
Continuum ParameterNumber of LVs

PR
E

SS

PLS_Toolbox 4.2
Reference Manualf

for use with MATLAB™

Barry M. Wise Jeremy M. Shaver
Neal B. Gallagher Willem Windig
Rasmus Bro R. Scott Koch

 1

Eigenvector Research, Inc., Software License Agreement

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THIS
SOFTWARE. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE
“LICENSEE” - EITHER AN INDIVIDUAL OR AN ENTITY) AND EIGENVECTOR RESEARCH, INC., (“EVRI”)
CONCERNING THE PLS_TOOLBOX COMPUTER SOFTWARE CONTAINED HEREIN (“PROGRAM”), AND THE
ACCOMPANYING USER DOCUMENTATION.

BY USING THE SOFTWARE, YOU ACCEPT THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO
DO SO, RETURN THE UNOPENED SOFTWARE IMMEDIATELY FOR A FULL REFUND.

LICENSE GRANT: This license permits licensee to install and use one copy of the Program on a single computer. If
licensee has multiple licenses for the Program, then Licensee may at any time have as many copies of the Program and its
Electronic Documentation in use as it has licenses. “Use” means that a copy is loaded into temporary memory or installed
into the permanent memory of a computer, except that a copy installed on a network server for the sole purpose of
distribution to other computers is not in “use”. Licensee is responsible for limiting the number of possible concurrent users
to the number licensed. Each copy of the Program may be used on a backup computer (when the original is disabled) or a
replacement computer. Replacements may be either permanent or temporary, at the same or different site as the original
computer. The Hardcopy documentation provided with the Program may not be copied.

Licensee shall use the Program only for its internal operations. “Internal operations” shall include use of the Program in the
performance of consulting or research for third parties who engage Licensee as an employee or independent contractor.
Licensee may allow use of the Program by employees, consultants, students and/or (in the case of individual licensees)
colleagues, but Licensee may not make the Program available for use by third parties generally on a “time sharing” basis.

Licensee may make copies of the Program only for backup or archival purposes. All copies of Program, Electronic
Documentation and Hardcopy Documentation shall contain all copyright and proprietary notices in the originals. Licensee
shall not re-compile, translate or convert “M-files” contained in the Program for use with any software other than
MATLAB®, which is a product of The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098, without express
written consent of EVRI. Licensee shall not re-distribute “M-files” contained in the Program, or any derivative thereof,
without express written consent of EVRI.

Licensee shall take appropriate action by instruction, agreement, or otherwise with any persons permitted access to the
Program, so as to enable Licensee to satisfy the obligations under this agreement.

TERM OF AGREEMENT. This Agreement shall continue until terminated by EVRI or Licensee as provided below.

TERMINATION. EVRI may terminate this license by written notice to Licensee if Licensee (a) breaches any material
term of this Agreement, (b) fails to pay the amount charged for this license within Thirty (30) days after the date due, or (c)
ceases conducting business in the normal course, becomes insolvent or bankrupt, or avails itself of or becomes subject to
any proceedings pertaining to insolvency or protection of creditors. Licensee may terminate this Agreement at any time by
written notice to EVRI. Licensee shall not be entitled to any refund if this Agreement is terminated, except of license fees
paid for any Licensed Product for which the testing period has not expired at the time of termination. Upon termination,
Licensee shall promptly return all copies of the Programs and Documentation in Licensee’s possession or control, or
promptly provide written certification of their destruction.

LIMITED WARRANTY; LIMITATION OF REMEDIES. For a period of ninety (90) days from delivery, EVRI
warrants that (a) the media shall be free of defects, or replaced at no cost to Licensee, and (b) the Program will conform in
all material respects to the description of such Program’s operation in the Documentation. In the event that the Program
does not materially operate as warranted, licensees exclusive remedy and EVRI’s sole liability under this warranty shall be
(a) the correction or workaround by EVRI of major defects within a reasonable time or (b) should such correction or
workaround prove neither satisfactory nor practical, termination of the License and refund of the license fee paid to EVRI
for the Program. THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. EVRI SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOST PROFITS. Licensee accepts
responsibility for its use of the Program and the results obtained therefrom.

 2

LIMITATION OF REMEDIES AND LIABILITY. The remedies described in this License Agreement are your exclusive
remedies and EVRI’s entire liability. IN NO EVENT WILL EVRI BE LIABLE TO YOU FOR ANY DAMAGES,
INCLUDING LOST PROFITS, LOST BENEFITS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES,
RESULTING FROM THE USE OF OR INABILITY TO USE THE PROGRAM OR ANY BREACH OF WARRANTY.
EVRI’s LIABILITY TO YOU FOR ACTUAL DAMAGES FOR ANY CAUSE WHATSOEVER, AND REGARDLESS
OF THE FORM OF ACTION, WILL BE LIMITED TO THE MONEY PAID FOR THE PROGRAM OBTAINED FROM
EVRI THAT CAUSED THE DAMAGES OR THAT IS THE SUBJECT MATTER OF, OR IS DIRECTLY RELATED
TO, THE CAUSE OF ACTION. Some states do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation may not apply to you.

GENERAL PROVISIONS. Licensee may not assign this License without written consent of EVRI, except to an affiliate,
subsidiary or parent company of Licensee. Should any act of Licensee purport to create a claim. lien, or encumbrance on
any Program, such claim, lien, or encumbrance shall be void. All provisions regarding indemnification, warranty, liability
and limits thereon, and protection of proprietary rights and trade secrets, shall survive termination of this Agreement, as
shall all provisions regarding payment of amounts due at the time of termination. Should Licensee install the Programs
outside the United States, Licensee shall comply fully with all applicable laws and regulations relating to export of technical
data. This Agreement contains the entire understanding of the parties and may be modified only by written instrument
signed by both parties.

PAYMENT: Payment is due in United States currency within thirty days of receipt of the Program. Absent appropriate
exemption certificates(s), Licensee shall pay all taxes.

GOVERNMENT LICENSEES. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013.

Licensor is Eigenvector Research, Inc., 3905 West Eaglerock Drive, Wenatchee, WA 98801.

 3

Table of Contents

EIGENVECTOR RESEARCH, INC., SOFTWARE LICENSE AGREEMENT ..1

TABLE OF CONTENTS...3

FORMATS AND CONVENTIONS..4

PLS_TOOLBOX FUNCTIONS..5

DISTRIBUTION FITTING TOOL SET - GENERAL FUNCTIONS ..368

DISTRIBUTION FITTING TOOL SET - DISTRIBUTION FUNCTIONS ..403

 4

Formats and Conventions
The manual for the PLS_Toolbox uses a format consistent with that used for MATLAB. For
additional information on usage see the main PLS_Toolbox manual. The following format is
used in the Reference section:

Purpose Provides short concise descriptions of a PLS_Toolbox command or function.

Synopsis Shows the input/output format of the command or function.

Description Describes what the command or function does and any rules or restrictions
that apply.

Examples Provides examples of how the command or function can be used.

Options Describes advanced options of the command or function.

Algorithm Describes algorithms and routines used within the command or function.

See Also Refers to other related commands or functions in the PLS_Toolbox.

and the following conventions:

Monospace Commands, function names, and screen displays; for example, pca.

Italics Book titles, names of sections in this book, MATLAB toolbox names, and for
introduction of new terms; for example, Chemometrics.

Monospace Optional input variables from PLS_Toolbox functions.

Routines in the PLS_Toolbox follow the convention of having samples in rows and variables
in columns.

 5

PLS_Toolbox Functions

 6

abline
Purpose

Adds a line on the current axes with a given slope and intercept.

Synopsis

h = abline(slope,intercept)
h = abline(slope,intercept,...) %additional linestyle information

Description

ABLINE draws a line on on an existing axes with a given slope, slope, and intercept,
intercept, using the existing x-axis range for values. If a 3D plot is shown, slope and
intercept can be 2-element vectors describing the slope and intercept of the line in the y and z
dimensions. Optional line style information can also be included. For more information on
linestyle information, see the manual page on the line command. The handle of the new
line object is returned.

Examples

abline(3, -1, 'color', 'r', 'linestyle', '--')

plots a dashed red line with a slope of 3 and an intercept of -1 on the axes.

See Also

dp, hline, line, vline

 7

alignmat
Purpose

Alignment of matrices and N-way arrays

Synopsis

[bi,itst] = alignmat(amodel,b);
[bi,itst] = alignmat(a,b,nocomp);

Description

In some cases, data arrays require alignment to aid the performance of the three-way (e.g.
GRAM, or PARAFAC) or unfold models such as MPCA. For example, sometimes GC peaks
or data from batch operations can be shifted on a sample-to-sample basis (each sample is a
Mb by N matrix). In these cases, it is advantageous to choose a sub-matrix of a single matrix
A as a standard and find the sub-matrix of subsequent samples B that best align or match the
standard matrix. It is also possible to use a model of one or more standard matrices Amodel
and find the sub-matrix of subsequent samples B that best align or match the model. In the
latter case, it is also possible to find the sub-array of B that best aligns with the model of a N-
way data set (Amodel). This can be performed along multiple modes using ALIGNMAT.

ALIGNMAT finds the subarray of b, bi, that most matches a using two different algorithms.
For input:

[bi,itst] = alignmat(amodel,b);

the sub-array bi is found using a projection method. In this case, bi is the sub-array of b that
has the lowest residuals on a model of a called amodel. Models for amodel are standard
model structures from PCA, PCR, GRAM, TLD, or PARAFAC. Input b can be class
"double" or "dataset" and must have the same number of modes/dimensions as a with each
element of size(b) ≥ size(a). Alignment is performed for modes with size(b) >
size(a).

For input:

[bi,itst] = alignmat(a,b,ncomp);

both a and b can be class "double" or "dataset", but both are two-way arrays (matrices). For a
M by N then b must be Mb by N where Mb ≥ M (when Mb = M no alignment is performed). The
output bi is the sub-array of b that best matches the matrix a. Optional input ncomp is a
scalar of the number of components to use in the decomposition {default: ncomp = 1}.

Output bi is an array of class "double", itst is a cell array containing the indices of b that
match bi. Note that since interpolation is used the indices in itst are not in general integers.

 8

P

T
MxN

MbxNb

Amodel

B

MbxNb

B

MxN

ABi

Algorithm

For the projection method, Amodel is a model of array A. This can be a model from PCA,
GRAM, TLD, or PARAFAC. For example, if A is a M
by N matrix then the PCA model of A is T= +A TP E
where T is M by K and P is N by K. Alignmat finds the
submatrix of B, Bi, that has the lowest residuals on the

model of A i.e. () 2

,min ,
M jN i

T
i i j

n i m j
i j

++

= =

  = −    
∑ ∑B B I PP .

This can be used to find the data “cube” within N-way
arrays.

In the figure, this is represented as having each of the M
by N sub-matrices of B projected onto the model of the
M by N model of A. Note that in the figure that the size

of B is Mb by Nb with Mb>M and Nb>N.

The projection method was presented in Gallagher, N.B. and Wise, B.M., “Standardization
for Three-Way Analysis”, TRICAP 2000: Three-way Methods in Chemistry and Psychology,
Hvedholm Castle, Faaborg, Denmark, July (2000). In that study, it was found that the
projection method was faster and more robust than the SVD-based algorithm discussed
below.

In the SVD method, the standard matrix A and a sub-matrix of B, Bi, are aumented and a
singular value decomposition of the result is performed such that [u,s,v] =
svd([AMxN|BiMxNb]). The sub-matrix is incremented and the SVD is performed again. The sub-
matrix that minimizes the rank is selected as
matching best. The objective function is

1min(,)

1 1

bM N N ncomp

j j
j ncomp j

R s s
−+

= + =

  
=   

  
∑ ∑ . Note that in this

algorithm N and Nb do not have to be equal. The
algorithm is discussed in Prazen, et al., Anal.
Chem., 70, 218-225, 1998.

See Also

analysis, gram, parafac, pca, tld

 9

alignpeaks
Purpose

Calibrates wavelength scale using standard peaks.

Synopsis

s = alignpeaks(x0,x1,ax,options)
y = alignpeaks(s,y1)

Description

ALIGNPEAKS calibrates a wavelength scale using standard peak positions. Ideally, the axis
scale x0 would apply to a single instrument at time t = 0 and t > 0 or for two different
instruments. However, x1 at t > 0 doesn't typically match x0 at t = 0 even though the
numbers in the scales are identical. The result is that a plot of (x0,y0) and (x0,y1) appear
shifted from one another.

The inputs to ALIGNPEAKS are x0 a 1xK vector containing the axis locations of K peaks on
the standard instrument at t = 0 (e.g., the true wavelengths), x1 a 1xK vector containing the
axis locations of the corresponding peaks on the field / test instrument at t > 0 (e.g., the peak
positions on the field instrument), and ax a 1xN vector containing the axis scale where N >
K. ALIGNPEAKS finds a polynomial fit between x0 and x1 and outputs the result in the
structure array s. The output y is a fit of x1.

Options

Optional input options is a structure array with the following fields:
 name: 'options', name indicating that this is an options structure,
 plots: ['none' | {'final'}] governs level of plotting, and
 order: [{2}] integer giving the polynomial order.

Executing options = alignpeaks('options'); gives an empty options structure.

Example

A measurements at t = 0 gives a spectrum y0 with axis ax, and measurements at t > 0 of the
same sample yields a spectrum y1 with the same axis ax but with peaks shifted. Therefore

plot(ax,y0,'b',ax,y1,'r')

shows a shift in the peaks. The peak positions at t = 0 are listed in x0 and the peak positions
at t > 0 are listed in x1. The polynomial fit is given by

s = alignpeaks(x0,x1,ax);

 10

and the transformed spectrum is obtained with

y10 = alignpeaks(s,y1);

so that

plot(ax,y0,'b',ax,y1,'r')

shows less of a peak shift. See alignpeaksdemo.

See Also

alignmat, alignspectra, registerspec, stdgen

 11

alignspectra
Purpose

Calibrates wavelength scale using a standard spectrum.

Synopsis

[s,y] = alignspectra(x0,y0,y1,win,mx2,options)
y = alignspectra(s,y1);

Description

ALIGNSPECTRA calibrates a wavelength scale using a standard spectrum and a piece-wise
shifting that maximizes correlation between windows on the standard spectrum to windows
on the test spectrum. Ideally, the axis scale would be the same for all time and all
instruments, however it can be necessary to calibrate the axis scale. This calibration is often
done somewhat manually using known standard peak positions (see ALIGNPEAKS). In the
ALIGNSPECTRA function a standard is measured on both the standard instrument with
spectrum y0 and the field instrument with spectrum y1. The transform is based on a
polynomial fit of the center channel of a window of channels (window size win) on the field
instrument that best correlates with a similar sized window of channels on the standard
instrument. The window on the field instrument is allowed to shift a maximum of mx2
channels.

The inputs to ALIGNSPECTRA are x0 a 1xN vector containing the axis scale of the standard
instrument at t = 0 (e.g., the true wavelengths), y0 a 1xN spectrum measured on the standard
instrument at t = 0, y1 a 1xN spectrum measured on the field instrument at t > 0, a window
width of channels on the axis scale win, and the maximum number of channels to shift mx2.

Options

Optional input options is a structure array with the following fields:
 name: 'options', name indicating that this is an options structure.
 plots: ['none' | {'final'}] governs level of plotting.
 interpolate: ['none' | {'linear'} | 'cubic'] dictates the interpolation scheme

used when shifting the window. 'none' uses the coarse scale given by
x0. Using other interpolation schemes can significantly increase the time
required for computation (the algorithm calls the function INTERP1).

 order: [{2}] integer giving the polynomial order.

Executing options = alignspectra('options'); gives an empty options structure.

Example

A measurements at t = 0 gives a spectrum y0 with axis ax, and measurements at t > 0 of the
same sample yields a spectrum y1 with the same axis ax but with peaks shifted. Therefore

 12

plot(ax,y0,'b',ax,y1,'r')

shows a shift in the peaks. The peak positions at t = 0 are listed in x0 and the peak positions
at t > 0 are listed in x1. The polynomial fit is given by

s = alignspectra(x0,y0,y1,25,7); %or
[s,y10] = alignspectra(x0,y0,y1,25,7);

and the transformed spectrum is obtained with

y10 = alignspectra(s,y1);

so that

plot(ax,y0,'b',ax,y1,'r')

shows less of a peak shift. See alignspectrademo.

See Also

alignmat, alignpeaks, registerspec, stdgen

 13

als
Purpose

Alternating Least Squares computational engine for multivariate curve resolution (MCR).

Synopsis

[c,s] = als(x,c0,options);

Description

ALS decomposes a matrix X as CS such that X = CS + E where E is minimized in a least
squares sense.

Inputs are the matrix to be decomposed x (size m by n), and the initial guess c0. If c0 is size m
by k, where k is the number of factors, then it is assumed to be the initial guess for C. If c0 is
size k by n then it is assumed to be the initial guess for S (If m=n then, c0 is assumed to be
the initial guess for C).

An optional input options is described below.

The outputs are the estimated matrix c (m by k) and s (k by n). Usually c is a matrix of
contributionss and s is a matrix of spectra. The function

[c,s] = als(x,c0)

will decompose x using an non-negatively constrained alternating least squares calculation.
To include other constraints, use the options described below.

Note that if no non-zero equality constraints are imposed on a factor the spectra are
normalized to unit length. This can lead to significant scaling differences between factors
that have non-zero equality constraints and those that do not.

 14

Options
 display: ['off' | {'on'}] governs level of display to command window,
 plots: ['none' | {'final'}] governs level of plotting,
 ccon: ['none' | 'reset' | {'fastnnls'}] non-negativity on contributionss,

 (fastnnls = true least-squares solution)
 scon: ['none' | 'reset' | {'fastnnls'}] non-negativity on spectra,

 (fastnnls = true least-squares solution)
 cc: [] contributions equality constraints, must be a matrix with M rows and

up to K columns with NaN where equality constraints are not applied
and real value of the constraint where they are applied. If fewer than K
columns are supplied, the missing columns will be filled in as
unconstrained,

 ccwts: [inf] a scalar value or a 1xK vector with elements corresponding to
weightings on constraints (0, no constraint, 0<wt<inf imposes constraint
"softly", and inf is hard constrained). If a scalar value is passed for
ccwts, that value is applied for all K factors,

 sc: [] spectra equality constraints, must be a matrix with N columns and up
to K rows with NaN where equality contraints are not applied and real
value of the constraint where they are applied. If fewer than K rows are
supplied, the missing rows will be filled in as unconstrained.

 scwts: [inf] weighting for spectral equality constraints (see ccwts)
 sclc: [] contributions scale axis, vector with M elements otherwise 1:M is

used,
 scls: [] spectra scale axis, vector with N elements otherwise 1:N is used,
 condition: [{'none'}| 'norm'] type of conditioning to perform on S and C before

each regression step. 'norm' conditions each spectrum or contributions to
its own norm. Conditioning can help stabilize the regression when
factors are significantly different in magnitude.

 tolc: [{1e-5}] tolerance on non-negativity for contributionss,
 tols: [{1e-5}] tolerance on non-negativity for spectra,
 ittol: [{1e-8}] convergence tolerance,
 itmax: [{100}] maximum number of iterations,
 timemax: [{3600}] maximum time for iterations,
 rankfail: ['drop' |{'reset'}| 'random' | 'fail'] how are rank deficiencies handled:
 drop - drop deficient components from model
 reset - reset deficient components to initial guess
 random - replace deficient components with random vector
 fail - stop analysis, give error

 15

Examples

To decompose a matrix x without non-negativity constraints use:

options = als(‘options’);
options.ccon = ‘none’;
options.scon = ‘none’;
[c,s] = als(x,c0,options);

The following shows an example of using soft-constraints on the second spectral component
of a three-component solution assuming that the variable softs contains the spectrum to
which component two should be constrained.

[m,n] = size(x);
options = als(‘options’);
options.sc = NaN*ones(3,n); %all 3 unconstrained
options.sc(2,:) = softs; %constrain component 2
options.scwts = 0.5; %consider as ½ of total signal in X
[c,s] = als(x,c0,options);

See Also

mcr, parafac, pca

 16

analysis
Purpose

Graphical user interface for data analysis.

Synopsis

analysis

Description

Performs various analysis methods including PCA, MCR, PARAFAC, Cluster, PLS, PCR,
PLSDA, and SIMCA using a graphical user interface. Typical operations for file
manipulation, preprocessing, and Analysis selection can be found in the menu items of the
figure. Once data has been loaded and an Analysis selected, the Toolbar will populate with
appropriate buttons for the Analysis. Plots created by the Toolbar buttons will bring up a plot
figure window as well as a plot controls window. Use the plot controls window to manipulate
the plot figure.

Note: For more information see Chapter 5 of the PLS_Toolbox Manual.

See Also

browse, cluster, mcr, parafac, pca, pcr, pls

 17

anova1w
Purpose

One way analysis of variance.

Synopsis

anova1w(dat,alpha)

Description

Calculates one way ANOVA table and tests significance of between factors variation (it is
assumed that each column of the data represents a different treatment). Inputs are the data
table dat and the desired confidence level alpha, expressed as a fraction (e.g. 0.95, 0.99, etc.).
The output is an ANOVA table written to the command window.

See Also

anova2w, ftest, statdemo

 18

anova2w
Purpose

Two way analysis of variance.

Synopsis

anova2w(dat,alpha)

Description

Calculates two way ANOVA table and tests significance of between factors variation (it is
assumed that each column of the data represents a different treatment) and between blocks
variation (it is assumed that each row represents a block). Inputs are the data table dat and
the desired confidence level alpha, expressed as a fraction (e.g. 0.95, 0.99, etc.). The output
is an ANOVA table written to the command window.

See Also

anova1w, ftest, statdemo

 19

areadr
Purpose

Reads ASCII text file into workspace and strips off header.

Synopsis

out = areadr1(file,nline,nvar,flag)

Description

Inputs are (file) an ASCII string containing the file name to be read, (nline) the number of
rows to skip before reading or a character string containing the last few characters before the
first number to be read (used to skip the header information), (nvar) the number of rows or
columns in the matrix to be read, and (flag) which indicates whether (nvar) is the number of
rows (flag=1) or the number of columns (flag=2) in the matrix.

AREADR can be incorporated into other routines to read data directly from groups of files. For
example, to read the file mydata.txt with a 5 line header and 8 columns in the data into the
matrix mymatrix:

mymatrix = areadr('mydata.txt',5,8,2)

Given header information in a text file with the following contents:

HEADER INFORMATION
HEADER ONE
HEADER TWO
END OF HEADER INFORMATION

1 2 1 2
2 3 2 3
3 4 3 4
4 5 4 5

The following command will read the 4 rows of data following the character string "END OF
HEADER INFORMATION":

mymatrix = areadr('mydata.txt','END OF HEADER INFORMATION',4,1)

For an automatic text file parser which can handle this type of file without knowing the
format, see xclreadr.

See Also

dlmread, import, spcreadr, xclgetdata, xclputdata, xclreadr, xlsreadr

 20

auto
Purpose

Autoscales a matrix to mean zero and unit variance.

Synopsis

[ax,mx,stdx,msg] = auto(x,options)
[ax,mx,stdx,msg] = auto(x,offset)
options = auto('options')

Description

[ax,mx,stdx] = auto(x) autoscales a matrix x and returns the resulting matrix ax with
mean-zero unit variance columns, a vector of means mx and a vector of standard deviations
stdx used in the scaling. Output msg returns any warning messages. If missing data NaNs are
found, the available data is autoscaled if the fraction missing is not above the thresholds
specified below. mx and stdx can be used to scale new data (see SCALE).

Options
 options = a structure array with the following fields:
 offset: scaling can use standard deviation plus an offset {default = 0},
 display: [{'off'}| 'on'] governs level of display to the command window,
matrix_threshold: fraction of missing data allowed based on entire matrix (x) {default

= 0.15}, and
column_threshold: fraction of missing data allowed base on a single column {default =

0.25}.
 algorithm: [{'standard'} | 'robust'] scaling algorithm. 'robust' uses MADC

for scaling and median instead of mean. Should be used for robust
techniques,

 stdthreshold: [0] scalar or vector of standard deviation threshold values. If a
standard deviation is below its corresponding threshold value, the
threshold value will be used in lieu of the actual value. Note that the
actual standard deviation is always returned, whether or not it exceedes
the threshold. A scalar value is used as a threshold for all variables,

 badreplacement: [0] value to use in place of standard deviation values of 0 (zero). Typical
values used with the following effects:

 0 = Any value in given variable is set to zero. Variable is effectively
excluded (but still expected by model). This is also the behavior when
badreplacement = inf.

 1 = Values different from mean of the given variable are flagged in Q
residuals with no reweighting.

 21

 Values >0 and <inf give the variable different weighting in the Q
residuals (values >1 down-weight the bad variables for Q residual
calculations, values <1 up-weight the bad variables.).

If the input (offset) is a scalar then, this is used as the offset value with other options set at
their default values.

The optional input offset is added to the standard deviations before scaling and can be used to
suppress low-level variables that would otherwise have standard deviations near zero.

The default options can be retreived using: options = auto('options');.

See Also

gscale, medcn, mncn, normaliz, npreprocess, regcon, rescale, scale, snv

 22

autoimport
Purpose

Automatically reads specified file. Handles all standard filetypes.

Synopsis

autoimport(filename,methodname,options)
[data,name,source] = autoimport(filename,methodname,options)

Description

Automatically identifies a filetype and calls the appropriate reader. If no filename is
provided, the user is prompted for a desired filetype to browse for. If no filename is provided
but a specific filetype is provided, the user is prompted for a file of the given type.

If output is requested, the loaded item(s) is/are returned as a single output. If no outputs are
requested, the items are loaded into the base workspace or other action as defined by the
options structure.

Options
 options = a structure array with the following fields:
 target: [{'workspace'} | 'analysis' | 'editds'] Target for file load. If

'workspace', file contents are loaded into base workspace (the default
behavior). If 'analysis', file contents are automatically dropped into an
empty Analysis GUI interface. If 'editds', file contents are loaded into a
DataSet editor.

 defaultmethod: [{'prompt'} | 'string' | 'error' | methodname] governs how
to handle input (filename) when no recognizable file extension can be
found. 'prompt' prompts the user to identify the appropriate importer,
'string' interprets the input as a string, 'error' returns an error. Any other
valid methodname can also be provided (use autoimport('methods') to
get list of valid methods),

 error: ['error' | {'gui'}] governs how to handle errors during imports.
'error' returns an untrapped error, 'gui' traps the error and presents an
error dialog to the user.

See Also
imageload, jcampreadr, parsexml, spcreadr, xclreadr, xyreadr

 23

autocor
Purpose

Calculates the autocorrelation function of a time series.

Synopsis

acor = autocor(x,n,period,plots)

Description

acor = autocor(x,n) returns the autocorrelation function acor of a time series x for a
maximum time shift of n sample periods.

acor = autocor(x,n,period) uses the sampling period period to scale the x-axis on the
output plot. period can be empty [].

The optional input plots suppresses plotting if set to 0.

See Also

corrmap, crosscor

 24

b3spline
Purpose

Univariate spline fit and prediction.

Synopsis

modl = b3spline(x,y,t,options);
pred = b3spline(x,modl,options);
valid = b3spline(x,y,modl,options);

Description

Curve fitting using second order splines where

yi = f(xi) for i=1,...,M.

See (options.algorithm) for more information.

INPUTS:
 x = Mx1 vector of independent variable values.
 y = Mx1 vector of corresponding dependendent variable values.
 t = defines the number of knots or knot positions.
 = 1x1 scalar integer defining the number of uniformly distributed

INTERIOR knots. There will be t+2 knots positioned at:
 modl.t = linspace(min(x),max(x),t+2)';
 = Kx1 vector defining manually placed knot positions,
 where modl.t = sort(t);
 Note that knot positions need not be uniform, and that t(1) can be

<min(x) and t(K) can be >max(x).

Note that knot positions must be such that there are at least 3 unique data points between
each knot: tk,tk+1 for k=1,...,K.

OUTPUTS:
 modl = standard model structure containing the spline model (See

MODELSTRUCT).
 pred = structure array with predictions.
 valid = structure array with predictions.

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'] level of display to command window.

 25

 plots: [{'final'} | 'none'] governs level of plotting. If 'final' and
calibrating a model, the plot shows plot(xi,yi) and plot(xi,f(xi),'-') with
knots.

 algorithm: [{'b3spline'} | 'b3_0' | 'b3_01'] fitting algorithm
 'b3spline': fits quadradic polynomials f{k,k+1} to the data between

knots tk, k=1,...,K, subject to:
 f{k,k+1}(tk+1) = f{k+1,k+2}(tk+1) and
 f'{k,k+1}(tk+1) = f'{k+1,k+2}(tk+1) for k=1,...,K-1.
 'b3_0': is the same as 'b3spline' but also constrains the ends to 0:

f{1,2}(t1) = 0 and f{K-1,K}(tK) = 0.
 'b3_01': is 'b3_0' but also constrains the derivatives at the ends to 0:

f'{1,2}(t1) = 0 and f'{K-1,K}(tK) = 0.

 order: positive integer for polynomial order {default = 1}.

The default options can be retreived using: options = baseline('options');.

See Also

 26

baseline
Purpose

Subtracts a baseline offset from spectra.

Synopsis

[newspec,b] = baseline(spec,freqs,range,options);
spec = baseline(newspec,freqs,b,options);

Description

This function baselines spectra with a polynomial baseline function. The baseline function is
fit to user-specified regions (regions free of peaks), which is then subtracted from the
original spectra.

Inputs are spec class “double” or “dataset” containing the spectra, freqs the wavenumber or
frequency axis vector, and range which specifies the baselining regions (see below). If
freqs is omitted and spec is a dataset, the axissscale from the dataset will be used;
otherwise a linear vector will be used.

range can be either an m by 2 matrix which specifies m baselining regions or a logical
vector equal in length to the spectra with a 1 (one) at each point to be used as baseline and 0
(zero) elsewhere.

The output newspec contains the baselined spectra and b the polynomial coefficients.

If b is input instead of range with baselined spectra newspec then the output spec is a matrix
original “unbaselined” spectra.

Options
 options = a structure array with the following fields:
 plots: [{'none'} | 'final'] governs plotting of results, and
 order: positive integer for polynomial order {default = 1}.

The default options can be retreived using: options = baseline('options');.

See Also

baselinew, deresolv, lamsel, lsq2top, normaliz, polyinterp, savgol,
savgolcv, specedit, stdgen, wlsbaseline

 27

baselinew
Purpose

Baseline using windowed polynomial filter.

Synopsis

[y_b,b_b]= baselinew(y,x,width,order,res,options)

Description

BASELINEW fits a polynomial "baseline" to the bottom (or top) of a curve (e.g. a spectrum) by
recursively calling LSQ2TOP. It uses a windowed approach and can be considered a filter or
baseline (low frequency) removal algorithm. The window width required depends on the
frequency of the low frequency component (baseline). Wide windows and low order
polynomials are often used. See LSQ2TOP for more details on the polynomial fit algorithm.

Inputs include the curve(s) to be fit (dependent variable) y, the axis to fit against (the
independent variable) x [e.g. y = P(x)], the window width width (an odd integer), the
polynomial order order, and an approximate noise level in the curve res. Note that y can
be MxN where x is 1xN. The optional input options is discussed below.

Output y_b is a MxN matrix of ROW vectors that have had the baselines removed, and
output b_b is a matrix of baselines. Therefore, y_b is the high frequency component and b_b
is the low frequency component.

INPUTS:
 y = matrix of ROW vectors to be baselined, MxN [class double].
 x = axis scale, 1xN vector {if empty it is set to 1:N}.
 width = window width specifying the number of points in the filter {if (width) is

empty no windowing is used}.
 order = order of polynomial [scalar] to fit {if (order) is empty (options.p) must

not be empty; see below}.
 res = approximate fit residual [scalar] {if empty it is set to 5Found of fit of all

data to x}.

Examples

If y is a 5 by 100 matrix then
y_b = baselinew(y,[],25,3,0.01);

gives a 5 by 100 matrix y_b of row vectors that have had the baseline removed using a 25-
point cubic polynomial fit of each row of y.

If y is a 2 by 100 matrix then
y_b = baselinew(y,x,51,3,0.01);

 28

gives a 2 by 100 matrix y_b of row vectors that have had the baseline removed using a 51-
point second order polynomial fit of each row of y to x.

Options
 options = structure array with the following fields:
 display : ['off' | {'on'}] governs level of display to command window.
 trbflag : ['top' | {'bottom'}] top or bottom flag, tells algorithm to fit the

polynomials, y = P(x), to the top or bottom of the data cloud.
 tsqlim: [0.99] limit that governs whether a data point is significantly outside

the fit residual defined by input res.
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one

of the stopping criterion is met: [(relative tolerance) (absolute tolerance)
(maximum number of iterations) (maximum time [seconds])].

See Also

baseline, lamsel, lsq2top, mscorr, savgol, stdfir, wlsbaseline

 29

batchdigester

Purpose

Parse wafer or batch data into MPCA or Summary PCA form.

Synopsis

[out,options] = batchdigester(data,options);
batchdigester %prompt user for input and output

Description

Rearranges and optionally summarizes two-way dataset of batch or wafer data. Input data
must be a DataSet object containing labels which identify different wafers or batches which
should be split out of the data. Classes in data are (optionally) used to split each time profile
of the batch/wafer into steps which can then be selected for inclusion in the output.

MPCA mode: If data is rearranged into MPCA data, each wafer/batch is arranged as one slab
of a 3-way matrix. Each row is a time point and each column is one of the original variables.
Only selected steps are included in the output.

Summary PCA mode: If data is summarized into Summary PCA data, all time points for a
given step in a given wafer are summarized using one or more statistics:

 Mean
 Standard Deviation
 Minimum
 Maximum
 Range
 Slope
 Length (of step)

The time profile for each original variable is summarized using the given statistic(s) and
turned into a single variable (column) of the output data. If steps are used, this is repeated for
each step segment (each creating a new, separate variable in the output). Each wafer/batch is
thus a single row of the output data with all of the steps and original variables summarized as
new variables.

Outputs are the digested data, out, and the options which can be used to reproduce the
digestion process, options (see below).

Options
 options = structure with one or more of the following fields:
 display : ['off' | {'on'}] governs level of display to command window.

 30

 object : { 'batch' | 'wafer' } A string specifying the type of object being
digested. This is used for display ONLY. The same algorithms are used
in both cases but this option allows customization of the wording in the
user prompts.

 stepclassname : A string specifying the name of the class which should be used to
indicate steps in the process.

 stepsdesired : A vector of steps which should be included in the digestion.
 labelname : A string specifying the name of the label set which should be used to

split data into batches/wafers. Use the keyword 'fixed' to specify that
the batches are of fixed length and can be split using the nbatches
option.

 nbatches : The number of equally-sized batches to split the data into. Used ONLY
when labelname is 'fixed'.

 digestiontype : ['mpca' | 'spca'] Specifies which digestion algorithm to use on
the data.

 statistics : A cell specifying the statistics to be used on the data. Used ONLY when
digestiontype = 'spca';

If sufficent information is provided in these options, the processing of data will be automatic
and the user will not have to answer any responses in the GUIs. Otherwise, only prompts for
missing information will be given. The options which can be used to re-process using a given
digestion "recipe" will be returned as the second output to any digestion request.

See Also

mpca, pca

 31

browse

Purpose

PLS_Toolbox Toolbar and Workspace browser.

Synopsis

browse

Description

BROWSE provides a graphical interface for tools, variables and figures used by PLS_Toolbox.
Data items can be dragged onto shortcuts, or into other windows to "load" the data. Data can
be dragged to other data items to "augment" these items or can be double-clicked to open in
an editor.

See Also

analysis, editds

 32

builddbstr
Purpose

Builds a database connection string.

Synopsis

str = builddbstr(dbstruct,options)

Description

This function is unsupported and is meant as a "simple" database connection tool. For more
sophisticated connection tools and full support please see the Matlab Database Toolbox.

It is generally recommended that one use a Microsoft DSN (Data Source Name) to establish
connection on Window platforms. These types of connections tend to be easier to maintain
and more secure. For more information on DSN, see the Windows help entry for “ODBC”.
Unix platforms should use JDBC, JDBC with MySQL is a "predefined" method and is
known to work with the MySQL JDBC 3.51 Driver.

Input (dbstruct) can be:

1) A structure containing necessary information to construct one of the predefined
connections listed below. The output will be a properly formatted connection string.

2) A string indicating a predefined structure to return. The output will be a structure
containing predefined values along with empty fields that may need to be filled in. Fill in the
EMPTY fields as needed and the connection should work. The 'user' and 'pw' fields are
always present but may not be needed. This structure can be passed directly to querydb.m.

3) A structure with additional arg.value substructure fields necessary for a connection to a
non-predefined database connection. The output will be a properly formatted connection
string.

 Input: (structure containing the following fields)

 A connection will require one of more of the following fields. Empty values are not used.
 provider : only used by ADODB object so this will always be 'MSDASQL'.
 driver : driver to be used for connection (these must be currently installed on the

machine, use the ODBC Manager from Administrative Tools to view
currently available drivers on your machine. JDBC must have driver
installed on Matlab class path

 dbname : database name (or service name).
 user : user to connect in as, if empty not used.
 pw : password for user, if empty not used.

 33

 location : File location on local system (e.g. c:\temp\mydb.mdb). Used for
connecting to local Access databases.

 server : IP address for database (default location is 'localhost').
 dsn : Data Source Name (set up on local computer using ODBC Manager

from Administrative Tools). If the database connection remains static,
this can be a simple way to manage the connection. See the "ODBC"
topic in Windows help for more information on DSN.

 arg.name : sub structure of additional arguments. This value must be a sting of
exactly what is required in the database connection string.

 arg.value : sub structure of additional arguments. This value must be a sting of
exactly what is required in the database connection string.

 EXAMPLE:
 cnn.arg(1).name = 'PORT';
 cnn.arg(1).value = '3306';
 cnn.arg(2).name = 'SOCKET';
 cnn.arg(2).value = '123';

 Predefined Database Connections:

1) Microsoft Access : 'access' Uses standard connection provided with windows (Microsoft
Access Driver (*.mdb)) and doesn't require UserID or PW if database doesn't have them
defined.

2) Microsoft SQL Server : 'mssql' Not tested.

3) MySQL : 'mysql' Uses (MySQL ODBC 3.51 Driver) form mysql website. Must be
downloaded and installed before making connection.

4) Data Source Name : 'dsn' Uses a Data Source Name defined in Windows ODBC Data
Source Administrator dialog box. Although 'user' and 'pw' are returned in the structure they
are generally not needed for DSN connections, this information is usually resides in the DSN
itself.

5) MySQL(JDBC) : 'jmysql' Uses (MySQL JDBC 3.51 Driver) form mysql website. Must be
downloaded and installed before making connection. The driver jar file must be added to the
Matlab java classpath.

6) All : 'all' Show all available fields.

Options
 isodbc: [{ 1 } | 0] Use ODBC connection string formatting. This should be set

to 0 if using JDBC.

 34

Examples

Examples of building connection strings on a Windows machine for use with the querydb
function. For Oracle and other database connections, try using DSN.

Microsoft Access on local machine:

>> cnstr = builddbstr('access')
cnstr =
 provider: 'MSDASQL'
 driver: '{Microsoft Access Driver (*.mdb)}'
 location: ''
 user: ''
 pw: ''

>> cnstr.location = 'c:\temp\mydb.mdb';

MySQL on remote machine:

>> cnstr = builddbstr('mysql')
cnstr =
 provider: 'MSDASQL'
 driver: 'MySQL ODBC 3.51 Driver'
 server: ''
 dbname: ''
 user: ''
 pw: ''
>> cnstr.server = 'mydatabase.mywebsite.com';
>> cnstr.dbname = 'mydatabase';
>> cnstr.user = 'myname';
>> cnstr.pw = 'mypw';

MySQL on remote machine (JDBC on Windows):

>> cnstr = builddbstr('jmysql')
cnstr =
 driver: 'com.mysql.jdbc.Driver'
 server: ''
 dbname: ''
 user: ''
 pw: ''
>> cnstr.server = 'mydatabase.mywebsite.com';
>> cnstr.dbname = 'mydatabase';
>> cnstr.user = 'myname';
>> cnstr.pw = 'mypw';

 35

DSN (Data Source Name):

>> cnstr = builddbstr('dsn')

cnstr =
 provider: 'MSDASQL'
 dsn: ''
 user: ''
 pw: ''
>> cnstr.dsn = 'dsnname';

See Also

querydb, parsemixed

 36

calibsel
Purpose

Stepwise variable selection (user contributed).

Synopsis

channel = calibsel(x,y,alpha,flag)

Description

CALIBSEL performs the variable selection procedure described in Brown, P.J., Spiegelman,
C.H., and Denham, M.C., “Chemometrics and spectral frequency selection”, Phil. Trans. R.
Soc. Land. A 337, 311-322, (1991).

Inputs are the calibration spectra x and concentrations y, significance level for chi-square test
alpha, and a variable flag that allows the user to modify how the routine iterates. The
output channel is a vector of indices corresponding to selected channels/wavelengths in y.

See Also

fullsearch, gaselctr, genalg

 37

caltransfer
Purpose

Create or apply calibration and instrument transfer models.

Synopsis

[transfermodel,x1t,x2t] = caltransfer(x1,x2,method,options)
x2t = caltransfer(x2,transfermodel,options)
[transfermodel,x1t,{x2t_1 x2t_2 x2t_3}] =
 caltransfer(x1,{{x2_1 x2_2 x2_3},method,options)
{x2t_1 x2t_2 x2t_3} =
 caltransfer({x2_1 x2_2 x2_3},transfermodel,options)

Description

CALTRANSFER uses one of the several transfer functions (methods) available in PLS_Toolbox
to return a model and transformed data. The exact I/O is dictated by the transfer function
(method) used.

INPUTS:
 x1 = (2-way array class "double" or "dataset") calibration data (e.g., spectra

from the standard instrument).
 x2 = (2-way array class "double" or "dataset") data to be transformed (e.g.,

spectra from the instrument to be standardized).
 method = (string) indicating which calibration transfer function (method) to use.
 Choices are:
 'ds' : Direct Standardization
 'pds' : Piecewise Direct Standardization
 'dwpds' : Double Window Piecewise Direct Standardization
 'glsw' : Generalized Least-Squares Weighting
 'osc' : Orthogonal Signal Correction
 'alignmat' : Matrix Alignment

OUTPUTS:
 transfermodel = standard model structure containing the Calibration Transfervmodel

(See MODELSTRUCT).
 x1t = Calibration data returned. Depending on the type of calibration function

(method) used this may or may not be transformed from the input data
(x1).

 x2t = Transformed data.

 38

Options
 options = structure array with the following fields:
 display : ['off' | {'on'}] governs level of display to command window.
 blockdetails : ['compact' | {'standard'} | 'all'] extent of data included in

model. 'standard' = none, 'all' x-block.
 preprocessing : {[] []} Preprocessing structures for x and y blocks (see

PREPROCESS).

NOTE: There are sub structures for each 'method'. These sub structures include both the
input parameters (any additional inputs needed by the function) as well as optional inputs
(the options structure for that particular function). For more information on inputs to each
method see the help for that function (e.g., help stdgen). Examples of using the substructures:

 Example: OSC requires a "y" block in addition to x1 and x2. The y-block should

be assigned via the options structure:
 opts.osc.y = yblock;
 Example: To assign window widths for DWPDS:
 options.dwpds.win = [5 3];

See Also

alignmat, glsw, oscapp, osccalc, stdgen, stdize

 39

cellne
Purpose

Element by element comparison of two cells for inequality.

Synopsis

out = cellne(c1,c2)

Description

CELLNE compares the two cell inputs, c1 and c2, for inequality. If the cell arrays are the same
size, the corresponding cell elements are compared and a similarly sized array of logical
(boolean) values, out, is returned. The array out contains a one if the two cell elements were
not equal (different variable type or contents) and a zero if the two cell elements were equal.

If the cell sizes do not match, the function returns a single logical value of 1.

See Also

comparevars

 40

centerfigure
Purpose

Places a given figure into a centered default position.

Synopsis

centerfigure(fig)
centerfigure(fig,targfig)

Description

Given a figure handle, CENTERFIGURE positions the figure based on the height and width
of the figure and the default figure position.

If second input 'targfig' is given then CENTERFIGURE tries to place the fig centered on top
of targfig.

See Also

positionmanager

 41

chilimit
Purpose

Chi-squared confidence limits from sum-of-squares residuals.

Synopsis

[lim,scl,dof] = chilimit(ssqr,cl)
lim = chilimit(scl,dof,cl)

Description

CHILIMIT determines a confidence limit for sum-of-squares residuals, ssqr, by fitting the
residuals to the g Chi-squared h distribution. If the sum-squared residuals are reasonably
approximated by a Chi-squared distribution this gives a very good estimate of the confidence
level. However, it has been observed that outliers can significantly bias the estimate.

The standard call to CHILIMIT uses the sum of squares residuals ssqr, and the optional
fractional confidence level requested, cl {default = 0.95}. Outputs are the calculated limit
lim, the scaling determined from the residuals scl, and the degrees of freedom determined
from the residuals dof.

The scaling, scl, and number of degrees of freedom, dof, returned from a previous call to
CHILIMIT can be used in subsequent calls to CHILIMIT to obtain new limits without the
original residuals.

See Also

jmlimit, pca, pcr, pls, residuallimit

 42

choosencomp
Purpose

GUI to select number of components from a PCA sum-of-squares captured table.

Synopsis

ncomp = choosencomp(model)

Description

The input model can be a standard PCA model structure or just a sum-of-squares (SSQ)
captured table from a PCA model. CHOOSENCOMP creates a GUI that displays the SSQ table
and allows the user to select the number of principal components (ncomp) from the list.

The returned value, ncomp, is the number of selected components or an empty value [] if the
user selected Cancel in the GUI.

See Also

analysis, pca, pcaengine, simca

 43

class2logical
Purpose

Create a PLSDA logical block from class assignments.

Synopsis

[y,nonzero] = class2logical(class,groups)

Description

Given a list of sample classes or a DataSet object with class assignments for samples (mode
1), CLASS2LOGICAL creates a logical array in which each column of y contains the logical
class membership (i.e. 1 or 0) for each class. This logical block can be used as the input y in
PLS or PCR to perform discriminate analysis. Similarly, the output can be used with crossval
to perform PLSDA cross-validation. Classes can optionally be grouped together by providing
class groupings.

Inputs are class a list of class assignments, or a dataset with classes for first mode, and
groups an optional input containing either:

 [1 2 3 …] a vector of classes to model OR

 {[1 2] [3 4] ...} a cell array containing groups of classes to consider as one class. Each cell
element will be one class (see e.g. below)

Any classes in class which are not listed in groups are considered part of no group and will
be assigned zero for all columns in the output.

Outputs are y a logical array in which each column represents one of the classes in the input
class list or one of the groups in groups and nonzero the indices of samples with non-zero
class assignment.

 44

Examples

(A) Given DataSet "arch" with classes 0-5, the following creates a logical block with two
columns consisting of "true" only for class 3 in the first column and "true" only for class 2 in
the second column.

y = class2logical(arch,[3 2])

(B) Given DataSet "arch" with classes 0-5, the following creates a logical block with two
columns consisting of "true" only for classes 0 and 1 in the first column and "true" only for
classes 2 and 4 in the second column.

y = class2logical(arch,{[1 0] [2 4]})

See Also

crossval, plsda, plsdthres

 45

cluster
Purpose

Agglomerative and K-means cluster analysis with dendrograms..

Synopsis

[results,fig] = cluster(data,labels,options)
[results,fig] = cluster(data,options)
options = cluster('options')

Description

cluster(data) performs a cluster analysis using either one of six different agglomerative
methods (including K-Nearest-Neighbor (KNN), furthest neighbor, and Ward's method) or
K-means clustering algorithm and plots a dendrogram. The input is data (class double or
dataset).

Optional input labels can be used to put labels on the dendrogram plots. For data M by N
then labels must be a character array with M rows. When labels is not specified and data is
class “double”, the dendrogram is plotted using sample numbers. When labels is not
specified and data is class “dataset”, the dendrogram is plotted using sample labels. If the
labels field is empty it will use sample numbers.

The output is a dendrogram showing the sample distances.

Note: Calling cluster with no inputs starts the graphical user interface (GUI) for this
analysis method.

OUTPUTS:

The outputs are (results) a structure containing results of the clustering (defined below) and
the handle (fig) to any plot created. The results structure will contain the following fields:
 dist : the distance threshold at which each cluster forms.
 class : the classes of each sample (columns of class) for each distance (rows of

class).
 order : the order of the samples which locates similar samples nearest to each

other (this is the order used for the plots).
 linkage : a table of linkages where each row indicates a linkage of one group to

another. Each row in the matrix represents one group. The first two
columns indicate the sample or group numbers which were linked to
form the group. The final column indicates the distance between linked
items. Group numbers start at m+1 (where m is the number of samples
in the input dat matrix) thus, row j of this matrix is group number m+j.
This matrix can be used with the statistics toolbox dendogram function.

 46

The (results.class) matrix can be used with the (results.dist) matrix to determine clusters of
samples for any distance using:

results = cluster(data); %do cluster
ind = max(find(results.dist<threshold)); %user-desired threshold
thisclass = results.class(ind,:); %grab arbitrary classes

Options
 options = a structure array with the following fields:
 plots: ['none' | {'final'}] Governs plotting. When set to 'none', the

distance/cluster matrix is returned, 'final' returns a dendrogram plot
showing sample distances.

 algorithm: [] clustering algorithm,
 'knn' {DEFAULT}: K-Nearest Neighbor
 'fn' : Furthest Neighbor
 'avgpair' : Average Paired Distance
 'med' : Median
 'cnt' : Centroid
 'ward' : Ward's Method
 'kmeans' : K-means
 preprocessing: {[]} Preprocessing structure or keyword (see PREPROCESS),
 pca: [{'off'} | 'on'] if ‘on’ then CLUSTER performs PCA first and

clustering on the scores,
 ncomp: [] number of PCA factors to use {default = [], the user is prompted to

select the number of factors from the SSQ table},
 mahalanobis: [{'off'} | 'on'] if ‘on’ then a Mahalanobis distance on the scores

is used,
 slack: [0] integer number indicating how many samples can be "overridden"

when two class branches merge. If the smaller of the two classes has no
more than this number of samples, the branch will be absorbed into the
larger class. This feature is only valid when classes are supplied in the
input data. A value of 0 (zero) disables this feature.

The default options can be retreived using: options = cluster('options');.

See Also

analysis, corrmap, gcluster, simca

 47

coadd
Purpose

Reduce resolution through combination of adjacent variables or samples.

Synopsis

databin = coadd(data,bins,options)
databin = coadd(data,bins,dim)

Description

COADD is used to combine ("bin") adjacent variables, samples, or slabs of a matrix. Inputs
include the original array data, the number of elements to combine together bins {default:
2}, and an optional options structure options. Alternatively, the input options can be
replaced with a scalar value of dim which will be used for options.dim (see below) and all
other options will be the default values.

The mode of co-adding (defined by the options value mode) defines how items within each
bin are combined mathematically. See options below for details.

Unpaired values at the end of the matrix are padded with the least biased value to complete
the bin. Output is the co-added data. Unlike DERESOLV, COADD reduces the size of the
data matrix by a factor of 1/bins for the dimension.

Example

Given a matrix, data, size 300 by 1000, the following would coadd variables in groups of
three:

databin = coadd(data,3);

and the following would coadd samples in groups of two:

options.dim = 1;
databin = coadd(data,2,options);

The following is equivalent to the previous two lines using the "shortcut" input of dim.

databin = coadd(data,2,1);

Options
 dim: Dimension in which to do combination {default = 2},
 mode: ['sum' | {'mean'} | 'prod'] method of combination. See algorithm notes

for details of these modes.

 48

Algorithm

The three modes, sum, mean and prod behave according to the following (described in terms
of variables):

SUM: groups of variables are added together and stored. The resulting values will be larger
in magnitude than the original values by a factor equal to the number of variables binned.

MEAN: groups of variables are added together and that sum is divided by the number of
variables binned. The resulting values will be similar in magnitude to the original values.

PROD: groups of variables are multiplied together.

See Also

deresolv

 49

coda_dw
Purpose

Variable selection method for hyphenated methods with a mass spectropmeter as a detector.
The variables (mass chromatograms) are selected on the basis of smoothness.

Synopsis

[dw_value,dw_index] = coda_dw(data,level);

Description

CODA_DW the Durbin Watson values of the first derivative of the chromatograms in data.
The optional argument level defines the limitit of Durbin Watson value used for a plot of the
results. If level is an integer it is used to plot the best level chromatograms. Low values for
Durbin Watson indicate good quality chromatograms. The Durbin Watson values
(dw_values) as wel as their ranking indices (dw_index) (low to high, so good to low quality)
. For more information the Durbin Watson method see the function DURBIN_WATSON.
Input data can be a matrix with the data or a datasetobject

Examples

Plotting the chromatograms with a Durbin Watson value less than 2.2.

coda_dw(data,2.2);

Plotting the best 40 chromatograms.

coda_dw(data,40);

Algorithm

The algorithm calculates the Durbin Watson values of the first derivative of the mass
chromatograms.

See Also

durbin_watson

 50

comparelcms_sim_interactive
Purpose

Select variables that are different between related data sets, e.g. mass chromatograms from
LC/MS data of different batches.

Synopsis

comparelcms_sim_interactive

Description

COMPARELCMS_SIM_INTERACTIVE Performs the variable (mass chromatogram) selection
using comparelcms_simengine, but with added interactivity

See Also

comparelcms_simengine

 51

comparelcms_simengine
Purpose

Select variables that are different between related data sets, e.g. mass chromatograms from
LC/MS data of different batches.

Synopsis

y=comparelcms_simengine(data,filter_width)

Description

COMPARELCMS_SIMENGINE determines which variables are different between different data
sets. For example, after applying coda_dw to LC/MS data sets of highly related samples, such
as the data of a good and a bad batch, the results will be very similar. comparelcms_engine
takes the next step and extracts the mass chromatograms that are different. This function is
normally not called by itself but by the function comparelcms_sim_interactive. The input
argument data is a data cube with mode 1 the number of samples, mode two the number of
spectra and mode 3 the number of variables, The optional input argument filter_width is
used to smooth the columns of the data set in order to minimize the effect of small shifts, The
output argument y contains the similarity indices of the variables. Variables with a low
similarity index show the differences between the data sets.

Examples

Determination of similarity indices with a filter of 7 data points.

y=comparelcms_simengine(data,7)

Algorithm

The calculations are based on a similarity index of the minimum of the chromatograms
(across the samples) and the maximum of the chromatograms.

See Also

comparelcms_sim_interactive

 52

comparevars
Purpose

Compares two variables of any type and returns differences.

Synopsis

[status,msg] = comparevars(a,b,options)

Description

Given any two variables a and b, COMPAREVARS looks for any differences. This function
operates on any standard Matlab data type or a DataSet object and does not give an error
when variables of two different types are passed..

With no outputs, the differences between the variables (or "None Found") is displayed. With
one output, the boolean result of the comparison status is returned (1 = variables are
completely equivalent). With two outputs, the comparison result is returned and a cell array
of strings is returned listing the differences as a description msg.

Options
 ignoreclass : {} Cell array of classes which should be ignored during the comparison.

If a structure or cell contains any objects of these classes, the values will
not be compared. NOTE: any numeric class (double, uint8, single)
should be referred to as 'numeric' to ignore comparisons.

 ignorefield : {} Specifies one or more structure fields which should be ignored (not
compared) in any structure.

 missingfield : ['ignore' | {'difference'}] specifies how to handle when one
of two input structures does not contain the same fields as the other.
'ignore' simply ignores missing fields. 'difference' returns this mismatch
as a noted difference.

See Also

cellne

 53

compressmodel
Purpose

Remove references to unused variables from a model.

Synopsis

[cmodel,msg] = compressmodel(model)

Description

COMPRESSMODEL will remove any references in a model to excluded variables. This
permits the application of the model to new data in which unused variables have been hard-
excluded (i.e. previously removed or not collected). Input is model the model to compress.
Outputs are cmodel the compressed model and msg any warning messages reported during
compression. Although compression will work on most models, some preprocessing methods
and some model types may not compress correctly. In these cases, a warning will be given
and reported in the output msg.

See Also

pca, pcr, pls, plsda

 54

conload
Purpose

Congruence loadings for PARAFAC, TUCKER and NPLS.

Synopsis

Bcon = conload(X,model,options)

Description

Determines congruence (earlier known as correlation) loadings for a specific mode of a
model. Congruence loadings look at "non-average correlations", hence take differences in
offset into account.

Note that due to non-orthogonal loadings in PARAFAC, individual correlations can add to
more than 1. Therefore, such loadings are not drawn with ellipses but squares added. Use
options.force = 'ellipse' or 'square' to force one or the other on the plot.

INPUTS:
 X = modeled data
 model = standard model structure
 mode = loading mode to investigate (i.e. mode = 1 for samples if they are in the

first mode)

OUTPUTS:

Bcon = Congruence loadings

Options
 plots : ['none' | {'final'}] Governs the creation of plot of the results.
 force : [{'off'} | 'ellipse' | 'square'] Forces a given type of limit

on the plots (if plot is given).

See Also

npls, parafac, tucker

 55

copydsfields
Purpose

Copies informational fields between datasets and/or model structures.

Synopsis

to = copydsfields(from,to,modes,block)

Description

Copies all informational fields from one dataset to another, one model structure to another, or
between datasets and models. This function copies the fields: label, class,
classlookup, title, axisscale, and includ as well as the "<field>name" assosciated
with each (e.g. classname). If copying to or from a model structure, the fields to be copied
from/to are sub-fields of the detail field.

INPUTS:
 from = dataset or model from which fields should be copied, and
 to = dataset or model to which fields should be copied.

OPTIONAL INPUTS:
 modes = modes (dims) which should be copied {default: all modes}. (modes) can

be a cell of {[from_modes] [to_modes]} to allow cross-mode copying.
 block = data block of model from/to which information should be copied.
 Default: block 1. Can also be a cell of {[from_modes] [to_block]} to

allow cross-block copying. This setting has noeffect with two DataSet
objects.Output is: to, the updated dataset or model.

OUTPUT:
 to = the updated dataset or model.

Examples

 mydataset2 = copydsfields(mydataset1, mydataset2);

copies all fields for all modes of mydataset1 into mydataset2 (copies set 1 only).

 mydataset2 = copydsfields(modl, mydataset2, {2 1});

copies all fields from mode 2 (variables) of modl into mode 1 of mydataset2.

 modl = copydsfields(mydataset,modl,1,{1 2});

copies all fields for mode 1 (samples) from set 1 of mydataset into block 2 (e.g. y-block) of
modl.

 56

See Also

dataset/dataset, modelstruct, pca, pcr, pls

 57

corcondia
Purpose

Evaluate consistency of PARAFAC model.

Synopsis

CoreConsist = corcondia(X,loads,Weights,plots);

Description

PARAFAC can be written as a special Tucker3 model where the core is superdiagonal with
ones on the diagonal. This special way of writing the model can be used to check the
adequacy of a PARAFAC model by estimating what Tucker3 core is found if estimated
unconstrained from the PARAFAC loadings. The core consistency is given as the percentage
of variation in this core array consistent with the theoretical superdiagonal array. The
maximum core consistency is thus 100Found. Consistencies well below 70-90Found indicate
that either too many components are used or the model is otherwise mis-specified. The
consistency can also become negative which means that the model is not reasonable. Note
that core consistency is an ad hoc method. It often works well on real data, but not as well
with simulated data. CORCONDIA does not provide proof of dimensionality, but it can give a
good indication.

Inputs are the multi-way array X and loads which can be a) a cell array with PARAFAC
model loadings or b) a PARAFAC model structure.

Optional inputs are Weights which can be used to update the core in a weighted least squares
sence and plots which suppress plotting of the results when set to zero (0).

See Also

corecalc, parafac, tucker

 58

coreanal
Purpose

Evaluate, display, and rotate core from a Tucker model.

Synopsis

result = coreanal(core,action,param)

Description

Performs an analysis of the input core array of a Tucker model core. Results are returned in
the output result.

Optional input action is a text string used to customize the analysis.

action = 'list', the output result contains text describing the main properties of the
core. If coreanal is called without outputs, the text is printed to the command window. If
optional input param is included, the number of core entries shown can be controlled.

action = 'plot', the core array is plotted and output result is not assigned.

action = 'maxvar', Rotates the core to maximum variance. This is the same as maximum
simplicity as defined by Andersson & Henrion, Chemometrics & Intelligent Laboratory
Systems, 1999,47,189-204.The output result is a structure array containing the rotated core
in the field core and the rotation matrices to achieve this rotation in the field
transformation.

The loadings of the Tucker model should also be rotated correspondingly which can also be
done using coreanal.

Examples

result = coreanal(model,'list');
result = coreanal(model.core,'list');

will list information on the core-entries (explained variance etc).

result = coreanal(model.core,'list',10);
coreanal(model.core,'list',10);

will do the same but only for the ten most significant core-entries with the second version
(with no output) printing the information to the command window.

result = coreanal(model,'plot');

 59

will make a plot of the core where the size of each core-entry shows the variance explained.
If the core is of higher order than three, it is first rearranged to a three-way array.

rotatedcore = coreanal(model,'maxvar');

will rotate the core to maximal variance.

rotatedmodel = coreanal(oldmodel,rotatedcore);

where the input oldmodel is the original Tucker model structure and rotatedcore is the
output from above. The rotation can be achieved in one step using:

 rotatedmodel = coreanal(oldmodel,coreanal(oldmodel,'maxvar'));

See Also

corecalc, tucker

 60

corecalc
Purpose

Calculates the Tucker3 core array given the data array and loadings

Synopsis

Core = corecalc(X,loads,orth,Weights,OldCore);

Description

Caculates the core array given the data X and the loadings loads (component matrices)
which are held in a cell (see TUCKER).

Optional input orth is set to 0 to tell CORECALC that the loadings are NOT orthogonal.

Optional input Weights allows a weighted least squares solution to be sought.

Optional input OldCore provides a prior estimate of the core to speed up calculations.

The output Core is the Tucker3 core.

See Also

corcondia, coreanal, parafac, tucker

 61

corrmap
Purpose

Correlation map with variable regrouping.

Synopsis

order = corrmap(data,labels,reord)
order = corrmap(data,reord)

Description

CORRMAP produces a pseudocolor map that shows the correlation between variables
(columns) in a data set. The function will reorder the variables by KNN clustering if desired.

The input is the data data class "double" or "dataset".

Optional input labels contains the variable labels when the data is class "double".

Optional input reord will cause CORRMAP to keep the original ordering of the variables if set
to 0.

The output order is a vector of indices with the variable ordering.

corrmap(data,labels) produces a psuedocolor correlation map with variable reordering.

corrmap(data,labels,0) produces a psuedocolor correlation map without variable
reordering.

See Also

autocor, crosscor

 62

corrspec
Purpose

Resolves correlation spectroscopy maps.

Synopsis

[model] = corrspec(xspec,yspec,ncomp,options)
[purintx,purinty,purspecx,purspecy,maps] =

corrspec(xspec,yspec,idex,options)
[purintx,purinty,purspecx,purspecy,maps] =

corrspec(xspec,yspec,model,options)

Description

CORRSPEC resolves a correlation map of two spectroscopies into the maps of individual
components, their associated resolved spectra and the contributions (“concentrations”) of the
components in the original mixture spectra.

INPUTS:
 xspec : (2-way array class "double" or "dataset") x-matrix for dispersion

matrix.
 yspec : (2-way array class "double" or "dataset") y-matrix for dispersion

matrix.
 ncomp : (scalar or n x 2 matrix) if ncomp = scalar then function will calculate

first n resolved pure purity components. If ncomp = n x 2 matrix, each
row indicates the x and y position (index) to calculate the purity
solution. If empty, the initial matrices will be calculated.

OUTPUTS:
 purintx : resolved x contributions('concentrations').
 purinty : resolved y contributions('concentrations').
 purspecx : resolved x pure component spectra.
 purspecy : resolved y pure component spectra.
 map : cell with ncomp resolved dispersion matrixes, each with
 size: size(yspec,2)*size(xspec,2)
 model : standard model structure, used for prediction (same pure variables on

other data set) and add components to the model. The series of
correlation maps resulting from the sequential elimination of
components is stored in the field detail.matrix. See function
corrspecengine for detailed description of matrix. The series of
resolved correlation maps is stored in field detail.maps. Once a model
has been calculated it can be used to predict x spectra from y spectra and
vice versa.

 63

Options
 plots_spectra : ['off'|{'on'}] governs level of plotting for spectra.
 plots_maps : ['off'|{'on'}] governs level of plotting for maps.
 offset : noise correction factor. One element defines offset for both x and y,

two elements separately for x and y.
 inactivate : [] logical matrix of indices not to be used in purity calculation.
 dispersion : [1] See max (below).
 max : [3] If not given, only weight matrix will be calculated, otherwise select

one of the options below:
 1: standardized, offset corrected
 2: length sqrt(nrows), offset corrected
 3: purity about mean, offset corrected
 4: purity about origin, offset corrected
 5: asynchronous, offset corrected

Examples

load data_mid_IR
load data_near_IR
corrspec(data_mid_IR,data_near_IR,4)

See Also

corrspecengine, dispmat, purity

 64

corrspecengine
Purpose

This function is the primary calculational engine for the function corrspec. It calculates the
correlation maps and related matrices corrected for previously determined pure variables.

Synopsis

matrix = corrspecengine(data_x,data_y,purvar_index,offset,

matrix_options);

Description

Calculates the matrices (weigh matrix, dispersion matrix and max matrix) needed for
corrspec corrected for previously determined pure variables.

INPUTS:
 data_x : (2-way array class "double" or "dataset") x-matrix for dispersion

matrix.
 data_y : (2-way array class "double" or "dataset") y-matrix for dispersion

matrix.
 purvar_index : indices of maximum value in purity_values, i.e. the index of the pure

variables. First column for x data, second column for y data. Empty
when no pure variables have been chosen yet. When base_x is a single
number n, the program calculates the first n pure purity_indices.

 offset : noise correction factor. One element defines offset for both x and y,
two elements separately for x and y.

 max : if not given, only weight matrix will be calculated, otherwise it
contains 2 elements: the options the dispersion_matrix and the
max_matrix:

 1: standardized, offset corrected
 2: length sqrt(nrows), offset corrected
 3: purity about mean, offset corrected
 4: purity about origin, offset corrected
 5: asynchronous, offset corrected

OUTPUTS:
 matrix : cell array with either one or three matrices, with size [ncols_y ncols_x]

(ncols_y represents number of spectra in y, etc.).
 matrix{1}: weight_matrix, matrix used to correct for previously selected

pure variables.

 65

 matrix{2}: dispersion_matrix, matrix of interest, generally correlation
matrix, corrected for previously selected pure variables.

 matrix{3}: max_matrix, matrix from which pure variables are chosen,
generally a co-purity matrix corrected for previously selected pure
variables.

See Also

corrspec, dispmat

 66

cr
Purpose

Continuum regression for multivariate y.

Synopsis

b = cr(x,y,lv,powers)

Description

CR develops continuum regression models for a matrix of predictor variables (x-block) x, and
vector or matrix of predicted variables (y-block) y. Models are calculated for 1 to lv latent
variables for each value of the continuum parameter specified in the row vector powers. The
output is the matrix of regression vectors b.

For a y-block with ny variables, x-block with nx variables, and np powers (size of powers is
1 by np) b is size (lv*ny*np) by nx. The first block in b corresponds to the first power in
powers and is (lv*ny) by nx with the first row corresponding to a 1 latent variable model for
the first y variable.

CR uses the de Jong, Wise & Ricker method for continuum regression (S. de Jong, B. M.
Wise and N. L. Ricker, "Canonical Partial Least Squares and Continuum Power Regression,"
J. Chemo., 15, 85-100, 2001). It is a drastically faster implementation of the Wise and Ricker
method used in the previous powerpls. Note that results are identical for both methods for
the univariate y case but not for the multivariate y, where the results from CR are typically
slightly better.

The algorithm used here is usually stable up to a continuum parameter of about 6-8,
sometimes as high as 10 depending upon the problem. At powers this high, however, the
models have essentially converged to the PCR solution. No instabilities at small powers have
been noted.

See Also

crcvrnd, pcr, pls

 67

crcvrnd
Purpose

Cross-validation for continuum regression models using SDEP.

Synopsis

[press,fiterr,mlvp,b] = crcvrnd(x,y,splt,itr,lv,pwrs,ss,mc)

Description

crcvrnd is used to cross-validate continuum regression models given a matrix of predictor
variables (x-block) x, matrix or vector of predicted variables (y-block) y, the number of
divisions into which to split the data splt, the number of iterations of the cross-validation
procedure using different re-orderings of the data set itr, maximum number of latent
variables lv and the row vector of continuum regression parameters to consider powers.

The outputs are the predictive residual error sum of squares (PRESS) matrix press where
each element of the matrix represents the PRESS for a given combination of LVs and
continuum parameter, the corresponding fit error fiterr, the number of LVs and power at
minimum PRESS mlvp and the final regression vector or matrix b.

The optional input ss causes the routine to choose contiguous blocks of data during cross-
validation when set to 1. If the optional input mc is set to 0 the subsets are not mean-centered
during cross-validation.

A good smooth PRESS surface can usuall be obtained by calculating about 20 models spaced
logarithmically between 4 and 1/4 and using 10 to 30 iterations of the cross-validation. A
good rule of thumb for dividing the data is to use either the square root of the number of
samples or 10, which ever is smaller.

See Also

cr, pcr, pls

 68

crosscor
Purpose

Calculates the crosscorrelation function of two time series.

Synopsis

crcor = crosscor(x,y,n,period,flag,plots)

Description

crcor = crosscor(x,y,n) returns the crosscorrelation function crcor of two time series x
and y for a maximum time shift of n sample periods.

crcor = crosscor(x,y,n,period) uses the sampling period period to scale the x-axis on
the output plot.

crcor = crosscor(x,y,n,period,flag) with flag set to 1 changes the routine from cross
correlation to cross covariance.

Optional input plots suppresses plotting when set to 0.

See Also

autocor, corrmap, wrtpulse

 69

crossval
Purpose

Cross-validation for PCA, PLS, MLR, and PCR.

Synopsis

results = crossval(x,y,rm,cvi,ncomp,options)
[press,cumpress,rmsecv,rmsec,cvpred,misclassed] =

crossval(x,y,rm,cvi,ncomp,options)

Description

CROSSVAL performs cross-validation for linear regression (PCR, PLS, MLR, CorrelationPCR,
and Locally Weighted Regression) and principal components analysis (PCA). Inputs are the
predictor variable matrix x, predicted variable y (y is empty [] for rm = 'pca'), regression
method rm, cross-validation method cvi, and maximum number of latent variables /
components ncomp.

rm = 'pca' performs cross-validation for PCA,
rm = 'mlr' performs cross-validation for MLR,
rm = 'pcr' performs cross-validation for PCR,
rm = 'nip' performs cross-validation for PLS using NIPALS,
rm = 'sim' or 'pls' performs cross-validation for PLS using SIMPLS,
rm = 'correlationpcr' performs cross-validation for CorrelationPCR, and
rm = 'lwr' performs cross-validation for Locally Weighted Regression (see LWRPRED).

cvi can be 1) a cell containing one of the cross-validation methods below with the
appropriate parameters {method splits iterations}, or 2) a vector representing user-
defined cross-validation groups.

 loo : leave one out cross-validation (each sample left out on its own; does

not take splits or iterations as inputs),
 vet : {splits} venetian blinds (every n-th sample together),
 con : {splits} contiguous blocks, and
 rnd : {splits iter} random subsets.

Except for leave-one-out, all methods require the number of data splits splits to be
provided. Random data subsets ('rnd') also requires number of iterations iter where
"iterations" defines the number of replicate splits to perform. For 'con' and 'vet', iterations
randomly moves the starting point for the first (and subsequent) blocks.

E.g. cvi = {'con' 5}; for 5 contiguous blocks (one iteration)

 70

For user-defined cross-validation, cvi is a vector with the same number of elements as x has
rows (i.e. length(cvi) = size(x,1); when x is class “double”, or length(cvi) =
size(x.data,1); when x is class “dataset”) with integer elements, defining test subsets.
Each cvi(i) is defined as:

cvi(i) = -2 the sample is always in the test set,
cvi(i) = -1 the sample is always in the calibration set,
cvi(i) = 0 the sample is always never used, and
cvi(i) = 1,2,3… defines each subset.

Options

Optional input options is an options structure containing one or more of the following fields:
 display: ['off' | {'on'}] Governs output to command window,
 plots: ['none' | {'final'}] Governs plotting,
 preprocessing: {[1]} Controls preprocessing. Default is mean centering (1). Can be

input in two ways:
 a) As a single value: 0 = none, 1 = mean centering, 2 = autoscaling, or
 b) As {xp yp}, a cell array containing a preprocessing structure(s) for

the X- and Y-blocks (see PREPROCESS). E.g. pre = {xp []}; for
PCA. To include preprocessing of each subset use pre = {xp yp}; or
pre = {xp []} for PCA. To avoid preprocessing of each subset use
pre = {[] []}; or pre = 0 (zero).

 threshold: {[]} Alternative PLSDA threshold level (default = [] = automatic)
 prior: {[]} Used with PLSDA only. Vector of fractional prior probabilities.

This is the probability (0-1) of observing a "1" for each column of y (i.e.
each class). E.g. [.25 .50] defines that only 25Found and 50Found of
future samples will likely be "true" for the classes identified by columns
1 and 2 of the y-block. [] (Empty) = equal priors.

structureoutput: [{'no'} | 'yes'] Governs output variables. 'Yes' returns a structure
instead of individual variables. 'Yes' is default if only one output is
requested.

 jackknife: [{'no'} | 'yes'] Governs storing of jackknifed regression vectors.
Jack-knifing may slow performance significantly or cause out-of-
memory errors when both x and y blocks have many variables.

 rmsec: ['no' | {'yes'}] Governs calculation of RMSEC. When set to 'no',
calculation of "all variables" model is skipped (unless specifically
required for plots or requested with multiple outputs)

 pcacvi: {'loo'} Cell describing how PCA cross-validation should perform
variable replacement. Variable replacement options are similar to cross-
validation CVI options and include:

 {'loo'} leave one variable out at a time
 {'con' splits} contiguous blocks (total of splits groups)
 {'vet' splits} venetian blinds (every n'th variable), or

 71

 {'rnd' splits} random subsets (note: no iterations)
 fastpca: ['off' | {'auto'}] Governs use of "fast" PCA Cross-validation

algorithm. 'off' never uses fast algorithm, 'auto' uses fast algorithm
when other options permit. Fast pca can only be used with pcacvi set to
'loo'

 lwr: Sub-structure of options to use for locally-weighted regression cross-
validation. Most of these options are used as defined in the LWRPRED
function (see LWRPRED for more details) but there are two additional
options defined for cross-validation:

 lwr.minimumpts : [20] the minimum number of points (samples) to

use in any LWR sub-model.
 lwr.ptsperterm : [20] the number of points to use per term (LV) in

the LWR model. For example, when set to 20, 20 samples will be use
for a 1 LV model, 40 samples will be used for a 2 LV model, etc. If set
to zero, the number of points defined by lwr.minimumpts will be used
for all models - that is, the number of samples used will be independent
from the number of LVs in the model.

 In all cases, the number of samples in an individual test set will be the

upper limit of samples to include in any LWR prediction.

Output:
 press: predictive residual error sum of squares PRESS for each subset (subsets

are rows of this matrix, number of components are columns)
 cumpress: cumulative PRESS (sum of columns of press).
 rmsecv: root mean square error of cross-validation.
 rmsec: root mean square error of calibration.
 cvpred: cross-validation y-predictions (regression methods only). If cross-

validation method was random, this is the average prediction of all
replicates.

 misclassed: fractional misclassifications for each class (valid for regression methods
only and only when y is a logical, (i.e. discrete-value) vector.

 reg: jack-knifed regression vectors from each sub-set. This will be size [k*ny
nx splits] such that reg(1,:,:) will be the regression vectors for 1
component model of the first column of y for all sub sets (a 1 by nx by
splits matrix). Use squeeze to reduce to an nx by splits matrix. (note:
options.jackknife must be 'yes' to use reg)

If options.structureoutput is 'yes', a single output (results) will return all the above outputs
as fields in a structure. If options.rmsec is 'no', then RMSEC is not returned (provides
faster iterative calculation)

 72

Note that for multivariate (y) the output (press) is grouped by output variable, i.e. all of the
PRESS values for the first variable are followed by all of the PRESS values for the second
variable, etc.

When options.plots is not ‘none’ plots both RMSECV and RMSEC are provided.

Examples

[press,cumpress] = crossval(x,y,'nip',{'loo'},10);
[press,cumpress] = crossval(x,y,'pcr',{'vet',3},10);
[press,cumpress] = crossval(x,y,'nip',{'con',5},10);
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10);
res = crossval(x,y,'sim',{'rnd',3,20},10);

pre = {preprocess('autoscale') preprocess('autoscale')};
opts.preprocessing = pre;
opts.plots = ‘none’;
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10,opts);
res = crossval(x,y,'sim',{'rnd',3,20},10,opts);

[press,cumpress] = crossval(x,[],'pca',{'loo'},10);
[press,cumpress] = crossval(x,[],'pca',{'vet',3},10);
res = crossval(x,[],'pca',{'con',5},10);

See Also

encodemethod, pca, pcr, pls, preprocess, ncrossval, ncrossval

 73

datahat
Purpose

Calculates the model estimate and residuals of the data.

Synopsis

xhat = datahat(model);
[xhat,resids] = datahat(model,data);

Description

Given a standard model structure model DATAHAT computes the model estimate of the data
xhat. For example, if model is a PCA model of a matrix Xcal such that Xcal = TPT + E, then
Xhat = TPT. (i.e. Xcal = TPT + E = Xhat + E).

If optional input data is supplied then DATAHAT computes the model estimate of data that is
output in xhat. For the PCA model of matrix Xcal, and data is a data matrix Xnew then Xhat =
XnewPPT = TnewPT. The output resids is a matrix with the corresponding residuals E [E =
Xnew-XnewPPT = Xnew(I-PPT)]. If data is Xcal then Xhat = TPT and resids is E = Xcal(I-PPT)].

Note that preprocessing in model will be performed before the residuals are calculated. If
data is not provided, only xhat is available.

Note that DATAHAT works with almost all standard model structures.

See Also

analysis, parafac

 74

datasetdemo
Purpose

Demonstrates use of the dataset object.

Synopsis

datasetdemo

Description

This demonstration illustrates the creation and manipulation of dataset objects. Functions that
are demonstrated include: DATASET, GET, SET, ISA, and EXPLODE.

For more information see help on DATASET, DATASET/SET, DATASET/GET, and
DATASET/EXPLODE.

See Also

editds, plotgui

 75

delsamps
Purpose

Delete samples (rows) from data matrices.

Synopsis

eddata = delsamps(data,samps)
eddata = delsamps(data',vars)'

Description

eddata = delsamps(data,samps) deletes samps row numbers (samples) from a data
matrix data and saves the edited results to data matrix eddata.

eddata = delsamps(data',vars)' deletes vars column numbers (variables) from a data
matrix data and saves the edited results to data matrix eddata.

See Also

shuffle, specedit

 76

demos
Purpose

Demo list for the PLS_Toolbox.

Synopsis

demos

Description

DEMOS brings up the Matlab help browser with a list of functions that have demonstration
scripts. Clicking on a listed function will display a brief description and information about
the function. Along with the description are highlighted text that, when clicked, will run the
demo, connect to related information, or open the function in the mfile editor.

See Also

helppls

 77

deresolv
Purpose

Changes high resolution spectra to low resolution.

Synopsis

lrspec = deresolv(hrspec,a)

Description

DERESOLV uses a FFT to convolve spectra with a resolution function to make it appear as if it
had been taken on a lower resolution instrument. Inputs are the high resolution spectra to be
de-resolved hrspec and the number of channels to convolve them over a.

The output is the estimate of the lower resolution spectra lrspec.

deresolv is useful for standardizing two instruments of different resolution. It can also be
used to smooth spectra.

See Also

baseline, savgol, stdfir, stdgen

 78

discrimprob
Purpose

Calculate discriminate probabilities of discrete classes for continuous predicted values.

Synopsis

[prob,classes] = discrimprob(y,ypred,prior)

Description

DISCRIMPROB examines the predictions of a PLS-D model (PLS-D models are trained on a
standard x-block but with a y-block containing discrete class assignments for each sample).
The predicted y-value from the PLS-D model will be a continuous variable that can be
interpreted as a class similarity index. DISCRIMPROB uses the actual class asignments and the
model y-value predictions to create a probability table that indicates, for a given predicted y-
value, the probability that the given value belongs to each of the original classes.

Inputs are y the original logical classes for each sample, ypred the observed continuous
predicted values for those samples and prior an optional input of the prior probabilities for
each class. prior should be a vector representing the probabitily of observing each class in
the entire population. Default prior probabilities is 1.

Output prob is a lookup matrix consisting of an index of observed y-values in the first
column, and the probability of that value being of each class in the subsequent columns. The
second output classes is the discrete classes observed in y, corresponding to the additional
columns of prob.

To predict a probability that the observed value ypred is in class classes(n) use:

classprob = interp1(prob(:,1),prob(:,n+1),ypred)

See Also

pls, plsdthres, simca

 79

dispmat
Purpose

Calculates the dispersion matrix of two spectral data sets.

Synopsis

[c,meansx,meansy,stdsx,stdsy] = dispmat(x,y,options);

Description

Calculates a dispersion matrix, as defined by the options, of datasets x and y.

INPUTS:
 x : (2-way array class "double" or "dataset") x-matrix for dispersion

matrix.
 y : (2-way array class "double" or "dataset") y-matrix for dispersion

matrix.

OUTPUTS:
 c : dispersion matrix, as defined by options.
 meansx : mean of x.
 meansy : mean of y.
 stdsx : standard deviation of x.
 stdsy : standard deviation of y.

Options
 offsetx : [0] offset for x.
 offsety : [0] offset for y.
 dispersion : [1] dispersion matrix calculated:
 1: standardized, offset corrected
 2: length sqrt(nrows), offset corrected
 3: purity about mean, offset corrected
 4: purity about origin, offset corrected
 5: asynchronous, offset corrected

See Also

corrspec, corrspecengine, purity

 80

distslct
Purpose

Select samples on the exterior of a data space based on a Euclidean distance.

Synopsis

isel = distslct(x,nosamps,flag)

Description

DISTSLCT first identifies a sample in the M by N data set x furthest from the data set mean.
Subsequent samples are selected to be simultaneously the furthest from the mean and the
selected samples for a total of nosamps selected samples. DISTSLCT calls STDSSLCT to find
the number of samples up to the rank of the data and uses a distance measure to find
additional samples if nosamps>rank(x).

Optional intput tells DISTSLCT how many samples STDSLCT should estimate when
nosamps>N:
 1 = STDSLCT selectes N-1, or
 2 = STDSLCT selects N {default}.

Output isel is a vector of length nosamps containing the indices of the selected samples.

This routine is used to initialize the selection of samples in the DOPTIMAL function. Altough it
does not satisfy the d-optimality condition, it is an alternative to doptimal that does not
require an inverse or calculation of a determinant.

See Also

doptimal, stdsslct

 81

doptimal
Purpose

Selects samples from a candidate matrix that satisfy the d-optimal condition.

Synopsis

isel = doptimal(x,nosamps,iint,tol)

Description

DOPTIMAL selects a number (nosamps) of samples from a candidate matrix x that maximizes
the determinant of det(x(isel,:)'*x(isel,:)) where isel is a vector of indices of the
selected samples.

The optional input iint is a vector of indices to initialize the optimization algorithm. If iint is
not input the algorithm is initialized using samples identified as on the exterior of the data set
using the DISTSLCT function. This is in contrast to initializing with a random subset used in
many algorithms. The reason is that the routine is based on Fedorov's algorithm (de Aguiar,
P.F., Bourguignon, B., Khots, M.S., Massart, D.L., and Phan-Than-Luu, R., “D-optimal
designs”, Chemo. Intell. Lab. Sys., 30, 199–210, 1995) which requires calculating
inv(x(isel,:)'*x(isel,:)), and it is possible that the inverse of a random set will not
exist. The routine then exchanges the 'least informative' sample in the selected set with a
'more informative' sample in the candidate set. The optional input tol sets the tolerance for
minimum increase in the determinant {default = 1x10-4}.

Note that nosamps must be ≥ rank(x) (it is necessary but not sufficient that nosamps ≥
size(x,2)) for a good solution to be found. This is required so that a good estimate of
inv(x(isel,:)'*x(isel,:)) can be obtained. When nosamps < size(x,2) the scores
from PCA or PLS can be used where nosamps ≥ than the number of factors (principal
components or latent variables) used. Also, note that the solution can depend on the initial
guess and that isel does not necessarily represent a global optimum.

Examples

For an input matrix x that is m by 5

isel5 = doptimal(x,5);
isel6 = doptimal(x,6);

See Also

distslct, stdsslct

 82

dp
Purpose

Adds a diagonal line at 45 degrees (slope of 1) to the current plot

Synopsis

h = dp(lc, flag)

Description

DP can be used to add a line of perfect prediction to plots of actual versus predicted values.
Optional input lc can be used to change the line style as in normal plotting (e.g. lc = 'b').
Returns handle of line object.

See Also

ellps, hline, plttern, vline, zline

 83

durbin_watson
Purpose

Criterion for measure of continuity.

Synopsis

y = durbin_watson(x)

Description

The durbin watson criteria for the columns of x are calculated as the ratio of the sum of the
first derivative of a vector to the sum of the vector itself. Low values means correlation in
variables, high values indicates randomness. Input x is a column vector or array in which
each column represents a vector of interest. Output y is a scalar or vector of Durbin Watson
measures.

See Also

coda_dw

 84

editds
Purpose

Editor for DataSet Objects.

Synopsis

editds(dataset)
editds(command,fig,auxdata)

Description

EDITDS is a graphical user interface (GUI) for creating and editing dataset objects. Typing
editds at the command line with no inputs will display the GUI. To create a new dataset,
select New… from the File menu. Calling it with a dataset will display that dataset in a new
GUI.

Use menu items to perform common tasks such as Saving and Including/Excluding data.
Many of these tasks can also be performed graphically by clicking on the appropriate tab and
editing the given control. Most heading controls have mouse-over tool tips to further help
identify a particular control or column.

Data can also be plotted from the dataset editor via the View > Plot menu item or using the
plot icon on the left side of the Info tab. Data can be edited directly via the Data tab and
Variable labels and information can be manipulated vie their respective tabs.

See Also

plotgui

 85

ellps
Purpose

Plots an ellipse on an existing figure.

Synopsis

ellps(cnt,a,lc,ang,pax,zh)

Description

ELLPS plots an ellipse on an existing figure e.g. an ellipse of constant Hotelling's T2. The
inputs are a 2 element vector containing the ellipse center cnt, and a 2 element vector
containing the ellipse axes sizes a. Optional inputs are lc which defines the line color (e.g. '-
g'), and ang which defines the angle of rotation from the x-axis {default: ang = 0 radians}.

ellps([4 5],[3 1.5],':g') plots a dotted green ellipse with center (4,5), semimajor axis
3 parallel to the x-axis and semiminor 1.5 parallel to the y-axis.

Optional inputs pax and zh are used when plotting in a 3D figure. pax defines the axis
perpindicular to the plane of the ellipse [1 = x-axis, 2 = y-axis, 3 = z-axis], and zh defines the
distance along the pax axis to plot the ellipse.

ellps([2 3],[4 1.5],'-b',pi/4,3,2) plots an ellipse in a plane perpindicular to the z-
axis at a heightof z = 2.

See Also

dp, hline, vline, zline

 86

encode
Purpose

Translates a variable into matlab-executable code.

Synopsis

str = encode(item,varname)
str = encode(item,varname,options)

Description

The created code can be eval'd or included in an m-file to reproduce the variable. This is
essentially an inverse function of "eval" for variables.

Input is a variable (item) and an optional name for that variable (varname). If (varname) is
omitted, the input variable name will be used. If varname is empty, leading code which does
assignment is omitted.

Output is a string (str) which can be inserted into an m-file or passed to eval for execution.

Options
max_array_size : [10000] Maximum size allowed for any array dimension. Arrays with

any size larger than this will be returned as simply [NaN]
 structformat : ['struct' | {'dot'}] defines how structures are encoded. 'struct'

uses a "struct('a',val)" style (but can get very complex with large
structures). 'dot' uses "x.a = val" format which is easier to read, but less
compact.

 forceoneline : [{'off'} | 'on'] remove all line breaks and ellipses from output.
WARNING: this can cause a VERY long line on big objects and may
exceed the maximum line length of editors or even MATLAB.

Example

Create code to reproduce a preprocessing structure

>> p = preprocess('default','meancenter');
>> encode(p)

See Also

encodexml, parsexml

 87

encodexml
Purpose

Convert standard data types into XML-encoded text.

Synopsis

xml = encodexml(var)
xml = encodexml(var,'name')
xml = encodexml(var,'name','outputfile.xml')

Description

Converts a standard Matlab variable (var) into a human-readable XML format. The optional
second input ('name') gives the name for the object's outer wrapper and the optional third
input ('filename.xml') gives the name for the output file (if omitted, the XML is only returned
in the output variable). For more information on the format, see the PARSEXML function.

Example

>> z.a = 1;
>> z.b = { 'this' ; 'that' };
>> z.c.sub1 = 'one field';
>> z.c.sub2 = 'second field';

>> z = encodexml(z,'mystruct')

z =
<mystruct>
 1
 <b class="cell" size="[2,1]">
 <tr>
 <td class="string">this</td>
 </tr>
 <tr>
 <td class="string">that</td>
 </tr>

 <c>
 <sub1 class="string">one field</sub1>
 <sub2 class="string">second field</sub2>
 </c>
</mystruct>

See Also

encode, parsexml

 88

estimatefactors
Purpose

Estimate number of significant factors in multivariate data.

Synopsis

S = estimatefactors (x,options)

Description

Given a bilinear dataset, ESTIMATEFACTORS estimates the number of significant factors
required to describe the data. The algorithm uses PCA bootstrapping (resampling) of the
data. The PCA loadings determined for each resampling are compared for changes. Principal
components which change significantly from one resampling to the next are probably due
mostly to noise rather than signal.

The output is an estimate of the signal to noize ratio for each principal component. Ratios of
2 or below are dominated by noise, above 3 are OK, and between 2 and 3 are a jugement call.
The number of factors needed to describe the data is the number of eigenvectors with signal
to noise ratios greater than about 2.

This function is based on an algorithm developed and Copyrighted 1997 by Ronald C.
Henry, Eun Sug Park, and Clifford H. Spiegelman and used by permission of the authors. For
reference see:

* Henry, R.C., Park, E.S., & Spiegelman, C.H. (1999). Comparing A New Algorithm With
The Classic Methods For Estimating The Number Of Factors. Chemometrics and Intelligent
Laboratory Systems, 48(1), 91-97.

* Park, E.S., Henry, R.C., & Spiegelman C.H. (2000). Estimating The Number Of Factors To
Include In A Height Dimensional Multivaraite Bilinear Model. Communications in
Statistics-Theory and Methods, 29(3), 723-746.

 89

Options
 options = a structure array with the following fields:
 plots: ['none' | {'final'}] Governs plotting.
 resample: [{42}] number of times the data is to be resampled. Generally, values

of 40 or 50 are sufficient. Values greater than several hundred are not
required.

 maxfactors: [{30}] maximum number of factors to plot (if plots are selected by
options.plots).

 preprocessing: {[]} Preprocessing structure or keyword (see PREPROCESS), to apply
before analyzing data.

The default options can be retreived using: options = estimatefactors('options');.

See Also

pca, pcaengine

 90

evolvfa
Purpose

Perform forward and reverse evolving factor analysis.

Synopsis

[egf,egr] = evolvfa(xdat,plot,tdat)

Description

[egf,egr] = evolvfa(xdat) calculates eigenvalues of sub-matrices of xdat and returns
results of the forward analysis in egf and reverse analysis in egr.

[egf,egr] = evolvfa(xdat,plot) allows the user to control plotting options. When plot is
set to 0 the plot of the results is suppressed. Setting plot equal to 1 {default} plots the results.

[egf,egr] = evolvfa(xdat,plot,tdat) gives the routine an optional vector tdat to plot
results against.

See Also

ewfa, pca, wtfa

 91

evridebug
Purpose

Checks the PLS_Toolbox installation for problems.

Synopsis

problems = evridebug

Description

EVRIDEBUG runs various tests on the PLS_Toolbox installation to assure that all necessary
files are present and not "shadowed" by other functions of the same name. This utility should
be run if you experience problems with the PLS_Toolbox.

EVRIDEBUG tests for:

 * Missing PLS_Toolbox folders in path,

 * Multiple versions of PLS_Toolbox,

 * "Shadowed" files (duplicate named files), and

 * Duplicate definitions of Dataset object.

The single output problems is a cell containing the text of the problems encountered. If no
problems are encountered, problems will be empty.

Examples

>> evridebug

No PLS_Toolbox installation problems were identified.

See Also

evriinstall, evriupdate

 92

evriinstall
Purpose

Install and verify PLS_Toolbox

Synopsis

evriinstall

Description

EVRIINSTALL automates the installation and verification of the PLS_Toolbox. To run
evriinstall:

1. Unzip PLS_Toolbox to a local directory (typically C:\MATLAB7\toolbox\).

2. Open Matlab and navigate to the directory created above in the Current Directory window.

3. Type evriinstall at the command line and press Enter.

Installation involves first setting the Matlab Path to include the PLS_Toolbox directory and
its subdirectories. The script then runs evridebug to check for potential problems after
installation.

See Also

evridebug, evriupdate

 93

evriupdate
Purpose

Check the Eigenvector Research web site for PLS_Toolbox updates.

Synopsis

outofdate = evriupdate(umode, product)

Description

Check Eigenvector.com for available PLS_Toolbox updates. EVRIUPDATE checks the
Eigenvector Research web site for the most current PLS_Toolbox release version number.
This is compared to the currently installed version. A message reporting the availability of an
update is given as necessary. Input (product) will check for an individual product for umodes
0-2.

The optional input (umode) can be any of the following:
 'auto': perform an automatic check based on Auto Check settings
 'settings': Gives GUI to modify the automatic check settings
 'prompt': prompt user before performing check - includes prompt to allow user to

modify settings.

or (umode) one of the following levels of automatic reports:

 0 : give dialog stating if new version is available or not

 1 : give dialog ONLY if a new version is available

 2 : gives no dialog messages - only returns output flag (see below)

 3 : give dialog of all products installed and version info.

 4 : give dialog of all products from EVRI and versions.

 5 : give dialog of all products but ONLY if a new version is available

The default mode is 4.

The output (outofdate) will be 0 (zero) if the installed PLS_Toolbox is current, 1 (one) if the
installed version is out of date and -1 if evriupdate could not retreive the most current version
number.

See Also

evridebug, evriinstall

 94

ewfa
Purpose

Evolving window factor analysis.

Synopsis

[eigs,skl] = ewfa(dat,window,plots,scl)

Description

The inputs are the data matrix dat and the window witdth window. The output eigs is the
eigenvalues for each window. The windowed eigenvalues vs. sample number is also plotted.
Note that the eigenvalues on the ends of the record (less than the half width of the window)
are plotted as dashed lines. The output skl is a scale that can be used to plot eigs against.

Optional input plots can be used to suppress plotting when set to 0 {default plots = 1}.
Optional input scl is a scale to plot against. It is also used to construct a new skl.

See Also

evolvfa, pca, wtfa

 95

excludemissing
Purpose

Automatically exclude too-much missing data in a matrix.

Synopsis

[newx,bad] = excludemissing(x,threshold)

Description

Excludes rows, columns, or n-dim elements of input x which have too much missing based
on the input threshold which is a fraction of allowed missing data. If omitted, threshold will
be equal to the default max_missing value of the function MDCHECK (typically 0.40).

Outputs are a dataset object with excluded elements newx and a cell holding the indices of
the bad elements for each mode of data bad.

See Also

mdcheck, replace

 96

explode
Purpose

Extracts variables from a structure array.

Synopsis

explode(sdat,mod,txt,out)
options = explode('options')

Description

EXPLODE writes the fields of the input structure sdat to variables in the workspace with the
same variable names as the field names. If sdat is a standard model structure, only selected
information is written to the workspace.

Optional string input txt appends a string to the variable output names.

Options
 options = a structure array with the following fields:
 model: ['no' | {'yes'}] interpret sdat as model if possible, and
 display: ['off' | {'on'}]} display model information.

The default options can be retreived using: options = explode('options');.

Examples

For the structure array x
>> x.field1 = 2;
>> x.field2 = 3;
>> explode(x)
Input (sdat) is not a recognized model. Exploding as regular structure
>> whos
 Name Size Bytes Class

 field1 1x1 8 double array
 field2 1x1 8 double array
 x 1x1 264 struct array

the variables field1 and field2 have been written to the base workspace.

See Also

analysis, modelstruct

 97

exportfigure
Purpose

Automatically export figures to an external program.

Synopsis

exportfigure
exportfigure(target,sourcefigs)

Description

Exports one or more open figures into a new blank document in an external program. No
inputs are required.

OPTIONAL INPUTS:
 target = The target program to export figures to, target can have the following

values:
 'powerpoint' : Microsoft PowerPoint {default}
 'word' : Microsoft Word
 'clipboard' : System Clipboard (to paste into other program)
 sourcefigs = A vector of figure numbers to export {default is the current open figure

(see GCF)}.
 sourcefigs = 'all', exports all open figures.

Note: "clipboard" export can only operate on one figure at a time.

See Also

 98

factdes
Purpose

Output a full factorial design matrix.

Synopsis

desgn = factdes(fact,levl)

Description

The input fact is the number of factors in the design and the output desgn is the
experimental design matrix.

desgn = factdes(fact); provides a full factorial two level design.

Optional input levl allows for multiple level designs.

desgn = factdes(fact, levl); provides a full factoriallevl level design {default levl =
2}.

See Also

distslct, doptimal, ffacdes1, stdsslct

 99

fastnnls
Purpose

Fast non-negative least squares.

Synopsis

[b,xi] = fastnnls(x,y,tol,b0,eqconst,xi);

Description

Solves the equation xb = y subject to the constraint that b is non-negative. The inputs are
the matrix of predictor variables x, vector or matrix of predicted variables y. Optional inputs
include: tolerance on the size of a regression coefficient that is considered zero (if tol = 0
the default is used tol = max(size(x))*norm(x,1)*eps), tol, initial guess for the
regression vectors, b0, and the equality constraints matrix, eqconst, equal in size to b0 and
containing a value of NaN to indicate an unconstrained value or any finite value to indicate a
constrained value. The optional input xi is the cached inverses output by a previous run of
fastnnls (see outputs) or 0 (zero) to disable caching.

The outputs are the non-negatively constrained least squares solution, b, and the cache of x
inverses, xi. If input y is a matrix, the result is the solution for each column of y calculated
independently.

If tol is set to 0 or [], the default tolerance will be used. If xi is set to 0, caching will be
disabled.

FASTNNLS is fastest when a good estimate of the regression vector b0 is input. This eliminates
much of the computation involved in determining which coefficients will be nonzero in the
final regression vector. This makes it very useful in alternating least squares routines. Note
that the input b0 must be a feasible (i.e. nonnegative) solution.

The FASTNNLS algorithm is based on work by Bro and de Jong, J. Chemo., 11(5), 393-401,
1997.

INPUTS:
 x = the matrix of predictor variables,
 y = vector or matrix of predicted variables. If (y) is a matrix, the result is the

solution for each column calculated independently.

OPTIONAL INPUTS:
 tol = tolerance on the size of a regression coefficient that is considered zero.

Not supplied or empty matrix is implies the default value (based on x
and eps),

 b0 = initial guess for the regression vectors. Default or empty matrix is
interpreted as no known intial guess,

 100

 eqconst = equality constraints matrix equal in size to b0 and containing a value of
NaN to indicate an value not equality-constrained or any finite value to
indicate an equality-constrained value. An empty matrix indicates no
equality constraints on any elements.

 xi = cached inverses output by a previous run of fastnnls (see outputs) or 0
(zero) to disable caching. An empty matrix is valid as a placeholder in
the inputs.

See Also

lsq2top, mcr, parafac

 101

ffacdes1
Purpose

Output a fractional factorial design matrix.

Synopsis

desgn = ffacdes1(k,p)

Description

FFACDES1 outputs a 2(k-p) fractional factorial design of experiments. The design is constructed
such that the highest order interaction term is confounded. This is one way to select a
fractional factorial. Input k is the total number of factors in the design and p is the number of
confounded factors {default: p = 1}. Note that it is required that p < k. Output desgn is the
experimental design matrix.

See Also

distslct, doptimal, factdes, stdsslct

 102

figbrowser
Purpose

Browser with icons of all Matlab figures.

Synopsis

figbrowser(varargin)

Description

The figbrowser function creates a figure containing thumbnail images of all visible Matlab
figures. Clicking on an icon will instantly make that figure the current figure and bring to the
front.

INPUTS
 ''(empty) = Creates or updates current figbrowser window
 'focus' = Brings the figbrowser window to the front and updates if figures have

been created or deleted since last update
 'hide' = Hides the figbrowser window
['addmenu',target_figure] = Adds figbrowser trigger menu to current or specified figure
 'on' = Turns on automatic addition of figbrowser menu to all figures.
 NOTE: menu addition can be permanently disabled by modifying the

enableautoadd option in figbrowser. This option can be set using
setplspref. When set to 'off', figbrowser will only show up on GUIs
which specifically add it themselves, no matter what figbrowser
command is issued. This option can also be modified through the
"Figbrowser on All" menu item in all Figbrowser menus.

 'off' = Removes figbrowser menus from all figures.
['autodock','on'] = Adds figbrowser trigger menu to current or specified figure
['autodock','off'] = Adds figbrowser trigger menu to current or specified figure
 Controls auto-docking of standard figures on creation (figbrowser must

be "on"). Auto-docking forces any standard figure to be opened in the
Figure window.

See Also

 103

figmerit
Purpose

Analytical figures of merit for multivariate calibration.

Synopsis

[nas,nnas,sens,sel] = figmerit(x,y,b);

Description

Calculates analytical figures of merit for PLS and PCR standard model structures. Inputs are
the preprocessed (usually centered and scaled) spectral data x, the preprocessed analyte data
y, and the regression vector, b. Note that for standard PLS and PCR structures b =
model.reg.

The outputs are the matrix of net analyte signals nas for each row of x, the norm of the net
analyte signal for each row nnas (this is corrected to include the sign of the prediction), the
matrix of sensitivities for each sample sens, and the vector of selectivities for each sample
sel (sel is always non-negative).

Note that the "noise-filtered" estimate present in previous versions is no longer used because
an improved method for calculating the net analyte vector makes it redundant

Examples

Given the 7 LV PLS model:
modl = pls(x,y,7);
Rhat = modl.loads{1,1}*modl.loads{2,1}';
[nas,nnas,sens,sel,nfnas] = figmerit(x,y,Rhat);

Given the 5 PC PCR model:
modl = pcr(auto(x),auto(y),5);
Rhat = modl.loads{1,1}*modl.loads{2,1}';
[nas,nnas,sens,sel,nfnas] = figmerit(auto(x),auto(y),Rhat);

See Also

pcr, pls

 104

findindx
Purpose

Finds the index of the array element closest to value r.

Synopsis

index = findindx(array,r)

Description

Inputs are an array of values (array) and a value to locate (r). Output (index) is the linear
index into array which will return the closest value to r.

Examples

index = findindx(array,r); %get an index

nearest_value = array(index); %find the value

See Also

lamsel

 105

fir2ss
Purpose

Convert a finite impulse response model into an equivalent state-space model.

Synopsis

[phi,gamma,c,d] = fir2ss(b)

Description

[phi,gamma,c,d] = fir2ss(b) takes a vector of FIR coefficients b and outputs the phi,
gamma, c and d matrices for a equivalent discrete state-space model.

See Also

autocor, crosscor, plspulsm, wrtpulse

 106

fitpeaks
Purpose

Peak fitting routine.

Synopsis

[peakdefo,fval,exitflag,out,fit,res] = fitpeaks(peakdef,y,ax,options)

Description

Based on the initial guess in input peakdef, FITPEAKS estimates the peak fit (also the
Jacobian and Hessian), and makes a call to LMOPTIMIZEBND to find the best fit of the peaks to
the data. (See LMOPTIMIZEBND for additional information.) Results are output to peakdefo.

Information about individual peaks is stored in standard peak structures (see PEAKSTRUCT).
Information on multiple peaks is stored in a multi-record structure. Given a standard peak
structure (peakdef) that contains an initial guess of peak locations and widths, FITPEAKS
finds new parameters that best fits peaks to the rows of the MxN data matrix (y). Results are
output to a standard peak structure (peakdefo).

Fields of (peakdef) required in the initial guess for each peak are (.fun), (.param), (.lb),
(.penlb), (.ub), and (.penub).

INPUTS:
 peakdef = multi-record standard peak structure with the following fields:
 name: 'Peak', name indicating that this is a standard peak structure.
 id: ' ', double or character string peak identification.
 fun: [{'Gaussian'} | 'Lorentzian' | 'PVoigt1' | 'PVoigt2'], defines the

peak function (see definitions in the Algorithm section).
 param: Parameter list for each peak function. The number of parameters

depends on the peak function used:
 'Gaussian': [height, location, width],
 'Lorentzian': [height, location, width],
 'PVoigt1': [height, location, width, fraction Gaussian],
 'PVoigt2': [height, location, width, fraction Gaussian].
 lb: [], Lower bounds on the function parameters. This is a row vector with

the same number of elements as peakdef.param.
 penlb: [], Penalty wt for lower bounds, >=0. This is a row vector with the same

number of elements as peakdef.param. If set to 0 this constraint is not
employed.

 ub: [], Upper bounds on the function parameters. This is a row vector with
the same number of elements as peakdef.param.

 107

 penub: [], Penalty wt for upper bounds, >=0. This is a row vector with the same
number of elements as peakdef.param. If set to 0 this constraint is not
employed.

 area: [], Estimated peak area.

 y = MxN measured responses with peaks to fit. Each row of (y) is fit to the

peaks given in (peakdef).

OPTIONAL INPUTS:
 ax = 1xN x-axis to fit to {default ax=1:N}.
 options = discussed below in the Options Section.

OUTPUTS:
 peakdefo = The input peak structure (peakdef) with parameters changed to

correspond to the best fit values.
 fval = Scalar value of the objective function evaluated at termination of

FITPEAKS.
 exitflag = Describes the exit condition (see LMOPTIMIZEBND).
 out = Structure array with information on the optimization/fitting (see

LMOPTIMIZEBND).
 fit = Model fit of the peaks, i.e it is the best fit to (y).
 res = Residuals of fit of the peaks.

Algorithm

Peaks are fit to the functions defined below based on the definitions in the field
(peakdef.fun). The functions can be evaluated using independent functions or a wrapper
function PEAKFUNCTION. See PEAKFUNCTION for more help.

For peakdef.fun = 'Gaussian' the function is

 ()
()2

2
2
32

1, e
ia x

x
if a x

− −

=x

where , 1, ,ia i N= … is the thi element of optional input (ax), and []1 2 3x x x=x
corresponds to the peak parameters in the three-element vector (peakdef.param).
Constraints that should be used are (bounds in peakdef) are 1 0x ≥ and 3 0x ≥ .

For peakdef.fun = 'Lorentzian' the function is

 ()
()

12 2
2 3

1 1 22
3 3 2

, 1 i
i

i

a x xf a x x
x x a x

−
    −
 = + =   

+ −       
x .

 108

Constraints that should be used are (bounds in peakdef) are 1 0x ≥ and 3 0x ≥ .

For peakdef.fun = 'PVoigt1' the function is

 ()
()()

()
()

2
2

2
3

4ln 2 2
3

1 4 4 2 2
2 3

, e 1
ia x

x
i

i

xf a x x x
a x x

− −  
 = + −  
 − +   

x

where []1 2 3 4x x x x=x corresponds to the peak parameters in the four-element vector
(peakdef.param). Constraints that should be used are (bounds in peakdef) are 1 0x ≥ and

3 0x ≥ , while 41 0x≥ ≥ . The Pseudo-Voigt peak shape is an estimate of the Gaussian and
Lorentzian peak shapes convolved.

For peakdef.fun = 'PVoigt2' the function is

 ()
()

()
()

2
2

2
3

2
2 3

1 4 4 2 2
2 3

, e 1
ia x

x
i

i

xf a x x x
a x x

− −  
 = + −  
 − +   

x

where []1 2 3 4x x x x=x corresponds to the peak parameters in the four-element vector
(peakdef.param). Constraints that should be used (bounds in peakdef) are 1 0x ≥ and

3 0x ≥ , while 41 0x≥ ≥ . The Pseudo-Voigt peak shape is an estimate of the Gaussian and
Lorentzian peak shapes convolved.

A comparison of the four peaks is given in the figure below, and was generated using the
following code:

 ax = 0:0.1:100;
 y = zeros(4,length(ax));
 plot(ax,peakgaussian([2 51 8],ax),'-b', ...
 ax,peaklorentzian([2 51 8],ax),'--k', ...
 ax,peakpvoigt1([2 51 8 0.5],ax),':g', ...
 ax,peakpvoigt2([2 51 8 0.5],ax),'-.r')
 legend('Gaussian','Lorentzian','PVoigt1','PVoigt2')

 109

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Gaussian
Lorentzian
PVoigt1
PVoigt2

Options
options = structure array with the following fields:
 name: 'options', name indicating that this is an options structure.
 display: ['off' | {'on'}] governs level of display to the command window.
 optimopts: options structure from LMOPTIMIZEBND. This field is passed to

LMOPTIMIZEBND and can be used to control the optimization / fitting.

 110

Examples

%Make a single known peak
 ax = 0:0.1:100;
 y = peakgaussian([2 51 8],ax);

%Define first estimate and peak type
 peakdef = peakstruct;
 peakdef.param = [0.1 43 5]; %coef, position, spread
 peakdef.lb = [0 0 0.0001]; %lower bounds on param
 peakdef.penlb = [1e-6 1e-6 1e-6];
 peakdef.ub = [10 99.9 40]; %upper bounds on params
 peakdef.penub = [1e-6 1e-6 1e-6];

%Estimate fit and plot
 yint = peakfunction(peakdef,ax);
 [peakdef,fval,exitflag,out] = fitpeaks(peakdef,y,ax);
 yfit = peakfunction(peakdef,ax); figure
 plot(ax,yint,'m',ax,y,'b',ax,yfit,'r--')
 legend('Initial','Actual','Fit')

See Also

peakfind, lmoptimizebnd, peakfunction, peakgaussian, peaklorentzian,
peakpvoigt1, peakpvoigt2, peakstruct

 111

frpcr
Purpose

Full-ratio PCR calibration and prediction.

Synopsis

model = frpcr(x,y,ncomp,options) %calibration
pred = frpcr(x,model,options) %prediction
valid = frpcr(x,y,model,options) %validation
options = frpcr('options')

Description

FRPCR calculates a single full-ratio PCR model using the given number of components ncomp
to predict y from measurements x. Random multiplicative scaling of each sample can be used
to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for
both y-block prediction and scaling variations (such as those due to pathlength and collection
efficiency variations). The resulting PCR model is insensitive to absolute scaling errors.

NOTE: For best results, the x-block should not be mean-centered.

Inputs are x the predictor block (2-way array or DataSet Object), y the predicted block (2-
way array or DataSet Object), ncomp the number of components to to be calculated (positive
integer scalar) and the optional options structure, options.

The output of the function is a standard model structure model. In prediction and validation
modes, the same model structure is used but predictions are provided in the
model.detail.pred field.

Although the full-ratio method uses a different method for determination of the regression
vector, the fundamental idea is very similar to the optimized scaling 2 method as described
in:

T.V. Karstang and R. Manne, “Optimized scaling: A novel approach to linear calibration
with close data sets”, Chemom. Intell. Lab. Syst., 14, 165-173 (1992).

Options
 options = a structure with the following fields:
 pathvar: [{0.5}] standard deviation for random multiplicative scaling. A

value of zero will disable the random sample scaling but may increase
model sensitivity to scaling errors,

 useoffset: [{'off'} | 'on'] flag determining use of offset term in regression
equations (may be necessary for mean-centered x-block),

 display: [{'off'} | 'on'] governs level of display to command window,

 112

 plots: [{'none'} | 'intermediate' | 'final'] governs level of
plotting,

 preprocessing: {[] []} cell of two preprocessing structures (see PREPROCESS)
defining preprocessing for the x- and y-blocks.

 algorithm: [{'direct'} | 'empirical'] governs solution algorithm. Direct
solution is fastest and most stable. Only empirical will work on single-
factor models when useoffset is 'on', and

 blockdetails: ['compact' | {'standard'} | 'all'] extent of predictions and
raw residuals included in model. 'standard' only uses y-block, and
'all' uses x- and y-blocks.

confidencelimit: [{'0.95'}] Confidence level for Q and T2 limits. A value of zero
(0) disables calculation of confidence limits.

In addition, there are several options relating to the algorithm. See FRPCRENGINE.

The default options can be retreived using: options = frpcr('options');.

See Also

frpcrengine, mscorr, pcr

 113

frpcrengine
Purpose

Engine for full-ratio PCR; also known as optimized scaling 2 PCR.

Synopsis

[b,ssq,u,sampscales,msg,options] =
frpcrengine(x,y,ncomp,options); %calibration
[yhat] = frpcrengine(x,b); %prediction

Description

Calculates a single full-ratio, FR, PCR model using the given number of components ncomp
to predict y from measurements x. Random multiplicative scaling of each sample can be used
to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for
both y-block prediction and scaling variations (such as those due to pathlength and collection
efficiency variations). The resulting PCR model is insensitive to scaling errors.

NOTE: For best results, the x-block should not be mean-centered.

Although the full-ratio method uses a different method for determination of the regression
vector, the fundamental idea is very similar to the optimized scaling 2 method as described
in:

T.V. Karstang and R. Manne, “Optimized scaling: A novel approach to linear calibration
with close data sets”, Chemom. Intell. Lab. Syst., 14, 165-173 (1992).

For calibration mode, inputs include the x-block data, x, y-block data, y, and number of
components ncomp. The optional input options is described below. Calibration mode outputs
include:

b = the full-ratio regression vector for a SINGLE MODEL at the given number of PCs,
ssq = PCA variance information,
u = the x-block loadings,
sampscales = random scaling used on the samples,
msg = warning messages, and
options = the modified options structure.

For prediction mode, inputs are the x-block data, x, and the full-ration regression vectors, b.
The one output is the predicted y, yhat.

 114

Options
 options = a structure with the following fields:
 pathvar: [{0.5}] standard deviation for random multiplicative scaling. A

value of zero will disable the random sample scaling but may increase
model sensitivity to scaling errors,

 useoffset: [{'off'} | 'on'] flag determining use of offset term in regression
equations (may be necessary for mean-centered x-block),

 display: ['off' | {'on'}] governs level of display to command window,
 plots: [{'none'} | 'intermediate'] governs level of plotting,
 algorithm: [{'direct'} | 'empirical'] governs solution algorithm. Direct

solution is fastest and most stable. Only empirical will work on single-
factor models when useoffset is 'on', and

 tolerance: [{5e-5}] extent of predictions and raw residuals included in model.
'standard' only uses y-block, and 'all' uses x- and y-blocks, and

 maxiter: [{100}] maximum number of iterations.

The default options can be retreived using: options = frpcrengine('options');.

See Also

frpcr, mscorr, pcr

 115

ftest
Purpose

Inverse F test and F test.

Synopsis

fstat = ftest(p,n,d,flag)

Description

fstat = ftest(p,n,d) or fstat = ftest(p,n,d,1) calculates the F statistic fstat
given the probability point p and the number of degrees of freedom in the numerator n and
denomenator d.

fstat = ftest(p,n,d,2) calculates the probability point fstat given the F statistic p and
the number of degrees of freedom in the numerator n and denomenator d.

Examples

a = ftest(0.05,5,8); returns the value 3.6875 for a, and

a = ftest(3.6875,5,8,2); returns the value 0.050 for a.

See Also

chilimit, statdemo, ttestp

 116

fullsearch
Purpose

Exhaustive Search Algorithm.

Synopsis

[desgn,fval] = fullsearch(fun,X,Nx_sub,P1,P2, ...);

Description

Fullsearch selects the Nx_sub variables in the M by Nx matrix X that minimizes fun. This can
be used for variable selection. The algorithm should only be used for small problems because
calculation time increases significantly with the size of the problem. fun is the name of the
function (defined as a character string of an inline object) to be minimized. The function is
called with the FEVAL function as follows: feval(fun,X,P1,P2,....), where X is the first
argument for fun and P1, P2, ... the additional arguments of fun.

The output desgn is a matrix (class “logical”) with the same size as X (M by Nx) with 1’s
where the variables where selected and 0’s otherwise. Output fval has the M corresponding
values of the objective function sorted in ascending order.

Examples

find which 2of 3 variables minimizes the inline function g:

 x = [0:10]';
 x = [x x.^2 randn(11,1)*10];
 y = x*[1 1 0]';
 g = inline('sum((y-x*(x\y)).^2)');
 [d,fv] = fullsearch(g,x,2,y);

find the 2 variables that minimize the cross-validation error for PCR, noting that the output
from CROSSVAL is a vector and g should return a scalar

load plsdatad
 x = xblock1.data;
 y = yblock1.data;
 g = inline('min(sum(crossval(x,y,''pcr'',{''con'' 3},1,0)))','x','y');
 [d,fv] = fullsearch(g,x,2,y); %takes a while if Nx_sub is > 2

See Also

calibsel, crossval, genalg

 117

gaselctr
Purpose

Genetic algorithm for variable selection with PLS.

Synopsis

model = gaselctr(x,y,options)
[fit,pop,avefit,bstfit] = gaselctr(x,y,options)
options = gaselctr('options')

Description

GASELCTR uses a genetic algorithm optimization to minimize cross validation error for
variable selection.

INPUTS:
 x = the predictor block (x-block), and
 y = the predicted block (y-block) (note that all scaling should be done prior

to running GASELCTR).

Options
 options = a structure array with the following fields:
 plots: ['none' | {'intermediate'} | 'replicates' | 'final']

Governs plots.
 'final' gives only a final summary plot.
 'replicates' gives plots at the end of each replicate.
 'intermediate' gives plots during analysis.
 'none' gives no plots.
 popsize: {64} the population size (16≤popsize≤256 and popsize must be

divisible by 4),
 maxgenerations: {100} the maximum number of generations (25≤mg≤500),
 mutationrate: {0.005} the mutation rate (typically 0.001≤mt≤0.01),
 windowwidth: {1} the number of variables in a window (integer window width),
 convergence: {50} percent of population the same at convergence (typically cn=80),
 initialterms: {30} percent terms included at initiation (10≤bf≤50),
 crossover: {2} breeding cross-over rule (cr = 1: single cross-over; cr = 2:

double cross-over),
 algorithm: ['mlr' | {'pls'}] regression algorithm,
 ncomp: {10} maximum number of latent variables for PLS models,
 cv: ['rnd' | {'con'}] cross-validation option ('rnd': random subset

cross-validation; 'con': contiguous block subset cross-validation),

 118

 split: {5} number of subsets to divide data into for cross-validation,
 iter: {1} number of iterations for cross-validation at each generation,
 preprocessing: {[] []} a cell containing standard preprocessing structures for the X-

and Y-blocks respectively (see PREPROCESS),
 preapply: [{0} | 1 } If 1, preprocessing is applied to data prior to GA. This

speeds up the performance of the selection, but my reduce the accuracy
of the cross-validation results. Output "fit" values should only be
compared to each other. A full cross-validation should be run after
analysis to get more accurate RMSECV values.

 reps: {1} the number of replicate runs to perform,
 target: a two element vector [target_min target_max] describing the target

range for number of variables/terms included in a model n. Outside of
this range, the penaltyslope option is applied by multiplying the
fitness for each member of the population by:

 penaltyslope*(target_min-n) when n<target_min, or
 penaltyslope*(n-target_max) when n>target_max.
 Field target is used to bias models towards a given range of included

variables (see penaltyslope below),
 targetpct: {1} flag indicating if values in field target are given in percent of

variables (1) or in absolute number of variables (0), and
 penaltyslope: {0} the slope of the penalty function (see target above).

The default options can be retreived using: options = gaslctr('options');.

OUTPUT:
 model = a standard GENALG model structure with the following fields:
 modeltype: 'GENALG' This field will always have this value,
 datasource: {[1x1 struct] [1x1 struct]}, structures defining where the X- and

Y-blocks came from
 date: date stamp for when GASELCTR was run,
 time: time stamp for when GASELCTR was run,
 info: 'Fit results in "rmsecv", population included variables in

"icol"', information field describing where the fitness results for each
member of the population are contained,

 rmsecv: fitness results for each member of the population, for X MxN and Mp
unique populations at convergence then rmsecv will be 1xMp,

 icol: each row of icol corresponds to the variables used for that member of
the population (a 1 [one] means that variable was used and a 0 [zero]
means that it was not), for X MxN and Mp unique populations at
convergence then icol will be MpxN, and

 detail: [1x1 struct], a structure array containing model details including the
following fields:

 avefit: the average fitness at each generation,

 119

 bestfit: the best fitness at each generation, and
 options: a structure corresponding to the options discussed above.

Examples

To use mean centering outside the genetic algorithm (no additional centering will be
performed within the algorithm) do the following:

x2 = mncn(x);
y2 = mncn(y);

[fit,pop] = gaselctr(x2,y2);

To use mean centering inside the genetic algorithm (centering will be performed for each
cross-validation subset) do the following:

options = gaselctr('options');
options.preprocessing{1} = preprocess('default', 'mean center');
options.preprocessing{2} = preprocess('default', 'mean center');

[fit,pop] = gaselctr(x2,y2,options);

See Also

calibsel, fullsearch, genalg, genalgplot

 120

gcluster
Purpose

K-means and K-nearest neighbor cluster analysis with dendrograms.

Synopsis

gcluster(data,labels)

Description

gclster(data) performs a cluster analysis on the data matrix data using K-means or K-
nearest neighbor clustering and plots a dendrogram showing distances between the samples.
gcluster is a graphical user interface that calls the function cluster. The user can choose
cluster method (K-means or KNN), and data scaling options. PCA can also be used on the
data with distances based on raw scores or on a Mahalanobis distance measure.

gclster(data,labels) plots on the dendrogram sample names contained in the matrix of
text labels. labels can be entered as a matrix where each row is a label in single quotes and
each label has the same number of characters.

Note: Calling gclster with no inputs starts the graphical user interface (GUI) for this
analysis method.

See Also

cluster, simca

 121

genalg
Purpose

Genetic algorithm for variable selection to optimize model predictive ability with graphical
user interface.

Synopsis

genalg(xdat,ydat)

Description

GENALG performs variable selection using a genetic algorithm. The function creates a
graphical user interface that allows the user to load data from the workspace and select all of
the GA algorihtm optional parameters (GASELCTR is a command-line version). A wide range
of GA settings can be selected from the GUI. Please see GASELCTR for a description of each
option.

Optional inputs are the training data consisting of a matrix of predictor variables xdat and
column vector of predicted variable ydat. (The number of rows in xdat and ydat must be the
same). If GENALG is called with no inputs, xdat and ydat can be loaded using the File
menu.

In addition to various plots, the GUI can produce and save the results in a model structure
that is the same as that returned by GASELCTR. Please see GASELCTR for a description of the
model. Also, if “settings” are saved from GENALG this is the same as the options structure
discussed in GASELCTR.

Examples

>> x2 = mncn(x);
>> y2 = mncn(y);
>> genalg(x2,y2)

See Also

calibsel, fullsearch, gaselctr, genalgplot

 122

genalgplot
Purpose

Selected variable plot, color-coded by RMSECV for GA results.

Synopsis

indicies = genalgplot(fit,pop,spectrum,xaxis,xtitle)
indicies = genalgplot(results,spectrum,xaxis,xtitle)

Description

An interactive plotting routine which displays the results of a genetic algorithm (GA)
analysis. GENALGPLOT can aid in identifying patterns of variables that improve model
prediction (as estimated by RMSECV). The results of GA analysis include the final unique
"population" which is a M by N matrix where M is the number of members in the population
and N is the number of original variables in the predictor block. Each row (member) of the
population corresponds to a regression model where a column with a “1” indicates that
variable was included in the model and a “0” indicates that the variable was not included.
The RMSECV for each model characterized its prediction performance.

The user selects a subset of the population from a plot of RMSECV versus the total number
of included variables for each member of the population. The selected results are displayed
in a plot that shows which variables were included for each member in the subset and its
corresponding RMSECV. The plot is sorted with the best-performing individuals at the
bottom of the plot and the worst at the top.

GENALGPLOT is most useful when many replicate GA runs have been performed (see GENALG
and GASELCTR) with low settings on the maximum number of generations (maxgenerations)
or Found at convergence (convergence).

Required inputs are fit, the RMSECV fit results from GASELCTR (or rmsecv from a GENALG
results structure), and pop, the logical matrix of included variables for all individuals in the
final population (or icol from a GENALG results structure). Optional inputs include
spectrum, a spectrum to plot on the final "included variables" plot for reference, xaxis, the
variable axis scale, and xtitle, the x-axis label for the final plot (e.g. xaxis units).

The one output is the indicies of the selected individuals (rows of pop).

 123

Examples

Given the GENALG results structure gamodel, the following would plot the results:

genalgplot(gamodel.rmsecv,gamodel.icol)

See Also

genalg, gaselctr

 124

getdatasource
Purpose

Extract summary information about a DataSet.

Synopsis

[out1, out2,...] = getdatasource(dataset1, dataset2,...)

Description

The input(s) dataset1, dataset2,... are dataset objects. GETDATASOURCE returns structures
containing useful summary information about each DataSet including the contents of the
DataSet fields: name, author, date, and moddate. Also returned in the structure is the size of
the data field.

See Also

dataset/dataset, dataset/subsref, modelstruct

 125

getpidata
Purpose

Uses the current PI connection to construct a DSO from 'taglist'.

Synopsis

[pidso, warnlog] = getpidata(taglist,startdate,enddate,options)

Description

This function requires the PI SDK (software developer kit) be installed. If only taglist is
submitted and or date inputs are empty then a "snapshot" of the data is returned. Date inputs
can be any PI supported value.

INPUTS
 taglist = Cell array of strings containing tags to query or excel file with one

column of tag names.
 startdate = Start date/time to query or excel file with 2 columns (start and end

dates). Each row will indicate a unique start/end and will be appended
according to appenddir option setting.

 endtdate = End date/time to query.

OUTPUTS
 pidso = dataset object of queried values or (if rawdata = 'on') a 1xn structure

array with the following fields:
 .tagname
 .time
 .value
 With DSO returned queries, timestamps are returned in the .axisscale

field. Matlab adjusted timestamps are reported in .axisscale{1,1}. The
original UTC timestamps are reported in .axisscale{1,2}.

Options
options = structure array with the following fields:
 tagsearch: [{'off'} | 'on'] Show PI tag search gui.
 interpolate: [{'interval'} | 'total'] Governs interpolate settings,
 'interval' is the time between data points in seconds.
 'total' is the total number of points to retrieve.
interpolateval: {60} Default is interval if 60 seconds.
 timeout: {10} Seconds to wait for server to return for each column of data.
 savefile: {''} File name to save output to.

 126

diplaywarnings: ['off' | {'on'}] Show warning at command line after calculation.
timecorrection: {0} Time in seconds to be added when converting PI timestamps to

Matlab time.
 rawdata: [{'off'} | 'on'] Retrieve PI "compressed data" (actual Archive

events) for given taglist. This will not use any interpolation and because
data will likely be of different length, the result will be returned in a
structure, not a dso.

userservertime: ['off' | {'on'} | local] Governs how to convert Matlab
timestamps (axisscale{1,1}). 'on' creates timestamps with timezone
settings (e.g., daylight savings rules) applied. If set to 'off' then server
time is used with no timezone rules applied. If set to 'local', local
timezone is applied.

 appenddir: [{'mode 1'} | 'mode 3'] Mode to append to when using multiple
time range inputs.

 lengthmatch: ['min' | {'max'} | 'stretch' | 'fixed'] Defines how slabs
should be concatenated (used only when appenddir = 'mode 3'):

 'min' truncates all slabs to the shortest slab length.
 'max' adds NaN's to the end of each slab to match the longest slab

length.
 'stretch' interpolates all slabs to match the length of the FIRST read slab.
 'fixed' either truncates or infills all slabs to match a specific length

specified in targetlength, below.
 All modes can also be adapted to match a minimum or maximum length

using the "targetlength" option, below.
 targetlength: [] Optional target length (used only when appenddir = 'mode 3'). A non-

empty value will be used in place of the default length defined by the
lengthmatch option. If lengthmatch is 'min', this option defines the
MAXIMUM length slab to allow. If lengthmatch is 'max', this option
defines the MINIMUM length slab to allow. If lengthmatch is 'stretch',
this option defines the target length. If lengthmatch is 'fixed' then this
option defines the target length.

Examples

>> dso = getpidata('tagnames.xls','y-2d','t',options);

>> dso = getpidata('tagnames.xls','dates.xls',options);

>> dso = getpidata({'SINUSOID' 'BA:PHASE.1' 'BA:TEMP.1'},'y-
2d','t',options);

See Also

piconnectgui

 127

glsw
Purpose

Calculate or apply Generalized Least Squares weighting.

Synopsis

modl = glsw(x,a); %GLS on matrix
modl = glsw(x1,x2,a); %GLS between two data sets
modl = glsw(x,y,a); %GLS on matrix in groups based on y
modl = glsw(modl,a); %Update model to use a new value
xt = glsw(newx,modl,options); %apply correction
xt = glsw(newx,modl,a); %apply correction

Description

Uses Generalized Least Squares to down-weight variable features identified from the
singular value decomposition of a data matrix. The input data usually represents two or more
measured populations which should otherwise be the same (e.g. the same samples measured
on two different analyzers or using two different solvents) and can be input in one of several
forms, as explained below. In all cases, the downweighting is performed by taking the
eigenvectors and eigenvalues of the differences.

If the singular value decomposition (SVD) of the input matrix x is X=USVT then the
deweighting matrix is estimated with the following pseudo-inverse W=
Udiag(sqrt(1/(diag(S)/a2+1)))VT, where the center term defines Sinv. The adjustable
parameter a is used to scale the singular values prior to calculating their inverse. As a gets
larger, the extent of deweighting decreases (because Sinv approaches 1). As a gets smaller
(e.g. 0.1 to 0.001) the extent of deweighting increases (because Sinv approaches 0) and the
deweighting includes increasing amounts of the the directions represented by smaller
singular values.

A good initial guess for a is 1x10-2 but will vary depending on the covariance structure of X
and the specific application. It is recommended that a number of different values be
investigated using some external cross-validated metric for performance evalution.

An alternative method to use GLSW is in quantitative analysis where a continuous y-variable
is used to develop pseudo-groupings of samples in X by comparing the differences in the
corresponding y values. This is referred to as the "gradient method" because it utilizes a
gradient of the sorted X and y blocks to calculate a covariance matrix. For more information
on this method, see the chapter discussing Preprocessing in the PLS_Toolbox Manual.

 128

For calibration, inputs can be provided by one of three methods:
 1) x = data matrix containing features to be downweighted, and
 a = scalar parameter limiting downweighting {default = 1e-2}.
 Note: If x is a dataset with classes, the differences within each class will be

downweighted rather than the entire matrix. This reduces the within-
class variation ignoring the between-class variation.

 2) x1 = a M by N data matrix and
 x2 = a M by N data matrix.
 The row-by-row differences between x1 and x2 will be used to estimate

the downweighting.
 a = scalar parameter limiting downweighting {default = 1e-2}.
 3) x = a MxN data matrix,
 y = column vector with M rows which specifies sample groups in x within

which differences should be downweighted. Note that this method is
identical to method (1) when classes of the X block are used to identify
groups. The only difference is that these groupings are passed as a
separate input. In fact, if y is empty, this defaults to method (1) above.

 a = scalar parameter limiting downweighting {default = 1e-2}.
 4) x = a MxN data matrix,
 y = column vector with M rows specifying a y-block continuous variable. In

this input, the "gradient method" is used to identify similar samples and
downweight differences between them. See also the gradientthreshold
option below.

 a = scalar parameter limiting downweighting {default = 1e-2}.

 129

An options structure can be used in place of (a) for any call or as the third output in an apply
call. This structure consists of any of the fields:
 a: [0.02] scalar parameter limiting downweighting {default = 1e-2},
 applymean: ['no' | {'yes'}] governs the use of the mean difference

calculated between two instruments (difference between two
instruments mode). When appling a GLS filter to data collected on
the x1 instrument, the mean should NOT be applied. Data collected
on the SECOND instrument should have the mean applied.

gradientthreshold: [.25] "continuous variable" threshold fraction above which the
column gradient method will be used with a continuous y. Usually,
when (y) is supplied, it is assumed to be the identification of discrete
groups of samples. However, when calibrating, the number of
samples in each "group" is calculated and the fraction of samples in
"singleton" groups (i.e. in thier own group) is determined.

 fraction = (# Samples in Singleton Groups) / Total Samples
 If this fraction is above the value specified by this option, (y) is

considered a continuous variable (such as a concentration or other
property to predict). In these cases, the "sample similarity" (a.k.a.
"column gradient") method of calculating the covariance matrix will
be used. Sample similarity method determines the down-weighting
required based mostly on samples which are the most similar (on the
specified y-scale). Set to >=1 to disable and to 0 (zero) to always use.

 maxpcs: [50] maximum number of components (factors) to allow in the
GLSW model. Typically, the number of factors in incuded in a model
will be the smallest of this number, the number of variables or the
number of samples. Having a limit set here is useful when derriving a
GLSW model from a large number of samples and variables. Often, a
GLSW model effectively uses fewer than 20 components. Thus, this
option can be used to keep the GLSW model smaller in size. It may,
however, decrease its effectiveness if critical factors are not included
in the model.

When applying a GLSW model the inputs are newx, the x-block to be deweighted, and modl, a
GLSW model structure.

Outputs are modl, a GLSW model structure, and xt, the deweighted x-block.

See Also

pca, pls, preprocess, osccalc

 130

gram
Purpose

Generalized rank anihilation method.

Synopsis

[ord1,ord2,ssq,aeigs,beigs] = gram(a,b,tol,scl1,scl2,out)

Description

GRAM determines the joint invariant subspaces common to the two input matrices a and b, the
ratio of their magnitudes ssq, and the response in both modes/orders ord1 and ord2. GRAM
assumes that the input matrices a and b are bilinear, i.e. are the summation over outer
products.

Inputs are the two response matrices a and b, and the number of factors to calculate or
tolerance on the ratio of smallest to largest singular value tol. Optional inputs scl1 and scl2
are scales to plot against when producing plots of the reponse in each mode/order. Optional
input out suppresses plotting and printing of results to the command window when set to 0
{default out = 1}.

Outputs are the pure component responses in each mode ord1 and ord2, the table of
eigenvalues and their ratios ssq, and the eigenvalues for each matrix aeigs and beigs.

See Also

mpca, parafac, parafac2, tld

 131

gscale
Purpose

Group/block scaling for a single or multiple blocks.

Synopsis

[gxs,mxs,stdxs] = gscale(xin,numblocks)

Description

GSCALE scales an input matrix xin such that the columns have mean zero, and variance in
each block/sub-matrix relative to the total variance in xin equal to one. The purpose is to
provide equal sum-of-squares weighting to each block in xin.

Inputs are a matrix xin (class "double") and the number of sub-matrices or blocks
numblocks. Note that size(xin,2)/numblocks must be an integer. If numblocks is not
included, it is assumed to 1 i.e. the matrix xin is treated as a single block.

If (numblocks) is 0 (zero) then automatic mode is used based on the dimensions of the (xin)
matrix:

If (xin) is a three-way array, it is unfolded (combining the first two modes as variables)
and the size of the original second mode (size(xin,2)) is used as (numblocks). The output
is re-folded back into the original three-way array.

Note that the unfold operation is: xin = unfoldmw(xin,3);

If (xin) is a two-way array, each variable is treated on its own and GSCALE is equivalent
to autoscale (see the AUTO function).

Outputs are the scaled matrix (gxs), a rowvector of means (mxs), and a row vector of "block
standard deviations" stdxs.

 132

Examples

Scale a matrix a that has two blocks augmented together:

>> a = [[1 2 3; 4 5 6; 7 8 9] [11 12 13; 14 15 16; 17 18 19]]
a =
 1 2 3 11 12 13
 4 5 6 14 15 16
 7 8 9 17 18 19
>> [gxs,mxs,stdxs] = gscale(a,2);
>> gxs
gxs =
 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774
 0 0 0 0 0 0
 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
>> mxs
mxs =
 4 5 6 14 15 16
>> stdxs
stdxs =
 3 3 3 3 3 3

See Also

auto, gscaler, mncn, mpca, scale, unfoldm

 133

gscaler
Purpose

GSCALER Applies group/block scaling to submatrices of a single matrix.

Synopsis

gys = gscaler(xin,numblocks,mxs,stdxs)
xin = gscaler(gys,numblocks,mxs,stdxs,undo)

Description

Inputs are a matrix (xin) (class "double"), the number of sub-matrices/ blocks (numblocks),
an offset vector (mxs), and a scale vector (stdxs).

See GSCALE for descriptions of (mxs) and (stdxs).

Note that size(xin,2)/numblocks must be a whole number.

When numblocks = 1, all variables are scaled as a single block.

When numblocks = 0, each variable is handled on its own and gscaler is equivalent to the
SCALE function.

If the optional input (undo) is included with a value of 1 (one), then the input is assumed to
be (gys) and is unscaled and uncentered to give the original (xin) matrix.

In a standard call, the output is the scaled matrix (gys). When undo is provided, the output is
the unscaled original matrix (xin).

Examples

Scale a matrix a that has two blocks augmented together using GSCALE:
>> a = [[1 2 3; 4 5 6; 7 8 9] [11 12 13; 14 15 16; 17 18 19]];
>> [gxs,mxs,stdxs] = gscale(a,2);
>> gxs
gxs =
 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774
 0 0 0 0 0 0
 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
>> mxs
mxs =
 4 5 6 14 15 16
>> stdxs
stdxs =
 3 3 3 3 3 3

 134

Now scale a new matrix b that has two blocks augmented together:
>> b = [[2 3 4; 4 5 6; 6 7 8] [10 11 12; 14 15 16; 18 19 20]]
b =
 2 3 4 10 11 12
 4 5 6 14 15 16
 6 7 8 18 19 20
>> gys = gscaler(b,2,mxs,stdxs)
gys =
 -0.3849 -0.3849 -0.3849 -0.7698 -0.7698 -0.7698
 0 0 0 0 0 0
 0.3849 0.3849 0.3849 0.7698 0.7698 0.7698

See Also

auto, gscale, mncn, mpca, scale, unfoldm

 135

gselect
Purpose

Selects objects in a figure (various selection styles).

Synopsis

selected = gselect(mode,TargetHandle,options)
[x,y] = gselect(mode,TargetHandle,options)

Description

GSELECT is a general utility which allows user-selection of plotted objects (points, line
segments, areas of images, etc.). A variety of selection modes can be used on various types
of plots. Each mode allows the user to select an area or range of the current axes. After
selection is complete, the function returns a cell array that contains one cell for each line or
image object on the axes. These cells contain a binary (true/false) array representing the
selected points of each object.

The input mode is a string representing the selection mode. This governs how GSELECT
selects objects in a figure. mode can be one of the following strings {default = 'rbbox'}:
 'x': select a single x-axis position (snaps-to line x-data),
 'y': select a single y-axis position (snaps-to line y-data),
 'xs': select range of x-axis positions (snaps-to line x-data),
 'ys': select range of y-axis positions (snaps-to line y-data),
 'rbbox': select points inside a standard rubber-band box {default },
 'polygon': select points inside a polygon (user selects corners),
 'circle': select points inside a circle,
 'ellipse': select points inside an ellipse,
 'lasso': select points inside a lasso,
 'paint': drag a broad line across points for selection,
 'nearest': select single nearest point,
 'nearests': select multiple single (nearest) points,
 'all': selects all points (no user interaction required), and
 'none': selects no points (no user interaction required).

Optional input TargetHandle is the handle or handles of objects to test for selection. The
default is all lines, patches, surfaces, and images.

The output is a cell array selection. Each cell in selection will be equal in length to the
data used to create the corresponding object. For example, if a vector containing 30 points
was plotted, the resulting cell will be a vector of 30 binary values. Each selected point on that

 136

object will be represented by a value of 1 (one) in the cell, unselected objects by a value of 0
(zero).

If two outputs [x,y] are requested, GSELECT does not test objects for selection and simply
returns the x and y points defining the selected area.

Options
 options = a structure array with the following fields:
 modal: [{'Flase'} | 'True'] Governs window's "modal" nature. Note

that some systems will not allow modal windows.
 btndown: [{'Flase'} | 'True'] Should button be considered "down" at

start?
 demo: [{'Flase'} | 'True'] Is this a demo call to gselect? (do not wait

to exit)
 poslabel: ['none' | {'xy'}] Governs what kind of axis position labels will

be shown.
 helpbox: ['off' | {'on'}] Governs display of the helpbox.
 helptextpre: [''] Specifies text to prepend to helpbox message.
 helptextpost: [''] Specifies text to append to end of helpbox message.
 helptext: [''] Specifies alternate text to replace default helpbox message.

 modalwindow = optional flag which can be passed in place of "options" input. Controls

window modal setting during the selection process (Keeps other
windows from interrupting process) A value of 1 sets options.modal to
'true'.

Examples

Example 1. Plot a vector of 10 random values and let the user select from these points using
the standard rubber-band box.

plot(randn(10,3), randn(10,3), '.'); slct = gselect('rbbox')

The output will be something like:

slct =
 [1x10 uint8]
>> slct{1}
ans =
 0 0 0 0 1 1 0 1 0 0
>> find(slct{1})
ans =
 5 6 8

indicating that points 5, 6 and 8 were selected by the user.

 137

Example 2. Plot a small image and let the user select a sub-range using the polygon tool.

imagesc(randn(6,6)); slct = gselect('polygon')

The output will be something like:

slct =
 [6x6 uint8]
>> slct{1}
ans =
 0 0 0 0 0 0
 0 1 0 0 0 0
 0 1 1 1 0 0
 0 1 1 1 0 0
 0 1 0 1 1 0
 0 1 0 1 0 0

indicating the "n" shaped region selected by the user.

See Also

plotgui

 138

helppls
Purpose

Starts the MATLAB help browser with PLS_Toolbox topics.

Synopsis

helppls

Description

HELPPLS brings up the MATLAB help browser with a list of topics for installing and using
the PLS_Toolbox. To access a particular topic simply click on its text.

Use the arrow buttons in the upper left corner of the window to navigate forward and
backward (similar to a web browser). Some of the Topics may link you to a Documentation
page about a particular function in the PLS_Toolbox. From here you can navigate to related
topics by clicking on See Also items or to the next topic (in alphabetical order) by clicking
its text in the yellow highlighted header/footer section.

See Also

readme

 139

hline
Purpose

Place a horizontal line in an existing figure.

Synopsis

hline(y,lc)
h = hline(y,lc)

Description

HLINE draws a horizontal line on an existing figure from the left axis to the right axis at a
height, or heights, defined by y which can be a scalar or vector. If no input is used for y the
default vaule is zero. The optional input variable lc can be used to define the line style and
color as in normal plotting.

Examples

hline(1.4,'--b')

plots a horizontal dashed blue line at y = 1.4.

See Also

dp, ellps, plot, plttern, vline, zline

 140

ipls
Purpose

IPLS Interval PLS and forward/reverse MLR variable selection.

Synopsis

results = ipls(X,Y,int_width,maxlv,options)
results = ipls(X,Y,int_width,maxlv,numintervals,options)
[use,fit,lvs,intervals,intcv,intlv] =

ipls(X,Y,int_width,maxlv,options)

Description

Performs forward or reverse selection of variable windows based on the RMSECV obtained
for each individual window ("intervals") of variables. Multiple windows can also be selected
iteratively by modifying the options.numintervals options. The "algorithm" option allows this
function to behave as an IPLS or IPCR algorithm or a forward/reverse MLR variable
selection algorithm. The default is PLS but options.algorithm = 'mlr' changes to MLR mode.
See other options below.

Inputs are (X,Y) the X and Y data, (int_width) the interval i.e. window width in variables and
(maxlv) the maximum number of latent variables to use in any model (maxlv has no impact if
options.algorithm = 'mlr'). Note that excluding a variable in X will prevent it from being used
in any model.

If options.plots is 'final', a plot is given of the minimum RMSECV versus window center.
Windows which were used are indicated in blue, windows which were excluded are indicated
in red. The number of latent variables (LVs) used to assess each interval (the model size that
gives the indicated RMSECV) is shown at the bottom of each interval's bar, inside the axes.
The best RMSECV that can be obtained using all intervals is shown as a dashed red line (all-
interval RMSECV). The number of LVs used in this model is shown on the right of the axes.
If this number of LVs (all-interval model) is different from the number used for the best
model of the selected interval(s) (selected-interval model) then a dashed magenta line will
indicate the RMSECV obtained when using all intervals but at the selected-interval model
size. The mean sample is superimposed on the plot for reference.

INPUTS:
 X = X-block,
 Y = Y-block, and
 int_width = the interval (window width in variables)
 maxlv = the maximum number of latent variables to use in any model.

NOTE that excluding a variable in X will prevent it from being used in any model.

 141

OUTPUTS:

When a single output is requested, the output is a structure with the following fields:

 use: the final selected indices which gave the best model,
 fit: the RMSECV for the selected indicies,
 lvs: the number of latent variables which gives the best fit,
 intervals: a matrix containing the indicies used for each interval.
 intcv: the RMSECV in the last selection cycle for all intervals (these values

were used to select the last interval).
 intlv: the number of latent variables used in the model which gave the

RMSECV values returned in intcv.

Optionally, with multiple outputs, these vaiables will be returned as single outputs (not in
structure format) in the order shown above.

Options
 options = options structure containing the fields:
 display: ['off' | {'on'}], governs level of display to command window,
 plots: ['none' | {'final'}], governs level of plotting,
 mode: [{'forward'} | 'reverse'] Defines action to be performed with

each interval.
 'forward' mode: the RMSECV calculated for each interval represents

how well the y-block can be predicted using ONLY the variables
included in the interval.

 'reverse' mode: the RMSECV calculated for each interval represents how
well the y-block can be predicted when the given interval of variables
are removed from the range of included X variables.

 NOTE that excluding a variable in X will prevent it from being used in
any model.

 algorithm: [{'pls'} | 'pcr' | 'mlr'] Defines regression algorithm to use.
Selection is done for the specific algorithm. Note that when MLR is
used, input (int_width) is most often = 1 (single variable per window).

 numintervals: { [1] } Number of intervals to select or remove. If (num_intervals) is
Inf, intervals are iteratively selected and added/removed until no
improvement in RMSECV is observed. NOTE: this can also be set by
passing as a scalar value before, or in place of, the options structure.
When passed this way, any value passed in the options structure will be
ignored.

 mustuse: [] A vector of variable indices which MUST be used in all models.
These variables will always be included in any model, whether or not
they are included in the current interval.

 142

 stepsize: [] Distance between interval centers. An empty matrix gives the
default spacing in which intervals do not overlap (stepsize = int_width).

 preprocessing: defines preprocessing and can be one of the following:
 (a) One of the following strings:
 'none' : no preprocessing {default}
 'meancenter' : mean centering
 'autoscale' : autoscaling
 (b) A single preprocessing structure defined using the function
 preprocess. The same preprocessing structure will be used on both
 the X and Y blocks.
 (c) A cell containing two preprocessing structures {pre pre} one for
 the X block and one for the Y block.
 cvi: {'vet' [] 1} Three element cell indicating the cross-validation

leave-out settings to use {method splits iterations}. For valid modes, see
the "cvi" input to crossval. If splits (the second element in the cell) is
empty, the square root of the number of samples will be used. cvi can
also be a vector (non-cell) of indices indicating leave-out groupings (see
crossval for more info).

See Also

gaselctr, genalg

 143

jcampreadr
Purpose

Reads a JCAMP file into a DataSet object.

Synopsis

data = jcampreadr('filename.dx')

Description

Input is the filename of a JCAMP file to read. If omitted, the user is prompted for a file.
Currently this reader will only read files of type:

INFRARED SPECTRUM

LINK

Output (data) is a DataSet object containing the spectrum or spectra from the file (or an
empty array if no data could be read)

See Also

spcreadr, xclreadr

 144

jmlimit
Purpose

Confidence limits for Q residuals via Jackson-Mudholkar.

Synopsis

rescl = jmlimit(pc,s,cl)

Description

JMLIMIT estimates confidence limits for Q residuals based on the Jackson-Mudholkar
method. See Jackson, J.E., “A User’s Guide to Principal Components”, John Wiley & Sons,
New York, NY (1991), and the discussion in the Chemometrics Tutorial on PCA.

Inputs are the number of PCs used pc, the vector of eigenvalues s, and the confidence limit
cl expressed as a fraction (e.g. 0.95). Note that for a PCA model structure, model, that the
eigenvalues can be found in model.detail.ssq(:,2).

The output rescl is the confidence limit based on the method of Jackson and Mudholkar.
See CHILIMIT for an alternate method of residual limit calculation based on chi squared.

Examples
rescl = jmlimit(2,ssq(:,2),0.95);

For a PCA model contained in the structure model:

rescl = jmlimit(4,model.detail.ssq(:,2),0.99);

See Also

chilimit, analysis, pca, residuallimit

 145

knn
Purpose

K-nearest neighbor classifier.

Synopsis

pclass = knn(xref,xtest,k,options); %make prediction without model
pclass = knn(xref,xtest,options); %use default k

model = knn(xref,k,options) %create model
pclass = knn(xref,xtest,k,options) %apply model to xtest
pclass = knn(xtest,model,options)

Description

Performs kNN classification where the "k" closest samples in a reference set vote on the
class of an unknown sample based on distance to the reference samples. If no majority is
found, the unknown is assigned the class of the closest sample (see input options for other
no-majority behaviors).

INPUTS:
 xref = a DataSet object of reference data,
 xtest = a DataSet object or Double containing the unknown test data.

OPTIONAL INPUTS:
 model = an optional standard KNN model structure which can be passed instead

of xref (note order of inputs: (xtest,model)) to apply model to test data.
 k = number of components {default = rank of X-block}.

OUTPUTS:
 pclass = an optional number of neighbors to use in vote for class of unknown

{default = 3}. If k=1, only the nearest sample will define the class of the
unknown.

 model = if no test data (xtest) is supplied, a standard model structure is returned
which can be used with test data in the future to perform a prediction.

Options
 options = structure array with the following fields :
 display: ['off' | {'on'}] governs level of display to screen.

 146

 preprocessing: { [] } A cell containing a preprocessing structure or keyword (see
PREPROCESS). Use {'autoscale'} to perform autoscaling on reference
and test data.

 nomajority: ['error' | {'closest'} | class_number] Behavior when no majority is found
in the votes. 'closest' = return class of closest sample. 'error' = give error
message. class_number (i.e. any numerical value) = return this value for
no-majority votes (e.g. use 0 to return zero for all no-majority votes)

See Also

analysis, cluster, plsda, simca

 147

lamsel
Purpose

Determine indices of wavelength axes in specified ranges.

Synopsis

inds = lamsel(freqs,ranges,out)

Description

LAMSEL determines the indices of the elements of a wavelength or wavenumber axis within
the ranges specified. Inputs are the wavelength or wavenumber axis freqs and an m by 2
matrix defining the wavelength ranges to select ranges.

An optional input out suppresses displaying information to the command window when set to
0.

The output inds is a vector of indices of channels in the specified range(s) inclusive.

Examples

inds = lamsel(lamda,[840 860; 1380 1400]);

outputs the indices of the elements of lamda between 840 and 860 and between 1380 and
1400.

See Also

baseline, savgol, specedit

 148

lddlgpls
Purpose

Provide an “load” dialog box for use with GUIs.

Synopsis

[value,name,source] = lddlgpls(klass,message)

Description

LDDLPLS creates a dialog box that allows a function to load variables from the workspace or a
MATLAB "mat" file into the function workspace. The location of the file to load from can be
selecetd from the folders listed in the file list and from the "Look in" menu at the top of the
dialog box. Optional input klass allows the user to select the workspace variable of class to
load. Valid values for klass are:
 'double': loads 2-way DOUBLE variable {default},
 'cell': loads CELL variable,
 'char': loads 2-way CHAR variable,
 'struct': loads a STRUCT variable,
 'dataset': loads a DATASET object,
 'doubdataset': loads a 2-way DOUBLE or DATASET, or
 '*': loads any class and size variable.

Optional text input message places a message in the load dialog box.

Outputs include value the value of the selected variable, name the original name of the
variable, and location the filename from which the variable was loaded (will be empty if
loaded from the base workspace).

See Also

erdlgpls, svdlgpls

 149

leverag
Purpose

Calculates sample leverage.

Synopsis

lev = leverag(x,rinv)

Description

LEVERAG calculates the sample leverage according to

lev(i,1) = x(i,:)*inv(x'*x)*x(i,:)'.

Note that the leverage calculation should include a term for calculation of the offset (e.g. see
Draper, N. and Smith, H., “Applied Regression Analysis, Second Edition”, John Wiley &
Sons, New York, N.Y., 1981), but the above formula contains the salient information. This,
in effect, assumes that the data have been mean centered and the constant term related to
estimating the offset has been ignored. If x'*x is replaced by x'*x/(m-1) where m is the
number of rows of x, and x has been mean centered then this is the equation for Hotelling's
T2 statistic.

Note that if x is not of full rank then inv(x'*x) won't exist, or if x is nearly rank deficient
then calculation of the inverse will be unstable. In these cases, the scores from principal
components analysis can be used.

If the optional input rinv is supplied then the leverage is calculated as

lev(i,1) = x(i,:)*rinv*x(i,:)'.

See Also

doptimal, figmerit, pls, pcr

 150

lmoptimize
Purpose

Levenberg-Marquardt non-linear optimization.

Synopsis

[x,fval,exitflag,out] = lmoptimize(fun,x0,options,params)

Description

Starting at (x0) LMOPTIMIZE finds (x) that minimizes the function defined by the function
handle (fun) where (x) has N parameters. The function (fun) must supply the Jacobian and
Hessian i.e. they are not estimated by LMOPTIMIZE (an example is provided in the Algorithm
Section below).

INPUTS:
 fun = function handle, the call to fun is
 [fval,jacobian,hessian] = fun(x)
 [see the Algorithm Section for tips on writing (fun)]
 (fval) is a scalar objective function value,
 (jacobian) is a N x1 vector of Jacobian values, and
 (hessian) is a N x N matrix of Hessian values.
 x0 = N x1 initial guess of the function parameters.

OPTIONAL INPUTS:
 options = discussed below in the Options Section.
 params = comma separated list of additional parameters passed to the objective

function (fun), the call to (fun) is
 [fval,jacobian,hessian] = fun(x,params1,params2,...).

OUTPUTS:
 x = N x1 vector of parameter value(s) at the function minimum.
 fval = scalar value of the function evaluated at (x).
 exitflag = describes the exit condition with the following values
 1: converged to a solution (x) based on one of the tolerance criteria
 0: convergence terminated based on maximum iterations or maximum

time.
 out = structure array with the following fields:
 critfinal: final values of the stopping criteria (see options.stopcrit below).
 x: intermediate values of (x) if options.x=='on'.
 fval: intermediate values of (fval) if options.fval=='on'.

 151

 Jacobian: last evaluation of the Jacobian if options.Jacobian=='on'.
 Hessian: last evaluation of the Hessian if options.Hessian=='on'.

Algorithm

The objective function is defined as ()f x , where x is a N x1 vector. The Jacobian J and
the symmetric Hessian H are defined as

1

2d
d

N

f x
f xf

f x

∂ ∂ 
 ∂ ∂ = =
 
 ∂ ∂ 

J
x #

2 2 2 2
1 1 2 1

2 2 2 2
2 1 2 2

2 2 2 2
1 2

d d
d d

N
T

N

N N N

f x f x x f x x
f x x f x f x xf

f x x f x x f x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = =    
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

H
x x

"
"

%
"

.

Two types of calls to the function fun are made. The first type is used often and is a simple
evaluation of the function at x given by

fval = fun(x,params1,params2,...);

The second type of call returns the Jacobian and Hessian
[fval,jacobian,hessian] = fun(x,params1,params2,...);

Therefore, to enhance the speed of the optimization, the M-file that evaluates the objective
function should only evaluate the Jacobian and Hessian if nargout>1 as in the following
example.

function [p,p1,p2] = banana(x)
%BANANA Rosenbrock's function
% INPUT:
% x = 2 element vector [x1 x2]
% OUTPUTS:
% p = P(x) = 100(x1^2-x2)^2 + (x1-1)^2
% p1 = P'(x) = [400(x1^3-x1x2) + 2(x1-1); -200(x1^2-x2)]
% p2 = P"(x) = [1200x1^2-400x2+2, -400x1; -400x1, 200]
% p is (fval)
% p1 is (jacobian)
% p2 is (Hessian)
%
%I/O: [p,p1,p2] = banana(x);

x12 = x(1)*x(1);
x13 = x(1)*x12;
x22 = x(2)*x(2);
alpha = 10; %1 is not very stiff, 10 is The stiff function

p = 10*alpha*(x13*x(1)-2*x12*x(2)+x22) + x12-2*x(1)+1;
if nargout>1
 p1 = [40*alpha*(x13-x(1)*x(2)) + 2*(x(1)-1);
 -20*alpha*(x12-x(2))];
 p2 = [120*x12-40*x(2) + 2, -40*x(1);
 -40*x(1), 20]*alpha;

 152

end

This example shows that the Jacobian and Hessian are not evaluated unless explicitly called
for by utilizing the nargout command. Since estimating J (output p1) and H (output p2)
can be time consuming, this coding practice is expected to speed up the optimization.

A single step in a Gauss-Newton (G-N) optimization, k∆x is given as

 1
k k k

−∆ = −x H J

where the index k corresponds to the step number.

A problem with the G-N methods is that the inverse of the Hessian may not exist at every
step, or it can converge to a saddle point if the Hessian is not positive definite [T.F. Edgar,
D.M. Himmelblau, Optimization of Chemical Processes, 1st ed., McGraw-Hill Higher
Education, New York, NY, 1988]. As an alternative, the Levenberg-Marquardt (L-M)
method was used for CMF [K. Levenberg, Q. Appl. Math 2 (1944) 164; D. Marquardt,
S.I.A.M. J. Appl. Math 11 (1963) 431; Edgar et al.]. A single step for the L-M method is
given by

 () 1
k k kθ −∆ = − +x H I J

where θ is a damping parameter and I is a N x N identity matrix. This has a direct analogy
to ridge regression [A.E. Hoerl, R.W. Kennard, K.F. Baldwin, Commun. Statist. 4 (1975)
105] with θ , the ridge parameter, constraining the size of the step. This method is also called
a damped G-N method [G. Tomasi, R. Bro, Comput. Stat. Data Anal. in press (2005)]. There
are several details to implementing the L-M approach [M. Lampton, Comput. Phys. 11
(1997) 110]. Details associated with the LMOPTIMIZE function are discussed here.

At each iteration in the algorithm, the inverse of k θ+H I must be estimated. As a part of this
process the singular value decomposition (SVD) of kH is calculated as

 T
k=VSV H .

Note that the left and right singular vectors are the same (and equal to V) because the
Hessian is symmetric. If the optimization surface is convex, kH will be positive definite and
the diagonal matrix S will have all positive values on the diagonal. However, the
optimization problem may be such that this is not the case at every step. Therefore a small
number α is added to the diagonal of S in an effort to ensure that the Hessian will always
be positive definite. In the algorithm 1,1 ncondα = S , where 1,1S is the largest singular value
and ncond is the maximum condition number desired for the Hessian [ncond is input as
options.ncond]. This can be viewed as adding a small dampening to the optimization and is
always included at every step. In contrast, an additional damping factor that is allowed to

 153

adapt at each step is also included. The adapting dampening factor is given by 1 1,1θ λ= S
where the initial 1λ is input to the algorithm as options.lamb(1). It is typical that θ is
much larger than α . The inverse for the L-M step is then estimated as

 () ()() 11 T
k θ θ α

−−+ ≈ + +H I V S I V

and is used to estimate a step distance k∆x .

The ratio () () []k k k kr f f= − + ∆ − ∆  x x x J x is a measure of the improvement in the
objective function relative to the improvement if the objective function decreased linearly. If

1r r< then a line search is initiated [1 0r > is a small number input as options.ramb(1)]. In
this case, the damping factor 1λ is increased (so that the step size is reduced) by setting

1 1 2λ λ λ= where 2 1λ < [2λ is input as options.lamb(2)], and a new step distance k∆x is
estimated. The ratio r is then estimated again. The damping factor 1λ is increased until

1r r≥ or the maximum number of line search steps maxk is reached [maxk is input as
options.kmax]. (If 1λ increases sufficiently, the optimization resembles a damped steepest
decent method.) If the maximum number of line search steps maxk is reached, the step is
“rejected” and only a small movement is made such that 3k k kr∆ = ∆ ∆x x x [3r is input as
options.ramb(3)].

If instead, the first estimate of the ratio is large enough such that 1r r≥ then the line search is
not initiated. If the ratio is sufficiently large such that 2r r> , where 2 1r r> then the damping
factor is decreased by setting 1 1 3λ λ λ= where 3 1λ > [2r is input as options.ramb(2); 3λ
is input as options.lamb(3)].

A new value for x is then estimated from 1k k k+ = + ∆x x x and the next step is repeated from
that point. The process is repeated until one of the stopping criteria [options.stopcrit] are
met.

Options
options = structure array with the following fields:
 name: 'options', name indicating that this is an options structure.
 display: ['off' | {'on'}] governs level of display to the command window.
 dispfreq: N, displays results every Nth iteration {default N=10}.
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative

tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)].

 x: [{'off'} | 'on'] saves (x) at each step.
 fval: [{'off'} | 'on'] saves (fval) at each step.
 Jacobian: [{'off'} | 'on'] saves last evaluation of the Jacobian.

 154

 Hessian: [{'off'} | 'on'] saves last evaluation of the Hessian.
 ncond = 1e6, maximum condition number for the Hessian (see Algorithm).
 lamb = [0.01 0.7 1.5], 3-element vector used for damping factor control (see

Algorithm Section):
 lamb(1): lamb(1) times the biggest eigenvalue of the Hessian is added to Hessian

eigenvalues when taking the inverse; the result is damping.
 lamb(2): lamb(1) = lamb(1)/lamb(2) causes deceleration in line search.
 lamb(3): lamb(1) = lamb(1)/lamb(3) causes acceleration in line search.
 ramb = [1e-4 0.5 1e-6], 3-element vector used to control the line search (see

Algorithm Section):
 ramb(1): if fullstep < ramb(1)*[linear step] back up (start line search).
 ramb(2): if fullstep > ramb(2)*[linear step], accelerate [change lamb(1) by the

acceleration parameter lamb(3)].
 ramb(3): if linesearch rejected, make a small movement in direction of L-M step

ramb(3)*[L-M step].
 kmax = 50, maximum steps in line search (see Algorithm Section).

Examples
options = lmoptimize('options');
options.x = 'on';
options.display = 'off';
[x,fval,exitflag,out] = lmoptimize(@banana,x0,options);
plot(out.x(:,1),out.x(:,2),'-o','color', ...
 [0.4 0.7 0.4],'markersize',2,'markerfacecolor', ...
 [0 0.5 0],'markeredgecolor',[0 0.5 0])

See Also

function_handle, lmoptimizebnd

 155

lmoptimizebnd
Purpose

Levenberg-Marquardt bounded non-linear optimization.

Synopsis

[x,fval,exitflag,out] =
 lmoptimizebnd(fun,x0,xlow,xup,options,params)

Description

Starting at (x0) LMOPTIMIZE finds (x) that minimizes the function defined by the function
handle (fun) where (x) has N parameters. Inputs (xlow) and (xup) can be used to provide
lower and upper bounds on the solution (x). The function (fun) must supply the Jacobian and
Hessian i.e. they are not estimated by LMOPTIMIZEBND (an example description is provided in
the Algorithm Section of the function LMOPTIMIZE).

INPUTS:
 fun = function handle, the call to fun is
 [fval,jacobian,hessian] = fun(x)
 [see the Algorithm section for tips on writing (fun)]
 (fval) is a scalar objective function value,
 (jacobian) is a N x1 vector of Jacobian values, and
 (hessian) is a N x N matrix of Hessian values.
 x0 = N x1 initial guess of the function parameters.
 xlow = N x1 vector of corresponding lower bounds on (x). See options.alow.

If an element of xlow == -inf, the corresponding parameter in (x) is
unbounded on the low side.

 xup = N x1 vector of corresponding upper bounds on (x). See options.aup. If
an element of xup == inf, the corresponding parameter in (x) is
unbounded on the high side.

OPTIONAL INPUTS:
 options = discussed below in the Options Section.
 params = comma separated list of additional parameters passed to the objective

function (fun), the call to (fun) is
 [fval,jacobian,hessian] = fun(x,params1,params2,...).

 156

OUTPUTS:
 x = N x1 vector of parameter value(s) at the function minimum.
 fval = scalar value of the function evaluated at (x).
 exitflag = describes the exit condition with the following values
 1: converged to a solution (x) based on one of the tolerance criteria
 0: convergence terminated based on maximum iterations or maximum

time.
 out = structure array with the following fields:
 critfinal: final values of the stopping criteria (see options.stopcrit above).
 x: intermediate values of (x) if options.x=='on'.
 fval: intermeidate values of (fval) if options.fval=='on'.
 Jacobian: last evaluation of the Jacobian if options.Jacobian=='on'.
 Hessian: last evaluation of the Hessian if options.Hessian=='on'.

Algorithm

The algorithm is essentially the same as that discussed in LMOPTIMIZE and this section
discusses only the two main differences between LMOPTIMIZEBND and LMOPTIMIZE.

The first difference is the addition of penalty functions used to enforce bounding. For
example, the objective function used in LMOPTIMIZE is ()f x , but the objective function used

by LMOPTIMIZEBND is () () ()low upf g g+ +x x x . The penalty functions for upper, ()upg x , and

lower bounds, ()lowg x , are similar, so only the lower penalty function is described.

Define d as the lower boundary, 0γ a small number (e.g. 0.001) and 0α a large number [e.g.
8

0ln(10) / γ−−], then for a single parameter the lower penalty function is given as

 ()
()

() ()
()
()

0 0
0

221
00 0 0 02

0

01

ix d
i

low i
ii i

e x d
g x

x dx d x d

α γ γ
γα γ α γ

− − − − − ≥ =  − − <− − − + − −  
 .

This function can be considered an external point function because it is defined outside the
feasible region (outside the boundaries). It is continuous at the boundary and also has
continuous first and second derivatives. This is in contrast to internal point functions such as
a log function that is not continuous at the boundary [e.g. ()ln 0 is not continuous]. The first
and second derivatives of the penalty function are given by

 () ()

()
()
()

0 0
00

2
00 0 0

0d

0d

ix d
ilow i

ii i

x dg x e
x dx x d

α γ γα
γα α γ

− − − − − ≥− =  − − <− + − −  
 and

 157

 () () ()
()

0 02 2
00

2 2
00

0d

0d

ix d
ilow i

ii

x dg x e
x dx

α γ γα
γα

− − − − − ≥ =  − − <  
 .

The external point penalty function does not guarantee that a step won’t move outside the
boundaries into the infeasible region. It does, however provide a means for getting back
inside the feasible region.

A second modification is included in the LMOPTIMIZEBND algorithm to avoid large steps
outside the feasible region. If a step k∆x is such that any 1k k k+ = + ∆x x x are outside the
feasible region, the step size for those parameters is reduced. The reduction is 90% the
distance of that parameter to the boundary. This typically changes the direction of the step

k∆x .

Options
options = structure array with the following fields:
 name: 'options', name indicating that this is an options structure.
 display: ['off' | {'on'}] governs level of display to the command window.
 dispfreq: N, displays results every Nth iteration {default N=10}.
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative

tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)].

 x: [{'off'} | 'on'] saves (x) at each step.
 fval: [{'off'} | 'on'] saves (fval) at each step.
 Jacobian: [{'off'} | 'on'] saves last evaluation of the Jacobian.
 Hessian: [{'off'} | 'on'] saves last evaluation of the Hessian.
 ncond = 1e6, maximum condition number for the Hessian (see Algorithm).
 lamb = [0.01 0.7 1.5], 3-element vector used for damping factor control (see

Algorithm Section):
 lamb(1): lamb(1) times the biggest eigenvalue of the Hessian is added to Hessian

eigenvalues when taking the inverse; the result is damping.
 lamb(2): lamb(1) = lamb(1)/lamb(2) causes deceleration in line search.
 lamb(3): lamb(1) = lamb(1)/lamb(3) causes acceleration in line search.
 ramb = [1e-4 0.5 1e-6], 3-element vector used to control the line search (see

Algorithm Section):
 ramb(1): if fullstep < ramb(1)*[linear step] back up (start line search).
 ramb(2): if fullstep > ramb(2)*[linear step], accelerate [change lamb(1) by the

acceleration parameter lamb(3)].
 ramb(3): if linesearch rejected, make a small movement in direction of L-M step

ramb(3)*[L-M step].
 kmax = 50, maximum steps in line search (see Algorithm Section).

 158

 alow: [], N x1 vector of penalty weights for lower bound, {default =
ones(N,1)}. If an element is zero, the corresponding parameter in (x) is
not bounded on the low side.

 aup: [], N x1 vector of penalty weights for upper bound, {default =
ones(N,1)}. If an element is zero, the corresponding parameter in (x) is
not bounded on the high side.

Examples
options = lmoptimize('options');
options.x = 'on';
options.display = 'off';
options.alow = [0 0]; %x(1) and x(2) unbounded on low side
options.aup = [1 0]; %x(1) bounded on high side and x(2)
 % unbounded on high side

[x,fval,exitflag,out] = lmoptimize(@banana,x0,[0 0], ...
 [0.9 0],options);
plot(out.x(:,1),out.x(:,2),'-o','color', ...
 [0.4 0.7 0.4],'markersize',2,'markerfacecolor', ...
 [0 0.5 0],'markeredgecolor',[0 0.5 0])

See Also

function_handle, lmoptimize

 159

localmax
Purpose

Automated identification of local maxima

Synopsis

i0 = localmax(x,w)

Description

Finds maxima in windows of width (w). Wider windowing is used to avoid local maxima that
might be due to noise. The default window width is w=3. This function is called by
PEAKFIND.

INPUT:
 x = MxN matrix of measured traces containing peaks each 1xN row of (x)

is an individual trace.

OPTIONAL INPUT:
 w = odd scalar window width for determining local maxima {default: w =

3}.

OUTPUT:
 i0 = 1Mx cell w/ indices of the location of the major peaks for each of the

M traces in each cell.

Examples

load nir_data
plot(spec1.axisscale{2},spec1.data(1,:))
i0 = localmax(spec1.data(1,:));
vline(spec1.axisscale{2}(i0{1}))

i0 = localmax(spec1.data(1,:),5);
vline(spec1.axisscale{2}(i0{1}),'r')

See Also

fitpeaks, peakfind

 160

logdecay
Purpose

Variance scales a matrix using the log decay of the variable axis.

Synopsis

[sx,logscl] = logdecay(x,tau)

Description

Inputs are data to be scaled (x), and the decay rate (tau). Outputs are the variance scaled
matrix (sx) and the log decay based variance scaling parameters (logscl).

For an m x n matrix 'x' the variance scaling used for variable 'i' is exp(-(i-1)/((n-1)*tau)). This
gives a scaling of 1 on the first variable (i.e. no scaling), and a scaling of 1/exp(-1/tau) on the
last variable. The following table gives example values of tau and the scaling on the last
variable:

 tau scaling
 1 2.7183
 1/2 7.3891
 1/3 20.0855
 1/4 54.5982
 1/5 148.4132

See Also

autoscale, scale

 161

lsq2top
Purpose

Fits a polynomial to the top/(bottom) of data.

Synopsis

[b,resnorm,residual,options] = lsq2top(x,y,order,res,options)

Description

LSQ2TOP is an iterative least squares fitting algorithm. It is based on a weighted least squares
approach where the weights are determined at each step. At initialization the weights are all
1, then a polynomial is fit through the data cloud using least squares. When fitting to the top
of a data cloud, data points with a residual significantly below a defined limit (i.e. the points
below the polynomial fit line) are given a small weighting. Therefore, on subsequent
iterations these data points are weighted less in the fit, and the fit line moves to fit to the top
of the data cloud.

Input x is the independent variable e.g. a Mx1 vector corresponding to a frequency or
wavelength axis. Input y is the dependent variable e.g. a Mx1 vector corresponding to a
measured spectrum. Input order is a scalar defining the order of polynomial to be fit e.g. y =
P(x), and res is a scalar approximation of the fit residual e.g. noise level. Input options is
discussed below. Note that the function can be used to fit to the top or bottom of a data cloud
by changing trbflag in options.

The outputs are b, the regression coefficients [highest order term corresponds to b(1) and the
intercept corresponds to b(end)], resnorm is the squared 2-norm of the residual, and
residual is the fit residuals = y - P(x). The options ouput is the input options echoed
back, the field initwt may have been modified.

Options
 options = structure array with the following fields :
 display: ['off' | {'on'}] governs level of display to command window.
 trbflag: ['top' | {'bottom'}] top or bottom flag, tells algorithm to fit the

polynomials, y = P(x), to the top or bottom of the data cloud.
 tsqlim: [0.99] limit that governs whether a data point is significantly outside

the fit residual defined by input res.
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one

of the stopping criterion is met: [(relative tolerance) (absolute tolerance)
(maximum number of iterations) (maximum time [seconds])].

 initwt: [] empty or Mx1 vector of initial weights (0<=w<=1).

 162

Algorithm

For order = 1 and fitting to the top of a data cloud, LSQ2TOP finds the vector []1 2b b=b

that minimizes () ()1 2 1 2
Tb b b b− − − −y x 1 W y x 1 where W is a diagonal weighting matrix

whose elements are initially 1 and then are modified on each subsequent iteration.

The weighting is determined by first estimating the residuals for each data point j as
1 2j j jresidual b b= − −y x and defining /j jt residual res= where res is the input res. A

corresponding t-statistic from a t-table is estimated using the following
tsqst = ttestp(1-options.tsqlim,5000,2);

where tablet is tsqst. The elements of W are then given by ()1 0.5 /j j tablew t t= + for data

points with j tablet t< , and is a 1 otherwise. Therefore, the weighting is smaller for points far
below the fit line.

The procedure can be modified to fit to the bottom of a data cloud by changing
options.trbflag.

See Also

baseine, baselinew, fastnnls

 163

lsq2topb
Purpose

Fits a polynomial to the top/(bottom) of data.

Synopsis

[yi,resnorm,residual,options] = lsq2topb(x,y,order,res,options)

Description

For order=1 and fitting to top of data cloud, LSQ2TOPB finds (yi) that minimizes sum(
(W*(y - yi)).^2) where W is a diagonal weighting matrix given by:

>> tsq = residual/res; % (res) is an input
>> tsqst = ttestp(1-options.tsqlim,5000,2); % T-test limit from table
>> ii = find(tsq<-tsqst); % finds residuals below the line
>> w(ii) = 1./(0.5+tsq(ii)/tsqst); %de-weights pts significantly below line

i.e. w(ii) is smaller for residuals far below/(above) the fit line.

INPUTS:
 x = independent variable Mx1 vector.
 y = dependent variable, Mx1 vector.
 order = order of polynomial [scalar] for polynomial function of input (x). If

(order) is empty, (options.p) must contain a MxK matrix of basis vectors
to fit in lieu of polynomials of (x).

 res = approximate fit residual [scalar].
OPTIONAL INPUTS:
 k = number of components {default = rank of X-block}, and

OUTPUTS:
 yi = the fit to input (y).
 resnorm = squared 2-norm of the residual.
 residual = y - yi.

Options
 options = structure array with the following fields :
 p: [] If (options.p) is empty, input (order) must be >0. Otherwise,

options.p is a MxK matrix of basis vectors.
 smooth: [] if >0 this adds smoothing by adding a penalty to the magnitude of the

2nd derivative. (empty or <=0 means no smooth).
 display: ['off' | {'on'}] governs level of display to command window.

 164

 trbflag: [{'top'} | 'bottom' | 'middle'] flag that tells algorithm to fit (yi)
to the top, bottom, or middle of the data cloud.

 tsqlim: [0.99] limit that govers whether a data point is outside the fit residual
defined by input (res).

 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one
of the stopping criterion is met [(rel tol) (abs tol) (max # iterations) (max
time [seconds])].

 initwt: [] empty or Mx1 vector of initial weights (0<=w<=1).

See Also

baseine, baselinew, fastnnls

 165

lwrpred
Purpose

Predictions based on locally weighted regression models.

Synopsis

ypred = lwrpred(xnew,xold,yold,lvs,npts,out)
[ypred,extrap] = lwrpred(xnew,xold,yold,lvs,npts,out)

Description

LWRPRED makes new sample predictions ypred for a new matrix of independent variables
xnew based on an existing data set of independent variables xold, and a vector of dependent
variables yold. Predictions are made using a locally weighted regression model defined by
the number principal components used to model the independent variables lvs and the
number of points defined as local npts.

Optional input out suppresses printing of the results when set to 0 {default = 1}. Additional
output (extrap), a vector equal in length to number of samples in xnew, is non-zero when the
given sample was predicted by extrapolating outside of the range of y-values which were
used in the model. The value represents the distance (in y-units) extrapolated outside of the
modeled samples. For example, a value of -0.3 indicates that the given sample was predicted
by extrapolating 0.3 y-units below the lowest modeled sample in yold.

Note: Be sure to use the same scaling on new and old samples i.e. xnew must be scaled the
same as xold!

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}] governs level of display.
 alpha: [0-1] Weighting of y-distances in selection of local points. 0 = do

not consider y-distances {default}, 1 = consider ONLY y-distances,
 iter: [{5}] Iterations in determining local points. Used only when alpha >

0 (i.e. when using y-distance scaling),
 preprocessing: { 2 2 } Two element cell array defining preprocessing to use on data.

First element of cell defines x-block preprocessing, second element
defines y-block preprocessing. Options are:

 0 = no scaling or centering
 1 = mean center only
 2 = autoscale (default)
 For example: {1 2} performs mean centering on x-block and autoscaling

on y-block,

 166

 algorithm: [{'globalpcr'} | 'pcr' | 'pls'] Method of regression after
samples are selected. 'globalpcr' performs PCR based on the PCs
calculated from the entire calibration data set but a regression vector
calculated from only the selected samples. 'pcr' and 'pls' calculate a local
PCR or PLS model based only on the selected samples.

 reglvs: [] Used only when algorithm is 'pcr' or 'pls', this is the number of
latent variables/principal components to use in the regression model, if
different from the number used to select calibration samples. [] (Empty)
implies LWRPRED should use the same number of latent variables in
the regression as were used to select samples. NOTE: This option is
NOT used when algorithm is 'globalpcr'.

See Also

pls, polypls

 167

lwrxy
Purpose

Predictions based on locally weighted regression with y-distance weighting.

Synopsis

ypred = lwrxy(xnew,xold,yold,lvs,npts,alpha,iter,out)

Description

NOTE: LWRXY is depreciated. Y-distance weighting should be accessed via the .alpha
option of LWRPRED.

LWRXY makes new sample predictions ypred for a new matrix of independent variables xnew
based on an existing data set of independent variables xold, and a vector of dependent
variables yold. Predictions are made using a locally weighted regression model defined by
the number principal components used to model the independent variables lvs, the number
of points defined as local npts, the weighting given to the distance in y alpha, and the
number of iterations to use iter.

Optional input out suppresses printing of the results when set to 0 {default = 1}.

Note: Be sure to use the same scaling on new and old samples i.e. xnew must be scaled the
same as xold!

See Also

lwpred, pls, polypls

 168

manrotate
Purpose

Graphical interface to manually rotate model loadings and investigate directions in the
scores.

Synopsis

manrotate(model,lvs)

Description

MANROTATE shows a score vs. score scatter plot and model loadings and allows the user to
"rotate" the loadings. The loadings (shown as two colored lines in the score/score plot) can
be dragged through different angles observing the resulting loading shape in the loadings plot
(Loadings are always kept orthogonal.)

This interface is useful to identify a loading "shapes" which point towards, and orthogonal to,
a given sample cluster or direction.

The user clicks on the heavy lines in the scores plot and "drags" them to point in a selected
direction. The loadings (shown on the right in the figure) are automatically updated to show
the loading which accounts for the new direction in the scores plot. The rotated loading
vectors can be saved to the workspace using the toolbar save button.

Inputs include a PCA, PLS, PCR, or other 2-way factor-based model, model, and an optional
input, lvs, which is a two-element vector specifying which of the model factors should be
plotted and rotated (default = [1 2] which plots factor 2 vs factor 1.)

See Also

pca, pcr, pls, varimax

 169

matchvars
Purpose

Align variables of a dataset to allow prediction with a model.

Synopsis

[mxdata, unmap] = matchvars(model,xdata,options)
[mxdata, unmap] = matchvars(labels,xdata,options)
[mxdata, unmap] = matchvars(axisscale,xdata,options)
[mxdata, mydata, unmapx, unmapy] =

matchvars(model,xdata,ydata,options)
rdata = matchvars(mdata,unmap)

Description

Given a standard model structure model MATCHVARS uses either the labels stored in the
model or, if no labels exist, the axisscale in the model to rearrange or interpolate the
variables of a dataset object so that the model can be applied to the data. If model is a
regression model, both an X and a Y block may be passed for alignment. A Y block is not
required, however.

MATCHVARS WITH LABELS: When variable labels exist in both the model and the data,
the variables in data are rearranged to match the variable order in model based on the labels
stored in the model. Any variables required by model that do not exist in data are returned as
NaN (Not a Number). These will usually be automatically replaced by the prediction routine
using REPLACE.

MATCHVARS WITH LABELS: When variable labels exist in both the model and the data,
the variables in data are rearranged to match the variable order in model based on the labels
stored in the model. Any variables required by model that do not exist in data are returned as
NaN (Not a Number). These will usually be automatically replaced by the prediction routine
using REPLACE.

When no labels exist in the supplied model, the axisscale is used to interpolate the data based
on the setting of options.axismode (see below). Axis regions which require extrapolation are
returned as NaN (Not a Number). These will usually be automatically replaced by the
prediction routine using REPLACE.

If neither labels nor axisscales can be used to align variables, the dataset object is passed
back without modification.

An ordinary cell or character array of strings representing labels to match or an ordinary
vector representing an axisscale may be passed in place of model. Such labels or axisscale
can only be used with a single dataset (i.e. xdata).

 170

NOTE: if axisscale was used to interpolate new variables for mxdata or mydata, the unmap
variable(s) will be linear vectors which simply return the original data.

INPUTS:
 model = a standard model structure OR a cell or character array of labels to

match labels in xdata OR a vector of axisscale (e.g. wavelength,
wavenumber, etc) to match xdata using axisscale.

 xdata = a dataset object containing the X-block data.
OPTIONAL INPUTS:
 ydata = a second dataset containing the Y-block data
 unmap = used only when performing an "undo" of a previous MATCHVARS call.

This is a vector describing how to reorder the columns back to the
original order, as output by the previous call to MATCHVARS. Can be
used to re-order the outputs from a model, such as the T- or Q-
contributions, back to the original data order.

OUTPUT:
 mxdata = adjusted ("matched") x-block data
 mydata = adjusted ("matched") y-block data (not returned if no y-data passed)
 unmapx = a vector describing how the original variable order can be obtained from

the reordered data. This can be used on other model outputs such as
residuals and T contributions rearranging them to be like the original
data. Any column discarded from the original data will have an NaN in
unmap.

 See the "reorder" type of call in I/O below.
 unmapy = same as unmapx but for the y-block (ydata) variable.
 rdata = reverted data - output only when matchvars is called with unmap as

input.

Options
 options = a structure array with the following fields:
 axismode: ['discrete' |{'linear'}| 'spline'] a string defining the

interpolation method to use for matching variables using axisscale. If
'discrete', axisscale values must be matched exactly by data. Any other
axismode will be passed to interp1 to perform interpolation. See
INTERP1 for interpolation options.

See Also

interp1, modlpred, pcapro, replace, str2cell

 171

mcr
Purpose

Multivariate curve resolution with constraints.

Synopsis

model = mcr(x,ncomp,options) %calibrate
model = mcr(x,c0,options) %calibrate with explict initial guess
pred = mcr(x,model,options) %predict
options = mcr('options')

Description

MCR decomposes a matrix X as CS such that X = CS + E where E is minimized in a least
squares sense. Inputs are the matrix to be decomposed x (size m by n), and either the number
of components to extract, ncomp, or the explict initial guess, c0. If c0 is size m by k, where k
is the number of factors, then it is assumed to be the initial guess for C. If c0 is size k by n
then it is assumed to be the initial guess for S. If m=n then, c0 is assumed to be the initial
guess for C. Optional input options is described below.

The output, model, is a standard model structure. The estimated contributionss C are stored
in model.loads{2} and the estimated spectra S in model.loads{1}. Sum-squared residuals
for samples and variables can be found in model.ssqresiduals{1} and
model.ssqresiduals{2}, respectively. See the PLS_Toolbox manual for more information
on the MCR method and models.

MCR, by default, uses the alternating least squares (ALS) algorithm. For details on the ALS
algorithm and constraints available in MCR, see the ALS reference page.

When called with new data and a model structure, MCR performs a prediction (applies the
model to the new data) returning the projection of the new data onto the previously recovered
loadings (i.e. estimated spectra).

 172

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}] governs level of display to command window.
 plots: ['none' | {'final'}] governs level of plotting.
 preprocessing: { [] } preprocessing to apply to x-block (see PREPROCESS).
 blockdetails: ['compact' | {'standard'} | 'all'] Extent of predictions and

raw residuals included in model. 'standard' = none, 'all' x-block.
 initmethod: ['distslct'] initialization method.
 initmode: [1 | 2] mode of x for automatic initialization.
confidencelimit: [{0.95}] Confidence level for Q limits.
 alsoptions: ['options'] options passed to ALS subroutine (see ALS).

The default options can be retreived using: options = mcr('options');.

See Also

als, analysis, evolvfa, ewfa, fastnnls, mlpca, parafac, plotloads,
preprocess

 173

mdcheck
Purpose

Missing Data Checker and infiller.

Synopsis

[flag,missmap,infilled] = mdcheck(data,options)
options = mdcheck('options')

Description

This function checks for missing data and infills it using a PCA model if desired. The input is
the data to be checked data as either a double array or a dataset object. Optional input
options is a structure containing options for how the function is to run (see below).

Outputs are the fraction of missing data flag, a map of the locations of the missing data as
an unint8 variable missmap, and the data with the missing values filled in infilled.
Depending on the plots option, a plot of the missing data may also be output.

Options
 options = a structure array with the following fields:
 frac_ssq: [{0.95}] desired fraction between 0 and 1 of variance to be captured by

the PCA model,
 max_pcs: [{5}] maximum number of PCs in the model, if 0, then it uses the mean,
 meancenter: ['no' | {'yes'}], tells whether to use mean centering in the algorithm,
 recalcmean: ['no' | {'yes'}], recalculate mean center after each cycle of replacement

(may improve results for small matricies),
 display: [{'off'} | 'on'], governs level of display,
 tolerance: [{1e-6 100}] convergence criteria, the first element is the minimum

change and the second is the maximum number of iterations,
 max_missing: [{0.4}] maximum fraction of missing data with which MDCHECK will

operate, and
 toomuch: [{'error'} | 'exclude'] what action should be taken if too much missing

data is found. 'error' exit with error message, 'exclude' will exclude
elements (rows/columns/slabs/etc) which contain too much missing data
from the data before replacement. 'exclude' requires a dataset object as
input for (data),

 algorithm: [{'svd'} | 'nipals'] specified the missing data algorithm to use, NIPALS
typically used for large amounts of missing data or large multi-way
arrays.

 174

Note: MDCHECK captures up to options.frac_ssq of the variance using options.max_pcs or
fewer PCA components.

The default options can be retreived using: options = mdcheck('options');.

See Also

parafac, pca

 175

med2top
Purpose

Fits a constant to top/(bottom) of data.

Synopsis

[yf,residual,options] = med2top(y,options)

Description

MED2TOP is similar to LSQ2TOP with a 0 order polynomial, it can be considered an
asymmetric estimate of the mean.

For fitting to the bottom:

>> tsq = residual/res; % (res) is an input
>> tsqst = ttestp(1-options.tsqlim,5000,2); % T-test limit from table
>> ii = find(tsq>-tsqst); % finds samples below the line

The ii samples are kept for the next estimate of (yf):

>> yf = median(y(ii));

INPUTS:
 y = trace to be filtered, Mx1 vector.

OUTPUTS:
 yf = scalar, estimate of filtered data.
 residual = y - yf.
 options = input options echoed back, the field initwt may have been modified.

Options
 options = a structure array with the following fields.
 display: [{'off'} | 'on'] Governs screen display to command line.
 trbflag: [{'top'} | 'bottom' | 'middle'] flag that tells algorithm to fit to the top,

bottom, or middle of the data cloud.
 tsqlim: [0.99] limit that govers whether a data point is outside the fit residual

defined by input (res).
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one of

the stopping criterion is met [(rel tol) (abs tol) (max # iterations) (max
time [seconds])].

 initwt: [] empty or Mx1 vector of initial weights (0<=w<=1).

 176

See Also

baseline, baslinew, fastnnls, lsq2top

 177

medcn
Purpose

Median center scales matrix to median zero.

Synopsis

[mcx,mx,msg] = medcn(x,options)

Description

MEDCN centers a matrix x to it’s median and returns a matrix mcx with median zero columns
and a vector of medians mx used to center the data. Optional input options is discussed
below.

The output msg returns any warning messages.

Options
 options = a structure array with the following fields.
 display: [{'off'} | 'on'] Governs screen display.
 matrix_threshold: {.15} Error threshold based on fraction of missing data in whole matrix.
column_threshold: {.25} Error threshold based on fraction of missing data in single column.

See Also

auto, mncn, rescale, scale

 178

mlpca
Purpose

Maximum likelihood principal components analysis (user contributed).

Synopsis

[U,S,V,SOBJ,ErrFlag] = mlpca(x,stdx,p)

Description

MLPCA performs maximum likelihood principal components analysis assuming uncorrelated
measurement errors. This is a method that attempts to provide an optimal estimation of the p-
dimensional subspace containing the data by taking into account uncertainties in the
measurements, thereby dealing with those cases that cannot be treated by simple scaling.
Inputs are x (m by n) the data matrix to be decomposed, stdx (m by n) matrix of standard
deviations corresponding to the observations in x, and the number of factors into which the
data is decomposed p. The outputs are U (m by p) orthonormal, S (p by p) diagonal, and V (n
by p) orthonormal. The ML scores are given by U*S. Additional output SOBJ is the value of
the objective function for the best model. For exact uncertainty estimates, this should follow
a chi-squared distribution with (m-p)*(n-p) degrees of freedom. Additional output ErrFlag
indicates the termination conditions of the function;

ErrFlag = 0: normal termination (convergence), or
ErrFlag = 1: maximum number of iterations exceeded.

Also see:

P.D. Wentzell and M.T. Lohnes, “Maximum Likelihood Principal Component Analysis with
Correlated Measurement Errors Theoretical and Practical Considerations”, Chemom. Intell.
Lab. Syst., 45, 65-85 (1999).

P.D. Wentzell, D.T. Andrews, D.C. Hamilton, K. Faber, and B.R. Kowalski, "Maximum
likelihood principal component analysis", J. Chemometrics 11(4), 339-366 (1997).

P.D. Wentzell, D.T. Andrews, and B.R. Kowalski, "Maximum likelihood multivariate
calibration", Anal. Chem., 69, 2299-2311 (1997).

D.T. Andrews and P.D. Wentzell, "Applications of maximum likelihood principal
components analysis: Incomplete data and calibration transfer", Anal. Chim. Acta, 350, 341-
352 (1997).

See Also

analysis, mcr, parafac, pca

 179

mlr
Purpose

Multiple Linear Regression for multivariate Y.

Synopsis

model = mlr(x,y,options)
pred = mlr(x,model,options)
valid = mlr(x,y,model,options)

Description

MLR identifies models of the form Xb = y + e.

INPUTS:
 y = X-block: predictor block (2-way array or DataSet Object)
 y = Y-block: predictor block (2-way array or DataSet Object)

OUTPUTS:
 model = scalar, estimate of filtered data.
 pred = structure array with predictions
 valid = structure array with predictions

Options
 options = a structure array with the following fields.
 display: [{'off'} | 'on'] Governs screen display to command line.
 plots: ['none' | {'final'}] governs level of plotting.
 preprocessing: { [] [] } preprocessing structure (see PREPROCESS).
 blockdetails: ['compact' | {'standard'} | 'all'] Extent of predictions and raw residuals

included in model. 'standard' = only y-block, 'all' x and y blocks.

See Also

analysis, crossval, modelstruct, pcr, pls, preprocess, ridge

 180

mlrengine
Purpose

Multiple Linear Regression computational engine.

Synopsis

reg = mlrengine(x,y,options)

Description

Inputs are an x-block x, y-block y and optional options structure.

Output is the matrix of regression vectors reg.

Options
 options = a structure array with the following fields.
 display: [{'off'} | 'on'] Governs screen display to command line.
 ridge: [0] ridge parameter to use in regularizing the inverse.

See Also

analysis, pcr, pls

 181

mncn
Purpose

Mean center data matrices.

Synopsis

[mcx,mx] = mncn(x,options)

Description

MNCN mean centers a matrix x and returns a matrix mcx with mean zero columns and a vector
of means mx used to center the data.

See Also

auto, rescale, scale

 182

modelselector
Purpose

Create or apply a model selector model.

Synopsis

model =

modelselector(triggermodel,target_1,target_2,...,target_default);
[target_model,applymodel] = modelselector(data,model)

Description

A Selector Model is a special model type which, when applied to new data, selects between
two or more "target" models based on a "trigger" model. It is used to implement discrete
local models when a single global model is not sufficient for all possible scenarios.

For example, if a single PCA or PLS model does not perform sufficiently for all operating
conditions but the operating conditions can be split into two or more easier-to-model subsets,
a selector model can be used to choose between these subset models when applying the
models to new data.

Selector models consist of a trigger model (trigger) which can be either a PLSDA model or a
set of one or more logical test strings and a set of two or more target models (target_1,
target_2, etc) which can be any type of standard model structure or an empty array [] to
indicate a null model.

Guidelines and rules for trigger models:

(A) A PLSDA trigger model can be created using the PLSDA function. Themodel should be
built with data representative of the sample types to which each target model can be applied.
The number of classes separated by the PLSDA model dictates the number of target models
which can be selected from. The target models should be in the same order as the numerical
class numbers used with PLSDA (e.g. if classes 1, 2 and 3 are used in PLSDA, the target
models should be ordered so that target_1 is appropriate if the PLSDA model finds that a
sample is class 1, target_2 is for class 2, and target_3 is for class 3.)

(B) Logical test strings are specified as a trigger model by passing a cell containing one or
more strings which perform a logical test on a variable from the data set. Variables are
specified using either a label in double quotes (e.g. "flowrate"), or a axisscale value in quotes
and square brackets (e.g. "[1530]"). The varaible can be used in any interpretable Matlab
expression (including function calls) that returns a logical result. The simplest test could
involve one of the Matlab logical comparison operators (< > <= >= == and ~=) and a
value to which the given variable should be compared. For example, the target model:

{'"Fe">1100' '"Fe"<500'}

 183

tests if the variable named "Fe" is greater than 1100. If true, the target_1 model is applied, if
not true, "Fe" is tested for being less than 500, and if so, target_2 is selected. If neither test is
true, the "default" target model (i.e. target_3) is selected.

Example 2:

{'"[1745.3]"<=500'}

tests if variable 1745.3 (on the variable axiscale) is less than or equal to 500. If true, target_1
is selected, if not true, default target model is selected. If variable 1745.3 does not exist, it is
interpolated from the provided data.

When creating a selector model, there must be at least as many target models passed as there
are classes (when trigger is a PLSDA model) or strings (when trigger is a cell of logical test
strings). There may also be an additional target model (i.e. the "default" model) which is
used if none of the classes or tests were positive.

Note that target models may be any standard model structure including another selector
model (thus allowing multi-layer selector trees).

To apply a selector model, a single row of new data is passed as a dataset along with the
selector model itself. The output is the selected target model (target_model) along with a
unique description of the "branch(s)" taken to select the target model as a vector of branch
numbers (applymodel). For example, given a multi-layer selector model containing:

selector_model -> target_1 = PCA_model_A1
 target_2 = Selector_model -> target_1 = PCA_model_B1
 target_2 = PCA_model_B2
 target_3 = PCA_model_A2

a returned value for applymodel of [2 1] implies that the second target model was selected
from the first layer of target models, and this model was another selector model. From that
second selector model, the first target model (PCA_model_B1) was selected and that is what
was returned.

Note that if there are multiple "branches" (trigger models) the data passed to modelselector
must contain all the data necessary for all trigger models within the selector model. If some
of those variables are not used by a given model, modelselector will automatically discard
unneeded variables before applying each trigger model.

See Also

lwrpred, plsda, simca

 184

modelstruct
Purpose

Constructs an empty model structure.

Synopsis

model = modelstruct(modeltype,pred)

Description

The output of many of the PLS_Toolbox functions is a single model structure in which the
results of the analysis are contained. A structure is an organized group of variables all stored
as "fields" of a single containing variable. The purpose of MODELSTRUCT is to create the
empty model structures used by the various modeling routines. The type of structure
requested is passed as the single string input modeltype and should be one of: 'pca', 'pcr', (for
PCA or PCR models) 'nip', 'sim' (PLS models), or 'parafac' (PARAFAC model).

Once the structures created by MODELSTRUCT are filled-in by the appropriate function (e.g.
PLS, PCR, PCA), they contain all the results of the analysis and can be used as a single
object for making further predictions or plots from the modeling results. In many cases, these
models can be passed whole to another function. For example:

opts.plots = 'none'; % turn off plots for PCA (see PCA)
modl = pca(x, 3, opts); % create a PCA model from data X
modlrder(modl); % display relevent model information
plotscores(modl); % plot scores from model

Although the individual fields (contents) of each model vary between modeltypes, most
contain at least these fields:
 modeltype: name of model,
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for input data block (the first cell is

empty if options.blockdetail = 'normal'),
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

 185

Note that fields such as loads, tsqs and ssqresiduals are cell arrays of size [modes,
blocks] where modes is the dimensionality of the data (e.g. for an array, modes = 2) and
blocks is the number of blocks used by the analysis method (e.g. for PCA, blocks = 1, for
PLS, blocks = 2). Thus, for a standard PCA model, loads will be a 2x1 cell containing
"scores" in modl.loads{1,1} and traditional "loadings" in modl.loads{2,1}.

Because the models are standard MATLAB structures, they can be examined using standard
structure notation:

>> modl.modeltype
ans =
PCA
>> modl.loads
ans =
 [30x4 double]
 [10x4 double]

Additionally, the individual components of a model can be "exploded" into individual
variables using the EXPLODE function.

See Also

analysis, explode, parafac, pca, pcr, pls

 186

modelviewer
Purpose

Visualization of multi-way models.

Synopsis

model = modelviewer(model,x);

Description

MODELVIEWER provides a graphical view of a model by enabling overview of scores, loadings,
residuals etc. in one overall figure. Individual modes can be assessed by clicking plots and
enlarged figures created by right-clicking plots.

INPUTS:
 model = PARAFAC, Tucker, or NPLS model, and
 x = X-block: predictor block (2-way array or DataSet Object).

OUTPUT:
 model = standard model structure (See MODELSTRUCT).

See Also

plotgui, plotloads, plotscores

 187

modlpred
Purpose

Predictions based on models created by ANALYSIS.

Synopsis

[yprdn,resn,tsqn,scoresn] = modlpred(newx,modl,plots)
[yprdn,resn,scoresn] = modlpred(newx,bin,p,q,w,lv,plots);

Description

MODLPRED makes Y-block predictions based on an X-block and an existing regression model
created using ANALYSIS.

Inputs are the new X-block data newx in the units of the original data, the structure variable
that contains the regression model modl, and an optional variable plots which suppresses the
plots when set to 0 {default = 1}.

Outputs are the Y-block predictions yprdn, residuals resn, T2 values tsqn, and scores
scoresn.

MODLPRED can also make predictions based on an existing PLS model constructed with the
NIPALS algorithm from the PLS function. Inputs are the matrix of predictor variables newx,
the PLS model inner-relation coefficients bin, the x-block loadings p, the y-block loadings q,
the x-block weights w, the number of latent variables to use in prediction lv, and an optional
variable plots which suppresses the plots when set to 0 {default = 1}.

Outputs are the Y-block predictions yprdn, residuals resn, and the scores scoresn. Note
that T2 are not calculated.

See Also

analysis, explode, modlrder, pca, pcapro, pcr, pls

 188

modlrder
Purpose

Prints model information for standard model structures.

Synopsis

modlrder(modl)

Description

MODLRDER reads information contained in a standard model structure variable modl and prints
the information to the command window. It can be used with models created by the
following functions: ANALYSIS, NPLS, PARAFAC, PCA, PCR, PLS, ANALYSIS.

Information includes date and time created and methods used to construct the model. There is
no assignable output.

See Also

analysis, explode, modlpred, pcapro, ssqtable

 189

mpca
Purpose

Multi-way (unfold) principal components analysis.

Synopsis

model = mpca(mwa,ncomp,options)
model = mpca(mwa,ncomp,preprostring)
pred = mpca(mwa,model,options)
options = mpca('options')

Description

Principal Components Analysis of multi-way data using unfolding to a 2-way matrix
followed by conventional PCA.

Inputs to MPCA are the multi-way array mwa (class “double” or “dataset”) and the number of
components to use in the model nocomp. To make predictions with new data the inputs are
the multi-way array mwa and the MPCA model model. Optional input options is discussed
below.

The output model is a structure array with the following fields:
 modeltype: 'MPCA',
 datasource: structure array with information about the x-block,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: 1 by 2 cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for each input data block (this is empty

if options.blockdetail = 'normal'),
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

Options
 options = a structure array with the following fields.
 display: ['off' | {'on'}] governs level of display to command window,
 plots: ['none' | {'final'}] governs level of plotting,
 outputversion: [2 | {3}] governs output format,

 190

 preprocessing: { [] } preprocessing structure, {default is mean centering i.e.
options.preprocessing = preprocess('default', 'mean center')}
(see PREPROCESS),

 blockdetails: ['compact' | {'standard'} | 'all'] extent of detail in
predictions and residuals included in model structure ('standard' results
in sum of squared residuals, and 'all' gives all x-block residuals), and

 samplemode: [{3}] mode (dimension) to use as the sample mode e.g. if it is 3 then it
is assumed that mode 3 is the sample/object dimension i.e. if mwa is
7x9x10 then the scores model.loads{1} will have 10 rows (it will be
10xncomp).

The default options can be retreived using: options = mpca('options');.

It is also possible to input just the preprocessing option as an ordinary string in place of
options and have the remainder of options filled in with the defaults from above. The
following strings are valid:
 'none': no scaling,
 'auto': unfolds array then applies autoscaling,
 'mncn': unfolds array then applies mean centering, or
 'grps': {default} unfolds array then group/block scales each variable, i.e. the

same variance scaling is used for each variable along its time trajectory
(see GSCALE).

MPCA will work with arrays of order 3 and higher. For higher order arrays, the last order is
assumed to be the sample order, i.e. for an array of order n with the dimension of order n
being m, the unfolded matrix will have m samples. For arrays of higher order the group
scaling option will group together all data with the same order 2 index, for multiway array
mwa, each mwa(:,j,:, ... ,:) will be scaled as a group.

See Also

analysis, evolvfa, ewfa, explode, parafac, pca, preprocess

 191

mplot
Purpose

Automatic creation of subplots and plotting.

Synopsis

[rows,cols] = mplot(n,options)
[rows,cols] = mplot([rows cols],options)
[rows,cols] = mplot(rows,cols,options)
[rows,cols] = mplot(y,options)
[rows,cols] = mplot(x,y,options)

Description

Inputs can be one of four forms:

(1) the number of subplots requested n, “best fit” onto the figure

(2) the number of rows and columns for the subplot array [rows cols]

(3) or data to plot y with or without reference data for the x-axis x. Each column of y is
plotted in a single subplot on the figure.

Outputs are the number of rows rows and columns cols used for the subplots.

Examples

Example 1. To automatically create a “best fit” of four empty subplots
mplot(4)

Example 2. To automatically create four subplots in a 4 x 1 arrangement
mplot([4 1])

Example 3. To automatically plot three random columns, each in its own subplot
mplot(rand(100,3))

Options
 center: [{'no'} | 'yes'] governs centering of "left-over" plots at
 bottom of figure (when an uneven number of plots are to be fit onto the

screen,
 axismode : [{''} | 'tight'] governs axis settings

 192

Algorithm

When mplot is doing the “best fit”, it attempts to keep the number of rows and columns as
close as possible in size (Except for n=3 which is done as a 3x1 figure). Thus, the plot
progression is: 1x1, 2x1, 3x1, 2x2, 3x2, 3x3, 4x3, etc.

See Also

plotgui, subplot

 193

ms_bin
Purpose

Bins Mass Spectral data into user-defined bins.

Synopsis

dso = ms_bin(data)
dso = ms_bin(data, options)

Description

Often raw Mass Spec data is output in its original profile format (e.g., 14.5, 14.5, 14.6,...) and
one requires "unit" mass resolution (e.g., 14, 15, 16,...) in order to reduce the size of the data
and or analyze the data properly. In its default form the MS_BIN function will bin at unit
resolution and return the data in a DataSet Object. Using the two optional parameters
(resolution and round_off_point) the function can be adjusted to meet different requirements.

INPUTS:
 data : a cell array with the data. Each cell will correspond to a row in the

resulting dataset 'dso' and should contain nx2 numeric array of "xy" MS
data: the first column contains the mass numbers, the second column
contains the counts (intensities). The number of rows in the cells can be
different.

OUTPUTS:
 dso : dataset object

Options
 resolution : optional, defines the resolution. The default value is 1.
 round_off_point : optional. Normally the round-off point is in the middle of the bin. For

unit resolution it would be 0.5: everything below 0.5 will be rounded
down, everything higher than 0.5 will be rounded up. In case the peak is
asymmetrical other points are used, e.g. 0.65. The round off for the array
m with the mass numbers is then: round(m+0.5-round_off_point); The
asymmetric round-off is also valid for resolution lower than 1: the
round_off_point is the relative position in the bin.

See Also

frpcr, stdfir, stdgen

 194

mscorr
Purpose

Multiplicative scatter/signal correction (MSC).

Synopsis

[sx,alpha,beta,xref] = mscorr(x,xref,mc,win,specmode,subind)

Description

MSCORR performs multiplicative scatter correction (a.k.a. multiplicative signal correction) on
an input matrix of spectra x (class “double”) regressed against a reference spectra xref (class
“double”). If (xref) is empty or omitted, the mean of (x) is used as the reference.

If the optional input mc is 1 {default} then an intercept is used. If mc is set to 0 (zero) then a
force fit through zero is used.

Optional input win is a NK element cell array of indices corresponding to windows to
perform MSC, i.e. MSC is performed in each window win{i} for i=1:NK. In this case,
(alpha and beta are not assigned). Optional input (specmode) defines which mode of the
data is the spectral mode (default = 2) and is only used when (x) contains 3 or more modes.
Optional input (subind) specifies the indices within the included spectral variables that are
used to calculate the MSC correction factors (alpha and beta); default is that ALL included
spectral variables are used.

Outputs are the corrected spectra sx, the intercepts/offsets alpha, the multiplicative scatter
factor/slope beta, and the reference spectrum xref.

Algorithm

For input spectra x (1xN) and reference spectra xref (1xN) the model is:

 xTβ + α = xT
ref .

and the corrected spectra xs (1xN) is given by:

 xs = (xref -α)/β .

See Also

frpcr, stdfir, stdgen

 195

mtfreadr
Purpose

Read / Import AdventaCT Multi-Trace Format (MTF) files.

Synopsis

data = mtfreadr(filename,combine)
[data,lotinfo] = mtfreadr(filename,combine)

Description

Generic reader for AdventaCT Multi-Trace Format (MTF) files. Input is an optional filename
filename If omitted, user is prompted to locate file. An optional input combine is a string
instructing how to combine multiple traces found in the mtf file:
 'none' : returns a cell array containing datasets formed from each of the separate

traces located in the MTF file.
 'truncate' : {default} truncates all traces to the shortest trace's length.
 'pad' : pads all traces with NaN's to the longest trace's length.
 'stretch' : uses linear interpolation to stretch all traces to the longest trace's length.

The output data is either a DSO (3-way DSO if multiple traces were found) or a cell array
containing all the trace DSOs. Note that if a given trace does not have a sufficient number of
columns in all rows, column contents may be scrambed from the dropped point down. In this
situation, a warning will be given.

See Also

areadr, spcreadr, xclgetdata, xclputdata, xclreadr

 196

ncrossval
Purpose

Cross-validation for multilinear PLS (NPLS).

Synopsis

[press,cumpress,rmsecv,rmsec,cvpred,misclassed] =

ncrossval(x,y,rm,cvi,ncomp,out,pre)

Description

Performs cross-validation of NPLS. If two-way unfold-PLS is desired convert input x to two-
way x. By default, the data are centered across the first mode, but no scaling is applied. This
can be changed by using additional input arguments.

INPUTS:
 x = X-block matrix,
 y = Y-block matrix, and
 rm = regression method (must be ‘npl’)
 cvi = see CROSSVAL
 ncomp = maximum number of factors.
 out = see CROSSVAL
 pre = see CROSSVAL

OUTPUT:
 See CROSSVAL

See Also

crossval, npls

 197

nippls
Purpose

NIPALS Partial Least Squares computational engine.

Synopsis

[reg,ssq,xlds,ylds,wts,xscrs,yscrs,bin] = nippls(x,y,ncomp,options)
options = nippls('options')

Description

Performs PLS regression using NIPALS algorithm.

INPUTS:
 x = X-block (M by Nx) and
 y = Y-block (M by Ny).

OPTIONAL INPUTS:
 nocomp = number of components {default = rank of X-block}, and
 options = discussed below.

The default options can be retreived using: options = nippls('options');.

OUTPUTS:
 reg = matrix of regression vectors,
 ssq = the sum of squares captured (ssq),
 xlds = X-block loadings,
 ylds = Y-block loadings,
 wts = X-block weights,
 xscrs = X-block scores,
 yscrs = Y-block scores, and
 bin = the inner relation coefficients.

Note: The regression matrices are ordered in reg such that each Ny (number of y variables)
rows correspond to the regression matrix for that particular number of latent variables.

 198

Options
 options = a structure containing the fields:
 display: ['off' |{'on'}], governs display to command window.

See Also

pls, analysis, simpls

 199

normaliz
Purpose

Normalizes rows of matrix to unit vectors.

Synopsis

[ndat,norms] = normaliz(dat)
[ndat,norms] = normaliz(dat,out,normtype)

Description

NORMALIZ can be used for pattern normalization, which is useful for preprocessing in some
pattern recognition applications and also for correction of pathlength effects for some
quantification applications.

The input is the data matrix dat. Optional input out suppresses warnings when set to 0 (zero)
{default = 1} (warnings are given if the norm of a vector is zero). Optional input normtype
can be used to specify the type of norm {default = 2}. If normtype is specified then out must
be included, out can be empty [].

The output is the matrix of normalized data ndat where the rows have been normalized, and
the vector of norms used in the normalization norms. Warnings are given for any vectors
with zero norm.

Algorithm

For a 1 by N vector x, the norm nx is given by
1/

1

p
N

p
x i

j
n x

=

 
=  

 
∑ where p is normtype. The

normalized 1 by N vector xn is given by x/nx.

See Also

auto, baseline, mncn, mscorr, snv

 200

npls
Purpose

Multilinear-PLS (N-PLS) for true multi-way regression.

Synopsis

model = npls(x,y,ncomp,options)
pred = npls(x,ncomp,model,options)
options = npls('options')

Description

NPLS fits a multilinear PLS1 or PLS2 regression model to x and y [R. Bro, J. Chemom.,
1996, 10(1), 47-62]. The NPLS function also can be used for calibration and prediction.

INPUTS:
 x = X-block,
 y = Y-block, and
 ncomp = the number of factors to compute, or
 model = in prediction mode, this is a structure containing a NPLS model.

OPTIONAL INPUTS:
 options = discussed below.

OUTPUT:
 model = standard model structure (see: MODELSTRUCT) with the following fields:
 modeltype: 'NPLS',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 reg: cell array with regression coefficients,
 loads: cell array with model loadings for each mode/dimension,
 core: cell array with the NPLS core,
 pred: cell array with model predictions for each input data block,
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

 201

Options
 options = options structure containing the fields:
 display: ['off' | {'on'}], governs level of display to command window,
 plots: ['none' | {'final'}], governs level of plotting,
outputregrescoef: if this is set to 0 no regressions coefficients associated with the X-block

directly are calculated (relevant for large arrays), and
 blockdetails: [{'standard'} | 'all'], level of detail included in the model for

predictions and residuals.

See Also

datahat, explode, gram, mpca, outerm, parafac, pls, tld, unfoldm

 202

npreprocess
Purpose

Preprocessing of multi-way arrays.

Synopsis

[prex,prepar] = npreprocess(x,prepar,undo,options)
prex = npreprocess(x,setting)
prex = npreprocess(x,prepar)
prex = npreprocess(x,prepar,1)
options = npreprocess('options')

Description

NPREPROCESS is used for three different purposes:

1) for centering and scaling multi-way arrays in which case the parameters (offsets and
scales) are first calculated and then applied to the data,

2) for preprocessing another data set according to (1), and

3) for transforming preprocessed data back (undo preprocessing).

INPUTS:
 x = data array, and
 settings = a two-row matrix (class "double") indicating which modes to center and

scale. The matrix is: settings = [cent; scal]. E.g.
 settings(1,:) = [1 0 1] => center across mode one and three, and
 settings(2,:) = [1 1 0] => scale to unit variance within mode one

and two.

OPTIONAL INPUTS:
 prepar = contains earlier defined mean and scale parameters, this data is required

for applying or undoing preprocessing,
 undo = when set to 1 this flag tells to undo/transform back, and
 options = discussed below.

OUTPUTS:
 prex = the preprocessed data, and
 prepar = a structure containing the necessary parameters to pre- and post-process

other arrays.

 203

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 iterproc: ['on' | {'off'}], allows iterative preprocessing which is necessary

for some combinations of centering and scaling (see User Manual),
 scalefirst: [{'on'} | 'off'], defines that scaling is done before centering

which may have implications in complex combinations of preprocessing
(see User Manual), and

 usemse: [{'on'} | 'off'], defines that mean square scaling is used instead
of scaling by standard deviations as is common in two-way analysis.

Examples

To apply preprocessing with options:
[prex,prepar] = npreprocess(x,settings,[],0,options);

See Also

auto, mncn, preprocess, rescale, scale

 204

oscapp
Purpose

Applies orthogonal signal correction model to new data.

Synopsis

newx = oscapp(x,nw,np,nofact)

Description

Inputs are the new data matrix x, weights from the OSC model nw, and loadings from the
OSC np.

Optional input nofact can be used to restrict the correction to a smaller of factors than
originally calculated.

The output is is the corrected data matrix newx.

Note: input data x must be centered and scaled like the original data!

See Also

crossval, osccalc

 205

osccalc
Purpose

Calculates orthogonal signal correction.

Synopsis

[nx,nw,np,nt] = osccalc(x,y,nocomp,iter,tol)

Description

Inputs are the matrix of scaled predictor variables x, scaled predicted variable(s) y, and the
number of OSC components nocomp.

Optional inputs are the maximum number of iterations used in attempting to maximize the
variance captured by othogonal components iter {default = 0}, and the tolerance on percent
of x variance to consider when forming the final w vector tol {default = 99.9}.

Outputs are the OSC corrected predictor matrix nx, and the x-block weigths nw, loads np, and
scores nt that were used in making the correction.

Once the calibration is done, new (scaled) X data can be corrected by newx = x -
x*nw*inv(np'*nw)*np';. See OSCAPP.

See Also

crossval, oscapp

 206

outerm
Purpose

Computes the outer product of any number of vectors with multiple factors.

Synopsis

mwa = outerm(facts,lo,vect)

Description

The input to outer is a 1 by N cell array facts, where each cell contains a matrix of factors
for one of the modes (a.k.a. ways, dimensions, or orders), with each factor being a column in
the matrix.

Optional inputs are lo the number of a mode to leave out in the formation of the outer
product, and a flag vect which causes the function to not sum and reshape the final factors
when set to 1. (This option is used in the alternating least squares steps in PARAFAC.)

The output is the multiway array resulting from multiplying the factors together mwa, or the
strung out individual factors.

Examples:

a = [[1:7]' [2 4 1 3 5 7 6]']; % 7x2
b = [sin([1:.5:5]') cos([1:.5:5]')]; % 9x2
c = [[1:8 0 0]', [0 0 1:8]']; % 10x2
x = outerm({a,b,c}); % 7x9x10

See Also

gram, mpca, parafac, tld

 207

parafac
Purpose

PARAFAC (PARAllel FACtor analysis) for multi-way arrays

Synopsis

model = parafac(X,initval,options)
pred = parafac(Xnew,model)
options = parafac('options')

Description

PARAFAC will decompose an array of order N (where N ≥ 3) into the summation over the
outer product of N vectors (a low-rank model). E.g. if N=3 then the array is size I by J by K.
An example of three-way fluorescence data is shown below..

For example, twenty-seven samples containing different amounts of dissolved hydroquinone,
tryptophan, phenylalanine, and dopa are measured spectrofluoremetrically using 233
emission wavelengths (250-482 nm) and 24 excitation wavelengths (200-315 nm each 5 nm).
A typical sample is also shown.

X

27

24

233

X

27

24

233

A four-component PARAFAC model of these data will give four factors, each corresponding
to one of the chemical analytes. This is illustrated graphically below. The first mode scores
(loadings in mode 1) in the matrix A (27×4) contain estimated relative concentrations of the
four analytes in the 27 samples. The second mode loadings B (233×4) are estimated emission
loadings and the third mode loadings C (24×4) are estimated excitation loadings.

 208

A: Concentration B: Emission C: Excitation

X
= +

c2
b2

a2

c1
b1

a1

+

c3
b3

a3

+

c4
b4

a4Co
nc

e
nt

ra
ti

on
Emission

Exc
ita

tio

A: Concentration B: Emission C: Excitation

X
= +

c2
b2

a2

c1
b1

a1

+

c3
b3

a3

+

c4
b4

a4Co
nc

e
nt

ra
ti

on
Emission

Exc
ita

tio

X
= +

c2
b2

a2

c1
b1

a1

+

c3
b3

a3

+

c4
b4

a4Co
nc

e
nt

ra
ti

on
Emission

Exc
ita

tio

In the PARAFAC algorithm, any missing values must be set to NaN or Inf and are then
automatically handled by expectation maximization. This routine employs an alternating
least squares (ALS) algorithm in combination with a line search. For 3-way data, the initial
estimate of the loadings is usually obtained from the tri-linear decomposition (TLD).

INPUTS:
 x = the multiway array to be decomposed, and
 ncomp = the number of factors (components) to use, or
 model = a PARAFAC model structure (new data are fit to the model i.e. sample

mode scores are calculated).

OPTIONAL INPUTS:
 initval = cell array of initial values (initial guess) for the loadings (e.g.

model.loads from a previous fit). If not used it can be 0 or [], and
 options = discussed below.

OUTPUTS:

The output model is a structure array with the following fields:
 modeltype: 'PARAFAC',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: 1 by K cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for each input data block,
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

 209

The output pred is a structure array that contains the approximation of the data if the options
field blockdetails is set to 'all' (see next).

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: [{'final'} | 'all' | 'none'], governs level of plotting,
 weights: [], used for fitting a weighted loss function (discussed below),
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative

tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)],

 init: [0], defines how parameters are initialized (discussed below),
 line: [0 | {1}] defines whether to use the line search {default uses it},
 algo: [{'ALS'} | 'tld' | 'swatld'] governs algorithm used,
 iterative: settings for iterative reweighted least squares fitting (see help on weights

below),
 blockdetails: 'standard'
 missdat: this option is not yet active,
 samplemode: [1], defines which mode should be considered the sample or object

mode,
 constraints: {3x1 cell}, defines constraints on parameters (discussed below), and
 coreconsist: [{'on'} | 'off'], governs calculation of core consistency (turning

off may save time with large data sets and many components).

The default options can be retrieved using: options = parafac('options');.

WEIGHTS

Through the use of the options field weights it is possible to fit a PARAFAC model in a
weighted least squares sense The input is an array of the same size as the input data X holding
individual weights for each element. The PARAFAC model is then fit in a weighted least
squares sense. Instead of minimizing the frobenius norm ||x-M||2 where M is the PARAFAC
model, the norm ||(x-M).*weights||2 is minimized. The algorithm used for weighted
regression is based on a majorization step according to Kiers, Psychometrika, 62, 251-266,
1997 which has the advantage of being computationally inexpensive. If alternatively, the
field weights is set to ‘iterative’ then iteratively reweighted least squares fitting is used.
The settings of this can be modified in the field iterative.cutoff_residuals which
defines the cutoff for large residuals in terms of the number of robust standard deviations.
The lower the number, the more subtle outliers will be ignored.

INIT

The options field init is used to govern how the initial guess for the loadings is obtained. If
optional input initval is input then options.init is not used. The following choices for init
are available.

 210

Generally, options.init = 0, will do for well-behaved data whereas options.init = 10,
will be suitable for difficult models. Difficult models are typically those with many
components, with very correlated loadings, or models where there are indications that local
minima are present.
 init = 0, PARAFAC chooses initialization {default},
 init = 1, uses TLD (unless there are missing values then random is used),
 init = 2, initializes loadings with random values,
 init = 3, based on orthogonalization of random values (preferred over 2),
 init = 4, based on singular value decomposition,
 init = 5, based on compression which may be useful for large data, and
 init > 5, based on best fit of many (the value options.init) small runs.

CONSTRAINTS

The options field constraints is used to employ constraints on the parameters. It is a cell
array with number of elements equal to the number of modes of the input data X. Each cell
contains a structure array with the following fields:
 nonnegativity: [{0} | 1], a 1 imposes non-negativity.
 unimodality: [{0} | 1], a 1 imposes unimodality (1 local maxima).
 orthogonal: [{0} | 1], constrain factors in this mode to be orthogonal.
 orthonormal: [{0} | 1], constrain factors in this mode to be orthonormal.
 exponential: [{0} | 1], a 1 fits an exponential function to the factors in this

mode.
smoothness.weight:[0 to 1], imposes smoothness using B-splines,

values near 1 impose high smoothness and values close to 0, impose
less smoothness.

fixed.position: [], a matrix containing 1’s and 0’s of the same size as the
corresponding loading matrix, with a 1 indicating where parameters are
fixed.

 fixed.value: [], a vector containing the fixed values. Thus, if B is the loading
matrix, then we seek B(find(fixed.position)) = fixed.value.
Therefore, fixed.value must be a matrix of the same size as the loadings
matrix and with the corresponding elements to be fixed at their
appropriate values. All other elements of fixed.value are disregarded.

 fixed.weight: [], a scalar (0 ≤ fixed.weight ≤ 1) indicating how strongly the
fixed.value is imposed. A value of 0 (zero) does not impose the
constraint at all, whereas a value of 1 (one) fixes the constraint.

 ridge.weight: [], a scalar value between 0 and 1 that introduces a ridging in the
update of the loading matrix. It is a penalty on the size of the esimated
loadings. The closer to 1, the higher the ridge. Ridging is useful when a
problem is difficult to fit.

 equality.G: [], matrix with N columns, where N is the number of factors, used with
equality.H. If A is the loadings for this mode then the constraint is

 211

imposed such that GAT = H. For example, if G is a row vector of ones
and H is a vector of ones (1’s), this would impose closure.

 equality.H: [], matrix of size consistent with the constriant imposed by
equality.G.

equality.weight: [], a scalar (0 ≤ equality.weight ≤ 1) indicating how strongly the
equality.H and equality.G is imposed. A value of 0 (zero) does not
impose the constraint at all, whereas a value of 1 (one) fixes the
constraint.

 leftprod: [0], If the loading matrix, B is of size JxR, the leftprod is a matrx G of
size JxM. The loading B is then constrained to be of the form B = GH,
where only H is updated. For example, G may be a certain JxJ subspace,
if the loadings are to be within a certain subspace.

 rightprod: [0], If the loading matrix, B is of size JxR, the rightprod is a matrx G of
size MxR. The loading B is then constrained to be of the form B = HG,
where only H is updated. For example, if rightprod is [1 1 0;0 0 1],
then the first two components in B are forced to be the same.

iterate_to_conv: [0], Usually the constraints are imposed within an iterative algorithm.
Some of the constraints use iterative algorithms themselves. Setting
iterate_to_conv to one, will force the iterative constraint algorithms
to continue until convergence.

 timeaxis: [], This field (if supplied) is used as the time axis when fitting loadings
to a function (e.g. see exponential). Therefore, it must have the same
number of elements as one of the loading vectors for this mode.

 description: [1x1592 char],

If the constraint in a mode is set as fixed, then the loadings of that mode will not be updated,
hence the initial loadings stay fixed.

Examples

parafac demo gives a demonstration of the use of the PARAFAC algorithm.

model = parafac(X,5) fits a five-component PARAFAC model to the array X using default
settings.

pred = parafac(Z,model) fits a parafac model to new data Z. The scores will be taken to
be in the first mode, but you can change this by setting options.samplemodex to the mode
which is the sample mode. Note, that the sample-mode dimension may be different for the
old model and the new data, but all other dimensions must be the same.

options = parafac('options'); generates a set of default settings for PARAFAC.
options.plots = 0; sets the plotting off.

options.init = 3; sets the initialization of PARAFAC to orthogonalized random numbers.

 212

options.samplemodex = 2; Defines the second mode to be the sample-mode. Useful, for
example, when fitting an existing model to new data has to provide the scores in the second
mode.

model = parafac(X,2,options); fits a two-component PARAFAC model with the
settings defined in options.

parafac io shows the I/O of the algorithm.

See Also

datahat, explode, gram, mpca, outerm, parafac2, tld, tucker, unfoldm

 213

parafac2
Purpose

PARAFAC2 (PARAllel FACtor analysis2) for multi-way arrays

Synopsis

model = parafac2(X,ncomp); %decomposition
model = parafac2(X,ncomp,options);
model = parafac2(X,initval);
pred = parafac2(Xnew,model); %application
options = parafac2('options');

Description

The three-way PARAFAC2 model is best perceived as a model close to the ordinary
PARAFAC model. The major difference is that strict trilinearity is no longer required, so
PARAFAC2 can sometimes handle elution time shifts, varying batch trajectories etc. The
ordinary PARAFAC model is also sometimes called the PARAFAC1 model to distinguish it
from the PARAFAC2 model.

In the PARAFAC1 model, one loading matrix is found for each mode. That implies that this
loading matrix is the same across all levels for the other modes. For example, in a
PARAFAC1 model of a data set with chromatographic spectrally detected experiments, the
PARAFAC1 model ideally provides a loading matrix for e.g. the chromatographic mode
which holds the true elution profiles of the chemical analytes. Thus, the PARAFAC1 model
assumes that these elution profiles do not change shape in different experiments (only their
magnitude). Such an assumption may be too strict and invalid. A little model error is seldom
problematic, but if the structure of the data deviates considerably from the assumptions of the
model, it can be impossible to fit a reasonable model. In the PARAFAC2 model, this
trilinearity assumption is relaxed in one mode. A PARAFAC1 model of a three-way array is
given by A, B and C (loading matrices in first, second and third mode). In PARAFAC2, the
loadings in one mode can change from level to level. That is, assume that the third mode (C)
of dimension K holds different samples (it is common practice, to have samples in the last
mode for PARAFAC2). Instead of having a fixed first mode loading A for all samples, A
may now vary from sample to sample. Thus for each sample, k, there is an individual A
called Ak. The only restriction on Ak is that the cross-product Ak

TAk remains constant. This is
in contrast to PARAFAC1 where A is simply the same for all k.

Another way of imposing this constraint (Ak
TAk constant) is to say that each Ak is modeled

as PkH where Pk is an orthogonal matrix of the same size as Ak and where H is a small
quadratic matrix with dimension equal to the number of components. This different
interpretation of the concept shows that the individual components Ak only differ up to a
rotation. Hence, the latent variables are the same for all samples but may manifest
themselves through different rotations.

 214

The situations in which the PARAFAC2 model is valid can be difficult to understand
because the flexibility compared to the PARAFAC1 model is somewhat abstract. However,
one simple way to see the applicability of the PARAFAC2 model is that PARAFAC2 is
worth considering in situations in which PARAFAC1 should ideally be valid, but where
practical applications show that it is not. For example, it is often observed that the
differences in elution profiles from experiment to experiment in chromatography makes the
PARAFAC1 model difficult to fit. Many times PARAFAC2 can still handle such deviations
even when the shifts in retention times are quite severe.

It is possible to fit both the PARAFAC1 and the PARAFAC2 model. If both models give the
same results (approximately), then PARAFAC1 is likely valid and then PARAFAC1 is
preferred because it uses fewer degrees of freedom. If there are large deviations, PARAFAC2
may be preferred. Note, though, that the K matrices Ak may have a larger variability than the
corresponding A from the PARAFAC1 model because of the smaller amount of data that it is
estimated from. This does not imply inadequacy but simply that there are differences in the
way that the parameters are estimated.

Another interesting type of application of PARAFAC2 follows from the insight that the
constraint that Ak

TAk is constant. This directly implies that the individual slabs, Xk, of the
array can have different lengths, hence different size Ak, yet still fulfill the constraint that
Ak

TAk is constant. Thus, PARAFAC2 can also handle e.g. batch data where the data from
each batch are obtained at different sampling rates or different sampling duration. This is a
very powerful feature of the PARAFAC2 model compared to the PARAFAC1 model.

The three-way PARAFAC2 model is given

 Xk = AkDkBT + Ek = PkHDkBT + Ek, k = 1, .., K

Xk is a slab of data (I×J) in which I may actually vary with K. K is the number of slabs and
Ak (I×ncomp) are the first-mode loadings for the kth sample. Dk is a diagonal matrix that
holds the kth row of C in its diagonal. C (K×comp) is the third mode loadings, H is an
(ncomp×ncomp) matrix, and Pk is an (I×ncomp) orthogonal matrix. The output P is given as
a cell array of length K where the kth cell element holds the (I×ncomp) matrix Pk. Thus, to
get e.g. the second sample P, write P{2}, and to get the estimate of the first mode loadings,
Ak, at this second frontal slab (k = 2), write P{2}*H.

The model can also be fitted to more than three-way data. It is important then to be aware
which mode is supposed to be fitted by separate loadings for each sample. The convention is
that the first mode is the mode that has individual loadings and that these are defined across
the last (the sample) mode. For example, chromatographic data with spectral detection can be
arranged as the first mode being elution, the second spectral and the third mode being
different experiments. Then different elution profiles (mode one) are found for each
experiment (mode three). For multivariate batch process data, the array is typically arranged
as time × variables × batches, meaning that the time trajectories (mode one) can vary from
batch to batch (mode three).

 215

INPUTS:
 x = the multiway array to be decomposed,
 If all slabs have similar size, x is an array. For example, for three-way

data where the matrix of measurements for sample one is held in x1, for
sample 2 in x2 etc. then X(:,:,1) = X1; X(:,:,2) = X2; etc. If the slabs
have different size, X is a cell array (type <help cell> for more info on
cells). Then X{1} = X1; X{2} = X2; etc., and

 ncomp = the number of factors (components) to use, or
 model = a PARAFAC model structure (new data are fit to the model i.e. sample

mode scores are calculated).

OPTIONAL INPUTS:
 initval = cell array of initial values (initial guess) for the loadings (e.g.

model.loads from a previous fit). If not used it can be 0 or [], and
 options = discussed below.

OUTPUTS:

Data that are input as a cell-array in PARAFAC2 are converted to an array by zero-padding
each samples first mode dimension in case of different first mode dimensions for different
samples. Residuals etc. are also output as arrays. The output model is a structure array with
the following fields:
 modeltype: 'PARAFAC2',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: 1 by K cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for each input data block,
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

The output pred is a structure array that contains the approximation of the data if the options
field blockdetails is set to 'all' (see options).

 216

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: [{'final'} | 'all' | 'none'], governs level of plotting,
 weights: [], used for fitting a weighted loss function,
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative

tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)],

 init: [0], defines how parameters are initialized (discussed below),
 line: [0 | {1}] defines whether to use the line search {default uses it},
 algo: not applicable for PARAFAC2 as ALS is always used,
 iterative: settings for iterative reweighted least squares fitting,
 blockdetails: 'standard'
 missdat: this option is not yet active,
 samplemode: [3], defines which mode should be considered the sample or object

mode (do not change in PARAFAC2),
 constraints: {3x1 cell}, defines constraints on parameters (see PARAFAC), and
 coreconsist: [{'on'} | 'off'], governs calculation of core consistency (turning

off may save time with large data sets and many components).

The default options can be retrieved using: options = parafac('options');.

Note that samplemode should not be altered in PARAFAC2. See help on PARAFAC for help
on the use of options for PARAFAC2. One important difference from PARAFAC is that
constraints in the first mode do not apply to the estimated profiles, Ak, themselves but only to
H. It is generally adviced not to use constraints in the first mode.

Examples

parafac2 demo for a demonstration of the use of the PARAFAC2 algorithm.

model = parafac2(X,5) fits a five-component PARAFAC2 model to the array X using
default settings.

options = parafac2('options'); generates a set of default settings for PARAFAC2.
options.plots = 0; sets the plotting off.

options.init = 3; sets the initialization of PARAFAC2 to orthogonalized random
numbers.

model = parafac2(X,2,options); fits a two-component PARAFAC2 model with the
settings defined in options.

parafac2 io shows the I/O of the algorithm.

 217

See Also

datahat, explode, gram, mpca, outerm, parafac, tld, tucker, unfoldm

 218

parsemixed
Purpose

Parse numerical and text data into a DataSet Object.

Synopsis

data = parsemixed(a,b)

Description

Given two inputs containing a numerical array a and a matching cell array containing text b,
PARSEMIXED outputs a DataSet object with a "logical" interpretation of the numerical and
text data. It identifies contiguous block of numbers and then attempts to interpret text as
labels and label names for that block of data.

INPUTS:
 a = numerical array containing the numerical portion of the data to parse

(NOTE: NaN's are OK).
 b = a cell array of the same size as (a) but containing any strings which were

not interpretable as numbers.

OUTPUT:
 data = a DataSet object formed from the parsing of the input data.

Options
 options = a structure array with the following fields:
 labelcols: [] specifies one or more columns of the file which should be interpreted

as text labels for rows even if parsable as numbers,
 labelrows: [] specifies one or more rows of the file which should be interpreted as

text labels for columns even if parsable as numbers,
 includecols: [] Specifies one or more columns of the file which should be interpreted

as the "include" field for ROWS of the matrix (i.e. this column specifies
which rows should be included). Multiple items in this list will be
combined using a logical "and" (all must be "1" to include field.

 includerows: [] Specifies one or more rows of the file which should be interpreted as
the "include" field for COLUMNS of the matrix (see above notes about
includecols).

 classcols: [] Specifies one or more columns of the file which should be interpreted
as classes for rows of the data.

 classrows: [] Specifies one or more rows of the file which should be interpreted as
classes for columns of the data.

 axisscalecols: [] Specifies one or more columns of the file which should be interpreted
as axisscales for rows of the data.

 219

 axisscalerows: [] Specifies one or more rows of the file which should be interpreted as
axisscales for columns of the data.

 compactdata: ['no' | {'yes'}] Specifies if columns and rows which are entirely
excluded should be permanently removed from the table.

 waitbar: ['off' | {'on'}] Specifies whether waitbars should be shown
while the data is being processed.

See Also

areadr, dataset, xclreadr, xlsreadr

 220

parseXML
Purpose

Convert XML file to a MATLAB structure.

Synopsis

object = parseXML(filename)

Description

Creates Matlab object from XML file. The format of the file must follow that used by
ENCODEXML. Each XML tag will be encoded as a field in a Matlab structure. The top-
level tag will be the single field in the top-level of the returned structure and all sub-tags will
be sub-fields therein. Contents of those fields can be specified using the following attributes:

Tags with the attribute 'class' will be encoded using these rules:

class="numeric" : Contents of tag must be comma-delimited list of values with rows
delimited by semicolons. Each row must have the same number of values (equal in length) or
an error will result. Multi-way matricies can be encapulated in <tn mode="i"> tags where i is
the mode that the enclosed item expands on (i>=3).

class="cell" : Contents encoded as Matlab cell. Format of contents is same as HTML table
tags (<tr> for new row, <td> for new container/column) with the added tag of <tn mode="i">
to describe an multi-dimensional cell (see class="numeric").

class="string" : Contents encoded as string or padded string array. If multiple row string,
each row should be enclosed in <sr> tags.

class="structure" : Used for struture arrays ONLY. Contents encoded into a structure array
using array notation identical to that described for class="cell". If a structure is size [1 1]
then it does not need to use array notation and must not be marked with this class attribute.
Instead, the contents of the structure should simply be enclosed within the tag as sub-tags.

class="dataset" : Contents will be interpreted as a DataSet Object. Any tags which do not
map to valid DataSet Object fields will be ignored. See the DataSet definition for details on
valid fields and ENCODEXML for example of DataSet XML format.

When class is omitted, a single-entry (non-array) structure is assumed.

"Size" attribute: Tags of class "numeric", "cell", or "structure" (structure-array only) should
also include the attribute size="[...]" which gives the size of the tag's contents. Value for size
must be enclosed in square brackets and must be at least two elements long (use [0,0] for
empty). For example <myvalue class="numeric" size="[3,4]"> says that the field myvalue
will be numeric with 3 rows and 4 columns. Size can be multi-dimensional as needed

 221

(size="[2,4,6,2]" implies that the contents of the tag will give a 4-dimensional array of the
given sizes)

If input (filename) is omitted, the user will be prompted for a file name to read.

See Also

encodexml, xclreadr

 222

pca
Purpose

Perform principal components analysis.

Synopsis

pca
model = pca(data,ncomp,options); %decomposition
pred = pca(newdata,model,options); %application
options = pca('options')

Description

Performs a principal component analysis decomposition of the input array data returning
ncomp principal components. E.g. for an M by N matrix X the PCA model is X = TPT + E,
where the scores matrix T is M by K, the loadings matrix P is N by K, the residuals matrix E
is M by N, and K is the number of factors or principal components ncomp. The output model
is a PCA model structure. This model can be applied to new data by passing the model
structure to PCA along with new data newdata or by using PCAPRO. The output of PCA is a
model structure with the following fields (see MODELSTRUCT for additional information):
 modeltype: 'PCA',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for the input block (when

blockdetail='normal' x-block predictions are not saved and this will
be an empty array)

 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

If the inputs are a Mnew by N matrix newdata and and a PCA model model, then PCA applies
the model to the new data. Preprocessing included in model will be applied to newdata. The
output pred is structure, similar to model, that contains the new scores, and other predictions
for newdata.

Note: Calling pca with no inputs starts the graphical user interface (GUI) for this analysis
method.

 223

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}], governs level of display to command window,
 plots: ['none' | {'final'}], governs level of plotting.
 outputversion: [2 | {3}], governs output format (discussed below),
 algorithm: [{'svd'} | 'maf' | 'robustpca'], algorithm for decomposition,
 Algorithm 'maf' requires Eigenvector's MIA_Toolbox.
 preprocessing: {[]}, cell array containing a preprocessing structure (see PREPROCESS)

defining preprocessing to use on the data (discussed below),
 blockdetails: [{'standard'} | 'all'], level of detail included in the model for

predictions and residuals.
confidencelimit: [{'0.95'}], confidence level for Q and T2 limits. A value of zero (0)

disables calculation of confidencelimits.
 roptions: structure of options to pass to robpca (robust PCA engine from the Libra

Toolbox).
 alpha:[{0.75}], (1-alpha) measures the number of outliers the

algorithcarbuggym should resist. Any value between 0.5 and 1 may be
specified. These options are only used when algorithm is 'robustpca'.

The default options can be retreived using: options = pca('options');.

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model
structure model. If options.outputversion = 2, the output format is:

[scores,loads,ssq,res,reslm,tsqlm,tsq] = pca(xblock1,2,options);

where the outputs are
 scores = x-block scores,
 loads = x-block loadings
 ssq = the sum of squares information,
 res = the Q residuals,
 reslim = the estimated 95Found limit line for Q residuals,
 tsqlim = the estimated 95Found limit line for T2, and
 tsq = the Hotelling’s T2 values.

PREPROCESSING

The preprocessing field can be empty [] (indicating that no preprocessing of the data
should be used), or it can contain a preprocessing structure output from the PREPROCESS
function. For example options.preprocessing = {preprocess('default',
'autoscale')}. This information is echoed in the output model in the
model.detail.preprocessing field and is used when applying the PCA model to new data.

 224

See Also

analysis, evolvfa, ewfa, explode, parafac, plotloads, plotscores,
preprocess, ssqtable

 225

pcaengine
Purpose

Principal components analysis computational engine.

Synopsis

[ssq,datarank,loads,scores,msg] = pcaengine(data,ncomp,options)
options = pcaengine('options')

Description

This function is intended primarily for use as the engine behind other more full featured PCA
programs. The only required input is the data matrix data.

Optional inputs include the number of principal components desired in the output ncomp, and
a structure containing optional inputs options. If the number of components ncomp is not
specified, the routine will return components up to the rank of the data datarank.

The outputs are the variance or sum-of-squares captured table ssq, mathematical rank of the
data datarank, principal component loadings loads, principal component scores scores,
and a text variable containing any warning messages msg.

To enhance speed, the routine is written so that only the specified outputs are computed.

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}], governs level of display to command window,
 algorithm: [{'regular'} | 'big' | 'auto'], tells which algorithm to use,
 'regular', uses an SVD and calculates all eigenvectors and

eigenvalues,
 'big', calculates the “economy size” SVD, and
 'auto', checks the size of the data matrix and automatically chooses

between 'regular' and 'big'

The default options can be retreived using: options = pcaengine('options');.

See Also

analysis, evolvfa, ewfa, explode, parafac, pca, ssqtable

 226

pcapro
Purpose

Project new data onto an existing principal components model.

Synopsis

[scoresn,resn,tsqn] = pcapro(newdata,loads,ssq,reslm,tsqlm,plots)
[scoresn,resn,tsqn] = pcapro(newdata,pcamod,plots)

Description

Inputs can be in two forms: 1) as a list of input variables, or 2) as a single model structure
variable returned by ANALYSIS or PCA.

1) If a list of input variables is used the inputs are the new data newdata scaled the same as
the original data used to construct the model, the model loadings loads, the model variance
info ssq, the limit for Q reslm, the limit for T2 tsqlm, and an optional variable plots which
suppresses plotting when set to 0 {default plots = 1}.

WARNING: Scaling for newdata should be the same as original data used to create the PCA
model!

The I/O format is:
[scoresn,resn,tsqn] = pcapro(newdata,loads,ssq,q,tsq,plots)

2) If the PCA model is input as the single model structure variable returned by ANALYSIS or
PCA then the inputs are the new data newdata in the units of the original data, the structure
variable that contains the PCA model pcamod, and an optional variable plots which
suppresses the plots when set to 0 {default plots = 1}.

NOTE: newdata will be preprocessed in PCAPRO using information stored in pcamod
(pcamod.detail.preprocessing).

The I/O format is:
[scoresn,resn,tsqn] = pcapro(newdata,pcamod,plots)

Outputs are the new scores scoresn, residuals resn, and T2 values tsqn. These are plotted if
plots = 1 {default}.

See Also

datahat, analysis, explode, modlpred, pca, simca, tsqmtx

 227

pcolormap
Purpose

Produces a pseudocolor map with labels.

Synopsis

pcolormap(data,maxdat,mindat)
pcolormap(data,xlbl,ylbl,maxdat,mindat)

Description

PCOLORMAP produces a pseudocolor map of the M by N input matrix data.

If data is class “double” the I/O format is:
pcolormap(data,xlbl,ylbl,maxdat,mindat)

If data is class “dataset” the I/O format is:
pcolormap(data,maxdat,mindat)

Optional inputs:

(xlbl) a character array with m rows of sample labels if empty no labels are included, if == 1
then xlbl = int2str([1:m]'); [xlbl = int2str([1:m]') used when size(xlbl,1)~=m],

(ylbl) a character array with n rows of variable labels if empty no labels are included, if ==1
then ylbl = int2str([1:n]'); [ylbl = int2str([1:n]') used when size(ylbl,1)~=n],

(maxdat) a user defined maximum for scaling the color scale {default = max(max(data))},

(mindat) a user defined minimum for scaling the color scale {default = min(min(data))}.

See Also

corrmap, pcolor, rwb

 228

pcr
Purpose

Principal components regression: multivariate inverse least squares regession.

Synopsis

model = pcr(x,y,ncomp,options) %calibration
pred = pcr(x,model,options) %prediction
valid = pcr(x,y,model,options) %validation
options = pcr('options')

Description

PCR calculates a single principal components regression model using the given number of
components ncomp to predict y from measurements x.

To construct a PCR model, the inputs are x the predictor x-block (2-way array class “double”
or “dataset”), y the predicted y-block (2-way array class “double” or “dataset”), ncomp the
number of components to to be calculated (positive integer scalar) and the optional structure,
options. The output is a standard model structure model with the following fields (see
MODELSTRUCT):
 modeltype: 'PCR',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 reg: regression vector,
 loads: cell array with model loadings for each mode/dimension,
 pred: 2 element cell array with model predictions for each input block (when

options.blockdetail='normal' x-block predictions are not saved
and this will be an empty array) and the y-block predictions.

 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

To make predictions the inputs are x the new predictor x-block (2-way array class “double”
or “dataset”), and model the PCR model. The output pred is a structure, similar to model,
that contains scores, predictions, etc. for the new data.

If new y-block measurements are also available then the inputs are x the new predictor x-
block (2-way array class “double” or “dataset”), y the new predicted block (2-way array class
“double” or “dataset”), and model the PCR model. The output valid is a structure, similar to

 229

model, that contains scores, predictions, and additional y-block statistics etc. for the new
data.

In prediction and validation modes, the same model structure is used but predictions are
provided in the model.detail.pred field.

Note: Calling pcr with no inputs starts the graphical user interface (GUI) for this analysis
method.

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}], governs level of display to command window,
 plots: ['none' | {'final'}], governs level of plotting,
 outputversion: [2 | {3}], governs output format (discussed below),
 preprocessing: {[] []}, two element cell array containing preprocessing structures (see

PREPROCESS) defining preprocessing to use on the x- and y-blocks (first
and second elements respectively),

 algorithm: [{'svd'} | ' robustpcr' | ' correlationpcr'], governs which
algorithm to use. 'svd' is standard algorithm. 'robustpcr' is robust
algorithm with automatic outlier detection. 'correlationpcr' is standard
PCR with re-ordering of factors in order of y-variance captured.

 blockdetails: ['compact' | {'standard'} | 'all'], extent of predictions and raw
residuals included in model. 'standard' = only y-block, 'all' x and y
blocks.

confidencelimit: [{'0.95'}], confidence level for Q and T2 limits. A value of zero (0)
disables calculation of confidence limits,

 roptions: structure of options to pass to rpcr (robust PCR engine from the Libra
Toolbox). Only used when algorithm is 'robustpcr',

 alpha : [{0.75}], (1-alpha) measures the number of outliers the
algorithm should resist. Any value between 0.5 and 1 may be specified.
These options are only used when algorithm is 'robustpcr'.

 intadjust : [{0}], if equal to one, the intercept adjustment for the
LTS-regression will be calculated. See ltsregres.m for details (Libra
Toolbox).

The default options can be retreived using: options = pcr('options');.

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model
structure model. If options.outputversion = 2, the output format is:

[b,ssq,t,p] = pcr(x,y,ncomp,options)

where the outputs are

 230

 b = matrix of regression vectors or matrices for each number of principal
components up to ncomp,

 ssq = the sum of squares information,
 t = x-block scores, and
 p = x-block loadings.

Note: The regression matrices are ordered in b such that each Ny (number of y-block
variables) rows correspond to the regression matrix for that particular number of principal
components.

See Also

analysis, crossval, frpcr, modelstruct, pca, pls, preprocess, analysis,
ridge

 231

pcrengine
Purpose

Principal components regression computational engine.

Synopsis

[reg,ssq,loads,scores,pcassq] = pcrengine(x,y,ncomp,options)

Description

PCRENGINE calculates the basic elements of a PCR model (see PCR).

Inputs are x the predictor x-block, and y the predicted y-block.

Optional input ncomp is the number of components to to be calculated (positive integer
scalar). If the number of components ncomp is not specified, the routine will return
components up to the rank of the x-block. Optional input options. is discussed below.

Outputs are the matrix of regression vectors reg, the sum of squares captured ssq, x-block
loadings loads, x-block scores scores, and the PCA ssqtable (pcassq).

Note: The regression matrices are ordered in b such that each Ny (number of y-block
variables) rows correspond to the regression matrix for that particular number of principal
components.

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}], governs level of display to command window,
 sortorder: [{'x'} | 'y'], governs order of factors in outputs. 'x' is standard

PCR sort order (ordered in terms of X block variance captured). 'y' is
Correlation PCR sort order (ordered in terms of Y block variance
captured).

The default options can be retreived using: options = pcrengine('options');.

See Also

analysis, pcr, pls

 232

peakfind
Purpose

Automated identification of peaks.

Synopsis

[i0,iw] = peakfind(x,width,tolfac,w,options)
[i0,iw] = peakfind(x,width,options)

Description

Given a set of measured traces (x) PEAKFIND attempts to find the location of the peaks.
Different algorithms are available and each is discussed in the Algorithm Section.

INPUTS:
 x = MxN matrix of measured traces. Each 1xN row of (x) is an individual

trace with potential peaks.
 width = number of points in Savitzky-Golay filter.

OPTIONAL INPUTS:
 tolfac = tolerance on the estimated residuals, peaks heights are estimated to be

> tolfac*residuals {default: tolfac = 3}.
 w = odd scalar window width for determining local maxima {default: w =

3} (see LOCALMAXIMA).
 options = discussed below in the Options Section.

OUTPUTS:
 i0 = 1Mx cell array with each cell containing the indices of the location of

the major peaks for each of the M traces.
 iw = 1Mx cell array with each cell containing the indices of the location of

the windows containing each peak in (i0). (If not included in the output
argument list, it is not calculated and the algorithm is slightly faster.) .

Algorithm

Each peak finding algorithm uses the smoothed and second derivative data (see SAVGOL) and
an estimate of the residuals. The smoothed and second derivative are estimated as:

d0 = savgol(x,width,2,0);
d2 = savgol(x,width,2,2);

The residuals are defined for the thi row/trace as
residuals = sqrt(mean((x(i,:)-d0(i,:)).^2));

 233

For options.algorithm = 'd0', locates a candidate set of peaks (pks) by identifying local
maxima (within the specified window size) in the smoothed data:

pks = localmax(d0(i,:),w);

Next, the input (tolfac) is used to estimate two thresholds (tol0) and (tol2) using the
smoothed and second derivative data:

tol0 = tolfac*sqrt(mean((x(i,:)-d0(i,:)).^2));
tol2 = tol0*(max(d2(i,:))-min(d2(i,:)))/ …
 (max(d0(i,:))-min(d0(i,:)));

Finally, the set of major peaks are selected from the initial candidate set of peaks . To be
accepted, the value of d0 and d2 at the peak location must surpass the estimated noise level
of both d0 and d2 by the tolerance factor (tolfac).

i0{i} = pks(d0(i,pks)>tol0 & d2(i,pks)<-tol2);

For options.algorithm = 'd2', the algorithm operates similarly to what is described for
d0 except that it locates candidate peaks as the local maxima on the second derivative data
and to be accepted, a peak must only surpass the estimated noise level of d2 by the tolerance
factor. That is, d0 is not considered at all in the calculation except to estimate the noise level.

For options.algorithm = 'd2r', as with 'd2', 'd2r' locates peaks in the second derivative
data, d2, but selects the final set as those peaks which have a "relative" height (difference
between closest d2 peak valley and d2 peak top) which surpasses the estimated noise level of
d2 by the tolerance factor, tolfac.

Options
options = structure array with the following fields:
 name: 'options', name indicating that this is an options structure.
 algorithm: [{'d0'} | 'd2' | 'd2r'] selects an algorithm used to identify peak

location. These algorithms are complimentary and may work differently
in the presense of backgrounds and other peak shape effects.

 'd0' : locates a candidate set of peaks by identifying local maxima
(within the specified window size) in the smoothed data (d0). Next, a
threshold on d0 and the second derivative (d2) is used to select a final
set of peaks from this candidate set. To be accepted, the value of d0 and
d2 at the peak location must surpass the estimated noise level of both d0
and d2 by the tolerance factor (tolfac).

 'd2' : locates candidate peaks as local maxima in the smoothed 2nd
derivative data (d2) and selects a final set of peaks as those candidate
peaks which surpass (by the tolerance factor, tolfac) the estimated noise
level of d2. d0 position or value is not considered in any part of the
selection except to estimate the noise level.

 'd2r' : as with 'd2', 'd2r' locates peaks in d2, but selects the final set as
those peaks which have a "relative" height (difference between closest
d2 peak valley and d2 peak top) which surpasses (by the tolerance
factor, tolfac) the estimated noise level of d2.

 npeaks: The maximum number of peaks to find.

 234

 {'all'} chooses all peaks that are > tolfac.
 1,2,3, ... integer maximum number of peaks.

See Also

fitpeaks, localmax

 235

peakfunction
Purpose

Outputs the estimated peaks from parameters in (peakdef)

Synopsis

[y,peakdef] = peakfunction(peakdef,ax)

Description

Given the multi-record standard peak structure (peakdef) and the corresponding
wavelength/frequency axis (ax), the peak parameters in the field (peakdef.param) are used
to generate peaks. This function is called by PEAKFITS and the result is the output (fit), and
the peak area estimates in (peakdef) are updated. See PEAKFITS for more information. This
function calls PEAKGAUSSIAN, PEAKLORENTZIAN, PEAKPVOIGT1, and PEAKVOIGT2.

INPUTS:
 peakdef = standard peak structure (see PEAKSTRUCT) output by fitpeaks.
 ax = corresponding wavelength/frequency axis. This is also input to the

function FITPEAKS. Peak positions are based on this axis.

OUTPUTS:
 y = estimated peaks based on the parameters in the input (peakdef).
 peakdef = the original input (peakdef) with the area field estimated.

Examples

 ax = 0:0.1:100;
 y = peakgaussian([2 51 8],ax);%Make known peak
%Define first estimate and peak type
 peakdef = peakstruct;
 peakdef.param = [0.1 43 5]; %coef, position, spread
 peakdef.lb = [0.0 0 0.0001]; %lower bounds on param
 peakdef.penlb = [1 1 1];
 peakdef.ub = [10 99.9 40]; %upper bounds on params
 peakdef.penub = [1 1 1];
%Estimate fit and plot
 yint = peakfunction(peakdef,ax);
 [peakdef,fval,exitflag,out] = fitpeaks(peakdef,y,ax);
 yfit = peakfunction(peakdef,ax); figure
 plot(ax,yint,'m',ax,y,'b',ax,yfit,'r--')
 legend('Initial','Actual','Fit')

 236

See Also

fitpeaks, peakgaussian, peaklorentzian, peakpvoigt1, peakpvoigt2,
peakstruct

 237

peakgaussian
Purpose

Outputs a Gaussian function, Jacobian, and Hessian for a given set of input parameters and
axis.

Synopsis

 [y,y1,y2] = peakgaussian(x,ax)

Description

Given a 3-element vector of parameters (x) and a 1xN vector of independent variables e.g. a
wavelength or frequency axis (ax), PEAKGAUSSIAN outputs a Gaussian peak (y). If more than
one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives are
with respect to the parameters and are evaluated at (x). This function is called by
PEAKFUNCTION.

INPUTS:
 x = 3 element vector with parameters
 x(1) = coefficient 1x ,

 x(2) = mean 2x , and

 x(3) = spread 3x .

 ax = 1xN vector of independent variables e.g. a wavelength or frequency
axis with elements ia , 1, ,i N= … .

OUTPUTS:
 y = 1xN vector with the Gaussian function, (),i iy f a= x .

 y1 = 3xN matrix of the Jacobian of f evaluated at (x).
 y2 = 3 3x xN matrix of the Hessian of f evaluated at (x).

Algorithm

The function is

 ()
()2

2
2
32

1, e
ia x

x
if a x

− −

=x

 238

Examples

%Make a single known peak
 ax = 0:0.1:100;
 y = peakgaussian([2 51 8],ax);
 plot(ax,y)

See Also

peakfunction, peaklorentzian, peakpvoigt1, peakpvoigt2, peakstruct

 239

peakidtext
Purpose

Writes peak ID information on present graph of a set of peaks.

Synopsis
h = peakidtext(peakdef)

Description

When a set of peaks is plotted, PEAKIDTEXT can be used to put the peak id (peakdef.id) on
the graph (see PEAKSTRUCT). For example, if (ax) is the wavelength, frequency, or time axis
and (y) is a set of peaks then, for an initial guess given in (peakdef) the fit parameters are
obtained using:

peakdefo = fitpeaks(peakdef,y,ax);

A plot can be made using:
plot(ax,y,'b',ax,peakfunction(peakdefo,ax),'r')

Next, labels are put on the graph using:
peakidtext(peakdefo)

This also puts a vertical line at the peak center and puts the text label, based on the contents
of the (peakdefo.id) field, near the peak maximum.

INPUT:
 peakdef = a standard peak structure (see PEAKSTRUCT).

OUTPUT:
 h = vector of handles corresponding to the individual text labels.

See Also

fitpeaks, peakfunction, peakstruct

 240

peaklorentzian
Purpose

Outputs a Lorentzian function, Jacobian, and Hessian for a given set of input parameters and
axis.

Synopsis

 [y,y1,y2] = peaklorentzian(x,ax)

Description

Given a 3-element vector of parameters (x) and a 1xN vector of independent variables e.g. a
wavelength or frequency axis (ax), PEAKLORENTZIAN outputs a Lorentzian peak (y). If more
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives
are with respect to the parameters and are evaluated at (x). This function is called by
PEAKFUNCTION.

INPUTS:
 x = 3 element vector with parameters
 x(1) = coefficient 1x ,

 x(2) = mean 2x , and

 x(3) = spread 3x .

 ax = 1xN vector of independent variables e.g. a wavelength or frequency
axis with elements ia , 1, ,i N= … .

OUTPUTS:
 y = 1xN vector with the Lorentzian function, (),i iy f a= x .

 y1 = 3xN matrix of the Jacobian of f evaluated at (x).
 y2 = 3 3x xN matrix of the Hessian of f evaluated at (x).

Algorithm

The function is

 ()
()

12 2
2 3

1 1 22
3 3 2

, 1 i
i

i

a x xf a x x
x x a x

−
    −
 = + =   

+ −       
x

 241

Examples

%Make a single known peak
 ax = 0:0.1:100;
 y = peaklorentzian([2 51 8],ax);
 plot(ax,y)

See Also

peakfunction, peakgaussian, peakpvoigt1, peakpvoigt2, peakstruct

 242

peakpvoigt1
Purpose

Outputs a pseudo-Voigt function, Jacobian, and Hessian for a given set of input parameters
and axis.

Synopsis

 [y,y1,y2] = peakpvoigt1(x,ax)

Description

Given a 4-element vector of parameters (x) and a 1xN vector of independent variables e.g. a
wavelength or frequency axis (ax), PEAKPVOIGT1 outputs a pseudo-voit peak (y). If more
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives
are with respect to the parameters and are evaluated at (x). This function is called by
PEAKFUNCTION.

INPUTS:
 x = 4 element vector with parameters
 x(1) = coefficient 1x ,

 x(2) = mean 2x ,

 x(3) = spread 3x , and

 x(4) = fraction Gaussian 4x .

 ax = 1xN vector of independent variables e.g. a wavelength or frequency
axis with elements ia , 1, ,i N= … .

OUTPUTS:
 y = 1xN vector with the Lorentzian function, (),i iy f a= x .

 y1 = 4xN matrix of the Jacobian of f evaluated at (x).
 y2 = 4 4x xN matrix of the Hessian of f evaluated at (x).

Algorithm

The function is

 ()
()()

()
()

2
2

2
3

4ln 2 2
3

1 4 4 2 2
2 3

, e 1
ia x

x
i

i

xf a x x x
a x x

− −  
 = + −  
 − +   

x

 243

Examples

%Make a single known peak
 ax = 0:0.1:100;
 y = peakpvoigt1([2 51 8 0.5],ax);
 plot(ax,y)

See Also

peakfunction, peakgaussian, peaklorentzian, peakpvoigt2, peakstruct

 244

peakpvoigt2
Purpose

Outputs a pseudo-Voigt function, Jacobian, and Hessian for a given set of input parameters
and axis.

Synopsis

 [y,y1,y2] = peakpvoigt2(x,ax);

Description

Given a 4-element vector of parameters (x) and a 1xN vector of independent variables e.g. a
wavelength or frequency axis (ax), PEAKPVOIGT2 outputs a pseudo-voigt peak (y). If more
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives
are with respect to the parameters and are evaluated at (x). This function is called by
PEAKFUNCTION.

INPUTS:
 x = 4 element vector with parameters
 x(1) = coefficient 1x ,

 x(2) = mean 2x ,

 x(3) = spread 3x , and

 x(4) = fraction Gaussian 4x .

 ax = 1xN vector of independent variables e.g. a wavelength or frequency
axis with elements ia , 1, ,i N= … .

OUTPUTS:
 y = 1xN vector with the Lorentzian function, (),i iy f a= x .

 y1 = 4xN matrix of the Jacobian of f evaluated at (x).
 y2 = 4 4x xN matrix of the Hessian of f evaluated at (x).

Algorithm

The function is

 ()
()

()
()

2
2

2
3

2
2 3

1 4 4 2 2
2 3

, e 1
ia x

x
i

i

xf a x x x
a x x

− −  
 = + −  
 − +   

x

 245

Examples

%Make a single known peak
 ax = 0:0.1:100;
 y = peakpvoigt2([2 51 8 0.5],ax)
 plot(ax,y)

See Also

peakfunction, peakgaussian, peaklorentzian, peakpvoigt1, peakstruct

 246

peakstruct
Purpose

Makes an empty standard peak definition structure.

Synopsis

peakdef = peakstruct(fun,n)

Description

The output of PEAKSTRUCT is an empty standard peak structure, or multi-record peak
structure.

No input is required. Optional inputs can be used to create different types of default peak
definitions in each of the structure records.

OPTIONAL INPUTS:
 fun = Peak function name {default = 'Gaussian'}. Available peak names

(shapes) are:
 'Gaussian', 'Lorentzian', 'PVoigt1', and 'PVoigt2'.
 n = Number of records to include in the (peakdef) structure.

OUTPUTS:
 peakdef = A structure array with the following fields:
 name: 'Peak', indentifies (peakdef) as a peak definition structure.
 id: integer or character string peak identifier.
 fun: peak function name {e.g.'Gaussian'}.
 param: 1xP vector of parameters for each peak function:
 fun = 'Gaussian'; param = [height, position, width].
 fun = 'Lorenzian'; param = [height, position, width].
 fun = 'PVoigt1'; param = [height, position, width, fraction Gaussian],

where 0 ≤ fraction Gaussian ≤ 1.
 fun = 'PVoigt2'; param = [height, position, width, fraction Gaussian],

where 0 ≤ fraction Gaussian ≤ 1.
 Descriptions of the functions and parameters are given in the Algorithm

section of the FITPEAKS entry in the reference manual. Also see
PEAKFUNCTION.

 lb: 1xP vector of lower bounds on (.param).
 penlb: 1xP vector of penalties for lower bounds. If an entry is 0, then the

corresponding lower bound is not active.
 ub: 1xP vector of upper bounds on (.param).

 247

 penub: 1xP vector of penalties for upper bounds. If an entry is 0, then the
corresponding upper bound is not active.

Examples

peakdef = peakstruct('',3);
disp(peakdef(2))

peakdef(2) = peakstruct('PVoigt1');
peakdef(2).id = '2: Voigt';
disp(peakdef(2))

See Also

fitpeaks, peakfunction, peakgaussian, peaklorentzian, peakstruct,
peakpvoigt1, peakpvoigt2

 248

percentile
Purpose

Finds percentile point (similar to MEDIAN).

Synopsis

s = percentile(x,y)

Description

PERCENTILE finds the point in the data x where the fraction y has lower values. Input x is a
MxN data array, and y is a percentile where 0<y<1.

The output is a 1 by N vector s of percentile points (PERCENTILE works on the columns of x.

See Also

median

 249

ploteigen
Purpose

Extracts information from a model needed to construct a dataset object for PLOTGUI.

Synopsis

a = ploteigen(modl, options)

Description

Extracts the variance captured, eigenvalue, and RMSE (root-mean-squared error)
information from a model structure for viewing using PLOTGUI. The inputs are a standard
model structure, modl, and an optional options structure, options, described below. The
output, a, is a DataSet object which can be passed to PLOTGUI for viewing.

Options
 plots: ['none' | 'final' | {'auto'}] governs plotting behavior,
 'auto' makes plots if no output is requested {default}.
 figure: ['off' | {'on'}], governs level of display to command window.

See Also

analysis, modelstruct, pca, pcr, plotgui, plotloads, pls

 250

plotgui
Purpose

Interactive data viewer.

Synopsis

fig = plotgui(data)
fig = plotgui(data,'PropertyName',PropertyValue,...)
fig = plotgui('update','PropertyName',PropertyValue,...)

Description

Plots input data dat and provides a control toolbar in the Plot Controls window to select
portions of the data to view. The toolbar allows interactive selection, exclusion, and classing
of rows or columns of data. The PLOTGUI command has various display options that are
given as 'PropertyName', PropertyValue pairs or as a single keyword. Properties and
Keywords are discussed below. To modify options for an existing PLOTGUI figure without
providing new data, use the 'update' keyword.

PLOTGUI returns the handle of the figure in which the data is displayed (fig).

Input dat can be class “double” or “dataset”. The description given below is generally listed
for two-way data arrays. Options specific to data that are three-way or image are noted
explicitly. PLOTGUI uses the dataset labels, classes, etc. when dat is class “dataset”.

Plot Controls Toolbar

The toolbar consists of 1) a menu bar with File, Edit, and
View menus, 2) a figure selection dropdown menu, 3) three
axis menus (labeled x, y, and z), 4) plot update controls Plot
button and auto-update checkbox, and Select button.

Each figure in the figure selection dropdown menu menu can
be modified by the PLOTGUI controls. Selecting a figure from
this menu will bring that figure into view and indicate the
selected axis menu settings. A "+" or a "*" next to a figure's
name indicates that it is linked with another figure (see
Duplicate Figure below).

The axis menus (labeled x, y, and z) select what parts of the
data should be used for the plot. Each column or row
selected in the y-axis menu will be plotted against the
column, row or index selected in the x-axis menu. If any
selection is made on the z-axis menu, then each y-axis selection is also plotted against the
column or row selected in the z-axis menu to make a three-dimensional plot.

 251

If the input dat is three-way it is assumed to be a multivariate image, and the y-axis is slice
or slab and the figure default is imagesc(dat(:,:,1)). This is also true if dat is class
“dataset” with the type field set to 'image' or 'image'.

If the auto-update checkbox is selected, figures are updated automatically when new axis-
menu selections are made. Otherwise, the Plot button must be pressed before any changes
are reflected in the figure.

View Menu

Various options associated with the viewed data are contained in the View menu. The
specific options depend on the data being plotted. The View menu options are listed below.
 Table: Opens a Plotted Data window that lists the numerical values of the

plotted data.
 Numbers: Displays the index number next to each plotted point.
 Labels: Displays available lables next to each plotted point. If no labels are

available this option is greyed out.
 Classes: Uses available class information to give each plotted point a different

symbol. If no class information is available this option is greyed out.
The fly-out menu includes any class sets defined in the dataset as well as
options to "Outline Class Groups". Group outlining allows drawing of
lines to either enclose all samples in a group ("border points") or as a
confidence boundry ("confidence ellipse").

 Declutter Labels: Controls the label/number decluttering options. Automatic modes
remove labels when they overlap. "Selected Only" removes labels on all
points except those which have been selected using the standard
selection tools.

 Label Angle: Changes the angle of (i.e. rotates) all labels in a plot.
 Excluded Data: Shows any points which have been “excluded” from the data set.
 Axis Lines: Places lines through the origin.
 Log Scales: Switches axes between log and linear scaling.
 Auto y-scale: When enabled, all plotted data items are scaled so that their y-axis

values are on a similar scale (that is, they are each baselined and
normalized). The different methods for y-scaling include: Sum, Length,
Max. In each case, the given property is set equal to 1 for each plotted
data item. In addition, if the plot has been zoomed, the y-scaling method
is based only on the currently visible data. The scaling can be
recalculated for any given zoomed view by selecting "Scale from current
zoom".

 Auto Contrast: Contrast enhancement for a slice/slab for multivariate images (only
available when the data are 3-way or type image).

 Duplicate Figure: Creates a duplicate copy of the current figure that is linked to the current
figure i.e. if one figure is modified the other automatically changes to
reflect the modification. The parent figure will have a "+" next to its

 252

name in the figure selection dropdown menu and the child figure will
have a "*".

 Spawn Figure: Creates a duplicate copy of the current figure that is not controled by the
Plot Controls toolbar. This is a simple MATLAB figure.

 Dock Controls: When checked, the Plot Controls toolbar are “docked” next to the
controled figure.

 Settings: Allows the user to modify other view settings.

Plot Menu

Selects the "mode" in which the current data should be viewed. This can be either a summary
of any given mode (Data Summary mode) or one of the standard modes of a data matrix
including the rows, columns, or slabs.

 Data Summary: Plots all the data, the mean, the standard deviation, or the mean ± the

standard deviation. For Variables (columns) or Samples (rows)
depending on what is selected in the x-axis.

 Rows: Plots the data across rows selecting which rows (usually samples) to
view.

 Columns: Plots the data down the columns selecting which columns (usually
variables) to view.

 Slabs: Uses IMAGESC to view a slice/slab of a 3-way array (only available when
the data are 3-way).

Selection using the Select button

The Select button allows the user to select plotted points in the current figure. After clicking
Select, the current figure will be brought to the front and points are selected using the current
selection tool (selected using the Tool button; see also Edit/Selection Mode menu). To
extend a selection (i.e. add new points to the already selected points), use the shift-key while
pressing the mouse button. To remove points from the selection, use the control-key while
pressing the mouse button. To keep from making any selection, press "Esc" or "Escape".

Edit Menu

The Edit menu contains various actions relating to selections. The specific actions available
depends on the current selection and PLOTGUI mode. The Edit menu options are listed below.
 Select All: Selects all plotted points.
 Deselect All: Deselects all plotted points.

 253

 Select Class: Select all points of a given class or classes in the data (if any classes are
defined).

 Select Excluded: Selects all points which are currently excluded (see View/Excluded
Data).

 Selection Mode: Menu used to choose selection mode from the following:
 Box: Click and drag a rubber band box around points,
 Polygon: Click to mark the corners of a polygon around points and click

on the intial point or press [Enter] to close the polygon,
 Circle: Click to mark center of a circle, then click to mark the outside

edge of the circle,
 Ellipse: Click to mark center of an ellipse, click again to mark the minor

axis size for the ellipse, then complete the selection by clicking to mark
the size and direction of the major axis for the ellipse

 Paintbrush: Click and drag to "paint" a selection onto points,
 Lasso: Click and drag a free-form line to "ensnare" the points,
 Single X: Click to select a single point on the x-axis,
 Single Y: Click to select a single point on the y-axis,
 X Range: Click and drag to select a range of points on the x-axis,
 Y Range: Click and drag to select a range of points on the y-axis, and
 Nearest: Click to select the nearest point.
 Multiple Nearest: Click to select the nearest point, repeated until the

[Enter] key is pressed.
 Include All: Includes all excluded points (whether or not they are selected).
Exclude Selection: Excludes (soft deletes) the selected points from the data set. See

View/Excluded Data.
Include Selection: Includes the selected points in the data set. See View/Excluded Data.
Include Only Selection: Exclude all unselected points from the data set i.e. keep only the

selected points.
 Info on Selection: Get information on selected point (only available when a single point is

selected).
 Set Class: Set the class of the selected points.
Exclude Plotted Data: Excludes all items currently selected in the y-axis menu for plotting.

Note that unlike the other exclusion options in this menu, this and the
next two options act on the mode selected in the Plot menu.

Include Plotted Data: Includes all items currently selected in the y-axis menu for plotting.
Include Only Plotted: Includes all items currently selected in the y-axis menu for plotting

and only those items (all others are excluded).

 254

File Menu

The File menu contains various actions relating to files. The File menu options are listed
below.
 Load Data: Creates an interface for the user to load data into PLOTGUI from the base

workspace or a file.
 Save Data: Creates an interface for the user to save data from PLOTGUI to the base

workspace or a file.
 Open in Editor: Opens the given dataset in a linked DataSet Editor window.
 Export Figure: Allows exporting the current figure to Various external programs

(exporting will not function correctly if the given program is not
installed on the computer).

Save Selected Indices: Saves the current selection as a vector of indices. This can be used
with the Load Selected Indices command to quickly store and reload
different selections.

Load Selected Indices: Load a vector of indices to use as a selection.
Reset Controls: Refreshes Plot Controls. Useful if graphical objects are not correctly

aligned.

Properties and Keywords

The following is a list of available properties. Each should be included as a 'PropertyName',
PropertyValue pair in an initial PLOTGUI call or a PLOTGUI 'update' call. Note that calls to
PLOTGUI for 'PropertyName' and PropertyValue are case insensitive.

The current value of almost all properties can be retrieved using the getappdata function on
the PLOTGUI figure and requesting the property of interest. Note that calls to GETAPPDATA are
case sensitive and 'PropertyName' must be in all lower-case. The I/O format is:

currentvalue = getappdata(fig,'propertyname')

where fig is the handle of the PLOTGUI figure. If 'propertyname' is not included
getappdata(fig) will list all the properties and their current values. Properties and their
possible values follow:

 AxisMenuValues:{[x] [y] [z]}, Two or three element cell containing
indices or strings indicating which item, or items, to select in
each of the three axis pull down menus. In [x] or [y] a value of 0
(zero) means to select index number. In [z] a value of 'none'
means to not use the z-axis.

 AxisMenuDefaults:Axis menu defaults are axis menu values used if
the axis menu values can not be restored. The input format is the
same as axismenuvalues.

 Figure:[scalar integer], Figure on which data should be plotted
{default is current figure}.

 255

 New:Key word – no associated PropertyValue. Creates a new figure
for display of data. This is equivalent to an initial PLOTGUI
call.

 PlotBy:[scalar integer], Dimension (mode) for the axis menu
selections: 0 = special "data browser", 1 = rows, 2 = columns,
etc. (see View menu). The default is 2 or the number of modes in
the data if larger than 2-way.

 VSIndex:[1 1] {default}, Two element vector indicating if "Index"
should be offered on x and y axis menus. A 1 indicates that it
should be offered as a selection and a 0 indicates that it should
not e.g. [1 1] indicates that it should be offered for both the x-
axis and y-axis.

The following are image specific properties:
 Image:Key word – no associated PropertyValue. Unfolds a 2 or 3-way

array and displays it as and image, allowing selection, classing,
and exclusion of individual pixels.

 Unfold:Key word – no associated PropertyValue. Pseudonym for
“image”.

 AsImage:Key word – no associated PropertyValue. Display 3-way data
that have already been unfolded as an image allowing selection,
classing, and exclusion of individual pixels.

The following are view properties:
 ViewClasses: [1] {default}, Turns on View/Classes menu. A 0 (zero) turns it off.

 ViewExcludedData:[1] {default}, Turns on View/Excluded Data menu.
A 0 (zero) turns it off.

 ViewLabels: [1] {default}, Turns on View/Labels menu. A 0 (zero) turns it off.
 ViewNumbers: [1] {default}, Turns on View/Numbers menu. A 0 (zero) turns it off.

The following are plot properties:
 LineStyle: <string>, Defines line style (see PLOT).
 PlotType: <string>, String used to select plot type {default [] is atuomatic

selection}. Other values are 'scatter', 'bar', 'none' ('none' = do
no plotting).

 SelectionMarker:<string>, Defines marker style for selected points
(see PLOT).

The following are selection properties:
 SelectionMode: <string>, Defines the selection mode. This can be any string listed

under View/Selection Mode above. Also see GSELECT.
 BrushWidth: [scalar integer number of pixels], This defines the brush width

for use when selectionmode = 'paintbrush'. See View/Selection
Mode/Paintbrush.

 NoSelect: [0] {default}, When set to 0 this allows selections. When set to 1 no
selection is allowed.

 256

 NoInclud: [0] {default}, When set to 0 this allows changes to the inlclud field
(i.e. it allows data to be excluded). When set to 1 no changes to the
inlclud field are allowed (i.e. data can not be excluded).

The following are on-event properties:
 CloseGUICallback:Command(s) to execute when the figure is closed.
 IncludChangeCallback:Command executed when includ field of the

dataset is modified.
 InfoReqCallback:Command executed when information on a selected

point is requested.
 PlotCommand:Command executed after plotting (e.g. draw limits,

assign ButtonDownFcns, modifiy axes, …).
 SelectionChangeCallback:Command executed when a selction is made.
 SetClassCallback:Command executed when the class field of the

dataset is changed.

The following are confidence limit properties:
 ConfLimits: Boolean flag to make "Conf. Limits" controls visible. 1 = show controls

(PLOTGUI does nothing with these controls, thus the routine specified in
'plotcommand' must be set to use values).

 LimitsValue: Value for Conf. Limits editbox.
 ShowLimits: Value for "Conf. Limits" checkbox (1 = checked).

The following are figure linking properties (WARNING! Modifying these settings can lead
to unexpected results!):
 Children: Add new child of the current PLOTGUI figure (all child figures are

updated when their parent is updated and closed when their parent is
closed). Note: this property will only allow adding of additional
children. Other modifications must be made using setappdata.

 ControlBy: Reassign control for PLOTGUI figure.
 Parent: Assign a parental link (Forces the parent figure to update if this figure is

updated, also see 'Children').
 TimeStamp: Time-stamp of last time this figure was updated (can be set to any string

to isolate figure from updating by parents).

The following are other miscellaneous properties:
 UIControl: Add extra uicontrol(s) to PLOTGUI control toolbar for use with current

figure (buttons, sliders, etc.). The value passed to UIControl should be
a cell in which each entry is the tag of a new object to create and the
value of that field should contain a cell of uicontrol property / value
pairs to set for that object. For example:

 myobj.mybtn = {'style', 'pushbutton', 'string', 'new fig',
'callback', 'figure'};

 plotgui('update','uicontrol',myobj)

 257

 creates a button with the tag 'mybtn' on the controls for the current
figure.

 If the cell for any object does not contain a 'position' property for the
object, PLOTGUI will manage the object's position.

The following are read-only properties. These properties can only be viewed and are only
accessible through the MATLAB getappdata command.
 Selection: Cell array of currently selected values. Usually the same format as

"includ" field of DataSet object where each cell represents the index of
selected items in each dimension {rows, columns, slabs, ...}.

 When selecting elements in greater than 2-dimensional data (and
without the use of the 'image' keyword), two cells of this field will be
pairs of selected indices: {x,y,[]} or {[],y,z}.

 FigureType: 'PlotGUI'
 DataSet: DataSet used in figure (or pointer to figure with actual dataset)
 Note: This is set by calling PLOTGUI with a new dataset as an input. The

actual DataSet can be retrieved using the getdataset command (see
below).

The following are other valid figure properties. See the MATLAB doc umentation on
FIGURE properties for additional information.

HandleVisibility, MenuBar, Name, NumberTitle, Position, Resize, Tag, ToolBar, Units,
UserData, Visible, WindowStyle

Examples

fig = plotgui(mydata) plots mydata allowing user to select which column(s) of mydata
to plot using pull-down menus. Figure number of plot is returned.

plotgui(mydata,'plotby',1) or plotgui(mydata,'plotby','rows') plots mydata as
in first example except that rows of mydata (dimension 1) are used for pull-down menus
instead of columns. Note: When a PLOTGUI property is set for a given figure, the new value
will be retained until a new value for that property is provided, even if new data is plotted on
the same PLOTGUI figure.

fig = plotgui(mydata,'plotby',1,'axismenuvalues',{[1] [2 3]}) plots rows of
mydata; sets controls with row 1 selected for the x-axis and rows 2 and 3 selected for the y-
axis. Use:

getappdata(fig,'axismenuvalues')
to retrieve current axis menu settings. axispulldown

plotgui(mydata,'viewclasses',1) plots mydata using symbols to identify the classes
stored in dataset mydata. Use a value of 0 (zero) to turn off viewclasses.

plotgui('update','viewclasses',1) Turns on viewclasses property for current figure
without having to pass data to plot (substitute string 'update' for data)

 258

mydata = plotgui('getdataset',fig) Retrieves mydata from figure fig.

plotgui(myimage,'image') plots 3-way image myimage selecting slabs of the image for
display. The keyword 'image' allows selection, classing and exclusion of pixels in the
image.

See Also

dataset, analysis, plotloads, plotscores

 259

plotloads
Purpose

Extract and display loadings information from model.

Synopsis

a = plotloads(modl,options)
a = plotloads(loads,labels,classes)
options = plotloads('options')

Description

Given a standard model structure, relevant loading information (e.g. labels) is collected and
passed to PLOTGUI for plotting. The input is the model containing loadings to plot modl. (e.g.
see MODELSTRUCT). Optional input options is discussed below.

Input loads is a N by K loadings matrix (class “double”). Optional input labels is a character
or cell array with N rows containing sample labels, and optional input classes is a vector with
N integer elements of class identifiers.

If no output is requested then PLOTLOADS initiates an interactive plotting utility to make
loadings plots. If an output is requested, no plots are made, and the output a is a dataset
object containing the loadings and labels, etc.

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior,

'auto' makes plots if no output is requested {default}, and
 figure: [],governs where plots are made, when figure = [] plots are made in

a new figure window {default}, this can also be a valid figure number
(i.e. figure handle).

The default options can be retreived using: options = plotloads('options');.

See Also

analysis, modelstruct, pca, pcr, plotgui, plotscores, pls

 260

plotscores
Purpose

Extract and display scores information from model.

Synopsis

a = scoresplot(modl,options)
a = scoresplot(modl,pred,options)
a = plotscores(scores,labels,classes)
options = plotscores('options')

Description

Given a standard model structure, relevant scores information (e.g. labels) is collected and
passed to PLOTGUI for plotting. The input is the model containing scores to plot modl. (e.g.
see MODELSTRUCT). A second input pred contains a test or validation structrure (see PCA) that
can be plotted with scores in modl. Optional input options is discussed below.

Input scores is a M by K scores matrix (class “double”). Optional input labels is a character
or cell array with M rows containing sample labels, and optional input classes is a vector
with M integer elements of class identifiers.

If no output is requested then PLOTSCORES initiates an interactive plotting utility to make
scores plots. If an output is requested, no plots are made, and the output a is a dataset object
containing the scores and labels, etc.

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior,

'auto' makes plots if no output is requested {default},
 figure: [],governs where plots are made, when figure = [] plots are made in

a new figure window {default}, this can also be a valid figure number
(i.e. figure handle), and

 sct: [0 | {1}], tells whether to plot cal (modl scores) with test (pred
scores), sct = 1 plots original calibration data with prediction set
{default}.

The default options can be retreived using: options = plotscores('options');.

See Also

analysis, modelstruct, pca, pcr, plotgui, plotloads, pls

 261

pls
Purpose

Partial least squares regression for univariate or multivariate y-block.

Synopsis

model = pls(x,y,ncomp,options) %calibration
pred = pls(x,model,options) %prediction
valid = pls(x,y,model,options) %validation
options = pls('options')

Description

PLS calculates a single partial least squares regression model using the given number of
components ncomp to predict y from measurements x.

To construct a PLS model, the inputs are x the predictor block (2-way array class “double” or
class “datadet”), y the predicted block (2-way array class “double” or class “datadet”), ncomp
the number of components to to be calculated (positive integer scalar), and the optional
structure, options. The output is a standard model structure model with the following fields
(see MODELSTRUCT):
 modeltype: 'PLS',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 reg: regression vector,
 loads: cell array with model loadings for each mode/dimension,
 pred: 2 element cell array with model predictions for each input block (when

options.blockdetail='normal' x-block predictions are not saved
and this will be an empty array) and the y-block predictions.

 wts: double array with X-block weights,
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and
 detail: sub-structure with additional model details and results.

To make predictions the inputs are x the new predictor x-block (2-way array class “double”
or “dataset”), and model the PLS model. The output pred is a structure, similar to model,
that contains scores, predictions, etc. for the new data.

 262

If new y-block measurements are also available then the inputs are x the new predictor x-
block (2-way array class “double” or “dataset”), y the new predicted block (2-way array class
“double” or “dataset”), and model the PLS model. The output valid is a structure, similar to
model, that contains scores, predictions, and additional y-block statistics etc. for the new
data.

Note: Calling pls with no inputs starts the graphical user interface (GUI) for this analysis
method.

Options
 options = a structure array with the following fields:
 display: ['off' | {'on'}], governs level of display to command window,
 plots ['none' | {'final'}], governs level of plotting,
 outputversion: [2 | {3}], governs output format (see below),
 preprocessing: {[] []}, two element cell array containing preprocessing structures (see

PREPROCESS) defining preprocessing to use on the x- and y-blocks (first
and second elements respectively)

 algorithm: ['nip' | {'sim'} | 'robustpls'], PLS algorithm to use:
NIPALS or SIMPLS {default}, and

 blockdetails: [{'standard'} | 'all'], extent of predictions and residuals
included in model, 'standard' = only y-block, 'all' x- and y-blocks.

confidencelimit: [{'0.95'}], confidence level for Q and T2 limits, a value of zero (0)
disables calculation of confidence limits,

 roptions: structure of options to pass to rsimpls (robust PLS engine from the Libra
Toolbox).

 alpha:[{0.75}], (1-alpha) measures the number of outliers the
algorithm should resist. Any value between 0.5 and 1 may be specified.
These options are only used when algorithm is 'robustpls'.

The default options can be retreived using: options = pls('options');.

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model
structure model. If options.outputversion = 2, the output format is:

[b,ssq,p,q,w,t,u,bin] = pls(x,y,ncomp,options)

where the outputs are
 b = matrix of regression vectors or matrices for each number of principal

components up to ncomp,
 ssq = the sum of squares information,
 p = x-block loadings,
 q = y-block loadings,
 w = x-block weights,

 263

 t = x-block scores
 u = y-block scores, and
 bin = inner relation coefficients.

Note: The regression matrices are ordered in b such that each Ny (number of y-block
variables) rows correspond to the regression matrix for that particular number of principal
components.

Algorithm

Note that unlike previous versions of the PLS function, the default algorithm (see Options,
above) is the faster SIMPLS algorithm. If the alternate NIPALS algorithm is to be used, the
options.algorithm field should be set to 'nip'.

See Also

analysis, crossval, modelstruct, nippls, pcr, plsda, preprocess, ridge,
simpls

 264

plsda
Purpose

Partial least squares discriminate analysis.

Synopsis

model = plsda(x,y,ncomp,options)
model = plsda(x,ncomp,options)
pred = plsda(x,model,options)
valid = plsda(x,y,model,options)
options = plsda('options')

Description

PLSDA is a multivariate inverse least squares discrimination method used to classify samples.
The y-block in a PLSDA model indicates which samples are in the class(es) of interest
through either:

 (A) a column vector of class numbers indicating class asignments:

 y = [1 1 3 2]';

 (B) a matrix of one or more columns containing a logical zero (= not in class) or one (= in
class) for each sample (row):
 y = [1 0 0;
 1 0 0;
 0 0 1;
 0 1 0]

NOTE: When a vector of class numbers is used (case A, above), class zero (0) is reserved for
"unknown" samples and, thus, samples of class zero are never used when calibrating a
PLSDA model. The model will include predictions for these samples.

The prediction from a PLSDA model is a value of nominally zero or one. A value closer to
zero indicates the new sample is NOT in the modeled class; a value of one indicates a sample
is in the modeled class. In practice a threshold between zero and one is determined above
which a sample is in the class and below which a sample is not in the class (See, for example,
PLSDTHRES). Similarly, a probability of a sample being inside or outside the class can be
calculated using DISCRIMPROB. The predicted probability of each class is included in the
output model structure in the field:

model.details.predprobability

INPUTS
 x = X-block (predictor block) class "double" or "dataset",

 265

 y = Y-block - OPTIONAL if x is a dataset containing classes for
 sample mode (mode 1) otherwise, y is one of:
 (A) column vector of sample classes for each sample in x -OPTIONAL

if x is a dataset containing classes for sample mode (mode 1)
 or (B) a logical array with 1 indicating class membership for each sample

(rows) in one or more classes (columns)
 ncomp = the number of latent variables to be calculated (positive integer scalar).
OUTPUT
 model = standard model structure containing the PLSDA model (See

MODELSTRUCT).
 pred = structure array with predictions
 valid = structure array with predictionsz

Note: Calling plsda with no inputs starts the graphical user interface (GUI) for this analysis
method.

Options

 display: ['off' | {'on'}] governs level of display to command window.

 plots: ['none' | {'final'}] governs level of plotting.

 preprocessing: {[] []} preprocessing structures for x and y blocks (see PREPROCESS).

 algorithm: ['nip' | {'sim'}] PLS algorithm to use: NIPALS or SIMPLS

 blockdetails: ['compact' | {'standard'} | 'all'] Extent of detail included in model.

 'standard' keeps only y-block, 'all' keeps both x- and y- blocks

See Also

class2logical, crossval, pls, plsdthres, simca

 266

plsdaroc
Purpose

Calculate and display ROC curves for PLSDA model.

Synopsis

roc = plsdaroc(model,ycol,options)

Description

ROC curves can be used to assess the specificity and sensitivity possible with different
predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an
optional index into the y-columns used in the model ycol [default = all columns], and an
options structure. Output is a dataset with the sensitivity/specificity data roc.

Options
 plots : ['none' | {'final'}] governs plotting on/off

See Also

discrimprob, plsda, plsdthres, simca

 267

plsdthres
Purpose

Bayesian threshold determination for PLS Discriminate Analysis.

Synopsis

[threshold,misclassed,prob] = plsdthres(model,options)
[threshold,misclassed,prob] = plsdthres(y,ypred,options)

Description

PLSDTHRES uses the distribution of calibration-sample predictions obtained from a PLS
model built for two or more logical classes to automatically determine a threshold value
which will best split those classes with the least probability of false classifications for future
predictions. It is assumed that the predicted values for each class are approximately normally
distributed. The calibration can contain more than 2 classes, in which case thresholds to
distinguish all classes will be determined. It is assumed that with more than 2 classes the
primary misclassification threat is from the adjacent class(es).

Inputs
 y = measured Y-block values used in PLS, and
 ypred = PLS predicted Y values for calibration samples.
 model = a PLS/PLSDA model structure from which y and ypred should be

obtained automatically.

Outputs
 threshold = [], vector of thresholds. If y consists of more than two classes, threshold

will be a vector giving the upper bound y-value for each class.
 misclassed = [], array containing the fraction of misclassifications for each class

(rows): Column 1 = false negatives and Column 2 = false positives.
 prob = lookup matrix of predicted y (column 1) vs. probability of each class

(columns 2 to end).

 268

Options
options is a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior,

'auto' makes plots if no output is requested {default},
 cost: [], vector of logarithmic cost biases for each class in y, cost is used to

bias against misclassification of a particular class or classes {default =
[] uses all zeros i.e. equal cost}.

 prior: [], vector of prior probabilities of observing each class. If any class
prior is Inf, the frequency of observation of that class in the calibration
is used as its prior probability. If all priors are Inf, this has the effect of
providing the fewest incorrect predictions assuming that the probability
of observing a given class in future samples is similar to the frequency
that class in the calibration set. {default = [] uses all ones i.e. equal
priors.}

See Also

crossval, discrimprob, pls, simca

 269

plsnipal
Purpose

Calculate single latent variables for partial least squares regression.

Synopsis

[p,q,w,t,u] = plsnipal(x,y)

Description

PLSNIPAL is called by the routine pls to calculate each latent variable in a partial least
squares regression.

Inputs x and y are either the x-block and y-block for calculation of the first latent variable, or
the x-block and y-block residuals for calculation of subsequent latent variables.

The outputs are p the x-block latent variable loadings, q the y-block variable loadings, w the
x-block latent variable weights, t the x-block latent variable scores, and u the y-block latent
variable scores.

See Also

nippls, pls, analysis, simpls

 270

plspulsm
Purpose

Builds finite impulse response (FIR) models for multi-input single (MISO) output systems
using partial least squares regression.

Synopsis

b = plspulsm(u,y,n,maxlv,split,delay)

Description

plspulsm calculates a vector of FIR coefficients b using PLS regression. Inputs are a matrix
of process input vectors u, and a process output vector y. n is a row vector with the number
of FIR coefficents to use for each input, maxlv is the maximum number of latent variables to
consider, split is the number of times the model is rebuilt and tested during cross-
validation, and delay is a row vector containing the number of time units of delay for each
input.

Note: plspulsm uses contiguous blocks of data for cross-validation.

Examples

b = plspulsm([u1 u2],y,[25 15],5,10,[0 3])

This system has 2 inputs as column vectors u1 and u2 and a single output vector y. The FIR
model will use 25 coefficients for input variable u1 and 15 coefficients for input variable u2.
For this model a maximum of 5 latent variables will be considered. The cross validation split
the data into 10 subsets. The number of time units of delay for the first input variable u1 is 0
and for the second input variable u2 it is 3.

See Also

autocor, crosscor, fir2ss, wrtpulse

 271

plsrsgcv
Purpose

Generates a matrix used to calculate residuals from a single data block using partial least
squares regression models with cross vaildation.

Synopsis

coeff = plsrsgcv(data,lv,cvit,cvnum,out)

Description

coeff = plsrsgncv(data,lv,cvit,cvnum) calculates a matrix coeff from a single data
block data. plsrsgncv calculates partial least squares regression models of each variable in
the matrix data using the remaining variables and cross-validation with random test data
blocks. The maximum number of latent variables to consider is lv, the number of test sets is
cvit, and the number of samples in each test set is cvnum. Multiplying a new data matrix by
the matrix coeff yields a matrix whose values are the difference between the new data and it's
prediction based on the PLS regressions created by plsrsgncv.

See Also

plsrsgn, replace

 272

plsrsgn
Purpose

Generates a matrix used to calculate residuals from a single data block using partial least
squares regression models.

Synopsis

coeff = plsrsgn(data,lv,out)

Description

coeff = plsrsgn(data,lv) calculates a matrix coeff from a single data block data.
plsrsgn calculates partial least squares regression models of each variable in the matrix data
using the remaining variables and the number of latent variables lv. Multiplying a new data
matrix by the matrix coeff yields a matrix whose values are the difference between the new
data and it's prediction based on the PLS regressions created by plsrsgn.

See Also

plsrsgcv, replace

 273

plttern
Purpose

Plots a 2D ternary diagram.

Synopsis

[tdata,h] = plttern(data,linestyle,x1lab,x2lab,x3lab)

Description

PLTTERN makes 2-D ternary plots of the data contained in the three column input matrix
data. The columns of data correspond to concentrations (≥ 0 and real) and are normalized
to fit in the range 0 to 100. Optional inputs x1lab, x2lab, x3lab are row vectors of text
containing labels for the axes. The output tdata is the normalized concentration data.

See Also

dp, ellps, hline, pan, pltternf, vline, zline

 274

pltternf
Purpose

Plots a 3D ternary diagram with frequency of occurrence.

Synopsis

tdata = plttern(data,x1lab,x2lab,x3lab);

Description

PLTTERN makes 3-D ternary plots of the data contained in the four column input matrix data.
The first three columns of data correspond to concentrations (≥ 0 and real) and are
normalized to fit in the range 0 to 100. The fourth column of data corresponds to the
frequency of occurrence (≥ 0 and real). Optional inputs x1lab, x2lab, x3lab are row vectors
of text containing labels for the axes. The output tdata is the normalized concentration data.

See Also

dp, ellps, hline, pan, plttern, vline, zline

 275

polyinterp
Purpose

Polynomial interpolation, smoothing, and differentiation.

Synopsis

yi = polyinterp(x,y,xi,width,order,deriv);

Description

Estimates (yi) which is the smoothed values of (y) at the points in the vector (x). (If the
points are evenly spaced use the SAVGOL function instead.)

INPUTS:
 y = (M by N) matrix. Note that (y) is a matrix of ROW vectors to be

smoothed.
 x = (1 by N) corresponding axis vector at the points at which (y) is given.

OPTIONAL INPUTS:
 xi = a vector of points to interpolate to.
 width = specifies the number of points in the filter {default = 15}.
 order = the order of the polynomial {default = 2}.
 deriv = the derivative {default = 0}.

Examples

If y is a 5 by 100 matrix, x is a 1 by 100 vector, and xi is a 1 by 91 vector then
polyinterp(x,y,xi,11,3,1) gives the 5 by 91 matrix of first-derivative row vectors
resulting from an 11-point cubic interpolation to the 91 points in xi.

See Also

baseline, lamsel, mscorr, savgol, stdfir

 276

polypls
Purpose

Calculate partial least squares regression models with polynomial inner relations.

Synopsis

[p,q,w,t,u,b,ssqdif] = polypls(x,y,lv,n)

Description

POLYPLS creates a partial least squares regression model with polynomial fit for the inner
relation. Inputs are a matrix of predictor variables (x-block) x, a matrix of predicted variables
(y-block) y, the number of latent variables lv, and the order of the polynomial n.

Outputs are p the x-block latent variable loadings, q the y-block variable loadings, w the x-
block latent variable weights, t the x-block latent variable scores, u the y-block latent
variable scores, b a matrix of polynomial coefficients for the inner relationship, and ssqdif a
table of x- and y-block variance captured by the PLS model.

Use POLYPRED to make predictions with new data.

See Also

lwrxy, pls, polypred

 277

polypred
Purpose

Make predictions for partial least squares regression models with polynomial inner relations.

Synopsis

ypred = polypred(x,b,p,q,w,lv)

Description

POLYPRED uses parameters created by the routine POLYPLS to make predictions from a new x-
block matrix of predictor variables x. Inputs are b a matrix of polynomial coefficients for the
inner relationship, p the x-block latent variable loadings, q the y-block variable loadings, w
the x-block latent variable weights, and the number of latent variables lv.

Note: It is important that the scaling of the new data x is the same as that used to create the
model parameters in POLYPLS.

See Also

lwrxy, polypls, pls

 278

preprocess
Purpose

Selection and application of preprocessing methods.

Synopsis

s = preprocess(s) %GUI preprocessing selection
s = preprocess('default','methodname') %Non-GUI selection
[datap,sp] = preprocess('calibrate',s,data) %single block calibrate
[datap,sp] = preprocess('calibrate',s,xblock,yblock) %multi-block
datap = preprocess('apply',sp,data) %apply to new data
data = preprocess('undo',sp,datap) %undo preprocessing

Description

PREPROCESS is a general tool to choose preprocessing steps and to perform these steps on
data. See PREPROUSER for a description on how custom preprpocessing can be added to the
standard proprocessings listed below. PREPROCESS has four basic command-line forms which
include:

1) SELECTION OF PREPROCESSING.

The purpose of the following calls to PREPROCESS is to generate standard structure arrays that
contain the desired preprocessing steps.

s = preprocess;

generates a GUI and allows the user to select preprocessing steps interactively. The output s
is a standard preprocessing structure.

s = preprocess(s);

allows the user to interactively edit a previously identified preprocessing structure s. The
output s is the edited preprocessing structure.

s = preprocess('default','methodname');

returns the default structure for method 'methodname'. A list of strings that can be used for
'methodname' can be viewed using the command:

preprocess('keywords')

 279

A list of standard methods 'methodname' follow:
 'abs': takes the absolute value of the data (see ABS),
 'autoscale': centers columns to zero mean and scales to unit variance (see AUTO),
 'detrend': remove a linear trend (see BASELINE),
'gls weighting': generalized least squares weighting (see GLSW),
 'groupscale': group/block scaling (see GSCALE),
 'mean center': center columns to have zero mean (see MNCN),
 'msc (mean)': multiplicative scatter correction with offset, the mean is the reference

spectrum (see MSCORR),
'median center': center columns to have zero median (see MEDIAN),
 'normalize': normalization of the rows (see NORMALIZ),
 'osc': orthogonal signal correction (see OSCCALC and OSCAPP),
 'sg': Savitsky-Golay smoothing and deriviatives (see SAVGOL), and
 'snv': standard normal deviate (autoscale the rows, see SNV).

The output is a standard preprocessing structure array s where each method to apply is a
separate record.

2) CALIBRATE.

The objective of the following calls to PREPROCESS is to estimate preprocessing parameters,
if any, from a calibration data set and perform preprocessing on the calibration data set. The
I/O format is:

[datap,sp] = preprocess('calibrate',s,data);

The inputs are s a standard preprocessing structure and data the calibration data. The
preprocessed data is returned in datap, and preprocessing parameters are returned in a
modified preprocessing structure sp. Note that sp is used as an input with the 'apply' and
'undo' commands described below.

Short cuts for each method can also be used. Examples for 'mean center' and
'autoscale' are

[datap,sp] = preprocess('calibrate','mean center',data);
[datap,sp] = preprocess('calibrate','autoscale',data);

Preprocessing for some multi-block methods require that the y-block be passed also. The I/O
format in these cases is:

[datap,sp] = preprocess('calibrate',s,xblock,yblock);

Preprocessing 'methodname' that require a y-block are:
 'osc'
 'gls weighting'

 280

3) APPLY.

The objective of the following call to PREPROCESS

datap = preprocess('apply',sp,data)

is to apply the calibrated preprocessing in sp to new data. Inputs are sp the modified
preprocessing structure (See 2 above) and the data, data, to apply the preprocessing to. The
output is preprocessed data datap that is class “dataset”.

4) UNDO.

The inverse of applying preprocessing is perfromed in the following call to PREPROCESS

data = preprocess('undo',sp,datap);

Inputs are sp the modified preprocessing structure (See 2 above) and the data, datap, (class
“double” or “dataset”) from which the preprocessing is removed. Note that for some
preprocessing methods an inverse does not exist or has not been defined and an 'undo' call
will cause an error to occur. For example, 'osc' and 'sg'. One reason for not defining an
inverse, or undo, is because it would require a significant amount of memory storage when
data sets get large.

See Also

crossval, pca, pcr, pls, preprouser

 281

preprouser
Purpose

User defined items for preprocess catalog.

Synopsis

preprouser(fig)

Description

Each method available in the preprocess function has an associated 'methodname' such as
those listed in the help for preprocess. Each method is defined using a preprocessing
structure that contains all the necessary information to perform calculations for that method.
The standard methods are defined in the preprocatalog file, which should not be edited by
the user. Additional user-defined methods can be defined in the preprouser file and the
following text describes how the user to add custom preprocessing methods. A few example
methods already exist in the preprouser file to guide the user.

To add a custom user-defined preprocessing method, the user must 1) open the
PREPROUSER.M file, 2) edit the file to create a structure with the fields described below, 3)
after defining the structure add the line preprocess('addtocatalog',fig,usermethod),
and 4) save and close the PREPROUSER.M file.

The line added in Step 3

preprocess('addtocatalog',fig,usermethod)

makes the new custom method available to PREPROCESS. The input usermethod is the
preprocessing structure containing the user-defined method, and fig is a figure handle
passed to preprouser by preprocess.

The methods defined in the preprocatalog and preprouser files are available to all
functions making use of the preprocess function.

 282

The fields in a preprocessing structure are listed here. Detailed descriptions and examples
follow this list.
 description: text string containing a description for the method,
 calibrate: cell containing the line(s) of code to execute during a calibration

operation (see command-line form 2 of PREPROCESS),
 apply: cell containing the line(s) of code to execute during an apply operation

(see command-line form 3 of PREPROCESS),
 undo: cell containing the line(s) of code to execute during an undo operation

(see command-line form 4 of PREPROCESS),
 out: cell used to hold calibration-phase results for use in apply or undo (these

are the parameters estimated from the calibration data and used to
preprocess new data),

 settingsgui: text string containing the function name of a method-specific GUI to
invoke when the Settings button is pressed in the preprocessing GUI,

 settingsonadd: [0 | {1}], boolean: 1 = indicates that the settings GUI should be
automatically brought up when method is "added" in the preprocessing
GUI,

 usesdataset: [{0} | 1], boolean: indicates if this method should be passed a
dataset object (1) or a an array (0) (e.g. class “double” or “uint8”),

 caloutputs: integer: number of expected items in field out after calibration has been
performed. This field is set by the user to tell PREPROCESS what the
length of the cell in field out will be after calibration,

 keyword: text string containing the 'methodname', this string is used in the call to
PREPROCESS so that it will return the custom preprocessing structure (see
command-line form 1 of PREPROCESS), and

 userdata: user-defined variable often used to store method options.

Detailed descriptions and examples for each field follow:

DESCRIPTION:

The description is a short (1-2 word) text string containing a description for the
preprocessing method. The string will be displayed in the GUI and can also be used as a
string keyword (see also keyword) to refer to this method.

Example:

pp.description = 'Mean Center';

 283

CALIBRATE, APPLY, UNDO:

Each of these “command” fields contains a single cell consisting of a command string to be
executed by PREPROCESS when performing calibration, apply, or undo operations (see
command-line forms 2, 3, and 4 of PREPROCESS). Calibrate actions operate on original
calibration data with the output parameters stored in the out field, whereas apply actions
operate on new data using parameters stored in the out field as input(s). For methods which
act on a single sample at a time, the calibrate and apply operations are often identical (for
example, see the normalize example below). The undo action uses parameters stored in the
out field as input(s) to remove preprocessing from previously preprocessed data. However,
the undo action may be undefined for certain methods. If this is the case, the undo field
should be an empty cell.

To assure that all samples (rows) in the data have been appropriately preprocessed, an apply
command is automatically performed following a calibrate call. Note that excluded
variables are replaced with NaN.

The command strings should be one or more valid MATLAB commands, each separated by a
semicolon ';' (e.g. see EVAL). Each command will be executed inside the PREPROCESS
environment in which the following variables are available:
 data: The data field contains the data on which to operate and in which to

return modified results.
 If the field usesdataset is 1 (one) then data will be a DataSet object.

In this case, it is expected that the function will calibrate using only
included rows but apply and undo the preprocessing to all rows.

 If the field usesdataset is 0 (zero) then data will be an array (e.g.
class “double”). In this case, the function will calibrate using all rows
and columns and will apply and undo the preprocessing to all rows and
columns.

 out: Contents of the preprocessing structure field out (described below). Any
changes will be stored in the preprocessing structure for use in
subsequent apply and undo commands.

 userdata: Contents of the preprocessing structure field userdata (described
below). Any changes will be stored in the preprocessing structure for
later retrieval.

 284

Several variables are available for use during command operations (calibarate, apply, and
undo). However, these variables should not be changed by the commands and are considered
“read-only”.
 include: When the field usesdataset = 1, the data is passed as a dataset object.

In this case, include contains the contents of the original dataset
object’s includ field.

 otherdata: Cell array of any inputs to PREPROCESS which followed the data in the
input list. For example, it is used by PLS_Toolbox regression functions
to pass the y-block for use in methods which require that information.

 originaldata: A dataset object which contains the original data unmodified by any
preprocessing steps. For example, originaldata can be used to retrieve
axis scale or class information even when usesdataset is 0 (zero).

Examples:

The following calibrate field performs mean-centering on data, returning both the mean-
centered data as well as the mean values which are stored in out{1}:

pp.calibrate = { '[data,out{1}] = mncn(data);' };

The following apply and undo fields use the scale and rescale functions to apply and
undo the previously determined mean values (stored by the calibrate operation in out{1})
with new data:

pp.apply = { 'data = scale(data,out{1});' };
pp.undo = { 'data = rescale(data,out{1});' };

 285

OUT:

The out field is a cell array that contains the output parameters returned during the
calibration operation. For example, if the following commands are run

load wine
s = preprocess('default','autoscale');
[dp,sp] = preprocess('calibrate',s,wine);

then the out field of sp is a 1 by 2 cell array with the first cell, out{1}, containing the means
of the variables in the dataset wine, and the second cell, out{2}, contains the standard
deviations. These parameters are used in subsequent apply and undo commands. See the
related field caloutputs. Prior to the calibration operation both the out and caloutputs
fields are empty.

SETTINGSGUI:

The name of a graphical user interface (GUI) function that allows the user to set options for
this method. The function is expected to take as its only input a standard preprocessing
structure from which it should take the current settings. The function should output the same
preprocessing structure modified to meet the user's specification. Typically, these changes
are made to the userdata field and the commands in the calibrate, apply and undo fields
use that field’s contents as input options.

The design of GUIs for selection of options is beyond the scope of this document and the
user is directed to the following example files, both of which use GUIs to modify the
userdata field of a preprocessing structure: autoset.m savgolset.m .

Example:

pp.settingsgui = 'autoset';

SETTINGSONADD:

The settingsonadd field contains a boolean (1=true, 0=false) value. If it is 1=true, then
when the user adds the method in the PREPROCESS GUI, the method's settingsgui will be
automatically invoked. If a method requires the user to make a selection of options,
settingsonadd=1 will guarantee that the user has an opportunity to modify the options or at
least choose the default settings.

Example:

pp.settingsonadd = 1;

 286

USESDATASET:

The usesdataset field contains a boolean (1=true, 0=false) value.

If it is 1=true, the preprocessing method is capable of handling dataset objects and
PREPROCESS will pass the data as a dataset. It is the responsibility of the function(s) called by
the method to appropriately handle the dataset’s includ field.

If it is 0=false, the preprocssing method expects standard MATLAB classes (double, uint8,
etc). PREPROCESS, which uses a dataset object internally to hold the data, will extract data
from the dataset ojbect prior to calling this method. It will then reinsert the preprocessed data
back into the dataset object after the method has been invoked.

Although excluded columns are never extracted and excluded rows are not extracted when
performing calibration operations, excluded rows are passed when performing apply and
undo operations.

Example:

pp.usesdataset = 0;

 287

CALOUTPUTS:

For functions which require a calibrate operation prior to an apply or undo (see the fields:
calibrate and out), this field indicates how many values are expected in the out field. For
example, in the case of mean centering the mean values stored in the field out are required to
apply or undo the operation. Initially, out is an empty cell ({}). Following the calibration
operation for mean centering, it becomes a single-item cell (length of one). For other
calibration operations out may be a cell of length greater than one.

By examining this cell’s length, PREPROCESS can determine if a preprocessing structure has
already been calibrated and contains the necessary information. The caloutputs field, when
greater than zero, indicates to PREPROCESS that it should test the out field prior to attempting
an apply or undo.

Example: in the case of mean-centering, the length of out should be 1 (one) after calibration.

pp.caloutputs = 1;

KEYWORD:

The field keyword is a string that can be used to retrieve the default preprocessing structure
for this method. When retrieving a structure by keyword, PREPROCESS ignores any spaces
and is case-insensitive. The keyword field (or the description string, discussed above) can
be used in place of any preprocessing structure in calibrate and default calls to
preprocess:

pp = preprocess('default','meancenter');

Example:

pp.keyword = 'mncn';

 288

USERDATA:

The field userdata contains additional user-defined data that can be changed during a
calibration operation and retrieved for use in apply and undo operations. This field is often
used to hold options for the preprocessing method which are then used by the commands in
the calibrate, apply, and undo fields.

Example: in SAVGOL several input variables are defined with various method options, then
they are assembled into a vector in userdata:

pp.userdata = [windowsize order derivative];

Examples

The following is the preprocessing structure used for sample normalization (see NORMALIZ).
The calibrate and apply commands are identical and there is no information that is stored
during the calibration phase, thus caloutputs is zero. There is no undo defined for this
operation (this is because the normalization information required to undo the action is not
being stored anywhere). The norm type (e.g. a 2-norm) of the normalization is set in
userdata and is used in both calibrate and apply steps.

pp.description = 'Normalize';
pp.calibrate = {'data = normaliz(data,0,userdata(1));'};
pp.apply = {'data = normaliz(data,0,userdata(1));'};
pp.undo = {};
pp.out = {};
pp.settingsgui = 'normset';
pp.settingsonadd = 0;
pp.usesdataset = 0;
pp.caloutputs = 0;
pp.keyword = 'Normalize';
pp.userdata = 2;

 289

The following is the preprocessing structure used for Savitsky-Golay smoothing and
derivatives (see SAVGOL). In many ways this structure is similar to the normalize structure
except that SAVGOL takes a dataset object as input and, thus, usesdataset is set to 1. Also
note that because of the various settings required by savgol, this method uses of the
settingsonadd feature to bring up the settings GUI as soon as the method is added.

pp.description = 'SG Smooth/Derivative';
pp.calibrate =

{'data=savgol(data,userdata(1),userdata(2),userdata(3));'};
pp.apply =

{'data=savgol(data,userdata(1),userdata(2),userdata(3));'};
pp.undo = {};
pp.out = {};
pp.settingsgui = 'savgolset';
pp.settingsonadd = 1;
pp.usesdataset = 1;
pp.caloutputs = 0;
pp.keyword = 'sg';
pp.userdata = [15 2 0];

The following example creates a preprocessing structure to invoke multiplicative scatter
correction (MSC, see MSCORR) using the mean of the calibration data as the target spectrum.
The calibrate cell here contains two separate operations. The first calculates the mean
spectrum and the second performs the MSC. The third input to the MSCORR function is a flag
indicating whether an offset should also be removed. This flag is stored in the userdata field
so that the settingsgui (mscorrset) can change the value easily. Note that there is no undo
defined for this function.

pp.description = 'MSC (mean)';
pp.calibrate = { 'out{1}=mean(data);

data=mscorr(data,out{1},userdata);' };
pp.apply = { 'data = mscorr(data,out{1});' };
pp.undo = {};
pp.out = {};
pp.settingsgui = 'mscorrset';
pp.settingsonadd = 0;
pp.usesdataset = 0;
pp.caloutputs = 1;
pp.keyword = 'MSC (mean)';
pp.userdata = 1;

See Also

preprocess

 290

purity
Purpose

Calculation of pure variables.

Synopsis

[purint,purspec] = purity(data,ncomp,options);
[model] = purity(data,ncomp);
[purint,purspec] = purity(data,ncomp,model);
[model] = purity(data,model);

Description

PURITY calculates pure variables and resolves data into ncomp spectra of the pure
components (purspec) and their contributions (purint). For more information about the
algorithm see PURITYENGINE. Data can be a matrix with the data or a dataset object.

The output arguments purity_values contains the purity values for all the variables and
can be plotted as the “purity spectrum”. The argument length_values contains the
purity_values multiplied by the length of the variables. This results in a “length
spectrum” that is easier to relate to the original data than the purity spectrum

 291

The optional input options is a structure with the following fields

 display: ['off'|{'on'}] display to command window.
 plot: ['off'|{'on'}] plotting of result.
 axistype: {2x1} [char]
 Mode 1: [{continuous}|'discrete'|'bar']
 Mode 2: [{continuous}|'discrete'|'bar']
 defines plots. if emtpy the values of the (future) DSO field will be used

in case they are not defined, the 'continuous' defaults will be used.
 select: [{[]},[1 2]] if empty, pure rows/columns will be selected from last slab,

otherwise, the numbers identify from which slab(s) the pure
rows/columns are selected.

 offset: [3 10] default noise correction factor for the two slabs.
 offset_row2col: 3 scalar value row2col offset, default is offset(1).
 mode: ['rows',{'cols'},'row2col'] determines if pure rows, cols are selected.

row2col 2 is row-to-column solution.
 algorithm: 'purityengine' defines algorithm used.
 interactive: ['on',{'off'}, defines interactivity; 'on', 'cursor','inactivate','reactivate']

'reactivate', 'cursor', 'inactivate', 'reactivate' are used for higher level calls
for interactivity,'off' is used for demos and command mode applications.

 resolve: ['off'|{'on'}] indicates if the resolved results are required or not.

Examples

Resolving 4 components in a data set:
[purint,purspec]=purity(data,4)

Algorithm

The core algorithm is the function purityengine.

See Also

purityengine

 292

purityengine
Purpose

Calculation of pure variables.

Synopsis

[purity_index,purity_values,length_values]=purityengine(data,...
base,offset)

Description

PURITYENGINE calculates the column index (purity_index) of the variable in data
that has the largest angle with respect to base. For the first pure variable base should be
empty: the program then substitutes a vector of ones for base. base generally contains
previously determined pure variables. The argument offset gives a lower weight to
variables with low values. Its value is based on a percentage of the maximum value of the
mean of data. A typical value is 3.

The output arguments purity_values contains the purity values for all the variables and
can be plotted as the “purity spectrum”. The argument length_values contains the
purity_values multiplied by the length of the variables. This results in a “length
spectrum” that is easier to relate to the original data than the purity spectrum

Examples

Determination of three pure variables of a matrix data for an offset of 3

[purity_index,purity_values,length_values]=purityengine(data,[],3);
purity_array=[purity_index];
[purity_index,purity_values,length_values]=purityengine(data,...
data(:,purity_array),3);
purity_array=[purity_array purity_index];
[purity_index,purity_values,length_values]=purityengine(data,...
data(:,purity_array),3);
purity_array=[purity_array purity_index];

The indices of the three pure variables are in purity_array. A plot of purity_values and
length_values shows the successive stages of the pure variable extraction.

 293

Algorithm

The calculations are based on the MATLAB function subspace. The angle of every variable
in the data is calculated with respect to the base: subspace(base,data(:,i))

See Also

purity

 294

qconcalc
Purpose

Calculate Q residuals contributions for predictions on a model.

Synopsis

qcon = qconcalc(newx,model)
qcon = qconcalc(model); %requires that model contains residuals

Description

Inputs are the new data newx and the 2-way PCA or regression model for which Q
contributions should be calculated model.

If the model was created using the "blockdetails = 'all'" option in PLS or PCA (or whatever
function was used to create the model), then newx can be omitted to retrieve the Q
contributions for the calibration data. Note that this option is not the default so it is unlikely
this call will work unless you have specifically created the model with the appropriate call.

See Also

datahat, pca, pcr, pls, tconcalc

 295

querydb
Purpose

Executes a query on a database defined by connection string.

Synopsis

out = querydb(connstr,sqlstr,options);

Description

This function is unsupported and is meant as a "simple" database connection tool. For more
sophisticated connection tools and full support please see the Matlab Database Toolbox.

JDBC connections require that the jdbc driver “.jar” file be added to the Matlab java
classpath. See the documentation for the Matlab commands ‘javaaddpath’ and
‘javaclasspath’ for more information. For example, using the MySQL Connector/J 3.1 driver
you'll need to add the "mysql-connector-java-3.1.12-bin.jar" file to your java class path.

INPUTS
 connstr : A connection string or a structure created using builddbstr. See

BUILDDBSTR for more information.
 sqlstr : A SQL statement to be executed on the connection. The SQL statement

must be of proper syntax or it will fail. Default behavior is geared
toward SELECT statements that return values. If attempting to execute a
SQL command that doesn't return a value (e.g., CREATE TABLE) set
the 'rtype' option to 'none'.

 NOTE: Use a seperate program like Microsoft Access to formulate the
SQL statement. Access queries can require some small changes in
syntax.

OUTPUTS
 out : DataSet Object, Cell Array, or Scalar depending on 'rtype'.

Options
 rtype : [{'dso'} | 'cell' | 'none'] Return type, default is return SQL recordset as a

DataSet Object using parsemixed.m to parse data in. If 'cell' then a cell
array is returned with all values. If 'insert' then function will execute an
"INSERT" type query and attempt to return the Auto Number ID (as a
scalar) of the row created. If 'none' function will execute query and
return an empty.

 varlabels : [{'none'} | 'fieldnames'] Defines what should be used as variable labels
on output DataSet Object (only used when rtype is 'dso'). 'fieldnames'
uses the SQL field names for variable labels.

 296

 conntype : ['jdbc' | {'odbc'}] Determines type of connection. ODBC uses a
Windows ADO with Matlab (descibed above). JDBC connections only
work when jdbc class files are on static java path.

getaccesstables : ['on' | {'off'}] Short circuit to retrieve list of tables in Access
database, similar to SHOW TABLES query in MySQL. Input 'sqlstr'
will not be called when option is 'on'.

Examples

Assuming there is a connection string named ‘mydbconn’ already created using the
builddbstr command. To return a DSO:

>> sqlstr = ‘SELECT * FROM myTable’;
>> mydso = querydb(mydbconn,sqlstr);

To return a cell array:

>> opts = querydb(‘options’);
>> opts.rtype = ‘cell’;
>> mycell = querydb(mydbconn,sqlstr,opts);

See Also

builddbstr, parsemixed

 297

regcon
Purpose

Converts a regression model to y = ax + b form.

Synopsis

[a,b] = regcon(mod)
[a,b] = regcon(regv,xmn,ymn)
[a,b] = regcon(regv,xmn,ymn,xst,yst)

Description

REGCON can be used to convert a model mod generated by the PCR, PLS, or ANALYSIS
functions. The outputs are the regression coefficients a and the intercept b such that y = ax +
b. In this case the I/O syntax is:

[a,b] = regcon(mod)

Notes:

(1) REGCON can will convert a regression model which uses Mean Centering, Autoscaling,
or None as the preprocessing. Any other preprocessing will be rejected and cause an error.

(2) If the model was built with some variables excluded, REGCON will infill with zeros as
appropriate so that the output can be used on the original X-block with all variables present.

REGCON can also be used to convert the individual parts of a regression model, including the
column vector of regression coefficients regv, predictor variable means xmn, predicted
variable means ymn, predictor variable scaling xst, and predicted variable scaling yst. If xmn
or ymn is not supplied or is set equal to 0 or [], then it is assumed to be zero (i.e. no centering
was used in the model). If xst or yst is not supplied or is set equal to 0 or [], then it is
assumed to be one (i.e. no scaling was used in the model). In this case the I/O syntax is:

[a,b] = regcon(regv,xmn,ymn,xst,yst)

Examples

[a,b] = regcon(mod); using REGRESSION model
[a,b] = regcon(regv,xmn,ymn); mean centered only
[a,b] = regcon(regv,xmn,ymn,xst,yst); mean centered and scaled
[a,b] = regcon(regv,xmn,ymn,[],yst); x data centered but not scaled
[a,b] = regcon(regv,0,0,xst,yst); x and y scaled by not centered

See Also

analysis, auto, mncn, modlpred, modlrder, pcr, pls, ridge

 298

registerspec
Purpose

Shift spectra based on expected peak locations.

Synopsis

[data_i,axaxis,foundat] = registerspec(data,xaxis,peaks,options)
peaks = registerspec(data,xaxis,options)

Description

REGISTERSPEC is used to correct spectra for shifts in x-axis (e.g. wavelength or frequency)
registration. The alignment is based on either a polynomial or constrained-spline fit of
reference peaks' observed position to their expected position. In contrast to other alignment
methods (e.g. piecewise direct standardization or dynamic time warping), REGISTERSPEC
may be more useful when 1) x-axis shifts are small and potentially non-linear, 2) only a few
consistant reference peaks exist, and/or 3) when some of the spectral bands are expected to
undergo significant shape changes in the normal range of observations.

There are two modes used to call REGISTERSPEC. The first mode is used to align new spectra
given a set of reference peaks. The second mode is used to help identify peaks in a
calibration set that might be useful as reference peaks:

Spectral Alignment:

[data_i,axaxis,foundat] = registerspec(data,xaxis,peaks,options)

When aligning new spectra to known reference peak positions, REGISTERSPEC takes as input
a matrix or DataSet object containing spectra to be aligned, data, an x-axis reference for
those spectra, xaxis, and a vector containing the expected positions of previously-identified
reference peaks, peaks. Outputs are the spectra aligned to the reference peaks, data_i, the x-
axis scale for those spectra, axaxis (generally the same as xaxis, except as discussed below)
and an array, foundat, of the observed shifts for each reference peak (columns) and each
spectra in data (rows).

If the input xaxis is omitted and data is a DataSet object containing axisscale information for
the variables (data.axisscale{2}), this axis will be used as xaxis. Otherwise, a lack of
input for xaxis will cause REGISTERSPEC to assume that the spectral channels are evenly
spaced starting from a value of 1.

In addition to correcting peak shifts, the sampling rate of the output spectra can be increased
through cubic-spline interpolation. The options.interpolate setting (see below) controls
the sampling rate of the output spectra. Generally the output axaxis is the same as the input
xaxis. However, when interpolation is performed, the output axaxis will contain the x-axis
values that correspond to the interpolated spectra in the input data.

 299

Various options can be set through the optional input structure options. These are described
in detail below. It is recommended that options.order, options.maxshift, and options.window
be reviewed prior to use. Note that options.maxshift and options.window are input in
absolute x-axis units and the desired input values will vary depending on the original x-axis
interval (i.e. data-point spacing) and expected peak widths. In addition, the order of
polynomial used to correct for shifts should be reviewed (options.order). It is generally best
to keep the order as low as possible (<3 is preferable) to avoid over-fitting and unusual
shifting at the ends of the spectrum.

Reference Peak Identification:

peaks = registerspec(data,xaxis,options)

When using REGISTERSPEC to identify reference peaks, the spectral data and x-axis
information is supplied alone without a list of reference peaks. In this mode, a set of spectra
(often those used for a multivariate calibration model) are searched for peaks which show
relatively consistant maxima. The algorithm first locates peaks on the mean spectrum by
automatically identifying positions that show a clear inflection point as a peak maximum.
Peaks located in the first step are then tested on the individual spectra and must meet the
following criteria:

(1) For all obesrved spectra, the peak must contain a maximum value (i.e. the peak cannot
be a shoulder without an inflection point).

(2) For all observed spectra, the peak must not shift more than the value set by
options.maxshift (default is 4 x-axis units) from the peak's position in the mean spectrum.

The output is a list of potential reference peaks. These should be examined carefully. There
is no constraint that a peak have a signal to noise or signal to background level above that
which permits the maximum to be found. Thus, very low-signal peaks could be returned as
stable but not be observable in future spectra. Additionally, it may be useful to take the list of
reference peaks and execute REGISTERSPEC on the calibration data itself to examine the
extent and nature of shifting on the calibration data itself.

Often this routine is used as a preprocessing step for a calibration model. In these cases,
REGISTERSPEC should be run both on the original calibration data (first to locate reference
bands, then a second time to subject the calibration data to the shift algorithm), as well as on
future data prior to prediction.

INPUTS
 data = matrix or DataSet of spectra
 xaxis = optional frequencies or energies associated with each
 variable in data {optional; default = use DataSet values,
 otherwise use 1:n}
 peaks = expected locations of peaks to use for shifting. If omitted,
 'findpeaks' mode will be invoked and stable peaks will be
 found in the data (see below).

 300

OUTPUTS
 data_i = shifted, interpolated data
 axaxis = interpolated xaxis (will be equal to xaxis if no
 interpolation is requested)
 foundat = matrix of peak shifts found for each peak (columns) in each
 spectrum (rows)
 peaks = (only for 'findpeaks' mode) Locations of found peaks in
 xaxis units.

Notes: If input (peaks) is omitted, the algorithm identifies peaks in the mean spectrum by
setting peaks at every variable and allowing these to drift to the nearest maximum. It then
locates the same peaks in each of the individual spectra and keeps only those peaks which
could be located in all spectra with less shift than specified in options.maxshift.

Examples

To locate stable peaks in (unshifted) calibration data
peaks = registerspec(calibrationdata);

To correct x-axis shift in new data using previously identified peaks
newdata_unshifted = registerspec(newdata,peaks);

Options
 display: [{'on'} | 'off'] governs command-line output
 plots: [{'none'} | 'fit' | 'final'] governs plotting options
 nopeaks: ['none' | {'warning'} | 'error'] governs behavior when none

of the reference peaks can be located.
 shiftby: [{-0.1}] minimum shifting interval. A positive value is
 interpreted as being in absolute xaxis units and a
 negative value as relative to the smallest xaxis
 interval.
 interpolate: [{[]}] interpolation interval for output spectra. Empty []
 does no interpolation. A positive value is interpreted
 as being in absolute xaxis units and a negative value
 as relative to the smallest xaxis interval.
 maxshift: [in xaxis units, {4}] maximum allowed peak shift (peaks
 which require more shift than this will NOT be used for
 xaxis correction).
 window: [in xaxis units, {[]}] size of window to search for each
 peak. Empty [] uses automatic window based on maxshift.
 order: order of polynomial (only used for polynomial algorithms)
 algorithm: xaxis correction algorithm. One of:

 301

 'pchip': constrained picewise spline (well behaved)
 'poly': {default} standard polynomial fit to found peaks
'iterativepoly': iterative polynomial fitting (order increased
 in each cycle - works better for badly shifted
 spectra)
 'findpeaks': locate non-moving peaks in whole dataset.
 Triggered by omission of the (peaks) input.
 smoothing: ['off' | {'on'}] governs use of smoothing algorithm during peak

location. If 'on' each sub-window is smoothed prior to locating
maximum in window.

 smoothinfo: [width order] smoothing parameters to be passed to smoothing
function (savgol) if enabled by smoothing option above. width is width
of window in number of variables, order is order of polynomial.
Default is width of 5 and order 2: [5 2].

Algorithm

Correction of x-axis shift in a given spectrum is achieved by first locating the maximum
value nearest to the expected peak locations using localized spline interpolation nearby the
expected location (within options.maxshift axis units from the expected position). The
observed peak locations are then compared to the expected peak locations and the difference
is fit with the desired function (see options). The difference is finally removed from the
spectrum using interpolation back to the expected frequency or wavelength values.

Automatic peak location is achieved by attempting to locate peaks across the entire spectrum,
then searching those peaks which show less than options.maxshift change in position
throughout the set of calibration spectra.

See Also

alignmat, coadd, deresolv, stdfir, stdgen

 302

replace
Purpose

Replace variables based on principal component analysis (PCA) or partial least squares
(PLS) regression models.

Synopsis

rm = replace(model,vars)
[rm,repdata] = replace(model,vars,data)
repdata = replace(model,data)

Description

REPLACE replaces variables from data matrices with values most consistent with the given
PCA or PLS model. Input model can be any of the following:

1) a standard model structure generated by the PCA or PLS functions or the Anlysis GUI

2) a set of loading column vectors (e.g., loads returned by the pca routine, or
model.loads{2} if the output is a model structure)

3) the PCA residual generating matrix (I-loads*loads´), or

4) the PLS residuals generating matrix coeff returned by the plsrsgn routine.

Optional input vars is a row vector containing the indices of the variables (columns) to be
replaced. If omitted, the input data is searched for non-finite values (NaN, Inf) and these
values are replaced.

When vars in input, the outputs are the replacement matrix rm and the replaced data (if data
was provided), repdata. Multiplication of a data matrix xnew by rm will replace variables
with values most consistent with the given PCA or PLS model. If vars was not supplied,
only repdata is output.

Examples

A PCA model was created on a data matrix xold giving a model structure model. The
loadings, a set of loadings column vectors, were extracted to a variable loads using loads =
model.loads{2};. It was found that the sensor measuring variable 9 has gone “bad” and we
would like to replace it in the new data matrix xnew. A replacement matrix rm is first created
using replace.

rm = replace(loads,9);

The new data matrix with variable 9 replaced rxnew is then calculated by multiplying xnew
by rm.

 303

rxnew = xnew*rm;

See Also

mdcheck, pca, plsrsgcv, plsrsgn

 304

rescale
Purpose

Scales data back to original scaling.

Synopsis

rx = rescale(x,means,stds,options)

Description

Rescales a matrix x using the means means and standard deviation stds vectors specified.
An optional input options is an options structure with the field:

rx = rescale(x,means) rescales a mean centered matrix x using a vector of means.

rx = rescale(x,means,stds) rescales an autoscaled matrix x using a vector of means, and
vector of standard deviations stds.

Options
 stdthreshold: [0] scalar value or vector of standard deviation threshold values. If a

standard deviation is below its corresponding threshold value, the
threshold value will be used in lieu of the actual value. A scalar value is
used as a threshold for all variables.

See Also

auto, medcn, mncn, npreprocess, preprocess, scale

 305

residuallimit
Purpose

Esitmates confidence limits for sum squared residuals.

Synopsis

[rescl,s] = residuallimit(residuals,cl,options)
[rescl,s] = residuallimit(model,cl,options)
rescl = residuallimit(s,cl,options)
options = residuallimit('options');.

Description

Inputs are a matrix of residuals, residuals, and a frational confidence limit, cl, where
0<cl<1 {default = 0.95}. For example, for a PCA model X = TPT + E, the input residuals
is the matrix E which can be calculated using the datahat function or a standard model
structure (model). Optional input options is discussed below. To calculate multiple
confidence limits, cl can be a vector of fractional confidence limits.

Two alternate methods of calling RESIDUALLIMIT are:

(a) When using the Jackson-Mudholkar method (see options) the eigenvalues of the
residuals, s, can be passed in place of residuals. This is typically faster than passing the
residuals themselves.

(b) A standard model structure, model, can be passed in place of residuals. In this case,
RESIDUALLIMIT will locate valid residual information within the model and use that to
calculate the limit.

The output is the estimated residual limit rescl. When using the Jackson-Mudholkar
algorithm, an additional output, s, is also returned containing eigenvalues of E. To improve
speed, s can be used in place of residuals in subsequent calls to RESIDUALLIMIT for the
same data.

See Jackson (1991) for the details of the calculation.

Options
 options = a structure array with the following fields:
 algorithm: [{'jm'} | 'chi2' | 'auto'], governs choice of algorithm:
 'jm', uses Jackson-Mudholkar method (slower, more robust),
 'chi2', uses chi-squared moment method (faster, less robust with

outliers), and
 'auto' automatically selects based on data size (<300 rows or columns,

use 'jm', otherwise, use 'chi2')

 306

The default options can be retreived using: options = residuallimit('options');.

Examples

The following example will calculate the 95Found residuals confidence limit for a model,
model, using the residual eigenvalues stored in the model:

rescl = residuallimit(model,0.95);

The following example will also calculate the 95Found residuals confidence limit for a
model, model, but by using the actual residuals calculated from the calibration data, data,
using the datahat function:

[xhat,residuals] = datahat(model,data);
rescl = residuallimit(residuals,0.95);

See Also

chilimit, analysis, datahat, pca

 307

reversebytes
Purpose

Flips order of bytes in a word.

Synopsis

res = reversebytes(y,totalbytes,base)

Description

Generalized reversal of bytes. Inputs are y, the value(s) to operate on, the total number of
bytes to swap totalbytes {default = 2} in each word, and the number base to work in base
{default = 2^8 = 256 = 1 hex byte}. Note that the default is to swap 2 hex bytes in a 16 bit
number.

Examples

To swap 4 BYTES in a 32 bit number:
reversebytes(y,4)

To swap 2 WORDS in a 32 bit number:
reversebytes(y,2,2^16)

 308

reviewmodel
Purpose

Examines a standard model structure for typical problems.

Synopsis

[warn,color,warningid] = reviewmodel(model,single)

Description

Given a standard PLS_Toolbox model structure, REVIEWMODEL examines the numerical
and build information and returns textual warnings to advise the user of possible issues.

INPUTS:
 model : a standard model structure (or the handle to an Analysis GUI).
 single : a flag where a value of 1 (one) indicates that only the single most urgent

issue should be returned.

OUTPUTS:
 issues : A structure array containing one or more issues identified in the model.

The structure contains the following fields and may contain one or more
records, or may be empty if no issues were identified.

 issue - the text describing the issue.
 color - a "color code" identifying the sevrity of the issue.
 issueid - a unique ID identifying the issue.

If no outputs are requested, any issues are simply displayed in the Command Window.

See Also

 309

ridge
Purpose

Ridge regression by Hoerl-Kennard-Baldwin.

Synopsis

[b,theta] = ridge(x,y,thetamax,divs,tf)

Description

RIDGE creates a ridge regression model for a matrix of predictor variables (x-block) x, and a
vector of predicted variable (y-block) y. The maximum value of the ridge parameter to
consider is given by thetamax (thetamax > 0). divs specifies the number of values of the
ridge parameter between 0 and thetamax to be used for calculating the regression vector
shown in the plots created by the ridge routine.

The optional variable tf allows the user to position text on the plot when tf is set to 1. The
text identifies the optimum of the ridge parameter theta and can be positioned with cursors
or the mouse.

Outputs are b the regression column vector at optimum ridge parameter theta.

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A
good starting guess when working with the method is to specify thetamax = 0.1 with divs
= 20.

See Also

pcr, pls, analysis, ridgecv

 310

ridgecv
Purpose

Ridge regression with cross validation.

Synopsis

[b,theta,cumpress] = ridge(x,y,thetamax,divs,split)

Description

The function ridgecv uses cross-validation to create a ridge regression model for a matrix of
predictor variables (x-block) x, and a matrix of predicted variables (y-block) y. The
maximum value of the ridge parameter to consider is given by thetamax (0 < thetamax).
divs specifies the number of values of the ridge parameter between 0 and thetamax to be
used for calculating models used in the cross validation and shown in plots created by the
routine, and split is the number of times the model is rebuilt on a different subset of
samples.

Outputs are b the regression column vector at optimum ridge parameter theta as determined
by cross-validation.

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A
good starting guess when working with the method is to specify thetamax = 0.1 with divs
= 20.

Note: RIDGECV uses the venetian blinds cross-validation method.

See Also

crossval, pcr, pls, analysis, ridge

 311

rinverse
Purpose

Calculates pseudo inverse for PLS, PCR and RR models.

Synopsis

rinv = rinverse(mod,ncomp)
rinv = rinverse(p,t,w,ncomp)
rinv = rinverse(p,t,ncomp)
rinv = rinverse(sx,theta)

Description

For the following I/O format:

rinv = rinverse(mod,ncomp)

The input mod is a model structure from PCR, PLS, or ANALYSIS and ncomp is the number of
factors in the model (number of principal components or latent variables).

For PLS models, the inputs are the loadings p, scores t, weights w and number of latent
variables ncomp. For this case the I/O syntax is:

rinv = rinverse(p,t,w,ncomp)

For PCR models, the inputs are the loadings p, scores t, and number of principal components
ncomp. For this case the I/O syntax is:

rinv = rinverse(p,t,ncomp)

For ridge regression (RR) models, the inputs are the scaled predictor x matrix sx and ridge
parameter theta.

rinv = rinverse(sx,theta)

See Also

pcr, pls, ridge, stdsslct

 312

rmse
Purpose

Calculate Root Mean Square Difference(Error).

Synopsis

err = rmse(y1,y2)

Description

RMSE is used to calculate the root mean square difference between two vectors or matrices.
If the vector or matrix is from a model estimation and measurements then the output is the
Root Mean Square Error (RMSE).

Output depends on the input:

A) y1 is a matrix or vector

 err = rmse(y1);

The output err is the root mean square of the elements of y1.

B) y1 is a matrix or vector, y2 the same size as y1

 err = rmse(y1,y2);

The output err is the root mean square of the difference between y1 and y2.

C) y1 is a matrix or vector, y2 a column vector.

 err = rmse(y1,y2);

The output err is the root mean square of the difference between each column of y1 and y2.

For example, y2 is a reference and the RMSE is calculated between each column of y1 and
the vector y2.

See Also

crossval

 313

rwb
Purpose

Red-white-blue color map.

Synopsis

map = rwb(m)

Description

Creates a red to white to blue colormap, useful for plotting values that range from -1 to 1,
such as those generated by CORRMAP. Optional input m specifies the length of the colormap.
With no inputs, RWB returns a colormap the same length as the current colormap. The
output map is the m by 3 colormap matrix.

See Also

bone, colormap, cool, copper, corrcoef, corrmap, flag, gray, hot, hsv, pink

 314

savgol
Purpose

Savitzky-Golay smoothing and differentiation.

Synopsis

[y_hat,cm] = savgol(y,width,order,deriv,options)

Description

SAVGOL performs Savitzky-Golay smoothing on a matrix of row vectors y. At each increment
(column) a polynomial of order order is fitted to the number of points width surrounding the
increment. An estimate for the value of the function (deriv = 0) or derivative of the function
(deriv > 0) at the increment is calulated from the fit resulting in a smoothed function y_hat.
E.g. see A. Savitzky and M.J.E. Golay, Anal. Chem. 36, 1627 (1964).

[y_hat,cm] = savgol(y,width,order,deriv) allows the user to select the number of
points in the filter width {default = 15}, the order of the polynomial to fit to the points
order {default = 2}, and the order of the derivative deriv {default = 0}.

Output cm allows the user to apply smoothing to additional matrices of the same size as y,
e.g. y_hat2 = y2*cm where y2 is the same size as y used to determine cm.

Note: width must be ≥ 3 and odd, and and deriv must be ≤ order.

Options
 options = a structure array with the following fields:
 useexcluded: [{'true'} | 'false'], governs how excluded data is handled by

the algorithm. If 'true', excluded data is used when handling data on the
edges of the excluded region (unusual excluded data may influence
nearby non-excluded points). When 'false', excluded data is never used
and edges of excluded regions are handled like edges of the spectrum
(may introduce edge artifacts for some derivatives).

 useexcluded: [{'fast'} | 'polyinterp'], governs how edges of data and
excluded regions are handled. 'fast' is standard SavGol approach.
'polyinterp' uses slower, but more stable polynomial interpolation
algorithm.

Examples

If y is 3 by 100 then

y_hat = savgol(y,11,4,2);

 315

yields a 3 by 100 matrix y_hat that contains row vectors of the second derivative of rows of
y resulting from an 11-point quartic Savitzky-Golay smooth of each row of y.

See Also

baseline, baselinew, deresolv, lamsel, mscorr, polyinterp, savgolcv,
stdfir, wlsbaseline

 316

savgolcv
Purpose

Cross-validation for Savitzky-Golay smoothing and differentiation.

Synopsis

cumpress = savgolcv(x,y,lv,width,order,deriv,ind,rm,cvi,pre); %for x

class "double"
cumpress = savgolcv(x,y,lv,width,order,deriv,[],rm,cvi,pre); %for x

class "dataset"

Description

SAVGOLCV performs cross-validation of Savitzky-Golay parameters: filter width, polynomial
order, and derviative order.

INPUT:
 x = M by N matrix of predictor variables with ROW vectors to be smoothed

(e.g. spectra), and
 y = M by P matrix of predicted variables.

OPTIONAL INPUTS:
 ind = indices of columns of x to be used for calibration {default ind = [1:n]

i.e. all x columns}.

The following are optional Savitzky-Golay parameters (calls SAVGOL). By entering a vector,
instead of a scalar, these variables are cross-validated.
 width = number of points in filter {default width = [11 17 23]}.
 order = polynomial order {default order = [2 3]}.
 deriv = derivative order {default deriv = [0 1 2]}.

The following are optional cross-validation parameters (calls CROSSVAL).
 lv = maximum number of LVs {default lv = min(size(x))}.
 rm = regression method. Options are: rm = 'nip', PLS via NIPALS algorithm;

rm = 'sim', PLS via SIMPLS algorithm {default}, and rm = 'pcr',
uses PCR.

 cvi = cross-validation method. Options are: cvi = 'loo', leave-one-out, cvi
= 'vet', venetian blinds {default}, cvi = 'con', contiguous blocks,
and cvi = 'rnd', repeated random test sets.

 split = number of subsets to split the data into {default = 5} and is required for
cvi = 'vet', 'con', or 'rnd'.

 iter = number of iterations {default = 5} and is required for cvi = 'rnd'.
 mc = 0 supresses mean centering of subsets {default mc = 1}.

 317

OUTPUT:

The output is a 4 dimensional array with each dimension corresponding to one of the
directions cross-validated over.

 cumpress(i,:,:,:) =derivative dimension,
 cumpress(:,j,:,:) =latent variable dimension,
 cumpress(:,:,k,:) =window width dimension, and
 cumpress(:,:,:,l) =polynomial order dimension.

See Also

baseline, crossval, lamsel, mscorr, savgol, specedit, stdfir

 318

scale
Purpose

Scales data using specified means and std. devs.

Synopsis

sx = scale(x,means,stds,options)

Description

sx = scale(x,means) subtracts a vector means from a matrix x and returns the result as sx.
If means is the vector of means this routine mean centers x.

sx = scale(x,means,stds) subtracts a vector means from a matrix x, divides each column
by the corresponding element in the vector stds and returns the result as sx. If means is the
vector of means and stds is the vector of standard deviations this routine atuo-scales x so that
each column of sx has zero mean and unit variance.

The optional input options is an options structure contianing the field "stdthreshold" which
defines a threshold value for standard deviation below which the threshold value will be used
in lieu of the actual value. A scalar value is used as a threshold for all variables. A vector is
assumed to be equal in length to stds and describes the threshold to use on each individual
element.

See Also

auto, gscaler, medcn, mncn, npreprocess, preprocess, rescale

 319

setpath
Purpose

Modifies and saves current directory

Synopsis

setpath(flag)

Description

SETPATH will modify the MATLAB path to include the current directory and all
subdirectories and will save the path to the pathdef.m file.

If the optional input flag i s set to 0 then only the current directory is saved

See Also

evriinstall

 320

shuffle
Purpose

Randomly re-order matrix rows.

Synopsis

xr = shuffle(x)
[xr,x2r,x3r,x4r...] = shuffle(x,x2,x3,x4...)
[xr,x2r,x3r,...] = shuffle(x,x2,x3,...,'groups')

Description

SHUFFLE randomly re-orders the rows of the input matrix x and returns the results as xr.

All additional inputs (x2, x3, ...) must have same number of rows as x, and will have their
rows re-ordered to the same random order as xr. If the final input is the string groups then
the first input is sorted into groups of matching rows and the order of the groups is randomly
shuffled, keeping group members together. This is useful for random reordering of
measurement replicates. If all the rows of the first input are unique, groups will have no
effect on the behavior of shuffle.

See Also

delsamps

 321

simca
Purpose

Create soft independent method of class analogy models for classification.

Synopsis

model = simca(x,ncomp,options) %creates simca model on dataset

x
model = simca(x,classid,labels) %models double x with class id
pred = simca(x,model,options); %predictions on x with model
options = simca('options');.

Description

The function SIMCA develops a SIMCA model, which is really a collection of PCA models,
one for each class of data in the data set and is used for supervised pattern recognition.

SIMCA cross-validates the PCA model of each class using leave-one-out cross-validation if
the number of samples in the class is <= 20. If there are more than 20 samples, the data is
split into 10 contiguous blocks.

INPUTS:
 x = M x N matrix of class “dataset” where class information is extracted

from x.class{1,1} and labels from x.label{1,1}, or
 x = M x N data matrix of class “double” and
 classid = M x 1 vector of class identifiers where each element is an integer

identifying the class number of the corresponding sample.
 model = when making predictions, input model is a SIMCA model structure.

OPIONAL INPUTS:
 ncomp = integer, number of PCs to use in each model. This is rarely known a

priori. When ncomp=[] {default} the user is querried for number of PCs
for each class.

 labels = a character array with M rows that is used to label samples on Q vs. T2
plots, otherwise the class identifiers are used.

 options = a structure array discussed below.

OUPUT:
 model = model structure array with the following fields:
 modeltype: 'SIMCA',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,

 322

 info: additional model information,
 description: cell array with text description of model,
 submodel: structure array with each record containing the PCA model of each class

(see PCA), and
 detail: sub-structure with additional model details and results.
 pred = is a structure, similar to model, that contains the SIMCA predictions.

Additional, or other, fields in pred are:
 rtsq: the reduced T2 (T2 divided by it’s 95Found confidence limit line) where

each column corresponds to each class in the SIMCA model,
 rq: the reduced Q (Q divided by it’s 95Found confidence limit line) where

each column corresponds to each class in the SIMCA model,
 nclass: the predicted class number (class to which the sample was closest when

considering T2 and Q combined), and
 submodelpred: structure array with each record containing the PCA model predictions

for each class (see PCA).

Note: Calling simca with no inputs starts the graphical user interface (GUI) for this analysis
method.

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: ['none' | {'final'}], governs level of plotting,
 staticplots: ['no' | {'yes'}], produce ole-style "static" plots,
 rule: [{'combined'} | 'final' | 'T2' | 'Q'], decision rule,
 preprocessing: { [] }, a preprocessing structure (see PREPROCESS) that is used to

preprocess data in each class.

The default options can be retreived using: options = simca('options');.

Note: with display='off', plots='none', nocomp=(>0 integer) and preprocessing
specified that SIMCA can be run without command line interaction.

See Also

cluster, crossval, pca, plsdthres, discrimprob, plsdaroc, plsdthres

 323

simpls
Purpose

Partial Least Squares regression using the SIMPLS algorithm.

Synopsis

[reg,ssq,xlds,ylds,wts,xscrs,yscrs,basis] = simpls(x,y,ncomp,options)
options = simpls('options');.

Description

SIMPLS performs PLS regression using SIMPLS algorithm.

INPUTS:
 x = X-block (predictor block) class “double” or “dataset”, and
 y = Y-block (predicted block) class “double” or “dataset”.

OPIONAL INPUTS:
 ncomp = integer, number of latent variables to use in {default = rank of X-block},

and
 options = a structure array discussed below.

OUPUTS:
 reg = matrix of regression vectors,
 ssq = the sum of squares captured (ssq),
 xlds = X-block loadings,
 ylds = Y-block loadings,
 wts = X-block weights,
 xscrs = X-block scores,
 yscrs = Y-block scores, and
 basis = the basis of X-block loadings.

Note: The regression matrices are ordered in reg such that each Ny (number of Y-block
variables) rows correspond to the regression matrix for that particular number of latent
variables.

NOTE: in previous versions of SIMPLS, the X-block scores were unit length and the X-
block loadings contained the variance. As of Version 3.0, this algorithm now uses standard
convention in which the X-block scores contain the variance.

 324

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display, and
 ranktest: ['none' | 'data' | 'scores' | {'auto'}], governs type of

rank test to perform.
 'data' = single test on X-block (faster with smaller data blocks and

more components),
 'scores' = test during regression on scores matrix (faster with larger

data matricies),
 'auto' = automatic selection, or
 'none' = assumes X-block has sufficient rank.

The default options can be retreived using: options = simpls('options');.

See Also

crossval, modelstruct, pcr, plsnipal, preprocess, analysis

 325

snv
Purpose

Standard Normal Variate scaling.

Synopsis

[xcorr,mns,sds] = snv(x,options); %perform snv scaling
x = snv(xcorr,mns,sds); %undo snv

Description

Scales rows of the input x to be mean zero and unit standard deviation. This is the same as
autoscaling the transpose of x.

INPUT:
 x = M by N matrix of data to be scaled (class "double" or "dataset").

OPTIONAL INPUTS:
 options = options structure passed to function "auto" when performing SNV

scaling. See auto.m for available options (not valid for undo operation).
 mns = a vector of length M of means, and
 sds = vector of length M of standard deviations.

OUTPUTS:
 xcorr = the scaled data (xcorr will be the same class as x),
 mns = vector of means for each row, and
 sds = vector of standard deviations for each row.

To rescale or “undo” SNV, inputs are xcorr, mns, and sds from a previous SNV call. The
output will be the original x.

See Also

auto, normaliz, preprocess

 326

spcreadr
Purpose

Reads a Galactic SPC file.

Synopsis

x = spcreadr(filename,subs,wlrange,options)
[data,xaxis,auditlog] = spcreadr(filename,subs,wlrange,options)

Description

SPCREADR reads a Galactic SPC file.

INPUT:
 filename = a text string with the name of a SPC file or a cell of strings of SPC

filenames.
 If filename is omitted or blank, the user will be prompted to select a

file graphically.
 If filename is an empty cell {}, the user will be prompted to select a

folder and then one or more SPC files in the folder the identified folder.

OPTIONAL INPUTS:
 subs = [], scalar or vector indicating the sub-files to read, e.g. [3] reads sub-file

3, [3:9] reads sub-files 3 to 9, {default reads all sub-files} and
 wlrange = [], two element vector (inclusive endpoints) of the wavelength range to

return {default returns the entire wavelength range}.

OUTPUTS:
 x = a dataset object containing the spectrum, or
 data = a data array with measured intensities,
 xaxis = vector containing the wavelength axis, and
 auditlog = char array with the log from the file.

Options
 options = a structure array with the following fields:
 axismatching: ['none' | 'intersect' |{'interpolate'}], defines action taken

when the x-axes of two spectra being read do not match. The options
are:

 'intersect' returns only the points where the spectral x-axis values
overlap excatly.

 327

 'interpolate' returns the overlapping portions with linear interpolation to
match spectral points exactly. As no extrapolation will be done, the
returned spectra will cover the smallest common spectral range.

 'none' ignores x-axis differences as long as the number of data points is
the same in all spectra.

 textauditlog: [{'no'} | 'yes'], governs output of audit log contents. When 'yes',
the auditlog is returned as a raw text array. Otherwise, the auditlog is
returned as a structure with field names taken from auditlog keys.

See Also

areadr, xclgetdata, xclputdata, xclreadr

 328

specedit
Purpose

GUI for selecting spectral regions on a plot.

Synopsis

specedit(x,f)

Description

If input variable (x) is a vector SPECEDIT plots x (e.g. spectra) versus an optional input f e.g.
wavelengths. If x is a matrix of spectra then SPECEDIT plots the mean of x where the rows of
x correspond to different sample spectra and the columns of x correspond to different
wavelengths. Regions of x can be selected using push buttons. The edited matrix input and
column indices can be saved to the workspace interactively.

See Also

baseline, lamsel

 329

ssqtable
Purpose

Prints variance captured table to the command window.

Synopsis

ssqtable(ssq,ncomp)

Description

SSQTABLE prints the variance captured table from input ssq to the command window for the
desired number of factors ncomp. If ssq is a standard model structure (e.g. from ANALYSIS),
the model information is displayed along with the variance captured table (see MODLRDER). If
ncomp is omitted, the entire available tabe is displayed.

Examples

For a standard model structure called modl (e.g. as returned by, ANALYSIS, PCA, or PLS
functions)

ssqtable(modl.detail.ssq,5)

will print the variance captured table only for the first 5 factors to the command window.
Alternatively,

ssqtable(modl,5)

will print both the model information and the variance captured table for first 5 factors.

See Also

analysis, modlrder, pca, pcr, pls

 330

stdfir
Purpose

Standardization using FIR filtering.

Synopsis

sspec = stdfir(nspec,rspec,win,mc)

Description

STDFIR is a moving window multiplicative scatter correction with a fixed window size. This
algorithm uses an inverse least squares regression. (Also see MSCORR.)

Inputs are nspec the new spectra to be standardized, rspec the standard spectra from the
standard instrument (a row vector that is a reference spectrum), and win is the window width
(must be an odd number).

If the optional input mc is 1 {default} the regression allows for an offset and a slope, if mc is
set to 0 only the slope is used (no offset is used i.e. it is a force fit through zero).

The output is sspec the standardized spectra. This routine is based on the method discussed
in

Blank, T.B., Sum, S.T., Brown, S.D., and Monfre, S.L., "Transfer of Near-Infrared
Multivariate Calibrations without Standards", Anal. Chem., 68(17), 2987-2995, 1996.

See Also

mscorr, stdgen

 331

stdgen
Purpose

Piecewise and direct standardization transform generator.

Synopsis

[stdmat,stdvect] = stdgen(spec1,spec2,win,options)
options = stdgen('options')

Description

STDGEN can be used to generate direct or piecewise direct standardization matrix with or
without additive background correction. It can also be used to generate the transform using
the “double window” method. The transform is based on spectra from two instruments, or
original calibration spectra and drifted spectra from a single instrument.

INPUTS:
 spec1 = M by N1 spectra from the standard instrument, and
 spec2 = M by N2 spectra from the instrument to be standarized.

OPTIONAL INPUTS:
 win = [], empty or a 1 or 2 element vector.
 If win is a scalar then STDGEN uses a single window algorithm,
 and if win is a 2 element vector it uses a double window algorithm.
 win(1) = (odd) is the number of channels to be used for each transform,

and
 win(2) = (odd) is the number of channels to base the transform on.
 If win is not input it is set to zero and direct standardization is used.
 options = a structure array discussed below.

OUTPUTS:
 stdmat = the transform matrix, and
 stdvect = the additive background correction.

Note: if only one output argument is given, no background correction is used.

Options
 options = a structure array with the following fields:
 tol: [{0.01}], tolerance used in forming local models (it equals the

minimum relative size of singular values to include in each model), and

 332

 maxpc: [], specifies the maximum number of PCs to be retained for each local
model {default: []}. maxpc must be ≤ the number of transfer samples. If
maxpc is not empty it supersedes tol.

The default options can be retreived using: options = stdgen('options');.

See Also

baseline, distslct, mscorr, stdfir, stdize, stdsslct

 333

stdize
Purpose

Standardizes new spectra using transform from STDGEN.

Synopsis

stdspec = stdize(nspec,stdmat,stdvect)

Description

Inputs are the new spectra to be standardized nspec, and the standardization matrix stdmat
(output from STDGEN).

Optional input stdvect is the offset vector (output from STDGEN). Note that if stdvect was
calculated when generating the transform with STDGEN, then it should be input when applying
the transform with STDIZE.

The output is a matrix of the standardized spectra stdspec.

See Also

stdgen, stdsslct

 334

stdsslct
Purpose

Selects subsets of spectra for use in instrument standardization based on sample leverage.

Synopsis

[specsub,specnos] = stdsslct(spec,nosamps,rinv)

Description

STDSSLCT selects samples for use in instrument standardization transform development based
on their multivariate leverage.

The inputs are the spectra to be used in generating the transform spec, and the number of
samples to be selected for the subset nosamps. The optional input rinv uses the pseudo
inverse from a calibration regression model to determine sample leverages.

The outputs are the subset of spectra selected specsub, and the sample numbers (indices) of
the selected spectra specnos.

See Also

distslct, doptimal, stdgen, stdize, rinverse

 335

svdlgpls
Purpose

Dialog to save variable to workspace or MAT file.

Synopsis

[name,location] = svdlgpls(varin,message)

Description

SVDLPLS creates a dialog box to save a variable to the base workspace or a MATLAB file
from a function (e.g. a GUI). Input varin is the variable to be saved. The dialog box allows
the user to name varin to a new variable and select between saving into the base workspace
or a file. Variables can be appended onto existing files by selecting the file from the file list
or written into new files by providing a new file name. The location for the file can be
selecetd from the folders listed in the file list and from the Look in menu at the top of the
dialog box. Files are always MATLAB "mat" files. The optional text variable messag allows
a message to be printed in the dialog box.

Optional outputs give information about the variable name name and file location location
used to save the variable. Location will be empty if saved to the base workspace.

See Also

erdlgpls, lddlgpls

 336

tconcalc
Purpose

Calculate Hotellings T2 contributions for predictions on a model.

Synopsis

tcon = tconcalc(newx,model)
tcon = tconcalc(pred,model)
tcon = tconcalc(model)

Description

Inputs are the new data newx and the 2-way PCA or regression model for which T2
contributions should be calculated model. Alternatively, the prediction structure pred
calculated with new data can be used in place of the new data itself or both can be omitted
(passing model only) to get T2 contributions for the calibration data.

See Also

datahat, pca, pcr, pls, qconcalc

 337

testfitpeaks
Purpose

Demo calls to the FITPEAKS function.

Synopsis

[peakdef,fval,exitflag,output] = testfitpeaks(test)

Description

TESTFITPEAKS is a set of example calls to FITPEAKS. Editing this M-file provides some
insight into how the peak fitting utilities can be used.

No input is required.

OPTIONAL INPUT:
 test = calls different peak fitting examples.
 test = 1 fits a single Gaussian peak.
 test = 2 fits two Gaussian peaks.
 test = 3 fits a single Lorentzian peak.
 test = 4 fits two Lorentzian peaks.
 test = 5 fits a Gaussian and Lorentzian peak.
 test = 6 fits a single PVoigt2 peak.
 test = 7 fits a Gaussian and a PVoigt2 peak.
 test = 8 fits a Gaussian and a PVoigt1 peak.
 test = 9 fits a single PVoigt1 peak.

OUTPUTS:
 peakdef = The input peak structure (peakdef) with parameters changed to

correspond to the best fit values.
 fval = Scalar value of the objective function evaluated at termination of

FITPEAKS.
 exitflag = Describes the exit condition (see LMOPTIMIZEBND).
 out = Structure array with information on the optimization/fitting (see

LMOPTIMIZEBND).

See Also

fitpeaks, peakfunction, peakstruct

 338

testpeakdefs
Purpose

Checks peak parameters in a peak definition structure.

Synopsis

 [out,msg,loc] = testpeakdefs(peakdef)

Description

TESTPEAKDEFS checks the consistency of the peak definitions in a peak definition structure
and is useful for checking the initial guess for (peakdef). This function examines each
record of a peak definition structure (peakdef) and determines:

1) if the lower bounds are lower than the initial guess (any parameters lower than the lower
bounds is an error),

2) if the upper bounds are higher than the initial guess (any parameters higher than the upper
bounds is an error), and

3) if the number of parameters in each peak definition are consistent with the corresponding
peak function (peakdef.fun field).

INPUT:
 peakdef.fun = a multi-record peak definition structure array where each record is a

peak definition.

OUTPUTS:
 out = output status code:
 0 = no problems discovered.
 -1 = problem encountered.
 msg = error message (last error detected).
 loc = location of detected problems. This is a two-column matrix with

column one corresponding to a peak with an inconsistent definition, and
column two corresponding to the inconsistent parameter definition (e.g.
a paramter is < its lower bound).

 If column two has a zero, this means that there is a peak definition with
an inaccurate number of parameters for the specific peak shape (e.g. for
peakdef.fun = Gaussian there are 3 parameters).

See Also

peakstruct

 339

tld
Purpose

Trilinear decomposition.

Synopsis

model = tld(x,ncomp,scl,plots)

Description

The trilinear decomposition can be used to decompose a 3-way array as the summation over
the outer product of triads of vectors. Inputs are the 3 way array x and the number of
components to estimate ncomp. Optional input variables include scales for each of of the
array axes, (scl1, scl2, scl3). These axes can be entered as 0 or [] placeholders. The output of
TLD is a structured array (model) containing all of the model elements in the following
fields:
 date: model creation date stamp
 time: model creation time stamp
 size: size of the original input array
 loads: 1 by 3 cell array of the loadings in each dimension
 res: 1 by 3 cell array residuals summed over each dimension
 scl: 1 by 3 cell array with scales for plotting loads

Note that the model loadings are presented as unit vectors for the first two dimensions,
remaining scale information is incorporated into the final (third) dimension.

See Also

gram, outerm, parafac

 340

trendtool
Purpose

Univariate trend analysis tool.

Synopsis

trendtool(axis,data)
trendtool(data)
trendtool

Description

TRENDTOOL allows the user to graphically perform univariate analysis of two-way data.
Inputs are axis which is the variable scale to plot against [can be omitted] and data the data
to plot in which rows are samples. If data is omitted, the user is prompted to load a dataset
to analyze.

Right-clicking on the trend data plot allows placement of "markers". Markers return either
the height at a point or integrated area between two points. Reference markers can be added
to each marker to subtract the height at a point or subtract a two-point baseline from the
associated marker. Markers can be saved or loaded using the toolbar buttons. A Waterfall
plot (linked to axis range shown in data plot) can be created using the waterfall toolbar
button.

The results of the analysis are plotted in the trend results plot which shows a color-coded
results of the univariate analysis and allows saving of the analysis results and selection of
points to show in the trend data figure.

See Also

pca, plotgui

 341

tsqlim

Purpose

Calculates PCA confidence limits for Hotelling's T2.

Synopsis

tsqcl = tsqlim(m,pc,cl)
tsqcl = tsqlim(model,cl)

Description

Inputs can be in one of two forms:

(a) the number of samples m, the number of principal components used pc, and the fractional
confidence limit, cl (0 < cl < 1) which can be a scalar or a vector (to calculate multiple
confidence limits simultaneously).

or (b) a standard model structure, model, and the fractional confidence limit, cl (0 < cl < 1).

The output tsqcl is the confidence limit. See Jackson (1991).

Examples

tsqcl = tsqlim(15,2,0.95)

model = pca(data,pc); tsqcl = tsqlim(model,0.95)

See Also

analysis, pca, pcr, pls

 342

tsqmtx
Purpose

Calculates the Hotelling's T2 contributions for PCA.

Synopsis

[tsqmat,tsqs] = tsqmtx(x,model)
[tsqmat,tsqs] = tsqmtx(x,p,ssq)

Description

TSQMTX calculates the Hotelling's T2 contributions for PCA.

INPUTS:
 x = data matrix (class “double” or “dataset), and
 model = model structure returned from ANALYSIS or PCA, or
 p = PCA loadings, and
 ssq = variance captured table.

If a PCA model structure model is input, the loadings and variance captured table are
extracted from the model. Additionally, the preprocessing from the model is applied to the
data prior to estimating the scores. However, if the loadings p and variance captured table
ssq are passed as inputs then the data must be preprocessed in a manner similar to the data
used to calibrate the PCA model.

OUTPUTS:
 tsqmat = indivual variable contributions to Hotelling's T2, and
 tsqs = Hotelling's T2 for each sample.

ALGORITHM

If P is the loadings matrix and T is the scores matrix from the calibration data that had M
samples, then S is a diagonal matrix defined as S = TTT/(M-1). For a new sample xnew (row
vector that has been appropriately scaled) the T2 contribution tcon is calculated as tcon =
xnewPS-1/2PT.

See Also

datahat, pca, pcr, pls

 343

ttestp
Purpose

Evaluates t-distribution and its inverse.

Synopsis

y = ttestp(x,a,z)

Description

Evaluates a t-distribution with input flag z. For z = 1 the output y is the probability point for
given t-statistic x with a degrees of freedom. For z = 2 the output y is the t-statistic for
given probability point x with a degrees of freedom.

Examples

 y = ttestp(1.9606,5000,1)

 y = 0.025

 y = ttestp(0.005,5000,2)

 y = 2.533

See Also

ftest, statdemo

 344

tucker
Purpose

TUCKER analysis for n-way arrays.

Synopsis

model = tucker(x,ncomp,initval,options) %tucker model
pred = tucker(x,model) %application
options = tucker('options')

Description

TUCKER decomposes an array of order K (where K ≥ 3) into the summation over the outer
product of K vectors. As opposed to PARAFAC every combination of factors in each mode
are included (subspaces). Missing values must be NaN or Inf.

INPUTS:
 x = the multi-way array to be decomposed and
 ncomp = the number of components to estimate, or
 model = a TUCKER model structure.

OPTIONAL INPUTS:
 initval = if initval is the loadings from a previous TUCKER model are then

these are used as the initial starting values to estimate a final model,
 if initval is a TUCKER model structure then mode 1 loadings (scores)

are estimated from x and the loadings in the other modes (see output
pred),

 options = discussed below.

OUTPUTS:
 model = a structure array with the following fields:
 modeltype: 'TUCKER',
 datasource: structure array with information about input data,
 date: date of creation,
 time: time of creation,
 info: additional model information,
 loads: 1 by K+1 cell array with model loadings for each mode/dimension,
 pred: cell array with model predictions for each input data block,
 tsqs: cell array with T2 values for each mode,
 ssqresiduals: cell array with sum of squares residuals for each mode,
 description: cell array with text description of model, and

 345

 detail: sub-structure with additional model details and results.
 pred = is a structure array, similar to model, that contains prediction results for

new data fit to the TUCKER model.

Options
 options = a structure array with the following fields:
 display: [{'on'} | 'off'], governs level of display,
 plots: [{'final'} | 'all' | 'none'], governs level of plotting,
 weights: [], used for fitting a weighted loss function (discussed below),
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative

tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)],

 init: [0], defines how parameters are initialized (see PARAFAC),
 line: [0 | {1}] defines whether to use the line search {default uses it},
 algo: this option is not yet active,
 blockdetails: 'standard'
 missdat: this option is not yet active,
 samplemode: [1], defines which mode should be considered the sample or object

mode and
 constraints: {4x1 cell}, defines constraints on parameters (see PARAFAC). The first

three cells define constraints on loadings whereas the last cell defines
constraints on the core.

The default options can be retreived using: options = tucker('options');.

See Also

datahat, gram, mpca, outerm, parafac, parafac2, tld, unfoldm

 346

unfoldm
Purpose

Unfolds an augmented matrix for MPCA.

Synopsis

xmpca = unfoldm(xaug,nsamp)

Description

UNFOLDM unfolds the input matrix xaug to create a matrix of unfolded row vectors xmpca for
MPCA. xaug contains nsamp matrices Aj augmented such that [xaug] = [A1; A2; ...;
Ansamp]. For example, for xaug of size (nsamp*m by n) each matrix Aj is of size m by n. For
Aj each m by 1 column ai is transposed and augmented such that [bj] = [a1', a2', ...,
an'] and [xmpca] = [b1; b2; ...; bnsamp]. Note: the Aj should all be the same size.

Examples

a = [1 2 3
 4 5 6
 -1 -2 -3
 -4 -5 -6]

xmpca = unfoldm(a,2)

xmpca = [1 4 2 5 3 6
 -1 -4 -2 -5 -3 -6]

See Also

gscale, mpca, pca, reshape

 347

unfoldmw
Purpose

Unfolds multiway arrays along specified order.

Synopsis

mwauf = unfoldmw(mwa,order)

Description

Inputs are the multiway array to be unfolded mwa (class “double” or “dataset”), and the
dimension (or mode) number along which to perform the unfolding order.

The output is the unfolded array mwauf (class “double” or “dataset” depending on the input
class).

When working with dataset objects, unfoldmw will create label and includ fields
consistent with the input. This function is used in the development of PARAFAC models in
the alternating least squares steps.

See Also

mpca, outerm, parafac, reshape, tld, unfoldm

 348

updatemod
Purpose

Update model structure to be PLS_Toolbox 3.0 compatible.

Synopsis

umodl = updatemod(modl,data)

Description

The input modl is the PLS_Toolbox Version 2 PLS, PCR, or PCA model to be updated to
Version 3.

Optional input data is required if the model was constructed using a version older than
Version 2.0.1c.

The output is an updated Version 3.0 model umodl.

See Also

analysis, pca, pcr, pls

 349

varcap
Purpose

Variance captured for each variable in PCA model.

Synopsis

vc = varcap(x,loads,scl,plots)

Description

VARCAP calculates and displays the percent variance captured for each variable and number
of principal components in a PCA model.

Inputs are the properly scaled M by N data x (i.e. scaled using the same scaling used when
creating the PCA model) with associated N by K loadings matrix loads.

Optional input scl (1 by N) specifies the x-axis for plotting. Optional input plots suppresses
plotting when set to 0 {default = 1}.

The output is a K by N matrix of variance captured vc for each variable and each number of
PCs considered (vc is number of PCs by number of variables). A stacked bar chart of vc is
also plotted. Optional input plots suppresses plotting when set to 0 {default = 1}.

See Also

analysis, pca

 350

varcapy
Purpose

Calculate percent y-block variance captured by a PLS regression model.

Synopsis

vc = varcapy(model,options)

Description

VARCAPY Calculate percent y-block variance captured by a PLS regression model. Given a
PLS regression model, VARCAPY calculates the percent of y-block variance captured by
each latent variable of the model for each column of the y-block.

Input is a standard PLS model structure. Outupt is a matrix containing the variance captured
by each latent variable (rows) for each column of y (columns).

Options
 plots : ['none' |{'final'}] Governs plotting of results.

See Also

analysis, pca

 351

varimax
Purpose

Orthogonal rotation of loadings.

Synopsis

vloads = varimax(loads,options);

Description

Input loads is a N by K matrix with orthogonal columns and the output vloads is a N by K
matrix with orthogonal columns rotated to maximize the "raw varimax criterion". Optional
input options is discussed below.

Algorithm

Under varimax the total simplicity S is maximized where
1

K

k
k

S S
=

= ∑ , and the simplicty for

each factor (column) is ()2
k k kS a a= − where the overbar indicates the mean and ak is the kth

column of vloads.

The algorithm is based on Kaiser's VARIMAX Method (J.R. Magnus and H. Neudecker,
Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Ed.,
pp 373-376, 1999). They note that if the algorithm converges, “which is not guaranteed, then
a (local) maximum … has been found.”

See Also

analysis, pca

 352

vip
Purpose

Calculate Variable Importance in Projection from regression model.

Synopsis

vip_scores = vip(mode)

Description

Variable Importance in Projection (VIP) scores estimate the importance of each variable in
the projection used in a PLS model and is often used for variable selection. A variable with a
VIP Score close to or greater than 1 (one) can be considered important in given model.
Variables with VIP scores significantly less than 1 (one) are less important and might be
good candidates for exclusion from the model.

The input is a PLS model structure (model). The output (vip_scores) is a set of column
vectors equal in length to the number of variables included in the model. It contains one
column of VIP scores for each column of the original calibration y-block.

See Chong & Jun, Chemo. Intell. Lab. Sys. 78 (2005) 103–112.

See Also

plotloads, pls, plsda

 353

vline
Purpose

Place a vertical line in an existing figure.

Synopsis

h = vline(x,lc)

Description

VLINE draws a vertical line on an existing figure from the bottom axis to the top axis at at
postions defined by x which can be a scalar or vector. If no input is used for x the default
vaule is zero {default x = 0}.

Optional input lc is used to define the line style and color as in normal plotting (see PLOT). If
not inputs are supplied, VLINE draws a vertical green line at 0.

Output h is the handle(s) of line(s) drawn.

Examples

vline([2.5 3],'-r')

plots a vertical red line at x = 2.5 and 3.

See Also

dp, ellps, hline, pan, plot, plttern

 354

wlsbaseline
Purpose

Weighted least squares baseline function.

Synopsis

[bldata,wts] = wlsbaseline(data,baseline,options)
[bldata,wts] = wlsbaseline(data,order,options)

Description

Subtracts a baseline (or other signal) from a spectrum with the constraint that residuals below
zero be weighted more heavily than those above zero. This achieves a robust "non-negaitve"
residual fit when residuals of significant amplitude (e.g. signals on a background) are
present.

Inputs are data the spectral data, baseline the reference spectrum/spectra to use for
baseline OR an integer value representing the order of polynomial baselining to use and
options an optional options structure.

Outputs are the baselined data bldata and the weightings wts indicating the amount of
baseline which was removed from each spectrum in data. (i.e. bldata = data -
wts*baseline)

Polynomial baseline Option: If a positive scalar value is given instead of the input baseline,
then a polynomial baseline of that order will be used. In this mode, any row of the output wts
can be used with the polyval function to obtain the baseline removed from the corresponding
row of data.

Options
 plots : [{'none'} | 'debug' | 'intermediate' | 'final'] governs plots
 weightmode : [{1} | 2] flag indicating which weighting mode to use.
 Mode 1 = Power method. Negative residuals are weighted up by the

power of 10.^(option.negw). All residuals are then raised to the power of
(option.power)

 Mode 2 = T squared method. Negative residuals are weighted up by the
extent to which the surpass an estimate of the noise limit and the
approximate t-limit defined by (option.tsqlim)

 trbflag : ['bottom' | 'top'] baseline to top or bottom of data
 negw : {1} deweighting scale of negative values (10^negw) (used only for

weightmode = 1),
 power : {2} exponential amplification of residuals (used only for weightmode =

1),

 355

 tsqlim : [0.99] t-test confidence limit for significant negative residuals which
need to be up-weighted. (used only for weightmode = 2),

 nonneg : ['no'|{'yes'}] flag to force non-negative baseline weighting, most often
used when "real" spectra are used for baslineing and they should not be
"flipped" by a negative weighting. Using nonneg = 'yes',
WLSBASELINE an be used as a partial CLS prediction to estimate the
concentration of a species when not all species' pure component spectra
are known,

 delta : [1e-4] change-of-fit convergence criterion,
 maxiter : [100] maximum iterations allowed per spectrum,
 maxtime : [600] maximum time (in seconds) permitted for baselining of all data.

Examples

To swap 4 BYTES in a 32 bit number:

See Also

baseline, baselinew

 356

wrtpulse
Purpose

Creates input and output matrices for finite impulse response (FIR) dynamic model
identification and prediction.

Synopsis

[newu,newy] = wrtpulse(u,y,n,delay)

Description

WRTPULSE is used to write time series data with muliple inputs and a single output into a form
to obtain finite impulse response (FIR) and ARX models. Inputs are a matrix of input vectors
u, and an output vector y. n is a row vector with the number of coefficents to use for each
input, and delay is a row vector containing the number of time units of delay for each input.
The output is a matrix of lagged input variables newu and the corresponding output vector
newy.

See Also

autocor, crosscor, fir2ss, plspulsm

 357

wtfa
Purpose

Window target factor analysis.

Synopsis

[rho,angl,q,skl] = wtfa(spec,tspec,window,p,options)

Description

Inputs are a M by N data matrix spec, a K by N matrix of target spectra tspec, the window
width window > 1, and the number of principal components, PCs, for modelling each window
of spectra, p. The input p is used to govern the PCA model in each window:
 p >= 1: (integer) number PCs is a constant p,
 0 < p < 1: sets a relative criterion for selecting number of PCs in each window i.e.

only the first set of PCs that together capture >=p*100Found of the
variance in the window are used, or

 p < 0: sets an absolute value for number of PCs i.e. factors with singular values
<|p| are not used. EWFA (see EWFA) can be used as a guide for setting p
when p<0.

Outputs are the cosines rho between tspec and a p component PCA model of spec in each
window, angl [= acos(rho)], and Q residuals q. Note that the output values near the end
of the record (less than the half width of the window) are plotted as dashed lines and the
window center is output in the variable skl.

This routine is based on work in: Lohnes, M.T., Guy, R.D., and Wentzell, P.D., "Window
Target-Testing Factor Analysis: Theory and Application to the Chromatographic Analysis of
Complex Mixtures with Multiwavelength Flourescence Detection", Anal. Chim. Acta, 389,
95-113 (1999).

 358

Options
 options = a structure array with the following fields:
 plots: ['none' | {'angle'} | 'rho' | 'q'], governs plotting,
 'angle', plots projection angle {default},
 'rho', plots direction cosine, and
 'q', plots Q residuals.
 scale: [], is a M element time scale to plot against

The default options can be retreived using: options = wtfa('options');.

See Also

evolvfa, ewfa, pca

 359

xclgetdata
Purpose

Extract a data table from an Excel spreadsheet.

Synopsis

xmat = xclgetdata(filename,datarange,formt)

Description

XCLGETDATA extracts a data table from an Excel spreadsheet using dynamic data exchange
(DDE) and writes it to the variable xdat. This function only works on a PC, the spreadsheet
must be open in Office 97 or higher, and character arrays can't be extracted.

It has been observed that XCLGETDATA won't work unless a copy of the open spreadsheet is
saved to the hard drive and the name in filename is exact. Also, if the function doesn't work
check the Excel menu tools/options/general and ensure that the ignore other applications
check box is unchecked.

Examples

To get a table data from the range C2 to T25 from the open workbook 'book1.xls':
data = xclgetdata('book1.xls','r2c3:r25c20');

To get a table data from 'Sheet2' the range D4 to F16 from the open workbook 'book1.xls':
data = xclgetdata('c:\book1.xls\sheet2','r4c4:r16c6');

See Also

areadr, spcreadr, xclputdata, xclreadr

 360

xclputdata
Purpose

Fill a data table in an Excel spreadsheet.

Synopsis

xclputdata(filename,datarange,xmat,formt)

Description

XCLPUTDATA fills a a range in an Excel spreadsheet using dynamic data exchange (DDE)
with a data table contained in the variable xdat. This function only works on a PC, the
spreadsheet must be open in Office 97 or higher.

If the function doesn't work check the Excel menu tools/options/general and ensure that the
ignore other applications check box is unchecked.

Examples

To place a 3x5 data table contained in the workspace variable xdat into the spreadsheet
'book1.xls' in the range B2 to F4:

xclputdata('book1.xls','r2c2:r4c6','xdat');

See Also

areadr, spcreadr, xclgetdata, xclreadr

 361

xclreadr
Purpose

Reads ASCII flat files from MS Excel and other spreadsheets as a DataSet Object.

Synopsis

out = xclreadr(file,delim,options)

Description

XCLREADR reads tab, space, comma, semicolon or bar delimited files with names on the
columns (variables) and rows (samples).

If XCLREADR is called with no input, or an empty matrix for file name file, a dialog box allows
the user to select a file to read from the hard disk.

INPUTS:

file = One of the following identifications of files to read:
 a) a single string identifying the file to read
 ('example.txt')
 b) a cell array of strings giving multiple files to read
 ({'example_a' 'example_b' 'example_c'})
 c) an empty array indicating that the user should be prompted to locate the

file(s) to read
 ([])

delim = An optional string used to specify the delimiter character.

Supported delimiters include:
 'tab' or '\t' or sprintf('\t')
 'space' or ' '
 'comma' or ','
 'semi' or ';'
 'bar' or '|'

If (delim) is omitted, the file will be searched for a delimiter common to all rows of the file
and producing an equal number of columns in the result.

OUTPUTS:

out = A DataSet object with date, time, info (data from cell (1,1)) the variable names vars,
sample names samps, and data matrix data. Note that the primary difference between this

 362

function and the Mathworks function xlsread is the parsing of labels and output of a dataset
object.

Note that the primary difference between this function and the Mathworks function xlsread is
the parsing of labels and output of a dataset object.

Options
 options = a structure array with the following fields:
 parsing: ['manual' | {'automatic'} | 'auto_strict'] determines the

type of parsing to perform:
 'automatic' : the file is automatically parsed for labels and header

information. This works on many standard arrangements with different
numbers of rows and column labels. May take some time to complete
with larger files. See note below regarding additional options available
with 'automatic' parsing.

 'auto_strict' : faster automatic parsing which does not handle header
lines, and expects that all row labels will be on the left-hand side of the
data and all column labels will be on the top of the columns. If this
returns the wrong result, try 'automatic'.

 'manual' : the options below are used to determine the number of labels
and header information.

 Note that when the file type is XLS, 'automatic' parsing is always
performed.

 (the following options are only used when options.parsing='manual')
commentcharacter: [''] any line that starts with the given character will be considered a

comment and parsed into the"comment" field of the DataSet object.
Deafult is no comment character. Example: '%' uses % as a
commentcharacter.

 NOTE: Only used with 'automatic' and 'manual' parsing, NOT with
'auto_strict' parsing.

 headerrows: [{0}] number of header rows to expect in the file.
 rowlabels: [{1}] number of row labels to expect in the file.
 collabels: [{1}] number of column labels to expect in the file.

The default options can be retreived using: options = xclreadr('options');

In addition to the above options, if option parsing is set to 'automatic', any option used by the
PARSEMIXED function can be input to XCLREADR. These options will be passed directly
to PARSEMIXED for use in parsing the file. See PARSEMIXED for details.

See Also

areadr, dataset, spcreadr, xclgetdata, xclputdata, xlsreadr

 363

xlsreadr
Purpose

Reads .XLS files from MS Excel and other spreadsheets.

Synopsis

out = xlsreadr(file,sheets,options)

Description

This function reads Microsoft XLS files, parses the contents into a DataSet object. If called
with no input a dialog box allows the user to select a file to read from the hard disk. Optional
input file is a text string with the file name. Optional input (file) is a text string with the file
name. Optional input (sheets) is a cell array containing the names of one or more sheets in
XLS file to read. Optional input (options) specifies the parsing options. For details on these
options, see PARSEMIXED.

Note that the primary difference between this function and the Mathworks function xlsread
is the parsing of labels and output of a dataset object.

See Also

areadr, dataset, xclgetdata, xclreadr

 364

xyreadr
Purpose

Reads one or more ASCII XY or XY... files into a DataSet object.

Synopsis

out = xyreadr(file,delim,options)

Description

Reads standard XY ASCII files in which the first column is a column of axisscale values
(wavelengths, retention times, etc) and the second and possibly subsequent column(s) are
values measured at the corresponding axisscale values. Returns a DataSet object with the X
as the axisscale in the file and all Y columns (both in the same file and in multiple files)
concatenated and transposed as rows.

It is REQUIRED that, if multiple files are being read, they must all have the same X range. If
this is not true, the import may fail.

INPUTS:

file = One of the following identifications of files to read:
 a) a single string identifying the file to read
 ('example.txt')
 b) a cell array of strings giving multiple files to read
 ({'example_a' 'example_b' 'example_c'})
 c) an empty array indicating that the user should be prompted to locate the

file(s) to read
 ([])

delim = An optional string used to specify the delimiter character.

Supported delimiters include:
 'tab' or '\t' or sprintf('\t')
 'space' or ' '
 'comma' or ','
 'semi' or ';'
 'bar' or '|'

If (delim) is omitted, the file will be searched for a delimiter common to all rows of the file
and producing an equal number of columns in the result.

OUTPUTS:

 365

out = a DataSet object with the first column of the file(s) stored as the axisscale{2} values
and all subsequent column(s) stored as rows of data.

Options:
commentcharacter: [''] any line that starts with the given character will be considered a

comment and parsed into the"comment" field of the DataSet object.
Deafult is no comment character. Example: '%' uses % as a
commentcharacter.

 headerrows: [{0}] number of header rows to expect in the file.
 waitbar: ['off' |{'on'}] governs use of waitbars to show progress.

See Also

areadr, dataset, xclgetdata, xclreadr

 366

yscale
Purpose

Rescale the y-axis limits on each subplot in a figure.

Synopsis

yscale(infscale,xrange,allaxes)
ax = yscale(infscale,xrange,allaxes)

Description

Each axes on a subplot is rescaled so that the y-scale tightly fits the maximum and minimum
of the displayed data. The input infscale, when set to 1 (one), also rescales each line object
on each axes to tightly fit the new limits (i.e. inf-scales each line object relative to one
another). Default is 0 scale axis to data. The input xrange uses the specified x-axis
range for scaling rather than the current axis settings.

If the single output ax is requested, the plots are not rescaled, but the axis which would have
been used is returned.

The optional third input allaxes rescales the specified axis or axes handles. Default is to
rescale all axes.

 367

zline
Purpose

Adds vertical lines to 3D figure at specified locations.

Synopsis

h = zline(x,y,lc)

Description

ZLINE draws a vertical line on an existing 3D figure from the bottom axis to the top axis at at
postions defined by x and y which can be a scalar or vector. If no input is used for x and y the
default vaule is zero {default = 0}.

Optional input lc is used to define the line style and color as in normal plotting (see PLOT). If
not inputs are supplied, ZLINE draws a vertical green line at 0.

Output h is the handle(s) of line(s) drawn.

Examples

zline(2.5, 1.2,'-r')

plots a vertical red line at x = 2.5 and y = 1.2.

See Also

dp, ellps, hline, pan, plot, plttern, vline

 368

Distribution Fitting Tool Set - General
Functions

 369

chitest
Purpose

Uses chi-squared to test if sample has a specific distribution.

Synopsis

vals = chitest(x,distname,classes)

Description

Assesses how well a particular distribution fits the data (x).

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.

 distribution = Optional distribution name to assume as the parent distribution for

thesample. If this argument is missing, then 'normal' is assumed. This
argument must be in single quotes and the name may be abbreviated.

 classes = Optional argument naming the number of equal probability intervals for

which counts should be collected for the test. If this argument is
missing, then the number of classes is taken to be

max{x}− min{x}

3.5 var{x}
length{x}


 


  +1

 where {x} is the smallest integer z such that z ≤ x. If specified, the
number of classes may not be greater than the length of the data vector.

 370

OUTPUTS:

The return value is a structure with fields:

 chi2 = value of the test statistic x2()

 pval = p-value associated with the test statistic
 df = degrees of freedom of the test
 classes = number of intervals for which counts are obtained
 parameters = maximum likelihood estimates
 E = expected counts for the classes
 O = observed counts for the classes

Note: If a sample contains all negative values, then some of the overlay distributions will not
be drawn as they are not applicable. If only some of the sample is made up of negative
values, these values are ignored in obtaining the maximum likelihood estimates and
subsequent results.

Examples

chitest(x)
chitest(x,'exp')
chitest(x,'logistic',12)

See Also

distfit, kstest, plotcqq, plotkd, plotqq

 371

ck_function
Purpose

Validates distribution function string.

Synopsis

string = ck_function(string)

Description

Translates various function string names into internal keyword. Abbreviations can be used
with distribution function. For instance, the following example will produce the density
distribution at x:

>> n = normdf('d',x);

INPUTS:
'cumulative' 'c' 'cdf'
'density' 'd' 'pdf'
'quantile' 'q' 'inv' 'inverse'
'random' 'r'

OUTPUTS:
'cumulative'
'density'
'quantile'
'random'

Examples

string = ck_function(string);

See Also

ensurep

 372

cqtool
Purpose

Interactive conditional quantile-quantile plot gui.

Synopsis

cqtool(x)

Description

Assesses how well a particular distribution fits the data (x). Conditional quantile plots as
described in the 1986 Kafadar and Spiegelman article “An alternative to ordinary q-q plots”
in Computational Statistics & Data Analysis are also available in this toolbox

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.

Examples

cqtool(x)

Note: If a sample contains all negative values, then some of the overlay distributions will not
be drawn as they are not applicable. If only some of the sample is made up of negative
values, these values are ignored in obtaining the maximum likelihood estimates and
subsequent results.

 373

See Also

plotedf, plotkd, plotcq, plotqq, plotsym

 374

distfit
Purpose

Chitest for all distributions.

Synopsis

res = distfit(x,options)

Description

This command will perform the chi-squared test for all supported distributions and then
present a list of the supported distributions from the most likely parent distribution to the
least likely (along with the associated p-values).The default behavior is to display a figure
containing the results. This can be disabled using options.

NOTE: Some distributions will ignore parts of the sample that are not part of the supported
range.

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.

OUTPUTS:

The return value is a structure with fields:

 dist = names of candidate distributions.
 pval = p-value associated with the test statistic.

Options:

 name : 'options', name indicating that this is an options structure,
 plots : ['none' | {'final'}] governs level of plotting,

Examples

distfit(x)

See Also

chitest

 375

ensurep
Purpose

Verifies that input contains only probabilities in [0,1].

Synopsis

prob = ensurep(prob)

Description

The input is a real (x) and the output is (prob):

 If x > 1, then prob = 1.

 If x < 0, then prob = 0.

 If x imaginary, inf, or NaN, then prob = NaN.

Examples

prob = ensurep(prob);

See Also

ck_function

 376

kdensity
Purpose

Calculates the kernel density estimate.

Synopsis

[kde, newx] = kdensity(x,code,width,n,at)

Description

Produces the kernel density estimate of the data contained in the input vector (x) which must
be real.

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.
 code = Integer between 1 and 7 indicating which kernel to use.
 1 - Bivwight
 2 - Cosine
 3 - Epanechnikov {default}
 4 - Gaussian
 5 - Parzen
 6 - Triangle
 width = scalar, optional window width to use in the kernel calculation. If not

specified, then the optimal window width is used according to the
calculation:

 min σ x,
p75 − p25

1.349
  

  
0.9
n







0.20

 n = scalar, number of points at which to estimate the density.
 at = vector, allows the user to specify a vector of points at which the density

should be estimated. By using this option, it makes it easier to overlay
density estimates for different samples on the same graph.

OUTPUTS:
 newx = x input returned.
 kde = The return value is a structure with fields.
 x = vector of points where density was estimated. Will be the same as 'at'

input if used.
 fx = ?
 n = number of points at which to estimate density. Same as 'n' input if used.
 width = window width used. Same as 'width' input if used.

 377

 kernel = name of kernel used.

Examples

kde = kdensity(x,2);
kde = kdensity(x,2,22.4);
kde = kdensity(x,2,22.4,50);
kde = kdensity(x,2,22.4,50,y);

See Also

plotkd

 378

kstest
Purpose

Kolmogorov-Smirnov test that a sample has a specified distribution.

Synopsis

vals = kstest(x,distname)

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 distname =string, optional distribution name to assume as the parent

distribution for the sample. Default value is 'normal'.

OUTPUTS:

The return value is a structure with fields (larger values indicate rejecting the named
distribution as a candidate parent distribution for the sample). The ks is the value of the
Kolmogorov-Smirnov statistic and is n times the maximum difference of the distributions.
The maximum difference in the distributions is returned as Dn.

 Ks = value of the adjusted test statistic.
 Dn = unadjusted test statistic.
 parameters = maximum likelihood estimates.

Examples

kstest(x)
kstest(x,'exp')

See Also

CHITEST, DISTFIT

 379

ktool
Purpose

GUI tool for investigating the kernel density of a sample.

Synopsis

ktool(x)

Description

Investigate density estimates interactively with various kernel density estimates. Kernel
densities are calculated using the kernel with an overlaid best-fit density.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

OUTPUTS:

 No outputs.

Examples

 380

Note: If a sample contains all negative values, then some of the overlay distributions will not
be drawn as they are not applicable. If only some of the sample is made up of negative
values, these values are ignored in obtaining the maximum likelihood estimates and
subsequent results.

See Also

cqtool, plotcqq, plotkd, plotqq, qtool

 381

means
Purpose

Calculates the algebraic, harmonic, and geometric mean of a vector.

Synopsis

vals = means(x)

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

OUTPUTS:

The return value is a structure with fields:

 amean = arithmetic mean.
 na = number of obs used in amean calculation.
 hmean = harmonic mean.
 nh = number of obs used in hmean calculation.
 gmean = geometric mean.
 ng = number of obs used in gmean calculation.

Examples

mns = means(x);

See Also

summary

 382

newtondf
Purpose

Newton's root finder.

Synopsis

[quantile,exitflag] = newtondf(q,distfun,x,a,b,maxits,tol)

Description

Newton's root finder for a given quantile

INPUTS:
 q = matrix, the quantile point of interest
 distfun = string, distribution function name.
 x = matrix, original input matrix
 a = matrix, scale parameter
 b = matrix, shape parameter
 maxits = scalar, maximum number of iterations
 tol = scalar, tolerance

OUTPUTS:
 quantile = matrix, quantile
 exitflag = 0 if no error, 1 if maximum iterations is exceeded

Examples

[quantile,exitflag] = newtondf(q,distfun,x,a,b);

 383

parammle
Purpose

Maximum likelihood parameter estimates.

Synopsis

params = parammle(x,distname)

Description

Use parammle to obtain the best fit parameter estimates for a supported distribution.

Note: Some distributions (beta, Cauchy, gamma, Gumbel, and Weibull) will take longer to
find the maximum likelihood estimates as the estimators are not analytically known. They
are solved for by optimizing the likelihood.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 distname = string, optional distribution name to assume as the parent distribution for

the sample. Default value is 'normal'.

OUTPUTS:

The return value is a structure with up to 3 fields depending on the distribution (distname).

 a = first paramter.
 b = second parameter (if necessary).
 c = third parameter (if necessary).

Examples

params = parammle(x,'exponential')

See Also

chitest

 384

pctile1
Purpose

Returns the Pth percentile of a data vector.

Synopsis

pctile = pctile1(x,p)

Description

The return value (pctile) is the specified percentile of the sample. This is the function used
by the summary command.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 p = integer (1,100), percentile to calculate.

Examples

pctl = pctile1(x,50)

See Also

pctile2

 385

pctile2
Purpose

Returns the Pth percentile of a data vector.

Synopsis

pctile = pctile2(x,p)

Description

The return value (pctile) is the specified percentile of the sample. This is an alternative to
the pctile1 command used by the summary command.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 p = integer (1,100), percentile to calculate.

Examples

pctl = pctile2(x,50)

See Also

pctile1

 386

plotcqq
Purpose

Conditional quantile-quantile plot.

Synopsis

vals = plotcqq(x,distname,translate)

Description

Plots a conditional QQplot of a sample in vector (x). Conditional quantile plots as described
in the 1986 Kafadar and Spiegelman article “An alternative to ordinary q-q plots” in
Computational Statistics & Data Analysis are also available in this toolbox.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 distname = string, optional distribution name to assume as the parent distribution for

the sample. Default value is 'normal'.
 translate = scalar, axis translation.

OUTPUTS:

The return value is a structure with the following fields:

 q = quantile of the named distribution.
 u = values at which the quantiles were evaluated.

Examples

vals = plotcqq(x)
vals = plotcqq(x,'normal')
vals = plotcqq(x,'beta')

See Also

plotedf, plotkd, plotqq, plotsym

 387

plotedf
Purpose

Empirical distribution fuction plot.

Synopsis

plotedf(x)

Description

Displays a plot of the estimated cumulative distribution..

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

Examples

plotedf(x)

See Also

plotcqq, plotpct, plotqq, plotkd

 388

plotkd
Purpose

Kernel density plot.

Synopsis

plotkd(x,distname,kernel,userw,translate)

Description

Provides a kernel density plot of the input x and an overlay.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 distname = string, optional distribution name to assume as the parent distribution for

the sample. Default value is 'normal'.
 kernel = Integer between 1 and 7 indicating which kernel to use.
 1 - Bivwight
 2 - Cosine
 3 - Epanechnikov {default}
 4 - Gaussian
 5 - Parzen
 6 - Triangle

 userw = scalar, the optional window width to use in the kernel calculation. If not
specified, then the optimal window width is used according to the
calculation:

 min σ x,
p75 − p25

1.349
  

  
0.9
n







0.20

 translate = scalar, axis translation.

Examples

plotkd(x)
plotkd(x,'normal')

See Also

plotcqq, plotedf, plotqq, plotsym

 389

plotpct
Purpose

Percentile plot.

Synopsis

plotpct(x)

Description

Creates a percentile plot of the input (x). Plotted percentiles of centered and scaled x(i)
versus i/(N+1).

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

Examples

plotpct(x)

See Also

plotcqq, plotedf, plotqq, plotkd

 390

plotqq
Purpose

Quantile-quantile plot.

Synopsis

vals = plotqq(x,distname,options)

Description

Makes a quantile-quantile plot of a sample in the input (x) against the optional input
(distname). A 45 degree line is also plotted. The larger the deviation from the reference line
the more likely it is the input (x) does not come from the distribution (distname).

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 distname = string, optional distribution name to assume as the parent distribution for

the sample. Default value is 'normal'. If distname = 'select' or = '', the
user is prompted to select one of the valid distribution types to use. If
distname = 'auto' or 'automatic' then the best fitting distribution is used
as determined by DISTFIT.

 translate = scalar, axis translation.

OUTPUTS:

The return value is a structure with the following fields:

 q = quantile of the named distribution.
 u = values at which the quantiles were evaluated.

Options
 plots: ['none' | {'final'}] Governs plotting. If 'none', no plot is created

and the function simply returns the fit (see outputs).
 histogram: [{'off'} | 'on'] Governs the plotting of a histogram of the

measured and reference distribution below the main QQ plot.
 translate: [0] translate the x axis by this offset {default = 0}.
 varname: [''] label name to use on x-axis and title. Default is empty which

uses the actual input variable name.
 color: ['b'] symbol color to use for the plot(s).

Examples

vals = plotqq(x)

 391

vals = plotqq(x,'normal')
vals = plotqq(x,'beta')

See Also

plotedf, plotkd, plotcqq, plotsym

 392

plotsym
Purpose

Symmetry plot.

Synopsis

vals = plotsym(x)

Description

Plotted are the distances above the median versus the distances below the median. In other
words median - x(i)versus x(n+1-i) - median . If the distribution is symmetric, then all points
should lie on a diagonal line.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

Examples

plotsym(x)

See Also

plotedf, plotkd, plotcqq, plotqq

 393

qtool
Purpose

Interactive quantile-quantile plot gui.

Synopsis

qtool(x)

Description

Assesses how well a particular distribution fits the data (x).

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.

Examples

qtool(x)

Note: If a sample contains all negative values, then some of the overlay distributions will not
be drawn as they are not applicable. If only some of the sample is made up of negative

 394

values, these values are ignored in obtaining the maximum likelihood estimates and
subsequent results.

See Also

plotedf, plotkd, plotqq, plotsym

 395

resize
Purpose

Resizes arguments to same length.

Synopsis

[xout,varargout] = resize(x,varargin)

Description

Inputs (x) and (v) can be scalars, vectors, matrices, or multidimensional arrays. The function
will attempt to resize all inputs to the largest size of each dimension for any given input as
repeated multiple of itself. If input is a scalar, the function will return that scalar.

Examples

 (newx,newv1,newv2) = resize(x,v1,v2,v3);

original sizes are:
 x - 2x2x2
 v1 - 2x6
 v2 - 4x1
 v3 - 1x1
new sizes are:
 newx - 4x6x2
 newv1 - 4x6x2
 newv2 - 4x6x2
 newv3 - 1x1

See Also

repmat

 396

summary
Purpose

Summarizing statistics for sample data.

Synopsis

summ = sumary(x)

INPUTS:
 x = matrix (column vector) in which the sample data is stored.

Outputs:

The return value is a structure with fields:

 mean = mean of the sample
 std = standard deviation of the sample
 n = number of observations
 min = minimum value in the sample
 max = maximum value in the sample
 p10 = tenth percentile
 p25 = twenty-fifth percentile (lower quartile)
 p50 = fiftieth percentile (median)
 p75 = seventy-fifth percentile (upper quartile)
 p90 = nintieth percentile
 skew = skewness
 kurt = kurtosis

Examples

summ = summary(x);

See Also

means

 397

ttest1
Purpose

One sample t-test.

Synopsis

result = ttest1(x,mu,test)

Description

Calculates a one sample t-test for sample (x).

INPUTS:
 x = The name of a matrix (column vector) in which the sample data is

stored.
 mu = scalar, the null hypthesis value for the mean {default = 0}.
 ttest = [-1,{0},1] indicates what ttest is for:
 -1 - lower tail H0: mean(x) <= mean(y)
 0 - wo-tail H0: mean(x) ~= mean(y) {default}
 1 - upper tail H0: mean(x) >= mean(y)

OUTPUTS:

The output (result) a structure with the following fields:
 t = test statistic.
 p = probability value
 mean = mean of x
 var = variance of x
 n = length of x
 se = standard error
 df = degress of freedom
 hyp = hypothesis being tested

Examples

result = ttest1(x);
result = ttest1(x,mu);
result = ttest1(x,mu,test);

See Also

ttest2e, ttest2u, ttest2p

 398

ttest2e
Purpose

Two sample t-test (assuming equal variance).

Synopsis

result = ttest2e(x,y,test)

Description

Calculates a two sample t-test for samples (x) and (y) assuming equal variance.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 y = matrix (column vector) in which the sample data is stored.
 ttest = [-1,{0},1] indicates what ttest is for:
 -1 - lower tail H0: mean(x) <= mean(y)
 0 - wo-tail H0: mean(x) ~= mean(y) {default}
 1 - upper tail H0: mean(x) >= mean(y)

OUTPUTS:

The output (result) a structure with the following fields:
 t = test statistic.
 p = probability value
 mean1 = mean of x
 mean2 = mean of y
 var1 = variance of x
 var2 = variance of y
 n1 = length of x
 n2 = length of y
 pse = pooled standard error
 df = degress of freedom
 hyp = hypothesis being tested

 399

Examples

result = ttest2e(x,y);
result = ttest2e(x,y,test);

See Also

ttest1, ttest2u, ttest2p

 400

ttest2p

Purpose

Two sample paired t-test.

Synopsis

result = ttest2e(x,y,test)

Description

Calculates a two sample paired t-test for samples (x) and (y).

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 y = matrix (column vector) in which the sample data is stored.
 ttest = [-1,{0},1] indicates what ttest is for:
 -1 - lower tail H0: mean(x) <= mean(y)
 0 - wo-tail H0: mean(x) ~= mean(y) {default}
 1 - upper tail H0: mean(x) >= mean(y)

OUTPUTS:

The output (result) a structure with the following fields:
 t = test statistic.
 p = probability value
 mean = mean of x - y
 var = variance of x - y
 n = length of x - y
 se = standard error
 df = degress of freedom
 hyp = hypothesis being tested

Examples

result = ttest2p(x,y);
result = ttest2p(x,y,test);

See Also

ttest1, ttest2e, ttest2u

 401

ttest2u
Purpose

Two sample t-test (assuming unequal variance).

Synopsis

result = ttest2u(x,y,test,dfapp)

Description

Calculates a two sample t-test for samples (x) and (y) assuming unequal variance.

INPUTS:
 x = matrix (column vector) in which the sample data is stored.
 y = matrix (column vector) in which the sample data is stored.
 ttest = [-1,{0},1] indicates what ttest is for:
 -1 - lower tail H0: mean(x) <= mean(y)
 0 - wo-tail H0: mean(x) ~= mean(y) {default}
 1 - upper tail H0: mean(x) >= mean(y)
 dfapp = [{-1}, 1] indicates which degree of freedom calculation to use.
 -1 - indicates Welch's approximate degrees of freedom {default}
 1 - indicates Satterthwaite's approximate degrees of freedom

OUTPUTS:

The output (result) a structure with the following fields:
 t = test statistic.
 p = probability value
 mean1 = mean of x
 mean2 = mean of y
 var1 = variance of x
 var2 = variance of y
 n1 = length of x
 n2 = length of y
 pse = pooled standard error
 df = degress of freedom
 app = 'Satterthwaite' or 'Welch'
 hyp = hypothesis being tested

Examples

 402

result = ttest2u(x,y);
result = ttest2u(x,y,test);
result = ttest2e(x,y,test,dfapp);

See Also

ttest1, ttest2u, ttest2p

 403

Distribution Fitting Tool Set - Distribution
Functions

 404

betadf
Purpose

Beta distribution.

Synopsis

prob = betadf(function,x,a,b,options)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Beta distribution.

This distribution is commonly used to model activity time. In its usual form, the data must be
in (0,1), but this toolbox will allow both a location and scale parameter (in addition to the a
and b above). This may be symmetric or asymmetric.

() ()
1 11

0
, 1 d−−= −∫

baB a b u u u

() ()
()

11 1
,

−− −
=

bax x
f x

B a b

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (0,1).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real and nonnegative).
 b = shape parameter (real and nonnegative).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 405

Options

options is a structure array with the following fields:
 name: 'options', name indicating that this is an options structure,
 scale: {1}, scale for the ordinate, and
 offset: {0}, offset for the ordinate.

The default options structure can be retrieved using: options = betadf('options').

Examples

Cumulative:

>> prob = betadf('c', [0.85 0.9],1,2)
prob =

0.9775 0.9900

>> x = [0:0.01:1];
>> plot(x,betadf('c',x,1,2),'b-',x,betadf('c',x,0.5,0.5),'r-')

Density:

>> prob = betadf('d', 0.9, 1, 2)
prob =
0.2000

>> x = [0:0.01:1];
>> plot(x,betadf('d',x,1,2),'b-',x,betadf('d',x,0.5,0.5),'r-')

Quantile:

>> prob = betadf('q',[0.9775 0.9900]',1,2)
prob =
 0.8500
 0.9000

Random:

>> prob = betadf('r',[5 1],1,2)
prob =
 0.3791
 0.2549
 0.8169
 0.0216
 0.1516

 406

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 407

cauchydf
Purpose

Cauchy distribution.

Synopsis

prob = cauchydf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Cauchy distribution.

This distribution is equivalent to a t-distribution with zero degrees of freedom and is
symmetric.

From: http://www.brighton-webs.co.uk/distributions/cauchy.asp

(The Cauchy distribution is a symmetrical, and to use a technical term, heavy tailed. Heavy
tailed means that a high proportion of the population is comprised of extreme values.

There is no analytical definition of moment based properties (e.g. mean, variance etc.) thus
the parameters are typically described as the location parameter and a scale factor. The most
easily derived property is the median for this reason and for consistency with the rest of the
site, the parameters have been defined as the median and a scale factor.

The moment based properties derived from a set of random numbers do not provide any
useful information on the properties of the distribution.

The Cauchy distribution is also known as the Lorentzian Distribution.

An application of the Cauchy distribution is in software testing where it is necessary to use
datasets which contain a few extreme values which might trigger some adverse reaction.)

() (){ } 121
−

− = + 
x a

bf x bπ

() ()1 1
2 arctan −= + x a

bF x π

 408

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = median or location parameter (real).
 b = scale parameter (real and positive). Describes distribution of data around

the mode.

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

Examples

Cumulative:

>> x = [-5:0.1:5];
>> prob = cauchydf('c',x);
>> plot(x,prob), vline

>> x = [-8:0.1:8];
>> prob = cauchydf('c',x);
>> plot(x,prob), vline([0; cauchydf('q',[0.9 0.95])'])

Density:

>> prob = cauchydf('d',x);
>> plot(x,prob), vline

>> x = [-8:0.1:8];
>> prob = cauchydf('d',x);
>> plot(x,prob), vline([0; cauchydf('q',[0.9 0.95])'])

Quantile:

>> x2 = cauchydf('q',cauchydf('c',x));
>> plot(x,x2,'.'), dp

 409

Random:

>> prob = cauchydf('r',[4 1])
prob =
 0.0480
 -1.0204
 5.7400
 -0.2175

See Also

betadr, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 410

chidf
Purpose

Chi-squared distribution.

Synopsis

prob = chidf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.

The chi-squared distribution usually models data that are positive (such as the sum of
physical measurements). With integer degrees of freedom parameter v, it is equal to the sum
of v normally distributed variates. This toolbox does not require that the degrees of freedom
be integral and will ignore negative values in a sample. Chi-squared distributions have
variance equal to twice the mean.

()
() ()

()

2 /2

/2
exp - /2

2 /2

−

Γ
=

a

a
x x

a
f x

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (0,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = degrees of freedom parameter (positive integer).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 411

Examples

Cumulative:

>> prob = chidf('c',[3.7942 4.6052],2)
prob =
 0.8500 0.9000

>> x = 0:0.1:8;
>> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r')

Density:

>> prob = chidf('d',[3.7942 4.6052],2)
prob =
 0.0750 0.0500

>> x = 0:0.1:8;
>> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r')

Quantile:

>> prob = chidf('q',[0.85 0.9],2)
prob =
 3.7942 4.6052

Random:

>> prob = chidf('r',[4 1],2)
prob =
 0.1023
 2.9295
 0.9990
 1.4432

See Also

betadr, cauchydf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 412

expdf
Purpose

Exponential distribution.

Synopsis

prob = expdf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for an Exponential distribution.

The exponential distribution is commonly used to measure lifetime data (time to failure of
light bulbs, time to failure of a particular resistor on a circuit board, etc.). It may also
measure time between events. The distribution is skewed to the right. The variance is equal
to the square of the mean in this distribution. Negative values in the sample are ignored.

() ()exp= −f x a ax

() ()1 exp= − −F x ax

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = mean/scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 413

Examples

Cumulative:

>> prob = expdf('c',[3.7942 4.6052],2)
prob =
 0.8500 0.9000

>> x = 0:0.1:8;
>> plot(x,expdf('c',x,2),'b',x,expdf('c',x,0.5),'r')

Density:

>> prob = expdf('d',[3.7942 4.6052],2)
prob =
 0.0750 0.0500

>> x = 0:0.1:8;
>> plot(x,expdf('d',x,2),'b',x,expdf('d',x,0.5),'r')

Quantile:

>> prob = expdf('q',[0.85 0.9],2)
prob =
 3.7942 4.6052

Random:

>> prob = expdf('r',[4 1],2)
prob =
 0.3271
 2.3940
 0.9508
 3.9324

See Also

betadr, cauchydf, chidf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 414

gammadf
Purpose

Gamma distribution.

Synopsis

prob = gammadf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Gamma distribution.

This distribution is commonly used to measure lifetime data (like the exponential
distribution). The variance may be smaller, equal, or larger than the mean for this distribution
and may also be symmetric or asymmetric. Negative values in the sample are ignored.

() () ()
()

1
/ exp /

−
−

Γ
=

b
x a x a

a bf x

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (0,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real and nonnegative).
 b = shape parameter (real and nonnegative).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 415

Examples

Cumulative:

>> prob = gammadf('c',0.99,0.5)
prob =
 0.8406

>> x = [0:0.1:10];
>> plot(x,gammadf('c',x,2),'b-',x,gammadf('c',x,0.5),'r-')

Density:

>> prob = gammadf('d',0.99,0.5)
prob =
0.2107

>> x = [0:0.1:10];
>> plot(x,gammadf('d',x,2),'b-',x,gammadf('d',x,0.5),'r-')

Quantile:

>> prob = gammadf('q',0.99,0.5)
prob =
 3.3174

Random:

>> prob = gammadf('r',[4 1],2)
ans =
 0.4549
 0.4638
 0.3426
 0.5011

See Also

betadr, cauchydf, chidf, expdf, gumbeldf, laplacedf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 416

gumbeldf
Purpose

Gumbel distribution.

Synopsis

prob = gumbeldf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Gumbel distribution.

This distribution is also known as the Type I extreme value distribution. It is an alternative to
the Weibull distribution.

() () ()

() () ()

/ 2 2 /2
2

/2
2 2

/

1

 
  

 
  

−+

+

Γ

Γ Γ +
=

a aa b

a ba b a
b

a b x

x
f x

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = mode/location parameter (real).
 b = scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 417

Examples

Cumulative:

>> prob = gumbeldf('c',0.99,0.5,1)
prob =
 0.5419
>> x = [0:0.1:10];
>> plot(x,gumbeldf('c',x,2),'b-',x,gumbeldf('c',x,0.5),'r-')

Density:

>> prob = gumbeldf('d',0.99,0.5,1)
prob =
0.3320

>> x = [0:0.1:10];
>> plot(x,gumbeldf('d',x,2),'b-',x,gumbeldf('d',x,0.5),'r-')

Quantile:

>> prob = gumbeldf('q',0.99,0.5,1)
prob =
 5.1001

Random:

>> prob = gumbeldf('r',[4 1],2,1)
ans =

 3.8437
 2.6508
 2.3566
 4.2479

See Also

betadr, cauchydf, chidf, expdf, gammadf, laplacedf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 418

laplacedf
Purpose

Laplace distribution.

Synopsis

prob = laplacedf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Laplace distribution.

This distribution is a symmetric distribution also known as the double exponential
distribution. It is more peaked than the normal distribution Leptokurtic rather than
mesokurtic means that it has a sharper peak at the mean in the density plot than a similar
normal density

() ()1
2 exp −= − x a

b bf x

() [] () [] ()1 1
2 2exp 1 exp− −= − Ι < + − − Ι ≥a x x a

b bF x x a x a

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (0,1).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real and positive).
 b = shape parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 419

Examples

Cumulative:

>> prob = laplacedf('c',0.99,1,2)
prob =
 0.4975

>> x = [0:0.1:10];
>> plot(x,laplacedf('c',x,1,2),'b-',x,laplacedf('c',x,3,7),'r-')

Density:

>> prob = laplacedf('d',0.99,1,1)
prob =
 0.4950

>> x = [0:0.1:10];
>> plot(x,laplacedf('d',x,2,1),'b-',x,laplacedf('d',x,0.5,1),'r-')

Quantile:

>> prob = laplacedf('q',0.99,0.5,1)
prob =
 4.4120

Random:

>> prob = laplacedf('r',[4 1],2,1)
ans =
 0.4549
 0.4638
 0.3426
 0.5011

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, logisdf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 420

logisdf
Purpose

Logistic distribution.

Synopsis

prob = logisdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Logistic distribution.

This distribution is a common alternative to the normal distribution. It is symmetric and
many times used when data represents midpoints of interval data (data collected in such a
way that a range instead or an exact value is collected). The variance may be smaller, equal,
or larger than the mean for this distribution.

() ()

()
2

exp /

1 exp /

 
  

      

− −

+ − −
=

x a b

b x a b
f x

() (){ }1 1
2 21 tanh /= + −  F x x a b

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = mean parameter (real).
 b = standard deviation parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 421

Examples

Cumulative:

>> prob = logisdf('c',0.99,1,2)
prob =
 0.4988

>> x = [0:0.1:10];
>> plot(x,logisdf('c',x,1,2),'b-',x,logisdf('c',x,3,.5),'r-')

Density:

>> prob = logisdf('d',0.99,1,2)
prob =
 0.1250

>> x = [0:0.1:10];
>> plot(x,logisdf('d',x,2,1),'b-',x,logisdf('d',x,0.5,1),'r-')

Quantile:

>> prob = logisdf('q',0.99,1,2)
prob =
 10.1902

Random:

>> prob = logisdf('r',[4 1],2,1)
ans =
 0.4549
 0.4638
 0.3426
 0.5011

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 422

lognormdf
Purpose

Lognormal distribution.

Synopsis

prob = lognormdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Lognormal distribution.

This distribution may be used to characterize data that are themselves products or attribute
data (square footage, acreage, etc.). The distribution is skewed to the right, but for very large
means, may look nearly symmetric. Negative values in the sample are ignored.

()
()

()2
21/2

log1
22

exp − −  
 
  

= x a
bxb

f x
π

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = mean parameter (real and positive).
 b = standard deviation parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 423

Examples

Cumulative:

>> prob = lognormdf('c',0.99,1,2)
prob =
 0.3068

>> x = [0:0.1:10];
>> plot(x,lognormdf('c',x,1,2),'b-',x,lognormdf('c',x,3,7),'r-')

Density:

>> prob = lognormdf('d',0.99,1,1)
prob =
 0.2420

>> x = [0:0.1:10];
>> plot(x,lognormdf('d',x,2,1),'b-',x,lognormdf('d',x,0.5,1),'r-')

Quantile:

>> prob = lognormdf('q',0.99,0.5,1)
prob =
 16.8837

Random:

>> prob = lognormdf('r',[4 1],2,1)
ans =
 13.5191
 4.4913
 19.8518
 8.7712

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 424

normdf
Purpose

Normal / Gaussian distribution.

Synopsis

prob = normdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution.

This distribution is used for many data types including physical attributes and sums of
quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than
the mean.

() ()
()2

21/ 2
1

22
exp − 

  
= − x a

bb
f x

π

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = mode/location parameter (real).
 b = scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 425

Examples

Cumulative:

>> prob = normdf('c',[1.9600 2.5758])
ans =
 0.9750 0.9950

>> x = -5:.1:5;
>> plot(x,normdf('c',x,0,1)), vline([0 ; normdf('q',[0.975; 0.995],0,1)])

Density:

>> prob = normdf('d',[1.9600 2.5758],0,1)
ans =
 0.0584 0.0145

>> x = -5:.1:5;
>> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)])

Quantile:

>>
ans =
 1.9600 2.5758

Random:

>> prob = normdf('r',[4 1],0,1)
ans =
 -0.4326
 -1.6656
 0.1253
 0.2877

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, paretodf, raydf, triangledf, unifdf, weibulldf

 426

paretodf
Purpose

Pareto distribution.

Synopsis

prob = paretodf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Pareto distribution.

This distribution is commonly used to model financial data (especially insurance data). It is
skewed to the right and the variance may be smaller, equal, or larger than the mean. Negative
values in the sample are ignored.

() 1/ += b bf x ba x

() ()1 /= − bF x a x

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real and positive).
 b = shape parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 427

Examples

Cumulative:

>> prob = paretodf('c',2,1,2)
prob =
 0.7500

>> x = [0:0.1:10];
>> plot(x,paretodf('c',x,1,2),'b-',x,paretodf('c',x,3,7),'r-')

Density:

>> prob = paretodf('d',2,1,1)
prob =
 0.2500

>> x = [0:0.1:10];
>> plot(x,paretodf('d',x,2,1),'b-',x,paretodf('d',x,0.5,1),'r-')

Quantile:

>> prob = paretodf('q',0.5,1,2)
prob =
 1.4142

Random:

>> prob = paretodf('r',[4 1],2,1)
ans =
 40.1037
 2.6012
 5.0870
 3.8909

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, raydf, triangledf, unifdf, weibulldf

 428

raydf
Purpose

Rayleigh distribution.

Synopsis

prob = raydf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Rayleigh distribution.

This distribution is commonly used to model lifetime data (time to failure). It is skewed to
the right and the variance is usually larger than the mean (though it can be smaller or equal).
Negative values in the sample are ignored.

() () ()2 2 2/ exp / 2 = − f x x a x a

() ()2 21 exp / 2 = − − F x x a

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real).

Note: If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to
the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 429

Examples

Cumulative:

>> prob = raydf('c',2,1)
prob =
 0.8647

>> x = [0:0.1:10];
>> plot(x,raydf('c',x,1),'b-',x,raydf('c',x,3),'r-')

Density:

>> prob = raydf('d',2,1)
prob =
 0.2707

>> x = [0:0.1:10];
>> plot(x,raydf('d',x,2),'b-',x,raydf('d',x,0.5),'r-')

Quantile:

>> prob = raydf('q',0.5,1)
prob =
 1.1774

Random:

>> prob = raydf('r',[4 1],2)
ans =
 4.2135
 3.3893
 2.2085
 0.3865

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, triangledf, unifdf, weibulldf

 430

tdf
Purpose

Student's t distribution.

Synopsis

prob = tdf(function,x,a)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Student's t distribution.

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (0,1).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real)

Note: If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to
the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf

 431

triangledf
Purpose

Triangle distribution.

Synopsis

prob = triangledf(function,x,a,b,c)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Triangle distribution.

This distribution is usually used for rough models of data and is triangular in shape (hence
the name).

() ()
()() () ()

()() ()2 2− −
− − − −= Ι ≤ ≤ + Ι ≤ ≤x a b x

b a c a b a b cf x a x c c x b

() ()
()() () ()

()() ()
2 2

1− −
− − − −= Ι ≤ ≤ + − Ι ≤ ≤x a b x

b a c a b c c aF x a x c c x b

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored (-inf,inf).
 quantile - interval (0,1).
 random - vector indicating the size of the random matrix to create.
 a = "min" parameter (real, <= mode).
 b = "max" parameter (real, >= mode).
 c = "mode" parameter (real, >= min and <=max).

Note: If inputs (x, a, b, and c) are not equal in size, the function will attempt to resize all
inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but will convert them to NaN.

 432

Examples

Cumulative:

>> prob = triangledf('c',2,1,3,2)
prob =
 0.5000

>> x = [0:0.1:10];
>> plot(x,triangledf('c',x,1,3,2),'b-',x,triangledf('c',x,1,5,3),'r-')

Density:

>> prob = triangledf('d',2,1,3,2)
prob =
 1.0000

>> x = [0:0.1:10];
>> plot(x,triangledf('d',x,0,3,0),'b-',x,triangledf('d',x,1,3,2),'r-')

Quantile:

>> prob = triangledf('q',0.5,1,3,2)
prob =
 2.0000

Random:

>> prob = triangledf('r',[4 1],1,3,2)
ans =
 2.2817
 1.9431
 2.1094
 2.2585

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, raydf, unifdf, weibulldf

 433

unifdf
Purpose

Uniform distribution.

Synopsis

prob = unifdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Uniform distribution.

This distribution is used when all possible outcomes of an experiment are equally likely. The
distribution is flat with no peak.

() 1
−= b af x

() −
−= x a

b aF x

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = "min" parameter (real).
 b = "max" parameter (real and >= min).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 434

Examples

Cumulative:

>> prob = unifdf('c',1.5,1,2)
prob =
 0.5000

>> x = [0:0.1:10];
>> plot(x,unifdf('c',x,1,2),'b-',x,unifdf('c',x,3,7),'r-')

Density:

>> prob = unifdf('d',1.5,1,2)
prob =
 1.0000

>> x = [0:0.01:10];
>> plot(x,unifdf('d',x,1,3),'b-',x,unifdf('d',x,1,4),'r-')
>> ylim([0 1])

Quantile:

>> prob = unifdf('q',0.5,1,2)
prob =
 1.5

Random:

>> prob = unifdf('r',[4 1],2,1)
ans =
 1.9218
 1.7382
 1.1763
 1.4057

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, raydf, triangledf, weibulldf

 435

weibulldf
Purpose

Weibull distribution.

Synopsis

prob = weibulldf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function
(density, pdf), quantile (inverse of cdf), or random numbers for a Weibull distribution.

This distribution is used to model lifetime data (time to failure). It is skewed to the right, but
may appear symmetric for data in which there are relatively no small outcomes. Negative
values in the sample are ignored.

() () ()1 / exp /−  = − 
bb bf x bx a x a

() ()1 exp / = − − 
bF x x a

INPUTS:
 function = [{'cumulative'} | 'density' | 'quantile' | 'random'], defines the

functionality to be used. Note that the function recognizes the first letter
of each string so that the string could be: ['c' | 'd' | 'q' | 'r'].

 x = matrix in which the sample data is stored, in the interval (-inf,inf).
 for function=quantile - matrix with values in the interval (0,1).
 for function=random - vector indicating the size of the random matrix to

create.
 a = scale parameter (real).
 b = shape parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs
to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed
but such values will return NaN in the results.

 436

Examples

Cumulative:

>> prob = weibulldf('c',2,1,2)
prob =
 0.9817

>> x = [0:0.1:10];
>> plot(x,weibulldf('c',x,1,2),'b-',x,weibulldf('c',x,3,7),'r-')

Density:

>> prob = weibulldf('d',2,1,1)
prob =
 0.1353

>> x = [0:0.1:10];
>> plot(x,weibulldf('d',x,2,1),'b-',x,weibulldf('d',x,0.5,1),'r-')

Quantile:

>> prob = weibulldf('q',0.5,1,2)
prob =
 0.8326

Random:

>> prob = weibulldf('r',[4 1],2,1)
ans =
 5.4812
 4.9755
 1.0562
 4.4820

See Also

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf,
lognormdf, normdf, paretodf, raydf, triangledf, unifdf

