
The New C Standard (Excerpted material)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

6.2.4 Storage durations of objects449

6.2.4 Storage durations of objects

448An object has a storage duration that determines its lifetime.storage duration
object

Commentary
Storage duration is a property unique to objects. In many cases it mirrors an object’s scope (not its visibility)
and developers sometimes use the term scope when lifetime would have been the correct term to use.

C++

1.8p1 An object has a storage duration (3.7) which influences its lifetime (3.8).

In C++ the initialization and destruction of many objects is handled automatically and in an undefined order
(exceptions can alter the lifetime of an object, compared to how it might appear in the visible source code).
For these reasons an object’s storage duration does not fully determine its lifetime, it only influences it.

Other Languages
Most languages include the concept of the lifetime for an object.

449There are three storage durations: static, automatic, and allocated.

Commentary
One of the uses of the overworked keyword static is to denote objects that have static storage duration
(there are other ways of denoting this storage duration).

C90
The term allocated storage duration did not appear in the C90 Standard. It was added by the response to DR
#138.

C++

3.7p1 The storage duration is determined by the construct used to create the object and is one of the following:

— static storage duration

— automatic storage duration

— dynamic storage duration

The C++ term dynamic storage is commonly used to describe the term allocated storage, which was introduced
in C99.

Common Implementations
Objects having particular storage durations are usually held in different areas of the host address space. Thestack

amount of static storage duration is known at program startup, while the amounts of automatic and allocated
storage varies during program execution. The most commonly seen division of available storage is to have
the two variable-size storage durations growing toward each other. Objects having static storage duration
are often located at the lowest address rather than the highest. This design decision may make it possible
to access these objects with a single instruction using a register + offset addressing mode (provided one is
available).register

+ offset
A few implementations do not have separate stack and heap areas. They allocate stack space on the heap,

on an as-needed basis. This usage is particularly common in realtime, multiprocess environments, without
hardware memory management support to map logical addresses to different physical addresses. The term
cactus stacks is sometimes used.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 450

0x00000000

0xFFFFFFFF

static
storage

static
storage

Program
image

Figure 449.1: The location of the stack invariably depends on the effect of a processor’s pop/push instructions (if they exist). The
heap usually goes at the opposite end of available storage. The program image may, or may not, exist in the same address space.

Some processors (usually those targeted at embedded systems[10]) support a variety of different kinds of
addressable storage. This storage may be disjoint in that two storage locations can have the same address,
accesses to them being disambiguated either by the instruction used or a flag specifying the currently active
storage bank. Optimally allocating declared objects to these storage areas is an active research topic.[3, 16]

One implementation[3] distributes the stack over several storage banks.

Coding Guidelines

In resource-constrained environments there can be space and efficiency issues associated with the different
kinds of storage durations. These are discussed for each of the storage durations later.

The term allocated storage is not commonly used by developers (in the sense of being a noun). The use of
the word allocated as an adjective is commonly heard. The terms dynamically allocated or allocated on the
heap are commonly used to denote this kind of storage duration. There does not seem to be any worthwhile
benefit in trying to educate developers to use the technically correct term in this case.

Usage

In the translated form of this book’s benchmark programs 37% of defined objects had static storage duration
and 63% had automatic storage duration (objects with allocated storage duration were not included in this
count).

Table 449.1: Total number of objects allocated (in thousands), the total amount of storage they occupy (in thousands of bytes),
their average size (in bytes) and the high water mark of these values (also in thousands). Adapted from Detlefs, Dosser and
Zorn.[6]

Program Total Objects Total Bytes Average Size Maximum Objects Maximum Bytes

sis 63,395 15,797,173 249.2 48.5 1,932.2
perl 1,604 34,089 21.3 2.3 116.4
xfig 25 1,852 72.7 19.8 1,129.3
ghost 924 89,782 97.2 26.5 2,129.0
make 23 539 23.0 10.4 208.1
espresso 1,675 107,062 63.9 4.4 280.1
ptc 103 2,386 23.2 102.7 2,385.8
gawk 1,704 67,559 39.6 1.6 41.0
cfrac 522 8001 15.3 1.5 21.4

450 Allocated storage is described in 7.20.3.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects451

Commentary
Allocated storage is not implicitly handled by the implementation. It is controlled by calling library functions.

Other Languages
In some languages handle allocated storage is part of the language, not the library. For instance, C++ contains
the new operator (where the amount of storage to allocate is calculated by the translator, based on deducing
the type of object required). Pascal also contains new, but calls is a required function.

451The lifetime of an object is the portion of program execution during which storage is guaranteed to be reservedlifetime
of object for it.

Commentary
This defines the term lifetime. The storage reserved for an object may exist outside of its guaranteed lifetime.
However, this behavior is specific to an implementation and cannot be relied on in a program.

C90
The term lifetime was used twice in the C90 Standard, but was not defined by it.

C++

3.8p1 The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins when:

. . .

The lifetime of an object of type T ends when:

The following implies that storage is allocated for an object during its lifetime:

3.7p1 Storage duration is the property of an object that defines the minimum potential lifetime of the storage containing
the object.

Common Implementations
An implementation may be able to deduce that it is only necessary to reserve storage for an object during a
subset of the lifetime required by the standard. For instance, in the following example the accesses to the
objects loc_1 and loc_2 occur in disjoint portions of program execution. This usage creates an optimization
opportunity (having the two objects share the same storage during disjoint intervals of their lifetime).

1 void f(void)
2 {
3 int loc_1,
4 loc_2;
5 /*
6 * Portion of program execution that accesses loc_1, but not loc_2.
7 */
8

9 /*
10 * Portion of program execution that accesses loc_2, but not loc_1.
11 */
12 }

Reuse of storage is usually preceded by some event; for instance, a function return followed by a call to
another function (for automatic storage duration, the storage used by the previous function is likely to be
used by different objects in the newly called function). There are many possible algorithms[1, 2, 4, 8, 9, 14, 15] that
an implementation can use to manage allocated storage and no firm prediction on reuse can be made about
objects having this storage duration.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 452

A study by Bowman, Ratliff, and Whalley[5] optimized the storage lifetimes of the static data used by
15 Unix utilities (using the same storage locations for objects accessed during different time intervals; they
all had static storage duration). They were able to make an overage saving of 7.4%. By overlaying data
storage with instruction storage (the storage for instructions not being required after their last execution) they
achieved an average storage saving of 22.8%.

The issue of where storage is allocated for objects is discussed elsewhere. object
reserve storage

Coding Guidelines
The lifetime of objects having static or automatic storage durations are easy to deduce from looking at the
source code. The lifetime of allocated storage is rarely easy to deduce. Coding techniques to make it easier
to demark the lifetime of allocated storage are outside the scope of this book (the Pascal mark/release
functionality sometimes encouraged developers to develop algorithms to treat heap allocation in a stack-like
fashion).

Example
The following coding fault is regularly seen:

1 struct list *p;
2 /* ... */
3 free(p);
4 p = p->next;

452 An object exists, has a constant address,25) and retains its last-stored value throughout its lifetime.26)

Commentary
At first glance the phrase constant address appears to prevent a C implementation from using a garbage
collector that moves objects in storage. But what is an address? An implementation could choose to represent
object addresses as an index into an area of preallocated storage. This indexed element holds the real address
in memory of the object’s representation bits. The details of this extra indirection operation is dealt with by
the translator (invisible to the developer unless a disassembled listing of the generated code is examined). A
garbage collector would only need to update the indexed elements after storage had been compacted, and the
program would know nothing about what had happened.

The last-stored value may have occurred as a result of an assignment operator, external factors for an
object declared with the volatile storage-class, or another operator that updates the value held in an object.

C++

There is no requirement specified in the C++ Standard for an object to have a constant address. The
requirements that are specified include:

1.9p10Such an object exists and retains its last-stored value during the execution of the block and while the block is
suspended (by a call of a function or receipt of a signal).

3.7.1p1All objects which neither have dynamic storage duration nor are local have static storage duration. The storage
for these objects shall last for the duration of the program (3.6.2, 3.6.3).

Common Implementations
In most implementations objects exist in either RAM or ROM. The value of an object whose address is
never taken may only ever exist in a processor register; the only way to tell is by looking at a listing of the
generated machine code. In all commercial implementations known to your author an object’s address has a

January 30, 2008 v 1.1

6.2.4 Storage durations of objects453

direct correspondence to its actual address in storage. There is no indirection via other storage performed by
the implementation, although the processor’s memory-management unit may perform its own mappings into
physical memory.

Coding Guidelines
An implementation that performs garbage collection may have one characteristic that is visible to the
developer. The program may appear to stop executing periodically because garbage collection is taking place.
There are implementation techniques that perform incremental garbage collection, which avoids this problem
to some degree.[11] However, this problem is sufficiently rare that it is considered to be outside the scope of
these coding guidelines.

A program running in a sufficiently hostile environment that the last-stored value of an object may be
corrupted requires the use of software development techniques that are outside the scope of this book.

Example
The two values output on each iteration of the loop are required to be equal. However, there is no requirement
that the values be the same for different iterations of the loop.

1 #include <stdio.h>
2

3 int main(void)
4 {
5 for (int loop=0; loop < 10; loop++)
6 {
7 int nested_obj;
8

9 printf("address is=%p", &nested_obj);
10 printf(", and now it is=%p\n", &nested_obj);
11 }
12 }

453If an object is referred to outside of its lifetime, the behavior is undefined.

Commentary
Such a reference is possible through

• the address of a block scope object assigned to a pointer having a greater lifetime, and

• an object allocated by the memory-allocation library functions that has been freed.

C++

The C++ Standard does not unconditionally specify that the behavior is undefined (the cases associated with
pointers are discussed in the following C sentence):

3.8p3 The properties ascribed to objects throughout this International Standard apply for a given object only during
its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there are
significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. describe the behavior
of objects during the construction and destruction phases.]

Common Implementations
On entry to a function it is common for the total amount of stack storage for that invocation to be allocated.

object
lifetime from entry

to exit of block

458

The extent to which the storage allocated to objects, defined in nested blocks, is reused will depend on
whether their lifetime is disjoint from objects defined in other nested blocks. In other words, is there an
opportunity for a translator to reuse the same storage for different objects?

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 454

Most implementations’ undefined behavior is to continue to treat the object as if it was still live. The
storage location referenced may contain a different object, or even some internal information used by the
runtime system. Values read from that location may be different from the last-stored value written into the
original object. Stores to that location could affect the values of other objects and the effects of modifying
internal, housekeeping information can cause a program to abort abnormally. The situation with allocated
storage is much more complex.

Coding Guidelines
When the lifetime of an object ends, nothing usually happens to the last-stored value (or indeed any subsequent object reference

outside lifetimeones) held at that location. Programs that access the storage location that held the object, soon after the
object’s lifetime has ended, often work as expected (such an access can only occur via a pointer dereference;
if an identifier denoting a declared object is visible the object it denotes cannot be outside of its lifetime).
Accessing an object outside of its lifetime is unlikely to cause the implementation to issue a diagnostic.
However, accessing an object outside of its lifetime sometimes does result in unexpected behavior. A coding
guideline recommending that “an object shall not be referenced outside of its lifetime.” is a special case of
the guideline stating that programs shall not contain faults. The general aim of guideline recommendations in guidelines

not faults

this area is to prevent the address of an object being available outside of its lifetime.
Although some implementations provide a mechanism to initialize newly created objects with some

unusual value (this often helps to catch uninitialized objects quickly during testing), an equivalent mechanism
at the end of an object’s lifetime is unknown (to your author).

454 The value of a pointer becomes indeterminate when the object it points to reaches the end of its lifetime. pointer
indeterminate

Commentary
It is not the object pointed at, but the value of pointers pointing at it that become indeterminate. Once its value
becomes indeterminate, the value of the pointer cannot even be read; for instance, compared for equality
with another pointer.

An object having a pointer type has an indeterminate value at the start of its lifetime, like any other object 461 object
initial value
indeterminate

(even if that lifetime starts immediately after it was terminated; for instance, an object defined in the block
scope of a loop).

C++

The C++ Standard is less restrictive; if does not specify that the value of the pointer becomes indeterminate.

3.8p5Before the lifetime of an object has started but after the storage which the object will occupy has been allocated34)

or, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, any pointer that refers to the storage location where the object will be or was located may be used but
only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the pointer as if the pointer
were of type void*, is well-defined. Such a pointer may be dereferenced but the resulting lvalue may only be
used in limited ways, as described below. If the object will be or was of a class type with a nontrivial destructor,
and the pointer is used as the operand of a delete-expression, the program has undefined behavior.

Source developed using a C++ translator may contain pointer accesses that will cause undefined behavior
when a program image created by a C implementation is executed.

Other Languages
Languages in the Pascal/Ada family only allow pointers to refer to objects with allocated storage lifetime.
These objects can have their storage freed. In this case the same issues as those in C apply.

Common Implementations
Some processors load addresses into special registers (sometimes called address registers; for instance, the pointer

cause unde-
fined behaviorMotorola 68000[12]). Loading a value into such an address register may cause checks on its validity as an

address to be made by the processor. If the referenced address refers to storage that is no longer available to
the program, a trap may be generated.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects455

Coding Guidelines
One way to ensure that pointers never refer to objects whose lifetime has ended is to ensure they are never
assigned the address of an object whose lifetime is greater than their own. Scope is a concept that developers
are more familiar with than lifetime and a guideline recommendation based on scope is likely to be easier to
learn. The applicable recommendations is given elsewhere.object

address assigned
??

Returning the address of a block scope object, in a return statement, is a fault. Although other guidelines
sometimes recommend against this usage, these coding guidelines are not intended to recommend against the
use of constructs that are obviously faults.guidelines

not faults

455An object whose identifier is declared with external or internal linkage, or with the storage-class specifierstatic
storage duration

static has static storage duration.

Commentary
This defines the term static storage duration. Objects have storage duration, identifiers have linkage. The
visibility of an identifier defined with internal linkage may be limited to the block that defined it, but its
lifetime extends from program startup to program termination.

Objects declared in block scope can have static storage duration. The extern or static storage-class
specifiers can occur on declarations in block scope. In the former case it refers to a definition outside of the
block. In the latter case it is the definition.

All file scope objects have static storage duration. String literals also have static storage duration.string literal
static stor-

age duration

C++

The wording in the C++ Standard is not based on linkage and corresponds in many ways to how C developers
often deduce the storage duration of objects.

3.7.1p1 All objects which neither have dynamic storage duration nor are local have static storage duration.

3.7.1p3 The keyword static can be used to declare a local variable with static storage duration.

Common Implementations
The total number of bytes of storage required for static storage duration objects is usually written into the
program image in translation phase 8. During program startup this amount of storage is requested from the
host environment. Objects and literals that have static storage duration are usually placed in a fixed area of
memory, which is reserved on program startup. This is possible because the amount of storage needed is
known prior to program execution and does not change during execution.

Coding Guidelines
There can be some confusion, in developers’ minds, between the keyword static, static storage duration,
and declared static— a term commonly used to denote internal linkage. There are even more uses of the
keyword static discussed elsewhere. There is little to be done, apart from being as precise as possible, todeclarator

syntax

reduce the number of possible alternatives when using the word static.
Objects in block scope, having static storage duration, retain their last-stored value between invocations

of the function that contains their definition. Mistakes are sometimes made on initializing such objects;
the developer forgets that initialization via a statement, rather than via an initialization expression in the
definition, will be executed every time the function is called. Assigning a value to such an object as its
first usage suggests that either static storage duration was not necessary or that there is a fault in the code.
While this usage might be flagged by a lint-like tool, neither of them fall within the remit of guideline
recommendations.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 457

Example
Here are three different objects, all with static storage duration.

1 static int vallu;
2

3 void f(void)
4 {
5 static int valyou = 99;
6

7 {
8 static int valu;
9

10 valu = 21;
11 }
12 }

Usage
In the visible form of the .c files approximately 5% of occurrences of the keyword static occurred in block
scope.

456 Its lifetime is the entire execution of the program and its stored value is initialized only once, prior to program static stor-
age duration

when initializedstartup.

Commentary
The storage is allocated and initialized prior to calling the function main. A recursive call to main does not program

startup
cause startup initialization to be performed again.

Other Languages
Java loads modules on an as-needed basis. File scope objects only need be allocated storage when each
module is loaded, which may be long after the program execution started.

Common Implementations
Implementations could use the as-if rule to delay creating storage for an object, with static storage duration,
until the point of its first access. There were several development environments in the 1980s that used
incremental linkage at the translation unit level. These environments were designed to aid the testing and
debugging of programs, even if the entire source base was not available.

Coding Guidelines
In environments where storage is limited, developers want to minimize the storage footprint of a program. If
some objects with static storage duration are only used during part of a program’s execution, more efficient
storage utilization schemes may be available; in particular making use of allocated storage.

Use of named objects makes it easier for a translator, or static analysis tool, to detect possible defects in
the source code. Use of pointers to objects requires very sophisticated points to analysis just to be able to do
the checks performed for named objects (without using sophisticated analysis).

A technique that uses macros to switch between referencing named objects during development and
allocated storage during testing and deployment offers a degree of independent checking. If this technique
is used, it is important that testing be carried out using the configuration that will ship in the final product.
Using named objects does not help with checking the lifetimes of the allocated objects used to replace them.
However, discussion of techniques for controlling a program’s use of storage is outside the scope of this
book.

457 An object whose identifier is declared with no linkage and without the storage-class specifier static has automatic
storage durationautomatic storage duration.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects458

Commentary
These objects occur in block scope and are commonly known as local variables. The storage-class specifier
auto can also be used in the definition of such objects. Apart from translator test programs, this keyword is
rarely used, although some developers use it as a source layout aid.

C++

3.7.2p1 Local objects explicitly declared auto or register or not explicitly declared static or extern have automatic
storage duration.

Other Languages
Nearly all languages have some form of automatic storage allocation for objects. Use of a language keyword
to indicate this kind of storage allocation is very rare. Cobol does not support any form of automatic storage
allocation.

Common Implementations
Storage for objects with automatic storage duration is normally reserved on a stack. This stack is frequently the
same one used to pass arguments to functions and to store function return addresses and other housekeeping
information associated with a function invocation (see Figure ??).

Recognizing the frequency with which such automatic storage duration objects are accessed (at least while
executing within the function that defines them), many processor instruction sets have special operations, or
addressing modes, for accessing storage within a short offset from an address held in a register.register

+ offset
The Dynamic C implementation for Rabbit Semiconductor[19] effectively assigns the static storage class to

all objects declared with no linkage (this default behavior, which does not support recursive function calls,
may be changed using the compiler #class auto directive).

Coding Guidelines
The terminology automatic storage duration is rarely used by developers. Common practice is to use the
term block scope to refer to such objects. The special case of block scope objects having static storage
duration is called out in the infrequent cases it occurs.

458For such an object that does not have a variable length array type, its lifetime extends from entry into the blockobject
lifetime from entry
to exit of block with which it is associated until execution of that block ends in any way.

Commentary
While the lifetime of an object may start on entry into a block, its scope does not start until the completion of
the declarator that defines it (an objects scope ends at the same place as its lifetime).identifier

scope begins
block scope

terminates C++

3.7.2p1 The storage for these objects lasts until the block in which they are created exits.

5.2.2p4 The lifetime of a parameter ends when the function in which it is defined returns.

6.7p2 Variables with automatic storage duration declared in the block are destroyed on exit from the block (6.6).

Which is a different way of phrasing 3.7.2p1.

3.8p1
v 1.1 January 30, 2008

6.2.4 Storage durations of objects 458

The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and

. . .

The lifetime of an object of type T ends when:

— the storage which the object occupies is reused or released.

The C++ Standard does not appear to completely specify when the lifetime of objects created on entry into a
block begins.

Other Languages
All arrays in Java, Awk, Perl, and Snobol 4 have their length decided during program execution (in the sense
that the specified size is not used during translation even if it is a constant expression). As such, the lifetime
of array in these languages does not start until the declaration, or statement, that contains them is executed.

Common Implementations
Most implementations allocate the maximum amount of storage required, taking into account definitions
within nested blocks, on function entry. Such a strategy reduces to zero any storage allocation overhead
associated with entering and leaving a block, since it is known that once the function is entered the storage
requirements for all the blocks it contains are satisfied. Allocating and deallocating storage on a block-by-
block basis is usually considered an unnecessary overhead and is rarely implemented. In:

1 void f(void)
2 { /* block 1 */
3 int loc_1;
4

5 { /* block 2 */
6 long loc_2;
7 }
8

9 { /* block 3 */
10 double loc_3;
11 }
12 }

the storage allocated for loc_2 and loc_3 is likely to overlap. This is possible because the blocks con-
taining their definitions are not nested within each other, and their lifetimes are disjoint. On entry to f
the total amount of storage required for developer-defined automatic objects (assuming sizeof(long) <=
sizeof(double)) is sizeof(int)+padding_for_double_alignment+sizeof(double).

Coding Guidelines
Where storage is limited, defining objects in the closest surrounding block containing accesses to them, can
reduce the maximum storage requirements (because objects defined with disjoint lifetimes can share storage
space). It is safer to let the translator perform the housekeeping needed to handle such shared storage than to
try to do it manually (by using of the same objects for disjoint purposes). The issues surrounding the uses to
which an object is put are discussed elsewhere. The issues involved in deciding which block an identifier ?? object

used in a sin-
gle role

should be defined in, if it is only referenced within a nested block, are also discussed elsewhere. identifier
definition
close to usage

Example

1 int glob;
2 int *pi = &glob;
3

4 void f(void)
5 { /* Lifetime of loc starts here. */

January 30, 2008 v 1.1

6.2.4 Storage durations of objects460

6

7 block_start:;
8

9 *pi++; /* The identifier loc is not visible here. */
10

11 if (*pi == 1)
12 goto skip_definition; /* Otherwise we always execute initializer. */
13

14 int loc = 1;
15

16 skip_definition:;
17

18 pi=&loc;
19

20 if (loc != 7)
21 goto block_start;
22

23 /* Lifetime of loc ends here. */ }

459(Entering an enclosed block or calling a function suspends, but does not end, execution of the current block.)

Commentary
Execution of a block ends when control flow within that block transfers execution to a block at the same
or lesser block nesting, or causes execution of the function in which it is contained to terminate (i.e., by
executing a return statement, or calling one of the longjmp, exit, or abort functions).

C is said to be a block structured language.

C++

1.9p10 Such an object exists and retains its last-stored value during the execution of the block and while the block is
suspended (by a call of a function or receipt of a signal).

3.7.2p1 The storage for these objects lasts until the block in which they are created exits.

Other Languages
This behavior is common to block structured languages.

Coding Guidelines
It would be incorrect to assume that objects defined with the volatile qualifier can only be modified by the
implementation while the block that defines them is being executed. Such objects can be modified at any
point in their lifetime.

460If the block is entered recursively, a new instance of the object is created each time.block
entered recur-
sively Commentary

This can only happen through a recursive call to the function containing the block. A jump back to thefunction call
recursive

beginning of the block, using a goto statement, is not a recursive invocation of that block.

C90
The C90 Standard did not point this fact out.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 461

C++

As pointed out elsewhere, the C++ Standard does not explicitly specify when storage for such objects is
458 object

lifetime from
entry to exit of
blockcreated. However, recursive instances of block scope declarations are supported.

5.2.2p9Recursive calls are permitted, except to the function named main (3.6.1).

6.7p2Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the block
(6.6).

Other Languages
This behavior is common to block structured languages. Recursion was not required in the earlier versions of
the Fortran Standard, although some implementations provided it.

Common Implementations
There are some freestanding implementations where storage is limited and recursive function calls are not
supported (such implementations are not conforming). The problem is not usually one of code generation,
but the storage optimizations performed by the linker. To minimize storage usage in memory limited
environments linkers build program call graphs to deduce which objects can have their storage overlaid. The call graph

storage optimization algorithms do not terminate if there are loops in the call graph (a recursive call would
create such a loop). Thus, recursion is not supported because programs containing it would never get past
translation phase 8.

Allocating storage for all objects defined in a function, on a per function invocation basis, may cause
inefficient use of storage when recursive invocations occur. In practice both recursive invocations and objects
defined in nested blocks are rare.

461 The initial value of the object is indeterminate. object
initial value in-

determinateCommentary
This statement applies to all object declarations having no linkage, whether they have initializers or not (it is
explicitly stated for objects having a VLA type elsewhere). 466 object

initial VLA value
indeterminate

C++

8.5p9If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying class
type shall have a user-declared default constructor.

Otherwise, if no initializer is specified for an object, the object and its subobjects, if any, have an indeterminate
initial value90); if the object or any of its subobjects are of const-qualified type, the program is ill-formed.

C does not have constructors. So a const-qualified object definition, with a structure or union type, would be
ill-formed in C++.

1 struct T {int i;};
2

3 void f(void)
4 {
5 const struct T loc; /* very suspicious, but conforming */
6 // Ill-formed
7 }

January 30, 2008 v 1.1

6.2.4 Storage durations of objects462

Other Languages
This behavior is common to nearly every block scoped language. Some languages (e.g., awk) provide an
initial value for all objects (usually zero, or the space character).

Common Implementations
Some implementations assign a zero value to automatic and allocated storage when it is created. They do this
to increase the likelihood that programs containing accesses to uninitialized objects will work as intended.
They are application user friendly by helping to protect against errors in the source code. (Many objects are
initially set to zero by developers and this implicit implementation value assignment mimics what is likely to
be the behavior intended by the author of the code.)

Some implementations (e.g., the Diab Data compiler[7] supports the -Xinit-locals-mask option) im-
plicitly assign some large value, or a trap representation, to freshly allocated storage. The intent is to be
developer friendly by helping to detect faults, created by use of uninitialized objects, as quickly as possible.
Assigning an unusual value is likely to have the effect of causing the reads from uninitialized objects to
have an unintended effect and to be quickly detected. The Burroughs B6700 (a precursor of the Unisys A
Series[18]) initialized its 48-bit words to 0xbadbadbadbad. The value 0xdeadbeef is used in a number of
environments supported by IBM.

Coding Guidelines
It is surprising how often uninitialized objects contain values that result in program execution producing
reasonable results. Having the implementation implicitly initialize objects to some unfriendly value helps
to track down these kinds of faults much more quickly and helps to prevent reasonable results from hiding
latent problems in the source code.

462If an initialization is specified for the object, it is performed each time the declaration is reached in the executioninitialization
performed every
time declaration
reached

of the block;

Commentary
The sequence of operations is specified in more detail elsewhere in the C Standard.object

initializer eval-
uated when

If flow of control jumps over the declaration, for instance by use of a goto statement, the initialization is
not performed; however, the lifetime of the object is not affected (the storage will already have been allocated
on entry into the block).

object
lifetime from entry

to exit of block

458

Because initializations are performed during program execution, it is possible for the evaluation of a
floating constant to cause an exception to be raised. This can occur even if the floating constant appears
to have the same type as the object it is being assigned to. An implementation is at liberty to evaluate the
initialization expression in a wider format, which will then need to be converted to the object type. It is theFLT_EVAL_METHOD
conversion from any wider format to the type of the object type that may raise the exception.

1 #include <math.h>
2

3 void f(void)
4 {
5 static float w = 1.1e75; /* Performed at translation time, no exception raised. */
6 /*
7 * The following may all require conversions at execution time.
8 * Therefore they can all raise exceptions.
9 */

10 float x_1 = 1.1e75;
11 double x_2 = 1.1e75;
12 float x_3 = 1.1e75f;
13

14 /*
15 * The following do not require any narrowing conversions and cannot raise exceptions.
16 */
17 long double x_4 = 1.1e75;

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 463

18 double_t x_5 = 1.1e75;
19

20 /*
21 * For constant expressions we have (the final value of y and z is undefined)...
22 */
23 static double y = 0.0/0.0; /* Performed at translation time, no exception raised. */
24 auto double z = 0.0/0.0; /* Performed at execution time, may raise exception. */
25 }

C90

If an initialization is specified for the value stored in the object, it is performed on each normal entry, but not if
the block is entered by a jump to a labeled statement.

Support for mixing statements and declarations is new in C99. The change in wording is designed to ensure
that the semantics of existing C90 programs is unchanged by this enhanced functionality.

Other Languages
Some languages do not allow object definitions to contain an initializer. Those that do usually follow the
same initialization rules as C.

Common Implementations
For objects having a scalar type the machine code generated for the initializer will probably look identical
to that generated for an assignment statement. For derived types implementations have all the information
needed to generate higher-quality code. For instance, for array types, the case of all elements having a zero
value is usually a special case and a machine code loop is generated to handle it.

Example

1 void f(int x)
2 {
3 switch(x)
4 {
5 int i=33; /* This initialization never occurs. */
6

7 case 1: x--;
8 break;
9 }

10 }

Usage
Usage information on initializers is given elsewhere. object

value indeter-
minate

463 otherwise, the value becomes indeterminate each time the declaration is reached. object
indeterminate

each time dec-
laration reachedCommentary

An indeterminate value is stored in the object each time the declaration is reached in the order of execution. object
initializer eval-
uated when

Other Languages
Most languages follow the model of giving an object an indeterminate value when it is first defined.

Common Implementations
If no other objects are assigned the same storage location, it is very likely that the last-stored value will be
available in the object every time its declaration is reached.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects464

Example

1 extern int glob;
2

3 _Bool f(void)
4 {
5 for (int i=0; i<5; i++)
6 {
7 int loc;
8

9 if (i > 0)
10 loc -= i; /* loc always has an indeterminate value here. */
11 else
12 loc=23;
13 }
14

15 goto do_work;
16 {
17 start_block:;
18 int count;
19

20 return (count == glob); /* count always has an indeterminate value here. */
21 /*
22 * The above return statement exhibits undefined behavior,
23 * because of the access to count.
24 */
25 do_work:;
26 count = glob % 4;
27

28 goto start_block;
29 }
30 }

464For such an object that does have a variable length array type, its lifetime extends from the declaration of theVLA
lifetime
starts/ends object until execution of the program leaves the scope of the declaration.27)

Commentary
The lifetime of a VLA starts at its point of declaration, not at the point of entry into the block containing its
definition. This means it is possible to control the number of elements in the VLA through side effects within
the block containing its definition. The intent of the Committee was for it to be possible to implement VLAs
using the same stack used to allocate storage for local objects. Although their size varies, the requirements
are such that it is possible to allocate storage for VLAs in a stack-like fashion. C does not define any
out-of-storage signals and is silent on the behavior if the implementation cannot satisfy the requested amount
of storage.

C90
Support for variable length arrays is new in C99.

C++

C++ does not support variable length arrays in the C99 sense; however, it does support containers:

23.1p1 Containers are objects that store other objects. They control allocation and deallocation of these objects through
constructors, destructors, insert and erase operations.

The techniques involved, templates, are completely different from any available in C and are not discussed
further here.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 464

Other Languages
The lifetime of arrays in some languages (e.g., Java, Awk, Perl, and Snobol 4) does not start until the
declaration, or statement, that contains them is executed. An array definition in Java does not allocate storage
for the array elements; it only allocates storage for a reference to the object. The storage for the array
elements is created by the execution of an array access expression. This can occur at any point where the
identifier denoting the declared array is visible. Fortran and Pascal allow variable-size arrays to be passed
as arguments. However, this is a subset of the functionality involved in allowing the number of elements
in an array definition to be decided during program execution. In PL/1 the storage for arrays whose size
is computed during program execution is not allocated at the point of definition, but within the executable
statements via the use of the allocate statement.

1 declare
2 (k, l) fixed bin,
3 a dim (k) char (l) controlled;
4

5 k = 10;
6 l = 10;
7 allocate a;
8 free a;

Common Implementations
Because the size of an object having VLA type is not known at translation time, the storage has to be
allocated at execution time. A commonly used technique involves something called a descriptor. Storage
for this descriptor, one for each object having VLA type, is allocated in the same way as locally defined
objects having other types, during translation. The descriptor contains one or more members that will hold
information on the actual storage allocated and for multidimensional arrays the number of elements in each
dimension. When the definition of an object having a VLA type is encountered during program execution,
storage is allocated for it (often on the stack), and the descriptor members are filled in.

1 extern void G(void);
2

3 void f(int n)
4 {
5 long l;
6 char a[n];
7 float f_l;
8

9 G();
10 double d[11][n+8];
11 int i_l;
12 /* ... */
13 }

Once execution leaves the scope of the object definition, having a VLA type, its lifetime terminates and
the allocated storage can be freed up. This involves the implementation keeping track of all constructs that
can cause this to occur (e.g., goto statements, as well as normal block termination).

One technique for simplifying the deallocation of VLA stack storage is to save the current value of the
stack pointer on entry into a block containing VLA object definitions and to restore this value when the
block terminates. There are situations where this technique might not be considered applicable (e.g., when a
goto statement jumps to before a VLA object definition in the same block, an implementation either has to
perform deallocation just prior to the goto statement or accept additional stack growth).

Coding Guidelines
For objects that don’t have a VLA type, jumping over their definition may omit any explicit initialization, but
storage for that object will still have been allocated. If the object has a VLA type the storage is only allocated

458 object
lifetime from
entry to exit of
block

January 30, 2008 v 1.1

6.2.4 Storage durations of objects464

pointer to a

f_l

xxx

xxxxxxxxx

i_l

a

G
stack frame

pointer to a

f_l

n+8
pointer to d

i_l

a

d

Figure 464.1: Storage for objects not having VLA type is allocated on block entry, plus storage for a descriptor for each object
having VLA type. By the time G has been called, the declaration for a has been reached and storage allocated for it. After G
returns, the declaration for d is reached and is storage allocated for it. The descriptor for d needs to include a count of the number
of elements in one of the array dimensions. This value is needed for index calculations and is not known at translation time. No
such index calculations need to be made for a.

if the definition is executed.
It is not expected that the use of VLA types will cause a change in usage patterns of the goto statement.

A guideline recommendation dealing with this situation is not considered to be worthwhile.

Example

1 extern int n;
2 extern char gc;
3 extern char *pc = &gc;
4

5 void f(void)
6 {
7 block_start:;
8 /*
9 * At this point the lifetime of ca has not yet started. Jumping back to

10 * this point, from a point where the lifetime has started, will terminate
11 * the lifetime.
12 */
13 n++;
14

15 /*
16 * First time around the loop pc points at storage allocated for gc.
17 * On second and subsequent iterations pc will have been pointing at an
18 * object whose lifetime has terminated (giving it an indeterminate value).
19 */
20 pc[0]=’z’;
21

22 char ca[n]; /* Lifetime of ca starts here. */
23 pc=ca;
24

25 if (n < 11)

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 469

26 goto block_start;
27 }

465 If the scope is entered recursively, a new instance of the object is created each time. object
new instance
for recursionCommentary

A scope can only be entered recursively through a recursive function call. This behavior is the same as for
objects that don’t have a VLA type. Functions containing VLAs are reentrant, just like functions containing 460 block

entered recur-
sively

any other object type.
The functions in the standard library are not guaranteed to be reentrant.

Other Languages
This behavior is common to all block scoped languages.

Common Implementations
In practice few function definitions are used in a way that requires their implementation to be reentrant. Some
implementations[17] assume that functions need not be reentrant unless explicitly specified as such (e.g., by
using a keyword such as reentrant).

466 The initial value of the object is indeterminate. object
initial VLA value

indeterminateCommentary
Objects having a VLA type are no different from objects having any other type. 461 object

initial value
indeterminate

Common Implementations
The usage patterns of objects having a VLA type are not known. Whether they are less likely to have their
values from a previous lifetime in a later lifetime than objects having other types is not known.

467 Forward references: statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array declarators (6.7.5.2),
initialization (6.7.8).

468 25) The term “constant address” means that two pointers to the object constructed at possibly different times footnote
25will compare equal.

Commentary
The standard does not specify how addresses are to be represented in a program; it only specifies the results
of operations on them. In between their construction and being compared, it is even possible that they are
written out and read back in again.

C++

The C++ Standard is silent on this issue.

Other Languages
This statement is true of nearly all classes of languages, although some don’t support the construction of
pointers to objects. Functional languages (often used when formally proving properties of programs) never
permit two pointers to refer to the same object. Assignment of pointers always involves making a copy of the
pointed-to object (and returning a pointer to it).

Common Implementations
In some implementations the address of an object is its actual address in the processes (executing the
program) address space. With memory-mapping hardware (now becoming common in high-end freestanding
environments) it is unlikely to be the same as its physical address. Its logical address may remain constant,
but its physical address could well change during the execution of the program.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects471

469The address may be different during two different executions of the same program.

Commentary
It is possible to write a pointer out to a file using the %p conversion specifier during one execution of the
program and read it back in during a subsequent execution of the program. While the address read back,
during the same execution of the program, will refer to the same object (assuming the object lifetime has not
ended); however, during a different execution of the program the address is not guaranteed to refer be the
same object (or storage allocated for any object).

Addresses might be said to having two kinds of representation details associated with them. There is the
bit pattern of the value representation and there is the relative location of one address in relation to another
address. Some applications make use of the relationship between addresses for their own internal algorithms.object

reserve storage

For instance, some garbage collectors for Lisp interpreters depend on low addresses being used for allocated
storage. Low address are required because the garbage collector use higher order bits within the address
value to indicate certain properties (assuming they can be zeroed out when used in a pointer dereference).

C++

The C++ Standard does not go into this level of detail.

Other Languages
Most high-level languages do not make visible, to the developer, the level of implementation detail specified
in the C Standard.

Common Implementations
Programs running in hosted environments that use a memory-management unit to map logical to physical
addresses are likely to use the same logical addresses, to hold the same objects, every time they are executed.
It is only when other programs occupy some of the storage visible to a program that the address of its objects
is likely to vary.

47026) In the case of a volatile object, the last store need not be explicit in the program.footnote
26

Commentary
The fact that a volatile object may be mapped to an I/O port, not a storage location, does not alter its lifetime.volatile

last-stored value

As far as a program is concerned, the lifetime of an object having a given storage-class is defined by the C
Standard.

C++

7.1.5.1p8 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by an implementation. See 1.9 for detailed
semantics. In general, the semantics of volatile are intended to be the same in C++ as they are in C.]

47127) Leaving the innermost block containing the declaration, or jumping to a point in that block or an embeddedfootnote
27 block prior to the declaration, leaves the scope of the declaration.

Commentary
The scope of the declaration is the region of program text in which the identifier is visible using a top-down,
left-to-right parse of the source code.

C90
Support for VLAs is new in C99.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 471

Common Implementations
An implementation is required to track all these possibilities. It can choose not to free-up allocated storage
in some cases, perhaps because it can deduce that the same amount of storage will be allocated when the
definition is next executed. There is little practical experience with the implementation and VLA types at the
moment. The common cases can be guessed at, but are not known with certainty.

January 30, 2008 v 1.1

References
1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison–Wesley, 1985.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Archi-
tecture. Morgan Kaufmann Publishers, 2002.

3. O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation
scheme for scratch-pad-based embedded systems. ACM Transac-
tions on Embedded Computing Systems, 1(1):6–26, 2002.

4. R. Barua. Maps: A Compiler-Managed Memory System for Software-
Exposed Architectures. PhD thesis, M.I.T., Jan. 2000.

5. R. L. Bowman, E. J. Ratliff, and D. B. Whalley. Decreasing process
memory requirements by overlapping program portions. In Proceed-
ings of the Hawaii International Conference on System Sciences,
pages 115–124, Jan. 1998.

6. D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large
C and C++ programs. Technical Report CU-CS-665-93, University
of Colorado at Boulder, Aug. 1993.

7. Diab Data. D-CC & D-C++ Compiler Suites User’s Guide. Diab
Data, Inc, www.ddi.com, 4.3 edition, June 1999.

8. E. Eckstein and A. Krall. Minimizing cost of local variables access
for DSP-processors. In Proceedings of the ACM SIGPLAN 1999
Workshop on Languages, Compilers and Tools for Embedded Sys-
tems (LCTES 99), volume 34.7 of ACM SIGPLAN Notices, pages
20–27. ACM Press, May 5 1999.

9. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a com-
piler framework for analyzing and tuning memory behavior. ACM

Transactions on Programming Languages and Systems, 21(4):703–
746, July 1999.

10. IAR Systems. PICmicro C Compiler: Programming Guide, iccpic-1
edition, 1998.

11. R. Jones and R. Lims. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Addison–Wesley, 1996.

12. Motorola, Inc. MOTOROLA M68000 Family Programmer’s Refer-
ence Manual. Motorola, Inc, 1992.

13. I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source code
evolution using abstract syntax tree matching. In Proceedings of
the 2005 International Workshop on Mining Software Repositories,
pages 1–5, May 2005.

14. A. Rao. Compiler optimizations for storage assignment on embed-
ded DSPs. Thesis (m.s.), University of Cincinnati, Oct. 1998.

15. E. L. Robertson. Code generation and storage allocation for ma-
chines with span-dependent instructions. ACM Transactions on Pro-
gramming Languages and Systems, 1(1):71–83, 1979.

16. J. Sjödin and C. von Platen. Storage allocation for embedded pro-
cessors. In Proceedings of CASES’01, pages 15–23, Nov. 2001.

17. Texas Instruments. TMS370 and TMS370C8 8-Bit Microcontroller
Family Optimizing C Compiler Users’ Guide. Texas Instruments,
spnu022c edition, Apr. 1996.

18. Unisys Corporation. Architecture MCP/AS (Extended). Unisys Cor-
poration, 3950 8932-100 edition, 1994.

19. Z-World. Dynamic C User’s Manual. Z-World, Inc, Davis, CA,
USA, 019-0071.020218-p edition, 1999.

v 1.1 January 30, 2008

www.ddi.com

