AnaGate API

..;' = --?;
|'— Cere
A iinee L
— = i) ¢ Angg
- b, Liebehl S
e |

Programmer's Manual

Analytica GmbH

A. Schmidt, Analytica GmbH
S. Welisch, Analytica GmbH

AnaGate API: Programmer's Manual
Analytica GmbH
by A. Schmidt and S. Welisch

This document was generated with DocBook at 2012-03-13 10:04:16.
Hilfe-Datei (dtsch.): AnaGate-API.chm

Hilfe-Datei (engl.): AnaGate-API-EN.chm

PDF-Datei (dtsch.): AnaGate-API-1.10.pdf

PDF-Datei (engl.): AnaGate-API-1.10-EN.pdf

Publication date 09. September 2010
Copyright © 2007-2010 Analytica GmbH

Abstract

The AnaGate Programmer's Manual includes the exact description of the programming
interfaces to all models of AnaGate hardware series.

This manual bases on the actual AnaGate Application Programming Interface (API) in Version
1.10 and the AnaGate communication protocol V1.3 (see [TCP-2010]).

All rights reserved. All the information in this manual was compiled with the greatest of care. However, no warranty
can be given for it.

No parts of this manual or the program are to be reproduced in any way (printing, photocopying, microfilm or any
other process) without written authorisation. Any processing, duplication or distribution by means of any electronic
system is also strictly prohibited.

You are also advised that all the names and brand names of the respective companies mentioned in this documentation
are generally protected by brand, trademark or patent laws.

Analytica GmbH

VorholzstraBe 36

76137 Karlsruhe

Germany

Fon +49 (0) 721-43035-0

Fax +49 (0) 721-43035-20
<support @nal yti ca- gnbh. de>

www.analytica-gmbh.de [http://www.analytica-gmbh.de]
www.anagate.de [http://www.anagate.de]

Revision History

Ilkevision 01.10.2010 ASce Complete revision of all chapters

.4
Flie:;/ision 12.07.2010 SWe CAN UPD fucntions added (LUA only)
R;azvision 04.06.2010 SWe I2C RAW functions added temporarily
1.
Fl{elvision 01.04.2010 ASc english version
Ila;e(;/ision 08.06.2009 ASc Manual changed to DocBook format

http://www.analytica-gmbh.de
http://www.analytica-gmbh.de
http://www.anagate.de
http://www.anagate.de

Table of Contents

|] u oo [Lot o] o PP iX
| AN o =T = <Y 1
1. The Programming interface of AnaGate product lineccoiiiiiennnn. 3
2. Notes concerning the communication protocol TCPccoovieiiiiiinnenn. 5
2.1. Important properties of the network protocolc.covveinnnnn. 5

3. Common funCtion referenNCeoviiiiiiii i e 7
D] I I 1 o | o T PP 8

4. CAN API refreNCe .iuviiriitiiiiii i et e it e e aan e aeanans 9
CANOpenDevice, CANOpenDeVICeEXvviiiiiiiiiiiii i 10

(07 AN\ (@] [o1Y=T B =V o PP 12
CANSELGIODAlS .iiiriiiiiii i e 13
CANGELGIODAIS .iiiiiiiii i e 15
CANS LRI vt e e e 17
07N\ [O o] /=T PP 19

(67 N Y= o 11 ¢ = P 20
CANWE ite, CANWIILEEX ..viiiiriii i i e rr e e rrer e rneanns 21
CANSetCallback, CANSetCallbackEXccvvviiiiiiiiiiiiiiiiiie i iieennennens 23
CANREAADIGITAl +.ueeeieeee e 25
CANWIILEDIGItal . .eeeieie e e 27

L7 N T3 = o o 28
CANDeVICeCoNnectState ..oovvviii i e 29
CANSEArt ANV ottt i e e e e 30
CANEITOrMESSAGE vttt ittt st st st s e s aa e aeaaens 31

5. SPI API ref@renCe .oivviiiiii i e 32
SPIOPENDEVICE ottt ittt e 33
SPICIOSEDEVICE vttt e 35
SPISEtGIODAIS .viiiiii i 36
SPIGEtGIODAIS vt e 38

1S 2 1 1= = 2= [40
SPIREadDIigitaloueieiii i 42
SPIWHItEDIgItaloeeii e 44

1] = o 1 1= 7 o 1= 45

6. I2C API refrENCEe .iuviiriiiiii i i e e e 46
L2 0PENDEVICE ittt e 47
I2CCI0SEDEVICE iitiiiiiit et 49
O == < 50
T2CREAA iiiiiiiiit i i e 51

0 O o | = 52

| @Y =T 11 1= o o< PP 53
I2CReadDIGItal ..uveeiee e e 55
I2CWriteDigital ..o e 57
T2CErrOrMESSAgE ..uuiitiiiiiit ittt s st a s s e e e e aaeaas 58
I2CREAdEEPROM ...ttt e e e e ne e 59
I2CWHEEEEPROM Lottt e e e e e e aaeas 61

7. Programming @XampPles ..o e 64
7.1. Programming language C/CH+ ...oiriiiiiiiiiiiiiiii e aeeeeens 64
7.2. Programming language Visual BasiC 6cccoeeiiiiiiiiiiinnennn. 65
7.3. Programming language VB.NET ... 69

IT. Scripting language LUA ... e e e e e e e e e 72
8. The LUA scripting interface of the AnaGate product line 75
8.1. Creating SCriPLS ..iiiiiiiiii i 76

iii © 2007-2010 Analytica GmbH

AnaGate API

8.2. Running scripts on personal computerccvveviiiiiiiiiiiie i, 76
8.3. Running scripts on AnaGate hardwarecccviiiiiiiiiiiiiiieinnnnn. 77
9. CommonN fUNCLION FrefEIrENCE .iviiei i i i v e e e rannees 80
(IS B TSNV A Tol=1 1] {0 T 81
IS T ol I8 1 1= 82
IS 1= 1= o S 83
0 T O AN AV 2 = /=) ol 84
LS _CANOPENDEVICE ittt it i e s s ar e rane e e nnnees 85
LS CANCIOSEDEVICE tiiiiiiiiiiiiiii ittt i iii ittt stssaiiisssssreessssiinnnns 87
LS _CANRESEAMDEVICE tiiiiiiiiiiiiiiiiiii i it ittt rstssseeseseensssnssnssnnnnnnsss 88
LS CANSEtGIODAIS it i e e 89
LS CANGELGIODAIS it e eeeeas 91
ST O 2N VT o 93
[T O AN A AT 1 =] =) 95
LS _CANSEtCallback ..cvvviiiiiiiiiiiiiiii i it e s e e aaas 97
LS CANGEIMESSAGE 1iiiiiiiii it i e it e saae e s sanee s aaanneas 99
ST O 2N VT = o 1 = o 101
ST O AN VT 1 o 1 = 102
ST O AN VY = ol 11 2 1= 103
IS O AN\] g o] g\ =TT T P 104
LS_CANReadDIigital ...civiiiiiiiiii i e 105
LS_CANWIEEDIgItal ..oivveiiii i e 106
3 Y o N 5 U< =] =1 Vo 107
LS SPIOPENDEVICE ittt i i i 108
LS SPICIOSED EVICE uutiiiiiiiii ittt st iaiiissststesssssiasinnsssreeeeess 109
LS SPISEtGlobals .iiiiiiiiiiiiiiiiii e 110
LS SPIGEtGIobals tiiiiiiiiiiiii i i e 112
SIS o (DT =1 =T 114
SIS o | = g oY (=TT o 1= 116
LS_SPIReadDigitalcviiiiiiiiiiii i e e 117
LS_SPIWrIteDigital ..c.coiiiiiii i e 118
A 1 G 2 =Y /=) o ol 119
LS I2C0PENDVICE ittt i e e e 120
LS I2CCI0SEDEVICE tiiiiiiiiiiiiiiiii ittt it iiiieres s st iiaiisssarseesessiennnns 122
ST 17 O 2= 123
ST 174 O 2 T 124
ST 17 O o) 125
LS_I2CReadDigitalciviiiiiiiii i i 126
LS_T2CWriteDigital ..covvviiiiii i 127
ST A O o o g o] g [T ST Lo [P 128
LS_I2CREAAEEPROM ..ttt iiie i it s iitee s raaee s ennee s rnnnneerennneennn 129
LS _I2CWIHEEEEPROM ...ttt iie it e v st s rre s srnae e rnnnaeennnnes 131
13. CANOPEN fUNCHIONS it e e e e e aee s 133
LS_CANOPENSELCONTIG iiiiriiiiie i i i i i e ees 134
LS_CANOPENGELCONFIG uiiiriiiiiiiii i i e e 135
LS_CANOPENSELSYNCMOAE .viiiiiiiiii i i e i e e aaee s 136
LS_CANopenSetCallbacks ...c.ccviiiiiiiiiiiiii i 137
LS_CANOPENGELPDO ..ottt e e e s e e aaas 138
LS _ CANOPENGEESYNC ittt i e e e e 139
LS _CANOPENGELEMCY ittt i e 140
LS_CANOPENGELGUARD ...ttt i i e e i e es 141
LS_CANopenGetUndefinedcooiiiiiiiiiiiii i i i 142
LS_CANOPENSENANMT ittt e e eaes 143
LS _CANOPENSENASYNC ittt it aaeas 144

iv © 2007-2010 Analytica GmbH

AnaGate API

mTmoO®>

LS_CANOPEeNnSENATIME ..ottt i e 145
LS_CANOPENSENAPDO ...iiiiiiiiii i i i e e 146
LS_CANopenSendSDOREAdc.viiiiiiiii i e 147
LS_CANOPenSendSDOWIILE ..oiiiiiiiiii i i i i 148
LS_CANopenSendSDOReadBIOCKcvviviiiiiiiiiiiii i 149
LS_CANopenSendSDOWILEBIOCK ...cviviiiiii i i 150
Programmer eXample ..o 151

14. LUA programming €XampPles ..ocieiiiiiiiiiiiiii i it nie it nieeanaeeas 153
14.1. Examples for devices with CAN interfacec.coevviiiiiinnnen. 153

14.2. Examples for devices with SPI interfacecccociviiviinnnn. 154

14.3. Examples for devices with I2C interfacecooviviiiiiiiiinnen. 155

FAN o O = LB [0l Yo =T PP 158
I2C slave address formatsocciiriiiiii i 160
Programming I2C EEPROM ... i i e e e naee e e e 162
FAQ - Frequent asked qUESLIONSiiiiiiiiiiiii i e 164
FAQ - Programming APl ... i s e e e 168
B E=Te g1 a1 Tor=] BR8] o o] o 169
0] FToTa [=1 0] 2 /20 170

\Y © 2007-2010 Analytica GmbH

List of Figures

W@ 0w N

1. Input form of SPI example (VB6) ..iciiiiiiiiiiiiiiiiii i s anennens 66
1. Edit LUA script in @ text editorooviiiiiiii e 76
2. HTTP interface, LUA settingsocoiiiiiiiiii e 78
1. Definition of a 12C slave address in 7-bit formatcoooiiiiiiii, 160
2. Definition of a I2C slave address in 10-bit formatcooiiiiiinne . 160

Vi © 2007-2010 Analytica GmbH

List of Tables

COmPE>2>2AaNEE

HEREREROUORMWONREFEENER

Library files for WindOWSiiviiiiiiiii i e e e ae s 3
Library files for LINUX ..ueiiriiiiieiiiii i e s s ne e aae e s e e s e sesnnenneanans 3
AnaGate devices and related port numbers ... 5
mask filter examples for CAN identifier ..o 17
. Common return values for all devices of AnaGate seriescceuvunee. 158
. Return values for AnaGate I2C ..o e 158
. Return values for AnaGate CAN ..o e 159
. Return values for AnaGate ReNesasccvvviiiiiiiiiiiiiiiiii e aea s 159
. Return values for LUA SCHPting ...covieiiiiii e 159
. I2C EEPROM addressing examplesocoiiieiiiiiiiii e e 160
. Usage of the CHIP-Enable Bits of I2C EEPROMSciiviivviiiiiiiiniinennns 162
. Using AnaGate hardware with firewall ... 165

vii © 2007-2010 Analytica GmbH

List of Examples

13.1. CANOpen - LUA script @Xample ..oooviiiiiiiiiiiiic i e eaea 152
PP 153
PP 154
T PP 155
PP 156
PP 157

viii © 2007-2010 Analytica GmbH

Introduction

The AnaGate Programmer's Manual includes the exact description of the
programming interfaces to all models of AnaGate hardware series.

The existing interfaces will be decribed below:
e Application Programming Interface (Part I, "AnaGate API")

e LUA Scripting Interface (Part II, “Scripting language LUA")

ix © 2007-2010 Analytica GmbH

Part |. AnhaGate API

Table of Contents

1. The Programming interface of AnaGate product linec.cooiiiiiiiiiiicns 3
2. Notes concerning the communication protocol TCPcccoiiiiiiiiiiiiiiiiieen. 5
2.1. Important properties of the network protocolcovvviiiiiiiiiinnnen, 5
3. Common fUNCLION refereNCE .. .viiiiii i e e aeeeaas 7
D I 1 g | o TP 8
4. CAN APl ref@renCe .iviiiiiiii it e e e 9
CANOpenDevice, CANOPenDEVICEEX ...c.vviiiiiiiiiii i e es 10
(07 AN\ [0 [o1Y=T B AV T = PP 12
CANSELGIODAIS vttt e e 13
CANGELGIODAIS .iiriiriii i e 15
CAN S LRI ottt e e 17
(07N A O o] /=T PP 19
L7 N Y= o T 2 L= PP 20
CANWE ite, CANWIITEEX .iiviiiiiii i e e e ne e nes 21
CANSetCallback, CANSetCallbackEXcvvieiiriiiiieiie i riaeneeeneas 23
CANREAADIGITAl ..uveeie e 25
CANWIIEEDIGItal ..o et 27
L7 N T3 - o o PP 28
CANDEVICECONNECESTAtE .oiiiiiii i s enneas 29
CANSEAr AV ottt i s e 30
CANEITOrMESSAGE .iiuiiiiiitiiiiiiiat ittt st s s e e st s re s a s e ananeas 31
5. SPI AP ref@reNCE ittt e 32
SPIOPEN D VICE ittt 33
SPICIOSE D EVICE 1.ttt it e 35
SPISEtGIODAIS .viiiiii i e 36
SPIGELGIODAIS vt e 38
1S o 1 1= = 2= [40
SPIREAdDIGItal ..cuueeieie i 42
SPIWHIEEDIGITaAl .o.veneiieiii e 44
0] o = o] N 1= 7 o 1= 45
6. I2C AP refrENCE vttt e 46
| @@ 0 T=T | 1= T = PP 47
| A OO o TY=T B L=V T = TP 49
O == < 50
T2 CREAA ittt e e 51
0 O = 52
| @Y =T 11 = o o< P 53
I2CREAADIGITAl ..ueee e 55
T2CWrteDigital . .oeeee i 57
| A @ =] o] 4 =] =3 T 58
I2CREAAEEPROM ...ttt e e e e r e e e e 59
I2CWHEEEEPROM Lottt i aaea 61
7. Programming @XampPlesouiieiiiii e e 64
7.1. Programming language C/CH+ ..o e e e 64
7.2. Programming language Visual BasiC 6ccccoiieiiiiiiiiiiiiiiieieeae 65
7.3. Programming language VB.NETccoiiiiiiiiiiii e e eaeee s 69

2 © 2007-2010 Analytica GmbH

Chapter 1. The Programming interface
of AnaGate product line

The AnaGate product line consist of several hardware devices, which offers access to
different bus systems (I12C, SPI, CAN) or processors (Renesas) via standard network
protocol.

The communication to the individual devices always is done through a documented
and disclosed proprietary network protocol. Thus, all products which incorporates a
socket interface (like personal computers, PLC, ...) are allowed to access the devices
of the AnaGate product line.

Analytica provides a programming interface for users of Windows and Linux operating
systems (X86) which implements the proprietary communication protocol and make
it available through simple function calls. The software API (Application Programming
Interface) is available free of charge for Windows and Linux operarting systems.

Table 1.1. Library files for Windows

Device Windows library
AnaGate CAN AnaGateCAN.dlI
AnaGate CAN uno / duo / quattro AnaGateCAN.dll
AnaGate CAN USB AnaGateCAN.dlI
AnaGate SPI AnaGateSPI.dll
AnaGate I12C / 12C X7 AnaGatel2C.dll
AnaGate Universal Programmer AnaGateSPI.dll, AnaGatel2C.dll

6 Note

To provide a widespread support of differrent programming languages like
C++, Visual Basic, Delphi and the programming languages of the .NET
family, the cdecl calling convention is used in all function calls. Using this
calling convention means that all function parameters are pushed on the
stack in reverse order (from right to left) and that the caller is responsible
for the stack handling. Most programming languages support this calling
convention.

Table 1.2. Library files for Linux

Device Linux library (X86) ARM9
AnaGate CAN libCANdIl.a, libAnaCommon.a -
AnaGate CAN uno / duo / quattro|libCANdIl.a, libAnaCommon.a available
AnaGate CAN USB libCANdIl.a, libAnaCommon.a available
AnaGate SPI libSPIdll.a, libAnaCommon.a -
AnaGate I2C / 12C X7 libI2Cdll.a, libAnaCommon.a -
AnaGate Universal Programmer |libSPIdll.a, libI2Cdll.a, available
libAnaCommon.a

3 © 2007-2010 Analytica GmbH

The Programming interface
of AnaGate product line

The different libraries include common and specific functions which are neccessary
for accessing and controlling the devices of the AnaGate product line. In the following,
all library functions of the software API are documented in detail.

T

Tip

It is possible to extend individually the newer device models with
embedded Linux (kernel 2.6) and ARM9 processor. The complete software
API is available in a cross-compiled version and can be used on the devices
itself to create individual device extensions. To do so is very easy because
the programming interface on the personal computer and the device is
completely identical.

A preconfigured virtual machine (Virtual-Box-Image) with Ubuntu-Linux
“"READY-to-USE” with installed development environment (Kdevelop,
Eclipse) and all neccessary program libraries (GCC, cross compiler,
libraries, LUA, ...) is available optional .

4 © 2007-2010 Analytica GmbH

Chapter 2. Notes concerning the
communication protocol TCP

Access to the different models of the AnaGate product line is always done via the
most frequently used network protocol TCP (Transmission Control Protocol).

TCP is connection-oriented packet-switched transport protocol which is located in
layer 4 of the of the OSI reference model. In princible TCP is an end-to-end
connection which allows exchange of data in both directions at the same time. An
end-point is a pair formed of an IP address and a port number and. Such a pair builds
a bidirectional software interface and is called socket.

The AnaGate device offers its functionality as so-called TCP server. It creates a socket
with its IP address and a device-specific port number. On the models with CAN
interface(s) a seperate socket with different port number is created for each existing
CAN interface, on every socket up to 5 concurrent client connections are accepted.
The SPI, I2C and Renesas interfaces accept only one concurrent connection at the
same time.

Table 2.1. AnaGate devices and related port numbers

Device Port number
AnaGate I12C, AnaGate Universal Programmer 5000
AnaGate CAN, AnaGate CAN uno 5001
AnaGate CAN duo 5001, 5101
AnaGate CAN quattro 5001, 5101, 5201, 5301
AnaGate SPI, AnaGate Universal Programmer 5002
AnaGate Renesas, AnaGate Universal 5008
Programmer

2 Important

Please ensure that all used ports are set active on the personal computer
to grant access to the AnaGate device. Any existing firewalls are to be
configured accordingly.

2.1. Important properties of the network
protocol

In most cases TCP is based on the internet protocol (IP). IP is package-oriented,
whereby it is possible that data packets are lost or the packets can be received in
wrong order or perhaps more than once.

TCP eliminates this behaviour and ensures that the the data packets are received in
correct order at the recipient. Is a sent data packet not confirmed by the recipient
within a timeout limit, the packet is sent again. Double packets are recognized at the
recipient and are deleted. During connection the data transmission may be impaired,

5 © 2007-2010 Analytica GmbH

Notes concerning the
communication protocol TCP

delayed or completely interrupted. A successful connection do not guarantee a
permanently stable data transmission.

Detection and evaluation of network and line malfunctions can be difficult, if there
is only sporadic communication on the line. How is possible to distinguish between
a malfunction on the line or simply no data from the connected endpoint?

To amend this problematic nature TCP provides an internal keep alive mechanism.
Keep-alives are special data packets which are sent in regular intervalls between the
two endpoints of an opened communication channel. The recipient of a keep-alive
packet has to confirm the receipt to the sender within a certain period of time. Are
there no keep-alives or confirmations of keep-alives receivedm the communication
partner assumes that the channel is interrupted or the corresponding socket is
malfunctioning.

The keep-alive mechanism of TCP is not active per default and has to be activated
by the set sockopt function for each connection. The API functions which establish
a connection to an AnaGate - like the CANOpenDevi ce() function - strictly activate
the keep-alive mechisam of TCP.

Note

6 On Windows operating systems some settings concerning keep-alives can
be set individually. These settings are valid for all network connection on
this computer and can not be set individually for dedicated connections.

To do so the Windows registry keys KeepAliveTime
and KeepAliveInterval of node \HKEY _LOCAL_ MACH NE\ SYSTEM
\ Current Control Set\ Tcpi p\ Par anet er s has to be adjusted
(administrator rights).

Especially the CAN-Ethernet gateways can be affected by the above described
problems, for example if customer-specific needs ask for faster detection of
connection aborts as possible via the standard mechanism. So, in the AnaGate
models with CAN interface and linux OS an application-specific keep-alive algorithm
is integrated in the device firmware to enhance connection control. On base of a
predefined time period additional data packets are exchanged between the AnaGate
hardware and the controlling unit/personal computer, which have to be confirmed
by the corresponding endpoint (ALIVE_REQ, see [TCP-2010]). This integrated alive
machanism can be activated individually on each connection with a different timeout
interval.

6 Note
Users of the AnaGate-API do not have to implement the application-
specific alive mechanism to use it. With a simple call to the API function
CANStart Ali ve a concurrent thread is started which automatically
monitors the communication channel time-controlled.

6 © 2007-2010 Analytica GmbH

Chapter 3. Common function reference

7 © 2007-2010 Analytica GmbH

Common function reference

DLLINnfo

DLLInfo — Determines the current version information of the AnaGate DLL.

Syntax

#include <AnaGateDLL.h>

int DLLVersion(char * pcMessage, int nMessagelen);
Parameter

pcMessage Data buffer that is to accept the version reference number of the
AnaGate DLL.

nMessagelen Size in bytes of the transferred data buffer.

Return value

Actual size of the returned version reference number.

Remarks

If the version reference number is too large for the transferred data buffer, it is
abbreviated to the given number of characters (nMessagelLen).

8 © 2007-2010 Analytica GmbH

Chapter 4. CAN APl reference

The CAN API can be used with all CAN gateway models of the AnaGate series. The programming
interface is identical for all devices and uses the network protocol TCP or UDP in general.

Following devices can be addresse via the CAN API interface:

AnaGate CAN

AnaGate CAN uno

AnaGate CAN duo

AnaGate CAN quattro

e AnaGate CAN USB

9 © 2007-2010 Analytica GmbH

CAN API reference

CANOpenDevice, CANOpenDeviceEx

CANOpenDevice, CANOpenDeviceEx — Opens an network connection (TCP or UDP)
to an AnaGate CAN device.

Syntax

#include <AnaGateDIlICan.h>

i nt CANOpenDevi ce(i nt *pHandl e, BOCL bSendDat aConfirm BOCL
bSendDat al nd, int nCANPort, const char * pcl PAddress, int nTinmeout);

i nt CANOpenDevi ceEx(i nt *pHandl e, BOCL bSendDat aConfirm BOCL

bSendDat al nd, int nCANPort, const char * pclPAddress, int nTineout |,
i nt nSocket Type);

Parameter

pHandle Pointer to a variable, in which the access handle is saved in the
event of a successful connection to the AnaGate device.

bSendDataConfirm It set to TRUE, all incoming and outgoing Data requests
are confirmed by the internal message protocol. Without
confirmations a better transmittion performance is reached.

bSendDatalnd If set to FALSE, all incoming telegrams are discarded.
nCANPort CAN port number. Allowed values are:

0 for port A (Modells AnaGate CAN uno, AnaGate CAN duo,
AnaGate CAN quattro, AnaGate CAN USB and AnaGate CAN)

1 for port B (AnaGate CAN duo, AnaGate CAN quattro)
2 for port C (AnaGate CAN quattro)
3 for port D (AnaGate CAN quattro)

pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds.
A timeout is reported if the AnaGate partner does not respond
within the defined timeout period. This global timeout value is
valid on the current network connection for all commands and

functions which do not offer a specific timeout value.

nSocketType Specifies the socket type (ethernet layer 4) which is to be used
for the new connection. Only two different types are supported:
TCP and UDP. The funttion CANOpenDevi ce alyways uses TCP
sockets. Use the following constants fpr the parameter:

1 TCP (Transmission Control Protocol)
(SOCK_STREAM)

10 © 2007-2010 Analytica GmbH

CAN API reference

2 UDP (User Datagram Protocol)
(SOCK_DGRAM)

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return

codes).

Description

Opens a TCP/IP connection to an CAN interface of a AnaGate CAN device. With
CANOpenDevi ceEx it is possible to set the ethernet layer4 protocol (tcp or udp). If
the connection is established, CAN telegrams can be sent and received.

The connection should be closed with the function CANC oseDevi ce if not longer
needed.

N

Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See the following example for the initial programming steps.

#i ncl ude <AnaGat eCANDI | . h>

int main()
{
i nt hHandl e;
i nt nRC = CANOpenDevi ce(&Handl e, TRUE, TRUE, 0, "192.168.0.254", 5000);
if (NRC==10)
{
/1 ... now do sonething
CANCl oseDevi ce(hHandl e) ;
}
return O;
}
Remarks

The CANOpenDevi ceEx function is supported for library versions 1.5-1.10 or higher
and firmware version 1.3.7 or higher.

Device models of type AnaGate CAN (hardware version 1.1.A) do not listen
for UPD connection requests. If trying to connect such a device via UPD, the
CANOpenDevi ceEx returns with a timeout error.

See also

CANCloseDevice

CANRestart

11 © 2007-2010 Analytica GmbH

CAN API reference

CANCloseDevice

CANCloseDevice — Closes an open network connection to an AnaGate CAN device.

Syntax

#include <AnaGateDIICan.h>

i nt CANC oseDevi ce(int hHandl e);
Parameter

hHandle Valid access handle.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate CAN device. The hHandl e
parameter is a return value of a succesfull call to the function CANOpenDevi ce.

2 Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

CANOpenDevice, CANOpenDeviceEx

12 © 2007-2010 Analytica GmbH

CAN API reference

CANSetGlobals

CANSetGlobals — Sets the global settings, which are to be used on the CAN bus

Syntax

#include <AnaGateDIICAN.h>
i nt CANSet d obal s(i nt hHandl e, i nt nBaudr at e, unsi gned char

nQper at i nghbde, BOOL bTer m nati on, BOOL bH ghSpeedMbde, BOOL
bTi meSt anmpOn) ;

Parameter

hHandle Valid access handle.
nBaudrate The baud rate to be used. Following values are allowed:
e 10.000 fur 10kBit
e 20.000 fur 20kBit
¢ 50.000 fur 50kBit
e 62.500 fur 62,5kBit
e 100.000 fir 100kBit
e 125.000 fur 125kBit
e 250.000 fir 250kBit
e 500.000 fiir 500kBit
* 800.000 fur 800kBit (not AnaGate CAN)
¢ 1.000.000 fur 1MBit
nOperatingMode The operating mode to be used. Following values are allowed.
e 0 = default mode.

e 1 = |loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

e 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

bTermination Use integrated CAN bus termination (TRUE= yes, FALSE = no). This
setting is not supported by all AnaGate CAN models.

bHighSpeedMode Use high speed mode (TRUE= yes, FALSE= no). This setting is
not supported by all AnaGate CAN models.

13 © 2007-2010 Analytica GmbH

CAN API reference

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
CANSet Fi | t er are ignored.

bTimeStampOn Use time stamp mode (TRUE= yes, FALSE= no). This setting is not
supported by all AnaGate CAN models.

In activated time stamp mode an additional timestamp is sent with
the CAN telegram. This timestamp indicates when the incomming

message is received by the CAN controller or when the outgoing
message is confirmed by the CAN controller.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Sets the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface. The settings are not saved
permantently on the device and are reset every device restart.

Remarks

The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also

CANGetGlobals

14 © 2007-2010 Analytica GmbH

CAN API reference

CANGetGlobals

CANGetGlobals — Returns the currently used global settings on the CAN bus.

Syntax

#include <AnaGateDIICAN.h>

int CANGetd obal s(int hHandle, int * pnBaudrate, wunsigned char *
pnOper ati ngMode, BOOL * pbTerm nation, BOOL * pbH ghSpeedMbde, BOOL *
pbTi meSt anmpOn) ;

Parameter

hHandle Valid access handle.

pnBaudrate The baud rate currently used on the CAN bus.

pnOperatingMode The operating mode to be used. Following values are returned.
e 0 = default mode.

¢ 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

e 2 = |isten mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

pbTermination Is the integrated CAN bus termination used? (TRUE= yes, FALSE=
no). This setting is not supported by all AnaGate CAn modells.

pbHighSpeedMode Is the high speed mode switched on? (TRUE= yes, = no). This
setting is not supported by all AnaGate CAN modells.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
CANSet Fi | t er are ignored.

pbTimeStampOn Is a timestamp mode activated on the current network connection?
(TRUE= yes, FALSE= no). This setting is not supported by all
AnaGate CAN modells.

In activated time stamp mode an additional timestamp is sent with
the CAN telegram. This timestamp indicates when the incomming
message is received by the CAN controller or when the outgoing
message is confirmed by the CAN controller.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

15 © 2007-2010 Analytica GmbH

CAN API reference

Description

Returns the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface.

Remarks
The settings of the integrated CAN bus termination, the high speed mode and the

time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also

CANGetGlobals

16 © 2007-2010 Analytica GmbH

CAN API reference

CANSetFilter

CANSetFilter — Sets the current filter settings for the connection.

Syntax

#include <AnaGateDIICAN.h>

int CANSetFilter(int hHandle, const int * pnFilter);

Parameter

hHandle Valid access handle.

pnFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries). A
filter entry contains of two 32-bit values. Unused mask filter entries must
be initialized with 0 values. Unused range filter entries must be initialized
with a 0 for the start value and Ox1FFFFFFF for the end value.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

This function sets the current filter settings for the current connection. Filter can be
used to suppress messages with specific CAN message ids.

A mask filter contains of a mask value, which defines the bits of the CAN identifier
to examine, and the appropriate filter value. If the CAN identifier matches in the
indicated filter mask with the filter value, the incoming CAN telegram is sent to the
PC, otherwise not.

A range filter defines an address range with a appropriate start and end address. If
the CAN identifier do not lie in the indicated filter range, the incoming CAN telegram
is not sent to the PC.

Filter are only active, if the parameter bSendDat al nd is set via the CANOpenDevi ce
function. If the pararmeter bH ghSpeedMode of the CANSet G obal s is set, all filters
are deactivated to increase the data pass through.

Table 4.1. mask filter examples for CAN identifier

CAN id mask value filter value result
OxOF OxOE 0x0C suppressed
0x0C Ox0E 0x0C ok

0x5D 0x0E 0x0C ok

See the following example for setting some filters.

‘ #i ncl ude <AnaGat eCANDI | . h>

17 © 2007-2010 Analytica GmbH

CAN API reference

{
{

int main()

int anFilter[16] = {

OxFF, OxOF, /1 mask filter 1. mask = OxFF, value = OxOF: route only Ox*OF val ues
0, O, /l mask filter 2: unused
0, O, I/ mask filter 3: unused
0, O, Il mask filter 4: unused
0, OxO00000FFF, // range filter 1: all ids greater than OxFFF are discarded
0, Ox1FFFFFFF, // range filter 2: unused
0, Ox1FFFFFFF, // range filter 3: unused
0, Ox1FFFFFFF, // range filter 4: unused
b3
int hHandl e;

int nRC = CANOpenDevi ce(&Handl e, TRUE, TRUE, 0, "192.168.0.254", 5000);
if (nRC==0)
{

nRC = CANSet Filter(hHandl e, &anFilter);

/1 ... now do sonething

CANC oseDevi ce(hHandl e) ;

return O;

See also

CANGetFilter

18 © 2007-2010 Analytica GmbH

CAN API reference

CANGetFilter

CANGetFilter — Returns the current filter settings for the connection.

Syntax

#include <AnaGateDIICAN.h>

int CANGetFilter(int hHandle, int * pnFilter);
Parameter

hHandle Valid access handle.

pnFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries). A
filter entry contains of two 32-bit values. Unused mask filter entries are
initialized with 0 values. Unused range filter entries are initialized with
(0,0x1FFFFFFF) value pairs.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

This function retrieves the current filter settings for the current connection. Filter
can be used to suppress messages with specific CAN message ids.

See also

CANSetFilter

19 © 2007-2010 Analytica GmbH

CAN API reference

CANSetTime

CANSetTime — Sets the current system time on the AnaGate device.

Syntax

#include <AnaGateDIICAN.h>

i nt CANSet Ti me(int hHandl e, | ong nSeconds, |ong nM croseconds);

Parameter

hHandle Valid access handle.
nSeconds Time in seconds from 01.01.1970.

nMicroseconds Micro seconds.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The CANSet Ti ne function sets the system time on the AnaGate hardware.

If the time stamp mode is switched on by the CANSet d obal s function, the AnaGate
hardware adds a time stamp to each incoming CAN telegram and a time stamp to
the confirmation of a telegram sent via the API (only if confirmations are switched
on for data requests).

Remarks

The CANSet Ti me function is supported by library version 1.4-1.8 or higher.

The setting of the base time for the time stamp mode is not supported by the AnaGate
CAN (hardware version 1.1.A). This setting is ignored by the device.

20 © 2007-2010 Analytica GmbH

CAN API reference

CANWTrite, CANWTriteEx

CANWrite, CANWriteEx — Send a CAN telegram to the CAN bus via the AnaGate
device.

Syntax

#include <AnaGateDIlICan.h>

int CANWite(int hHandle, int nldentifier, const char * pcBuffer, int
nBuf f er Len, int nFl ags);

int CANWiteEx(int hHandl e, int nldentifier, const char * pcBuffer, int
nBufferLen, int nFlags, |ong * pnSeconds, long * pnM croSeconds);

Parameter
hHandle Valid access handle.
nldentifier CAN identifier of the sender. Parameter nFl ags defines, if the
address is in extended format (29-bit) or standard format (11-
bit).
pcBuffer Pointer to the data buffer.
nBufferLen Length of data buffer (max. 8 bytes).
nFlags The format flags are defined as follows.
e Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).
e Bit 1: If set, the telegram is marked as remote frame.
e Bit 2: If set, the telegram has a valid timestamp. This bit is only
set for incoming data telegrams and must not be set for the
CANW i t e and CANW i t eEx functions.
pnSeconds Timestamp of the confirmation of the CAN controller (seconds

from 01.01.1970).

pnMicroSeconds Micro seconds portion of the timestamp.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Both functions sends a CAN telegram to the CAN bus via the AnaGate device.

The CANW i t eEx additionallly returns a timestamp of the time at which the telegram
is sent.

21 © 2007-2010 Analytica GmbH

CAN API reference

o

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the CANWite bzw. CANWIi t eEx functions to send remote
frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

See the following example for sending a data telegram to the connected CAN bus.

#i ncl ude <AnaGat eCANDI | . h>
int nmain()
{
char cMsg[] ={ 1, 2, 3, 4, 5, 6, 7, 8 9, 10 };
i nt hHandl e = O;
int nRC = 0;
int nFlags = 0x0; // 11bit address + standard (not renote frane)
int nldentifier = 0x25; // send with CAN | D 0x25;
i nt nRC = CANOpenDevi ce(&Handl e, TRUE, TRUE, 0, "192.168.0.254", 5000);
if (nRC==0)
{
/1 send 8 bytes with CANid 37
nRC = CANWite(hHandl e, nldentifier, cMsg, 8, nFlags);
/1l send a renpte frame to CAN id 37 (request 4 data bytes)
nRC = CANWite(hHandle, nldentifier, cMsg, 4, 0x02);
CANCl oseDevi ce(hHandl e) ;
}
return O;
}
Remarks

The CANW i t eEx function is supported by library version 1.4-1.8 or higher.

For devices of type AnaGate CAN (hardware version 1.1.A) the function CANW i t eEx
is equal to CANW i t e, the return values pnSeconds and pnM cr oSeconds will remain
unchanged.

22 © 2007-2010 Analytica GmbH

CAN API reference

CANSetCallback, CANSetCallbackEx

CANSetCallback, CANSetCallbackEx — Defines an asynchronous callback function,
which is called for each incoming CAN telegram.

Syntax

#include <AnaGateDIlICan.h>

typedef void (WNAPI * CAN PF_CALLBACK)(int nldentifier, const char *
pcBuffer, int nBufferLen, int nFlags, int hHandle);

i nt CANSet Cal | back(i nt hHandl e, CAN PF_CALLBACK pCal | backFuncti on);

typedef void (WNAPI * CAN PF _CALLBACK EX)(int nldentifier, const char
* pcBuffer, int nBufferLen, int nFlags, int hHandl e, |ong nSeconds,
| ong nM croseconds);

i nt CANSet Cal | backEx(i nt hHandl e, CAN_PF_CALLBACK Ex
pCal | backFuncti onEx) ;
Parameter
hHandle Valid access handle.
pCallbackFunction Function pointer to the private callback function. Set this

parameter to NULL to deactivate the callback function. The
parameters of the callback function are described in the
documentation of the CANW i t e funciton.

pCallbackFunctionEx Function pointer to the private callback function. Set this
parameter to NULL to deactivate the callback function. The
parameters of the callback function are described in the
documentation of the CANW i t eEx funciton.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Incoming CAN telegrams can bei received via a callback function, which can be
set by a simple API call. If a callback function us set, is will be called by the API
asynchronous.

Caution

The callback fucntion is called from a thread which is started by the
CAN API and which is reading data from the socket. Because of this
behaviour the callback code is executed by the thread context of the
API and therefore it uses it the heap memeory of the API DLL and not

23 © 2007-2010 Analytica GmbH

CAN API reference

the application program. So programming code should not use functions
like new, del ete, al | oc or free which allocate, free or reallocate heap
memory inside the callback.

See the following example for using a callback.

#i ncl ude <AnaGat eCANDI | . h>

/1 Defintion of a callback, which wites incomng CAN data with tinestanp to consol e
void WNAPI MCal | backEx(int nldentifier, const char * pcBuffer, int nBufferLen, int nFlags,

int hHandl e, | ong nSeconds, |ong nM croseconds)

{
std::cout << "CAN-ID=" << nldentifier << ", Data=";
for (int i =0; i < nBufferLen; i++)
{
std::cout << " Ox" << std::hex << int((unsigned char)(pcBuffer[i]));
}
time_t tTinme = nSeconds;
struct tm* psLocal Time = |ocaltinme(& Time);
std::cout << " " << std::setw(19) << asctine(psLocal Tine) << " ns(" << std::dec
<< std::setw(3) << nM croseconds/ 1000 << "." << nM croseconds%d000 << ")" << std::endl;
}
int main()
int hHandle = 0;
int nRC = 0;
int nRC = CANOpenDevi ce(&Handl e, TRUE, TRUE, 0, "192.168.0.254", 5000);
if (nRC==0)
{
/1 deactivate call back
nRC = CANSet Cal | backEx(hHandl e, MyCal | backEx);
getch(); // wait for keyboard input
/1 deactivate call back
nRC = CANSet Cal | backEx(hHandle, 0);
CANCI oseDevi ce(hHandl e) ;
return O;
}

Remarks

The two different callback functions have to be used depending on the active setting
of the global timestamp option (CANSet @ obal s). Only one of the callbacks can be
activated at the same time.

See also

CANWrite, CANWriteEx

24 © 2007-2010 Analytica GmbH

CAN API reference

CANReadDigital

CANReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax

#include <AnaGateDIICan.h>

i nt CANReadDi gital (i nt hHandl e, unsigned long * pnlnputBits, unsigned
long * pnQutputBits);

Parameter
hHandle Valid access handle.
pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
CANReadDi gi t al function.

See the following example for setting an reading the digital IO.

#i ncl ude <AnaGat eCANDI | . h>
int main()
{
i nt hHandl e = O;
int nRC = 0;
unsi gned | ong nl nputs;
unsi gned | ong nQut puts = 0x03;

i nt nRC = CANOpenDevi ce(&Handl e, TRUE, TRUE, 0, "192.168.0.254", 5000);
if (NRC==10)
{
/1 set the digital output register (PINO and PIN 1 to H CGH val ue)
nRC = CANWiteDigital (hHandl e, nQutputs);

/1 read all input and output registers

25 © 2007-2010 Analytica GmbH

CAN API reference

nRC = CANReadDi gi tal (hHandl e, &nlnputs, &nQutputs);

CANCI oseDevi ce(hHandl e) ;
}

return O;

}

See also

CANWriteDigital

26 © 2007-2010 Analytica GmbH

CAN API reference

CANWTriteDigital

CANWriteDigital — Writes a new value to the digital output register of the AnaGate
device.

Syntax

#include <AnaGateDIICAN.h>

int CANWiteDigital (int hHandl e, unsigned | ong nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs ant the rear panel.

The digital outputs can be written with the CANW i t eDi gi t al function.

A simple example for reading/writing of the IOs can be found at the description of
CANReadDi gi tal .

See also

CANReadDigital

27 © 2007-2010 Analytica GmbH

CAN API reference

CANRestart

CANRestart — Restarts a AnaGate CAN device.

Syntax
#include <AnaGateDIlICan.h>

i nt CANRestart(const char * pcl PAddress, int nTimeout);

Parameter

pcIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds. A timeout
is reported if the AnaGate partner does not respond within the defined
timeout period.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Restarts the AnaGate CAN device at the specified network address. It disconnects
implicitly all open network connections to all existing CAN interfaces. The Restart
command is even possible if the maximum number of allowed connections is reached.

2 Important

It is recommended to use this command only in emergency cases, if
there is a need to connect even if the maximum number of concurrent
connections is reached.

See also

CANOpenDevice

28 © 2007-2010 Analytica GmbH

CAN API reference

CANDeviceConnectState

CANDeviceConnectState — Retrieves the current network connection state of the
current AnaGate connection.

Syntax

#include <AnaGateDIICAN.h>

i nt CANDevi ceConnect St at e(i nt hHandl e) ;
Parameter

hHandle Valid connection handle of a successful call to CANOpenDevice.

Return value

Returns the current network connection state. Following values are possible:

e 1 = DI SCONNECTED: The connection to the AnaGate is disconnected.

°
N
1

CONNECTI NG: The connection is connecting.

CONNECTED : The connection is established.

[]
w
1

e 4 = DI SCONNECTI NG: The connection is disonnecting.

e 5 = NOT_I NI TI ALI ZED: The network protocol is not successfully initialized.

Description

This function can be used to check if an already connected device is disconnected.
The detection period of a state change depends on the use of internal AnaGate-
ALIVE mechanism. This ALIVE mechanism has to be switched on explicitly via

CANSt art Al i ve function. Once activated the connection state is periodically checked
by the ALIVE mechanism.

Remarks

The CANDevi ceConnect St at e function is supported by library version 1.4-1.10 or
higher.

See also

CANStartAlive

29 © 2007-2010 Analytica GmbH

CAN API reference

CANStartAlive

CANStartAlive — Starts the ALIVE mechanism, which checks periodically the state
of the network connection to the AnaGate hardware.

Syntax

#include <AnaGateDIlICan.h>

int CANStartAlive(int hHandle, int nAliveTinme);

Parameter

hHandle Valid access handle.

nAliveTime Default time out in seconds for the ALIVE mechanism.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The AnaGate communication protocol (see [TCP-2010]) supports an application
specific connection control which allows faster detection of broken connection lines.

The CANSt art Al i ve function starts a concurrent process in the DLL in order to send
defined alive telegrams (ALIVE_REQ) peridically (approx. every half of the given time
out) to the Anagate device via the current network connection. Is the alive telegram
not confirmed within the alive time the connection is marked as di sconnect ed and
the socket is closed if not already closed.

Use the CANDevi ceConnect St at e function to check the current network connection
state.

Remarks

The CANSt art Al i ve function is supported by library version 1.4-1.10 or higher.
It requires firmware version 1.3.8 or higher installed on the hardware, devices of

type AnaGate CAN (hardware version 1.1.A) does not support the application specific
alive mechanism.

See also

CANDeviceConnectState

Section 2.1, ™ Important properties of the network protocol”

30 © 2007-2010 Analytica GmbH

CAN API reference

CANErrorMessage

CANErrorMessage — Returns a description of the given error code as a text string.

Syntax

#include <AnaGateDIICAN.h>

i nt CANErrorMessage(int nRet Code, char * pcMessage, int nMessagelen);

Parameter

nRetCode Error code for which the error description is to be determined.
pcMessage Data buffer that is to accept the error description.

nMessagelen Size in bytes of the transferred data buffer.

Return value

Actual size of the returned description.

Description

Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is
shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC

char cBuffer[200];

int nRC

/[/... call a APl function here

CANET r or Message(nRC, cBuffer, 200);

std::cout << "Fehler: " << cBuffer << std::endl;

31 © 2007-2010 Analytica GmbH

Chapter 5. SPI APl reference

The Serial Peripheral Interface (SPI) is a synchroneous data link standard named by Motorola
which operates in full duplex mode. The SPI gateway models of the AnaGate series provides
access to a SPI bus via a standard networking.

With the SPI API these SPI gateways can be easily controlled. The programming interface is
identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the SPI API interface:

e AnaGate SPI

e AnaGate Universal Programmer

32 © 2007-2010 Analytica GmbH

SPI API reference

SPIOpenDevice

SPIOpenDevice — Opens a network connection to an AnaGate SPI device.

Syntax

#include <AnaGateDIISPI.h>

i nt SPI OpenDevi ce(int * pHandl e, const char * pcl PAddress, int nTi neout);

Parameter

pHandle Pointer to a variable, in which the access handle is saved in the event
of a successful connection to the AnaGate device.

pcIPAddress Network address of the AnaGate partner.
nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Opens a TCP/IP connection to an AnaGate SPI (resp. AnaGate Universal
Programmer). After the connection is established, access to the SPI bus is possible.

e Note
The AnaGate SPI (resp. the SPI interface of an AnaGate Universal

Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

#i ncl ude <AnaGateDl | SPI. h>
int main()
{
i nt hHandl e;
int nRC = SPI OpenDevi ce(&Handl e, "192.168. 0. 254", 5000);
if (nRC==0)
{
[/ ... now do sonething
SPI Cl oseDevi ce(hHandl e) ;

33 © 2007-2010 Analytica GmbH

SPI API reference

return O;

}

See also

SPICloseDevice

34 © 2007-2010 Analytica GmbH

SPI API reference

SPICloseDevice

SPICloseDevice — Closes an open network connection to an AnaGate SPI device.

Syntax

#include <AnaGateDIISPI.h>

i nt SPI d oseDevice(int hHandl e);
Parameter

hHandle Valid access handle.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate SPI device. The hHandl e
parameter is a return value of a succesfull call to the function SPI OpenDevi ce.

2 Important

It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

SPIOpenDevice

35 © 2007-2010 Analytica GmbH

SPI API reference

SPISetGlobals

SPISetGlobals — Sets the global settings, which are to be used on the AnaGate SPI.

Syntax

#include <AnaGateDIISPI.h>

i nt SPI Setd obal s(int hHandl e, int nBaudrate, unsigned char nSigLevel,
unsi gned char nAuxVol t age, unsigned char nC ockMode);

Parameter

hHandle Valid access handle.

nBaudrate

nSiglLevel

nAuxVoltage

nClockMode

The baud rate to be used. The values can be set individually, like
e 500.000 for 500kBit
¢ 1.000.000 for 1MBit
e 5.000.000 for 5MBit

9 Note
The required baud rate can be different from the value

actually used because of internal hardware restrictions
(frequency of the oscillator). If it is not possible to adjust the
baud rate exactly to the parsed value, the nearest smaller
possible value is used instead.

The voltage level for SPI signals to be used. Following values are
allowed:

e 0 = Outputs in High Impedance Modus (Standard mode).
e 1 = +5.0V for the signals.
e 2 = 4+3.3V for the signals.

3 = +2.5V for the signals.

The voltage level of the support voltage to be used. Following values
are allowed:

e 0 = support voltage is +3.3V.

o1

support voltage is 2.5V.

The phase and polarity of the clock signal. Following values are
allowed:

e 0 = CPHA=0 and CPOL=0.
e 1 = CPHA=0 and CPOL=1.

36 © 2007-2010 Analytica GmbH

SPI API reference

e 2 = CPHA=1 and CPOL=0.
¢ 3 = CPHA=1 and CPOL=1.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Sets the global settings of SPI interface of the AnaGate SPI or the AnaGate Universal

Programmer. These settings are not saved permantently on the device and are reset
every device restart.

See also

SPIGetGlobals

37 © 2007-2010 Analytica GmbH

SPI API reference

SPIGetGlobals

SPIGetGlobals — Returns the currently used global settings of the AnaGate SPI.

Syntax

#include <AnaGateDIISPI.h>

int SPIGetdobals(int hHandle, int * pnBaudrate, unsigned char *
pnSi gLevel , unsigned char * pnAuxVol t age, unsi gned char * pnC ockMbde);

Parameter

hHandle Valid access handle.
pnBaudrate The baud rate currently used on the SPI bus in kBit.

pnSigLevel The voltage level currently used by the AnaGate SPI. Following values
are possible:

e 0

Outputs in High Impedance Modus (Standard mode).

e 1 = 4+5.0V for the signals.

o 2

+3.3V for the signals.

3 = +2.5V for the signals.

pnAuxVoltage The voltage level of the support voltage currently used by the
AnaGate SPI. Following values are possible:

e 0 = support voltage is +3.3V.
o1

support voltage is 2.5V.

pnClockMode The phase and polarity of the colck signal currently used by the
AnaGate SPI. Following values are possible:

e 0 = CPHA=0 and CPOL=0.
e 1 = CPHA=0 and CPOL=1.
e 2 = CPHA=1 and CPOL=0.
e 3 = CPHA=1 and CPOL=1.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Returns the currently used global settings of SPI interface of the AnaGate SPI or the
AnaGate Universal Programmer.

38 © 2007-2010 Analytica GmbH

SPI API reference

See also

SPISetGlobals

39 © 2007-2010 Analytica GmbH

SPI API reference

SPIDataReq

SPIDataReq — Writes and reads data to/from SPI bus.

Syntax

#include <AnaGateDIISPI.h>

i nt SPI Dat aReq(i nt hHandl e, const char * pcBuf Wite, int nBuf WiteLen,
char * pcBuf Read, int nBuf ReadLen);

Parameter
hHandle Valid access handle.
pcBufWrite Buffer with the data that is to be sent to the SPI partner.

nBufWriteLen Length of the data buffer pcBuf Wit e (byte count).
pcBufRead Byte buffer which holds the data received from the SPI partner.

nBufReadLen Number of bytes to read.

Description

Sends data to the SPI bus and receives data from the SPI bus.

On the SPI bus Data is transferred on two seperates data lines full duplex (SDO
and SDI). The SPI Dat Req has to split a single data transfer in two steps because of
the spacial separation to the SPI bus. First the write data buffer is put into a TCP
data telegram and sent to the AnaGate SPI. The AnaGate SPI makes the real data
transfer on the SPI bus and send back a confirmation including the data received
from the bus.

2 Important

It is impossible to detect that no device is present at the SPI bus. So, if no
device is attached, the requested number of bytes are returned anyway
- in this case the read buffer is filled with 0.

See the following example for sending a command to the connected SPI bus.

#i ncl ude <AnaGateDl | SPI . h>

int main()

{
char cBufWite[] ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
char cBuf Recei ve[100] ;
int hHandl e = 0O;
int nRC = 0;

int nRC = SPI OpenDevi ce(&Handl e, "192.168. 1. 254", 5000) ;
if (nRC==0)
{

/1 send 1 byte and receive 1 byte

40 © 2007-2010 Analytica GmbH

SPI API reference

}

nRC = SPI Dat aReq(hHandl e,

cBuf Wite,

/1 send 1 byte and receive 5 byte

nRC = SPI Dat aReq(hHandl e,

cBuf Wite,

/1 send 2 byte and receive 1 byte

nRC = SPI Dat aReq(hHandl e,

SPI Cl oseDevi ce(hHandl e) ;

return O;

cBuf W2i t e,

1,
1,

2,

cBuf Receive, 1);
cBuf Receive, 5);

cBuf Receive, 1);

Return val

Returns Nul |

codes).

ue

if successful, or an error value otherwise (Appendix A, API return

41

© 2007-2010 Analytica GmbH

SPI API reference

SPIReadDigital

SPIReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax

#include <AnaGateDIISPI.h>

int SPIReadDigital (int hHandl e, unsigned long * pnlnputBits, unsigned
long * pnQutputBits);

Parameter
hHandle Valid access handle.
pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
SPI ReadDi gi t al function.

See the following example for setting an reading the digital IO.

#i ncl ude <AnaGateDl | SPI. h>
int main()
{
i nt hHandl e = O;
int nRC = 0;
unsi gned | ong nl nputs;
unsi gned | ong nQut puts = 0x03;

int nRC = SPI OpenDevi ce(&Handl e, "192. 168. 0. 254", 5000);

if (NRC==10)

{
/1 set the digital output register (PINO and PIN 1 to H CGH val ue)
nRC = SPIWiteDigital (hHandl e, nQutputs);

/1 read all input and output registers

42 © 2007-2010 Analytica GmbH

SPI API reference

nRC = SPI ReadDi gi tal (hHandl e, &nl nputs, &nQutputs);

SPI Cl oseDevi ce(hHandl e) ;
}

return O;

}

See also

SPIWriteDigital

43 © 2007-2010 Analytica GmbH

SPI API reference

SPIWriteDigital

SPIWriteDigital — Write a new value to the digital output register of the AnaGate
device.

Syntax

#include <AnaGateDIISPI.h>

int SPIWiteDigital (int hHandl e, unsigned | ong nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the SPI Wit eDi gi t al function.

A simple example for reading/writing of the IOs can be found at the description of
SPI ReadDi gi tal .

See also

SPIReadDigital

44 © 2007-2010 Analytica GmbH

SPI API reference

SPIErrorMessage

SPIErrorMessage — Returns a description of the given error code as a text string.

Syntax

#include <AnaGateDIICAN.h>

i nt SPIErrorMessage(int nRet Code, char * pcMessage, int nMessagelen);
Parameter

nRetCode Error code for which the error description is to be determined.
pcMessage Data buffer that is to accept the error description.

nMessagelen Size in bytes of the transferred data buffer.

Return value

Actual size of the returned description.

Description

Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is

shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC

char cBuffer[200];

int nRC

/[/... call a APl function here

SPI Err or Message(nRC, cBuffer, 200);

std::cout << "Fehler: " << cBuffer << std::endl;

45 © 2007-2010 Analytica GmbH

Chapter 6. 12C APl reference

Philips Semiconductors (now NXP Semiconductors) has developed a simple bidirectional 2-
wire bus for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. Only two bus
lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit oriented,
bidirectional data transfers can be made at up to 100 kbit/s in the Standard-mode, up to 400
kbit/s in the Fast-mode, up to 1 Mbit/s in the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in
the High-speed mode. [NXP-12C].

The I2C gateway models of the AnaGate series provides access to a I2C bus via a standard
networking. With the I2C API these 12C gateways can be easily controlled. The programming
interface is identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the I2C API interface:
e AnaGate I2C

e AnaGate Universal Programmer

46 © 2007-2010 Analytica GmbH

I2C API reference

12COpenDevice

I2COpenDevice — Opens a network connection to an AnaGate I2C or an AnaGate
Universal Programmer).

Syntax

#include <AnaGateDIII2C.h>

int | 2COpenDevi ce(int * pHandl e, unsigned int nBaudrate, const char *
pcl PAddress, int nTineout);

Parameter
pHandle Pointer to a variable, in which the access handle is saved in the event
of a successful connection to the AnaGate device.
nBaudrate Baud rate to be used for the I12C bus. Teh value can be set individually,

like
¢ 100000 for 100kBit (standard mode)
¢ 400000 for 400kBit (fast mode)

6 Note
Values above 400kBit are ignored by the AnaGate SPI.

pcIPAddress Network address of the AnaGate partner.
nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Opens a TCP/IP connection to an AnaGate I2C (resp. AnaGate Universal
Programmer). After the connection is established, access to the I12C bus is possible.

Note

6 The AnaGate I2C (resp. the I2C interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

47 © 2007-2010 Analytica GmbH

I2C API reference

See the following example for the initial programming steps.

#i ncl ude <AnaGateDl || 2C. h>
int main()
{
i nt hHandl e;
int nRC = | 2COpenDevi ce(&Handl e, 100000, "192.168.0.254", 5000);

if (nRC==0)

{
/1 ... now do sonething
| 2CCl oseDevi ce(hHandl e) ;
}
return O;
}
See also

I2CCloseDevice

48 © 2007-2010 Analytica GmbH

I2C API reference

|I2CCloseDevice

I2CCloseDevice — Closes an open network connection to an AnaGate 12C device.

Syntax

#include <AnaGateDIII2C.h>

int 12Cd oseDevice(int hHandl e);
Parameter

hHandle Valid access handle.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate I2C device. The hHandl e
parameter is a return value of a succesfull call to the function | 2COpenDevi ce.

2 Important
It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

I2COpenDevice

49 © 2007-2010 Analytica GmbH

I2C API reference

|I2CReset

I2CReset — Resets the I12C Controller in an AnaGate I2C device.

Syntax
#include <AnaGateDIII2C.h>
int 2CReset (int hHandl e);
Parameter

hHandle Valid access handle.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Resets the 12C Controller in an AnaGate I12C device.

50 © 2007-2010 Analytica GmbH

I2C API reference

I2CRead

I2CRead — Reads data from an I12C partner.

Syntax

#include <AnaGateDIII2C.h>

int 12CRead(int hHandl e, unsigned short nSlaveAddress, const char *
pcBuf fer, int nBufferlLen);

Parameter

hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

pcBuffer Byte buffer in which the data received from the I12C partner is to
be stored.
nBufferLen Number of bytes to read.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Reads data from an I2C partner. The user must ensure that the setup of the data
buffer and the address of the I12C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also

I2CWrite

51 © 2007-2010 Analytica GmbH

I2C API reference

I2CWrite

I2CWrite — Writes data to an 12C partner.

Syntax

#include <AnaGateDIII2C.h>

int 12CWite(int hHandl e, unsigned short nSlaveAddress, const char *
pcBuf fer, int nBufferlLen);

Parameter

hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

pcBuffer Byte buffer with the data that is to be sent to the I12C partner.

nBufferLen Size of bytes to be read.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Writes data to an I2C partner. The user must ensure that the setup of the data buffer
and the address of the 12C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also

I2CRead

52 © 2007-2010 Analytica GmbH

I2C API reference

I2CSequence

I2CSequence — This command is used to write a sequence of write and read
commands to an I2C device.

Syntax

#include <AnaGateDIlI2C.h>

i nt | 2CSequence(i nt hHandl e, const char * pcWiteBuffer, i nt
nNunmber O Byt esToWite, char * pcReadBuffer, int nNunmber O Byt esToRead,
int * pnNumber Of Byt esRead, int * pnByteNunberlLastError);

Parameter
hHandle Valid access handle.
pcWriteBuffer byte buffer, containing the commands which are to be

sent to the AnaGate I2C. The single commands are stored
sequential in this byte buffer.

A read command is defined as follows:

Structure of read command for I2CSequence

Read command |Description

2 bytes (LSB,MSB) |slave address in 7- or 10-bit format,
the R/W bit must be set to explicitely
to 1.

2 bytes (LSB,MSB) |Bit 0-14: number of data bytes to
be read from the I2C device. The
successfully read data bytes are
stored in the pcReadBuf f er buffer.

Bit 15: If this bit is set then the stop
bit at the end of the read command
is omitted.

A write command is defined as follows:

Structure write command for I2CSequence

Write command |Description

2 bytes (LSB,MSB) |slave address in 7- or 10-bit format,
the R/W bit must be set to explicitely
to 1.

2 bytes (LSB,MSB) |Bit 0-14: number of data bytes to be
written to the I2C device.

Bit 15: If this bit is set then the stop
bit at the end of the write command
is omitted.

53 © 2007-2010 Analytica GmbH

I2C API reference

Write command |Description

N bytes data bytes.

nNumberOfBytesToWrite byte size of the data to write

pcReadBuffer byte buffer, in which the received data is to be stored.
The received data from different commands are stored in
the buffer sequential (first the data of command 1, then
the data of command 2, ...).

nNumberOfBytesRead byte size of the read buffer (must be big enough for all
included read requests)

pnNumberOfBytesRead byte count, which is read from 12C.

pnByteNumberLastError Number of byte in the pcW i t eBuf f er buffer, which raises
an error.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The user must ensure that the setup of the data buffer and the address of the 12C
partner are correct.

54 © 2007-2010 Analytica GmbH

I2C API reference

I2CReadDigital

I2CReadDigital — Reads the current values of digital input and output registers of
the AnaGate device.

Syntax

#include <AnaGateDIII2C.h>

int |12CReadDigital (int hHandl e, unsigned long * pnlnputBits, unsigned
long * pnQutputBits);

Parameter
hHandle Valid access handle.
pnInputBits Pointer to the current value of the digital input register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

pnOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
| 2CReadDi gi t al function.

See the following example for setting an reading the digital IO.

#i ncl ude <AnaGateDl || 2C. h>
int main()
{
i nt hHandl e = O;
int nRC = 0;
unsi gned | ong nl nputs;
unsi gned | ong nQut puts = 0x03;

int nRC = | 2COpenDevi ce(&Handl e, 400000, "192.168.0.254", 5000);

if (NRC==10)

{
/1 set the digital output register (PINO and PIN 1 to H CGH val ue)
nRC = | 2CWiteDigital (hHandl e, nQutputs);

/1 read all input and output registers

55 © 2007-2010 Analytica GmbH

I2C API reference

nRC = | 2CReadDi gi tal (hHandl e, &nl nputs, &nQutputs);

CANCI oseDevi ce(hHandl e) ;
}

return O;

}

See also

I2CWriteDigital

56 © 2007-2010 Analytica GmbH

I2C API reference

I2CWriteDigital

I2CWriteDigital — Writes a new value to the digital output register of the AnaGate

device.
Syntax

int 12CWiteDigital (int hHandl e, unsigned | ong nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the | 2CW i teDi gi tal function.

A simple example for reading/writing of the IOs can be found at the description of
| 2CReadDi gi t al .

See also

I2CReadDigital

57 © 2007-2010 Analytica GmbH

I2C API reference

I2CErrorMessage

I2CErrorMessage — Returns a description of the given error code as a text string.

Syntax
#include <AnaGateDIICAN.h>
int [2CErrorMessage(int nRet Code, char * pcMessage, int nMessagelen);
Parameter
nRetCode Error code for which the error description is to be determined.
pcMessage Data buffer that is to accept the error description.
nMessagelen Size in bytes of the transferred data buffer.

Return value

Actual size of the returned description.

Description

Returns a textual description of the parsed error code (see Appendix A, API return
codes). If the destination buffer is not big enough to store the text, the text is

shortened to the specified buffer size.

See the following example in C/C++ language.

int nRC

char cBuffer[200];

int nRC

/[/... call a APl function here

| 2CErr or Message(nRC, cBuffer, 200);

std::cout << "Fehler: " << cBuffer << std::endl;

58 © 2007-2010 Analytica GmbH

I2C API reference

I2CReadEEPROM

I2CReadEEPROM — Reads data from an EEPROM on the I2C bus.

Syntax

#include <AnaGateDIII2C.h>

int |2CReadEEPROM i nt hHandl e, unsigned short nSubAddress, unsigned

int nOfset,
nCf f set Format) ;

Parameter

hHandle

nSubAddress

nOffset

pcBuffer
nBufferLen

nOffsetFormat

const char * pcBuffer, int nBufferLen, wunsigned int

Valid access handle.

Subaddress of the EEPROM to communicate with. The valid values
for nSubAddr ess are governed by the setting used in the parameter
nOf f set For mat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

e No bit is used for addressing: 0 to 7
e 1 bit is used for addressing: 0 to 3

e 2 bits are used for addressing: O to 1
¢ 3 bits are used for addressing: 0

Data offset on the EEPROM from which the transferred data is to
be read.

Character string buffer in which the received data is to be stored.
Length of the data buffer.

Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, * Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

6 The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

59 © 2007-2010 Analytica GmbH

I2C API reference

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The | 2CReadEEPROM function reads data from an I12C EEPROM.

Of course all access to the memory of an EEPROM is done by standard 12C read
or write commands. So, when reading from the memory only the matching slave
address, the memory offset address and the data has to be sent to the I2C bus.

| 2CReadEEPROM translates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

A programming example which clears a ST24C1024 can be found at the description
of I2WriteEEPROM.

See also

I2CWriteEEPROM

Appendix C, Programming I2C EEPROM

60 © 2007-2010 Analytica GmbH

I2C API reference

1I2CWriteEEPROM

I2CWriteEEPROM — Writes data to an I2C EEPROM.

Syntax

#include <AnaGateDIII2C.h>

int |2CWiteEEPROM i nt hHandl e, unsigned short nSubAddress, unsigned

int nOfset,
nCf f set Format) ;

Parameter

hHandle

nSubAddress

nOffset

pcBuffer
nBufferLen

nOffsetFormat

const char * pcBuffer, int nBufferLen, wunsigned int

Valid access handle.

Subaddress of the EEPROM to communicate with. The valid values
for nSubAddr ess are governed by the setting used in the parameter
nOf f set For mat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

e No bit is used for addressing: 0 to 7
e 1 bit is used for addressing: 0 to 3

e 2 bits are used for addressing: O to 1
¢ 3 bits are used for addressing: 0

Data offset on the EEPROM to which the transferred data is to be
written.

Character string buffer with the data that is to be written.
Length of the data buffer.

Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, * Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

6 The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

61 © 2007-2010 Analytica GmbH

I2C API reference

Return value

Returns Nul | if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The | 2CW i t eEEPROM function writes data to an I2C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I12C read or
write commands. So, when writing to the memory only the matching slave address,
the memory offset address and the data has to be sent to the I2C bus.

| 2CW i t eEEPROMtranslates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

Tip

T

It is important to note that an EEPROM is divided into memory pages, and
that a single write command can only program data within a page. Users
of | 2CW i t eEEPROM must ensure to do not write across page limits. The
page size depends on the EEEPOM type.

See the following example for writing data to a ST24C1024.

#i ncl ude <AnaGateDl | SPI . h>

int main()
char cBuf f er Page[256] ;
int hHandl e = 0O;
int nRC = 0;

unsi gned short nSubAddress = 0; H
unsi gned i nt nCf f set For mat = 0x10| OxOF; H

int nRC = | 2COpenDevi ce(& Handl e, 400000, "192.168.0.254", 5000);
if (nRC==10)
{

menset (cBuf f er Page, 0, 256); // clear page buffer

for (int i=0; i<512;i++)

1 2CW it eEEPROM hHandl e, nSubAddress, i*256, cBufferPage, 256, nOfsetFormat); H

}
1 2CA oseDevi ce(hHandl e) ;

}

return O;

EF Itis possible to address 4 individual ST24C1024 on a single I2C bus. By selection
of subaddress 0 the control pins E2 and E1 have to be LOW.

H 17 address bits are used to address the 128KB of a ST24C1024. 16 bits are set
via the address bytes of the write command: 16=0x0F. The address bit A16 is
set via the EO bit of the Chip Enable Address, therefore addressing mode 1 (E2-
E1-A0) must be set: 0x10.

El The page size of a ST24C1024 is 256 byte, every page is programmed full within
the for-loop.

See also

I2CReadEEPROM

62 © 2007-2010 Analytica GmbH

I2C API reference

Appendix C, Programming I2C EEPROM

63 © 2007-2010 Analytica GmbH

Chapter 7. Programming examples

7.1. Programming language C/C++

The AnaGate programming API can be used on Windows systems as well as on linux
systems (X86). All available API functions are coded operating system independant,
so that source code once created can be used on both operating systems. Only the
way the libraries are linked on the different operating systems or different compilers
have to be customized.

Windows operating systems

There are basically two ways to access the API functions for the C/C++ programmer:

e When directly accessing the library all functions has to made known by preceding
calls to the Win32 methods LoadLi brary and Get Pr ocAddr ess.

e The functions can be alternatively accessed easily via an import library, which
automatically loads all DLL functions and make them available implicitely.

In the following examples it is assumed that the second option is used and the
corresponding import library is linked.

7.1.1. CAN Console application C/C++ (MSVC)

This programming example for C++ demonstrates how to connect to an AnaGate
CAN and how to process received CAN data via a callback function.

Note

6 The source code of the example can be found in directory Sanpl es/ CAN-
VC6 resp. Sanpl es/ CAN- VC7 on the CD.

#i ncl ude "AnaGat eDLLCAN. h"

W NAPI void MyCal |l back(int nldentifier, const char * pcBuffer, int nBuflLen, int nFlags, int nHandle)

{
std::cout << "CAN-ID=" << nldentifier << ", Data=";

for (int i =0; i < nBufLen; i++)
{
std::cout " Ox" << std::hex << pcBuffer[i];

}

std::cout << std::endl;

}
int main()
int hHandl e = NULL;

/| opens AnaGate CAN duo device on port A, tineout after 1000 mill seconds
int nRC = CANOpenDevi ce(&Handl e, FALSE, TRUE, 0, "192. 168. 2. 1", 1000) ;

if (nRC==0)

{
nRC = CANSet Cal | back(hHandl e, MyCal | back) ;
getch(); // wait for keyborad input

64 © 2007-2010 Analytica GmbH

Programming examples

7.2.

7.2.1.

if (nRC==0)
{
nRC = CANCl oseDevi ce(hHandl e);// cl ose device
}
}

Programming language Visual Basic 6

As already described in the previous chapters, the libraries of the AnaGate-API use
the cdecl calling convention to parse function parameters to the program stack.
Unfortunately this is generally not supported by the programming language Visual
Basic 6.

To work around this limitiation, the libraries for the AnaGate devices are available
in a specfic version for programming VB6 applications. In this versions the stdcall
calling convention is used, which is the only supported by VB6. Except for the way the

parameters are pushed on the stack these specific VB6 versions of the API libraries
are exactly identical to the standard versions.

6 Note
Use library AnaGat eCAN. dl | instead of library AnaGat eCANVB6. dI | .

Use library AnaGat eSPI . dl | instead of library AnaGat eSPI VB6. dI | .

SPI Example with user interface for VB6

This programming example for Visual Basisc 6 demonstrates how to connect to an
AnaGate SPI and how to execute a command on the SPI bus:

e Getting the global device settings like baud rate for example

e Sending a single command to the SPI bus

Note

6 The source code of the example can be found in directory Sanpl es/ SPI -
VB6 on the CD.

65 © 2007-2010 Analytica GmbH

Programming examples

7.2.1.1. User interface

Figure 7.1. Input form of SPI example (VB6)

. Test Anagate SPI Library H[=]
DILL Version lAnagate SPI DLL V1.1-1.10
Network address I-I 92.168.1.254 ‘ Check address I
Return code
" rMAC=00 50 C2 3C BO 3E, SERIAL=00000000
infetmuation aboLt Hiw Versian=10104, S/ Version=10104
B audrate=5000000, Siglevel=High impedance
WAt olkage=+3.3Y, Clockhode=CPHA=0 und CROL=0
10 Input=00, |0 Dutput=00
Baud rate IBDDDDDD Aug. Yoltage |+3_3\,.- j
Signal Level Fachcit) | Clock mode IEF‘HA:D und CPOL=0 j
5Pl command 0=05 Flease enter only hex digits
[every bwo digits zeparated with
ablank), e.g. 05 1F FF
Fiesult
Execute command |
Exit |

Dialog fields
Network address

Check address

Baud rate

Signal Level
Aux. Voltage
Clock mode

SPI command

Execute
command

Network address of the AnaGate SPI.

Establishs a connection to the AnaGate SPI with the specified
network address and reads back some device information and
global device settings.

The baud rate to be used. The value can be set individually.
The voltage level for SPI signals to be used.

The voltage level of the support voltage to be used.

The phase and polarity of the clock signal.

SPI command to be sent to the connected SPI device. The
command has to be entered as blank-separated hexadecimal
byte groups ("05 1F 3A" for example).

Executes a SPI command and displays the result in the Resul t
dialog field. Please keep in mind, that the SPI bus is used as full
duplex ling, this means that data is written and received parallel.
Make sure that you write the same number of bytes to the bus
as you want to receive (in this cace add padding bytes to the
SPI command).

For example is the Read Status Register command of a
M25P80 defined as 0x05. The result of the command is a single
byte (8 bit) representing the current value of the Status Register.

66 © 2007-2010 Analytica GmbH

Programming examples

7.2.1.2. Getting global device settings

All SPI related functions of the AnaGate API are declared for Visual Basic users in
AnaGat eSPI . bas and are read-to-use. The following code snipplet includes some
exemplary declarations of the API functions used below.

Public Decl are Function SPI OpenDevi ce Lib "AnaGat eSPl VB6" _
Alias "_SPl (QpenDevi ce@2" (ByRef Handle As Long, _
ByVal TCPAddress As String, _
ByVal Tinmeout As Long) As Long

Publ i c Decl are Function SPIC oseDevice Lib "AnaGateSPl VB6" _
Alias "_SPI C oseDevi ce@" (ByVal Handle As Long) As Long

Public Declare Function SPI Get d obals Lib "AnaGat eSPI VB6" _
Alias "_SPl Get A obal s@0" (ByVal hHandle As Long, _
ByRef nBaudrate As Long, _
ByRef SiglLevel As Byte, _
ByRef nAuxVoltage As Byte, _
ByRef nCl ockMbde As Byte) As Long

The event procedure bt nCheckAddress dick is called on click of the Check
Address button.

Private Sub bt nCheckAddress_Cick()
DimnRC As Long, Data As String, sText As String, | As Long

nRC = SPI OpenDevi ce(hHandl e, Me. | PAddr esse. Text, 2000) Ei
If nRC <> 0 Then
Me. | bl Error Msg. Caption = "Fehler bei SPI OpenDevice: " & GetError Msg(nRC)

El se
Me. | bl Error Msg. Caption = Get Anagat el nf o(hHandl e)
End |f
nRC = SPI O oseDevi ce(hHandl e) B
End Sub

EFd A call to SPI OpenDevi ce establishes a network connection to the device. If the
function fails, a textual error description is returned via Funktion Get Er r or Msg.
H The connection to the device is closed with the SPI Cl oseDevi ce function.

Reading the device settings and creation of the textual presentation of the data is
done by the Get Anagat el nf o function.

Private Function GetAnagatel nfo(hHandl e As Long) As String
Dim nRC As Long, sText As String
Di m nBaudrate As Long, nSiglLevel As Byte, nAuxVoltage As Byte, nCl ockMde As Byte
Di m nDi gi tal Qut put As Long, nDigitallnput As Long

nRC = SPI Get @ obal s(hHandl e, nBaudrate, nSigLevel, nAuxVoltage, nC ockModde)
If (nRC = 0) Then
sText = sText & "Baudrate=" & CStr(nBaudrate) & ", Siglevel="
Sel ect Case nSiglLevel
Case 1: sText = sText & "+5.0V"
Case 2: sText sText & "+3.3V'
Case 3: sText sText & "+2.5V"
Case El se: sText = sText & "High inpedance”
End Sel ect
sText = sText & vbCrLf & "AuxVoltage="
Sel ect Case nAuxVol t age
Case 1: sText = sText & "+2.5V'
Case El se: sText = sText & "+3.3V"
End Sel ect
sText = sText & ", Cl ockMde="
Sel ect Case nC ockMde

Case 1: sText = sText & "CPHA=0 und CPOL=1"
Case 2: sText = sText & "CPHA=1 und CPOL=0"
Case 3: sText = sText & "CPHA=1 und CPOL=1"
Case El se: sText = sText & "CPHA=0 und CPOL=0"

End Sel ect

67 © 2007-2010 Analytica GmbH

Programming examples

El se
sText = sText & "Fehler bei SPIGetd obals: " & GetErrorMsg(nRC) & vbCrlLf
End | f
Get Anagat el nf o = sText
End Function

7.2.1.3. Executing a command on the SPI bus

The AnaGate SPI can send arbitrary commands to the connected SPI bus. To write
and read data by the PC only the SPI Dat aReq function is required.

Public Declare Function SPl DataReq Lib "AnaGat eSPI VB6" Alias "_SPl Dat aReq@0" (ByVal hHandl e As Long,
ByVal |pBufferWite As Any, _
ByVal nBufferWitelLen As Long, _
ByVal | pBufferRead As Any, _
ByVal nBufferReadl Len As Long) As Long

The event procedure bt nStart_d i ck is called on click of the Execute command
button.

Private Sub btnStart_Click()
Dim nRC As Long, sText As String, | As |Integer, sByteText As String
Di m nBaudrate As Long, nSigLevel As Byte, nAuxVoltage As Byte, nCl ockMdde As Byte
Di m nBufferWiteLen As Long, nBufferReadLen As Long
DmarrWite(l To 255) As Byte, arrRead(1l To 255) As Byte

nRC = SPI OpenDevi ce(hHandl e, Me. | PAddr esse. Text, 2000)
If nRC <> 0 Then
sText = "Fehl er bei SPlI OpenDevice: " & GetErrorMsg(nRC)
El se
nBaudrate = CLng(Me. t xt Baudr at e)
nSi gLevel = CLng(Me. cnbSi gLevel . Li st ndex)
nAuxVol t age = CLng(Me. cnmbAuxVol t age. Li st | ndex)
nCl ockMbde = CLng(Me. cnmbCl ockMode. Li st | ndex)
nRC = SPI Set @ obal s(hHandl e, nBaudrate, nSigLevel, nAuxVoltage, nC ockMbde) H

If nRC <> 0 Then

sText = sText & "Fehler bei SPISetd obals: " & GetErrorMsg(nRC) & vbCrlLf
End | f
Me. | bl Devi cel nfo. Capti on = Get Anagat el nf o(hHandl e)

nBuf ferWiteLen = Get Command(arrWite) H
nBuf f er ReadLen = nBufferWitelLen

nRC = SPI Dat aReq(hHandl e, VarPtr(arrWite(1)), nBufferWiteLen,

VarPtr(arrRead(1)), nBufferReadLen) H
If nRC = 0 Then
For | =1 To nBufferReadlLen
sByteText = sByteText & "Ox" & ToHex(arrRead(l)) & " "

Next |
Me. t xt Buf f er Read = sByt eText
sText = sText & "SPlDataReq OK: " & vbCrlLf

El se
sText = sText & "Fehler bei SPIDataReq: " & GetErrorMsg(nRC) & vbCrlLf
End | f
nRC = SPI Cl oseDevi ce(hHandl e)
End If
End Sub

El A call to SPI Set d obal s sets the global settings on the device, the parameter
values of the input fields in the dialog form are used.

B The Get Command function converts the texual SPI command entered in the input
field on the form to a byte array structure.

E To process the data in the read and receive buffers, a byte array is used as VB6
data type for both buffers. For this to work, the real memory address of the
array data has to be parsed to the DLL function. This will be done by using the
Var Pt r function on the first byte array element.

68 © 2007-2010 Analytica GmbH

Programming examples

7.3. Programming language VB.NET

Of course, it is also possible to use the functions of the AnaGate API with the .NET
programming languages. For these languages the functions have only to be declared
correctly in one of the .NET languages. Loading and unloading of the declared API
functions is done automatically by the .NET framework.

7.3.1. CAN Console application VB.NET

This programming example for VB.NET demonstrates how to connect to an AnaGate
CAN and how to process received CAN data via a callback function.

Decl are Function CANOpenDevice Lib "AnaGateCAN' (ByRef Handle As Int32, _
ByVal ConfirnData As Int32, _
ByVal MonitorOn As Int32, _
ByVal PortNunber As Int32, _
ByVal TCPAddress As String, _
ByVal Tinmeout As Int32) As Int32
Decl are Function CANCl oseDevice Lib "AnaGat eCAN' (ByVal Handle As Int32) As Int32
Publ i c Del egate Sub CAN CALLBACK(ByVal ID As Int32, ByVal Buffer As IntPtr, _
ByVal Bufferlen As Int32, ByVal Flags as Int32, _
ByVal Handl e as I|nt32)
Decl are Function CANSet Cal | back Lib "AnaGateCAN' (ByVal Handle As Int32, _
ByVal MyCB As CAN CALLBACK) As Int32

Sub CANCal | back(ByVal 1D As Int32, ByVal Buffer As IntPtr, ByVal Bufferlen As Int32, _
ByVal Flags as Int32, ByVal Handle as I|nt32)
Di m Bytes as Byte(8)

System Runti ne. I nt eropServi ces. Marshal . Copy(Buffer, Bytes, 0, Bufferlen)
Consol e. Qut. Wite("CAN-ID=")
Console. Qut. Wite(ID)
Console. Qut. Wite(", Data=")
For | As Integer = 0 To BufferLen - 1
Consol e. Qut. Wite(Bytes(l))
Next

End Sub
Function Main(ByVal CndArgs() As String) As Integer

' Opens the single CAN port of a AnaGate CAN

dim RC as I nt32 = CANOpenDevi ce(Handle, 0, 1, 400, 0, "192.168.2.1", 1000)

If RC =0 Then
CANSet Cal | back(Handl e, AddressOf CANCal | back)

end |f

If RC = 0 Then
CANCI oseDevi ce(Handl e)

end if

end Function

7.3.2. SPI Console application VB.NET

This programming example for VB.NET demonstrates how to connect to an AnaGate
SPI and how to execute SPI commands.

Note

The source code of the example can be found in directory Sanpl es/ SPI -
VB. NET on the CD.

69 © 2007-2010 Analytica GmbH

Programming examples

Sub Mai n()

Di m hHandl e As | nt32, nlndex As |nteger

Di m Buf ferWite(100) As Byte, BufferRead(100) As Byte
Di m nBaudrate As Int32 = 5000000 ' 500kBit

Di m nSi gLevel As Byte = 2 ' +3.3V for the signals.

Di m nAuxVol t age As Byte = 0 ' support voltage is +3.3V.
Di m nCl ockMbde As Byte = 3 ' CPHA=1 and CPOL=1.

Di m nRC = SPI OpenDevi ce(hHandl e, "192.168. 1. 254", 5000) Ei
If nRC <> 0 Then
Consol e. WiteLine("Error SPl OpenDevice: " & CGetErrorMsg(nRC) & vbCrlLf)

El se
nRC = SPI Set d obal s(hHandl e, nBaudrate, nSigLevel, nAuxVoltage, nd ockMdde) H
nRC = SPI Get @ obal s(hHandl e, nBaudrate, nSigLevel, nAuxVoltage, nC ockMbde)
For nlndex = 0 To 100 ' init buffers with sone data
Buf fer Wite(nlndex) = 69
Buf f er Read(nl ndex) = 96
Next nl ndex
BufferWite(0) =5 * 16 0x50 = READ STATUS (M25P80)
BufferWite(l) =5 * 16 0x50 = READ STATUS (M25P80)

nRC = SPI Dat aReq(hHandl e, BufferWite, 2, BufferRead, 2) H
If nRC <> 0 Then
Consol e. WiteLine("Error SPIDatReg: " & GetErrorMg(nRC) & vbCrLf)

El se
Consol e. Wite("Result: DATAREQ')
For nlndex = 0 To 1 ' init buffers with sone data
Consol e. Wi te(BufferRead(nl ndex) & " ")
Next
Consol e. Wi teLi ne()
End | f

SPI Cl oseDevi ce(hHandl e) HE
End | f
End Sub

A call to SPI OpenDevi ce establishes a network connection to the device. If the
function fails, a textual error description is returned via Funktion Get Er r or Msg.
SPI Set d obal s sets the global parameters of the device (baud rate, signal level,
voltage level of the support voltage, clock mode).

Via the SPI Dat aReq function data is written to the SPI bus. If the command is
successful, the data read from the SPI partner is returned in the receive buffer.
B The connection to the device is closed with the SPI Cl oseDevi ce function.

The functions of the programming API are defined in a wrapper module. In the
following you can see a part of the wrapper module, which includes the declarations
of all API functions.

I nports System Runti ne. | nteropServices

Nanespace Anal ytica. AnaGat e
Publ i ¢ Modul e AnaGat eAPI

Decl are Function SPlI OpenDevice Lib "AnaGateSPl" (ByRef Handle As Int32, _
ByVal TCPAddress As String, _
ByVal Tinmeout As Int32) As Int32

Decl are Function SPICl oseDevice Lib "AnaGateSPl" (ByVal Handle As Int32) As Int32

Decl are Function SPlISetd obals Lib "AnaGateSPl" (ByVal Handle As Int32, _
ByVal Baudrate As Int32, _
ByVal SiglLevel As Byte, _
ByVal AuxVoltage As byte, _
ByVal C ockMbde As byte) As Int32

Decl are Function SPIGetd obals Lib "AnaGateSPl" (ByVal Handle As Int32, _
ByRef Baudrate As Int32, _
ByRef SiglLevel As Byte, _

70 © 2007-2010 Analytica GmbH

Programming examples

Decl are Function SPI DataReq Lib "AnaGateSPI"

Decl are Function SPIError Message Lib "AnaGate

End Modul e
End Nanespace

ByRef AuxVoltage As Byte, _
ByRef C ockMbde As Byte) As Int32

(ByVval Handle As Int32, _
<Mar shal As(UnmanagedType. LPArray) > ByVal
ByVal BufferWitelLen As Int32, _

<Mar shal As(UnmanagedType. LPArray) > ByVal
ByVal BufferReadLen As Int32) As Int32

Buf ferWite() As Byte,
Buf f er Read() As Byte,
SPI" (ByVal RC As Int32,

ByVal Buffer As IntE’tr, _
ByVal Bufferlen As Int32) As Int32

71

© 2007-2010 Analytica GmbH

Part Il. Scripting language LUA

Table of Contents

8. The LUA scripting interface of the AnaGate product lineccevvivvinennn. 75
8.1. Creating SCriPLS ..uiiiiiiiiii i s 76
8.2. Running scripts on personal COMpPULErcoooviiiiiiiiiii e 76
8.3. Running scripts on AnaGate hardwareccooiiiiiiiiiiii e 77

9. CommON fUNCLION FEIEIENCE .iiiiiiii it it i it i raa s ranaa e ranes 80
ST T34 T oL=1 1 21 o T 81
IS 7= ol I = 82
IS Y =TT o 83

O O O Y AV 2T {1 =Y 1l 84
LS CAN O PEND BYICE ottt e e e ettt a e eaaaees 85
LS CANCIOSED EVICE tuutiiiiiiuiiiiiiasteriisstesiiseesiisssssassessanssesssansressansnesnns 87
LS CANRESEAM D EVICE tiiiiiiiiiiiii ettt et i i eeee e et s seaaasaaeereerreeaannnnnnnes 88
[T O Y 1T {1 [0 o Y= | 89
LS CANGELGIODAIS .iiiiiiii i i i i e e 91
[T 7 2 N T o 93
[T O o A AT o /= G 95
LS CANSELCallbDatK .uviiiiiiiiii it it i i e s siaae e s sinae e s rasaesrananeeens 97
LS CANGEIMESSAGE tiiiiriiiie it ia et at e sane e raresane e ranesaneeraneaannesaneernnenns 99
[T O AN VT o 51 1= 101
[T O Y A1 o 1 = 102
ST 7 2 VY = ol 1T = 103
ST 7\ = o (=TT T 1= 104
LS_CANReadDIgital ..oieiieiiiiiii i 105
LS _CANWIItEDIGItal «ioveiiiieii i e e aea 106

0 S N 5 S =T =] 0 ol 107
LS SPIOPENDEVICE ittt it i e 108
LS SPICIOSEDEVICE tiiviitttiiiiatetiiintseriissesssiteesrasesssassresssnnsrsssnnsrsrsnnes 109
[T] 22 KT €] o] Y= 110
[T 1 22 (T W €] o] 5 Y= 3 112
IS o (DT = 2= To [114
SIS o 1 = o] 4= Y= o 1< 116
LS_SPIReadDigitalcieiiriiiiiii i e e 117
LS _SPIWILEDIGItal ..vvveiieiiiiii i e e 118

A 1 G 2 i Y /=Y o ol 119
LS T2 0P ENDVICE ottt ittt e e e e 120
LS I2CCI0SED EVICE tuuiiiiiiitieiiiiteseistesiiinsesranssseraissessiansessranasessansnesins 122
IS 177 0 =] = 123
ST 174 O 2 (== T 124
IS 177 1 o f 125
LS_I2CReadDigital ...iiviiiiiiiiii it e i e 126
LS _I2CWrteDigital ..oviiriiiiiii i s e 127
S 07 O = o] 1 1= 7= T 1 128
LS _I2CREAAEEPROM ittt it iiiate s iiise s ssnnsssssnssssansssrannsnesss 129
T 7 OV 1 =] =] =1 2] 131

13. CANOPEN fUNCHIONS .ttt i s s e r e s e e e aneaanannans 133
LS. _CANOPENSELCONFIG tiviiieiiriii it i e e e nne e 134
LS _CANOPENGELCONTIG vttt s e aea e 135
LS_CANOPENSELSYNCMOAE ..iiiiiiiiii it e e 136
LS_CANopenSetCallbacksccoiiiiiiii i 137
LS _CANOPENGEIPDO ittt i e e et s e 138
LS CANOPENGEESYNC ittt i i s it s a e ar s aaaneeas 139

73 © 2007-2010 Analytica GmbH

Scripting language LUA

LS_CANOPENGELEMCY .ttt er e e e a e annans 140
LS_CANOPENGELGUARDuiiieiiiiieiee vt r e vae e s e s e re e e e rnennennes 141
LS_CANopenGetUndefinedccoiiiiiiiiiiiii i i 142
LS _CANOPENSENANMT ittt i e e e e e e e as 143
LS _CANOPENSENASYNC ittt i i i e e e ae e raeeaas 144
LS_CANOPENSENATIME ..ttt i i e e e e e e aaeas 145
LS_CANOPENSENAPDO ..uiiiiiiiii i et 146
LS_CANOpenSendSDOREAdcciiiiiiiii i i e 147
LS_CANOPENSENASDOWIILE .iiiiiiiiiii i i i e e aea 148
LS_CANopenSendSDOReadBIOCKciiiiiiiiiiiii i e 149
LS_CANopenSendSDOWILEBIOCK ...ciiiiiiiiiiii i i e 150
Programmer eXamIPle v e 151
14. LUA programming €XampPles ..oiiiiiiiiiii it i i s i rieeaas 153
14.1. Examples for devices with CAN interfaceccocviiiiiiiiiiiiinnnn, 153
14.2. Examples for devices with SPI interfaceccoviiiiiiiiiiiiiiciiinns 154
14.3. Examples for devices with I2C interfacecooiiiiiiiiiiiiiiinne, 155

74 © 2007-2010 Analytica GmbH

Chapter 8. The LUA scripting interface
of the AnaGate product line

’ .

%

LUA [http://www.lua.org] is a lightweight multi-paradigm
programming language designed as a scripting language with
extensible semantics as a primary goal. The name comes from
the Portuguese word lua meaning “moon”. LUA was created in
1993 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes, members of the Computer Graphics Technology
Group (Tecgraf) at the Pontifical Catholic University of Rio de Janeiro,
in Brazil. ...

... In general, LUA strives to provide flexible meta-features that can
be extended as needed, rather than supply a feature-set specific to
one programming paradigm. As a result, the base language is light -
in fact, the full reference interpreter is only about 150 kB compiled -
and easily adaptable to a broad range of applications.

—Wikipedia, LUA

In order to be able to solve simple programming problems concerning the AnaGate
devices with the scripting language LUA, the LUA interpreter is extended by several
functions to operate the different AnaGate devices. These additional functions are
described in detail in the following chapters and are closely related to the functions
of the AnaGate API libraries.

Source files for LUA (called scripts) are created and edited on a personal computer
(Windows or Linux) in a standard text editor. Then, the script is simply executed in
the command shell via a free LUA interpreter. The full standard functionality of the
LUA language can be used as well as additional functional extensions for access of
the AnaGate hardware.

The scripting language LUA is very well-suited for use on embedded systems because
of its good performance and small runtime size. For this reason, the LUA interpreter
is integrated in the firmware of the AnaGate hardware 1 So, it is possible to execute
scripts not only on the personal computer, but also on the AnaGate device itself.

Note

6 Please refer to the printed paperbacks LUA Reference Manual
([LuaRef2006-EN]) and Programming in Lua ([LuaProg2006-EN]) for
detailed information about LUA. The reference manual is also available
online at Lua.org [http://www.lua.org].

1onIy AnaGate CAN uno, AnaGate CAN duo, AnaGate CAN quattro, AnaGate CAN USB and AnaGate Universal
Programmer

75 © 2007-2010 Analytica GmbH

http://www.lua.org
http://www.lua.org
http://www.lua.org
http://www.lua.org

The LUA scripting interface
of the AnaGate product line

8.1. Creating scripts

Creating and editing of script files for the scripting language LUA is exceptionally
easy, because a standard text editor is sufficient to do that. On Windows operating
systems Notepad or Wordpad can be used for example, on linux systems vi or other
text tools.

In the meantime some text editors, partly free of charge, support syntax-high-
lighting for LUA, which makes it really easier for a programmer to develop.

Figure 8.1. Edit LUA script in a text editor

u' *Y:\Tools\AnaGate\Tools\NLUA\Get_Serial.lua - Note pad++ g@]g|
Datei Bearbeiten Suchen Ansicht Kodierung Sprachen Einste gen Makro Ausfihren TextF¥ Erweiterungen Fenster 7 k3
cEEHBRRE| 4§ HD| il @& | EE = S,] EAVvEEV

= Get_Serial.lua l
1 ffunction printf(...) ~
z jo.write{string.format{...}):
3 do.flush{)
4 end ;
5
[function maind}
7 E nRC, nHandle = L3_CANOpenDevice{ false, true, , "M19Z.165.1.254", ¥:
g [if {nRC ~= 0} then
Q errortext = L3 CANErrorMessage{nRC);
10 printf{ ":=\n",errorcext) ;
11 return:
1z 5 end;
13 printf{"Connected to 192.165.1.254n"):
14 nRe, SWVersion, HWWersion, Serial, MiCiddress, DeviceID, DeriwvatelIDl = L35 Devicelnfo{nHandle);
15
16 printf{"\nl have successfully retrieved the current serial and MAC:\n"™);
17 printf{"SN=%02% ",Serial[4]):
15 printfi{"s02% " ,3erial[3]);
19 printf{"s02% " ,Serial[2]):
20 printf{"302% " ,Serial[1]):
z1 printf{™n"y;
Z2
23 printf{"MLC=") ;
24 = for i=1, table.getn{MiCiddress) ., do
25 printf{"s02% ",MACAddress[i]) :
26 5 end;
27 printf{"n"y;
Z8
29 LS _Sleep(¥
30 L5 CANCloselevice{nHandle) ;
31 —end;
32 3
< >
Lua source File 800 chars 832 bytes 33 lines Ln:1 Col:1 Sel:0{0bytes)in 0 ranges LRI ARSI NS

When coding of a script is finished, it can be executed and tested on a personal
computer as decribed below.

8.2. Running scripts on personal computer

To execute LUA script files on a personal computer, an actual program version of the
LUA interpreter must be available.

On the CD-ROM, which is included in the scope of delivery, a modified LUA interpreter
can be found in the directory LUA. This interpreter consists of a single executable

76 © 2007-2010 Analytica GmbH

The LUA scripting interface
of the AnaGate product line

38.3.

named LUA. exe, which includes all functional extensions to operate the AnaGate
hardware.

Tip

M

The lastest version of LUA. exe can be downloaded free of charge via
the support pages of the product homepage [http://www.anagate.de/
support/download.htm].

Except of the program executable LUA. exe no other program files are needed, so
that there is only one single file to copy to the computer harddisk (or file server,
SUB stick, ..).

A script file is executed easily via the command line shell, only the name of the
scriptfile has to specified to start it.

Following example shows how a script file named Get _Seri al . | ua is executed in
the windows command shell.

T:\ Tool s\ LUASLUA. exe Get _Serial.lua K

Connected to 192.168.1.254 H

I have successfully retrieved the current serial and MAC
SN=01 02 02 1D

MAC=00 50 C2 3C B2 1D

T:\ Tool s\ LUA>

El The filename of the script to execute has to be supplied as parameter on start
of the interpreter.

H The serial number and MAC address of a device at IP address 192. 168. 1. 254
is retrieved and written to the standard output.

Running scripts on AnaGate hardware

Like already mentioned before, it is possible to execute self-created application
scripts with an installed LUA script interpreter directly on the AnaGate hardware.

Via the HTTP interface of each device LUA script files can be downloaded to the
device and executed locally. In the following you can see a screenshot of the LUA
configuration page of a AnaGate CAN uno.

77 © 2007-2010 Analytica GmbH

http://www.anagate.de/support/download.htm
http://www.anagate.de/support/download.htm
http://www.anagate.de/support/download.htm

The LUA scripting interface
of the AnaGate product line

Figure 8.2. HTTP interface, LUA settings

¥) Lua - Mozilla Firefox

Datei EBearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

6 hd c {at % http:/i10.1.2,225 index. caiPsite=luafname=Get_Serialaction=start - '.l— V.

-~
A: AnaGate CAN uno Lua settings

To add a lua script select the scriptfile and press the upload button.

Anatate CAN uno . ; . ; ; ;
Remarks: Use only scripts which are compatible with this equipment!
I Settings

CAN Settinas [Durchsuchen.. | [Upload][Clear |
Skatus

Firmware

Lua Running script

Copuiant Get_Serial.lua

Available scripts

CaM_Basiclua | Delete Eoot
Get_Seriallua

Script
output

Wersion: 1.0.5
Script:fluafGet_Serial.lua
Connected to localhost

I have successfully retrieved the current serial and MAC:
SN=01 02 02 1D
MaC=00 50 C2 3C B2 1D b

Error output

Copyright 2008-2010 Analytica GmbH, wyrw.anagate.de, Stand: Aug 4 2010

3| Fertig

Browse... Opens a file upload dialog to select a LUA script file.

Upload Uploads the selected script file to the device.

Clear Clears the current script file selection.

Boot script Script file executed on system startup. Via the button Delete
the boot script can be deactivated. Only one boot script is
allowed.

Running script Displays the currently executing script file. Via the button
Stop the execution can be cancelled.

Available scripts Displays all scripts which are currently available on the
device.

To start the execution of a script click on the button Start.
Via button Delete a script can be deleted on the device and
via Boot a script can be defined as boot script.

script output area In this text area the standard output (stdout) of the currently
executing script is displayed. Via the button Clear this text
area can be cleared.

78 © 2007-2010 Analytica GmbH

The LUA scripting interface
of the AnaGate product line

error output area In this text area the standard error output (stderr) of the

currently executing script is displayed. Via the button Clear
this text area can be cleared.

Tip

T

The text areas for script and error output are not refreshed automatically.
A manual page reload of the current page refreshes both text areas.

79 © 2007-2010 Analytica GmbH

Chapter 9. Common function reference

80 © 2007-2010 Analytica GmbH

Common function reference

LS Devicelnfo

LS_Devicelnfo — Retrieves some global information from the AnaGate hardware.

Syntax

int RC, int nSWersion, int nHWersion, table(4) tabSerial, table(6)
t abMACAddress, int nDevicelD, int nSWerivatelD = LS Devicelnfo(int
hHandl e) ;

Parameter

hHandle Valid access handle returned by call to LS CANOpenDevice,
LS | 2COpenDevi ce oder LS _SPI OpenDevi ce.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A,
API return codes).

nSWVersion Firmware version. The version number consists of 3 numbers
(major.minor.revision), which are stored in a 4-byte integer value.

nHWVersion Hardware version. The version number consists of 3 numbers
(major.minor.revision), which are stored in a 4-byte integer value.

tabSerial Serial number of the AnaGate hardware (4 byte).

tabMACAddress MAC address of the AnaGate hardware (6 byte).

nDevicelD Device specific identifier. Specifies the device type of the hardware.
¢ 1 = AnaGate I2C

2 = AnaGate CAN

3 = AnaGate SPI

8 = AnaGate Universal Programmer

9 = AnaGate Renesas

nSWDerivateID Indicates a customer-specific firmware version, if not 0x00.

Description

Returns specific information about a device of the AnaGate product line.

See also

LS_CANOpenDevice, LS_SPIOpenDevice, LS_I2COpenDevice

81 © 2007-2010 Analytica GmbH

Common function reference

LS GetTime

LS_GetTime — Returns the current system time.

Syntax

int RC, table(2) tabTinme = LS GetTi nme(void);

Parameter

This function does not have any parameters.

Return values

RC Returns 0 if successful, or an error value otherwise (Table A.5,
“Return values for LUA scripting”).

tabTime(1), tabTi me(1) specifies the number of seconds elapsed since

tabTime(2) 01.01.1970, in t abTi ne(2) the fractions of a second is returned in
milliseconds..

Description

Returns the system time as the number of elapsed seconds and milliseconds since
midnight of January 1, 1970.

82 © 2007-2010 Analytica GmbH

Common function reference

LS Sleep

LS_Sleep — Suspends the execution until the time-out interval elapses.

Syntax

int RC = LS Sleep(unsigned int nMI1iseconds);

Parameter

nMilliseconds The time interval for which execution is to be suspended, in
milliseconds.

Return value

RC Returns 0 if successful, or an error value otherwise (Table A.5, “Return values
for LUA scripting”).

Description

Suspends the execution until the time-out interval in milliseconds elapses.

83 © 2007-2010 Analytica GmbH

Chapter 10. CAN Reference

The CAN API can be used with all CAN gateway models of the AnaGate series. The programming
interface is identical for all devices and uses the network protocol TCP or UDP in general.

Following devices can be addresse via the CAN API interface:

AnaGate CAN

AnaGate CAN uno

AnaGate CAN duo

AnaGate CAN quattro

e AnaGate CAN USB

6 Note
All CAN specific functionality of the AnaGate C-API is also available fir
LUA users, the LUA function extensions are documented in the following.

84 © 2007-2010 Analytica GmbH

CAN Reference

LS CANOpenDevice

LS_CANOpenDevice — Opens an network connection (TCP) to an AnaGate CAN

device.
Syntax
int RC, int Handle = LS CANOpenDevice(bool bSendDataConfirm bool

bSendDat al nd, int nCANPort, string sl PAddress, int nTineout);

Parameter

bSendDataConfirm It set to TRUE, all incoming and outgoing Data requests
are confirmed by the internal message protocol. Without
confirmations a better transmittion performance is reached.
bSendDatalnd If set to FALSE, all incoming telegrams are discarded.
nCANPort CAN port number. Allowed values are:

0 for port A (Modells AnaGate CAN uno, AnaGate CAN duo,
AnaGate CAN quattro, AnaGate CAN USB and AnaGate CAN)

1 for port B (AnaGate CAN duo, AnaGate CAN quattro)
2 for port C (AnaGate CAN quattro)
3 for port D (AnaGate CAN quattro)
sIPAddress Network address of the AnaGate partner.
nTimeout Default timeout for accessing the AnaGate in milliseconds.
A timeout is reported if the AnaGate partner does not respond
within the defined timeout period. This global timeout value is

valid on the current network connection for all commands and
functions which do not offer a specific timeout value.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Handle Access handle if successfully connected to the AnaGate device.

Description

Opens a TCP/IP connection to an CAN interface of a AnaGate CAN device. If the
connection is established, CAN telegrams can be sent and received.

The connection should be closed with the function CANCI oseDevi ce if not longer
needed.

85 © 2007-2010 Analytica GmbH

CAN Reference

2 Important
It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See the following example for the initial programming steps.

-- open: use no confirmations and receive inconping CAN data
nRC, hHandl e = LS CANOpenDevi ce(false, true, 0, "192.168.0. 254", 5000);
if (nRC==0) then
-- now do sonet hi ng
LS CANC oseDevi ce(hHandl e) ;
end;

See also

LS CANCloseDevice

LS_CANRestartDevice

86 © 2007-2010 Analytica GmbH

CAN Reference

LS CANCIloseDevice

LS_CANCloseDevice — Closes an open network connection to an AnaGate CAN
device.

Syntax

int RC = LS CANC oseDevice(int hHandl e);

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate CAN device. The hHandl e
parameter is a return value of a succesfull call to the function LS_CANOpenDevi ce.

2 Important
It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

LS_CANOpenDevice

87 © 2007-2010 Analytica GmbH

CAN Reference

LS CANRestartDevice

LS_CANRestartDevice — Restarts a AnaGate CAN device.

Syntax

int RC = LS CANRestartDevice(string slPAddress, int nTineout);

Parameter

sIPAddress Network address of the AnaGate partner.

nTimeout Default timeout for accessing the AnaGate in milliseconds. A timeout
is reported if the AnaGate partner does not respond within the defined
timeout period.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Restarts the AnaGate CAN device at the specified network address. It disconnects

implicitly all open network connections to all existing CAN interfaces. The Restart
command is even possible if the maximum number of allowed connections is reached.

2 Important
It is recommended to use this command only in emergency cases, if
there is a need to connect even if the maximum number of concurrent
connections is reached.

See also

LS_CANOpenDevice

88 © 2007-2010 Analytica GmbH

CAN Reference

LS CANSetGlobals

LS_CANSetGlobals — Sets the global settings, which are to be used on the CAN bus

Syntax

i nt RC =
nQper at i nghbde,
bTi meSt anpOn) ;

Parameter

hHandle

nBaudrate

nOperatingMode

bTermination

bHighSpeedMode

LS CANSet d obal s(i nt hHandl e, i nt nBaudr at e, i nt

bool bTer m nati on, bool bH ghSpeedMbde, bool

Valid access handle.
The baud rate to be used. Following values are allowed:
¢ 10.000 fur 10kBit
20.000 fir 20kBit

50.000 fur 50kBit

62.500 fur 62,5kBit
100.000 fur 100kBit

125.000 fur 125kBit

250.000 fur 250kBit

500.000 fur 500kBit

800.000 fur 800kBit (not AnaGate CAN)

1.000.000 far 1MBit

The operating mode to be used. Following values are allowed.
e 0 = default mode.

e 1 = loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

e 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

Use integrated CAN bus termination (true= yes, fal se = no).
This setting is not supported by all AnaGate CAN models.

Use high speed mode (true= yes, f al se= no). This setting is not
supported by all AnaGate CAN models.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not

89 © 2007-2010 Analytica GmbH

CAN Reference

confirmed on procol layer and the software filters defined via
LS CANSet Fi |l t er are ignored.

bTimeStampOn Use time stamp mode (t rue= yes, f al se= no). This setting is not
supported by all AnaGate CAN models.

In activated time stamp mode an additional timestamp is sent
with the CAN telegram. This timestamp indicates when the

incomming message is received by the CAN controller or when
the outgoing message is confirmed by the CAN controller.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Sets the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface. The settings are not saved
permantently on the device and are reset every device restart.

Remarks

The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

See also

LS_CANGetGlobals

90 © 2007-2010 Analytica GmbH

CAN Reference

LS CANGetGlobals

LS_CANGetGlobals — Returns the currently used global settings on the CAN bus.

Syntax

int RC, int nBaudrate, int nOperatingWde, bool bTerm nation, bool
bH ghSpeedMbde, bool bTi meStanmpOn = LS CANGet d obal s(int hHandl e);

Parameter

hHandle Valid access handle.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A,
API return codes).

nBaudrate The baud rate currently used on the CAN bus.
nOperatingMode The operating mode to be used. Following values are returned.
e 0 = default mode.

e 1 = |loop back mode: All telegrams sent by a connected partner
is routed back to all active connected partners.

e 2 = listen mode: Device operates as passive bus partner, this
means no telegrams are sent to the CAN bus (no ACKs for
incoming telegrams too).

bTermination Is the integrated CAN bus termination used? true= yes, f al se=
no). This setting is not supported by all AnaGate CAn modells.

bHighSpeedMode Is the high speed mode switched on? (true= yes, fal se= no).
This setting is not supported by all AnaGate CAN modells.

The high speed mode was created for large baud rates with
continuously high bus load. In this mode telegrams are not
confirmed on procol layer and the software filters defined via
LS CANSet Fi |l ter are ignored.

Description

Returns the global settings of the used CAN interface. These settings are effective
for all concurrent connections to the CAN interface.

Remarks

The settings of the integrated CAN bus termination, the high speed mode and the
time stamp are not supported by the AnaGate CAN (hardware version 1.1.A). These
settings are ignored by the device.

91 © 2007-2010 Analytica GmbH

CAN Reference

See also

LS_CANSetGlobals

92 © 2007-2010 Analytica GmbH

CAN Reference

LS _CANWrite

CANWFriteEx — Send a CAN telegram to the CAN bus via the AnaGate device.

Syntax

RC = CANWite(int hHandle, int nCANId, int nDatalLen, table (nDatalLen)

t abDat a,

Parameter

hHandle
nCANId

nDatalen
tabData

nFlags

i nt nFl ags);

Valid access handle.

CAN identifier of the sender. Parameter nFl ags defines, if the address is
in extended format (29-bit) or standard format (11-bit).

Length of data buffer (max. 8 bytes).
Data buffer with telegram data.
The format flags are defined as follows.

e Bit 0: If set, the CAN identifier is in extended format (29 bit), otherwise
not (11 bit).

e Bit 1: If set, the telegram is marked as remote frame.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Both functions sends a CAN telegram to the CAN bus via the AnaGate device like
the LS _CANW I t eEx function.

The LS CANW It eEx additionally returns a timestamp of the time at which the
telegram is sent.

o

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the LS CANWite bzw. LS CANWIiteEx functions to send
remote frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

See the following example for sending a data telegram to the connected CAN bus.

‘tabData ={};

93 © 2007-2010 Analytica GmbH

CAN Reference

for i=1, 8 , 1 do
table.insert(tabData, i);
end;

nFlags = 0x0; // 11bit address + standard (not renote frame)
nCANId = 0x25; // send with CAN | D 0x25;

nRC, hHandl e = LS _CANOpenDevi ce(, true, true, 0, "192.168.0.254", 5000);
if (nRC==0) then

/1 send 8 bytes with CAN id 37

nRC = LS _CANWite(hHandle, nCANId, 8, tabData, nFlags);

/1 send a renpte frame to CAN id 37 (request 4 data bytes)
nRC = LS CANWite(hHandle, nCANId, 4, tabData, 0x02);

LS CANC oseDevi ce(hHandl e) ;
end;

Remarks

For devices of type AnaGate CAN (hardware version 1.1.A) the function CANW i t eEx
is equal to CANW i t e, the return values nSeconds and pnM cr oseconds will remain
unchanged.

See also

LS _CANWriteEx

94 © 2007-2010 Analytica GmbH

CAN Reference

LS _CANWTriteEx

CANWriteEx — Send a CAN telegram to the CAN bus via the AnaGate device.

Syntax

RC, int nSeconds, int nM croseconds = CANW it eEx(i nt hHandl e, i nt nCANI d,
i nt nDatalLen, table (nbDatalLen) tabData, int nFlags);

Parameter

hHandle
nCANId

nDatalLen
tabData

nFlags

Valid access handle.

CAN identifier of the sender. Parameter nFl ags defines, if the address is
in extended format (29-bit) or standard format (11-bit).

Length of data buffer (max. 8 bytes).
Data buffer with telegram data.
The format flags are defined as follows.

¢ Bit 0: If set, the CAN identifier is in extended format (29 bit), otherwise
not (11 bit).

e Bit 1: If set, the telegram is marked as remote frame.

Return value

RC

nSeconds

Returns 0 if successful, or an error value otherwise (Appendix A,
API return codes).

Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

nMicroseconds Micro seconds portion of the timestamp.

Description

Both functions sends a CAN telegram to the CAN bus via the AnaGate device like
the LS_CANW i t e function.

The LS _CANW I t eEx additionally returns a timestamp of the time at which the
telegram is sent.

o

Note

With remote frames (RTR = remote transmission request) a destination
node can request data from a source node. The data length is to be set
to the number of requested bytes - on the CAN bus no data is sent only
the data size information.

When using the LS CANWite bzw. LS CANWIi teEx functions to send
remote frames the data buffer and the buffer size equal to the number of
requested bytes have to be set correctly.

95 © 2007-2010 Analytica GmbH

CAN Reference

See the following example for sending a data telegram to the connected CAN bus.

tabData = {};

for i=1, 8 , 1 do
table.insert(tabData, i);

end;

nFlags = 0x0; // 11bit address + standard (not remote frane)
NnCANId = 0x25; // send with CAN | D 0x25;

nRC, hHandl e = LS _CANOpenDevi ce(, true, true, 0, "192.168.0.254", 5000);
if (nRC==0) then
/l send 8 bytes with CAN id 37
nRC, nSeconds, nM croSeconds = LS CANWIiteEx(hHandl e, nCANId, 8, tabData, nFlags);

/1 send a renpte frame to CAN id 37 (request 4 data bytes)
nRC, nSeconds, nM croSeconds = LS CANWIiteEx(hHandl e, nCANId, 4, tabData, 0x02);

LS CANC oseDevi ce(hHandl e) ;
end;

Remarks

For devices of type AnaGate CAN (hardware version 1.1.A) the function CANW i t eEx
is equal to CANW i t e, the return values nSeconds and pnM cr oseconds will remain
unchanged.

See also

LS_CANWrite

96 © 2007-2010 Analytica GmbH

CAN Reference

LS CANSetCallback

LS_CANSetCallback — Defines an asynchronous callback function, which is called for
each incoming CAN telegram.

Syntax

int RC = LS_CANSet Cal | back(int hHandl e, string sCallbackFunction);

function MY _LS CALLBACK(int nCANId, int nDatalLen, table(nDatalen)
tabData, int nFlags, int hHandle, int nSeconds, int nM croseconds);

Parameter
hHandle Valid access handle.
sCallbackFunction Name of the private callback function. Set this parameter to

"" to deactivate the callback function. The parameters of the
callback function are described in section Callback-Parameter.

Callback-Parameter

nCANId CAN identifier of the sender. Parameter nFl ags defines, if the
address is in extended format (29-bit) or standard format (11-bit).

nDatalen Length of data buffer (max. 8 bytes).
tabData Data buffer with telegram data.
nFlags The format flags are defined as follows.

e Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).

e Bit 1: If set, the telegram is marked as remote frame.

e Bit 2: If set, the telegram has a valid timestamp.

hHandle Valid access handle.
nSeconds Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

nMicroseconds Micro seconds portion of the timestamp.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Incoming CAN telegrams can be received via a callback function, which can be set
by a simple API call. If a callback function is used, is will be called by the API

97 © 2007-2010 Analytica GmbH

CAN Reference

asynchronous. In alternative to the callback function, incoming data telegrams can
be retrieved with the LS CANGet Message function.

See the following example for using a callback.

function MyCal | back(nl D, nLen, tabData, nFlags, nHandl e, nSecond, nMSecond)
io.wite(string.format ("% 3X: :% 3X, %d", nHandl e, nlD, nLen));
for i=1, nLen, 1 do
io.wite(string.format(% 2X ", tabData[i]));

end;

io.wite("\n");

io.flush();
end;

function nain()
nRC, nHandl e = LS CANOpenDevi ce(fal se, true, 0, "127.0.0.1", 5000);
if (nRC ~= 0) then
errortext = LS_CANError Message(nRO);
printf("%\n",errortext);
return;
end;
-- set globals: 100kBit, standard node, term nation off, no highspeed, no tinmestanp
nRC = LS CANSet d obal s(nHandl e, 100000, O, true, false, false);

nRC = LS CANSet Cal | back(nHandl e, "MCal | back");
whil e true do -- forever

LS Sl eep(500);
end;

nRC = LS CANSet Cal | back(hHandl e, "");

LS CANC oseDevi ce(nHandl e) ;
end;

See also

LS_CANWrite, LS_ CANWriteEx, LS_CANGetMessage

98 © 2007-2010 Analytica GmbH

CAN Reference

LS CANGetMessage

LS_CANGetMessage — .

Syntax
int nAvail,

i nt nSeconds,
nTi meout) ;

Parameter

int nCANId, int nDatalLen, table() tabbData, int nFlags,

int nMcroseconds = LS CANGet Message(int hHandle, int

hHandle Valid access handle.

nTimeout Maximum period of time in milliseconds to wait for the a new data
telegram.

Return values

nAvail

nCANId

nDatalen
tabData

nFlags

nSeconds

nMicroseconds

Description

Number of message which are left in the internal message puffer.
If there is currently no message available - 10 (ERR_NO_DATA) is
returned.

CAN identifier of the sender. Parameter nFl ags defines, if the
address is in extended format (29-bit) or standard format (11-bit).

Length of data buffer.
Data buffer with telegram data.
The format flags are defined as follows.

e Bit 0: If set, the CAN identifier is in extended format (29 bit),
otherwise not (11 bit).

e Bit 1: If set, the telegram is marked as remote frame.
e Bit 2: If set, the telegram has a valid timestamp.

Timestamp of the confirmation of the CAN controller (seconds from
01.01.1970).

Micro seconds portion of the timestamp.

This function reads a single CAN data telegram out of an internal message buffer.
The message buffer is automatically filled with all incoming CAN data telegrams in
a seperate thread.

The parameter nTi neout defines a maximum period of time, which the function
should wait for a new data telegram, if there is currently no telgram in the internal
buffer. If no new message is received within the time out, the function returns in
nAvai | the recturn code - 10 (ERR_NO_DATA).

99 © 2007-2010 Analytica GmbH

CAN Reference

® Warning
If using a individual callback function (see LS CANSet Cal | back), which is
called if an incoming CAN data telegram is received, the internal message
puffer is not filled. In this case is not possible to retrieve message via the
LS CANGet Message function.

See the following example which handles incoming CAN data telegrams.

nRC, hHandl e = LS_CANOpenDevi ce(true, true, 0, "192.168.0.254", 5000);

if (nRC==0) then
-- set globals: 500Kbit, standard node, term nation on, no high speed, no tinestanp
nRC = LS CANSet d obal s(hHandl e, 500000, O, true, false, false);
nCurMsg = 0

r epeat
nAvail, 1D, Len, Data, Sec, Mcrosec = LS CANGet Message(hHandl e, 100);
if nAvail >0 then
nCur Msg = nCur Msg + 1;

-- now do sonething with the i ncomm ng nessage data

io.wite(string.fornmat(1D)); -- for exanple, wite out CAN id
o SeLS_SI eep(25); -- wait 25 ms if no nessage avail abl e
unti Ieng’QJrMsg >= 100; -- read only 100 nessages, then stop
dLS_CANC] oseDevi ce(hHandl e) ;
end;

Remarks

For devices of type AnaGate CAN (hardware version 1.1.A) the return values
nSeconds and pnM cr oseconds are always set to zero.

See also

LS_CANSetCallback

100 © 2007-2010 Analytica GmbH

CAN Reference

LS CANSetFilter

LS_CANSetFilter — Sets the current filter settings for the connection.

Syntax

int RC = LS CANSetFilter(int hHandl e, table(16)tabFilter);

Parameter

hHandle Valid access handle.

tabFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries).
A filter entry contains of two 32-bit values. Unused mask filter entries
must be initialized with 0 values. Unused range filter entries must be
initialized with a 0 for the start value and Ox1FFFFFFF for the end value.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

This function sets the current filter settings for the current connection. Filter can be
used to suppress messages with specific CAN message ids.

A mask filter contains of a mask value, which defines the bits of the CAN identifier
to examine, and the appropriate filter value. If the CAN identifier matches in the
indicated filter mask with the filter value, the incoming CAN telegram is sent to the
PC, otherwise not.

A range filter defines an address range with a appropriate start and end address. If
the CAN identifier do not lie in the indicated filter range, the incoming CAN telegram
is not sent to the PC.

Filter are only active, if the parameter bSendDatalnd is set via the
LS_CANOpenDevi ce function.

See also

LS_CANGetFilter

101 © 2007-2010 Analytica GmbH

CAN Reference

LS CANGetFilter

LS_CANGetFilter — Returns the current filter settings for the connection.

Syntax

int RC, table(16) tabFilter = LS CANGetFilter(int hHandl e);

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

tabFilter Pointer to an array of 8 filter entries (4 mask and 4 range filter entries).
A filter entry contains of two 32-bit values. Unused mask filter entries

are initialized with 0 values. Unused range filter entries are initialized
with (0,0x1FFFFFFF) value pairs.

Description

This function retrieves the current filter settings for the current connection. Filter
can be used to suppress messages with specific CAN message ids.

See also

LS_CANSetFilter

102 © 2007-2010 Analytica GmbH

CAN Reference

LS CANSetTime

LS_CANSetTime — Sets the current system time on the AnaGate device.

Syntax

int RC= LS CANSetTi me(int hHandl e, | ong nSeconds, |ong nM croseconds);

Parameter

hHandle Valid access handle.
nSeconds Time in seconds from 01.01.1970.

nMicroseconds Micro seconds.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The LS _CANSet Ti ne function sets the system time on the AnaGate hardware.

If the time stamp mode is switched on by the LS CANSet d obal s function, the
AnaGate hardware adds a time stamp to each incoming CAN telegram and a time
stamp to the confirmation of a telegram sent via the API (only if confirmations are
switched on for data requests).

Remarks

The setting of the base time for the time stamp mode is not supported by the AnaGate
CAN (hardware version 1.1.A). This setting is ignored by the device.

103 © 2007-2010 Analytica GmbH

CAN Reference

LS _CANErrorMessage

LS_CANErrorMessage — Returns a description of the given error code as a text string.

Syntax

string sErrorMsg LS _CANError Message(int

Parameter

nRet Code) ;

nRetCode Error code for which the error description is to be determined.

Return value

sErrorMsg Textual description of the error code.

Description

Returns a textual description of the parsed error code (see Appendix A, API return

codes).

See the following example in LUA scripting language.

nRC=0;
sError Text

[l... call

SError Text

a

"No Error';
APl function here

LS CANEr r or Message(nRC) ;

print(sErrorText);

104

© 2007-2010 Analytica GmbH

CAN Reference

LS CANReadDigital

LS_CANReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax

int RC, int nlnputBits, int nQutputBits = LS CANReadDi gital (int
hHandl e) ;

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS CANReadDi gi t al function.

See the following example for setting an reading the digital IO.

nQut puts = 0x03;

nRC, hHandl e = LS CANOpenDevi ce(400000, "192.168.0.254", 5000);

if (nRC==20) then
/1 set the digital output register (PINO and PIN 1 to H GH val ue)
nRC = LS CANWiteDi gital (hHandl e, nQutputs);

/1 read all input and output registers
nRC, nlnputs, nQutputs = LS CANReadDi gital (hHandle);

LS CANC oseDevi ce(hHandl e) ;
end;

See also

LS_CANWriteDigital

105 © 2007-2010 Analytica GmbH

CAN Reference

LS CANWriteDigital

LS_CANWriteDigital — Writes a new value to the digital output register of the
AnaGate device.

Syntax

int RC=LS CANWiteDigital (int hHandle, int nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS CANW i teDi gital function.

A simple example for reading/writing of the IOs can be found at the description of
LS SPI ReadDigital.

See also

LS_SPIReadDigital

106 © 2007-2010 Analytica GmbH

Chapter 11. SPI Reference

The Serial Peripheral Interface (SPI) is a synchroneous data link standard named by Motorola
which operates in full duplex mode. The SPI gateway models of the AnaGate series provides
access to a SPI bus via a standard networking.

With the SPI API these SPI gateways can be easily controlled. The programming interface is
identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the SPI API interface:

e AnaGate SPI

e AnaGate Universal Programmer

6 Note
All SPI specific functionality of the AnaGate C-API is also available fiir LUA
users, the LUA function extensions are documented in the following.

107 © 2007-2010 Analytica GmbH

SPI Reference

LS SPIOpenDevice

LS_SPIOpenDevice — Opens a network connection to an AnaGate SPI device.

Syntax

int RC, int Handl e = LS _SPI OpenDevi ce(string sl PAddress, int nTi neout);

Parameter

sIPAddress Network address of the AnaGate partner.
nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Handle Access handle if successfully connected to the AnaGate device.

Description

Opens a TCP/IP connection to an AnaGate SPI (resp. AnaGate Universal
Programmer). After the connection is established, access to the SPI bus is possible.

6 Note
The AnaGate SPI (resp. the SPI interface of an AnaGate Universal

Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

nRC, nHandl e = LS _SPI OpenDevi ce("192.168.0.254", 5000);
if (nRC ~= 0) then

print (LS_SPI Error Message(nRQ)) ;

exit();
end;

- now do sonet hi ng

LS SPI d oseDevi ce(nHandl e) ;

See also

LS_SPICloseDevice

108 © 2007-2010 Analytica GmbH

SPI Reference

LS SPICloseDevice

LS_SPICloseDevice — Closes an open network connection to an AnaGate SPI device.

Syntax

int RC = LS SPId oseDevice(int hHandl e);

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate SPI device. The hHandl e
parameter is a return value of a succesfull call to the function LS_SPI OpenDevi ce.

2 Important
It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

LS_SPIOpenDevice

109 © 2007-2010 Analytica GmbH

SPI Reference

LS SPISetGlobals

LS_SPISetGlobals — Sets the global settings, which are to be used on the AnaGate

SPI.
Syntax
int LS SPISetdobals(int hHandle, int nBaudrate, unsigned char
nSi gLevel, unsigned char nAuxVol t age, unsigned char nC ockMode);
Parameter
hHandle Valid access handle.
nBaudrate The baud rate to be used. The values can be set individually, like
e 500.000 for 500kBit
¢ 1.000.000 for 1MBit
¢ 5.000.000 for 5MBit
6 Note
The required baud rate can be different from the value
actually used because of internal hardware restrictions
(frequency of the oscillator). If it is not possible to adjust
the baud rate exactly to the parsed value, the nearest
smaller possible value is used instead.
nSiglLevel The voltage level for SPI signals to be used. Following values are

nAuxVoltage

nClockMode

allowed:

¢ 0 = Outputs in High Impedance Modus (Standard mode).
e 1 = +5.0V for the signals.
e 2 = +3.3V for the signals.

e 3 = +2.5V for the signals.

The voltage level of the support voltage to be used. Following values
are allowed:

e 0 = support voltage is +3.3V.

o1

support voltage is 2.5V.

The phase and polarity of the clock signal. Following values are
allowed:

e 0 = CPHA=0 and CPOL=0.

e 1 = CPHA=0 and CPOL=1.

110 © 2007-2010 Analytica GmbH

SPI Reference

e 2 = CPHA=1 and CPOL=0.
¢ 3 = CPHA=1 and CPOL=1.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description
Sets the global settings of SPI interface of the AnaGate SPI or the AnaGate Universal

Programmer. These settings are not saved permantently on the device and are reset
every device restart.

See also

LS_SPIGetGlobals

111 © 2007-2010 Analytica GmbH

SPI Reference

LS SPIGetGlobals

LS_SPIGetGlobals — Returns the currently used global settings of the AnaGate SPI.

Syntax
int RC, int nBaudrate, int nSigLevel, int nAuxVoltage, int nC ockMde
= LS SPI Get d obal s(int hHandl e);

Parameter

hHandle Valid access handle.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

nBaudrate The baud rate currently used on the SPI bus in kBit.

nSigLevel The voltage level currently used by the AnaGate SPI. Following values
are possible:

e 0 = Qutputs in High Impedance Modus (Standard mode).

o1

+5.0V for the signals.

e 2 = 4+3.3V for the signals.

e 3 = +2.5V for the signals.

nAuxVoltage The voltage level of the support voltage currently used by the
AnaGate SPI. Following values are possible:

e 0

support voltage is +3.3V.

e 1 = support voltage is 2.5V.

nClockMode The phase and polarity of the colck signal currently used by the
AnaGate SPI. Following values are possible:

e 0 = CPHA=0 and CPOL=0.
e 1 = CPHA=0 and CPOL=1.
e 2 = CPHA=1 and CPOL=0.

e 3 = CPHA=1 and CPOL=1.

Description

Returns the currently used global settings of SPI interface of the AnaGate SPI or the
AnaGate Universal Programmer.

112 © 2007-2010 Analytica GmbH

SPI Reference

See also

LS_SPISetGlobals

113 © 2007-2010 Analytica GmbH

SPI Reference

LS SPIDataReq

LS_SPIDataReq — Writes and reads data to/from SPI bus.

Syntax
int RC tabl e(nReadLen) tabRead = LS SPIDataReq(int hHandle, int
nWitelLen, int nReadLen, table(nWitelLen) tabWite);
Parameter
hHandle Valid access handle.
nWriteLen Length of the data buffer pcBuf Wit e (byte count).
nReadLen Number of bytes to read.
tabWrite Buffer with the data that is to be sent to the SPI partner.
Return value
RC Returns 0 if successful, or an error value otherwise (Appendix A, API

return codes).

tabRead Table with data received from the SPI partner.

Description

Sends data to the SPI bus and receives data from the SPI bus.

On the SPI bus Data is transferred on two seperates data lines full duplex (SDO
and SDI). The SPI Dat Req has to split a single data transfer in two steps because of
the spacial separation to the SPI bus. First the write data buffer is put into a TCP
data telegram and sent to the AnaGate SPI. The AnaGate SPI makes the real data
transfer on the SPI bus and send back a confirmation including the data received

from the bus.

2 Important

It is impossible to detect that no device is present at the SPI bus. So, if no
device is attached, the requested number of bytes are returned anyway

- in this case the read buffer is filled with 0.

See the following example for sending a command to the connected SPI bus.

tabWite = {};

for i=1, 10 , 1 do
table.insert(tabWite, i);
end;

nRC, hHandl e = SPI OpenDevi ce("192. 168. 1. 254", 5000) ;
if (NnRC==0) then
/1l send 1 byte and receive 1 byte

114 © 2007-2010 Analytica GmbH

SPI Reference

nRC, tabRead = LS _SPI Dat aReq(hHandl e,
/1l send 1 byte and receive 5 byte
nRC, tabRead = LS _SPI Dat aReq(hHandl e,
/1l send 2 byte and receive 1 byte
nRC, tabRead = LS _SPI Dat aReq(hHandl e,

LS SPI C oseDevi ce(hHandl €) ;
end;

1,
1,

28

1,
S,

1,

tabWite);
tabWite);

tabWite);

115

© 2007-2010 Analytica GmbH

SPI Reference

LS _SPIErrorMessage

LS_SPIErrorMessage — Returns a description of the given error code as a text string.

Syntax

string sErrorMsg LS _SPI Error Message(int

Parameter

nRet Code) ;

nRetCode Error code for which the error description is to be determined.

Return value

sErrorMsg Textual description of the error code.

Description

Returns a textual description of the parsed error code (see Appendix A, API return

codes).

See the following example in LUA scripting language.

nRC=0;
sError Text

[l... call

SError Text

a

"No Error';
APl function here

LS SPI Err or Message(nRC) ;

print(sErrorText);

116

© 2007-2010 Analytica GmbH

SPI Reference

LS SPIReadDigital

LS_SPIReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax

int RC, int nlnputBits, int nQutputBits = LS SPlReadDigital (int
hHandl e) ;

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS SPI ReadDi gi t al function.

See the following example for setting an reading the digital IO.

nQut puts = 0x03;

nRC, hHandl e = LS _SPI OpenDevi ce(400000, "192.168.0.254", 5000);

if (nRC==20) then
/1 set the digital output register (PINO and PIN 1 to H GH val ue)
NnRC = LS SPIWiteDi gital (hHandl e, nQutputs);

/1 read all input and output registers
nRC, nlnputs, nQutputs = LS SPl ReadDi gital (hHandl e);

LS SPI C oseDevi ce(hHandl e) ;
end;

See also

LS_SPIWriteDigital

117 © 2007-2010 Analytica GmbH

SPI Reference

LS SPIWriteDigital

LS_SPIWriteDigital — Writes a new value to the digital output register of the AnaGate

device.
Syntax

int RC=1LS SPIWiteDigital (int hHandle, int nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS SPI Wi teDi gital function.

A simple example for reading/writing of the IOs can be found at the description of
LS SPI ReadDigital.

See also

LS_SPIReadDigital

118 © 2007-2010 Analytica GmbH

Chapter 12. 12C Reference

Philips Semiconductors (now NXP Semiconductors) has developed a simple bidirectional 2-
wire bus for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. Only two bus
lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit oriented,
bidirectional data transfers can be made at up to 100 kbit/s in the Standard-mode, up to 400
kbit/s in the Fast-mode, up to 1 Mbit/s in the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in
the High-speed mode. [NXP-12C].

The I2C gateway models of the AnaGate series provides access to a I2C bus via a standard
networking. With the I2C API these 12C gateways can be easily controlled. The programming
interface is identical for all devices and used the network protocol TCP in general.

Following devices can be addresse via the I2C API interface:
e AnaGate I2C

e AnaGate Universal Programmer

119 © 2007-2010 Analytica GmbH

I2C Reference

LS [2COpenDevice

LS_I2COpenDevice — Opens a network connection to an AnaGate I12C or an AnaGate
Universal Programmer).

Syntax

int RC, int Handle = LS _|I2COpenDevice(unsigned int nBaudrate, string
sl PAddress, int nTineout);

Parameter

nBaudrate Baud rate to be used for the I2C bus. Teh value can be set individually,
like

e 100000 for 100kBit (standard mode)

¢ 400000 for 400kBit (fast mode)

6 Note
Values above 400kBit are ignored by the AnaGate SPI.

sIPAddress Network address of the AnaGate partner.
nTimeout Default timeout for accessing the AnaGate in milliseconds.

A timeout is reported if the AnaGate partner does not respond within
the defined timeout period. This global timeout value is valid on the
current network connection for all commands and functions which do
not offer a specific timeout value.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Handle Access handle if successfully connected to the AnaGate device.

Description

Opens a TCP/IP connection to an AnaGate I2C (resp. AnaGate Universal
Programmer). After the connection is established, access to the I12C bus is possible.

6 Note
The AnaGate I2C (resp. the I2C interface of an AnaGate Universal
Programmer) does not allow more than one concurrent network
connection. During an established network connection all new connections
are refused.

See the following example for the initial programming steps.

120 © 2007-2010 Analytica GmbH

I2C Reference

if (nRC ~= 0) then

print (LS | 2CError Message(nRC));
exit();
end,

- now do sonet hi ng

LS | 2CC oseDevi ce(nHandl e) ;

nRC, nHandle = LS |2COpenDevice(1000000,

"192. 168. 0. 254", 5000);

See also

LS_I2CCloseDevice

121

© 2007-2010 Analytica GmbH

I2C Reference

LS 12CCloseDevice

LS_I2CCloseDevice — Closes an open network connection to an AnaGate 12C device.

Syntax

int RC = LS |2CC oseDevice(int hHandl e);

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Closes an open network connection to an AnaGate I2C device. The hHandl e
parameter is a return value of a succesfull call to the function LS_| 2COpenDevi ce.

2 Important
It is recommended to close the connection, because all internally allocated
system resources are freed again and the connected AnaGate device is
signalled that the active connection is not longer in use and can be used
again for new connect requests.

See also

LS_I2COpenDevice

122 © 2007-2010 Analytica GmbH

I2C Reference

LS [2CReset

LS _I2CReset — Resets the I2C Controller in an AnaGate I12C device.

Syntax

int RC = LS_|2CReset (int hHandl e);
Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

Resets the I12C Controller in an AnaGate I12C device.

123 © 2007-2010 Analytica GmbH

I2C Reference

LS I2CRead

LS_I2CRead — Reads data from an I12C partner.

Syntax

int RC, table(nBufferLen) tabBuffer = LS | 2CRead(i nt hHandl e, unsi gned
short nSl aveAddress, int nBufferLen);

Parameter

hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

nBufferLen Number of bytes to read.

Return values

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

tabBuffer = Byte buffer in which the data received from the I12C partner is stored.

Description

Reads data from an I2C partner. The user must ensure that the setup of the address
of the I2C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also

LS_I2CWrite

124 © 2007-2010 Analytica GmbH

I2C Reference

LS_I2CWrite

LS_I2CWrite — Writes data to an 12C partner.

Syntax
int RC, int ErrorByte = LS I2CWite(int hHandle, unsigned short
nSl aveAddr ess, tabl e(nBufferLen) tabBuffer, int nBufferlLen);
Parameter
hHandle Valid access handle.

nSlaveAddress Slave address of the I2C partner. The slave address can represent
a so-called 7-bit or 10-bit address. (siehe Appendix B, I2C slave
address formats).

nBufferLen Size of bytes to be read.

tabBuffer Byte buffer with the data that is to be sent to the I12C partner.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

ErrorByte Number of byte in data buffer which raises the error if the function failed.

Description

Writes data to an I2C partner. The user must ensure that the setup of the data buffer
and the address of the 12C partner are correct.

The R/W bit of the slave address does not have to be explicitly set by the user.

See also

LS_I2CRead

125 © 2007-2010 Analytica GmbH

I2C Reference

LS_12CReadDigital

LS_I2CReadDigital — Reads the current values of digital input and output registers
of the AnaGate device.

Syntax

int RC, int nlnputBits, int nQutputBits = LS |2CReadDigital (int
hHandl e) ;

Parameter

hHandle Valid access handle.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

nInputBits Pointer to the current value of the digital input register. Currently only
bits 0 to 3 are used, other bits are reserved for future use and are
set to 0.

nOutputBits Pointer to the current value of the digital output register. Currently
only bits 0 to 3 are used, other bits are reserved for future use and
are set to 0.

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The current values of the digital inputs and outputs can be retrieved with the
LS | 2CReadDi gi t al function.

See the following example for setting an reading the digital IO.

nQut puts = 0x03;

nRC, hHandl e = LS | 2COpenDevi ce(400000, "192.168.0.254", 5000);

if (nRC==20) then
/1 set the digital output register (PINO and PIN 1 to H GH val ue)
NnRC = LS I 2CWiteDigital (hHandl e, nQutputs);

/1 read all input and output registers
NnRC, nlnputs, nQutputs = LS | 2CReadDi gital (hHandle);

LS | 2CC oseDevi ce(hHandl e) ;
end;

See also

LS_I2CWriteDigital

126 © 2007-2010 Analytica GmbH

I2C Reference

LS [2CWriteDigital

LS_I2CWriteDigital — Writes a new value to the digital output register of the AnaGate

device.
Syntax

int RC=LS I2CWiteDigital (int hHandle, int nQutputBits);
Parameter

hHandle Valid access handle.

nOutputBits New register value. Currently only bits 0 to 3 are used, other bits are
reserved for future use.

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

All models of the AnaGate series (except the model AnaGate CAN uno in DIN rail
case) have connectors for 4 digtial inputs and 4 digital outputs at the rear panel.

The digital outputs can be written with the LS | 2CWiteDi gital function.

A simple example for reading/writing of the IOs can be found at the description of
LS | 2CReadDi gi t al .

See also

LS_I2CReadDigital

127 © 2007-2010 Analytica GmbH

I2C Reference

LS [2CErrorMessage

LS_I2CErrorMessage — Returns a description of the given error code as a text string.

Syntax

string sErrorMsg LS | 2CError Message(int

Parameter

nRet Code) ;

nRetCode Error code for which the error description is to be determined.

Return value

sErrorMsg Textual description of the error code.

Description

Returns a textual description of the parsed error code (see Appendix A, API return

codes).

See the following example in LUA scripting language.

nRC=0;
sError Text

[l... call

SError Text

a

"No Error';
APl function here

LS | 2CEr r or Message(nRC) ;

print(sErrorText);

128

© 2007-2010 Analytica GmbH

I2C Reference

LS _12CReadEEPROM

LS_I2CReadEEPROM — Reads data from an EEPROM on the I12C bus.

Syntax

int RC, tabData(nDatlLen) = LS | 2CReadEEPROMi nt hHandl e, unsi gned short

nSubAddr ess,
nDat aLen) ;

Parameter

hHandle
nSubAddress

nOffset

nOffsetFormat

nDatalenlLen

Return values

unsigned int nOfset, unsigned int nOfsetFormat, int

Valid access handle.

Subaddress of the EEPROM to communicate with. The valid values
for nSubAddr ess are governed by the setting used in the parameter
nO f set For mat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

¢ No bit is used for addressing: 0 to 7
e 1 bit is used for addressing: 0 to 3

e 2 bits are used for addressing: 0 to 1
¢ 3 bits are used for addressing: 0

Data offset on the EEPROM from which the transferred data is to
be read.

Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits
are used for addressing the device memory (see Table C.1, * Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

Note

6 The maximum addressable size of an EEPROM is derived
from the sum of all the bits. For example a M24C08 uses
8 bits of the address byte and an extra bit in the slave
address. The total 9 bits can address up to 512 bytes.

Length of the data buffer.

RC Returns 0 if successful, or an error value otherwise (Appendix A, API
return codes).

129 © 2007-2010 Analytica GmbH

I2C Reference

tabData Table with data read from EEPROM.

Description

The LS | 2CReadEEPROM function reads data from an 12C EEPROM.

Of course all access to the memory of an EEPROM is done by standard 12C read
or write commands. So, when reading from the memory only the matching slave
address, the memory offset address and the data has to be sent to the I12C bus.

LS | 2CReadEEPROMtranslates the given memory address on the chip by means of the
sub address and the addressing mode of the present EEPROM type. The slave address
of the EEPROM is automatically determined and not mandatory for the fucntion call.

A programming example which clears a ST24C1024 can be found at the description
of LS_I2WriteEEPROM.

See also

LS_I2CWriteEEPROM

Appendix C, Programming I2C EEPROM

130 © 2007-2010 Analytica GmbH

I2C Reference

LS _12CWriteEEPROM

LS_I2CWriteEEPROM — Writes data to an I12C EEPROM.

Syntax

int RC = LS I2CWiteEEPROMint hHandl e, unsigned short nSubAddress,

unsi gned int

nOf fset, wunsigned int nOfsetFormat, int nDatalen,

t abl e(nDat aLen) tabData);

Parameter

hHandle

nSubAddress

nOffset

nOffsetFormat

nDatalen

tabData

Valid access handle.

Subaddress of the EEPROM to communicate with. The valid values
for nSubAddr ess are governed by the setting used in the parameter
nO f set For mat (bits 8-10). If the EEPROM type needs to use bits
of the Chip Enable Address to address the internal memory, only
the remaining bits can be used to select the device itself.

¢ No bit is used for addressing: 0 to 7

¢ 1 bit is used for addressing: 0 to 3

e 2 bits are used for addressing: 0 to 1

¢ 3 bits are used for addressing: 0

Data offset on the EEPROM to which the transferred data is to be
written.

Defines how a memory address of EEPROM has to be specified
when accessing the device.

Bits 0-7 indicate the number of bits which are used in the
address byte (word) of the I2C command for addressing the device
memory.

Bits 8-10 indicate how much and which bits of the Chip Enable Bits

are used for addressing the device memory (see Table C.1, ™ Usage
of the CHIP-Enable Bits of I2C EEPROMs” for allowed values).

9 Note
The maximum addressable size of an EEPROM is derived

from the sum of all the bits. For example a M24C08 uses

8 bits of the address byte and an extra bit in the slave

address. The total 9 bits can address up to 512 bytes.
Length of the data buffer.

Character string buffer with the data that is to be written.

131 © 2007-2010 Analytica GmbH

I2C Reference

Return value

RC Returns 0 if successful, or an error value otherwise (Appendix A, API return
codes).

Description

The LS | 2CW i t eEEPROMfunction writes data to an 12C EEPROM.

Of course all access to the memory of an EEPROM is done by standard I12C read or
write commands. So, when writing to the memory only the matching slave address,
the memory offset address and the data has to be sent to the I2C bus.

LS | 2CW it eEEPROM translates the given memory address on the chip by means
of the sub address and the addressing mode of the present EEPROM type. The
slave address of the EEPROM is automatically determined and not mandatory for
the fucntion call.

Tip

T

It is important to note that an EEPROM is divided into memory pages, and
that a single write command can only program data within a page. Users
of LS | 2CW i t eEEPROM must ensure to do not write across page limits.
The page size depends on the EEEPOM type.

See the following example for writing data to a ST24C1024.

tabData = {};

for i=1, 256 , 1 do
table.insert(tabData, 0x0);
end;

nSubAddress = 0; H
nOf f set Format = 0x10+0x0F; H

RC, hHandl e = LS | 2COpenDevi ce(400000, "192.168.0.254", 5000);
if (RC==0) then
for page=0, 512-1, 1 do
RC = LS | 2CW it eEEPROM hHandl e, nSubAddress, i*256, nOff Set Fornat, 256, tabData); E
end;
LS | 2CCl oseDevi ce(hHandl e) ;
end;

El Itis possible to address 4 individual ST24C1024 on a single I12C bus. By selection
of subaddress 0 the control pins E2 and E1 have to be LOW.

H 17 address bits are used to address the 128KB of a ST24C1024. 16 bits are set
via the address bytes of the write command: 16=0x0F. The address bit A16 is
set via the EOQ bit of the Chip Enable Address, therefore addressing mode 1 (E2-
E1-A0) must be set: 0x10.

E The page size of a ST24C1024 is 256 byte, every page is programmed full within
the for-loop.

See also

LS_I2CReadEEPROM
Appendix C, Programming I2C EEPROM

132 © 2007-2010 Analytica GmbH

Draft Draft

Chapter 13. CANOpen functions

CANopen® is a communication protocol and device profile specification for embedded systems
used in automation. Standardised in Europe as EN 50325- 4 (see [CiA-DS301]), it is mangaged
by the user organisation CAN in Automation (CiA).

Users of the AnaGate API are allowed to execute the in following decribed CANopen services
as CANopen master.

133 © 2007-2010 Analytica GmbH

Draft

CANOpen functions Draft

LS CANopenSetConfig

LS_CANopenSetConfig — Configure the connection specific device settings for

CANOpen operation.

Synopsis

int RC = LS CANopenSet Config(int Handle , int CANOpenConfig);

Description

Parameter

int Handle

int CANOpenConfig 0:

Return values

Die CANOpen Funktionalitdt wird nicht unterstitzt
(Standard). Ein Aufruf einer CANOpen Funktion
wird negativ (FFh) quittiert. Empfangene CAN-
Daten werden immer als Standard Datalndication
(OP_ANAGATE_CAN_DATA_IND) gesendet.

Die CANOpen Funktionalitat ist eingeschaltet und
es konnen die nachfolgend beschriebenen Funktionen
verwendet werden.

If no error occurs, the return will be null(0). Otherwise the returncode will be

different null(0).

134 © 2007-2010 Analytica GmbH

Draft

CANOpen functions Draft

LS CANopenGetConfig

LS_CANopenGetConfig

Synopsis

int RC = LS CANopenGet Config(int Handle);

Description

Parameter

int Handle

Return values

int RC

int CANOpenConfig

If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

0:

Die CANOpen Funktionalitéat wird nicht unterstitzt
(Standard). Ein Aufruf einer CANOpen Funktion
wird negativ (FFh) quittiert. Empfangene CAN-
Daten werden immer als Standard Datalndication
(OP_ANAGATE_CAN_DATA_IND) gesendet.

Die CANOpen Funktionalitat ist eingeschaltet und
es koénnen die nachfolgend beschriebenen Funktionen
verwendet werden.

135 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSetSYNCMode

LS_CANopenSetSYNCMode
Synopsis
int RC = LS CANopenSet SYNCMbde(int Handle , int PeriodTine);

Description

Parameter

int Handle

int PeriodTime
Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

136 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSetCallbacks

LS_CANopenSetCallbacks

Synopsis

int RC=LS CANopenSet Cal | backs(int Handl e , string Call backFuncti onPDO
, string CallbackFuncti onSYNC , string CallbackFuncti onEMCY , string
Cal | backFuncti onGUARD , string Call backFuncti onUndefined);

Description

Parameter
int Handle
string CallbackFunctionPDO

string
CallbackFunctionSYNC

string
CallbackFunctionEMCY

string
CallbackFunctionGUARD

string
CallbackFunctionUndefined

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

137 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS _CANopenGetPDO

LS_CANopenGetPDO
Synopsis

int Avail Messages, int Nodel D, int PDOTyp, table(1-8) Data, int Seconds,
int Mcroseconds = LS CANopenGet PDQ(int Handle , int Tineout);

Description

Parameter
int Handle

int Timeout

Return values

I
1
N

Il
1
Ay

ov

int NodelID
int PDOTyp
table(1-8) Data
int Seconds

int Microseconds

138 © 2007-2010 Analytica GmbH

Draft CANOpen functions

Draft

LS _CANopenGetSYNC

LS_CANopenGetSYNC
Synopsis

int Avail Messages, int ReturnCode, int Seconds,
LS CANopenGet SYNC(int Handle , int Tineout);

Description

Parameter
int Handle

int Timeout

Return values

I
1
N

Il
1
Ay

ov

int ReturnCode
int Seconds

int Microseconds

i nt

M cr oseconds

139 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenGetEMCY

LS_CANopenGetEMCY
Synopsis
int Avail Messages, int NodelD, int ErrorCode, int ErrorRegister,

t abl e(5) ErrorDescription, i nt Seconds, i nt M cr oseconds =
LS CANopenGet EMCY(int Handle , int Tineout);

Description

Parameter
int Handle

int Timeout

Return values

I
1
N

Il
1
=

ov

int NodelID

int ErrorCode

int ErrorRegister
table(5) ErrorDescritpion
int Seconds

int Microseconds

140 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenGetGUARD

LS_CANopenGetGUARD
Synopsis

i nt Avail Messages, int Nodel D, int Status, int Seconds, int M croseconds
= LS CANopenGet GUARD(int Handle , int Tineout);

Description

Parameter
int Handle

int Timeout

Return values

= -2:
=-1:
>=
0:

int NodelID

int Status

int Seconds

int Microseconds

141 © 2007-2010 Analytica GmbH

Draft CANOpen functions

Draft

LS CANopenGetUndefined

LS_CANopenGetUndefined
Synopsis

i nt Avail Messages, int CAN D,

i nt

Functi onCode, tabl e(1-8)

Data, int Seconds, int Mcroseconds = LS CANopenGet Undefi ned(i nt Handl e

, int Timeout);
Description

Parameter
int Handle

int Timeout

Return values

I
1
N

Il
1
Ay

ov

int CANID

int NodelD

int FunctionCode
table(1-8) Data
int Seconds

int Microseconds

Als undefinierte Nachrichten werden die eingehenden Nachrichten bezeichnet die
anhand des Funktionscodes keiner CANOpen Funktion zugeordnet werden kénnen.
Sollte nur in Netzen vorkommen in denen gleichzeitig zu CANOpen noch Standard

CAN oder andere Protokolle betrieben werden.

142

© 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendNMT

LS_CANopenSendNMT
Synopsis
int RC = LS CANopenSendNMI(int Handle , int NodelD, int NMITyp);

Description

Parameter
int Handle
int NodelD

int NMTTyp

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

143 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendSYNC

LS_CANopenSendSYNC
Synopsis

int RC = LS _CANopenSendSYNC(int Handle);
Description

Parameter

int Handle

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

144 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendTIME

LS_CANopenSendTIME
Synopsis
int RC = LS CANopenSendTIME(int Handle , int Day , int MIliseconds);

Description

Parameter
int Handle
int Day

int Milliseconds

Riickgabewerte

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

145 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendPDO

LS_CANopenSendPDO
Synopsis

int RC = LS CANopenSendPDQ(int Handle , int NodelD, int PDOTyp , int
Dat aLength , tabl e(1-8) SendData);

Description

Parameter
int Handle
int NodelID
int PDOTyp
int DataLength

table(1-8) SendData

Return values

int RC If no error occurs, the return will be null(0). Otherwise the returncode will
be different null(0).

146 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendSDORead

LS_CANopenSendSDORead
Synopsis

int RC, int SDOReadType, int SDOReadData = LS CANopenSendSDORead(i nt
Handle , int NodelD, int Index , int Subindex , int Tineout);

Description

Parameter
int Handle

int NodelID

int Index

int Subindex

int TimeOut

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType

int SDOReadData

147 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendSDOWrite

LS_CANopenSendSDOWrite
Synopsis

int RC, int SDOReadType, int SDOReadData = LS CANopenSendSDOWite(int
Handle , int NodelD, int SDOWiteTyp , int Index , int Subindex , int
Timeout , int SDOWNiteData);

Description

Parameter
int Handle

int NodelID

int SDOWriteTyp
int Index

int Subindex

int Timeout

int SDOWriteData

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadTyp

int SDOReadData

148 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendSDOReadBlock

LS_CANopenSendSDOReadBlock
Synopsis

i nt RC, i nt SDOReadType, i nt ReadLen, tabl e ReadDat a =
LS CANopenSendSDOReadBl ock(int Handle , int NodelD, int Index , int
Subindex , int Tineout , int ReadlLen);

Description

Parameter
int Handle

int NodelID

int Index

int Subindex
int Timeout

int ReadLen

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType
int ReadLen

table ReadData

149 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

LS CANopenSendSDOWriteBlock

LS_CANopenSendSDOWriteBlock
Synopsis

i nt RC, i nt SDOReadTyp, i nt SDOReadDat a =
LS CANopenSendSDOWiteBlock(int Handle , int SDOReadTyp , int
SDOReadDat a) ;

Description

Parameter
int Handle

int NodelID

int Index

int Subindex
int Timeout

int WriteLen

Return values

int RC If no error occurs, the return will be null(0). Otherwise the
returncode will be different null(0).

int SDOReadType
int SDOReadData

150 © 2007-2010 Analytica GmbH

Draft CANOpen functions Draft

Programmer example

Programmer example

151 © 2007-2010 Analytica GmbH

Draft

CANOpen functions Draft

Example 13.1. CANOpen - LUA script example

-- Filter: alle CAN-Identifier akzeptieren

aFilter = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO0,
0x00, Ox1FFFFFFF, 0x00, Ox1FFFFFFF,
0x00, Ox1FFFFFFF, 0x00, Ox1FFFFFFF};

aSendData = { OxF1l, OxF2, OxF3, OxF4, OxF5, OxF6, OxF7, OxF8 };

Rk S o R O S I R R O kR O S R Ik kR R O

function printf(...)
io.wite(string.format(...))
io.flush();

end
R E R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR SRS

function main()
-- Open
nRC, nHandl e = LS CANOpenDevi ce(fal se, true, 5001, "10.1.2.160", 5000);
if (nRC ~= 0) then
print (LS _CANErr or Message(nRQC)) ;
exit();
end;

nRC, nHandl e2 = LS CANOpenDevi ce(fal se, true, 5001, "10.1.2.161", 5000);
if (nRC ~= 0) then

print (LS _CANErr or Message(nRQC)) ;
exit();
end;
-- Filter setzen

nRC LS CANSetFilter(nHandle, aFilter);
nRC LS CANSet Fil ter (nHandl e2, aFilter);

-- aktuelle Zeit auf den AnaGate Device setzen
NnRC, oTime = LS GetTine();

NnRC = LS CANSet Ti ne(nHandl e, oTinme[1], oTine[2]);
NRC = LS CANSet Ti ne(nHandl e2, oTinme[1], oTine[2]);

-- G obals setzen
nRC LS CANSet d obal s(nHandl e, 500000, O, true, false, false);
nRC LS CANSet d obal s(nHandl e2, 500000, O, true, false, false);

-- Endl osschleife

r epeat
-- 1 Datenpackete auf dem 1. AnaGate CAN Devi ce versenden
nRC = LS CANWite(nHandl e, 1, 8, aSendData);

LS Sl eep(20); -- 20MIIlisekunden warten

-- Datenpacket auf 2. AnaGate CAN Devi ce enpfangen
nAvail, ID, Len, Data, Sec, Mcrosec = LS CANGet Message(nHandl e2, 10);
whi | e nAvai | >=0 do
nAvail, 1D, Len, Data, Sec, Mcrosec = LS CANGCet Message(nHandl e2, 10);
end;
until (false);

-- Ver bi ndungen beenden

LS CANC oseDevi ce(nHandl e) ;

LS _CANC oseDevi ce(nHandl e2) ;
end;

152 © 2007-2010 Analytica GmbH

Chapter 14. LUA programming

-- Filter: alle CAN-Identifier akzeptieren

@A(@Jal:ilter = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0xO00,
s 0x00, Ox1FFFFFFF, 0x00, Ox1FFFFFFF,

0x00, Ox1FFFFFFF, 0x00, Ox1FFFFFFF};

aSendData = { OxF1l, OxF2, OxF3, OxF4, OxF5, OxF6, OxF7, OxF8 };

Rk S S S b O O R R Ok R R R O S R O

function printf(...)
io.wite(string.format(...))
io.flush();

end

Rk S S S b O O R R Ok R R R O S R O

function main()

-- Open

if (nRC ~= 0) then

print (LS _CANErr or Message(nRQC)) ;
exit();
end;

if (nRC ~= 0) then

print (LS _CANErr or Message(nRQC)) ;
exit();
end;
-- Filter setzen

nRC LS CANSetFilter(nHandle, aFilter);
nRC LS CANSet Fil ter (nHandl e2, aFilter);

-- aktuelle Zeit auf den AnaGate Device setzen
nRC, oTime = LS GetTine();

NRC = LS CANSet Ti ne(nHandl e, oTinme[1], oTine[2]);
NRC = LS CANSet Ti ne(nHandl e2, oTinme[1], oTine[2]);

-- G obals setzen
nRC LS CANSet d obal s(nHandl e, 500000, O, true, false, false);
nRC LS CANSet d obal s(nHandl e2, 500000, O, true, false, false);

-- Endl osschl eife

r epeat
-- 1 Datenpackete auf dem 1. AnaGate CAN Devi ce versenden
nRC = LS CANWite(nHandl e, 1, 8, aSendData);

LS Sl eep(20); -- 20M I Ilisekunden warten

-- Datenpacket auf 2. AnaGate CAN Devi ce enpfangen

end;
until (false);

-- Ver bi ndungen beenden

LS CANC oseDevi ce(nHandl e) ;

LS _CANC oseDevi ce(nHandl e2) ;
end;

nRC, nHandl e = LS CANOpenDevi ce(fal se, true, 5001, "10.1.2.160", 5000);

nRC, nHandl e2 = LS CANOpenDevi ce(fal se, true, 5001, "10.1.2.161", 5000);

nAvail, ID, Len, Data, Sec, Mcrosec = LS CANGet Message(nHandl e2, 10);
whi | e nAvai |l >=0 do
nAvail, 1D, Len, Data, Sec, Mcrosec = LS CANGet Message(nHandl e2, 10);

153 © 2007-2010 Analytica GmbH

LUA programming examples

14.2. Examples for devices with SPI interface

Example 14.2.

R R R R

function printf(...)
io.wite(string.format(...))
io.flush();

end,

B

function main()
-- Verbi ndung zu AnaGate SPI-Device herstellen
nRC, nHandl e = LS_SPI OpenDevi ce("10.1.2.162", 5000);
if (nRC ~= 0) then
errortext = LS_SPI Error Message(nRC);
print(errortext);
exit();
end

-- Setzen der gl obal en Einstellungen
nRC = LS_SPI Set d obal s(nHandl e, 100, 2, 0, 0);

-- OP-Codes des SPI-Partners mit Daten

OPW it eEnab = {0x06};
OPSt at usReg = {0x05, 0x00};
OPRead = {0x03, 0x00, 0x00, 0x00};

-- WiteEnabl e-Fl ag des SPI-Partners setzen
nRC, Value = LS _SPI Dat aReq(nHandl e, 1, 1, OPWiteEnab);

-- Statusregister des SPl-Partners abfragen

nRC, Value = LS SPI Dat aReq(nHandl e, 2, 2, OPStatusReg);
for i=1, table.getn(Value), 1 do

printf("Data Status: %92X\n", Value[i]);

end;

-- Lesen von 20Bytes ab Adresse 0x00

nRC, Value = LS SPI Dat aReq(nHandl e, 4, 20, OPRead);
for i=1, table.getn(Value), 1 do

printf("Data: %92X\n", Value[i]);

end;

-- Alle digital en Ausgaenge zuruecksetzen
LS SPIWiteDigital (nHandl e, 0);

-- Verbi ndung zu AnaGate SPI - Devi ce beenden
LS _SPI C oseDevi ce(nHandl e) ;
end;

154 © 2007-2010 Analytica GmbH

LUA programming examples

14.3. Examples for devices with I12C interface

Example 14.3.

R R R R R

function printf(...)
io.wite(string.format(...))
io.flush();

end,

Kkkkkhhhhhhkhhhhhhhhhkhhk Ak k kA Ak kA kkkkkhkhkhkhkkkhkk k%

function getn(t)

if type(t.n) == "nunber" then return t.n end;
local max = 0
for i, _int do
if type(i) == "nunber" and i>nax then max=i end;
end;
return max;

end;

R R R R

function main()

aSendData = {};

for i=1, 128 , 1 do
table.insert(aSendData, i-1);
end;

nRC, nHandl e = LS | 2COpenDevi ce(1000000, "10.1.2.162", 5000);
if (nNRC ~= 0) then
print(LS_I 2CError Message(nRQ)) ;
exit();
end;

- - Read EEPROM
Count Bytes = 1024;
for Address = 0, CountBytes*64, CountBytes do
nRC, Value = LS | 2CReadEEPron(nHandl e, 1, Address, CountBytes, 16);
for j=1, table.getn(Value), 1 do
printf("®2X ", Value[j]);
if (jod6 == 0) then
printf("\n");
end;
end;
end;

--Wite EEPROM
Count Bytes = tabl e. get n(aSendDat a) ;
for Address = 0, CountBytes * 10, CountBytes do
nRC = LS | 2CW it eEEPron({nHandl e, 1, Address, 16, CountBytes, aSendData);
end;

LS | 2CWiteDigital (nHandl e, 0);
LS | 2CC oseDevi ce(nHandl e) ;
end;

155 © 2007-2010 Analytica GmbH

LUA programming examples

Example 14.4.

Kkkkkhhhhhhhhhhkhhhhh kA kA kA Ak kXA kA Ak kkhhkhkhkkkkhk ok kK

function printf(...)
io.wite(string.format(...))
io.flush();

end;

Kk hkhkkhkhhkhkhhhhkhh ok hhhhhhhkkhkkkkk k& k k& &k k kK K &k Kk %k ok k%

function getn(t)

if type(t.n) == "nunber" then return t.n end;
local max = 0
for i, _int do
if type(i) == "nunber" and i>nmax then max=i end;
end;
return max;

end;

Kkkkkhhhhhhhhhhkhhhhh kA kA kA Ak kXA kA Ak kkhhkhkhkkkkhk ok kK

function main()

aSendData = {};

for i=1, 128 , 1 do
table.insert(aSendData, i-1);
end;

nRC, nHandl e = LS | 2COpenDevi ce(1000000, "10.1.2.162", 5000);
if (nRC ~= 0) then
print(LS_I 2CError Message(nRQ)) ;
exit();
end;

--Wite
aData = {0x00, O0x05}; -- ab Adresse 5 | esen
nRC, Value = LS |2CWite(nHandl e, Oxa2, 2, aData);

- - Read

nRC, Value = LS | 2CRead(nHandl e, 0Oxa2, 1024);
for i=1, table.getn(Value), 1 do
printf("9®2X ", Valuel[i]);

end;
printf("\n");

LS | 2CWiteDigital (nHandl e, 0);
LS | 2CCl oseDevi ce(nHandl e) ;
end;

156 © 2007-2010 Analytica GmbH

LUA programming examples

Example 14.5.

__kkkkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhkhkkhkhkhkdhkhkhkrkhkhkhkhkhkdkrkhkhkxkhkhkkx

function printf(...)
io.wite(string.format(...))
io.flush();

end;

__kkkkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkdhkhkhkkhkhkhkdkhkhkhkhkhkhkhkhkhkdkrkhkhkxkhkhkkx

function getn(t)

if type(t.n) == "nunber" then return t.n end;
local max = 0
for i, _int do
if type(i) == "nunber" and i>max then nmax=i end;
end;
return nax;

end;
__kkkkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkdhkhkhkkhkhkhkdhkhkhkxkhkhkhkhkhkdkrkhkhkxkhkhkkx
function main()

aSendData = {};

for i=1, 128 , 1 do
table.insert(aSendData, i-1);
end;

nRC, nHandl e = LS | 2COpenDevi ce(1000000, "10.1.2.162", 5000);
if (nRC ~= 0) then
print (LS | 2CErr or Message(nRC)) ;

exit();

end;

- - Sequence

aData = {0Oxa2, 0x00, --SLA
0x02, 0x00, --Laenge Schrei bkomrando
0x00, 0x00, --Daten Schrei bkommando
Oxa3, 0x00, --SLA 2. Lesekommmando
0x30, 0x00, --Laenge 1. Lesekommando
Oxa3, 0x00, --SLA 2. Lesekommando

0x20, 0x00}; --Laenge 2. Lesekommando

nRC, Count Read, Last Error, Val ue = LS | 2CSequence(nHandl e, OxOE, 0x0050, aData);
printf("Count Read: 992X LastError:%92X\n", CountRead, LastError);
for i=1, CountRead, 1 do

printf("%92X ", Value[i]);

end;
printf("\n");

LS 1 2CWiteDi gital (nHandl e, 0);
LS | 2CC oseDevi ce(nHandl €) ;
end;

157 © 2007-2010 Analytica GmbH

Appendix A. APl return codes

Followed a list of the return values of the API functions. This values are defined in
the header file AnaGat eErrors. h.

Table A.1. Common return values for all devices of AnaGate

series

Value Name Description

0 ERR_NONE No errors.

0x000001 |ERR_OPEN_MAX_CONN Open failed, maximal count of
connections reached.

0x0000FF |ERR_OP_CMD_FAILED Command failed with unknown
failure.

0x020000 |ERR_TCPIP_SOCKET Socket error in TCP/IP layer
occured.

0x030000 [ERR_TCPIP_NOTCONNECTED Connection to TCP/IP partner can't
established or is disconnected.

0x040000 |ERR_TCPIP_TIMEOUT No answer received from TCP/IP
partner within the defined timeout.

0x050000 |ERR_TCPIP_CALLNOTALLOWED Command is not allowed at this
time.

0x060000 |ERR_TCPIP_NOT_INITIALIZED TCP/IP-Stack can't be initialized.

0x0A0000 |ERR_INVALID_CRC AnaGate TCP/IP telegram has
incorrect checksum (CRC).

0x0B0000 |ERR_INVALID_CONF AnaGate TCP/IP telegram wasn't
receipted from partner.

0x0C0000 |ERR_INVALID_CONF_DATA AnaGate TCP/IP telegram wasn't
receipted correct from partner.

0x900000 |ERR_INVALID_DEVICE_HANDLE |Invalid device handle.

0x910000 |ERR_INVALID_DEVICE_TYPE Function can't be executed on this

device handle, as she is assigned
to another device type of AnaGate
series.

Table A.2. Return values for AnaGate 12C

Value Name Description
0x000120 |ERR_I2C_NACK I12C-NACK
0x000121 |ERR_I2C_TIMEOUT I2C Timeout

A textual description of the return value can be retrieved with the function
| 2CEr r or Message() .

158

© 2007-2010 Analytica GmbH

API return codes

Table A.3. Return values for AnaGate CAN

Value Name Description

0x000220 |ERR_CAN_NACK CAN-NACK

0x000221 |ERR_CAN_TX_ERROR CAN Transmit Error

0x000222 |ERR_CAN_TX_BUF_OVERLOW CAN buffer overflow
0x000223 |ERR_CAN_TX_MLOA CAN Lost Arbitration
0x000224 |ERR_CAN_NO_VALID_BAUDRATE |CAN Setting no valid Baudrate

A textual description of the return value can be retrieved with the function
CANETr r or Message() .

Table A.4. Return values for AnaGate Renesas

Value Name Description

0x000920 |ERR_RENESAS_TIMEOUT Renesas timeout

0x000921 |ERR_RENESAS_INVALID_ID Renesas Invalid ID

0x000922 |ERR_RENESAS_FLASH_ERASE_FAILED Renesas failed erase the
flash

0x000923 |ERR_RENESAS_PAGE_PROG_FAILED Renesas failed prog the
page

A textual description of the return value can be retrieved with the function
RenesasErr or Message() .

Table A.5. Return values for LUA scripting

Value Name Description

-1 ERR_SYNTAX Syntax error

-2 ERR_RANGE Value out of valid range.

-3 ERR_NOT_A_NUMBER |Parameter is not of type number.
-4 ERR_NOT_A_STRING |Parameter is not of type string.
-5 ERR_NOT_A_BOOL Parameter is not of type boolean.
-6 ERR_NOT_A_TABLE Parameter is not of type table.
-10 ERR_NO_DATA No data available.

159

© 2007-2010 Analytica GmbH

Appendix B. 12C slave address formats

A standard I2C address is the first byte sent be the 12C master, whereas only the
first seven bit form the adress, the last bit (R/W-bit) defines the direction in which
the data is sent. I2C has a 7-bit address space and can address 112 slaves on a
single bus (16 of the 128 addresses are reserved fo special purposes).

Figure B.1. Definition of a I2C slave address in 7-bit format

Slave-Address

Device Type Identifier | Chip Enable Address |R/VV
A6]A5[A4]A3|A2[A1][A0]]
76 5 4 3 2 1

0

Each I2C-able IC has a determined bus address. The 4 upper bits of the bus address
are called Device Type Identifier and define the chip type. The lowest three bits called
sub-address or Chip Enable Address are usually defined by the corresponding wired
control pins. So, in total up to 8 similar IC's can be used on a single 12C bus.

Because of a lack of address space a 10-bit addressing mode was introduced later.
This new mode is downwards compatible to the 7-bit standard mode through usage of
4 of the 16 reserved addresses. Both addressing modes can be used simultaneously,
which implies that 1136 slaves can be used on a single bus.

Figure B.2. Definition of a I2C slave address in 10-bit format

10-bit Address Indicator R/W Slave-Address
[1[1][1]1]0[A9]A8] | |A7|A6]A5]A4]|A3]|A2]|A1]A0]
15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0

e Note
Devices of type AnaGate SPI and AnaGate Universal Programmer do
support both addressing modes in general. The API functions | 2CRead and
| 2CW it e address the slaves via a two byte parameter.

Addressing of serial EEPROM

The device type identifier of a serial EEPROM is defined as OxA. This results to the
following schematic structure of an address (the chip enable bits are often named
EO, E1 and E2 in literature):

Device Type Identifier Chip Enable Address RJ"W
0[1]0|E2]E1][E0| |
6 5 4

3 2 1 0

1

7

Table B.1. I2C EEPROM addressing examples

Device Type Identifier Chip Enable 12 R/W EEPROM-
b7 | b6 | b5 | ba | b3 | b2 [b1 | bo |Memory
M24C01 1 0 1 0 E2 El EO R/W 128 byte

160 © 2007-2010 Analytica GmbH

I2C slave address formats

Device Type Identifier Chip Enable 12 R/W EEPROM-
b7 | b6 | b5 | ba | b3 | b2 | b1 | bo |Memory

M24C02 1 0 1 0 E2 El EO | R/W 256 byte
M24C04 1 0 1 0 E2 El A8 | R/W 512 byte
M24C08 1 0 1 0 E2 A9 A8 | R/W | 1024 byte
M24C16 1 0 1 0 A10 | A9 A8 | R/W | 2048 byte

M24C64 1 0 1 0 E2 El EO | R/W | 8192 byte

1EO,E1 and E2 are compared against the respective external pins on the memory device.
2A10, A9 and A8 represent most significant bits of the address.

161 © 2007-2010 Analytica GmbH

Appendix C. Programming I12C
EEPROM

The AnaGate I2C and the AnaGate Universal Programmer is very well suited for
programming serial I2C EEPROM. To support this special requirement two different
API functions are made available: | 2CReadEEPROMand | 2CW i t eEEPROM

Like all other I12C-capable devices EEPROM's are addressable on the I2C bus via a
unique slave address (see also Appendix B, I2C slave address formats). The so-
called Device Type Identifier for these types of devcies is OxA. In principle 8 similar
devices can be connected and addressed via the Chip Enable Bits EO, E1 und EO.

Device Type Identifier Chip Enable Address R}'W
1/0[1]0]|E2[E1]E0] |
5 4

7 6 3 2 1 0

A data transmission is started with a Start signal by the master, followed by the
slave address. The slave address is confirmed by the slave with a ACK. Depending
on the R/W bit data is written (data to slave) or read (data from slave). The last
byte of a read access has to be confirmed with a NAK by the master to signal the
slave end of read transmission. The data transmission is terminated always by a
Stop signal from the master.

When using EEPROM's the memory address is transmitted after transmission of the
slave address, to advice the slave which memory address is to be written or read.
Depending on the used EEPROM type the memory address is sent as single byte (8
bit) or as two bytes (16 bit, MSB First).

To expand the address space from 8 bit (or 16 bit), some EEPROM types use the Chip
Enable Bits EO, E1, E2 as additional address bits. Which bits are used in individual
cases is defined by the chip producer. In the following, all possible combinations of
the bits usage are listed:

Table C.1. Usage of the CHIP-Enable Bits of I2C EEPROMs

Mode ! Usage Description

0x0 E2-E1-EO Bits are only used to select the chip.

Ox1 E2-E1-A0 Bit EO is used to expand the addresse space. It is used
for address bit A8 (resp. A16).

0x2 E2-A1-A0 EO and E1 are used to expand the addresse space. EO

is used for address bit A8 (resp. A16) and E1 is used
for A9 (resp. Al17).

0x3 A2-A1-A0 EO, E1 and E2 are used to expand the addresse space.
EO is used for address bit A8 (resp. Al6), E1 for A9
(resp. A17) and E2 for A10 (resp. A18).

0x5 AO-E1-EO Bit E2 is used to expand the addresse space. It is used
for address bit A8 (resp. A16).

Das E2-Bit wird fir die Addressierung verwendet. Es
entspricht dabei dem Adressbit A8 bzw. A16.

162 © 2007-2010 Analytica GmbH

Programming 12C EEPROM

Mode ! Usage Description

0x6 A1-AO0-EO E2 and E1 are used to expand the addresse space. E1
is used for address bit A8 (resp. A16) and E2 is used
for A9 (resp. Al17).

Set this mode flag in bit 8-10 of parameter nOf f set For mat in the API funtions | 2CReadEEPROM and
| 2CW i t eEEPROM

163 © 2007-2010 Analytica GmbH

Appendix D. FAQ - Frequent asked
guestions

Here is a list of frequently asked questions concerning installation and usage of the
AnaGate product.

D.1. Common questions

Q:
A:

No network connection (1)

Please check first the physical connection to the device. Basically the AnaGate
have to be connected directly to a personal computer or to an active network
component (hub, switch). If the AnaGate device is connected to a personal
computer a cross-wired network cable must be used to connect the device,
otherwise the included network cable is to be used.

Digital - IO
ouT IN

Resat Act
..

The physical interconnection is ok, if the yellow link LED changes to light on,
if LAN cable is plug in. The yellow light keeps beeing on until the connection
break down. On some hardware models the link LED flickers synchronous to
the green activity LED if there is traffic on the network line.

If the link LED is always off, then please check the wiring between the AnaGate
and the hub, switch or the personal computer.

No network connection (2)

If the link LED indicates a proper ethernet connection (see previous FAQ), but
you still can't connect to the AnaGate then please try the following:

1. Check if the AnaGate can be reached via ping. To do so in Windows, open a
command prompt and enter the command ping a.b.c.d", where a. b.c. d
is the device IP address.

2. In case the AnaGate is unreachable via ping, reset the device to factory
settings. Set the IP adress of your PC to 192. 168. 1. 253 and the subnet
mask to 255. 255. 255. 0. Check if the AnaGate can be reached via ping
192.168.1.254.

3. If the device can be reached via ping then the next step is to try if you can
open a TCP connection to port 5001. Open a Windows command prompt
and enter telnet a.b.c.d 5001, where a. b. c. d is the device IP address. If
this command fails, check if a firewall runs on your PC or if there is a packet
filter in the network between your PC and the AnaGate.

164 © 2007-2010 Analytica GmbH

FAQ - Frequent
asked questions

No network connection after changing the network address

After changing the network address of the AnaGate device via web interface,
the device is not longer reachable. The used internet browsers displays only an
emtpy web side, additional error messages are not available.

Please check if your anti-virus software has blocked the new network address.
After changing the network address, you are redirected to the new network
address in the browser. Such activity is suspicious for some anti-virus software,
so they block the new webside, sometimes even without notification of the user.

Connection problems using multiple devices

If multiple devices with identical IP addresses are used in a local area network
at the same time, the connections to the devices are not stable. Because of this
behaviour it is recommend to use different IP addresses.

This problem can also occur, if devices with identical IP addresses are used not
concurrently, but within short intervals. For example this can arise, if some new
devices, which have the default IP address 192. 168. 1. 254, are configured from
a single PC.

The Address Resolution Protocol (ARP) is used by IP4 networks to
determine the MAC address of a given IP address. The neccessary information
is cached in the ARP table. If there is a wrong entry in the ARP table or even
an entry, which is not up-to-date, it is not possible to communicate with the
corresponding host.

An entry in the ARP table is deleted if it is not used any more after a short period
time. The time intervall used depends on the operating system. On a current
linux distribution an unused entry is discarded after about 5 minutes. The ARP
cache can be displayed and manipulated with the arp on windows and linux.

C\>arp -a
Schnittstelle: 10.1.2.50 --- 0x2
| nt er net adr esse Physi kal . Adresse Typ
192. 168. 1. 254 00- 50- c2- 3c- bO- df dynamni sch

The command arp -d can be used to delete the ARP Cache.

6 Note
Maybe the ARP cache of the PC has to be deleted, if the IP address
of a device is changed.

Using a firewall

When working with a firewall, the a TCP port has to be opened for
communication with the AnaGate device:

Table D.1. Using AnaGate hardware with firewall

Device Port number
AnaGate 12C 5000

165 © 2007-2010 Analytica GmbH

FAQ - Frequent
asked questions

Device Port number

AnaGate 12C X7 5100, 5200, 5300, 5400,
5500, 5600, 5700

AnaGate CAN 5001

AnaGate CAN USB 5001

AnaGate CAN uno 5001

AnaGate CAN duo 5001, 5101

AnaGate CAN quattro 5001, 5101, 5201, 5301

AnaGate SPI 5002

AnaGate Renesas 5008

AnaGate Universal Programmer 5000, 5002, 5008

D.2. Questions concerning AnaGate CAN

Q:

A:

What is the value of the termination resistor when the termination option of
the device is activated?

The termination resistor of the AnaGate is driven by an FET transistor. The
resistor itself has 110 Ohm while the internal resistance of the FET is 10 Ohm
if the FET is activated. So the resulting resitance is 120 Ohm, as required by
the CAN bus.

Does Analytica offer a CAN gateway which does not have an galvanically isolated
CAN interface?

Any device that is actively connected to a CAN bus should be galvanically
isolated. Especially when using USB-operated devices (like the AnaGate USB), it
is essential to have an galvanically isolated device, because the device is power
supplied by the PC.

How to direct interconnect two CAN ports!

If you want to interconnect two AnaGate CAN just via a direkt link CAN cable,
you have to switch on the internal termination on both AnaGate CAN devices.
A CAN bus network must have a termination on each side.

e Note
Maybe it is working with lower baurates without termination, but it

is recommend to use a termination.
Receiving a NAK when sending a CAN telegram.

If no CAN partner is connected to the AnaGate CAN (aka the CAN network),
it is not possible to send CAN telegrams, the AnaGate CAN gets a NAK from
the CAN controller. These NAK errors are send to the AnaGate client via a data
confirmation telegram.

® Warning
If data confirmations are switched off, no erros are sent to the
client. The option confirmations for data requeste can be set via the

166 © 2007-2010 Analytica GmbH

FAQ - Frequent
asked questions

CANSet d obal s function. In Highspeed-Mode the data confirmations
are always switched off.

D.3. Questions concerning AnaGate 12C

Q: What is the correct order to connect the GND / SCL and SDA when using an
external power supply?

A: To avoid potential damage to the AnaGate I2C, the GND pin MUST be connected
to the application board first. Only then can the SCL/SDA pins be allowed to
make contact with the application board.

167 © 2007-2010 Analytica GmbH

Appendix E. FAQ - Programming API

Here is a list of frequently asked questions concerning the programming API and the
communication protocol.

E.1. Questions concerning the communication protocol

Q:
A:

The calculation of the check sum (CRC) do not work!

The following figure illustrates the princible layout of an AnaGate telegram.

0x00

Length [2]
0x02 Command-

Code [2]
0x04 Command-

1D [2]
0x06
Data [N]

[N+6] CRG

1]

The checksum is defined as a byte calculated by XOR from all the existing bytes
in an AnaGate telegram, excluding the length bytes and the CRC byte.

The following C code function computes a valid CRC of an already created
command telegram.

unsi gned char Cal cCRC(char * pBuffer, int nBufferLength)
{
int i;
unsi gned char nCRC = pBuffer[2]; // skip the |length bytes

/] XOR over all bytes in the nessage except the length information and the |ast byte
for(i =3; i < nBufferLength -1; i++)
{
nCRC "= pBuffer[i];
}
return nCRrRC,
}

When using the function Cal cCRC the parameter pBuf f er must point to the data
buffer, which contains the already created complete data telegram. The length
parameter nBuf f er Lengt h depends on the created command type and can be
computed as shown below:

buffer length = sizeof (command length) + sizeof(conmand code)
+ sizeof (command id) + sizeof(CRC) + sizeof(data)
= 7 + sizeof(data)

168 © 2007-2010 Analytica GmbH

Appendix F. Technical support

The AnaGate hardware series, software tools and all existing programming interfaces
are developed and supported by Analytica GmbH. Technical support can be requested
as follows:

Internet

EMail

The AnaGate web site [http://www.anagate.de/en/index.html] of Analytica GmbH
contains information and software downloads for AnaGate Library users:

e Product updates featuring bug fixes or new features are available here free of
charge.

If you require technical assistance over the Internet, please send an e-mail to
<support @nagat e. de>

To help us provide you with the best possible support, please keep the following
information and details at hand when you contact our Support Team.

e Version number of the used programming tool or AnaGate library
¢ AnaGate hardware series model and firmware version

e Name and version of the operating system you are using

169 © 2007-2010 Analytica GmbH

http://www.anagate.de/en/index.html
http://www.anagate.de/en/index.html

Bibliography

Books

[LuaRef2006-EN] Roberto Ierusalimschy, Luiz Henrique Figueiredo, and Waldemar Celes.
Copyright © 2006 R. Ierusalimschy, L. H. de Figueiredo, W. Celes. Isbn 85-903798-3-3.
Lua.org. Lua 5.1 Reference Manual.

[LuaProg2006-EN] Roberto Ierusalimschy. Copyright © 2006 Roberto Ierusalimschy, Rio de
Janeiro. Isbn 85-903798-2-5. Lua.org. Programming in LUA (second edition).

Other publications

[NXP-I2C] NXP Semiconductors. Copyright © 2007 NXP Semiconductors. UM10204. 12C-bus
specification and user manual. Rev. 03. 19.06.2007.

[TCP-2010] Analytica GmbH. Copyright © 2010 Analytica GmbH. Manual TCP-IP
communication. Version 1.2.6. 15.05.2008.

[Prog-2010] Analytica GmbH. Copyright © 2010 Analytica GmbH. AnaGate API. Programmer's
Manual. Version 1.4. 01.10.2010.

[CiA-DS301] Copyright © 2002 CAN in Automation (CiA) e. V.. CAN in Automation (CiA) e.V..
13.02.2002. Cia 301, CANopen Application Layer and Communication Profile.

170 © 2007-2010 Analytica GmbH

