
AnaGate API

Programmer's Manual

Analytica GmbH

A. Schmidt, Analytica GmbH
S. Welisch, Analytica GmbH

AnaGate API: Programmer's Manual
Analytica GmbH
by A. Schmidt and S. Welisch

This document was generated with DocBook at 2012-03-13 10:04:16.

Hilfe-Datei (dtsch.): AnaGate-API.chm

Hilfe-Datei (engl.): AnaGate-API-EN.chm

PDF-Datei (dtsch.): AnaGate-API-1.10.pdf

PDF-Datei (engl.): AnaGate-API-1.10-EN.pdf

Publication date 09. September 2010
Copyright © 2007-2010 Analytica GmbH

Abstract

The AnaGate Programmer's Manual includes the exact description of the programming
interfaces to all models of AnaGate hardware series.

This manual bases on the actual AnaGate Application Programming Interface (API) in Version
1.10 and the AnaGate communication protocol V1.3 (see [TCP-2010]).

All rights reserved. All the information in this manual was compiled with the greatest of care. However, no warranty
can be given for it.

No parts of this manual or the program are to be reproduced in any way (printing, photocopying, microfilm or any
other process) without written authorisation. Any processing, duplication or distribution by means of any electronic
system is also strictly prohibited.

You are also advised that all the names and brand names of the respective companies mentioned in this documentation
are generally protected by brand, trademark or patent laws.

Analytica GmbH
Vorholzstraße 36
76137 Karlsruhe
Germany
Fon +49 (0) 721-43035-0
Fax +49 (0) 721-43035-20
<support@analytica-gmbh.de>

www.analytica-gmbh.de [http://www.analytica-gmbh.de]
www.anagate.de [http://www.anagate.de]

Revision History

Revision
1.4

01.10.2010 ASce Complete revision of all chapters

Revision
1.3

12.07.2010 SWe CAN UPD fucntions added (LUA only)

Revision
1.2

04.06.2010 SWe I2C RAW functions added temporarily

Revision
1.1

01.04.2010 ASc english version

Revision
1.0

08.06.2009 ASc Manual changed to DocBook format

http://www.analytica-gmbh.de
http://www.analytica-gmbh.de
http://www.anagate.de
http://www.anagate.de

iii © 2007-2010 Analytica GmbH

Table of Contents
Introduction .. ix
I. AnaGate API ... 1

1. The Programming interface of AnaGate product line 3
2. Notes concerning the communication protocol TCP 5

2.1. Important properties of the network protocol 5
3. Common function reference ... 7

DLLInfo ... 8
4. CAN API reference .. 9

CANOpenDevice, CANOpenDeviceEx .. 10
CANCloseDevice ... 12
CANSetGlobals ... 13
CANGetGlobals ... 15
CANSetFilter .. 17
CANGetFilter .. 19
CANSetTime ... 20
CANWrite, CANWriteEx .. 21
CANSetCallback, CANSetCallbackEx ... 23
CANReadDigital .. 25
CANWriteDigital .. 27
CANRestart .. 28
CANDeviceConnectState .. 29
CANStartAlive .. 30
CANErrorMessage ... 31

5. SPI API reference ... 32
SPIOpenDevice ... 33
SPICloseDevice .. 35
SPISetGlobals .. 36
SPIGetGlobals .. 38
SPIDataReq ... 40
SPIReadDigital ... 42
SPIWriteDigital ... 44
SPIErrorMessage .. 45

6. I2C API reference ... 46
I2COpenDevice .. 47
I2CCloseDevice .. 49
I2CReset ... 50
I2CRead .. 51
I2CWrite .. 52
I2CSequence .. 53
I2CReadDigital ... 55
I2CWriteDigital ... 57
I2CErrorMessage .. 58
I2CReadEEPROM ... 59
I2CWriteEEPROM .. 61

7. Programming examples .. 64
7.1. Programming language C/C++ .. 64
7.2. Programming language Visual Basic 6 65
7.3. Programming language VB.NET .. 69

II. Scripting language LUA .. 72
8. The LUA scripting interface of the AnaGate product line 75

8.1. Creating scripts ... 76

AnaGate API

iv © 2007-2010 Analytica GmbH

8.2. Running scripts on personal computer 76
8.3. Running scripts on AnaGate hardware 77

9. Common function reference .. 80
LS_DeviceInfo .. 81
LS_GetTime ... 82
LS_Sleep ... 83

10. CAN Reference .. 84
LS_CANOpenDevice .. 85
LS_CANCloseDevice .. 87
LS_CANRestartDevice .. 88
LS_CANSetGlobals .. 89
LS_CANGetGlobals .. 91
LS_CANWrite ... 93
LS_CANWriteEx .. 95
LS_CANSetCallback ... 97
LS_CANGetMessage .. 99
LS_CANSetFilter ... 101
LS_CANGetFilter ... 102
LS_CANSetTime .. 103
LS_CANErrorMessage .. 104
LS_CANReadDigital ... 105
LS_CANWriteDigital ... 106

11. SPI Reference ... 107
LS_SPIOpenDevice .. 108
LS_SPICloseDevice .. 109
LS_SPISetGlobals .. 110
LS_SPIGetGlobals ... 112
LS_SPIDataReq .. 114
LS_SPIErrorMessage .. 116
LS_SPIReadDigital ... 117
LS_SPIWriteDigital .. 118

12. I2C Reference ... 119
LS_I2COpenDevice .. 120
LS_I2CCloseDevice ... 122
LS_I2CReset .. 123
LS_I2CRead ... 124
LS_I2CWrite ... 125
LS_I2CReadDigital .. 126
LS_I2CWriteDigital .. 127
LS_I2CErrorMessage ... 128
LS_I2CReadEEPROM .. 129
LS_I2CWriteEEPROM ... 131

13. CANOpen functions .. 133
LS_CANopenSetConfig ... 134
LS_CANopenGetConfig ... 135
LS_CANopenSetSYNCMode ... 136
LS_CANopenSetCallbacks ... 137
LS_CANopenGetPDO .. 138
LS_CANopenGetSYNC .. 139
LS_CANopenGetEMCY .. 140
LS_CANopenGetGUARD ... 141
LS_CANopenGetUndefined .. 142
LS_CANopenSendNMT ... 143
LS_CANopenSendSYNC .. 144

AnaGate API

v © 2007-2010 Analytica GmbH

LS_CANopenSendTIME .. 145
LS_CANopenSendPDO ... 146
LS_CANopenSendSDORead .. 147
LS_CANopenSendSDOWrite .. 148
LS_CANopenSendSDOReadBlock ... 149
LS_CANopenSendSDOWriteBlock ... 150
Programmer example .. 151

14. LUA programming examples .. 153
14.1. Examples for devices with CAN interface 153
14.2. Examples for devices with SPI interface 154
14.3. Examples for devices with I2C interface 155

A. API return codes ... 158
B. I2C slave address formats .. 160
C. Programming I2C EEPROM .. 162
D. FAQ - Frequent asked questions .. 164
E. FAQ - Programming API .. 168
F. Technical support ... 169
Bibliography ... 170

vi © 2007-2010 Analytica GmbH

List of Figures
7.1. Input form of SPI example (VB6) .. 66
8.1. Edit LUA script in a text editor ... 76
8.2. HTTP interface, LUA settings .. 78
B.1. Definition of a I2C slave address in 7-bit format 160
B.2. Definition of a I2C slave address in 10-bit format 160

vii © 2007-2010 Analytica GmbH

List of Tables
1.1. Library files for Windows ... 3
1.2. Library files for Linux .. 3
2.1. AnaGate devices and related port numbers .. 5
4.1. mask filter examples for CAN identifier .. 17
A.1. Common return values for all devices of AnaGate series 158
A.2. Return values for AnaGate I2C ... 158
A.3. Return values for AnaGate CAN .. 159
A.4. Return values for AnaGate Renesas ... 159
A.5. Return values for LUA scripting ... 159
B.1. I2C EEPROM addressing examples ... 160
C.1. Usage of the CHIP-Enable Bits of I2C EEPROMs 162
D.1. Using AnaGate hardware with firewall .. 165

viii © 2007-2010 Analytica GmbH

List of Examples
13.1. CANOpen - LUA script example ... 152
14.1. .. 153
14.2. .. 154
14.3. .. 155
14.4. .. 156
14.5. .. 157

ix © 2007-2010 Analytica GmbH

Introduction
The AnaGate Programmer's Manual includes the exact description of the
programming interfaces to all models of AnaGate hardware series.

The existing interfaces will be decribed below:

• Application Programming Interface (Part I, “AnaGate API”)

• LUA Scripting Interface (Part II, “Scripting language LUA”)

Part I. AnaGate API

2 © 2007-2010 Analytica GmbH

Table of Contents
1. The Programming interface of AnaGate product line 3
2. Notes concerning the communication protocol TCP 5

2.1. Important properties of the network protocol 5
3. Common function reference .. 7

DLLInfo ... 8
4. CAN API reference .. 9

CANOpenDevice, CANOpenDeviceEx .. 10
CANCloseDevice .. 12
CANSetGlobals .. 13
CANGetGlobals .. 15
CANSetFilter ... 17
CANGetFilter ... 19
CANSetTime ... 20
CANWrite, CANWriteEx ... 21
CANSetCallback, CANSetCallbackEx ... 23
CANReadDigital ... 25
CANWriteDigital .. 27
CANRestart ... 28
CANDeviceConnectState ... 29
CANStartAlive ... 30
CANErrorMessage .. 31

5. SPI API reference .. 32
SPIOpenDevice ... 33
SPICloseDevice ... 35
SPISetGlobals ... 36
SPIGetGlobals ... 38
SPIDataReq .. 40
SPIReadDigital .. 42
SPIWriteDigital .. 44
SPIErrorMessage ... 45

6. I2C API reference .. 46
I2COpenDevice ... 47
I2CCloseDevice ... 49
I2CReset .. 50
I2CRead ... 51
I2CWrite .. 52
I2CSequence .. 53
I2CReadDigital .. 55
I2CWriteDigital ... 57
I2CErrorMessage ... 58
I2CReadEEPROM ... 59
I2CWriteEEPROM ... 61

7. Programming examples .. 64
7.1. Programming language C/C++ ... 64
7.2. Programming language Visual Basic 6 ... 65
7.3. Programming language VB.NET .. 69

3 © 2007-2010 Analytica GmbH

Chapter 1. The Programming interface
of AnaGate product line

The AnaGate product line consist of several hardware devices, which offers access to
different bus systems (I2C, SPI, CAN) or processors (Renesas) via standard network
protocol.

The communication to the individual devices always is done through a documented
and disclosed proprietary network protocol. Thus, all products which incorporates a
socket interface (like personal computers, PLC, ...) are allowed to access the devices
of the AnaGate product line.

Analytica provides a programming interface for users of Windows and Linux operating
systems (X86) which implements the proprietary communication protocol and make
it available through simple function calls. The software API (Application Programming
Interface) is available free of charge for Windows and Linux operarting systems.

Table 1.1. Library files for Windows

Device Windows library

AnaGate CAN AnaGateCAN.dll

AnaGate CAN uno / duo / quattro AnaGateCAN.dll

AnaGate CAN USB AnaGateCAN.dll

AnaGate SPI AnaGateSPI.dll

AnaGate I2C / I2C X7 AnaGateI2C.dll

AnaGate Universal Programmer AnaGateSPI.dll, AnaGateI2C.dll

Note

To provide a widespread support of differrent programming languages like
C++, Visual Basic, Delphi and the programming languages of the .NET
family, the cdecl calling convention is used in all function calls. Using this
calling convention means that all function parameters are pushed on the
stack in reverse order (from right to left) and that the caller is responsible
for the stack handling. Most programming languages support this calling
convention.

Table 1.2. Library files for Linux

Device Linux library (X86) ARM9

AnaGate CAN libCANdll.a, libAnaCommon.a -

AnaGate CAN uno / duo / quattro libCANdll.a, libAnaCommon.a available

AnaGate CAN USB libCANdll.a, libAnaCommon.a available

AnaGate SPI libSPIdll.a, libAnaCommon.a -

AnaGate I2C / I2C X7 libI2Cdll.a, libAnaCommon.a -

AnaGate Universal Programmer libSPIdll.a, libI2Cdll.a,
libAnaCommon.a

available

The Programming interface
of AnaGate product line

4 © 2007-2010 Analytica GmbH

The different libraries include common and specific functions which are neccessary
for accessing and controlling the devices of the AnaGate product line. In the following,
all library functions of the software API are documented in detail.

Tip

It is possible to extend individually the newer device models with
embedded Linux (kernel 2.6) and ARM9 processor. The complete software
API is available in a cross-compiled version and can be used on the devices
itself to create individual device extensions. To do so is very easy because
the programming interface on the personal computer and the device is
completely identical.

A preconfigured virtual machine (Virtual-Box-Image) with Ubuntu-Linux
“READY-to-USE” with installed development environment (Kdevelop,
Eclipse) and all neccessary program libraries (GCC, cross compiler,
libraries, LUA, ...) is available optional .

5 © 2007-2010 Analytica GmbH

Chapter 2. Notes concerning the
communication protocol TCP

Access to the different models of the AnaGate product line is always done via the
most frequently used network protocol TCP (Transmission Control Protocol).

TCP is connection-oriented packet-switched transport protocol which is located in
layer 4 of the of the OSI reference model. In princible TCP is an end-to-end
connection which allows exchange of data in both directions at the same time. An
end-point is a pair formed of an IP address and a port number and. Such a pair builds
a bidirectional software interface and is called socket.

The AnaGate device offers its functionality as so-called TCP server. It creates a socket
with its IP address and a device-specific port number. On the models with CAN
interface(s) a seperate socket with different port number is created for each existing
CAN interface, on every socket up to 5 concurrent client connections are accepted.
The SPI, I2C and Renesas interfaces accept only one concurrent connection at the
same time.

Table 2.1. AnaGate devices and related port numbers

Device Port number

AnaGate I2C, AnaGate Universal Programmer 5000

AnaGate CAN, AnaGate CAN uno 5001

AnaGate CAN duo 5001, 5101

AnaGate CAN quattro 5001, 5101, 5201, 5301

AnaGate SPI, AnaGate Universal Programmer 5002

AnaGate Renesas, AnaGate Universal
Programmer

5008

Important

Please ensure that all used ports are set active on the personal computer
to grant access to the AnaGate device. Any existing firewalls are to be
configured accordingly.

2.1. Important properties of the network
protocol

In most cases TCP is based on the internet protocol (IP). IP is package-oriented,
whereby it is possible that data packets are lost or the packets can be received in
wrong order or perhaps more than once.

TCP eliminates this behaviour and ensures that the the data packets are received in
correct order at the recipient. Is a sent data packet not confirmed by the recipient
within a timeout limit, the packet is sent again. Double packets are recognized at the
recipient and are deleted. During connection the data transmission may be impaired,

Notes concerning the
communication protocol TCP

6 © 2007-2010 Analytica GmbH

delayed or completely interrupted. A successful connection do not guarantee a
permanently stable data transmission.

Detection and evaluation of network and line malfunctions can be difficult, if there
is only sporadic communication on the line. How is possible to distinguish between
a malfunction on the line or simply no data from the connected endpoint?

To amend this problematic nature TCP provides an internal keep alive mechanism.
Keep-alives are special data packets which are sent in regular intervalls between the
two endpoints of an opened communication channel. The recipient of a keep-alive
packet has to confirm the receipt to the sender within a certain period of time. Are
there no keep-alives or confirmations of keep-alives receivedm the communication
partner assumes that the channel is interrupted or the corresponding socket is
malfunctioning.

The keep-alive mechanism of TCP is not active per default and has to be activated
by the setsockopt function for each connection. The API functions which establish
a connection to an AnaGate - like the CANOpenDevice() function - strictly activate
the keep-alive mechisam of TCP.

Note

On Windows operating systems some settings concerning keep-alives can
be set individually. These settings are valid for all network connection on
this computer and can not be set individually for dedicated connections.

To do so the Windows registry keys KeepAliveTime
and KeepAliveInterval of node \HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Tcpip\Parameters has to be adjusted
(administrator rights).

Especially the CAN-Ethernet gateways can be affected by the above described
problems, for example if customer-specific needs ask for faster detection of
connection aborts as possible via the standard mechanism. So, in the AnaGate
models with CAN interface and linux OS an application-specific keep-alive algorithm
is integrated in the device firmware to enhance connection control. On base of a
predefined time period additional data packets are exchanged between the AnaGate
hardware and the controlling unit/personal computer, which have to be confirmed
by the corresponding endpoint (ALIVE_REQ, see [TCP-2010]). This integrated alive
machanism can be activated individually on each connection with a different timeout
interval.

Note

Users of the AnaGate-API do not have to implement the application-
specific alive mechanism to use it. With a simple call to the API function
CANStartAlive a concurrent thread is started which automatically
monitors the communication channel time-controlled.

7 © 2007-2010 Analytica GmbH

Chapter 3. Common function reference

Common function reference

8 © 2007-2010 Analytica GmbH

DLLInfo
DLLInfo — Determines the current version information of the AnaGate DLL.

Syntax
#include <AnaGateDLL.h>

int DLLVersion(char * pcMessage, int nMessageLen);

Parameter
pcMessage Data buffer that is to accept the version reference number of the

AnaGate DLL.

nMessageLen Size in bytes of the transferred data buffer.

Return value
Actual size of the returned version reference number.

Remarks
If the version reference number is too large for the transferred data buffer, it is
abbreviated to the given number of characters (nMessageLen).

9 © 2007-2010 Analytica GmbH

Chapter 4. CAN API reference
The CAN API can be used with all CAN gateway models of the AnaGate series. The programming
interface is identical for all devices and uses the network protocol TCP or UDP in general.

Following devices can be addresse via the CAN API interface:

• AnaGate CAN

• AnaGate CAN uno

• AnaGate CAN duo

• AnaGate CAN quattro

• AnaGate CAN USB

CAN API reference

10 © 2007-2010 Analytica GmbH

CANOpenDevice, CANOpenDeviceEx
CANOpenDevice, CANOpenDeviceEx — Opens an network connection (TCP or UDP)
to an AnaGate CAN device.

Syntax

#include <AnaGateDllCan.h>

int CANOpenDevice(int *pHandle, BOOL bSendDataConfirm, BOOL
bSendDataInd, int nCANPort, const char * pcIPAddress, int nTimeout);

int CANOpenDeviceEx(int *pHandle, BOOL bSendDataConfirm, BOOL
bSendDataInd, int nCANPort, const char * pcIPAddress, int nTimeout ,
int nSocketType);

Parameter
pHandle Pointer to a variable, in which the access handle is saved in the

event of a successful connection to the AnaGate device.

bSendDataConfirm It set to TRUE, all incoming and outgoing Data requests
are confirmed by the internal message protocol. Without
confirmations a better transmittion performance is reached.

bSendDataInd If set to FALSE, all incoming telegrams are discarded.

nCANPort CAN port number. Allowed values are:

0 for port A (Modells AnaGate CAN uno, AnaGate CAN duo,
AnaGate CAN quattro, AnaGate CAN USB and AnaGate CAN)

1 for port B (AnaGate CAN duo, AnaGate CAN quattro)

2 for port C (AnaGate CAN quattro)

3 for port D (AnaGate CAN quattro)

pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond
within the defined timeout period. This global timeout value is
valid on the current network connection for all commands and
functions which do not offer a specific timeout value.

nSocketType Specifies the socket type (ethernet layer 4) which is to be used
for the new connection. Only two different types are supported:
TCP and UDP. The funttion CANOpenDevice alyways uses TCP
sockets. Use the following constants fpr the parameter:

1
(SOCK_STREAM)

TCP (Transmission Control Protocol)

CAN API reference

11 © 2007-2010 Analytica GmbH

2
(SOCK_DGRAM)

UDP (User Datagram Protocol)

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Opens a TCP/IP connection to an CAN interface of a AnaGate CAN device. With
CANOpenDeviceEx it is possible to set the ethernet layer4 protocol (tcp or udp). If
the connection is established, CAN telegrams can be sent and received.

The connection should be closed with the function CANCloseDevice if not longer
needed.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See the following example for the initial programming steps.

#include <AnaGateCANDll.h>
int main()
{
 int hHandle;
 int nRC = CANOpenDevice(&hHandle, TRUE, TRUE, 0, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // ... now do something
 CANCloseDevice(hHandle);
 }
 return 0;
}

Remarks
The CANOpenDeviceEx function is supported for library versions 1.5-1.10 or higher
and firmware version 1.3.7 or higher.

Device models of type AnaGate CAN (hardware version 1.1.A) do not listen
for UPD connection requests. If trying to connect such a device via UPD, the
CANOpenDeviceEx returns with a timeout error.

See also
CANCloseDevice

CANRestart

CAN API reference

12 © 2007-2010 Analytica GmbH

CANCloseDevice
CANCloseDevice — Closes an open network connection to an AnaGate CAN device.

Syntax
#include <AnaGateDllCan.h>

int CANCloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Closes an open network connection to an AnaGate CAN device. The hHandle
parameter is a return value of a succesfull call to the function CANOpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
CANOpenDevice, CANOpenDeviceEx

CAN API reference

13 © 2007-2010 Analytica GmbH

CANSetGlobals
CANSetGlobals — Sets the global settings, which are to be used on the CAN bus

Syntax

#include <AnaGateDllCAN.h>

int CANSetGlobals(int hHandle, int nBaudrate, unsigned char
nOperatingMode, BOOL bTermination, BOOL bHighSpeedMode, BOOL
bTimeStampOn);

Parameter

hHandle Valid access handle.

nBaudrate The baud rate to be used. Following values are allowed:

• 10.000 für 10kBit

• 20.000 für 20kBit

• 50.000 für 50kBit

• 62.500 für 62,5kBit

• 100.000 für 100kBit

• 125.000 für 125kBit

• 250.000 für 250kBit

• 500.000 für 500kBit

• 800.000 für 800kBit (not AnaGate CAN)

• 1.000.000 für 1MBit

nOperatingMode The operating mode to be used. Following values are allowed.

• 0 = default mode.

• 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

• 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

bTermination Use integrated CAN bus termination (TRUE= yes, FALSE = no). This
setting is not supported by all AnaGate CAN models.

bHighSpeedMode Use high speed mode (TRUE= yes, FALSE= no). This setting is
not supported by all AnaGate CAN models.

CAN API reference

14 © 2007-2010 Analytica GmbH

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
CANSetFilter are ignored.

bTimeStampOn Use time stamp mode (TRUE= yes, FALSE= no). This setting is not
supported by all AnaGate CAN models.

In activated time stamp mode an additional timestamp is sent with
the CAN telegram. This timestamp indicates when the incomming
message is received by the CAN controller or when the outgoing
message is confirmed by the CAN controller.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Sets the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface. The settings are not saved
permantently on the device and are reset every device restart.

Remarks
The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also
CANGetGlobals

CAN API reference

15 © 2007-2010 Analytica GmbH

CANGetGlobals
CANGetGlobals — Returns the currently used global settings on the CAN bus.

Syntax

#include <AnaGateDllCAN.h>

int CANGetGlobals(int hHandle, int * pnBaudrate, unsigned char *
pnOperatingMode, BOOL * pbTermination, BOOL * pbHighSpeedMode, BOOL *
pbTimeStampOn);

Parameter
hHandle Valid access handle.

pnBaudrate The baud rate currently used on the CAN bus.

pnOperatingMode The operating mode to be used. Following values are returned.

• 0 = default mode.

• 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

• 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

pbTermination Is the integrated CAN bus termination used? (TRUE= yes, FALSE=
no). This setting is not supported by all AnaGate CAn modells.

pbHighSpeedMode Is the high speed mode switched on? (TRUE= yes, = no). This
setting is not supported by all AnaGate CAN modells.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
CANSetFilter are ignored.

pbTimeStampOn Is a timestamp mode activated on the current network connection?
(TRUE= yes, FALSE= no). This setting is not supported by all
AnaGate CAN modells.

In activated time stamp mode an additional timestamp is sent with
the CAN telegram. This timestamp indicates when the incomming
message is received by the CAN controller or when the outgoing
message is confirmed by the CAN controller.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

CAN API reference

16 © 2007-2010 Analytica GmbH

Description
Returns the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface.

Remarks
The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also
CANGetGlobals

CAN API reference

17 © 2007-2010 Analytica GmbH

CANSetFilter
CANSetFilter — Sets the current filter settings for the connection.

Syntax
#include <AnaGateDllCAN.h>

int CANSetFilter(int hHandle, const int * pnFilter);

Parameter
hHandle Valid access handle.

pnFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries). A
filter entry contains of two 32-bit values. Unused mask filter entries must
be initialized with 0 values. Unused range filter entries must be initialized
with a 0 for the start value and 0x1FFFFFFF for the end value.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
This function sets the current filter settings for the current connection. Filter can be
used to suppress messages with specific CAN message ids.

A mask filter contains of a mask value, which defines the bits of the CAN identifier
to examine, and the appropriate filter value. If the CAN identifier matches in the
indicated filter mask with the filter value, the incoming CAN telegram is sent to the
PC, otherwise not.

A range filter defines an address range with a appropriate start and end address. If
the CAN identifier do not lie in the indicated filter range, the incoming CAN telegram
is not sent to the PC.

Filter are only active, if the parameter bSendDataInd is set via the CANOpenDevice
function. If the pararmeter bHighSpeedMode of the CANSetGlobals is set, all filters
are deactivated to increase the data pass through.

Table 4.1. mask filter examples for CAN identifier

CAN id mask value filter value result

0x0F 0x0E 0x0C suppressed

0x0C 0x0E 0x0C ok

0x5D 0x0E 0x0C ok

See the following example for setting some filters.

#include <AnaGateCANDll.h>

CAN API reference

18 © 2007-2010 Analytica GmbH

int main()
{
{ int anFilter[16] = {
 0xFF, 0x0F, // mask filter 1: mask = 0xFF, value = 0x0F: route only 0x*0F values
 0, 0, // mask filter 2: unused
 0, 0, // mask filter 3: unused
 0, 0, // mask filter 4: unused
 0, 0x00000FFF, // range filter 1: all ids greater than 0xFFF are discarded
 0, 0x1FFFFFFF, // range filter 2: unused
 0, 0x1FFFFFFF, // range filter 3: unused
 0, 0x1FFFFFFF, // range filter 4: unused
 };
 int hHandle;
 int nRC = CANOpenDevice(&hHandle, TRUE, TRUE, 0, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 nRC = CANSetFilter(hHandle, &anFilter);
 // ... now do something
 CANCloseDevice(hHandle);
 }
 return 0;
}

See also
CANGetFilter

CAN API reference

19 © 2007-2010 Analytica GmbH

CANGetFilter
CANGetFilter — Returns the current filter settings for the connection.

Syntax
#include <AnaGateDllCAN.h>

int CANGetFilter(int hHandle, int * pnFilter);

Parameter
hHandle Valid access handle.

pnFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries). A
filter entry contains of two 32-bit values. Unused mask filter entries are
initialized with 0 values. Unused range filter entries are initialized with
(0,0x1FFFFFFF) value pairs.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
This function retrieves the current filter settings for the current connection. Filter
can be used to suppress messages with specific CAN message ids.

See also
CANSetFilter

CAN API reference

20 © 2007-2010 Analytica GmbH

CANSetTime
CANSetTime — Sets the current system time on the AnaGate device.

Syntax
#include <AnaGateDllCAN.h>

int CANSetTime(int hHandle, long nSeconds, long nMicroseconds);

Parameter
hHandle Valid access handle.

nSeconds Time in seconds from 01.01.1970.

nMicroseconds Micro seconds.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
The CANSetTime function sets the system time on the AnaGate hardware.

If the time stamp mode is switched on by the CANSetGlobals function, the AnaGate
hardware adds a time stamp to each incoming CAN telegram and a time stamp to
the confirmation of a telegram sent via the API (only if confirmations are switched
on for data requests).

Remarks
The CANSetTime function is supported by library version 1.4-1.8 or higher.

The setting of the base time for the time stamp mode is not supported by the AnaGate
CAN (hardware version 1.1.A). This setting is ignored by the device.

CAN API reference

21 © 2007-2010 Analytica GmbH

CANWrite, CANWriteEx
CANWrite, CANWriteEx — Send a CAN telegram to the CAN bus via the AnaGate
device.

Syntax
#include <AnaGateDllCan.h>

int CANWrite(int hHandle, int nIdentifier, const char * pcBuffer, int
nBufferLen, int nFlags);

int CANWriteEx(int hHandle, int nIdentifier, const char * pcBuffer, int
nBufferLen, int nFlags, long * pnSeconds, long * pnMicroSeconds);

Parameter
hHandle Valid access handle.

nIdentifier CAN identifier of the sender. Parameter nFlags defines, if the
address is in extended format (29-bit) or standard format (11-
bit).

pcBuffer Pointer to the data buffer.

nBufferLen Length of data buffer (max. 8 bytes).

nFlags The format flags are defined as follows.

• Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).

• Bit 1: If set, the telegram is marked as remote frame.

• Bit 2: If set, the telegram has a valid timestamp. This bit is only
set for incoming data telegrams and must not be set for the
CANWrite and CANWriteEx functions.

pnSeconds Timestamp of the confirmation of the CAN controller (seconds
from 01.01.1970).

pnMicroSeconds Micro seconds portion of the timestamp.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Both functions sends a CAN telegram to the CAN bus via the AnaGate device.

The CANWriteEx additionallly returns a timestamp of the time at which the telegram
is sent.

CAN API reference

22 © 2007-2010 Analytica GmbH

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the CANWrite bzw. CANWriteEx functions to send remote
frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

See the following example for sending a data telegram to the connected CAN bus.

#include <AnaGateCANDll.h>
int main()
{
 char cMsg[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int hHandle = 0;
 int nRC = 0;
 int nFlags = 0x0; // 11bit address + standard (not remote frame)
 int nIdentifier = 0x25; // send with CAN ID 0x25;

 int nRC = CANOpenDevice(&hHandle, TRUE, TRUE, 0, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // send 8 bytes with CAN id 37
 nRC = CANWrite(hHandle, nIdentifier, cMsg, 8, nFlags);

 // send a remote frame to CAN id 37 (request 4 data bytes)
 nRC = CANWrite(hHandle, nIdentifier, cMsg, 4, 0x02);

 CANCloseDevice(hHandle);
 }
 return 0;
}

Remarks
The CANWriteEx function is supported by library version 1.4-1.8 or higher.

For devices of type AnaGate CAN (hardware version 1.1.A) the function CANWriteEx
is equal to CANWrite, the return values pnSeconds and pnMicroSeconds will remain
unchanged.

CAN API reference

23 © 2007-2010 Analytica GmbH

CANSetCallback, CANSetCallbackEx
CANSetCallback, CANSetCallbackEx — Defines an asynchronous callback function,
which is called for each incoming CAN telegram.

Syntax

#include <AnaGateDllCan.h>

typedef void (WINAPI * CAN_PF_CALLBACK)(int nIdentifier, const char *
pcBuffer, int nBufferLen, int nFlags, int hHandle);

int CANSetCallback(int hHandle, CAN_PF_CALLBACK pCallbackFunction);

typedef void (WINAPI * CAN_PF_CALLBACK_EX)(int nIdentifier, const char
* pcBuffer, int nBufferLen, int nFlags, int hHandle, long nSeconds,
long nMicroseconds);

int CANSetCallbackEx(int hHandle, CAN_PF_CALLBACK_Ex
pCallbackFunctionEx);

Parameter
hHandle Valid access handle.

pCallbackFunction Function pointer to the private callback function. Set this
parameter to NULL to deactivate the callback function. The
parameters of the callback function are described in the
documentation of the CANWrite funciton.

pCallbackFunctionEx Function pointer to the private callback function. Set this
parameter to NULL to deactivate the callback function. The
parameters of the callback function are described in the
documentation of the CANWriteEx funciton.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Incoming CAN telegrams can bei received via a callback function, which can be
set by a simple API call. If a callback function us set, is will be called by the API
asynchronous.

Caution

The callback fucntion is called from a thread which is started by the
CAN API and which is reading data from the socket. Because of this
behaviour the callback code is executed by the thread context of the
API and therefore it uses it the heap memeory of the API DLL and not

CAN API reference

24 © 2007-2010 Analytica GmbH

the application program. So programming code should not use functions
like new, delete, alloc or free which allocate, free or reallocate heap
memory inside the callback.

See the following example for using a callback.

#include <AnaGateCANDll.h>

// Defintion of a callback, which writes incoming CAN data with timestamp to console
void WINAPI MyCallbackEx(int nIdentifier, const char * pcBuffer, int nBufferLen, int nFlags,
 int hHandle, long nSeconds, long nMicroseconds)
{
 std::cout << "CAN-ID=" << nIdentifier << ", Data=";
 for (int i = 0; i < nBufferLen; i++)
 {
 std::cout << " 0x" << std::hex << int((unsigned char)(pcBuffer[i]));
 }
 time_t tTime = nSeconds;
 struct tm * psLocalTime = localtime(&tTime);
 std::cout << " " << std::setw(19) << asctime(psLocalTime) << " ms(" << std::dec
 << std::setw(3) << nMicroseconds/1000 << "." << nMicroseconds%1000 << ")" << std::endl;
}

int main()
{
 int hHandle = 0;
 int nRC = 0;

 int nRC = CANOpenDevice(&hHandle, TRUE, TRUE, 0, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // deactivate callback
 nRC = CANSetCallbackEx(hHandle, MyCallbackEx);

 getch(); // wait for keyboard input

 // deactivate callback
 nRC = CANSetCallbackEx(hHandle, 0);

 CANCloseDevice(hHandle);
 }
 return 0;
}

Remarks
The two different callback functions have to be used depending on the active setting
of the global timestamp option (CANSetGlobals). Only one of the callbacks can be
activated at the same time.

See also
CANWrite, CANWriteEx

CAN API reference

25 © 2007-2010 Analytica GmbH

CANReadDigital
CANReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax
#include <AnaGateDllCan.h>

int CANReadDigital(int hHandle, unsigned long * pnInputBits, unsigned
long * pnOutputBits);

Parameter
hHandle Valid access handle.

pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
CANReadDigital function.

See the following example for setting an reading the digital IO.

#include <AnaGateCANDll.h>
int main()
{
 int hHandle = 0;
 int nRC = 0;
 unsigned long nInputs;
 unsigned long nOutputs = 0x03;

 int nRC = CANOpenDevice(&hHandle, TRUE, TRUE, 0, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = CANWriteDigital(hHandle, nOutputs);

 // read all input and output registers

CAN API reference

26 © 2007-2010 Analytica GmbH

 nRC = CANReadDigital(hHandle, &nInputs, &nOutputs);

 CANCloseDevice(hHandle);
 }
 return 0;
}

See also
CANWriteDigital

CAN API reference

27 © 2007-2010 Analytica GmbH

CANWriteDigital
CANWriteDigital — Writes a new value to the digital output register of the AnaGate
device.

Syntax
#include <AnaGateDllCAN.h>

int CANWriteDigital(int hHandle, unsigned long nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs ant the rear panel.

The digital outputs can be written with the CANWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
CANReadDigital.

See also
CANReadDigital

CAN API reference

28 © 2007-2010 Analytica GmbH

CANRestart
CANRestart — Restarts a AnaGate CAN device.

Syntax
#include <AnaGateDllCan.h>

int CANRestart(const char * pcIPAddress, int nTimeout);

Parameter
pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds. A timeout
is reported if the AnaGate partner does not respond within the defined
timeout period.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Restarts the AnaGate CAN device at the specified network address. It disconnects
implicitly all open network connections to all existing CAN interfaces. The Restart
command is even possible if the maximum number of allowed connections is reached.

Important

It is recommended to use this command only in emergency cases, if
there is a need to connect even if the maximum number of concurrent
connections is reached.

See also
CANOpenDevice

CAN API reference

29 © 2007-2010 Analytica GmbH

CANDeviceConnectState
CANDeviceConnectState — Retrieves the current network connection state of the
current AnaGate connection.

Syntax
#include <AnaGateDllCAN.h>

int CANDeviceConnectState(int hHandle);

Parameter
hHandle Valid connection handle of a successful call to CANOpenDevice.

Return value
Returns the current network connection state. Following values are possible:

• 1 = DISCONNECTED: The connection to the AnaGate is disconnected.

• 2 = CONNECTING: The connection is connecting.

• 3 = CONNECTED : The connection is established.

• 4 = DISCONNECTING: The connection is disonnecting.

• 5 = NOT_INITIALIZED: The network protocol is not successfully initialized.

Description
This function can be used to check if an already connected device is disconnected.

The detection period of a state change depends on the use of internal AnaGate-
ALIVE mechanism. This ALIVE mechanism has to be switched on explicitly via
CANStartAlive function. Once activated the connection state is periodically checked
by the ALIVE mechanism.

Remarks
The CANDeviceConnectState function is supported by library version 1.4-1.10 or
higher.

See also
CANStartAlive

CAN API reference

30 © 2007-2010 Analytica GmbH

CANStartAlive
CANStartAlive — Starts the ALIVE mechanism, which checks periodically the state
of the network connection to the AnaGate hardware.

Syntax
#include <AnaGateDllCan.h>

int CANStartAlive(int hHandle, int nAliveTime);

Parameter
hHandle Valid access handle.

nAliveTime Default time out in seconds for the ALIVE mechanism.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
The AnaGate communication protocol (see [TCP-2010]) supports an application
specific connection control which allows faster detection of broken connection lines.

The CANStartAlive function starts a concurrent process in the DLL in order to send
defined alive telegrams (ALIVE_REQ) peridically (approx. every half of the given time
out) to the Anagate device via the current network connection. Is the alive telegram
not confirmed within the alive time the connection is marked as disconnected and
the socket is closed if not already closed.

Use the CANDeviceConnectState function to check the current network connection
state.

Remarks
The CANStartAlive function is supported by library version 1.4-1.10 or higher.

It requires firmware version 1.3.8 or higher installed on the hardware, devices of
type AnaGate CAN (hardware version 1.1.A) does not support the application specific
alive mechanism.

See also
CANDeviceConnectState

Section 2.1, “ Important properties of the network protocol”

CAN API reference

31 © 2007-2010 Analytica GmbH

CANErrorMessage
CANErrorMessage — Returns a description of the given error code as a text string.

Syntax
#include <AnaGateDllCAN.h>

int CANErrorMessage(int nRetCode, char * pcMessage, int nMessageLen);

Parameter
nRetCode Error code for which the error description is to be determined.

pcMessage Data buffer that is to accept the error description.

nMessageLen Size in bytes of the transferred data buffer.

Return value
Actual size of the returned description.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is
shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC;
char cBuffer[200];
int nRC;
//... call a API function here
CANErrorMessage(nRC, cBuffer, 200);
std::cout << "Fehler: " << cBuffer << std::endl;

32 © 2007-2010 Analytica GmbH

Chapter 5. SPI API reference
The Serial Peripheral Interface (SPI) is a synchroneous data link standard named by Motorola
which operates in full duplex mode. The SPI gateway models of the AnaGate series provides
access to a SPI bus via a standard networking.

With the SPI API these SPI gateways can be easily controlled. The programming interface is
identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the SPI API interface:

• AnaGate SPI

• AnaGate Universal Programmer

SPI API reference

33 © 2007-2010 Analytica GmbH

SPIOpenDevice
SPIOpenDevice — Opens a network connection to an AnaGate SPI device.

Syntax

#include <AnaGateDllSPI.h>

int SPIOpenDevice(int * pHandle, const char * pcIPAddress, int nTimeout);

Parameter
pHandle Pointer to a variable, in which the access handle is saved in the event

of a successful connection to the AnaGate device.

pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Opens a TCP/IP connection to an AnaGate SPI (resp. AnaGate Universal
Programmer). After the connection is established, access to the SPI bus is possible.

Note

The AnaGate SPI (resp. the SPI interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

#include <AnaGateDllSPI.h>
int main()
{
 int hHandle;
 int nRC = SPIOpenDevice(&hHandle, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // ... now do something
 SPICloseDevice(hHandle);
 }

SPI API reference

34 © 2007-2010 Analytica GmbH

 return 0;
}

See also
SPICloseDevice

SPI API reference

35 © 2007-2010 Analytica GmbH

SPICloseDevice
SPICloseDevice — Closes an open network connection to an AnaGate SPI device.

Syntax
#include <AnaGateDllSPI.h>

int SPICloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Closes an open network connection to an AnaGate SPI device. The hHandle
parameter is a return value of a succesfull call to the function SPIOpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
SPIOpenDevice

SPI API reference

36 © 2007-2010 Analytica GmbH

SPISetGlobals
SPISetGlobals — Sets the global settings, which are to be used on the AnaGate SPI.

Syntax
#include <AnaGateDllSPI.h>

int SPISetGlobals(int hHandle, int nBaudrate, unsigned char nSigLevel,
unsigned char nAuxVoltage, unsigned char nClockMode);

Parameter
hHandle Valid access handle.

nBaudrate The baud rate to be used. The values can be set individually, like

• 500.000 for 500kBit

• 1.000.000 for 1MBit

• 5.000.000 for 5MBit

Note

The required baud rate can be different from the value
actually used because of internal hardware restrictions
(frequency of the oscillator). If it is not possible to adjust the
baud rate exactly to the parsed value, the nearest smaller
possible value is used instead.

nSigLevel The voltage level for SPI signals to be used. Following values are
allowed:

• 0 = Outputs in High Impedance Modus (Standard mode).

• 1 = +5.0V for the signals.

• 2 = +3.3V for the signals.

• 3 = +2.5V for the signals.

nAuxVoltage The voltage level of the support voltage to be used. Following values
are allowed:

• 0 = support voltage is +3.3V.

• 1 = support voltage is 2.5V.

nClockMode The phase and polarity of the clock signal. Following values are
allowed:

• 0 = CPHA=0 and CPOL=0.

• 1 = CPHA=0 and CPOL=1.

SPI API reference

37 © 2007-2010 Analytica GmbH

• 2 = CPHA=1 and CPOL=0.

• 3 = CPHA=1 and CPOL=1.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Sets the global settings of SPI interface of the AnaGate SPI or the AnaGate Universal
Programmer. These settings are not saved permantently on the device and are reset
every device restart.

See also
SPIGetGlobals

SPI API reference

38 © 2007-2010 Analytica GmbH

SPIGetGlobals
SPIGetGlobals — Returns the currently used global settings of the AnaGate SPI.

Syntax
#include <AnaGateDllSPI.h>

int SPIGetGlobals(int hHandle, int * pnBaudrate, unsigned char *
pnSigLevel, unsigned char * pnAuxVoltage, unsigned char * pnClockMode);

Parameter
hHandle Valid access handle.

pnBaudrate The baud rate currently used on the SPI bus in kBit.

pnSigLevel The voltage level currently used by the AnaGate SPI. Following values
are possible:

• 0 = Outputs in High Impedance Modus (Standard mode).

• 1 = +5.0V for the signals.

• 2 = +3.3V for the signals.

• 3 = +2.5V for the signals.

pnAuxVoltage The voltage level of the support voltage currently used by the
AnaGate SPI. Following values are possible:

• 0 = support voltage is +3.3V.

• 1 = support voltage is 2.5V.

pnClockMode The phase and polarity of the colck signal currently used by the
AnaGate SPI. Following values are possible:

• 0 = CPHA=0 and CPOL=0.

• 1 = CPHA=0 and CPOL=1.

• 2 = CPHA=1 and CPOL=0.

• 3 = CPHA=1 and CPOL=1.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Returns the currently used global settings of SPI interface of the AnaGate SPI or the
AnaGate Universal Programmer.

SPI API reference

39 © 2007-2010 Analytica GmbH

See also
SPISetGlobals

SPI API reference

40 © 2007-2010 Analytica GmbH

SPIDataReq
SPIDataReq — Writes and reads data to/from SPI bus.

Syntax
#include <AnaGateDllSPI.h>

int SPIDataReq(int hHandle, const char * pcBufWrite, int nBufWriteLen,
char * pcBufRead, int nBufReadLen);

Parameter
hHandle Valid access handle.

pcBufWrite Buffer with the data that is to be sent to the SPI partner.

nBufWriteLen Length of the data buffer pcBufWrite (byte count).

pcBufRead Byte buffer which holds the data received from the SPI partner.

nBufReadLen Number of bytes to read.

Description
Sends data to the SPI bus and receives data from the SPI bus.

On the SPI bus Data is transferred on two seperates data lines full duplex (SDO
and SDI). The SPIDatReq has to split a single data transfer in two steps because of
the spacial separation to the SPI bus. First the write data buffer is put into a TCP
data telegram and sent to the AnaGate SPI. The AnaGate SPI makes the real data
transfer on the SPI bus and send back a confirmation including the data received
from the bus.

Important

It is impossible to detect that no device is present at the SPI bus. So, if no
device is attached, the requested number of bytes are returned anyway
- in this case the read buffer is filled with 0.

See the following example for sending a command to the connected SPI bus.

#include <AnaGateDllSPI.h>
int main()
{
 char cBufWrite[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 char cBufReceive[100];
 int hHandle = 0;
 int nRC = 0;

 int nRC = SPIOpenDevice(&hHandle, "192.168.1.254", 5000);
 if (nRC == 0)
 {
 // send 1 byte and receive 1 byte

SPI API reference

41 © 2007-2010 Analytica GmbH

 nRC = SPIDataReq(hHandle, cBufWrite, 1, cBufReceive, 1);
 // send 1 byte and receive 5 byte
 nRC = SPIDataReq(hHandle, cBufWrite, 1, cBufReceive, 5);
 // send 2 byte and receive 1 byte
 nRC = SPIDataReq(hHandle, cBufW2ite, 2, cBufReceive, 1);

 SPICloseDevice(hHandle);
 }
 return 0;
}

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

SPI API reference

42 © 2007-2010 Analytica GmbH

SPIReadDigital
SPIReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax
#include <AnaGateDllSPI.h>

int SPIReadDigital(int hHandle, unsigned long * pnInputBits, unsigned
long * pnOutputBits);

Parameter
hHandle Valid access handle.

pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
SPIReadDigital function.

See the following example for setting an reading the digital IO.

#include <AnaGateDllSPI.h>
int main()
{
 int hHandle = 0;
 int nRC = 0;
 unsigned long nInputs;
 unsigned long nOutputs = 0x03;

 int nRC = SPIOpenDevice(&hHandle, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = SPIWriteDigital(hHandle, nOutputs);

 // read all input and output registers

SPI API reference

43 © 2007-2010 Analytica GmbH

 nRC = SPIReadDigital(hHandle, &nInputs, &nOutputs);

 SPICloseDevice(hHandle);
 }
 return 0;
}

See also
SPIWriteDigital

SPI API reference

44 © 2007-2010 Analytica GmbH

SPIWriteDigital
SPIWriteDigital — Write a new value to the digital output register of the AnaGate
device.

Syntax
#include <AnaGateDllSPI.h>

int SPIWriteDigital(int hHandle, unsigned long nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the SPIWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
SPIReadDigital.

See also
SPIReadDigital

SPI API reference

45 © 2007-2010 Analytica GmbH

SPIErrorMessage
SPIErrorMessage — Returns a description of the given error code as a text string.

Syntax
#include <AnaGateDllCAN.h>

int SPIErrorMessage(int nRetCode, char * pcMessage, int nMessageLen);

Parameter
nRetCode Error code for which the error description is to be determined.

pcMessage Data buffer that is to accept the error description.

nMessageLen Size in bytes of the transferred data buffer.

Return value
Actual size of the returned description.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is
shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC;
char cBuffer[200];
int nRC;
//... call a API function here
SPIErrorMessage(nRC, cBuffer, 200);
std::cout << "Fehler: " << cBuffer << std::endl;

46 © 2007-2010 Analytica GmbH

Chapter 6. I2C API reference
Philips Semiconductors (now NXP Semiconductors) has developed a simple bidirectional 2-
wire bus for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. Only two bus
lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit oriented,
bidirectional data transfers can be made at up to 100 kbit/s in the Standard-mode, up to 400
kbit/s in the Fast-mode, up to 1 Mbit/s in the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in
the High-speed mode. [NXP-I2C].

The I2C gateway models of the AnaGate series provides access to a I2C bus via a standard
networking. With the I2C API these I2C gateways can be easily controlled. The programming
interface is identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the I2C API interface:

• AnaGate I2C

• AnaGate Universal Programmer

I2C API reference

47 © 2007-2010 Analytica GmbH

I2COpenDevice
I2COpenDevice — Opens a network connection to an AnaGate I2C or an AnaGate
Universal Programmer).

Syntax
#include <AnaGateDllI2C.h>

int I2COpenDevice(int * pHandle, unsigned int nBaudrate, const char *
pcIPAddress, int nTimeout);

Parameter
pHandle Pointer to a variable, in which the access handle is saved in the event

of a successful connection to the AnaGate device.

nBaudrate Baud rate to be used for the I2C bus. Teh value can be set individually,
like

• 100000 for 100kBit (standard mode)

• 400000 for 400kBit (fast mode)

Note

Values above 400kBit are ignored by the AnaGate SPI.

pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Opens a TCP/IP connection to an AnaGate I2C (resp. AnaGate Universal
Programmer). After the connection is established, access to the I2C bus is possible.

Note

The AnaGate I2C (resp. the I2C interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

I2C API reference

48 © 2007-2010 Analytica GmbH

See the following example for the initial programming steps.

#include <AnaGateDllI2C.h>
int main()
{
 int hHandle;
 int nRC = I2COpenDevice(&hHandle, 100000, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // ... now do something
 I2CCloseDevice(hHandle);
 }
 return 0;
}

See also
I2CCloseDevice

I2C API reference

49 © 2007-2010 Analytica GmbH

I2CCloseDevice
I2CCloseDevice — Closes an open network connection to an AnaGate I2C device.

Syntax
#include <AnaGateDllI2C.h>

int I2CCloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Closes an open network connection to an AnaGate I2C device. The hHandle
parameter is a return value of a succesfull call to the function I2COpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
I2COpenDevice

I2C API reference

50 © 2007-2010 Analytica GmbH

I2CReset
I2CReset — Resets the I2C Controller in an AnaGate I2C device.

Syntax
#include <AnaGateDllI2C.h>

int I2CReset(int hHandle);

Parameter
hHandle Valid access handle.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Resets the I2C Controller in an AnaGate I2C device.

I2C API reference

51 © 2007-2010 Analytica GmbH

I2CRead
I2CRead — Reads data from an I2C partner.

Syntax
#include <AnaGateDllI2C.h>

int I2CRead(int hHandle, unsigned short nSlaveAddress, const char *
pcBuffer, int nBufferLen);

Parameter
hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

pcBuffer Byte buffer in which the data received from the I2C partner is to
be stored.

nBufferLen Number of bytes to read.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Reads data from an I2C partner. The user must ensure that the setup of the data
buffer and the address of the I2C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also
I2CWrite

I2C API reference

52 © 2007-2010 Analytica GmbH

I2CWrite
I2CWrite — Writes data to an I2C partner.

Syntax
#include <AnaGateDllI2C.h>

int I2CWrite(int hHandle, unsigned short nSlaveAddress, const char *
pcBuffer, int nBufferLen);

Parameter
hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

pcBuffer Byte buffer with the data that is to be sent to the I2C partner.

nBufferLen Size of bytes to be read.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Writes data to an I2C partner. The user must ensure that the setup of the data buffer
and the address of the I2C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also
I2CRead

I2C API reference

53 © 2007-2010 Analytica GmbH

I2CSequence
I2CSequence — This command is used to write a sequence of write and read
commands to an I2C device.

Syntax
#include <AnaGateDllI2C.h>

int I2CSequence(int hHandle, const char * pcWriteBuffer, int
nNumberOfBytesToWrite, char * pcReadBuffer, int nNumberOfBytesToRead,
int * pnNumberOfBytesRead, int * pnByteNumberLastError);

Parameter
hHandle Valid access handle.

pcWriteBuffer byte buffer, containing the commands which are to be
sent to the AnaGate I2C. The single commands are stored
sequential in this byte buffer.

A read command is defined as follows:

Structure of read command for I2CSequence

Read command Description

2 bytes (LSB,MSB) slave address in 7- or 10-bit format,
the R/W bit must be set to explicitely
to 1.

2 bytes (LSB,MSB) Bit 0-14: number of data bytes to
be read from the I2C device. The
successfully read data bytes are
stored in the pcReadBuffer buffer.

Bit 15: If this bit is set then the stop
bit at the end of the read command
is omitted.

A write command is defined as follows:

Structure write command for I2CSequence

Write command Description

2 bytes (LSB,MSB) slave address in 7- or 10-bit format,
the R/W bit must be set to explicitely
to 1.

2 bytes (LSB,MSB) Bit 0-14: number of data bytes to be
written to the I2C device.

Bit 15: If this bit is set then the stop
bit at the end of the write command
is omitted.

I2C API reference

54 © 2007-2010 Analytica GmbH

Write command Description

N bytes data bytes.

nNumberOfBytesToWrite byte size of the data to write

pcReadBuffer byte buffer, in which the received data is to be stored.
The received data from different commands are stored in
the buffer sequential (first the data of command 1, then
the data of command 2, ...).

nNumberOfBytesRead byte size of the read buffer (must be big enough for all
included read requests)

pnNumberOfBytesRead byte count, which is read from I2C.

pnByteNumberLastError Number of byte in the pcWriteBuffer buffer, which raises
an error.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
The user must ensure that the setup of the data buffer and the address of the I2C
partner are correct.

I2C API reference

55 © 2007-2010 Analytica GmbH

I2CReadDigital
I2CReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax
#include <AnaGateDllI2C.h>

int I2CReadDigital(int hHandle, unsigned long * pnInputBits, unsigned
long * pnOutputBits);

Parameter
hHandle Valid access handle.

pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
I2CReadDigital function.

See the following example for setting an reading the digital IO.

#include <AnaGateDllI2C.h>
int main()
{
 int hHandle = 0;
 int nRC = 0;
 unsigned long nInputs;
 unsigned long nOutputs = 0x03;

 int nRC = I2COpenDevice(&hHandle, 400000, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = I2CWriteDigital(hHandle, nOutputs);

 // read all input and output registers

I2C API reference

56 © 2007-2010 Analytica GmbH

 nRC = I2CReadDigital(hHandle, &nInputs, &nOutputs);

 CANCloseDevice(hHandle);
 }
 return 0;
}

See also
I2CWriteDigital

I2C API reference

57 © 2007-2010 Analytica GmbH

I2CWriteDigital
I2CWriteDigital — Writes a new value to the digital output register of the AnaGate
device.

Syntax
int I2CWriteDigital(int hHandle, unsigned long nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the I2CWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
I2CReadDigital.

See also
I2CReadDigital

I2C API reference

58 © 2007-2010 Analytica GmbH

I2CErrorMessage
I2CErrorMessage — Returns a description of the given error code as a text string.

Syntax
#include <AnaGateDllCAN.h>

int I2CErrorMessage(int nRetCode, char * pcMessage, int nMessageLen);

Parameter
nRetCode Error code for which the error description is to be determined.

pcMessage Data buffer that is to accept the error description.

nMessageLen Size in bytes of the transferred data buffer.

Return value
Actual size of the returned description.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is
shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC;
char cBuffer[200];
int nRC;
//... call a API function here
I2CErrorMessage(nRC, cBuffer, 200);
std::cout << "Fehler: " << cBuffer << std::endl;

I2C API reference

59 © 2007-2010 Analytica GmbH

I2CReadEEPROM
I2CReadEEPROM — Reads data from an EEPROM on the I2C bus.

Syntax

#include <AnaGateDllI2C.h>

int I2CReadEEPROM(int hHandle, unsigned short nSubAddress, unsigned
int nOffset, const char * pcBuffer, int nBufferLen, unsigned int
nOffsetFormat);

Parameter
hHandle Valid access handle.

nSubAddress Subaddress of the EEPROM to communicate with. The valid values
for nSubAddress are governed by the setting used in the parameter
nOffsetFormat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

• No bit is used for addressing: 0 to 7

• 1 bit is used for addressing: 0 to 3

• 2 bits are used for addressing: 0 to 1

• 3 bits are used for addressing: 0

nOffset Data offset on the EEPROM from which the transferred data is to
be read.

pcBuffer Character string buffer in which the received data is to be stored.

nBufferLen Length of the data buffer.

nOffsetFormat Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, “ Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

I2C API reference

60 © 2007-2010 Analytica GmbH

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
The I2CReadEEPROM function reads data from an I2C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I2C read
or write commands. So, when reading from the memory only the matching slave
address, the memory offset address and the data has to be sent to the I2C bus.

I2CReadEEPROM translates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

A programming example which clears a ST24C1024 can be found at the description
of I2WriteEEPROM.

See also
I2CWriteEEPROM

Appendix C, Programming I2C EEPROM

I2C API reference

61 © 2007-2010 Analytica GmbH

I2CWriteEEPROM
I2CWriteEEPROM — Writes data to an I2C EEPROM.

Syntax

#include <AnaGateDllI2C.h>

int I2CWriteEEPROM(int hHandle, unsigned short nSubAddress, unsigned
int nOffset, const char * pcBuffer, int nBufferLen, unsigned int
nOffsetFormat);

Parameter
hHandle Valid access handle.

nSubAddress Subaddress of the EEPROM to communicate with. The valid values
for nSubAddress are governed by the setting used in the parameter
nOffsetFormat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

• No bit is used for addressing: 0 to 7

• 1 bit is used for addressing: 0 to 3

• 2 bits are used for addressing: 0 to 1

• 3 bits are used for addressing: 0

nOffset Data offset on the EEPROM to which the transferred data is to be
written.

pcBuffer Character string buffer with the data that is to be written.

nBufferLen Length of the data buffer.

nOffsetFormat Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, “ Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

I2C API reference

62 © 2007-2010 Analytica GmbH

Return value
Returns Null if successful, or an error value otherwise (Appendix A, API return
codes).

Description
The I2CWriteEEPROM function writes data to an I2C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I2C read or
write commands. So, when writing to the memory only the matching slave address,
the memory offset address and the data has to be sent to the I2C bus.

I2CWriteEEPROM translates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

Tip

It is important to note that an EEPROM is divided into memory pages, and
that a single write command can only program data within a page. Users
of I2CWriteEEPROM must ensure to do not write across page limits. The
page size depends on the EEEPOM type.

See the following example for writing data to a ST24C1024.

#include <AnaGateDllSPI.h>
int main()
{
 char cBufferPage[256];
 int hHandle = 0;
 int nRC = 0;
 unsigned short nSubAddress = 0; 1

 unsigned int nOffsetFormat = 0x10|0x0F; 2

 int nRC = I2COpenDevice(&hHandle, 400000, "192.168.0.254", 5000);
 if (nRC == 0)
 {
 memset(cBufferPage,0,256); // clear page buffer
 for (int i=0; i<512;i++)
 {
 I2CWriteEEPROM(hHandle, nSubAddress, i*256, cBufferPage, 256, nOffsetFormat); 3

 }
 I2CCloseDevice(hHandle);
 }
 return 0;
}

1 It is possible to address 4 individual ST24C1024 on a single I2C bus. By selection
of subaddress 0 the control pins E2 and E1 have to be LOW.

2 17 address bits are used to address the 128KB of a ST24C1024. 16 bits are set
via the address bytes of the write command: 16=0x0F. The address bit A16 is
set via the E0 bit of the Chip Enable Address, therefore addressing mode 1 (E2-
E1-A0) must be set: 0x10.

3 The page size of a ST24C1024 is 256 byte, every page is programmed full within
the for-loop.

See also
I2CReadEEPROM

I2C API reference

63 © 2007-2010 Analytica GmbH

Appendix C, Programming I2C EEPROM

64 © 2007-2010 Analytica GmbH

Chapter 7. Programming examples

7.1. Programming language C/C++
The AnaGate programming API can be used on Windows systems as well as on linux
systems (X86). All available API functions are coded operating system independant,
so that source code once created can be used on both operating systems. Only the
way the libraries are linked on the different operating systems or different compilers
have to be customized.

Windows operating systems

There are basically two ways to access the API functions for the C/C++ programmer:

• When directly accessing the library all functions has to made known by preceding
calls to the Win32 methods LoadLibrary and GetProcAddress.

• The functions can be alternatively accessed easily via an import library, which
automatically loads all DLL functions and make them available implicitely.

In the following examples it is assumed that the second option is used and the
corresponding import library is linked.

7.1.1. CAN Console application C/C++ (MSVC)

This programming example for C++ demonstrates how to connect to an AnaGate
CAN and how to process received CAN data via a callback function.

Note

The source code of the example can be found in directory Samples/CAN-
VC6 resp. Samples/CAN-VC7 on the CD.

#include "AnaGateDLLCAN.h"

WINAPI void MyCallback(int nIdentifier, const char * pcBuffer, int nBufLen, int nFlags, int nHandle)
{
 std::cout << "CAN-ID=" << nIdentifier << ", Data=";
 for (int i = 0; i < nBufLen; i++)
 {
 std::cout " 0x" << std::hex << pcBuffer[i];
 }
 std::cout << std::endl;
}

int main()
{
 int hHandle = NULL;

 // opens AnaGate CAN duo device on port A, timeout after 1000 millseconds
 int nRC = CANOpenDevice(&hHandle,FALSE,TRUE,0,"192.168.2.1",1000);

 if (nRC == 0)
 {
 nRC = CANSetCallback(hHandle,MyCallback);
 getch(); // wait for keyborad input
 }

Programming examples

65 © 2007-2010 Analytica GmbH

 if (nRC == 0)
 {
 nRC = CANCloseDevice(hHandle);// close device
 }
}

7.2. Programming language Visual Basic 6
As already described in the previous chapters, the libraries of the AnaGate-API use
the cdecl calling convention to parse function parameters to the program stack.
Unfortunately this is generally not supported by the programming language Visual
Basic 6.

To work around this limitiation, the libraries for the AnaGate devices are available
in a specfic version for programming VB6 applications. In this versions the stdcall
calling convention is used, which is the only supported by VB6. Except for the way the
parameters are pushed on the stack these specific VB6 versions of the API libraries
are exactly identical to the standard versions.

Note

Use library AnaGateCAN.dll instead of library AnaGateCANVB6.dll.

Use library AnaGateSPI.dll instead of library AnaGateSPIVB6.dll.

7.2.1. SPI Example with user interface for VB6

This programming example for Visual Basisc 6 demonstrates how to connect to an
AnaGate SPI and how to execute a command on the SPI bus:

• Getting the global device settings like baud rate for example

• Sending a single command to the SPI bus

Note

The source code of the example can be found in directory Samples/SPI-
VB6 on the CD.

Programming examples

66 © 2007-2010 Analytica GmbH

7.2.1.1. User interface

Figure 7.1. Input form of SPI example (VB6)

Dialog fields

Network address Network address of the AnaGate SPI.

Check address Establishs a connection to the AnaGate SPI with the specified
network address and reads back some device information and
global device settings.

Baud rate The baud rate to be used. The value can be set individually.

Signal Level The voltage level for SPI signals to be used.

Aux. Voltage The voltage level of the support voltage to be used.

Clock mode The phase and polarity of the clock signal.

SPI command SPI command to be sent to the connected SPI device. The
command has to be entered as blank-separated hexadecimal
byte groups ("05 1F 3A" for example).

Execute
command

Executes a SPI command and displays the result in the Result
dialog field. Please keep in mind, that the SPI bus is used as full
duplex line, this means that data is written and received parallel.
Make sure that you write the same number of bytes to the bus
as you want to receive (in this cace add padding bytes to the
SPI command).

For example is the Read Status Register command of a
M25P80 defined as 0x05. The result of the command is a single
byte (8 bit) representing the current value of the Status Register.

Programming examples

67 © 2007-2010 Analytica GmbH

7.2.1.2. Getting global device settings

All SPI related functions of the AnaGate API are declared for Visual Basic users in
AnaGateSPI.bas and are read-to-use. The following code snipplet includes some
exemplary declarations of the API functions used below.

Public Declare Function SPIOpenDevice Lib "AnaGateSPIVB6" _
 Alias "_SPIOpenDevice@12" (ByRef Handle As Long, _
 ByVal TCPAddress As String, _
 ByVal Timeout As Long) As Long

Public Declare Function SPICloseDevice Lib "AnaGateSPIVB6" _
 Alias "_SPICloseDevice@4" (ByVal Handle As Long) As Long

Public Declare Function SPIGetGlobals Lib "AnaGateSPIVB6" _
 Alias "_SPIGetGlobals@20" (ByVal hHandle As Long, _
 ByRef nBaudrate As Long, _
 ByRef SigLevel As Byte, _
 ByRef nAuxVoltage As Byte, _
 ByRef nClockMode As Byte) As Long

The event procedure btnCheckAddress_Click is called on click of the Check
Address button.

Private Sub btnCheckAddress_Click()
 Dim nRC As Long, Data As String, sText As String, I As Long

 nRC = SPIOpenDevice(hHandle, Me.IPAddresse.Text, 2000) 1

 If nRC <> 0 Then
 Me.lblErrorMsg.Caption = "Fehler bei SPIOpenDevice: " & GetErrorMsg(nRC)
 Else
 Me.lblErrorMsg.Caption = GetAnagateInfo(hHandle)
 End If
 nRC = SPICloseDevice(hHandle) 2

End Sub

1 A call to SPIOpenDevice establishes a network connection to the device. If the
function fails, a textual error description is returned via Funktion GetErrorMsg.

2 The connection to the device is closed with the SPICloseDevice function.

Reading the device settings and creation of the textual presentation of the data is
done by the GetAnagateInfo function.

Private Function GetAnagateInfo(hHandle As Long) As String
 Dim nRC As Long, sText As String
 Dim nBaudrate As Long, nSigLevel As Byte, nAuxVoltage As Byte, nClockMode As Byte
 Dim nDigitalOutput As Long, nDigitalInput As Long

 nRC = SPIGetGlobals(hHandle, nBaudrate, nSigLevel, nAuxVoltage, nClockMode)
 If (nRC = 0) Then
 sText = sText & "Baudrate=" & CStr(nBaudrate) & ", Siglevel="
 Select Case nSigLevel
 Case 1: sText = sText & "+5.0V"
 Case 2: sText = sText & "+3.3V"
 Case 3: sText = sText & "+2.5V"
 Case Else: sText = sText & "High impedance"
 End Select
 sText = sText & vbCrLf & "AuxVoltage="
 Select Case nAuxVoltage
 Case 1: sText = sText & "+2.5V"
 Case Else: sText = sText & "+3.3V"
 End Select
 sText = sText & ", ClockMode="
 Select Case nClockMode
 Case 1: sText = sText & "CPHA=0 und CPOL=1"
 Case 2: sText = sText & "CPHA=1 und CPOL=0"
 Case 3: sText = sText & "CPHA=1 und CPOL=1"
 Case Else: sText = sText & "CPHA=0 und CPOL=0"
 End Select

Programming examples

68 © 2007-2010 Analytica GmbH

 Else
 sText = sText & "Fehler bei SPIGetGlobals: " & GetErrorMsg(nRC) & vbCrLf
 End If
 GetAnagateInfo = sText
End Function

7.2.1.3. Executing a command on the SPI bus

The AnaGate SPI can send arbitrary commands to the connected SPI bus. To write
and read data by the PC only the SPIDataReq function is required.

Public Declare Function SPIDataReq Lib "AnaGateSPIVB6" Alias "_SPIDataReq@20" (ByVal hHandle As Long, _
 ByVal lpBufferWrite As Any, _
 ByVal nBufferWriteLen As Long, _
 ByVal lpBufferRead As Any, _
 ByVal nBufferReadlLen As Long) As Long

The event procedure btnStart_Click is called on click of the Execute command
button.

Private Sub btnStart_Click()
 Dim nRC As Long, sText As String, I As Integer, sByteText As String
 Dim nBaudrate As Long, nSigLevel As Byte, nAuxVoltage As Byte, nClockMode As Byte
 Dim nBufferWriteLen As Long, nBufferReadLen As Long
 Dim arrWrite(1 To 255) As Byte, arrRead(1 To 255) As Byte

 nRC = SPIOpenDevice(hHandle, Me.IPAddresse.Text, 2000)
 If nRC <> 0 Then
 sText = "Fehler bei SPIOpenDevice: " & GetErrorMsg(nRC)
 Else
 nBaudrate = CLng(Me.txtBaudrate)
 nSigLevel = CLng(Me.cmbSigLevel.ListIndex)
 nAuxVoltage = CLng(Me.cmbAuxVoltage.ListIndex)
 nClockMode = CLng(Me.cmbClockMode.ListIndex)
 nRC = SPISetGlobals(hHandle, nBaudrate, nSigLevel, nAuxVoltage, nClockMode) 1

 If nRC <> 0 Then
 sText = sText & "Fehler bei SPISetGlobals: " & GetErrorMsg(nRC) & vbCrLf
 End If
 Me.lblDeviceInfo.Caption = GetAnagateInfo(hHandle)

 nBufferWriteLen = GetCommand(arrWrite) 2

 nBufferReadLen = nBufferWriteLen

 nRC = SPIDataReq(hHandle, VarPtr(arrWrite(1)), nBufferWriteLen, _
 VarPtr(arrRead(1)), nBufferReadLen) 3

 If nRC = 0 Then
 For I = 1 To nBufferReadLen
 sByteText = sByteText & "0x" & ToHex(arrRead(I)) & " "
 Next I
 Me.txtBufferRead = sByteText
 sText = sText & "SPIDataReq OK: " & vbCrLf
 Else
 sText = sText & "Fehler bei SPIDataReq: " & GetErrorMsg(nRC) & vbCrLf
 End If

 nRC = SPICloseDevice(hHandle)
 End If

End Sub

1 A call to SPISetGlobals sets the global settings on the device, the parameter
values of the input fields in the dialog form are used.

2 The GetCommand function converts the texual SPI command entered in the input
field on the form to a byte array structure.

3 To process the data in the read and receive buffers, a byte array is used as VB6
data type for both buffers. For this to work, the real memory address of the
array data has to be parsed to the DLL function. This will be done by using the
VarPtr function on the first byte array element.

Programming examples

69 © 2007-2010 Analytica GmbH

.

7.3. Programming language VB.NET
Of course, it is also possible to use the functions of the AnaGate API with the .NET
programming languages. For these languages the functions have only to be declared
correctly in one of the .NET languages. Loading and unloading of the declared API
functions is done automatically by the .NET framework.

7.3.1. CAN Console application VB.NET
This programming example for VB.NET demonstrates how to connect to an AnaGate
CAN and how to process received CAN data via a callback function.

Declare Function CANOpenDevice Lib "AnaGateCAN" (ByRef Handle As Int32, _
 ByVal ConfirmData As Int32, _
 ByVal MonitorOn As Int32, _
 ByVal PortNumber As Int32, _
 ByVal TCPAddress As String, _
 ByVal Timeout As Int32) As Int32
Declare Function CANCloseDevice Lib "AnaGateCAN" (ByVal Handle As Int32) As Int32
Public Delegate Sub CAN_CALLBACK(ByVal ID As Int32, ByVal Buffer As IntPtr, _
 ByVal Bufferlen As Int32, ByVal Flags as Int32, _
 ByVal Handle as Int32)
Declare Function CANSetCallback Lib "AnaGateCAN" (ByVal Handle As Int32, _
 ByVal MyCB As CAN_CALLBACK) As Int32

Sub CANCallback(ByVal ID As Int32, ByVal Buffer As IntPtr, ByVal Bufferlen As Int32, _
 ByVal Flags as Int32, ByVal Handle as Int32)
 Dim Bytes as Byte(8)

 System.Runtime.InteropServices.Marshal.Copy(Buffer, Bytes, 0, Bufferlen)
 Console.Out.Write("CAN-ID=")
 Console.Out.Write(ID)
 Console.Out.Write(",Data=")
 For I As Integer = 0 To BufferLen - 1
 Console.Out.Write(Bytes(I))
 Next

End Sub

Function Main(ByVal CmdArgs() As String) As Integer

 'Opens the single CAN port of a AnaGate CAN
 dim RC as Int32 = CANOpenDevice(Handle, 0, 1, 400, 0, "192.168.2.1", 1000)
 If RC = 0 Then
 CANSetCallback(Handle, AddressOf CANCallback)
 end If
 If RC = 0 Then
 CANCloseDevice(Handle)
 end if
 end Function

7.3.2. SPI Console application VB.NET
This programming example for VB.NET demonstrates how to connect to an AnaGate
SPI and how to execute SPI commands.

Note

The source code of the example can be found in directory Samples/SPI-
VB.NET on the CD.

Programming examples

70 © 2007-2010 Analytica GmbH

Sub Main()

 Dim hHandle As Int32, nIndex As Integer
 Dim BufferWrite(100) As Byte, BufferRead(100) As Byte
 Dim nBaudrate As Int32 = 5000000 ' 500kBit
 Dim nSigLevel As Byte = 2 ' +3.3V for the signals.
 Dim nAuxVoltage As Byte = 0 ' support voltage is +3.3V.
 Dim nClockMode As Byte = 3 ' CPHA=1 and CPOL=1.

 Dim nRC = SPIOpenDevice(hHandle, "192.168.1.254", 5000) 1

 If nRC <> 0 Then
 Console.WriteLine("Error SPIOpenDevice: " & GetErrorMsg(nRC) & vbCrLf)
 Else
 nRC = SPISetGlobals(hHandle, nBaudrate, nSigLevel, nAuxVoltage, nClockMode) 2

 nRC = SPIGetGlobals(hHandle, nBaudrate, nSigLevel, nAuxVoltage, nClockMode)

 For nIndex = 0 To 100 ' init buffers with some data
 BufferWrite(nIndex) = 69
 BufferRead(nIndex) = 96
 Next nIndex

 BufferWrite(0) = 5 * 16 ' 0x50 = READ STATUS (M25P80)
 BufferWrite(1) = 5 * 16 ' 0x50 = READ STATUS (M25P80)

 nRC = SPIDataReq(hHandle, BufferWrite, 2, BufferRead, 2) 3

 If nRC <> 0 Then
 Console.WriteLine("Error SPIDatReg: " & GetErrorMsg(nRC) & vbCrLf)
 Else
 Console.Write("Result: DATAREQ")
 For nIndex = 0 To 1 ' init buffers with some data
 Console.Write(BufferRead(nIndex) & " ")
 Next
 Console.WriteLine()
 End If

 SPICloseDevice(hHandle) 4

 End If
 End Sub

1 A call to SPIOpenDevice establishes a network connection to the device. If the
function fails, a textual error description is returned via Funktion GetErrorMsg.

2 SPISetGlobals sets the global parameters of the device (baud rate, signal level,
voltage level of the support voltage, clock mode).

3 Via the SPIDataReq function data is written to the SPI bus. If the command is
successful, the data read from the SPI partner is returned in the receive buffer.

4 The connection to the device is closed with the SPICloseDevice function.

The functions of the programming API are defined in a wrapper module. In the
following you can see a part of the wrapper module, which includes the declarations
of all API functions.

Imports System.Runtime.InteropServices

Namespace Analytica.AnaGate
 Public Module AnaGateAPI

 Declare Function SPIOpenDevice Lib "AnaGateSPI" (ByRef Handle As Int32, _
 ByVal TCPAddress As String, _
 ByVal Timeout As Int32) As Int32

 Declare Function SPICloseDevice Lib "AnaGateSPI" (ByVal Handle As Int32) As Int32

 Declare Function SPISetGlobals Lib "AnaGateSPI" (ByVal Handle As Int32, _
 ByVal Baudrate As Int32, _
 ByVal SigLevel As Byte, _
 ByVal AuxVoltage As byte, _
 ByVal ClockMode As byte) As Int32

 Declare Function SPIGetGlobals Lib "AnaGateSPI" (ByVal Handle As Int32, _
 ByRef Baudrate As Int32, _
 ByRef SigLevel As Byte, _

Programming examples

71 © 2007-2010 Analytica GmbH

 ByRef AuxVoltage As Byte, _
 ByRef ClockMode As Byte) As Int32

 Declare Function SPIDataReq Lib "AnaGateSPI" (ByVal Handle As Int32, _
 <MarshalAs(UnmanagedType.LPArray)> ByVal BufferWrite() As Byte, _
 ByVal BufferWriteLen As Int32, _
 <MarshalAs(UnmanagedType.LPArray)> ByVal BufferRead() As Byte, _
 ByVal BufferReadLen As Int32) As Int32

 Declare Function SPIErrorMessage Lib "AnaGateSPI" (ByVal RC As Int32, _
 ByVal Buffer As IntPtr, _
 ByVal Bufferlen As Int32) As Int32
 End Module
End Namespace

Part II. Scripting language LUA

73 © 2007-2010 Analytica GmbH

Table of Contents
8. The LUA scripting interface of the AnaGate product line 75

8.1. Creating scripts .. 76
8.2. Running scripts on personal computer ... 76
8.3. Running scripts on AnaGate hardware ... 77

9. Common function reference .. 80
LS_DeviceInfo .. 81
LS_GetTime .. 82
LS_Sleep .. 83

10. CAN Reference .. 84
LS_CANOpenDevice ... 85
LS_CANCloseDevice ... 87
LS_CANRestartDevice .. 88
LS_CANSetGlobals ... 89
LS_CANGetGlobals .. 91
LS_CANWrite .. 93
LS_CANWriteEx ... 95
LS_CANSetCallback ... 97
LS_CANGetMessage ... 99
LS_CANSetFilter .. 101
LS_CANGetFilter .. 102
LS_CANSetTime .. 103
LS_CANErrorMessage ... 104
LS_CANReadDigital .. 105
LS_CANWriteDigital .. 106

11. SPI Reference .. 107
LS_SPIOpenDevice .. 108
LS_SPICloseDevice .. 109
LS_SPISetGlobals .. 110
LS_SPIGetGlobals .. 112
LS_SPIDataReq ... 114
LS_SPIErrorMessage .. 116
LS_SPIReadDigital ... 117
LS_SPIWriteDigital ... 118

12. I2C Reference .. 119
LS_I2COpenDevice .. 120
LS_I2CCloseDevice .. 122
LS_I2CReset ... 123
LS_I2CRead .. 124
LS_I2CWrite ... 125
LS_I2CReadDigital ... 126
LS_I2CWriteDigital ... 127
LS_I2CErrorMessage .. 128
LS_I2CReadEEPROM .. 129
LS_I2CWriteEEPROM .. 131

13. CANOpen functions ... 133
LS_CANopenSetConfig .. 134
LS_CANopenGetConfig ... 135
LS_CANopenSetSYNCMode .. 136
LS_CANopenSetCallbacks ... 137
LS_CANopenGetPDO .. 138
LS_CANopenGetSYNC ... 139

Scripting language LUA

74 © 2007-2010 Analytica GmbH

LS_CANopenGetEMCY .. 140
LS_CANopenGetGUARD .. 141
LS_CANopenGetUndefined .. 142
LS_CANopenSendNMT .. 143
LS_CANopenSendSYNC .. 144
LS_CANopenSendTIME ... 145
LS_CANopenSendPDO .. 146
LS_CANopenSendSDORead ... 147
LS_CANopenSendSDOWrite ... 148
LS_CANopenSendSDOReadBlock .. 149
LS_CANopenSendSDOWriteBlock ... 150
Programmer example ... 151

14. LUA programming examples .. 153
14.1. Examples for devices with CAN interface 153
14.2. Examples for devices with SPI interface 154
14.3. Examples for devices with I2C interface 155

75 © 2007-2010 Analytica GmbH

Chapter 8. The LUA scripting interface
of the AnaGate product line

LUA [http://www.lua.org] is a lightweight multi-paradigm
programming language designed as a scripting language with
extensible semantics as a primary goal. The name comes from
the Portuguese word lua meaning “moon”. LUA was created in
1993 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes, members of the Computer Graphics Technology
Group (Tecgraf) at the Pontifical Catholic University of Rio de Janeiro,
in Brazil. ...

... In general, LUA strives to provide flexible meta-features that can
be extended as needed, rather than supply a feature-set specific to
one programming paradigm. As a result, the base language is light -
in fact, the full reference interpreter is only about 150 kB compiled -
and easily adaptable to a broad range of applications.

—Wikipedia, LUA

In order to be able to solve simple programming problems concerning the AnaGate
devices with the scripting language LUA, the LUA interpreter is extended by several
functions to operate the different AnaGate devices. These additional functions are
described in detail in the following chapters and are closely related to the functions
of the AnaGate API libraries.

Source files for LUA (called scripts) are created and edited on a personal computer
(Windows or Linux) in a standard text editor. Then, the script is simply executed in
the command shell via a free LUA interpreter. The full standard functionality of the
LUA language can be used as well as additional functional extensions for access of
the AnaGate hardware.

The scripting language LUA is very well-suited for use on embedded systems because
of its good performance and small runtime size. For this reason, the LUA interpreter
is integrated in the firmware of the AnaGate hardware 1. So, it is possible to execute
scripts not only on the personal computer, but also on the AnaGate device itself.

Note

Please refer to the printed paperbacks LUA Reference Manual
([LuaRef2006-EN]) and Programming in Lua ([LuaProg2006-EN]) for
detailed information about LUA. The reference manual is also available
online at Lua.org [http://www.lua.org].

1only AnaGate CAN uno, AnaGate CAN duo, AnaGate CAN quattro, AnaGate CAN USB and AnaGate Universal
Programmer

http://www.lua.org
http://www.lua.org
http://www.lua.org
http://www.lua.org

The LUA scripting interface
of the AnaGate product line

76 © 2007-2010 Analytica GmbH

8.1. Creating scripts
Creating and editing of script files for the scripting language LUA is exceptionally
easy, because a standard text editor is sufficient to do that. On Windows operating
systems Notepad or Wordpad can be used for example, on linux systems vi or other
text tools.

In the meantime some text editors, partly free of charge, support syntax-high-
lighting for LUA, which makes it really easier for a programmer to develop.

Figure 8.1. Edit LUA script in a text editor

When coding of a script is finished, it can be executed and tested on a personal
computer as decribed below.

8.2. Running scripts on personal computer
To execute LUA script files on a personal computer, an actual program version of the
LUA interpreter must be available.

On the CD-ROM, which is included in the scope of delivery, a modified LUA interpreter
can be found in the directory LUA. This interpreter consists of a single executable

The LUA scripting interface
of the AnaGate product line

77 © 2007-2010 Analytica GmbH

named LUA.exe, which includes all functional extensions to operate the AnaGate
hardware.

Tip

The lastest version of LUA.exe can be downloaded free of charge via
the support pages of the product homepage [http://www.anagate.de/
support/download.htm].

Except of the program executable LUA.exe no other program files are needed, so
that there is only one single file to copy to the computer harddisk (or file server,
SUB stick, ..).

A script file is executed easily via the command line shell, only the name of the
scriptfile has to specified to start it.

Following example shows how a script file named Get_Serial.lua is executed in
the windows command shell.

T:\Tools\LUA>LUA.exe Get_Serial.lua 1

Connected to 192.168.1.254 2

I have successfully retrieved the current serial and MAC:
SN=01 02 02 1D
MAC=00 50 C2 3C B2 1D
T:\Tools\LUA>

1 The filename of the script to execute has to be supplied as parameter on start
of the interpreter.

2 The serial number and MAC address of a device at IP address 192.168.1.254
is retrieved and written to the standard output.

8.3. Running scripts on AnaGate hardware
Like already mentioned before, it is possible to execute self-created application
scripts with an installed LUA script interpreter directly on the AnaGate hardware.

Via the HTTP interface of each device LUA script files can be downloaded to the
device and executed locally. In the following you can see a screenshot of the LUA
configuration page of a AnaGate CAN uno.

http://www.anagate.de/support/download.htm
http://www.anagate.de/support/download.htm
http://www.anagate.de/support/download.htm

The LUA scripting interface
of the AnaGate product line

78 © 2007-2010 Analytica GmbH

Figure 8.2. HTTP interface, LUA settings

Browse... Opens a file upload dialog to select a LUA script file.

Upload Uploads the selected script file to the device.

Clear Clears the current script file selection.

Boot script Script file executed on system startup. Via the button Delete
the boot script can be deactivated. Only one boot script is
allowed.

Running script Displays the currently executing script file. Via the button
Stop the execution can be cancelled.

Available scripts Displays all scripts which are currently available on the
device.

To start the execution of a script click on the button Start.
Via button Delete a script can be deleted on the device and
via Boot a script can be defined as boot script.

script output area In this text area the standard output (stdout) of the currently
executing script is displayed. Via the button Clear this text
area can be cleared.

The LUA scripting interface
of the AnaGate product line

79 © 2007-2010 Analytica GmbH

error output area In this text area the standard error output (stderr) of the
currently executing script is displayed. Via the button Clear
this text area can be cleared.

Tip

The text areas for script and error output are not refreshed automatically.
A manual page reload of the current page refreshes both text areas.

80 © 2007-2010 Analytica GmbH

Chapter 9. Common function reference

Common function reference

81 © 2007-2010 Analytica GmbH

LS_DeviceInfo
LS_DeviceInfo — Retrieves some global information from the AnaGate hardware.

Syntax
int RC, int nSWVersion, int nHWVersion, table(4) tabSerial, table(6)
tabMACAddress, int nDeviceID, int nSWDerivateID = LS_DeviceInfo(int
hHandle);

Parameter
hHandle Valid access handle returned by call to LS_CANOpenDevice,

LS_I2COpenDevice oder LS_SPIOpenDevice.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A,

API return codes).

nSWVersion Firmware version. The version number consists of 3 numbers
(major.minor.revision), which are stored in a 4-byte integer value.

nHWVersion Hardware version. The version number consists of 3 numbers
(major.minor.revision), which are stored in a 4-byte integer value.

tabSerial Serial number of the AnaGate hardware (4 byte).

tabMACAddress MAC address of the AnaGate hardware (6 byte).

nDeviceID Device specific identifier. Specifies the device type of the hardware.

• 1 = AnaGate I2C

• 2 = AnaGate CAN

• 3 = AnaGate SPI

• 8 = AnaGate Universal Programmer

• 9 = AnaGate Renesas

nSWDerivateID Indicates a customer-specific firmware version, if not 0x00.

Description
Returns specific information about a device of the AnaGate product line.

See also
LS_CANOpenDevice, LS_SPIOpenDevice, LS_I2COpenDevice

Common function reference

82 © 2007-2010 Analytica GmbH

LS_GetTime
LS_GetTime — Returns the current system time.

Syntax
int RC, table(2) tabTime = LS_GetTime(void);

Parameter
This function does not have any parameters.

Return values
RC Returns 0 if successful, or an error value otherwise (Table A.5,

“Return values for LUA scripting”).

tabTime(1),
tabTime(2)

tabTime(1) specifies the number of seconds elapsed since
01.01.1970, in tabTime(2) the fractions of a second is returned in
milliseconds..

Description
Returns the system time as the number of elapsed seconds and milliseconds since
midnight of January 1, 1970.

Common function reference

83 © 2007-2010 Analytica GmbH

LS_Sleep
LS_Sleep — Suspends the execution until the time-out interval elapses.

Syntax
int RC = LS_Sleep(unsigned int nMilliseconds);

Parameter
nMilliseconds The time interval for which execution is to be suspended, in

milliseconds.

Return value
RC Returns 0 if successful, or an error value otherwise (Table A.5, “Return values

for LUA scripting”).

Description
Suspends the execution until the time-out interval in milliseconds elapses.

84 © 2007-2010 Analytica GmbH

Chapter 10. CAN Reference
The CAN API can be used with all CAN gateway models of the AnaGate series. The programming
interface is identical for all devices and uses the network protocol TCP or UDP in general.

Following devices can be addresse via the CAN API interface:

• AnaGate CAN

• AnaGate CAN uno

• AnaGate CAN duo

• AnaGate CAN quattro

• AnaGate CAN USB

Note

All CAN specific functionality of the AnaGate C-API is also available für
LUA users, the LUA function extensions are documented in the following.

CAN Reference

85 © 2007-2010 Analytica GmbH

LS_CANOpenDevice
LS_CANOpenDevice — Opens an network connection (TCP) to an AnaGate CAN
device.

Syntax
int RC, int Handle = LS_CANOpenDevice(boolbSendDataConfirm, bool
bSendDataInd, int nCANPort, string sIPAddress, int nTimeout);

Parameter

bSendDataConfirm It set to TRUE, all incoming and outgoing Data requests
are confirmed by the internal message protocol. Without
confirmations a better transmittion performance is reached.

bSendDataInd If set to FALSE, all incoming telegrams are discarded.

nCANPort CAN port number. Allowed values are:

0 for port A (Modells AnaGate CAN uno, AnaGate CAN duo,
AnaGate CAN quattro, AnaGate CAN USB and AnaGate CAN)

1 for port B (AnaGate CAN duo, AnaGate CAN quattro)

2 for port C (AnaGate CAN quattro)

3 for port D (AnaGate CAN quattro)

sIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond
within the defined timeout period. This global timeout value is
valid on the current network connection for all commands and
functions which do not offer a specific timeout value.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Handle Access handle if successfully connected to the AnaGate device.

Description

Opens a TCP/IP connection to an CAN interface of a AnaGate CAN device. If the
connection is established, CAN telegrams can be sent and received.

The connection should be closed with the function CANCloseDevice if not longer
needed.

CAN Reference

86 © 2007-2010 Analytica GmbH

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See the following example for the initial programming steps.

-- open: use no confirmations and receive incomping CAN data
nRC, hHandle = LS_CANOpenDevice(false, true, 0, "192.168.0.254", 5000);
if (nRC == 0) then
 -- now do something
 LS_CANCloseDevice(hHandle);
end;

See also
LS_CANCloseDevice

LS_CANRestartDevice

CAN Reference

87 © 2007-2010 Analytica GmbH

LS_CANCloseDevice
LS_CANCloseDevice — Closes an open network connection to an AnaGate CAN
device.

Syntax
int RC = LS_CANCloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Closes an open network connection to an AnaGate CAN device. The hHandle
parameter is a return value of a succesfull call to the function LS_CANOpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
LS_CANOpenDevice

CAN Reference

88 © 2007-2010 Analytica GmbH

LS_CANRestartDevice
LS_CANRestartDevice — Restarts a AnaGate CAN device.

Syntax
int RC = LS_CANRestartDevice(string sIPAddress, int nTimeout);

Parameter
sIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds. A timeout
is reported if the AnaGate partner does not respond within the defined
timeout period.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Restarts the AnaGate CAN device at the specified network address. It disconnects
implicitly all open network connections to all existing CAN interfaces. The Restart
command is even possible if the maximum number of allowed connections is reached.

Important

It is recommended to use this command only in emergency cases, if
there is a need to connect even if the maximum number of concurrent
connections is reached.

See also
LS_CANOpenDevice

CAN Reference

89 © 2007-2010 Analytica GmbH

LS_CANSetGlobals
LS_CANSetGlobals — Sets the global settings, which are to be used on the CAN bus

Syntax
int RC = LS_CANSetGlobals(int hHandle, int nBaudrate, int
nOperatingMode, bool bTermination, bool bHighSpeedMode, bool
bTimeStampOn);

Parameter
hHandle Valid access handle.

nBaudrate The baud rate to be used. Following values are allowed:

• 10.000 für 10kBit

• 20.000 für 20kBit

• 50.000 für 50kBit

• 62.500 für 62,5kBit

• 100.000 für 100kBit

• 125.000 für 125kBit

• 250.000 für 250kBit

• 500.000 für 500kBit

• 800.000 für 800kBit (not AnaGate CAN)

• 1.000.000 für 1MBit

nOperatingMode The operating mode to be used. Following values are allowed.

• 0 = default mode.

• 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

• 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

bTermination Use integrated CAN bus termination (true= yes, false = no).
This setting is not supported by all AnaGate CAN models.

bHighSpeedMode Use high speed mode (true= yes, false= no). This setting is not
supported by all AnaGate CAN models.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not

CAN Reference

90 © 2007-2010 Analytica GmbH

confirmed on procol layer and the software filters defined via
LS_CANSetFilter are ignored.

bTimeStampOn Use time stamp mode (true= yes, false= no). This setting is not
supported by all AnaGate CAN models.

In activated time stamp mode an additional timestamp is sent
with the CAN telegram. This timestamp indicates when the
incomming message is received by the CAN controller or when
the outgoing message is confirmed by the CAN controller.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Sets the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface. The settings are not saved
permantently on the device and are reset every device restart.

Remarks
The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also
LS_CANGetGlobals

CAN Reference

91 © 2007-2010 Analytica GmbH

LS_CANGetGlobals
LS_CANGetGlobals — Returns the currently used global settings on the CAN bus.

Syntax
int RC, int nBaudrate, int nOperatingMode, bool bTermination, bool
bHighSpeedMode, bool bTimeStampOn = LS_CANGetGlobals(int hHandle);

Parameter
hHandle Valid access handle.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A,

API return codes).

nBaudrate The baud rate currently used on the CAN bus.

nOperatingMode The operating mode to be used. Following values are returned.

• 0 = default mode.

• 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

• 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

bTermination Is the integrated CAN bus termination used? true= yes, false=
no). This setting is not supported by all AnaGate CAn modells.

bHighSpeedMode Is the high speed mode switched on? (true= yes, false= no).
This setting is not supported by all AnaGate CAN modells.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
LS_CANSetFilter are ignored.

Description
Returns the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface.

Remarks
The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

CAN Reference

92 © 2007-2010 Analytica GmbH

See also
LS_CANSetGlobals

CAN Reference

93 © 2007-2010 Analytica GmbH

LS_CANWrite
CANWriteEx — Send a CAN telegram to the CAN bus via the AnaGate device.

Syntax
RC = CANWrite(int hHandle, int nCANId, int nDataLen, table (nDataLen)
tabData, int nFlags);

Parameter
hHandle Valid access handle.

nCANId CAN identifier of the sender. Parameter nFlags defines, if the address is
in extended format (29-bit) or standard format (11-bit).

nDataLen Length of data buffer (max. 8 bytes).

tabData Data buffer with telegram data.

nFlags The format flags are defined as follows.

• Bit 0: If set, the CAN identifier is in extended format (29 bit), otherwise
not (11 bit).

• Bit 1: If set, the telegram is marked as remote frame.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Both functions sends a CAN telegram to the CAN bus via the AnaGate device like
the LS_CANWriteEx function.

The LS_CANWriteEx additionally returns a timestamp of the time at which the
telegram is sent.

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the LS_CANWrite bzw. LS_CANWriteEx functions to send
remote frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

See the following example for sending a data telegram to the connected CAN bus.

tabData = {};

CAN Reference

94 © 2007-2010 Analytica GmbH

for i=1, 8 , 1 do
 table.insert(tabData, i);
end;

nFlags = 0x0; // 11bit address + standard (not remote frame)
nCANId = 0x25; // send with CAN ID 0x25;

nRC, hHandle = LS_CANOpenDevice(, true, true, 0, "192.168.0.254", 5000);
if (nRC == 0) then
 // send 8 bytes with CAN id 37
 nRC = LS_CANWrite(hHandle, nCANId, 8, tabData, nFlags);

 // send a remote frame to CAN id 37 (request 4 data bytes)
 nRC = LS_CANWrite(hHandle, nCANId, 4, tabData, 0x02);

 LS_CANCloseDevice(hHandle);
end;

Remarks
For devices of type AnaGate CAN (hardware version 1.1.A) the function CANWriteEx
is equal to CANWrite, the return values nSeconds and pnMicroseconds will remain
unchanged.

See also
LS_CANWriteEx

CAN Reference

95 © 2007-2010 Analytica GmbH

LS_CANWriteEx
CANWriteEx — Send a CAN telegram to the CAN bus via the AnaGate device.

Syntax
RC, int nSeconds, int nMicroseconds = CANWriteEx(int hHandle, int nCANId,
int nDataLen, table (nDataLen) tabData, int nFlags);

Parameter
hHandle Valid access handle.

nCANId CAN identifier of the sender. Parameter nFlags defines, if the address is
in extended format (29-bit) or standard format (11-bit).

nDataLen Length of data buffer (max. 8 bytes).

tabData Data buffer with telegram data.

nFlags The format flags are defined as follows.

• Bit 0: If set, the CAN identifier is in extended format (29 bit), otherwise
not (11 bit).

• Bit 1: If set, the telegram is marked as remote frame.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A,

API return codes).

nSeconds Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

nMicroseconds Micro seconds portion of the timestamp.

Description
Both functions sends a CAN telegram to the CAN bus via the AnaGate device like
the LS_CANWrite function.

The LS_CANWriteEx additionally returns a timestamp of the time at which the
telegram is sent.

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the LS_CANWrite bzw. LS_CANWriteEx functions to send
remote frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

CAN Reference

96 © 2007-2010 Analytica GmbH

See the following example for sending a data telegram to the connected CAN bus.

tabData = {};
for i=1, 8 , 1 do
 table.insert(tabData, i);
end;

nFlags = 0x0; // 11bit address + standard (not remote frame)
nCANId = 0x25; // send with CAN ID 0x25;

nRC, hHandle = LS_CANOpenDevice(, true, true, 0, "192.168.0.254", 5000);
if (nRC == 0) then
 // send 8 bytes with CAN id 37
 nRC, nSeconds, nMicroSeconds = LS_CANWriteEx(hHandle, nCANId, 8, tabData, nFlags);

 // send a remote frame to CAN id 37 (request 4 data bytes)
 nRC, nSeconds, nMicroSeconds = LS_CANWriteEx(hHandle, nCANId, 4, tabData, 0x02);

 LS_CANCloseDevice(hHandle);
end;

Remarks
For devices of type AnaGate CAN (hardware version 1.1.A) the function CANWriteEx
is equal to CANWrite, the return values nSeconds and pnMicroseconds will remain
unchanged.

See also
LS_CANWrite

CAN Reference

97 © 2007-2010 Analytica GmbH

LS_CANSetCallback
LS_CANSetCallback — Defines an asynchronous callback function, which is called for
each incoming CAN telegram.

Syntax
int RC = LS_CANSetCallback(int hHandle, string sCallbackFunction);

function MY_LS_CALLBACK(int nCANId, int nDataLen, table(nDataLen)
tabData, int nFlags, int hHandle, int nSeconds, int nMicroseconds);

Parameter
hHandle Valid access handle.

sCallbackFunction Name of the private callback function. Set this parameter to
"" to deactivate the callback function. The parameters of the
callback function are described in section Callback-Parameter.

Callback-Parameter
nCANId CAN identifier of the sender. Parameter nFlags defines, if the

address is in extended format (29-bit) or standard format (11-bit).

nDataLen Length of data buffer (max. 8 bytes).

tabData Data buffer with telegram data.

nFlags The format flags are defined as follows.

• Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).

• Bit 1: If set, the telegram is marked as remote frame.

• Bit 2: If set, the telegram has a valid timestamp.

hHandle Valid access handle.

nSeconds Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

nMicroseconds Micro seconds portion of the timestamp.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Incoming CAN telegrams can be received via a callback function, which can be set
by a simple API call. If a callback function is used, is will be called by the API

CAN Reference

98 © 2007-2010 Analytica GmbH

asynchronous. In alternative to the callback function, incoming data telegrams can
be retrieved with the LS_CANGetMessage function.

See the following example for using a callback.

function MyCallback(nID, nLen, tabData, nFlags, nHandle, nSecond, nMSecond)
 io.write(string.format("%.3X::%.3X,%d", nHandle, nID, nLen));
 for i=1, nLen, 1 do
 io.write(string.format(%.2X ", tabData[i]));
 end;
 io.write("\n");
 io.flush();
end;

function main()
 nRC, nHandle = LS_CANOpenDevice(false, true, 0, "127.0.0.1", 5000);
 if (nRC ~= 0) then
 errortext = LS_CANErrorMessage(nRC);
 printf("%s\n",errortext);
 return;
 end;
 -- set globals: 100kBit, standard mode, termination off, no highspeed, no timestamp
 nRC = LS_CANSetGlobals(nHandle, 100000, 0, true, false, false);

 nRC = LS_CANSetCallback(nHandle, "MyCallback");

 while true do -- forever
 LS_Sleep(500);
 end;

 nRC = LS_CANSetCallback(hHandle, "");

 LS_CANCloseDevice(nHandle);
end;

See also
LS_CANWrite, LS_CANWriteEx, LS_CANGetMessage

CAN Reference

99 © 2007-2010 Analytica GmbH

LS_CANGetMessage
LS_CANGetMessage — .

Syntax
int nAvail, int nCANId, int nDataLen, table() tabData, int nFlags,
int nSeconds, int nMicroseconds = LS_CANGetMessage(int hHandle, int
nTimeout);

Parameter
hHandle Valid access handle.

nTimeout Maximum period of time in milliseconds to wait for the a new data
telegram.

Return values
nAvail Number of message which are left in the internal message puffer.

If there is currently no message available -10 (ERR_NO_DATA) is
returned.

nCANId CAN identifier of the sender. Parameter nFlags defines, if the
address is in extended format (29-bit) or standard format (11-bit).

nDataLen Length of data buffer.

tabData Data buffer with telegram data.

nFlags The format flags are defined as follows.

• Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).

• Bit 1: If set, the telegram is marked as remote frame.

• Bit 2: If set, the telegram has a valid timestamp.

nSeconds Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

nMicroseconds Micro seconds portion of the timestamp.

Description
This function reads a single CAN data telegram out of an internal message buffer.
The message buffer is automatically filled with all incoming CAN data telegrams in
a seperate thread.

The parameter nTimeout defines a maximum period of time, which the function
should wait for a new data telegram, if there is currently no telgram in the internal
buffer. If no new message is received within the time out, the function returns in
nAvail the recturn code -10 (ERR_NO_DATA).

CAN Reference

100 © 2007-2010 Analytica GmbH

Warning

If using a individual callback function (see LS_CANSetCallback), which is
called if an incoming CAN data telegram is received, the internal message
puffer is not filled. In this case is not possible to retrieve message via the
LS_CANGetMessage function.

See the following example which handles incoming CAN data telegrams.

nRC, hHandle = LS_CANOpenDevice(true, true, 0, "192.168.0.254", 5000);
if (nRC == 0) then
 -- set globals: 500Kbit, standard mode, termination on, no high speed, no timestamp
 nRC = LS_CANSetGlobals(hHandle, 500000, 0, true, false, false);
 nCurMsg = 0

 repeat
 nAvail, ID, Len, Data, Sec, Microsec = LS_CANGetMessage(hHandle, 100);
 if nAvail>0 then
 nCurMsg = nCurMsg + 1;

 -- now do something with the incomming message data
 io.write(string.format(ID)); -- for example, write out CAN id
 else
 LS_Sleep(25); -- wait 25 ms if no message available
 end;
 until nCurMsg >= 100; -- read only 100 messages, then stop

 LS_CANCloseDevice(hHandle);
end;

Remarks
For devices of type AnaGate CAN (hardware version 1.1.A) the return values
nSeconds and pnMicroseconds are always set to zero.

See also
LS_CANSetCallback

CAN Reference

101 © 2007-2010 Analytica GmbH

LS_CANSetFilter
LS_CANSetFilter — Sets the current filter settings for the connection.

Syntax
int RC = LS_CANSetFilter(int hHandle, table(16)tabFilter);

Parameter
hHandle Valid access handle.

tabFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries).
A filter entry contains of two 32-bit values. Unused mask filter entries
must be initialized with 0 values. Unused range filter entries must be
initialized with a 0 for the start value and 0x1FFFFFFF for the end value.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
This function sets the current filter settings for the current connection. Filter can be
used to suppress messages with specific CAN message ids.

A mask filter contains of a mask value, which defines the bits of the CAN identifier
to examine, and the appropriate filter value. If the CAN identifier matches in the
indicated filter mask with the filter value, the incoming CAN telegram is sent to the
PC, otherwise not.

A range filter defines an address range with a appropriate start and end address. If
the CAN identifier do not lie in the indicated filter range, the incoming CAN telegram
is not sent to the PC.

Filter are only active, if the parameter bSendDataInd is set via the
LS_CANOpenDevice function.

See also
LS_CANGetFilter

CAN Reference

102 © 2007-2010 Analytica GmbH

LS_CANGetFilter
LS_CANGetFilter — Returns the current filter settings for the connection.

Syntax
int RC, table(16) tabFilter = LS_CANGetFilter(int hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

tabFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries).
A filter entry contains of two 32-bit values. Unused mask filter entries
are initialized with 0 values. Unused range filter entries are initialized
with (0,0x1FFFFFFF) value pairs.

Description
This function retrieves the current filter settings for the current connection. Filter
can be used to suppress messages with specific CAN message ids.

See also
LS_CANSetFilter

CAN Reference

103 © 2007-2010 Analytica GmbH

LS_CANSetTime
LS_CANSetTime — Sets the current system time on the AnaGate device.

Syntax
int RC = LS_CANSetTime(int hHandle, long nSeconds, long nMicroseconds);

Parameter
hHandle Valid access handle.

nSeconds Time in seconds from 01.01.1970.

nMicroseconds Micro seconds.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
The LS_CANSetTime function sets the system time on the AnaGate hardware.

If the time stamp mode is switched on by the LS_CANSetGlobals function, the
AnaGate hardware adds a time stamp to each incoming CAN telegram and a time
stamp to the confirmation of a telegram sent via the API (only if confirmations are
switched on for data requests).

Remarks
The setting of the base time for the time stamp mode is not supported by the AnaGate
CAN (hardware version 1.1.A). This setting is ignored by the device.

CAN Reference

104 © 2007-2010 Analytica GmbH

LS_CANErrorMessage
LS_CANErrorMessage — Returns a description of the given error code as a text string.

Syntax
string sErrorMsg LS_CANErrorMessage(int nRetCode);

Parameter
nRetCode Error code for which the error description is to be determined.

Return value
sErrorMsg Textual description of the error code.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes).

See the following example in LUA scripting language.

nRC=0;
sErrorText = 'No Error';

//... call a API function here

sErrorText = LS_CANErrorMessage(nRC);
print(sErrorText);

CAN Reference

105 © 2007-2010 Analytica GmbH

LS_CANReadDigital
LS_CANReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax
int RC, int nInputBits, int nOutputBits = LS_CANReadDigital(int
hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS_CANReadDigital function.

See the following example for setting an reading the digital IO.

nOutputs = 0x03;

nRC, hHandle = LS_CANOpenDevice(400000, "192.168.0.254", 5000);
if (nRC == 0) then
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = LS_CANWriteDigital(hHandle, nOutputs);

 // read all input and output registers
 nRC, nInputs, nOutputs = LS_CANReadDigital(hHandle);

 LS_CANCloseDevice(hHandle);
end;

See also
LS_CANWriteDigital

CAN Reference

106 © 2007-2010 Analytica GmbH

LS_CANWriteDigital
LS_CANWriteDigital — Writes a new value to the digital output register of the
AnaGate device.

Syntax
int RC = LS_CANWriteDigital(int hHandle, int nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS_CANWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
LS_SPIReadDigital.

See also
LS_SPIReadDigital

107 © 2007-2010 Analytica GmbH

Chapter 11. SPI Reference
The Serial Peripheral Interface (SPI) is a synchroneous data link standard named by Motorola
which operates in full duplex mode. The SPI gateway models of the AnaGate series provides
access to a SPI bus via a standard networking.

With the SPI API these SPI gateways can be easily controlled. The programming interface is
identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the SPI API interface:

• AnaGate SPI

• AnaGate Universal Programmer

Note

All SPI specific functionality of the AnaGate C-API is also available für LUA
users, the LUA function extensions are documented in the following.

SPI Reference

108 © 2007-2010 Analytica GmbH

LS_SPIOpenDevice
LS_SPIOpenDevice — Opens a network connection to an AnaGate SPI device.

Syntax
int RC, int Handle = LS_SPIOpenDevice(string sIPAddress, int nTimeout);

Parameter
sIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Handle Access handle if successfully connected to the AnaGate device.

Description
Opens a TCP/IP connection to an AnaGate SPI (resp. AnaGate Universal
Programmer). After the connection is established, access to the SPI bus is possible.

Note

The AnaGate SPI (resp. the SPI interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

nRC, nHandle = LS_SPIOpenDevice("192.168.0.254", 5000);
if (nRC ~= 0) then
 print(LS_SPIErrorMessage(nRC));
 exit();
end;

-- now do something

LS_SPICloseDevice(nHandle);

See also
LS_SPICloseDevice

SPI Reference

109 © 2007-2010 Analytica GmbH

LS_SPICloseDevice
LS_SPICloseDevice — Closes an open network connection to an AnaGate SPI device.

Syntax
int RC = LS_SPICloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Closes an open network connection to an AnaGate SPI device. The hHandle
parameter is a return value of a succesfull call to the function LS_SPIOpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
LS_SPIOpenDevice

SPI Reference

110 © 2007-2010 Analytica GmbH

LS_SPISetGlobals
LS_SPISetGlobals — Sets the global settings, which are to be used on the AnaGate
SPI.

Syntax
int LS_SPISetGlobals(int hHandle, int nBaudrate, unsigned char
nSigLevel, unsigned char nAuxVoltage, unsigned char nClockMode);

Parameter

hHandle Valid access handle.

nBaudrate The baud rate to be used. The values can be set individually, like

• 500.000 for 500kBit

• 1.000.000 for 1MBit

• 5.000.000 for 5MBit

Note

The required baud rate can be different from the value
actually used because of internal hardware restrictions
(frequency of the oscillator). If it is not possible to adjust
the baud rate exactly to the parsed value, the nearest
smaller possible value is used instead.

nSigLevel The voltage level for SPI signals to be used. Following values are
allowed:

• 0 = Outputs in High Impedance Modus (Standard mode).

• 1 = +5.0V for the signals.

• 2 = +3.3V for the signals.

• 3 = +2.5V for the signals.

nAuxVoltage The voltage level of the support voltage to be used. Following values
are allowed:

• 0 = support voltage is +3.3V.

• 1 = support voltage is 2.5V.

nClockMode The phase and polarity of the clock signal. Following values are
allowed:

• 0 = CPHA=0 and CPOL=0.

• 1 = CPHA=0 and CPOL=1.

SPI Reference

111 © 2007-2010 Analytica GmbH

• 2 = CPHA=1 and CPOL=0.

• 3 = CPHA=1 and CPOL=1.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Sets the global settings of SPI interface of the AnaGate SPI or the AnaGate Universal
Programmer. These settings are not saved permantently on the device and are reset
every device restart.

See also
LS_SPIGetGlobals

SPI Reference

112 © 2007-2010 Analytica GmbH

LS_SPIGetGlobals
LS_SPIGetGlobals — Returns the currently used global settings of the AnaGate SPI.

Syntax
int RC, int nBaudrate, int nSigLevel, int nAuxVoltage, int nClockMode
= LS_SPIGetGlobals(int hHandle);

Parameter
hHandle Valid access handle.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

nBaudrate The baud rate currently used on the SPI bus in kBit.

nSigLevel The voltage level currently used by the AnaGate SPI. Following values
are possible:

• 0 = Outputs in High Impedance Modus (Standard mode).

• 1 = +5.0V for the signals.

• 2 = +3.3V for the signals.

• 3 = +2.5V for the signals.

nAuxVoltage The voltage level of the support voltage currently used by the
AnaGate SPI. Following values are possible:

• 0 = support voltage is +3.3V.

• 1 = support voltage is 2.5V.

nClockMode The phase and polarity of the colck signal currently used by the
AnaGate SPI. Following values are possible:

• 0 = CPHA=0 and CPOL=0.

• 1 = CPHA=0 and CPOL=1.

• 2 = CPHA=1 and CPOL=0.

• 3 = CPHA=1 and CPOL=1.

Description
Returns the currently used global settings of SPI interface of the AnaGate SPI or the
AnaGate Universal Programmer.

SPI Reference

113 © 2007-2010 Analytica GmbH

See also
LS_SPISetGlobals

SPI Reference

114 © 2007-2010 Analytica GmbH

LS_SPIDataReq
LS_SPIDataReq — Writes and reads data to/from SPI bus.

Syntax
int RC, table(nReadLen) tabRead = LS_SPIDataReq(int hHandle, int
nWriteLen, int nReadLen, table(nWriteLen) tabWrite);

Parameter
hHandle Valid access handle.

nWriteLen Length of the data buffer pcBufWrite (byte count).

nReadLen Number of bytes to read.

tabWrite Buffer with the data that is to be sent to the SPI partner.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

tabRead Table with data received from the SPI partner.

Description
Sends data to the SPI bus and receives data from the SPI bus.

On the SPI bus Data is transferred on two seperates data lines full duplex (SDO
and SDI). The SPIDatReq has to split a single data transfer in two steps because of
the spacial separation to the SPI bus. First the write data buffer is put into a TCP
data telegram and sent to the AnaGate SPI. The AnaGate SPI makes the real data
transfer on the SPI bus and send back a confirmation including the data received
from the bus.

Important

It is impossible to detect that no device is present at the SPI bus. So, if no
device is attached, the requested number of bytes are returned anyway
- in this case the read buffer is filled with 0.

See the following example for sending a command to the connected SPI bus.

tabWrite = {};
for i=1, 10 , 1 do
 table.insert(tabWrite, i);
end;

nRC, hHandle = SPIOpenDevice("192.168.1.254", 5000);
if (nRC == 0) then
 // send 1 byte and receive 1 byte

SPI Reference

115 © 2007-2010 Analytica GmbH

 nRC, tabRead = LS_SPIDataReq(hHandle, 1, 1, tabWrite);
 // send 1 byte and receive 5 byte
 nRC, tabRead = LS_SPIDataReq(hHandle, 1, 5, tabWrite);
 // send 2 byte and receive 1 byte
 nRC, tabRead = LS_SPIDataReq(hHandle, 2, 1, tabWrite);

 LS_SPICloseDevice(hHandle);
end;

SPI Reference

116 © 2007-2010 Analytica GmbH

LS_SPIErrorMessage
LS_SPIErrorMessage — Returns a description of the given error code as a text string.

Syntax
string sErrorMsg LS_SPIErrorMessage(int nRetCode);

Parameter
nRetCode Error code for which the error description is to be determined.

Return value
sErrorMsg Textual description of the error code.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes).

See the following example in LUA scripting language.

nRC=0;
sErrorText = 'No Error';

//... call a API function here

sErrorText = LS_SPIErrorMessage(nRC);
print(sErrorText);

SPI Reference

117 © 2007-2010 Analytica GmbH

LS_SPIReadDigital
LS_SPIReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax
int RC, int nInputBits, int nOutputBits = LS_SPIReadDigital(int
hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS_SPIReadDigital function.

See the following example for setting an reading the digital IO.

nOutputs = 0x03;

nRC, hHandle = LS_SPIOpenDevice(400000, "192.168.0.254", 5000);
if (nRC == 0) then
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = LS_SPIWriteDigital(hHandle, nOutputs);

 // read all input and output registers
 nRC, nInputs, nOutputs = LS_SPIReadDigital(hHandle);

 LS_SPICloseDevice(hHandle);
end;

See also
LS_SPIWriteDigital

SPI Reference

118 © 2007-2010 Analytica GmbH

LS_SPIWriteDigital
LS_SPIWriteDigital — Writes a new value to the digital output register of the AnaGate
device.

Syntax
int RC = LS_SPIWriteDigital(int hHandle, int nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS_SPIWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
LS_SPIReadDigital.

See also
LS_SPIReadDigital

119 © 2007-2010 Analytica GmbH

Chapter 12. I2C Reference
Philips Semiconductors (now NXP Semiconductors) has developed a simple bidirectional 2-
wire bus for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. Only two bus
lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit oriented,
bidirectional data transfers can be made at up to 100 kbit/s in the Standard-mode, up to 400
kbit/s in the Fast-mode, up to 1 Mbit/s in the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in
the High-speed mode. [NXP-I2C].

The I2C gateway models of the AnaGate series provides access to a I2C bus via a standard
networking. With the I2C API these I2C gateways can be easily controlled. The programming
interface is identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the I2C API interface:

• AnaGate I2C

• AnaGate Universal Programmer

I2C Reference

120 © 2007-2010 Analytica GmbH

LS_I2COpenDevice
LS_I2COpenDevice — Opens a network connection to an AnaGate I2C or an AnaGate
Universal Programmer).

Syntax
int RC, int Handle = LS_I2COpenDevice(unsigned int nBaudrate, string
sIPAddress, int nTimeout);

Parameter
nBaudrate Baud rate to be used for the I2C bus. Teh value can be set individually,

like

• 100000 for 100kBit (standard mode)

• 400000 for 400kBit (fast mode)

Note

Values above 400kBit are ignored by the AnaGate SPI.

sIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Handle Access handle if successfully connected to the AnaGate device.

Description
Opens a TCP/IP connection to an AnaGate I2C (resp. AnaGate Universal
Programmer). After the connection is established, access to the I2C bus is possible.

Note

The AnaGate I2C (resp. the I2C interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

I2C Reference

121 © 2007-2010 Analytica GmbH

nRC, nHandle = LS_I2COpenDevice(1000000, "192.168.0.254", 5000);
if (nRC ~= 0) then
 print(LS_I2CErrorMessage(nRC));
 exit();
end;

-- now do something

LS_I2CCloseDevice(nHandle);

See also
LS_I2CCloseDevice

I2C Reference

122 © 2007-2010 Analytica GmbH

LS_I2CCloseDevice
LS_I2CCloseDevice — Closes an open network connection to an AnaGate I2C device.

Syntax
int RC = LS_I2CCloseDevice(int hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Closes an open network connection to an AnaGate I2C device. The hHandle
parameter is a return value of a succesfull call to the function LS_I2COpenDevice.

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also
LS_I2COpenDevice

I2C Reference

123 © 2007-2010 Analytica GmbH

LS_I2CReset
LS_I2CReset — Resets the I2C Controller in an AnaGate I2C device.

Syntax
int RC = LS_I2CReset(int hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
Resets the I2C Controller in an AnaGate I2C device.

I2C Reference

124 © 2007-2010 Analytica GmbH

LS_I2CRead
LS_I2CRead — Reads data from an I2C partner.

Syntax
int RC, table(nBufferLen) tabBuffer = LS_I2CRead(int hHandle, unsigned
short nSlaveAddress, int nBufferLen);

Parameter
hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

nBufferLen Number of bytes to read.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

tabBuffer Byte buffer in which the data received from the I2C partner is stored.

Description
Reads data from an I2C partner. The user must ensure that the setup of the address
of the I2C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also
LS_I2CWrite

I2C Reference

125 © 2007-2010 Analytica GmbH

LS_I2CWrite
LS_I2CWrite — Writes data to an I2C partner.

Syntax
int RC, int ErrorByte = LS_I2CWrite(int hHandle, unsigned short
nSlaveAddress, table(nBufferLen) tabBuffer, int nBufferLen);

Parameter
hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

nBufferLen Size of bytes to be read.

tabBuffer Byte buffer with the data that is to be sent to the I2C partner.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

ErrorByte Number of byte in data buffer which raises the error if the function failed.

Description
Writes data to an I2C partner. The user must ensure that the setup of the data buffer
and the address of the I2C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also
LS_I2CRead

I2C Reference

126 © 2007-2010 Analytica GmbH

LS_I2CReadDigital
LS_I2CReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax
int RC, int nInputBits, int nOutputBits = LS_I2CReadDigital(int
hHandle);

Parameter
hHandle Valid access handle.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS_I2CReadDigital function.

See the following example for setting an reading the digital IO.

nOutputs = 0x03;

nRC, hHandle = LS_I2COpenDevice(400000, "192.168.0.254", 5000);
if (nRC == 0) then
 // set the digital output register (PIN 0 and PIN 1 to HIGH value)
 nRC = LS_I2CWriteDigital(hHandle, nOutputs);

 // read all input and output registers
 nRC, nInputs, nOutputs = LS_I2CReadDigital(hHandle);

 LS_I2CCloseDevice(hHandle);
end;

See also
LS_I2CWriteDigital

I2C Reference

127 © 2007-2010 Analytica GmbH

LS_I2CWriteDigital
LS_I2CWriteDigital — Writes a new value to the digital output register of the AnaGate
device.

Syntax
int RC = LS_I2CWriteDigital(int hHandle, int nOutputBits);

Parameter
hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS_I2CWriteDigital function.

A simple example for reading/writing of the IOs can be found at the description of
LS_I2CReadDigital.

See also
LS_I2CReadDigital

I2C Reference

128 © 2007-2010 Analytica GmbH

LS_I2CErrorMessage
LS_I2CErrorMessage — Returns a description of the given error code as a text string.

Syntax
string sErrorMsg LS_I2CErrorMessage(int nRetCode);

Parameter
nRetCode Error code for which the error description is to be determined.

Return value
sErrorMsg Textual description of the error code.

Description
Returns a textual description of the parsed error code (see Appendix A, API return
codes).

See the following example in LUA scripting language.

nRC=0;
sErrorText = 'No Error';

//... call a API function here

sErrorText = LS_I2CErrorMessage(nRC);
print(sErrorText);

I2C Reference

129 © 2007-2010 Analytica GmbH

LS_I2CReadEEPROM
LS_I2CReadEEPROM — Reads data from an EEPROM on the I2C bus.

Syntax
int RC, tabData(nDatLen) = LS_I2CReadEEPROM(int hHandle, unsigned short
nSubAddress, unsigned int nOffset, unsigned int nOffsetFormat, int
nDataLen);

Parameter
hHandle Valid access handle.

nSubAddress Subaddress of the EEPROM to communicate with. The valid values
for nSubAddress are governed by the setting used in the parameter
nOffsetFormat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

• No bit is used for addressing: 0 to 7

• 1 bit is used for addressing: 0 to 3

• 2 bits are used for addressing: 0 to 1

• 3 bits are used for addressing: 0

nOffset Data offset on the EEPROM from which the transferred data is to
be read.

nOffsetFormat Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, “ Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

nDataLenLen Length of the data buffer.

Return values
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

I2C Reference

130 © 2007-2010 Analytica GmbH

tabData Table with data read from EEPROM.

Description
The LS_I2CReadEEPROM function reads data from an I2C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I2C read
or write commands. So, when reading from the memory only the matching slave
address, the memory offset address and the data has to be sent to the I2C bus.

LS_I2CReadEEPROM translates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

A programming example which clears a ST24C1024 can be found at the description
of LS_I2WriteEEPROM.

See also
LS_I2CWriteEEPROM

Appendix C, Programming I2C EEPROM

I2C Reference

131 © 2007-2010 Analytica GmbH

LS_I2CWriteEEPROM
LS_I2CWriteEEPROM — Writes data to an I2C EEPROM.

Syntax

int RC = LS_I2CWriteEEPROM(int hHandle, unsigned short nSubAddress,
unsigned int nOffset, unsigned int nOffsetFormat, int nDataLen,
table(nDataLen) tabData);

Parameter

hHandle Valid access handle.

nSubAddress Subaddress of the EEPROM to communicate with. The valid values
for nSubAddress are governed by the setting used in the parameter
nOffsetFormat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

• No bit is used for addressing: 0 to 7

• 1 bit is used for addressing: 0 to 3

• 2 bits are used for addressing: 0 to 1

• 3 bits are used for addressing: 0

nOffset Data offset on the EEPROM to which the transferred data is to be
written.

nOffsetFormat Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, “ Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

nDataLen Length of the data buffer.

tabData Character string buffer with the data that is to be written.

I2C Reference

132 © 2007-2010 Analytica GmbH

Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API return

codes).

Description
The LS_I2CWriteEEPROM function writes data to an I2C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I2C read or
write commands. So, when writing to the memory only the matching slave address,
the memory offset address and the data has to be sent to the I2C bus.

LS_I2CWriteEEPROM translates the given memory address on the chip by means
of the sub address and the addressing mode of the present EEPROM type. The
slave address of the EEPROM is automatically determined and not mandatory for
the fucntion call.

Tip

It is important to note that an EEPROM is divided into memory pages, and
that a single write command can only program data within a page. Users
of LS_I2CWriteEEPROM must ensure to do not write across page limits.
The page size depends on the EEEPOM type.

See the following example for writing data to a ST24C1024.

tabData = {};
for i=1, 256 , 1 do
 table.insert(tabData, 0x0);
end;

nSubAddress = 0; 1

nOffsetFormat = 0x10+0x0F; 2

RC, hHandle = LS_I2COpenDevice(400000, "192.168.0.254", 5000);
if (RC == 0) then
 for page=0, 512-1, 1 do
 RC = LS_I2CWriteEEPROM(hHandle, nSubAddress, i*256, nOffSetFormat, 256, tabData); 3

 end;
 LS_I2CCloseDevice(hHandle);
end;

1 It is possible to address 4 individual ST24C1024 on a single I2C bus. By selection
of subaddress 0 the control pins E2 and E1 have to be LOW.

2 17 address bits are used to address the 128KB of a ST24C1024. 16 bits are set
via the address bytes of the write command: 16=0x0F. The address bit A16 is
set via the E0 bit of the Chip Enable Address, therefore addressing mode 1 (E2-
E1-A0) must be set: 0x10.

3 The page size of a ST24C1024 is 256 byte, every page is programmed full within
the for-loop.

See also
LS_I2CReadEEPROM

Appendix C, Programming I2C EEPROM

Draft Draft

133 © 2007-2010 Analytica GmbH

Chapter 13. CANOpen functions
CANopen® is a communication protocol and device profile specification for embedded systems
used in automation. Standardised in Europe as EN 50325-4 (see [CiA-DS301]), it is mangaged
by the user organisation CAN in Automation (CiA).

Users of the AnaGate API are allowed to execute the in following decribed CANopen services
as CANopen master.

Draft CANOpen functions Draft

134 © 2007-2010 Analytica GmbH

LS_CANopenSetConfig
LS_CANopenSetConfig — Configure the connection specific device settings for
CANOpen operation.

Synopsis
int RC = LS_CANopenSetConfig(int Handle , int CANOpenConfig);

Description

Parameter

int Handle

int CANOpenConfig 0: Die CANOpen Funktionalität wird nicht unterstützt
(Standard). Ein Aufruf einer CANOpen Funktion
wird negativ (FFh) quittiert. Empfangene CAN-
Daten werden immer als Standard DataIndication
(OP_ANAGATE_CAN_DATA_IND) gesendet.

1: Die CANOpen Funktionalität ist eingeschaltet und
es können die nachfolgend beschriebenen Funktionen
verwendet werden.

Return values

If no error occurs, the return will be null(0). Otherwise the returncode will be
different null(0).

Draft CANOpen functions Draft

135 © 2007-2010 Analytica GmbH

LS_CANopenGetConfig
LS_CANopenGetConfig

Synopsis
int RC = LS_CANopenGetConfig(int Handle);

Description

Parameter

int Handle

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int CANOpenConfig 0: Die CANOpen Funktionalität wird nicht unterstützt
(Standard). Ein Aufruf einer CANOpen Funktion
wird negativ (FFh) quittiert. Empfangene CAN-
Daten werden immer als Standard DataIndication
(OP_ANAGATE_CAN_DATA_IND) gesendet.

1: Die CANOpen Funktionalität ist eingeschaltet und
es können die nachfolgend beschriebenen Funktionen
verwendet werden.

Draft CANOpen functions Draft

136 © 2007-2010 Analytica GmbH

LS_CANopenSetSYNCMode
LS_CANopenSetSYNCMode

Synopsis
int RC = LS_CANopenSetSYNCMode(int Handle , int PeriodTime);

Description

Parameter

int Handle

int PeriodTime

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

137 © 2007-2010 Analytica GmbH

LS_CANopenSetCallbacks
LS_CANopenSetCallbacks

Synopsis
int RC = LS_CANopenSetCallbacks(int Handle , string CallbackFunctionPDO
, string CallbackFunctionSYNC , string CallbackFunctionEMCY , string
CallbackFunctionGUARD , string CallbackFunctionUndefined);

Description

Parameter

int Handle

string CallbackFunctionPDO

string
CallbackFunctionSYNC

string
CallbackFunctionEMCY

string
CallbackFunctionGUARD

string
CallbackFunctionUndefined

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

138 © 2007-2010 Analytica GmbH

LS_CANopenGetPDO
LS_CANopenGetPDO

Synopsis
int AvailMessages, int NodeID, int PDOTyp, table(1-8) Data, int Seconds,
int Microseconds = LS_CANopenGetPDO(int Handle , int Timeout);

Description

Parameter

int Handle

int Timeout

Return values

= -2:

= -1:

>=
0:

int NodeID

int PDOTyp

table(1-8) Data

int Seconds

int Microseconds

Draft CANOpen functions Draft

139 © 2007-2010 Analytica GmbH

LS_CANopenGetSYNC
LS_CANopenGetSYNC

Synopsis
int AvailMessages, int ReturnCode, int Seconds, int Microseconds =
LS_CANopenGetSYNC(int Handle , int Timeout);

Description

Parameter

int Handle

int Timeout

Return values

= -2:

= -1:

>=
0:

int ReturnCode

int Seconds

int Microseconds

Draft CANOpen functions Draft

140 © 2007-2010 Analytica GmbH

LS_CANopenGetEMCY
LS_CANopenGetEMCY

Synopsis
int AvailMessages, int NodeID, int ErrorCode, int ErrorRegister,
table(5) ErrorDescription, int Seconds, int Microseconds =
LS_CANopenGetEMCY(int Handle , int Timeout);

Description

Parameter

int Handle

int Timeout

Return values

= -2:

= -1:

>=
0:

int NodeID

int ErrorCode

int ErrorRegister

table(5) ErrorDescritpion

int Seconds

int Microseconds

Draft CANOpen functions Draft

141 © 2007-2010 Analytica GmbH

LS_CANopenGetGUARD
LS_CANopenGetGUARD

Synopsis
int AvailMessages, int NodeID, int Status, int Seconds, int Microseconds
= LS_CANopenGetGUARD(int Handle , int Timeout);

Description

Parameter

int Handle

int Timeout

Return values

= -2:

= -1:

>=
0:

int NodeID

int Status

int Seconds

int Microseconds

Draft CANOpen functions Draft

142 © 2007-2010 Analytica GmbH

LS_CANopenGetUndefined
LS_CANopenGetUndefined

Synopsis
int AvailMessages, int CANID, int NodeID, int FunctionCode, table(1-8)
Data, int Seconds, int Microseconds = LS_CANopenGetUndefined(int Handle
, int Timeout);

Description

Parameter

int Handle

int Timeout

Return values

= -2:

= -1:

>=
0:

int CANID

int NodeID

int FunctionCode

table(1-8) Data

int Seconds

int Microseconds

Als undefinierte Nachrichten werden die eingehenden Nachrichten bezeichnet die
anhand des Funktionscodes keiner CANOpen Funktion zugeordnet werden können.
Sollte nur in Netzen vorkommen in denen gleichzeitig zu CANOpen noch Standard
CAN oder andere Protokolle betrieben werden.

Draft CANOpen functions Draft

143 © 2007-2010 Analytica GmbH

LS_CANopenSendNMT
LS_CANopenSendNMT

Synopsis
int RC = LS_CANopenSendNMT(int Handle , int NodeID , int NMTTyp);

Description

Parameter

int Handle

int NodeID

int NMTTyp

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

144 © 2007-2010 Analytica GmbH

LS_CANopenSendSYNC
LS_CANopenSendSYNC

Synopsis
int RC = LS_CANopenSendSYNC(int Handle);

Description

Parameter

int Handle

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

145 © 2007-2010 Analytica GmbH

LS_CANopenSendTIME
LS_CANopenSendTIME

Synopsis
int RC = LS_CANopenSendTIME(int Handle , int Day , int Milliseconds);

Description

Parameter

int Handle

int Day

int Milliseconds

Rückgabewerte

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

146 © 2007-2010 Analytica GmbH

LS_CANopenSendPDO
LS_CANopenSendPDO

Synopsis
int RC = LS_CANopenSendPDO(int Handle , int NodeID , int PDOTyp , int
DataLength , table(1-8) SendData);

Description

Parameter

int Handle

int NodeID

int PDOTyp

int DataLength

table(1-8) SendData

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

Draft CANOpen functions Draft

147 © 2007-2010 Analytica GmbH

LS_CANopenSendSDORead
LS_CANopenSendSDORead

Synopsis
int RC, int SDOReadType, int SDOReadData = LS_CANopenSendSDORead(int
Handle , int NodeID , int Index , int Subindex , int Timeout);

Description

Parameter

int Handle

int NodeID

int Index

int Subindex

int TimeOut

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType

int SDOReadData

Draft CANOpen functions Draft

148 © 2007-2010 Analytica GmbH

LS_CANopenSendSDOWrite
LS_CANopenSendSDOWrite

Synopsis
int RC, int SDOReadType, int SDOReadData = LS_CANopenSendSDOWrite(int
Handle , int NodeID , int SDOWriteTyp , int Index , int Subindex , int
Timeout , int SDOWriteData);

Description

Parameter

int Handle

int NodeID

int SDOWriteTyp

int Index

int Subindex

int Timeout

int SDOWriteData

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadTyp

int SDOReadData

Draft CANOpen functions Draft

149 © 2007-2010 Analytica GmbH

LS_CANopenSendSDOReadBlock
LS_CANopenSendSDOReadBlock

Synopsis
int RC, int SDOReadType, int ReadLen, table ReadData =
LS_CANopenSendSDOReadBlock(int Handle , int NodeID , int Index , int
Subindex , int Timeout , int ReadLen);

Description

Parameter

int Handle

int NodeID

int Index

int Subindex

int Timeout

int ReadLen

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType

int ReadLen

table ReadData

Draft CANOpen functions Draft

150 © 2007-2010 Analytica GmbH

LS_CANopenSendSDOWriteBlock
LS_CANopenSendSDOWriteBlock

Synopsis
int RC, int SDOReadTyp, int SDOReadData =
LS_CANopenSendSDOWriteBlock(int Handle , int SDOReadTyp , int
SDOReadData);

Description

Parameter

int Handle

int NodeID

int Index

int Subindex

int Timeout

int WriteLen

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType

int SDOReadData

Draft CANOpen functions Draft

151 © 2007-2010 Analytica GmbH

Programmer example
Programmer example

Draft CANOpen functions Draft

152 © 2007-2010 Analytica GmbH

Example 13.1. CANOpen - LUA script example

-- Filter: alle CAN-Identifier akzeptieren
aFilter = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x1FFFFFFF, 0x00, 0x1FFFFFFF,
 0x00, 0x1FFFFFFF, 0x00, 0x1FFFFFFF};

aSendData = { 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8 };
--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end
--**
function main()
 -- Open
 nRC, nHandle = LS_CANOpenDevice(false, true, 5001, "10.1.2.160", 5000);
 if (nRC ~= 0) then
 print(LS_CANErrorMessage(nRC));
 exit();
 end;

 nRC, nHandle2 = LS_CANOpenDevice(false, true, 5001, "10.1.2.161", 5000);
 if (nRC ~= 0) then
 print(LS_CANErrorMessage(nRC));
 exit();
 end;

 -- Filter setzen
 nRC = LS_CANSetFilter(nHandle, aFilter);
 nRC = LS_CANSetFilter(nHandle2, aFilter);

 -- aktuelle Zeit auf den AnaGate Device setzen
 nRC, oTime = LS_GetTime();
 nRC = LS_CANSetTime(nHandle, oTime[1], oTime[2]);
 nRC = LS_CANSetTime(nHandle2, oTime[1], oTime[2]);

 -- Globals setzen
 nRC = LS_CANSetGlobals(nHandle, 500000, 0, true, false, false);
 nRC = LS_CANSetGlobals(nHandle2, 500000, 0, true, false, false);

 -- Endlosschleife
 repeat
 -- 1 Datenpackete auf dem 1. AnaGate CAN Device versenden
 nRC = LS_CANWrite(nHandle, 1, 8, aSendData);

 LS_Sleep(20); -- 20Millisekunden warten

 -- Datenpacket auf 2. AnaGate CAN Device empfangen
 nAvail, ID, Len, Data, Sec, Microsec = LS_CANGetMessage(nHandle2, 10);
 while nAvail>=0 do
 nAvail, ID, Len, Data, Sec, Microsec = LS_CANGetMessage(nHandle2, 10);
 end;
 until (false);

 -- Verbindungen beenden
 LS_CANCloseDevice(nHandle);
 LS_CANCloseDevice(nHandle2);
end;

153 © 2007-2010 Analytica GmbH

Chapter 14. LUA programming
examples14.1. Examples for devices with CAN interfaceExample 14.1.

-- Filter: alle CAN-Identifier akzeptieren
aFilter = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x1FFFFFFF, 0x00, 0x1FFFFFFF,
 0x00, 0x1FFFFFFF, 0x00, 0x1FFFFFFF};

aSendData = { 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8 };
--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end
--**
function main()
 -- Open
 nRC, nHandle = LS_CANOpenDevice(false, true, 5001, "10.1.2.160", 5000);
 if (nRC ~= 0) then
 print(LS_CANErrorMessage(nRC));
 exit();
 end;

 nRC, nHandle2 = LS_CANOpenDevice(false, true, 5001, "10.1.2.161", 5000);
 if (nRC ~= 0) then
 print(LS_CANErrorMessage(nRC));
 exit();
 end;

 -- Filter setzen
 nRC = LS_CANSetFilter(nHandle, aFilter);
 nRC = LS_CANSetFilter(nHandle2, aFilter);

 -- aktuelle Zeit auf den AnaGate Device setzen
 nRC, oTime = LS_GetTime();
 nRC = LS_CANSetTime(nHandle, oTime[1], oTime[2]);
 nRC = LS_CANSetTime(nHandle2, oTime[1], oTime[2]);

 -- Globals setzen
 nRC = LS_CANSetGlobals(nHandle, 500000, 0, true, false, false);
 nRC = LS_CANSetGlobals(nHandle2, 500000, 0, true, false, false);

 -- Endlosschleife
 repeat
 -- 1 Datenpackete auf dem 1. AnaGate CAN Device versenden
 nRC = LS_CANWrite(nHandle, 1, 8, aSendData);

 LS_Sleep(20); -- 20Millisekunden warten

 -- Datenpacket auf 2. AnaGate CAN Device empfangen
 nAvail, ID, Len, Data, Sec, Microsec = LS_CANGetMessage(nHandle2, 10);
 while nAvail>=0 do
 nAvail, ID, Len, Data, Sec, Microsec = LS_CANGetMessage(nHandle2, 10);
 end;
 until (false);

 -- Verbindungen beenden
 LS_CANCloseDevice(nHandle);
 LS_CANCloseDevice(nHandle2);
end;

LUA programming examples

154 © 2007-2010 Analytica GmbH

14.2. Examples for devices with SPI interface

Example 14.2.

--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end;
--**
function main()
 -- Verbindung zu AnaGate SPI-Device herstellen
 nRC, nHandle = LS_SPIOpenDevice("10.1.2.162", 5000);
 if (nRC ~= 0) then
 errortext = LS_SPIErrorMessage(nRC);
 print(errortext);
 exit();
 end

 -- Setzen der globalen Einstellungen
 nRC = LS_SPISetGlobals(nHandle, 100, 2, 0, 0);

 -- OP-Codes des SPI-Partners mit Daten
 OPWriteEnab = {0x06};
 OPStatusReg = {0x05, 0x00};
 OPRead = {0x03, 0x00, 0x00, 0x00};

 -- WriteEnable-Flag des SPI-Partners setzen
 nRC, Value = LS_SPIDataReq(nHandle, 1, 1, OPWriteEnab);

 -- Statusregister des SPI-Partners abfragen
 nRC, Value = LS_SPIDataReq(nHandle, 2, 2, OPStatusReg);
 for i=1, table.getn(Value), 1 do
 printf("Data Status: %02X\n", Value[i]);
 end;

 -- Lesen von 20Bytes ab Adresse 0x00
 nRC, Value = LS_SPIDataReq(nHandle, 4, 20, OPRead);
 for i=1, table.getn(Value), 1 do
 printf("Data: %02X\n", Value[i]);
 end;

 -- Alle digitalen Ausgaenge zuruecksetzen
 LS_SPIWriteDigital(nHandle, 0);

 -- Verbindung zu AnaGate SPI-Device beenden
 LS_SPICloseDevice(nHandle);
end;

LUA programming examples

155 © 2007-2010 Analytica GmbH

14.3. Examples for devices with I2C interface

Example 14.3.

•

•

--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end;
--**
function getn(t)
 if type(t.n) == "number" then return t.n end;
 local max = 0
 for i, _ in t do
 if type(i) == "number" and i>max then max=i end;
 end;
 return max;
end;
--**
function main()
 aSendData = {};
 for i=1, 128 , 1 do
 table.insert(aSendData, i-1);
 end;

 nRC, nHandle = LS_I2COpenDevice(1000000, "10.1.2.162", 5000);
 if (nRC ~= 0) then
 print(LS_I2CErrorMessage(nRC));
 exit();
 end;

 --Read EEPROM
 CountBytes = 1024;
 for Address = 0, CountBytes*64, CountBytes do
 nRC, Value = LS_I2CReadEEProm(nHandle, 1, Address, CountBytes, 16);
 for j=1, table.getn(Value), 1 do
 printf("%02X ", Value[j]);
 if (j%16 == 0) then
 printf("\n");
 end;
 end;
 end;

 --Write EEPROM
 CountBytes = table.getn(aSendData);
 for Address = 0, CountBytes * 10, CountBytes do
 nRC = LS_I2CWriteEEProm(nHandle, 1, Address, 16, CountBytes, aSendData);
 end;

 LS_I2CWriteDigital(nHandle, 0);
 LS_I2CCloseDevice(nHandle);
end;

LUA programming examples

156 © 2007-2010 Analytica GmbH

Example 14.4.

•

•

--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end;
--**
function getn(t)
 if type(t.n) == "number" then return t.n end;
 local max = 0
 for i, _ in t do
 if type(i) == "number" and i>max then max=i end;
 end;
 return max;
end;
--**
function main()
 aSendData = {};
 for i=1, 128 , 1 do
 table.insert(aSendData, i-1);
 end;

 nRC, nHandle = LS_I2COpenDevice(1000000, "10.1.2.162", 5000);
 if (nRC ~= 0) then
 print(LS_I2CErrorMessage(nRC));
 exit();
 end;

 --Write
 aData = {0x00, 0x05}; -- ab Adresse 5 lesen
 nRC, Value = LS_I2CWrite(nHandle, 0xa2, 2, aData);

 --Read
 nRC, Value = LS_I2CRead(nHandle, 0xa2, 1024);
 for i=1 , table.getn(Value), 1 do
 printf("%02X ", Value[i]);
 end;
 printf("\n");

 LS_I2CWriteDigital(nHandle, 0);
 LS_I2CCloseDevice(nHandle);
end;

LUA programming examples

157 © 2007-2010 Analytica GmbH

Example 14.5.

•

--**
function printf(...)
 io.write(string.format(...))
 io.flush();
end;
--**
function getn(t)
 if type(t.n) == "number" then return t.n end;
 local max = 0
 for i, _ in t do
 if type(i) == "number" and i>max then max=i end;
 end;
 return max;
end;
--**
function main()
 aSendData = {};
 for i=1, 128 , 1 do
 table.insert(aSendData, i-1);
 end;

 nRC, nHandle = LS_I2COpenDevice(1000000, "10.1.2.162", 5000);
 if (nRC ~= 0) then
 print(LS_I2CErrorMessage(nRC));
 exit();
 end;

 --Sequence
 aData = {0xa2, 0x00, --SLA
 0x02, 0x00, --Laenge Schreibkommando
 0x00, 0x00, --Daten Schreibkommando
 0xa3, 0x00, --SLA 2. Lesekommando
 0x30, 0x00, --Laenge 1. Lesekommando
 0xa3, 0x00, --SLA 2. Lesekommando
 0x20, 0x00}; --Laenge 2. Lesekommando

 nRC,CountRead,LastError,Value = LS_I2CSequence(nHandle, 0x0E, 0x0050, aData);
 printf("CountRead:%02X LastError:%02X\n", CountRead, LastError);
 for i=1, CountRead, 1 do
 printf("%02X ", Value[i]);
 end;
 printf("\n");

 LS_I2CWriteDigital(nHandle, 0);
 LS_I2CCloseDevice(nHandle);
end;

158 © 2007-2010 Analytica GmbH

Appendix A. API return codes
Followed a list of the return values of the API functions. This values are defined in
the header file AnaGateErrors.h.

Table A.1. Common return values for all devices of AnaGate
series

Value Name Description

0 ERR_NONE No errors.

0x000001 ERR_OPEN_MAX_CONN Open failed, maximal count of
connections reached.

0x0000FF ERR_OP_CMD_FAILED Command failed with unknown
failure.

0x020000 ERR_TCPIP_SOCKET Socket error in TCP/IP layer
occured.

0x030000 ERR_TCPIP_NOTCONNECTED Connection to TCP/IP partner can't
established or is disconnected.

0x040000 ERR_TCPIP_TIMEOUT No answer received from TCP/IP
partner within the defined timeout.

0x050000 ERR_TCPIP_CALLNOTALLOWED Command is not allowed at this
time.

0x060000 ERR_TCPIP_NOT_INITIALIZED TCP/IP-Stack can't be initialized.

0x0A0000 ERR_INVALID_CRC AnaGate TCP/IP telegram has
incorrect checksum (CRC).

0x0B0000 ERR_INVALID_CONF AnaGate TCP/IP telegram wasn't
receipted from partner.

0x0C0000 ERR_INVALID_CONF_DATA AnaGate TCP/IP telegram wasn't
receipted correct from partner.

0x900000 ERR_INVALID_DEVICE_HANDLE Invalid device handle.

0x910000 ERR_INVALID_DEVICE_TYPE Function can't be executed on this
device handle, as she is assigned
to another device type of AnaGate
series.

Table A.2. Return values for AnaGate I2C

Value Name Description

0x000120 ERR_I2C_NACK I2C-NACK

0x000121 ERR_I2C_TIMEOUT I2C Timeout

A textual description of the return value can be retrieved with the function
I2CErrorMessage().

API return codes

159 © 2007-2010 Analytica GmbH

Table A.3. Return values for AnaGate CAN

Value Name Description

0x000220 ERR_CAN_NACK CAN-NACK

0x000221 ERR_CAN_TX_ERROR CAN Transmit Error

0x000222 ERR_CAN_TX_BUF_OVERLOW CAN buffer overflow

0x000223 ERR_CAN_TX_MLOA CAN Lost Arbitration

0x000224 ERR_CAN_NO_VALID_BAUDRATE CAN Setting no valid Baudrate

A textual description of the return value can be retrieved with the function
CANErrorMessage().

Table A.4. Return values for AnaGate Renesas

Value Name Description

0x000920 ERR_RENESAS_TIMEOUT Renesas timeout

0x000921 ERR_RENESAS_INVALID_ID Renesas Invalid ID

0x000922 ERR_RENESAS_FLASH_ERASE_FAILED Renesas failed erase the
flash

0x000923 ERR_RENESAS_PAGE_PROG_FAILED Renesas failed prog the
page

A textual description of the return value can be retrieved with the function
RenesasErrorMessage().

Table A.5. Return values for LUA scripting

Value Name Description

-1 ERR_SYNTAX Syntax error

-2 ERR_RANGE Value out of valid range.

-3 ERR_NOT_A_NUMBER Parameter is not of type number.

-4 ERR_NOT_A_STRING Parameter is not of type string.

-5 ERR_NOT_A_BOOL Parameter is not of type boolean.

-6 ERR_NOT_A_TABLE Parameter is not of type table.

-10 ERR_NO_DATA No data available.

160 © 2007-2010 Analytica GmbH

Appendix B. I2C slave address formats
A standard I2C address is the first byte sent be the I2C master, whereas only the
first seven bit form the adress, the last bit (R/W-bit) defines the direction in which
the data is sent. I2C has a 7-bit address space and can address 112 slaves on a
single bus (16 of the 128 addresses are reserved fo special purposes).

Figure B.1. Definition of a I2C slave address in 7-bit format

Each I2C-able IC has a determined bus address. The 4 upper bits of the bus address
are called Device Type Identifier and define the chip type. The lowest three bits called
sub-address or Chip Enable Address are usually defined by the corresponding wired
control pins. So, in total up to 8 similar IC's can be used on a single I2C bus.

Because of a lack of address space a 10-bit addressing mode was introduced later.
This new mode is downwards compatible to the 7-bit standard mode through usage of
4 of the 16 reserved addresses. Both addressing modes can be used simultaneously,
which implies that 1136 slaves can be used on a single bus.

Figure B.2. Definition of a I2C slave address in 10-bit format

Note

Devices of type AnaGate SPI and AnaGate Universal Programmer do
support both addressing modes in general. The API functions I2CRead and
I2CWrite address the slaves via a two byte parameter.

Addressing of serial EEPROM
The device type identifier of a serial EEPROM is defined as 0xA. This results to the
following schematic structure of an address (the chip enable bits are often named
E0, E1 and E2 in literature):

Table B.1. I2C EEPROM addressing examples

Device Type Identifier Chip Enable 1 2 R/W

b7 b6 b5 b4 b3 b2 b1 b0

EEPROM-
Memory

M24C01 1 0 1 0 E2 E1 E0 R/W 128 byte

I2C slave address formats

161 © 2007-2010 Analytica GmbH

Device Type Identifier Chip Enable 1 2 R/W

b7 b6 b5 b4 b3 b2 b1 b0

EEPROM-
Memory

M24C02 1 0 1 0 E2 E1 E0 R/W 256 byte

M24C04 1 0 1 0 E2 E1 A8 R/W 512 byte

M24C08 1 0 1 0 E2 A9 A8 R/W 1024 byte

M24C16 1 0 1 0 A10 A9 A8 R/W 2048 byte

M24C64 1 0 1 0 E2 E1 E0 R/W 8192 byte
1E0,E1 and E2 are compared against the respective external pins on the memory device.
2A10, A9 and A8 represent most significant bits of the address.

162 © 2007-2010 Analytica GmbH

Appendix C. Programming I2C
EEPROM

The AnaGate I2C and the AnaGate Universal Programmer is very well suited for
programming serial I2C EEPROM. To support this special requirement two different
API functions are made available: I2CReadEEPROM and I2CWriteEEPROM.

Like all other I2C-capable devices EEPROM's are addressable on the I2C bus via a
unique slave address (see also Appendix B, I2C slave address formats). The so-
called Device Type Identifier for these types of devcies is 0xA. In principle 8 similar
devices can be connected and addressed via the Chip Enable Bits E0, E1 und E0.

A data transmission is started with a Start signal by the master, followed by the
slave address. The slave address is confirmed by the slave with a ACK. Depending
on the R/W bit data is written (data to slave) or read (data from slave). The last
byte of a read access has to be confirmed with a NAK by the master to signal the
slave end of read transmission. The data transmission is terminated always by a
Stop signal from the master.

When using EEPROM's the memory address is transmitted after transmission of the
slave address, to advice the slave which memory address is to be written or read.
Depending on the used EEPROM type the memory address is sent as single byte (8
bit) or as two bytes (16 bit, MSB First).

To expand the address space from 8 bit (or 16 bit), some EEPROM types use the Chip
Enable Bits E0, E1, E2 as additional address bits. Which bits are used in individual
cases is defined by the chip producer. In the following, all possible combinations of
the bits usage are listed:

Table C.1. Usage of the CHIP-Enable Bits of I2C EEPROMs

Mode 1 Usage Description

0x0 E2-E1-E0 Bits are only used to select the chip.

0x1 E2-E1-A0 Bit E0 is used to expand the addresse space. It is used
for address bit A8 (resp. A16).

0x2 E2-A1-A0 E0 and E1 are used to expand the addresse space. E0
is used for address bit A8 (resp. A16) and E1 is used
for A9 (resp. A17).

0x3 A2-A1-A0 E0, E1 and E2 are used to expand the addresse space.
E0 is used for address bit A8 (resp. A16), E1 for A9
(resp. A17) and E2 for A10 (resp. A18).

0x5 A0-E1-E0 Bit E2 is used to expand the addresse space. It is used
for address bit A8 (resp. A16).
Das E2-Bit wird für die Addressierung verwendet. Es
entspricht dabei dem Adressbit A8 bzw. A16.

Programming I2C EEPROM

163 © 2007-2010 Analytica GmbH

Mode 1 Usage Description

0x6 A1-A0-E0 E2 and E1 are used to expand the addresse space. E1
is used for address bit A8 (resp. A16) and E2 is used
for A9 (resp. A17).

1Set this mode flag in bit 8-10 of parameter nOffsetFormat in the API funtions I2CReadEEPROM and
I2CWriteEEPROM.

164 © 2007-2010 Analytica GmbH

Appendix D. FAQ - Frequent asked
questions

Here is a list of frequently asked questions concerning installation and usage of the
AnaGate product.

D.1. Common questions

Q: No network connection (1)

A: Please check first the physical connection to the device. Basically the AnaGate
have to be connected directly to a personal computer or to an active network
component (hub, switch). If the AnaGate device is connected to a personal
computer a cross-wired network cable must be used to connect the device,
otherwise the included network cable is to be used.

The physical interconnection is ok, if the yellow link LED changes to light on,
if LAN cable is plug in. The yellow light keeps beeing on until the connection
break down. On some hardware models the link LED flickers synchronous to
the green activity LED if there is traffic on the network line.

If the link LED is always off, then please check the wiring between the AnaGate
and the hub, switch or the personal computer.

Q: No network connection (2)

A: If the link LED indicates a proper ethernet connection (see previous FAQ), but
you still can't connect to the AnaGate then please try the following:

1. Check if the AnaGate can be reached via ping. To do so in Windows, open a
command prompt and enter the command ping a.b.c.d", where a.b.c.d
is the device IP address.

2. In case the AnaGate is unreachable via ping, reset the device to factory
settings. Set the IP adress of your PC to 192.168.1.253 and the subnet
mask to 255.255.255.0. Check if the AnaGate can be reached via ping
192.168.1.254.

3. If the device can be reached via ping then the next step is to try if you can
open a TCP connection to port 5001. Open a Windows command prompt
and enter telnet a.b.c.d 5001, where a.b.c.d is the device IP address. If
this command fails, check if a firewall runs on your PC or if there is a packet
filter in the network between your PC and the AnaGate.

FAQ - Frequent
asked questions

165 © 2007-2010 Analytica GmbH

Q: No network connection after changing the network address

A: After changing the network address of the AnaGate device via web interface,
the device is not longer reachable. The used internet browsers displays only an
emtpy web side, additional error messages are not available.

Please check if your anti-virus software has blocked the new network address.
After changing the network address, you are redirected to the new network
address in the browser. Such activity is suspicious for some anti-virus software,
so they block the new webside, sometimes even without notification of the user.

Q: Connection problems using multiple devices

A: If multiple devices with identical IP addresses are used in a local area network
at the same time, the connections to the devices are not stable. Because of this
behaviour it is recommend to use different IP addresses.

This problem can also occur, if devices with identical IP addresses are used not
concurrently, but within short intervals. For example this can arise, if some new
devices, which have the default IP address 192.168.1.254, are configured from
a single PC.

The Address Resolution Protocol (ARP) is used by IP4 networks to
determine the MAC address of a given IP address. The neccessary information
is cached in the ARP table. If there is a wrong entry in the ARP table or even
an entry, which is not up-to-date, it is not possible to communicate with the
corresponding host.

An entry in the ARP table is deleted if it is not used any more after a short period
time. The time intervall used depends on the operating system. On a current
linux distribution an unused entry is discarded after about 5 minutes. The ARP
cache can be displayed and manipulated with the arp on windows and linux.

C:\>arp -a

Schnittstelle: 10.1.2.50 --- 0x2
 Internetadresse Physikal. Adresse Typ
 192.168.1.254 00-50-c2-3c-b0-df dynamisch

The command arp -d can be used to delete the ARP Cache.

Note

Maybe the ARP cache of the PC has to be deleted, if the IP address
of a device is changed.

Q: Using a firewall

A: When working with a firewall, the a TCP port has to be opened for
communication with the AnaGate device:

Table D.1. Using AnaGate hardware with firewall

Device Port number

AnaGate I2C 5000

FAQ - Frequent
asked questions

166 © 2007-2010 Analytica GmbH

Device Port number

AnaGate I2C X7 5100, 5200, 5300, 5400,
5500, 5600, 5700

AnaGate CAN 5001

AnaGate CAN USB 5001

AnaGate CAN uno 5001

AnaGate CAN duo 5001, 5101

AnaGate CAN quattro 5001, 5101, 5201, 5301

AnaGate SPI 5002

AnaGate Renesas 5008

AnaGate Universal Programmer 5000, 5002, 5008

D.2. Questions concerning AnaGate CAN

Q: What is the value of the termination resistor when the termination option of
the device is activated?

A: The termination resistor of the AnaGate is driven by an FET transistor. The
resistor itself has 110 Ohm while the internal resistance of the FET is 10 Ohm
if the FET is activated. So the resulting resitance is 120 Ohm, as required by
the CAN bus.

Q: Does Analytica offer a CAN gateway which does not have an galvanically isolated
CAN interface?

A: Any device that is actively connected to a CAN bus should be galvanically
isolated. Especially when using USB-operated devices (like the AnaGate USB), it
is essential to have an galvanically isolated device, because the device is power
supplied by the PC.

Q: How to direct interconnect two CAN ports!

A: If you want to interconnect two AnaGate CAN just via a direkt link CAN cable,
you have to switch on the internal termination on both AnaGate CAN devices.
A CAN bus network must have a termination on each side.

Note

Maybe it is working with lower baurates without termination, but it
is recommend to use a termination.

Q: Receiving a NAK when sending a CAN telegram.

A: If no CAN partner is connected to the AnaGate CAN (aka the CAN network),
it is not possible to send CAN telegrams, the AnaGate CAN gets a NAK from
the CAN controller. These NAK errors are send to the AnaGate client via a data
confirmation telegram.

Warning

If data confirmations are switched off, no erros are sent to the
client. The option confirmations for data requeste can be set via the

FAQ - Frequent
asked questions

167 © 2007-2010 Analytica GmbH

CANSetGlobals function. In Highspeed-Mode the data confirmations
are always switched off.

D.3. Questions concerning AnaGate I2C

Q: What is the correct order to connect the GND / SCL and SDA when using an
external power supply?

A: To avoid potential damage to the AnaGate I2C, the GND pin MUST be connected
to the application board first. Only then can the SCL/SDA pins be allowed to
make contact with the application board.

168 © 2007-2010 Analytica GmbH

Appendix E. FAQ - Programming API
Here is a list of frequently asked questions concerning the programming API and the
communication protocol.

E.1. Questions concerning the communication protocol

Q: The calculation of the check sum (CRC) do not work!

A: The following figure illustrates the princible layout of an AnaGate telegram.

The checksum is defined as a byte calculated by XOR from all the existing bytes
in an AnaGate telegram, excluding the length bytes and the CRC byte.

The following C code function computes a valid CRC of an already created
command telegram.

unsigned char CalcCRC(char * pBuffer, int nBufferLength)
{
 int i;
 unsigned char nCRC = pBuffer[2]; // skip the length bytes

 // XOR over all bytes in the message except the length information and the last byte
 for(i = 3; i < nBufferLength -1; i++)
 {
 nCRC ^= pBuffer[i];
 }
 return nCRC;
}

When using the function CalcCRC the parameter pBuffer must point to the data
buffer, which contains the already created complete data telegram. The length
parameter nBufferLength depends on the created command type and can be
computed as shown below:

buffer length = sizeof(command length) + sizeof(command code)
 + sizeof(command id) + sizeof(CRC) + sizeof(data)
 = 7 + sizeof(data)

169 © 2007-2010 Analytica GmbH

Appendix F. Technical support
The AnaGate hardware series, software tools and all existing programming interfaces
are developed and supported by Analytica GmbH. Technical support can be requested
as follows:

Internet

The AnaGate web site [http://www.anagate.de/en/index.html] of Analytica GmbH
contains information and software downloads for AnaGate Library users:

• Product updates featuring bug fixes or new features are available here free of
charge.

EMail

If you require technical assistance over the Internet, please send an e-mail to

<support@anagate.de>

To help us provide you with the best possible support, please keep the following
information and details at hand when you contact our Support Team.

• Version number of the used programming tool or AnaGate library

• AnaGate hardware series model and firmware version

• Name and version of the operating system you are using

http://www.anagate.de/en/index.html
http://www.anagate.de/en/index.html

170 © 2007-2010 Analytica GmbH

Bibliography
Books
[LuaRef2006-EN] Roberto Ierusalimschy, Luiz Henrique Figueiredo, and Waldemar Celes.

Copyright © 2006 R. Ierusalimschy, L. H. de Figueiredo, W. Celes. Isbn 85-903798-3-3.
Lua.org. Lua 5.1 Reference Manual.

[LuaProg2006-EN] Roberto Ierusalimschy. Copyright © 2006 Roberto Ierusalimschy, Rio de
Janeiro. Isbn 85-903798-2-5. Lua.org. Programming in LUA (second edition).

Other publications
[NXP-I2C] NXP Semiconductors. Copyright © 2007 NXP Semiconductors. UM10204. I2C-bus

specification and user manual. Rev. 03. 19.06.2007.

[TCP-2010] Analytica GmbH. Copyright © 2010 Analytica GmbH. Manual TCP-IP
communication. Version 1.2.6. 15.05.2008.

[Prog-2010] Analytica GmbH. Copyright © 2010 Analytica GmbH. AnaGate API. Programmer's
Manual. Version 1.4. 01.10.2010.

[CiA-DS301] Copyright © 2002 CAN in Automation (CiA) e. V.. CAN in Automation (CiA) e.V..
13.02.2002. Cia 301, CANopen Application Layer and Communication Profile.

