.

SQL Statements and INFORMIX-CLI
An application can submit any SQL statement that is supported by a data
source, and ODBC defines a standard syntax for SQL statements. For
maximum interoperability, an application should submit only SQL state-
ments that use this syntax; the driver translates these statements to the syntax
that the data source uses. If an application submits an SQL statement that
does not use the ODBC syntax, the driver passes the statement directly to the
data source.

Important: For CREATE TABLE and ALTER TABLE statements, applications should
use the data type name returned by SQLGetTypeInfo in the TYPE_NAME column
rather than the data type name defined in the SQL syntax.

Use SQLExecDirect to execute a statement once. Use SQLPrepare to prepare
a statement and execute it multiple times with SQLExecute. An application
calls SQLTransact to commit or roll back a transaction.
Executing SQL Statements 5-3

SQL Statements and INFORMIX-CLI
Figure 5-1 illustrates a simple sequence of function calls to execute SQL state-
ments.

Figure 5-1
A Sequence of

Function Calls to
Execute SQL

Statements
Repeatable execution

SQLBindParameter

SQLExecDirect

SQLPrepare
SQLBindParameter

SQLExecute

YesNo

UPDATE, DELETE,
or INSERT statement

SELECT
statement

SQLNumResultCols
SQLDescribeCol

SQLBindCol

SQLFreeStmt

No
Yes

SQLRowCount

If repeat

If more processing

SQLTransact

Terminate

Kind of statement?

More rows?

Initialize

SQLFetch
5-4 INFORMIX-CLI Programmer’s Manual

Allocating a Statement Handle
Allocating a Statement Handle
Before your application can submit an SQL statement, it must allocate a
statement handle for the statement. To allocate a statement handle, an appli-
cation performs the following operations:

1. Declares a variable of type HSTMT

For example, the application could use the following declaration:
HSTMT hstmt1;

2. Calls SQLAllocStmt and passes it the address of the variable and the
connection handle (hdbc) with which to associate the statement

The driver allocates memory to store information about the
statement, associates the statement handle with the connection
handle (hdbc), and returns the statement handle in the variable.

Executing an SQL Statement
Your application can submit an SQL statement for execution in the following
ways:

■ Prepared statements call SQLPrepare and then call SQLExecute.

■ Direct statements call SQLExecDirect.

These options are similar, but not identical, to the prepared and immediate
options in embedded SQL. For a comparison of the ODBC functions and
embedded SQL, see Appendix C.
Executing SQL Statements 5-5

Prepared Execution
Prepared Execution
Prepare a statement before you execute it if either of the following conditions
is true:

■ The application can execute the statement more than once, possibly
with intermediate changes to parameter values.

■ The application needs information about the result set prior to
execution.

A prepared statement executes faster than an unprepared statement because
the data source compiles the statement, produces an access plan, and returns
an access plan identifier to the driver. The data source minimizes processing
time because it does not have to produce an access plan each time that it
executes the statement. A prepared statement reduces network traffic
because the driver sends the access plan identifier, instead of the entire
statement, to the data source.o

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
delete the access plans for all of the statement handles that belong to a connection
handle. For more information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 12-196.

To prepare and execute an SQL statement, an application performs the
following operations:

1. Calls SQLPrepare to prepare the statement

2. Sets the values of any statement parameters

For more information, see “Setting Parameter Values” on page 5-7.

3. Retrieves information about the result set, if necessary

For more information, see “Determining the Characteristics of a
Result Set” on page 6-5.

4. Calls SQLExecute to execute the statement

5. Repeats steps 2 through 4 as necessary
5-6 INFORMIX-CLI Programmer’s Manual

Direct Execution
Direct Execution
Execute a statement directly if both of the following conditions are true:

■ The application executes the statement only once.

■ The application does not need information about the result set prior
to execution.

To execute an SQL statement directly, an application performs the following
operations:

1. Sets the values of any statement parameters

For more information, see “Setting Parameter Values.”

2. Calls SQLExecDirect to execute the statement

Setting Parameter Values
An SQL statement can use parameter markers to contain values that the
driver retrieves from the application at execution time. For example, an
application might use the following statement to insert a row of data into the
EMPLOYEE table:

INSERT INTO EMPLOYEE (NAME, AGE, HIREDATE) VALUES (?, ?, ?)

An application uses parameter markers instead of literal values when one of
the following conditions occurs:

■ It needs to execute the same prepared statement several times with
different parameter values.

■ The parameter values are unknown when the statement is prepared.

■ The parameter values need to be converted from one data type to
another.
Executing SQL Statements 5-7

Setting Parameter Values
To set a parameter value, an application performs the following operations:

1. Calls SQLBindParameter to bind a storage location to a parameter
marker

It also uses SQLBindParameter to specify:

❑ the data types of the storage location and the column associated
with the parameter.

❑ precision and scale for the parameter.

2. Places the value of the parameter in the storage location

The application can perform these steps before or after a statement is
prepared, but it must perform them before a statement executes.

Parameter values must be placed in storage locations in the C data types
specified in SQLBindParameter, as the following table shows.

Storage locations remain bound to parameter markers until the application
calls SQLFreeStmt with the SQL_RESET_PARAMS option or the SQL_DROP
option. An application can bind a different storage area to a parameter
marker at any time by calling SQLBindParameter. An application can also
change the value in a storage location at any time. When a statement is
executed, the driver uses the current values in the most recently defined
storage locations.

Parameter Value SQL Data Type C Data Type Stored Value

ABC SQL_CHAR SQL_C_CHAR ABC\0 a

10 SQL_INTEGER SQL_C_SLONG 10

10 SQL_INTEGER SQL_C_CHAR 10\0 a

1 P.M. SQL_TIME SQL_C_TIME 13,0,0 b

1 P.M. SQL_TIME SQL_C_CHAR {t '13:00:00'}\0a,c

a The \0 value represents a null-termination byte; the null-termination byte is
required only if the parameter length is SQL_NTS.

b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT
structure.

c The string uses the ODBC date escape clause.
5-8 INFORMIX-CLI Programmer’s Manual

Performing Transactions
Performing Transactions
In auto-commit mode, every SQL statement is a complete transaction that is
committed automatically. In manual-commit mode, a transaction consists of
one or more statements. In manual-commit mode, when an application
submits an SQL statement and no transaction is open, the driver implicitly
begins a transaction. The transaction remains open until the application
commits or rolls the transaction back with SQLTransact.

For INFORMIX-CLI, the default transaction mode is auto-commit. An appli-
cation calls SQLSetConnectOption to switch between manual-commit and
auto-commit mode. If an application switches from manual-commit to auto-
commit mode, the driver commits any open transactions on the connection.

Applications should call SQLTransact to commit or roll back a transaction,
rather than submitting a COMMIT or ROLLBACK statement. The result of a
COMMIT or ROLLBACK statement depends on the driver and its associated
data source._

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
close the cursors and delete the access plans for all of the statement handles that
belong to a connection handle.

For more information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 12-196.
Executing SQL Statements 5-9

Retrieving Information About the Data-Source Catalog
Retrieving Information About the Data-Source Catalog
The functions listed in “Retrieving Information About Data-Source System
Tables” on page 11-8 are catalog functions that return information about a
data-source catalog. Each function returns the information as a result set. Use
SQLBindCol and SQLFetch to retrieve these results.

Sending Parameter Data at Execution Time
Use the following functions to send parameter data, for instance, for param-
eters of the SQL_LONGVARCHAR or SQL_LONGVARBINARY types, when a
statement executes:

■ SQLBindParameter

■ SQLParamData

■ SQLPutData

To indicate that your application plans to send parameter data when the
statement executes, call SQLBindParameter, and set the pcbValue buffer for
the parameter to the result of the SQL_LEN_DATA_AT_EXEC(length) macro. If
the fSqlType argument is SQL_LONGVARBINARY or SQL_LONGVARCHAR and
the driver returns Y for the SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo, then length is the total number of bytes of data to be sent for the
parameter; otherwise, it is ignored.

Set the rgbValue argument to a value that can be used to retrieve the data at
runtime. For example, rgbValue might point to a storage location that contains
the data when the statement executes or to a file that contains the data. The
driver returns the value to the application when the statement executes.

When the driver processes a call to SQLExecute or SQLExecDirect and the
executing statement includes a data-at-execution parameter, the driver
returns SQL_NEED_DATA.
5-10 INFORMIX-CLI Programmer’s Manual

Specifying Arrays of Parameter Values
To send the parameter data, an application performs the following
operations:

1. Calls SQLParamData, which returns rgbValue (as set with
SQLBindParameter) for the first data-at-execution parameter

2. Calls SQLPutData one or more times to send data for the parameter

More than one call is needed if the data value is larger than the
buffer; multiple calls are allowed only if the C data type is character
or binary and the SQL data type is character, binary, or data-source
specific.

3. Calls SQLParamData again to indicate that all the data has been sent
for the parameter

If another data-at-execution parameter remains, the driver returns
rgbValue for that parameter and SQL_NEED_DATA for the function
return code. Otherwise, it returns SQL_SUCCESS for the function
return code.

4. Repeats steps 2 and 3 for the remaining data-at-execution parameters

For additional information, see “SQLBindParameter” on page 12-25.

Specifying Arrays of Parameter Values
To specify multiple sets of parameter values for a single SQL statement, an
application calls SQLParamOptions. For example, if there are 10 sets of
column values to insert into a table, and the same SQL statement can be used
for all 10 operations, the application can set up an array of values and then
submit a single INSERT statement.

If an application uses SQLParamOptions, it must allocate enough memory to
handle the array of values.

 To retrieve a list of the procedures stored in a data source, an application calls
SQLProcedures.
Executing SQL Statements 5-11

Related Functions
Related Functions
INFORMIX-CLI provides the following functions related to SQL statements.
For more information about these functions, see Chapter 12.

Function Description

SQLNativeSql Retrieves the SQL statement as processed by the data
source, with escape sequences translated to SQL code
used by the data source.

SQLNumParams Retrieves the number of parameters in an SQL
statement.

SQLSetStmtOption
SQLSetConnectOption
SQLGetStmtOption

Sets or retrieves statement options, such as orientation
for binding row sets, maximum amount of variable-
length data to return, maximum number of result set
rows to return, and query time-out value.
SQLSetConnectOption sets options for all the state-
ments in a connection.
5-12 INFORMIX-CLI Programmer’s Manual

6
Chapter
Retrieving Results
Result Sets and INFORMIX-CLI 6-3

Assigning Storage for Results (Binding). 6-4

Determining the Characteristics of a Result Set 6-5

Fetching Result Data 6-5

Using Cursors . 6-6
Retrieving Data from Unbound Columns 6-7
Assigning Storage for Row Sets (Binding) 6-7
Retrieving Row Set Data 6-9
Using Block and Scrollable Cursors 6-9

Block Cursors 6-9
Scrollable Cursors 6-10
Specifying the Cursor Type 6-11
Specifying Cursor Concurrency 6-11

Positioned Update and Delete Statements 6-12
Processing Multiple Results 6-13

6-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes the different ways that an application can
retrieve results.

Result Sets and INFORMIX-CLI
A SELECT statement is used to retrieve data that meets a given set of specifi-
cations. In the following example, a SELECT statement retrieves all columns
for employees named Jones from all the rows in the EMPLOYEE table:

SELECT * FROM EMPLOYEE WHERE EMPNAME = "Jones"

INFORMIX-CLI functions can also retrieve data. For example, SQLColumns
retrieves data about columns in the data source. These sets of data, called
result sets, can contain zero or more rows.

Other SQL statements, such as GRANT or REVOKE, do not return result sets.
For these statements, the return code from SQLExecute or SQLExecDirect is
usually the only source of information about whether the statement is
successful. For INSERT, UPDATE, and DELETE statements, an application can
call SQLRowCount to return the number of affected rows.
Retrieving Results 6-3

Assigning Storage for Results (Binding)
The steps that an application takes to process a result set depend on what is
known about it. The following table defines known and unknown result sets.

Assigning Storage for Results (Binding)
An application can assign storage for results before or after it executes an SQL
statement. If an application prepares or executes the SQL statement first, it
can inquire about the result set before it assigns storage for results. For
example, if the result set is unknown, the application must retrieve the
number of columns in the result set before it can assign storage for them.

To associate storage for a column of data, an application calls SQLBindCol
and passes it the following information:

■ The data type to which the data is to be converted

For more information, see Appendix B.

■ The address of an output buffer for the data

The application must allocate this buffer, which must be large
enough to hold the data in its converted form.

■ The length of the output buffer

This value is ignored if the returned data has a fixed width in C, such
as an integer, real number, or date structure.

■ The address of a storage buffer in which to return the number of
bytes of available data

Type of Result Set Definition Example

Known The application knows the exact
form of the SQL statement and,
therefore, the result set when the
statement compiles.

For example, the following query returns two
specific columns:
SELECT EMPNO, EMPNAME FROM EMPLOYEE

Unknown The application does not know the
exact form of the SQL statement or,
therefore, the result set when the
statement compiles.

For example, the following ad hoc query
returns all the currently defined columns in the
EMPLOYEE table:
SELECT * FROM EMPLOYEE

The application might not predict the format of
these results before it executes the command.
6-4 INFORMIX-CLI Programmer’s Manual

Determining the Characteristics of a Result Set
Determining the Characteristics of a Result Set
To determine the characteristics of a result set, an application can perform the
following actions:

■ Call SQLNumResultCols to determine how many columns a request
returned

■ Call SQLColAttributes or SQLDescribeCol to describe a column in
the result set

If the result set is unknown, an application can use the information from
these functions to bind the columns in the result set. An application can call
these functions at any time after a statement is prepared or executed.

Tip: For optimal performance, an application should call SQLColAttributes,
SQLDescribeCol, and SQLNumResultCols after a statement executes. In data
sources that emulate statement preparation, these functions sometimes execute more
slowly before a statement executes because the information that these functions
return is not readily available until after the statement has executed.

Fetching Result Data
You can perform several operations to retrieve data once the characteristics
of the result set are known. To retrieve a row of data from the result set, an
application performs the following operations:

1. Calls SQLBindCol to bind the columns of the result set to storage
locations if it has not already done so

2. Calls SQLFetch to move to the next row in the result set and retrieve
data for all bound columns
Retrieving Results 6-5

Using Cursors
Figure 6-1 shows the operations that an application uses to retrieve data from
the result set.

Using Cursors
The INFORMIX-CLI driver maintains a cursor to indicate the current position
in the result set, much as the cursor on a computer screen indicates the
current position.

You can use SQLFetch or SQLExtendedFetch to retrieve data from a result set.
Each time that an application calls SQLFetch, the driver moves the cursor to
the next row and returns that row. To retrieve a row of data that has already
been retrieved from the result set, the application must close the cursor by
calling SQLFreeStmt with the SQL_CLOSE option, re-execute the SELECT
statement, and fetch rows with SQLFetch until the target row is retrieved.

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
close the cursors for all hstmts on an hdbc.

Figure 6-1
Operations That an
Application Uses to
Retrieve Data from

the Result Set

SELECT statement

SQLNumResultCols

SQLDescribeCol

SQLBindCol

Finished

SQLFetch

More rows?
6-6 INFORMIX-CLI Programmer’s Manual

Retrieving Data from Unbound Columns
For more information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 12-196.

Retrieving Data from Unbound Columns
To retrieve data from unbound columns (that is, columns for which storage
has not been assigned with SQLBindCol), an application uses SQLGetData.
The application first calls SQLFetch or SQLExtendedFetch to position the
cursor on the next row. It then calls SQLGetData to retrieve data from specific
unbound columns.

An application can retrieve data from bound and unbound columns in the
same row. It calls SQLBindCol to bind as many columns as you specify. It
calls SQLFetch or SQLExtendedFetch to position the cursor on the next row
of the result set and to retrieve all bound columns. It then calls SQLGetData
to retrieve data from unbound columns.

If the column data type is character, binary, or data-source specific and the
column contains more data than can be retrieved in a single call, an appli-
cation might call SQLGetData more than once for that column, as long as the
data is being transferred to a buffer of type SQL_C_CHAR or SQL_C_BINARY.
For example, data of the SQL_LONGVARBINARY and SQL_LONGVARCHAR
types might need to be retrieved in several parts.

The INFORMIX-CLI driver can return data with SQLGetData for both bound
and unbound columns in any order. For maximum interoperability, however,
your application should call SQLGetData only for columns to the right of the
right-most bound column and then only in left-to-right order.

Assigning Storage for Row Sets (Binding)
In addition to binding individual rows of data, an application can call
SQLBindCol to assign storage for a row set (one or more rows of data). To
specify how many rows of data are in a row set, an application calls
SQLSetStmtOption with the SQL_ROWSET_SIZE option.

By default, row sets are bound in column-wise fashion. They can also be
bound in row-wise fashion.
Retrieving Results 6-7

Assigning Storage for Row Sets (Binding)
To assign storage for column-wise binding

1. Allocate an array of data storage buffers.

The array has as many elements as there are rows in the row set.

2. Allocate an array of storage buffers to hold the number of bytes that
are available to return for each data value.

The array has as many elements as there are rows in the row set.

3. Call SQLBindCol and specify the address of the data array, the size
of one element of the data array, the address of the number-of-bytes
array, and the type to which the data will be converted.

When data is retrieved, the driver uses the array element size to
determine where to store successive rows of data in the array.

To assign storage for row-wise binding

1. Declare a structure that can hold a single row of retrieved data and
the associated data lengths.

To bind each column, the structure includes one field to contain data
and one field to contain the number of bytes of data that are available
to return.

2. Allocate an array of these structures.

This array has as many elements as there are rows in the row set.

3. Call SQLBindCol for each column to be bound.

4. In each call, specify the address of the column data field in the first
array element, the size of the data field, the address of the column
number-of-bytes field in the first array element, and the type to
which the data will be converted.

5. Call SQLSetStmtOption with the SQL_BIND_TYPE option and specify
the size of the structure.

When the data is retrieved, the driver uses the structure size to
determine where to store successive rows of data in the array.
6-8 INFORMIX-CLI Programmer’s Manual

Retrieving Row Set Data
Retrieving Row Set Data
Before it retrieves row set data, an application calls SQLSetStmtOption with
the SQL_ROWSET_SIZE option to specify the number of rows in the row set. It
then binds columns in the row set with SQLBindCol. The row set is bound
using a column- or row-wise method. For more information, see “Assigning
Storage for Row Sets (Binding)” on page 6-7.

To retrieve row set data, an application calls SQLExtendedFetch.

For maximum interoperability, an application should not use SQLGetData to
retrieve data from unbound columns in a block of data (more than one row)
that has been retrieved with SQLExtendedFetch. To determine whether a
driver can return data with SQLGetData from a block of data, an application
calls SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Using Block and Scrollable Cursors
Cursors in SQL scroll forward through a result set, returning one row at a
time. However, interactive applications often require forward and backward
scrolling, absolute or relative positioning within the result set, and the ability
to retrieve and update blocks of data, or row sets.

A block cursor attribute allows an application to retrieve and update row set
data. A scrollable cursor attribute allows an application to scroll forward or
backward through the result set or move to an absolute or relative position in
the result set. Cursors can have one or both attributes.

Block Cursors

An application calls SQLSetStmtOption with the SQL_ROWSET_SIZE option
to specify the row set size. The application can call SQLSetStmtOption to
change the row set size at any time. Each time that the application calls
SQLExtendedFetch, the driver returns the next row-set-size rows of data. After
the data is returned, the cursor points to the first row in the row set. By
default, the row set size is one.
Retrieving Results 6-9

Using Block and Scrollable Cursors
Scrollable Cursors

Applications have different needs to sense changes in the tables underlying
a result set. For example, when balancing financial data, an accountant needs
data that appears static because it is impossible to balance books when the
data changes continually. When selling concert tickets, a clerk needs up-to-
the minute, or dynamic, data on which tickets are still available. Various
cursor models are designed to meet these needs. Each requires different
sensitivities to changes in the tables that underlie the result set.

Static Cursors

In static cursors, the data in the underlying tables appears to be static. The
membership, order, and values in the result set used by a static cursor are
generally fixed when the cursor is opened. Rows updated, deleted, or
inserted by other users, including other cursors in the same application, are
not detected by the cursor until it closes and then reopens. The
SQL_STATIC_SENSITIVITY information type returns whether the cursor can
detect rows that it has updated, deleted, or inserted.

Static cursors are commonly implemented by taking a snapshot of the data or
locking the result set. In the former case, the cursor diverges from the under-
lying tables as other users make changes; in the latter case, other applications
and cursors in the same application cannot change the data.

Dynamic Cursors

In dynamic cursors, the data appears to be dynamic. The membership, order,
and values in the result set that a dynamic cursor uses are always changing.
When data is fetched, the cursor detects rows updated, deleted, or inserted
by all users (the cursor, other cursors in the same application, and other
applications). Although dynamic cursors are ideal for many situations, they
are difficult to implement.

Key-Set-Driven Cursors

Key-set-driven cursors possess some attributes of static and dynamic cursors.
Like static cursors, the membership and ordering of the result set of a key-set-
driven cursor is generally fixed when the cursor opens. As with dynamic
cursors, most changes to the values in the underlying result set are visible to
the cursor when data is fetched.
6-10 INFORMIX-CLI Programmer’s Manual

Using Block and Scrollable Cursors
Specifying the Cursor Type

To specify the cursor type, an application calls SQLSetStmtOption with the
SQL_CURSOR_TYPE option. The application can specify a cursor that scrolls
forward, a static cursor, or a dynamic cursor. If the application specifies a
mixed cursor, it also specifies the size of the key set that the cursor uses.-1149

To use the ODBC cursor library, an application calls SQLSetConnectOption
with the SQL_ODBC_CURSORS option before it connects to the data source.
For more information on the ODBC cursor library, see the Microsoft ODBC
Programmer’s Reference and SDK Guide, Version 2.0.

An application calls SQLExtendedFetch to scroll the cursor backward,
forward, or to an absolute or relative position in the result set.

Specifying Cursor Concurrency

Concurrency is the ability of more than one user to access the same data at the
same time. A transaction is serializable if it is performed so that it appears as
though no other transactions operate on the same data at the same time.
Suppose one transaction doubles data values and another adds 1 to data
values. If the transactions are serializable, and both attempt to operate on the
values 0 and 10 at the same time, the final values are 1 and 21 or 2 and 22,
depending on which transaction occurs first. If the transactions are not serial-
izable, the final values are 1 and 21, 2 and 22, 1 and 22, or 2 and 21; the sets
of values 1 and 22, and 2 and 21 are the result of the transactions acting on
each value in a different order.

To maintain database integrity, you must to be able to serialize a transaction.
However, a serialized transaction locks the result set which prohibits cursor
concurrency.
Retrieving Results 6-11

Positioned Update and Delete Statements
Positioned Update and Delete Statements
To modify data in the result set, an application can update or delete the row
to which the cursor currently points. Such an operation is known as a
positioned update or delete statement.

INFORMIX-CLI positioned update and delete statements are similar to such
statements in embedded SQL. After an application executes a SELECT
statement to create a result set, it calls SQLFetch one or more times to position
the cursor on the row to be updated or deleted. To update or delete the row,
the application then executes an SQL statement with the following syntax on
a different hstmt:

UPDATE table-name
SET column-identifier = {expression | NULL}
[, column-identifier = {expression | NULL}]...
WHERE CURRENT OF cursor-name
DELETE FROM table-name WHERE CURRENT OF cursor-name

Positioned update and delete statements require cursor names. An appli-
cation can name a cursor with SQLSetCursorName. If the application has not
named the cursor by the time that the driver executes a SELECT statement, the
driver generates a cursor name. To retrieve the cursor name for an hstmt, an
application calls SQLGetCursorName.

To execute a positioned update or delete statement, an application must
follow these guidelines:

■ The SELECT statement that creates the result set must use a FOR
UPDATE clause.

■ The cursor name used in the UPDATE or DELETE statement must be
the same as the cursor name associated with the SELECT statement.

■ The application must use different hstmts for the SELECT statement
and the UPDATE or DELETE statement.

■ The hstmts for the SELECT statement and the UPDATE or DELETE
statement must be on the same connection.

To determine whether a data source supports positioned update and delete
statements, an application calls SQLGetInfo with the
SQL_POSITIONED_STATEMENTS option.
6-12 INFORMIX-CLI Programmer’s Manual

Processing Multiple Results
Processing Multiple Results
SELECT statements return result sets. UPDATE, INSERT, and DELETE state-
ments return a count of affected rows. If any of these statements are in
procedures, are batched, or are submitted with arrays of parameters, they can
return multiple result sets or counts.

To process a batch of statements, a statement with arrays of parameters, or a
procedure that returns multiple result sets or row counts, an application
performs the following operations:

1. Calls SQLExecute or SQLExecDirect to execute the statement or
procedure

2. Calls SQLRowCount to determine the number of rows affected by an
UPDATE, INSERT, or DELETE statement

For statements or procedures that return result sets, the application
calls functions to determine the characteristics of the result set and
retrieve data from the result set.

3. Calls SQLMoreResults to determine whether another result set or
row count is available

4. Repeats steps 2 and 3 until SQLMoreResults returns
SQL_NO_DATA_FOUND
Retrieving Results 6-13

7
Chapter
Retrieving Status and Error
Information
Function Return Codes 7-3

Error Messages . 7-4
Error Text Format 7-5
Sample Error Messages 7-6

Sample Error Returned from the Driver 7-6
Sample Error Returned from the Driver Manager. 7-6
Sample Error Returned from the Data Source 7-7

Processing Error Messages 7-7

Retrieving Error Messages 7-8

7-2 INFO
RMIX-CLI Programmer’s Manual

This chapter defines INFORMIX-CLI return codes and error-handling
protocol. The return codes indicate whether a function succeeded, succeeded
but returned a warning, or failed. The error-handling protocol defines how
the components in an INFORMIX-CLI connection construct and return error
messages through SQLError.

The protocol describes the following points:

■ Use of the error text to identify the source of an error

■ Rules to ensure consistent and useful error information

■ Responsibility for setting the SQLSTATE based on the native error

Function Return Codes
When an INFORMIX-CLI application calls a function, the driver executes the
function and returns a predefined code. These return codes indicate success,
warning, or failure status. The following table defines the return codes.

Return Code Description

SQL_SUCCESS Function completed successfully; no additional infor-
mation is available.

SQL_SUCCESS_WITH_INFO Function completed successfully, possibly with a
nonfatal error. The application can call SQLError to
retrieve additional information.

SQL_NO_DATA_FOUND All rows from the result set have been fetched, but no
data was found.

SQL_ERROR Function failed. The application can call SQLError to
retrieve error information.

(1 of 2)
Retrieving Status and Error Information 7-3

Error Messages
The application is responsible for taking the appropriate action based on the
return code.

Error Messages
INFORMIX-CLI defines a layered architecture to connect an application to a
data source. SQLError returns error messages that follow the standard
INFORMIX-CLI format. An error message not only explains the error but also
provides the identity of the component in which it occurred. Because
SQLError does not return the identity of the component in which the error
occurred, this information is embedded in the error text.

SQL_INVALID_HANDLE Function failed due to an invalid environment
handle, connection handle, or statement handle. This
situation indicates a programming error. No
additional information is available from SQLError.

SQL_STILL _EXECUTING Function is still busy processing an asynchronous
request.

SQL_NEED_DATA While the driver was processing a statement, it deter-
mined that the application needs to send parameter
data values.

Return Code Description

(2 of 2)
7-4 INFORMIX-CLI Programmer’s Manual

Error Text Format
Error Text Format
Error messages that SQLError returns come from two sources: data sources
and INFORMIX-CLI. Consequently, the error text that SQLError returns has
two formats: one for errors that occur in a data source and one for errors that
occur in INFORMIX-CLI.

If INFORMIX-CLI receives an error message from a data source, it identifies
the data source as the source of the error. It also identifies itself as the
component that received the error. For errors that occur in a data source, the
error text uses the following format:

[vendor_identifier][INFORMIX-CLI_component_identifier]
[data_source_identifier]data_source_supplied_text

If the source of an error is INFORMIX-CLI, the error message explains which
INFORMIX-CLI component caused the error. For errors that do not occur in a
data source, the error text uses the following format:

[vendor_dentifier][INFORMIX-CLI _component_identifier]
component_supplied_text

The following table shows the meaning of each element.

The brackets ([]) are included in the error text. They do not indicate optional
items.

Element Meaning

vendor_identifier Identifies the vendor of the component in which the
error occurred or the vendor of the component that
received the error directly from the data source.

INFORMIX-CLI_component
_identifier

Identifies the component in which the error occurred
or that received the error directly from the data source.

data_source_identifier Identifies the data source. For multiple-tier drivers,
this value is the DBMS product.

component_supplied_text Error text that INFORMIX-CLI generates.

data_source_supplied_text Error text that the data source generates.
Retrieving Status and Error Information 7-5

Sample Error Messages
Sample Error Messages
The following examples show how various components in a connection
might generate the text of error messages and how INFORMIX-CLI might
return the error messages to the application with SQLError.

Sample Error Returned from the Driver

INFORMIX-CLI sends requests to a data source and returns information to the
application. If the INFORMIX-CLI architecture includes a driver manager, the
INFORMIX-CLI driver formats and returns arguments for SQLError because it
is the component that interfaces with the driver manager.

For example, if an INFORMIX-CLI driver for INFORMIX-SE encounters a
duplicate cursor name, it might return the following arguments for SQLError:

szSQLState = "3C000"
pfNativeError = NULL
szErrorMsg = "[Informix][ODBC Informix Driver]
Duplicate cursor name:EMPLOYEE_CURSOR."
pcbErrorMsg = 67

Because the error occurred in the driver, it adds prefixes to the error text for
the vendor (Informix) and the driver (ODBC Informix Driver).

Sample Error Returned from the Driver Manager

The driver manager can also generate error messages. For example, if an
application passed an invalid argument value to SQLDataSources, the driver
manager might format and return the following arguments for SQLError:

szSQLState = "S1009"
pfNativeError = NULL
szErrorMsg = "[Informix][ODBC DLL]Invalid argument value:SQLDataSources."
pcbErrorMsg = 60

Because the error occurred in the driver manager, it adds prefixes to the error
text for its vendor (Informix) and its identifier (ODBC DLL).
7-6 INFORMIX-CLI Programmer’s Manual

Processing Error Messages
Sample Error Returned from the Data Source

If the data source could not find the table EMPLOYEE, the driver might format
and return the following arguments for SQLError:

szSQLState = "S0002"
pfNativeError = -206
szErrorMsg = "[Informix][ODBC Informix Driver][Informix]The
specified table (EMPLOYEE) is not in the database."
pcbErrorMsg = 96

Because the error occurred in the data source, the driver added a prefix for
the data source identifier (Informix) to the error text. Because the driver
component interfaced with the data source, it adds prefixes for its vendor
(Informix) and identifier (ODBC Informix Driver) to the error text. For a
description of an error that the data source returns, look up the error message
number in the Informix Error Messages manual.

Processing Error Messages
You can provide your users with the error information that SQLError returns:
the SQLSTATE, the error message number, the error message, and the
corrective action. You must parse the text to separate the error message from
the corrective action. You need to take the appropriate action based on the
error or provide the user with a choice of actions.
Retrieving Status and Error Information 7-7

Retrieving Error Messages
Retrieving Error Messages
If a function other than SQLError returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an application can call SQLError to obtain
additional information. The application might need to call SQLError more
than once to retrieve all the error messages from a function because a
function might return more than one error message. When the application
calls a different function, the error messages from the previous function are
deleted.

Additional error or status information can come from one of the following
sources:

■ Error or status information from an ODBC function, indicating that a
programming error was detected

■ Error or status information from the data source, indicating that an
error occurred during SQL statement processing

The information that SQLError returns is in the same format as that provided
by SQLSTATE in the X/Open and SQL Access Group SQL CAE specification
(1992). SQLError never returns error information about itself.
7-8 INFORMIX-CLI Programmer’s Manual

8
Chapter
Terminating Transactions and
Connections
Terminating Statement Processing 8-3

Terminating Transactions. 8-4

Terminating Connections. 8-4

8-2 INFO
RMIX-CLI Programmer’s Manual

The INFORMIX-CLI interface provides functions to terminate state-
ments, transactions, and connections, as well as to free statement (hstmt),
connection (hdbc), and environment (henv) handles.

Terminating Statement Processing
To free the resources associated with a statement handle, an application calls
SQLFreeStmt. The SQLFreeStmt function has the following options:

■ SQL_CLOSE

This option closes the cursor, if one exists, and discards pending
results. The application can use the statement handle again later.

■ SQL_DROP

This option closes the cursor, if one exists, discards pending results,
and frees all resources associated with the statement handle.

■ SQL_UNBIND

This option frees all return buffers bound by SQLBindCol for the
statement handle.

■ SQL_RESET_PARAMS

This option frees all parameter buffers requested by
SQLBindParameter for the statement handle.
Terminating Transactions and Connections 8-3

Terminating Transactions
Terminating Transactions
An application calls SQLTransact to commit or roll back the current
transaction.

Terminating Connections
To terminate a connection to a driver or to a data source, an application closes
the connection associated with a connection handle and frees the connection
and environment handles. To terminate a connection to a driver and data
source, an application performs the following operations:

1. It calls SQLDisconnect to close the connection.

You can then use the handle to reconnect to the same data source or
to a different data source.

2. It calls SQLFreeConnect to free the connection handle and free all
resources associated with the handle.

3. It calls SQLFreeEnv to free the environment handle and free all
resources associated with the handle.
8-4 INFORMIX-CLI Programmer’s Manual

9
Chapter
Constructing an INFORMIX-CLI
Application
Static SQL Example. 9-4

Interactive Ad-Hoc Query Example 9-7

9-2 INFO
RMIX-CLI Programmer’s Manual

This chapter provides the following examples of C-language source
code for INFORMIX-CLI-enabled applications:

■ An example that uses static SQL functions to create a table, add data
to it, and select the inserted data

■ An example of interactive, ad-hoc query processing
Constructing an INFORMIX-CLI Application 9-3

Static SQL Example
Static SQL Example
The following example constructs SQL statements within the application. The
example comments include equivalent embedded SQL calls for illustrative
purposes.

#include "sql.h"
#include <string.h>

#ifndef NULL
#define NULL 0
#endif
#define MAX_NAME_LEN 50
#define MAX_STMT_LEN 100
int print_err(HDBC hdbc, HSTMT hstmt);

int example1(server, uid, pwd)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
{
HENV henv;
HDBC hdbc;
HSTMT hstmt;

SDWORD id;
UCHAR name[MAX_NAME_LEN + 1];
UCHAR create[MAX_STMT_LEN]
UCHAR insert[MAX_STMT_LEN]
UCHAR select[MAX_STMT_LEN]
SDWORD namelen;
RETCODE rc;

/* EXEC SQL CONNECT TO :server USER :uid USING :pwd; */
/* Allocate an environment handle. */
/* Allocate a connection handle. */
/* Connect to a data source. */
/* Allocate a statement handle. */

SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, SQL_NULL_HSTMT));
SQLAllocStmt(hdbc, &hstmt);

/* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */
/* Execute the SQL statement. */

lstrcpy(create, "CREATE TABLE NAMEID (ID INTEGER, NAME
VARCHAR(50))");

rc = SQLExecDirect(hstmt, create, SQL_NTS);
9-4 INFORMIX-CLI Programmer’s Manual

Static SQL Example
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the table creation. */

/* Note that the default transaction mode for drivers that support */
/* SQLSetConnectOption is auto-commit and SQLTransact has no effect */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */
/* Show the use of the SQLPrepare/SQLExecute method: */
/* Prepare the insertion and bind parameters. */
/* Assign parameter values. */
/* Execute the insertion. */

lstrcpy(insert, "INSERT INTO NAMEID VALUES (?, ?)");
if (SQLPrepare(hstmt, insert, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

0, 0, &id, 0, NULL);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

MAX_NAME_LEN, 0, name, 0, NULL);
id=500;
lstrcpy(name, "Babbage");
if (SQLExecute(hstmt) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the insertion. */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */
/* EXEC SQL OPEN c1; */
/* Show the use of the SQLExecDirect method. */
/* Execute the selection. */
/* Note that the application does not declare a cursor. */

lstrcpy(select, "SELECT ID, NAME FROM NAMEID");
if (SQLExecDirect(hstmt, select, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* EXEC SQL FETCH c1 INTO :id, :name; */
/* Bind the columns of the result set with SQLBindCol. */
/* Fetch the first row. */

SQLBindCol(hstmt, 1, SQL_C_SLONG, &id, 0, NULL);
SQLBindCol(hstmt, 2, SQL_C_CHAR, name, (SDWORD)sizeof(name), &namelen);
SQLFetch(hstmt);

/* EXEC SQL COMMIT WORK; */
/* Commit the transaction. */
Constructing an INFORMIX-CLI Application 9-5

Static SQL Example
SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL CLOSE c1; */
/* Free the statement handle. */

SQLFreeStmt(hstmt, SQL_DROP);

/* EXEC SQL DISCONNECT; */
/* Disconnect from the data source. */
/* Free the connection handle. */
/* Free the environment handle. */

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

return(0);
}

9-6 INFORMIX-CLI Programmer’s Manual

Interactive Ad-Hoc Query Example
Interactive Ad-Hoc Query Example
The following example illustrates how an application can determine the
nature of the result set before it retrieves results:

#include "sql.h"
#include <string.h>
#include <stdlib.h>

#define MAXCOLS 100
#define max(a,b) (a>b?a:b)

int print_err(HDBC hdbc, HSTMT hstmt);
UDWORD display_size(SWORD coltype, UDWORD collen, UCHAR *colname);

example2(server, uid, pwd, sqlstr)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
UCHAR * sqlstr;
{
int i;
HENV henv;
HDBC hdbc;
HSTMT hstmt;
UCHAR errmsg[256];
UCHAR colname[32];
SWORD coltype;
SWORD colnamelen;
SWORD nullable;
UDWORD collen[MAXCOLS];
SWORD scale;
SDWORD outlen[MAXCOLS];
UCHAR * data[MAXCOLS];
SWORD nresultcols;
SDWORD rowcount;
RETCODE rc;

/* Allocate environment and connection handles. */
/* Connect to the data source. */
/* Allocate a statement handle. */
SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, SQL_NULL_HSTMT));
SQLAllocStmt(hdbc, &hstmt);
/* Execute the SQL statement. */
if (SQLExecDirect(hstmt, sqlstr, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* See what kind of statement it was.If there are no result */
Constructing an INFORMIX-CLI Application 9-7

Interactive Ad-Hoc Query Example
/* columns,the statementis not a SELECT statement.If the */
/* number of affected rows is greater than 0, the statement was */
/* probably an UPDATE, INSERT, or DELETE statement, so print the */
/* number of affected rows. If the number of affected rows is 0, */
/* the statement is probably a DDL statement, so print that the */
/* operation was successful and commit it. */

SQLNumResultCols(hstmt, &nresultcols);
if (nresultcols = = 0) {

SQLRowCount(hstmt, &rowcount);
if (rowcount > 0) {

printf("%ld rows affected.\n", rowcount);
} else {

printf("Operation successful.\n");
}
SQLTransact(hdbc, SQL_COMMIT);

/* Otherwise, display the column names of the result set and use the */
/* display_size() function to compute the length needed by each data */
/* type. Next, bind the columns and specify all data will be */
/* converted to char. Finally, fetch and print each row, printing */
/* truncation messages as necessary. */

} else {
for (i = 0; i < nresultcols; i++) {

SQLDescribeCol(hstmt, i + 1, colname, (SWORD)sizeof(colname),
 &colnamelen, &coltype, &collen[i], &scale,
 &nullable);
collen[i] = display_size(coltype, collen[i], colname);
printf("%*.*s", collen[i], collen[i], colname);
data[i] = (UCHAR *) malloc(collen[i] + 1);
SQLBindCol(hstmt, i + 1, SQL_C_CHAR, data[i], collen[i],
 &outlen[i]);

}
while (TRUE) {

rc = SQLFetch(hstmt);
if (rc = = SQL_SUCCESS || rc = = SQL_SUCCESS_WITH_INFO) {

errmsg[0] = '\0';
for (i = 0; i < nresultcols; i++)

if (outlen[i] = = SQL_NULL_DATA) {
lstrcpy(data[i], "NULL");

} else if (outlen[i] >= collen[i]) {
sprintf(&errmsg[strlen(errmsg)],
 "%d chars truncated, col %d\n",
 *outlen[i] - collen[i] + 1,
 colnum;

}
printf("%*.*s ", collen[i], collen[i], data[i]);

}
printf("\n%s", errmsg);

} else {
break;

}
}

}

9-8 INFORMIX-CLI Programmer’s Manual

Interactive Ad-Hoc Query Example
/* Free the data buffers. */
for (i = 0; i < nresultcols; i++) {

free(data[i]);
}

SQLFreeStmt(hstmt, SQL_DROP); /* Free the statement handle. */
SQLDisconnect(hdbc); /* Disconnect from the data source. */
SQLFreeConnect(hdbc); /* Free the connection handle. */
SQLFreeEnv(henv); /* Free the environment handle. */

return(0);
}
/**/
/* The following function is included for completeness, but */
/* is not relevant for understanding the function of ODBC. */
/**/

#define MAX_NUM_PRECISION 15

/* Define max length of char string representation of number as: */
/* = max(precision) + leading sign + E + exp sign + max exp length */
/* = 15 + 1 + 1 + 1 + 2 */
/* = 15 + 5 */

#define MAX_NUM_STRING_SIZE (MAX_NUM_PRECISION + 5)

UDWORD display_size(coltype, collen, colname)
SWORD coltype;
UDWORD collen;
UCHAR * colname;
{
switch (coltype) {

case SQL_CHAR:
case SQL_VARCHAR:

return(max(collen, strlen(colname)));

case SQL_SMALLINT:
return(max(6, strlen(colname)));

case SQL_INTEGER:
return(max(11, strlen(colname)));

case SQL_DECIMAL:
case SQL_NUMERIC:
case SQL_REAL:
case SQL_FLOAT:
case SQL_DOUBLE:

return(max(MAX_NUM_STRING_SIZE, strlen(colname)));

/* Note that this function only supports the core data types. */
default:

printf("Unknown datatype, %d\n", coltype);
return(0);

}

Constructing an INFORMIX-CLI Application 9-9

10
Chapter
Designing Performance-
Oriented Applications
Connecting to a Data Source 10-3
Making One Connection 10-3
Using Statement Handles 10-4

Retrieving Information About a Data Source 10-4
Minimizing the Use of Catalog Functions 10-4
Supplying Non-Null Arguments to Catalog Functions 10-5
Determining Table Characteristics 10-6

Case 1: SQLColumns Method 10-6
Case 2: SQLDescribeCol Method 10-6

Retrieving Data . 10-7
Retrieving Long Data. 10-7
Using SQLSetStmtOption to Reduce the Size of Data

Retrieved 10-8
Using SQLBindCol to Reduce the Call Load 10-9

Case 1: SQLGetData Method 10-9
Case 2: SQLBindCol Method 10-9

Using SQLExtendedFetch Versus SQLFetch 10-10

Executing Calls . 10-11
Using SQLPrepare and SQLExecute Versus SQLExecDirect . . . 10-11

Updating Data . 10-12
Using Positioned Updates and Deletes. 10-12
Determining the Optimal Set of Columns 10-12

Committing Data 10-14

10-2 INF
ORMIX-CLI Programmer’s Manual

This chapter provides guidelines for designing and coding perfor-
mance-oriented INFORMIX-CLI applications. These guidelines are based on
four general performance rules:

■ Reduce network traffic as much as possible.

■ Simplify queries as much as possible.

■ Optimize the application-to-driver interaction.

■ Limit disk I/O to improve performance.

Connecting to a Data Source
Connection management is extremely important to application performance
because the process of connecting to a data source is expensive. To optimize
your application, design it to connect only once. Rather than perform
multiple connections, use multiple statement handles.

Making One Connection
Some ODBC applications are designed to call information-gathering routines
that have no record of connection handles (hdbc pointers) that already exist.
For example, an application might establish a connection and then call a
routine in a separate DLL or shared library that reattaches and gathers up-
front information about the driver to be used later in the application.

To optimize performance, applications that are designed as separate entities
should pass the already-connected hdbc pointer to the data-collection routine
instead of establishing a second connection.
Designing Performance-Oriented Applications 10-3

Using Statement Handles
Using Statement Handles
You can associate multiple statement handles with one connection handle.
Statement handles provide memory storage for information about SQL state-
ments. You should use statement handles to manage multiple SQL statements
instead of connecting and disconnecting several times to execute the SQL
statements.

Retrieving Information About a Data Source
Catalog functions are slow compared to all other INFORMIX-CLI functions.
The functions listed in “Retrieving Information About Data-Source System
Tables” on page 11-8 are catalog functions that return information about a
data-source catalog. SQLGetTypeInfo is also a potentially expensive function
and is included in this discussion of catalog functions.

Minimizing the Use of Catalog Functions
Although you probably need to use catalog functions to write an ODBC-
compliant application, use them sparingly. To return the necessary result set
for a single call to a catalog function, a driver might have to perform multiple
queries, joins, subqueries, and unions. For this reason, frequent use of catalog
functions in an application will likely result in poor performance.

If possible, your application should eliminate the need for multiple execu-
tions by caching information that is returned from catalog functions. For
example, the application might call SQLGetTypeInfo once and cache the
elements of the result set on which the application depends. Few applications
use all elements of the result set that a catalog function generates, so the cache
of information should not be difficult to maintain.
10-4 INFORMIX-CLI Programmer’s Manual

Supplying Non-Null Arguments to Catalog Functions
Supplying Non-Null Arguments to Catalog Functions
Because catalog functions are slow, your application should invoke them as
efficiently as possible. Passing null arguments to catalog functions can result
in the driver generating time-consuming queries and can increase network
traffic with unwanted result-set information.

Rather than pass the smallest number of non-null arguments necessary for a
catalog function to return success, always supply as many non-null
arguments as possible to catalog functions. Any information that the appli-
cation can send the driver when it calls a catalog function can result in
improved performance and reliability.

Consider a call to SQLTables in which an application requests information
about a table named Customers. This call is often coded similarly to the
following example:

rc = SQLTables (NULL, NULL, NULL, NULL, “Customers”, SQL_NTS,
 NULL);

A driver might turn this SQLTables call into SQL statements, as in the
following example:

SELECT...FROM SysTables WHERE TableName = ‘Customers’
UNION ALL

SELECT...FROM SysViews WHERE ViewName = ‘Customers’
UNION ALL

SELECT...FROM SysSynonyms WHERE SynName = ‘Customers’
ORDER BY...

Suppose that the result set for this example contains three Customers tables:
one table that the user owns, one table that sales owns, and one view that
management creates. Although it might be obvious that the intent of the
application is to use the one that the user owns, it might not be obvious to the
user which table to choose. If the application specifies the OwnerName
argument for the SQLTables call, reliability and performance improve, and
only one table is returned. (Less network traffic is required to return only one
result row, and the data source filters unwanted rows.)

To extend this example, if the application can provide a value for the
TableType argument, the driver can optimize the SQL statement, as in the
following command:

SELECT ... FROM SysTables WHERE TableName = ‘Customers’ AND
Owner = ‘Beth’
Designing Performance-Oriented Applications 10-5

Determining Table Characteristics
Determining Table Characteristics
When an application calls SQLColumns, the database server must evaluate
the query and form a result set to return to the client. When the application
makes a dummy query with SQLDescribeCol, the database server does not
execute the query; it only prepares it. Thus, no results are sent back to the
client.

Consider an application that allows the user to choose which columns to
select. The following pseudocode fragments and analysis illustrate the
performance advantage of SQLDescribeCol.

Case 1: SQLColumns Method

The following example uses SQLColumns:

rc = SQLColumns (... “UnknownTable” ...);
// This call to SQLColumns will generate a query to the system
// catalogs... possibly a join which must be prepared,
// executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

The following example uses SQLDescribeCol:

// prepare dummy query
rc = SQLPrepare (... “SELECT * from UnknownTable

WHERE 1 = 0” ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++)

{
rc = SQLDescribeCol (...)
// + optional calls to SQLColAttributes
}

// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be
// assumed from the SQLColumns example.
10-6 INFORMIX-CLI Programmer’s Manual

Retrieving Data
Both cases send a query to the database server, but in Case 1, SQLColumns
must evaluate the query and form a result set that it must send to the client.
In Case 2, SQLDescribeCol gets the result-column information and the order
of the columns within the table without returning the information to the
client, thus improving performance.

Avoid using SQLColumns to determine characteristics of a table. Instead, use
a dummy query with SQLDescribeCol.

Retrieving Data
To increase the performance of an application, limit the amount of data
retrieved and reduce the call load.

Retrieving Long Data
Retrieving long data (SQL_LONGVARCHAR and SQL_LONGVARBINARY data)
across the network is resource intensive and slow. Unless it is absolutely
necessary, your application should avoid requesting long data. If the user
wants to see long data items, the application can requery the database and
specify only the long columns in the SELECT list.

In general, users do not want to see long data. Consequently, a default that
does not retrieve long data or binary data is acceptable. If a user does want to
see these result items, the application can requery the database, specifying
only the long columns in the SELECT list. This method allows the average
user to retrieve the result set without paying a high performance penalty for
intense network traffic.

Although the optimal method is to exclude long data from the SELECT list,
some applications do not formulate the select list before they send the query
to the driver; that is, some applications use a statement such as the following
one:

SELECT * FROM table_name...

If the SELECT list contains long data, some drivers must retrieve that data at
fetch time even if the application does not bind the long data in the result set.
If possible, the designer should attempt to implement a method that does not
retrieve all columns of the table.
Designing Performance-Oriented Applications 10-7

Using SQLSetStmtOption to Reduce the Size of Data Retrieved
Using SQLSetStmtOption to Reduce the Size of Data
Retrieved
When you retrieve long data, your result set can be huge. To reduce the size
of the result set data to a manageable level, call SQLSetStmtOption with the
SQL_MAX_LENGTH option.

The SQL_MAX_LENGTH option reduces network traffic and improves perfor-
mance by allowing the driver to communicate to the database server that
only n bytes of data are pertinent to the client. The database server responds
by sending only the first n bytes of data for all result columns.

A common assumption among application developers is that if an appli-
cation calls SQLGetData with a container of size x, then the driver retrieves
only x bytes of information from the server. On the contrary, because an
application can call SQLGetData multiple times for any one column, the
INFORMIX-CLI driver retrieves long data in large chunks to optimize network
use; it then returns the long data to the user upon request. The following code
example illustrates the impact on performance:

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, “SELECT CaseHistory FROM Cases
WHERE CaseNo = 71164”, SQL_NTS);
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD)
sizeof(CaseContainer), ...);

At this point, the driver is more likely to retrieve 64 kilobytes of information
from the server instead of 1000 bytes. (In terms of network access, one 64
kilobytes retrieval is less expensive than sixty-four 1000-byte retrievals.)
Unfortunately, the application might not call SQLGetData again; thus, the
first and only retrieval of CaseHistory is slowed because 64 kilobytes of data
has to be sent across the network.

In this example, only one row is returned. The performance impact is signif-
icant when, for example, 100 rows are returned in the result set. This example
further illustrates how you can limit the size of the data retrieved with the
SQL_MAX_LENGTH option of SQLSetStmtOption to improve performance.
10-8 INFORMIX-CLI Programmer’s Manual

Using SQLBindCol to Reduce the Call Load
Using SQLBindCol to Reduce the Call Load
Another way to improve performance is to retrieve data through bound
columns. To reduce the ODBC call load, use SQLBindCol instead of
SQLGetData.

The following pseudocode fragments and analysis illustrate the performance
difference that can result from using SQLBindCol.

Case 1: SQLGetData Method

This example uses SQLGetData:

rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM Employees
WHERE HireDate >= ?”, SQL_NTS);

do {
rc = SQLFetch (hstmt);
// call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO));

Case 2: SQLBindCol Method

This example uses SQLBindCol:

rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM Employees
WHERE HireDate >= ?”, SQL_NTS);

// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO));

Consider a situation in which the query returns 90 result rows. In Case 1, the
number of ODBC calls made is greater than 1,890 (20 calls to SQLGetData x 90
result rows + 91 calls to SQLFetch). In Case 2, the number of ODBC calls made
is reduced to about 110 (20 calls to SQLBindCol + 91 calls to SQLFetch).
Clearly, the use of SQLBindCol can improve performance.

Another reason to use SQLBindCol is that many drivers optimize use of
SQLBindCol by binding result information directly from the data source into
the user’s buffer. That is, instead of the driver retrieving information into a
container and then copying that information to the user’s buffer, the driver
simply requests that the information from the database server be placed
directly into the user’s buffer.
Designing Performance-Oriented Applications 10-9

Using SQLExtendedFetch Versus SQLFetch
Using SQLExtendedFetch Versus SQLFetch
Use SQLExtendedFetch instead of SQLFetch to retrieve data. The ODBC call
load decreases (resulting in better performance), and the code is less complex
(resulting in more maintainable code).

Consider the preceding SQLBindCol example. The following code example
uses SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM

Employees WHERE HireDate >= ?”, SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {
rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0,

&RowsFetched,RowStatus);
} while ((rc == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls that the application makes is reduced from 110 in
Case 2 of the previous example to four calls (1 SQLSetStmtOption + 1
SQLExecDirect + 1 SQLBindCol + 1 SQLExtendedFetch). The combined use
of SQLBindCol SQLExtendedFetch reduces the initial call load of more than
1,890 ODBC calls (in “Case 1: SQLGetData Method” on page 10-9) to only four
calls.
10-10 INFORMIX-CLI Programmer’s Manual

Executing Calls
Executing Calls
Certain functions are more efficient than others at performing specialized
tasks.

Using SQLPrepare and SQLExecute Versus SQLExecDirect
The combination of SQLPrepare and SQLExecute is optimized for multiple
executions of a statement that most likely uses parameter markers.
SQLExecDirect is optimized for a single execution of an SQL statement.
Therefore, for better performance, use SQLPrepare and SQLExecute for
queries that are executed more than once and SQLExecDirect for queries that
are executed only once.

Unfortunately, more than 75 percent of all ODBC applications use
SQLPrepare and SQLExecute exclusively. The following situation illustrates
the pitfall of always coding SQLPrepare and SQLExecute.

Consider a driver that implements SQLPrepare by creating a stored
procedure on the database server that contains the prepared statement.
Creating a stored procedure has substantial overhead, but the driver assumes
that the statement will be executed multiple times. In this case, although
stored procedure creation is relatively expensive, execution is minimal
because the query is parsed, and optimization paths are stored when the
procedure is created. However, for such a driver, if the statement is executed
only once, unneeded overhead results.

In general, applications that use SQLPrepare and SQLExecute for large,
single-execution query batches almost certainly cause poor performance.

Similarly, applications that always use SQLExecDirect cannot perform as
well as those that logically use a combination of SQLPrepare, SQLExecute,
and SQLExecDirect sequences.
Designing Performance-Oriented Applications 10-11

Updating Data
Updating Data
Use positioned updates and deletes and SQLSpecialColumns to improve the
performance of your application.

Using Positioned Updates and Deletes
Although positioned updates do not apply to all types of applications, try to
use positioned updates and deletes whenever possible. Positioned updates
(with UPDATE WHERE CURRENT OF CURSOR) allow you to update data by
positioning the database cursor to the row to be changed and signaling the
driver to change the data. You are not forced to build a complex SQL
statement; you simply supply the data to be changed.

Besides making the code more maintainable, positioned updates typically
result in improved performance. Because the database server is already
positioned on the row (for the SELECT statement currently in process),
expensive operations to locate the row to be changed are unnecessary. If the
row must be located, the database server typically has an internal pointer to
the row available (for example, ROWID).

Determining the Optimal Set of Columns
Use SQLSpecialColumns to determine the optimal set of columns to use in
the WHERE clause for updating data. Many times, pseudocolumns provide
the fastest access to the data; you can determine these columns only by using
SQLSpecialColumns.

Many applications cannot be designed to take advantage of positioned
updates and deletes. These applications typically update data by forming a
WHERE clause that consists of some subset of the column values that are
returned in the result set. Some applications might formulate the WHERE
clause by using all searchable result columns or by calling SQLStatistics to
find columns that might be part of a unique index. These methods typically
work but can result in fairly complex queries.
10-12 INFORMIX-CLI Programmer’s Manual

Determining the Optimal Set of Columns
Consider the following example:

rc = SQLExecDirect (hstmt, “SELECT first_name, last_name, ssn,
 address, city, state, zip FROM emp”, SQL_NTS);

// fetchdata
...

rc = SQLExecDirect (hstmt, “UPDATE EMP SET ADDRESS = ?
 WHERE first_name = ? AND last_name = ? AND ssn = ?
 AND address = ? AND city = ? AND state = ? AND zip = ?”,
 SQL_NTS);

// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve
the optimal set of columns (possibly a pseudocolumn) that identifies any
given record. Many databases support special columns that are not explicitly
user-defined in the table definition but are hidden columns of every table (for
example, ROWID, TID, and so on). These pseudocolumns almost always
provide the fastest access to the data because they typically are pointers to the
exact location of the record. Because pseudocolumns are not part of the
explicit table definition, they are not returned from SQLColumns. The only
way to determine whether pseudocolumns exist is to call
SQLSpecialColumns.

Consider the previous example, this time using SQLSpecialColumns:

...

rc = SQLSpecialColumns (hstmt, ‘emp’, ...);
...

rc = SQLExecDirect (hstmt, “SELECT first_name, last_name, ssn,
 address, city, state, zip, ROWID FROM emp”, SQL_NTS);

// fetch data and probably “hide” ROWID from the user
...

rc = SQLExecDirect (hstmt, “UPDATE emp SET address = ? WHERE
 ROWID = ?”, SQL_NTS);

// fastest access to the data!

If your data source does not contain special pseudocolumns, the result set of
SQLSpecialColumns consists of the columns of the optimal unique index on
the specified table (if a unique index exists). Therefore, your application need
not additionally call SQLStatistics to find the smallest unique index.
Designing Performance-Oriented Applications 10-13

Committing Data
Committing Data
Committing data is extremely I/O-intensive and slow. By default, auto-
commit is on when a driver connects to a data source. To improve perfor-
mance, turn auto-commit off.

During a commit, the database server must flush back to disk every data page
that contains updated or new data. The database server does not use a
sequential write to perform this task. Instead, it uses a searched write to
replace existing data that is already in the table. Thus, auto-commit mode is
typically detrimental to performance because of the amount of I/O needed to
commit every operation.
10-14 INFORMIX-CLI Programmer’s Manual

11
Chapter
Function Summary
INFORMIX-CLI Function Summary 11-3
Connecting to a Data Source 11-4
Retrieving Information About a Driver and Data Source 11-5
Setting and Retrieving Driver Options 11-5
Preparing SQL Requests. 11-6
Submitting SQL Requests 11-6
Retrieving Results and Information About Results 11-7
Retrieving Information About Data-Source System Tables 11-8
Terminating a Statement 11-9
Terminating a Connection 11-10

Setup Shared-Library Function Summary 11-10

Translation Shared-Library Function Summary 11-11

11-2 INF
ORMIX-CLI Programmer’s Manual

This chapter summarizes the functions that INFORMIX-CLI-enabled
applications and related software use:

■ INFORMIX-CLI functions

■ Setup shared-library functions

■ Translation shared-library functions

INFORMIX-CLI Function Summary
The following tables list INFORMIX-CLI functions according to the type of
tasks that the functions perform. The tables include function name,
conformance designation, and a brief description of each function. For more
information about conformance designations, see “API Conformance
Levels” on page 3-3. For more information about the syntax and semantics
for each function, see Chapter 12.

An application can call the SQLGetInfo function to get conformance infor-
mation about a driver. To get information about support for a specific
function in a driver, an application can call SQLGetFunctions.
Function Summary 11-3

Connecting to a Data Source
Connecting to a Data Source
The following table describes functions that connect to a data source.

Function Name
ODBC
Conformance Purpose

SQLAllocEnv Core Obtains an environment handle. One
environment handle is used for one or more
connections.

SQLAllocConnect Core Obtains a connection handle.

SQLConnect Core Connects to a specific driver by data source
name, user ID, and password.

SQLDriverConnect Level 1 Connects to a specific driver by connection
string or requests that INFORMIX-CLI
display connection dialog boxes for the user.

SQLBrowseConnect Level 2 Returns successive levels of connection
attributes and valid attribute values. When a
value is specified for each connection
attribute, the function connects to the data
source.
11-4 INFORMIX-CLI Programmer’s Manual

Retrieving Information About a Driver and Data Source
Retrieving Information About a Driver and Data Source
The following table describes functions that return information about a
driver and data source.

Setting and Retrieving Driver Options
The following table describes functions that set and retrieve driver options.

Function Name
ODBC
Conformance Purpose

SQLDataSources Level 2 Returns the list of available data
sources.

SQLDrivers Level 2 Returns the list of installed drivers and
their attributes.

SQLGetInfo Level 1 Returns information about a specific
driver and data source.

SQLGetFunctions Level 1 Returns supported driver functions.

SQLGetTypeInfo Level 1 Returns information about supported
data types.

Function Name
ODBC
Conformance Purpose

SQLSetConnectOption Level 1 Sets a connection option.

SQLGetConnectOption Level 1 Returns the value of a connection
option.

SQLSetStmtOption Level 1 Sets a statement option.

SQLGetStmtOption Level 1 Returns the value of a statement option.
Function Summary 11-5

Preparing SQL Requests
Preparing SQL Requests
The following table describes functions that prepare SQL requests.

Submitting SQL Requests
The following table describes functions that submit SQL requests.

Function Name
ODBC
Conformance Purpose

SQLAllocStmt Core Allocates a statement handle.

SQLPrepare Core Prepares an SQL statement for later
execution.

SQLBindParameter Level 1 Assigns storage for a parameter in an
SQL statement.

SQLGetCursorName Core Returns the cursor name associated with
a statement handle.

SQLSetCursorName Core Specifies a cursor name.

SQLSetScrollOptions Level 2 Sets options that control cursor
behavior.

Function Name
ODBC
Conformance Purpose

SQLExecute Core Executes a prepared statement.

SQLExecDirect Core Executes a statement.

SQLNativeSql Level 2 Returns the text of an SQL statement as
translated by the driver.

(1 of 2)
11-6 INFORMIX-CLI Programmer’s Manual

Retrieving Results and Information About Results
Retrieving Results and Information About Results
The following table describes functions that retrieve results and information
about results.

SQLNumParams Level 2 Returns the number of parameters in a
statement.

SQLParamData Level 1 Used with SQLPutData to supply
parameter data at execution time.
(Useful for long data values.)

SQLPutData Level 1 Sends part or all of a data value for a
parameter. (Useful for long data values.)

Function Name
ODBC
Conformance Purpose

SQLRowCount Core Returns the number of rows affected by
an insert, update, or delete request.

SQLNumResultCols Core Returns the number of columns in the
result set.

SQLDescribeCol Core Describes a column in the result set.

SQLColAttributes Core Describes attributes of a column in the
result set.

SQLBindCol Core Assigns storage for a result column and
specifies the data type.

SQLFetch Core Returns a result row.

SQLExtendedFetch Level 2 Returns multiple result rows.

(1 of 2)

Function Name
ODBC
Conformance Purpose

(2 of 2)
Function Summary 11-7

Retrieving Information About Data-Source System Tables
Retrieving Information About Data-Source System Tables
The following table describes catalog functions that return information about
data-source system tables.

SQLGetData Level 1 Returns part or all of one column of one
row of a result set. (Useful for long data
values.)

SQLMoreResults Level 2 Determines whether more result sets are
available and, if so, initializes
processing for the next result set.

SQLError Core Returns additional error or status
information.

Function Name
ODBC
Conformance Purpose

SQLColumnPrivileges Level 2 Returns a list of columns and associated
privileges for one or more tables.

SQLColumns Level 1 Returns the list of column names in
specified tables.

SQLForeignKeys Level 2 Returns a list of column name or names
that make up foreign keys, if they exist
for a specific table.

SQLPrimaryKeys Level 2 Returns the list of column name or
names that make up the primary key for
a table.

SQLProcedureColumns Level 2 Returns the list of input and output
parameters, as well as the columns that
make up the result set for the specified
procedures.

(1 of 2)

Function Name
ODBC
Conformance Purpose

(2 of 2)
11-8 INFORMIX-CLI Programmer’s Manual

Terminating a Statement
Terminating a Statement
The following table describes functions that terminate a statement.

SQLProcedures Level 2 Returns a list of procedure names stored
in a specific data source.

SQLSpecialColumns Level 1 Returns information about the optimal
set of columns that uniquely identifies a
row in a specified table, or the columns
that are automatically updated when a
transaction updates any value in the
row.

SQLStatistics Level 1 Returns statistics about a single table
and the list of indexes associated with
the table.

SQLTablePrivileges Level 2 Returns a list of tables and the privileges
associated with each table.

SQLTables Level 1 Returns the list of table names stored in
a specific data source.

Function Name
ODBC
Conformance Purpose

SQLFreeStmt Core Ends statement processing and closes
the associated cursor, discards pending
results, and, optionally, frees all
resources associated with the statement
handle.

SQLCancel Core Cancels an SQL statement.

SQLTransact Core Commits or rolls back a transaction.

Function Name
ODBC
Conformance Purpose

(2 of 2)
Function Summary 11-9

Terminating a Connection
Terminating a Connection
The following table describes functions that terminate a connection.

Setup Shared-Library Function Summary
The following table describes setup shared-library functions. For more infor-
mation about the syntax and semantics for each function, see Chapter 13,
“Setup Shared Library Function Reference.”

Function Name
ODBC
Conformance Purpose

SQLDisconnect Core Closes the connection.

SQLFreeConnect Core Releases the connection handle.

SQLFreeEnv Core Releases the environment handle.

SQLMoreResults Level 2 Determines whether more results are
available on a hstmt.

Task Function Name Purpose

Setting up data sources
and translators

ConfigDSN Adds, modifies, or deletes a data
source.

ConfigTranslator Returns a default translation
option.
11-10 INFORMIX-CLI Programmer’s Manual

Translation Shared-Library Function Summary
Translation Shared-Library Function Summary
The following table describes translation shared-library functions.

Task Function name Purpose

Translating
data

SQLDriverToDataSource Translates all data that flows from the
driver to the data source.

SQLDataSourceToDriver Translates all data that flows from the
data source to the driver.
Function Summary 11-11

12
Chapter
INFORMIX-CLI Function
Reference
Arguments . 12-6

INFORMIX-CLI Include Files 12-9

Diagnostics . 12-9

Tables and Views 12-9

Catalog Functions 12-9

Search Pattern Arguments 12-10
SQLAllocConnect 12-11
SQLAllocEnv 12-14
SQLAllocStmt 12-17
SQLBindCol 12-20
SQLBindParameter 12-27
SQLBrowseConnect 12-40
SQLCancel 12-51
SQLColAttributes 12-54
SQLColumnPrivileges 12-64
SQLColumns 12-70
SQLConnect 12-78
SQLDataSources 12-84
SQLDescribeCol 12-88
SQLDisconnect 12-93
SQLDriverConnect 12-96
SQLDrivers 12-105
SQLError . 12-109
SQLExecDirect 12-112
SQLExecute 12-119
SQLExtendedFetch 12-125
SQLFetch . 12-140
SQLForeignKeys 12-146

12-2 INF
SQLFreeConnect 12-157
SQLFreeEnv 12-160
SQLFreeStmt. 12-163
SQLGetConnectOption 12-166
SQLGetCursorName 12-169
SQLGetData 12-172
SQLGetFunctions 12-180
SQLGetInfo 12-186
SQLGetStmtOption 12-220
SQLGetTypeInfo 12-224
SQLMoreResults 12-232
SQLNativeSql 12-235
SQLNumParams 12-238
SQLNumResultCols 12-241
SQLParamData 12-244
SQLPrepare 12-248
SQLPrimaryKeys 12-255
SQLProcedureColumns 12-259
SQLProcedures 12-266
SQLPutData 12-273
SQLRowCount 12-280
SQLSetConnectOption 12-283
SQLSetCursorName 12-292
SQLSetScrollOptions 12-297
SQLSetStmtOption. 12-298
SQLSpecialColumns 12-306
SQLStatistics 12-313
SQLTablePrivileges 12-321
SQLTables . 12-327
SQLTransact 12-333
ORMIX-CLI Programmer’s Manual

This chapter describes each INFORMIX-CLI function. The functions are
listed alphabetically. Each function is defined as a programming-language
function. The function descriptions include the following aspects:

■ Conformance level

■ Purpose

■ Syntax

■ Return codes

■ Diagnostics

■ Usage

■ Code example (optional)

■ Related functions

Error handling is described under the SQLError function description. The
text associated with SQLSTATE values is included to provide a description of
the condition, but it is not intended to prescribe specific text.
INFORMIX-CLI Function Reference 12-3

Arguments
Arguments
All INFORMIX-CLI function arguments use a naming convention of the
following form:

[[prefix]...]tag[qualifier][suffix]

Optional elements appear in brackets ([]) and use the following prefixes.

The following tags are used.

Prefix Description

c Count of

h Handle of

i Index of

p Pointer to

rg Range (array) of

Tag Description

b Byte

col Column (of a result set)

dbc Database connection

env Environment

f Flag (enumerated type)

par Parameter (of an SQL statement)

row Row (of a result set)

stmt Statement

sz Character string (array of characters, terminated by zero)

v Value of unspecified type
12-4 INFORMIX-CLI Programmer’s Manual

Arguments
Prefixes and tags combine to correspond roughly to the typedefs for the
standard C data types listed below. Flags (f) and byte counts (cb) do not
distinguish among SWORD, UWORD, SDWORD, and UDWORD.

Combined Prefix Tag
Typedefs for Standard C
Data Types Description

cb c b SWORD, SDWORD,
UDWORD

Count of bytes

crow c row SDWORD, UDWORD,
UWORD

Count of rows

f – f SWORD, UWORD Flag

hdbc h dbc HDBC Connection handle

henv h env HENV Environment handle

hstmt h stmt HSTMT Statement handle

hwnd h wnd HWND Widget

ib i b SWORD Byte index

icol i col UWORD Column index

ipar i par UWORD Parameter index

irow i row SDWORD, UWORD Row index

pcb pc b SWORD FAR *, SDWORD
FAR *, UDWORD FAR *

Pointer to byte count

pccol pc col SWORD FAR * Pointer to column count

pcpar pc par SWORD FAR * Pointer to parameter
count

pcrow pc row SDWORD FAR *,
UDWORD FAR *

Pointer to row count

pf p f SWORD, SDWORD,
UWORD

Pointer to flag

phdbc ph dbc HDBC FAR * Pointer to connection
handle

(1 of 2)
INFORMIX-CLI Function Reference 12-5

Arguments
Qualifiers are used to distinguish specific variables of the same typedef.
Qualifiers consist of the concatenation of one or more capitalized English
words or abbreviations.

INFORMIX-CLI defines one value for the suffix Max, which denotes that the
variable represents the largest value of its type for a given situation.

For example, the argument cbErrorMsgMax contains the largest possible byte
count for an error message; in this case, the argument corresponds to the size
in bytes of the argument szErrorMsg, a character string buffer. The argument
pcbErrorMsg is a pointer to the count of bytes available to return in the
argument szErrorMsg, not including the null termination character.

Important: Because characters are signed in many UNIX implementations and
string arguments are unsigned in INFORMIX-CLI functions, applications that pass
string objects to INFORMIX-CLI functions without casting them receive compiler
warnings.

phenv ph env HENV FAR * Pointer to environment
handle

phstmt ph stmt HSTMT FAR * Pointer to statement
handle

pib pi b SWORD FAR * Pointer to byte index

pirow pi row UDWORD FAR * Pointer to row index

prgb prg b PTR FAR * Pointer to range (array) of
bytes

pv p v PTR Pointer to value of
unspecified type

rgb rg b PTR Range (array) of bytes

rgf rg f UWORD FAR * Range (array) of flags

sz – sz UCHAR FAR * String, zero terminated

v – v UDWORD Value of unspecified type

Combined Prefix Tag
Typedefs for Standard C
Data Types Description

(2 of 2)
12-6 INFORMIX-CLI Programmer’s Manual

INFORMIX-CLI Include Files
INFORMIX-CLI Include Files
The files sql.h and sqlext.h contain function prototypes for all the
INFORMIX-CLI functions. They also contain all type definitions and #define
constants.

Diagnostics
The diagnostics provided with each function list SQLSTATE values that the
function might return. INFORMIX-CLI can return additional SQLSTATE values
that arise from implementation-specific situations.

The character string value returned for an SQLSTATE consists of a two-
character class value followed by a three-character subclass value. A class
value of 01 indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than 01, except for the class
IM, indicate an error and are accompanied by a return code of SQL_ERROR.
The class IM signifies warnings and errors that derive from the implemen-
tation of INFORMIX-CLI. The subclass value 000 in any class is for
implementation-defined conditions within the given class. ANSI SQL-92
defines the assignment of class and subclass values.

Tables and Views
In INFORMIX-CLI functions, tables and views are interchangeable. The term
table is used for tables and views, except where view is used explicitly.

Catalog Functions
The functions listed in “Retrieving Information About Data-Source System
Tables” on page 11-8 are catalog functions that return information about a
data-source catalog.
INFORMIX-CLI Function Reference 12-7

Search Pattern Arguments
Search Pattern Arguments
Each catalog function returns information in the form of a result set. The
information that a function returns can be constrained by a search pattern
passed as an argument to that function. These search patterns can contain the
underscore (_), the percent symbol (%), and a driver-defined escape
character, as follows:

■ The underscore represents any single character.

■ The percent symbol represents any sequence of zero or more
characters.

■ The escape character, backslash (\), permits the underscore and
percent metacharacters to be used as literal characters in search
patterns. To use a metacharacter as a literal character in the search
pattern, precede it with the escape character. To use the escape
character as a literal character in the search pattern, include it twice.

■ All other characters represent themselves.

For example, if the search pattern for a table name is %A%, the function
returns all tables with names that contain the character A. If the search
pattern for a table name is B__ (B followed by two underscores), the function
returns all tables with names that are three characters long and start with the
character B. If the search pattern for a table name is %, the function returns
all tables.

If the search pattern for a table name is ABC\%, the function returns the table
named ABC%. If the search pattern for a table name is \\%, the function
returns all tables with names that start with a backslash. Failing to precede a
metacharacter used as a literal with the escape character might return more
results than expected. For example, if SQLTables returns a table identifier
MY_TABLE and if an application wants to retrieve a list of columns for
MY_TABLE using SQLColumns, SQLColumns returns all the tables that
match MY_TABLE, such as MY_TABLE, MY1TABLE, MY2TABLE, and so on,
unless the escape character precedes the underscore.

Important: A zero-length search pattern matches the empty string. A search-pattern
argument that is a null pointer means the search is not constrained for the argument.
A null pointer and a search string of “%” should return the same values.
12-8 INFORMIX-CLI Programmer’s Manual

SQLAllocConnect
SQLAllocConnect
SQLAllocConnect allocates memory for a connection handle within the
environment that henv identifies.

Syntax
RETCODE SQLAllocConnect(henv, phdbc)

The SQLAllocConnect function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

If SQLAllocConnect returns SQL_ERROR, it sets the hdbc referenced by phdbc
to SQL_NULL_HDBC. To obtain additional information, the application can
call SQLError with the specified henv and with hdbc and hstmt set to
SQL_NULL_HDBC and SQL_NULL_HSTMT, respectively.

Typedef Argument Use Description

HENV henv Input Environment handle

HDBC FAR * phdbc Output Pointer to storage for the connection handle

Core
INFORMIX-CLI Function Reference 12-9

SQLAllocConnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-allocation
failure

(DM) The driver manager could not allocate
memory for the connection handle.

The driver could not allocate memory for the
connection handle.

S1009 Invalid argument
value

(DM) The argument phdbc was a null pointer.
12-10 INFORMIX-CLI Programmer’s Manual

SQLAllocConnect
Usage
A connection handle references information such as the valid statement
handles on the connection and whether a transaction is currently open. To
request a connection handle, an application passes the address of an hdbc to
SQLAllocConnect. The driver allocates memory for the connection infor-
mation and stores the value of the associated handle in the hdbc. On operating
systems that support multiple threads, applications can use the same hdbc on
different threads. The application passes the hdbc value in all subsequent calls
that require an hdbc.

If your INFORMIX-CLI architecture includes a driver manager, the driver
manager processes the SQLAllocConnect function and calls the driver
SQLAllocConnect function when the application calls SQLConnect,
SQLBrowseConnect, or SQLDriverConnect. For more information, see
“Usage” on page 12-79.

If the application calls SQLAllocConnect with a pointer to a valid hdbc, the
driver overwrites the hdbc without regard to its previous contents.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

♦

For Information About See

Connecting to a data source SQLConnect

Freeing a connection handle SQLFreeConnect
INFORMIX-CLI Function Reference 12-11

SQLAllocEnv
SQLAllocEnv
SQLAllocEnv allocates memory for an environment handle and initializes
the INFORMIX-CLI call level interface for application use. An application
must call SQLAllocEnv before it calls any other INFORMIX-CLI function.

Syntax
RETCODE SQLAllocEnv(phenv)

The SQLAllocEnv function accepts the following argument.

Return Codes
SQL_SUCCESS or SQL_ERROR

If SQLAllocEnv returns SQL_ERROR, it sets the henv that phenv references to
SQL_NULL_HENV. In this case, the application can assume that the error was
a memory-allocation error.

Typedef Argument Use Description

HENV FAR * phenv Output Pointer to storage for the environment
handle

Core
12-12 INFORMIX-CLI Programmer’s Manual

SQLAllocEnv
Diagnostics
A driver cannot return SQLSTATE values directly after the call to
SQLAllocEnv because no valid handle exists with which to call SQLError.

Two levels of SQLAllocEnv functions exist, one within the driver manager (if
you are using one) and one within the driver. The driver manager does not
call the driver-level function until the application calls SQLConnect,
SQLBrowseConnect, or SQLDriverConnect. If an error occurs in the driver-
level SQLAllocEnv function, the driver manager-level SQLConnect,
SQLBrowseConnect, or SQLDriverConnect function returns SQL_ERROR. A
subsequent call to SQLError with henv, SQL_NULL_HDBC, and
SQL_NULL_HSTMT returns SQLSTATE IM004 (the driver SQLAllocEnv
function failed), followed by one of the following errors from the driver:

■ SQLSTATE S1000 (General error)

■ An INFORMIX-CLI SQLSTATE value, which ranges from S1000 to
S19ZZ. For example, SQLSTATE S1001 (Memory-allocation failure)
indicates that the call from the driver manager to the driver-level
SQLAllocEnv returned SQL_ERROR, and the henv from the driver
manager was set to SQL_NULL_HENV.

For additional information about the flow of function calls between the
driver manager and a driver, see “Usage” on page 12-79.

Usage
An environment handle references global information such as valid
connection handles and active connection handles. To request an
environment handle, an application passes the address of an henv to
SQLAllocEnv. The driver allocates memory for the environment information
and stores the value of the associated handle in the henv. On operating
systems that support multiple threads, applications can use the same hdbc on
different threads. The application passes the henv value in all subsequent
calls that require an henv.
INFORMIX-CLI Function Reference 12-13

SQLAllocEnv
More than one henv should never be allocated at one time, and the appli-
cation should not call SQLAllocEnv when a current valid henv exists. If the
application calls SQLAllocEnv with a pointer to a valid henv, the driver
overwrites the henv without regard to its previous contents.

When INFORMIX-CLI processes the SQLAllocEnv function, it checks the Trace
value in the initialization files. If the value is 1, INFORMIX-CLI enables tracing
for all applications.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

♦

For Information About See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Freeing an environment handle SQLFreeEnv
12-14 INFORMIX-CLI Programmer’s Manual

SQLAllocStmt
SQLAllocStmt
SQLAllocStmt allocates memory for a statement handle and associates the
statement handle with the connection that hdbc specifies.

An application must call SQLAllocStmt before it submits SQL statements.

Syntax
RETCODE SQLAllocStmt(hdbc, phstmt)

The SQLAllocStmt function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or
SQL_ERROR

If SQLAllocStmt returns SQL_ERROR, it sets the hstmt that phstmt references
to SQL_NULL_HSTMT. The application can then obtain additional infor-
mation by calling SQLError with the hdbc and SQL_NULL_HSTMT.

Typedef Argument Use Description

HDBC hdbc Input Connection handle

HSTMT FAR * phstmt Output Pointer to storage for the statement handle

Core
INFORMIX-CLI Function Reference 12-15

SQLAllocStmt
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning Informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The connection that the hdbc argument
specifies was not open. The connection process
must be completed successfully (and the
connection must be open) for the driver to
allocate an hstmt.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message that SQLError returns in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-allocation
failure

(DM) The driver manager could not allocate
memory for the statement handle.

The driver could not allocate memory for the
statement handle.

S1009 Invalid argument
value

(DM) The argument phstmt was a null pointer.
12-16 INFORMIX-CLI Programmer’s Manual

SQLAllocStmt
Usage
A statement handle references statement information, such as network infor-
mation, SQLSTATE values and error messages, cursor name, several result-set
columns, and status information for SQL statement processing.

To request a statement handle, an application connects to a data source and
then passes the address of an hstmt to SQLAllocStmt. The driver allocates
memory for the statement information and stores the value of the associated
handle in the hstmt. On operating systems that support multiple threads,
applications can use the same hdbc on different threads. The application
passes the hstmt value in all subsequent calls that require an hstmt.

If the application calls SQLAllocStmt with a pointer to a valid hstmt, the
driver overwrites the hstmt without regard to its previous contents.

Code Example
See SQLBrowseConnect, SQLConnect, and SQLSetCursorName.

Related Functions

♦

For Information About See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Preparing a statement for execution SQLPrepare
INFORMIX-CLI Function Reference 12-17

SQLBindCol
SQLBindCol
SQLBindCol assigns the storage and INFORMIX-CLI C data type for a column
in a result set, as follows:

■ A storage buffer that receives the contents of a column of data

■ The length of the storage buffer

■ A storage location that receives the actual length of the column of
data returned by the fetch operation

■ Data type conversion from the Informix SQL data type to the
INFORMIX-CLI C data type

Syntax
RETCODE SQLBindCol(hstmt, icol, fCType, rgbValue, cbValueMax,
pcbValue)

The SQLBindCol function accepts the following arguments.

Typedef Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered sequen-
tially left to right, starting at 1.

SWORD fCType Input The INFORMIX-CLI C data type for the result
data. The possible values are any of the fCType
values listed in Appendix B, “Data Types,” as
well as SQL_C_DEFAULT. For more information
about data types and conversions, see
Appendix B.

PTR rgbValue Input Pointer to storage for the data. If rgbValue is a
null pointer, the driver unbinds the column. (To
unbind all columns, an application calls
SQLFreeStmt with the SQL_UNBIND option.)

(1 of 2)

Core
12-18 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For
character data, rgbValue must also include space
for the null-termination byte. For more infor-
mation about length, see “Precision, Scale,
Length, and Display Size” on page B-5.

SDWORD
FAR *

pcbValue Input SQL_NULL_DATA or the number of bytes
(excluding the null-termination byte for
character data) available to return in rgbValue
prior to calling SQLExtendedFetch or SQLFetch,
or SQL_NO_TOTAL if the function cannot
determine the number of available bytes.

For character data, if the number of bytes
available to return is SQL_NO_TOTAL or is
greater than or equal to cbValueMax, the data in
rgbValue is truncated to cbValueMax – 1 bytes and
is null-terminated by the driver.

For binary data, if the number of bytes available
to return is SQL_NO_TOTAL or is greater than
cbValueMax, the data in rgbValue is truncated to
cbValueMax bytes.

For all other types of data, the value of
cbValueMax is ignored, and the driver assumes
the size of rgbValue is the size of the
INFORMIX-CLI C data type specified with
fCType.

For more information about the value returned
in pcbValue for each fCType, see “Converting
Data from SQL to C” on page B-19.

Typedef Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-19

SQLBindCol
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

The value specified for the argument icol
exceeded the maximum number of columns that
the data source supports.

S1003 Program type out
of range

(DM) The argument fCType was not a valid
INFORMIX-CLI C data type or SQL_C_DEFAULT.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the argument cbVal-
ueMax was less than 0.

S1C00 Driver not capable The driver does not support the INFORMIX-CLI
C data type specified in the argument fCType.

The argument icol was 0, and the driver does not
support bookmarks.
12-20 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Usage
The INFORMIX-CLI interface provides the following ways to retrieve a
column of data:

■ SQLBindCol assigns the storage location for a column of data before
the data is retrieved. When SQLFetch or SQLExtendedFetch is called,
the driver places the data for all bound columns in the assigned
locations.

■ SQLGetData (an extended function) assigns a storage location for a
column of data after SQLFetch or SQLExtendedFetch is called. It also
places the data for the requested column in the assigned location.
Because it can retrieve data from a column in parts, SQLGetData can
retrieve long data values.

An application might choose to bind every column with SQLBindCol, to
retrieve data only (and not bind) with SQLGetData, or to use a combination.
However, unless the driver provides extended functionality, SQLGetData can
be used only to retrieve data from columns that occur after the last bound
column.

An application calls SQLBindCol to pass the pointer to the storage buffer for
a column of data to the driver and to specify how or if to convert the data.
The application must allocate enough storage for the data. If the buffer
contains variable-length data, the application must allocate as much storage
as the maximum length of the bound column, or the data might be truncated.
For information about converting data types, see “Converting Data from SQL
to C” on page B-19.

At fetch time, the driver processes the data for each bound column according
to the arguments specified in SQLBindCol. First, it converts the data
according to the argument fCType. Next, it fills the buffer to which rgbValue
points. Finally, it stores the available number of bytes in pcbValue; the value
stored in pcbValue is the number of bytes available before the driver calls
SQLFetch or SQLExtendedFetch.
INFORMIX-CLI Function Reference 12-21

SQLBindCol
Before the driver calls SQLFetch or SQLExtendedFetch, it returns a value,
according to the following conditions:

■ If SQL_MAX_LENGTH has been specified with SQLSetStmtOption
and the available number of bytes is greater than
SQL_MAX_LENGTH, the driver stores SQL_MAX_LENGTH in
pcbValue.

■ If the data is truncated because of SQL_MAX_LENGTH, but the user’s
buffer is large enough for SQL_MAX_LENGTH bytes of data, the
driver returns SQL_SUCCESS.

Important: The SQL_MAX_LENGTH statement option is intended to reduce
network traffic. To guarantee that data is truncated, an application should allocate a
buffer of the desired size and specify this size in the cbValueMax argument.

■ If the user’s buffer causes the truncation, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (Data truncated) for
the fetch function.

■ If the data value for a column is NULL, the driver sets pcbValue to
SQL_NULL_DATA.

■ If the number of bytes available to return cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL.

When an application uses SQLExtendedFetch to retrieve more than one row
of data, it needs to call SQLBindCol only once for each column of the result
set (in the same way that it binds a column in order to retrieve a single row
of data with SQLFetch). The SQLExtendedFetch function coordinates placing
each row of data into subsequent locations in the row set buffers. For
additional information about binding row set buffers, see
“SQLExtendedFetch” on page 12-123.

An application can call SQLBindCol to bind a column to a new storage
location, regardless of whether data has already been fetched. The new
binding replaces the old binding. The new binding does not apply to data
already fetched; it takes effect the next time SQLFetch or SQLExtendedFetch
is called.

To unbind a single-bound column, an application calls SQLBindCol and
specifies a null pointer for rgbValue; if rgbValue is a null pointer and the
column is not bound, SQLBindCol returns SQL_SUCCESS. To unbind all
bound columns, an application calls SQLFreeStmt with the SQL_UNBIND
option.
12-22 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Code Example
In the following example, an application executes a SELECT statement to
return a result set of the employees’ names, ages, and birthdays, which is
sorted by birthday. It then calls SQLBindCol to bind the columns of data to
local storage locations. Finally, the application fetches each row of data with
SQLFetch and prints the name, age, and birthday of each employee.

For more code examples, see SQLColumns and SQLExtendedFetch.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,
"SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
SQL_NTS);

if (retcode = = SQL_SUCCESS) {

/* Bind columns 1, 2, and 3 */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, &cbBirthday);

/* Fetch and print each row of data. On */
/* an error, display a message and exit. */

while (TRUE) {
retcode = SQLFetch(hstmt);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName,

 sAge, BDAY_LEN-1, szBirthday);
} else {

break;
}

}
}

INFORMIX-CLI Function Reference 12-23

SQLBindCol
Related Functions

♦

For Information About See

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData

Returning the number of result set columns SQLNumResultCols
12-24 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
SQLBindParameter
SQLBindParameter binds a buffer to a parameter marker in an SQL
statement.

Syntax
RETCODE SQLBIND (hstmt, ipar, fParamType, fCType, fSqlType,
cbColDef, ibScale, rgbValue, cbValueMax, pcbValue)

The SQLBindParameter function accepts the following arguments.

Typedef Argument Use Description

HSTMT hstmt Input Statement handle

UWORD ipar Input Parameter number, ordered sequentially
left to right, starting at 1

SWORD fParamType Input The type of the parameter. For more infor-
mation, see “fParamType Argument” on
page 12-29.

SWORD fCType Input The INFORMIX-CLI C data type of the
result data. The possible values are any of
the fCType values listed in Appendix B,
“Data Types,” as well as SQL_C_DEFAULT.
For more information about data types
and conversions, see Appendix B.

SWORD fSqlType Input The INFORMIX-CLI SQL data type of the
parameter. The possible values are any of
the fSqlType values listed in Appendix B.
For more information about data types
and conversions, see Appendix B.

UDWORD cbColDef Input The precision of the column or expression
of the corresponding parameter marker.
For more information, see “cbColDef
Argument” on page 12-30.

(1 of 2)

Level 1
INFORMIX-CLI Function Reference 12-25

SQLBindParameter
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

SWORD ibScale Input The scale of the column or expression of
the corresponding parameter marker. For
further information concerning scale, see
“Precision, Scale, Length, and Display
Size” on page B-5.

PTR rgbValue Input/
Output

A pointer to a buffer for the data of the
parameter. For more information, see
“rgbValue Argument” on page 12-31.

Input/
SDWORD

cbValueMax Input Maximum length of the rgbValue buffer.
For more information, see “cbValueMax
Argument” on page 12-31.

SDWORD FAR * pcbValue Input/
Output

A pointer to a buffer for the length of the
parameter. For more information, see
“pcbValue Argument” on page 12-32.

Typedef Argument Use Description

(2 of 2)
12-26 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Diagnostics
When SQLBindParameter returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLBindParameter and explains each value in the context of this function;
the notation (DM) precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value associated with the fCType
argument cannot be converted to the
INFORMIX-CLI SQL data type identified by the
fSqlType argument.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support executing or completing the function.

S1003 Program type out of
range

(DM) fCType was invalid.

S1004 SQL data type out of
range

(DM) fSqlType was invalid.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null pointer,
the argument pcbValue was a null pointer, and the
argument fParamType was not
SQL_PARAM_OUTPUT.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(1 of 2)
INFORMIX-CLI Function Reference 12-27

SQLBindParameter
S1090 Invalid string or
buffer length

(DM) The value specified for the argument
cbValueMax was less than 0.

S1093 Invalid parameter
number

(DM) The value specified for the argument ipar
was less than 1.

The value specified for the argument ipar was
greater than the maximum number of parameters
supported by the data source.

S1094 Invalid scale value ibScale was invalid for fSqlType.

S1104 Invalid precision
value

cbColDef was invalid for fSqlType.

S1105 Invalid parameter
type

(DM) fParamType was invalid. For more infor-
mation, see “fParamType Argument” on
page 12-29.

fParamType was SQL_PARAM_OUTPUT and the
parameter did not mark a return value from a
procedure or a procedure parameter.

fParamType was SQL_PARAM_INPUT and the
parameter marked the return value from a
procedure.

S1C00 Driver not capable The driver or data source does not support the
conversion specified by the combination of fCType
and fSqlType.

The driver or data source does not support the
value specified for fSqlType.

SQLSTATE Error Description

(2 of 2)
12-28 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Usage
An application calls SQLBindParameter to bind each parameter marker in an
SQL statement. Bindings are effective until the application calls
SQLBindParameter again or until the application calls SQLFreeStmt with the
SQL_DROP or SQL_RESET_PARAMS option.

fParamType Argument

The fParamType argument specifies the parameter type. All parameters in SQL
statements that do not call procedures, such as INSERT statements, are input
parameters. Parameters in procedure calls can be input, input/output, or
output parameters. (An application calls SQLProcedureColumns to
determine the type of a parameter in a procedure call; parameters in
procedure calls whose type cannot be determined are assumed to be input
parameters.)

The fParamType argument is one of the following values:

■ SQL_PARAM_INPUT

This parameter marks a parameter in an SQL statement that does not
call a procedure, such as an INSERT statement, or it marks an input
parameter in a procedure; these are collectively known as input
parameters. For example, the parameters in INSERT INTO Employee
VALUES (?, ?, ?) and {call AddEmp(?, ?, ?)} are input parameters.

When the statement executes, the driver sends data for the
parameter to the data source; the rgbValue buffer must contain a valid
input value or the pcbValue buffer must contain SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC
macro.

If an application cannot determine the type of a parameter in a
procedure call, it sets fParamType to SQL_PARAM_INPUT; if the data
source returns a value for the parameter, the driver discards it.

■ SQL_PARAM_INPUT_OUTPUT

The parameter marks an input/output parameter in a procedure. For
example, the parameter in {call GetEmpDept(?)} is an input/output
parameter that accepts the name of an employee and returns the
department name of the employee.
INFORMIX-CLI Function Reference 12-29

SQLBindParameter
When the statement executes, the driver sends data for the
parameter to the data source; the rgbValue buffer must contain a valid
input value or the pcbValue buffer must contain SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC
macro. After the statement executes, the driver returns data for the
parameter to the application; if the data source does not return a
value for an input/output parameter, the driver sets the pcbValue
buffer to SQL_NULL_DATA.

If an application calls SQLSetParam, the driver manager converts
this to a call to SQLBindParameter in which the fParamType argument
is set to SQL_PARAM_INPUT_OUTPUT.

■ SQL_PARAM_OUTPUT

The parameter marks the return value of a procedure or an output
parameter in a procedure; these are collectively known as output
parameters. For example, the parameter in {?=call GetNextEmpID} is
an output parameter that returns the next employee ID.

After the statement executes, the driver returns data for the
parameter to the application, unless the rgbValue and pcbValue
arguments are both null pointers, in which case the driver discards
the output value. If the data source does not return a value for an
output parameter, the driver sets the pcbValue buffer to
SQL_NULL_DATA.

cbColDef Argument

The cbColDef argument specifies the precision of the column or expression
that corresponds to the parameter marker, unless all of the following condi-
tions are true:

■ An application calls SQLSetParam. The driver manager converts
these calls to SQLBindParameter.

■ The fSqlType argument is SQL_LONGVARBINARY or
SQL_LONGVARCHAR.

■ The data for the parameter is sent with SQLPutData.

In this case, the cbColDef argument contains the total number of bytes
that are sent for the parameter. For more information, see “Passing
Parameter Values” on page 12-33.
12-30 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
rgbValue Argument

The rgbValue argument points to a buffer that, when SQLExecute or
SQLExecDirect is called, contains the actual data for the parameter. The data
must be in the form specified by fCType.

If pcbValue is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or
SQL_DATA_AT_EXEC, then rgbValue is an application-defined 32-bit value
that is associated with the parameter. It is returned to the application through
SQLParamData. For example, rgbValue might be a token such as a parameter
number, a pointer to data, or a pointer to a structure that the application used
to bind input parameters. If the parameter is an input/output parameter,
rgbValue must be a pointer to a buffer where the output value is stored.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, rgbValue points to a buffer in which the driver returns
the output value. If the procedure returns one or more result sets, the rgbValue
buffer is not guaranteed to be set until all results are fetched. If fParamType is
SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null pointers, the
driver discards the output value.

cbValueMax Argument

For character and binary C data, the cbValueMax argument specifies the
length of the rgbValue buffer, if it is a single element. If the application
specifies multiple values, cbValueMax determines the location of values in the
rgbValue array, both on input and on output. For input/output and output
parameters, it determines whether to truncate character and binary C data on
output.

For character C data, if the number of bytes available to return is greater than
or equal to cbValueMax, the data in rgbValue is truncated to cbValueMax – 1
bytes and is null-terminated by the driver.

For binary C data, if the number of bytes available to return is greater than
cbValueMax, the data in rgbValue is truncated to cbValueMax bytes.

For all other types of C data, the cbValueMax argument is ignored. The length
of the rgbValue buffer (if it is a single element) is assumed to be the length of
the INFORMIX-CLI C data type.
INFORMIX-CLI Function Reference 12-31

SQLBindParameter
pcbValue Argument

The pcbValue argument points to a buffer that, when SQLExecute or
SQLExecDirect is called, contains one of the values in the following table.

Value Description

The length of the
parameter value stored in
rgbValue

This value is ignored except for character or binary C
data.

SQL_NTS The parameter value is a null-terminated string.

SQL_NULL_DATA The parameter value is NULL.

SQL_DEFAULT_PARAM The procedure is to use the default value of a
parameter rather than a value retrieved from the
application. This value is valid only in a procedure call
and then only if the fParamType argument is
SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT.
When pcbValue is SQL_DEFAULT_PARAM, the corre-
sponding parameter can only be a parameter for an
ODBC canonical procedure invocation. When pcbValue
is SQL_DEFAULT_PARAM, the fCType, fSqlType,
cbColDef, ibScale, cbValueMax and rgbValue arguments
are ignored for input parameters and are used only to
define the output parameter value for input/output
parameters. This value was introduced in ODBC 2.0.

The result of the
SQL_LEN_DATA_AT_EXEC
(length) macro

The data for the parameter is sent with SQLPutData.
If the fSqlType argument is SQL_LONGVARBINARY,
SQL_LONGVARCHAR, or some other long Informix
SQL data type, and the driver returns “Y” for the
SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo, length is the number of bytes of data to
be sent for the parameter. Otherwise, length must be a
nonnegative value and is ignored. For more infor-
mation, see “Passing Parameter Values” on
page 12-33.

For example, to send 10,000 bytes of data with
SQLPutData for an SQL_LONGVARCHAR parameter,
an application sets pcbValue to
SQL_LEN_DATA_AT_EXEC(10000). This macro was
introduced in ODBC 2.0.
12-32 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
If pcbValue is a null pointer, the driver assumes that all input parameter
values are non-null and that character and binary data are null-terminated. If
fParamType is SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null
pointers, the driver discards the output value.

Important: Application developers are strongly discouraged from specifying a null
pointer for pcbValue when the parameter’s INFORMIX-CLI C data type is
SQL_C_BINARY. For SQL_C_BINARY data, the driver sends only the data preceding
an occurrence of the null-termination character, 0x00. To ensure that the driver does
not unexpectedly truncate SQL_C_BINARY data, pcbValue should contain a pointer
to a valid length value.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, pcbValue points to a buffer in which the driver returns
SQL_NULL_DATA, the number of bytes available to return in rgbValue
(excluding the null-termination byte of character data), or SQL_NO_TOTAL if
the number of bytes available to return cannot be determined. If the
procedure returns one or more result sets, the pcbValue buffer is not
guaranteed to be set until all the results are fetched.

Passing Parameter Values

An application can pass the value for a parameter either in the rgbValue buffer
or with one or more calls to SQLPutData. Parameters whose data is passed
with SQLPutData are known as data-at-execution parameters. These are
commonly used to send data for SQL_LONGVARBINARY and
SQL_LONGVARCHAR parameters and can be mixed with other parameters.
INFORMIX-CLI Function Reference 12-33

SQLBindParameter
To pass parameter values

1. The application calls SQLBindParameter for each parameter to bind
buffers for the value (rgbValue argument) and length (pcbValue
argument) of the parameter. For data-at-execution parameters,
rgbValue is an application-defined 32-bit value such as a parameter
number or a pointer to data. The value is returned later and can be
used to identify the parameter.

2. The application places values for input and input/output
parameters in the rgbValue and pcbValue buffers.

■ For normal parameters, the application places the parameter
value in the rgbValue buffer and the length of that value in the
pcbValue buffer.

■ For data-at-execution parameters, the application places the
result of the SQL_LEN_DATA_AT_EXEC(length) macro in the
pcbValue buffer.

3. The application calls SQLExecute or SQLExecDirect to execute the
SQL statement.

■ If no data-at-execution parameters exist, the process is complete.

■ If any data-at-execution parameters exist, the function returns
SQL_NEED_DATA.

4. The application calls SQLParamData to retrieve the application-
defined value specified in the rgbValue argument for the first data-at-
execution parameter to be processed.

The data-at-execution parameters are similar to data-at-execution
columns, although the value that SQLParamData returns is different
for each. SQ.

5. The application calls SQLPutData one or more times to send data for
the parameter. More than one call is needed if the data value is larger
than the rgbValue buffer specified in SQLPutData; multiple calls to
SQLPutData for the same parameter are allowed only when sending
character C data or binary C data.
12-34 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
6. The application calls SQLParamData again to signal that all data was
sent for the parameter.

■ If more data-at-execution parameters exist, SQLParamData
returns SQL_NEED_DATA and the application-defined value for
the next data-at-execution parameter to be processed. The appli-
cation repeats steps 5 and 6.

■ If no more data-at-execution parameters exist, the process is
complete. If the statement executes successfully, SQLParamData
returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the
execution fails, it returns SQL_ERROR. At this point,
SQLParamData can return any SQLSTATE that can be returned by
the function used to execute the statement (SQLExecDirect or
SQLExecute).

Output values for any input/output or output parameters are
available in the rgbValue and pcbValue buffers after the appli-
cation retrieves any result sets that the statement generates.

If after SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before
data is sent for all data-at-execution parameters, the statement is canceled or
an error occurs in SQLParamData or SQLPutData, the application can call
only SQLCancel, SQLGetFunctions, SQLParamData, or SQLPutData with the
hstmt or the hdbc associated with the hstmt. If the application calls any other
function with the hstmt or the hdbc associated with the hstmt, the function
returns SQL_ERROR and SQLSTATE S1010 (Function-sequence error).

If the application calls SQLCancel while the driver still needs data for data-
at-execution parameters, the driver stops executing the statement; the appli-
cation can then call SQLExecute or SQLExecDirect again. If the application
calls SQLParamData or SQLPutData after it cancels the statement, the
function returns SQL_ERROR and SQLSTATE S1008 (Operation canceled).
INFORMIX-CLI Function Reference 12-35

SQLBindParameter
Code Example
In the following example, an application prepares an SQL statement to insert
data into the EMPLOYEE table. The SQL statement contains parameters for the
NAME, AGE, and BIRTHDAY columns. For each parameter in the statement,
the application calls SQLBindParameter to specify the parameter’s
INFORMIX-CLI C data type and INFORMIX-CLI SQL data type, and to bind a
buffer to each parameter. For each row of data, the application assigns data
values to each parameter and calls SQLExecute to execute the statement.

#define NAME_LEN 30

UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName = SQL_NTS, cbAge = 0, cbBirthday = 0;
DATE_STRUCT dsBirthday;

retcode = SQLPrepare(hstmt,
"INSERT INTO EMPLOYEE (NAME, AGE, BIRTHDAY) VALUES (?, ?, ?)",
SQL_NTS);

if (retcode = = SQL_SUCCESS) {

/* Specify data types and buffers. */
/* for Name, Age, Birthday parameter data. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_CHAR, NAME_LEN, 0, szName, 0, &cbName);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,
 SQL_SMALLINT, 0, 0, &sAge, 0, &cbAge);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DATE,
 SQL_DATE, 0, 0, &dsBirthday, 0, &cbBirthday);
strcpy(szName, "Smith, John D."); /* Specify first row of */
sAge = 40; /* parameter data */
dsBirthday.year = 1952;
dsBirthday.month = 2;
dsBirthday.day = 29;
retcode = SQLExecute(hstmt); /* Execute statement with */
 /* first row */

strcpy(szName, "Jones, Bob K."); /* Specify second row of */
sAge = 52; /* parameter data */
dsBirthday.year = 1940;
dsBirthday.month = 3;
dsBirthday.day = 31;
SQLExecute(hstmt); /* Execute statement with */
 /* second row */

}

For a similar example, see SQLPutData.
12-36 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Related Functions

♦

For Information About See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of statement parameters SQLNumParams

Returning the next parameter to send data for SQLParamData

Sending parameter data at execution time SQLPutData
INFORMIX-CLI Function Reference 12-37

SQLBrowseConnect
SQLBrowseConnect
SQLBrowseConnect supports an iterative method of discovering and
enumerating the attributes and attribute values required to connect to a data
source. Each call to SQLBrowseConnect returns successive levels of
attributes and attribute values. When all levels are enumerated, a connection
to the data source is completed, and SQLBrowseConnect returns a complete
connection string. A return code of SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS indicates that all connection information was specified, and
the application is now connected to the data source.

Syntax
RETCODE SQLBrowseConnect(hdbc, szConnStrIn, cbConnStrIn,
szConnStrOut, cbConnStrOutMax, pcbConnStrOut)

The SQLBrowseConnect function accepts the following arguments.

Typedef Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szConnStrIn Input Browse request connection string.
For more information, see
“szConnStrIn Argument” on
page 12-43.

SWORD cbConnStrIn Input Length of szConnStrIn.

(1 of 2)

Level 2
12-38 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE

UCHAR FAR * szConnStrOut Output Pointer to storage for the browse
result connection string. For more
information, see “szConnStrOut
Argument” on page 12-43.

SWORD cbConnStrOutMax Input Maximum length of the
szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output The total number of bytes (excluding
the null-termination byte) available
to return in szConnStrOut. If the
number of bytes available to return is
greater than or equal to
cbConnStrOutMax, the connection
string in szConnStrOut is truncated
to cbConnStrOutMax – 1 bytes.

Typedef Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-39

SQLBrowseConnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large
enough to return entire browse result
connection string, so the string was truncated.
The argument pcbConnStrOut contains the
length of the untruncated browse result
connection string (function returns
SQL_SUCCESS_WITH_INFO).

01S00 Invalid connection
string attribute

An invalid attribute keyword was specified in
the browse request connection string
(szConnStrIn). (Function returns
SQL_NEED_DATA.)

An attribute keyword was specified in the
browse request connection string
(szConnStrIn) that does not apply to the
current connection level (function returns
SQL_NEED_DATA).

08001 Unable to connect to
data source

The driver could not establish a connection
with the data source.

08002 Connection in use (DM) The specified hdbc already established a
connection with a data source, and the
connection is open.

(1 of 3)
12-40 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
08004 Data source rejected
establishment of
connection

The data source rejected the establishment of
the connection for implementation-defined
reasons.

08S01 Communication-link
failure

The communication link between the driver
and the data source failed before the function
completed.

28000 Invalid authorization
specification

Either the user identifier or the authorization
string or both as specified in the browse-
request connection string (szConnStrIn)
violated restrictions defined by the data
source.

IM002 Data source not found
and no default driver
specified

(DM) INFORMIX-CLI cannot find the data-
source name specified in the browse-request
connection string (szConnStrIn) in the
odbc.ini file, and a default driver specification
does not exist.

(DM) INFORMIX-CLI cannot find the odbc.ini
file.

IM003 Specified driver could
not be loaded

(DM) The driver listed in the data source speci-
fication in the odbc.ini file, specified by the
DRIVER keyword, was not found or could not
be loaded for some other reason.

IM004 Driver SQLAllocEnv
failed

(DM) During SQLBrowseConnect, the driver
manager called the driver SQLAllocEnv
function, and the driver returned an error.

IM005 Driver
SQLAllocConnect
failed

(DM) During SQLBrowseConnect, the driver
manager called the driver SQLAllocConnect
function, and the driver returned an error.

IM006 Driver
SQLSetConnectOption
failed

(DM) During SQLBrowseConnect, the driver
manager called the driver
SQLSetConnectOption function, and the
driver returned an error.

IM009 Unable to load trans-
lation-shared library

The driver did not load the translation-shared
library that was specified for the data source
or for the connection.

SQLSTATE Error Description

(2 of 3)
INFORMIX-CLI Function Reference 12-41

SQLBrowseConnect
IM010 Data-source name too
long

(DM) The attribute value for the DSN keyword
was longer than SQL_MAX_DSN_LENGTH
characters.

IM011 Driver name too long (DM) The attribute value for the DRIVER
keyword was longer than 255 characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the DRIVER
keyword contained a syntax error.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

(DM) The driver manager did not allocate
memory required to support executing or
completing the function.

The driver did not allocate memory required
to support executing or completing the
function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument
cbConnStrIn was less than 0 and was not equal
to SQL_NTS.

(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1T00 Time-out expired The time-out period expired before the
connection to the data source completed.
The time-out period is set through
SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

(3 of 3)
12-42 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
Usage
Each time an application calls SQLBrowseConnect, the function validates the
current attributes, returns the next level of attributes, and returns a user-
friendly name for each attribute. It might also return a list of valid values for
those attributes. After an application has specified each level of attributes
and values, SQLBrowseConnect connects to the data source and returns a
complete connection string. This string can be used with SQLDriverConnect
to reconnect to the data source.

szConnStrIn Argument

For information about INFORMIX-CLI connection strings, see “Connection
Strings” on page 4-7.

szConnStrOut Argument

The browse-result connection string is a list of connection attributes. A
connection attribute consists of an attribute keyword and a corresponding
attribute value. The browse-result connection string has the following
syntax:

connection-string ::= attribute[;] | attribute; connection-string
attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
 | driver-defined-attribute-keyword
ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]
driver-defined-attribute-keyword ::= identifer[:localized-identifier]
attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by the driver.)
attribute-value-list ::= character-string | character-string, attribute-value-
list

In this example, character-string has zero or more characters, identifier and
localized-identifier have one or more characters, attribute-keyword is not case
sensitive, and attribute-value might be case sensitive. Because of connection-
string and initialization-file grammar, avoid keywords, localized identifiers,
and attribute values that contain the characters []{ }(),;?*=!@\. Because of the
registry grammar, keywords and data-source names cannot contain a
backslash (\).
INFORMIX-CLI Function Reference 12-43

SQLBrowseConnect
The browse-result connection string syntax is used according to the
following semantic rules:

■ If an asterisk (*) precedes an attribute-keyword, the attribute is optional
and can be omitted in the next call to SQLBrowseConnect.

■ An attribute-keyword names the kind of attribute for which an
attribute value can be supplied. For information on attribute
keywords that are available with INFORMIX-CLI, see “Connection
Strings” on page 4-7.

■ The {attribute-value-list} is an enumeration of actual values valid for
the corresponding attribute-keyword. The braces ({ }) do not indicate a
list of choices; the driver returns them. For example, the list might
include server names or a list of database names.

■ If the attribute-value is a single question mark (?), a single value
corresponds to the attribute-keyword. For example, UID=JohnS;
PWD=Sesame.

■ Each call to SQLBrowseConnect returns only the information
required to satisfy the next level of the connection process. The
driver associates state information with the connection handle so
that the context can be determined on each call.

Using SQLBrowseConnect

SQLBrowseConnect requires an allocated hdbc. The driver manager loads the
driver that is specified in or that corresponds to the data-source name
specified in the initial browse-request connection string. For additional infor-
mation, see “Usage” on page 12-79. It might establish a connection with the
data source during the browsing process. If SQLBrowseConnect returns
SQL_ERROR, outstanding connections terminate, and the hdbc returns to an
unconnected state.

When SQLBrowseConnect is called for the first time on an hdbc, the browse-
request connection string must contain the DSN keyword or the DRIVER
keyword. If the browse-request connection string contains the DSN keyword,
the driver manager locates a corresponding data-source specification. If the
driver manager cannot find the corresponding data-source specification, and
no default data-source specification exists, it returns SQL_ERROR with
SQLSTATE IM002 (Data source not found and no default driver specified).
12-44 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
If the browse-request connection string contains the DRIVER keyword, the
driver manager loads the specified driver; it does not attempt to locate a data
source. Because the DRIVER keyword does not use information from the
odbc.ini file, the driver must define enough keywords so a driver can
connect to a data source using only the information in the browse-request
connection strings.

On each call to SQLBrowseConnect, the application specifies the connection
attribute values in the browse-request connection string. The driver returns
successive levels of attributes and attribute values in the browse-result
connection string; it returns SQL_NEED_DATA as long as there are connection
attributes that have not yet been enumerated in the browse-request
connection string. The application uses the contents of the browse-result
connection string to build the browse-request connection string for the next
call to SQLBrowseConnect. The application cannot use the contents of
previous browse-result connection strings when it builds the current one;
that is, it cannot specify different values for attributes set in previous levels.

When all levels of connection and their associated attributes are enumerated,
the driver returns SQL_SUCCESS, the connection to the data source is
complete, and a complete connection string returns to the application.

The connection string can be used with SQLDriverConnect with the
SQL_DRIVER_NOPROMPT option to establish another connection.

SQLBrowseConnect also returns SQL_NEED_DATA if recoverable, nonfatal
errors occur during the browse process. For example, an invalid password
supplied by the application or an invalid attribute keyword supplied by the
application cause recoverable, nonfatal errors. When SQL_NEED_DATA
returns and the browse-result connection string is unchanged, an error has
occurred, and the application must call SQLError to return the SQLSTATE for
browse-time errors. This permits the application to correct the attribute and
continue the browse.

An application can terminate the browse process at any time by calling
SQLDisconnect. The driver terminates any outstanding connections and
returns the hdbc to an unconnected state.

For more information, see “Connection Strings” on page 4-7.
INFORMIX-CLI Function Reference 12-45

SQLBrowseConnect
Code Example
In the following example, an application calls SQLBrowseConnect
repeatedly. Each time SQLBrowseConnect returns SQL_NEED_DATA, it
passes back information about the data that it needs in szConnStrOut. The
application passes szConnStrOut to its routine GetUserInput (not shown).
GetUserInput parses the information, builds and displays a dialog box, and
returns the information entered by the user in szConnStrIn. The application
passes the user’s information to the driver in the next call to
SQLBrowseConnect. After the application provides all the necessary infor-
mation for the driver to connect to the data source, SQLBrowseConnect
returns SQL_SUCCESS, and the application proceeds.

For example, to connect to the data source My Source, the following actions
might occur. First, the application passes the following string to
SQLBrowseConnect, as the following example shows:

"DSN=My Source"

The driver manager loads the driver associated with the data source My
Source. It then calls the driver SQLBrowseConnect function with the same
arguments that it received from the application. The driver returns the
following string in szConnStrOut:

"HOST:Server={red,blue,green};UID:ID=?;PWD:Password=?"

The application passes this string to its GetUserInput routine, which
provides a dialog box that asks the user to select the red, blue, or green
database server and to enter a user ID and password. The routine passes the
following user-specified information back in szConnStrIn, which the appli-
cation passes to SQLBrowseConnect:

"HOST=red;UID=Smith;PWD=Sesame"

SQLBrowseConnect uses this information to connect to the red database
server as Smith with the password Sesame and returns the following string
in szConnStrOut:

"*DATABASE:Database={master,model,empdata}"
12-46 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
The application passes this string to its GetUserInput routine, which
provides a dialog box that asks the user to select a database. The user selects
empdata, and the application calls SQLBrowseConnect a final time with the
following string:

"DATABASE=empdata"

This is the final piece of information that the driver needs to connect to the
data source; SQLBrowseConnect returns SQL_SUCCESS, and szConnStrOut
contains the completed connection string.

"DSN=My Source;HOST=red;UID=Smith;PWD=Sesame;DATABASE=empdata"

#define BRWS_LEN 100
HENV henv;
HDBC hdbc;
HSTMT hstmt;
RETCODE retcode;
UCHAR szConnStrIn[BRWS_LEN], szConnStrOut[BRWS_LEN];
SWORD cbConnStrOut;

retcode = SQLAllocEnv(&henv); /* Environment handle */
if (retcode = = SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */
if (retcode = = SQL_SUCCESS) {/* Call SQLBrowseConnect until it returns a

value other than */
/* SQL_NEED_DATA (pass the data source name the first time). */
/* If SQL_NEED_DATA is returned, call GetUserInput (not */
/* shown) to build a dialog from the values in szConnStrOut. */
/* The user-supplied values are returned in szConnStrIn, */
/* which is passed in the next call to SQLBrowseConnect. */

lstrcpy(szConnStrIn, "DSN=MyServer");
do {

retcode = SQLBrowseConnect(hdbc, szConnStrIn, SQL_NTS,
 szConnStrOut, BRWS_LEN, &cbConnStrOut)
if (retcode = = SQL_NEED_DATA)

GetUserInput(szConnStrOut, szConnStrIn);
} while (retcode = = SQL_NEED_DATA);

if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */
INFORMIX-CLI Function Reference 12-47

SQLBrowseConnect
retcode = SQLAllocStmt(hdbc, &hstmt);
if (retcode = = SQL_SUCCESS) {

...;

...;

...;
SQLFreeStmt(hstmt, SQL_DROP);

}
SQLDisconnect(hdbc);

}
}
SQLFreeConnect(hdbc);

}
SQLFreeEnv(henv);

Related Functions

♦

For Information About See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Returning driver descriptions and attributes SQLDrivers

Freeing a connection handle SQLFreeConnect
12-48 INFORMIX-CLI Programmer’s Manual

SQLCancel
SQLCancel
SQLCancel cancels the processing on an hstmt or a query.

Syntax
RETCODE SQLCancel(hstmt)

The SQLCancel function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Typedef Argument Use Description

HSTMT hstmt Input Statement handle

Core
INFORMIX-CLI Function Reference 12-49

SQLCancel
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

Usage
SQLCancel can cancel function processing on an hstmt that needs data.

If an application calls SQLCancel when processing does not involve the
hstmt, SQLCancel has the same effect as SQLFreeStmt with the SQL_CLOSE
option; this behavior is defined only for completeness, and applications
should call SQLFreeStmt to close cursors.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

70100 Operation aborted The data source did not process the cancel request.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.
12-50 INFORMIX-CLI Programmer’s Manual

SQLCancel
Canceling Functions that Need Data

After SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before
data is sent for all data-at-execution parameters, an application can call
SQLCancel to cancel the statement execution. After the statement is canceled,
the application can call SQLExecute or SQLExecDirect again. For more infor-
mation, see “Passing Parameter Values” on page 12-33.

Canceling Functions in Multithreaded Applications

In a multithreaded application, the application can cancel a function that
runs synchronously on an hstmt. To cancel the function, the application calls
SQLCancel with the same hstmt that the target function uses, but on a
different thread. The return code of SQLCancel indicates whether or not the
driver processed the request successfully. The return code of the original
function indicates whether the function completed normally or was canceled.

Related Functions

♦

For Information About See

Assigning storage for a parameter SQLBindParameter

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Returning the next parameter for which to send data SQLParamData

Sending parameter data at execution time SQLPutData
INFORMIX-CLI Function Reference 12-51

SQLColAttributes
SQLColAttributes
SQLColAttributes returns descriptor information for a column in a result set;
it cannot be used to return information about the bookmark column
(column 0). Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

Syntax
RETCODE SQLColAttributes(hstmt, icol, fDescType, rgbDesc,
cbDescMax, pcbDesc, pfDesc)

The SQLColAttributes function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered
sequentially from left to right, starting at 1.
Columns can be described in any order.

UWORD fDescType Input A valid descriptor type. (See “Usage” on
page 12-56.)

PTR rgbDesc Output Pointer to storage for the descriptor infor-
mation. The format of the descriptor
information returned depends on the
fDescType.

SWORD cbDescMax Input Maximum length of the rgbDesc buffer.

(1 of 2)

Core
12-52 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

SWORD FAR * pcbDesc Output Total number of bytes (excluding the null-
termination byte for character data)
available to return in rgbDesc.

For character data, if the number of bytes
available to return is greater than or equal
to cbDescMax, the descriptor information in
rgbDesc is truncated to cbDescMax – 1 bytes
and is null-terminated by the driver.

For all other types of data, the value of
cbValueMax is ignored and the driver
assumes the size of rgbValue is 32 bits.

SDWORD FAR * pfDesc Output Pointer to an integer value to contain
descriptor information for numeric
descriptor types, such as
SQL_COLUMN_LENGTH.

Type Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-53

SQLColAttributes
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbDesc was not large enough to return
the entire string value, so the string value was
truncated. The argument pcbDesc contains the
length of the untruncated string value (function
returns SQL_SUCCESS_WITH_INFO).

24000 Invalid cursor state The statement associated with the hstmt does not
return a result set. There are no columns to
describe.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

(DM) The value specified for the argument icol was
0, and the argument fDescType was not
SQL_COLUMN_COUNT.

The value specified for the argument icol was
greater than the number of columns in the result
set, and the argument fDescType was not
SQL_COLUMN_COUNT.

(1 of 2)
12-54 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQLColAttributes can return any SQLSTATE that can be returned by
SQLPrepare or SQLExecute when it is called after SQLPrepare and before
SQLExecute, depending on when the data source evaluates the SQL
statement associated with the hstmt.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the argument
cbDescMax was less than 0.

S1091 Descriptor type out
of range

(DM) The value specified for the argument
fDescType was in the block of numbers reserved for
ODBC descriptor types but was not valid for the
version of ODBC supported by the driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fDescType.

S1T00 Time-out expired The time-out period expired before the data source
returned the requested information. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-55

SQLColAttributes
Usage
SQLColAttributes returns information either in pfDesc or in rgbDesc. Integer
information is returned in pfDesc as a 32-bit, signed value; all other formats
of information are returned in rgbDesc. When information is returned in
pfDesc, the driver ignores rgbDesc, cbDescMax, and pcbDesc. When infor-
mation is returned in rgbDesc, the driver ignores pfDesc.

This function is an extensible alternative to SQLDescribeCol.
SQLDescribeCol returns a fixed set of descriptor information based on
ANSI-89 SQL. SQLColAttributes allows access to the more extensive set of
descriptor information available in ANSI SQL-92 and Informix extensions.

fDescType: Descriptor Types

The following table shows the descriptor types and the arguments in which
information is returned for them. If a descriptor type does not apply to a
driver or data source, then, unless otherwise stated, the driver returns 0 in
pcbDesc or an empty string in rgbDesc.

fDescType
Information
Returned in Description

SQL_COLUMN_AUTO_INCREMENT pfDesc TRUE if the column is auto increment.

FALSE if the column is not auto increment or is not
numeric.

Auto increment is valid for numeric data type columns
only. An application can insert values into an auto-
increment column but cannot update values in the
column.

SQL_COLUMN_CASE_SENSITIVE pfDesc TRUE if the column is treated as case sensitive for colla-
tions and comparisons.

FALSE if the column is not treated as case sensitive for
collations and comparisons or is non-character.

SQL_COLUMN_COUNT pfDesc Number of columns available in the result set. The icol
argument is ignored.

(1 of 4)
12-56 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQL_COLUMN_DISPLAY_SIZE pfDesc Maximum number of characters required to display
data from the column. For more information on display
size, see “Precision, Scale, Length, and Display Size” on
page B-5.

SQL_COLUMN_LABEL rgbDesc The column label or title. For example, a column named
EmpName might be labeled Employee Name.

If a column does not have a label, the column name is
returned. If the column is unlabeled and unnamed, an
empty string is returned.

SQL_COLUMN_LENGTH pfDesc The length in bytes of data transferred on an
SQLGetData or SQLFetch operation if SQL_C_DEFAULT
is specified. For numeric data, this size can be different
than the size of the data stored on the data source. For
more information, see “Precision, Scale, Length, and
Display Size” on page B-5.

SQL_COLUMN_MONEY pfDesc TRUE if the column is MONEY data type.

FALSE if the column is not MONEY data type.

SQL_COLUMN_NAME rgbDesc The column name.

If the column is unnamed, an empty string is returned.

SQL_COLUMN_NULLABLE pfDesc SQL_NO_NULLS if the column does not accept null
values.

SQL_NULLABLE if the column accepts null values.

SQL_NULLABLE_UNKNOWN if it is not known whether
the column accepts null values.

SQL_COLUMN_OWNER_NAME rgbDesc The owner of the table that contains the column. The
returned value is implementation defined if the column
is an expression or if the column is part of a view. If the
data source does not support owners or the owner name
cannot be determined, an empty string is returned.

SQL_COLUMN_PRECISION pfDesc The precision of the column on the data source. For
more information on precision, see “Precision, Scale,
Length, and Display Size” on page B-5.

fDescType
Information
Returned in Description

(2 of 4)
INFORMIX-CLI Function Reference 12-57

SQLColAttributes
SQL_COLUMN_QUALIFIER_NAME rgbDesc The qualifier of the table that contains the column. The
returned value is implementation defined if the column
is an expression or if the column is part of a view. If the
data source does not support qualifiers or the qualifier
name cannot be determined, an empty string is
returned.

SQL_COLUMN_SCALE pfDesc The scale of the column on the data source. For more
information on scale, see “Precision, Scale, Length, and
Display Size” on page B-5.

SQL_COLUMN_SEARCHABLE pfDesc SQL_UNSEARCHABLE if the column cannot be used in a
WHERE clause.

SQL_LIKE_ONLY if the column can be used in a WHERE
clause only with the LIKE predicate.

SQL_ALL_EXCEPT_LIKE if the column can be used in a
WHERE clause with all comparison operators except
LIKE.

SQL_SEARCHABLE if the column can be used in a WHERE
clause with any comparison operator.

Columns of type SQL_LONGVARCHAR and
SQL_LONGVARBINARY usually return SQL_LIKE_ONLY.

SQL_COLUMN_TABLE_NAME rgbDesc The name of the table that contains the column. The
returned value is implementation defined if the column
is an expression or if the column is part of a view.

If the table name cannot be determined, an empty string
is returned.

SQL_COLUMN_TYPE pfDesc The column’s Informix SQL data type. The possible
values are any of the Informix SQL data types listed in
Appendix B, “Data Types.” For more information about
data types and conversions, see Appendix B.

SQL_COLUMN_TYPE_NAME rgbDesc Data-source-dependent data type name; for example,
CHAR, VARCHAR, MONEY, LONG VARBINARY, or CHAR
() FOR BIT DATA.

If the type is unknown, an empty string is returned.

fDescType
Information
Returned in Description

(3 of 4)
12-58 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQL_COLUMN_UNSIGNED pfDesc TRUE if the column is unsigned or not numeric.

FALSE if the column is signed.

SQL_COLUMN_UPDATABLE pfDesc Column is described by the values for the defined
constants:

SQL_ATTR_READONLY
SQL_ATTR_WRITE
SQL_ATTR_READWRITE_UNKNOWN

SQL_COLUMN_UPDATABLE describes the updatability
of the column in the result set. Whether a column is
updatable can be based on the data type, user privileges,
and the definition of the result set itself. If it is unclear
whether a column is updatable,
SQL_ATTR_READWRITE_UNKNOWN should be
returned.

fDescType
Information
Returned in Description

(4 of 4)
INFORMIX-CLI Function Reference 12-59

SQLColAttributes
Additional Descriptor Types for Universal Server

The following table shows the additional descriptor types for Universal
Server and the arguments in which information is returned for them. If a
descriptor type does not apply to a driver or data source, then, unless
otherwise stated, the driver returns 0 in pcbDesc or an empty string in rgbDesc.

♦

IUS

fDescType
Information
Returned in Description

SQL_INFX_ATTR_FLAGS pfDesc Type attribute flags.

These flags indicate whether the column type
is NULLABLE and/or is a DISTINCT type. Two
macros, ISNULLABLE() and ISDISTINCT(), are
provided to test the flag value.

SQL_INFX_ATTR_EXTENDED_TYPE_
ALIGNMENT

pfDesc Extended type alignment.

If the column is of a built-in data type, the
function returns 0.

SQL_INFX_ATTR_EXTENDED_TYPE_CODE pfDesc Extended type ID.

The database server assigns a unique extended
ID to each UDT. If the column is of a built-in
data type, the function returns 0.

SQL_INFX_ATTR_EXTENDED_TYPE_NAME rgbDesc Extended type name.

For example, if a column is of type circle where
circle is a UDT, then circle is returned. If the
column is of a built-in data type, the function
returns an empty string.

SQL_INFX_ATTR_EXTENDED_TYPE_OWNER rgbDesc Extended type owner name.

For example, if the column is a UDT of type
circle and the owner of the circle type is cliuser,
then the function returns cliuser. If the column
is of a built-in data type, the function returns
an empty string.

SQL_INFX_ATTR_SOURCE_TYPE_CODE pfDesc Source type of DISTINCT type columns.

If the column is of a built-in data type or an
OPAQUE data type, the function returns 0.
12-60 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch
INFORMIX-CLI Function Reference 12-61

SQLColumnPrivileges
SQLColumnPrivileges
SQLColumnPrivileges returns a list of columns and associated privileges for
the specified table. The driver returns the information as a result set on the
specified hstmt.

Syntax
RETCODE SQLColumnPrivileges(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, szColumnName, cbColumnName)

The SQLColumnPrivileges function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Table qualifier. If a driver supports quali-
fiers for some tables but not for others,
such as when the driver retrieves data
from different data sources, an empty
string ("") denotes those tables that do not
have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Owner name. If a driver supports owners
for some tables but not for others, such as
when the driver retrieves data from
different data sources, an empty string ("")
denotes those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szColumnName Input String search pattern for column names.

SWORD cbColumnName Input Length of szColumnName.

Level 2
12-62 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(1 of 2)
INFORMIX-CLI Function Reference 12-63

SQLColumnPrivileges
Usage
SQLColumnPrivileges returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME,
GRANTOR, and GRANTEE. The following table lists the columns in the result
set.

Important: SQLColumnPrivileges might not return all columns. For example, the
driver might not return information about pseudocolumns, such as Informix
ROWID. Applications can use any valid column, regardless of whether it is returned
by SQLColumnPrivileges.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0 but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the corre-
sponding qualifier or name. See “Usage” on
page 12-56.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

A string search pattern was specified for the
column name, but the data source does not
support search patterns for that argument.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the driver
or data source.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-64 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table qualifier identifier; NULL if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different data sources, it returns an empty
string ("") for those tables that do not have
qualifiers.

TABLE_OWNER VARCHAR(128) Table owner identifier; NULL if not applicable
to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different data sources, it returns an empty
string ("") for those tables that do not have
owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier.

COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

GRANTOR VARCHAR(128) Identifier of the user who granted the
privilege; NULL if not applicable to the data
source.

(1 of 2)
INFORMIX-CLI Function Reference 12-65

SQLColumnPrivileges
The szColumnName argument accepts a search pattern. For more information
about valid search patterns, see “Search Pattern Arguments” on page 12-8.

GRANTEE VARCHAR(128)
not NULL

Identifier of the user to whom the privilege
was granted.

PRIVILEGE VARCHAR(128)
not NULL

Identifies the column privilege. Can be one of
the following or others supported by the data
source when implementation defined:

■ SELECT: The grantee is permitted to
retrieve data for the column.

■ INSERT: The grantee is permitted to
provide data for the column in new rows
that are inserted into the associated table.

■ UPDATE: The grantee is permitted to
update data in the column.

■ REFERENCES: The grantee is permitted to
refer to the column within a constraint (for
example, a unique, referential, or table-
check constraint).

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to
grant the privilege to other users; “YES”,
“NO”, or NULL if unknown or not applicable
to the data source.

Column Name Data Type Comments

(2 of 2)
12-66 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning privileges for a table or tables SQLTablePrivileges

Returning a list of tables in a data source SQLTables
INFORMIX-CLI Function Reference 12-67

SQLColumns
SQLColumns
SQLColumns returns the list of column names in specified tables. The driver
returns this information as a result set on the specified hstmt.

Syntax
RETCODE SQLColumns(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, szColumnName, cbColumnName)

The SQLColumns function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports quali-
fiers for some tables but not for others,
such as when the driver retrieves data
from different data sources, an empty
string ("") denotes those tables that do not
have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner names. If a
driver supports owners for some tables
but not for others, such as when the driver
retrieves data from different data sources,
an empty string ("") denotes those tables
that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table names.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szColumnName Input String search pattern for column names.

SWORD cbColumnName Input Length of szColumnName.

Level 1
12-68 INFORMIX-CLI Programmer’s Manual

SQLColumns
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support executing or completing the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

(1 of 2)
INFORMIX-CLI Function Reference 12-69

SQLColumns
S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name length
arguments was less than 0 but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the
corresponding qualifier or name. The maximum
length of each qualifier or name can be obtained
by calling SQLGetInfo with the fInfoType values.
For more information, see “Usage” on
page 12-187.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

A string search pattern was specified for the table
owner, table name, or column name, but the data
source does not support search patterns for one or
more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options is not supported by the driver
or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out period
is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-70 INFORMIX-CLI Programmer’s Manual

SQLColumns
Usage
This function is typically used before statement execution to retrieve infor-
mation about columns for a table or tables from the catalog of the data source.
In contrast, SQLColAttributes and SQLDescribeCol describe the columns in
a result set, and SQLNumResultCols returns the number of columns in a
result set.

SQLColumns returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME,
DATA_TYPE, and S TYPE_NAME. The following table lists the columns in the
result set. Additional columns beyond column 12 (REMARKS) can be defined
by the driver.

The lengths of VARCHAR columns shown in the following table are
maximums; the actual lengths depend on the data source. To determine the
actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and
COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table qualifier identifier; null if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different data sources, it returns an empty
string ("") for those tables that do not have
qualifiers.

TABLE_OWNER VARCHAR(128) Table owner identifier; null if not applicable
to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different data sources, it returns an empty
string ("") for those tables that do not have
owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier.

(1 of 3)
INFORMIX-CLI Function Reference 12-71

SQLColumns
COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

DATA_TYPE SMALLINT
not NULL

Informix SQL data type. The possible values
are any of the Informix SQL data types listed
in Appendix B, “Data Types.” For more
information about data types and conver-
sions, see Appendix B.

TYPE_NAME VARCHAR(128)
not NULL

Data-source-dependent data-type name; for
example, CHAR, VARCHAR, MONEY, LONG
VARBINARY, or CHAR () for BIT DATA.

PRECISION INTEGER The precision of the column on the data
source. For precision information, see
“Precision, Scale, Length, and Display Size”
on page B-5.

LENGTH INTEGER The length in bytes of data transferred on an
SQLGetData or SQLFetch operation if
SQL_C_DEFAULT is specified. For numeric
data, this size might be different than the size
of the data stored on the data source. This
value is the same as the PRECISION column
for character or binary data. For more infor-
mation about length, see “Precision, Scale,
Length, and Display Size” on page B-5.

SCALE The scale of the column on the data source.
For more scale information, see “Precision,
Scale, Length, and Display Size” on
page B-5. NULL is returned for data types
where scale is not applicable.

Column Name Data Type Comments

(2 of 3)
12-72 INFORMIX-CLI Programmer’s Manual

SQLColumns
The szTableOwner, szTableName, and szColumnName arguments accept search
patterns. For more information about valid search patterns, see “Search
Pattern Arguments” on page 12-8.

RADIX SMALLINT For numeric data types, either 10 or 2. If it is
10, the values in PRECISION and SCALE give
the number of decimal digits allowed for the
column. For example, a DECIMAL(12,5)
column would return a RADIX of 10, a
PRECISION of 12, and a SCALE of 5; a FLOAT
column could return a RADIX of 10, a
PRECISION of 15, and a SCALE of NULL.

If it is 2, the values in PRECISION and SCALE
give the number of bits allowed in the
column. For example, a FLOAT column could
return a RADIX of 2, a PRECISION of 53, and
a SCALE of NULL.

NULL is returned for data types where RADIX
is not applicable.

NULLABLE SMALLINT
not NULL

SQL_NO_NULLS if the column does not
accept null values.

SQL_NULLABLE if the column accepts null
values.

SQL_NULLABLE_UNKNOWN if it is not
known if the column accepts null values.

REMARKS VARCHAR(254) A description of the column.

Column Name Data Type Comments

(3 of 3)
INFORMIX-CLI Function Reference 12-73

SQLColumns
Code Example
In the following example, an application calls SQLColumns to return a result
set that describes each column in the EMPLOYEE table. It then calls
SQLBindCol to bind the columns in the result set to the storage locations.
Finally, the application fetches each row of data with SQLFetch and
processes it.

#define STR_LEN 128+1
#define REM_LEN 254+1

/* Declare storage locations for result set data */

UCHAR szQualifier[STR_LEN], szOwner[STR_LEN];
UCHAR szTableName[STR_LEN], szColName[STR_LEN];
UCHAR szTypeName[STR_LEN], szRemarks[REM_LEN];
SDWORD Precision, Length;
SWORD DataType, Scale, Radix, Nullable;

/* Declare storage locations for bytes available to return */

SDWORD cbQualifier, cbOwner, cbTableName, cbColName;
SDWORD cbTypeName, cbRemarks, cbDataType, cbPrecision;
SDWORD cbLength, cbScale, cbRadix, cbNullable;

retcode = SQLColumns(hstmt,
 NULL, 0, /* All qualifiers */
 NULL, 0, /* All owners */
 "EMPLOYEE", SQL_NTS, /* EMPLOYEE table */
 NULL, 0); /* All columns */
if (retcode == SQL_SUCCESS) {

/* Bind columns in result set to storage locations */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szQualifier, STR_LEN,&cbQualifier);
SQLBindCol(hstmt, 2, SQL_C_CHAR, szOwner, STR_LEN, &cbOwner);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szTableName, STR_LEN,&cbTableName);
SQLBindCol(hstmt, 4, SQL_C_CHAR, szColName, STR_LEN, &cbColName);
SQLBindCol(hstmt, 5, SQL_C_SSHORT, &DataType, 0, &cbDataType);
SQLBindCol(hstmt, 6, SQL_C_CHAR, szTypeName, STR_LEN, &cbTypeName);
SQLBindCol(hstmt, 7, SQL_C_SLONG, &Precision, 0, &cbPrecision);
SQLBindCol(hstmt, 8, SQL_C_SLONG, &Length, 0, &cbLength);
SQLBindCol(hstmt, 9, SQL_C_SSHORT, &Scale, 0, &cbScale);
SQLBindCol(hstmt, 10, SQL_C_SSHORT, &Radix, 0, &cbRadix);
SQLBindCol(hstmt, 11, SQL_C_SSHORT, &Nullable, 0, &cbNullable);
12-74 INFORMIX-CLI Programmer’s Manual

SQLColumns
SQLBindCol(hstmt, 12, SQL_C_CHAR, szRemarks, REM_LEN, &cbRemarks);

while(TRUE) {
retcode = SQLFetch(hstmt);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

...; /* Process fetched data */
} else {

break;
}

}
}

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or columns SQLColumnPrivileges

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning a list of tables in a data source SQLTables

Returning privileges for a table or tables SQLTablePrivileges
INFORMIX-CLI Function Reference 12-75

SQLConnect
SQLConnect
SQLConnect loads a driver and establishes a connection to a data source. The
connection handle references where all information about the connection,
including status, transaction state, and error information is stored.

Syntax
RETCODE SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID,
szAuthStr, cbAuthStr)

The SQLConnect function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle

UCHAR FAR * szDSN Input Data-source name

SWORD cbDSN Input Length of szDSN

UCHAR FAR * szUID Input User identifier

SWORD cbUID Input Length of szUID

UCHAR FAR * szAuthStr Input Authentication string
(typically the password)

SWORD cbAuthStr Input Length of szAuthStr

Core
12-76 INFORMIX-CLI Programmer’s Manual

SQLConnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to
data source

The driver could not establish a connection with the data source.

08002 Connection in use (DM) The specified hdbc was already used to establish a connection
with a data source, and the connection was still open.

08004 Data source rejected
establishment of
connection

The data source rejected the establishment of the connection for imple-
mentation-defined reasons.

08S01 Communication-link
failure

The communication link between the driver and the data source failed
before the function completed.

28000 Invalid authorization
specification

The value specified for the argument szUID or the value specified for
the argument szAuthStr violated restrictions defined by the data
source.

IM002 Data source not found
and no default driver
specified

(DM) The data-source name specified in the argument szDSN was not
found, nor was there a default driver specification.

(DM) The odbc.ini file was not found.

IM003 Specified driver could
not be loaded

(DM) The driver listed in the data source specification in the odbc.ini
file was not found or could not be loaded for some other reason.

IM004 Driver SQLAllocEnv
failed

(DM) During SQLConnect, the driver manager called the driver
SQLAllocEnv function, and the driver returned an error.

(1 of 2)
INFORMIX-CLI Function Reference 12-77

SQLConnect
IM005 Driver
SQLAllocConnect
failed

(DM) During SQLConnect, the driver manager called the driver
SQLAllocConnect function, and the driver returned an error.

IM006 Driver
SQLSetConnectOption
failed

(DM) During SQLConnect, the driver manager called the driver
SQLSetConnectOption function, and the driver returned an error
(function returns SQL_SUCCESS_WITH_INFO).

IM009 Unable to load trans-
lation shared library

The driver did not load the translation shared library that was
specified for the data source.

S1000 General error An error occurred for which no specific SQLSTATE existed and for
which no implementation-specific SQLSTATE was defined. The error
message returned by SQLError in the argument szErrorMsg describes
the error and its cause.

S1001 Memory-allocation
failure

(DM) The driver manager did not allocate memory required to
support execution or completion of the function.

The driver did not allocate memory required to support execution or
completion of the function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument cbDSN was less than 0, but not
equal to SQL_NTS.

(DM) The value specified for argument cbDSN exceeded the maximum
length for a data- source name.

(DM) The value specified for argument cbUID was less than 0 but not
equal to SQL_NTS.

(DM) The value specified for argument cbAuthStr was less than 0 but
not equal to SQL_NTS.

S1T00 Time-out expired The time-out period expired before the connection to the data source
completed. The time-out period is set through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-78 INFORMIX-CLI Programmer’s Manual

SQLConnect
Usage
INFORMIX-CLI does not load its driver until the application calls a function
(SQLConnect, SQLDriverConnect, or SQLBrowseConnect) to connect to the
driver. Until that point, INFORMIX-CLI works with its own handles and
manages connection information. When the application calls a connection
function, INFORMIX-CLI checks to see if its driver is currently loaded:

■ If the driver is not loaded, INFORMIX-CLI loads the driver and calls
SQLAllocEnv, SQLAllocConnect, SQLSetConnectOption (if the
application specified any connection options), and the connection
function in the driver. INFORMIX-CLI returns SQLSTATE IM006
(Driver SQLSetConnectOption function failed) and
SQL_SUCCESS_WITH_INFO for the connection function if the driver
returns an error for SQLSetConnectOption.

■ If the driver is already loaded on the hdbc, INFORMIX-CLI calls only
the connection function in the driver. In this case, the driver must
ensure that all connection options for the hdbc maintain their current
settings.

The driver then allocates handles and initializes itself.

When the application calls SQLDisconnect, INFORMIX-CLI calls
SQLDisconnect in the INFORMIX-CLI driver. However, INFORMIX-CLI does
not unload the driver. By keeping the driver in memory, INFORMIX-CLI
makes the driver available for applications that repeatedly connect to and
disconnect from a data source. When the application calls SQLFreeConnect,
INFORMIX-CLI calls SQLFreeConnect and SQLFreeEnv in the driver and then
unloads the driver.

An INFORMIX-CLI application can establish more than one connection.

After being loaded, the INFORMIX-CLI driver can locate its corresponding
data-source specification and use driver-specific information from the speci-
fication to complete its set of required connection information.
INFORMIX-CLI Function Reference 12-79

SQLConnect
Code Example
In the following example, an application allocates environment and
connection handles. It then connects to the EmpData data source with the
user ID JohnS and the password Sesame and processes data. When it finishes
processing data, it disconnects from the data source and frees the handles.

HENV henv;
HDBC hdbc;
HSTMT hstmt;
RETCODE retcode;

retcode = SQLAllocEnv(&henv); /* Environment handle */
if (retcode == SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */
if (retcode == SQL_SUCCESS) {

/* Connect to data source */

retcode = SQLConnect(hdbc, "EmpData", SQL_NTS,

 "JohnS", SQL_NTS,

 "Sesame", SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt); /* Statement handle */
if (retcode == SQL_SUCCESS) {

...;

...;

...;
SQLFreeStmt(hstmt, SQL_DROP);

}
SQLDisconnect(hdbc);

}
SQLFreeConnect(hdbc);

}
SQLFreeEnv(henv);

}

12-80 INFORMIX-CLI Programmer’s Manual

SQLConnect
Related Functions

♦

For Information About See

Allocating a connection handle SQLAllocConnect

Allocating a statement handle SQLAllocStmt

Discovering and enumerating values required to connect
to a data source

SQLBrowseConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Returning the setting of a connection option SQLGetConnectOption

Setting a connection option SQLSetConnectOption
INFORMIX-CLI Function Reference 12-81

SQLDataSources
SQLDataSources
SQLDataSources lists data-source names.

Syntax
RETCODE SQLDataSources(henv, fDirection, szDSN, cbDSNMax,
pcbDSN, szDescription, cbDescriptionMax, pcbDescription)

The SQLDataSources function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Determines whether the function
fetches the next data-source name in
the list (SQL_FETCH_NEXT) or whether
the search starts from the beginning of
the list (SQL_FETCH_FIRST).

UCHAR FAR * szDSN Output Pointer to storage for the data-source
name.

SWORD cbDSNMax Input Maximum length of the szDSN buffer;
this buffer need not be longer than
SQL_MAX_DSN_LENGTH + 1.

SWORD FAR * pcbDSN Output Total number of bytes (excluding the
null-termination byte) available to
return in szDSN. If the number of bytes
available to return is greater than or
equal to cbDSNMax, the data-source
name in szDSN is truncated to
cbDSNMax – 1 bytes.

(1 of 2)

Level 2
12-82 INFORMIX-CLI Programmer’s Manual

SQLDataSources
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

UCHAR FAR * szDescription Output Pointer to storage for the description
of the driver associated with the data
source.

SWORD cbDescriptionMax Input Maximum length of the szDescription
buffer; this buffer should be at least
255 bytes.

SWORD FAR * pcbDescription Output Total number of bytes (excluding the
null-termination byte) available to
return in szDescription. If the number
of bytes available to return is greater
than or equal to cbDescriptionMax, the
driver description in szDescription is
truncated to cbDescriptionMax – 1
bytes.

Type Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-83

SQLDataSources
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDSN was not large enough to
return the entire data-source name, so the name was
truncated. The argument pcbDSN contains the length
of the entire data-source name (function returns
SQL_SUCCESS_WITH_INFO).

(DM) The buffer szDescription was not large enough
to return the entire driver description, so the
description was truncated. The argument
pcbDescription contains the length of the untruncated
data-source description (function returns
SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message returned
by SQLError in the argument szErrorMsg describes
the error and its cause.

S1001 Memory-
allocation failure

(DM) The driver manager did not allocate memory
required to support execution or completion of the
function.

(1 of 2)
12-84 INFORMIX-CLI Programmer’s Manual

SQLDataSources
Usage
An application can call SQLDataSources multiple times to retrieve all data-
source names. When no more data-source names remain, the function returns
SQL_NO_DATA_FOUND. If SQLDataSources is called with SQL_FETCH_NEXT
immediately after it returns SQL_NO_DATA_FOUND, it returns the first data-
source name.

If SQL_FETCH_NEXT is passed to SQLDataSources the first time that it is
called, it returns the first data-source name.

INFORMIX-CLI determines how data-source names are mapped to actual data
sources.

Related Functions

♦

S1090 Invalid string or
buffer length

(DM) The value specified for argument cbDSNMax
was less than 0.

(DM) The value specified for argument
cbDescriptionMax was less than 0.

S1103 Direction option
out of range

(DM) The value specified for the argument fDirection
was not equal to SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

For Information About See

Discovering and listing values required to connect to a data
source

SQLBrowseConnect

Connecting to a data source SQLConnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Returning driver descriptions and attributes SQLDrivers

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-85

SQLDescribeCol
SQLDescribeCol
SQLDescribeCol returns the result descriptor (column name, type, precision,
scale, and whether or not it can have a NULL value) for one column in the
result set; it cannot be used to return information about the bookmark
column (column 0).

Syntax
RETCODE SQLDescribeCol(hstmt, icol, szColName, cbColNameMax,
pcbColName, pfSqlType, pcbColDef, pibScale, pfNullable)

The SQLDescribeCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data,
ordered sequentially left to right,
starting at 1.

UCHAR FAR * szColName Output Pointer to storage for the column
name. If the column is unnamed or the
column name cannot be determined,
the driver returns an empty string.

SWORD cbColNameMax Input Maximum length of the szColName
buffer.

SWORD FAR * pcbColName Output Total number of bytes (excluding the
null-termination byte) available to
return in szColName. If the number of
bytes available to return is greater than
or equal to cbColNameMax, the column
name in szColName is truncated to
cbColNameMax – 1 bytes.

(1 of 2)

Core
12-86 INFORMIX-CLI Programmer’s Manual

SQLDescribeCol
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

SWORD FAR * pfSqlType Output The column’s INFORMIX-CLI SQL
data type. The possible values are any
of the fSqlType values listed in
Appendix B, “Data Types.” If the data
type cannot be determined, the driver
returns 0. For more information about
data types and conversions, see
Appendix B.

UDWORD FAR * pcbColDef Output The precision of the column on the
data source. If the precision cannot be
determined, the driver returns 0. For
more information on precision, see
“Precision, Scale, Length, and Display
Size” on page B-5.

SWORD FAR * pibScale Output The scale of the column on the data
source. If the scale cannot be deter-
mined or is not applicable, the driver
returns 0. For more information on
scale, see “Precision, Scale, Length,
and Display Size” on page B-5.

SWORD FAR * pfNullable Output Indicates whether the column allows
one of the following values:

■ SQL_NO_NULLS: The column does
not allow null values.

■ SQL_NULLABLE: The column allows
null values.

■ SQL_NULLABLE_UNKNOWN: The
driver cannot determine whether
the column allows null values.

Type Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-87

SQLDescribeCol
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szColName was not large enough to
return the entire column name, so the column
name was truncated. The argument pcbColName
contains the length of the untruncated column
name (function returns
SQL_SUCCESS_WITH_INFO).

24000 Invalid cursor state The statement associated with the hstmt did not
return a result set. There were no columns to
describe.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

(DM) The value specified for the argument icol
was 0.

The value specified for the argument icol was
greater than the number of columns in the result
set.

(1 of 2)
12-88 INFORMIX-CLI Programmer’s Manual

SQLDescribeCol
SQLDescribeCol can return any SQLSTATE that SQLPrepare or SQLExecute
returns when SQLDescribeCol is called after SQLPrepare and before
SQLExecute, depending on when the data source evaluates the SQL
statement associated with the hstmt.

Usage
An application typically calls SQLDescribeCol after a call to SQLPrepare and
before or after the associated call to SQLExecute. An application can also call
SQLDescribeCol after a call to SQLExecDirect.

SQLDescribeCol retrieves the column name, type, and length generated by a
SELECT statement. If the column is an expression, szColName is either an
empty string or a driver-defined name.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbColNameMax was less than 0.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-89

SQLDescribeCol
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLColAttributes

Fetching a row of data SQLFetch

Returning the number of result-set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
12-90 INFORMIX-CLI Programmer’s Manual

SQLDisconnect
SQLDisconnect
SQLDisconnect closes the connection associated with a specific connection
handle.

Syntax
RETCODE SQLDisconnect(hdbc)

The SQLDisconnect function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

Core
INFORMIX-CLI Function Reference 12-91

SQLDisconnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01002 Disconnect error An error occurred during the disconnect.
However, the disconnect succeeded (function
returns SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

(DM) The connection specified in the argument
hdbc was not open.

25000 Invalid transaction
state

A transaction was in process on the connection
specified by the argument hdbc. The transaction
remains active.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt associated with the hdbc and returned
SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters
or columns.
12-92 INFORMIX-CLI Programmer’s Manual

SQLDisconnect
Usage
If an application calls SQLDisconnect after SQLBrowseConnect returns
SQL_NEED_DATA and before it returns a different return code, the driver
cancels the connection-browsing process and returns the hdbc to an uncon-
nected state.

If an application calls SQLDisconnect while an incomplete transaction is
associated with the connection handle, the driver returns SQLSTATE 25000
(Invalid transaction state), indicating that the transaction is unchanged and
the connection is open. An incomplete transaction is one that was not
committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it frees every hstmt associated
with the connection, the driver frees each remaining hstmt after it success-
fully disconnects from the data source.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

♦

For Information About See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Freeing a connection handle SQLFreeConnect

Executing a commit or rollback operation SQLTransact
INFORMIX-CLI Function Reference 12-93

SQLDriverConnect
SQLDriverConnect
SQLDriverConnect is an alternative to SQLConnect. It supports data sources
that require more connection information than the three arguments in
SQLConnect dialog boxes to prompt the user for all connection information,
and data sources that are not defined data source names.

SQLDriverConnect provides the following connection options:

■ You can establish a connection using a connection string that
contains the data-source name, one or more user IDs, one or more
passwords, and other information required by the data source.

■ You can establish a connection using a partial connection string or no
additional information; in this case, INFORMIX-CLI can prompt the
user for connection information.

Once a connection is established, SQLDriverConnect returns the completed
connection string. The application can use this string for subsequent
connection requests.

Syntax
RETCODE SQLDriverConnect(hdbc, hwnd, szConnStrIn,
cbConnStrIn, szConnStrOut, cbConnStrOutMax, pcbConnStrOut,
fDriverCompletion)

The SQLDriverConnect function accepts the following arguments.

Level 1

Type Argument Use Description

HDBC hdbc Input Connection handle.

HWND hwnd Input Window handle (platform dependent): For Windows, this is
the parent window handle. For UNIX, this is the parent
Widget handle. If the window handle is not applicable, or a
null pointer is passed, SQLDriverConnect does not present
any dialog boxes.

UCHAR FAR * szConnStrIn Input A full connection string, a partial connection string, or an
empty string.

SWORD cbConnStrIn Input Length of szConnStrIn.

(1 of 2)
12-94 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

UCHAR FAR *szConnStrOut Output Pointer to storage for the completed connection string.
Upon successful connection to the target data source, this
buffer contains the completed connection string. Applica-
tions should allocate at least 255 bytes for this buffer.

SWORD cbConnStrOutMax Input Maximum length of the szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output Pointer to the total number of bytes (excluding the null
termination byte) available to return in szConnStrOut. If the
number of bytes available to return is greater than or equal
to cbConnStrOutMax, the completed connection string in
szConnStrOut is truncated to cbConnStrOutMax – 1 bytes.

UWORD fDriverCompletion Input Flag that indicates whether INFORMIX-CLI must prompt
for more connection information:

SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRED, or
SQL_DRIVER_NOPROMPT.

For more information, see “Driver Manager Guidelines” on
page 12-99 and “Driver Guidelines” on page 12-100.

Type Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-95

SQLDriverConnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large enough
to return the entire connection string, so the
connection string was truncated. The
argument pcbConnStrOut contains the length
of the untruncated connection string (function
returns SQL_SUCCESS_WITH_INFO).

01S00 Invalid connection
string attribute

An invalid attribute keyword was specified in
the connection string (szConnStrIn), but the
driver connected to the data source anyway
(function returns SQL_SUCCESS_WITH_INFO).

08001 Unable to connect to
data source

The driver did not establish a connection with
the data source.

08002 Connection in use (DM) The specified hdbc was used already to
establish a connection with a data source, and
the connection was still open.

08004 Data source rejected
establishment of
connection

The data source rejected the establishment of
the connection for implementation-defined
reasons.

08S01 Communication-link
failure

The communication link between the driver
and the data source failed before the function
completed.

(1 of 3)
12-96 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
28000 Invalid authorization
specification

Either the user identifier or the authorization
string or both as specified in the connection
string (szConnStrIn) violated restrictions
defined by the data source.

IM002 Data source not found
and no default driver
specified

(DM) The data-source name specified in the
connection string (szConnStrIn) was not found,
and no default driver specification existed.

IM003 Specified driver could
not be loaded

(DM) The driver listed in the data- source speci-
fication, or specified by the DRIVER keyword,
was not found or was not loaded for some
other reason.

IM004 Driver SQLAllocEnv
failed

(DM) During SQLDriverConnect, the driver
manager called the driver SQLAllocEnv
function, and the driver returned an error.

IM005 Driver
SQLAllocConnect
failed

(DM) During SQLDriverConnect, the driver
manager called the driver SQLAllocConnect
function, and the driver returned an error.

IM006 Driver
SQLSetConnectOption
failed

(DM) During SQLDriverConnect, the driver
manager called the driver
SQLSetConnectOption function, and the
driver returned an error.

IM007 No data source or
driver specified; dialog
prohibited

C fDriverCompletion was
SQL_DRIVER_NOPROMPT.

IM008 Dialog failed (DM) The driver manager attempted to display
the SQL Data Sources dialog box but failed.

The driver attempted to display its login dialog
box but failed.

IM009 Unable to load trans-
lation shared library

The driver did not load the translation shared
library that was specified for the data source or
for the connection.

IM010 Data-source name too
long

(DM) The attribute value for the DSN keyword
was longer than SQL_MAX_DSN_LENGTH
characters.

SQLSTATE Error Description

(2 of 3)
INFORMIX-CLI Function Reference 12-97

SQLDriverConnect
IM011 Driver name too long (DM) The attribute value for the DRIVER
keyword was longer than 255 characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the DRIVER
keyword contained a syntax error.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver manager did not allocate memory
required to support execution or completion of
the function.

The driver did not allocate memory required to
support execution or completion of the
function.

S1090 Invalid string or buffer
length

(DM) The value specified for argument
cbConnStrIn was less than 0 and was not equal
to SQL_NTS.

(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1110 Invalid driver
completion

(DM) The value specified for the argument
fDriverCompletion was not equal to
SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRED, or
SQL_DRIVER_NOPROMPT.

S1T00 Time-out expired The time-out period expired before the
connection to the data source completed. The
time-out period is set through
SQLSetConnectOption, SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

(3 of 3)
12-98 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
Usage
SQLDriverConnect uses a connection string to specify the information
needed to connect to a driver and data source. The connection string is a more
flexible interface than the data-source name, user ID, and password used by
SQLConnect. The application can use the connection string for multiple
levels of login authorization or to convey other data-source-specific
connection information.

Driver Manager Guidelines

Tip: On Windows, a driver manager is mandatory and INFORMIX-CLI provides the
driver manager. On UNIX, a driver manager is optional. If you want to use a driver
manager on UNIX, you need to purchase one from a third-party vendor.

The driver manager constructs a connection string to pass to the driver in the
szConnStrIn argument of the driver SQLDriverConnect function. The driver
manager does not modify the szConnStrIn argument passed to it by the
application.

If the connection string specified by the application contains the DSN
keyword or does not contain either the DSN or DRIVER keywords, the action
of the driver manager is based on the value of the fDriverCompletion
argument, as the following list explains:

■ SQL_DRIVER_PROMPT

The driver manager displays the Data Sources dialog box. It
constructs a connection string from the data source name returned
by the dialog box and any other keywords passed to it by the appli-
cation. If the data-source name returned by the dialog box is empty,
the driver manager specifies the keyword-value pair DSN=Default.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED

If the connection string specified by the application includes the DSN
keyword, the driver manager copies the connection string specified
by the application. Otherwise, it takes the same actions as it does
when fDriverCompletion is SQL_DRIVER_PROMPT.

■ SQL_DRIVER_NOPROMPT

The driver manager copies the connection string specified by the
application.
INFORMIX-CLI Function Reference 12-99

SQLDriverConnect
If the connection string specified by the application contains the DRIVER
keyword, the driver manager copies the connection string specified by the
application.

Using the connection string that it constructed, the driver manager deter-
mines which driver to use, loads that driver, and passes the connection string
that it has constructed to the driver. For more information about the inter-
action of the driver manager and the driver, see “Usage” on page 12-79. If the
connection string contains the DSN keyword or does not contain either the
DSN or the DRIVER keyword, the driver manager determines which driver to
use, as the following steps show:

1. If the connection string contains the DSN keyword, the driver
manager retrieves the driver associated with the data source.

2. If the connection string does not contain the DSN keyword or the
data source is not found, the driver manager retrieves the driver
associated with the default data source. However, the driver
manager does not change the value of the DSN keyword in the
connection string.

3. If the data source is not found and the Default data source is not
found, the driver manager returns SQL_ERROR with SQLSTATE IM002
(Data source not found and no default driver specified).

Driver Guidelines

The driver checks to see whether the connection string passed to it (by the
driver manager or the application) contains the DSN or DRIVER keyword. If
the connection string contains the DRIVER keyword, the driver cannot
retrieve information about the data source. If the connection string contains
the DSN keyword or does not contain either the DSN or the DRIVER keyword,
the driver can retrieve information about the data source from the initial-
ization files, as the following steps show:

1. If the connection string contains the DSN keyword, the driver
retrieves the information for the specified data source.

2. If the connection string does not contain the DSN keyword or the
specified data source is not found, the driver retrieves the infor-
mation for the default data source.
12-100 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
The driver uses any information that it retrieves from the initialization files
to augment the information passed to it in the connection string. If the infor-
mation in the initialization files duplicates information in the connection
string, the driver uses the information in the connection string.

Based on the value of fDriverCompletion, the driver prompts the user for
connection information, such as the user ID and password, and connects to
the data source, as follows:

■ SQL_DRIVER_PROMPT

The driver displays a dialog box, using the values from the
connection string and the initialization files as initial values. When
the user exits the dialog box, the driver connects to the data source.
It also constructs a connection string from the value of the DSN or
DRIVER keyword in szConnStrIn and the information returned from
the dialog box. It places this connection string in the buffer refer-
enced by szConnStrOut.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED

If the connection string contains enough correct information, the
driver connects to the data source and copies szConnStrIn to
szConnStrOut. If any information is missing or incorrect, the driver
takes the same actions as it does when fDriverCompletion is
SQL_DRIVER_PROMPT, except that if fDriverCompletion is
SQL_DRIVER_COMPLETE_REQUIRED, the driver disables the controls
for any information that is not required to connect to the data source.

■ SQL_DRIVER_NOPROMPT

If the connection string contains enough information, the driver
connects to the data source and copies szConnStrIn to szConnStrOut.
Otherwise, the driver returns SQL_ERROR for SQLDriverConnect.

After successfully connecting to the data source, the driver also sets
pcbConnStrOut to the length of szConnStrOut.

If the user cancels a dialog box presented by INFORMIX-CLI,
SQLDriverConnect returns SQL_NO_DATA_FOUND.

For information about how the driver manager and the driver interact during
the connection process, see “Usage” on page 12-79.
INFORMIX-CLI Function Reference 12-101

SQLDriverConnect
Connection Options

The driver opens the connection in SQL_MODE_READ_WRITE access mode by
default. To set the access mode to SQL_MODE_READ_ONLY, the application
must call SQLSetConnectOption with the SQL_ACCESS_MODE option before
calling SQLDriverConnect.

Related Functions

♦

For Information About See

Allocating a connection handle SQLAllocConnect

Discovering and enumerating values required to connect
to a data source

SQLBrowseConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Returning driver descriptions and attributes SQLDrivers

Freeing a connection handle SQLFreeConnect

Setting a connection option SQLSetConnectOption
12-102 INFORMIX-CLI Programmer’s Manual

SQLDrivers
SQLDrivers
SQLDrivers lists driver descriptions and driver-attribute keywords.

Syntax
RETCODE SQLDrivers(henv, fDirection, szDriverDesc,
cbDriverDescMax, pcbDriverDesc, szDriverAttributes,
cbDrvrAttrMax, pcbDrvrAttr)

The SQLDrivers function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Specifies whether the function fetches
the next driver description in the list
(SQL_FETCH_NEXT) or whether the
search starts from the beginning of the
list (SQL_FETCH_FIRST).

UCHAR FAR * szDriverDesc Output Pointer to storage for the driver
description.

SWORD cbDriverDescMax Input Maximum length of the szDriverDesc
buffer.

SWORD FAR * pcbDriverDesc Output Total number of bytes (excluding the
null-termination byte) available to
return in szDriverDesc. If the number
of bytes available to return is greater
than or equal to cbDriverDescMax, the
driver description in szDriverDesc is
truncated to cbDriverDescMax – 1
bytes.

(1 of 2)

Level 2
INFORMIX-CLI Function Reference 12-103

SQLDrivers
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

UCHAR FAR * szDriverAttributes Output Pointer to storage for the list of driver
attribute value pairs. For more infor-
mation, see “Usage” on page 12-106.

SWORD cbDrvrAttrMax Input Maximum length of the
szDriverAttributes buffer.

SWORD FAR * pcbDrvrAttr Output Total number of bytes (excluding the
null-termination byte) available to
return in szDriverAttributes. If the
number of bytes available to return is
greater than or equal to
cbDrvrAttrMax, the list of attribute-
value pairs in szDriverAttributes is
truncated to cbDrvrAttrMax – 1 bytes.

Type Argument Use Description

(2 of 2)
12-104 INFORMIX-CLI Programmer’s Manual

SQLDrivers
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDriverDesc was not large
enough to return the entire driver description, so
the description was truncated. The argument
pcbDriverDesc contains the length of the entire
driver description (function returns
SQL_SUCCESS_WITH_INFO).

(DM) The buffer szDriverAttributes was not large
enough to return the entire list of attribute-value
pairs, so the list was truncated. The argument
pcbDrvrAttr contains the length of the untruncated
list of attribute-value pairs (function returns
SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

(DM) The driver manager did not allocate memory
required to support execution or completion of the
function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDriverDescMax was less than 0.

(DM) The value specified for argument
cbDrvrAttrMax was less than 0 or equal to 1.

S1103 Direction option
out of range

(DM) The value specified for the argument
fDirection was not equal to SQL_FETCH_FIRST or
SQL_FETCH_NEXT.
INFORMIX-CLI Function Reference 12-105

SQLDrivers
Usage
SQLDrivers returns the driver description in the szDriverDesc argument. It
returns additional information about the driver in the szDriverAttributes
argument as a list of keyword-value pairs. Each pair is terminated with a null
byte, and the entire list is terminated with a null byte (that is, 2 null bytes
mark the end of the list).

If szDriverAttributes cannot hold the entire list, the list is truncated,
SQLDrivers returns SQLSTATE 01004 (Data truncated), and the length of the
list (excluding the final null-termination byte) is returned in pcbDrvrAttr.
Driver-attribute keywords are added during the installation procedure.

An application can call SQLDrivers multiple times to retrieve all driver
descriptions. A driver manager retrieves this information from the
odbcinst.ini file. When no more driver descriptions remain, SQLDrivers
returns SQL_NO_DATA_FOUND. If SQLDrivers is called with
SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA_FOUND, it
returns the first driver description.

If SQL_FETCH_NEXT passes to SQLDrivers the first time it is called,
SQLDrivers returns the first data-source name.

Related Functions

♦

For Information About See

Discovering and listing values required to connect to a
data source

SQLBrowseConnect

Connecting to a data source SQLConnect

Returning data source names SQLDataSources

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect
12-106 INFORMIX-CLI Programmer’s Manual

SQLError
SQLError
SQLError returns error or status information.

Syntax
RETCODE SQLError(henv, hdbc, hstmt, szSqlState,
pfNativeError, szErrorMsg, cbErrorMsgMax, pcbErrorMsg)

The SQLError function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Core

Type Argument Use Description

HENV henv Input Environment handle or SQL_NULL_HENV.

HDBC hdbc Input Connection handle or SQL_NULL_HDBC.

HSTMT hstmt Input Statement handle or SQL_NULL_HSTMT.

UCHAR FAR * szSqlState Output SQLSTATE as null-terminated string. For a list of SQLSTATE
values, see Appendix A, “INFORMIX-CLI Error Codes.”

SDWORD FAR * pfNativeError Output Native error code (specific to the data source).

UCHAR FAR * szErrorMsg Output Pointer to storage for the error message text.

SWORD cbErrorMsgMax Input Maximum length of the szErrorMsg buffer. This value must be
less than or equal to SQL_MAX_MESSAGE_LENGTH – 1.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of bytes (excluding the null-termi-
nation byte) available to return in szErrorMsg. If the number
of bytes available to return is greater than or equal to
cbErrorMsgMax, the error message text in szErrorMsg is
truncated to cbErrorMsgMax – 1 bytes.
INFORMIX-CLI Function Reference 12-107

SQLError
Diagnostics
SQLError does not post error values for itself. SQLError returns
SQL_NO_DATA_FOUND when it cannot retrieve any error information (in
which case szSqlState equals 00000). If SQLError cannot access error values for
any reason that would normally return SQL_ERROR, SQLError returns
SQL_ERROR but does not post any error values. If the buffer for the error
message is too short, SQLError returns SQL_SUCCESS_WITH_INFO but still
does not return a SQLSTATE value for SQLError.

To determine that a truncation occurred in the error message, an application
can compare cbErrorMsgMax to the actual length of the message text written
to pcbErrorMsg.

Usage
An application typically calls SQLError when a previous call to an
INFORMIX-CLI function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR.
However, any INFORMIX-CLI function can post zero or more errors each time
that it is called, so an application can call SQLError after any INFORMIX-CLI
function call.

SQLError retrieves an error from the data structure associated with the right-
most non-null handle argument. An application requests error information,
in the following ways:

■ To retrieve errors associated with an environment, the application
passes the corresponding henv and includes SQL_NULL_HDBC and
SQL_NULL_HSTMT in hdbc and hstmt, respectively. The driver returns
the error status of the INFORMIX-CLI function most recently called
with the same henv.

■ To retrieve errors associated with a connection, the application
passes the corresponding hdbc plus an hstmt equal to
SQL_NULL_HSTMT. In such a case, the driver ignores the henv
argument. The driver returns the error status of the INFORMIX-CLI
function most recently called with the hdbc.
12-108 INFORMIX-CLI Programmer’s Manual

SQLError
■ To retrieve errors associated with a statement, an application passes
the corresponding hstmt. If the call to SQLError contains a valid
hstmt, the driver ignores the hdbc and henv arguments. The driver
returns the error status of the INFORMIX-CLI function most recently
called with the hstmt.

■ To retrieve multiple errors for a function call, an application calls
SQLError multiple times. For each error, the driver returns
SQL_SUCCESS and removes that error from the list of available errors.

When no additional information for the right-most non-null handle remains,
SQLError returns SQL_NO_DATA_FOUND. In this case, szSqlState equals
00000 (Success), pfNativeError is undefined, pcbErrorMsg equals 0, and
szErrorMsg contains a single null-termination byte (unless cbErrorMsgMax
equals 0).

The driver manager, if you are using one, stores error information in its henv,
hdbc, and hstmt structures. Similarly, the driver stores error information in its
henv, hdbc, and hstmt structures. When the application calls SQLError, the
driver manager checks if any errors exist in its structure for the specified
handle. If errors exist for the specified handle, it returns the first error; if no
errors exist, it calls SQLError in the driver.

The driver manager, if you are using one, can store up to 64 errors with an
henv and its associated hdbcs and hstmts. When this limit is reached, the driver
manager discards any subsequent errors posted on the henv, hdbcs, or hstmts
of the driver manager. The number of errors that a driver can store is driver
dependent.

An error is removed from the structure associated with a handle when
SQLError is called for that handle and returns the error. All errors stored for
a specific handle are removed when the handle is used in a subsequent
function call. For example, errors on an hstmt that SQLExecDirect returns are
removed when SQLExecDirect or SQLTables is called with that hstmt. The
errors stored on a specific handle are not removed as the result of a call to a
function that uses an associated handle of a different type. For example,
errors on an hdbc that SQLNativeSql returns are not removed when SQLError
or SQLExecDirect is called with an hstmt associated with that hdbc.

For more information about error codes, see Appendix A.

Related Functions
None.

♦

INFORMIX-CLI Function Reference 12-109

SQLExecDirect
SQLExecDirect
SQLExecDirect executes a preparable statement, using the current values of
the parameter-marker variables if any parameters exist in the statement.
SQLExecDirect is the fastest way to submit an SQL statement for one-time
execution.

Syntax
RETCODE SQLExecDirect(hstmt, szSqlStr, cbSqlStr)

The SQLExecDirect function uses the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szSqlStr Input SQL statement to be executed

SDWORD cbSqlStr Input Length of szSqlStr

Core
12-110 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The argument szSqlStr contained an SQL statement that contained a
character or binary parameter or literal, and the value exceeded the
maximum length of the associated table column.

The argument szSqlStr contained an SQL statement that contained a
numeric parameter or literal, and the fractional part of the value was
truncated.

The argument szSqlStr contained an SQL statement that contained a date
or time parameter or literal, and a time-stamp value was truncated.

01006 Privilege not
revoked

The argument szSqlStr contained a REVOKE statement, and the user did
not have the specified privilege (function returns
SQL_SUCCESS_WITH_INFO).

01S03 No rows updated
or deleted

The argument szSqlStr contained a positioned UPDATE or DELETE
statement, and no rows were updated or deleted (function returns
SQL_SUCCESS_WITH_INFO).

01S04 More than one row
updated or deleted

The argument szSqlStr contained a positioned UPDATE or DELETE
statement, and more than one row was updated or deleted (function
returns SQL_SUCCESS_WITH_INFO).

07001 Wrong number of
parameters

The number of parameters specified in SQLBindParameter was less than
the number of parameters in the SQL statement contained in the
argument szSqlStr.

08S01 Communication-
link failure

The communication link between the driver and the data source failed
before the function completed.

(1 of 5)
INFORMIX-CLI Function Reference 12-111

SQLExecDirect
21S01 Insert value list
does not match
column list

The argument szSqlStr contained an INSERT statement, and the number of
values to be inserted did not match the degree of the derived table.

21S02 Degree of derived
table does not
match column list

The argument szSqlStr contained a CREATE VIEW statement, and the
number of names specified is not the same degree as the derived table
defined by the query specification.

22003 Numeric value out
of range

The argument szSqlStr contained an SQL statement that contained a
numeric parameter or literal, and the value caused the whole (as opposed
to fractional) part of the number to be truncated when assigned to the
associated table column.

22005 Error in assignment The argument szSqlStr contained an SQL statement that contained a
parameter or literal, and the value was incompatible with the data type
of the associated table column.

22008 Datetime field
overflow

The argument szSqlStr contained an SQL statement that contained a date,
time, or time-stamp parameter or literal, and the value was, respectively,
an invalid date, time, or time stamp.

22012 Division by zero The argument szSqlStr contained an SQL statement that contained an
arithmetic expression that caused division by zero.

23000 Integrity-constraint
violation

The argument szSqlStr contained an SQL statement that contained a
parameter or literal. The parameter value was NULL for a column defined
as NOT NULL in the associated table column, a duplicate value was
supplied for a column constrained to contain only unique values, or some
other integrity constraint was violated.

24000 Invalid cursor state A cursor was already opened on the statement handle.

The argument szSqlStr contained a positioned UPDATE or DELETE
statement, but the cursor was positioned before the start of the result set
or after the end of the result set.

34000 Invalid cursor
name

The argument szSqlStr contained a positioned UPDATE or DELETE
statement, but the cursor referenced by the statement being executed was
not open.

37000 Syntax error or
access violation

The argument szSqlStr contained an SQL statement that was not prepa-
rable or contained a syntax error.

40001 Serialization failure The transaction to which the SQL statement contained in the argument
szSqlStr belonged was terminated to prevent deadlock.

SQLSTATE Error Description

(2 of 5)
12-112 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
42000 Syntax error or
access violation

The user did not have permission to execute the SQL statement contained
in the argument szSqlStr.

S0001 Base table or view
already exists

The argument szSqlStr contained a CREATE TABLE or CREATE VIEW
statement, but the table name or view name specified already exists.

S0002 Table or view not
found

The argument szSqlStr contained a DROP TABLE or a DROP VIEW
statement, but the specified table name or view name did not exist.

The argument szSqlStr contained an ALTER TABLE statement, but the
specified table name did not exist.

The argument szSqlStr contained a CREATE VIEW statement, but a table
name or view name defined by the query specification did not exist.

The argument szSqlStr contained a CREATE INDEX statement, but the
specified table name did not exist.

The argument szSqlStr contained a GRANT or REVOKE statement, but the
specified table name or view name did not exist.

The argument szSqlStr contained a SELECT statement, but a specified
table name or view name did not exist.

The argument szSqlStr contained a DELETE, INSERT, or UPDATE
statement, but the specified table name did not exist.

The argument szSqlStr contained a CREATE TABLE statement, but a table
specified in a constraint (referencing a table other than the one being
created) did not exist.

S0011 Index already
exists

The argument szSqlStr contained a CREATE INDEX statement, but the
specified index name already existed.

S0012 Index not found The argument szSqlStr contained a DROP INDEX statement, but the
specified index name did not exist.

S0021 Column already
exists

The argument szSqlStr contained an ALTER TABLE statement, but the
column specified in the ADD clause is not unique or identifies an existing
column in the base table.

SQLSTATE Error Description

(3 of 5)
INFORMIX-CLI Function Reference 12-113

SQLExecDirect
S0022 Column not found The argument szSqlStr contained a CREATE INDEX statement, but one or
more of the column names specified in the column list did not exist.

The argument szSqlStr contained a GRANT or REVOKE statement, but a
specified column name did not exist.

The argument szSqlStr contained a SELECT, DELETE, INSERT, or UPDATE
statement, but a specified column name did not exist.

The argument szSqlStr contained a CREATE TABLE statement, but a
column specified in a constraint (referencing a table other than the one
being created) did not exist.

S1000 General error An error occurred for which no specific SQLSTATE existed and for which
no implementation-specific SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg describes the error and
its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to support execution or
completion of the function.

S1008 Operation canceled The function was called, but before it completed execution, SQLCancel
was called on the hstmt from a different thread in a multithreaded
application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null pointer.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for the hstmt and returned
SQL_NEED_DATA. This function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less than or equal to 0, but not equal to
SQL_NTS.

A parameter value, set with SQLBindParameter, was a null pointer and
the parameter length value was not 0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with SQLBindParameter, was not a null pointer
and the parameter length value was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

SQLSTATE Error Description

(4 of 5)
12-114 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
Usage
The application calls SQLExecDirect to send an SQL statement to the data
source. The driver modifies the statement to use the form of SQL that the data
source uses and then submits it to the data source. In particular, the driver
modifies the escape clauses used to define ODBC-specific SQL.

The application can include one or more parameter markers in the SQL
statement. To include a parameter marker, the application embeds a question
mark (?) into the SQL statement at the appropriate position.

If the SQL statement is a SELECT statement, and if the application called
SQLSetCursorName to associate a cursor with an hstmt, the driver uses the
specified cursor. Otherwise, the driver generates a cursor name.

If the data source is in manual-commit mode (requiring explicit transaction
initiation), and a transaction has not been initiated, the driver initiates a
transaction before it sends the SQL statement.

If an application uses SQLExecDirect to submit a COMMIT or ROLLBACK
statement, it is not interoperable between DBMS products. To commit or roll
back a transaction, call SQLTransact.

S1109 Invalid cursor
position

The argument szSqlStr contained a positioned UPDATE or DELETE
statement, but the cursor was positioned (by SQLExtendedFetch) on a
row for which the value in the rgfRowStatus array in SQLExtendedFetch
was SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement options was not supported by the driver or
data source.

S1T00 Time-out expired The time-out period expired before the data source returned the result set.
The time-out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(5 of 5)
INFORMIX-CLI Function Reference 12-115

SQLExecDirect
If SQLExecDirect encounters a data-at-execution parameter, it returns
SQL_NEED_DATA. The application sends the data using SQLParamData and
SQLPutData. For more information, see SQLBindParameter, SQLParamData,
and SQLPutData.

Code Example
See SQLBindCol, SQLExtendedFetch, SQLProcedures, and SQLGetData.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData

Returning the next parameter to send data for SQLParamData

Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption

Executing a commit or rollback operation SQLTransact
12-116 INFORMIX-CLI Programmer’s Manual

SQLExecute
SQLExecute
SQLExecute executes a prepared statement, using the current values of the
parameter-marker variables if any parameter markers exist in the statement.

Syntax
RETCODE SQLExecute(hstmt)

The SQLExecute statement accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle

Core
INFORMIX-CLI Function Reference 12-117

SQLExecute
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The prepared statement associated with the
hstmt contained a character or binary parameter
or literal, but the value exceeded the maximum
length of the associated table column.

The prepared statement associated with the
hstmt contained a numeric parameter or literal,
but the fractional part of the value was truncated.

The prepared statement associated with the
hstmt contained a date or time parameter or
literal, and a time-stamp value was truncated.

01006 Privilege not
revoked

The prepared statement associated with the
hstmt was REVOKE, but the user did not have the
specified privilege (function returns
SQL_SUCCESS_WITH_INFO).

01S03 No rows updated or
deleted

The prepared statement associated with the
hstmt was a positioned UPDATE or DELETE
statement, but no rows were updated or deleted
(function returns SQL_SUCCESS_WITH_INFO).

01S04 More than one row
updated or deleted

The prepared statement associated with the
hstmt was a positioned UPDATE or DELETE
statement, and more than one row was updated
or deleted (function returns
SQL_SUCCESS_WITH_INFO).

07001 Wrong number of
parameters

The number of parameters specified in
SQLBindParameter was less than the number of
parameters in the prepared statement associated
with the hstmt.

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

(1 of 4)
12-118 INFORMIX-CLI Programmer’s Manual

SQLExecute
22003 Numeric value out
of range

The prepared statement associated with the
hstmt contained a numeric parameter, and the
parameter value caused the whole (as opposed to
fractional) part of the number to be truncated
when assigned to the associated table column.

22005 Error in assignment The prepared statement associated with the
hstmt contained a parameter, but the value was
incompatible with the data type of the associated
table column.

22008 Datetime field
overflow

The prepared statement associated with the
hstmt contained a date, time, or time-stamp
parameter or literal, and the value was an invalid
date, time, or time stamp, respectively.

22012 Division by zero The prepared statement associated with the
hstmt contained an arithmetic expression that
caused division by zero.

23000 Integrity constraint
violation

The prepared statement associated with the
hstmt contained a parameter. The parameter
value was NULL for a column defined as NOT
NULL in the associated table column, a duplicate
value was supplied for a column constrained to
contain only unique values, or some other
integrity constraint was violated.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

The prepared statement associated with the
hstmt contained a positioned update or delete
statement, and the cursor was positioned before
the start of the result set or after the end of the
result set.

40001 Serialization failure The transaction to which the prepared statement
associated with the hstmt belonged was termi-
nated to prevent deadlock.

42000 Syntax error or
access violation

The user did not have permission to execute the
prepared statement associated with the hstmt.

SQLSTATE Error Description

(2 of 4)
INFORMIX-CLI Function Reference 12-119

SQLExecute
S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support executing or completing the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(DM) The hstmt was not prepared. Either the
hstmt was not in an executed state, or a cursor
was open on the hstmt and SQLFetch or
SQLExtendedFetch had been called.

The hstmt was not prepared. It was in an
executed state, and either no result set was
associated with the hstmt or SQLFetch or
SQLExtendedFetch had not been called.

S1090 Invalid string or
buffer length

A parameter value, set with SQLBindParameter,
was a null pointer, and the parameter length
value was not 0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with SQLBindParameter,
was not a null pointer, and the parameter length
value was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, or SQL_DATA_AT_EXEC, or less
than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

SQLSTATE Error Description

(3 of 4)
12-120 INFORMIX-CLI Programmer’s Manual

SQLExecute
SQLExecute can return any SQLSTATE that SQLPrepare can return based on
when the data source evaluates the SQL statement associated with the hstmt.

Usage
SQLExecute executes a statement prepared by SQLPrepare. Once the
application processes or discards the results from a call to SQLExecute, the
application can call SQLExecute again with new parameter values.

To execute a SELECT statement more than once, the application must call
SQLFreeStmt with the SQL_CLOSE parameter before it reissues the SELECT
statement.

If the data source is in manual-commit mode (requiring explicit transaction
initiation), and a transaction has not already been initiated, the driver
initiates a transaction before it sends the SQL statement.

If an application uses SQLPrepare to prepare and SQLExecute to submit a
COMMIT or ROLLBACK statement, it is not interoperable between DBMS
products. To commit or roll back a transaction, call SQLTransact.

S1109 Invalid cursor
position

The prepared statement was a positioned
UPDATE or DELETE statement, and the cursor
was positioned (by SQLExtendedFetch) on a row
for which the value in the rgfRowStatus array in
SQLExtendedFetch was SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(4 of 4)
INFORMIX-CLI Function Reference 12-121

SQLExecute
If SQLExecute encounters a data-at-execution parameter, it returns
SQL_NEED_DATA. The application sends the data using SQLParamData and
SQLPutData. For more information, see SQLBindParameter, SQLParamData,
and SQLPutData.

Code Example
See SQLBindParameter and SQLPutData.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData

Returning the next parameter to send data for SQLParamData

Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption

Executing a commit or rollback operation SQLTransact
12-122 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
SQLExtendedFetch
SQLExtendedFetch extends the functionality of SQLFetch in the following
ways:

■ It returns row-set data (one or more rows), in the form of an array, for
each bound column.

■ It scrolls through the result set according to the setting of a scroll-
type argument.

SQLExtendedFetch works with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application
should call SQLFetch.

For more information about scrolling through result sets, see “Using Block
and Scrollable Cursors” on page 6-9.

Syntax
RETCODE SQLExtendedFetch(hstmt, fFetchType, irow, pcrow,
rgfRowStatus)

The SQLExtendedFetch function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fFetchType Input Type of fetch

SDWORD irow Input Number of the row to fetch

UDWORD FAR * pcrow Output Number of rows actually fetched

UWORD FAR * rgfRowStatus Output An array of status values

Level 2
INFORMIX-CLI Function Reference 12-123

SQLExtendedFetch
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns was truncated. String values
are right truncated. For numeric values, the fractional part of number was
truncated (function returns SQL_SUCCESS_WITH_INFO).

01S01 Error in row An error occurred while fetching one or more rows (function returns
SQL_SUCCESS_WITH_INFO).

07006 Restricted data
type attribute
violation

A data value could not be converted to the C data type specified by fCType
in SQLBindCol.

08S01 Communication-
link failure

The communication link between the driver and the data source failed
before the function completed.

22002 Indicator value
required but not
supplied

If the column value for any bound column is null, the INDICATOR_PTR
field of the corresponding descriptor record must not be a null pointer.

(1 of 3)
12-124 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
22003 Numeric value out
of range

Returning the numeric value (as numeric or string) for one or more
columns would cause the whole (as opposed to fractional) part of the
number to be truncated.

Returning the binary value for one or more columns would cause a loss
of binary significance.

22005 Error in
assignment

A zero-length string was inserted into a string field, and the string was
bound to a numeric data type, so the string was converted to a zero.

22008 Datetime field
overflow

An SQL_C_TIME, SQL_C_DATE, or SQL_C_TIMESTAMP value was
converted to an SQL_CHAR data type, and the value was an invalid date,
time, or time stamp, respectively.

22012 Division by zero A value from an arithmetic expression was returned which resulted in
division by zero.

24000 Invalid cursor state The hstmt was in an executed state, but no result set was associated with
the hstmt.

40001 Serialization
failure

The transaction (in which the fetch was executed) was terminated to
prevent deadlock.

S1000 General error An error occurred for which no specific SQLSTATE existed and for which
no implementation-specific SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg describes the error and
its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to support execution or
completion of the function.

S1002 Invalid column
number

A column number specified in the binding for one or more columns was
greater than the number of columns in the result set.

Column 0 was bound with SQLBindCol and the SQL_USE_BOOKMARKS
statement option was set to SQL_UB_OFF.

S1008 Operation canceled The function was called, but before it completed execution, SQLCancel
was called on the hstmt from a different thread in a multithreaded
application.

SQLSTATE Error Description

(2 of 3)
INFORMIX-CLI Function Reference 12-125

SQLExtendedFetch
Usage
SQLExtendedFetch returns one row set of data to the application. An appli-
cation cannot mix calls to SQLExtendedFetch and SQLFetch for the same
cursor.

An application specifies the number of rows in the row set by calling
SQLSetStmtOption with the SQL_ROWSET_SIZE statement option.

S1010 Function-sequence
error

(DM) The specified hstmt was not in an executed state. The function was
called without first calling SQLExecDirect, SQLExecute, or a catalog
function.

(DM) SQLExecute or SQLExecDirect, was called for the hstmt and returned
SQL_NEED_DATA. This function was called before data was sent for all
data-at-execution parameters or columns.

(DM) SQLExtendedFetch was called for an hstmt after SQLFetch was
called and before SQLFreeStmt was called with the SQL_CLOSE option.

S1106 Fetch type out of
range

(DM) The value specified for the argument fFetchType was invalid.

The value of the SQL_CURSOR_TYPE statement option was
SQL_CURSOR_FORWARD_ONLY and the value of argument fFetchType was
not SQL_FETCH_NEXT.

S1107 Row value out of
range

The value specified with the statement option SQL_CURSOR_TYPE was
SQL_CURSOR_KEYSET_DRIVEN, but the value specified with the
SQL_KEYSET_SIZE statement option was greater than 0 and less than the
value specified with the SQL_ROWSET_SIZE statement option.

S1C00 Driver not capable The driver or data source does not support the specified fetch type.

The driver or data source does not support the conversion specified by the
combination of the fCType in SQLBindCol and the SQL data type of the
corresponding column. This error applies only when the SQL data type of
the column was mapped to a driver-specific SQL data type.

The argument fFetchType was SQL_FETCH_RESUME, and the driver
supports ODBC 2.0.

S1T00 Time-out expired The time-out period expired before the data source returned the result set.
The time-out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(3 of 3)
12-126 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
Binding

If any columns in the result set are bound with SQLBindCol, the driver
converts the data for the bound columns as necessary and stores it in the
locations bound to those columns. The result set can be bound in a column-
wise (the default) or row-wise fashion.

Column-Wise Binding

To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement option.

To bind each column

1. The application allocates an array of data-storage buffers. The array
has as many elements as the row set has rows, plus an additional
element if the application searches for key values or appends new
rows of data. The size of each buffer is the maximum size of the C
data that can be returned for the column. For example, when the C
data type is SQL_C_DEFAULT, the size of each buffer is the column
length. When the C data type is SQL_C_CHAR, the size of each buffer
is the display size of the data. For more information, see “Converting
Data from SQL to C” on page B-19 and“Precision, Scale, Length, and
Display Size” on page B-5.

2. The application allocates an array of SDWORDs to hold the number
of bytes available to return for each row in the column. The array has
as many elements as the row set has rows.

3. The application calls SQLBindCol:

■ The rgbValue argument specifies the address of the data-storage
array.

■ The cbValueMax argument specifies the size of each buffer in the
data-storage array.

■ The pcbValue argument specifies the address of the number-of-
bytes array.
INFORMIX-CLI Function Reference 12-127

SQLExtendedFetch
When the application calls SQLExtendedFetch, the driver retrieves the data
and the number of bytes that are available to return and stores them in the
buffers that the application allocates, as the following actions show:

■ For each bound column, the driver stores the data in the rgbValue
buffer bound to the column. It stores the first row of data at the start
of the buffer and each subsequent row of data at an offset of cbVal-
ueMax bytes from the data for the previous row.

■ For each bound column, the driver stores the number of bytes that
are available to return in the pcbValue buffer that is bound to the
column. This is the number of bytes available before calling
SQLExtendedFetch. (If the number of bytes available to return
cannot be determined in advance, the driver sets pcbValue to
SQL_NO_TOTAL. If the data for the column is NULL, the driver sets
pcbValue to SQL_NULL_DATA.) It stores the number of bytes available
to return for the first row at the start of the buffer and the number of
bytes available to return for each subsequent row at an offset of
sizeof(SDWORD) from the value for the previous row.

Row-Wise Binding

To bind a result set in row-wise fashion, an application must specify the
SQL_BIND_TYPE statement option for SQLSetStmtOption.

To bind a result set in row-wise fashion

1. The application declares a structure that can hold a single row of
retrieved data and the associated data lengths. For each bound
column, the structure contains one field for the data and one
SDWORD field for the number of bytes that are available to return.
The size of the data field is the maximum size of the C data that can
be returned for the column.

2. The application calls SQLSetStmtOption with fOption set to
SQL_BIND_TYPE and vParam set to the size of the structure.

3. The application allocates an array of these structures. The array has
as many elements as the row set has rows, plus an additional element
if the application searches for key values or appends new rows of
data.
12-128 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
4. The application calls SQLBindCol for each column to be bound:

■ The rgbValue argument specifies the address of the data field of
the column in the first array element.

■ The cbValueMax argument specifies the size of the data field of
the column.

■ The pcbValue argument specifies the address of the number-of-
bytes field of the column in the first array element.

When the application calls SQLExtendedFetch, the driver retrieves the data
and the number of bytes that are available to return and stores them in the
buffers that are allocated by the application:

■ For each bound column, the driver stores the first row of data at the
address specified by rgbValue for the column and each subsequent
row of data at an offset of vParam bytes from the data for the previous
row.

■ For each bound column, the driver stores the number of bytes that
are available to return for the first row at the address that pcbValue
specifies and the number of bytes that are available to return for each
subsequent row at an offset of vParam bytes from the value for the
previous row. This is the number of bytes that are available prior to
calling SQLExtendedFetch. (If the number of bytes that are available
to return cannot be determined in advance, the driver sets pcbValue
to SQL_NO_TOTAL. If the data for the column is NULL, the driver sets
pcbValue to SQL_NULL_DATA.)

Positioning the Cursor

The following operations require a cursor position:

■ Positioned update and delete statements

■ Calls to SQLGetData

Before the application executes a positioned update, a delete statement, or a
call to SQLGetData, it must position the cursor by calling SQLExtendedFetch
to retrieve a row set; the cursor points to the first row in the row set.
INFORMIX-CLI Function Reference 12-129

SQLExtendedFetch
The following table shows the row set and code returned when the appli-
cation requests different row sets.

For example, suppose a result set has 100 rows, and the row-set size is 5. The
following table shows the row set and code returned by SQLExtendedFetch
for different values of irow when the fetch type is SQL_FETCH_RELATIVE.

Requested Row
Set Return Code Cursor Position Returned Row Set

Before start of
result set

SQL_NO_DATA_FOUND Before start of
result set

None. The contents of the row-set buffers are
undefined.

Overlaps start
of result set

SQL_SUCCESS Row 1 of row set First row set in result set.

Within result
set

SQL_SUCCESS Row 1 of row set Requested row set.

Overlaps end
of result set

SQL_SUCCESS Row 1 of row set For rows in the row set that overlap the
result set, data is returned.

For rows in the row set outside the result set,
the contents of the rgbValue and pcbValue
buffers are undefined, and the rgfRowStatus
array contains SQL_ROW_NOROW.

After end of
result set

SQL_NO_DATA_FOUND After end of
result set

None. The contents of the row-set buffers are
undefined.

Current
Row Set irow Return Code New Row Set

1 to 5 –5 SQL_NO_DATA_FOUND None.

1 to 5 –3 SQL_SUCCESS 1 to 5.

96 to 100 5 SQL_NO_DATA_FOUND None.

96 to 100 3 SQL_SUCCESS 99 and 100. For rows 3, 4, and 5 in the
row set, the rgfRowStatusArray is set to
SQL_ROW_NOROW.
12-130 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
Before SQLExtendedFetch is called the first time, the cursor is positioned
before the start of the result set.

For the purpose of moving the cursor, deleted rows (that is, rows with an
entry in the rgfRowStatus array of SQL_ROW_DELETED) are treated no differ-
ently than other rows. For example, calling SQLExtendedFetch with
fFetchType set to SQL_FETCH_ABSOLUTE and irow set to 15 returns the row set
starting at row 15, even if the rgfRowStatus array for row 15 is
SQL_ROW_DELETED.

Processing Errors

If an error occurs that pertains to the entire row set, such as SQLSTATE S1T00
(Time-out expired), the driver returns SQL_ERROR and the appropriate
SQLSTATE. The contents of the row set buffers are undefined, and the cursor
position is unchanged.

If an error occurs that pertains to a single row, the driver performs the
following actions:

■ Sets the element in the rgfRowStatus array for the row to
SQL_ROW_ERROR

■ Posts SQLSTATE 01S01 (Error in row) in the error queue

■ Posts zero or more additional SQLSTATE values for the error after
SQLSTATE 01S01 (Error in row) in the error queue

After the driver processes the error or warning, it continues the operation for
the remaining rows in the row set and returns SQL_SUCCESS_WITH_INFO.
Thus, for each error that pertains to a single row, the error queue contains
SQLSTATE 01S01 (Error in row) followed by zero or more additional
SQLSTATEs.

After the driver processes the error, it fetches the remaining rows in the row
set and returns SQL_SUCCESS_WITH_INFO. Thus, for each row that returns an
error, the error queue contains SQLSTATE 01S01 (Error in row) followed by
zero or more additional SQLSTATE values.
INFORMIX-CLI Function Reference 12-131

SQLExtendedFetch
If the row set contains rows that are already fetched, the driver is not required
to return SQLSTATE values for errors that occurred when the rows were first
fetched. However, it is required to return SQLSTATE 01S01 (Error in row) for
each row in which an error originally occurred and to return
SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains a
cache might cache row-status information (so that it can determine which
rows contain errors) but might not cache the SQLSTATE associated with those
errors.

Error rows do not affect relative cursor movements. For example, suppose
the result set size is 100, and the row-set size is 10. If the current row set is
rows 11 through 20 and the element in the rgfRowStatus array for row 11 is
SQL_ROW_ERROR, calling SQLExtendedFetch with the SQL_FETCH_NEXT
fetch type still returns rows 21 through 30.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated),
it returns warnings that apply to the entire row set or to unknown rows in the
row set before it returns error information that applies to specific rows. It
returns warnings for specific rows along with any other error information
about those rows.

fFetchType Argument

The fFetchType argument specifies how to move through the result set. It is
one of the following values:

■ SQL_FETCH_NEXT

■ SQL_FETCH_FIRST

■ SQL_FETCH_LAST

■ SQL_FETCH_PRIOR

■ SQL_FETCH_ABSOLUTE

■ SQL_FETCH_RELATIVE

If the value of the SQL_CURSOR_TYPE statement option is
SQL_CURSOR_FORWARD_ONLY, the fFetchType argument must be
SQL_FETCH_NEXT.

Tip: SQL_CURSOR_FORWARD_ONLY is the only option unless an application uses
the Microsoft ODBC Cursor Library.
12-132 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
Moving by Row Position

SQLExtendedFetch supports the following values of the fFetchType argument
to move the cursor relative to the current row set.

It supports the following values of the fFetchType argument to move the
cursor to an absolute position in the result set.

fFetchType Argument Action

SQL_FETCH_NEXT The driver returns the next row set. If the cursor is
positioned before the start of the result set, this is equiv-
alent to SQL_FETCH_FIRST.

SQL_FETCH_PRIOR The driver returns the prior row set. If the cursor is
positioned after the end of the result set, this is equivalent
to SQL_FETCH_LAST.

SQL_FETCH_RELATIVE The driver returns the row set irow rows from the start of
the current row set. If irow equals 0, the driver refreshes
the current row set. If the cursor is positioned before the
start of the result set and irow is greater than 0, or if the
cursor is positioned after the end of the result set and irow
is less than 0, this is equivalent to SQL_FETCH_ABSOLUTE.

fFetchType Argument Action

SQL_FETCH_FIRST The driver returns the first row set in the result set.

SQL_FETCH_LAST The driver returns the last complete row set in the result
set.

SQL_FETCH_ABSOLUTE If irow is greater than 0, the driver returns the row set
starting at row irow.

If irow equals 0, the driver returns
SQL_NO_DATA_FOUND, and the cursor is positioned
before the start of the result set.

If irow is less than 0, the driver returns the row set starting
at row n+irow+1, where n is the number of rows in the
result set. For example, if irow is –1, the driver returns the
row set that starts at the last row in the result set. If the
result set size is 10 and irow is –10, the driver returns the
row set that starts at the first row in the result set.
INFORMIX-CLI Function Reference 12-133

SQLExtendedFetch
irow Argument

For the SQL_FETCH_ABSOLUTE fetch type, SQLExtendedFetch returns the
row set that starts at the row number specified by the irow argument.

For the SQL_FETCH_RELATIVE fetch type, SQLExtendedFetch returns the row
set that starts irow rows from the first row in the current row set.

The irow argument is ignored for the SQL_FETCH_NEXT, SQL_FETCH_PRIOR,
SQL_FETCH_FIRST, and SQL_FETCH_LAST fetch types.

rgfRowStatus Argument

In the rgfRowStatus array, SQLExtendedFetch returns any changes in status to
each row since it was last retrieved from the data source. Rows might be
unchanged (SQL_ROW_SUCCESS), updated (SQL_ROW_UPDATED), deleted
(SQL_ROW_DELETED), added (SQL_ROW_ADDED), or unretrievable due to
an error (SQL_ROW_ERROR).

Important: The Informix driver cannot detect changes to data. The number of
elements must equal the number of rows in the row set (as the SQL_ROWSET_SIZE
statement option defines). If the number of rows fetched is less than the number of
elements in the status array, the driver sets remaining status elements to
SQL_ROW_NOROW.

Code Example
The following two examples show how an application could use column-
wise or row-wise binding to bind storage locations to the same result set.

Column-Wise Binding

In the following example, an application declares storage locations for
column-wise bound data and the returned numbers of bytes. Because
column-wise binding is the default, it is unnecessary to request column-wise
binding with SQLSetStmtOption, as in the row-wise binding example.
However, the application does call SQLSetStmtOption to specify the number
of rows in the row set.
12-134 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
The application then executes a SELECT statement to return a result set of the
employee names and birthdays, which is sorted by birthday. It calls
SQLBindCol to bind the columns of data, passing the addresses of storage
locations for both the data and the returned numbers of bytes. Finally, the
application fetches the row-set data with SQLExtendedFetch and prints each
employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN];
SWORD sAge[ROWS];
SDWORD cbName[ROWS], cbAge[ROWS], cbBirthday[ROWS];

UDWORD crow, irow;
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,

 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, sAge, 0, cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,
 cbBirthday);

/* Fetch the rowset data and print each row. */
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,

 rgfRowStatus);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
fprintf(out, "%-*s %-2d %*s",

 NAME_LEN-1, szName[irow], sAge[irow],

 BDAY_LEN-1, szBirthday[irow]);
}

INFORMIX-CLI Function Reference 12-135

SQLExtendedFetch
} else {
break;

}
}

}

Row-Wise Binding

In the following example, an application declares an array of structures to
hold row-wise bound data and the returned numbers of bytes. Using
SQLSetStmtOption, the application requests row-wise binding and passes
the size of the structure to the driver. The driver uses this size to find
successive storage locations in the array of structures and specifies the size of
the row set with SQLSetStmtOption.

The application then executes a SELECT statement to return a result set of the
employee names and birthdays, which is sorted by birthday. It calls
SQLBindCol to bind the columns of data, passing the addresses of storage
locations for both the data and the returned numbers of bytes. Finally, the
application fetches the row-set data with SQLExtendedFetch and prints each
employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

typedef struct {
UCHAR szName[NAME_LEN];
SDWORD cbName;
SWORD sAge;
SDWORD cbAge;
UCHAR szBirthday[BDAY_LEN];
SDWORD cbBirthday;
} EmpTable;

EmpTable rget[ROWS];
UDWORD crow, irow;
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(EmpTable));
SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,
 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, rget[0].szName, NAME_LEN,
 &rget[0].cbName);
12-136 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &rget[0].sAge, 0,
 &rget[0].cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, rget[0].szBirthday, BDAY_LEN,
 &rget[0].cbBirthday);

/* Fetch the rowset data and print each row. */
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,
 rgfRowStatus);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
fprintf(out, "%-*s %-2d %*s",
 NAME_LEN-1, rget[irow].szName, rget[irow].sAge,
 BDAY_LEN-1, rget[irow].szBirthday);

}
} else {

break;
}

}
}

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of result set columns SQLNumResultCols

Setting a statement option SQLSetStmtOption
INFORMIX-CLI Function Reference 12-137

SQLFetch
SQLFetch
SQLFetch fetches a row of data from a result set. The driver returns data for
all columns that were bound to storage locations with SQLBindCol.

Syntax
RETCODE SQLFetch(hstmt)

The SQLFetch function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

Core
12-138 INFORMIX-CLI Programmer’s Manual

SQLFetch
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns was
truncated. String values are right truncated. For
numeric values, the fractional part of number was
truncated (function returns
SQL_SUCCESS_WITH_INFO).

07006 Restricted data-
type attribute
violation

The data value could not be converted to the data
type specified by fCType in SQLBindCol.

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

22002 Indicator value
required but not
supplied

If the column value for any bound column is null,
the INDICATOR_PTR field of the corresponding
descriptor record must not be a null pointer.

22003 Numeric value out
of range

Returning the numeric value (as numeric or string)
for one or more columns would have caused the
whole (as opposed to fractional) number to
truncate.

Returning the binary value for one or more
columns would cause a loss of binary significance.

For more information, see “Converting Data from
SQL to C” on page B-19.

 (1 of 3)
INFORMIX-CLI Function Reference 12-139

SQLFetch
22005 Error in
assignment

A zero-length string was inserted into a string
field, and the string was bound to a numeric data
type, so the string was converted to a zero.

22008 Datetime field
overflow

An SQL_C_TIME, SQL_C_DATE, or
SQL_C_TIMESTAMP value was converted to an
SQL_CHAR data type, and the value was an invalid
date, time, or time stamp, respectively.

22012 Division by zero A value from an arithmetic expression was
returned that resulted in division by zero.

24000 Invalid cursor state The hstmt was in an executed state, but no result set
was associated with the hstmt.

40001 Serialization
failure

The transaction in which the fetch was executed
was terminated to prevent deadlock.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

A column number specified in the binding for one
or more columns was greater than the number of
columns in the result set.

A column number specified in the binding for a
column was 0.

S1008 Operation
canceled

The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

SQLSTATE Error Description

 (2 of 3)
12-140 INFORMIX-CLI Programmer’s Manual

SQLFetch
Usage
SQLFetch positions the cursor on the next row of the result set. Before
SQLFetch is called the first time, the cursor is positioned before the start of
the result set. When the cursor is positioned on the last row of the result set,
SQLFetch returns SQL_NO_DATA_FOUND, and the cursor is positioned after
the end of the result set. An application cannot mix calls to
SQLExtendedFetch and SQLFetch for the same cursor.

If the application called SQLBindCol to bind columns, SQLFetch stores data
in the locations specified by the calls to SQLBindCol. If the application does
not call SQLBindCol to bind any columns, SQLFetch does not return any
data; it moves the cursor to the next row. An application can call SQLGetData
to retrieve data that is not bound to a storage location.

S1010 Function-
sequence error

(DM) The specified hstmt was not in an executed
state. The function was called without first calling
SQLExecDirect, SQLExecute, or a catalog function.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(DM) SQLExtendedFetch was called for an hstmt
after SQLFetch was called and before SQLFreeStmt
was called with the SQL_CLOSE option.

S1C00 Driver not capable The driver or data source does not support the
conversion specified by the combination of the
fCType in SQLBindCol and the SQL data type of the
corresponding column. This error applies only
when the SQL data type of the column was mapped
to a driver-specific SQL data type.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
INFORMIX-CLI Function Reference 12-141

SQLFetch
The driver manages cursors during the fetch operation and places each value
of a bound column into the associated storage. The driver follows these
guidelines when it performs a fetch operation:

■ SQLFetch accesses column data in left-to-right order.

■ After each fetch, pcbValue (specified in SQLBindCol) contains the
number of bytes that are available to return for the column which is
the number of bytes that are available before calling SQLFetch. If the
number of bytes that are available to return cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL.
(If SQL_MAX_LENGTH was specified with SQLSetStmtOption and
the number of bytes that are available to return is greater than
SQL_MAX_LENGTH, pcbValue contains SQL_MAX_LENGTH.)

■ If rgbValue cannot hold the entire result, the driver stores part of the
value and returns SQL_SUCCESS_WITH_INFO. A subsequent call to
SQLError indicates that a truncation occurred. The application can
compare pcbValue to cbValueMax (specified in SQLBindCol) to
determine which column or columns were truncated. If pcbValue is
greater than or equal to cbValueMax, then truncation occurred.

■ If the data value for the column is NULL, the driver stores
SQL_NULL_DATA in pcbValue.

Tip: The SQL_MAX_LENGTH statement option is intended to reduce network traffic
and might not be supported by all drivers. To guarantee that data is truncated, an
application should allocate a buffer of the desired size and specify this size in the
cbValueMax argument.

SQLFetch is valid only after a call that returns a result set.

For information about conversions allowed by SQLBindCol and
SQLGetData, see “Converting Data from SQL to C” on page B-19.

Code Example
See SQLBindCol, SQLColumns, SQLProcedures, and SQLGetData.
12-142 INFORMIX-CLI Programmer’s Manual

SQLFetch
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData

Returning the number of result set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
INFORMIX-CLI Function Reference 12-143

SQLForeignKeys
SQLForeignKeys
SQLForeignKeys can return either of the following items:

■ A list of foreign keys in the specified table (columns in the specified
table that refer to primary keys in other tables)

■ A list of foreign keys in other tables that refer to the primary key in
the specified table

The driver returns each list as a result set on the specified hstmt.

Syntax
RETCODE SQLForeignKeys(hstmt, szPkTableQualifier,
cbPkTableQualifier, szPkTableOwner, cbPkTableOwner,
szPkTableName, cbPkTableName, szFkTableQualifier,
cbFkTableQualifier, szFkTableOwner, cbFkTableOwner,
szFkTableName, cbFkTableName)

The SQLForeignKeys function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szPkTableQualifier Input Primary key table qualifier. If a driver
supports qualifiers for some tables but
not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have qualifiers.

SWORD cbPkTableQualifier Input Length of szPkTableQualifier.

UCHAR FAR * szPkTableOwner Input Primary key owner name. If a driver
supports owners for some tables but not
for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have owners.

SWORD cbPkTableOwner Input Length of szPkTableOwner.

 (1 of 2)

Level 2
12-144 INFORMIX-CLI Programmer’s Manual

SQLForeignKeys
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

UCHAR FAR * szPkTableName Input Primary key table name.

SWORD cbPkTableName Input Length of szPkTableName.

UCHAR FAR * szFkTableQualifier Input Foreign key table qualifier. If a driver
supports qualifiers for some tables but
not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have qualifiers.

SWORD cbFkTableQualifier Input Length of szFkTableQualifier.

UCHAR FAR * szFkTableOwner Input Foreign key owner name. If a driver
supports owners for some tables but not
for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have owners.

SWORD cbFkTableOwner Input Length of szFkTableOwner.

UCHAR FAR * szFkTableName Input Foreign key table name.

SWORD cbFkTableName Input Length of szFkTableName.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 12-145

SQLForeignKeys
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication
link failure

The communication link between the driver and
the data source to which the driver was connected
failed before the function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been called.

A cursor was open on the hstmt but SQLFetch or
SQLExtendedFetch had not been called.

IM001 Driver does not
support this
function

(DM) The driver associated with the hstmt does not
support the function.

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-
specific SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory
allocation failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1009 Invalid argument
value

(DM) The arguments szPkTableName and szFkTa-
bleName were both null pointers.

 (1 of 2)
12-146 INFORMIX-CLI Programmer’s Manual

SQLForeignKeys
Comments
If szPkTableName contains a table name, SQLForeignKeys returns a result set
containing the primary key of the specified table and all of the foreign keys
that refer to it.

If szFkTableName contains a table name, SQLForeignKeys returns a result set
containing all of the foreign keys in the specified table and the primary keys
(in other tables) to which they refer.

If both szPkTableName and szFkTableName contain table names,
SQLForeignKeys returns the foreign keys in the table specified in szFkTa-
bleName that refer to the primary key of the table specified in szPkTableName.
These foreign keys returned by SQLForeignKeys should be one key at most.

S1010 Function sequence
error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name length arguments
exceeded the maximum length value for the corre-
sponding qualifier or name (see “Comments”).

S1C00 Driver not capable A table qualifier was specified and the driver or
data source does not support qualifiers.

A table owner was specified and the driver or data
source does not support owners.

The drive or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Timeout expired The timeout period expired before the data source
returned the result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 12-147

SQLForeignKeys
SQLForeignKeys returns results as a standard result set. If the foreign keys
associated with a primary key are requested, the result set is ordered by
FKTABLE_QUALIFIER, FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If
the primary keys associated with a foreign key are requested, the result set is
ordered by PKTABLE_QUALIFIER, PKTABLE_OWNER, PKTABLE_NAME, and
KEY_SEQ. The following table lists the columns in the result set.

The lengths of VARCHAR columns that the table shows are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

PKTABLE_QUALIFIER Varchar(128) Primary key table qualifier identifier; NULL if not applicable to the
data source. If a driver supports qualifiers for some tables but not
for others, such as when the driver retrieves data from different
DBMSs, it returns an empty string ("") for those tables that do not
have qualifiers.

PKTABLE_OWNER Varchar(128) Primary key table owner identifier; NULL if not applicable to the
data source. If a driver supports owners for some tables but not for
others, such as when the driver retrieves data from different DBMSs,
it returns an empty string ("") for those tables that do not have
owners.

PKTABLE_NAME Varchar(128)
not NULL

Primary key table identifier.

PKCOLUMN_NAME Varchar(128)
not NULL

Primary key column identifier.

FKTABLE_QUALIFIER Varchar(128) Foreign key table qualifier identifier; NULL if not applicable to the
data source. If a driver supports qualifiers for some tables but not
for others, such as when the driver retrieves data from different
DBMSs, it returns an empty string ("") for those tables that do not
have qualifiers.

 (1 of 2)
12-148 INFORMIX-CLI Programmer’s Manual

SQLForeignKeys
FKTABLE_OWNER Varchar(128) Foreign key table owner identifier; NULL if not applicable to the
data source. If a driver supports owners for some tables but not for
others, such as when the driver retrieves data from different DBMSs,
it returns an empty string ("") for those tables that do not have
owners.

FKTABLE_NAME Varchar(128)
not NULL

Foreign key table identifier.

FKCOLUMN_NAME Varchar(128)
not NULL

Foreign key column identifier.

KEY_SEQ Smallint
not NULL

Column sequence number in key (starting with 1).

UPDATE_RULE Smallint Action to be applied to the foreign key when the SQL operation is
UPDATE:

SQL_CASCADE
SQL_RESTRICT
SQL_SET_NULL

NULL if not applicable to the data source.

DELETE_RULE Smallint Action to be applied to the foreign key when the SQL operation is
DELETE:

SQL_CASCADE
SQL_RESTRICT
SQL_SET_NULL

NULL if not applicable to the data source.

FK_NAME Varchar(128) Foreign key identifier. NULL if not applicable to the data source.

PK_NAME Varchar(128) Primary key identifier. NULL if not applicable to the data source.

Column Name Data Type Comments

 (2 of 2)
INFORMIX-CLI Function Reference 12-149

SQLForeignKeys
Code Example
The code example in this section uses four database tables. The following
table lists the database tables and the columns in each database table.

In the SALES_ORDER table, CUSTOMER_ID identifies the customer to whom
the sale was made. It is a foreign key that refers to CUSTOMER_ID in the
CUSTOMER table. In the SALES_ORDER table, EMPLOYEE_ID identifies the
employee who made the sale. It is a foreign key that refers to EMPLOYEE_ID
in the EMPLOYEE table.

In the SALES_LINE table, SALES_ID identifies the sales order with which the
line item is associated. It is a foreign key that refers to SALES_ID in the
SALES_ORDER table.

The code example calls SQLPrimaryKeys to get the primary key of the
SALES_ORDER table. The result set has one row and the significant columns
are as follows.

Database Table Columns

SALES_ORDER SALES_ID
CUSTOMER_ID
EMPLOYEE_ID
TOTAL_PRICE

SALES_LINE SALES_ID
LINE_NUMBER
PART_ID
QUANTITY
PRICE

CUSTOMER CUSTOMER_ID
CUST_NAME
ADDRESS
PHONE

EMPLOYEE EMPLOYEE_ID
NAME
AGE
BIRTHDAY

TABLE_NAME COLUMN_NAME KEY_SEQ

SALES_ORDER SALES_ID 1
12-150 INFORMIX-CLI Programmer’s Manual

SQLForeignKeys
Next, the code example calls SQLForeignKeys to get the foreign keys in other
tables that reference the primary key of the SALES_ORDER table. The result
set has one row and the significant columns are as follows.

Finally, the code example calls SQLForeignKeys to get the foreign keys in the
SALES_ORDER table that refer to the primary keys of other tables. The result
set has two rows and the significant columns are as follows.

PKTABLE_NAME PKCOLUMN_NAME FKTABLE_NAME FKCOLUMN_NAME KEY_SEQ

SALES_ORDER SALES_ID SALES_LINE SALES_ID 1

PKTABLE_NAME PKCOLUMN_NAME FKTABLE_NAME FKCOLUMN_NAME KEY_SEQ

CUSTOMER CUSTOMER_ID SALES_ORDER CUSTOMER_ID 1

EMPLOYEE EMPLOYEE_ID SALES_ORDER EMPLOYEE_ID 1
INFORMIX-CLI Function Reference 12-151

SQLForeignKeys
#define TAB_LEN SQL_MAX_TABLE_NAME_LEN + 1
#define COL_LEN SQL_MAX_COLUMN_NAME_LEN + 1

LPSTRszTable; /* Table to display */

UCHARszPkTable[TAB_LEN]; /* Primary key table name */
UCHARszFkTable[TAB_LEN]; /* Foreign key table name */
UCHARszPkCol[COL_LEN]; /* Primary key column */
UCHARszFkCol[COL_LEN]; /* Foreign key column */

HSTMT hstmt;
SDWORD cbPkTable, cbPkCol, cbFkTable, cbFkCol, cbKeySeq;
SWORD iKeySeq;
RETCODE retcode;

/* Bind the columns that describe the primary and foreign keys. */
/* Ignore the table owner, name, and qualifier for this example. */

SQLBindCol(hstmt, 3, SQL_C_CHAR, szPkTable, TAB_LEN, &cbPkTable);
SQLBindCol(hstmt, 4, SQL_C_CHAR, szPkCol, COL_LEN, &cbPkCol);
SQLBindCol(hstmt, 5, SQL_C_SSHORT, &iKeySeq, TAB_LEN, &cbKeySeq);
SQLBindCol(hstmt, 7, SQL_C_CHAR, szFkTable, TAB_LEN, &cbFkTable);
SQLBindCol(hstmt, 8, SQL_C_CHAR, szFkCol, COL_LEN, &cbFkCol);
strcpy(szTable, "SALES_ORDER");
/* Get the names of the columns in the primary key. */

retcode = SQLPrimaryKeys(hstmt,
 NULL, 0, /* Table qualifier */
 NULL, 0, /* Table owner */
 szTable, SQL_NTS); /* Table name */

while ((retcode == SQL_SUCCESS) || (retcode == SQL SUCCESS_WITH_INFO)) {

/* Fetch and display the result set. This will be a list of the */
/* columns in the primary key of the SALES_ORDER table. */

retcode = SQLFetch(hstmt);
if (retcode == SQL_SUCCESS || retcode != SQL_SUCCESS_WITH_INFO)

fprintf(out, "Column: %s Key Seq: %hd \n", szPkCol, iKeySeq);
}
/* Close the cursor (the hstmt is still allocated). */

SQLFreeStmt(hstmt, SQL_CLOSE);

/* Get all the foreign keys that refer to SALES_ORDER primary key. */

retcode = SQLForeignKeys(hstmt,
 NULL, 0, /* Primary qualifier */
 NULL, 0, /* Primary owner */
 szTable, SQL_NTS, /* Primary table */
 NULL, 0, /* Foreign qualifier */
 NULL, 0, /* Foreign owner */
 NULL, 0); /* Foreign table */

while ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO)) {
12-152 INFORMIX-CLI Programmer’s Manual

SQLForeignKeys
/* Fetch and display the result set. This will be all of the */
/* foreign keys in other tables that refer to the SALES_ORDER */
/* primary key. */

retcode = SQLFetch(hstmt);
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

fprintf(out, "%-s (%-s) <-- %-s (%-s)\n", szPkTable,

 szPkCol, szFkTable, szFkCol);
}
/* Close the cursor (the hstmt is still allocated). */

SQLFreeStmt(hstmt, SQL_CLOSE);

/* Get all the foreign keys in the SALES_ORDER table. */

retcode = SQLForeignKeys(hstmt,
 NULL, 0, /* Primary qualifier */
 NULL, 0, /* Primary owner */
 NULL, 0, /* Primary table */
 NULL, 0, /* Foreign qualifier */
 NULL, 0, /* Foreign owner */
 szTable, SQL_NTS); /* Foreign table */

while ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO)) {

/* Fetch and display the result set. This will be all of the */
/* primary keys in other tables that are referred to by foreign */
/* keys in the SALES_ORDER table. */

retcode = SQLFetch(hstmt);
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

fprintf(out, "%-s (%-s)--> %-s (%-s)\n", szFkTable, szFkCol,
 szPkTable, szPkCol);

}

/* Free the hstmt. */

SQLFreeStmt(hstmt, SQL_DROP);
INFORMIX-CLI Function Reference 12-153

SQLForeignKeys
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch (extension)

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys (extension)

Returning table statistics and indexes SQLStatistics (extension)
12-154 INFORMIX-CLI Programmer’s Manual

SQLFreeConnect
SQLFreeConnect
SQLFreeConnect releases a connection handle and frees all memory
associated with the handle.

Syntax
RETCODE SQLFreeConnect(hdbc)

The SQLFreeConnect function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle

Core
INFORMIX-CLI Function Reference 12-155

SQLFreeConnect
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

Usage
Prior to calling SQLFreeConnect, an application must call SQLDisconnect for
the hdbc. Otherwise, SQLFreeConnect returns SQL_ERROR, and the hdbc
remains valid. SQLDisconnect automatically drops any hstmts open on the
hdbc.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLDisconnect for the hdbc.
12-156 INFORMIX-CLI Programmer’s Manual

SQLFreeConnect
Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

♦

For Information About See

Allocating a statement handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Freeing an environment handle SQLFreeEnv

Freeing a statement handle SQLFreeStmt
INFORMIX-CLI Function Reference 12-157

SQLFreeEnv
SQLFreeEnv
SQLFreeEnv frees the environment handle and releases all memory
associated with the environment handle.

Syntax
RETCODE SQLFreeEnv(henv)

The SQLFreeEnv function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

Type Argument Use Description

HENV henv Input Environment handle

Core
12-158 INFORMIX-CLI Programmer’s Manual

SQLFreeEnv
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

Usage
Before an application calls SQLFreeEnv, it must call SQLFreeConnect for any
hdbc allocated under the henv. Otherwise, SQLFreeEnv returns SQL_ERROR
and the henv and any active hdbc remains valid.

When INFORMIX-CLI processes the SQLFreeEnv function, it checks the
TraceAutoStop value in the initialization files. If the value is 1, the
INFORMIX-CLI disables tracing for all applications and sets the
TraceAutoStop value in the initialization files to 0.

Code Example
See SQLBrowseConnect and SQLConnect.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message returned
by SQLError in the argument szErrorMsg describes
the error and its cause.

S1010 Function-
sequence error

(DM) There was at least one hdbc in an allocated or
connected state. Call SQLDisconnect and
SQLFreeConnect for each hdbc before calling
SQLFreeEnv.
INFORMIX-CLI Function Reference 12-159

SQLFreeEnv
Related Functions

♦

For Information About See

Allocating an environment handle SQLAllocEnv

Freeing a connection handle SQLFreeConnect
12-160 INFORMIX-CLI Programmer’s Manual

SQLFreeStmt
SQLFreeStmt
SQLFreeStmt stops the processing that is associated with a specific hstmt,
closes any open cursors that are associated with the hstmt, discards pending
results, and, optionally, frees all resources associated with the statement
handle.

Syntax
RETCODE SQLFreeStmt(hstmt, fOption)

The SQLFreeStmt function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input One of the following options:

■ SQL_CLOSE: Close the cursor associated with hstmt
(if one is defined) and discard all pending results.
The application can reopen this cursor later by
executing a SELECT statement again with the same
or different parameter values. If no cursor is open,
this option has no effect for the application.

■ SQL_DROP: Release the hstmt, free all resources
associated with it, close the cursor (if one is open),
and discard all pending rows. This option termi-
nates all access to the hstmt. The hstmt must be
reallocated to be reused.

■ SQL_UNBIND: Release all column buffers bound by
SQLBindCol for the given hstmt.

■ SQL_RESET_PARAMS: Release all parameter buffers
set by SQLBindParameter for the given hstmt.

Core
INFORMIX-CLI Function Reference 12-161

SQLFreeStmt
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1092 Option type out of
range

(DM) The value specified for the argument fOption
was not:

SQL_CLOSE
SQL_DROP
SQL_UNBIND
SQL_RESET_PARAMS
12-162 INFORMIX-CLI Programmer’s Manual

SQLFreeStmt
Usage
An application can call SQLFreeStmt to terminate processing of a SELECT
statement with or without canceling the statement handle.

The SQL_DROP option frees all resources that the SQLAllocStmt function
allocates.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

♦

For Information About See

Allocating a statement handle SQLAllocStmt

Canceling statement processing SQLCancel

Setting a cursor name SQLSetCursorName
INFORMIX-CLI Function Reference 12-163

SQLGetConnectOption
SQLGetConnectOption
SQLGetConnectOption returns the current setting of a connection option.

Syntax
RETCODE SQLGetConnectOption(hdbc, fOption, pvParam)

The SQLGetConnectOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depending on the
value of fOption, a 32-bit integer value or a pointer to
a null-terminated character string will be returned
in pvParam.

Level 1
12-164 INFORMIX-CLI Programmer’s Manual

SQLGetConnectOption
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) An fOption value was specified that required
an open connection.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) SQLBrowseConnect was called for the hdbc
and returned SQL_NEED_DATA. This function was
called before SQLBrowseConnect returned
SQL_SUCCESS_WITH_INFO or SQL_SUCCESS.

S1092 Option type out of
range

(DM) The value specified for the argument fOption
was in the block of numbers reserved for ODBC
connection and statement options but was not
valid for the version of ODBC supported by the
driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.
INFORMIX-CLI Function Reference 12-165

SQLGetConnectOption
Usage
For a list of options, see SQLSetConnectOption.

Important: When fOption specifies an option that returns a string, pvParam must
be a pointer to storage for the string. The maximum length of the string is
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null-termination
byte).

Depending on the option, an application does not need to establish a
connection prior to calling SQLGetConnectOption. However, if
SQLGetConnectOption is called and the specified option does not have a
default and has not been set by a prior call to SQLSetConnectOption,
SQLGetConnectOption returns SQL_NO_DATA_FOUND.

Although an application can set statement options using
SQLSetConnectOption, an application cannot use SQLGetConnectOption to
retrieve statement-option values; it must call SQLGetStmtOption to retrieve
the settings of statement options.

Related Functions

♦

For Information About See

Returning the setting of a statement option SQLGetStmtOption

Setting a connection option SQLSetConnectOption

Setting a statement option SQLSetStmtOption
12-166 INFORMIX-CLI Programmer’s Manual

SQLGetCursorName
SQLGetCursorName
SQLGetCursorName returns the cursor name associated with a specified
hstmt.

Syntax
RETCODE SQLGetCursorName(hstmt, szCursor, cbCursorMax,
pcbCursor)

The SQLGetCursorName function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Output Pointer to storage for the cursor name.

SWORD cbCursorMax Input Length of szCursor.

SWORD FAR * pcbCursor Output Total number of bytes (excluding the null
termination byte) available to return in
szCursor. If the number of bytes available to
return is greater than or equal to
cbCursorMax, the cursor name in szCursor
is truncated to cbCursorMax – 1 bytes.

Core
INFORMIX-CLI Function Reference 12-167

SQLGetCursorName
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szCursor was not large enough to return
the entire cursor name, so the cursor name was
truncated. The argument pcbCursor contains the
length of the untruncated cursor name (function
returns SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate sufficient memory to
execute or complete the function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1015 No cursor name
available

(DM) There was no open cursor on the hstmt, and
no cursor name had been set with
SQLSetCursorName.

S1090 Invalid string or
buffer length

(DM) The value specified in the argument
cbCursorMax was less than 0.
12-168 INFORMIX-CLI Programmer’s Manual

SQLGetCursorName
Usage
The only INFORMIX-CLI SQL statements that use a cursor name are
positioned update and delete (for example, UPDATE table-name...WHERE
CURRENT OF cursor-name). If the application does not call
SQLSetCursorName to define a cursor name when a SELECT statement
executes, the driver generates a name that begins with the letters SQL_CUR
and does not exceed 18 characters.

SQLGetCursorName returns the name of a cursor regardless of whether the
name was created explicitly or implicitly.

A cursor name that is set either explicitly or implicitly remains set until the
hstmt with which it is associated is dropped, using SQLFreeStmt with the
SQL_DROP option.

Related Functions

♦

For Information About See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Preparing a statement for execution SQLPrepare

Setting a cursor name SQLSetCursorName

Setting cursor scrolling options SQLSetScrollOptions
INFORMIX-CLI Function Reference 12-169

SQLGetData
SQLGetData
SQLGetData returns result data for a single unbound column in the current
row. The application must call SQLFetch or SQLExtendedFetch to position
the cursor on a row of data before it calls SQLGetData. It is possible to use
SQLBindCol for some columns and use SQLGetData for others within the
same row. This function can be used to retrieve character or binary data
values in parts from a column with a character, binary, or data-source-specific
data type (for example, data from SQL_LONGVARBINARY or
SQL_LONGVARCHAR columns).

Syntax
RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax,
pcbValue)

The SQLGetData function accepts the following arguments.

Level 1

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered sequentially left to right,
starting at 1.

SWORD fCType Input The result data’s INFORMIX-CLI C data type. The possible values
are any of the fCType values listed in Appendix B, “Data Types.”
as well as SQL_C_DEFAULT. For more information about data
types and conversions, see Appendix B.

PTR rgbValue Output Pointer to storage for the data.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For character data,
rgbValue must also include space for the null-termination byte.

For character and binary C data, cbValueMax determines the
amount of data that can be received in a single call to SQLGetData.
For all other types of C data, cbValueMax is ignored; the driver
assumes that the size of rgbValue is the size of the C data type
specified with fCType and returns the entire data value. For more
information about length, see “Precision, Scale, Length, and
Display Size” on page B-5.

 (1 of 2)
12-170 INFORMIX-CLI Programmer’s Manual

SQLGetData
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

SDWORD FAR * pcbValue Output SQL_NULL_DATA, the total number of bytes (excluding the null-
termination byte for character data) available to return in rgbValue
prior to the current call to SQLGetData, or SQL_NO_TOTAL if the
number of available bytes cannot be determined.

For character data, if pcbValue is SQL_NO_TOTAL or is greater than
or equal to cbValueMax, the data in rgbValue is truncated to cbVal-
ueMax – 1 bytes and is null-terminated by the driver.

For binary data, if pcbValue is SQL_NO_TOTAL or is greater than
cbValueMax, the data in rgbValue is truncated to cbValueMax bytes.

For all other data types, the value of cbValueMax is ignored, and
the driver assumes the size of rgbValue is the size of the C data
type specified with fCType.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 12-171

SQLGetData
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated All the data for the specified column, icol, could not be retrieved in a
single call to the function. The argument pcbValue contains the length of
the data that remains in the specified column prior to the current call to
SQLGetData (function returns SQL_SUCCESS_WITH_INFO). For more
information on using multiple calls to SQLGetData for a single column,
see “Usage” on page 12-174.

07006 Restricted data-
type attribute
violation

The data value cannot be converted to the C data type specified by the
argument fCType.

08S01 Communication-
link failure

The communication link between the driver and the data source failed
before the function completed.

22002 Indicator value
required but not
supplied

If the column value is null, then StrLen_or_Ind must not be a null pointer.

22003 Numeric value out
of range

Returning the numeric value (as numeric or string) for the column would
cause the whole (as opposed to fractional) number to truncate.

Returning the binary value for the column would have caused a loss of
binary significance.

22005 Error in
assignment

The data for the column was incompatible with the data type in which it
was to be converted. For more information, see Appendix B, “Data
Types.”

22008 Datetime-field
overflow

The data for the column was not a valid date, time, or time-stamp value.
For more information, see Appendix B.

22012 Division by zero A value from an arithmetic expression was returned that resulted in a
division by zero.

 (1 of 3)
12-172 INFORMIX-CLI Programmer’s Manual

SQLGetData
24000 Invalid cursor state (DM) The hstmt was in an executed state, but no result set was associated
with the hstmt.

(DM) A cursor was open on the hstmt, but SQLFetch or SQLExtendedFetch
was not called.

A cursor was open on the hstmt and SQLFetch or SQLExtendedFetch had
been called, but the cursor was positioned before the start of the result set
or after the end of the result set.

S1000 General error An error occurred for which no specific SQLSTATE existed and for which
no implementation-specific SQLSTATE was defined. The error message
that SQLError returns in the argument szErrorMsg describes the error and
its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to support execution or
completion of the function.

S1002 Invalid column
number

The value specified for the argument icol was 0, and SQLFetch was used
to fetch the data.

The value specified for the argument icol was 0, and the
SQL_USE_BOOKMARKS statement option was set to SQL_UB_OFF.

The specified column was greater than the number of result columns.

The specified column was bound through a call to SQLBindCol. This
description does not apply to drivers that return the SQL_GD_BOUND
bitmask for the SQL_GETDATA_EXTENSIONS option in SQLGetInfo.

The specified column was at or before the last bound column specified
through SQLBindCol. This description does not apply to drivers that
return the SQL_GD_ANY_COLUMN bitmask for the
SQL_GETDATA_EXTENSIONS option in SQLGetInfo.

The application already called SQLGetData for the current row. The
column specified in the current call was before the column specified in the
preceding call. This description does not apply to drivers that return the
SQL_GD_ANY_ORDER bitmask for the SQL_GETDATA_EXTENSIONS option
in SQLGetInfo.

S1003 Program type out
of range

(DM) The argument fCType was not a valid data type or SQL_C_DEFAULT.

S1008 Operation canceled The function was called, but before it completed execution, SQLCancel
was called on the hstmt from a different thread in a multithreaded
application.

SQLSTATE Error Description

 (2 of 3)
INFORMIX-CLI Function Reference 12-173

SQLGetData
Usage
With each call, the driver sets pcbValue to the number of bytes that are
available in the result column before the current call to SQLGetData. If
SQLSetStmtOption sets SQL_MAX_LENGTH and the total number of bytes
that are available on the first call is greater than SQL_MAX_LENGTH, the
available number of bytes is set to SQL_MAX_LENGTH.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null pointer.

S1010 Function-sequence
error

(DM) The specified hstmt was not in an executed state. The function was
called without first calling SQLExecDirect, SQLExecute, or a catalog
function.

(DM) SQLExecute or SQLExecDirect was called for the hstmt and returned
SQL_NEED_DATA. This function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument cbValueMax was less than 0.

S1109 Invalid cursor
position

The cursor was positioned (by SQLExtendedFetch) on a row for which the
value in the rgfRowStatus array in SQLExtendedFetch was
SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not support the use of SQLGetData with
multiple rows in SQLExtendedFetch. This description does not apply to
drivers that return the SQL_GD_BLOCK bitmask for the
SQL_GETDATA_EXTENSIONS option in SQLGetInfo.

The driver or data source does not support the conversion specified by the
combination of the fCType argument and the SQL data type of the corre-
sponding column. This error applies only when the SQL data type of the
column was mapped to a driver-specific SQL data type.

The argument icol was 0, and the driver does not support bookmarks.

S1T00 Time-out expired The time-out period expired before the data source returned the result set.
The time-out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
12-174 INFORMIX-CLI Programmer’s Manual

SQLGetData
The SQL_MAX_LENGTH statement option is intended to reduce network
traffic and might not be supported by all drivers. To guarantee that data is
truncated, an application should allocate a buffer of the desired size and
specify this size in the cbValueMax argument. If the total number of bytes that
are in the result column cannot be determined in advance, the driver sets
pcbValue to SQL_NO_TOTAL. If the data value for the column is null, the
driver stores SQL_NULL_DATA in pcbValue.

SQLGetData can convert data to a different data type. The result and success
of the conversion is determined by the rules for assignment specified in
“Converting Data from SQL to C Data Types” in Appendix D, “Data Types.”

If the application requires more than one call to SQLGetData to retrieve data
from a single column with a character, binary, or data source-specific data
type, the driver returns SQL_SUCCESS_WITH_INFO. A subsequent call to
SQLError returns SQLSTATE 01004 (Data truncated). The application can then
use the same column number to retrieve subsequent parts of the data until
SQLGetData returns SQL_SUCCESS, indicating that all the column data was
retrieved. SQLGetData returns SQL_NO_DATA_FOUND when it calls for a
column after all the data is retrieved and before data is retrieved for a subse-
quent column. The application can ignore excess data by proceeding to the
next result column.

Important: An application can use SQLGetData to retrieve data from a column in
parts only when it retrieves character C data from a column with a character, binary,
or data-source-specific data type or when it retrieves binary C data from a column
with a character, binary, or data-source-specific data type. If SQLGetData is called
more than once in a row for a column under any other conditions, it returns
SQL_NO_DATA_FOUND for all calls after the first call.

For maximum interoperability, applications should call SQLGetData only for
unbound columns with numbers greater than the number of the last bound
column. Within a single row of data, the column number in each call to
SQLGetData should be greater than or equal to the column number in the
previous call (that is, data should be retrieved in increasing order of column
number). As extended functionality, drivers can return data through
SQLGetData from bound columns, from columns before the last bound
column, or from columns in any order. To determine whether a driver
supports these extensions, an application calls SQLGetInfo with the
SQL_GETDATA_EXTENSIONS option.
INFORMIX-CLI Function Reference 12-175

SQLGetData
Furthermore, applications that use SQLExtendedFetch to retrieve data can
call SQLGetData only when the row set size is 1.

Code Example
In the following example, an application executes a SELECT statement to
return a result set of the employee names, ages, and birthdays sorted by
birthday, age, and name. For each row of data, it calls SQLFetch to position
the cursor to the next row. It calls SQLGetData to retrieve the fetched data; the
storage locations for the data and the returned number of bytes are specified
in the call to SQLGetData. Finally, it prints each employee’s name, age, and
birthday.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,

 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
while (TRUE) {

retcode = SQLFetch(hstmt);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

/* Get data for columns 1, 2, and 3 */
/* Print the row of data */

SQLGetData(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLGetData(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLGetData(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,

 &cbBirthday);

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName, sAge,

 BDAY_LEN-1, szBirthday);
} else {

break;
}

}
}

12-176 INFORMIX-CLI Programmer’s Manual

SQLGetData
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Sending parameter data at execution time SQLPutData
INFORMIX-CLI Function Reference 12-177

SQLGetFunctions
SQLGetFunctions
SQLGetFunctions returns information about whether the INFORMIX-CLI
driver supports a specific function.

Syntax
RETCODE SQLGetFunctions(hdbc, fFunction, pfExists)

The SQLGetFunctions function accepts the following arguments.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fFunction Input SQL_API_ALL_FUNCTIONS or a #define value
that identifies the ODBC function of interest.
For a list of #define values that identify ODBC
functions, see “Usage” on page 12-180.

UWORD FAR * pfExists Output If fFunction is SQL_API_ALL_FUNCTIONS,
pfExists points to a UWORD array with 100
elements. The array is indexed by #define
values used by fFunction to identify each
ODBC function; some elements of the array are
unused and are reserved for future use. An
element is TRUE if it identifies an ODBC
function supported by the driver. It is FALSE if
it identifies an ODBC function not supported
by the driver or does not identify an ODBC
function.

The fFunction value
SQL_API_ALL_FUNCTIONS was added in
ODBC 2.0.

If fFunction identifies a single ODBC function,
pfExists points to a single UWORD. pfExists is
TRUE if the specified function is supported by
the driver; otherwise, it is FALSE.

Level 1
12-178 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) SQLGetFunctions was called before
SQLConnect, SQLBrowseConnect, or
SQLDriverConnect.

(DM) SQLBrowseConnect was called for the hdbc
and returned SQL_NEED_DATA. This function was
called before SQLBrowseConnect returned
SQL_SUCCESS_WITH_INFO or SQL_SUCCESS.

S1095 Function type out
of range

(DM) An invalid fFunction value was specified.
INFORMIX-CLI Function Reference 12-179

SQLGetFunctions
Usage
The following list identifies valid values for fFunction for ODBC core
functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLALLOCCONNECT

■ SQL_API_SQLALLOCENV

■ SQL_API_SQLALLOCSTMT

■ SQL_API_SQLBINDCOL

■ SQL_API_SQLCANCEL

■ SQL_API_SQLCOLATTRIBUTES

■ SQL_API_SQLCONNECT

■ SQL_API_SQLDESCRIBECOL

■ SQL_API_SQLDISCONNECT

■ SQL_API_SQLERROR

■ SQL_API_SQLEXECDIRECT

■ SQL_API_SQLEXECUTE

■ SQL_API_SQLFETCH

■ SQL_API_SQLFREECONNECT

■ SQL_API_SQLFREEENV

■ SQL_API_SQLFREESTMT

■ SQL_API_SQLGETCURSORNAME

■ SQL_API_SQLNUMRESULTCOLS

■ SQL_API_SQLPREPARE

■ SQL_API_SQLROWCOUNT

■ SQL_API_SQLSETCURSORNAME

■ SQL_API_SQLSETPARAM

■ SQL_API_SQLTRANSACT

The following list identifies valid values for fFunction for ODBC extension
Level 1 functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLBINDPARAMETER

■ SQL_API_SQLCOLUMNS

■ SQL_API_SQLDRIVERCONNECT
12-180 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
■ SQL_API_SQLGETCONNECTOPTION

■ SQL_API_SQLGETDATA

■ SQL_API_SQLGETFUNCTIONS

■ SQL_API_SQLGETINFO

■ SQL_API_SQLGETSTMTOPTION

■ SQL_API_SQLGETTYPEINFO

■ SQL_API_SQLPARAMDATA

■ SQL_API_SQLPUTDATA

■ SQL_API_SQLSETCONNECTOPTION

■ SQL_API_SQLSETSTMTOPTION

■ SQL_API_SQLSPECIALCOLUMNS

■ SQL_API_SQLSTATISTICS

■ SQL_API_SQLTABLES

The following list identifies valid values for fFunction for ODBC extension
Level 2 functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLBROWSECONNECT

■ SQL_API_SQLCOLUMNPRIVILEGES

■ SQL_API_SQLDATASOURCES

■ SQL_API_SQLDESCRIBEPARAM

■ SQL_API_SQLDRIVERS

■ SQL_API_SQLEXTENDEDFETCH

■ SQL_API_SQLFOREIGNKEYS

■ SQL_API_SQLMORERESULTS

■ SQL_API_SQLNATIVESQL

■ SQL_API_SQLNUMPARAMS

■ SQL_API_SQLPRIMARYKEYS

■ SQL_API_SQLPROCEDURECOLUMNS

■ SQL_API_SQLPROCEDURES

■ SQL_API_SQLSETSCROLLOPTIONS

■ SQL_API_SQLTABLEPRIVILEGES
INFORMIX-CLI Function Reference 12-181

SQLGetFunctions
Code Example
The following examples show how an application uses SQLGetFunctions to
determine whether a driver supports SQLTables, SQLColumns, and
SQLStatistics. If the driver does not support these functions, the application
disconnects from the driver. The first example calls SQLGetFunctions once
for each function.

UWORD TablesExists, ColumnsExists, StatisticsExists;

SQLGetFunctions(hdbc, SQL_API_SQLTABLES, &TablesExists);
SQLGetFunctions(hdbc, SQL_API_SQLCOLUMNS, &ColumnsExists);
SQLGetFunctions(hdbc, SQL_API_SQLSTATISTICS,
&StatisticsExists);

if (TablesExists && ColumnsExists && StatisticsExists) {

/* Continue with application */

}

SQLDisconnect(hdbc);

The second example calls SQLGetFunctions once and passes it an array in
which SQLGetFunctions returns information about all INFORMIX-CLI
functions.

UWORD fExists[100];

SQLGetFunctions(hdbc, SQL_API_ALL_FUNCTIONS, fExists);

if (fExists[SQL_API_SQLTABLES] &&
 fExists[SQL_API_SQLCOLUMNS] &&
 fExists[SQL_API_SQLSTATISTICS]) {

/* Continue with application */

}

SQLDisconnect(hdbc);
12-182 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
Related Functions

♦

For Information About See

Returning the setting of a connection option SQLGetConnectOption

Returning information about a driver or data source SQLGetInfo

Returning the setting of a statement option SQLGetStmtOption
INFORMIX-CLI Function Reference 12-183

12-184 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQLGetInfo
SQLGetInfo returns general information about the driver and data source
associated with an hdbc.

Syntax
RETCODE SQLGetInfo(hdbc, fInfoType, rgbInfoValue,
cbInfoValueMax, pcbInfoValue)

The SQLGetInfo function accepts the following arguments.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fInfoType Input Type of information.

The fInfoType argument must be a value
that represents the type of interest. For
more information, see “Usage” on
page 12-187.

(1 of 2)

Level 1

SQLGetInfo
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

PTR rgbInfoValue Output Pointer to storage for the information.
Depending on the fInfoType requested,
the information returned will be one of
the following: a null-terminated
character string, a 16-bit integer value, a
32-bit flag, or a 32-bit binary value.

SWORD cbInfoValueMax Input Maximum length of the rgbInfoValue
buffer.

SWORD FAR * pcbInfoValue Output The total number of bytes (excluding the
null-termination byte for character data)
available to return in rgbInfoValue.

For character data, if the number of
bytes available to return is greater than
or equal to cbInfoValueMax, the infor-
mation in rgbInfoValue is truncated to
cbInfoValueMax – 1 bytes and is null-
terminated by the driver.

For all other types of data, the value of
cbValueMax is ignored, and the driver
assumes the size of rgbValue is 32 bits.

Type Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-185

SQLGetInfo
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbInfoValue was not large enough to
return all of the requested information, so the
information was truncated. The argument
pcbInfoValue contains the length of the requested
information in its untruncated form (function
returns SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

(DM) The type of information requested in
fInfoType requires an open connection. Of the infor-
mation types reserved by ODBC, only
SQL_ODBC_VER can be returned without an open
connection.

22003 Numeric value out
of range

Returning the requested information would cause
a loss of numeric or binary significance.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1009 Invalid argument
value

(DM) The fInfoType was SQL_DRIVER_HSTMT, and
the value pointed to by rgbInfoValue was not a
valid statement handle.

(1 of 2)
12-186 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Usage
The format of the information returned in rgbInfoValue depends on the
fInfoType requested. SQLGetInfo returns information in one of the following
five formats:

■ A null-terminated character string

■ A 16-bit integer value

■ A 32-bit bitmask

■ A 32-bit integer value

■ A 32-bit binary value

The format for each of the following information types is noted in the
description. The application must cast the value returned in rgbInfoValue
accordingly. For an example of how an application could retrieve data from
a 32-bit bitmask, see “Code Example” on page 12-216.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbInfoValueMax was less than 0.

S1096 Information type
out of range

(DM) The value specified for the argument fOption
was in the block of numbers reserved for ODBC
information types but was not valid for the version
of ODBC that the driver supports.

S1C00 Driver not capable The driver does not support the value specified for
the argument fOption.

S1T00 Time-out expired The time-out period expired before the data source
returned the requested information. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-187

SQLGetInfo
A driver must return a value for each information type defined in the
following tables. If an information type does not apply to the driver or data
source, the driver returns one of the following values.

For example, if a data source does not support procedures, SQLGetInfo
returns the following values for the fInfoType values, which are related to
procedures.

SQLGetInfo returns SQLSTATE S1096 (Invalid argument value) for a value of
fInfoType that the INFORMIX-CLI driver does not define.

Format of rgbInfoValue Returned Value

Character string (“Y” or “N”) N

Character string (not “Y” or “N”) Empty string

16-bit integer 0

32-bit bitmask or 32-bit binary value 0L

fInfoType Returned Value

SQL_PROCEDURES N

SQL_ACCESSIBLE_PROCEDURES N

SQL_MAX_PROCEDURE_NAME_LEN 0

SQL_PROCEDURE_TERM Empty string
12-188 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Information Types

This section lists the information types supported by SQLGetInfo. Infor-
mation types are grouped categorically and listed alphabetically.

Driver Information

The following values of fInfoType return information about the INFORMIX-CLI
driver, such as the number of active statements, the data source name, and
the API conformance levels:

■ SQL_ACTIVE_CONNECTIONS

■ SQL_ACTIVE_STATEMENTS

■ SQL_DATA_SOURCE_NAME

■ SQL_DRIVER_HDBC

■ SQL_DRIVER_HENV

■ SQL_DRIVER_HLIB

■ SQL_DRIVER_HSTMT

■ SQL_DRIVER_NAME

■ SQL_DRIVER_ODBC_VER

■ SQL_DRIVER_VER

■ SQL_FETCH_DIRECTION

■ SQL_FILE_USAGE

■ SQL_GETDATA_EXTENSIONS

■ SQL_LOCK_TYPES

■ SQL_ODBC_API_CONFORMANCE

■ SQL_ODBC_SAG_CLI_CONFORMANCE

■ SQL_ODBC_VER

■ SQL_POS_OPERATIONS

■ SQL_ROW_UPDATES

■ SQL_SEARCH_PATTERN_ESCAPE

■ SQL_SERVER_NAME
INFORMIX-CLI Function Reference 12-189

SQLGetInfo
DBMS Product Information

The following values of fInfoType return information about the Informix
DBMS product, such as the DBMS name and version:

■ SQL_DATABASE_NAME

■ SQL_DBMS_NAME

■ SQL_DBMS_VER

Data Source Information

The following values of fInfoType return information about the data source,
such as cursor characteristics and transaction capabilities:

■ SQL_ACCESSIBLE_PROCEDURES

■ SQL_ACCESSIBLE_TABLES

■ SQL_CONCAT_NULL_BEHAVIOR

■ SQL_CURSOR_COMMIT_BEHAVIOR

■ SQL_CURSOR_ROLLBACK_BEHAVIOR

■ SQL_DATA_SOURCE_READ_ONLY

■ SQL_DEFAULT_TXN_ISOLATION

■ SQL_MULT_RESULT_SETS

■ SQL_MULTIPLE_ACTIVE_TXN

■ SQL_NEED_LONG_DATA_LEN

■ SQL_NULL_COLLATION

■ SQL_OWNER_TERM

■ SQL_PROCEDURE_TERM

■ SQL_QUALIFIER_TERM

■ SQL_SCROLL_CONCURRENCY

■ SQL_SCROLL_OPTIONS

■ SQL_STATIC_SENSITIVITY

■ SQL_TABLE_TERM

■ SQL_TXN_CAPABLE

■ SQL_TXN_ISOLATION_OPTION

■ SQL_USER_NAME
12-190 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Supported SQL

The following values of fInfoType return information about the SQL
statements that the data source supports. These information types do not
exhaustively describe ODBC SQL grammar, but they describe those parts of
the grammar for which data sources commonly offer different levels of
support.

Applications should determine the general level of supported grammar from
the SQL_ODBC_SQL_CONFORMANCE information type and use the other
information types to determine variations from the stated conformance level:

■ SQL_ALTER_TABLE

■ SQL_COLUMN_ALIAS

■ SQL_CORRELATION_NAME

■ SQL_EXPRESSIONS_IN_ORDERBY

■ SQL_GROUP_BY

■ SQL_IDENTIFIER_CASE

■ SQL_IDENTIFIER_QUOTE_CHAR

■ SQL_KEYWORDS

■ SQL_LIKE_ESCAPE_CLAUSE

■ SQL_NON_NULLABLE_COLUMNS

■ SQL_ODBC_SQL_CONFORMANCE

■ SQL_ODBC_SQL_OPT_IEF

■ SQL_ORDER_BY_COLUMNS_IN_SELECT

■ SQL_OUTER_JOINS

■ SQL_OWNER_USAGE

■ SQL_POSITIONED_STATEMENTS

■ SQL_PROCEDURES

■ SQL_QUALIFIER_LOCATION

■ SQL_QUALIFIER_NAME_SEPARATOR

■ SQL_QUALIFIER_USAGE

■ SQL_QUOTED_IDENTIFIER_CASE

■ SQL_SPECIAL_CHARACTERS

■ SQL_SUBQUERIES

■ SQL_UNION
INFORMIX-CLI Function Reference 12-191

SQLGetInfo
SQL Limits

The following values of fInfoType return information about the limits applied
to identifiers and clauses in SQL statements, such as the maximum lengths of
identifiers and the maximum number of columns in a SELECT list. The driver
or the data source might impose limitations:

■ SQL_MAX_BINARY_LITERAL_LEN

■ SQL_MAX_CHAR_LITERAL_LEN

■ SQL_MAX_COLUMN_NAME_LEN

■ SQL_MAX_COLUMNS_IN_GROUP_BY

■ SQL_MAX_COLUMNS_IN_ORDER_BY

■ SQL_MAX_COLUMNS_IN_INDEX

■ SQL_MAX_COLUMNS_IN_SELECT

■ SQL_MAX_COLUMNS_IN_TABLE

■ SQL_MAX_CURSOR_NAME_LEN

■ SQL_MAX_INDEX_SIZE

■ SQL_MAX_OWNER_NAME_LEN

■ SQL_MAX_PROCEDURE_NAME_LEN

■ SQL_MAX_QUALIFIER_NAME_LEN

■ SQL_MAX_ROW_SIZE

■ SQL_MAX_ROW_SIZE_INCLUDES_LONG

■ SQL_MAX_STATEMENT_LEN

■ SQL_MAX_TABLE_NAME_LEN

■ SQL_MAX_TABLES_IN_SELECT

■ SQL_MAX_USER_NAME_LEN
12-192 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Scalar Function Information

The following values of fInfoType return information about the scalar
functions that the data source and the driver support. For more information
on scalar functions, refer to the Informix Guide to SQL: Syntax.

■ SQL_NUMERIC_FUNCTIONS

■ SQL_STRING_FUNCTIONS

■ SQL_SYSTEM_FUNCTIONS

■ SQL_TIMEDATE_ADD_INTERVALS

■ SQL_TIMEDATE_DIFF_INTERVALS

■ SQL_TIMEDATE_FUNCTIONS

Information-Type Descriptions

The following table lists each information type alphabetically with its
description.

InfoType Returns

SQL_ACCESSIBLE_PROCEDURES A character string:

■ “Y” if the user can execute all procedures that SQLProcedures
returns

■ “N” if procedures might be returned that the user cannot
execute.

SQL_ACCESSIBLE_TABLES A character string:

■ “Y” if the user is guaranteed SELECT privileges to all tables
returned by SQLTables

■ “N” if tables might be returned that the user cannot access.

SQL_ACTIVE_CONNECTIONS A 16-bit integer value that specifies the maximum number of
active connection handles that the driver can support. This value
can reflect a limitation that either the driver or the data source
imposes. If no limit is specified or the limit is unknown, this
value is set to 0.

(1 of 24)
INFORMIX-CLI Function Reference 12-193

SQLGetInfo
SQL_ACTIVE_STATEMENTS A 16-bit integer value that specifies the maximum number of
active hstmts that the driver can support for an hdbc. This value
can reflect a limitation that either the driver or the data source
imposes. If no limit is specified or the limit is unknown, this
value is set to 0.

SQL_ALTER_TABLE A 32-bit bitmask that enumerates the clauses in the ALTER TABLE
statement supported by the data source.

The following bitmask is used to determine which clauses are
supported:

SQL_AT_ADD_COLUMN
SQL_AT_DROP_COLUMN

SQL_COLUMN_ALIAS A character string:

■ “Y” if the data source supports column aliases; otherwise

■ “N” is returned.

SQL_CONCAT_NULL_BEHAVIOR A 16-bit integer value that indicates how the data source handles
the concatenation of null-valued character-data-type columns
with non-null-valued character-data-type columns:

■ SQL_CB_NULL = Result is null valued.

■ SQL_CB_NON_NULL = Result is concatenation of non-null-
valued column or columns.

InfoType Returns

(2 of 24)
12-194 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_CONVERT_BIGINT
SQL_CONVERT_BINARY
SQL_CONVERT_BIT
SQL_CONVERT_CHAR
SQL_CONVERT_DATE
SQL_CONVERT_DECIMAL
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT
SQL_CONVERT_INTEGER
SQL_CONVERT_LONGVARBINARY
SQL_CONVERT_LONGVARCHAR
SQL_CONVERT_NUMERIC
SQL_CONVERT_REAL
SQL_CONVERT_SMALLINT
SQL_CONVERT_TIME
SQL_CONVERT_TIMESTAMP
SQL_CONVERT_TINYINT
SQL_CONVERT_VARBINARY
SQL_CONVERT_VARCHAR

A 32-bit bitmask. The bitmask indicates the conversions
supported by the data source with the CONVERT scalar function
for data of the type named in the fInfoType. If the bitmask equals
0, the data source does not support any conversions for data of
the named type, including conversion to the same data type.

For example, to find out if a data source supports the conversion
of SQL_INTEGER data to the SQL_BIGINT data type, an appli-
cation calls SQLGetInfo with the fInfoType of
SQL_CONVERT_INTEGER. The application ANDs the returned
bitmask with SQL_CVT_BIGINT. If the resulting value is not 0, the
conversion is supported.

The following bitmasks are used to determine which conver-
sions are supported:

SQL_CVT_BIGINT
SQL_CVT_BINARY
SQL_CVT_BIT
SQL_CVT_CHAR
SQL_CVT_DATE
SQL_CVT_DECIMAL
SQL_CVT_DOUBLE
SQL_CVT_FLOAT
SQL_CVT_INTEGER
SQL_CVT_LONGVARBINARY
SQL_CVT_LONGVARCHAR
SQL_CVT_NUMERIC
SQL_CVT_REAL
SQL_CVT_SMALLINT
SQL_CVT_TIME
SQL_CVT_TIMESTAMP
SQL_CVT_TINYINT
SQL_CVT_VARBINARY
SQL_CVT_VARCHAR

SQL_CONVERT_FUNCTIONS A 32-bit bitmask that enumerates the scalar-conversion
functions that the driver and associated data source support.

The SQL_FN_CVT_CONVERT bitmask is used to determine which
conversion functions are supported.

InfoType Returns

(3 of 24)
INFORMIX-CLI Function Reference 12-195

SQLGetInfo
SQL_CORRELATION_NAME A 16-bit integer that indicates if table correlation names are
supported:

■ SQL_CN_NONE = Correlation names are not supported.

■ SQL_CN_DIFFERENT = Correlation names are supported, but
they must differ from the names of the tables that they
represent.

■ SQL_CN_ANY = Correlation names are supported and can be
any valid user-defined name.

SQL_CURSOR_COMMIT_BEHAVIOR A 16-bit integer value that indicates how a COMMIT operation
affects cursors and prepared statements in the data source:

■ SQL_CB_DELETE = Close cursors and delete prepared state-
ments. To use the cursor again, the application must re-
prepare and re-execute the hstmt.

■ SQL_CB_CLOSE = Close cursors. For prepared statements, the
application can call SQLExecute on the hstmt without calling
SQLPrepare again.

■ SQL_CB_PRESERVE = Preserve cursors in the same position as
before the COMMIT operation. The application can continue to
fetch data or it can close the cursor and re-execute the hstmt
without re-preparing it.

SQL_CURSOR_ROLLBACK_BEHAVIOR A 16-bit integer value that indicates how a ROLLBACK operation
affects cursors and prepared statements in the data source:

■ SQL_CB_DELETE = Close cursors and delete prepared state-
ments. To use the cursor again, the application must re-
prepare and re-execute the hstmt.

■ SQL_CB_CLOSE = Close cursors. For prepared statements, the
application can call SQLExecute on the hstmt without calling
SQLPrepare again.

■ SQL_CB_PRESERVE = Preserve cursors in the same position as
before the ROLLBACK operation. The application can continue
to fetch data, or it can close the cursor and re-execute the hstmt
without re-preparing it.

InfoType Returns

(4 of 24)
12-196 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_DATA_SOURCE_NAME A character string with the data-source name used during
connection. If the application called SQLConnect, this is the
value of the szDSN argument. If the application called
SQLDriverConnect or SQLBrowseConnect, this is the value of
the DSN keyword in the connection string passed to the driver. If
the connection string did not contain the DSN keyword (as when
it contains the DRIVER keyword), this is an empty string.

SQL_DATA_SOURCE_READ_ONLY A character string:

■ “Y” if the data source is set to READ ONLY mode

■ “N” if it is otherwise.

This characteristic pertains only to the data source; it is not a
characteristic of the driver that enables access to the data source.

SQL_DATABASE_NAME A character string with the name of the current database in use,
if the data source defines a named object called “database.”

SQL_DBMS_NAME A character string with the name of the DBMS product accessed
by the driver.

SQL_DBMS_VER A character string that indicates the version of the DBMS product
accessed by the driver. The version has the form ##.##.####,
where the first two digits are the major version, the next two
digits are the minor version, and the last four digits are the
release version. The driver must render the DBMS product
version in this form but can also append the DBMS product-
specific version. For example, “04.01.0000 RDB 4.1.”

InfoType Returns

(5 of 24)
INFORMIX-CLI Function Reference 12-197

SQLGetInfo
SQL_DEFAULT_TXN_ISOLATION A 32-bit integer that indicates the default transaction isolation
level supported by the driver or data source, or zero if the data
source does not support transactions. The following terms are
used to define transaction isolation levels:

■ Dirty Read Transaction 1 changes a row. Transaction 2 reads
the changed row before transaction 1 commits the change. If
transaction 1 rolls back the change, transaction 2 will have
read a row that is considered to have never existed.

■ Non-repeatable Read Transaction 1 reads a row. Transaction 2
updates or deletes that row and commits this change. If trans-
action 1 attempts to reread the row, it will receive different row
values or discover that the row has been deleted.

■ Phantom Transaction 1 reads a set of rows that satisfy some
search criteria. Transaction 2 inserts a row that matches the
search criteria. If transaction 1 re-executes the statement that
read the rows, it receives a different set of rows.

If the data source supports transactions, the driver returns one of
the following bitmasks:

■ SQL_TXN_READ_UNCOMMITTED = Dirty Reads, Non-
repeatable Reads, and Phantoms are possible.

■ SQL_TXN_READ_COMMITTED = Dirty Reads are not possible.
Non-repeatable Reads and Phantoms are possible.

■ SQL_TXN_REPEATABLE_READ = Dirty Reads and Non-
repeatable Reads are not possible. Phantoms are possible.

■ SQL_TXN_SERIALIZABLE = Transactions can be serialized.
Dirty Reads, Non-repeatable Reads, and Phantoms are not
possible.

■ SQL_TXN_VERSIONING = Transactions can be serialized, but
higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty Reads are not possible.
Typically, SQL_TXN_SERIALIZABLE is implemented by using
locking protocols that reduce concurrency, and
SQL_TXN_VERSIONING is implemented by using a non-
locking protocol such as record versioning.

SQL_DRIVER_HDBC
SQL_DRIVER_HENV

A 32-bit value, the environment handle or connection handle of
the driver, determined by the argument hdbc.

InfoType Returns

(6 of 24)
12-198 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_DRIVER_HLIB A 32-bit value, the library handle returned to INFORMIX-CLI
when it loaded the driver shared library. The handle is only valid
for the connection handle (HDBC) specified in the call to
SQLGetInfo.

SQL_DRIVER_HSTMT A 32-bit value, the statement handle of the driver determined by
the driver manager statement handle, which must be passed on
input in rgbInfoValue from the application.

In this case, rgbInfoValue is both an input and an output
argument. The input hstmt passed in rgbInfoValue was probably
an hstmt allocated on the argument hdbc.

SQL_DRIVER_NAME A character string with the filename of the driver used to access
the data source.

SQL_DRIVER_ODBC_VER A character string with the version of ODBC that the driver
supports. The version has the form ##.##, where the first two
digits are the major version and the next two digits are the minor
version. SQL_SPEC_MAJOR and SQL_SPEC_MINOR define the
major and minor version numbers. For the version of ODBC
described in this manual, these are 2 and 0, and the driver
should return 02.00.

If a driver supports SQLGetInfo but does not support this value
of the fInfoType argument, the driver manager (if you are using
one) returns 01.00.

SQL_DRIVER_VER A character string with the version of the driver and, optionally,
a description of the driver. At a minimum, the version has the
form ##.##.####, where the first two digits are the major version,
the next two digits are the minor version, and the last four digits
are the release version.

SQL_EXPRESSIONS_IN_ORDERBY A character string:

■ “Y” if the data source supports expressions in the ORDER BY
list

■ “N” if it does not.

InfoType Returns

(7 of 24)
INFORMIX-CLI Function Reference 12-199

SQLGetInfo
SQL_FETCH_DIRECTION A 32-bit bitmask that enumerates the supported fetch direction
options.

The following bitmasks are used in conjunction with the flag to
determine which options are supported:

SQL_FD_FETCH_NEXT
SQL_FD_FETCH_FIRST)
SQL_FD_FETCH_LAST
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE
SQL_FD_FETCH_RELATIVE
SQL_FD_FETCH_RESUME

SQL_FILE_USAGE A 16-bit integer value that indicates how a single-tier driver
directly treats files in a data source:

■ SQL_FILE_NOT_SUPPORTED = The driver is not a single-tier
driver.

■ SQL_FILE_TABLE = A single-tier driver treats files in a data
source as tables. For example, a text driver treats each text file
as a table.

■ SQL_FILE_QUALIFIER = A single-tier driver treats files in a
data source as a qualifier.

InfoType Returns

(8 of 24)
12-200 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_GETDATA_EXTENSIONS A 32-bit bitmask that enumerates extensions to SQLGetData.

The following bitmasks are used in conjunction with the flag to
determine what common extensions the driver supports for
SQLGetData:

■ SQL_GD_ANY_COLUMN = SQLGetData can be called for any
unbound column, including those before the last bound
column. The columns must be called in order of ascending
column number unless SQL_GD_ANY_ORDER is also returned.

■ SQL_GD_ANY_ORDER = SQLGetData can be called for
unbound columns in any order. SQLGetData can be called
only for columns after the last bound column unless
SQL_GD_ANY_COLUMN is also returned.

■ SQL_GD_BOUND = SQLGetData can be called for bound
columns as well as unbound columns. A driver cannot return
this value unless it also returns SQL_GD_ANY_COLUMN.

SQLGetData is required to return data only from unbound
columns that occur after the last bound column, are called in
order of increasing column number, and are not in a row in a
block of rows.

InfoType Returns

(9 of 24)
INFORMIX-CLI Function Reference 12-201

SQLGetInfo
SQL_GROUP_BY A 16-bit integer value that specifies the relationship between the
columns in the GROUP BY clause and the non-aggregated
columns in the SELECT list:

■ SQL_GB_NOT_SUPPORTED = GROUP BY clauses are not
supported.

■ SQL_GB_GROUP_BY_EQUALS_SELECT = The GROUP BY clause
must contain all non-aggregated columns in the SELECT list. It
cannot contain any other columns. For example:

SELECT DEPT, MAX(SALARY) FROM EMPLOYEE GROUP
BY DEPT

■ SQL_GB_GROUP_BY_CONTAINS_SELECT = The GROUP BY
clause must contain all non-aggregated columns in the
SELECT list. It can contain columns that are not in the SELECT
list. For example:

SELECT DEPT, MAX(SALARY) FROM EMPLOYEE GROUP
BY DEPT, AGE

■ SQL_GB_NO_RELATION = The columns in the GROUP BY
clause and the select list are not related. The meaning of non-
grouped, non-aggregated columns in the SELECT list is data-
source dependent. For example,

SELECT DEPT, SALARY FROM EMPLOYEE GROUP BY
DEPT, AGE

SQL_IDENTIFIER_CASE A 16-bit integer value as follows:

■ SQL_IC_UPPER = Identifiers in SQL are case insensitive and are
stored in uppercase in system catalog.

■ SQL_IC_LOWER = Identifiers in SQL are case insensitive and
are stored in lowercase in system catalog.

■ SQL_IC_SENSITIVE = Identifiers in SQL are case sensitive and
are stored in mixed case in system catalog.

■ SQL_IC_MIXED = Identifiers in SQL are case insensitive and are
stored in mixed case in system catalog.

SQL_IDENTIFIER_QUOTE_CHAR The character string used as the starting and ending delimiter of
a quoted (delimited) identifiers in SQL statements. (Identifiers
passed as arguments to ODBC functions do not need to be
quoted.) If the data source does not support quoted identifiers, a
blank is returned.

InfoType Returns

(10 of 24)
12-202 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_KEYWORDS A character string that contains a comma-separated list of all
data-source-specific keywords. This list does not contain
keywords specific to ODBC or keywords used by both the data
source and ODBC.

The #define value SQL_ODBC_KEYWORDS contains a comma-
separated list of ODBC keywords.

SQL_LIKE_ESCAPE_CLAUSE A character string:

■ “Y” if the data source supports an escape character for the
percent character (%) and underscore character (_) in a LIKE
predicate and the driver supports the ODBC syntax for
defining a LIKE predicate escape character

■ “N” otherwise.

SQL_MAX_BINARY_LITERAL_LEN A 32-bit integer value that specifies the maximum length
(number of hexadecimal characters, excluding the literal prefix
and suffix returned by SQLGetTypeInfo) of a binary literal in an
SQL statement. For example, the binary literal 0xFFAA has a
length of 4. If there is no maximum length or the length is
unknown, this value is set to 0.

SQL_MAX_CHAR_LITERAL_LEN A 32-bit integer value that specifies the maximum length
(number of characters, excluding the literal prefix and suffix
returned by SQLGetTypeInfo) of a character literal in an SQL
statement. If there is no maximum length or the length is
unknown, this value is set to 0.

SQL_MAX_COLUMN_NAME_LEN A 16-bit integer value that specifies the maximum length of a
column name in the data source. If there is no maximum length
or the length is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_GROUP_BY A 16-bit integer value that specifies the maximum number of
columns allowed in a GROUP BY clause. If no limit is specified or
the limit is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_INDEX A 16-bit integer value that specifies the maximum number of
columns allowed in an index. If no limit is specified or the limit
is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_ORDER_BY A 16-bit integer value that specifies the maximum number of
columns allowed in an ORDER BY clause. If no limit is specified
or the limit is unknown, this value is set to 0.

InfoType Returns

(11 of 24)
INFORMIX-CLI Function Reference 12-203

SQLGetInfo
SQL_MAX_COLUMNS_IN_SELECT A 16-bit integer value that specifies the maximum number of
columns allowed in a SELECT list. If no limit is specified or the
limit is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_TABLE A 16-bit integer value that specifies the maximum number of
columns allowed in a table. If no limit is specified or the limit is
unknown, this value is set to 0.

SQL_MAX_CURSOR_NAME_LEN A 16-bit integer value that specifies the maximum length of a
cursor name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_INDEX_SIZE A 32-bit integer value that specifies the maximum number of
bytes allowed in the combined fields of an index. If no limit is
specified or the limit is unknown, this value is set to 0.

SQL_MAX_OWNER_NAME_LEN A 16-bit integer value that specifies the maximum length of an
owner name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_PROCEDURE_NAME_LEN A 16-bit integer value that specifies the maximum length of a
procedure name in the data source. If there is no maximum
length or the length is unknown, this value is set to 0.

SQL_MAX_QUALIFIER_NAME_LEN A 16-bit integer value that specifies the maximum length of a
qualifier name in the data source. If there is no maximum length
or the length is unknown, this value is set to 0.

SQL_MAX_ROW_SIZE A 32-bit integer value that specifies the maximum length of a
single row in a table. If no limit is specified or the limit is
unknown, this value is set to 0.

SQL_MAX_ROW_SIZE_INCLUDES_LONG A character string:

■ “Y” if the maximum row size returned for the
SQL_MAX_ROW_SIZE information type includes the length of
all SQL_LONGVARCHAR and SQL_LONGVARBINARY columns
in the row

■ “N” otherwise.

SQL_MAX_STATEMENT_LEN A 32-bit integer value that specifies the maximum length
(number of characters, including white space) of an SQL
statement. If there is no maximum length or the length is
unknown, this value is set to 0.

InfoType Returns

(12 of 24)
12-204 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_MAX_TABLE_NAME_LEN A 16-bit integer value that specifies the maximum length of a
table name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_TABLES_IN_SELECT A 16-bit integer value that specifies the maximum number of
tables allowed in the FROM clause of a SELECT statement. If there
is no specified limit or the limit is unknown, this value is set to 0.

SQL_MAX_USER_NAME_LEN A 16-bit integer value that specifies the maximum length of a
user name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MULT_RESULT_SETS A character string:

■ “Y” if the data source supports multiple result sets

■ “N” if it does not.

SQL_MULTIPLE_ACTIVE_TXN A character string:

■ “Y” if active transactions on multiple connections are allowed

■ “N” if only one connection at a time can have an active
transaction.

SQL_NEED_LONG_DATA_LEN A character string:

■ “Y” if the data source needs the length of a long data value
(the data type is SQL_LONGVARCHAR, SQL_LONGVARBINARY,
or a long, data-source-specific data type) before that value is
sent to the data source

■ “N” if it does not. For more information, see
SQLBindParameter.

SQL_NON_NULLABLE_COLUMNS A 16-bit integer that specifies whether the data source supports
non-nullable columns:

■ SQL_NNC_NULL = All columns must be nullable.

■ SQL_NNC_NON_NULL = Columns may be non-nullable (the
data source supports the NOT NULL column constraint in
CREATE TABLE statements).

InfoType Returns

(13 of 24)
INFORMIX-CLI Function Reference 12-205

SQLGetInfo
SQL_NULL_COLLATION A 16-bit integer value that specifies where NULLs are sorted in a
list:

■ SQL_NC_END = NULLs are sorted at the end of the list,
regardless of the sort order.

■ SQL_NC_HIGH = NULLs are sorted at the high end of the list.

■ SQL_NC_LOW = NULLs are sorted at the low end of the list.

■ SQL_NC_START = NULLs are sorted at the start of the list,
regardless of the sort order.

SQL_NUMERIC_FUNCTIONS A 32-bit bitmask that enumerates the scalar numeric functions
supported by the driver and associated data source.

The following bitmasks are used to determine which numeric
functions are supported:

SQL_FN_NUM_ABS
SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CEILING
SQL_FN_NUM_COS
SQL_FN_NUM_COS
SQL_FN_NUM_DEGREES
SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_POWER
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN
SQL_FN_NUM_TRUNCATE

InfoType Returns

(14 of 24)
12-206 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_ODBC_API_CONFORMANCE A 16-bit integer value that indicates the level of ODBC
conformance:

■ SQL_OAC_NONE = None

■ SQL_OAC_LEVEL1 = Level 1 supported

■ SQL_OAC_LEVEL2 = Level 2 supported

For a list of functions and conformance levels, see Chapter 11,
“Function Summary.”

SQL_ODBC_SAG_CLI_CONFORMANCE A 16-bit integer value that indicates compliance to the functions
of the SAG specification:

■ SQL_OSCC_NOT_COMPLIANT = Not SAG-compliant; one or
more core functions are not supported.

■ SQL_OSCC_COMPLIANT = SAG-compliant

SQL_ODBC_SQL_CONFORMANCE A 16-bit integer value that indicates SQL grammar supported by
the driver:

■ SQL_OSC_MINIMUM = Minimum grammar supported

■ SQL_OSC_CORE = Core grammar supported

■ SQL_OSC_EXTENDED = Extended grammar supported

SQL_ODBC_SQL_OPT_IEF A character string:

■ “Y” if the data source supports the optional Integrity
Enhancement Facility

■ “N” if it does not

SQL_ODBC_VER A character string with the version of ODBC to which the driver
manager conforms, if you are using a driver manager. The
version is of the form ##.##, where the first two digits are the
major version and the next two digits are the minor version.

SQL_ORDER_BY_COLUMNS_IN_SELECT A character string:

■ “Y” if the columns in the ORDER BY clause must be in the
SELECT list

■ “N” otherwise

InfoType Returns

(15 of 24)
INFORMIX-CLI Function Reference 12-207

SQLGetInfo
SQL_OUTER_JOINS A character string:

■ “N” = No. The data source does not support outer joins.

■ “Y” = Yes. The data source supports two-table outer joins, and
the driver supports the ODBC outer join syntax except for
nested outer joins. However, columns on the left side of the
comparison operator in the ON clause must come from the
left-hand table in the outer join, and columns on the right side
of the comparison operator must come from the right-hand
table.

■ “P” = Partial. The data source partially supports nested outer
joins, and the driver supports the ODBC outer-join syntax.
However, columns on the left side of the comparison operator
in the ON clause must come from the left-hand table in the
outer join and columns on the right side of the comparison
operator must come from the right-hand table. Also, the right-
hand table of an outer join cannot be included in an inner join.

■ “F” = Full. The data source fully supports nested outer joins,
and the driver supports the ODBC outer-join syntax.

SQL_OWNER_TERM A character string with the data-source vendor name for an
owner; for example, “owner,” “Authorization ID,” or “Schema.”

SQL_OWNER_USAGE A 32-bit bitmask that enumerates the statements in which
owners can be used:

■ SQL_OU_DML_STATEMENTS = Owners are supported in all
Data Manipulation Language statements: SELECT, INSERT,
UPDATE, DELETE, and, if supported, SELECT FOR UPDATE and
positioned UPDATE and DELETE statements.

■ SQL_OU_PROCEDURE_INVOCATION = Owners are supported
in the ODBC procedure invocation statement.

■ SQL_OU_TABLE_DEFINITION = Owners are supported in all
table definition statements: CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW.

■ SQL_OU_INDEX_DEFINITION = Owners are supported in all
index-definition statements: CREATE INDEX and DROP INDEX.

■ SQL_OU_PRIVILEGE_DEFINITION = Owners are supported in
all privilege-definition statements: GRANT and REVOKE.

InfoType Returns

(16 of 24)
12-208 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_POSITIONED_STATEMENTS A 32-bit bitmask that enumerates the supported positioned SQL
statements.

The following bitmasks are used to determine which statements
are supported:

SQL_PS_POSITIONED_DELETE
SQL_PS_POSITIONED_UPDATE
SQL_PS_SELECT_FOR_UPDATE

SQL_PROCEDURE_TERM A character string with the data-source vendor name for a
procedure; for example, “database procedure,” “stored
procedure,” or “procedure.”

SQL_PROCEDURES A character string:

■ “Y” if the data source supports procedures and the driver
supports the ODBC procedure invocation syntax

■ “N” otherwise.

SQL_QUALIFIER_LOCATION A 16-bit integer value that indicates the position of the qualifier
in a qualified table name:

SQL_QL_START
SQL_QL_END

For example, a Text driver returns SQL_QL_START because the
directory (qualifier) name is at the start of the table name, as in
/empdata/emp.dbf.

SQL_QUALIFIER_NAME_SEPARATOR A character string: the character or characters that the data
source defines as the separator between a qualifier name and the
qualified name element that follows it.

SQL_QUALIFIER_TERM A character string with the data-source vendor name for a
qualifier; for example, “database” or “directory.”

InfoType Returns

(17 of 24)
INFORMIX-CLI Function Reference 12-209

SQLGetInfo
SQL_QUALIFIER_USAGE A 32-bit bitmask that enumerates the statements in which quali-
fiers can be used.

The following bitmasks are used to determine where qualifiers
can be used:

■ SQL_QU_DML_STATEMENTS = Qualifiers are supported in all
Data Manipulation Language statements: SELECT, INSERT,
UPDATE, DELETE, and, if supported, SELECT FOR UPDATE and
positioned UPDATE and DELETE statements.

■ SQL_QU_PROCEDURE_INVOCATION = Qualifiers are
supported in the ODBC procedure invocation statement.

■ SQL_QU_TABLE_DEFINITION = Qualifiers are supported in all
table-definition statements: CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW.

■ SQL_QU_INDEX_DEFINITION = Qualifiers are supported in all
index-definition statements: CREATE INDEX and DROP INDEX.

■ SQL_QU_PRIVILEGE_DEFINITION = Qualifiers are supported
in all privilege-definition statements: GRANT and REVOKE.

SQL_QUOTED_IDENTIFIER_CASE A 16-bit integer value as follows:

■ SQL_IC_UPPER = Quoted identifiers in SQL are case insensitive
and are stored in uppercase in system catalog.

■ SQL_IC_LOWER = Quoted identifiers in SQL are case insen-
sitive and are stored in lowercase in system catalog.

■ SQL_IC_SENSITIVE = Quoted identifiers in SQL are case
sensitive and are stored in mixed case in system catalog.

■ SQL_IC_MIXED = Quoted identifiers in SQL are not case
sensitive and are stored in mixed case in system catalog.

SQL_ROW_UPDATES A character string:

■ “Y” if a key-set-driven or mixed cursor maintains row
versions or values for all fetched rows and therefore can detect
any changes made to a row by any user since the row was last
fetched

■ “N” otherwise.

InfoType Returns

(18 of 24)
12-210 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_SCROLL_CONCURRENCY A 32-bit bitmask that enumerates the concurrency control
options supported for scrollable cursors.

The following bitmasks are used to determine which options are
supported:

■ SQL_SCCO_READ_ONLY = Cursor is read only. No updates are
allowed.

■ SQL_SCCO_LOCK = Cursor uses the lowest level of locking
sufficient to ensure that the row can be updated.

■ SQL_SCCO_OPT_ROWVER = Cursor uses optimistic concur-
rency control, comparing row versions.

■ SQL_SCCO_OPT_VALUES = Cursor uses optimistic concur-
rency control, comparing values.

For information about cursor concurrency, see “Specifying
Cursor Concurrency” on page 6-11.”

SQL_SCROLL_OPTIONS A 32-bit bitmask that enumerates the scroll options supported
for scrollable cursors.

The following bitmasks are used to determine which options are
supported:

■ SQL_SO_FORWARD_ONLY = The cursor only scrolls forward.

■ SQL_SO_STATIC = The data in the result set is static.

■ SQL_SO_KEYSET_DRIVEN = The driver saves and uses the keys
for every row in the result set.

■ SQL_SO_DYNAMIC = The driver keeps the keys for every row
in the row set (the key-set size is the same as the row-set size).

■ SQL_SO_MIXED = The driver keeps the keys for every row in
the key set, and the key-set size is greater than the row-set size.
The cursor is key-set driven inside the key set and dynamic
outside the key set.

For information about scrollable cursors, see“Scrollable
Cursors” on page 6-10.

InfoType Returns

(19 of 24)
INFORMIX-CLI Function Reference 12-211

SQLGetInfo
SQL_SEARCH_PATTERN_ESCAPE A character string that specifies what the driver supports as an
escape character that permits the use of the pattern-match
metacharacters underscore (_) and percent (%) as valid
characters in search patterns. This escape character applies only
for those catalog function arguments that support search strings.
If this string is empty, the driver does not support a search-
pattern escape character.

This fInfoType is limited to catalog functions. For a description of
the use of the escape character in search pattern strings, see
“Search Pattern Arguments” on page 12-8.

SQL_SERVER_NAME A character string with the actual data-source-specific server
name; useful when a data-source name is used during
SQLConnect, SQLDriverConnect, and SQLBrowseConnect.

SQL_SPECIAL_CHARACTERS A character string that contains all special characters (that is, all
characters except a through z, A through Z, 0 through 9, and
underscore) that can be used in an object name, such as a table,
column, or index name, on the data source. For example, “#$^.”

InfoType Returns

(20 of 24)
12-212 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_STATIC_SENSITIVITY A 32-bit bitmask that enumerates whether changes made by an
application to a static or key-set-driven cursor through
positioned update or delete statements can be detected by that
application:

■ SQL_SS_ADDITIONS = Added rows are visible to the cursor;
the cursor can scroll to these rows. Where these rows are
added to the cursor is driver dependent.

■ SQL_SS_DELETIONS = Deleted rows are no longer available to
the cursor and do not leave a “hole” in the result set; after the
cursor scrolls from a deleted row, it cannot return to that row.

■ SQL_SS_UPDATES = Updates to rows are visible to the cursor;
if the cursor scrolls from and returns to an updated row, the
data returned by the cursor is the updated data, not the
original data. Because updating key values in a key-set-driven
cursor is considered to be deleting the existing row and
adding a new row, this value is always returned for key-set-
driven cursors.

Whether an application can detect changes made to the result set
by other users, including other cursors in the same application,
depends on the cursor type. For more information, see“Scrol-
lable Cursors” on page 6-10.

SQL_SYSTEM_FUNCTIONS A 32-bit bitmask that enumerates the scalar system functions
supported by the driver and associated data source.

The following bitmasks are used to determine which system
functions are supported:

SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM A character string with the data-source vendor name for a table;
for example, “table” or “file.”

InfoType Returns

(21 of 24)
INFORMIX-CLI Function Reference 12-213

SQLGetInfo
SQL_TIMEDATE_ADD_INTERVALS A 32-bit bitmask that enumerates the time-stamp intervals
supported by the driver and associated data source for the
TIMESTAMPADD scalar function.

The following bitmasks are used to determine which intervals
are supported:

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS A 32-bit bitmask that enumerates the time-stamp intervals
supported by the driver and associated data source for the
TIMESTAMPDIFF scalar function.

The following bitmasks are used to determine which intervals
are supported:

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

InfoType Returns

(22 of 24)
12-214 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_TIMEDATE_FUNCTIONS A 32-bit bitmask that enumerates the scalar date and time
functions supported by the driver and associated data source.

The following bitmasks are used to determine which date and
time functions are supported:

SQL_FN_TD_CURDATE
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_DAYOFYEAR
SQL_FN_TD_HOUR
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH
SQL_FN_TD_MONTHNAME
SQL_FN_TD_NOW
SQL_FN_TD_QUARTER
SQL_FN_TD_SECOND
SQL_FN_TD_TIMESTAMPADD
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_WEEK
SQL_FN_TD_YEAR

SQL_TXN_CAPABLE A 16-bit integer value that describes the transaction support in
the driver or data source:

■ SQL_TC_NONE = Transactions not supported.

■ SQL_TC_DML = Transactions can contain only Data Manipu-
lation Language (DML) statements (SELECT, INSERT, UPDATE,
DELETE). Data Definition Language (DDL) statements encoun-
tered in a transaction cause an error.

■ SQL_TC_DDL_COMMIT = Transactions can contain only DML
statements. DDL statements (CREATE TABLE, DROP INDEX, an
so on) encountered in a transaction cause the transaction to be
committed.

■ SQL_TC_DDL_IGNORE = Transactions can contain only DML
statements. DDL statements encountered in a transaction are
ignored.

■ SQL_TC_ALL = Transactions can contain DDL statements and
DML statements in any order.

InfoType Returns

(23 of 24)
INFORMIX-CLI Function Reference 12-215

SQLGetInfo
Code Example
SQLGetInfo returns lists of supported options as a 32-bit bitmask in
rgbInfoValue. The bitmask for each option is used with the flag to determine
whether the option is supported.

SQL_TXN_ISOLATION_OPTION A 32-bit bitmask that enumerates the transaction-isolation levels
available from the driver or data source. The following bitmasks
are used in conjunction with the flag to determine which options
are supported:

SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
SQL_TXN_VERSIONING

For descriptions of these isolation levels, see
“SQL_DEFAULT_TXN_ISOLATION” on page 12-198.

SQL_UNION A 32-bit bitmask that enumerates the support for the UNION
clause:

■ SQL_U_UNION = The data source supports the UNION clause.

■ SQL_U_UNION_ALL = The data source supports the ALL
keyword in the UNION clause. (SQLGetInfo returns both
SQL_U_UNION and SQL_U_UNION_ALL in this case.)

SQL_USER_NAME A character string with the name used in a particular database,
which can be different than login name.

InfoType Returns

(24 of 24)
12-216 INFORMIX-CLI Programmer’s Manual

SQLGetInfo

*/
For example, an application could use the following code to determine
whether the driver associated with the hdbc supports the SUBSTRING scalar
function:

UDWORD fFuncs;

SQLGetInfo(hdbc,
 SQL_STRING_FUNCTIONS,
 (PTR)&fFuncs,
 sizeof(fFuncs),
 NULL);

if (fFuncs & SQL_FN_STR_SUBSTRING) /* SUBSTRING supported */
...;

else /* SUBSTRING not supported
...;

Related Functions

♦

For Information About See

Returning the setting of a connection option SQLGetConnectOption

Determining if a driver supports a function SQLGetFunctions

Returning the setting of a statement option SQLGetStmtOption

Returning information about the data types of a data
source

SQLGetTypeInfo
INFORMIX-CLI Function Reference 12-217

SQLGetStmtOption
SQLGetStmtOption
SQLGetStmtOption returns the current setting of a statement option.

Syntax
RETCODE SQLGetStmtOption(hstmt, fOption, pvParam)

The SQLGetStmtOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depending
on the value of fOption, a 32-bit integer
value or a pointer to a null-terminated
character string will be returned in
pvParam.

SQL_GET_ROWID Output Returns the row ID of the last row inserted;
returns 0 if the last SQL operation was not
Insert.

SQL-GET_SERIAL
_VALUE

Output Returns the serial ID of the last row
inserted; returns 0 if the last SQL operation
was not Insert.

Level 1
12-218 INFORMIX-CLI Programmer’s Manual

SQLGetStmtOption
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The argument fOption was SQL_ROW_NUMBER,
but the cursor was not open, or the cursor was
positioned before the start of the result set or after
the end of the result set.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1011 Operation invalid
at this time

The fOption argument was SQL_GET_BOOKMARK,
and the value of the SQL_USE_BOOKMARKS
statement option was SQL_UB_OFF.

(1 of 2)
INFORMIX-CLI Function Reference 12-219

SQLGetStmtOption
Usage
The following table lists statement options for which corresponding values
can be returned but not set. For a list of options that can be set and retrieved,
see “Usage” on page 12-298. If fOption specifies an option that returns a
string, pvParam must be a pointer to storage for the string. The maximum
length of the string is SQL_MAX_OPTION_STRING_LENGTH bytes, excluding
the null-termination byte.

S1092 Option type out of
range

(DM) The value specified for the argument fOption
was in the block of numbers reserved for ODBC
connection and statement options but was not
valid for the version of ODBC supported by the
driver.

S1109 Invalid cursor
position

The fOption argument was SQL_ROW_NUMBER,
but the value in the rgfRowStatus array in
SQLExtendedFetch for the current row was
SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

fOption pvParam contents

SQL_GET_ROWID Returns the row ID of the last row inserted; returns 0 if
the last SQL operation was not Insert.

SQL-GET_SERIAL_VALUE Returns the serial ID of the last row inserted; returns 0
if the last SQL operation was not Insert.

SQL_ROW_NUMBER A 32-bit integer value that specifies the number of the
current row in the entire result set. If the number of the
current row cannot be determined or there is no current
row, the driver returns 0.

SQLSTATE Error Description

(2 of 2)
12-220 INFORMIX-CLI Programmer’s Manual

SQLGetStmtOption
Related Functions

♦

For Information About See

Returning the setting of a connection option SQLGetConnectOption

Setting a connection option SQLSetConnectOption

Setting a statement option SQLSetStmtOption
INFORMIX-CLI Function Reference 12-221

SQLGetTypeInfo
SQLGetTypeInfo
SQLGetTypeInfo returns information about data types that the data source
supports. The driver returns the information in the form of an SQL result set.

Important: Applications must use the type names returned in the TYPE_NAME
column in ALTER TABLE and CREATE TABLE statements; they must not use the
sample type names listed in Appendix C, “Comparison of INFORMIX-CLI and
Embedded SQL.” SQLGetTypeInfo might return more than one row with the same
value in the DATA_TYPE column.

Syntax
RETCODE SQLGetTypeInfo(hstmt, fSqlType)

The SQLGetTypeInfo function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle for the result set.

SWORD fSqlType Input The parameter’s INFORMIX-CLI SQL data type. The
possible values are any of the fSqlType values listed in
Appendix B, “Data Types,” as well as SQL_ALL_TYPES
which specifies that information about all data types
should be returned. For more information about data
types and conversions, see Appendix B.

Level 1
12-222 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-
specific SQLSTATE was defined. The error
message that SQLError returns in the argument
szErrorMsg describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support execution or completion of the function.

S1004 SQL data type out
of range

(DM) The value specified for the argument
fSqlType was in the block of numbers reserved for
ODBC SQL data-type indicators but was not a
valid ODBC SQL data-type indicator.

S1008 Operation
canceled

The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

(1 of 2)
INFORMIX-CLI Function Reference 12-223

SQLGetTypeInfo
Usage
SQLGetTypeInfo returns the results as a standard result set, ordered by
DATA_TYPE and TYPE_NAME. The following table lists the columns in the
result set.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fSqlType.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-224 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
The lengths of VARCHAR columns shown in the following table are
maximums; the actual lengths depend on the data source.

Column Name Data Type Comments

TYPE_NAME VARCHAR(128)
not NULL

Data-source-dependent data-type name;
for example, CHAR, VARCHAR, MONEY,
LONG VARBINARY, or CHAR () FOR BIT
DATA. Applications must use this name in
CREATE TABLE and ALTER TABLE
statements.

DATA_TYPE SMALLINT
not NULL

Informix SQL data type. The possible
values are any of the Informix SQL data
types listed in Appendix B, “Data Types.”
For more information about data types and
conversions, see Appendix B.

PRECISION INTEGER The maximum precision of the data type on
the data source. Null is returned for data
types where precision is not applicable. For
more information on precision, see
“Precision, Scale, Length, and Display
Size” on page B-5.

LITERAL_PREFIX VARCHAR(128) Character or characters used to prefix a
literal; for example, a single quote (') for
character data types or 0x for binary data
types; null is returned for data types where
a literal prefix is not applicable.

LITERAL_SUFFIX VARCHAR(128) Character or characters used to terminate a
literal; for example, a single quote (') for
character data types; null is returned for
data types where a literal suffix is not
applicable.

(1 of 4)
INFORMIX-CLI Function Reference 12-225

SQLGetTypeInfo
CREATE_PARAMS VARCHAR(128) Parameters for a data-type definition. For
example, CREATE_PARAMS for DECIMAL
would be “precision, scale;”
CREATE_PARAMS for VARCHAR would
equal “max length;” null is returned if no
parameters for the data type definition
exist; for example, INTEGER.

The driver supplies the CREATE_PARAMS
text in the language of the country where it
is used.

NULLABLE SMALLINT
not NULL

Whether the data type accepts a null value:

■ SQL_NO_NULLS if the data type does not
accept null values.

■ SQL_NULLABLE if the data type accepts
null values.

■ SQL_NULLABLE_UNKNOWN if it is not
known if the column accepts null values.

CASE_SENSITIVE SMALLINT
not NULL

Whether a character data type is case
sensitive in collations and comparisons:

■ TRUE if the data type is a character data
type and is case sensitive.

■ FALSE if the data type is not a character
data type or is not case sensitive.

Column Name Data Type Comments

(2 of 4)
12-226 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
SEARCHABLE SMALLINT
not NULL

How the data type is used in a WHERE
clause:

■ SQL_UNSEARCHABLE if the data type
cannot be used in a WHERE clause.

■ SQL_LIKE_ONLY if the data type can be
used in a WHERE clause only with the
LIKE predicate.

■ SQL_ALL_EXCEPT_LIKE if the data type
can be used in a WHERE clause with all
comparison operators except LIKE.

■ SQL_SEARCHABLE if the data type can be
used in a WHERE clause with any
comparison operator.

UNSIGNED_
ATTRIBUTE

SMALLINT Whether the data type is unsigned:

■ TRUE if the data type is unsigned.

■ FALSE if the data type is signed.

■ null is returned if the attribute is not
applicable to the data type or the data
type is not numeric.

MONEY SMALLINT
not NULL

Whether the data type is a money data
type:

■ TRUE if it is a money data type.

■ FALSE if it is not.

Column Name Data Type Comments

(3 of 4)
INFORMIX-CLI Function Reference 12-227

SQLGetTypeInfo
AUTO_INCREMENT SMALLINT Whether the data type is auto-
incrementing:

■ TRUE if the data type is auto-
incrementing.

■ FALSE if the data type is not auto-
incrementing.

■ null is returned if the attribute is not
applicable to the data type or the data
type is not numeric.

An application can insert values into a
column having this attribute, but cannot
update the values in the column.

LOCAL_TYPE_NAME VARCHAR(128) Localized version of the data-source-
dependent name of the data type. Null is
returned if a localized name is not
supported by the data source. This name is
intended for display only, as in dialog
boxes.

MINIMUM_SCALE SMALLINT The minimum scale of the data type on the
data source. If a data type has a fixed scale,
the MINIMUM_SCALE and
MAXIMUM_SCALE columns both contain
this value. For example, an
SQL_TIMESTAMP column might have a
fixed scale for fractional seconds. Null is
returned where scale is not applicable. For
more information, see “Precision, Scale,
Length, and Display Size” on page B-5.

MAXIMUM_SCALE SMALLINT The maximum scale of the data type on the
data source. Null is returned where scale is
not applicable. If the maximum scale is not
defined separately on the data source but is
instead defined to be the same as the
maximum precision, this column contains
the same value as the PRECISION column.
For more information, see “Precision,
Scale, Length, and Display Size” on
page B-5.

Column Name Data Type Comments

(4 of 4)
12-228 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
Attribute information can apply to data types or to specific columns in a
result set. SQLGetTypeInfo returns information about attributes associated
with data types; SQLColAttributes returns information about attributes
associated with columns in a result set.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLColAttributes

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning information about a driver or data source SQLGetInfo
INFORMIX-CLI Function Reference 12-229

12-230 INFORMIX-CLI Programmer’s Manual

SQLMoreResults
SQLMoreResults
SQLMoreResults determines whether more results are available on an hstmt
that contains SELECT, UPDATE, INSERT, or DELETE statements and, if so,
initializes processing for those results.

Syntax
RETCODE SQLMoreResults(hstmt)

The SQLMoreResults function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_NO_DATA_FOUND, SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle

Level 2

SQLMoreResults
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
INFORMIX-CLI Function Reference 12-231

SQLMoreResults
Usage
SELECT statements return result sets. UPDATE, INSERT, and DELETE state-
ments return a count of affected rows. If any of these statements are batched,
submitted with arrays of parameters, or in procedures, they can return
multiple result sets or counts.

If another result set or count is available, SQLMoreResults returns
SQL_SUCCESS and initializes the result set or count for additional processing.
After an application calls SQLMoreResults for SELECT statements, it can call
functions to determine the characteristics of the result set and to retrieve data
from the result set. After calling SQLMoreResults for UPDATE, INSERT, or
DELETE statements, an application can call SQLRowCount.

If all results have been processed, SQLMoreResults returns
SQL_NO_DATA_FOUND.

If a current result set has unfetched rows, SQLMoreResults discards that
result set and makes the next result set or count available.

If a batch of statements or a procedure mixes other SQL statements with
SELECT, UPDATE, INSERT, and DELETE statements, these other statements do
not affect SQLMoreResults.

For additional information about the valid sequencing of result-processing
functions, see Appendix B, “ODBC State Transition Tables.”

Related Functions

♦

For Information About See

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Fetching part or all of a column of data SQLGetData
12-232 INFORMIX-CLI Programmer’s Manual

SQLNativeSql
SQLNativeSql
SQLNativeSql returns the SQL string that the driver translates.

Syntax
RETCODE SQLNativeSql(hdbc, szSqlStrIn, cbSqlStrIn, szSqlStr,
cbSqlStrMax, pcbSqlStr)

The SQLNativeSql function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szSqlStrIn Input SQL text string to be translated.

SDWORD cbSqlStrIn Input Length of szSqlStrIn text string.

UCHAR FAR * szSqlStr Output Pointer to storage for the translated SQL
string.

SDWORD cbSqlStrMax Input Maximum length of the szSqlStr buffer.

SDWORD FAR* pcbSqlStr Output The total number of bytes (excluding the
null-termination byte) available to return
in szSqlStr. If the number of bytes available
to return is greater than or equal to
cbSqlStrMax, the translated SQL string in
szSqlStr is truncated to cbSqlStrMax – 1
bytes.

Level 2
INFORMIX-CLI Function Reference 12-233

SQLNativeSql
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szSqlStr was not large enough to return
the entire SQL string, so the SQL string was
truncated. The argument pcbSqlStr contains the
length of the untruncated SQL string (function
returns SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

The hdbc was not in a connected state.

37000 Syntax error or
access violation

The argument szSqlStrIn contained an SQL
statement that was not preparable or contained a
syntax error.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

(1 of 2)
12-234 INFORMIX-CLI Programmer’s Manual

SQLNativeSql
Usage
The following example shows what SQLNativeSql might return for an input
SQL string that contains the scalar function LENGTH:

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

An INFORMIX-CLI driver might return the following translated SQL string:

SELECT length(NAME) FROM EMPLOYEE

Related Functions
None.

♦

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1009 Invalid argument
value

(DM) The argument szSqlStrIn was a null pointer.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStrIn was less than 0 but
not equal to SQL_NTS.

(DM) The argument cbSqlStrMax was less than 0,
and the argument szSqlStr was not a null pointer.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-235

SQLNumParams
SQLNumParams
SQLNumParams returns the number of parameters in an SQL statement.

Syntax
RETCODE SQLNumParams(hstmt, pcpar)

The SQLNumParams function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle

SWORD FAR * pcpar Output Number of parameters in the
statement

Level 2
12-236 INFORMIX-CLI Programmer’s Manual

SQLNumParams
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
INFORMIX-CLI Function Reference 12-237

SQLNumParams
Usage
SQLNumParams can be called only after SQLPrepare is called.

If the statement associated with hstmt does not contain parameters,
SQLNumParams sets pcpar to 0.

Related Functions

♦

For Information About See

Returning information about a parameter in a
statement

SQLDescribeParam (extension)

Assigning storage for a parameter SQLBindParameter
12-238 INFORMIX-CLI Programmer’s Manual

SQLNumResultCols
SQLNumResultCols
SQLNumResultCols returns the number of columns in a result set.

Syntax
RETCODE SQLNumResultCols(hstmt, pccol)

The SQLNumResultCols function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle

SWORD FAR * pccol Output Number of columns in the result set

Core
INFORMIX-CLI Function Reference 12-239

SQLNumResultCols
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLNumResultCols can return any SQLSTATE that SQLPrepare or
SQLExecute can return when SQLNumResultCols is called after SQLPrepare
and before SQLExecute is called, depending on when the data source
evaluates the SQL statement associated with the hstmt.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
12-240 INFORMIX-CLI Programmer’s Manual

SQLNumResultCols
Usage
SQLNumResultCols can be called successfully only when the hstmt is in the
prepared, executed, or positioned state.

If the statement associated with hstmt does not return columns,
SQLNumResultCols sets pccol to 0.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLColAttributes

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Fetching part or all of a column of data SQLGetData

Setting cursor scrolling options SQLSetScrollOptions
INFORMIX-CLI Function Reference 12-241

SQLParamData
SQLParamData
SQLParamData is used with SQLPutData to supply parameter data when a
statement executes.

Syntax
RETCODE SQLParamData(hstmt, prgbValue)

The SQLParamData function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLEINFORMIX-CLI

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR FAR * prgbValue Output Pointer to storage for the value specified for the
rgbValue argument in SQLBindParameter (for
parameter data) or the address of the rgbValue
buffer specified in SQLBindCol (for column data).

Level 1
12-242 INFORMIX-CLI Programmer’s Manual

SQLParamData
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

22026 String data, length
mismatch

The SQL_NEED_LONG_DATA_LEN information
type in SQLGetInfo was “Y”, and less data was
sent for a long parameter (the data type was
SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a
long, data-source-specific data type) than was
specified with the pcbValue argument in
SQLBindParameter.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

(1 of 2)
INFORMIX-CLI Function Reference 12-243

SQLParamData
If SQLParamData is called while sending data for a parameter in an SQL
statement, it can return any SQLSTATE that can be returned by the function
that was called to execute the statement (SQLExecute or SQLExecDirect).

Usage
For an explanation of how data-at-execution parameter data is passed at
statement-execution time, see “Passing Parameter Values” on page 12-33.

Code Example
See SQLPutData.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

SQLExecute or SQLExecDirect was called for the
hstmt and returned SQL_NEED_DATA. SQLCancel
was called before data was sent for all data-at-
execution parameters or columns.

S1010 Function-sequence
error

(DM) The previous function call was not a call to
SQLExecDirect or SQLExecute where the return
code was SQL_NEED_DATA or a call to
SQLPutData.

The previous function call was a call to
SQLParamData.

S1T00 Time-out expired The time-out period expired before the data source
completed processing the parameter value. The
time-out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-244 INFORMIX-CLI Programmer’s Manual

SQLParamData
Related Functions

♦

For Information About See

Canceling statement processing SQLCancel

Returning information about a parameter in a
statement

SQLDescribeParam (extension)

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Sending parameter data at execution time SQLPutData

Assigning storage for a parameter SQLBindParameter
INFORMIX-CLI Function Reference 12-245

SQLPrepare
SQLPrepare
SQLPrepare prepares an SQL string for execution.

Syntax
RETCODE SQLPrepare(hstmt, szSqlStr, cbSqlStr)

The SQLPrepare function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szSqlStr Input SQL text string

SDWORD cbSqlStr Input Length of szSqlStr

Core
12-246 INFORMIX-CLI Programmer’s Manual

SQLPrepare
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

21S01 Insert value list
does not match
column list.

The argument szSqlStr contained an INSERT
statement, and the number of values to be inserted
did not match the degree of the derived table.

21S02 Degree of derived
table does not
match column list.

The argument szSqlStr contained a CREATE VIEW
statement, and the number of names specified is
not the same degree as the derived table that the
query specification defines.

22005 Error in
assignment

The argument szSqlStr contained an SQL statement
that contained a literal or parameter, and the value
was incompatible with the data type of the
associated table column.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

34000 Invalid cursor
name

The argument szSqlStr contained a positioned
DELETE or a positioned UPDATE, and the cursor
referenced by the statement being prepared was
not open.

(1 of 4)
INFORMIX-CLI Function Reference 12-247

SQLPrepare
37000 Syntax error or
access violation

The argument szSqlStr contained an SQL statement
that was not preparable or contained a syntax
error.

42000 Syntax error or
access violation

The argument szSqlStr contained a statement for
which the user did not have the required
privileges.

S0001 Base table or view
already exists

The argument szSqlStr contained a CREATE TABLE
or CREATE VIEW statement, but the table name or
view name specified already exists.

S0002 Base table not
found

The argument szSqlStr contained a DROP TABLE or
a DROP VIEW statement, but the specified table
name or view name did not exist.

The argument szSqlStr contained an ALTER TABLE
statement, but the specified table name did not
exist.

The argument szSqlStr contained a CREATE VIEW
statement, but a table name or view name that the
query specification defined did not exist.

The argument szSqlStr contained a CREATE INDEX
statement, but the specified table name did not
exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, but the specified table name or
view name did not exist.

The argument szSqlStr contained a SELECT
statement, but a specified table name or view name
did not exist.

The argument szSqlStr contained a DELETE,
INSERT, or UPDATE statement, but the specified
table name did not exist.

The argument szSqlStr contained a CREATE TABLE
statement, and a table specified in a constraint
(referencing a table other than the one being
created) did not exist.

SQLSTATE Error Description

(2 of 4)
12-248 INFORMIX-CLI Programmer’s Manual

SQLPrepare
S0011 Index already
exists.

The argument szSqlStr contained a CREATE INDEX
statement, but the specified index name already
existed.

S0012 Index not found The argument szSqlStr contained a DROP INDEX
statement, but the specified index name did not
exist.

S0021 Column already
exists.

The argument szSqlStr contained an ALTER TABLE
statement, and the column specified in the ADD
clause is not unique or identifies an existing
column in the base table.

S0022 Column not found The argument szSqlStr contained a CREATE INDEX
statement, and one or more of the column names
specified in the column list did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, and a specified column name
did not exist.

The argument szSqlStr contained a SELECT,
DELETE, INSERT, or UPDATE statement, and a
specified column name did not exist.

The argument szSqlStr contained a CREATE TABLE
statement, and a column specified in a constraint
(referencing a table other than the one being
created) did not exist.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation
canceled

The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null pointer.

SQLSTATE Error Description

(3 of 4)
INFORMIX-CLI Function Reference 12-249

SQLPrepare
Usage
The application calls SQLPrepare to send an SQL statement to the data source
for preparation. The application can include one or more parameter markers
in the SQL statement. To include a parameter marker, the application embeds
a question mark (?) into the SQL string at the appropriate position.

Tip: If an application uses SQLPrepare to prepare and SQLExecute to submit a
COMMIT or ROLLBACK statement, it is not interoperable among DBMS products. To
commit or roll back a transaction, call SQLTransact.

The driver modifies the statement to use the form of SQL that the data source
uses and then submits it to the data source for preparation. In particular, the
driver modifies the escape clauses used to define ODBC-specific SQL. For the
driver, an hstmt is similar to a statement identifier in embedded SQL code. If
the data source supports statement identifiers, the driver can send a
statement identifier and parameter values to the data source.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less than or equal
to 0, but not equal to SQL_NTS.

S1C00 Driver not capable The cursor/concurrency combination is invalid.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(4 of 4)
12-250 INFORMIX-CLI Programmer’s Manual

SQLPrepare
Once a statement is prepared, the application uses hstmt to refer to the
statement in later function calls. The prepared statement associated with the
hstmt might be re-executed by calling SQLExecute until the application frees
the hstmt with a call to SQLFreeStmt with the SQL_DROP option or until the
hstmt is used in a call to SQLPrepare, SQLExecDirect, or one of the catalog
functions (SQLColumns, SQLTables, and so on). Once the application
prepares a statement, it can request information about the format of the result
set.

Some drivers cannot return syntax errors or access violations when the appli-
cation calls SQLPrepare. A driver might handle syntax errors and access
violations, only syntax errors, or neither syntax errors nor access violations.
Therefore, an application must be able to handle these conditions when it
calls subsequent related functions such as SQLNumResultCols,
SQLDescribeCol, SQLColAttributes, and SQLExecute.

Depending on the capabilities of the driver and data source and on whether
the application has called SQLBindParameter, parameter information (such
as data types) might be checked when the statement is prepared or when it is
executed. For maximum interoperability, an application should unbind all
parameters that applied to an old SQL statement before it prepares a new SQL
statement on the same hstmt. This action prevents errors that are caused by
old parameter information being applied to the new statement.

Warning: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
delete the access plans for all statement handles on a connection handle. For more
information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 12-196.

Code Example
See SQLBindParameter and SQLPutData.
INFORMIX-CLI Function Reference 12-251

SQLPrepare
Related Functions

♦

For Information About See

Allocating a statement handle SQLAllocStmt

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of rows that a statement affects SQLRowCount

Setting a cursor name SQLSetCursorName

Assigning storage for a parameter SQLBindParameter

Executing a commit or rollback operation SQLTransact
12-252 INFORMIX-CLI Programmer’s Manual

SQLPrimaryKeys
SQLPrimaryKeys
SQLPrimaryKeys returns the column names that comprise the primary key
for a table. The driver returns the information as a result set. This function
does not support returning primary keys from multiple tables in a single call.

Syntax
RETCODE SQLPrimaryKeys(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName)

The SQLPrimaryKeys function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports quali-
fiers for some tables but not for others, as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Table owner. If a driver supports owners
for some tables but not for others, as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

Level 2
INFORMIX-CLI Function Reference 12-253

SQLPrimaryKeys
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

(1 of 2)
12-254 INFORMIX-CLI Programmer’s Manual

SQLPrimaryKeys
Usage
SQLPrimaryKeys returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and KEY_SEQ. The
following table lists the columns in the result set.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the corre-
sponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

The driver or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data source
returned the requested result set.
The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-255

SQLPrimaryKeys
The lengths of VARCHAR columns that the table shows are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, call SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN options.

Related Functions

♦

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Primary-key table-qualifier identifier; null if
not applicable to the data source.

TABLE_OWNER VARCHAR(128) Primary-key table-owner identifier; null if
not applicable to the data source.

TABLE_NAME VARCHAR(128)
not NULL

Primary-key table identifier.

COLUMN_NAME VARCHAR(128)
not NULL

Primary-key column identifier.

KEY_SEQ SMALLINT
not NULL

Column sequence number in key (starting
with 1).

PK_NAME VARCHAR(128) Primary-key identifier. Null if not applicable
to the data source.

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics
12-256 INFORMIX-CLI Programmer’s Manual

SQLProcedureColumns
SQLProcedureColumns
SQLProcedureColumns returns the list of input and output parameters, as
well as the columns that make up the result set for the specified procedures.
The driver returns the information as a result set on the specified hstmt.

Syntax
RETCODE SQLProcedureColumns(hstmt, szProcQualifier,
cbProcQualifier, szProcOwner, cbProcOwner, szProcName,
cbProcName, szColumnName, cbColumnName)

The SQLProcedureColumns function accepts the following arguments:

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szProcQualifier Input Procedure qualifier name. If a driver
supports qualifiers for some procedures
but not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those procedures
that do not have qualifiers.

SWORD cbProcQualifier Input Length of szProcQualifier.

UCHAR FAR * szProcOwner Input String search pattern for procedure owner
names. If a driver supports owners for
some procedures but not for others, such as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those procedures that do not have
owners.

SWORD cbProcOwner Input Length of szProcOwner.

UCHAR FAR * szProcName Input String search pattern for procedure names.

SWORD cbProcName Input Length of szProcName.

UCHAR FAR * szColumnName Input String search pattern for column names.

SWORD cbColumnName Input Length of szColumnName.

Level 2
INFORMIX-CLI Function Reference 12-257

SQLProcedureColumns
Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication
link failure

The communication link between the driver and
the data source to which the driver was connected
failed before the function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had been
called. A cursor was open on the hstmt, but
SQLFetch or SQLExtendedFetch was not called.

IM001 Driver does not
support this
function

(DM) The driver associated with the hstmt does
not support the function.

S1000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-
specific SQLSTATE was defined. The error message
that SQLError returns in the argument
szErrorMsg describes the error and its cause.

(1 of 2)
12-258 INFORMIX-CLI Programmer’s Manual

SQLProcedureColumns
S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1010 Function sequence
error

(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and returned
SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name length arguments
exceeded the maximum length value for the
corresponding qualifier or name.

S1C00 Driver not capable A procedure qualifier was specified and the
driver or data source does not support qualifiers.

A procedure owner was specified and the driver
or data source does not support owners.
A string search pattern was specified for the
procedure owner, procedure name, or column
name and the data source does not support search
patterns for one or more of those arguments.

The driver or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-259

SQLProcedureColumns
Comments
This function is typically used before statement execution to retrieve infor-
mation about procedure parameters and columns from the data source’s
catalog.

Important: SQLProcedureColumns might not return all columns that a procedure
uses. For example, a driver might only return information about the parameters that
a procedure uses and not the columns in a result set that it generates.

The szProcOwner, szProcName, and szColumnName arguments accept search
patterns. For more information about valid search patterns, see “Search
Pattern Arguments” earlier in this chapter.

SQLProcedureColumns returns the results as a standard result set, ordered
by PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME,
and COLUMN_TYPE. The following table lists the columns in the result set.
The driver can define additional columns beyond column 13 (REMARKS).

The lengths of VARCHAR columns as the table shows are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME,
and COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_PROCEDURE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

PROCEDURE_QUALIFIER VARCHAR(128) Procedure qualifier identifier; NULL if not applicable to the
data source. If a driver supports qualifiers for some proce-
dures but not for others, such as when the driver retrieves data
from different DBMSs, it returns an empty string ("") for those
procedures that do not have qualifiers.

PROCEDURE_OWNER VARCHAR(128) Procedure owner identifier; NULL if not applicable to the data
source. If a driver supports owners for some procedures but
not for others, such as when the driver retrieves data from
different DBMSs, it returns an empty string ("") for those
procedures that do not have owners.

PROCEDURE_NAME VARCHAR(128)
not NULL

Procedure identifier.

(1 of 3)
12-260 INFORMIX-CLI Programmer’s Manual

SQLProcedureColumns
COLUMN_NAME VARCHAR(128)
not NULL

Procedure column identifier.

COLUMN_TYPE SMALLINT
not NULL

Defines the procedure column as parameter or a result set
column:

■ SQL_PARAM_TYPE_UNKNOWN: The procedure column is a
parameter whose type is unknown. (ODBC 1.0)

■ SQL_PARAM_INPUT: The procedure column is an input
parameter. (ODBC 1.0)

■ SQL_PARAM_INPUT_OUTPUT: the procedure column is an
input/output parameter. (ODBC 1.0)

■ SQL_PARAM_OUTPUT: The procedure column is an output
parameter. (ODBC 1.0)

■ SQL_RETURN_VALUE: The procedure column is the return
value of the procedure. (ODBC 2.0)

■ SQL_RESULT_COL: The procedure column is a result set
column. (ODBC 1.0)

DATA_TYPE SMALLINT
not NULL

SQL data type. This can be an ODBC SQL data type or a driver-
specific SQL data type. For a list of valid ODBC SQL data types,
see “SQL Data Types” on page B-2. For information about
driver-specific SQL data types, see the driver’s
documentation.

TYPE_NAME VARCHAR(128)
not NULL

Data source–dependent data type name; for example,
“CHAR”, “VARCHAR”, “MONEY”, “LONG VARBINARY”, or
“CHAR () FOR BIT DATA”.

PRECISION INTEGER The precision of the procedure column on the data source.
NULL is returned for data types where precision is not appli-
cable. For more information concerning precision, see
“Precision, Scale, Length, and Display Size” on page B-5.

LENGTH INTEGER The length in bytes of data transferred on an SQLGetData or
SQLFetch operation if SQL_C_DEFAULT is specified. For
numeric data, this size may be different than the size of the
data stored on the data source. For more information, see
“Precision, Scale, Length, and Display Size” on page B-5.

Column Name Data Type Comments

(2 of 3)
INFORMIX-CLI Function Reference 12-261

SQLProcedureColumns
Code Example
See SQLProcedures.

SCALE SMALLINT The scale of the procedure column on the data source. NULL is
returned for data types where scale is not applicable. For more
information concerning scale, see “Precision, Scale, Length,
and Display Size” on page B-5.

RADIX SMALLINT For numeric data types, either 10 or 2. If it is 10, the values in
PRECISION and SCALE give the number of decimal digits
allowed for the column. For example, a DECIMAL(12,5)
column would return a RADIX of 10, a PRECISION of 12, and a
SCALE of 5; a FLOAT column could return a RADIX of 10, a
PRECISION of 15 and a SCALE of NULL.

If it is 2, the values in PRECISION and SCALE give the number
of bits allowed in the column. For example, a FLOAT column
could return a RADIX of 2, a PRECISION of 53, and a SCALE of
NULL.

NULL is returned for data types where radix is not applicable.

NULLABLE SMALLINT
not NULL

Whether the procedure column accepts a NULL value:

■ SQL_NO_NULLS: The procedure column does not accept
NULL values.

■ SQL_NULLABLE: The procedure column accepts NULL
values.

■ SQL_NULLABLE_UNKNOWN: It is not known if the
procedure column accepts NULL values.

REMARKS VARCHAR(254) A description of the procedure column.

Column Name Data Type Comments

(3 of 3)
12-262 INFORMIX-CLI Programmer’s Manual

SQLProcedureColumns
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning a list of procedures in a data source SQLProcedures
INFORMIX-CLI Function Reference 12-263

SQLProcedures
SQLProcedures
SQLProcedures returns the list of procedure names stored in a specific data
source. Procedure is a generic term used to describe an executable object, or a
named entity that can be invoked using input and output parameters, and
which can return result sets similar to the results that SELECT statements
return.

Syntax
RETCODE SQLProcedures(hstmt, szProcQualifier,
cbProcQualifier, szProcOwner, cbProcOwner, szProcName,
cbProcName)

The SQLProcedures function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szProcQualifier Input Procedure qualifier. If a driver supports
qualifiers for some tables but not for
others, such as when the driver retrieves
data from different DBMSs, an empty
string ("") denotes those tables that do not
have qualifiers.

SWORD cbProcQualifier Input Length of szProcQualifier.

UCHAR FAR * szProcOwner Input String search pattern for procedure-owner
names. If a driver supports owners for
some procedures but not for others, as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those procedures that do not have
owners.

SWORD cbProcOwner Input Length of szProcOwner.

UCHAR FAR * szProcName Input String search pattern for procedure names.

SWORD cbProcName Input Length of szProcName.

Level 2
12-264 INFORMIX-CLI Programmer’s Manual

SQLProcedures
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(1 of 2)
INFORMIX-CLI Function Reference 12-265

SQLProcedures
Usage
SQLProcedures lists all procedures in the requested range. A user might or
might not have permission to execute any of these procedures. To check
accessibility, an application can call SQLGetInfo and check the
SQL_ACCESSIBLE_PROCEDURES information value. Otherwise, the appli-
cation must be able to handle a situation in which the user selects a procedure
that it cannot execute.

Important: SQLProcedures might not return all procedures. Applications can use
any valid procedure, regardless of whether SQLProcedures returns it.

SQLProcedures returns the results as a standard result set, ordered by
PROCEDURE_QUALIFIER, PROCEDURE_OWNER, and PROCEDURE_NAME.
The following table lists the columns in the result set.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0 but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the corre-
sponding qualifier or name.

S1C00 Driver not capable A procedure qualifier was specified, but the driver
or data source does not support qualifiers.

A procedure owner was specified, but the driver
or data source does not support owners. A string
search pattern was specified for the procedure
owner or procedure name, but the data source
does not support search patterns for one or more
of those arguments.

The driver or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data source
returned the requested result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-266 INFORMIX-CLI Programmer’s Manual

SQLProcedures
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the PROCEDURE_QUALIFIER, PROCEDURE_OWNER, and
PROCEDURE_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_PROCEDURE_NAME_LEN options.

Column Name Data Type Comments

PROCEDURE_QUALIFIER VARCHAR(128) Procedure qualifier identifier; NULL if
not applicable to the data source. If a
driver supports qualifiers for some
procedures but not for others, as when
the driver retrieves data from different
DBMSs, it returns an empty string ("")
for those procedures that do not have
qualifiers.

PROCEDURE_OWNER VARCHAR(128) Procedure owner identifier; NULL if
not applicable to the data source. If a
driver supports owners for some
procedures but not for others, as when
the driver retrieves data from different
DBMSs, it returns an empty string ("")
for those procedures that do not have
owners.

PROCEDURE_NAME VARCHAR(128)
not NULL

Procedure identifier.

NUM_INPUT_PARAMS N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

NUM_OUTPUT_PARAMS N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

(1 of 2)
INFORMIX-CLI Function Reference 12-267

SQLProcedures
The szProcOwner and szProcName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 12-8.

NUM_RESULT_SETS N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

REMARKS VARCHAR(254) A description of the procedure.

PROCEDURE_TYPE SMALLINT Defines the procedure type:

■ SQL_PT_UNKNOWN: It cannot be
determined whether the procedure
returns a value.

■ SQL_PT_PROCEDUR2E: The returned
object is a procedure; that is, it does
not have a return value.

■ SQL_PT_FUNCTION: The returned
object is a function; that is, it has a
return value.

Column Name Data Type Comments

(2 of 2)
12-268 INFORMIX-CLI Programmer’s Manual

SQLProcedures
Code Example
In this example, an application uses the procedure AddEmployee to insert
data into the EMPLOYEE table. The procedure contains input parameters for
NAME, AGE, and BIRTHDAY columns. It also contains one output parameter
that returns a remark about the new employee. The example also shows the
use of a return value from a stored procedure. For the return value and each
parameter in the procedure, the application calls SQLBindParameter to
specify the ODBC C data type and the SQL data type of the parameter and to
specify the storage location and length of the parameter. The application
assigns data values to the storage locations for each parameter and calls
SQLExecDirect to execute the procedure. If SQLExecDirect returns
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the return value and the value
of each output or input/output parameter is automatically put into the
storage location defined for the parameter in SQLBindParameter.

#define NAME_LEN 30
#define REM_LEN 128

UCHAR szName[NAME_LEN], szRemark[REM_LEN];
SWORD sAge, sEmpId;
SDWORD cbEmpId, cbName, cbAge = 0, cbBirthday = 0, cbRemark;
DATE_STRUCT dsBirthday;
/* Define parameter for return value (Employee ID) from procedure. */

SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER,
 0, 0, &sEmpId, 0, &cbEmpId);

/* Define data types and storage locations for Name, Age, Birthday */
/* input parameter data. */

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 NAME_LEN, 0, szName, 0, &cbName);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_SSHORT, SQL_SMALLINT,
 0, 0, &sAge, 0, &cbAge);
SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_DATE, SQL_DATE,
 0, 0, &dsBirthday, 0, &cbBirthday);

/* Define data types and storage location for Remark output parameter */

SQLBindParameter(hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 REM_LEN, 0, szRemark, REM_LEN, &cbRemark);

strcpy(szName, "Smith, John D."); /* Specify first row of */
sAge = 40; /* parameter data. */
dsBirthday.year = 1952;
dsBirthday.month = 2;
dsBirthday.day = 29;
cbName = SQL_NTS;

/* Execute procedure with first row of data. After the procedure */
INFORMIX-CLI Function Reference 12-269

SQLProcedures
/* is executed, sEmpId and szRemark will have the values */
/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt, "{?=call AddEmployee(?,?,?,?)}",SQL_NTS);

strcpy(szName, "Jones, Bob K."); /* Specify second row of */
sAge = 52; /* parameter data */
dsBirthday.year = 1940;
dsBirthday.month = 3;
dsBirthday.day = 31;

/* Execute procedure with second row of data. After the procedure */
/* is executed, sEmpId and szRemark will have the new values */
/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt,

 "{?=call AddEmployee(?,?,?,?)}", SQL_NTS);

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning information about a driver or data
source

SQLGetInfo

Returning the parameters and result set columns
of a procedure

SQLProcedureColumns
(extension)

Syntax for invoking stored procedures Chapter 5, “Executing SQL
Statements”
12-270 INFORMIX-CLI Programmer’s Manual

SQLPutData
SQLPutData
SQLPutData allows an application to send data for a parameter or column to
the driver at statement execution time. This function can send character or
binary data values in parts to a column with a character, binary, or data-
source-specific data type (for example, parameters of SQL_LONGVARBINARY
or SQL_LONGVARCHAR).

Syntax
RETCODE SQLPutData(hstmt, rgbValue, cbValue)

The SQLPutData function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR rgbValue Input Pointer to storage for the actual data for the
parameter or column. The data must use the C data
type specified in the fCType argument of
SQLBindParameter (for parameter data) or
SQLBindCol (for column data).

SDWORD cbValue Input Length of rgbValue. Specifies the amount of data sent
in a call to SQLPutData. The amount of data can vary
with each call for a given parameter or column.
cbValue is ignored unless it is SQL_NTS,
SQL_NULL_DATA, or SQL_DEFAULT_PARAM; the C
data type specified in SQLBindParameter or
SQLBindCol is SQL_C_CHAR or SQL_C_BINARY; or
the C data type is SQL_C_DEFAULT and the default C
data type for the specified SQL data type is
SQL_C_CHAR or SQL_C_BINARY. For all other types of
C data, if cbValue is not SQL_NULL_DATA or
SQL_DEFAULT_PARAM, the driver assumes that the
size of rgbValue is the size of the C data type specified
with fCType and sends the entire data value. For
more information, see “Converting Data from C to
SQL” on page B-31.

Level 1
INFORMIX-CLI Function Reference 12-271

SQLPutData
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data sent for a character or binary parameter or column in one or
more calls to SQLPutData exceeded the maximum length of the associated
character or binary column.

The fractional part of the data sent for a numeric or bit parameter or
column was truncated.

Time-stamp data sent for a date or time parameter or column was
truncated.

08S01 Communication-
link failure

The communication link between the driver and the data source failed
before the function completed.

22001 String data right
truncation

The SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo was
“Y” and more data was sent for a long parameter (the data type was
SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long, data-source-
specific data type) than was specified with the pcbValue argument in
SQLBindParameter.

(1 of 2)
12-272 INFORMIX-CLI Programmer’s Manual

SQLPutData
22003 Numeric value out
of range

SQLPutData was called more than once for a parameter or column, and it
was not being used to send character C data to a column with a character,
binary, or data-source-specific data type or to send binary C data to a
column with a character, binary, or data-source-specific data type.

The data sent for a numeric parameter or column caused the whole (as
opposed to fractional) part of the number to be truncated when assigned
to the associated table column.

22005 Error in
assignment

The data sent for a parameter or column was incompatible with the data
type of the associated table column.

22008 Datetime-field
overflow

The data sent for a date, time, or time-stamp parameter or column was,
respectively, an invalid date, time, or time stamp.

S1000 General error An error occurred for which no specific SQLSTATE existed and for which
no implementation-specific SQLSTATE was defined. The error message
that SQLError returns in the argument szErrorMsg describes the error and
its cause.

S1001 Memory-allocation
failure

The driver could not allocate memory required to support execution or
completion of the function.

S1008 Operation canceled The function was called, but before it completed execution, SQLCancel
was called on the hstmt from a different thread in a multithreaded
application.

SQLExecute or SQLExecDirect was called for the hstmt and returned
SQL_NEED_DATA. SQLCancel was called before data was sent for all data-
at-execution parameters or columns.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null pointer, and the argument cbValue
was not 0, SQL_DEFAULT_PARAM, or SQL_NULL_DATA.

S1010 Function-sequence
error

(DM) The previous function call was not a call to SQLPutData or
SQLParamData.

The previous function call was a call to SQLExecDirect or SQLExecute
where the return code was SQL_NEED_DATA.

S1090 Invalid string or
buffer length

The argument rgbValue was not a null pointer, and the argument cbValue
was less than 0 but not equal to SQL_NTS or SQL_NULL_DATA.

S1T00 Time-out expired The time-out period expired before the data source completed processing
the parameter value. The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-273

SQLPutData
Usage
For an explanation of how data-at-execution parameter data passes when a
statement executes, see “Passing Parameter Values” on page 12-33. For an
explanation of how data-at-execution column data is updated or added, see
“SQLSetScrollOptions” on page 12-295.

Important: An application can use SQLPutData to send parts of data when sending
character C data to a column with a character, binary, or data source-specific data
type or when SQLPutData sends binary C data to a column with a character, binary,
or data source-specific data type. If SQLPutData is called more than once under any
other conditions, it returns SQL_ERROR and SQLSTATE 22003 (Numeric value out
of range).

Code Example
In the following example, an application prepares an SQL statement to insert
data into the EMPLOYEE table. The statement contains parameters for the
NAME, ID, and PHOTO columns. For each parameter, the application calls
SQLBindParameter to specify the C and SQL data types of the parameter. It
also specifies that the data for the first and third parameters passes at
execution time and that the values 1 and 3 pass for later retrieval by
SQLParamData. These values identify which parameter is being processed.

The application calls GetNextID to get the next available employee ID
number. It then calls SQLExecute to execute the statement. SQLExecute
returns SQL_NEED_DATA when it needs data for the first and third param-
eters. The application calls SQLParamData to retrieve the value that it stored
with SQLBindParameter; it uses this value to determine for which parameter
to send data. For each parameter, the application calls InitUserData to
initialize the data routine. It repeatedly calls GetUserData and SQLPutData to
get and send the parameter data. Finally, it calls SQLParamData to indicate
that it sent all the data for the parameter and to retrieve the value for the next
parameter. After data is sent for both parameters, SQLParamData returns
SQL_SUCCESS.
12-274 INFORMIX-CLI Programmer’s Manual

SQLPutData
For the first parameter, InitUserData does nothing, and GetUserData calls a
routine to prompt the user for the employee name. For the third parameter,
InitUserData calls a routine to prompt the user for the name of a file
containing a bitmap photo of the employee and opens the file. GetUserData
retrieves the next MAX_DATA_LEN bytes of photo data from the file. After it
retrieves all the photo data, it closes the photo file.

Some application routines are omitted for clarity.

#define MAX_DATA_LEN 1024
SDWORD cbNameParam, cbID = 0; cbPhotoParam, cbData;
SWORD sID;
PTR pToken, InitValue;
UCHAR Data[MAX_DATA_LEN];

retcode = SQLPrepare(hstmt,
 "INSERT INTO EMPLOYEE (NAME, ID, PHOTO) VALUES (?, ?, ?)",
 SQL_NTS);
if (retcode = = SQL_SUCCESS) {

/* Bind the parameters. For parameters 1 and 3, pass the */
/* parameter number in rgbValue instead of a buffer address. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 NAME_LEN, 0, 1, 0, &cbNameParam);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,
 SQL_SMALLINT, 0, 0, &sID, 0, &cbID);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,
 SQL_C_BINARY, SQL_LONGVARBINARY,
 0, 0, 3, 0, &cbPhotoParam);

/* Set values so data for parameters 1 and 3 will be passed */
/* at execution. Note that the length parameter in the macro */
/* SQL_LEN_DATA_AT_EXEC is 0. This assumes that the driver */
/* returns "N" for the SQL_NEED_LONG_DATA_LEN information */
/* type in SQLGetInfo. */

cbNameParam = cbPhotoParam = SQL_LEN_DATA_AT_EXEC(0);

sID = GetNextID(); /* Get next available employee ID number. */

retcode = SQLExecute(hstmt);

/* For data-at-execution parameters, call SQLParamData to get the */
/* parameter number set by SQLBindParameter. Call InitUserData. */
/* Call GetUserData and SQLPutData repeatedly to get and put all */
/* data for the parameter. Call SQLParamData to finish processing */
/* this parameter and start processing the next parameter. */

while (retcode = = SQL_NEED_DATA) {
retcode = SQLParamData(hstmt, &pToken);
if (retcode = = SQL_NEED_DATA) {

InitUserData((SWORD)pToken, InitValue);
while (GetUserData(InitValue, (SWORD)pToken, Data, &cbData))
INFORMIX-CLI Function Reference 12-275

SQLPutData
SQLPutData(hstmt, Data, cbData);
}

}
}

VOID InitUserData(sParam, InitValue)
SWORD sParam;
PTR InitValue;
{
UCHAR szPhotoFile[MAX_FILE_NAME_LEN];
switch sParam {

case 3:

/* Prompt user for bitmap file containing employee photo. */
/* OpenPhotoFile opens the file and returns the file handle. */

PromptPhotoFileName(szPhotoFile);
OpenPhotoFile(szPhotoFile, (FILE *)InitValue);
break;

}
}

BOOL GetUserData(InitValue, sParam, Data, cbData)
PTR InitValue;
SWORD sParam;
UCHAR *Data;
SDWORD *cbData;

{
switch sParam {

case 1:
/* Prompt user for employee name. */

PromptEmployeeName(Data);
*cbData = SQL_NTS;
return (TRUE);

case 3:
/* GetNextPhotoData returns the next piece of photo data and */
/* the number of bytes of data returned (up to MAX_DATA_LEN). */

Done = GetNextPhotoData((FILE *)InitValue, Data,

 MAX_DATA_LEN, &cbData);
if (Done) {

ClosePhotoFile((FILE *)InitValue);
return (TRUE);

}
return (FALSE);

}
return (FALSE);
}

12-276 INFORMIX-CLI Programmer’s Manual

SQLPutData
Related Functions

♦

For Information About See

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the next parameter to send data for SQLParamData

Assigning storage for a parameter SQLBindParameter
INFORMIX-CLI Function Reference 12-277

SQLRowCount
SQLRowCount
SQLRowCount returns the number of rows that an UPDATE, INSERT, or
DELETE statement affects.

Syntax
RETCODE SQLRowCount(hstmt, pcrow)

The SQLRowCount function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SDWORD FAR * pcrow Output For UPDATE, INSERT, and DELETE statements,
pcrow is the number of rows affected by the
request or –1 if the number of affected rows
is not available.

For other statements and functions, the
driver can define the value of pcrow. For
example, some data sources might be able to
return the number of rows that a SELECT
statement or a catalog function returns before
fetching the rows.

Many data sources cannot return the number
of rows in a result set before fetching them;
for maximum interoperability, applications
should not rely on this behavior.

Core
12-278 INFORMIX-CLI Programmer’s Manual

SQLRowCount
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

Usage
If the last executed statement associated with hstmt was not an UPDATE,
INSERT, or DELETE statement, the value of pcrow is driver defined.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLExecute or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.
INFORMIX-CLI Function Reference 12-279

SQLRowCount
Related Functions

♦

For Information About See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute
12-280 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
SQLSetConnectOption
SQLSetConnectOption sets options that govern aspects of connections.

Syntax
RETCODE SQLSetConnectOption(hdbc, fOption, vParam)

The SQLSetConnectOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to set, listed in “Usage.”

UDWORD vParam Input Value associated with fOption. Depending on the
value of fOption, vParam will be a 32-bit integer value
or point to a null-terminated character string.

Level 1
INFORMIX-CLI Function Reference 12-281

SQLSetConnectOption
The driver can return SQL_SUCCESS_WITH_INFO to provide information
about the result of setting an option. For example, setting
SQL_ACCESS_MODE to read only during a transaction might cause the trans-
action to be committed. The driver could use SQL_SUCCESS_WITH_INFO, and
information returned with SQLError, to inform the application of the commit
action.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified value of
the vParam argument and substituted a similar
value (function returns
SQL_SUCCESS_WITH_INFO).

08002 Connection in use The argument fOption was SQL_ODBC_CURSORS,
and the driver was already connected to the data
source.

08003 Connection not
open

An fOption value was specified that required an
open connection, but the hdbc was not in a
connected state.

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

IM009 Unable to load
translation shared
library

The driver was unable to load the translation
shared library that was specified for the
connection. This error can only be returned when
fOption is SQL_TRANSLATE_DLL.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

(1 of 2)
12-282 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
When fOption is a statement option, SQLSetConnectOption can return any
SQLSTATE that SQLSetStmtOption returns.

S1009 Invalid argument
value

Given the specified fOption value, an invalid value
was specified for the argument vParam.
(INFORMIX-CLI returns this SQLSTATE only for
connection and statement options that accept a
discrete set of values, such as SQL_ACCESS_MODE.
For all other connection and statement options, the
driver must verify the value of the argument
vParam.)

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
an hstmt associated with the hdbc and returned
SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters
or columns.

(DM) SQLBrowseConnect was called for the hdbc
and returned SQL_NEED_DATA. This function was
called before SQLBrowseConnect returned
SQL_SUCCESS_WITH_INFO or SQL_SUCCESS.

S1011 Operation invalid
at this time

The argument fOption was SQL_TXN_ISOLATION,
and a transaction was open.

S1092 Option type out of
range

(DM) The value specified for the argument fOption
was in the block of numbers reserved for ODBC
connection and statement options, but was not
valid for the version of ODBC that the driver
supports.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-283

SQLSetConnectOption
Usage
The following table shows the currently defined options. ODBC reserves
options from 0 to 999.

An application can call SQLSetConnectOption and include a statement
option. The driver sets the statement option for any statement handles
associated with the specified connection handle and establishes the
statement option as a default for any statement handles later allocated for
that connection handle. For a list of statement options, see “Usage” on
page 12-298.

All connection and statement options that the application successfully sets
for the connection handle persist until SQLFreeConnect is called for the
connection handle. For example, if an application calls
SQLSetConnectOption before it connects to a data source, the option persists
even if SQLSetConnectOption fails in the driver when the application
connects to the data source; if an application sets a driver-specific option, the
option persists even if the application connects to a different driver on the
connection handle.

Some connection and statement options support substituting a similar value
if the data source does not support the specified value of vParam. In such
cases, the driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02
(Option value changed). For example, if fOption is SQL_PACKET_SIZE and
vParam exceeds the maximum packet size, the driver substitutes the
maximum size. To determine the substituted value, an application calls
SQLGetConnectOption (for connection options) or SQLGetStmtOption (for
statement options).

The format of information set through vParam depends on the specified
fOption. SQLSetConnectOption accepts option information in one of two
formats: a null-terminated character string or a 32-bit integer value. The
format of each fOption is noted in the following table. Character strings
pointed to by the vParam argument of SQLSetConnectOption have a
maximum length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding
the null-termination byte).
12-284 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
In addition to the options described in the following table, INFORMIX-CLI
supports an alternative isolation level 1, called cursor stability. To use this
isolation level, your INFORMIX-CLI application should call
SQLSetConnectOption with the fOption value set to 1040 and vParam set to 1.

fOption vParam Contents

SQL_ACCESS_MODE A 32-bit integer value. SQL_MODE_READ_ONLY is used by the driver or data
source as an indicator that the connection is not required to support SQL
statements that cause updates to occur. This mode can be used to optimize
locking strategies, transaction management, or other areas as appropriate to
the driver or data source. The driver is not required to prevent such state-
ments from being submitted to the data source. The behavior of the driver
and data source when asked to process SQL statements that are not read-only
during a read-only connection is implementation defined.
SQL_MODE_READ_WRITE is the default.

SQL_AUTOCOMMIT A 32-bit integer value that specifies whether to use auto-commit or manual-
commit mode:

■ SQL_AUTOCOMMIT_OFF = The driver uses manual-commit mode, and the
application must explicitly commit or roll back transactions with
SQLTransact.

■ SQL_AUTOCOMMIT_ON = The driver uses autocommit mode. Each
statement is committed immediately after it is executed. This is the default.
Changing from manual-commit mode to autocommit mode commits any
open transactions on the connection.

Important: Some data sources delete the access plans and close the cursors for all
statement handles on a connection handle each time a statement is committed; auto-
commit mode can cause this to happen after each statement is executed. For more
information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 12-196.

SQL_CURRENT_QUALIFIER A null-terminated character string containing the name of the qualifier to be
used by the data source. For a single-tier driver, the qualifier might be a
directory, in which case the driver changes its current directory to the
directory specified in vParam.

(1 of 4)
INFORMIX-CLI Function Reference 12-285

SQLSetConnectOption
SQL_LOGIN_TIMEOUT A 32-bit integer value corresponding to the number of seconds to wait for a
login request to complete before returning to the application. The default is
driver dependent and must be nonzero. If vParam is 0, the time-out is
disabled, and a connection attempt will wait indefinitely.

If the specified time-out exceeds the maximum login time-out in the data
source, the driver substitutes that value and returns SQLSTATE 01S02 (Option
value changed).

SQL_ODBC_CURSORS A 32-bit option specifying how the driver manager uses the ODBC cursor
library:

■ SQL_CUR_USE_IF_NEEDED = INFORMIX-CLI uses the ODBC cursor library
only if it is needed. If INFORMIX-CLI supports the SQL_FETCH_PRIOR
option in SQLExtendedFetch, it uses its scrolling capabilities. Otherwise, it
uses the cursor library.

■ SQL_CUR_USE_ODBC = INFORMIX-CLI uses the cursor library.

■ SQL_CUR_USE_DRIVER = INFORMIX-CLI uses its scrolling capabilities.
This is the default setting.

Informix recommends that you use SQL_CUR_USE_DRIVER. For more infor-
mation about the ODBC cursor library, see the Microsoft ODBC Programmer’s
Reference and SDK Guide, Version 2.0.

SQL_OPT_TRACE A 32-bit integer value telling INFORMIX-CLI whether to perform tracing:

■ SQL_OPT_TRACE_OFF = Tracing off (the default)

■ SQL_OPT_TRACE_ON = Tracing on

When tracing is on, INFORMIX-CLI writes each INFORMIX-CLI function
call to the trace file.

When tracing is on, INFORMIX-CLI can return SQLSTATE IM013 (Trace-file
error) from any function.

An application specifies a trace file with the SQL_OPT_TRACEFILE option. If
the file already exists, INFORMIX-CLI appends to the file. Otherwise, it
creates the file. If tracing is on but no trace file is specified, INFORMIX-CLI
writes to the file sql.log in the current directory.

SQL_OPT_TRACEFILE A null-terminated character string containing the name of the trace file.

fOption vParam Contents

(2 of 4)
12-286 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
SQL_PACKET_SIZE A 32-bit integer value specifying the network packet size in bytes.

Many data sources either do not support this option or can only return the
network packet size.

If the specified size exceeds the maximum packet size or is smaller than the
minimum packet size, the driver substitutes that value and returns
SQLSTATE 01S02 (Option value changed).

SQL_QUIET_MODE A 32-bit window handle (hwnd).

If the window handle is a null pointer, the driver does not display any dialog
boxes.

If the window handle is not a null pointer, it should be the parent window
handle of the application. The driver uses this handle to display dialog
boxes. This is the default.

If the application has not specified a parent window handle for this option,
the driver uses a null parent window handle to display dialog boxes or
return in SQLGetConnectOption.

The SQL_QUIET_MODE connection option does not apply to dialog boxes that
SQLDriverConnect displays.

SQL_TRANSLATE_OPTION A 32-bit flag value that is passed to the translation shared library. This option
can only be specified if the driver has connected to the data source.

fOption vParam Contents

(3 of 4)
INFORMIX-CLI Function Reference 12-287

SQLSetConnectOption
SQL_TXN_ISOLATION A 32-bit mask that sets the transaction isolation level for the current hdbc. An
application must call SQLTransact to commit or roll back all open transac-
tions on an hdbc before calling SQLSetConnectOption with this option.

The valid values for vParam can be determined by calling SQLGetInfo with
fInfotype equal to SQL_TXN_ISOLATION_OPTIONS. The following terms are
used to define transaction isolation levels:

■ Dirty Read: Transaction 1 changes a row. Transaction 2 reads the changed
row before transaction 1 commits this change. Transaction 1 rolls back the
change, and transaction 2 reads a row that is considered to have never
existed.

■ Nonrepeatable Read: Transaction 1 reads a row. Transaction 2 updates or
deletes that row and commits this change. Transaction 1 attempts to reread
the row, and it receives different row values or discovers that the row has
been deleted.

■ Phantom: Transaction 1 reads a set of rows that satisfy some search criteria.
Transaction 2 inserts a row that matches the search criteria. Transaction 1
re-executes the statement that read the rows, and it receives a different set
of rows.

vParam must be one of the following values:

■ SQL_TXN_READ_UNCOMMITTED = Dirty Reads, Nonrepeatable Reads,
and Phantoms are possible.

■ SQL_TXN_READ_COMMITTED = Dirty Reads are not possible. Nonre-
peatable Reads and Phantoms are possible.

■ SQL_TXN_REPEATABLE_READ = Dirty Reads and Nonrepeatable Reads are
not possible. Phantoms are possible.

■ SQL_TXN_SERIALIZABLE = Transactions are serializable. Dirty Reads,
Nonrepeatable Reads, and Phantoms are not possible.

■ SQL_TXN_VERSIONING = Transactions can be serialized, but higher
concurrency is possible than with SQL_TXN_SERIALIZABLE. Dirty Reads
are not possible. Typically, SQL_TXN_SERIALIZABLE is implemented by
using locking protocols that reduce concurrency, and
SQL_TXN_VERSIONING is implemented by using non-locking protocol
such as record versioning.

fOption vParam Contents

(4 of 4)
12-288 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
Data Translation
Data translation is performed for all data moving between the driver and the
data source.

The translation option (set with the SQL_TRANSLATE_OPTION option) can be
any 32-bit value. Its meaning depends on the translation shared library that
you use. A new option can be set at any time and will be applied to the next
exchange of data following a call to SQLSetConnectOption. A default trans-
lation shared library can be specified for the data source in its data-source
specification. The driver loads the default translation shared library at
connection time. A translation option (SQL_TRANSLATE_OPTION) can also be
specified in the data-source specification.

To change the translation shared library for a connection, an application calls
SQLSetConnectOption with the SQL_TRANSLATE_DLL option after it
connects to the data source. The driver attempts to load the specified shared
library and, if the attempt fails, the driver returns SQL_ERROR with the
SQLSTATE IM009 (Unable to load translation shared library).

If no translation shared library is specified in the ODBC initialization file or
by calling SQLSetConnectOption, the driver does not attempt to translate
data. Any value set for the translation option is ignored.

For more information about translating data, see Chapter 13, “Setup Shared
Library Function Reference.”

Code Example
See SQLConnect.

Related Functions

♦

For Information About See

Returning the setting of a connection option SQLGetConnectOption

Returning the setting of a statement option SQLGetStmtOption

Setting a statement option SQLSetStmtOption
INFORMIX-CLI Function Reference 12-289

SQLSetCursorName
SQLSetCursorName
SQLSetCursorName associates a cursor name with an active hstmt. If an
application does not call SQLSetCursorName, the driver generates cursor
names as needed for SQL statement processing.

Syntax
RETCODE SQLSetCursorName(hstmt, szCursor, cbCursor)

The SQLSetCursorName function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szCursor Input Cursor name

SWORD cbCursor Input Length of szCursor

Core
12-290 INFORMIX-CLI Programmer’s Manual

SQLSetCursorName
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE
value. If you are using a driver manager, the notation (DM) at the beginning
of an SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement corresponding to hstmt was already
in an executed or cursor-positioned state.

34000 Invalid cursor
name

The cursor name that the argument szCursor
specified was invalid. For example, the cursor
name exceeded the maximum length that the
driver defines.

3C000 Duplicate cursor
name

The cursor name that the argument szCursor
specifies already exists.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

(1 of 2)
INFORMIX-CLI Function Reference 12-291

SQLSetCursorName
Usage
The only ODBC SQL statements that use a cursor name are a positioned
UPDATE and DELETE (for example, UPDATE table-name...WHERE CURRENT
OF cursor-name). If the application does not call SQLSetCursorName to define
a cursor name, when a SELECT statement executes, the driver generates a
name that begins with the letters SQL_CUR and does not exceed 18 characters.

All cursor names within the hdbc must be unique. The driver defines the
maximum length of a cursor name. For maximum interoperability, cursor
names should not exceed 18 characters.

A cursor name remains set until the hstmt with which it is associated is
dropped, using SQLFreeStmt with the SQL_DROP option.

S1009 Invalid argument
value

(DM) The argument szCursor was a null pointer.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbCursor was less than 0, but
not equal to SQL_NTS.

SQLSTATE Error Description

(2 of 2)
12-292 INFORMIX-CLI Programmer’s Manual

SQLSetCursorName
Code Example
In the following example, an application uses SQLSetCursorName to set a
cursor name for an hstmt. It then uses that hstmt to retrieve results from the
EMPLOYEE table. Finally, it performs a positioned update to change the name
of 25-year-old John Smith to John D. Smith. The application uses different
hstmts for the SELECT and UPDATE statements.

#define NAME_LEN 30

HSTMT hstmtSelect,
HSTMT hstmtUpdate;
UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName;
SDWORD cbAge;

/* Allocate the statements and set the cursor name */

SQLAllocStmt(hdbc, &hstmtSelect);
SQLAllocStmt(hdbc, &hstmtUpdate);
SQLSetCursorName(hstmtSelect, "C1", SQL_NTS);

/* SELECT the result set and bind its columns to local storage */

SQLExecDirect(hstmtSelect,
 "SELECT NAME, AGE FROM EMPLOYEE FOR UPDATE",
 SQL_NTS);
SQLBindCol(hstmtSelect, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmtSelect, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

/* Read through the result set until the cursor is */
/* positioned on the row for the 25-year-old John Smith */

do
 retcode = SQLFetch(hstmtSelect);
while ((retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO) &&
 (strcmp(szName, "Smith, John") != 0 || sAge != 25));

/* Perform a positioned update of John Smith's name */

if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO) {
SQLExecDirect(hstmtUpdate,

 "UPDATE EMPLOYEE SET NAME=\"Smith, John D.\" WHERE CURRENT OF C1",
 SQL_NTS);
}

INFORMIX-CLI Function Reference 12-293

SQLSetCursorName
Related Functions

♦

For Information About See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning a cursor name SQLGetCursorName

Setting cursor scrolling options SQLSetScrollOptions
12-294 INFORMIX-CLI Programmer’s Manual

SQLSetScrollOptions
SQLSetScrollOptions
In ODBC 2.0, the SQL_CURSOR_TYPE, SQL_CONCURRENCY,
SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE options for SQLSetStmtOption
superseded SQLSetScrollOptions. Applications should not call
SQLSetScrollOptions. ♦

Level 2
INFORMIX-CLI Function Reference 12-295

SQLSetStmtOption
SQLSetStmtOption
SQLSetStmtOption sets options that are related to an hstmt. To set an option
for all the statements associated with a specific hdbc, an application can call
SQLSetConnectOption.

Syntax
RETCODE SQLSetStmtOption(hstmt, fOption, vParam)

The SQLSetStmtOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Typedef
Argume
nt Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to set, listed in “Usage.”

UDWORD vParam Input Value associated with fOption. Depending on the
value of fOption, vParam will be a 32-bit integer value
or point to a null-terminated character string.

Level 1
12-296 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified value of
the vParam argument and substituted a similar
value (function returns
SQL_SUCCESS_WITH_INFO).

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state The fOption was SQL_CONCURRENCY,
SQL_SIMULATE_CURSOR, or SQL_CURSOR_TYPE,
and the cursor was open.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

(1 of 2)
INFORMIX-CLI Function Reference 12-297

SQLSetStmtOption
Usage
Statement options for an hstmt remain in effect until they are changed by
another call to SQLSetStmtOption or the hstmt is dropped by calling
SQLFreeStmt with the SQL_DROP option. Calling SQLFreeStmt with the
SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset
statement options.

Some statement options support substituting a similar value if the data
source does not support the specified value of vParam. In such cases, the
driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value
changed). For example, if fOption is SQL_CONCURRENCY, vParam is
SQL_CONCUR_ROWVER, and the data source does not support this, the
driver substitutes SQL_CONCUR_VALUES. To determine the substituted
value, an application calls SQLGetStmtOption.

S1009 Invalid argument
value

Given the specified fOption value, an invalid value
was specified for the argument vParam. (The
driver manager returns this SQLSTATE only for
statement options that accept a discrete set of
values, such as SQL_ASYNC_ENABLE. For all other
statement options, the driver must verify the value
of the argument vParam.)

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1011 Operation invalid
at this time

The fOption was SQL_CONCURRENCY,
SQL_SIMULATE_CURSOR, or SQL_CURSOR_TYPE,
and the statement was prepared.

S1092 Option value out of
range

(DM) The value specified for the argument fOption
was in the block of numbers reserved for ODBC
connection and statement options, but was not
valid for the version of ODBC that the driver
supports.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

SQLSTATE Error Description

(2 of 2)
12-298 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
The following table shows the currently defined options. ODBC reserves
options from 0 to 999.

The format of information set with vParam depends on the specified fOption.
SQLSetStmtOption accepts option information in one of two different
formats: a null-terminated character string or a 32-bit integer value. The
format is noted in the option description. This format applies to the infor-
mation returned for each option in SQLGetStmtOption. Character strings
pointed to by the vParam argument of SQLSetStmtOption have a maximum
length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null-
termination byte).

fOption vParam Contents

SQL_BIND_TYPE A 32-bit integer value that sets the binding orientation to be used when
SQLExtendedFetch is called on the associated hstmt. Column-wise binding is
selected by supplying the defined constant SQL_BIND_BY_COLUMN for the
argument vParam. Row-wise binding is selected by supplying a value for vParam
specifying the length of a structure or an instance of a buffer into which result
columns will be bound.

The length specified in vParam must include space for all of the bound columns and
any padding of the structure or buffer to ensure that when the address of a bound
column is incremented with the specified length, the result will point to the
beginning of the same column in the next row. When using the sizeof operator with
structures or unions in ANSI C, this behavior is guaranteed.

Column-wise binding is the default binding orientation for SQLExtendedFetch.

(1 of 4)
INFORMIX-CLI Function Reference 12-299

SQLSetStmtOption
SQL_CONCURRENCY A 32-bit integer value that specifies the cursor concurrency:

■ SQL_CONCUR_READ_ONLY = Cursor is read only. No updates are allowed.

■ SQL_CONCUR_LOCK = Cursor uses the lowest level of locking sufficient to
ensure that the row can be updated.

■ SQL_CONCUR_ROWVER = Cursor uses optimistic concurrency control,
comparing row versions.

■ SQL_CONCUR_VALUES = Cursor uses optimistic concurrency control, comparing
values.

The default value is SQL_CONCUR_READ_ONLY. This option can also be set
through the fConcurrency argument in SQLSetScrollOptions. This option cannot be
specified for an open cursor.

If the SQL_CURSOR_TYPE fOption is changed to a cursor type that does not support
the current value of SQL_CONCURRENCY, the value of SQL_CONCURRENCY is not
automatically changed to a supported value, and no error will be reported until
SQLExecDirect or SQLPrepare is called.

If the driver supports the SELECT_FOR_UPDATE statement, and such a statement is
executed while the value of SQL_CONCURRENCY is set to
SQL_CONCUR_READ_ONLY, an error will be returned. If the value of
SQL_CONCURRENCY is changed to a value that the driver supports for some value
of SQL_CURSOR_TYPE, but not for the current value of SQL_CURSOR_TYPE, the
value of SQL_CURSOR_TYPE is not automatically changed to a supported value,
and no error will be reported until SQLExecDirect or SQLPrepare is called.

If the data source does not support the specified concurrency, the driver substitutes
a different concurrency and returns SQLSTATE 01S02 (Option value changed). For
SQL_CONCUR_VALUES, the driver substitutes SQL_CONCUR_ROWVER, and vice
versa. For SQL_CONCUR_LOCK, the driver substitutes, in order,
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

fOption vParam Contents

(2 of 4)
12-300 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
SQL_CURSOR_TYPE A 32-bit integer value that specifies the cursor type:

■ SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.

■ SQL_CURSOR_STATIC = The data in the result set is static.

■ SQL_CURSOR_KEYSET_DRIVEN = The driver saves and uses the keys for the
number of rows specified in the SQL_KEYSET_SIZE statement option.

■ SQL_CURSOR_DYNAMIC = The driver only saves and uses the keys for the rows
in the row set.

The default value is SQL_CURSOR_FORWARD_ONLY. This option cannot be
specified for an open cursor and can also be set through the crowKeyset argument
in SQLSetScrollOptions.

If the data source does not support the specified cursor type, the driver substitutes
a different cursor type and returns SQLSTATE 01S02 (Option value changed). For a
mixed or dynamic cursor, the driver substitutes a key-set-driven cursor. A key-set-
driven cursor is always set to zero.

SQL_KEYSET_SIZE

UNSUPPORTED

A 32-bit integer value that specifies the number of rows in the key set for a key-set-
driven cursor. The key-set size is 0 and cannot be changed.

If the specified size exceeds the maximum key-set size, the driver substitutes that
size and returns SQLSTATE 01S02 (Option value changed).

SQLExtendedFetch returns an error if the key-set size is greater than 0 and less than
the row-set size.

SQL_MAX_LENGTH A 32-bit integer value that specifies the maximum amount of data that the driver
returns from a character or binary column. If vParam is less than the length of the
available data, SQLFetch or SQLGetData truncates the data and returns
SQL_SUCCESS. If vParam is 0 (the default), the driver attempts to return all available
data.

If the specified length is less than the minimum amount of data that the data source
can return (the minimum is 254 bytes on many data sources), or greater than the
maximum amount of data that the data source can return, the driver substitutes
that value and returns SQLSTATE 01S02 (Option value changed).

This option is intended to reduce network traffic and should only be supported
when the data source (as opposed to the driver) in a multiple-tier driver can
implement it. To truncate data, an application should specify the maximum buffer
length in the cbValueMax argument in SQLBindCol or SQLGetData.

In ODBC 1.0, this statement option only applied to SQL_LONGVARCHAR and
SQL_LONGVARBINARY columns.

fOption vParam Contents

(3 of 4)
INFORMIX-CLI Function Reference 12-301

SQLSetStmtOption
SQL_MAX_ROWS A 32-bit integer value corresponding to the maximum number of rows to return to
the application for a SELECT statement. If vParam equals 0 (the default), then the
driver returns all rows.

This option is intended to reduce network traffic. Conceptually, it is applied when
the result set is created and limits the result set to the first vParam rows.

If the specified number of rows exceeds the number of rows that the data source
can return, the driver substitutes that value and returns SQLSTATE 01S02 (Option
value changed).

SQL_NOSCAN A 32-bit integer value that specifies whether the driver does not scan SQL strings
for escape clauses:

■ SQL_NOSCAN_OFF = The driver scans SQL strings for escape clauses (the
default).

■ SQL_NOSCAN_ON = The driver does not scan SQL strings for escape clauses.
Instead, the driver sends the statement directly to the data source.

SQL_RETRIEVE_DATA A 32-bit integer value:

■ SQL_RD_ON = SQLExtendedFetch retrieves data after it positions the cursor to
the specified location. This is the default.

■ SQL_RD_OFF = SQLExtendedFetch does not retrieve data after it positions the
cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can verify if a row
exists without incurring the overhead of retrieving rows.

SQL_ROWSET_SIZE A 32-bit integer value that specifies the number of rows in the row set. This is the
number of rows returned by each call to SQLExtendedFetch. The default value is 1.

If the specified row set size exceeds the maximum row set size that the data source
supports, the driver substitutes that value and returns SQLSTATE 01S02 (Option
value changed).

This option can be specified for an open cursor and can also be set through the
crowRowset argument in SQLSetScrollOptions.

fOption vParam Contents

(4 of 4)
12-302 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
Code Example
See SQLExtendedFetch.

Related Functions

♦

For Information About See

Canceling statement processing SQLCancel

Returning the setting of a connection option SQLGetConnectOption

Returning the setting of a statement option SQLGetStmtOption

Setting a connection option SQLSetConnectOption
INFORMIX-CLI Function Reference 12-303

SQLSpecialColumns
SQLSpecialColumns
SQLSpecialColumns retrieves the following information about columns
within a specified table:

■ The optimal set of columns that uniquely identifies a row in the table

■ Columns that are automatically updated when any value in the row
is updated by a transaction

Syntax
RETCODE SQLSpecialColumns(hstmt, fColType, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, fScope, fNullable)

The SQLSpecialColumns function accepts the following arguments.

Level 1

Deputed Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fColType Input Type of column to return. Must be one of the following values:

■ SQL_BEST_ROWID: Returns the optimal column or set of
columns that, by retrieving values from the column or
columns, allows any row in the specified table to be uniquely
identified. A column can be either a pseudo-column specifi-
cally designed for this purpose or the column or columns of
any unique index for the table.

■ SQL_ROWVER: Returns the column or columns in the specified
table, if any, that are automatically updated by the data source
when any value in the row is updated by any transaction.

UCHAR FAR * szTableQualifier Input Qualifier name for the table. If a driver supports qualifiers for
some tables but not for others, as when the driver retrieves data
from different DBMSs, an empty string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier

(1 of 2)
12-304 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

UCHAR FAR * szTableOwner Input Owner name for the table. If a driver supports owners for some
tables but not for others, such as when the driver retrieves data
from different DBMSs, an empty string ("") denotes those tables
that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner

UCHAR FAR * szTableName Input Table name

SWORD cbTableName Input Length of szTableName

UWORD fScope Input Minimum required scope of the row ID. The returned row ID
might be of greater scope. It must be one of the following:

■ SQL_SCOPE_CURROW: The row ID is guaranteed to be valid
only while positioned on that row. A later reselect using row ID
might not return a row if the row was updated or deleted by
another transaction.

■ SQL_SCOPE_TRANSACTION: The row ID is guaranteed to be
valid for the duration of the current transaction.

■ SQL_SCOPE_SESSION: The row ID is guaranteed to be valid for
the duration of the session (across transaction boundaries).

UWORD fNullable Input Determines whether to return special columns that can have a
NULL value. It must be one of the following:

■ SQL_NO_NULLS: Exclude special columns that can have NULL
values.

■ SQL_NULLABLE: Return special columns even if they can have
NULL values.

Deputed Argument Use Description

(2 of 2)
INFORMIX-CLI Function Reference 12-305

SQLSpecialColumns
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory- allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(1 of 2)
12-306 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
Usage
SQLSpecialColumns is provided so that applications can provide their own
custom scrollable-cursor functionality, similar to the functionality that
SQLExtendedFetch and SQLSetStmtOption provide.

S1090 Invalid string or
buffer length

(DM) The value of one of the length arguments
was less than 0 but not equal to SQL_NTS.

The value of one of the length arguments
exceeded the maximum-length value for the
corresponding qualifier or name. The maximum
length of each qualifier or name can be obtained
by calling SQLGetInfo with the fInfoType values:

SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, or
SQL_MAX_TABLE_NAME_LEN

S1097 Column type out of
range

(DM) An invalid fColType value was specified.

S1098 Scope type out of
range

(DM) An invalid fScope value was specified.

S1099 Nullable type out of
range

(DM) An invalid fNullable value was specified.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

The driver or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set. The time-
out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-307

SQLSpecialColumns
When the fColType argument is SQL_BEST_ROWID, SQLSpecialColumns
returns the column or columns that uniquely identify each row in the table.
These columns can always be used in a SELECT list or WHERE clause.
However, SQLColumns does not necessarily return these columns. If no
columns uniquely identify each row in the table, SQLSpecialColumns
returns a row set with no rows; a subsequent call to SQLFetch or
SQLExtendedFetch on the hstmt returns SQL_NO_DATA_FOUND.

If the fColType, fScope, or fNullable arguments specify characteristics that the
data source does not support, SQLSpecialColumns returns a result set with
no rows (as opposed to the function returning SQL_ERROR with SQLSTATE
S1C00 (Driver not capable)). A subsequent call to SQLFetch or
SQLExtendedFetch on the hstmt returns SQL_NO_DATA_FOUND.

SQLSpecialColumns returns the results as a standard result set, ordered by
SCOPE. The following table lists the columns in the result set.

The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual length of
the COLUMN_NAME column, an application can call SQLGetInfo with the
SQL_MAX_COLUMN_NAME_LEN option.

Column Name
Informix SQL
Data Type Comments

SCOPE SMALLINT Actual scope of the row ID. Contains one of the following values:

SQL_SCOPE_CURROW
SQL_SCOPE_TRANSACTION
SQL_SCOPE_SESSION

NULL is returned when fColType is SQL_ROWVER.

For a description of each value, see the description of “fScope” on
page 12-305.

COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

DATA_TYPE SMALLINT
not NULL

INFORMIX-CLI SQL data type. See “SQL Data Types” on page B-2.

TYPE_NAME VARCHAR(128)
not NULL

Informix SQL data type. See “SQL Data Types” on page B-2.

(1 of 2)
12-308 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
Once the application retrieves values for SQL_BEST_ROWID, the application
can use these values to reselect that row within the defined scope. The
SELECT statement is guaranteed to return either no rows or one row.

If an application reselects a row based on the row ID column or columns and
the row is not found, the application can assume that the row was deleted or
the row ID columns were modified. The opposite is not true: Even if the row
ID has not changed, the other columns in the row might have changed.

Columns returned for column type SQL_BEST_ROWID are useful for
applications that need to scroll forward and backward within a result set to
retrieve the most recent data from a set of rows. The row ID column or
columns are guaranteed not to change while positioned on that row.

PRECISION INTEGER The precision of the column on the data source. NULL is returned for
data types where precision is not applicable. For more information
concerning precision, see “Precision, Scale, Length, and Display
Size” on page B-5.”

LENGTH INTEGER The length in bytes of data transferred on an SQLGetData or
SQLFetch operation if SQL_C_DEFAULT is specified. For numeric
data, this size might be different than the size of the data stored on
the data source. This value is the same as the PRECISION column for
character or binary data. For more information, see “Precision, Scale,
Length, and Display Size” on page B-5.

SCALE SMALLINT The scale of the column on the data source. NULL is returned for data
types where scale is not applicable. For more information
concerning scale, see “Precision, Scale, Length, and Display Size” on
page B-5.

PSEUDO_COLUMN SMALLINT Returns one of the following values to indicate whether the column
is a pseudo-column:

SQL_PC_UNKNOWN
SQL_PC_PSEUDO
SQL_PC_NOT_PSEUDO

Important: For maximum interoperability, pseudo-columns should not be
quoted with the identifier quote character that SQLGetInfo returns.

Column Name
Informix SQL
Data Type Comments

(2 of 2)
INFORMIX-CLI Function Reference 12-309

SQLSpecialColumns
The row ID column or columns might remain valid even when the cursor is
not positioned on the row; the application can determine this by checking the
SCOPE column in the result set.

Columns returned for column type SQL_ROWVER are useful for applications
that need the ability to check if any columns in a given row have been
updated while the row was reselected using the row ID. For example, after re-
selecting a row using row ID, the application can compare the previous
values in the SQL_ROWVER columns to the ones last fetched. If the value in a
SQL_ROWVER column differs from the previous value, the application can
alert the user that data on the display has changed.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys
12-310 INFORMIX-CLI Programmer’s Manual

SQLStatistics
SQLStatistics
SQLStatistics retrieves a list of statistics about a single table and the indexes
associated with the table. The driver returns this information as a result set.

Syntax
RETCODE SQLStatistics(hstmt, szTableQualifier,
cbTableQualifier,szTableOwner, cbTableOwner, szTableName,
cbTableName, fUnique, fAccuracy)

The SQLStatistics function accepts the following arguments.

Typedef Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports quali-
fiers for some tables but not for others, as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Owner name. If a driver supports owners
for some tables but not for others, such as
when the driver retrieves data from
different DBMSs, an empty string ("")
denotes those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

(1 of 2)

Level 1
INFORMIX-CLI Function Reference 12-311

SQLStatistics
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

UWORD fUnique Input Type of index:

SQL_INDEX_UNIQUE or SQL_INDEX_ALL

UWORD fAccuracy Input The importance of the CARDINALITY and
PAGES columns in the result set:

■ SQL_ENSURE requests that the driver
unconditionally retrieve the statistics.

■ SQL_QUICK requests that the driver
retrieve results only if they are readily
available from the server. In this case,
the driver does not ensure that the
values are current.

Typedef Argument Use Description

(2 of 2)
12-312 INFORMIX-CLI Programmer’s Manual

SQLStatistics
If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory- allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the
corresponding qualifier or name.

S1100 Uniqueness option
type out of range

(DM) An invalid fUnique value was specified.

(1 of 2)
INFORMIX-CLI Function Reference 12-313

SQLStatistics
Usage
SQLStatistics returns information about a single table as a standard result set,
ordered by NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME, and
SEQ_IN_INDEX. The result set combines statistics information for the table
with information about each index. The following table lists the columns in
the result set.

Important: SQLStatistics might not return all indexes. Applications can use any
valid index, regardless of whether SQLStatistics returns it.

S1101 Accuracy option
type out of range

(DM) An invalid fAccuracy value was specified.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

The driver or data source did not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set. The time-
out period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
12-314 INFORMIX-CLI Programmer’s Manual

SQLStatistics
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name
Informix SQL
Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier of the table to
which the statistic or index applies; NULL if
not applicable to the data source. If a driver
supports qualifiers for some tables but not
for others, such as when the driver retrieves
data from different DBMSs, it returns an
empty string ("") for those tables that do not
have qualifiers.

TABLE_OWNER VARCHAR(128) Table-owner identifier of the table to which
the statistic or index applies; NULL if not
applicable to the data source. If a driver
supports owners for some tables but not for
others, such as when the driver retrieves
data from different DBMSs, it returns an
empty string ("") for those tables that do not
have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier of the table to which the
statistic or index applies

NON_UNIQUE SMALLINT Indicates whether the index prohibits
duplicate values:

■ TRUE if the index values can be non-
unique.

■ FALSE if the index values must be unique.

■ NULL is returned if TYPE is
SQL_TABLE_STAT.

(1 of 3)
INFORMIX-CLI Function Reference 12-315

SQLStatistics
INDEX_QUALIFIER VARCHAR(128) The identifier that is used to qualify the
index name doing a DROP INDEX; NULL is
returned if an index qualifier is not
supported by the data source or if TYPE is
SQL_TABLE_STAT. If a non-null value is
returned in this column, it must be used to
qualify the index name on a DROP INDEX
statement; otherwise, the TABLE_OWNER
name should be used to qualify the index
name.

INDEX_NAME VARCHAR(128) Index identifier; NULL is returned if TYPE is
SQL_TABLE_STAT.

TYPE SMALLINT
not NULL

Type of information being returned:

■ SQL_TABLE_STAT indicates a statistic for
the table.

■ SQL_INDEX_CLUSTERED indicates a
clustered index.

■ SQL_INDEX_HASHED indicates a hashed
index.

SQL_INDEX_OTHER indicates another type
of index.

SEQ_IN_INDEX SMALLINT Column-sequence number in index
(starting with 1); NULL is returned if TYPE is
SQL_TABLE_STAT.

COLUMN_NAME VARCHAR(128) Column identifier. If the column is based on
an expression, such as SALARY + BENEFITS,
the expression is returned; if the expression
cannot be determined, an empty string is
returned. If the index is a filtered index,
each column in the filter condition is
returned; this might require more than one
row. NULL is returned if TYPE is
SQL_TABLE_STAT.

Column Name
Informix SQL
Data Type Comments

(2 of 3)
12-316 INFORMIX-CLI Programmer’s Manual

SQLStatistics
If the row in the result set corresponds to a table, the driver sets TYPE to
SQL_TABLE_STAT and sets NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME,
SEQ_IN_INDEX, COLUMN_NAME, and COLLATION to NULL. If
CARDINALITY or PAGES are not available from the data source, the driver sets
them to NULL.

Code Example
For a code example of a similar function, see SQLColumns.

COLLATION CHAR(1) Sort sequence for the column; “A” for
ascending; “D” for descending; NULL is
returned if column sort sequence is not
supported by the data source or if TYPE is
SQL_TABLE_STAT.

CARDINALITY INTEGER Cardinality of table or index; number of
rows in table if TYPE is SQL_TABLE_STAT;
number of unique values in the index if
TYPE is not SQL_TABLE_STAT; NULL is
returned if the value is not available from
the data source.

PAGES INTEGER Number of pages used to store the index or
table; number of pages for the table if TYPE
is SQL_TABLE_STAT; number of pages for the
index if TYPE is not SQL_TABLE_STAT; NULL
is returned if the value is not available from
the data source, or if not applicable to the
data source.

FILTER_CONDITION VARHAR(128) If the index is a filtered index, this is the
filter condition, such as SALARY > 30000; if
the filter condition cannot be determined,
this is an empty string.

NULL if the index is not a filtered index, it
cannot be determined whether the index is
a filtered index, or TYPE is SQL_TABLE_STAT.

Column Name
Informix SQL
Data Type Comments

(3 of 3)
INFORMIX-CLI Function Reference 12-317

SQLStatistics
Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning the columns of foreign keys SQLForeignKeys

Returning the columns of a primary key SQLPrimaryKeys
12-318 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
SQLTablePrivileges
SQLTablePrivileges returns a list of tables and the privileges associated with
each table. The driver returns the information as a result set on the specified
hstmt.

Syntax
RETCODE SQLTablePrivileges(hstmt, szTableQualifier,
cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName)

The SQLTablePrivileges function accepts the following arguments.

Typedef Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Table qualifier. If a driver supports quali-
fiers for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, an empty string ("")
denotes those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner names. If a
driver supports owners for some tables
but not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables that
do not have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table names.

SWORD cbTableName Input Length of szTableName.

Level 2
INFORMIX-CLI Function Reference 12-319

SQLTablePrivileges
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver was unable to allocate memory
required to support execution or completion of the
function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

(1 of 2)
12-320 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
Usage
The szTableOwner and szTableName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 12-8.

SQLTablePrivileges returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and PRIVILEGE. The
following table lists the columns in the result set.

Important: SQLTablePrivileges might not return privileges for all tables. Applica-
tions can use any valid table, regardless of whether SQLTablePrivileges returns it.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the corre-
sponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

A string search pattern was specified for the table
owner, table name, or column name and the data
source does not support search patterns for one or
more of those arguments.

The driver or data source does not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data source
returned the result set. The time-out period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-321

SQLTablePrivileges
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME columns, an
application can call SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, and SQL_MAX_TABLE_NAME_LEN options.

Column Name
Informix SQL
Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier; NULL if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have
qualifiers.

TABLE_OWNER VARCHAR(128) Table-owner identifier; NULL if not appli-
cable to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier.

GRANTOR VARCHAR(128) Identifier of the user who granted the
privilege; NULL if not applicable to the data
source.

GRANTEE VARCHAR(128)
not NULL

Identifier of the user to whom the privilege
was granted.

(1 of 2)
12-322 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
PRIVILEGE VARCHAR(128)
not NULL

Identifies the table privilege. Can be one of
the following or a data-source-specific
privilege:

■ SELECT: The grantee is permitted to
retrieve data for one or more columns of
the table.

■ INSERT: The grantee is permitted to insert
new rows containing data for one or more
columns into to the table.

■ UPDATE: The grantee is permitted to
update the data in one or more columns of
the table.

■ DELETE: The grantee is permitted to delete
rows of data from the table.

■ REFERENCES: The grantee is permitted to
refer to one or more columns of the table
within a constraint (for example, a unique,
referential, or table-check constraint).

The scope of action permitted the grantee by
a given table privilege is data source–
dependent. For example, the UPDATE
privilege might permit the grantee to update
all columns in a table on one data source and
only those columns for which the grantor has
the UPDATE privilege on another data source.

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to
grant the privilege to other users; “YES”,
“NO”, or NULL if unknown or not applicable
to the data source.

Column Name
Informix SQL
Data Type Comments

(2 of 2)
INFORMIX-CLI Function Reference 12-323

SQLTablePrivileges
Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or columns SQLColumnPrivileges

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning a list of tables in a data source SQLTables
12-324 INFORMIX-CLI Programmer’s Manual

SQLTables
SQLTables
SQLTables returns the list of table names that are stored in a specific data
source. The driver returns this information as a result set.

Syntax
RETCODE SQLTables(hstmt, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName,
szTableType, cbTableType)

The SQLTables function accepts the following arguments.

Typedef Argument Use Description

HSTMT hstmt Input Statement handle for retrieved results.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver supports quali-
fiers for some tables but not for others,
such as when a driver retrieves data from
different DBMSs, an empty string ("")
denotes those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner names.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table names. If a
driver supports owners for some tables
but not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables that
do not have owners.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szTableType Input List of table types to match.

SWORD cbTableType Input Length of szTableType.

Level 1
INFORMIX-CLI Function Reference 12-325

SQLTables
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR or SQL_INVALID_HANDLE

Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation canceled The function was called, but before it completed
execution, SQLCancel was called on the hstmt from
a different thread in a multithreaded application.

(1 of 2)
12-326 INFORMIX-CLI Programmer’s Manual

SQLTables
Usage
SQLTables lists all the tables in the requested range. A user might or might
not have SELECT privileges to any of these tables. To check accessibility, an
application can call SQLGetInfo and check the SQL_ACCESSIBLE_TABLES info
value.

Otherwise, the application must handle situations where the user selects a
table for which SELECT privileges are not granted.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length arguments
exceeded the maximum-length value for the corre-
sponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver or
data source does not support qualifiers.

A table owner was specified, but the driver or data
source does not support owners.

A string search pattern was specified for the table
owner or table name, but the data source does not
support search patterns for one or more of those
arguments.

The driver of data source does not support the
combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options.

S1T00 Time-out expired The time-out period expired before the data source
returned the requested result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

(2 of 2)
INFORMIX-CLI Function Reference 12-327

SQLTables
The szTableOwner and szTableName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 12-8.

To support enumeration of qualifiers, owners, and table types, SQLTables
defines the following special semantics for the szTableQualifier, szTableOwner,
szTableName, and szTableType arguments:

■ If szTableQualifier is a single percent character (%) and szTableOwner
and szTableName are empty strings, the result set contains a list of
valid qualifiers for the data source. (All the columns except the
TABLE_QUALIFIER column contain nulls.)

■ If szTableOwner is a single percent character (%) and szTableQualifier
and szTableName are empty strings, the result set contains a list of
valid owners for the data source. (All the columns except the
TABLE_OWNER column contain nulls.)

■ If szTableType is a single percent character (%), and szTableQualifier,
szTableOwner, and szTableName are empty strings, then the result set
contains a list of valid table types for the data source. (All the
columns except the TABLE_TYPE column contain nulls.)

If szTableType is not a percent character or an empty string, it must contain a
list of comma-separated values for the table types of interest. Each value in
the list must be in single quotes (' ') or unquoted. The following two lists
provide an example of these two different formats:

'TABLE','VIEW'
TABLE, VIEW

If the data source does not support a specified table type, SQLTables does not
return any results for that type.

SQLTables returns the results as a standard result set, ordered by
TABLE_TYPE, TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME. The
following table lists the columns in the result set.

Important: SQLTables might not return all qualifiers, owners, or tables. Applica-
tions can use any valid qualifier, owner, or table, regardless of whether SQLTables
returns it.
12-328 INFORMIX-CLI Programmer’s Manual

SQLTables
The lengths of VARCHAR columns, as the following table shows, are
maximums; the actual lengths depend on the data source. To determine the
actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_TABLE_NAME_LEN options.

Column Name
Informix SQL
Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier; NULL if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have
qualifiers.

TABLE_OWNER VARCHAR(128) Table-owner identifier; NULL if not appli-
cable to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have owners.

TABLE_NAME VARCHAR(128) Table identifier.

TABLE_TYPE VARCHAR(128) Table type; one of the following: “TABLE,”
“VIEW,” “SYSTEM TABLE,” “GLOBAL
TEMPORARY,” “LOCAL TEMPORARY,”
“ALIAS,” “SYNONYM,” or a data-source-
specific table type.

REMARKS VARCHAR(254) A description of the table.
INFORMIX-CLI Function Reference 12-329

SQLTables
Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

♦

For Information About See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or columns SQLColumnPrivileges

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning privileges for a table or tables SQLTablePrivileges
12-330 INFORMIX-CLI Programmer’s Manual

SQLTransact
SQLTransact
SQLTransact requests a commit or rollback operation for all active operations
on all hstmts associated with a connection. SQLTransact can also request that
a commit or rollback operation be performed for all connections associated
with the henv.

Syntax
RETCODE SQLTransact(henv, hdbc, fType)

The SQLTransact function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Typedef Argument Use Description

HENV henv Input Environment handle

HDBC hdbc Input Connection handle

UWORD fType Input One of the following two values:

SQL_COMMIT
SQL_ROLLBACK

Core
INFORMIX-CLI Function Reference 12-331

SQLTransact
Diagnostics
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you
can call SQLError to get the SQLSTATE value. The following table describes
the SQLSTATE values for the function. The return code for each SQLSTATE
value is SQL_ERROR unless an SQLSTATE description indicates otherwise.

If you are not using a driver manager, the driver returns the SQLSTATE value.
If you are using a driver manager, the notation (DM) at the beginning of an
SQLSTATE description indicates that the driver manager returns the
SQLSTATE value; otherwise, the driver returns the SQLSTATE value.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The hdbc was not in a connected state.

08007 Connection failure
during transaction

The connection associated with the hdbc failed
during the execution of the function; it cannot be
determined whether the requested COMMIT or
ROLLBACK occurred before the failure.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message that
SQLError returns in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required to
support execution or completion of the function.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called for
an hstmt associated with the hdbc and returned
SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters
or columns.

S1012 Invalid transaction
operation code

(DM) The value specified for the argument fType
was neither SQL_COMMIT nor SQL_ROLLBACK.

S1C00 Driver not capable The driver or data source does not support the
ROLLBACK operation.
12-332 INFORMIX-CLI Programmer’s Manual

SQLTransact
Usage
If hdbc is SQL_NULL_HDBC and henv is a valid environment handle, the driver
manager attempts to commit or roll back transactions on all connection
handles that are in a connected state. The driver manager calls SQLTransact
in the driver associated with each hdbc. The driver manager returns
SQL_SUCCESS only if it receives SQL_SUCCESS for each hdbc. If the driver
manager receives SQL_ERROR on one or more connection handles, it returns
SQL_ERROR to the application. To determine which connection(s) failed
during the COMMIT or ROLLBACK operation, the application can call
SQLError for each hdbc.

Important: The driver manager does not simulate a global transaction across all
hdbcs and therefore does not use two-phase commit protocols.

If hdbc is a valid connection handle, henv is ignored, and the driver manager
calls SQLTransact in the driver for the hdbc.

If hdbc is SQL_NULL_HDBC and henv is SQL_NULL_HENV, SQLTransact
returns SQL_INVALID_HANDLE.

If fType is SQL_COMMIT, SQLTransact issues a COMMIT request for all active
operations on any hstmt associated with an affected hdbc.

If fType is SQL_ROLLBACK, SQLTransact issues a ROLLBACK request for all
active operations on any hstmt associated with an affected hdbc. If no transac-
tions are active, SQLTransact returns SQL_SUCCESS with no effect on any data
sources.

If the driver is in manual-commit mode (by calling SQLSetConnectOption
with the SQL_AUTOCOMMIT option set to zero), a new transaction is started
implicitly when an SQL statement that can be contained within a transaction
is executed against the current data source.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.
INFORMIX-CLI Function Reference 12-333

SQLTransact
If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_DELETE, SQLTransact
closes and deletes all open cursors on all statement handles that are
associated with the hdbc and discards all pending results. SQLTransact leaves
any hstmt present in an allocated (unprepared) state; the application can
reuse them for subsequent SQL requests or can call SQLFreeStmt to deallocate
them.

If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_CLOSE, SQLTransact
closes all open cursors on all hstmts associated with the hdbc. SQLTransact
leaves any hstmt present in a prepared state; the application can call
SQLExecute for an hstmt associated with the hdbc without first calling
SQLPrepare.

If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_PRESERVE, SQLTransact
does not affect open cursors associated with the hdbc. Cursors remain at the
row to which they pointed before the call to SQLTransact.

For drivers and data sources that support transactions, calling SQLTransact
with either SQL_COMMIT or SQL_ROLLBACK when no transaction is active
returns SQL_SUCCESS (indicating that there is no work to be committed or
rolled back) and has no effect on the data source.

Drivers or data sources that do not support transactions (SQLGetInfo fOption
SQL_TXN_CAPABLE is 0) are effectively always in autocommit mode.
Therefore, calling SQLTransact with SQL_COMMIT returns SQL_SUCCESS.
However, calling SQLTransact with SQL_ROLLBACK results in SQLSTATE
S1C00 (Driver not capable), indicating that a rollback can never be
performed.

Related Functions

♦

For Information About See

Returning information about a driver or data source SQLGetInfo

Freeing a statement handle SQLFreeStmt
12-334 INFORMIX-CLI Programmer’s Manual

13
Chapter
Setup Shared Library Function
Reference
ConfigDSN . 13-3

ConfigTranslator. 13-7

13-2 INF
ORMIX-CLI Programmer’s Manual

This chapter describes the syntax of the driver-setup shared library
API, which consists of the function ConfigDSN, which can be in the driver
shared library or in a separate setup shared library.

This chapter also describes the syntax of the translator-setup shared library
API, which consists of the function ConfigTranslator, which can be in the
translator-setup shared library or in a separate-setup shared library.

For information on argument naming conventions, see “Arguments” on
page 12-4.

ConfigDSN
ConfigDSN adds, modifies, or deletes data sources. It might prompt the user
for connection information. It can be in the driver shared library or a
separate-setup shared library.

Syntax
BOOL ConfigDSN(hwndParent, fRequest, lpszDriver,
lpszAttributes)
Setup Shared Library Function Reference 13-3

ConfigDSN
The ConfigDSN function accepts the following arguments.

Returns
The function returns TRUE if it is successful. It returns FALSE if it fails.

Usage
ConfigDSN receives connection information from the installer shared library
as a list of attributes in the form of keyword-value pairs. Each pair is termi-
nated with a null byte, and the entire list is null terminated (that is, two null
bytes mark the end of the list). The keywords that ConfigDSN uses are the
same as those that SQLBrowseConnect and SQLDriverConnect use, except
ConfigDSN does not accept the DRIVER keyword. As in SQLBrowseConnect
and SQLDriverConnect, the keywords and their values should not contain
the []{ }(),;?*=!@\ characters, and the value of the DSN keyword cannot
consist of blanks only. Because of the registry grammar, keywords and data-
source names cannot contain the backslash (\) character.

Type Argument Use Description

HWND hwndParent Input Parent window handle. The function will not
display any dialog boxes if the handle is null.

UINT fRequest Input Type of request. fRequest must contain one of the
following values:

■ ODBC_ADD_DSN
Add a new data source.

■ ODBC_CONFIG_DSN
Configure (modify) an existing data source.

■ ODBC_REMOVE_DSN
Remove an existing data source.

LPCSTR lpszDriver Input Driver description (usually the name of the
associated DBMS) presented to users instead of the
physical driver name.

LPCSTR lpszAttributes Input List of attributes in the form of keyword-value
pairs. For information about the list structure, see
“Comments.”
13-4 INFORMIX-CLI Programmer’s Manual

ConfigDSN
For example, to configure a data source that requires a user ID, password, and
database name, a setup application might pass the following keyword-value
pairs:

DSN=Personnel Data\0UID=Smith\0PWD=Sesame\0DATABASE=Personnel\0\0

For more information about these keywords, see “SQLDriverConnect” on
page 12-94.

To display a dialog box, hwndParent must not be null.

Adding a Data Source

If a data-source name is passed to ConfigDSN in lpszAttributes, ConfigDSN
checks that the name is valid. If the data-source name matches an existing
data-source name and hwndParent is null, ConfigDSN overwrites the existing
name. If it matches an existing name and hwndParent is not null, ConfigDSN
prompts the user to overwrite the existing name.

If lpszAttributes contains enough information to connect to a data source,
ConfigDSN can add the data source or display a dialog box with which the
user can change the connection information. If lpszAttributes does not contain
enough information to connect to a data source, ConfigDSN must determine
the necessary information; if hwndParent is not null, it displays a dialog box
to retrieve the information from the user.

If ConfigDSN displays a dialog box, it must display any connection infor-
mation passed to it in lpszAttributes. In particular, if a data-source name was
passed to it, ConfigDSN displays that name but does not allow the user to
change it. ConfigDSN can supply default values for connection information
not passed to it in lpszAttributes.

If ConfigDSN cannot get complete connection information for a data source,
it returns FALSE.

If ConfigDSN can get complete connection information for a data source, it
calls SQLWriteDSNToIni in the installer shared library to add the new data-
source specification. SQLWriteDSNToIni adds the data-source name to the
ODBC Data Sources section, creates the data-source-specification section, and
adds the Driver keyword with the driver description as its value. ConfigDSN
calls SQLWritePrivateProfileString in the installer shared library to add more
keywords and values that the driver needs.
Setup Shared Library Function Reference 13-5

ConfigDSN
Modifying a Data Source

To modify a data source, a data-source name must be passed to ConfigDSN
in lpszAttributes.

If hwndParent is null, ConfigDSN uses the information in lpszAttributes. If
hwndParent is not null, ConfigDSN displays a dialog box that uses the infor-
mation in lpszAttributes. The user can modify the information before
ConfigDSN stores it.

If the data-source name was changed, ConfigDSN first calls
SQLRemoveDSNFromIni in the installer shared library to remove the
existing data-source specification. It then follows the steps in the previous
section to add the new data-source specification. If the data-source name was
not changed, ConfigDSN calls SQLWritePrivateProfileString in the installer
shared library to make any other changes. ConfigDSN cannot delete or
change the value of the Driver keyword.

Deleting a Data Source

To delete a data source, a data-source name must be passed to ConfigDSN in
lpszAttributes. ConfigDSN then calls SQLRemoveDSNFromIni in the installer
shared library to remove the data source.
13-6 INFORMIX-CLI Programmer’s Manual

ConfigTranslator
ConfigTranslator
ConfigTranslator returns a default translation option for a translator. It can be
in the translator shared library or a separate setup shared library.

Syntax
BOOL ConfigTranslator(hwndParent, pvOption)

The ConfigTranslator function accepts the following arguments.

Returns
The function returns TRUE if it is successful. It returns FALSE if it fails.

Comments
If the translator supports only a single translation option, ConfigTranslator
returns TRUE and sets pvOption to the 32-bit option. Otherwise, it determines
the default translation option to use. ConfigTranslator can display a dialog
box with which a user selects a default translation option.

Related Functions

Type Argument Use Description

HWND hwndParent Input Parent window handle. The function will
not display any dialog boxes if the handle is
null.

DWORD FAR * pvOption Output A 32-bit translation option.

For information about See

Getting a translation option SQLGetConnectOption

Setting a translation option SQLSetConnectOption
Setup Shared Library Function Reference 13-7

A
Appendix
INFORMIX-CLI Error
Codes
SQLError returns SQLSTATE values as defined by the X/Open
and SQL Access Group SQL CAE specification (1992). SQLSTATE
values are strings that contain five characters. The following
table lists SQLSTATE values that the Informix driver can return
for SQLError.

SQLSTATE Values
The character-string value returned for an SQLSTATE consists of
a two-character class value followed by a three-character
subclass value. A class value of 01 indicates a warning and is
accompanied by a return code of SQL_SUCCESS_WITH_INFO.
Class values other than 01, except for the class IM, indicate an
error and are accompanied by a return code of SQL_ERROR. The
class IM is specific to warnings and errors that derive from the
implementation of INFORMIX-CLI. The subclass value 000 in any
class is for implementation-defined conditions within the given
class. ANSI SQL-92 defines the assignment of class and subclass
values.

SQLSTATE Values
A return value of SQL_SUCCESS normally indicates a function has executed
successfully, although the SQLSTATE 00000 also indicates success.

SQL STATE Error Can be returned from

01000 General warning All functions except:

SQLAllocEnv
SQLError

01002 Disconnect error SQLDisconnect

01004 Data truncated SQLBrowseConnect
SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData

01006 Privilege not revoked SQLExecDirect
SQLExecute

01S00 Invalid connection string attribute SQLBrowseConnect
SQLDriverConnect

01S01 Error in row SQLExtendedFetch

01S02 Option value changed SQLSetConnectOption
SQLSetStmtOption

01S03 No rows updated or deleted SQLExecDirect
SQLExecute

01S04 More than one row updated or deleted SQLExecDirect
SQLExecute

07001 Wrong number of parameters SQLExecDirect
SQLExecute

(1 of 13)
A-2 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
07006 Restricted data-type-attribute violation SQLBindParameter
SQLExtendedFetch
SQLFetch
SQLGetData

08001 Unable to connect to data source SQLBrowseConnect
SQLConnect
SQLDriver Connect

08002 Connection in use SQLBrowseConnect
SQLConnect
SQLDriver Connect
SQLSetConnectOption

08003 Connection not open SQLAllocStmt
SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql
SQLSetConnectOption
SQLTransact

08004 Data source rejected establishment of
connection

SQLBrowseConnect
SQLConnect
SQLDriver Connect

08007 Connection failure during transaction SQLTransact

SQL STATE Error Can be returned from

(2 of 13)
INFORMIX-CLI Error Codes A-3

SQLSTATE Values
08S01 Communication-link failure SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLGetData
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

21S01 Insert value list does not match column list SQLExecDirect
SQLPrepare

21S02 Degree of derived table does not match
column list

SQLExecDirect
SQLPrepare

22001 String data right truncation SQLPutData

22002 Indicator variable required but not supplied SQLExtendedFetch
SQLFetch
SQLGetData

SQL STATE Error Can be returned from

(3 of 13)
A-4 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
22003 Numeric value out of range SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData

22005 Error in assignment SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPrepare
SQLPutData

22008 DATETIME field overflow SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPutData

22012 Division by zero SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData

22026 String data, length mismatch SQLParamData

23000 Integrity-constraint violation SQLExecDirect
SQLExecute

SQL STATE Error Can be returned from

(4 of 13)
INFORMIX-CLI Error Codes A-5

SQLSTATE Values
24000 Invalid cursor state SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetCursorName
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000 Invalid transaction state SQLDisconnect

28000 Invalid authorization specification SQLBrowseConnect
SQLConnect
SQLDriverConnect

34000 Invalid cursor name SQLExecDirect
SQLPrepare
SQLSetCursorName

37000 Syntax error or access violation SQLExecDirect
SQLNativeSql
SQLPrepare

3C000 Duplicate cursor name SQLSetCursorName

SQL STATE Error Can be returned from

(5 of 13)
A-6 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
40001 Serialization failure SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

42000 Syntax error or access violation SQLExecDirect
SQLExecute
SQLPrepare

70100 Operation aborted SQLCancel

IM001 Driver does not support this function All functions except:

SQLAllocEnv
SQLDataSources
SQLDrivers
SQLError
SQLFreeConnect
SQLFreeEnv
SQLGetFunctions

IM002 Data-source name not found and no default
driver specified

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM003 Specified driver could not be loaded SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM004 Driver SQLAllocEnv failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM005 Driver SQLAllocConnect failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM006 Driver SQLSetConnectOption failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM007 No data source or driver specified; dialog
prohibited

SQLDriverConnect

IM008 Dialog failed SQLDriverConnect

SQL STATE Error Can be returned from

(6 of 13)
INFORMIX-CLI Error Codes A-7

SQLSTATE Values
IM009 Unable to load translation shared library SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

IM010 Data-source name too long SQLBrowseConnect
SQLDriverConnect

IM011 Driver name too long SQLBrowseConnect
SQLDriverConnect

IM012 DRIVER keyword syntax error SQLBrowseConnect
SQLDriverConnect

IM013 Trace file error All functions.

S0001 Base table or view already exists SQLExecDirect
SQLPrepare

S0002 Base table not found SQLExecDirect
SQLPrepare

S0011 Index already exists SQLExecDirect
SQLPrepare

S0012 Index not found SQLExecDirect
SQLPrepare

S0021 Column already exists SQLExecDirect
SQLPrepare

S0022 Column not found SQLExecDirect
SQLPrepare

S1000 General error All functions except:

SQLAllocEnv
SQLError

S1001 Memory-allocation failure All functions except:

SQLError
SQLFreeConnect
SQLFreeEnv

SQL STATE Error Can be returned from

(7 of 13)
A-8 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
S1002 Invalid column number SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003 Program type out of range SQLBindCol
SQLBindParameter
SQLGetData

S1004 SQL data type out of range SQLBindParameter
SQLGetTypeInfo

S1009 Invalid argument value SQLAllocConnect
SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetStmtOption

SQL STATE Error Can be returned from

(8 of 13)
INFORMIX-CLI Error Codes A-9

SQLSTATE Values
S1010 Function-sequence error SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

SQL STATE Error Can be returned from

(9 of 13)
A-10 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
S1011 Operation invalid at this time SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1012 Invalid transaction operation code specified SQLTransact

S1015 No cursor name available SQLGetCursorName

S1090 Invalid string or buffer length SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091 Descriptor type out of range SQLColAttributes

SQL STATE Error Can be returned from

(10 of 13)
INFORMIX-CLI Error Codes A-11

SQLSTATE Values
S1092 Option type out of range SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1093 Invalid parameter number SQLBindParameter

S1094 Invalid scale value SQLBindParameter

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

S1098 Scope type out of range SQLSpecialColumns

S1099 Nullable type out of range SQLSpecialColumns

S1100 Uniqueness option type out of range SQLStatistics

S1101 Accuracy option type out of range SQLStatistics

S1103 Direction option out of range SQLDataSources
SQLDrivers

S1104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

S1106 Fetch type out of range SQLExtendedFetch

S1107 Row value out of range SQLExtendedFetch
SQLParamOptions
SQLSetScrollOptions

S1108 Concurrency option out of range SQLSetScrollOptions

S1109 Invalid cursor position SQLExecute
SQLExecDirect
SQLGetData
SQLGetStmtOption

S1110 Invalid driver completion SQLDriverConnect

SQL STATE Error Can be returned from

(11 of 13)
A-12 INFORMIX-CLI Programmer’s Manual

SQLSTATE Values
S1111 Invalid bookmark value SQLExtendedFetch

S1C00 Driver not capable SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectOption
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

SQL STATE Error Can be returned from

(12 of 13)
INFORMIX-CLI Error Codes A-13

SQLSTATE Values
S1T00 Time-out expired SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQL STATE Error Can be returned from

(13 of 13)
A-14 INFORMIX-CLI Programmer’s Manual

B
Appendix
Data Types
This appendix discusses the following topics:

■ Types of data types

■ SQL data types

■ C data types

■ Transferring data

■ Converting data

Types of Data Types
The following table describes the types of data types that
INFORMIX-CLI supports.

Type of Data Type Description Example

Informix SQL data
type

Data types that your Informix
database server uses

CHAR(n)

INFORMIX-CLI SQL
data type

Data types that correspond to
the Informix SQL data types

SQL_CHAR

Standard C data type Data types that your C
compiler defines

unsigned char

Typedef for a
standard C data type

Typedefs that correspond to
the standard C data types

UCHAR

INFORMIX-CLI C
data type

Data types that correspond to
the standard C data types

SQL_C_CHAR

SQL Data Types
SQL Data Types
For detailed information about the Informix SQL data types, see the Informix
Guide to SQL: Reference.

Standard SQL Data Types
The following table lists the standard Informix SQL data types and their
corresponding INFORMIX-CLI data types.

Informix SQL
Data Type

INFORMIX-CLI SQL
Data Type (fSqlType) Description

BYTE SQL_LONGVARBINARY Binary data of variable length

CHAR(n), CHARACTER(n) SQL_CHAR Character string of fixed length n (1 ≤ n ≤ 32,767)

CHARACTER VARYING(m, r) SQL_VARCHAR Character string of variable length with maximum
length m (1 ≤ m ≤ 255) and minimum amount of
reserved space r (0 ≤ r < m)

DATE SQL_DATE Calendar date

DATETIME SQL_TIMESTAMP Calendar date and time of day

DEC(p, s), DECIMAL(p, s) SQL_DECIMAL Signed numeric value with precision p and scale s
(1 ≤ p ≤ 32; 0 ≤ s ≤ p)

DOUBLE PRECISION SQL_DOUBLE Signed numeric value with the same characteristics
as the double data type in C

FLOAT SQL_DOUBLE Signed numeric value with the same characteristics
as the double data type in C

INT, INTEGER SQL_INTEGER Signed numeric value with precision 10, scale 0,
and range n (-2,147,483,647 ≤ n ≤ 2,147,483,647)

MONEY(p, s) SQL_DECIMAL Signed numeric value with precision p and scale s
(1 ≤ p ≤ 32; 0 ≤ s ≤ p)

NUMERIC SQL_DECIMAL Signed numeric value with precision p and scale s
(1 ≤ p ≤ 32; 0 ≤ s ≤ p)

 (1 of 2)
B-2 INFORMIX-CLI Programmer’s Manual

Additional SQL Data Types for GLS
Additional SQL Data Types for GLS
The following table lists the additional Informix SQL data types for GLS and
their corresponding INFORMIX-CLI data types. INFORMIX-CLI does not
provide full GLS support.

♦

REAL SQL_REAL Signed numeric value with the same characteristics
as the float data type in C

SERIAL SQL_INTEGER Sequential INTEGER

SMALLFLOAT SQL_REAL Signed numeric value with the same characteristics
as the float data type in C

SMALLINT SQL_SMALLINT Signed numeric value with precision 5, scale 0, and
range n (–32,767 ≤ n ≤ 32,767)

TEXT SQL_LONGVARCHAR Character string of variable length

VARCHAR(m, r) SQL_VARCHAR Character string of variable length with maximum
length m (1 ≤ m ≤ 255) and minimum amount of
reserved space r (0 ≤ r < m)

Informix SQL
Data Type

INFORMIX-CLI SQL
Data Type (fSqlType) Description

 (2 of 2)

Informix SQL
Data Type

INFORMIX-CLI SQL
Data Type (fSqlType) Description

NCHAR(n) SQL_CHAR Character string of fixed length
n (1 ≤ n ≤ 32,767). Collation depends on
locale.

NVARCHAR(m, r) SQL_VARCHAR Character string of variable length with
maximum length m (1 ≤ m ≤ 255) and
minimum amount of reserved space
r (0 ≤ r < m). Collation depends on locale.

GLS
Data Types B-3

Additional SQL Data Types for Universal Server
Additional SQL Data Types for Universal Server
The following table lists the additional Informix SQL data types for Universal
Server and their corresponding INFORMIX-CLI data types.

To use the INFORMIX-CLI SQL data types for Universal Server, include
infxcli.h. ♦

Informix SQL
Data Type

INFORMIX-CLI SQL
Data Type (fSqlType) Description

BOOLEAN SQL_BIT ‘t’ or ‘f’

DISTINCT DISTINCT can correspond
to any INFORMIX-CLI
SQL data type. For more
information about
DISTINCT, see the Informix
Guide to SQL: Tutorial.

UDT that is stored the same way as
its source data type but has
different casts and functions

INT8 SQL_BIGINT Signed numeric value with
precision 10, scale 0, and range
n (–(263 - 1) ≤ n ≤ 263 – 1)

LVARCHAR SQL_LONGVARCHAR Character string of variable length

OPAQUE (fixed) SQL_INFX_UDT_FIXED Fixed-length UDT with an internal
structure that the database server
cannot access

OPAQUE (varying) SQL_INFX_UDT_VARYING Variable-length UDT with an
internal structure that the
database server cannot access

SERIAL8 SQL_BIGINT Sequential INT8

IUS
B-4 INFORMIX-CLI Programmer’s Manual

Precision, Scale, Length, and Display Size
Precision, Scale, Length, and Display Size
The functions that get and set precision, scale, length, and display size for
SQL values have size limitations for their input arguments. Therefore, these
values are limited to the size of an SDWORD that has a maximum value of
2,147,483,647. The following table describes these values.

Value
Description for a
Numeric Data Type

Description for a
Non-Numeric Data Type

Precision Maximum number of digits. Either the maximum length or
the specified length.

Scale Maximum number of digits to
the right of the decimal point.
For floating point values, the
scale is undefined because the
number of digits to the right of
the decimal point is not fixed.

Not applicable.

Length Maximum number of bytes that
a function returns when a value
is transferred to its default C data
type.

Maximum number of bytes that
a function returns when a value
is transferred to its default C data
type. The length does not
include the NULL termination
byte.

Display size Maximum number of bytes
needed to display data in
character form.

Maximum number of bytes
needed to display data in
character form.
Data Types B-5

Precision, Scale, Length, and Display Size
Standard SQL Data Types

The following table describes the precision, scale, length, and display size for
the standard INFORMIX-CLI SQL data types.

INFORMIX-CLI SQL
Data Type (fSqlType) Description

SQL_CHAR Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: The specified length. For example, the length of
CHAR(10) is 10 bytes.

Display size: Same as the length.

SQL_DATE Precision: 10. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: 6 bytes.

Display size: 10 digits in the format yyyy-mm-dd.

SQL_DECIMAL Precision: The specified precision. For example, the
precision of DECIMAL (12, 3) is 12.

Scale: The specified scale. For example, the scale of
DECIMAL(12, 3) is 3.

Length: The specified precision plus 2. For example, the
length of DECIMAL(12, 3) is 14 bytes. The two additional
bytes are used for the sign and the decimal points because
functions return this data type as a character string.

Display size: Same as the length.

SQL_DOUBLE Precision: 15. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: 8 bytes.

Display size: 22 digits. The digits are for a sign, 15 numeric
characters, a decimal point, the letter E, another sign, and
2 more numeric characters.

 (1 of 3)
B-6 INFORMIX-CLI Programmer’s Manual

Precision, Scale, Length, and Display Size
SQL_INTEGER Precision: 10. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: 0. SQLBindParameter ignores the value of ibScale for
this data type.

Length: 4 bytes.

Display size: 11 digits. One digit is for the sign.

SQL_LONGVARBINARY Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: The maximum length. If a function cannot
determine the maximum length, it returns
SQL_NO_TOTAL.

Display size: The maximum length times 2. If a function
cannot determine the maximum length, it returns
SQL_NO_TOTAL.

SQL_LONGVARCHAR Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: The maximum length. If a function cannot
determine the maximum length, it returns
SQL_NO_TOTAL.

Display size: Same as the length.

SQL_REAL Precision: 7. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: 4 bytes.

Display size: 13 digits. The digits are for a sign, 7 numeric
characters, a decimal point, the letter E, another sign, and
2 more numeric characters.

INFORMIX-CLI SQL
Data Type (fSqlType) Description

 (2 of 3)
Data Types B-7

Precision, Scale, Length, and Display Size
SQL_SMALLINT Precision: 5. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: 0. SQLBindParameter ignores the value of ibScale for
this data type.

Length: 2 bytes.

Display size: 6 digits. One digit is for the sign.

SQL_TIMESTAMP Precision: 8. SQLBindParameter ignores the value of
cbColDef for this data type.

Scale: The number of digits in the FRACTION field.

Length: 16 bytes.

Display size: 19 or more digits:

■ If the scale of the time stamp is 0: 19 digits in the format
yyyy-mm-dd hh:mm:ss.

■ If the scale of the time stamp exceeds 0: 20 digits plus
digits for the FRACTION field in the format yyyy-mm-
dd hh:mm:ss.f...

SQL_VARCHAR Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the
value of ibScale for this data type.

Length: The specified length. For example, the length of
VARCHAR(10) is 10 bytes.

Display size: Same as the length.

INFORMIX-CLI SQL
Data Type (fSqlType) Description

 (3 of 3)
B-8 INFORMIX-CLI Programmer’s Manual

Precision, Scale, Length, and Display Size
Additional SQL Data Types for Universal Server

The following table describes the precision, scale, length, and display size for
the INFORMIX-CLI SQL data types for Universal Server.

♦

IUS

INFORMIX-CLI SQL
Data Type (fSqlType) Description

SQL_BIGINT Precision: 19. SQLBindParameter ignores the value of cbColDef for this data
type.

Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.

Length: 8 bytes.

Display size: 20 digits. One digit is for the sign.

SQL_BIT Precision: 1. SQLBindParameter ignores the value of cbColDef for this data
type.

Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.

Length: 1 byte.

Display size: 1 digit.

SQL_INFX_UDT_FIXED Precision: Variable value. To determine this value, call a function that returns
the precision for a column.

Scale: Not applicable. A function that returns the scale for a column returns
-1 for this data type.

Length: Variable value. To determine this value, call a function that returns
the length for a column.

Display Size: Variable value. To determine this value, call a function that
returns the display size for a column.

SQL_INFX_UDT_VARYING Precision: Variable value. To determine this value, call a function that returns
the precision for a column.

Scale: Not applicable. A function that returns the scale for a column returns
-1 for this data type.

Length: Variable value. To determine this value, call a function that returns
the length for a column.

Display Size: Variable value. To determine this value, call a function that
returns the display size for a column.

SQL_LONGVARCHAR See the description in the table for the standard SQL data types.
Data Types B-9

C Data Types
C Data Types
An INFORMIX-CLI application uses C data types to store values that the
application processes.

Character C Data Type
The following table lists the character C data type that INFORMIX-CLI
provides. It also lists the corresponding INFORMIX-CLI typedef and standard
C data type.

Important: String arguments in INFORMIX-CLI functions are unsigned. Therefore,
you need to cast a CString object as an unsigned string before you use it as an
argument in an INFORMIX-CLI function.

Numeric C Data Types
The following table lists the numeric C data types that INFORMIX-CLI
provides. It also lists the corresponding INFORMIX-CLI typedefs and
standard C data types.

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

SQL_C_CHAR UCHAR FAR * unsigned char FAR *

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

SQL_C_DOUBLE SDOUBLE signed double

SQL_C_FLOAT SFLOAT signed float

SQL_C_LONG SDWORD signed long int

SQL_C_SHORT SWORD signed short int

SQL_C_SLONG SDWORD signed long int

 (1 of 2)
B-10 INFORMIX-CLI Programmer’s Manual

Date and Time Stamp C Data Types
Date and Time Stamp C Data Types
The following table lists the date and time stamp C data types that
INFORMIX-CLI provides. It also lists the corresponding INFORMIX-CLI
typedefs and standard C data types.

SQL_C_SSHORT SWORD signed short int

SQL_C_SS SCHAR signed char

SQL_C_TINYINT SCHAR signed char

SQL_C_ULONG UDWORD unsigned long int

SQL_C_USHORT UWORD unsigned short int

SQL_C_UTINYINT UCHAR unsigned char

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT {
SWORD year;
UWORD month;
UWORD day;

}

SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct tagTIMESTAMP_STRUCT {
SWORD year;
UWORD month;
UWORD day;
UWORD hour;
UWORD minute;
UWORD second;
UDWORD fraction;

}

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

 (2 of 2)
Data Types B-11

Binary C Data Type
Binary C Data Type
The following table lists the binary C data type that INFORMIX-CLI provides.
It also lists the corresponding INFORMIX-CLI typedef and standard C data
type.

Additional C Data Type for Universal Server
The following table lists the additional C data type that INFORMIX-CLI
provides for Universal Server. It also lists the corresponding INFORMIX-CLI
typedef and standard C data type.

To use the INFORMIX-CLI C data types for Universal Server, include infxcli.h.
♦

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

SQL_C_BINARY UCHAR FAR * unsigned char FAR *

INFORMIX-CLI C
Data Type (fCType) INFORMIX-CLI Typedef Standard C Data Type

SQL_C_BIT UCHAR unsigned char

IUS
B-12 INFORMIX-CLI Programmer’s Manual

Transferring Data
Transferring Data
Among data sources that use the same DBMS, an application can safely
transfer data in the internal form used by that DBMS. For a particular piece of
data, the SQL data types must be the same in the source and target data
sources. The C data type is SQL_C_BINARY.

When the application calls SQLFetch, SQLExtendedFetch, or SQLGetData to
retrieve the data from the source data source, the driver retrieves the data
from the data source and transfers it, without conversion, to a storage
location of type SQL_C_BINARY. When the application calls SQLExecute,
SQLExecDirect, or SQLPutData to send the data to the target data source, the
driver retrieves the data from the storage location and transfers it, without
conversion, to the target data source.

The binary representation of INT8 and SERIAL8 is an array of two unsigned
long integers followed by a short integer that indicates the sign field. The sign
field is 1 for a positive value, -1 for a negative value, or 0 for a null value.

Important: Applications that transfer any data (except binary data) in this manner
are not interoperable among DBMSs.
Data Types B-13

Converting Data
Converting Data
The word convert is used in this section in a broad sense; it includes the
transfer of data from one storage location to another without a conversion in
data type.

The following table shows the supported conversions between the Informix
SQL data types and the INFORMIX-CLI C data types. A solid circle (●)
indicates a supported conversion.

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data Type SQ
L

_C
_B

IN
A

R
Y

SQ
L

_C
_C

H
A

R

SQ
L

_C
_D

A
T

E

SQ
L

_C
_D

O
U

B
L

E

SQ
L

_C
_F

L
O

A
T

SQ
L

_C
_L

O
N

G

SQ
L

_C
_S

H
O

R
T

SQ
L

_C
_S

L
O

N
G

SQ
L

_C
_S

SH
O

R
T

SQ
L

_C
_S

T
IN

Y
IN

T

SQ
L

_C
_T

IM
E

ST
A

M
P

SQ
L

_C
_T

IN
Y

IN
T

SQ
L

_C
_U

L
O

N
G

SQ
L

_C
_U

SH
O

R
T

SQ
L

_C
_U

T
IN

Y
IN

T

BYTE ● ●

CHAR, CHARACTER ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

CHARACTER VARYING ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

DATE ● ● ● ●

DATETIME ● ● ● ●

DEC, DECIMAL ● ● ● ● ● ● ● ● ● ● ● ● ●

DOUBLE PRECISION ● ● ● ● ● ● ● ● ● ● ● ● ●

FLOAT ● ● ● ● ● ● ● ● ● ● ● ● ●

INT, INTEGER ● ● ● ● ● ● ● ● ● ● ● ● ●

MONEY ● ● ● ● ● ● ● ● ● ● ● ● ●

NUMERIC ● ● ● ● ● ● ● ● ● ● ● ● ●

REAL ● ● ● ● ● ● ● ● ● ● ● ● ●

 (1 of 2)
B-14 INFORMIX-CLI Programmer’s Manual

Converting Data
Additional Conversions for GLS

The following table shows the supported conversions between the additional
Informix SQL data types for GLS and the INFORMIX-CLI C data types. A solid
circle (●) indicates a supported conversion.

♦

SERIAL ● ● ● ● ● ● ● ● ● ● ● ● ●

SMALLFLOAT ● ● ● ● ● ● ● ● ● ● ● ● ●

SMALLINT ● ● ● ● ● ● ● ● ● ● ● ● ●

TEXT ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

VARCHAR ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data Type SQ
L

_C
_B

IN
A

R
Y

SQ
L

_C
_C

H
A

R

SQ
L

_C
_D

A
T

E

SQ
L

_C
_D

O
U

B
L

E

SQ
L

_C
_F

L
O

A
T

SQ
L

_C
_L

O
N

G

SQ
L

_C
_S

H
O

R
T

SQ
L

_C
_S

L
O

N
G

SQ
L

_C
_S

SH
O

R
T

SQ
L

_C
_S

T
IN

Y
IN

T

SQ
L

_C
_T

IM
E

ST
A

M
P

SQ
L

_C
_T

IN
Y

IN
T

SQ
L

_C
_U

L
O

N
G

SQ
L

_C
_U

SH
O

R
T

SQ
L

_C
_U

T
IN

Y
IN

T

NCHAR ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

NVARCHAR ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data Type SQ
L

_C
_B

IN
A

R
Y

SQ
L

_C
_C

H
A

R

SQ
L

_C
_D

A
T

E

SQ
L

_C
_D

O
U

B
L

E

SQ
L

_C
_F

L
O

A
T

SQ
L

_C
_L

O
N

G

SQ
L

_C
_S

H
O

R
T

SQ
L

_C
_S

L
O

N
G

SQ
L

_C
_S

SH
O

R
T

SQ
L

_C
_S

T
IN

Y
IN

T

SQ
L

_C
_T

IM
E

ST
A

M
P

SQ
L

_C
_T

IN
Y

IN
T

SQ
L

_C
_U

L
O

N
G

SQ
L

_C
_U

SH
O

R
T

SQ
L

_C
_U

T
IN

Y
IN

T

 (2 of 2)

GLS
Data Types B-15

Converting Data
Additional Conversions for Universal Server

The following table shows the supported conversions between the additional
Informix SQL data types for Universal Server and the INFORMIX-CLI C data
types, including the additional INFORMIX-CLI C data type for Universal
Server. A solid circle (●) indicates a supported conversion.

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data
Type SQ

L
_C

_B
IN

A
R

Y

SQ
L

_C
_B

IT

SQ
L

_C
_C

H
A

R

SQ
L

_C
_D

A
T

E

SQ
L

_C
_D

O
U

B
L

E

SQ
L

_C
_F

L
O

A
T

SQ
L

_C
_L

O
N

G

SQ
L

_C
_S

H
O

R
T

SQ
L

_C
_S

L
O

N
G

SQ
L

_C
_S

SH
O

R
T

SQ
L

_C
_S

T
IN

Y
IN

T

SQ
L

_C
_T

IM
E

ST
A

M
P

SQ
L

_C
_T

IN
Y

IN
T

SQ
L

_C
_U

L
O

N
G

SQ
L

_C
_U

SH
O

R
T

SQ
L

_C
_U

T
IN

Y
IN

T

BOOLEAN ● ● ●

DISTINCT ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

INT8 ● ● ● ● ●

LVARCHAR ● ●

OPAQUE a ● ●

SERIAL8 ● ● ● ● ●

a Use SQL_C_CHAR to access an OPAQUE value in the external format as a string. Use
SQL_C_BINARY to access an OPAQUE value in the internal binary format.

IUS
B-16 INFORMIX-CLI Programmer’s Manual

Converting Data
The following table shows the supported conversions between the Informix
SQL data types and the additional INFORMIX-CLI C data type for Universal
Server. A solid circle (●) indicates a supported conversion.

♦

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data Type SQ
L

_C
_B

IT

BYTE

CHAR, CHARACTER ●

CHARACTER VARYING ●

DATE

DATETIME

DEC, DECIMAL ●

DOUBLE PRECISION ●

FLOAT ●

INT, INTEGERS ●

MONEY ●

NUMERIC ●

REAL ●

SERIAL ●

SMALLFLOAT ●

SMALLINT ●

TEXT ●

VARCHAR ●
Data Types B-17

Default C Data Types
Additional Conversions for GLS and Universal Server

The following table shows the supported conversions between the additional
Informix SQL data types for GLS and the additional INFORMIX-CLI C data
type for Universal Server. A solid circle (●) indicates a supported conversion.

♦

Default C Data Types
If an application specifies SQL_C_DEFAULT for the fCType argument in
SQLBindCol, SQLGetData, or SQLBindParameter, the driver assumes that
the C data type of the output or input buffer corresponds to the SQL data type
of the column or parameter to which the buffer is bound. For each
INFORMIX-CLI SQL data type, the following table shows the default C data
type.

INFORMIX-CLI C Data Type (fCType)

Informix SQL Data Type SQ
L

_C
_B

IT

NCHAR ●

NVARCHAR ●

INFORMIX-CLI SQL Data Type (fSqlType) Default INFORMIX-CLI C Data Type (fCType)

SQL_CHAR SQL_C_CHAR

SQL_DATE SQL_C_DATE

SQL_DECIMAL SQL_C_CHAR

SQL_DOUBLE SQL_C_DOUBLE

SQL_INTEGER SQL_C_SLONG

SQL_LONGVARBINARY SQL_C_BINARY

SQL_LONGVARCHAR SQL_C_CHAR

 (1 of 2)

GLS

IUS
B-18 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
Additional Default C Data Types for Universal Server

For each additional INFORMIX-CLI SQL data type for Universal Server, the
following table shows the default C data type.

♦

Converting Data from SQL to C
When an application calls SQLExtendedFetch, SQLFetch, or SQLGetData, the
driver retrieves the data from the data source. If necessary, it converts the
data from the data type in which the driver retrieved it to the data type
specified by the fCType argument in SQLBindCol or SQLGetData. Finally, it
stores the data in the location pointed to by the rgbValue argument in
SQLBindCol or SQLGetData.

SQL_REAL SQL_C_FLOAT

SQL_SMALLINT SQL_C_SSHORT

SQL_TIMESTAMP SQL_C_TIMESTAMP

SQL_VARCHAR SQL_C_CHARS

INFORMIX-CLI SQL Data Type (fSqlType) Default INFORMIX-CLI C Data Type (fCType)

SQL_BIGINT SQL_C_CHAR

SQL_BIT SQL_C_BITS

SQL_INFX_UDT_FIXED None a

SQL_INFX_UDT_VARYING None a

a This INFORMIX-CLI SQL data type does not have a default INFORMIX-CLI C
data type. Since this INFORMIX-CLI SQL data type can contain binary data or
character data, you must bind a variable for this INFORMIX-CLI SQL data type
before you fetch a corresponding value. The data type of the bound variable
specifies the C data type for the value.

INFORMIX-CLI SQL Data Type (fSqlType) Default INFORMIX-CLI C Data Type (fCType)

 (2 of 2)

IUS
Data Types B-19

Converting Data from SQL to C
The tables in the following sections describe how the driver or data source
converts data that is retrieved from the data source; drivers are required to
support conversions to all INFORMIX-CLI C data types from the
INFORMIX-CLI SQL data types that they support. For a given INFORMIX-CLI
SQL data type, the first column of the table lists the legal input values of the
fCType argument in SQLBindCol and SQLGetData. The second column lists
the outcomes of a test, often using the cbValueMax argument specified in
SQLBindCol or SQLGetData, which the driver performs to determine
whether it can convert the data. For each outcome, the third and fourth
columns list the values of the rgbValue and pcbValue arguments specified in
SQLBindCol or SQLGetData after the driver attempts to convert the data.

The last column lists the SQLSTATE returned for each outcome by
SQLExtendedFetch, SQLFetch, or SQLGetData.

If the fCType argument in SQLBindCol or SQLGetData contains a value for an
INFORMIX-CLI C data type that is not shown in the table for a given
INFORMIX-CLI SQL data type, SQLExtendedFetch, SQLFetch, or SQLGetData
returns SQLSTATE 07006 (Restricted data type attribute violation). If the
fCType argument contains a value that specifies a conversion from a driver-
specific SQL data type to an INFORMIX-CLI C data type and this conversion is
not supported by the driver, SQLExtendedFetch, SQLFetch, or SQLGetData
returns SQLSTATE S1C00 (Driver not capable).

Although the tables in this appendix do not show it, the pcbValue argument
contains SQL_NULL_DATA when the SQL data value is null. When SQL data
is converted to character C data, the character count returned in pcbValue
does not include the null-termination byte. If rgbValue is a null pointer,
SQLBindCol or SQLGetData returns SQLSTATE S1009 (Invalid argument
value).

The following terms and conventions are used in the tables:

■ Length of data is the number of bytes of C data that are available to
return in rgbValue, regardless of whether the data is truncated before
it returns to the application. For string data, this does not include the
null-termination byte.

■ Display size is the total number of bytes that are needed to display the
data in character format.

■ Words in italics represent function arguments or elements of the
INFORMIX-CLI SQL grammar.
B-20 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
SQL-to-C: Character

The character INFORMIX-CLI SQL data types are:

■ SQL_CHAR

■ SQL_LONGVARCHAR

■ SQL_VARCHAR

The following table shows the INFORMIX-CLI C data types to which character
SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data < cbValueMax.

Length of data ≥ cbValueMax.

Data

Truncated data

Length of data

Length of data

N/A

01004

SQL_C_LONG
SQL_C_SHORT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TINYINT
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

Data converted without
truncation. b

Data converted with truncation
of fractional digits. b

Conversion of data would result
in loss of whole (as opposed to
fractional) digits. b

Data is not a numeric-literal. b

Data

Truncated data

Untouched

Untouched

Size of the C
data type

Size of the C
data type

Untouched

Untouched

N/A

01004

22003

22005

SQL_C_DOUBLE
SQL_C_FLOAT

Data is within the range of the
data type to which the number is
being converted. b

Data is outside the range of the
data type to which the number is
being converted. b

Data is not a numeric-literal. b

Data

Untouched

Untouched

Size of the C
data type

Untouched

Untouched

N/A

22003

22005

SQL_C_BINARY Length of data ≤ cbValueMax.

Length of data > cbValueMax.

Data

Truncated data

Length of data

Length of data

N/A

01004

 (1 of 2)
Data Types B-21

Converting Data from SQL to C
When character SQL data is converted to numeric, date, or time stamp C data,
leading and trailing spaces are ignored.

SQL_C_DATE Data value is a valid date-value. b

Data value is a valid timestamp-
value; time portion is zero. b

Data value is a valid timestamp-
value; time portion is non-zero.b, d

Data value is not a valid date-
value or timestamp-value. b

Data

Data

Truncated data

Untouched

6 c

6 c

6 c

Untouched

N/A

N/A

01004

22008

SQL_C_TIMESTAMP Data value is a valid timestamp-
value; fractional seconds portion
not truncated. b

Data value is a valid timestamp-
value; fractional seconds portion
truncated. b

Data value is a valid date-value. b

Data value is a valid time-value. b

Data value is not a valid date-
value, time-value, or timestamp-
value. b

Data

Truncated data

Data g

Data h

Untouched

16 c

16 c

16 c

16 c

Untouched

N/A

N/A

N/A

N/A

22008

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

c This is the size of the corresponding C data type.
e The date portion of timestamp-value is ignored.
f The fractional seconds portion of the time stamp is truncated.
g The time fields of the time stamp structure are set to zero.
h The date fields of the time stamp structure are set to the current date.

fCType Test rgbValue pcbValue SQLSTATE

 (2 of 2)
B-22 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
Additional SQL-to-C Character Data Conversion for Universal Server

The following table shows the additional INFORMIX-CLI C data type for
Universal Server to which character SQL data can be converted.

♦

SQL-to-C: Numeric

The numeric INFORMIX-CLI SQL data types are found in the following list:

■ SQL_DECIMAL

■ SQL_DOUBLE

■ SQL_INTEGER

■ SQL_REAL

■ SQL_SMALLINT

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BIT Data is 0 or 1.

Data is greater than 0, less
than 2, and not equal to 1.

Data is less than 0 or greater
than or equal to 2.

Data is not a numeric-literal.

Data

Truncated data

Untouched

Untouched

1 c

1 c

Untouched

Untouched

N/A

01004

22003

22005

c This is the size of the corresponding C data type.

IUS
Data Types B-23

Converting Data from SQL to C
The following table shows the INFORMIX-CLI C data types to which numeric
SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax.

Number of whole (as opposed
to fractional) digits <
cbValueMax.

Number of whole (as opposed
to fractional) digits ≥
cbValueMax.

Data

Truncated data

Untouched

Length of data

Length of data

Untouched

N/A

01004

22003

SQL_C_LONG
SQL_C_SHORT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TINYINT
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

Data converted without
truncation. b

Data converted with truncation
of fractional digits. b

Conversion of data would result
in loss of whole (as opposed to
fractional) digits. b

Data

Truncated data

Untouched

Size of the C
data type

Size of the C
data type

Untouched

N/A

01004

22003

SQL_C_DOUBLE
SQL_C_FLOAT

Data is within the range of the
data type to which the number
is being converted. b

Data is outside the range of the
data type to which the number
is being converted. b

Data

Untouched

Size of the C
data type

Untouched

N/A

22003

SQL_C_BINARY Length of data ≤ cbValueMax.

Length of data > cbValueMax.

Data

Untouched

Length of data

Untouched

N/A

22003

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

c This is the size of the corresponding C data type.
B-24 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
Additional SQL-to-C Numeric Data Conversion for Universal Server

The additional numeric INFORMIX-CLI SQL data type is SQL_BIGINT. The
previous table shows the INFORMIX-CLI C data types to which SQL_BIGINT
data can be converted. The following table shows the additional
INFORMIX-CLI C data type for Universal Server to which character SQL data
can be converted.

♦

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BIT Data is 0 or 1.

Data is greater than 0, less
than 2, and not equal to 1.

Data is less than 0 or greater
than or equal to 2.

Data is not a numeric-literal.

Data

Truncated data

Untouched

Untouched

1 c

1 c

Untouched

Untouched

N/A

01004

22003

22005

c This is the size of the corresponding C data type.

IUS
Data Types B-25

Converting Data from SQL to C
SQL-to-C: Bit

The bit INFORMIX-CLI SQL data type is SQL_BIT. Only Universal Server
supports SQL_BIT. The following table shows the INFORMIX-CLI C data types
to which bit SQL data can be converted.

When bit SQL data is converted to character C data, the possible values are
0 and 1. ♦

fCType Test rgbValue pcbValue SQLSTATE5

SQL_C_CHAR cbValueMax > 1.

cbValueMax ≤ 1.

Data

Untouched

1

Untouched

N/A

22003

SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_LONG
SQL_C_SHORT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TINYINT
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

None. b Data Size of the C
data type

N/A

SQL_C_BIT None. b Data 1 c N/A

SQL_C_BINARY cbValueMax ≥ 1.

cbValueMax < 1.

Data

Untouched

1

Untouched

N/A

22003

b The value of cbValueMax is ignored for this conversion. The driver assumes that
the size of rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.

IUS
B-26 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
SQL-to-C: Binary

The binary INFORMIX-CLI SQL data type is SQL_LONGVARBINARY. The
following table shows the INFORMIX-CLI C data types to which binary SQL
data can be converted.

When binary SQL data is converted to character C data, each byte (8 bits) of
source data is represented as two ASCII characters. These characters are the
ASCII character representation of the number in its hexadecimal form. For
example, a binary 00000001 is converted to “01” and a binary 11111111 is
converted to “FF.”

The driver always converts individual bytes to pairs of hexadecimal digits
and terminates the character string with a null byte. Because of this
conversion, if cbValueMax is even and is less than the length of the converted
data, the last byte of the rgbValue buffer is not used. (The converted data
requires an even number of bytes, the next-to-last byte is a null byte, and the
last byte cannot be used.)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) * 2 <
cbValueMax.

(Length of data) * 2 ≥
cbValueMax.

Data

Truncated data

Length of
data

Length of
data

N/A

01004

SQL_C_BINARY Length of data ≤
cbValueMax.

Length of data >
cbValueMax.

Data

Truncated data

Length of
data

Length of
data

N/A

01004
Data Types B-27

Converting Data from SQL to C
SQL-to-C: Date

The date INFORMIX-CLI SQL data type is SQL_DATE. The following table
shows the INFORMIX-CLI C data types to which date SQL data can be
converted.

When date SQL data is converted to character C data, the resulting string is
in the “yyyy-mm-dd” format.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax ≥ 11.

cbValueMax < 11.

Data

Untouched

10

Untouched

N/A

22003

SQL_C_BINARY Length of data ≤
cbValueMax.

Length of data >
cbValueMax.

Data

Untouched

Length of
data

Untouched

N/A

22003

SQL_C_DATE None. a Data 6 c N/A

SQL_C_TIMESTAMP None. a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that
the size of rgbValue is the size of the C data type.

b The time fields of the time stamp structure are set to zero.
c This is the size of the corresponding C data type.
B-28 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C
SQL-to-C: Time Stamp

The time stamp INFORMIX-CLI SQL data type is SQL_TIMESTAMP. The
following table shows the INFORMIX-CLI C data types to which time stamp
SQL data can be converted.

When time stamp SQL data is converted to character C data, the resulting
string is in the “yyyy-mm-dd hh:mm:ss[.f...]” format, where up to nine digits
can be used for fractional seconds. Except for the decimal point and fractional
seconds, the entire format must be used, regardless of the precision of the
time stamp SQL data type.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax > Display size.

20 ≤ cbValueMax ≤ Display size.

cbValueMax < 20.

Data

Truncated data b

Untouched

Length of data

Length of data

Untouched

N/A

01004

22003

SQL_C_BINARY Length of data ≤ cbValueMax.

Length of data > cbValueMax.

Data

Untouched

Length of data

Untouched

N/A

22003

SQL_C_DATE Time portion of time stamp is zero. a

Time portion of time stamp is
nonzero. a

Data

Truncated data c

6 f

6 f

N/A

01004

SQL_C_TIMESTAMP Fractional seconds portion of time
stamp is not truncated. a

Fractional seconds portion of time
stamp is truncated. a

Data e

Truncated data e

16 f

16 f

N/A

01004

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

b The fractional seconds of the time stamp are truncated.
c The time portion of the time stamp is truncated.
d The date portion of the time stamp is ignored.
e The fractional seconds portion of the time stamp is truncated.
f This is the size of the corresponding C data type.
Data Types B-29

Converting Data from SQL to C
SQL-to-C Data Conversion Examples

The following table illustrates how the driver converts SQL data to C data.

SQL Data Type SQL Data Value C Data Type cbValueMax rgbValue SQLSTATE

SQL_CHAR tigers SQL_C_CHAR 7 tigers\0 a N/A

SQL_CHAR tigers SQL_C_CHAR 6 tiger\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a N/A

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 — 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 N/A

SQL_DECIMAL 1234.56 SQL_C_SSHORT ignored 1234 01004

SQL_DECIMAL 1234.56 SQL_C_STINYINT ignored — 22003

SQL_DOUBLE 1.2345678 SQL_C_DOUBLE ignored 1.2345678 N/A

SQL_DOUBLE 1.2345678 SQL_C_FLOAT ignored 1.234567 N/A

SQL_DOUBLE 1.2345678 SQL_C_STINYINT ignored 1 N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 10 — 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31,
0,0,0,0 b

N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 — 22003

a “\0” represents a null-termination byte. The driver always null-terminates SQL_C_CHAR data.
b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.
B-30 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
Converting Data from C to SQL
When an application calls SQLExecute or SQLExecDirect, the driver retrieves
the data for any parameters that are bound with SQLBindParameter from
storage locations in the application. For data-at-execution parameters, the
application sends the parameter data with SQLPutData. If necessary, the
driver converts the data from the data type specified by the fCType argument
in SQLBindParameter to the data type specified by the fSqlType argument in
SQLBindParameter. Finally, the driver sends the data to the data source.

The tables in the following sections describe how the driver or data source
converts data sent to the data source; drivers are required to support conver-
sions from all INFORMIX-CLI C data types to the INFORMIX-CLI SQL data
types that they support. For a given INFORMIX-CLI C data type, the first
column of the table lists the legal input values of the fSqlType argument in
SQLBindParameter. The second column lists the outcomes of a test that the
driver performs to determine whether it can convert the data. The third
column lists the SQLSTATE that is returned for each outcome by
SQLExecDirect, SQLExecute, or SQLPutData. Data is sent to the data source
only if SQL_SUCCESS is returned.

If the fSqlType argument in SQLBindParameter contains a value for an
INFORMIX-CLI SQL data type that is not shown in the table for a given C data
type, then SQLBindParameter returns SQLSTATE 07006 (Restricted data type
attribute violation). If the fSqlType argument contains a driver-specific value
and the driver does not support the conversion from the specific
INFORMIX-CLI C data type to the driver-specific SQL data type, then
SQLBindParameter returns SQLSTATE S1C00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter are
both null pointers, then that function returns SQLSTATE S1009 (Invalid
argument value). Although it is not shown in the tables, an application sets
the value pointed to by the pcbValue argument of SQLBindParameter or the
value of the cbValue argument to SQL_NULL_DATA to specify a NULL SQL
data value. The application sets these values to SQL_NTS to specify that the
value in rgbValue is a null-terminated string.
Data Types B-31

Converting Data from C to SQL
The following terms are used in the tables:

■ Length of data is the number of bytes of SQL data that are available to
send to the data source, regardless of whether the data is truncated
before it goes to the data source. For string data, this does not include
the null-termination byte.

■ Column length and display size are defined for each SQL data type in
“Precision, Scale, Length, and Display Size” on page B-5.

■ Number of digits is the number of characters that represent a number,
including the minus sign, decimal point, and exponent (if needed).

■ Words in italics represent elements of the INFORMIX-CLI SQL syntax.

C-to-SQL: Character

The character INFORMIX-CLI C data type is SQL_C_CHAR. The following table
shows the INFORMIX-CLI SQL data types to which C character data can be
converted.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

Length of data ≤ Column length.

Length of data > Column length.

N/A

01004

SQL_DECIMAL
SQL_INTEGER
SQL_SMALLINT

Data converted without truncation.

Data converted with truncation of fractional
digits.

Conversion of data would result in loss of
whole (as opposed to fractional) digits.

Data value is not a numeric-literal.

N/A

01004

22003

22005

SQL_DOUBLE
SQL_REAL

Data is within the range of the data type to
which the number is being converted.

Data is outside the range of the data type to
which the number is being converted.

Data value is not a numeric-literal.

N/A

22003

22005

 (1 of 2)
B-32 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
When character C data is converted to date or time stamp SQL data, leading
and trailing blanks are ignored.

When character C data is converted to numeric, date, or time stamp SQL data,
leading and trailing blanks are ignored.

SQL_LONGVARBINARY (Length of data) / 2 ≤ Column length.

(Length of data) / 2 > Column length.

Data value is not a hexadecimal value.

N/A

01004

22005

SQL_DATE Data value is a valid INFORMIX-CLI-date-
literal.

Data value is a valid INFORMIX-CLI-
timestamp-literal; time portion is zero.

Data value is a valid INFORMIX-CLI-
timestamp-literal; time portion is non-zero.a

Data value is not a valid INFORMIX-CLI-date-
literal or INFORMIX-CLI-timestamp-literal.

N/A

N/A

01004

22008

SQL_TIMESTAMP Data value is a valid INFORMIX-CLI-
timestamp-literal; fractional seconds portion not
truncated.

Data value is a valid INFORMIX-CLI-
timestamp-literal; fractional seconds portion
truncated.

Data value is a valid INFORMIX-CLI-date-
literal. d

Data value is a valid INFORMIX-CLI-time-
literal. e

Data value is not a valid INFORMIX-CLI-date-
literal, INFORMIX-CLI-time-literal, or
INFORMIX-CLI-timestamp-literal.

N/A

01004

N/A

N/A

22008

a The time portion of the time stamp is truncated.
b The date portion of the time stamp is ignored.
c The fractional seconds portion of the time stamp is truncated.
d The time portion of the time stamp is set to zero.
e The date portion of the time stamp is set to the current date.

fSqlType Test SQLSTATE

 (2 of 2)
Data Types B-33

Converting Data from C to SQL
When character C data is converted to binary SQL data, each 2 bytes of
character data are converted to a single byte (8 bits) of binary data. Each 2
bytes of character data represent a number in hexadecimal form. For
example, “01” is converted to a binary 00000001 and “FF” is converted to a
binary 11111111.

The driver always converts pairs of hexadecimal digits to individual bytes
and ignores the null-termination byte. Because of this conversion, if the
length of the character string is odd, the last byte of the string (excluding the
null termination byte, if any) is not converted.

Additional C-to-SQL Character Data Conversion for Universal Server

The following table shows the additional INFORMIX-CLI SQL data types for
Universal Server to which character C data can be converted.

♦

fSqlType Test SQLSTATE

SQL_BIGINT Data converted without truncation.

Data converted with truncation of fractional digits.

Conversion of data would result in loss of whole (as
opposed to fractional) digits.

Data value is not a numeric-literal.

N/A

01004

22003

22005

SQL_BIT Data is 0 or 1.

Data is greater than 0, less than 2, and not equal to 1.

Data is less than 0 or greater than or equal to 2.

Data is not a numeric-literal.

N/A

01004

22003

22005

IUS
B-34 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
C-to-SQL: Numeric

The numeric INFORMIX-CLI C data types are:

■ SQL_C_DOUBLE

■ SQL_C_FLOAT

■ SQL_C_LONG

■ SQL_C_SHORT

■ SQL_C_SLONG

■ SQL_C_SSHORT

■ SQL_C_STINYINT

■ SQL_C_TINYINT

■ SQL_C_ULONG

■ SQL_C_USHORT

■ SQL_C_UTINYINT

The following table shows the INFORMIX-CLI SQL data types to which
numeric C data can be converted.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

Number of digits ≤ Column length.

Number of whole (as opposed to fractional)
digits ≤ Column length.

Number of whole (as opposed to fractional)
digits > Column length.

N/A

01004

22003

SQL_DECIMAL
SQL_INTEGER
SQL_SMALLINT

Data converted without truncation.

Data converted with truncation of fractional
digits.

Conversion of data would result in loss of
whole (as opposed to fractional) digits.

N/A

01004

22003

SQL_DOUBLE
SQL_REAL

Data is within the range of the data type to
which the number is being converted.

Data is outside the range of the data type to
which the number is being converted.

N/A

22003
Data Types B-35

Converting Data from C to SQL
The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the numeric C data types. The driver assumes that the size of
rgbValue is the size of the numeric C data type.

Additional C-to-SQL Numeric Data Conversion for Universal Server

The following table shows the additional INFORMIX-CLI SQL data types for
Universal Server to which numeric C data can be converted.

♦

fSqlType Test SQLSTATE

SQL_BIGINT Data converted without truncation.

Data converted with truncation of fractional digits.

Conversion of data would result in loss of whole (as
opposed to fractional) digits.

N/A

01004

22003

SQL_BIT Data is 0 or 1.

Data is greater than 0, less than 2, and not equal to 1.

Data is less than 0 or greater than or equal to 2.

N/A

01004

22003

IUS
B-36 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
C-to-SQL: Bit

The bit INFORMIX-CLI C data type is SQL_C_BIT. Only Universal Server
supports SQL_C_BIT. The following table shows the INFORMIX-CLI SQL data
types to which bit C data can be converted.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the bit C data type. The driver assumes that the size of
rgbValue is the size of the bit C data type. ♦

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

None. N/A

SQL_BIGINT
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_REAL
SQL_SMALLINT

None. N/A

SQL_BIT None. N/A

IUS
Data Types B-37

Converting Data from C to SQL
C-to-SQL: Binary

The binary INFORMIX-CLI C data type is SQL_C_BINARY. The following table
shows the INFORMIX-CLI SQL data types to which binary C data can be
converted.

Additional C-to-SQL Binary Data Conversion for Universal Server

The following table shows the additional INFORMIX-CLI SQL data types for
Universal Server to which binary C data can be converted.

♦

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

Length of data ≤ Column length.

Length of data > Column length.

N/A

01004

SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_REAL
SQL_SMALLINT

Length of data = SQL data length. a

Length of data ≠ SQL data length. a

N/A

22003

SQL_LONGVARBINARY Length of data ≤ Column length.

Length of data > Column length.

N/A

01004

SQL_DATE
SQL_TIMESTAMP

Length of data = SQL data length. a

Length of data ≠ SQL data length. a

N/A

22003

a The SQL data length is the number of bytes needed to store the data on the data
source. This may be different than the column length, as defined in “Precision,
Scale, Length, and Display Size” on page B-5.

fSqlType Test SQLSTATE

SQL_BIGINT Length of data = SQL data length. a

Length of data ≠ SQL data length. a

N/A

22003

SQL_BIT Length of data = SQL data length. a

Length of data ≠ SQL data length. a

N/A

22003

IUS
B-38 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
C-to-SQL: Date

The date INFORMIX-CLI C data type is SQL_C_DATE. The following table
shows the INFORMIX-CLI SQL data types to which date C data can be
converted.

For information about what values are valid in a SQL_C_DATE structure, see
“Date and Time Stamp C Data Types” on page B-11.

When date C data is converted to character SQL data, the resulting character
data is in the “yyyy-mm-dd” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the date C data type. The driver assumes that the size of
rgbValue is the size of the date C data type.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

Column length ≥ 10.

Column length < 10.

Data value is not a valid date.

N/A

22003

22008

SQL_DATE Data value is a valid date.

Data value is not a valid date.

N/A

22008

SQL_TIMESTAMP Data value is a valid date. a

Data value is not a valid date.

N/A

22008

a The time portion of the time stamp is set to zero.
Data Types B-39

Converting Data from C to SQL
C-to-SQL: Time Stamp

The time stamp INFORMIX-CLI C data type is SQL_C_TIMESTAMP. The
following table shows the INFORMIX-CLI SQL data types to which time stamp
C data can be converted.

For information about what values are valid in a SQL_C_TIMESTAMP
structure, see “Date and Time Stamp C Data Types” on page B-11.

When time stamp C data is converted to character SQL data, the resulting
character data is in the “yyyy-mm-dd hh:mm:ss[.f...]” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the time stamp C data type. The driver assumes that the size
of rgbValue is the size of the time stamp C data type.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

Column length ≥ Display size.

19 ≤ Column length < Display size. a

Column length < 19.

Data value is not a valid date.

N/A

01004

22003

22008

SQL_DATE Time fields are zero.

Time fields are non-zero. b

Data value does not contain a valid date.

N/A

01004

22008

SQL_TIMESTAMP Fractional seconds fields are not truncated.

Fractional seconds fields are truncated. d

Data value is not a valid time stamp.

N/A

01004

22008

a The fractional seconds of the time stamp are truncated.
b The time fields of the time stamp structure are truncated.
c The date fields of the time stamp structure are ignored.
d The fractional seconds fields of the time stamp structure are truncated.
B-40 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL
C-to-SQL Data Conversion Examples

The following table illustrates how the driver converts C data to SQL data.

C Data Type C Data Value SQL Data Type Column length SQL Data Value SQLSTATE

SQL_C_CHAR tigers\0 a SQL_CHAR 6 tigers N/A

SQL_C_CHAR tigers\0 a SQL_CHAR 5 tiger 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 8 b 1234.56 N/A

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 7 b 1234.5 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 4 — 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A

SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004

SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable — 22003

SQL_C_DATE 1992,12,31 c SQL_CHAR 10 1992-12-31 N/A

SQL_C_DATE 1992,12,31 c SQL_CHAR 9 — 22003

SQL_C_DATE 1992,12,31 c SQL_TIMESTAMP not applicable 1992-12-31
00:00:00.0

N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 22 1992-12-31
23:45:55.12

N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 21 1992-12-31
23:45:55.1

01004

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 18 — 22003

a “\0” represents a null-termination byte. The null-termination byte is required only if the length of the
data is SQL_NTS.

b In addition to bytes for numbers, one byte is required for a sign and another for the decimal point.
c The numbers in this list are the numbers stored in the fields of the DATE_STRUCT structure.
d The numbers in this list the numbers stored in the fields of the TIMESTAMP_STRUCT structure.
Data Types B-41

C
Appendix
Comparison of
INFORMIX-CLI and
Embedded SQL

This appendix compares INFORMIX-CLI and embedded SQL.

INFORMIX-CLI to Embedded SQL
The following table compares INFORMIX-CLI functions (core
ODBC) with embedded SQL statements. This comparison is
based on the X/Open and SQL Access Group SQL CAE specifi-
cation (1992).

INFORMIX-CLI uses a parameter marker in place of a host
variable, where a host variable occurs in embedded SQL.

INFORMIX-CLI to Embedded SQL
The SQL language is based on the X/Open and SQL Access Group SQL CAE
specification (1992).

INFORMIX-CLI Function
Embedded SQL
Statement Comments

SQLAllocEnv none Driver manager and driver memory
allocation.

SQLAllocConnect none Driver manager and driver memory
allocation.

SQLConnect CONNECT Association management.

SQLAllocStmt none Driver manager and driver memory
allocation.

SQLPrepare PREPARE The prepared SQL string can contain
any of the valid preparable functions
that the X/Open specification
defines, including ALTER, CREATE,
cursor-specification, searched DELETE,
dynamic SQL positioned DELETE,
DROP, GRANT, INSERT, REVOKE,
searched UPDATE, or dynamic SQL
positioned UPDATE.

SQLBindParameter SET DESCRIPTOR Dynamic SQL ALLOCATE
DESCRIPTOR and dynamic SQL SET
DESCRIPTOR. ALLOCATE
DESCRIPTOR would normally be
issued on the first call to
SQLBindParameter for an hstmt.
Alternatively, ALLOCATE
DESCRIPTOR can be called during
SQLAllocStmt, although this call
would not be needed by SQL state-
ments that do not contain embedded
parameters. The driver generates the
descriptor name.

SQLSetCursorName none The specified cursor name is used in
the DECLARE CURSOR statement that
SQLExecute or SQLExecDirect
generates.

(1 of 3)
C-2 INFORMIX-CLI Programmer’s Manual

INFORMIX-CLI to Embedded SQL
SQLGetCursorName none Driver cursor name management.

SQLExecute EXECUTE or
DECLARE CURSOR
and OPEN CURSOR

Dynamic SQL EXECUTE. If the SQL
statement requires a cursor, then a
dynamic SQL DECLARE CURSOR
statement and a dynamic SQL OPEN
are issued at this time.

SQLExecDirect EXECUTE
IMMEDIATE or
DECLARE CURSOR
and OPEN CURSOR

The INFORMIX-CLI function call
provides for support for a cursor
specification and statements allowed
in an EXECUTE IMMEDIATE dynamic
SQL statement. In the case of a cursor
specification, the call corresponds to
static SQL DECLARE CURSOR and
OPEN statements.

SQLNumResultCols GET DESCRIPTOR COUNT form of dynamic SQL GET
DESCRIPTOR.

SQLColAttributes GET DESCRIPTOR COUNT form of dynamic SQL GET
DESCRIPTOR or VALUE form of
dynamic SQL GET DESCRIPTOR with
field-name in {NAME, TYPE, LENGTH,
PRECISION, SCALE, NULLABLE}.

SQLDescribeCol GET DESCRIPTOR VALUE form of dynamic SQL GET
DESCRIPTOR with field-name in
{NAME, TYPE, LENGTH, PRECISION,
SCALE, NULLABLE}.

SQLBindCol none This function establishes output
buffers that correspond in usage to
host variables for static SQL FETCH,
and to an SQL DESCRIPTOR for
dynamic SQL FETCH cursor USING
SQL DESCRIPTOR descriptor.

INFORMIX-CLI Function
Embedded SQL
Statement Comments

(2 of 3)
Comparison of INFORMIX-CLI and Embedded SQL C-3

INFORMIX-CLI to Embedded SQL
SQLFetch FETCH Static or dynamic SQL FETCH. If the
call is a dynamic SQL FETCH, then
the VALUE form of GET DESCRIPTOR
is used, with field-name in {DATA,
INDICATOR}. DATA and INDICATOR
values are placed in output buffers
specified in SQLBindCol.

SQLRowCount GET DIAGNOSTICS Requested field ROW_COUNT.

SQLFreeStmt
(SQL_CLOSE option)

CLOSE Dynamic SQL CLOSE.

SQLFreeStmt
(SQL_DROP option)

none Driver manager and driver memory
deallocation.

SQLTransact COMMIT WORK or
COMMIT
ROLLBACK

None.

SQLDisconnect DISCONNECT Association management.

SQLFreeConnect none Driver manager and driver memory
deallocation.

SQLFreeEnv none Driver manager and driver memory
deallocation.

SQLCancel none None.

SQLError GET DIAGNOSTICS GET DIAGNOSTICS retrieves infor-
mation from the SQL diagnostics
area that pertains to the most
recently executed SQL statement.
This information can be retrieved
following execution and preceding
the deallocation of the statement.

INFORMIX-CLI Function
Embedded SQL
Statement Comments

(3 of 3)
C-4 INFORMIX-CLI Programmer’s Manual

Embedded SQL to INFORMIX-CLI
Embedded SQL to INFORMIX-CLI
The following tables list the relationship between the X/Open embedded
SQL language and corresponding INFORMIX-CLI functions. The section
number that appears in the first column of each table refers to the section of
the X/Open and SQL Access Group SQL CAE specification (1992).

Declarative Statements
The following table lists declarative statements.

Data Definition Statements
The following table lists data definition statements.

Section SQL Statement INFORMIX-CLI Function Comments

4.3.1 Static SQL
DECLARE CURSOR

none Issued implicitly by the
driver if a cursor specification
is passed to SQLExecDirect.

4.3.2 Dynamic SQL
DECLARE CURSOR

none The driver automatically
generates the cursor. To set a
name for the cursor, use
SQLSetCursorName. To
retrieve a cursor name, use
SQLGetCursorName.

Section SQL Statement INFORMIX-CLI Function Comments

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

ALTER TABLE
CREATE INDEX
CREATE TABLE
CREATE VIEW
DROP INDEX
DROP TABLE
DROP VIEW
GRANT
REVOKE

SQLPrepare,
SQLExecute,
or SQLExecDirect

None.
Comparison of INFORMIX-CLI and Embedded SQL C-5

Data Manipulation Statements
Data Manipulation Statements
The following table lists data manipulation statements.

Section SQL Statement INFORMIX-CLI Function Comments

5.2.1 CLOSE SQLFreeStmt (SQL_CLOSE
option)

None.

5.2.2 Positioned DELETE SQLExecDirect(...,
“DELETE FROM table-name
WHERE CURRENT OF
cursor-name”)

Driver-generated
cursor-name can be
obtained by calling
SQLGetCursorName.

5.2.3 Searched DELETE SQLExecDirect(...,
“DELETE FROM table-name
WHERE search-condition”)

None.

5.2.4 FETCH SQLFetch None.

5.2.5 INSERT SQLExecDirect
(...,“INSERT INTO table-
name...”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.2.6 OPEN none When a SELECT
statement is specified, a
cursor is opened
implicitly by
SQLExecute or
SQLExecDirect.

5.2.7 SELECT...INTO none Not supported.

5.2.8 Positioned UPDATE SQLExecDirect(...,
“UPDATE table-name SET
column-identifier =
expression...WHERE
CURRENT OF cursor-
name”)

Driver-generated
cursor-name can be
obtained by calling
SQLGetCursorName.

5.2.9 Searched UPDATE SQLExecDirect(...,
“UPDATE table-name SET
column-identifier =
expression...WHERE search-
condition”)

None.
C-6 INFORMIX-CLI Programmer’s Manual

Dynamic SQL Statements
Dynamic SQL Statements
The following table lists dynamic SQL statements.

Section SQL Statement INFORMIX-CLI Function Comments

5.3
(see 5.2.1)

Dynamic SQL
CLOSE

SQLFreeStmt
(SQL_CLOSE option)

None.

5.3
(see 5.2.2)

Dynamic SQL
Positioned
DELETE

SQLExecDirect(...,
“DELETE FROM table-
name WHERE
CURRENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and SQLExecute.

5.3
(see 5.2.8)

Dynamic SQL
Positioned
UPDATE

SQLExecDirect(...,
“UPDATE table-name
SET column-identifier =
expression...WHERE
CURRENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and SQLExecute.

5.3.3 ALLOCATE
DESCRIPTOR

None Descriptor information is
implicitly allocated and
attached to the hstmt by the
driver. Allocation occurs at
either the first call to
SQLBindParameter or at
SQLExecute or SQLExecDirect
time.

5.3.4 DEALLOCATE
DESCRIPTOR

SQLFreeStmt
(SQL_DROP option)

None.

5.3.5 DESCRIBE none None.

5.3.6 EXECUTE SQLExecute None.

5.3.7 EXECUTE
IMMEDIATE

SQLExecDirect None.

5.3.8 Dynamic SQL
FETCH

SQLFetch None.

(1 of 2)
Comparison of INFORMIX-CLI and Embedded SQL C-7

Transaction Control Statements
Transaction Control Statements
The following table lists transaction control statements.

5.3.9 GET
DESCRIPTOR

SQLNumResultCols
SQLDescribeCol
SQLColAttributes

COUNT FORM.
VALUE form with field-name in
{NAME, TYPE, LENGTH,
PRECISION, SCALE,
NULLABLE}.

5.3.10 Dynamic
SQL OPEN

SQLExecute None.

5.3.11 PREPARE SQLPrepare None.

5.3.12 SET
DESCRIPTOR

SQLBindParameter SQLBindParameter is
associated with only one hstmt
where a descriptor is applied
to any number of statements
with USING SQL DESCRIPTOR.

Section SQL Statement INFORMIX-CLI Function Comments

5.4.1 COMMIT WORK SQLTransact
(SQL_COMMIT option)

None.

5.4.2 ROLLBACK WORK SQLTransact
(SQL_ROLLBACK option)

None.

Section SQL Statement INFORMIX-CLI Function Comments

(2 of 2)
C-8 INFORMIX-CLI Programmer’s Manual

Association Management Statements
Association Management Statements
The following table lists association management statements.

Section SQL Statement
INFORMIX-CLI
Function Comments

5.5.1 CONNECT SQLConnect None.

5.5.2 DISCONNECT SQLDisconnect INFORMIX-CLI does not support
DISCONNECT ALL.

5.5.3 SET CONNECTION None The SQL Access Group (SAG) Call
Level Interface allows multiple
simultaneous connections to be
established, but only one
connection can be active at one
time. SAG-compliant drivers track
which connection is active and
automatically switch to a different
connection if a different connection
handle is specified. However, the
active connection must be in a state
that allows the connection context
to be switched; in other words, a
transaction must not be in progress
on the current connection.

Drivers that are not SAG-compliant
are not required to support this
behavior. That is, drivers that are
not SAG- compliant are not required
to return an error if the driver, and
its associated data source can
simultaneously support multiple
active connections.
Comparison of INFORMIX-CLI and Embedded SQL C-9

Diagnostic Statement
Diagnostic Statement
The following table lists the GET DIAGNOSTIC statement.

Section SQL Statement
INFORMIX-CLI
Function Comments

5.6.1 GET DIAGNOSTICS SQLError
SQLRowCount

For SQLError, the following fields
from the diagnostics area are
available:

RETURNED_SQLSTATE,
MESSAGE_TEXT, and
MESSAGE_LENGTH.

For SQLRowCount, the
ROW_COUNT field is available.
C-10 INFORMIX-CLI Programmer’s Manual

Index

Index
A
Access mode 12-102
Access plans 5-6
ALIAS table type 12-329
Aliases, column 12-194
Allocating handles

See Connection handles.
See Environment handles.
See Statement handles.

ALTER TABLE statements
interoperability 5-4
modifying syntax 5-3
qualifier usage in 12-210
supported clauses 12-194

Architecture 1-3
Arguments

naming conventions 12-4
null pointers 3-9
pointers 3-8
search patterns 12-8
See also Parameters.

Arrays
See Binding columns, column-

wise.
See Parameters, arrays.

Association management C-9
Attributes

columns 12-56, 12-89
Auto-commit mode

described 5-9
specifying 12-285
See also Transactions.

B
Batch statements 12-232
Binary data

C data type B-12
converting to C B-27
converting to SQL B-38
literal length 12-203
retrieving in parts 12-175
transferring B-13

Binding columns
binding type 12-299
code examples 12-134
column attributes 6-5
column-wise 6-8, 12-127
null pointers 12-22
row-wise 6-8, 12-128
single row 6-4
SQLBindCol 12-21
unbinding 12-22
See also Converting data; Rowsets.

Binding parameters. See
Parameters, binding.

Bit data
converting to C B-26
converting to SQL B-37

Block cursors 6-9
BOOLEAN data type B-4
Boundaries, segment 3-8
Braces ({ }) 4-8
Browse request connection

string 4-8
Browse result connection

string 12-43

Buffers
allocating 3-8
input 3-9
interoperability 3-8
maintaining pointers 3-8
NULL data 3-10
null pointers 3-9
null-termination 3-10
output 3-10
segment boundaries 3-8
truncating data 3-10
See also NULL data; Null-

termination byte.
BYTE data type B-2

C
C data types

binary B-12
character B-10
conversion examples B-30, B-41
converting from SQL data

types B-19
converting to SQL data

types B-31
date B-11
default conversions B-18
numeric B-10
SQL_C_BINARY B-12
SQL_C_BIT B-12
SQL_C_CHAR B-10
SQL_C_DATE B-11
SQL_C_DOUBLE B-10
SQL_C_FLOAT B-10
SQL_C_LONG B-10
SQL_C_SHORT B-10
SQL_C_SLONG B-10
SQL_C_SSHORT B-11
SQL_C_STINYINT B-11
SQL_C_TIMESTAMP B-11
SQL_C_TINYINT B-11
SQL_C_ULONG B-11
SQL_C_USHORT B-11
SQL_C_UTINYINT B-11
standard B-1
timestamp B-11

typedefs for B-1
See also Converting data; SQL data

types.
Call level interface (CLI)

support of 12-207
Canceling

connection browsing 12-93
data-at-execution 12-51

Cardinality 12-317
Cascading deletes 12-149
Cascading updates 12-149
Case-sensitivity

columns 12-56
data types 12-226
quoted SQL identifiers 12-210

Catalog functions
list of 5-10
search patterns 12-8
summary 11-8

CHAR data type B-2
Character data B-10

case-sensitivity 12-226
converting to C B-21
converting to SQL B-32
empty string 3-9
literal

length 12-203
prefix string 12-225
suffix string 12-225

CHARACTER data type B-2
CHARACTER VARYING data

type B-2
Characters, special. See Special

characters.
Client locale 1-11
CLIENT_LOCALE 1-11, 2-12
Closing cursors 12-196

SQLCancel 12-50
SQLFreeStmt 8-3

Clustered indexes 12-316
Code examples

ad-hoc query 9-7
parameter values 5-8
static SQL 9-4
See also specific function

descriptions.
Codes, return 7-3

Collating 12-206, 12-316
Columns

aliases 12-194
attributes 12-56, 12-89
binding. See Binding columns.
foreign keys 12-149
in GROUP BY clauses 12-203
in indexes 12-203
in select lists 12-204
in tables 12-204
listing 12-71
maximum name length 12-203
nullable 12-205
number of 12-56, 12-239
precision. See Precision.
primary keys 12-148, 12-255
procedure. See Procedure

columns.
pseudo 12-309
signed 12-59
unbinding 12-22
uniquely identifying row 12-308
See also Results sets; Retrieving

data; SQL data types; Tables.
Comment icons Intro-6
COMMIT statements

interoperability 5-9, 12-115
SQLExecDirect 12-115
SQLExecute 12-121

Committing transactions 12-333
Compliance

icons Intro-8
with industry standards Intro-12

Concurrency
defined 6-11
serializing 6-11
specifying 12-295
supported types 12-211

ConfigDSN 13-3
ConfigTranslator 13-7

function description 13-7
Configuring data sources. See Data

sources, configuring.
Conformance

API 3-3
by function 12-180
determining 12-207
SQL 3-5
2 INFORMIX-CLI Programmer’s Manual

Connection handles
active 12-193
allocating 4-4
defined 3-11
freeing 8-4
SQLAllocConnect 12-9
SQLFreeConnect 12-155

Connection options
access mode 12-102
commit mode 12-285
current qualifier 12-285
dialog boxes 12-287
login interval 12-286
maximum length 12-166, 12-284
packet size 12-287
releasing 12-284
reserved 12-284
setting 12-284
tracing 12-286

Connection strings
browse request 4-8
browse result 12-43
special characters 12-43
SQLDriverConnect 4-8, 4-9

Connections
dialog boxes 12-99, 12-101
disconnecting 8-4
function summary 11-4, 11-10
in embedded SQL C-9
SQLBrowseConnect 12-44
SQLConnect 12-79
SQLDisconnect 12-93
SQLDriverConnect 4-8
terminating browsing 12-45

Converting data
C to SQL B-31
default conversions B-18
examples B-30, B-41
hexadecimal characters B-34,

B-38
parameters 5-7
specifying conversions

SQLBindCol 12-18
SQLGetData 12-170

SQL to C B-19
SQLExtendedFetch 12-127
SQLFetch 12-21
SQLGetData 12-175

Core API 3-4

Correlation names 12-195
CREATE statements 4-10
CREATE TABLE statements

interoperability 5-4
modifying syntax 5-3
NOT NULL clauses 12-205

Currency
columns 12-57
data types 12-227

Current qualifier 12-285
Cursor position

errors 12-132
required 6-12, 12-176
SQLExtendedFetch 6-11, 12-133
SQLFetch 12-141

Cursor stability 12-285
Cursors

block 6-9
closing cursors

SQLCancel 12-50
SQLFreeStmt 8-3

described 6-6
dynamic 6-10
getting names 12-169
holes in 12-213
key-set-driven 6-10
maximum name length 12-204
positioned statements 6-12
position. See Cursor position.
scrollable 6-10
sensitivity 12-213
setting names 12-292
simulated 12-307
specifying type 6-11
static 6-10
supported types 12-211
transaction behavior 12-333
See also Concurrency; Cursor

library.

D
Data

converting. See Converting data.
long. See Long data values.
retrieving. See Retrieving data.
transferring in binary form B-13
truncating. See Truncating data.

Data Definition Language (DDL)
in embedded SQL C-5

Data Manipulation Language
(DML)

in embedded SQL C-6
qualifier usage in 12-210

data source specification 2-12
Data sources

adding 13-5
configuring 13-6
configuring on UNIX 2-9
configuring on Windows 2-3
default 4-5
definition 1-7
deleting 13-6
information types 12-190
listing 12-85
names 12-197
read only 12-197

Data types
See C data types.
See SQL data types.

Data-at-execution
canceling 12-51
macro 12-29, 12-31, 12-32, 12-33
parameters 5-10
SQLBindParameter 12-29, 12-31,

12-32, 12-33
Database locale 1-12
Databases

current 12-285
information types 12-190

Date data
CLI data types B-11
converting to C B-28
converting to SQL B-39
intervals 12-214

DATE data type B-2
DATETIME data type B-2
DATE_STRUCT typedef B-11
DBMS product information 12-190
DB_LOCALE 1-12, 2-12
DDL. See Data Definition Language.
DEC data type B-2
DECIMAL data type B-2
Declarative statements C-5
Delete rules 12-149
Index 3

DELETE statements
affected rows 12-278
cascade delete 12-149
qualifier usage in 12-210
restrictive delete 12-149

Deletes, positioned. See Positioned
delete statements.

Deleting cursors 12-196
Delimiter character, SQL

identifiers 12-209
Descriptors, columns 12-56, 12-89
Diagnostic statements C-10
Diagnostics 12-7
diagnostics 12-7
Dialog boxes

disabling 12-287
SQLDriverConnect 12-99, 12-101

Dirty reads 12-198
Display size 12-57, B-5
DML. See Data Manipulation

Language.
Documentation

on-line manuals Intro-9
printed manuals Intro-9

Documentation conventions
icon Intro-6
typographical Intro-5

Documentation notes Intro-11
Documentation, types of

documentation notes Intro-11
error message files Intro-10
release notes Intro-11

DOUBLE PRECISION data
type B-2

Driver keyword, version
compatibility 12-44

Driver manager
described 1-3, 3-7
errors 7-6
ODBC version supported 12-207
SQLDriverConnect 12-99
SQLError 12-109
tracing 12-286
transactions 12-333
unloading drivers 12-79

Drivers
allocating handles 12-13
errors 7-3
file usage 12-200
information types 12-189
keywords 12-106
listing installed 12-106
loading 12-79
SQLError 12-109

Driver, INFORMIX-CLI 1-4
DROP INDEX statements 12-316
DROP statements 4-10
DSN, keyword 4-8
Dynamic cursors 6-10
Dynamic SQL C-7

E
Embedded SQL

executing statements 5-5
ODBC function equivalents C-5,

C-6
Embedded SQL function

equivalents C-1 to C-10
Empty strings 3-9, 12-8
Environment handles

allocating 4-3
defined 3-11
freeing 8-4
SQLAllocEnv 12-12
SQLFreeEnv 12-158

Environment variables
INFORMIXDIR 1-9
INFORMIXSQLHOSTS 1-10
PATH 1-9

Error message files Intro-10
Errors

application processing 7-7
clearing 12-109
format 7-5
handling 7-4
messages 7-4, 7-8
queues 12-109
return codes 7-3
rowsets 12-131
source 7-8
SQLError 12-108

SQLSTATE values A-1
See also specific function

descriptions.
Escape clauses 12-203
Examples

ad-hoc query 9-7
data conversion B-30, B-41
parameter values 5-8
static SQL 9-4

Expressions in ORDER BY
clauses 12-199

F
Fat cursors 6-9
fCType B-10
Feature icons Intro-7
Fetching data. See Retrieving data.
Files

odbcinst.ini 2-9
odbc.ini 2-9
sqlhosts 2-9
trace 12-286
usage 12-200
.h 3-8

Filtered indexes 12-317
finderr utility Intro-10
FLOAT data type B-2
Floating point data

converting to C B-23
converting to SQL B-35

Foreign keys 12-148
Freeing handles

See Connection handles.
See Environment handles.
See Statement handles.

fSqlType B-2
Functionality of driver 12-180,

12-189
Functions

buffers 3-8
canceling 12-50
list of 11-3
return codes 7-3
SQL statement

equivalents C-1 to C-10
See also specific function

descriptions.
4 INFORMIX-CLI Programmer’s Manual

Functions, ODBC
SQL statement equivalents C-5,

C-10

G
GLOBAL TEMPORARY table

type 12-329
Global transactions 12-333
GLS 1-11
Granting privileges 12-65, 12-322
GROUP BY clauses 12-202, 12-203

H
.h files 3-8
Handles

error queues 12-109
See Connection handles.
See Environment handles.
See Statement handles.

Hashed indexes 12-316
HDBC. See Connection handles.
Header files

required 3-8
sqlext.h

C data types 3-12
contents 12-7

sql.h 12-7
HENV. See Environment handles.
Hexadecimal characters B-34, B-38
Holes in cursors 12-213
HSTMT. See Statement handles.

I
Icons

comment Intro-6
compliance Intro-8
feature Intro-7
platform Intro-7

Identifiers, quoted 12-210
IEF. See Integrity enhancement

facility. 12
Include files. See Header files.

Indexes
cardinality 12-317
clustered 12-316
collating 12-316
filtered 12-317
hashed indexes 12-316
listing 12-314
maximum columns in 12-203
maximum length 12-204
pages 12-317
qualifier usage in 12-210
sorting 12-316
unique 12-316
See also SQLStatistics.

Industry standards, compliance
with Intro-12

Information, status
retrieving 7-8

INFORMIXDIR 1-9
INFORMIXSQLHOSTS 1-10
Initializing data sources 2-3
Input buffers 3-9
Input parameters 12-29
Input/output parameters 12-29
INSERT statements

affected rows 12-278
privileges 12-66
qualifier usage in 12-210

INT data type B-2
INT8 data type B-4
Integer data

converting to C B-23
converting to SQL B-35

INTEGER data type B-2
Integrity enhancement facility

(IEF) 12-207
Interoperability

affected rows 6-5
buffer length 3-8
cursor names 12-292
default C data type B-18
functionality 12-189
functions 12-189
pseudo-columns 12-309
SQL statements

ALTER TABLE 5-3, 12-222
COMMIT 5-9, 12-115, 12-121
CREATE TABLE 5-3, 12-222
ROLLBACK 12-115, 12-121

SQLGetData 6-7, 6-9, 12-175
transactions 5-9
transferring data B-13

Intervals, date and time 12-214
Isolation levels

cursor stability 12-285
transaction 12-198

J
Joins, outer 12-208

K
Keys

foreign 12-147
primary 12-255

Key-set-driven cursors 6-10
Keywords 4-8

data source-specific 12-203
in SQLBrowseConnect 4-8, 12-43
in SQLDriverConnect 4-8

L
Length, available

SQLBindParameter 12-33
SQLExtendedFetch 12-128
SQLFetch 12-142
SQLGetData 12-174

Length, buffers
input 3-9
maximum 3-8
output 3-10
SQLBindCol 12-22
SQLBindParameter 12-31
SQLGetData 12-174

Length, columns
defined 12-142, 12-174, B-5
names 12-203
result sets 12-86
tables 12-72, 12-309

Length, data-at-execution 12-32,
12-33
Index 5

Length, maximum
connection options 12-166, 12-284
data 12-301
error messages 12-108
indexes 12-204
qualifiers 12-204
rows 12-204
statement options 12-220, 12-299

Length, names
columns 12-203
cursors 12-204, 12-292
owners 12-204
procedures 12-204
users 12-205

Length, unknown
in length B-5
in precision B-5
SQLBindParameter 12-33
SQLExtendedFetch 12-128
SQLFetch 12-142
SQLGetData 12-174

Level 1 API 3-4
Level 2 API 3-4
Levels, conformance. See

Conformance levels.
Library

INFORMIX-CLI 1-3
translation 1-12

Library handles, driver 12-199
LIKE predicates 12-203
Limitations, SQL statements 12-192
Literals

character 12-203
prefix string 12-225
suffix string 12-225

Loading drivers 12-79
LOCAL TEMPORARY table

type 12-329
Locale

client 1-11
database 1-12

Lock levels 1-8
Login authorization

connection strings
description 4-7
SQLBrowseConnect 4-8, 12-43,

12-101

example 12-80
interval period 12-286
SQLSetConnectOption 12-286
See also Connections.

Long data values
length required 12-205
retrieving 6-7
sending

in parameters 5-10
SQLBindParameter 12-33

SQLGetData 12-175
LVARCHAR data type B-4

M
Machine notes Intro-11
Macros, data-at-

execution 12-29 to 12-35
Manual-commit mode

beginning transactions 12-333
described 5-9
specifying 12-285
SQLTransact 12-333
See also Transactions.

Memory
buffers 3-8
result sets 6-4
rowsets 6-8
See also Connection handles;

Environment handles;
Statement handles.

Message file
error messages Intro-10

Messages, error. See Errors.
Modes

access 12-102
auto-commit. See Auto-commit

mode.
manual-commit. See Manual-

commit mode.
Money columns 12-57
MONEY data type B-2
Money data types 12-227
Multiple-tier drivers

error messages 7-6
identifying data sources 7-5

Multithreading
with connection handles 12-11
with environment handles 12-13
with statement handles 12-17

N
Names

arguments 12-4
correlation 12-195
cursors 12-169, 12-292
driver 12-199
index 12-316
localized data types 12-228
procedure 12-267
procedure columns 12-260
server 12-212
tables 12-328, 12-329
user 12-216
See also Terms.

NCHAR data type B-3
Network traffic

maximum data length 12-302
packet size 12-287
prepared statements 5-6

Nonrepeatable reads 12-198
NOT NULL clauses 12-205
NULL data

collating 12-206
concatenation behavior 12-194
output buffers 3-10
retrieving 12-22
SQLBindParameter 12-32
SQLExtendedFetch 12-128
SQLFetch 12-142
SQLGetData 12-174
SQLPutData 12-271

Null pointers
input buffers 3-9
output buffers 3-10
parameter length 12-32
unbinding columns 12-22

Nullable columns 12-57, 12-73,
12-87, 12-262
6 INFORMIX-CLI Programmer’s Manual

Null-termination byte
binary data 12-32
character data 12-32
embedded 3-9
examples B-30, B-41
input buffers 3-9
output buffers 3-10
parameters 5-8

Numeric data
C data types B-10
converting to C B-23
converting to SQL B-35
currency data type 12-227
money data type 12-227
radix 12-73, 12-262
scalar functions 12-206
See also Floating point data;

Integer data.
NUMERIC data type B-2
NVARCHAR data type B-3

O
ODBC Administrator

adding a data source 2-3
modifying a data source 2-7

odbcinst.ini 2-9
odbc.ini

Data Source Specification
section 2-12

introduction 2-9
ODBC Data Sources section 2-11

On-line manuals Intro-9
OPAQUE data type B-4
Optimistic concurrency control. See

Concurrency.
ORDER BY clauses

columns in select list 12-207
expressions in 12-199
maximum columns in 12-203

Outer joins 12-208
Output buffers 3-10
Output parameters 12-30

Owner names
procedure 12-260, 12-267
table 12-322

SQLColAttributes 12-57
SQLColumnPrivileges 12-65
SQLColumns 12-71

term, vendor-specific 12-208

P
Packet size 12-287
Pages, index or table 12-317
Parameters

binding 5-8, 12-29
data-at-execution 5-10, 12-29,

12-31, 12-32, 12-33
input 12-29
input/output 12-29
long data values 5-10
number of 12-236
output 12-30
procedure 12-29, 12-260
unbinding 5-8
values 5-7
See also Arguments.

PATH 1-9
Patterns for searching 12-8
Phantoms 12-198
Plans, access 5-6
Platform icons Intro-7
Pointers, maintaining 3-8
Pointers, null. See Null pointers.
Positioned DELETE statements

cursor name 12-169, 12-292
executing 6-12
support of 12-209

Positioned UPDATE statements
cursor name 12-169, 12-292
executing 6-12
support of 12-209

Position, cursor. See Cursor
position.

Precision
columns

procedures 12-261
result sets 12-57, 12-87
tables 12-72, 12-309

defined B-5

Prepared statements,
deleting 12-196

Preparing statements 5-6
Preserving cursors 12-196
Primary keys 12-255
Printed manuals Intro-9
Privileges

data source 12-197
grantable 12-66, 12-323
grantee 12-65, 12-322
grantor 12-65, 12-322
qualifier usage in 12-210
table user granting 12-65

Procedure columns
data type 12-261
listing 12-260
name 12-260
owner name 12-260
parameters 12-29
See also Columns; Procedures.

Procedures
defined 12-264
name 12-267
name, maximum length 12-204
owner name 12-267
qualifier 12-267
qualifier usage in 12-210
return values 12-30
support of 12-209
term, vendor-specific 12-209
See also Procedure columns.

PWD 2-4, 2-12

Q
Qualifiers

current 12-285
foreign key 12-148
index 12-316
maximum length 12-204
primary key 12-255
procedure 12-267
separator 12-209
table 12-58, 12-65, 12-71, 12-315,

12-328
term, vendor-specific 12-209
usage 12-210
Index 7

Queries. See SQL statements.
Question mark (?)

parameter markers 12-115
Queues, error 12-109
Quoted identifiers

case-sensitivity 12-210

R
Radix 12-73, 12-262
Read only

access mode 12-102
data sources 12-197

Reads 12-198
Read/write access mode 12-102
REAL data type B-3
REFERENCES statements 12-66
Referential integrity 12-207
Refreshing data

SQLExtendedFetch 12-133
Release notes Intro-11
Remarks 12-73, 12-329
Repeatable read isolation

level 12-198
Restricted deletes 12-149
Restricted updates 12-149
Result sets

arrays. See Rowsets.
binding columns 6-4
column attributes 6-5
described 3-13, 6-3
fetching data 6-5
fetching rowsets 6-9
multiple 12-205
number of columns 6-5
number of rows 6-5
retrieving data in parts 6-7
rowset size 6-7
SQLBindCol 12-21
SQLColAttributes 12-56
SQLDescribeCol 12-86
SQLMoreResults 12-232
SQLNumResultCols 12-239
SQLRowCount 12-278
See also Cursors; Rows.

Result states. See State transitions.

Retrieving data
arrays. See Rowsets.
binding columns. See Binding

columns.
cursor position 12-141
disabling 12-302
fetching data 6-5
fetching rowsets 6-9
in parts 6-7, 12-175
long data values 6-7
maximum length 12-302
multiple result sets 12-205
NULL data 12-22, 12-142, 12-174
retrieving 12-302
rows. See Rows.
SQLExtendedFetch 12-127
SQLFetch 12-141
SQLGetData 12-175
truncating data 12-142, 12-175
unbound columns 6-7

Return codes 7-3
Return values, procedure 12-30
ROLLBACK statements

cursor behavior 12-196
interoperability 5-9, 12-115,

12-121
SQLExecute 12-121

Rolling back transactions 5-9,
12-333

Row status array
errors 12-131
SQLExtendedFetch 12-134

Row versioning isolation
level 12-198

ROWID 12-308, 12-309
Rows

affected 12-278
after last row 12-133
deleting 6-12
errors in 12-131
interoperability 6-5
maximum 12-302
maximum length 12-204
SQLExtendedFetch 12-134
updating 6-12
See also Cursors; Retrieving data;

Rowsets.

Rowsets
allocating 6-8
binding 6-7
binding type 12-299
errors in 12-131
retrieving 6-9
size 12-302
SQLExtendedFetch 12-126
status 12-134

S
SAG CLI compliance 12-207
Scalar functions

data conversion 12-195
information types 12-193
TIMESTAMPADD

intervals 12-214
TIMESTAMPDIFF

intervals 12-214
Scale

columns
procedures 12-261
result sets 12-87
tables 12-72, 12-309

defined B-5
SCHAR typedef B-11
Scope, row ID 12-310
Scrollable cursors 6-10
SDOUBLE typedef B-10
SDWORD typedef B-10
Searching

columns 12-58
data types 12-227
patterns 12-8

Segment boundaries 3-8
SELECT FOR UPDATE

statements 12-209
Select list

maximum columns in 12-204
ORDER BY columns in 12-207

SELECT statements
affected rows 12-278
cursor name 12-166, 12-292
maximum tables in 12-205
multiple result sets 6-12, 12-232
privileges 12-66
qualifier usage in 12-210
8 INFORMIX-CLI Programmer’s Manual

re-executing 12-121
UNION clauses 12-216
See also Result sets.

Sensitivity, cursor 12-213
Separator, qualifier 12-209
SERIAL data type B-3
SERIAL8 data type B-4
Serializing

isolation levels 12-198
transactions 6-11

Server name 12-212
Server-only connection 4-10
setup.odbc 1-10
SFLOAT typedef B-10
Signed columns 12-59
Signed data types 12-227
Simulated cursors 12-307
Size, display 12-57, B-5
SMALLFLOAT data type B-3
SMALLINT data type B-3
Software dependencies Intro-4
Sorting 12-206, 12-317
Special characters

in search patterns 12-8
in SQL identifiers 12-212
in SQLBrowseConnect 12-43

SQL
data types. See SQL data types.
dynamic C-7
embedded

executing statements 5-5
function

equivalents C-1 to C-10
ODBC function

equivalents C-5, C-6
information types 12-191, 12-192
interoperability 5-4
static 9-4
See also SQL statements.

SQL Access Group 12-207
SQL data types

BOOLEAN B-4
BYTE B-2
CHAR B-2
CHARACTER B-2
CHARACTER VARYING B-2
columns

procedures 12-261
result sets 12-56

conversion examples B-30, B-41
converting from C data

types B-31
converting to C data types B-19
DATE B-2
DATETIME B-2
DEC B-2
DECIMAL B-2
default C data types B-18
display size B-5
DOUBLE PRECISION B-2
FLOAT B-2
INT B-2
INT8 B-4
INTEGER B-2
length B-5
LVARCHAR B-4
MONEY B-2
NCHAR B-3
NUMERIC B-2
NVARCHAR B-3
OPAQUE B-4
precision B-5
REAL B-3
scale B-5
SERIAL B-3
SERIAL8 B-4
SMALLFLOAT B-3
SMALLINT B-3
SQL_BIGINT B-4
SQL_BIT B-4
SQL_CHAR B-2
SQL_DATE B-2
SQL_DECIMAL B-2
SQL_DOUBLE B-2
SQL_INFX_UDT_FIXED B-4
SQL_INFX_UDT_VARYING B-4
SQL_INTEGER B-2
SQL_LONGVARBINARY B-2
SQL_LONGVARCHAR B-3, B-4
SQL_REAL B-3
SQL_SMALLINT B-3
SQL_TIMESTAMP B-2
SQL_VARCHAR B-2
supported 12-224
TEXT B-3
VARCHAR B-3
See also C data types; Converting

data.

SQL identifiers 12-212
SQL quoted identifiers 12-210
SQL statements

batch 12-232
direct execution 5-7
embedded C-5

ODBC function equivalents C-6
equivalents C-1 to C-10
information types 12-191
maximum length 12-204
native 12-233
qualifier usage in 12-210
query timeout 12-302
SQLCancel 12-50
SQLExecDirect 12-115
SQLExecute 12-121

SQLAllocConnect
function description 12-9
See also Connection handles.

SQLAllocEnv
function description 12-12
with SQLConnect 12-79
See also Environment handles.

SQLAllocStmt
function description 12-15
See also Statement handles.

SQLBindCol
binding columns 6-4
function description 12-18
unbinding columns 8-3
with SQLFetch 12-141

SQLBindParameter
function description 12-25
sending long data values 5-10
unbinding parameters 8-3
with SQLParamData 12-31, 12-33
with SQLParamOptions 12-31
with SQLPutData 12-33

SQLBrowseConnect
function description 12-44
with SQLDisconnect 12-45

SQLCancel 12-49
SQLColAttributes

column attributes 6-5
function description 12-52

SQLColumnPrivileges 12-62
SQLColumns 12-68
Index 9

SQLConnect
function description 12-76
with SQLAllocEnv 12-79
with

SQLSetConnectOption 12-79
SQLDataSources 4-5, 12-82
SQLDescribeCol 6-5, 12-86
SQLDisconnect

function description 12-91
with SQLBrowseConnect 12-45
with SQLFreeConnect 12-156

SQLDriverConnect
connecting with 4-5
CREATE and DROP

parameters 4-9
dialog boxes 4-5, 4-6
function description 12-94

SQLDrivers
function description 12-103
listing drivers 4-5

SQLError
function description 12-107
See also Errors; SQLSTATE.

SQLExecDirect 12-110
SQLExecute

function description 12-117
with SQLPrepare 12-121

SQLExtendedFetch
function description 12-123
retrieving rowsets 6-9
with SQLGetData 6-9
with SQLSetStmtOption 12-126

SQLFetch
fetching data 6-5
function description 12-138
positioning cursor 6-6
with SQLBindCol 12-141
with SQLGetData 12-141

SQLFreeConnect
function description 12-155
with SQLDisconnect 12-156
with SQLFreeEnv 12-159
See also Connection handles.

SQLFreeEnv
function description 12-158
with SQLFreeConnect 12-159
See also Environment handles.

SQLFreeStmt
function description 12-161
unbinding columns 12-22
unbinding parameters 12-29
See also Statement handles.

SQLGetConnectOption 12-164
SQLGetCursorName 12-167
SQLGetData

function description 12-170
interoperability 6-7, 6-9
long data values 6-7, 12-21
unbound columns 6-7
with SQLExtendedFetch 6-9
with SQLFetch 12-141

SQLGetFunctions 12-178
SQLGetInfo

data sources 12-190
DBMSs 12-190
drivers 12-189
function description 12-184
scalar functions 12-193
SQL statements 12-191

SQLGetStmtOption
function description 12-218

SQLGetTypeInfo
function description 12-222
supported data types 3-12

sqlhosts 2-9
SQLMoreResults 12-230
SQLNativeSql 12-233
SQLNumParams 12-236
SQLNumResultCols 6-5, 12-239
SQLParamData

data-at-execution
parameters 5-10

function description 12-242
with SQLBindParameter 12-31,

12-33
with SQLPutData 12-242

SQLParamOptions
with SQLBindParameter 12-31

SQLPrepare
function description 12-246
with SQLExecute 12-121

SQLPrimaryKeys 12-253
SQLProcedureColumns 12-257,

12-260
SQLProcedures 12-264

SQLPutData
data-at-execution

parameters 5-10
function description 12-271
with SQLBindParameter 12-33
with SQLParamData 12-242

SQLRemoveDSNFromIni 13-6
SQLRowCount

function description 12-278
interoperability 6-5

SQLSetConnectOption
commit mode 5-9
function description 12-281
with SQLConnect 12-79
with SQLTransact 12-285
See also Connection options.

SQLSetCursorName 12-290
SQLSetScrollOptions 12-295
SQLSetStmtOption

function description 12-296
with SQLExtendedFetch 12-126
See also Statement options.

SQLSpecialColumns 12-304
SQLSTATE

guidelines 7-3
naming conventions 12-7
values

listed A-1
See also specific function

descriptions.
SQLStatistics 12-311
SQLTablePrivileges 12-319
SQLTables 12-325
SQLTransact

commit mode 12-285
committing 5-9
function description 12-331
rolling back 5-9
two-phase commit 12-333
with

SQLSetConnectOption 12-285
SQLWriteDSNToIni 13-5
SQLWritePrivateProfileString 13-5
SQL_BIGINT data type B-4
SQL_BIT data type B-4
SQL_CHAR data type B-2
SQL_C_BINARY data type B-12
SQL_C_BIT data type B-12
10 INFORMIX-CLI Programmer’s Manual

SQL_C_CHAR data type B-10
SQL_C_DATE data type B-11
SQL_C_DOUBLE data type B-10
SQL_C_FLOAT data type B-10
SQL_C_LONG data type B-10
SQL_C_SHORT data type B-10
SQL_C_SLONG data type B-10
SQL_C_SSHORT data type B-11
SQL_C_STINYINT data type B-11
SQL_C_TIMESTAMP data

type B-11
SQL_C_TINYINT data type B-11
SQL_C_ULONG data type B-11
SQL_C_USHORT data type B-11
SQL_C_UTINYINT data type B-11
SQL_DATE data type B-2
SQL_DECIMAL data type B-2
SQL_DOUBLE data type B-2
SQL_ERROR 7-3
SQL_INFX_UDT_FIXED data

type B-4
SQL_INFX_UDT_VARYING data

type B-4
SQL_INTEGER data type B-2
SQL_INVALID_HANDLE 7-3
SQL_LONGVARBINARY data

type B-2
SQL_LONGVARCHAR data

type B-3, B-4
SQL_NEED_DATA 7-3
SQL_NO_DATA_FOUND 7-3
SQL_REAL data type B-3
SQL_SMALLINT data type B-3
SQL_STILL_EXECUTING 7-3
SQL_SUCCESS 7-3
SQL_SUCCESS_WITH_INFO 7-3
SQL_TIMESTAMP data type B-2
SQL_VARCHAR data type B-2
Statement handles

active 12-194
allocating 5-5
defined 3-11
freeing 8-3
SQLAllocStmt 12-15
SQLFreeStmt 12-161

Statement options
binding type 12-299
concurrency 6-11
cursor type 12-301
driver-specific 12-299
maximum data length 12-301
maximum length 12-220, 12-299
maximum rows 12-302
releasing 12-298
reserved 12-299
retrieving 12-220
retrieving data 12-302
setting 12-298
substituting values 12-298

Static cursors
described 6-10
sensitivity 12-213

Static SQL 9-4
Statistics, listing 12-314
Status array

errors 12-131
SQLExtendedFetch 12-134

Status information
retrieving 7-8
See also Errors.

String data. See Character data.
Strings, connection. See Connection

strings.
SWORD typedef B-10
SYNONYM table type 12-329
Syntax, connection strings 4-8
SYSTEM TABLE table type 12-329

T
Table definition statements 12-210
TABLE table type 12-329
Tables

accessibility 12-193
cardinality 12-317
columns. See Columns.
correlation names 12-195
defined 12-7
foreign keys 12-148
in SELECT statement 12-205
indexes. See Indexes.
maximum columns in 12-204

names
maximum length 12-205
retrieving 12-315, 12-322
special characters 12-212
SQLColumnPrivileges 12-65
SQLColumns 12-71
SQLTables 12-328, 12-329

owner names. See Owner names.
pages 12-317
primary keys 12-148, 12-256
qualifiers. See Qualifiers.
rows. See Rows.
statistics 12-314
term, vendor-specific 12-213
types 12-329
versus views 12-7

Termination byte, null. See Null-
termination byte.

Terms, vendor-specific
owner 12-208
procedure 12-209
qualifier 12-209
table 12-213

TEXT data type B-3
Threads, multiple

with connection handles 12-11
with environment handles 12-13
with statement handles 12-17

Time-out
login 12-286
query 12-302

Time-stamp data B-11
converting to C B-29
converting to SQL B-40
TIMESTAMPADD

intervals 12-214
TIMESTAMPDIFF

intervals 12-214
TIMESTAMP_STRUCT

typedef B-11
Trace file 12-286
Tracing

SQLFreeEnv 12-159
Traffic, network

maximum data length 12-301
packet size 12-287
prepared statements 5-6
Index 11

Transactions
beginning 5-9, 12-333
commit mode 5-9, 12-285
committing 5-9, 12-333
concurrency. See Concurrency.
cursor behavior 12-333
function equivalents C-8
incomplete 12-93
interoperability 5-9
isolation levels 12-198
multiple active 12-205
rolling back 5-9, 12-333
serializing 6-11
SQLExecDirect 12-115
SQLExecute 12-121
SQLTransact 12-333
support of 12-215
two-phase commit 12-333

Transferring binary data B-13
Transitions, state. See State

transitions.
Translation

libraries
described 1-12, 12-289
function summary 11-11

options
default 13-7
described 1-12, 12-289

setup
ConfigTranslator 13-3

TRANSLATIONDLL 1-12, 2-12
TRANSLATION_OPTION 1-12
Truncating data

maximum data length 12-301
output buffers 3-10
SQLBindCol 12-21
SQLBindParameter 12-31
SQLFetch 12-142
SQLGetData 12-175
See also Binary data; Character

data.

Two-phase commit 12-333
Typedefs

DATE_STRUCT B-11
SCHAR B-11
SDOUBLE B-10
SDWORD B-10
SFLOAT B-10
SWORD B-10
TIMESTAMP_STRUCT B-11
UCHAR B-11
UDWORD B-11
UWORD B-11

U
UCHAR typedef B-11
UDWORD typedef B-11
UID 2-4, 2-12
Unbinding columns 12-22
UNION clauses 12-216
Unloading drivers 12-79
Update rules 12-149
UPDATE statements

affected rows 12-278
cascade update 12-149
privileges 12-66
qualifier usage in 12-210
restrictive update 12-149

Updates, positioned. See Positioned
UPDATE statements.

User names
maximum length 12-205
retrieving 12-216

UWORD typedef B-11

V
VARCHAR data type B-3
Version

DBMS 12-197
driver 12-199
ODBC supported 12-199

Version compatibility
information types 12-188
number of input

parameters 12-267
number of output

parameters 12-267
number of result sets 12-267
SQLBindParameter 12-180
SQLSetParam 12-180

Versioning isolation level 12-198
VIEW table type 12-329
Views 12-7
VMB character 1-13
VMBCHARLENEXACT 1-13, 2-12

W
Window handles

quiet mode 12-287
See also SQLDriverConnect.

Windows NT registry
data sources

adding 13-5
configuring 13-6
removing 13-6
12 INFORMIX-CLI Programmer’s Manual

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Demonstration Database

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icons

	Screen-Illustration Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	On-Line Help
	Error Message Files
	Documentation Notes and Release Notes

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Overview of INFORMIX-CLI
	What Is INFORMIX-CLI?
	Architecture
	Architecture with a Driver Manager
	Architecture Without a Driver Manager
	What Is a Data Source?

	Advantages of Using INFORMIX-CLI

	Isolation and Lock Levels
	INFORMIX-CLI Libraries
	Environment Variables on UNIX
	Setting Environment Variables in a File
	Setup File

	GLS
	Client Locale
	Database Locale
	Translation Library
	Translation Option
	VMB Character

	Configuring Data Sources
	Configuring Data Sources on Windows
	Adding a Data Source
	Modifying a Data Source

	Configuring Data Sources on UNIX
	File Format for odbc.ini
	ODBC Data Sources
	Data Source Specification

	File Format for odbcinst.ini
	Adding a Data Source
	Modifying a Data Source

	Guidelines for Calling INFORMIX-CLI Functions
	Conformance Levels
	API Conformance Levels
	SQL Conformance Levels
	Verifying INFORMIX-CLI Conformance Levels

	Using the Driver Manager
	Calling Functions
	Buffers
	Input Buffers
	Output Buffers

	Environment, Connection, and Statement Handles
	Using Data Types
	Function Return Codes

	How an Application Uses the INFORMIX-CLI API

	Connecting to a Data Source
	Initializing the Environment
	Allocating a Connection Handle
	Connecting to a Data Source
	Using SQLConnect
	Using SQLDriverConnect
	Using SQLBrowseConnect
	Connection Strings
	Exclusive Database-Use Connection
	Server-Only Connection
	Example

	Related Functions

	Executing SQL Statements
	SQL Statements and INFORMIX-CLI
	Allocating a Statement Handle
	Executing an SQL Statement
	Prepared Execution
	Direct Execution

	Setting Parameter Values
	Performing Transactions
	Retrieving Information About the Data-Source Catal...
	Sending Parameter Data at Execution Time
	Specifying Arrays of Parameter Values
	Related Functions

	Retrieving Results
	Result Sets and INFORMIX-CLI
	Assigning Storage for Results (Binding)
	Determining the Characteristics of a Result Set
	Fetching Result Data
	Using Cursors
	Retrieving Data from Unbound Columns
	Assigning Storage for Row Sets (Binding)
	Retrieving Row Set Data
	Using Block and Scrollable Cursors
	Block Cursors
	Scrollable Cursors
	Specifying the Cursor Type
	Specifying Cursor Concurrency

	Positioned Update and Delete Statements
	Processing Multiple Results

	Retrieving Status and Error Information
	Function Return Codes
	Error Messages
	Error Text Format
	Sample Error Messages
	Sample Error Returned from the Driver
	Sample Error Returned from the Driver Manager
	Sample Error Returned from the Data Source

	Processing Error Messages
	Retrieving Error Messages

	Terminating Transactions and Connections
	Terminating Statement Processing
	Terminating Transactions
	Terminating Connections

	Constructing an INFORMIX-CLI Application
	Static SQL Example
	Interactive Ad-Hoc Query Example

	Designing Performance- Oriented Applications
	Connecting to a Data Source
	Making One Connection
	Using Statement Handles

	Retrieving Information About a Data Source
	Minimizing the Use of Catalog Functions
	Supplying Non-Null Arguments to Catalog Functions
	Determining Table Characteristics
	Case 1: SQLColumns Method
	Case 2: SQLDescribeCol Method

	Retrieving Data
	Retrieving Long Data
	Using SQLSetStmtOption to Reduce the Size of Data ...
	Using SQLBindCol to Reduce the Call Load
	Case 1: SQLGetData Method
	Case 2: SQLBindCol Method

	Using SQLExtendedFetch Versus SQLFetch

	Executing Calls
	Using SQLPrepare and SQLExecute Versus SQLExecDire...

	Updating Data
	Using Positioned Updates and Deletes
	Determining the Optimal Set of Columns

	Committing Data

	Function Summary
	INFORMIX-CLI Function Summary
	Connecting to a Data Source
	Retrieving Information About a Driver and Data Sou...
	Setting and Retrieving Driver Options
	Preparing SQL Requests
	Submitting SQL Requests
	Retrieving Results and Information About Results
	Retrieving Information About Data-Source System Ta...
	Terminating a Statement
	Terminating a Connection

	Setup Shared-Library Function Summary
	Translation Shared-Library Function Summary

	INFORMIX-CLI Function Reference
	Arguments
	INFORMIX-CLI Include Files
	Diagnostics
	Tables and Views
	Catalog Functions
	Search Pattern Arguments
	SQLAllocConnect
	SQLAllocEnv
	SQLAllocStmt
	SQLBindCol
	SQLBindParameter
	SQLBrowseConnect
	SQLCancel
	SQLColAttributes
	SQLColumnPrivileges
	SQLColumns
	SQLConnect
	SQLDataSources
	SQLDescribeCol
	SQLDisconnect
	SQLDriverConnect
	SQLDrivers
	SQLError
	SQLExecDirect
	SQLExecute
	SQLExtendedFetch
	SQLFetch
	SQLForeignKeys
	SQLFreeConnect
	SQLFreeEnv
	SQLFreeStmt
	SQLGetConnectOption
	SQLGetCursorName
	SQLGetData
	SQLGetFunctions
	SQLGetInfo
	SQLGetStmtOption
	SQLGetTypeInfo
	SQLMoreResults
	SQLNativeSql
	SQLNumParams
	SQLNumResultCols
	SQLParamData
	SQLPrepare
	SQLPrimaryKeys
	SQLProcedureColumns
	SQLProcedures
	SQLPutData
	SQLRowCount
	SQLSetConnectOption
	SQLSetCursorName
	SQLSetScrollOptions
	SQLSetStmtOption
	SQLSpecialColumns
	SQLStatistics
	SQLTablePrivileges
	SQLTables
	SQLTransact

	Setup Shared Library Function Reference
	ConfigDSN
	ConfigTranslator

	INFORMIX-CLI Error Codes
	Data Types
	Comparison of INFORMIX-CLI and Embedded SQL
	Index

