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Eigenvector Research, Inc., Software License Agreement 

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THIS 
SOFTWARE. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE 
“LICENSEE” - EITHER AN INDIVIDUAL OR AN ENTITY) AND EIGENVECTOR RESEARCH, INC., (“EVRI”) 
CONCERNING THE PLS_TOOLBOX COMPUTER SOFTWARE CONTAINED HEREIN (“PROGRAM”), AND THE 
ACCOMPANYING USER DOCUMENTATION. 

BY USING THE SOFTWARE, YOU ACCEPT THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO 
DO SO, RETURN THE UNOPENED SOFTWARE IMMEDIATELY FOR A FULL REFUND.  

LICENSE GRANT: This license permits licensee to install and use one copy of the Program on a single computer. If 
licensee has multiple licenses for the Program, then Licensee may at any time have as many copies of the Program and its 
Electronic Documentation in use as it has licenses. “Use” means that a copy is loaded into temporary memory or installed 
into the permanent memory of a computer, except that a copy installed on a network server for the sole purpose of 
distribution to other computers is not in “use”. Licensee is responsible for limiting the number of possible concurrent users 
to the number licensed. Each copy of the Program may be used on a backup computer (when the original is disabled) or a 
replacement computer. Replacements may be either permanent or temporary, at the same or different site as the original 
computer. The Hardcopy documentation provided with the Program may not be copied. 

Licensee shall use the Program only for its internal operations. “Internal operations” shall include use of the Program in the 
performance of consulting or research for third parties who engage Licensee as an employee or independent contractor. 
Licensee may allow use of the Program by employees, consultants, students and/or (in the case of individual licensees) 
colleagues, but Licensee may not make the Program available for use by third parties generally on a “time sharing” basis. 

Licensee may make copies of the Program only for backup or archival purposes. All copies of Program, Electronic 
Documentation and Hardcopy Documentation shall contain all copyright and proprietary notices in the originals. Licensee 
shall not re-compile, translate or convert “M-files” contained in the Program for use with any software other than 
MATLAB®, which is a product of The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098, without express 
written consent of EVRI. Licensee shall not re-distribute “M-files” contained in the Program, or any derivative thereof, 
without express written consent of EVRI.  

Licensee shall take appropriate action by instruction, agreement, or otherwise with any persons permitted access to the 
Program, so as to enable Licensee to satisfy the obligations under this agreement. 

TERM OF AGREEMENT. This Agreement shall continue until terminated by EVRI or Licensee as provided below. 

TERMINATION. EVRI may terminate this license by written notice to Licensee if Licensee (a) breaches any material 
term of this Agreement, (b) fails to pay the amount charged for this license within Thirty (30) days after the date due, or (c) 
ceases conducting business in the normal course, becomes insolvent or bankrupt, or avails itself of or becomes subject to 
any proceedings pertaining to insolvency or protection of creditors. Licensee may terminate this Agreement at any time by 
written notice to EVRI. Licensee shall not be entitled to any refund if this Agreement is terminated, except of license fees 
paid for any Licensed Product for which the testing period has not expired at the time of termination. Upon termination, 
Licensee shall promptly return all copies of the Programs and Documentation in Licensee’s possession or control, or 
promptly provide written certification of their destruction. 

LIMITED WARRANTY; LIMITATION OF REMEDIES. For a period of ninety (90) days from delivery, EVRI 
warrants that (a) the media shall be free of defects, or replaced at no cost to Licensee, and (b) the Program will conform in 
all material respects to the description of such Program’s operation in the Documentation. In the event that the Program 
does not materially operate as warranted, licensees exclusive remedy and EVRI’s sole liability under this warranty shall be 
(a) the correction or workaround by EVRI of major defects within a reasonable time or (b) should such correction or 
workaround prove neither satisfactory nor practical, termination of the License and refund of the license fee paid to EVRI 
for the Program. THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A PARTICULAR PURPOSE. EVRI SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOST PROFITS. Licensee accepts 
responsibility for its use of the Program and the results obtained therefrom.  
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LIMITATION OF REMEDIES AND LIABILITY. The remedies described in this License Agreement are your exclusive 
remedies and EVRI’s entire liability. IN NO EVENT WILL EVRI BE LIABLE TO YOU FOR ANY DAMAGES, 
INCLUDING LOST PROFITS, LOST BENEFITS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, 
RESULTING FROM THE USE OF OR INABILITY TO USE THE PROGRAM OR ANY BREACH OF WARRANTY. 
EVRI’s LIABILITY TO YOU FOR ACTUAL DAMAGES FOR ANY CAUSE WHATSOEVER, AND REGARDLESS 
OF THE FORM OF ACTION, WILL BE LIMITED TO THE MONEY PAID FOR THE PROGRAM OBTAINED FROM 
EVRI THAT CAUSED THE DAMAGES OR THAT IS THE SUBJECT MATTER OF, OR IS DIRECTLY RELATED 
TO, THE CAUSE OF ACTION. Some states do not allow the exclusion or limitation of incidental or consequential 
damages, so the above limitation may not apply to you. 

GENERAL PROVISIONS. Licensee may not assign this License without written consent of EVRI, except to an affiliate, 
subsidiary or parent company of Licensee. Should any act of Licensee purport to create a claim. lien, or encumbrance on 
any Program, such claim, lien, or encumbrance shall be void. All provisions regarding indemnification, warranty, liability 
and limits thereon, and protection of proprietary rights and trade secrets, shall survive termination of this Agreement, as 
shall all provisions regarding payment of amounts due at the time of termination. Should Licensee install the Programs 
outside the United States, Licensee shall comply fully with all applicable laws and regulations relating to export of technical 
data. This Agreement contains the entire understanding of the parties and may be modified only by written instrument 
signed by both parties. 

PAYMENT: Payment is due in United States currency within thirty days of receipt of the Program. Absent appropriate 
exemption certificates(s), Licensee shall pay all taxes. 

GOVERNMENT LICENSEES. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S. 
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer 
Software clause at DFARS 52.227-7013. 

Licensor is Eigenvector Research, Inc., 3905 West Eaglerock Drive, Wenatchee, WA 98801.  
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Formats and Conventions 
The manual for the PLS_Toolbox uses a format consistent with that used for MATLAB. For 
additional information on usage see the main PLS_Toolbox manual. The following format is 
used in the Reference section: 

Purpose  Provides short concise descriptions of a PLS_Toolbox command or function. 

Synopsis Shows the input/output format of the command or function. 

Description Describes what the command or function does and any rules or restrictions 
that apply. 

Examples Provides examples of how the command or function can be used. 

Options Describes advanced options of the command or function. 

Algorithm Describes algorithms and routines used within the command or function. 

See Also Refers to other related commands or functions in the PLS_Toolbox. 

and the following conventions: 

Monospace Commands, function names, and screen displays; for example, pca. 

Italics Book titles, names of sections in this book, MATLAB toolbox names, and for 
introduction of new terms; for example, Chemometrics. 

Monospace Optional input variables from PLS_Toolbox functions. 

Routines in the PLS_Toolbox follow the convention of having samples in rows and variables 
in columns. 
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abline 
Purpose 

Adds a line on the current axes with a given slope and intercept. 

Synopsis 
 
h = abline(slope,intercept) 
h = abline(slope,intercept,...)  %additional linestyle information 

Description 

ABLINE draws a line on on an existing axes with a given slope, slope, and intercept, 
intercept, using the existing x-axis range for values. If a 3D plot is shown, slope and 
intercept can be 2-element vectors describing the slope and intercept of the line in the y and z 
dimensions. Optional line style information can also be included. For more information on 
linestyle information, see the manual page on the line command. The handle of the new 
line object is returned. 

Examples 

abline( 3, -1, 'color', 'r', 'linestyle', '--') 

plots a dashed red line with a slope of 3 and an intercept of -1 on the axes. 

See Also 

dp, hline, line, vline 
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alignmat 
Purpose 

Alignment of matrices and N-way arrays 

Synopsis 
 
[bi,itst] = alignmat(amodel,b); 
[bi,itst] = alignmat(a,b,nocomp); 

Description 

In some cases, data arrays require alignment to aid the performance of the three-way (e.g. 
GRAM, or PARAFAC) or unfold models such as MPCA. For example, sometimes GC peaks 
or data from batch operations can be shifted on a sample-to-sample basis (each sample is a 
Mb by N matrix). In these cases, it is advantageous to choose a sub-matrix of a single matrix 
A as a standard and find the sub-matrix of subsequent samples B that best align or match the 
standard matrix. It is also possible to use a model of one or more standard matrices Amodel 
and find the sub-matrix of subsequent samples B that best align or match the model. In the 
latter case, it is also possible to find the sub-array of B that best aligns with the model of a N-
way data set (Amodel). This can be performed along multiple modes using ALIGNMAT. 

ALIGNMAT finds the subarray of b, bi, that most matches a using two different algorithms. 
For input: 
 
[bi,itst] = alignmat(amodel,b); 

the sub-array bi is found using a projection method. In this case, bi is the sub-array of b that 
has the lowest residuals on a model of a called amodel. Models for amodel are standard 
model structures from PCA, PCR, GRAM, TLD, or PARAFAC. Input b can be class 
"double" or "dataset" and must have the same number of modes/dimensions as a with each 
element of size(b) ≥ size(a). Alignment is performed for modes with size(b) > 
size(a). 

For input: 
 
[bi,itst] = alignmat(a,b,ncomp); 

both a and b can be class "double" or "dataset", but both are two-way arrays (matrices). For a 
M by N then b must be Mb by N where Mb ≥ M (when Mb = M no alignment is performed). The 
output bi is the sub-array of b that best matches the matrix a. Optional input ncomp is a 
scalar of the number of components to use in the decomposition {default: ncomp = 1}. 

Output bi is an array of class "double", itst is a cell array containing the indices of b that 
match bi. Note that since interpolation is used the indices in itst are not in general integers. 
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For the projection method, Amodel is a model of array A. This can be a model from PCA, 
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This can be used to find the data “cube” within N-way 
arrays. 

In the figure, this is represented as having each of the M 
by N sub-matrices of B projected onto the model of the 
M by N model of A. Note that in the figure that the size 

of B is Mb by Nb with Mb>M and Nb>N. 

The projection method was presented in Gallagher, N.B. and Wise, B.M., “Standardization 
for Three-Way Analysis”, TRICAP 2000: Three-way Methods in Chemistry and Psychology, 
Hvedholm Castle, Faaborg, Denmark, July (2000). In that study, it was found that the 
projection method was faster and more robust than the SVD-based algorithm discussed 
below. 

In the SVD method, the standard matrix A and a sub-matrix of B, Bi, are aumented and a 
singular value decomposition of the result is performed such that [u,s,v] = 
svd([AMxN|BiMxNb]). The sub-matrix is incremented and the SVD is performed again. The sub-
matrix that minimizes the rank is selected as 
matching best. The objective function is 
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algorithm N and Nb do not have to be equal. The 
algorithm is discussed in Prazen, et al., Anal. 
Chem., 70, 218-225, 1998. 

See Also 

analysis, gram, parafac, pca, tld 
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alignpeaks 
Purpose 

Calibrates wavelength scale using standard peaks. 

Synopsis 
 
s = alignpeaks(x0,x1,ax,options) 
y = alignpeaks(s,y1) 

Description 

ALIGNPEAKS calibrates a wavelength scale using standard peak positions. Ideally, the axis 
scale x0 would apply to a single instrument at time t = 0 and t > 0 or for two different 
instruments. However, x1 at t > 0 doesn't typically match x0 at t = 0 even though the 
numbers in the scales are identical. The result is that a plot of (x0,y0) and (x0,y1) appear 
shifted from one another. 

The inputs to ALIGNPEAKS are x0 a 1xK vector containing the axis locations of K peaks on 
the standard instrument at t = 0 (e.g., the true wavelengths), x1 a 1xK vector containing the 
axis locations of the corresponding peaks on the field / test instrument at t > 0 (e.g., the peak 
positions on the field instrument), and ax a 1xN vector containing the axis scale where N > 
K. ALIGNPEAKS finds a polynomial fit between x0 and x1 and outputs the result in the 
structure array s. The output y is a fit of x1. 

Options 

Optional input options is a structure array with the following fields: 
 name: 'options', name indicating that this is an options structure, 
 plots:  [ 'none' | {'final'} ]  governs level of plotting, and 
 order:  [ {2} ] integer giving the polynomial order. 

Executing options = alignpeaks('options'); gives an empty options structure. 

Example 

A measurements at t = 0 gives a spectrum y0 with axis ax, and measurements at t > 0 of the 
same sample yields a spectrum y1 with the same axis ax but with peaks shifted. Therefore 

 
plot(ax,y0,'b',ax,y1,'r') 

shows a shift in the peaks. The peak positions at t = 0 are listed in x0 and the peak positions 
at t > 0 are listed in x1. The polynomial fit is given by 

 
s    = alignpeaks(x0,x1,ax); 



 10 

and the transformed spectrum is obtained with 
 
y10  = alignpeaks(s,y1); 

so that 
 
plot(ax,y0,'b',ax,y1,'r') 

shows less of a peak shift. See alignpeaksdemo. 

See Also 

alignmat, alignspectra, registerspec, stdgen 
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alignspectra 
Purpose 

Calibrates wavelength scale using a standard spectrum. 

Synopsis 
 
[s,y] = alignspectra(x0,y0,y1,win,mx2,options) 
y  = alignspectra(s,y1); 

Description 

ALIGNSPECTRA calibrates a wavelength scale using a standard spectrum and a piece-wise 
shifting that maximizes correlation between windows on the standard spectrum to windows 
on the test spectrum. Ideally, the axis scale would be the same for all time and all 
instruments, however it can be necessary to calibrate the axis scale. This calibration is often 
done somewhat manually using known standard peak positions (see ALIGNPEAKS). In the 
ALIGNSPECTRA function a standard is measured on both the standard instrument with 
spectrum y0 and the field instrument with spectrum y1. The transform is based on a 
polynomial fit of the center channel of a window of channels (window size win) on the field 
instrument that best correlates with a similar sized window of channels on the standard 
instrument. The window on the field instrument is allowed to shift a maximum of mx2 
channels. 

The inputs to ALIGNSPECTRA are x0 a 1xN vector containing the axis scale of the standard 
instrument at t = 0 (e.g., the true wavelengths), y0 a 1xN spectrum measured on the standard 
instrument at t = 0, y1 a 1xN spectrum measured on the field instrument at t > 0, a window 
width of channels on the axis scale win, and the maximum number of channels to shift mx2. 

Options 

Optional input options is a structure array with the following fields: 
 name: 'options', name indicating that this is an options structure. 
 plots:  [ 'none' | {'final'} ] governs level of plotting. 
 interpolate: [ 'none' | {'linear'} | 'cubic'] dictates the interpolation scheme 

used when shifting the window. 'none' uses the coarse scale given by 
x0. Using other interpolation schemes can significantly increase the time 
required for computation (the algorithm calls the function INTERP1). 

 order:  [ {2} ] integer giving the polynomial order. 

Executing options = alignspectra('options'); gives an empty options structure. 

Example 

A measurements at t = 0 gives a spectrum y0 with axis ax, and measurements at t > 0 of the 
same sample yields a spectrum y1 with the same axis ax but with peaks shifted. Therefore 
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plot(ax,y0,'b',ax,y1,'r') 

shows a shift in the peaks. The peak positions at t = 0 are listed in x0 and the peak positions 
at t > 0 are listed in x1. The polynomial fit is given by 

 
s       = alignspectra(x0,y0,y1,25,7); %or 
[s,y10] = alignspectra(x0,y0,y1,25,7); 

and the transformed spectrum is obtained with 
 
y10  = alignspectra(s,y1); 

so that 
 
plot(ax,y0,'b',ax,y1,'r') 

shows less of a peak shift. See alignspectrademo. 

See Also 

alignmat, alignpeaks, registerspec, stdgen 
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als 
Purpose 

Alternating Least Squares computational engine for multivariate curve resolution (MCR). 

Synopsis 
 
[c,s] = als(x,c0,options); 

Description 

ALS decomposes a matrix X as CS such that X = CS + E where E is minimized in a least 
squares sense.  

Inputs are the matrix to be decomposed x (size m by n), and the initial guess c0. If c0 is size m 
by k, where k is the number of factors, then it is assumed to be the initial guess for C. If c0 is 
size k by n then it is assumed to be the initial guess for S (If m=n then, c0 is assumed to be 
the initial guess for C).  

An optional input options is described below.  

The outputs are the estimated matrix c (m by k) and s (k by n). Usually c is a matrix of 
contributionss and s is a matrix of spectra. The function 

 
[c,s] = als(x,c0)  

will decompose x using an non-negatively constrained alternating least squares calculation. 
To include other constraints, use the options described below.  

Note that if no non-zero equality constraints are imposed on a factor the spectra are 
normalized to unit length. This can lead to significant scaling differences between factors 
that have non-zero equality constraints and those that do not. 
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Options 
      display:  [ 'off' | {'on'} ]   governs level of display to command window, 
 plots:  [ 'none' | {'final'} ]  governs level of plotting, 
         ccon:  [ 'none' | 'reset' | {'fastnnls'} ] non-negativity on contributionss,  

 (fastnnls = true least-squares solution) 
         scon:  [ 'none' | 'reset' | {'fastnnls'} ] non-negativity on spectra,   

 (fastnnls = true least-squares solution) 
           cc:  [ ] contributions equality constraints, must be a matrix with M rows and 

up to K columns with NaN where equality constraints are not applied 
and real value of the constraint where they are applied. If fewer than K 
columns are supplied, the missing columns will be filled in as 
unconstrained, 

     ccwts:  [inf] a scalar value or a 1xK vector with elements corresponding to 
weightings on constraints (0, no constraint, 0<wt<inf imposes constraint 
"softly", and inf is hard constrained). If a scalar value is passed for 
ccwts, that value is applied for all K factors, 

           sc:  [ ] spectra equality constraints, must be a matrix with N columns and up 
to K rows with NaN where equality contraints are not applied and real 
value of the constraint where they are applied.  If fewer than K rows are 
supplied, the missing rows will be filled in as unconstrained. 

        scwts:  [inf] weighting for spectral equality constraints (see ccwts) 
         sclc:  [ ] contributions scale axis, vector with M elements otherwise 1:M is 

used, 
         scls:  [ ]  spectra scale axis, vector with N elements otherwise 1:N is used, 
         condition:  [{'none'}| 'norm' ] type of conditioning to perform on S and C before 

each regression step. 'norm' conditions each spectrum or contributions to 
its own norm. Conditioning can help stabilize the regression when 
factors are significantly different in magnitude. 

         tolc:  [ {1e-5} ]  tolerance on non-negativity for contributionss, 
         tols:  [ {1e-5} ]  tolerance on non-negativity for spectra, 
        ittol:  [ {1e-8} ]  convergence tolerance, 
        itmax:  [ {100} ]   maximum number of iterations, 
      timemax:  [ {3600} ]  maximum time for iterations, 
     rankfail:  [ 'drop' |{'reset'}| 'random' | 'fail' ]  how are rank deficiencies handled: 
                  drop   - drop deficient components from model 
                  reset  - reset deficient components to initial guess 
                 random - replace deficient components with random vector 
                  fail   - stop analysis, give error 
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Examples 

To decompose a matrix x without non-negativity constraints use: 
 
options = als(‘options’); 
options.ccon = ‘none’; 
options.scon = ‘none’; 
[c,s] = als(x,c0,options); 

The following shows an example of using soft-constraints on the second spectral component 
of a three-component solution assuming that the variable softs contains the spectrum to 
which component two should be constrained. 

 
[m,n] = size(x); 
options = als(‘options’); 
options.sc = NaN*ones(3,n);   %all 3 unconstrained 
options.sc(2,:) = softs;      %constrain component 2 
options.scwts = 0.5;          %consider as ½ of total signal in X 
[c,s] = als(x,c0,options); 

See Also 

mcr, parafac, pca 



 16 

analysis 
Purpose 

Graphical user interface for data analysis.  

Synopsis 
 
analysis 

Description 

Performs various analysis methods including PCA, MCR, PARAFAC, Cluster, PLS, PCR, 
PLSDA, and SIMCA using a graphical user interface. Typical operations for file 
manipulation, preprocessing, and Analysis selection can be found in the menu items of the 
figure. Once data has been loaded and an Analysis selected, the Toolbar will populate with 
appropriate buttons for the Analysis. Plots created by the Toolbar buttons will bring up a plot 
figure window as well as a plot controls window. Use the plot controls window to manipulate 
the plot figure.  

Note: For more information see Chapter 5 of the PLS_Toolbox Manual. 

See Also 

browse, cluster, mcr, parafac, pca, pcr, pls 
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anova1w 
Purpose 

One way analysis of variance. 

Synopsis 
 
anova1w(dat,alpha) 

Description 

Calculates one way ANOVA table and tests significance of between factors variation (it is 
assumed that each column of the data represents a different treatment). Inputs are the data 
table dat and the desired confidence level alpha, expressed as a fraction (e.g. 0.95, 0.99, etc.). 
The output is an ANOVA table written to the command window. 

See Also 

anova2w, ftest, statdemo 
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anova2w 
Purpose 

Two way analysis of variance. 

Synopsis 
 
anova2w(dat,alpha) 

Description 

Calculates two way ANOVA table and tests significance of between factors variation (it is 
assumed that each column of the data represents a different treatment) and between blocks 
variation (it is assumed that each row represents a block). Inputs are the data table dat and 
the desired confidence level alpha, expressed as a fraction (e.g. 0.95, 0.99, etc.). The output 
is an ANOVA table written to the command window. 

See Also 

anova1w, ftest, statdemo 
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areadr 
Purpose 

Reads ASCII text file into workspace and strips off header. 

Synopsis 
 
out = areadr1(file,nline,nvar,flag) 

Description 

Inputs are (file) an ASCII string containing the file name to be read, (nline) the number of 
rows to skip before reading or a character string containing the last few characters before the 
first number to be read (used to skip the header information), (nvar) the number of rows or 
columns in the matrix to be read, and (flag) which indicates whether (nvar) is the number of 
rows (flag=1) or the number of columns (flag=2) in the matrix. 

AREADR can be incorporated into other routines to read data directly from groups of files. For 
example, to read the file mydata.txt with a 5 line header and 8 columns in the data into the 
matrix mymatrix: 

mymatrix = areadr('mydata.txt',5,8,2) 

Given header information in a text file with the following contents: 
 
HEADER INFORMATION 
HEADER ONE 
HEADER TWO 
END OF HEADER INFORMATION 
 
1 2 1 2 
2 3 2 3 
3 4 3 4 
4 5 4 5 

The following command will read the 4 rows of data following the character string "END OF 
HEADER INFORMATION": 

mymatrix = areadr('mydata.txt','END OF HEADER INFORMATION',4,1) 

For an automatic text file parser which can handle this type of file without knowing the 
format, see xclreadr. 

See Also 

dlmread, import, spcreadr, xclgetdata, xclputdata, xclreadr, xlsreadr 
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auto 
Purpose 

Autoscales a matrix to mean zero and unit variance. 

Synopsis 
 
[ax,mx,stdx,msg] = auto(x,options) 
[ax,mx,stdx,msg] = auto(x,offset) 
options = auto('options') 

Description 

[ax,mx,stdx] = auto(x) autoscales a matrix x and returns the resulting matrix ax with 
mean-zero unit variance columns, a vector of means mx and a vector of standard deviations 
stdx used in the scaling. Output msg returns any warning messages. If missing data NaNs are 
found, the available data is autoscaled if the fraction missing is not above the thresholds 
specified below. mx and stdx can be used to scale new data (see SCALE). 

Options 
 options =  a structure array with the following fields: 
 offset: scaling can use standard deviation plus an offset {default = 0}, 
 display: [ {'off'}| 'on' ] governs level of display to the command window, 
matrix_threshold: fraction of missing data allowed based on entire matrix (x) {default 

= 0.15}, and 
column_threshold: fraction of missing data allowed base on a single column {default = 

0.25}. 
 algorithm: [ {'standard'} | 'robust'] scaling algorithm. 'robust' uses MADC 

for scaling and median instead of mean. Should be used for robust 
techniques, 

 stdthreshold: [ 0 ] scalar or vector of standard deviation threshold values. If a 
standard deviation is below its corresponding threshold value, the 
threshold value will be used in lieu of the actual value. Note that the 
actual standard deviation is always returned, whether or not it exceedes 
the threshold. A scalar value is used as a threshold for all variables, 

 badreplacement: [0] value to use in place of standard deviation values of 0 (zero). Typical 
values used with the following effects:  

   0 = Any value in given variable is set to zero. Variable is effectively 
excluded (but still expected by model). This is also the behavior when 
badreplacement = inf. 

   1 = Values different from mean of the given variable are flagged in Q 
residuals with no reweighting. 
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  Values >0 and <inf give the variable different weighting in the Q 
residuals (values >1 down-weight the bad variables for Q residual 
calculations, values <1 up-weight the bad variables.). 

 

If the input (offset) is a scalar then, this is used as the offset value with other options set at 
their default values. 

The optional input offset is added to the standard deviations before scaling and can be used to 
suppress low-level variables that would otherwise have standard deviations near zero. 

The default options can be retreived using: options = auto('options');. 

See Also 

gscale, medcn, mncn, normaliz, npreprocess, regcon, rescale, scale, snv      
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autoimport 
Purpose 

Automatically reads specified file. Handles all standard filetypes. 

Synopsis 
 
autoimport(filename,methodname,options)  
[data,name,source] = autoimport(filename,methodname,options) 

Description 

Automatically identifies a filetype and calls the appropriate reader. If no filename is 
provided, the user is prompted for a desired filetype to browse for. If no filename is provided 
but a specific filetype is  provided, the user is prompted for a file of the given type. 

If output is requested, the loaded item(s) is/are returned as a single output. If no outputs are 
requested, the items are loaded into the base workspace or other action as defined by the 
options structure. 

Options 
 options =  a structure array with the following fields: 
 target: [ {'workspace'} | 'analysis' | 'editds'] Target for file load. If 

'workspace', file contents are loaded into base workspace (the default 
behavior). If 'analysis', file contents are automatically dropped into an 
empty Analysis GUI interface. If 'editds', file contents are loaded into a 
DataSet editor. 

 defaultmethod: [{'prompt'} | 'string' | 'error' | methodname ] governs how 
to handle input (filename) when no recognizable file extension can be 
found. 'prompt' prompts the user to identify the appropriate importer, 
'string' interprets the input as a string, 'error' returns an error. Any other 
valid methodname can also be provided (use autoimport('methods') to 
get list of valid methods), 

 error: [ 'error' | {'gui'} ] governs how to handle errors during imports. 
'error' returns an untrapped error, 'gui' traps the error and presents an 
error dialog to the user. 

See Also 
imageload, jcampreadr, parsexml, spcreadr, xclreadr, xyreadr 
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autocor 
Purpose 

Calculates the autocorrelation function of a time series. 

Synopsis 
 
acor = autocor(x,n,period,plots) 

Description 

acor = autocor(x,n) returns the autocorrelation function acor of a time series x for a 
maximum time shift of n sample periods. 

acor = autocor(x,n,period) uses the sampling period period to scale the x-axis on the 
output plot. period can be empty []. 

The optional input plots suppresses plotting if set to 0. 

See Also 

corrmap, crosscor 
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b3spline 
Purpose 

Univariate spline fit and prediction. 

Synopsis 
 
modl = b3spline(x,y,t,options); 
pred = b3spline(x,modl,options); 
valid = b3spline(x,y,modl,options); 

Description 

Curve fitting using second order splines where 

yi = f(xi) for i=1,...,M.  

See (options.algorithm) for more information. 

INPUTS: 
 x = Mx1 vector of independent variable values. 
 y = Mx1 vector of corresponding dependendent variable values. 
 t = defines the number of knots or knot positions. 
  = 1x1 scalar integer defining the number of uniformly distributed 

INTERIOR knots. There will be t+2 knots positioned at: 
  modl.t = linspace(min(x),max(x),t+2)'; 
  = Kx1 vector defining manually placed knot positions,  
  where modl.t = sort(t); 
  Note that knot positions need not be uniform, and that t(1) can be 

<min(x) and t(K) can be >max(x). 

Note that knot positions must be such that there are at least 3 unique data points between 
each knot:  tk,tk+1 for k=1,...,K. 

OUTPUTS: 
 modl = standard model structure containing the spline model (See 

MODELSTRUCT). 
 pred = structure array with predictions. 
 valid = structure array with predictions. 

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ] level of display to command window. 
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 plots: [ {'final'} | 'none' ] governs level of plotting. If 'final' and 
calibrating a model, the plot shows plot(xi,yi) and plot(xi,f(xi),'-') with 
knots. 

 algorithm: [ {'b3spline'} | 'b3_0' | 'b3_01' ] fitting algorithm 
  'b3spline': fits quadradic polynomials f{k,k+1} to the data between 

knots tk, k=1,...,K, subject to: 
  f{k,k+1}(tk+1)  = f{k+1,k+2}(tk+1) and 
  f'{k,k+1}(tk+1) = f'{k+1,k+2}(tk+1) for k=1,...,K-1. 
  'b3_0': is the same as 'b3spline' but also constrains the ends to 0: 

f{1,2}(t1) = 0 and f{K-1,K}(tK) = 0. 
  'b3_01': is 'b3_0' but also constrains the derivatives at the ends to 0: 

f'{1,2}(t1) = 0 and f'{K-1,K}(tK) = 0. 
 
 
 order: positive integer for polynomial order {default = 1}. 

The default options can be retreived using: options = baseline('options');. 

See Also 
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baseline 
Purpose 

Subtracts a baseline offset from spectra. 

Synopsis 
 
[newspec,b] = baseline(spec,freqs,range,options); 
spec = baseline(newspec,freqs,b,options); 

Description 

This function baselines spectra with a polynomial baseline function. The baseline function is 
fit to user-specified regions (regions free of peaks), which is then subtracted from the 
original spectra. 

Inputs are spec class “double” or “dataset” containing the spectra, freqs the wavenumber or 
frequency axis vector, and range which specifies the baselining regions (see below). If 
freqs is omitted and spec is a dataset, the axissscale from the dataset will be used; 
otherwise a linear vector will be used. 

range can be either an m by 2 matrix which specifies m baselining regions or a logical 
vector equal in length to the spectra with a 1 (one) at each point to be used as baseline and 0 
(zero) elsewhere. 

The output newspec contains the baselined spectra and b the polynomial coefficients. 

If b is input instead of range with baselined spectra newspec then the output spec is a matrix 
original “unbaselined” spectra. 

Options 
 options =  a structure array with the following fields: 
 plots: [ {'none'} | 'final' ] governs plotting of results, and 
 order: positive integer for polynomial order {default = 1}. 

The default options can be retreived using: options = baseline('options');. 

See Also 

baselinew, deresolv, lamsel, lsq2top, normaliz, polyinterp, savgol, 
savgolcv, specedit, stdgen, wlsbaseline 
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baselinew 
Purpose 

Baseline using windowed polynomial filter. 

Synopsis 
 
[y_b,b_b]= baselinew(y,x,width,order,res,options) 

Description 

BASELINEW fits a polynomial "baseline" to the bottom (or top) of a curve (e.g. a spectrum) by 
recursively calling LSQ2TOP. It uses a windowed approach and can be considered a filter or 
baseline (low frequency) removal algorithm. The window width required depends on the 
frequency of the low frequency component (baseline). Wide windows and low order 
polynomials are often used. See LSQ2TOP for more details on the polynomial fit algorithm. 

Inputs include the curve(s) to be fit (dependent variable) y, the axis to fit against (the 
independent variable) x [e.g. y = P(x)], the window width width (an odd integer), the 
polynomial order order, and an approximate noise level in the curve res. Note that y can 
be MxN where x is 1xN. The optional input options is discussed below. 

Output y_b is a MxN matrix of ROW vectors that have had the baselines removed, and 
output b_b is a matrix of baselines. Therefore, y_b is the high frequency component and b_b 
is the low frequency component. 

INPUTS: 
 y = matrix of ROW vectors to be baselined, MxN [class double]. 
 x = axis scale, 1xN vector {if empty it is set to 1:N}. 
 width = window width specifying the number of points in the filter {if (width) is 

empty no windowing is used}. 
 order = order of polynomial [scalar] to fit {if (order) is empty (options.p) must 

not be empty; see below}. 
 res = approximate fit residual [scalar] {if empty it is set to 5Found of fit of all 

data to x}. 

Examples 

If y is a 5 by 100 matrix then 
y_b = baselinew(y,[],25,3,0.01); 

gives a 5 by 100 matrix y_b of row vectors that have had the baseline removed using a 25-
point cubic polynomial fit of each row of y. 

If y is a 2 by 100 matrix then 
y_b = baselinew(y,x,51,3,0.01); 
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gives a 2 by 100 matrix y_b of row vectors that have had the baseline removed using a 51-
point second order polynomial fit of each row of y to x. 

Options 
 options  = structure array with the following fields: 
 display :  [ 'off' | {'on'} ] governs level of display to command window. 
 trbflag : [ 'top' | {'bottom'} ] top or bottom flag, tells algorithm to fit the 

polynomials, y = P(x), to the top or bottom of the data cloud. 
 tsqlim: [ 0.99 ] limit that governs whether a data point is significantly outside 

the fit residual defined by input res. 
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one 

of the stopping criterion is met: [(relative tolerance) (absolute tolerance) 
(maximum number of iterations) (maximum time [seconds])]. 

See Also 

baseline, lamsel, lsq2top, mscorr, savgol, stdfir, wlsbaseline 
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batchdigester 

Purpose 

Parse wafer or batch data into MPCA or Summary PCA form. 

Synopsis 
 
[out,options] = batchdigester(data,options); 
batchdigester     %prompt user for input and output 

Description 

Rearranges and optionally summarizes two-way dataset of batch or wafer data. Input data 
must be a DataSet object containing labels which identify different wafers or batches which 
should be split out of the data. Classes in data are (optionally) used to split each time profile 
of the batch/wafer into steps which can then be selected for inclusion in the output.  

MPCA mode: If data is rearranged into MPCA data, each wafer/batch is arranged as one slab 
of a 3-way matrix. Each row is a time point and each column is one of the original variables. 
Only selected steps are included in the output. 

Summary PCA mode: If data is summarized into Summary PCA data, all time points for a 
given step in a given wafer are summarized using one or more statistics: 
 
      Mean 
      Standard Deviation 
      Minimum 
      Maximum 
      Range 
      Slope 
      Length (of step) 

The time profile for each original variable is summarized using the given statistic(s) and 
turned into a single variable (column) of the output data. If steps are used, this is repeated for 
each step segment (each creating a new, separate variable in the output). Each wafer/batch is 
thus a single row of the output data with all of the steps and original variables summarized as 
new variables.  

Outputs are the digested data, out, and the options which can be used to reproduce the 
digestion process, options (see below). 

Options 
 options  = structure with one or more of the following fields: 
 display :  [ 'off' | {'on'} ] governs level of display to command window. 
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 object : { 'batch' | 'wafer' } A string specifying the type of object being 
digested. This is used for display ONLY. The same algorithms are used 
in both cases but this option allows customization of the wording in the 
user prompts. 

 stepclassname : A string specifying the name of the class which should be used to 
indicate steps in the process. 

 stepsdesired : A vector of steps which should be included in the digestion. 
 labelname : A string specifying the name of the label set which should be used to 

split data into batches/wafers. Use the keyword 'fixed' to specify that 
the batches are of fixed length and can be split using the nbatches 
option. 

 nbatches : The number of equally-sized batches to split the data into. Used ONLY 
when labelname is 'fixed'.  

 digestiontype : [ 'mpca' | 'spca' ] Specifies which digestion algorithm to use on 
the data. 

 statistics : A cell specifying the statistics to be used on the data. Used ONLY when 
digestiontype = 'spca'; 

If sufficent information is provided in these options, the processing of data will be automatic 
and the user will not have to answer any responses in the GUIs. Otherwise, only prompts for 
missing information will be given. The options which can be used to re-process using a given 
digestion "recipe" will be returned as the second output to any digestion request. 

See Also 

mpca, pca 
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browse 

Purpose 

PLS_Toolbox Toolbar and Workspace browser. 

Synopsis 
 
browse 

Description 

BROWSE provides a graphical interface for tools, variables and figures used by PLS_Toolbox. 
Data items can be dragged onto shortcuts, or into other windows to "load" the data. Data can 
be dragged to other data items to "augment" these items or can be double-clicked to open in 
an editor. 

See Also 

analysis, editds 
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builddbstr 
Purpose 

Builds a database connection string. 

Synopsis 
 
str = builddbstr(dbstruct,options) 

Description 

This function is unsupported and is meant as a "simple" database connection tool. For more 
sophisticated connection tools and full support please see the Matlab Database Toolbox.  

It is generally recommended that one use a Microsoft DSN (Data Source Name) to establish 
connection on Window platforms. These types of connections tend to be easier to maintain 
and more secure. For more information on DSN, see the Windows help entry for “ODBC”. 
Unix platforms should use JDBC, JDBC with MySQL is a "predefined" method and is 
known to work with the MySQL JDBC 3.51 Driver. 

Input (dbstruct) can be: 

1) A structure containing necessary information to construct one of the predefined 
connections listed below. The output will be a properly formatted connection string. 

2) A string indicating a predefined structure to return. The output will be a structure 
containing predefined values along with empty fields that may need to be filled in. Fill in the 
EMPTY fields as needed and the connection should work. The 'user' and 'pw' fields are 
always present but may not be needed. This structure can be passed directly to querydb.m.  

3) A structure with additional arg.value substructure fields necessary for a connection to a 
non-predefined database connection. The output will be a properly formatted connection 
string. 

 Input: (structure containing the following fields) 

 A connection will require one of more of the following fields. Empty values are not used. 
    provider : only used by ADODB object so this will always be 'MSDASQL'. 
      driver : driver to be used for connection (these must be currently installed on the 

machine, use the ODBC Manager from Administrative Tools to view 
currently available drivers on your machine. JDBC must have driver 
installed on Matlab class path 

      dbname : database name (or service name). 
        user : user to connect in as, if empty not used. 
          pw : password for user, if empty not used. 
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    location : File location on local system (e.g. c:\temp\mydb.mdb). Used for 
connecting to local Access databases. 

      server : IP address for database (default location is 'localhost'). 
         dsn : Data Source Name (set up on local computer using ODBC Manager 

from Administrative Tools). If the database connection remains static, 
this can be a simple way to manage the connection. See the "ODBC" 
topic in Windows help for more information on DSN. 

    arg.name : sub structure of additional arguments. This value must be a sting of 
exactly what is required in the database connection string. 

   arg.value : sub structure of additional arguments. This value must be a sting of 
exactly what is required in the database connection string. 

                       EXAMPLE:  
                 cnn.arg(1).name  = 'PORT'; 
                 cnn.arg(1).value = '3306'; 
                 cnn.arg(2).name  = 'SOCKET'; 
                 cnn.arg(2).value = '123'; 

 Predefined Database Connections: 

1) Microsoft Access : 'access' Uses standard connection provided with windows (Microsoft 
Access Driver (*.mdb)) and doesn't require UserID or PW if database doesn't have them 
defined. 

2) Microsoft SQL Server : 'mssql' Not tested. 

3) MySQL : 'mysql' Uses (MySQL ODBC 3.51 Driver) form mysql website. Must be 
downloaded and installed before making connection. 

4) Data Source Name : 'dsn' Uses a Data Source Name defined in Windows ODBC Data 
Source Administrator dialog box. Although 'user' and 'pw' are returned in the structure they 
are generally not needed for DSN connections, this information is usually resides in the DSN 
itself. 

5) MySQL(JDBC) : 'jmysql' Uses (MySQL JDBC 3.51 Driver) form mysql website. Must be 
downloaded and installed before making connection. The driver jar file must be added to the 
Matlab java classpath. 

6) All : 'all' Show all available fields. 

Options 
 isodbc: [{ 1 } | 0 ] Use ODBC connection string formatting. This should be set 

to 0 if using JDBC. 
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Examples 

Examples of building connection strings on a Windows machine for use with the querydb 
function. For Oracle and other database connections, try using DSN. 

Microsoft Access on local machine: 
 
>> cnstr = builddbstr('access') 
cnstr =  
    provider: 'MSDASQL' 
      driver: '{Microsoft Access Driver (*.mdb)}' 
    location: '' 
        user: '' 
          pw: '' 
 
>> cnstr.location = 'c:\temp\mydb.mdb'; 

MySQL on remote machine: 
 
>> cnstr = builddbstr('mysql') 
cnstr =  
    provider: 'MSDASQL' 
      driver: 'MySQL ODBC 3.51 Driver' 
      server: '' 
      dbname: '' 
        user: '' 
          pw: '' 
>> cnstr.server = 'mydatabase.mywebsite.com'; 
>> cnstr.dbname = 'mydatabase'; 
>> cnstr.user = 'myname'; 
>> cnstr.pw = 'mypw'; 

MySQL on remote machine (JDBC on Windows): 
 
>> cnstr = builddbstr('jmysql') 
cnstr =  
    driver: 'com.mysql.jdbc.Driver' 
    server: '' 
    dbname: '' 
      user: '' 
        pw: '' 
>> cnstr.server = 'mydatabase.mywebsite.com'; 
>> cnstr.dbname = 'mydatabase'; 
>> cnstr.user = 'myname'; 
>> cnstr.pw = 'mypw'; 
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DSN (Data Source Name): 

>> cnstr = builddbstr('dsn') 
 
cnstr =  
    provider: 'MSDASQL' 
         dsn: '' 
        user: '' 
          pw: '' 
>> cnstr.dsn = 'dsnname'; 

See Also 

querydb, parsemixed 
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calibsel 
Purpose 

Stepwise variable selection (user contributed). 

Synopsis 
 
channel = calibsel(x,y,alpha,flag) 

Description 

CALIBSEL performs the variable selection procedure described in Brown, P.J., Spiegelman, 
C.H., and Denham, M.C., “Chemometrics and spectral frequency selection”, Phil. Trans. R. 
Soc. Land. A 337, 311-322, (1991). 

Inputs are the calibration spectra x and concentrations y, significance level for chi-square test 
alpha, and a variable flag that allows the user to modify how the routine iterates. The 
output channel is a vector of indices corresponding to selected channels/wavelengths in y. 

See Also 

fullsearch, gaselctr, genalg 
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caltransfer 
Purpose 

Create or apply calibration and instrument transfer models. 

Synopsis 
 
[transfermodel,x1t,x2t] = caltransfer(x1,x2,method,options) 
x2t = caltransfer(x2,transfermodel,options) 
[transfermodel,x1t,{x2t_1 x2t_2 x2t_3}] =  
 caltransfer(x1,{{x2_1 x2_2 x2_3},method,options) 
{x2t_1 x2t_2 x2t_3} =  
 caltransfer({x2_1 x2_2 x2_3},transfermodel,options) 

Description 

CALTRANSFER uses one of the several transfer functions (methods) available in PLS_Toolbox 
to return a model and transformed data. The exact I/O is dictated by the transfer function 
(method) used. 

INPUTS: 
 x1 = (2-way array class "double" or "dataset") calibration data (e.g., spectra 

from the standard instrument).  
 x2 = (2-way array class "double" or "dataset") data to be transformed (e.g., 

spectra from the instrument to be standardized). 
 method = (string) indicating which calibration transfer function (method) to use. 
  Choices are: 
  'ds' : Direct Standardization 
  'pds' : Piecewise Direct Standardization 
  'dwpds' : Double Window Piecewise Direct Standardization 
  'glsw' : Generalized Least-Squares Weighting 
  'osc' : Orthogonal Signal Correction 
  'alignmat' : Matrix Alignment 

OUTPUTS: 
 transfermodel = standard model structure containing the Calibration Transfervmodel 

(See MODELSTRUCT). 
 x1t = Calibration data returned. Depending on the type of calibration function 

(method) used this may or may not be transformed from the input data 
(x1). 

 x2t = Transformed data. 

 



 38 

Options 
 options  = structure array with the following fields: 
 display :  [ 'off' | {'on'} ] governs level of display to command window. 
 blockdetails : [ 'compact' | {'standard'} | 'all' ] extent of data included in 

model. 'standard' = none, 'all' x-block. 
 preprocessing : {[] []} Preprocessing structures for x and y blocks (see 

PREPROCESS). 

NOTE: There are sub structures for each 'method'. These sub structures include both the 
input parameters (any additional inputs needed by the function) as well as optional inputs 
(the options structure for that particular function). For more information on inputs to each 
method see the help for that function (e.g., help stdgen). Examples of using the substructures: 
  
 Example: OSC requires a "y" block in addition to x1 and x2. The y-block should 

be assigned via the options structure: 
   opts.osc.y = yblock; 
 Example: To assign window widths for DWPDS: 
   options.dwpds.win = [5 3]; 

See Also 

alignmat, glsw, oscapp, osccalc, stdgen, stdize 
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cellne 
Purpose 

Element by element comparison of two cells for inequality. 

Synopsis 
 
out = cellne(c1,c2) 

Description 

CELLNE compares the two cell inputs, c1 and c2, for inequality. If the cell arrays are the same 
size, the corresponding cell elements are compared and a similarly sized array of logical 
(boolean) values, out, is returned. The array out contains a one if the two cell elements were 
not equal (different variable type or contents) and a zero if the two cell elements were equal. 

If the cell sizes do not match, the function returns a single logical value of 1. 

See Also 

comparevars 
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centerfigure 
Purpose 

Places a given figure into a centered default position. 

Synopsis 
 
centerfigure(fig) 
centerfigure(fig,targfig) 

Description 

Given a figure handle, CENTERFIGURE positions the figure based on the height and width 
of the figure and the default figure position. 

If second input 'targfig' is given then CENTERFIGURE tries to place the fig centered on top 
of targfig. 

See Also 

positionmanager 
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chilimit 
Purpose 

Chi-squared confidence limits from sum-of-squares residuals. 

Synopsis 
 
[lim,scl,dof] = chilimit(ssqr,cl) 
lim = chilimit(scl,dof,cl) 

Description 

CHILIMIT determines a confidence limit for sum-of-squares residuals, ssqr, by fitting the 
residuals to the g Chi-squared h distribution. If the sum-squared residuals are reasonably 
approximated by a Chi-squared distribution this gives a very good estimate of the confidence 
level. However, it has been observed that outliers can significantly bias the estimate. 

The standard call to CHILIMIT uses the sum of squares residuals ssqr, and the optional 
fractional confidence level requested, cl {default = 0.95}. Outputs are the calculated limit 
lim, the scaling determined from the residuals scl, and the degrees of freedom determined 
from the residuals dof. 

The scaling, scl, and number of degrees of freedom, dof, returned from a previous call to 
CHILIMIT can be used in subsequent calls to CHILIMIT to obtain new limits without the 
original residuals. 

See Also 

jmlimit, pca, pcr, pls, residuallimit 
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choosencomp 
Purpose 

GUI to select number of components from a PCA sum-of-squares captured table. 

Synopsis 
 
ncomp = choosencomp(model) 

Description 

The input model can be a standard PCA model structure or just a sum-of-squares (SSQ) 
captured table from a PCA model. CHOOSENCOMP creates a GUI that displays the SSQ table 
and allows the user to select the number of principal components (ncomp) from the list. 

The returned value, ncomp, is the number of selected components or an empty value [] if the 
user selected Cancel in the GUI. 

See Also 

analysis, pca, pcaengine, simca 
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class2logical 
Purpose 

Create a PLSDA logical block from class assignments. 

Synopsis 
 
[y,nonzero] = class2logical(class,groups) 

Description 

Given a list of sample classes or a DataSet object with class assignments for samples (mode 
1), CLASS2LOGICAL creates a logical array in which each column of y contains the logical 
class membership (i.e. 1 or 0) for each class. This logical block can be used as the input y in 
PLS or PCR to perform discriminate analysis. Similarly, the output can be used with crossval 
to perform PLSDA cross-validation. Classes can optionally be grouped together by providing 
class groupings. 

Inputs are class a list of class assignments, or a dataset with classes for first mode, and 
groups an optional input containing either: 

   [1 2 3 …] a vector of classes to model OR 

   {[1 2] [3 4] ...} a cell array containing groups of classes to consider as one class. Each cell 
element will be one class (see e.g. below) 

Any classes in class which are not listed in groups are considered part of no group and will 
be assigned zero for all columns in the output. 

Outputs are y a logical array in which each column represents one of the classes in the input 
class list or one of the groups in groups and nonzero the indices of samples with non-zero 
class assignment. 
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Examples 

(A) Given DataSet "arch" with classes 0-5, the following creates a logical block with two 
columns consisting of "true" only for class 3 in the first column and "true" only for class 2 in 
the second column. 

y = class2logical(arch,[3 2]) 

(B) Given DataSet "arch" with classes 0-5, the following creates a logical block with two 
columns consisting of "true" only for classes 0 and 1 in the first column and "true" only for 
classes 2 and 4 in the second column. 

y = class2logical(arch,{[1 0] [2 4]}) 

See Also 

crossval, plsda, plsdthres 
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cluster 
Purpose 

Agglomerative and K-means cluster analysis with dendrograms.. 

Synopsis 
 
[results,fig] = cluster(data,labels,options) 
[results,fig] = cluster(data,options) 
options = cluster('options') 

Description 

cluster(data) performs a cluster analysis using either one of six different agglomerative 
methods (including K-Nearest-Neighbor (KNN), furthest neighbor, and Ward's method) or 
K-means clustering algorithm and plots a dendrogram. The input is data (class double or 
dataset). 

Optional input labels can be used to put labels on the dendrogram plots. For data M by N 
then labels must be a character array with M rows. When labels is not specified and data is 
class “double”, the dendrogram is plotted using sample numbers. When labels is not 
specified and data is class “dataset”, the dendrogram is plotted using sample labels. If the 
labels field is empty it will use sample numbers. 

The output is a dendrogram showing the sample distances. 

Note: Calling cluster with no inputs starts the graphical user interface (GUI) for this 
analysis method.  

OUTPUTS: 

The outputs are (results) a structure containing results of the clustering (defined below) and 
the handle (fig) to any plot created. The results structure will contain the following fields: 
 dist : the distance threshold at which each cluster forms. 
 class : the classes of each sample (columns of class) for each distance (rows of 

class). 
 order : the order of the samples which locates similar samples nearest to each 

other (this is the order used for the plots). 
 linkage : a table of linkages where each row indicates a linkage of one group to 

another. Each row in the matrix represents one group. The first two 
columns indicate the sample or group numbers which were linked to 
form the group. The final column indicates the distance between linked 
items. Group numbers start at m+1 (where m is the number of samples 
in the input dat matrix) thus, row j of this matrix is group number m+j. 
This matrix can be used with the statistics toolbox dendogram function. 
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The (results.class) matrix can be used with the (results.dist) matrix to determine clusters of 
samples for any distance using: 
 
results   = cluster(data);   %do cluster 
ind       = max(find(results.dist<threshold));  %user-desired threshold 
thisclass = results.class(ind,:);   %grab arbitrary classes 

Options 
 options =  a structure array with the following fields: 
 plots: ['none' | {'final'} ] Governs plotting. When set to 'none', the 

distance/cluster matrix is returned, 'final' returns a dendrogram plot 
showing sample distances. 

 algorithm: [ ] clustering algorithm, 
  'knn' {DEFAULT}: K-Nearest Neighbor 
   'fn' : Furthest Neighbor 
  'avgpair' : Average Paired Distance 
  'med' : Median 
  'cnt' : Centroid 
  'ward' : Ward's Method 
  'kmeans' : K-means 
 preprocessing: {[]} Preprocessing structure or keyword (see PREPROCESS), 
 pca: [ {'off'} | 'on' ] if ‘on’ then CLUSTER performs PCA first and 

clustering on the scores, 
 ncomp: [] number of PCA factors to use {default = [], the user is prompted to 

select the number of factors from the SSQ table},  
 mahalanobis: [ {'off'} | 'on' ] if ‘on’ then a Mahalanobis distance on the scores 

is used, 
 slack: [0] integer number indicating how many samples can be "overridden" 

when two class branches merge. If the smaller of the two classes has no 
more than this number of samples, the branch will be absorbed into the 
larger class. This feature is only valid when classes are supplied in the 
input data. A value of 0 (zero) disables this feature. 

 

The default options can be retreived using: options = cluster('options');. 

See Also 

analysis, corrmap, gcluster, simca 
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coadd 
Purpose 

Reduce resolution through combination of adjacent variables or samples. 

Synopsis 
 
databin = coadd(data,bins,options) 
databin = coadd(data,bins,dim) 

Description 

COADD is used to combine ("bin") adjacent variables, samples, or slabs of a matrix. Inputs 
include the original array data, the number of elements to combine together bins {default: 
2}, and an optional options structure options. Alternatively, the input options can be 
replaced with a scalar value of dim which will be used for options.dim (see below) and all 
other options will be the default values. 

The mode of co-adding (defined by the options value mode) defines how items within each 
bin are combined mathematically. See options below for details. 

Unpaired values at the end of the matrix are padded with the least biased value to complete 
the bin. Output is the co-added data. Unlike DERESOLV, COADD reduces the size of the 
data matrix by a factor of 1/bins for the dimension. 

Example 

Given a matrix, data, size 300 by 1000, the following would coadd variables in groups of 
three: 

databin = coadd(data,3); 

and the following would coadd samples in groups of two: 
 
options.dim = 1; 
databin = coadd(data,2,options); 

The following is equivalent to the previous two lines using the "shortcut" input of dim. 
 
databin = coadd(data,2,1); 

Options 
 dim:  Dimension in which to do combination {default = 2},  
 mode:  [ 'sum' | {'mean'} | 'prod' ] method of combination. See algorithm notes 

for details of these modes. 
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Algorithm 

The three modes, sum, mean and prod behave according to the following (described in terms 
of variables): 

SUM: groups of variables are added together and stored. The resulting values will be larger 
in magnitude than the original values by a factor equal to the number of variables binned. 

MEAN: groups of variables are added together and that sum is divided by the number of 
variables binned. The resulting values will be similar in magnitude to the original values. 

PROD: groups of variables are multiplied together. 

See Also 

deresolv 



 

 49

coda_dw 
Purpose 

Variable selection method for hyphenated methods with a mass spectropmeter as a detector. 
The variables (mass chromatograms) are selected on the basis of smoothness. 

Synopsis 
 
[dw_value,dw_index] = coda_dw(data,level); 

Description 

CODA_DW the Durbin Watson values of the first derivative of the chromatograms in data. 
The optional argument level defines the limitit of Durbin Watson value  used for a plot of the 
results. If level is an integer it is used to plot the best level chromatograms. Low values for 
Durbin Watson indicate good quality chromatograms. The Durbin Watson values 
(dw_values) as wel as their ranking indices (dw_index) (low to high, so good to low quality) 
. For more information the Durbin Watson method see the function DURBIN_WATSON. 
Input data can be a matrix with the data or a datasetobject 

 

Examples 

Plotting the chromatograms with a Durbin Watson value less than 2.2. 
 
coda_dw(data,2.2); 

Plotting the best 40 chromatograms. 
 
coda_dw(data,40); 

Algorithm 

The algorithm calculates the Durbin Watson values of the first derivative of the mass 
chromatograms. 

See Also 

durbin_watson 
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comparelcms_sim_interactive 
Purpose 

Select variables that are different between related data sets, e.g. mass chromatograms from 
LC/MS data of different batches. 

Synopsis 
 
comparelcms_sim_interactive 

Description 

COMPARELCMS_SIM_INTERACTIVE Performs the variable (mass chromatogram) selection 
using comparelcms_simengine, but with added interactivity 

See Also 

comparelcms_simengine 
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comparelcms_simengine 
Purpose 

Select variables that are different between related data sets, e.g. mass chromatograms from 
LC/MS data of different batches. 

Synopsis 
 
y=comparelcms_simengine(data,filter_width) 

Description 

COMPARELCMS_SIMENGINE determines which variables are different between different data 
sets. For example, after applying coda_dw to LC/MS data sets of highly related samples, such 
as the data of a good and a bad batch, the results will be very similar. comparelcms_engine 
takes the next step and extracts the mass chromatograms that are different. This function is 
normally not called by itself but by the function comparelcms_sim_interactive. The input 
argument data is a data cube with mode 1 the number of samples, mode two the number of 
spectra and mode 3 the number of variables, The optional input argument filter_width is 
used to smooth the columns of the data set in order to minimize the effect of small shifts, The 
output argument y contains the similarity indices of the variables. Variables with a low 
similarity index show the differences between the data sets.  

Examples 

Determination of similarity indices with a filter of 7 data points.  
  
y=comparelcms_simengine(data,7) 

Algorithm 

The calculations are based on a similarity index of the minimum of the chromatograms 
(across the samples) and the maximum of the chromatograms. 

See Also 

comparelcms_sim_interactive 
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comparevars 
Purpose 

Compares two variables of any type and returns differences. 

Synopsis 
 
[status,msg] = comparevars(a,b,options) 

Description 

Given any two variables a and b, COMPAREVARS looks for any differences. This function 
operates on any standard Matlab data type or a DataSet object and does not give an error 
when variables of two different types are passed.. 

With no outputs, the differences between the variables (or "None Found") is displayed. With 
one output, the boolean result of the comparison status is returned (1 = variables are 
completely equivalent). With two outputs, the comparison result is returned and a cell array 
of strings is returned listing the differences as a description msg. 

Options 
 ignoreclass : {} Cell array of classes which should be ignored during the comparison. 

If a structure or cell contains any objects of these classes, the values will 
not be compared. NOTE: any numeric class (double, uint8, single) 
should be referred to as 'numeric' to ignore comparisons. 

 ignorefield : {} Specifies one or more structure fields which should be ignored (not 
compared) in any structure. 

 missingfield : [ 'ignore' | {'difference'} ] specifies how to handle when one 
of two input structures does not contain the same fields as the other. 
'ignore' simply ignores missing fields. 'difference' returns this mismatch 
as a noted difference. 

See Also 

cellne 
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compressmodel 
Purpose 

Remove references to unused variables from a model. 

Synopsis 
 
[cmodel,msg] = compressmodel(model) 

Description 

COMPRESSMODEL will remove any references in a model to excluded variables. This 
permits the application of the model to new data in which unused variables have been hard-
excluded (i.e. previously removed or not collected). Input is model the model to compress. 
Outputs are cmodel the compressed model and msg any warning messages reported during 
compression. Although compression will work on most models, some preprocessing methods 
and some model types may not compress correctly. In these cases, a warning will be given 
and reported in the output msg. 

See Also 

pca, pcr, pls, plsda 
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conload 
Purpose 

Congruence loadings for PARAFAC, TUCKER and NPLS. 

Synopsis 
 
Bcon = conload(X,model,options) 

Description 

Determines congruence (earlier known as correlation) loadings for a specific mode of a 
model. Congruence loadings look at "non-average correlations", hence take differences in 
offset into account. 

Note that due to non-orthogonal loadings in PARAFAC, individual correlations can add to 
more than 1. Therefore, such loadings are not drawn with ellipses but squares added. Use 
options.force = 'ellipse' or 'square' to force one or the other on the plot. 

INPUTS: 
 X = modeled data 
 model = standard model structure 
 mode = loading mode to investigate (i.e. mode = 1 for samples if they are in the 

first mode) 

OUTPUTS: 

Bcon = Congruence loadings 

Options 
 plots : [ 'none' | {'final'} ] Governs the creation of plot of the results. 
 force : [ {'off'} | 'ellipse' | 'square' ] Forces a given type of limit 

on the plots (if plot is given). 

See Also 

npls, parafac, tucker 
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copydsfields 
Purpose 

Copies informational fields between datasets and/or model structures. 

Synopsis 
 
to = copydsfields(from,to,modes,block) 

Description 

Copies all informational fields from one dataset to another, one model structure to another, or 
between datasets and models. This function copies the fields: label, class, 
classlookup, title, axisscale, and includ as well as the "<field>name" assosciated 
with each (e.g. classname). If copying to or from a model structure, the fields to be copied 
from/to are sub-fields of the detail field. 

INPUTS: 
 from = dataset or model from which fields should be copied, and 
 to = dataset or model to which fields should be copied. 

OPTIONAL INPUTS: 
 modes = modes (dims) which should be copied {default: all modes}. (modes) can 

be a cell of {[from_modes] [to_modes]} to allow cross-mode copying. 
 block =  data block of model from/to which information should be copied. 
  Default: block 1. Can also be a cell of {[from_modes] [to_block]} to 

allow cross-block copying. This setting has noeffect with two DataSet 
objects.Output is: to, the updated dataset or model. 

OUTPUT: 
 to  =  the updated dataset or model. 

Examples 

 mydataset2 = copydsfields(mydataset1, mydataset2); 

copies all fields for all modes of mydataset1 into mydataset2 (copies set 1 only). 

 mydataset2 = copydsfields(modl, mydataset2, {2 1}); 

copies all fields from mode 2 (variables) of modl into mode 1 of mydataset2. 

 modl = copydsfields(mydataset,modl,1,{1 2}); 

copies all fields for mode 1 (samples) from set 1 of  mydataset into block 2 (e.g. y-block) of 
modl. 
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See Also 

dataset/dataset, modelstruct, pca, pcr, pls 
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corcondia 
Purpose 

Evaluate consistency of PARAFAC model. 

Synopsis 
 
CoreConsist = corcondia(X,loads,Weights,plots); 

Description 

PARAFAC can be written as a special Tucker3 model where the core is superdiagonal with 
ones on the diagonal. This special way of writing the model can be used to check the 
adequacy of a PARAFAC model by estimating what Tucker3 core is found if estimated 
unconstrained from the PARAFAC loadings. The core consistency is given as the percentage 
of variation in this core array consistent with the theoretical superdiagonal array. The 
maximum core consistency is thus 100Found. Consistencies well below 70-90Found indicate 
that either too many components are used or the model is otherwise mis-specified. The 
consistency can also become negative which means that the model is not reasonable. Note 
that core consistency is an ad hoc method. It often works well on real data, but not as well 
with simulated data. CORCONDIA does not provide proof of dimensionality, but it can give a 
good indication. 

Inputs are the multi-way array X and loads which can be a) a cell array with PARAFAC 
model loadings or b) a PARAFAC model structure. 

Optional inputs are Weights which can be used to update the core in a weighted least squares 
sence and plots which suppress plotting of the results when set to zero (0). 

See Also 

corecalc, parafac, tucker 
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coreanal 
Purpose 

Evaluate, display, and rotate core from a Tucker model. 

Synopsis 
 
result = coreanal(core,action,param) 

Description 

Performs an analysis of the input core array of a Tucker model core. Results are returned in 
the output result. 

Optional input action is a text string used to customize the analysis. 

action = 'list', the output result contains text describing the main properties of the 
core. If coreanal is called without outputs, the text is printed to the command window. If 
optional input param is included, the number of core entries shown can be controlled. 

action = 'plot', the core array is plotted and output result is not assigned. 

action = 'maxvar', Rotates the core to maximum variance. This is the same as maximum 
simplicity as defined by Andersson & Henrion, Chemometrics & Intelligent Laboratory 
Systems, 1999,47,189-204.The output result is a structure array containing the rotated core 
in the field core and the rotation matrices to achieve this rotation in the field 
transformation. 

The loadings of the Tucker model should also be rotated correspondingly which can also be 
done using coreanal. 

Examples 
 
result = coreanal(model,'list'); 
result = coreanal(model.core,'list'); 

will list information on the core-entries (explained variance etc).  
 
result = coreanal(model.core,'list',10); 
coreanal(model.core,'list',10); 

will do the same but only for the ten most significant core-entries with the second version 
(with no output) printing the information to the command window. 

 
result = coreanal(model,'plot'); 
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will make a plot of the core where the size of each core-entry shows the variance explained. 
If the core is of higher order than three, it is first rearranged to a three-way array. 

 
rotatedcore = coreanal(model,'maxvar'); 

will rotate the core to maximal variance. 
 
rotatedmodel = coreanal(oldmodel,rotatedcore); 

where the input oldmodel is the original Tucker model structure and rotatedcore is the 
output from above. The rotation can be achieved in one step using: 

 
 rotatedmodel = coreanal(oldmodel,coreanal(oldmodel,'maxvar')); 

See Also 

corecalc, tucker 
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corecalc 
Purpose 

Calculates the Tucker3 core array given the data array and loadings 

Synopsis 
 
Core = corecalc(X,loads,orth,Weights,OldCore); 

Description 

Caculates the core array given the data X and the loadings loads (component matrices) 
which are held in a cell (see TUCKER). 

Optional input orth is set to 0 to tell CORECALC that the loadings are NOT orthogonal. 

Optional input Weights allows a weighted least squares solution to be sought. 

Optional input OldCore provides a prior estimate of the core to speed up calculations. 

The output Core is the Tucker3 core. 

See Also 

corcondia, coreanal, parafac, tucker 
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corrmap 
Purpose 

Correlation map with variable regrouping. 

Synopsis 
 
order = corrmap(data,labels,reord) 
order = corrmap(data,reord) 

Description 

CORRMAP produces a pseudocolor map that shows the correlation between variables 
(columns) in a data set. The function will reorder the variables by KNN clustering if desired. 

The input is the data data class "double" or "dataset". 

Optional input labels contains the variable labels when the data is class "double". 

Optional input reord will cause CORRMAP to keep the original ordering of the variables if set 
to 0. 

The output order is a vector of indices with the variable ordering. 

corrmap(data,labels) produces a psuedocolor correlation map with variable reordering. 

corrmap(data,labels,0) produces a psuedocolor correlation map without variable 
reordering. 

See Also 

autocor, crosscor 
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corrspec 
Purpose 

Resolves correlation spectroscopy maps. 

Synopsis 
 
[model] = corrspec(xspec,yspec,ncomp,options) 
[purintx,purinty,purspecx,purspecy,maps] = 

corrspec(xspec,yspec,idex,options) 
[purintx,purinty,purspecx,purspecy,maps] = 

corrspec(xspec,yspec,model,options) 

Description 

CORRSPEC resolves a correlation map of two spectroscopies into the maps of individual 
components, their associated resolved spectra and the contributions (“concentrations”) of the 
components in the original mixture spectra. 

INPUTS: 
 xspec : (2-way array class "double" or "dataset") x-matrix for dispersion 

matrix. 
 yspec : (2-way array class "double" or "dataset") y-matrix for dispersion 

matrix. 
 ncomp : (scalar or n x 2 matrix) if ncomp = scalar then function will calculate 

first n resolved pure purity components. If ncomp = n x 2 matrix, each 
row indicates the x and y position (index) to calculate the purity 
solution. If empty, the initial matrices will be calculated. 

OUTPUTS: 
 purintx : resolved x contributions('concentrations'). 
 purinty : resolved y contributions('concentrations'). 
 purspecx : resolved x pure component spectra. 
 purspecy : resolved y pure component spectra. 
 map : cell with ncomp resolved dispersion matrixes, each with 
   size: size(yspec,2)*size(xspec,2) 
 model : standard model structure, used for prediction (same pure variables on 

other data set) and add components to the model. The series of 
correlation maps resulting from the sequential elimination of 
components is stored in the field detail.matrix. See function 
corrspecengine for detailed description of matrix. The series of 
resolved correlation maps is stored in field detail.maps. Once a model 
has been calculated it can be used to predict x spectra from y spectra and 
vice versa. 
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Options 
 plots_spectra : ['off'|{'on'}] governs level of plotting for spectra. 
 plots_maps : ['off'|{'on'}] governs level of plotting for maps. 
 offset : noise correction factor. One element defines offset for both x and y, 

two elements separately for x and y. 
 inactivate : [ ] logical matrix of indices not to be used in purity calculation. 
 dispersion : [1] See max (below). 
 max : [3] If not given, only weight matrix will be calculated, otherwise select 

one of the options below: 
  1: standardized, offset corrected 
  2: length sqrt(nrows), offset corrected 
  3: purity about mean, offset corrected 
  4: purity about origin, offset corrected 
  5: asynchronous, offset corrected 

Examples 
 
load data_mid_IR 
load data_near_IR  
corrspec(data_mid_IR,data_near_IR,4)  

See Also 

corrspecengine, dispmat, purity 
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corrspecengine 
Purpose 

This function is the primary calculational engine for the function corrspec. It calculates the 
correlation maps and related matrices corrected for previously determined pure variables. 

Synopsis 
 
matrix = corrspecengine(data_x,data_y,purvar_index,offset, 

matrix_options); 

Description 

Calculates the matrices (weigh matrix, dispersion matrix and max matrix) needed for 
corrspec corrected for previously determined pure  variables. 

INPUTS: 
 data_x : (2-way array class "double" or "dataset") x-matrix for dispersion 

matrix. 
 data_y : (2-way array class "double" or "dataset") y-matrix for dispersion 

matrix. 
 purvar_index : indices of maximum value in purity_values, i.e. the index of the pure 

variables. First column for x data, second column for y data. Empty 
when no pure variables have been chosen yet. When base_x is a single 
number n, the program calculates the first n pure purity_indices. 

 offset : noise correction factor. One element defines offset for both x and y, 
two elements separately for x and y. 

 max : if not given, only weight matrix will be calculated, otherwise it 
contains 2 elements: the options the dispersion_matrix and the 
max_matrix: 

  1: standardized, offset corrected 
  2: length sqrt(nrows), offset corrected 
  3: purity about mean, offset corrected 
  4: purity about origin, offset corrected 
  5: asynchronous, offset corrected 
 

OUTPUTS: 
 matrix : cell array with either one or three matrices, with size [ncols_y ncols_x] 

(ncols_y represents number of spectra in y, etc.). 
  matrix{1}: weight_matrix, matrix used to correct for previously selected 

pure variables. 
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  matrix{2}: dispersion_matrix, matrix of interest, generally correlation 
matrix, corrected for previously selected pure variables. 

  matrix{3}: max_matrix, matrix from which pure variables are chosen, 
generally a co-purity matrix  corrected for previously selected pure 
variables. 

See Also 

corrspec, dispmat 
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cr 
Purpose 

Continuum regression for multivariate y. 

Synopsis 
 
b = cr(x,y,lv,powers) 

Description 

CR develops continuum regression models for a matrix of predictor variables (x-block) x, and 
vector or matrix of predicted variables (y-block) y. Models are calculated for 1 to lv latent 
variables for each value of the continuum parameter specified in the row vector powers. The 
output is the matrix of regression vectors b. 

For a y-block with ny variables, x-block with nx variables, and np powers (size of powers is 
1 by np) b is size (lv*ny*np) by nx. The first block in b corresponds to the first power in 
powers and is (lv*ny) by nx with the first row corresponding to a 1 latent variable model for 
the first y variable. 

CR uses the de Jong, Wise & Ricker method for continuum regression (S. de Jong, B. M. 
Wise and N. L. Ricker, "Canonical Partial Least Squares and Continuum Power Regression," 
J. Chemo., 15, 85-100, 2001). It is a drastically faster implementation of the Wise and Ricker 
method used in the previous powerpls. Note that results are identical for both methods for 
the univariate y case but not for the multivariate y, where the results from CR are typically 
slightly better. 

The algorithm used here is usually stable up to a continuum parameter of about 6-8, 
sometimes as high as 10 depending upon the problem. At powers this high, however, the 
models have essentially converged to the PCR solution. No instabilities at small powers have 
been noted. 

See Also 

crcvrnd, pcr, pls 
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crcvrnd 
Purpose 

Cross-validation for continuum regression models using SDEP. 

Synopsis 
 
[press,fiterr,mlvp,b] = crcvrnd(x,y,splt,itr,lv,pwrs,ss,mc) 

Description 

crcvrnd is used to cross-validate continuum regression models given a matrix of predictor 
variables (x-block) x, matrix or vector of predicted variables (y-block) y, the number of 
divisions into which to split the data splt, the number of iterations of the cross-validation 
procedure using different re-orderings of the data set itr, maximum number of latent 
variables lv and the row vector of continuum regression parameters to consider powers. 

The outputs are the predictive residual error sum of squares (PRESS) matrix press where 
each element of the matrix represents the PRESS for a given combination of LVs and 
continuum parameter, the corresponding fit error fiterr, the number of LVs and power at 
minimum PRESS mlvp and the final regression vector or matrix b. 

The optional input ss causes the routine to choose contiguous blocks of data during cross-
validation when set to 1. If the optional input mc is set to 0 the subsets are not mean-centered 
during cross-validation. 

A good smooth PRESS surface can usuall be obtained by calculating about 20 models spaced 
logarithmically between 4 and 1/4 and using 10 to 30 iterations of the cross-validation. A 
good rule of thumb for dividing the data is to use either the square root of the number of 
samples or 10, which ever is smaller. 

See Also 

cr, pcr, pls 
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crosscor 
Purpose 

Calculates the crosscorrelation function of two time series. 

Synopsis 
 
crcor = crosscor(x,y,n,period,flag,plots) 

Description 

crcor = crosscor(x,y,n) returns the crosscorrelation function crcor of two time series x 
and y for a maximum time shift of n sample periods. 

crcor = crosscor(x,y,n,period) uses the sampling period period to scale the x-axis on 
the output plot. 

crcor = crosscor(x,y,n,period,flag) with flag set to 1 changes the routine from cross 
correlation to cross covariance. 

Optional input plots suppresses plotting when set to 0. 

See Also 

autocor, corrmap, wrtpulse 
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crossval 
Purpose 

Cross-validation for PCA, PLS, MLR, and PCR. 

Synopsis 
 
results = crossval(x,y,rm,cvi,ncomp,options) 
[press,cumpress,rmsecv,rmsec,cvpred,misclassed] = 

crossval(x,y,rm,cvi,ncomp,options) 

Description 

CROSSVAL performs cross-validation for linear regression (PCR, PLS, MLR, CorrelationPCR, 
and Locally Weighted Regression) and principal components analysis (PCA). Inputs are the 
predictor variable matrix x, predicted variable y (y is empty [] for rm = 'pca'), regression 
method rm, cross-validation method cvi, and maximum number of latent variables / 
components ncomp. 

rm  = 'pca'  performs cross-validation for PCA, 
rm  = 'mlr'  performs cross-validation for MLR, 
rm  = 'pcr'  performs cross-validation for PCR, 
rm  = 'nip'  performs cross-validation for PLS using NIPALS, 
rm  = 'sim'  or 'pls' performs cross-validation for PLS using SIMPLS,  
rm  = 'correlationpcr'  performs cross-validation for CorrelationPCR, and 
rm  = 'lwr'  performs cross-validation for Locally Weighted Regression (see LWRPRED). 
 
cvi can be 1) a cell containing one of the cross-validation methods below with the 
appropriate parameters {method splits iterations}, or 2) a vector representing user-
defined cross-validation groups. 
 
 loo :  leave one out cross-validation (each sample left out on its own; does 

not take splits or iterations as inputs), 
 vet : {splits} venetian blinds (every n-th sample together),  
 con : {splits} contiguous blocks, and 
 rnd : {splits iter} random subsets. 
 
Except for leave-one-out, all methods require the number of data splits splits to be 
provided. Random data subsets ('rnd') also requires number of iterations iter where 
"iterations" defines the number of replicate splits to perform. For 'con' and 'vet', iterations 
randomly moves the starting point for the first (and subsequent) blocks. 
 
E.g. cvi = {'con' 5}; for 5 contiguous blocks (one iteration) 
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For user-defined cross-validation, cvi is a vector with the same number of elements as x has 
rows (i.e. length(cvi) = size(x,1); when x is class “double”, or length(cvi) = 
size(x.data,1); when x is class “dataset”) with integer elements, defining test subsets. 
Each cvi(i) is defined as: 

cvi(i) = -2  the sample is always in the test set, 
cvi(i) = -1  the sample is always in the calibration set, 
cvi(i) =  0  the sample is always never used, and 
cvi(i) =  1,2,3… defines each subset. 
 

Options 

Optional input options is an options structure containing one or more of the following fields: 
 display: [ 'off' | {'on'} ] Governs output to command window, 
 plots: [ 'none' | {'final'} ] Governs plotting, 
 preprocessing: {[1]} Controls preprocessing. Default is mean centering (1). Can be 

input in two ways: 
  a) As a single value: 0 = none, 1 = mean centering, 2 = autoscaling, or 
  b) As {xp yp}, a cell array containing a preprocessing structure(s) for 

the X- and Y-blocks (see PREPROCESS). E.g. pre = {xp []}; for 
PCA. To include preprocessing of each subset use pre = {xp yp}; or 
pre = {xp []} for PCA. To avoid preprocessing of each subset use 
pre = {[] []}; or pre = 0 (zero). 

 threshold: {[]} Alternative PLSDA threshold level (default = [] = automatic) 
 prior: {[]} Used with PLSDA only. Vector of fractional prior probabilities. 

This is the probability (0-1) of observing a "1" for each column of y (i.e. 
each class). E.g. [.25 .50] defines that only 25Found and 50Found of 
future samples will likely be "true" for the classes identified by columns 
1 and 2 of the y-block. [] (Empty) = equal priors. 

structureoutput: [ {'no'} | 'yes' ] Governs output variables. 'Yes' returns a structure 
instead of individual variables. 'Yes' is default if only one output is 
requested. 

 jackknife: [ {'no'} | 'yes' ] Governs storing of jackknifed regression vectors. 
Jack-knifing may slow performance significantly or cause out-of-
memory errors when both x and y blocks have many variables. 

 rmsec: [ 'no' | {'yes'} ] Governs calculation of RMSEC. When set to 'no', 
calculation of "all variables" model is skipped (unless specifically 
required for plots or requested with multiple outputs) 

 pcacvi: {'loo'} Cell describing how PCA cross-validation should perform 
variable replacement. Variable replacement options are similar to cross-
validation CVI options and include: 

   {'loo'} leave one variable out at a time 
   {'con' splits} contiguous blocks (total of splits groups) 
  {'vet' splits} venetian blinds (every n'th variable), or 
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  {'rnd' splits} random subsets (note: no iterations) 
 fastpca: [ 'off' | {'auto'} ] Governs use of "fast" PCA Cross-validation 

algorithm. 'off' never uses fast algorithm,  'auto' uses fast algorithm 
when other options permit. Fast  pca can only be used with pcacvi set to 
'loo' 

 lwr: Sub-structure of options to use for locally-weighted regression cross-
validation. Most of these options are used as defined in the LWRPRED 
function (see LWRPRED for more details) but there are two additional 
options defined for cross-validation: 

 
  lwr.minimumpts : [20] the minimum number of points (samples) to 

use in any LWR sub-model. 
  lwr.ptsperterm : [20] the number of points to use per term (LV) in 

the LWR model. For example, when set to 20, 20 samples will be use 
for a 1 LV model, 40 samples will be used for a 2 LV model, etc. If set 
to zero, the number of points defined by lwr.minimumpts will be used 
for all models - that is, the number of samples used will be independent 
from the number of LVs in the model. 

   
  In all cases, the number of samples in an individual test set will be the 

upper limit of samples to include in any LWR prediction. 

Output: 
 press: predictive residual error sum of squares PRESS for each subset (subsets 

are rows of this matrix, number of components are columns) 
 cumpress: cumulative PRESS (sum of columns of press). 
 rmsecv: root mean square error of cross-validation. 
 rmsec: root mean square error of calibration. 
 cvpred: cross-validation y-predictions (regression methods only). If cross-

validation method was random, this is the average prediction of all 
replicates. 

 misclassed: fractional misclassifications for each class (valid for regression methods 
only and only when y is a logical, (i.e. discrete-value) vector. 

 reg: jack-knifed regression vectors from each sub-set. This will be size [k*ny 
nx splits] such that reg(1,:,:) will be the regression vectors for 1 
component model of the first column of y for all sub sets (a 1 by nx by 
splits matrix). Use squeeze to reduce to an nx by splits matrix. (note: 
options.jackknife must be 'yes' to use reg) 

If options.structureoutput is 'yes', a single output (results) will return all the above outputs 
as fields in a structure. If options.rmsec is 'no', then RMSEC is not returned (provides 
faster iterative calculation) 
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Note that for multivariate (y) the output (press) is grouped by output variable, i.e. all of the 
PRESS values for the first variable are followed by all of the PRESS values for the second 
variable, etc.  

When options.plots is not ‘none’ plots both RMSECV and RMSEC are provided. 

Examples 
 
[press,cumpress] = crossval(x,y,'nip',{'loo'},10); 
[press,cumpress] = crossval(x,y,'pcr',{'vet',3},10); 
[press,cumpress] = crossval(x,y,'nip',{'con',5},10); 
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10); 
res = crossval(x,y,'sim',{'rnd',3,20},10); 
 
pre = {preprocess('autoscale') preprocess('autoscale')}; 
opts.preprocessing = pre; 
opts.plots = ‘none’; 
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10,opts); 
res = crossval(x,y,'sim',{'rnd',3,20},10,opts); 
 
[press,cumpress] = crossval(x,[],'pca',{'loo'},10); 
[press,cumpress] = crossval(x,[],'pca',{'vet',3},10); 
res = crossval(x,[],'pca',{'con',5},10); 

See Also 

encodemethod, pca, pcr, pls, preprocess, ncrossval, ncrossval 
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datahat 
Purpose 

Calculates the model estimate and residuals of the data. 

Synopsis 
 
xhat = datahat(model); 
[xhat,resids] = datahat(model,data); 

Description 

Given a standard model structure model DATAHAT computes the model estimate of the data 
xhat. For example, if model is a PCA model of a matrix Xcal such that Xcal = TPT + E, then 
Xhat = TPT. (i.e. Xcal = TPT + E = Xhat + E). 

If optional input data is supplied then DATAHAT computes the model estimate of data that is 
output in xhat. For the PCA model of matrix Xcal, and data is a data matrix Xnew then Xhat = 
XnewPPT = TnewPT. The output resids is a matrix with the corresponding residuals E [E = 
Xnew-XnewPPT = Xnew(I-PPT)]. If data is Xcal then Xhat = TPT and resids is E = Xcal(I-PPT)]. 

Note that preprocessing in model will be performed before the residuals are calculated. If 
data is not provided, only xhat is available. 

Note that DATAHAT works with almost all standard model structures. 

See Also 

analysis, parafac 
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datasetdemo 
Purpose 

Demonstrates use of the dataset object. 

Synopsis 
 
datasetdemo 

Description 

This demonstration illustrates the creation and manipulation of dataset objects. Functions that 
are demonstrated include: DATASET, GET, SET, ISA, and EXPLODE.  

For more information see help on DATASET, DATASET/SET, DATASET/GET, and 
DATASET/EXPLODE. 

See Also 

editds, plotgui 
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delsamps 
Purpose 

Delete samples (rows) from data matrices. 

Synopsis 
 
eddata = delsamps(data,samps) 
eddata = delsamps(data',vars)' 

Description 

eddata = delsamps(data,samps) deletes samps row numbers (samples) from a data 
matrix data and saves the edited results to data matrix eddata.  

eddata = delsamps(data',vars)' deletes vars column numbers (variables) from a data 
matrix data and saves the edited results to data matrix eddata. 

See Also 

shuffle, specedit 
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demos 
Purpose 

Demo list for the PLS_Toolbox. 

Synopsis 
 
demos 

Description 

DEMOS brings up the Matlab help browser with a list of functions that have demonstration 
scripts. Clicking on a listed function will display a brief description and information about 
the function. Along with the description are highlighted text that, when clicked, will run the 
demo, connect to related information, or open the function in the mfile editor.  

See Also 

helppls 
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deresolv 
Purpose 

Changes high resolution spectra to low resolution. 

Synopsis 
 
lrspec = deresolv(hrspec,a) 

Description 

DERESOLV uses a FFT to convolve spectra with a resolution function to make it appear as if it 
had been taken on a lower resolution instrument. Inputs are the high resolution spectra to be 
de-resolved hrspec and the number of channels to convolve them over a. 

The output is the estimate of the lower resolution spectra lrspec. 

deresolv is useful for standardizing two instruments of different resolution. It can also be 
used to smooth spectra. 

See Also 

baseline, savgol, stdfir, stdgen 
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discrimprob 
Purpose 

Calculate discriminate probabilities of discrete classes for continuous predicted values. 

Synopsis 
 
[prob,classes] = discrimprob(y,ypred,prior) 

Description 

DISCRIMPROB examines the predictions of a PLS-D model (PLS-D models are trained on a 
standard x-block but with a y-block containing discrete class assignments for each sample). 
The predicted y-value from the PLS-D model will be a continuous variable that can be 
interpreted as a class similarity index. DISCRIMPROB uses the actual class asignments and the 
model y-value predictions to create a probability table that indicates, for a given predicted y-
value, the probability that the given value belongs to each of the original classes. 

Inputs are y the original logical classes for each sample, ypred the observed continuous 
predicted values for those samples and prior an optional input of the prior probabilities for 
each class. prior should be a vector representing the probabitily of observing each class in 
the entire population. Default prior probabilities is 1. 

Output prob is a lookup matrix consisting of an index of observed y-values in the first 
column, and the probability of that value being of each class in the subsequent columns. The 
second output classes is the discrete classes observed in y, corresponding to the additional 
columns of prob. 

To predict a probability that the observed value ypred is in class classes(n) use: 
 
classprob = interp1(prob(:,1),prob(:,n+1),ypred) 

See Also 

pls, plsdthres, simca 
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dispmat 
Purpose 

Calculates the dispersion matrix of two spectral data sets. 

Synopsis 
 
[c,meansx,meansy,stdsx,stdsy] = dispmat(x,y,options); 

Description 

Calculates a dispersion matrix, as defined by the options, of datasets x and y. 

 

INPUTS: 
 x : (2-way array class "double" or "dataset") x-matrix for dispersion 

matrix. 
 y : (2-way array class "double" or "dataset") y-matrix for dispersion 

matrix. 

OUTPUTS: 
 c : dispersion matrix, as defined by options. 
 meansx : mean of x. 
 meansy : mean of y. 
 stdsx : standard deviation of x. 
 stdsy : standard deviation of y. 

Options 
 offsetx : [0] offset for x. 
 offsety : [0] offset for y. 
 dispersion : [1] dispersion matrix calculated: 
  1: standardized, offset corrected 
  2: length sqrt(nrows), offset corrected 
  3: purity about mean, offset corrected 
  4: purity about origin, offset corrected 
  5: asynchronous, offset corrected 

See Also 

corrspec, corrspecengine, purity 
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distslct 
Purpose 

Select samples on the exterior of a data space based on a Euclidean distance. 

Synopsis 
 
isel = distslct(x,nosamps,flag) 

Description 

DISTSLCT first identifies a sample in the M by N data set x furthest from the data set mean. 
Subsequent samples are selected to be simultaneously the furthest from the mean and the 
selected samples for a total of nosamps selected samples. DISTSLCT calls STDSSLCT to find 
the number of samples up to the rank of the data and uses a distance measure to find 
additional samples if nosamps>rank(x). 

Optional intput tells DISTSLCT how many samples STDSLCT should estimate when 
nosamps>N: 
 1 =  STDSLCT selectes N-1, or 
 2 =  STDSLCT selects N {default}. 

Output isel is a vector of length nosamps containing the indices of the selected samples. 

This routine is used to initialize the selection of samples in the DOPTIMAL function. Altough it 
does not satisfy the d-optimality condition, it is an alternative to doptimal that does not 
require an inverse or calculation of a determinant. 

See Also 

doptimal, stdsslct 
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doptimal 
Purpose 

Selects samples from a candidate matrix that satisfy the d-optimal condition. 

Synopsis 
 
isel = doptimal(x,nosamps,iint,tol) 

Description 

DOPTIMAL selects a number (nosamps) of samples from a candidate matrix x that maximizes 
the determinant of det(x(isel,:)'*x(isel,:)) where isel is a vector of indices of the 
selected samples. 

The optional input iint is a vector of indices to initialize the optimization algorithm. If iint is 
not input the algorithm is initialized using samples identified as on the exterior of the data set 
using the DISTSLCT function. This is in contrast to initializing with a random subset used in 
many algorithms. The reason is that the routine is based on Fedorov's algorithm (de Aguiar, 
P.F., Bourguignon, B., Khots, M.S., Massart, D.L., and Phan-Than-Luu, R., “D-optimal 
designs”, Chemo. Intell. Lab. Sys., 30, 199–210, 1995) which requires calculating 
inv(x(isel,:)'*x(isel,:)), and it is possible that the inverse of a random set will not 
exist. The routine then exchanges the 'least informative' sample in the selected set with a 
'more informative' sample in the candidate set. The optional input tol sets the tolerance for 
minimum increase in the determinant {default = 1x10-4}. 

Note that nosamps must be ≥ rank(x) (it is necessary but not sufficient that nosamps ≥ 
size(x,2)) for a good solution to be found. This is required so that a good estimate of 
inv(x(isel,:)'*x(isel,:)) can be obtained. When nosamps < size(x,2) the scores 
from PCA or PLS can be used where nosamps ≥ than the number of factors (principal 
components or latent variables) used. Also, note that the solution can depend on the initial 
guess and that isel does not necessarily represent a global optimum. 

Examples 

For an input matrix x that is m by 5 
 
isel5 = doptimal(x,5); 
isel6 = doptimal(x,6); 

See Also 

distslct, stdsslct 
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dp 
Purpose 

Adds a diagonal line at 45 degrees (slope of 1) to the current plot 

Synopsis 
 
h = dp(lc, flag) 

Description 

DP can be used to add a line of perfect prediction to plots of actual versus predicted values. 
Optional input lc can be used to change the line style as in normal plotting (e.g. lc = 'b'). 
Returns handle of line object. 

See Also 

ellps, hline, plttern, vline, zline 
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durbin_watson 
Purpose 

Criterion for measure of continuity. 

Synopsis 
 
y = durbin_watson(x) 

Description 

The durbin watson criteria for the columns of x are calculated as the ratio of the sum of the 
first derivative of a vector to the sum of the vector itself. Low values means correlation in 
variables, high values indicates randomness. Input x is a column vector or array in which 
each column represents a vector of interest. Output y is a scalar or vector of Durbin Watson 
measures. 

See Also 

coda_dw 
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editds 
Purpose 

Editor for DataSet Objects. 

Synopsis 
 
editds(dataset) 
editds(command,fig,auxdata) 

Description 

EDITDS is a graphical user interface (GUI) for creating and editing dataset objects. Typing 
editds at the command line with no inputs will display the GUI. To create a new dataset, 
select New… from the File menu. Calling it with a dataset will display that dataset in a new 
GUI. 

Use menu items to perform common tasks such as Saving and Including/Excluding data. 
Many of these tasks can also be performed graphically by clicking on the appropriate tab and 
editing the given control. Most heading controls have mouse-over tool tips to further help 
identify a particular control or column. 

Data can also be plotted from the dataset editor via the View > Plot menu item or using the 
plot icon on the left side of the Info tab. Data can be edited directly via the Data tab and 
Variable labels and information can be manipulated vie their respective tabs.  

See Also 

plotgui 
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ellps 
Purpose 

Plots an ellipse on an existing figure. 

Synopsis 
 
ellps(cnt,a,lc,ang,pax,zh) 

Description 

ELLPS plots an ellipse on an existing figure e.g. an ellipse of constant Hotelling's T2. The 
inputs are a 2 element vector containing the ellipse center cnt, and a 2 element vector 
containing the ellipse axes sizes a. Optional inputs are lc which defines the line color (e.g. '-
g'), and ang which defines the angle of rotation from the x-axis {default: ang = 0 radians}. 

ellps([4 5],[3 1.5],':g') plots a dotted green ellipse with center (4,5), semimajor axis 
3 parallel to the x-axis and semiminor 1.5 parallel to the y-axis. 

Optional inputs pax and zh are used when plotting in a 3D figure. pax defines the axis 
perpindicular to the plane of the ellipse [1 = x-axis, 2 = y-axis, 3 = z-axis], and zh defines the 
distance along the pax axis to plot the ellipse. 

ellps([2 3],[4 1.5],'-b',pi/4,3,2) plots an ellipse in a plane perpindicular to the z-
axis at a heightof z = 2. 

See Also 

dp, hline, vline, zline 
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encode 
Purpose 

Translates a variable into matlab-executable code. 

Synopsis 
 
str = encode(item,varname) 
str = encode(item,varname,options) 

Description 

The created code can be eval'd or included in an m-file to reproduce the variable. This is 
essentially an inverse function of "eval" for variables. 

Input is a variable (item) and an optional name for that variable (varname). If (varname) is 
omitted, the input variable name will be used. If varname is empty, leading code which does 
assignment is omitted.  

Output is a string (str) which can be inserted into an m-file or passed to eval for execution. 

Options 
max_array_size : [10000] Maximum size allowed for any array dimension. Arrays with 

any size larger than this will be returned as simply [NaN] 
 structformat : [ 'struct' | {'dot'} ] defines how structures are encoded. 'struct' 

uses a "struct('a',val)" style (but can get very complex with large 
structures). 'dot' uses "x.a = val" format which is easier to read, but less 
compact. 

 forceoneline : [ {'off'} | 'on' ] remove all line breaks and ellipses from output. 
WARNING: this can cause a VERY long line on big objects and may 
exceed the maximum line length of editors or even MATLAB. 

Example 

Create code to reproduce a preprocessing structure 
 
>> p = preprocess('default','meancenter');  
>> encode(p) 

See Also 

encodexml, parsexml 



 

 87

encodexml 
Purpose 

Convert standard data types into XML-encoded text. 

Synopsis 
 
xml = encodexml(var) 
xml = encodexml(var,'name') 
xml = encodexml(var,'name','outputfile.xml') 

Description 

Converts a standard Matlab variable (var) into a human-readable XML format. The optional 
second input ('name') gives the name for the object's outer wrapper and the optional third 
input ('filename.xml') gives the name for the output file (if omitted, the XML is only returned 
in the output variable). For more information on the format, see the PARSEXML function. 

Example 
 
>> z.a = 1; 
>> z.b = { 'this' ; 'that' }; 
>> z.c.sub1 = 'one field'; 
>> z.c.sub2 = 'second field'; 
 
>> z = encodexml(z,'mystruct') 
 
z = 
<mystruct> 
  <a class="numeric" size="[1,1]">1</a> 
  <b class="cell" size="[2,1]"> 
    <tr> 
      <td class="string">this</td> 
    </tr> 
    <tr> 
      <td class="string">that</td> 
    </tr> 
  </b> 
  <c> 
    <sub1 class="string">one field</sub1> 
    <sub2 class="string">second field</sub2> 
  </c> 
</mystruct> 

See Also 

encode, parsexml 
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estimatefactors 
Purpose 

Estimate number of significant factors in multivariate data. 

Synopsis 
 
S = estimatefactors (x,options) 

Description 

Given a bilinear dataset, ESTIMATEFACTORS estimates the number of significant factors 
required to describe the data. The algorithm uses PCA bootstrapping (resampling) of the 
data. The PCA loadings determined for each resampling are compared for changes. Principal 
components which change significantly from one resampling to the next are probably due 
mostly to noise rather than signal. 

The output is an estimate of the signal to noize ratio for each principal component. Ratios of 
2 or below are dominated by noise, above 3 are OK, and between 2 and 3 are a jugement call. 
The number of factors needed to describe the data is the number of eigenvectors with signal 
to noise ratios greater than about 2. 

This function is based on an algorithm developed and Copyrighted 1997 by Ronald C. 
Henry, Eun Sug Park, and Clifford H. Spiegelman and used by permission of the authors. For 
reference see: 

* Henry, R.C., Park, E.S., & Spiegelman, C.H. (1999). Comparing A New Algorithm With 
The Classic Methods For Estimating The Number Of Factors. Chemometrics and Intelligent 
Laboratory Systems, 48(1), 91-97. 

* Park, E.S., Henry, R.C., & Spiegelman C.H. (2000). Estimating The Number Of Factors To 
Include In A Height Dimensional Multivaraite Bilinear Model.  Communications in 
Statistics-Theory and Methods, 29(3), 723-746. 
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Options 
 options =  a structure array with the following fields: 
 plots: ['none' | {'final'} ] Governs plotting.  
 resample: [ {42} ] number of times the data is to be resampled. Generally, values 

of 40 or 50 are sufficient. Values greater than several hundred are not 
required. 

 maxfactors: [ {30} ] maximum number of factors to plot (if plots are selected by 
options.plots). 

 preprocessing: {[]} Preprocessing structure or keyword (see PREPROCESS), to apply 
before analyzing data. 

The default options can be retreived using: options = estimatefactors('options');. 

See Also 

pca, pcaengine 
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evolvfa 
Purpose 

Perform forward and reverse evolving factor analysis. 

Synopsis 
 
[egf,egr] = evolvfa(xdat,plot,tdat) 

Description 

[egf,egr] = evolvfa(xdat) calculates eigenvalues of sub-matrices of xdat and returns 
results of the forward analysis in egf and reverse analysis in egr. 

[egf,egr] = evolvfa(xdat,plot) allows the user to control plotting options. When plot is 
set to 0 the plot of the results is suppressed. Setting plot equal to 1 {default} plots the results. 

[egf,egr] = evolvfa(xdat,plot,tdat) gives the routine an optional vector tdat to plot 
results against. 

See Also 

ewfa, pca, wtfa 
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evridebug 
Purpose 

Checks the PLS_Toolbox installation for problems. 

Synopsis 
 
problems = evridebug 

Description 

EVRIDEBUG runs various tests on the PLS_Toolbox installation to assure that all necessary 
files are present and not "shadowed" by other functions of the same name. This utility should 
be run if you experience problems with the PLS_Toolbox. 

EVRIDEBUG tests for: 

  * Missing PLS_Toolbox folders in path, 

  * Multiple versions of PLS_Toolbox, 

  * "Shadowed" files (duplicate named files), and 

  * Duplicate definitions of Dataset object. 

The single output problems is a cell containing the text of the problems encountered. If no 
problems are encountered, problems will be empty. 

Examples 

>> evridebug 

No PLS_Toolbox installation problems were identified. 

See Also 

evriinstall, evriupdate 
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evriinstall 
Purpose 

Install and verify PLS_Toolbox 

Synopsis 
 
evriinstall 

Description 

EVRIINSTALL automates the installation and verification of the PLS_Toolbox. To run 
evriinstall: 

1. Unzip PLS_Toolbox to a local directory (typically C:\MATLAB7\toolbox\). 

2. Open Matlab and navigate to the directory created above in the Current Directory window.  

3. Type evriinstall at the command line and press Enter. 

Installation involves first setting the Matlab Path to include the PLS_Toolbox directory and 
its subdirectories. The script then runs evridebug to check for potential problems after 
installation.  

See Also 

evridebug, evriupdate 
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evriupdate 
Purpose 

Check the Eigenvector Research web site for PLS_Toolbox updates. 

Synopsis 
 
outofdate = evriupdate(umode, product) 

Description 

Check Eigenvector.com for available PLS_Toolbox updates. EVRIUPDATE checks the 
Eigenvector Research web site for the most current PLS_Toolbox release version number. 
This is compared to the currently installed version. A message reporting the availability of an 
update is given as necessary. Input (product) will check for an individual product for umodes 
0-2. 

The optional input (umode) can be any of the following: 
 'auto': perform an automatic check based on Auto Check settings 
 'settings': Gives GUI to modify the automatic check settings 
 'prompt': prompt user before performing check - includes prompt to allow user to 

modify settings. 

or (umode) one of the following levels of automatic reports: 

    0  : give dialog stating if new version is available or not 

    1  : give dialog ONLY if a new version is available 

    2  : gives no dialog messages - only returns output flag (see below) 

    3  : give dialog of all products installed and version info. 

    4  : give dialog of all products from EVRI and versions. 

    5  : give dialog of all products but ONLY if a new version is available 

The default mode is 4. 

The output (outofdate) will be 0 (zero) if the installed PLS_Toolbox is current, 1 (one) if the 
installed version is out of date and -1 if evriupdate could not retreive the most current version 
number. 

See Also 

evridebug, evriinstall 
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ewfa 
Purpose 

Evolving window factor analysis. 

Synopsis 
 
[eigs,skl] = ewfa(dat,window,plots,scl) 

Description 

The inputs are the data matrix dat and the window witdth window. The output eigs is the 
eigenvalues for each window. The windowed eigenvalues vs. sample number is also plotted. 
Note that the eigenvalues on the ends of the record (less than the half width of the window) 
are plotted as dashed lines. The output skl is a scale that can be used to plot eigs against. 

Optional input plots can be used to suppress plotting when set to 0 {default plots = 1}. 
Optional input scl is a scale to plot against. It is also used to construct a new skl. 

See Also 

evolvfa, pca, wtfa 



 

 95

excludemissing 
Purpose 

Automatically exclude too-much missing data in a matrix. 

Synopsis 
 
[newx,bad] = excludemissing(x,threshold) 

Description 

Excludes rows, columns, or n-dim elements of input x which have too much missing based 
on the input threshold which is a fraction of allowed missing data. If omitted, threshold will 
be equal to the default max_missing value of the function MDCHECK (typically 0.40). 

Outputs are a dataset object with excluded elements newx and a cell holding the indices of 
the bad elements for each mode of data bad. 

See Also 

mdcheck, replace 
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explode 
Purpose 

Extracts variables from a structure array. 

Synopsis 
 
explode(sdat,mod,txt,out) 
options = explode('options') 

Description 

EXPLODE writes the fields of the input structure sdat to variables in the workspace with the 
same variable names as the field names. If sdat is a standard model structure, only selected 
information is written to the workspace. 

Optional string input txt appends a string to the variable output names. 

Options 
 options =  a structure array with the following fields: 
 model: [ 'no' | {'yes'} ] interpret sdat as model if possible, and 
 display: [ 'off' | {'on'} ]} display model information. 

The default options can be retreived using: options = explode('options');. 

Examples 

For the structure array x 
>> x.field1 = 2; 
>> x.field2 = 3; 
>> explode(x) 
Input (sdat) is not a recognized model. Exploding as regular structure 
>> whos 
  Name         Size                   Bytes  Class 
 
  field1       1x1                        8  double array 
  field2       1x1                        8  double array 
  x            1x1                      264  struct array 

the variables field1 and field2 have been written to the base workspace. 

See Also 

analysis, modelstruct 
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exportfigure 
Purpose 

Automatically export figures to an external program. 

Synopsis 
 
exportfigure 
exportfigure(target,sourcefigs) 

Description 

Exports one or more open figures into a new blank document in an external program. No 
inputs are required. 

OPTIONAL INPUTS: 
 target = The target program to export figures to, target can have the following 

values: 
  'powerpoint' : Microsoft PowerPoint {default} 
  'word'       : Microsoft Word 
  'clipboard'  : System Clipboard (to paste into other program) 
 sourcefigs = A vector of figure numbers to export {default is the current open figure 

(see GCF)}. 
  sourcefigs = 'all', exports all open figures. 

Note: "clipboard" export can only operate on one figure at a time. 

See Also 
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factdes 
Purpose 

Output a full factorial design matrix. 

Synopsis 
 
desgn = factdes(fact,levl) 

Description 

The input fact is the number of factors in the design and the output desgn is the 
experimental design matrix. 

desgn = factdes(fact); provides a full factorial two level design. 

Optional input levl allows for multiple level designs. 

desgn = factdes(fact, levl); provides a full factoriallevl level design {default levl = 
2}. 

See Also 

distslct, doptimal, ffacdes1, stdsslct 
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fastnnls 
Purpose 

Fast non-negative least squares. 

Synopsis 
 
[b,xi] = fastnnls(x,y,tol,b0,eqconst,xi); 

Description 

Solves the equation xb = y subject to the constraint that b is non-negative. The inputs are 
the matrix of predictor variables x, vector or matrix of predicted variables y. Optional inputs 
include: tolerance on the size of a regression coefficient that is considered zero (if tol = 0 
the default is used tol = max(size(x))*norm(x,1)*eps), tol, initial guess for the 
regression vectors, b0, and the equality constraints matrix, eqconst, equal in size to b0 and 
containing a value of NaN to indicate an unconstrained value or any finite value to indicate a 
constrained value. The optional input xi is the cached inverses output by a previous run of 
fastnnls (see outputs) or 0 (zero) to disable caching.  

The outputs are the non-negatively constrained least squares solution, b, and the cache of x 
inverses, xi. If input y is a matrix, the result  is the solution for each column of y calculated 
independently.  

If tol is set to 0 or [], the default tolerance will be used. If xi is set to 0, caching will be 
disabled. 

FASTNNLS is fastest when a good estimate of the regression vector b0 is input. This eliminates 
much of the computation involved in determining which coefficients will be nonzero in the 
final regression vector. This makes it very useful in alternating least squares routines. Note 
that the input b0 must be a feasible (i.e. nonnegative) solution. 

The FASTNNLS algorithm is based on work by Bro and de Jong, J. Chemo., 11(5), 393-401, 
1997. 

INPUTS: 
 x = the matrix of predictor variables, 
 y = vector or matrix of predicted variables. If (y) is a matrix, the result is the 

solution for each column calculated independently. 

OPTIONAL INPUTS: 
 tol = tolerance on the size of a regression coefficient that is considered zero. 

Not supplied or empty matrix is implies the default value (based on x 
and eps), 

 b0 = initial guess for the regression vectors. Default or empty matrix is 
interpreted as no known intial guess, 
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 eqconst = equality constraints matrix equal in size to b0 and containing a value of 
NaN to indicate an value not equality-constrained or any finite value to 
indicate an equality-constrained value. An empty matrix indicates no 
equality constraints on any elements. 

 xi = cached inverses output by a previous run of fastnnls (see outputs) or 0 
(zero) to disable caching. An empty matrix is valid as a placeholder in 
the inputs. 

See Also 

lsq2top, mcr, parafac 
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ffacdes1 
Purpose 

Output a fractional factorial design matrix. 

Synopsis 
 
desgn = ffacdes1(k,p) 

Description 

FFACDES1 outputs a 2(k-p) fractional factorial design of experiments. The design is constructed 
such that the highest order interaction term is confounded. This is one way to select a 
fractional factorial. Input k is the total number of factors in the design and p is the number of 
confounded factors {default: p = 1}. Note that it is required that p < k. Output desgn is the 
experimental design matrix. 

See Also 

distslct, doptimal, factdes, stdsslct 
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figbrowser 
Purpose 

Browser with icons of all Matlab figures. 

Synopsis 
 
figbrowser(varargin) 

Description 

The figbrowser function creates a figure containing thumbnail images of all visible Matlab 
figures. Clicking on an icon will instantly make that figure the current figure and bring to the 
front.  

INPUTS 
 ''(empty) = Creates or updates current figbrowser window 
 'focus' = Brings the figbrowser window to the front and updates if figures have 

been created or deleted since last update 
 'hide' = Hides the figbrowser window 
['addmenu',target_figure] = Adds figbrowser trigger menu to current or specified figure 
 'on' = Turns on automatic addition of figbrowser menu to all figures. 
  NOTE: menu addition can be permanently disabled by modifying the 

enableautoadd option in figbrowser. This option can be set using 
setplspref. When set to 'off', figbrowser will only show up on GUIs 
which specifically add it themselves, no matter what figbrowser        
command is issued. This option can also be modified through the 
"Figbrowser on All" menu item in all Figbrowser menus. 

 'off' = Removes figbrowser menus from all figures. 
['autodock','on'] = Adds figbrowser trigger menu to current or specified figure 
['autodock','off'] = Adds figbrowser trigger menu to current or specified figure 
  Controls auto-docking of standard figures on creation (figbrowser must 

be "on"). Auto-docking forces any standard figure to be opened in the 
Figure window. 

See Also 
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figmerit 
Purpose 

Analytical figures of merit for multivariate calibration. 

Synopsis 
 
[nas,nnas,sens,sel] = figmerit(x,y,b); 

Description 

Calculates analytical figures of merit for PLS and PCR standard model structures. Inputs are 
the preprocessed (usually centered and scaled) spectral data x, the preprocessed analyte data 
y, and the regression vector, b. Note that for standard PLS and PCR structures b = 
model.reg. 

The outputs are the matrix of net analyte signals nas for each row of x, the norm of the net 
analyte signal for each row nnas (this is corrected to include the sign of the prediction), the 
matrix of sensitivities for each sample sens, and the vector of selectivities for each sample 
sel (sel is always non-negative). 

Note that the "noise-filtered" estimate present in previous versions is no longer used because 
an improved method for calculating the net analyte vector makes it redundant 

Examples 

Given the 7 LV PLS model: 
modl = pls(x,y,7); 
Rhat = modl.loads{1,1}*modl.loads{2,1}'; 
[nas,nnas,sens,sel,nfnas] = figmerit(x,y,Rhat); 

Given the 5 PC PCR model: 
modl = pcr(auto(x),auto(y),5); 
Rhat = modl.loads{1,1}*modl.loads{2,1}'; 
[nas,nnas,sens,sel,nfnas] = figmerit(auto(x),auto(y),Rhat); 

See Also 

pcr, pls 



 104 

findindx 
Purpose 

Finds the index of the array element closest to value r. 

Synopsis 
 
index = findindx(array,r) 

Description 

Inputs are an array of values (array) and a value to locate (r). Output (index) is the linear 
index into array which will return the closest value to r. 

Examples 
 
index = findindx(array,r);       %get an index 
 
nearest_value = array(index);    %find the value 

See Also 

lamsel 
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fir2ss 
Purpose 

Convert a finite impulse response model into an equivalent state-space model. 

Synopsis 
 
[phi,gamma,c,d] = fir2ss(b) 

Description 

[phi,gamma,c,d] = fir2ss(b) takes a vector of FIR coefficients b and outputs the phi, 
gamma, c and d matrices for a equivalent discrete state-space model. 

See Also 

autocor, crosscor, plspulsm, wrtpulse 
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fitpeaks 
Purpose 

Peak fitting routine. 

Synopsis 
 
[peakdefo,fval,exitflag,out,fit,res] = fitpeaks(peakdef,y,ax,options) 

Description 

Based on the initial guess in input peakdef, FITPEAKS estimates the peak fit (also the 
Jacobian and Hessian), and makes a call to LMOPTIMIZEBND to find the best fit of the peaks to 
the data. (See LMOPTIMIZEBND for additional information.) Results are output to peakdefo. 

Information about individual peaks is stored in standard peak structures (see PEAKSTRUCT). 
Information on multiple peaks is stored in a multi-record structure. Given a standard peak 
structure (peakdef) that contains an initial guess of peak locations and widths, FITPEAKS 
finds new parameters that best fits peaks to the rows of the MxN  data matrix (y). Results are 
output to a standard peak structure (peakdefo). 

Fields of (peakdef) required in the initial guess for each peak are (.fun), (.param), (.lb), 
(.penlb), (.ub), and (.penub). 

INPUTS: 
 peakdef = multi-record standard peak structure with the following fields: 
 name: 'Peak', name indicating that this is a standard peak structure. 
 id: ' ', double or character string peak identification. 
 fun: [ {'Gaussian'} | 'Lorentzian' | 'PVoigt1' | 'PVoigt2' ], defines the 

peak function (see definitions in the Algorithm section). 
 param: Parameter list for each peak function. The number of parameters 

depends on the peak function used: 
  'Gaussian': [height, location, width], 
  'Lorentzian': [height, location, width], 
  'PVoigt1': [height, location, width, fraction Gaussian], 
  'PVoigt2': [height, location, width, fraction Gaussian]. 
 lb: [ ], Lower bounds on the function parameters. This is a row vector with 

the same number of elements as peakdef.param. 
 penlb: [ ], Penalty wt for lower bounds, >=0. This is a row vector with the same 

number of elements as peakdef.param. If set to 0 this constraint is not 
employed. 

 ub: [ ], Upper bounds on the function parameters. This is a row vector with 
the same number of elements as peakdef.param. 



 

 107

 penub: [ ], Penalty wt for upper bounds, >=0. This is a row vector with the same 
number of elements as peakdef.param. If set to 0 this constraint is not 
employed. 

 area: [ ], Estimated peak area. 
 
 y = MxN measured responses with peaks to fit. Each row of (y) is fit to the 

peaks given in (peakdef). 

OPTIONAL INPUTS: 
 ax = 1xN x-axis to fit to {default ax=1:N}. 
 options = discussed below in the Options Section. 

OUTPUTS: 
 peakdefo = The input peak structure (peakdef) with parameters changed to 

correspond to the best fit values. 
 fval = Scalar value of the objective function evaluated at termination of 

FITPEAKS. 
 exitflag = Describes the exit condition (see LMOPTIMIZEBND). 
 out = Structure array with information on the optimization/fitting (see 

LMOPTIMIZEBND). 
 fit = Model fit of the peaks, i.e it is the best fit to (y). 
 res = Residuals of fit of the peaks. 

Algorithm 

Peaks are fit to the functions defined below based on the definitions in the field 
(peakdef.fun). The functions can be evaluated using independent functions or a wrapper 
function PEAKFUNCTION. See PEAKFUNCTION for more help. 

For peakdef.fun = 'Gaussian' the function is 
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corresponds to the peak parameters in the three-element vector (peakdef.param). 
Constraints that should be used are (bounds in peakdef) are 1 0x ≥  and 3 0x ≥ . 
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Constraints that should be used are (bounds in peakdef) are 1 0x ≥  and 3 0x ≥ . 

For peakdef.fun = 'PVoigt1' the function is 
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where [ ]1 2 3 4x x x x=x  corresponds to the peak parameters in the four-element vector 
(peakdef.param). Constraints that should be used are (bounds in peakdef) are 1 0x ≥  and 

3 0x ≥ , while 41 0x≥ ≥ . The Pseudo-Voigt peak shape is an estimate of the Gaussian and 
Lorentzian peak shapes convolved. 

For peakdef.fun = 'PVoigt2' the function is 
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where [ ]1 2 3 4x x x x=x  corresponds to the peak parameters in the four-element vector 
(peakdef.param). Constraints that should be used (bounds in peakdef) are 1 0x ≥  and 

3 0x ≥ , while 41 0x≥ ≥ . The Pseudo-Voigt peak shape is an estimate of the Gaussian and 
Lorentzian peak shapes convolved. 

A comparison of the four peaks is given in the figure below, and was generated using the 
following code: 

  ax     = 0:0.1:100; 
  y      = zeros(4,length(ax)); 
  plot(ax,peakgaussian([2 51 8],ax),'-b', ... 
       ax,peaklorentzian([2 51 8],ax),'--k', ... 
       ax,peakpvoigt1([2 51 8 0.5],ax),':g', ... 
       ax,peakpvoigt2([2 51 8 0.5],ax),'-.r') 
  legend('Gaussian','Lorentzian','PVoigt1','PVoigt2') 



 

 109

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Gaussian
Lorentzian
PVoigt1
PVoigt2

 

Options 
options = structure array with the following fields: 
 name: 'options', name indicating that this is an options structure. 
 display: [ 'off' | {'on'} ] governs level of display to the command window. 
 optimopts: options structure from LMOPTIMIZEBND. This field is passed to 

LMOPTIMIZEBND and can be used to control the optimization / fitting. 
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Examples 
 
%Make a single known peak 
  ax            = 0:0.1:100; 
  y             = peakgaussian([2 51 8],ax); 
 
%Define first estimate and peak type 
  peakdef       = peakstruct; 
  peakdef.param = [0.1  43   5]; %coef, position, spread 
  peakdef.lb    = [0     0  0.0001]; %lower bounds on param 
  peakdef.penlb = [1e-6 1e-6 1e-6]; 
  peakdef.ub    = [10 99.9 40]; %upper bounds on params 
  peakdef.penub = [1e-6 1e-6 1e-6]; 
 
%Estimate fit and plot 
  yint   = peakfunction(peakdef,ax); 
  [peakdef,fval,exitflag,out] = fitpeaks(peakdef,y,ax); 
  yfit   = peakfunction(peakdef,ax); figure 
  plot(ax,yint,'m',ax,y,'b',ax,yfit,'r--') 
  legend('Initial','Actual','Fit') 

See Also 

peakfind, lmoptimizebnd, peakfunction, peakgaussian, peaklorentzian, 
peakpvoigt1, peakpvoigt2, peakstruct 
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frpcr 
Purpose 

Full-ratio PCR calibration and prediction. 

Synopsis 
 
model = frpcr(x,y,ncomp,options)     %calibration 
pred  = frpcr(x,model,options)       %prediction 
valid = frpcr(x,y,model,options)     %validation 
options = frpcr('options') 

Description 

FRPCR calculates a single full-ratio PCR model using the given number of components ncomp 
to predict y from measurements x. Random multiplicative scaling of each sample can be used 
to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for 
both y-block prediction and scaling variations (such as those due to pathlength and collection 
efficiency variations). The resulting PCR model is insensitive to absolute scaling errors. 

NOTE: For best results, the x-block should not be mean-centered. 

Inputs are x the predictor block (2-way array or DataSet Object), y the predicted block (2-
way array or DataSet Object), ncomp the number of components to to be calculated (positive 
integer scalar) and the optional options structure, options. 

The output of the function is a standard model structure model. In prediction and validation 
modes, the same model structure is used but predictions are provided in the 
model.detail.pred field. 

Although the full-ratio method uses a different method for determination of the regression 
vector, the fundamental idea is very similar to the optimized scaling 2 method as described 
in: 

T.V. Karstang and R. Manne, “Optimized scaling: A novel approach to linear calibration 
with close data sets”, Chemom. Intell. Lab. Syst., 14, 165-173 (1992). 

Options 
 options = a structure with the following fields: 
 pathvar: [ {0.5} ] standard deviation for random multiplicative scaling. A 

value of zero will disable the random sample scaling but may increase 
model sensitivity to scaling errors, 

 useoffset: [ {'off'} | 'on' ] flag determining use of offset term in regression 
equations (may be necessary for mean-centered x-block), 

 display: [ {'off'} | 'on' ] governs level of display to command window, 
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 plots: [ {'none'} | 'intermediate' | 'final' ] governs level of 
plotting, 

 preprocessing: {[ ] [ ]} cell of two preprocessing structures (see PREPROCESS) 
defining preprocessing for the x- and y-blocks. 

 algorithm: [ {'direct'} | 'empirical' ] governs solution algorithm. Direct 
solution is fastest and most stable. Only empirical will work on single-
factor models when useoffset is 'on', and 

 blockdetails: [ 'compact' | {'standard'} | 'all' ] extent of predictions and 
raw residuals included in model. 'standard' only uses y-block, and 
'all' uses x- and y-blocks. 

confidencelimit: [ {'0.95'} ] Confidence level for Q and T2 limits. A value of zero 
(0) disables calculation of confidence limits. 

 
In addition, there are several options relating to the algorithm. See FRPCRENGINE. 

The default options can be retreived using: options = frpcr('options');. 

See Also 

frpcrengine, mscorr, pcr 
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frpcrengine 
Purpose 

Engine for full-ratio PCR; also known as optimized scaling 2 PCR. 

Synopsis 
 
[b,ssq,u,sampscales,msg,options] =  
frpcrengine(x,y,ncomp,options);  %calibration 
[yhat] = frpcrengine(x,b);  %prediction  

Description 

Calculates a single full-ratio, FR, PCR model using the given number of components ncomp 
to predict y from measurements x. Random multiplicative scaling of each sample can be used 
to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for 
both y-block prediction and scaling variations (such as those due to pathlength and collection 
efficiency variations). The resulting PCR model is insensitive to scaling errors. 

NOTE: For best results, the x-block should not be mean-centered. 

Although the full-ratio method uses a different method for determination of the regression 
vector, the fundamental idea is very similar to the optimized scaling 2 method as described 
in: 

T.V. Karstang and R. Manne, “Optimized scaling: A novel approach to linear calibration 
with close data sets”, Chemom. Intell. Lab. Syst., 14, 165-173 (1992). 

For calibration mode, inputs include the x-block data, x, y-block data, y, and number of 
components ncomp. The optional input options is described below. Calibration mode outputs 
include: 

b  = the full-ratio regression vector for a SINGLE MODEL at the given number of PCs, 
ssq  = PCA variance information, 
u  = the x-block loadings, 
sampscales  = random scaling used on the samples, 
msg  = warning messages, and 
options  = the modified options structure. 

For prediction mode, inputs are the x-block data, x, and the full-ration regression vectors, b. 
The one output is the predicted y, yhat. 
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Options 
 options = a structure with the following fields: 
 pathvar: [ {0.5} ] standard deviation for random multiplicative scaling. A 

value of zero will disable the random sample scaling but may increase 
model sensitivity to scaling errors, 

 useoffset: [ {'off'} | 'on' ] flag determining use of offset term in regression 
equations (may be necessary for mean-centered x-block), 

 display: [ 'off' | {'on'} ] governs level of display to command window, 
 plots: [ {'none'} | 'intermediate' ] governs level of plotting, 
 algorithm: [ {'direct'} | 'empirical' ] governs solution algorithm. Direct 

solution is fastest and most stable. Only empirical will work on single-
factor models when useoffset is 'on', and 

 tolerance: [ {5e-5} ] extent of predictions and raw residuals included in model. 
'standard' only uses y-block, and 'all' uses x- and y-blocks, and 

 maxiter: [ {100} ] maximum number of iterations. 

The default options can be retreived using: options = frpcrengine('options');. 

See Also 

frpcr, mscorr, pcr 
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ftest 
Purpose 

Inverse F test and F test. 

Synopsis 
 
fstat = ftest(p,n,d,flag) 

Description 

fstat = ftest(p,n,d) or fstat = ftest(p,n,d,1) calculates the F statistic fstat 
given the probability point p and the number of degrees of freedom in the numerator n and 
denomenator d. 

fstat = ftest(p,n,d,2) calculates the probability point fstat given the F statistic p and 
the number of degrees of freedom in the numerator n and denomenator d. 

Examples 

a = ftest(0.05,5,8); returns the value 3.6875 for a, and  

a = ftest(3.6875,5,8,2); returns the value 0.050 for a. 

See Also 

chilimit, statdemo, ttestp 
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fullsearch 
Purpose 

Exhaustive Search Algorithm. 

Synopsis 
 
[desgn,fval] = fullsearch(fun,X,Nx_sub,P1,P2, ...); 

Description 

Fullsearch selects the Nx_sub variables in the M by Nx matrix X that minimizes fun. This can 
be used for variable selection. The algorithm should only be used for small problems because 
calculation time increases significantly with the size of the problem. fun is the name of the 
function (defined as a character string of an inline object) to be minimized. The function is 
called with the FEVAL function as follows: feval(fun,X,P1,P2,....), where X is the first 
argument for fun and P1, P2, ... the additional arguments of fun. 

The output desgn is a matrix (class “logical”) with the same size as X (M by Nx) with 1’s 
where the variables where selected and 0’s otherwise. Output fval has the M corresponding 
values of the objective function sorted in ascending order. 

Examples 

find which 2of 3 variables minimizes the inline function g: 
 
   x = [0:10]'; 
   x = [x x.^2 randn(11,1)*10]; 
   y = x*[1 1 0]'; 
   g = inline('sum((y-x*(x\y)).^2)'); 
   [d,fv] = fullsearch(g,x,2,y); 

find the 2 variables that minimize the cross-validation error for PCR, noting that the output 
from CROSSVAL is a vector and g should return a scalar 
 
load plsdatad 
   x = xblock1.data; 
   y = yblock1.data; 
   g = inline('min(sum(crossval(x,y,''pcr'',{''con'' 3},1,0)))','x','y'); 
   [d,fv] = fullsearch(g,x,2,y);  %takes a while if Nx_sub is > 2 

See Also 

calibsel, crossval, genalg 
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gaselctr 
Purpose 

Genetic algorithm for variable selection with PLS. 

Synopsis 
 
model = gaselctr(x,y,options)  
[fit,pop,avefit,bstfit] = gaselctr(x,y,options) 
options = gaselctr('options') 

Description 

GASELCTR uses a genetic algorithm optimization to minimize cross validation error for 
variable selection. 

INPUTS: 
 x = the predictor block (x-block), and 
 y = the predicted block (y-block) (note that all scaling should be done prior 

to running GASELCTR). 

Options 
 options = a structure array with the following fields: 
 plots: ['none' | {'intermediate'} | 'replicates' | 'final' ] 

Governs plots.  
  'final' gives only a final summary plot. 
  'replicates' gives plots at the end of each replicate. 
  'intermediate' gives plots during analysis.  
  'none' gives no plots. 
 popsize: {64} the population size (16≤popsize≤256 and popsize must be 

divisible by 4), 
 maxgenerations: {100} the maximum number of generations (25≤mg≤500), 
 mutationrate: {0.005} the mutation rate (typically 0.001≤mt≤0.01), 
 windowwidth: {1} the number of variables in a window (integer window width), 
 convergence: {50} percent of population the same at convergence (typically cn=80), 
 initialterms: {30} percent terms included at initiation (10≤bf≤50), 
 crossover: {2} breeding cross-over rule (cr = 1: single cross-over; cr = 2: 

double cross-over), 
 algorithm: [ 'mlr' | {'pls'} ] regression algorithm, 
 ncomp: {10} maximum number of latent variables for PLS models, 
 cv: [ 'rnd' | {'con'} ] cross-validation option ('rnd': random subset 

cross-validation; 'con': contiguous block subset cross-validation), 
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 split: {5} number of subsets to divide data into for cross-validation, 
 iter: {1} number of iterations for cross-validation at each generation, 
 preprocessing: {[] []} a cell containing standard preprocessing structures for the X- 

and Y-blocks respectively (see PREPROCESS), 
 preapply: [ {0} | 1 } If 1, preprocessing is applied to data prior to GA. This 

speeds up the performance of the selection, but my reduce the accuracy 
of the cross-validation results. Output "fit" values should only be 
compared to each other. A full cross-validation should be run after 
analysis to get more accurate RMSECV values. 

 reps: {1} the number of replicate runs to perform, 
 target: a two element vector [target_min target_max] describing the target 

range for number of variables/terms included in a model n. Outside of 
this range, the penaltyslope option is applied by multiplying the 
fitness for each member of the population by:  

   penaltyslope*(target_min-n) when n<target_min, or 
   penaltyslope*(n-target_max) when n>target_max. 
  Field target is used to bias models towards a given range of included 

variables (see penaltyslope below), 
 targetpct: {1} flag indicating if values in field target are given in percent of 

variables (1) or in absolute number of variables (0), and 
 penaltyslope: {0} the slope of the penalty function (see target above). 

The default options can be retreived using: options = gaslctr('options');. 

OUTPUT: 
 model = a standard GENALG model structure with the following fields: 
 modeltype: 'GENALG' This field will always have this value, 
 datasource: {[1x1 struct] [1x1 struct]}, structures defining where the X- and 

Y-blocks came from 
 date: date stamp for when GASELCTR was run, 
 time:  time stamp for when GASELCTR was run, 
 info: 'Fit results in "rmsecv", population included variables in 

"icol"', information field describing where the fitness results for each 
member of the population are contained, 

 rmsecv: fitness results for each member of the population, for X MxN and Mp 
unique populations at convergence then rmsecv will be 1xMp, 

 icol: each row of icol corresponds to the variables used for that member of 
the population (a 1 [one] means that variable was used and a 0 [zero] 
means that it was not), for X MxN and Mp unique populations at 
convergence then icol will be MpxN, and 

 detail: [1x1 struct], a structure array containing model details including the 
following fields: 

  avefit: the average fitness at each generation, 
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  bestfit: the best fitness at each generation, and 
  options: a structure corresponding to the options discussed above. 

Examples 

To use mean centering outside the genetic algorithm (no additional centering will be 
performed within the algorithm) do the following: 

x2 = mncn(x); 
y2 = mncn(y); 

[fit,pop] = gaselctr(x2,y2); 

To use mean centering inside the genetic algorithm (centering will be performed for each 
cross-validation subset) do the following: 

options = gaselctr('options'); 
options.preprocessing{1} = preprocess('default', 'mean center'); 
options.preprocessing{2} = preprocess('default', 'mean center'); 

[fit,pop] = gaselctr(x2,y2,options); 

See Also 

calibsel, fullsearch, genalg, genalgplot 
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gcluster 
Purpose 

K-means and K-nearest neighbor cluster analysis with dendrograms. 

Synopsis 
 
gcluster(data,labels) 

Description 

gclster(data) performs a cluster analysis on the data matrix data using K-means or K-
nearest neighbor clustering and plots a dendrogram showing distances between the samples. 
gcluster is a graphical user interface that calls the function cluster. The user can choose 
cluster method (K-means or KNN), and data scaling options. PCA can also be used on the 
data with distances based on raw scores or on a Mahalanobis distance measure. 

gclster(data,labels) plots on the dendrogram sample names contained in the matrix of 
text labels. labels can be entered as a matrix where each row is a label in single quotes and 
each label has the same number of characters. 

Note: Calling gclster with no inputs starts the graphical user interface (GUI) for this 
analysis method.  

See Also 

cluster, simca 
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genalg 
Purpose 

Genetic algorithm for variable selection to optimize model predictive ability with graphical 
user interface. 

Synopsis 
 
genalg(xdat,ydat) 

Description 

GENALG performs variable selection using a genetic algorithm. The function creates a 
graphical user interface that allows the user to load data from the workspace and select all of 
the GA algorihtm optional parameters (GASELCTR is a command-line version). A wide range 
of GA settings can be selected from the GUI. Please see GASELCTR for a description of each 
option. 

Optional inputs are the training data consisting of a matrix of predictor variables xdat and 
column vector of predicted variable ydat. (The number of rows in xdat and ydat must be the 
same). If GENALG is called with no inputs, xdat and ydat can be loaded using the File 
menu. 

In addition to various plots, the GUI can produce and save the results in a model structure 
that is the same as that returned by GASELCTR. Please see GASELCTR for a description of the 
model. Also, if “settings” are saved from GENALG this is the same as the options structure 
discussed in GASELCTR. 

Examples 
 
>> x2 = mncn(x); 
>> y2 = mncn(y); 
>> genalg(x2,y2) 

See Also 

calibsel, fullsearch, gaselctr, genalgplot 
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genalgplot 
Purpose 

Selected variable plot, color-coded by RMSECV for GA results. 

Synopsis 
 
indicies = genalgplot(fit,pop,spectrum,xaxis,xtitle) 
indicies = genalgplot(results,spectrum,xaxis,xtitle) 

Description 

An interactive plotting routine which displays the results of a genetic algorithm (GA) 
analysis. GENALGPLOT can aid in identifying patterns of variables that improve model 
prediction (as estimated by RMSECV). The results of GA analysis include the final unique 
"population" which is a M by N matrix where M is the number of members in the population 
and N is the number of original variables in the predictor block. Each row (member) of the 
population corresponds to a regression model where a column with a “1” indicates that 
variable was included in the model and a “0” indicates that the variable was not included. 
The RMSECV for each model characterized its prediction performance. 

The user selects a subset of the population from a plot of RMSECV versus the total number 
of included variables for each member of the population. The selected results are displayed 
in a plot that shows which variables were included for each member in the subset and its 
corresponding RMSECV. The plot is sorted with the best-performing individuals at the 
bottom of the plot and the worst at the top. 

GENALGPLOT is most useful when many replicate GA runs have been performed (see GENALG 
and GASELCTR) with low settings on the maximum number of generations (maxgenerations) 
or Found at convergence (convergence). 

Required inputs are fit, the RMSECV fit results from GASELCTR (or rmsecv from a GENALG 
results structure), and pop, the logical matrix of included variables for all individuals in the 
final population (or icol from a GENALG results structure). Optional inputs include 
spectrum, a spectrum to plot on the final "included variables" plot for reference, xaxis, the 
variable axis scale, and xtitle, the x-axis label for the final plot (e.g. xaxis units). 

The one output is the indicies of the selected individuals (rows of pop). 
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Examples 

Given the GENALG results structure gamodel, the following would plot the results: 
 
genalgplot(gamodel.rmsecv,gamodel.icol) 

See Also 

genalg, gaselctr 
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getdatasource 
Purpose 

Extract summary information about a DataSet. 

Synopsis 
 
[out1, out2,...] = getdatasource(dataset1, dataset2,...) 

Description 

The input(s) dataset1, dataset2,... are dataset objects. GETDATASOURCE returns structures 
containing useful summary information about each DataSet including the contents of the 
DataSet fields: name, author, date, and moddate. Also returned in the structure is the size of 
the data field. 

See Also 

dataset/dataset, dataset/subsref, modelstruct 
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getpidata 
Purpose 

Uses the current PI connection to construct a DSO from 'taglist'. 

Synopsis 
 
[pidso, warnlog] = getpidata(taglist,startdate,enddate,options) 

Description 

This function requires the PI SDK (software developer kit) be installed. If only taglist is 
submitted and or date inputs are empty then a "snapshot" of the data is returned. Date inputs 
can be any PI supported value. 

INPUTS 
 taglist = Cell array of strings containing tags to query or excel file with one 

column of tag names. 
 startdate = Start date/time to query or excel file with 2 columns (start and end 

dates). Each row will indicate a unique start/end and will be appended 
according to appenddir option setting. 

 endtdate = End date/time to query. 

OUTPUTS 
 pidso = dataset object of queried values or (if rawdata = 'on') a 1xn structure 

array with the following fields: 
  .tagname 
  .time  
  .value 
  With DSO returned queries, timestamps are returned in the .axisscale 

field. Matlab adjusted timestamps are reported in .axisscale{1,1}. The 
original UTC timestamps are reported in .axisscale{1,2}. 

Options 
options = structure array with the following fields: 
 tagsearch: [ {'off'} | 'on' ] Show PI tag search gui. 
 interpolate: [ {'interval'} | 'total' ] Governs interpolate settings, 
  'interval' is the time between data points in seconds. 
  'total' is the total number of points to retrieve. 
interpolateval: {60} Default is interval if 60 seconds. 
 timeout: {10} Seconds to wait for server to return for each column of data. 
 savefile: {''} File name to save output to. 
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diplaywarnings: [ 'off' | {'on'} ] Show warning at command line after calculation. 
timecorrection: {0} Time in seconds to be added when converting PI timestamps to 

Matlab time. 
 rawdata: [ {'off'} | 'on' ] Retrieve PI "compressed data" (actual Archive 

events) for given taglist. This will not use any interpolation and because 
data will likely be of different length, the result will be returned in a 
structure, not a dso. 

userservertime: [ 'off' | {'on'} | local] Governs how to convert Matlab 
timestamps (axisscale{1,1}). 'on' creates timestamps with timezone 
settings (e.g., daylight savings rules) applied. If set to 'off' then server 
time is used with no timezone rules applied. If set to 'local', local 
timezone is applied.  

 appenddir: [ {'mode 1'} | 'mode 3'] Mode to append to when using multiple 
time range inputs. 

 lengthmatch: [ 'min' | {'max'} | 'stretch' | 'fixed' ] Defines how slabs 
should be concatenated (used only when appenddir = 'mode 3'): 

  'min' truncates all slabs to the shortest slab length. 
  'max' adds NaN's to the end of each slab to match the longest slab 

length. 
  'stretch' interpolates all slabs to match the length of the FIRST read slab. 
  'fixed' either truncates or infills all slabs to match a specific length 

specified in targetlength, below. 
  All modes can also be adapted to match a minimum or maximum length 

using the "targetlength" option, below. 
 targetlength: [] Optional target length (used only when appenddir = 'mode 3'). A non-

empty value will be used in place of the default length defined by the 
lengthmatch option. If lengthmatch is 'min', this option defines the 
MAXIMUM length slab to allow. If lengthmatch is 'max', this option 
defines the MINIMUM length slab to allow. If lengthmatch is 'stretch', 
this option defines the target length. If lengthmatch is 'fixed' then this 
option defines the target length. 

Examples 

>> dso = getpidata('tagnames.xls','y-2d','t',options); 

>> dso = getpidata('tagnames.xls','dates.xls',options); 

>> dso = getpidata({'SINUSOID' 'BA:PHASE.1' 'BA:TEMP.1'},'y-
2d','t',options); 

See Also 

piconnectgui 
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glsw 
Purpose 

Calculate or apply Generalized Least Squares weighting. 

Synopsis 
 
modl = glsw(x,a);             %GLS on matrix 
modl = glsw(x1,x2,a);         %GLS between two data sets 
modl = glsw(x,y,a);           %GLS on matrix in groups based on y 
modl = glsw(modl,a);          %Update model to use a new value 
xt   = glsw(newx,modl,options);       %apply correction 
xt   = glsw(newx,modl,a);             %apply correction 
 

Description 

Uses Generalized Least Squares to down-weight variable features identified from the 
singular value decomposition of a data matrix. The input data usually represents two or more 
measured populations which should otherwise be the same (e.g. the same samples measured 
on two different analyzers or using two different solvents) and can be input in one of several 
forms, as explained below. In all cases, the downweighting is performed by taking the 
eigenvectors and eigenvalues of the differences. 

If the singular value decomposition (SVD) of the input matrix x is X=USVT then the 
deweighting matrix is estimated with the following pseudo-inverse W= 
Udiag(sqrt(1/(diag(S)/a2+1)))VT, where the center term defines Sinv. The adjustable 
parameter a is used to scale the singular values prior to calculating their inverse. As a gets 
larger, the extent of deweighting decreases (because Sinv approaches 1). As a gets smaller 
(e.g. 0.1 to 0.001) the extent of deweighting increases (because Sinv approaches 0) and the 
deweighting includes increasing amounts of the the directions represented by smaller 
singular values. 

A good initial guess for a is 1x10-2 but will vary depending on the covariance structure of X 
and the specific application. It is recommended that a number of different values be 
investigated using some external cross-validated metric for performance evalution. 

An alternative method to use GLSW is in quantitative analysis where a continuous y-variable 
is used to develop pseudo-groupings of samples in X by comparing the differences in the 
corresponding y values. This is referred to as the "gradient method" because it utilizes a 
gradient of the sorted X and y blocks to calculate a covariance matrix. For more information 
on this method, see the chapter discussing Preprocessing in the PLS_Toolbox Manual. 
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For calibration, inputs can be provided by one of three methods:  
 1) x = data matrix containing features to be downweighted, and 
 a = scalar parameter limiting downweighting {default = 1e-2}. 
 Note: If x is a dataset with classes, the differences within each class will be 

downweighted rather than the entire matrix. This reduces the within-
class variation ignoring the between-class variation. 

 2) x1 = a M by N data matrix and 
 x2 = a M by N data matrix. 
  The row-by-row differences between x1 and x2 will be used to estimate 

the downweighting. 
 a = scalar parameter limiting downweighting {default = 1e-2}. 
 3) x = a MxN data matrix, 
 y = column vector with M rows which specifies sample groups in x within 

which differences should be downweighted. Note that this method is 
identical to method (1) when classes of the X block are used to identify 
groups. The only difference is that these groupings are passed as a 
separate input. In fact, if y is empty, this defaults to method (1) above. 

 a = scalar parameter limiting downweighting {default = 1e-2}. 
 4) x = a MxN data matrix, 
 y = column vector with M rows specifying a y-block continuous variable. In 

this input, the "gradient method" is used to identify similar samples and 
downweight differences between them. See also the gradientthreshold 
option below. 

 a = scalar parameter limiting downweighting {default = 1e-2}. 
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An options structure can be used in place of (a) for any call or as the third output in an apply 
call. This structure consists of any of the fields: 
 a: [ 0.02 ] scalar parameter limiting downweighting {default = 1e-2},  
     applymean: [ 'no' | {'yes'} ] governs the use of the mean difference 

calculated between two instruments (difference between two 
instruments mode). When appling a GLS filter to data collected on 
the x1 instrument, the mean should NOT be applied. Data collected 
on the SECOND instrument should have the mean applied. 

gradientthreshold: [ .25 ] "continuous variable" threshold fraction above which the 
column gradient method will be used with a continuous y. Usually, 
when (y) is supplied, it is assumed to be the identification of discrete 
groups of samples. However, when calibrating, the number of 
samples in each "group" is calculated and the fraction of samples in 
"singleton" groups (i.e. in thier own group) is determined. 

    fraction = (# Samples in Singleton Groups) / Total Samples 
    If this fraction is above the value specified by this option, (y) is 

considered a continuous variable (such as a concentration or other 
property to predict). In these cases, the "sample similarity" (a.k.a. 
"column gradient") method of calculating the covariance matrix will 
be used. Sample similarity method determines the down-weighting 
required based  mostly on samples which are the most similar (on the 
specified y-scale). Set to >=1 to disable and to 0 (zero) to always use. 

 maxpcs: [ 50 ] maximum number of components (factors) to allow in the 
GLSW model. Typically, the number of factors in incuded in a model 
will be the smallest of this number, the number of variables or the 
number of samples. Having a limit set here is useful when derriving a 
GLSW model from a large number of samples and variables. Often, a 
GLSW model effectively uses fewer than 20 components. Thus, this 
option can be used to keep the GLSW model smaller in size. It may, 
however, decrease its effectiveness if critical factors are not included 
in the model. 

When applying a GLSW model the inputs are newx, the x-block to be deweighted, and modl, a 
GLSW model structure. 

Outputs are modl, a GLSW model structure, and xt, the deweighted x-block. 

See Also 

pca, pls, preprocess, osccalc 
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gram 
Purpose 

Generalized rank anihilation method. 

Synopsis 
 
[ord1,ord2,ssq,aeigs,beigs] = gram(a,b,tol,scl1,scl2,out) 

Description 

GRAM determines the joint invariant subspaces common to the two input matrices a and b, the 
ratio of their magnitudes ssq, and the response in both modes/orders ord1 and ord2. GRAM 
assumes that the input matrices a and b are bilinear, i.e. are the summation over outer 
products. 

Inputs are the two response matrices a and b, and the number of factors to calculate or 
tolerance on the ratio of smallest to largest singular value tol. Optional inputs scl1 and scl2 
are scales to plot against when producing plots of the reponse in each mode/order. Optional 
input out suppresses plotting and printing of results to the command window when set to 0 
{default out = 1}. 

Outputs are the pure component responses in each mode ord1 and ord2, the table of 
eigenvalues and their ratios ssq, and the eigenvalues for each matrix aeigs and beigs. 

See Also 

mpca, parafac, parafac2, tld 
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gscale 
Purpose 

Group/block scaling for a single or multiple blocks.  

Synopsis 
 
[gxs,mxs,stdxs] = gscale(xin,numblocks) 

Description 

GSCALE scales an input matrix xin such that the columns have mean zero, and variance in 
each block/sub-matrix relative to the total variance in xin equal to one. The purpose is to 
provide equal sum-of-squares weighting to each block in xin. 

Inputs are a matrix xin (class "double") and the number of sub-matrices or blocks 
numblocks. Note that size(xin,2)/numblocks must be an integer. If numblocks is not 
included, it is assumed to 1 i.e. the matrix xin is treated as a single block. 

If (numblocks) is 0 (zero) then automatic mode is used based on the dimensions of the (xin) 
matrix:  

If (xin) is a three-way array, it is unfolded (combining the first two modes as variables) 
and the size of the original second mode (size(xin,2)) is used as (numblocks). The output 
is re-folded back into the original three-way array. 

Note that the unfold operation is:  xin = unfoldmw(xin,3); 

If (xin) is a two-way array, each variable is treated on its own and GSCALE is equivalent 
to autoscale (see the AUTO function). 

Outputs are the scaled matrix (gxs), a rowvector of means (mxs), and a row vector of "block 
standard deviations" stdxs. 
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Examples 

Scale a matrix a that has two blocks augmented together: 
 
>> a = [[1 2 3; 4 5 6; 7 8 9] [11 12 13; 14 15 16; 17 18 19]] 
a = 
     1     2     3    11    12    13 
     4     5     6    14    15    16 
     7     8     9    17    18    19 
>> [gxs,mxs,stdxs] = gscale(a,2); 
>> gxs 
gxs = 
   -0.5774   -0.5774   -0.5774   -0.5774   -0.5774   -0.5774 
         0         0         0         0         0         0 
    0.5774    0.5774    0.5774    0.5774    0.5774    0.5774 
>> mxs 
mxs = 
     4     5     6    14    15    16 
>> stdxs 
stdxs = 
     3     3     3     3     3     3 

See Also 

auto, gscaler, mncn, mpca, scale, unfoldm 
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gscaler 
Purpose 

GSCALER Applies group/block scaling to submatrices of a single matrix. 

Synopsis 
 
gys = gscaler(xin,numblocks,mxs,stdxs) 
xin = gscaler(gys,numblocks,mxs,stdxs,undo) 

Description 

Inputs are a matrix (xin) (class "double"), the number of sub-matrices/ blocks (numblocks), 
an offset vector (mxs), and a scale vector (stdxs). 

See GSCALE for descriptions of (mxs) and (stdxs). 

Note that size(xin,2)/numblocks must be a whole number. 

When numblocks = 1, all variables are scaled as a single block. 

When numblocks = 0, each variable is handled on its own and gscaler is equivalent to the 
SCALE function. 

If the optional input (undo) is included with a value of 1 (one), then the input is assumed to 
be (gys) and is unscaled and uncentered to give the original (xin) matrix. 

In a standard call, the output is the scaled matrix (gys). When undo is provided, the output is 
the unscaled original matrix (xin).  

Examples 

Scale a matrix a that has two blocks augmented together using GSCALE: 
>> a = [[1 2 3; 4 5 6; 7 8 9] [11 12 13; 14 15 16; 17 18 19]]; 
>> [gxs,mxs,stdxs] = gscale(a,2); 
>> gxs 
gxs = 
   -0.5774   -0.5774   -0.5774   -0.5774   -0.5774   -0.5774 
         0         0         0         0         0         0 
    0.5774    0.5774    0.5774    0.5774    0.5774    0.5774 
>> mxs 
mxs = 
     4     5     6    14    15    16 
>> stdxs 
stdxs = 
     3     3     3     3     3     3 
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Now scale a new matrix b that has two blocks augmented together: 
>> b = [[2 3 4; 4 5 6; 6 7 8] [10 11 12; 14 15 16; 18 19 20]] 
b = 
     2     3     4    10    11    12 
     4     5     6    14    15    16 
     6     7     8    18    19    20 
>> gys = gscaler(b,2,mxs,stdxs) 
gys = 
   -0.3849   -0.3849   -0.3849   -0.7698   -0.7698   -0.7698 
         0         0         0         0         0         0 
    0.3849    0.3849    0.3849    0.7698    0.7698    0.7698 

See Also 

auto, gscale, mncn, mpca, scale, unfoldm 
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gselect 
Purpose 

Selects objects in a figure (various selection styles). 

Synopsis 
 
selected = gselect(mode,TargetHandle,options) 
[x,y]    = gselect(mode,TargetHandle,options) 

Description 

GSELECT is a general utility which allows user-selection of plotted objects (points, line 
segments, areas of images, etc.). A variety of selection modes can be used on various types 
of plots. Each mode allows the user to select an area or range of the current axes. After 
selection is complete, the function returns a cell array that contains one cell for each line or 
image object on the axes. These cells contain a binary (true/false) array representing the 
selected points of each object. 

The input mode is a string representing the selection mode. This governs how GSELECT 
selects objects in a figure. mode can be one of the following strings {default = 'rbbox'}: 
 'x': select a single x-axis position (snaps-to line x-data), 
 'y': select a single y-axis position (snaps-to line y-data), 
 'xs': select range of x-axis positions (snaps-to line x-data), 
 'ys': select range of y-axis positions (snaps-to line y-data), 
 'rbbox': select points inside a standard rubber-band box {default }, 
 'polygon': select points inside a polygon (user selects corners), 
 'circle': select points inside a circle, 
 'ellipse': select points inside an ellipse, 
 'lasso': select points inside a lasso, 
 'paint': drag a broad line across points for selection, 
 'nearest': select single nearest point, 
 'nearests': select multiple single (nearest) points, 
 'all': selects all points (no user interaction required), and 
 'none': selects no points (no user interaction required). 

Optional input TargetHandle is the handle or handles of objects to test for selection. The 
default is all lines, patches, surfaces, and images.  

The output is a cell array selection. Each cell in selection will be equal in length to the 
data used to create the corresponding object. For example, if a vector containing 30 points 
was plotted, the resulting cell will be a vector of 30 binary values. Each selected point on that 
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object will be represented by a value of 1 (one) in the cell, unselected objects by a value of 0 
(zero). 

If two outputs [x,y] are requested, GSELECT does not test objects for selection and simply 
returns the x and y points defining the selected area. 

Options 
 options = a structure array with the following fields: 
 modal: [ {'Flase'} | 'True' ] Governs window's "modal" nature. Note 

that some systems will not allow modal windows. 
 btndown: [ {'Flase'} | 'True' ] Should button be considered "down" at 

start? 
 demo: [ {'Flase'} | 'True' ] Is this a demo call to gselect? (do not wait 

to exit) 
 poslabel: [ 'none' | {'xy'} ] Governs what kind of axis position labels will 

be shown. 
 helpbox: [ 'off' | {'on'} ] Governs display of the helpbox. 
 helptextpre: [ '' ] Specifies text to prepend to helpbox message. 
 helptextpost: [ '' ] Specifies text to append to end of helpbox message. 
 helptext: [ '' ] Specifies alternate text to replace default  helpbox message. 
 
 modalwindow = optional flag which can be passed in place of "options" input. Controls 

window modal setting during the selection process (Keeps other 
windows from interrupting process) A value of 1 sets options.modal to 
'true'. 

 

Examples 

Example 1. Plot a vector of 10 random values and let the user select from these points using 
the standard rubber-band box. 

 
plot(randn(10,3), randn(10,3), '.'); slct = gselect('rbbox') 

The output will be something like: 
 
slct =  
    [1x10 uint8] 
>> slct{1} 
ans = 
     0     0     0     0     1     1     0     1     0     0 
>> find(slct{1}) 
ans = 
     5     6     8 

indicating that points 5, 6 and 8 were selected by the user. 
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Example 2. Plot a small image and let the user select a sub-range using the polygon tool. 
 
imagesc(randn(6,6)); slct = gselect('polygon') 

The output will be something like: 
 
slct =  
    [6x6 uint8] 
>> slct{1} 
ans = 
     0     0     0     0     0     0 
     0     1     0     0     0     0 
     0     1     1     1     0     0 
     0     1     1     1     0     0 
     0     1     0     1     1     0 
     0     1     0     1     0     0 

indicating the "n" shaped region selected by the user. 

See Also 

plotgui 
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helppls 
Purpose 

Starts the MATLAB help browser with PLS_Toolbox topics. 

Synopsis 
 
helppls 

Description 

HELPPLS brings up the MATLAB help browser with a list of topics for installing and using 
the PLS_Toolbox. To access a particular topic simply click on its text.  

Use the arrow buttons in the upper left corner of the window to navigate forward and 
backward (similar to a web browser). Some of the Topics may link you to a Documentation 
page about a particular function in the PLS_Toolbox. From here you can navigate to related 
topics by clicking on See Also items or to the next topic (in alphabetical order) by clicking 
its text in the yellow highlighted header/footer section. 

See Also 

readme 
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hline 
Purpose 

Place a horizontal line in an existing figure. 

Synopsis 
 
hline(y,lc) 
h = hline(y,lc) 

Description 

HLINE draws a horizontal line on an existing figure from the left axis to the right axis at a 
height, or heights, defined by y which can be a scalar or vector. If no input is used for y the 
default vaule is zero. The optional input variable lc can be used to define the line style and 
color as in normal plotting. 

Examples 

hline(1.4,'--b') 

plots a horizontal dashed blue line at y = 1.4. 

See Also 

dp, ellps, plot, plttern, vline, zline 
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ipls 
Purpose 

IPLS Interval PLS and forward/reverse MLR variable selection. 

Synopsis 
 
results = ipls(X,Y,int_width,maxlv,options) 
results = ipls(X,Y,int_width,maxlv,numintervals,options) 
[use,fit,lvs,intervals,intcv,intlv] = 

ipls(X,Y,int_width,maxlv,options) 

Description 

Performs forward or reverse selection of variable windows based on the RMSECV obtained 
for each individual window ("intervals") of variables. Multiple windows can also be selected 
iteratively by modifying the options.numintervals options. The "algorithm" option allows this 
function to behave as an IPLS or IPCR algorithm or a forward/reverse MLR variable 
selection algorithm. The default is PLS but options.algorithm = 'mlr' changes to MLR mode. 
See other options below. 

Inputs are (X,Y) the X and Y data, (int_width) the interval i.e. window width in variables and 
(maxlv) the maximum number of latent variables to use in any model (maxlv has no impact if 
options.algorithm = 'mlr'). Note that excluding a variable in X will prevent it from being used 
in any model.  

If options.plots is 'final', a plot is given of the minimum RMSECV versus window center. 
Windows which were used are indicated in blue, windows which were excluded are indicated 
in red. The number of latent variables (LVs) used to assess each interval (the model size that 
gives the indicated RMSECV) is shown at the bottom of each interval's bar, inside the axes. 
The best RMSECV that can be obtained using all intervals is shown as a dashed red line (all-
interval RMSECV). The number of LVs used in this model is shown on the right of the axes. 
If this number of LVs (all-interval model) is different from the number used for the best 
model of the selected interval(s) (selected-interval model) then a dashed magenta line will 
indicate the RMSECV obtained when using all intervals but at the selected-interval model 
size. The mean sample is superimposed on the plot for reference. 

INPUTS: 
 X = X-block, 
 Y = Y-block, and 
 int_width = the interval (window width in variables) 
 maxlv = the maximum number of latent variables to use in any model. 
   
NOTE that excluding a variable in X will prevent it from being used in any model. 
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OUTPUTS: 

When a single output is requested, the output is a structure with the following fields: 
  
 use: the final selected indices which gave the best model, 
 fit: the RMSECV for the selected indicies, 
 lvs: the number of latent variables which gives the best fit, 
 intervals: a matrix containing the indicies used for each interval. 
 intcv: the RMSECV in the last selection cycle for all intervals (these values 

were used to select the last interval). 
 intlv: the number of latent variables used in the model which gave the 

RMSECV values returned in intcv. 

Optionally, with multiple outputs, these vaiables will be returned as single outputs (not in 
structure format) in the order shown above. 

Options 
 options = options structure containing the fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 plots: [ 'none' | {'final'} ], governs level of plotting, 
 mode:  [{'forward'} | 'reverse' ] Defines action to be performed with 

each interval. 
  'forward' mode: the RMSECV calculated for each interval represents 

how well the y-block can be predicted using ONLY the variables 
included in the interval. 

  'reverse' mode: the RMSECV calculated for each interval represents how 
well the y-block can be predicted when the given interval of variables 
are removed from the range of included X variables. 

  NOTE that excluding a variable in X will prevent it from being used in 
any model. 

 algorithm:  [{'pls'} | 'pcr' | 'mlr' ] Defines regression algorithm to use. 
Selection is done for the specific algorithm. Note that when MLR is 
used, input (int_width) is most often = 1 (single variable per window). 

 numintervals: { [1] } Number of intervals to select or remove. If (num_intervals) is 
Inf, intervals are iteratively selected and added/removed until no 
improvement in RMSECV is observed. NOTE: this can also be set by 
passing as a scalar value before, or in place of, the options structure. 
When passed this way, any value passed in the options structure will be 
ignored. 

 mustuse: [ ] A vector of variable indices which MUST be used in all models. 
These variables will always be included in any model, whether or not 
they are included in the current interval. 
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 stepsize: [ ] Distance between interval centers. An empty matrix gives the 
default spacing in which intervals do not overlap (stepsize = int_width). 

 preprocessing: defines preprocessing and can be one of the following: 
  (a) One of the following strings: 
  'none'  : no preprocessing  {default} 
  'meancenter' : mean centering 
  'autoscale'  : autoscaling 
  (b) A single preprocessing structure defined using the function 
  preprocess. The same preprocessing structure will be used on both 
  the X and Y blocks. 
  (c) A cell containing two preprocessing structures {pre pre} one for 
  the X block and one for the Y block. 
 cvi: {'vet' [ ] 1} Three element cell indicating the cross-validation 

leave-out settings to use {method splits iterations}. For valid modes, see 
the "cvi" input to crossval. If splits (the second element in the cell) is 
empty, the square root of the number of samples will be used. cvi can 
also be a vector (non-cell) of indices indicating leave-out groupings (see 
crossval for more info). 

See Also 

gaselctr, genalg 
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jcampreadr 
Purpose 

Reads a JCAMP file into a DataSet object. 

Synopsis 
 
data = jcampreadr('filename.dx') 

Description 

Input is the filename of a JCAMP file to read. If omitted, the user is prompted for a file. 
Currently this reader will only read files of type: 

INFRARED SPECTRUM 

LINK 

Output (data) is a DataSet object containing the spectrum or spectra from the file (or an 
empty array if no data could be read) 

See Also 

spcreadr, xclreadr 
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jmlimit 
Purpose 

Confidence limits for Q residuals via Jackson-Mudholkar. 

Synopsis 
 
rescl = jmlimit(pc,s,cl) 

Description 

JMLIMIT estimates confidence limits for Q residuals based on the Jackson-Mudholkar 
method. See Jackson, J.E., “A User’s Guide to Principal Components”, John Wiley & Sons, 
New York, NY (1991), and the discussion in the Chemometrics Tutorial on PCA. 

Inputs are the number of PCs used pc, the vector of eigenvalues s, and the confidence limit 
cl expressed as a fraction (e.g. 0.95). Note that for a PCA model structure, model, that the 
eigenvalues can be found in model.detail.ssq(:,2). 

The output rescl is the confidence limit based on the method of Jackson and Mudholkar. 
See CHILIMIT for an alternate method of residual limit calculation based on chi squared. 

Examples 
rescl = jmlimit(2,ssq(:,2),0.95); 

For a PCA model contained in the structure model: 

rescl = jmlimit(4,model.detail.ssq(:,2),0.99); 

See Also 

chilimit, analysis, pca, residuallimit 
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knn 
Purpose 

K-nearest neighbor classifier. 

Synopsis 

 
pclass = knn(xref,xtest,k,options); %make prediction without model 
pclass = knn(xref,xtest,options); %use default k 
 
model = knn(xref,k,options) %create model 
pclass = knn(xref,xtest,k,options) %apply model to xtest 
pclass = knn(xtest,model,options) 

Description 

Performs kNN classification where the "k" closest samples in a reference set vote on the 
class of an unknown sample based on distance to the reference samples. If no majority is 
found, the unknown is assigned the class of the closest sample (see input options for other 
no-majority behaviors). 

INPUTS: 
 xref = a DataSet object of reference data, 
 xtest = a DataSet object or Double containing the unknown test data. 

OPTIONAL INPUTS: 
 model  = an optional standard KNN model structure which can be passed instead 

of xref (note order of inputs: (xtest,model) ) to apply model to test data. 
 k  = number of components {default = rank of X-block}. 
 

OUTPUTS: 
 pclass = an optional number of neighbors to use in vote for class of unknown 

{default = 3}. If k=1, only the nearest sample will define the class of the 
unknown. 

 model = if no test data (xtest) is supplied, a standard model structure is returned 
which can be used with test data in the future to perform a prediction. 

Options 
 options = structure array with the following fields : 
 display: [ 'off' | {'on'} ] governs level of display to screen. 



 146 

 preprocessing: { [ ] } A cell containing a preprocessing structure or  keyword (see 
PREPROCESS). Use {'autoscale'} to perform autoscaling on reference 
and test data. 

 nomajority: [ 'error' | {'closest'} | class_number ] Behavior when no majority is found 
in the votes. 'closest' = return class of closest sample. 'error' = give error 
message. class_number (i.e. any numerical value) = return this value for 
no-majority votes (e.g. use 0 to return zero for all no-majority votes) 

See Also 

analysis, cluster, plsda, simca 
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lamsel 
Purpose 

Determine indices of wavelength axes in specified ranges. 

Synopsis 
 
inds = lamsel(freqs,ranges,out) 

Description 

LAMSEL determines the indices of the elements of a wavelength or wavenumber axis within 
the ranges specified. Inputs are the wavelength or wavenumber axis freqs and an m by 2 
matrix defining the wavelength ranges to select ranges. 

An optional input out suppresses displaying information to the command window when set to 
0. 

The output inds is a vector of indices of channels in the specified range(s) inclusive. 

Examples 

inds = lamsel(lamda,[840 860; 1380 1400]); 

outputs the indices of the elements of lamda between 840 and 860 and between 1380 and 
1400. 

See Also 

baseline, savgol, specedit 
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lddlgpls 
Purpose 

Provide an “load” dialog box for use with GUIs. 

Synopsis 
 
[value,name,source] = lddlgpls(klass,message) 

Description 

LDDLPLS creates a dialog box that allows a function to load variables from the workspace or a 
MATLAB "mat" file into the function workspace. The location of the file to load from can be 
selecetd from the folders listed in the file list and from the "Look in" menu at the top of the 
dialog box. Optional input klass allows the user to select the workspace variable of class to 
load. Valid values for klass are: 
 'double': loads 2-way DOUBLE variable {default}, 
 'cell': loads CELL variable, 
 'char': loads 2-way CHAR variable, 
 'struct': loads a STRUCT variable, 
 'dataset': loads a DATASET object, 
 'doubdataset': loads a 2-way DOUBLE or DATASET, or 
 '*': loads any class and size variable. 

Optional text input message places a message in the load dialog box. 

Outputs include value the value of the selected variable, name the original name of the 
variable, and location the filename from which the variable was loaded (will be empty if 
loaded from the base workspace). 

See Also 

erdlgpls, svdlgpls 
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leverag 
Purpose 

Calculates sample leverage. 

Synopsis 
 
lev = leverag(x,rinv) 

Description 

LEVERAG calculates the sample leverage according to 

lev(i,1) = x(i,:)*inv(x'*x)*x(i,:)'. 

Note that the leverage calculation should include a term for calculation of the offset (e.g. see 
Draper, N. and Smith, H., “Applied Regression Analysis, Second Edition”, John Wiley & 
Sons, New York, N.Y., 1981), but the above formula contains the salient information. This, 
in effect, assumes that the data have been mean centered and the constant term related to 
estimating the offset has been ignored. If x'*x is replaced by x'*x/(m-1) where m is the 
number of rows of x, and x has been mean centered then this is the equation for Hotelling's 
T2 statistic. 

Note that if x is not of full rank then inv(x'*x) won't exist, or if x is nearly rank deficient 
then calculation of the inverse will be unstable. In these cases, the scores from principal 
components analysis can be used. 

If the optional input rinv is supplied then the leverage is calculated as 

lev(i,1) = x(i,:)*rinv*x(i,:)'. 

See Also 

doptimal, figmerit, pls, pcr 
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lmoptimize 
Purpose 

Levenberg-Marquardt non-linear optimization. 

Synopsis 
 
[x,fval,exitflag,out] = lmoptimize(fun,x0,options,params) 

Description 

Starting at (x0) LMOPTIMIZE finds (x) that minimizes the function defined by the function 
handle (fun) where (x) has N  parameters. The function (fun) must supply the Jacobian and 
Hessian i.e. they are not estimated by LMOPTIMIZE (an example is provided in the Algorithm 
Section below). 

INPUTS: 
 fun = function handle, the call to fun is 
  [fval,jacobian,hessian] = fun(x) 
  [see the Algorithm Section for tips on writing (fun)] 
  (fval) is a scalar objective function value, 
  (jacobian) is a N x1 vector of Jacobian values, and 
  (hessian) is a N x N  matrix of Hessian values. 
 x0 = N x1 initial guess of the function parameters. 

OPTIONAL INPUTS: 
 options = discussed below in the Options Section. 
 params = comma separated list of additional parameters passed to the objective 

function (fun), the call to (fun) is 
  [fval,jacobian,hessian] = fun(x,params1,params2,...). 

OUTPUTS: 
 x =  N x1 vector of parameter value(s) at the function minimum. 
 fval = scalar value of the function evaluated at (x). 
 exitflag = describes the exit condition with the following values 
 1: converged to a solution (x) based on one of the tolerance criteria 
 0: convergence terminated based on maximum iterations or maximum 

time. 
 out = structure array with the following fields: 
 critfinal: final values of the stopping criteria (see options.stopcrit below). 
 x: intermediate values of (x) if options.x=='on'. 
 fval: intermediate values of (fval) if options.fval=='on'. 
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 Jacobian: last evaluation of the Jacobian if options.Jacobian=='on'. 
 Hessian: last evaluation of the Hessian if options.Hessian=='on'. 

Algorithm 

The objective function is defined as ( )f x , where x  is a N x1 vector. The Jacobian J  and 
the symmetric Hessian H  are defined as 
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. 

Two types of calls to the function fun are made. The first type is used often and is a simple 
evaluation of the function at x given by 

fval = fun(x,params1,params2,...); 

The second type of call returns the Jacobian and Hessian 
[fval,jacobian,hessian] = fun(x,params1,params2,...); 

Therefore, to enhance the speed of the optimization, the M-file that evaluates the objective 
function should only evaluate the Jacobian and Hessian if nargout>1 as in the following 
example. 

function [p,p1,p2] = banana(x) 
%BANANA Rosenbrock's function 
%  INPUT: 
%    x  = 2 element vector [x1 x2] 
%  OUTPUTS: 
%    p  = P(x)  = 100(x1^2-x2)^2 + (x1-1)^2 
%    p1 = P'(x) = [400(x1^3-x1x2) + 2(x1-1); -200(x1^2-x2)]  
%    p2 = P"(x) = [1200x1^2-400x2+2, -400x1; -400x1, 200] 
%    p  is (fval) 
%    p1 is (jacobian) 
%    p2 is (Hessian) 
% 
%I/O: [p,p1,p2] = banana(x); 
  
x12 = x(1)*x(1); 
x13 = x(1)*x12; 
x22 = x(2)*x(2); 
alpha = 10; %1 is not very stiff, 10 is The stiff function 
  
p   = 10*alpha*(x13*x(1)-2*x12*x(2)+x22) + x12-2*x(1)+1; 
if nargout>1 
  p1  = [40*alpha*(x13-x(1)*x(2)) + 2*(x(1)-1); 
         -20*alpha*(x12-x(2))]; 
  p2  = [120*x12-40*x(2) + 2, -40*x(1); 
         -40*x(1),             20]*alpha; 
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end 

This example shows that the Jacobian and Hessian are not evaluated unless explicitly called 
for by utilizing the nargout command. Since estimating J  (output p1) and H  (output p2) 
can be time consuming, this coding practice is expected to speed up the optimization. 

A single step in a Gauss-Newton (G-N) optimization, k∆x  is given as 

 1
k k k

−∆ = −x H J  

where the index k  corresponds to the step number. 

A problem with the G-N methods is that the inverse of the Hessian may not exist at every 
step, or it can converge to a saddle point if the Hessian is not positive definite [T.F. Edgar, 
D.M. Himmelblau, Optimization of Chemical Processes, 1st ed., McGraw-Hill Higher 
Education, New York, NY, 1988]. As an alternative, the Levenberg-Marquardt (L-M) 
method was used for CMF [K. Levenberg, Q. Appl. Math 2 (1944) 164; D. Marquardt, 
S.I.A.M. J. Appl. Math 11 (1963) 431; Edgar et al.]. A single step for the L-M method is 
given by 

 ( ) 1
k k kθ −∆ = − +x H I J  

where θ  is a damping parameter and I  is a N x N  identity matrix. This has a direct analogy 
to ridge regression [A.E. Hoerl, R.W. Kennard, K.F. Baldwin, Commun. Statist. 4 (1975) 
105] with θ , the ridge parameter, constraining the size of the step. This method is also called 
a damped G-N method [G. Tomasi, R. Bro, Comput. Stat. Data Anal. in press (2005)]. There 
are several details to implementing the L-M approach [M. Lampton, Comput. Phys. 11 
(1997) 110]. Details associated with the LMOPTIMIZE function are discussed here. 

At each iteration in the algorithm, the inverse of k θ+H I  must be estimated. As a part of this 
process the singular value decomposition (SVD) of kH  is calculated as 

 T
k=VSV H  . 

Note that the left and right singular vectors are the same (and equal to V ) because the 
Hessian is symmetric. If the optimization surface is convex, kH  will be positive definite and 
the diagonal matrix S  will have all positive values on the diagonal. However, the 
optimization problem may be such that this is not the case at every step. Therefore a small 
number α  is added to the diagonal of S  in an effort to ensure that the Hessian will always 
be positive definite. In the algorithm 1,1 ncondα = S , where 1,1S  is the largest singular value 
and ncond  is the maximum condition number desired for the Hessian [ ncond  is input as 
options.ncond]. This can be viewed as adding a small dampening to the optimization and is 
always included at every step. In contrast, an additional damping factor that is allowed to 
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adapt at each step is also included. The adapting dampening factor is given by 1 1,1θ λ= S  
where the initial 1λ  is input to the algorithm as options.lamb(1). It is typical that θ  is 
much larger than α . The inverse for the L-M step is then estimated as 

 ( ) ( )( ) 11 T
k θ θ α

−−+ ≈ + +H I V S I V  

and is used to estimate a step distance k∆x . 

The ratio ( ) ( ) [ ]k k k kr f f= − + ∆ − ∆  x x x J x  is a measure of the improvement in the 
objective function relative to the improvement if the objective function decreased linearly. If 

1r r<  then a line search is initiated [ 1 0r >  is a small number input as options.ramb(1)]. In 
this case, the damping factor 1λ  is increased (so that the step size is reduced) by setting 

1 1 2λ λ λ=  where 2 1λ <  [ 2λ  is input as options.lamb(2)], and a new step distance k∆x  is 
estimated. The ratio r  is then estimated again. The damping factor 1λ  is increased until 

1r r≥  or the maximum number of line search steps maxk  is reached [ maxk  is input as 
options.kmax]. (If 1λ  increases sufficiently, the optimization resembles a damped steepest 
decent method.) If the maximum number of line search steps maxk  is reached, the step is 
“rejected” and only a small movement is made such that 3k k kr∆ = ∆ ∆x x x  [ 3r  is input as 
options.ramb(3)]. 

If instead, the first estimate of the ratio is large enough such that 1r r≥  then the line search is 
not initiated. If the ratio is sufficiently large such that 2r r> , where 2 1r r>  then the damping 
factor is decreased by setting 1 1 3λ λ λ=  where 3 1λ >  [ 2r  is input as options.ramb(2); 3λ  
is input as options.lamb(3)]. 

A new value for x  is then estimated from 1k k k+ = + ∆x x x  and the next step is repeated from 
that point. The process is repeated until one of the stopping criteria [options.stopcrit] are 
met. 

Options 
options = structure array with the following fields: 
 name: 'options', name indicating that this is an options structure. 
 display: [ 'off' | {'on'} ] governs level of display to the command window. 
 dispfreq: N, displays results every Nth iteration {default N=10}. 
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative 

tolerance) (absolute tolerance) (maximum number of iterations) 
(maximum time in seconds)]. 

 x: [ {'off'} | 'on' ] saves (x) at each step. 
 fval: [ {'off'} | 'on' ] saves (fval) at each step. 
 Jacobian: [ {'off'} | 'on' ] saves last evaluation of the Jacobian. 
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 Hessian: [ {'off'} | 'on' ] saves last evaluation of the Hessian. 
 ncond = 1e6, maximum condition number for the Hessian (see Algorithm). 
 lamb = [0.01 0.7 1.5], 3-element vector used for damping factor control (see 

Algorithm Section): 
 lamb(1): lamb(1) times the biggest eigenvalue of the Hessian is added to Hessian 

eigenvalues when taking the inverse; the result is damping. 
 lamb(2): lamb(1) = lamb(1)/lamb(2) causes deceleration in line search. 
 lamb(3): lamb(1) = lamb(1)/lamb(3) causes acceleration in line search. 
 ramb = [1e-4 0.5 1e-6], 3-element vector used to control the line search (see 

Algorithm Section): 
 ramb(1): if fullstep < ramb(1)*[linear step] back up (start line search). 
 ramb(2): if fullstep > ramb(2)*[linear step], accelerate [change lamb(1) by the 

acceleration parameter lamb(3)]. 
 ramb(3): if linesearch rejected, make a small movement in direction of L-M step 

ramb(3)*[L-M step]. 
 kmax = 50, maximum steps in line search (see Algorithm Section). 

Examples 
options   = lmoptimize('options'); 
options.x = 'on'; 
options.display = 'off'; 
[x,fval,exitflag,out] = lmoptimize(@banana,x0,options); 
plot(out.x(:,1),out.x(:,2),'-o','color', ... 
 [0.4 0.7 0.4],'markersize',2,'markerfacecolor', ... 
 [0 0.5 0],'markeredgecolor',[0 0.5 0]) 

See Also 

function_handle, lmoptimizebnd 
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lmoptimizebnd 
Purpose 

Levenberg-Marquardt bounded non-linear optimization. 

Synopsis 
 
[x,fval,exitflag,out] =  
  lmoptimizebnd(fun,x0,xlow,xup,options,params) 

Description 

Starting at (x0) LMOPTIMIZE finds (x) that minimizes the function defined by the function 
handle (fun) where (x) has N  parameters. Inputs (xlow) and (xup) can be used to provide 
lower and upper bounds on the solution (x). The function (fun) must supply the Jacobian and 
Hessian i.e. they are not estimated by LMOPTIMIZEBND (an example description is provided in 
the Algorithm Section of the function LMOPTIMIZE). 

INPUTS: 
 fun = function handle, the call to fun is 
  [fval,jacobian,hessian] = fun(x) 
  [see the Algorithm section for tips on writing (fun)] 
  (fval) is a scalar objective function value, 
  (jacobian) is a N x1 vector of Jacobian values, and 
  (hessian) is a N x N  matrix of Hessian values. 
 x0 = N x1 initial guess of the function parameters. 
 xlow = N x1 vector of corresponding lower bounds on (x). See options.alow. 

If an element of xlow == -inf, the corresponding parameter in (x) is 
unbounded on the low side. 

 xup = N x1 vector of corresponding upper bounds on (x). See options.aup. If 
an element of xup == inf, the corresponding parameter in (x) is 
unbounded on the high side. 

OPTIONAL INPUTS: 
 options = discussed below in the Options Section. 
 params = comma separated list of additional parameters passed to the objective 

function (fun), the call to (fun) is 
  [fval,jacobian,hessian] = fun(x,params1,params2,...). 
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OUTPUTS: 
 x = N x1 vector of parameter value(s) at the function minimum. 
 fval = scalar value of the function evaluated at (x). 
 exitflag = describes the exit condition with the following values 
 1: converged to a solution (x) based on one of the tolerance criteria 
 0: convergence terminated based on maximum iterations or maximum 

time. 
 out = structure array with the following fields: 
 critfinal: final values of the stopping criteria (see options.stopcrit above). 
 x: intermediate values of (x) if options.x=='on'. 
 fval: intermeidate values of (fval) if options.fval=='on'. 
 Jacobian: last evaluation of the Jacobian if options.Jacobian=='on'. 
 Hessian: last evaluation of the Hessian if options.Hessian=='on'. 

Algorithm 

The algorithm is essentially the same as that discussed in LMOPTIMIZE and this section 
discusses only the two main differences between LMOPTIMIZEBND and LMOPTIMIZE. 

The first difference is the addition of penalty functions used to enforce bounding. For 
example, the objective function used in LMOPTIMIZE is ( )f x , but the objective function used 

by LMOPTIMIZEBND is ( ) ( ) ( )low upf g g+ +x x x . The penalty functions for upper, ( )upg x , and 

lower bounds, ( )lowg x , are similar, so only the lower penalty function is described. 

Define d  as the lower boundary, 0γ  a small number (e.g. 0.001) and 0α  a large number [e.g. 
8

0ln(10 ) / γ−− ], then for a single parameter the lower penalty function is given as 

 ( )
( )

( ) ( )
( )
( )

0 0
0

221
00 0 0 02

0
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ix d
i

low i
ii i

e x d
g x

x dx d x d

α γ γ
γα γ α γ

− − − − − ≥ =  − − <− − − + − −  
 . 

This function can be considered an external point function because it is defined outside the 
feasible region (outside the boundaries). It is continuous at the boundary and also has 
continuous first and second derivatives. This is in contrast to internal point functions such as 
a log function that is not continuous at the boundary [e.g. ( )ln 0  is not continuous]. The first 
and second derivatives of the penalty function are given by 

 ( ) ( )
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 ( ) ( ) ( )
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The external point penalty function does not guarantee that a step won’t move outside the 
boundaries into the infeasible region. It does, however provide a means for getting back 
inside the feasible region. 

A second modification is included in the LMOPTIMIZEBND algorithm to avoid large steps 
outside the feasible region. If a step k∆x  is such that any 1k k k+ = + ∆x x x  are outside the 
feasible region, the step size for those parameters is reduced. The reduction is 90% the 
distance of that parameter to the boundary. This typically changes the direction of the step 

k∆x . 

Options 
options = structure array with the following fields: 
 name: 'options', name indicating that this is an options structure. 
 display: [ 'off' | {'on'} ] governs level of display to the command window. 
 dispfreq: N, displays results every Nth iteration {default N=10}. 
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative 

tolerance) (absolute tolerance) (maximum number of iterations) 
(maximum time in seconds)]. 

 x: [ {'off'} | 'on' ] saves (x) at each step. 
 fval: [ {'off'} | 'on' ] saves (fval) at each step. 
 Jacobian: [ {'off'} | 'on' ] saves last evaluation of the Jacobian. 
 Hessian: [ {'off'} | 'on' ] saves last evaluation of the Hessian. 
 ncond = 1e6, maximum condition number for the Hessian (see Algorithm). 
 lamb = [0.01 0.7 1.5], 3-element vector used for damping factor control (see 

Algorithm Section): 
 lamb(1): lamb(1) times the biggest eigenvalue of the Hessian is added to Hessian 

eigenvalues when taking the inverse; the result is damping. 
 lamb(2): lamb(1) = lamb(1)/lamb(2) causes deceleration in line search. 
 lamb(3): lamb(1) = lamb(1)/lamb(3) causes acceleration in line search. 
 ramb = [1e-4 0.5 1e-6], 3-element vector used to control the line search (see 

Algorithm Section): 
 ramb(1): if fullstep < ramb(1)*[linear step] back up (start line search). 
 ramb(2): if fullstep > ramb(2)*[linear step], accelerate [change lamb(1) by the 

acceleration parameter lamb(3)]. 
 ramb(3): if linesearch rejected, make a small movement in direction of L-M step 

ramb(3)*[L-M step]. 
 kmax = 50, maximum steps in line search (see Algorithm Section). 
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 alow: [ ], N x1 vector of penalty weights for lower bound, {default = 
ones(N,1)}. If an element is zero, the corresponding parameter in (x) is 
not bounded on the low side. 

 aup: [ ], N x1 vector of penalty weights for upper bound, {default = 
ones(N,1)}. If an element is zero, the corresponding parameter in (x) is 
not bounded on the high side. 

Examples 
options   = lmoptimize('options'); 
options.x = 'on'; 
options.display = 'off'; 
options.alow    = [0 0]; %x(1) and x(2) unbounded on low side 
options.aup     = [1 0]; %x(1) bounded on high side and x(2) 
                         % unbounded on high side 
 
[x,fval,exitflag,out] = lmoptimize(@banana,x0,[0 0], ... 
                          [0.9 0],options); 
plot(out.x(:,1),out.x(:,2),'-o','color', ... 
 [0.4 0.7 0.4],'markersize',2,'markerfacecolor', ... 
 [0 0.5 0],'markeredgecolor',[0 0.5 0]) 

See Also 

function_handle, lmoptimize 
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localmax 
Purpose 

Automated identification of local maxima 

Synopsis 
 
i0 = localmax(x,w) 

Description 

Finds maxima in windows of width (w). Wider windowing is used to avoid local maxima that 
might be due to noise. The default window width is w=3. This function is called by 
PEAKFIND. 

INPUT: 
 x = MxN  matrix of measured traces containing peaks each 1xN  row of (x) 

is an individual trace. 

OPTIONAL INPUT: 
 w = odd scalar window width for determining local maxima {default: w = 

3}. 

OUTPUT: 
 i0 = 1Mx  cell w/ indices of the location of the major peaks for each of the 

M  traces in each cell. 

Examples 
 
load nir_data 
plot(spec1.axisscale{2},spec1.data(1,:)) 
i0 = localmax(spec1.data(1,:)); 
vline(spec1.axisscale{2}(i0{1})) 
 
i0 = localmax(spec1.data(1,:),5); 
vline(spec1.axisscale{2}(i0{1}),'r') 

See Also 

fitpeaks, peakfind 
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logdecay 
Purpose 

Variance scales a matrix using the log decay of the variable axis. 

Synopsis 
 
[sx,logscl] = logdecay(x,tau)  

Description 

Inputs are data to be scaled (x), and the decay rate (tau). Outputs are the variance scaled 
matrix (sx) and the log decay based variance scaling parameters (logscl). 

For an m x n matrix 'x' the variance scaling used for variable 'i' is exp(-(i-1)/((n-1)*tau)). This 
gives a scaling of 1 on the first variable (i.e. no scaling), and a scaling of 1/exp(-1/tau) on the 
last variable. The following table gives example values of tau and the scaling on the last 
variable: 
 

 tau    scaling 
   1      2.7183 
  1/2     7.3891 
  1/3    20.0855 
  1/4    54.5982 
  1/5   148.4132 

See Also 

autoscale, scale 
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lsq2top 
Purpose 

Fits a polynomial to the top/(bottom) of data. 

Synopsis 
 
[b,resnorm,residual,options] = lsq2top(x,y,order,res,options) 

Description 

LSQ2TOP is an iterative least squares fitting algorithm. It is based on a weighted least squares 
approach where the weights are determined at each step. At initialization the weights are all 
1, then a polynomial is fit through the data cloud using least squares. When fitting to the top 
of a data cloud, data points with a residual significantly below a defined limit (i.e. the points 
below the polynomial fit line) are given a small weighting. Therefore, on subsequent 
iterations these data points are weighted less in the fit, and the fit line moves to fit to the top 
of the data cloud. 

Input x is the independent variable e.g. a Mx1 vector corresponding to a frequency or 
wavelength axis. Input y is the dependent variable e.g. a Mx1 vector corresponding to a 
measured spectrum. Input order is a scalar defining the order of polynomial to be fit e.g. y = 
P(x), and res is a scalar approximation of the fit residual e.g. noise level. Input options is 
discussed below. Note that the function can be used to fit to the top or bottom of a data cloud 
by changing trbflag in options. 

The outputs are b, the regression coefficients [highest order term corresponds to b(1) and the 
intercept corresponds to b(end)], resnorm is the squared 2-norm of the residual, and 
residual is the fit residuals = y - P(x). The options ouput is the input options echoed 
back, the field initwt may have been modified. 

Options 
 options = structure array with the following fields : 
 display: [ 'off' | {'on'} ] governs level of display to command window. 
 trbflag: [ 'top' | {'bottom'} ] top or bottom flag, tells algorithm to fit the 

polynomials, y = P(x), to the top or bottom of the data cloud. 
 tsqlim: [ 0.99 ] limit that governs whether a data point is significantly outside 

the fit residual defined by input res. 
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one 

of the stopping criterion is met: [(relative tolerance) (absolute tolerance) 
(maximum number of iterations) (maximum time [seconds])]. 

 initwt: [ ] empty or Mx1 vector of initial weights (0<=w<=1). 
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Algorithm 

For order = 1 and fitting to the top of a data cloud, LSQ2TOP finds the vector [ ]1 2b b=b  

that minimizes ( ) ( )1 2 1 2
Tb b b b− − − −y x 1 W y x 1  where W is a diagonal weighting matrix 

whose elements are initially 1 and then are modified on each subsequent iteration. 

The weighting is determined by first estimating the residuals for each data point j as 
1 2j j jresidual b b= − −y x  and defining /j jt residual res=  where res  is the input res. A 

corresponding t-statistic from a t-table is estimated using the following 
tsqst    = ttestp(1-options.tsqlim,5000,2); 

where tablet  is tsqst. The elements of W  are then given by ( )1 0.5 /j j tablew t t= +  for data 

points with j tablet t< , and is a 1 otherwise. Therefore, the weighting is smaller for points far 
below the fit line. 

The procedure can be modified to fit to the bottom of a data cloud by changing 
options.trbflag. 

See Also 

baseine, baselinew, fastnnls 
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lsq2topb 
Purpose 

Fits a polynomial to the top/(bottom) of data. 

Synopsis 
 
[yi,resnorm,residual,options] = lsq2topb(x,y,order,res,options) 

Description 

For order=1 and fitting to top of data cloud, LSQ2TOPB finds (yi) that minimizes   sum( 
(W*( y - yi )).^2 ) where W is a diagonal weighting matrix given by: 
 
>> tsq = residual/res; % (res) is an input 
>> tsqst = ttestp(1-options.tsqlim,5000,2); % T-test limit from table 
>> ii = find(tsq<-tsqst); % finds residuals below the line 
>> w(ii) = 1./(0.5+tsq(ii)/tsqst); %de-weights pts significantly below line 

i.e. w(ii) is smaller for residuals far below/(above) the fit line. 

INPUTS: 
 x = independent variable Mx1 vector. 
 y = dependent variable, Mx1 vector. 
 order = order of polynomial [scalar] for polynomial function of input (x). If 

(order) is empty, (options.p) must contain a MxK matrix of basis vectors 
to fit in lieu of polynomials of (x). 

 res = approximate fit residual [scalar]. 
OPTIONAL INPUTS: 
 k  = number of components {default = rank of X-block}, and 

OUTPUTS: 
 yi = the fit to input (y). 
 resnorm = squared 2-norm of the residual. 
 residual = y - yi. 

Options 
 options = structure array with the following fields : 
 p: [ ] If (options.p) is empty, input (order) must be >0. Otherwise, 

options.p is a MxK matrix of basis vectors. 
 smooth: [ ] if >0 this adds smoothing by adding a penalty to the magnitude of the 

2nd derivative. (empty or <=0 means no smooth). 
 display: [ 'off' | {'on'} ] governs level of display to command window. 
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 trbflag: [{'top'} | 'bottom' | 'middle'] flag that tells algorithm to fit (yi) 
to the top, bottom, or middle of the data cloud. 

 tsqlim: [0.99] limit that govers whether a data point is outside the fit residual 
defined by input (res). 

 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one 
of the stopping criterion is met [(rel tol) (abs tol) (max # iterations) (max 
time [seconds])]. 

 initwt: [ ] empty or Mx1 vector of initial weights (0<=w<=1). 

See Also 

baseine, baselinew, fastnnls 
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lwrpred 
Purpose 

Predictions based on locally weighted regression models. 

Synopsis 
 
ypred = lwrpred(xnew,xold,yold,lvs,npts,out) 
[ypred,extrap] = lwrpred(xnew,xold,yold,lvs,npts,out) 

Description 

LWRPRED makes new sample predictions ypred for a new matrix of independent variables 
xnew based on an existing data set of independent variables xold, and a vector of dependent 
variables yold. Predictions are made using a locally weighted regression model defined by 
the number principal components used to model the independent variables lvs and the 
number of points defined as local npts. 

Optional input out suppresses printing of the results when set to 0 {default = 1}. Additional 
output (extrap), a vector equal in length to number of samples in xnew, is non-zero when the 
given sample was predicted by extrapolating outside of the range of y-values which were 
used in the model. The value represents the distance (in y-units) extrapolated outside of the 
modeled samples. For example, a value of -0.3 indicates that the given sample was predicted 
by extrapolating 0.3 y-units below the lowest modeled sample in yold. 

Note: Be sure to use the same scaling on new and old samples i.e. xnew must be scaled the 
same as xold! 

Options 
 options = a structure array with the following fields: 
 display: [ 'off' | {'on'} ] governs level of display. 
 alpha: [ 0-1 ]  Weighting of y-distances in selection of local points. 0 = do 

not consider y-distances {default}, 1 = consider ONLY y-distances, 
 iter: [ {5} ]  Iterations in determining local points. Used only when alpha > 

0 (i.e. when using y-distance scaling), 
 preprocessing: { 2 2 }  Two element cell array defining preprocessing to use on data. 

First element of cell defines x-block preprocessing, second element 
defines y-block preprocessing. Options are: 

  0 = no scaling or centering 
  1 = mean center only 
  2 = autoscale (default) 
  For example: {1 2} performs mean centering on x-block and autoscaling 

on y-block, 
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 algorithm: [ {'globalpcr'} | 'pcr' | 'pls' ]  Method of regression after 
samples are selected. 'globalpcr' performs PCR based on the PCs 
calculated from the entire calibration data set but a regression vector 
calculated from only the selected samples. 'pcr' and 'pls' calculate a local 
PCR or PLS model based only on the selected samples. 

 reglvs: [ ]  Used only when algorithm is 'pcr' or 'pls', this is the number of 
latent variables/principal components to use in  the regression model, if 
different from the number used to select calibration samples. [] (Empty) 
implies LWRPRED should use the same number of latent variables in 
the regression as were used to select samples. NOTE: This option is 
NOT used when algorithm is 'globalpcr'. 

 

See Also 

pls, polypls 
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lwrxy 
Purpose 

Predictions based on locally weighted regression with y-distance weighting. 

Synopsis 
 
ypred = lwrxy(xnew,xold,yold,lvs,npts,alpha,iter,out) 

Description 

NOTE: LWRXY is depreciated. Y-distance weighting should be accessed via the .alpha 
option of LWRPRED. 

LWRXY makes new sample predictions ypred for a new matrix of independent variables xnew 
based on an existing data set of independent variables xold, and a vector of dependent 
variables yold. Predictions are made using a locally weighted regression model defined by 
the number principal components used to model the independent variables lvs, the number 
of points defined as local npts, the weighting given to the distance in y alpha, and the 
number of iterations to use iter. 

Optional input out suppresses printing of the results when set to 0 {default = 1}. 

Note: Be sure to use the same scaling on new and old samples i.e. xnew must be scaled the 
same as xold! 

See Also 

lwpred, pls, polypls 
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manrotate 
Purpose 

Graphical interface to manually rotate model loadings and investigate directions in the 
scores. 

Synopsis 
 
manrotate(model,lvs) 

Description 

MANROTATE shows a score vs. score scatter plot and model loadings and allows the user to 
"rotate" the loadings. The loadings (shown as two colored lines in the score/score plot) can 
be dragged through different angles observing the resulting loading shape in the loadings plot 
(Loadings are always kept orthogonal.) 

This interface is useful to identify a loading "shapes" which point towards, and orthogonal to, 
a given sample cluster or direction.  
 
The user clicks on the heavy lines in the scores plot and "drags" them to point in a selected 
direction. The loadings (shown on the right in the figure) are automatically updated to show 
the loading which accounts for the new direction in the scores plot. The rotated loading 
vectors can be saved to the workspace using the toolbar save button. 

Inputs include a PCA, PLS, PCR, or other 2-way factor-based model, model, and an optional 
input, lvs, which is a two-element vector specifying which of the model factors should be 
plotted and rotated (default = [1 2] which plots factor 2 vs factor 1.) 

See Also 

pca, pcr, pls, varimax 
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matchvars 
Purpose 

Align variables of a dataset to allow prediction with a model. 

Synopsis 
 
[mxdata, unmap] = matchvars(model,xdata,options) 
[mxdata, unmap] = matchvars(labels,xdata,options) 
[mxdata, unmap] = matchvars(axisscale,xdata,options) 
[mxdata, mydata, unmapx, unmapy] = 

matchvars(model,xdata,ydata,options) 
rdata = matchvars(mdata,unmap) 

Description 

Given a standard model structure model MATCHVARS uses either the labels stored in the 
model or, if no labels exist, the axisscale in the model to rearrange or interpolate the 
variables of a dataset object so that the model can be applied to the data. If model is a 
regression model, both an X and a Y block may be passed for alignment. A Y block is not 
required, however. 

MATCHVARS WITH LABELS: When variable labels exist in both the model and the data, 
the variables in data are rearranged to match the variable order in model based on the labels 
stored in the model. Any variables required by model that do not exist in data are returned as 
NaN (Not a Number). These will usually be automatically replaced by the prediction routine 
using REPLACE. 

MATCHVARS WITH LABELS: When variable labels exist in both the model and the data, 
the variables in data are rearranged to match the variable order in model based on the labels 
stored in the model. Any variables required by model that do not exist in data are returned as 
NaN (Not a Number). These will usually be automatically replaced by the prediction routine 
using REPLACE.  

When no labels exist in the supplied model, the axisscale is used to interpolate the data based 
on the setting of options.axismode (see below). Axis regions which require extrapolation are 
returned as NaN (Not a Number). These will usually be automatically replaced by the 
prediction routine using REPLACE. 

If neither labels nor axisscales can be used to align variables, the dataset object is passed 
back without modification. 

An ordinary cell or character array of strings representing labels to match or an ordinary 
vector representing an axisscale may be passed in place of model. Such labels or axisscale 
can only be used with a single dataset (i.e. xdata). 
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NOTE: if axisscale was used to interpolate new variables for mxdata or mydata, the unmap 
variable(s) will be linear vectors which simply return the original data. 

INPUTS: 
 model = a standard model structure OR a cell or character array of labels to 

match labels in xdata OR a vector of axisscale (e.g. wavelength, 
wavenumber, etc) to match xdata using axisscale. 

 xdata = a dataset object containing the X-block data. 
OPTIONAL INPUTS: 
 ydata = a second dataset containing the Y-block data 
 unmap = used only when performing an "undo" of a previous MATCHVARS call. 

This is a vector describing how to reorder the columns back to the 
original order, as output by the previous call to MATCHVARS. Can be 
used to re-order the outputs from a model, such as the T- or Q-
contributions, back to the original data order. 

OUTPUT: 
 mxdata = adjusted ("matched") x-block data 
 mydata = adjusted ("matched") y-block data (not returned if no y-data passed) 
 unmapx = a vector describing how the original variable order can be obtained from 

the reordered data. This can be used on other model outputs such as 
residuals and T contributions rearranging them to be like the original 
data. Any column discarded from the original data will have an NaN in 
unmap. 

  See the "reorder" type of call in I/O below. 
 unmapy = same as unmapx but for the y-block (ydata) variable. 
 rdata = reverted data - output only when matchvars is called with unmap as 

input. 
 

Options 
 options = a structure array with the following fields: 
 axismode: ['discrete' |{'linear'}| 'spline'] a string defining the 

interpolation method to use for matching variables using axisscale. If 
'discrete', axisscale values must be matched exactly by data. Any other 
axismode will be passed to interp1 to perform interpolation. See 
INTERP1 for interpolation options. 

See Also 

interp1, modlpred, pcapro, replace, str2cell 
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mcr 
Purpose 

Multivariate curve resolution with constraints. 

Synopsis 
 
model = mcr(x,ncomp,options)    %calibrate  
model = mcr(x,c0,options)       %calibrate with explict initial guess 
pred  = mcr(x,model,options)    %predict 
options = mcr('options') 

Description 

MCR decomposes a matrix X as CS such that X = CS + E where E is minimized in a least 
squares sense. Inputs are the matrix to be decomposed x (size m by n), and either the number 
of components to extract, ncomp, or the explict initial guess, c0. If c0 is size m by k, where k 
is the number of factors, then it is assumed to be the initial guess for C. If c0 is size k by n 
then it is assumed to be the initial guess for S. If m=n then, c0 is assumed to be the initial 
guess for C. Optional input options is described below. 

The output, model, is a standard model structure. The estimated contributionss C are stored 
in model.loads{2} and the estimated spectra S in model.loads{1}. Sum-squared residuals 
for samples and variables can be found in model.ssqresiduals{1} and 
model.ssqresiduals{2}, respectively. See the PLS_Toolbox manual for more information 
on the MCR method and models. 

MCR, by default, uses the alternating least squares (ALS) algorithm. For details on the ALS 
algorithm and constraints available in MCR, see the ALS reference page. 

When called with new data and a model structure, MCR performs a prediction (applies the 
model to the new data) returning the projection of the new data onto the previously recovered 
loadings (i.e. estimated spectra). 
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Options 
 options = a structure array with the following fields: 
 display: [ 'off' | {'on'} ] governs level of display to command window. 
 plots: [ 'none' | {'final'} ]  governs level of plotting. 
 preprocessing:  { [] } preprocessing to apply to x-block (see PREPROCESS). 
 blockdetails: [ 'compact' | {'standard'} | 'all' ]   Extent of predictions and 

raw residuals included in model. 'standard' = none, 'all' x-block. 
 initmethod: ['distslct'] initialization method. 
 initmode: [1 | 2] mode of x for automatic initialization.  
confidencelimit: [{0.95}] Confidence level for Q limits.  
 alsoptions: ['options'] options passed to ALS subroutine (see ALS). 

The default options can be retreived using: options = mcr('options');. 

See Also 

als, analysis, evolvfa, ewfa, fastnnls, mlpca, parafac, plotloads, 
preprocess 
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mdcheck 
Purpose 

Missing Data Checker and infiller. 

Synopsis 
 
[flag,missmap,infilled] = mdcheck(data,options) 
options = mdcheck('options') 

Description 

This function checks for missing data and infills it using a PCA model if desired. The input is 
the data to be checked data as either a double array or a dataset object. Optional input 
options is a structure containing options for how the function is to run (see below). 

Outputs are the fraction of missing data flag, a map of the locations of the missing data as 
an unint8 variable missmap, and the data with the missing values filled in infilled. 
Depending on the plots option, a plot of the missing data may also be output. 

Options 
 options = a structure array with the following fields: 
 frac_ssq:  [{0.95}] desired fraction between 0 and 1 of variance to be captured by 

the PCA model, 
 max_pcs: [{5}] maximum number of PCs in the model, if 0, then it uses the mean, 
 meancenter: ['no' | {'yes'}], tells whether to use mean centering in the algorithm, 
 recalcmean: ['no' | {'yes'}], recalculate mean center after each cycle of replacement 

(may improve results for small matricies), 
 display: [{'off'} | 'on'], governs level of display, 
 tolerance: [{1e-6  100}] convergence criteria, the first element is the minimum 

change and the second is the maximum number of iterations, 
 max_missing: [{0.4}] maximum fraction of missing data with which MDCHECK will 

operate, and 
 toomuch: [{'error'} | 'exclude'] what action should be taken if too much missing 

data is found. 'error' exit with error message, 'exclude' will exclude 
elements (rows/columns/slabs/etc) which contain too much missing data 
from the data before replacement. 'exclude' requires a dataset object as 
input for (data), 

 algorithm: [ {'svd'} | 'nipals' ] specified the missing data algorithm to use, NIPALS 
typically used for large amounts of missing data or large multi-way 
arrays. 
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Note: MDCHECK captures up to options.frac_ssq of the variance using options.max_pcs or 
fewer PCA components. 

The default options can be retreived using: options = mdcheck('options');. 

See Also 

parafac, pca 
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med2top 
Purpose 

Fits a constant to top/(bottom) of data. 

Synopsis 
 
[yf,residual,options] = med2top(y,options) 

Description 

MED2TOP is similar to LSQ2TOP with a 0 order polynomial, it can be considered an 
asymmetric estimate of the mean. 

For fitting to the bottom: 
 
>> tsq = residual/res; % (res) is an input 
>> tsqst = ttestp(1-options.tsqlim,5000,2); % T-test limit from table 
>> ii = find(tsq>-tsqst); % finds samples below the line 

The ii samples are kept for the next estimate of (yf): 
 
>> yf = median(y(ii)); 

INPUTS: 
 y = trace to be filtered, Mx1 vector. 

OUTPUTS: 
 yf = scalar, estimate of filtered data. 
 residual = y - yf. 
 options = input options echoed back, the field initwt may have been modified. 

Options  
 options  = a structure array with the following fields. 
 display: [ {'off'} | 'on'] Governs screen display to command line. 
 trbflag: [ {'top'} | 'bottom' | 'middle']  flag that tells algorithm to fit to the top, 

bottom, or middle of the data cloud. 
 tsqlim:  [ 0.99 ] limit that govers whether a data point is outside the fit residual 

defined by input (res). 
 stopcrit: [1e-4 1e-4 1000 360] stopping criteria, iteration is continued until one of 

the stopping criterion is met [(rel tol) (abs tol) (max # iterations) (max 
time [seconds])]. 

 initwt: [ ] empty or Mx1 vector of initial weights (0<=w<=1). 
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See Also 

baseline, baslinew, fastnnls, lsq2top 



 

 177

medcn 
Purpose 

Median center scales matrix to median zero. 

Synopsis 
 
[mcx,mx,msg] = medcn(x,options) 

Description 

MEDCN centers a matrix x to it’s median and returns a matrix mcx with median zero columns 
and a vector of medians mx used to center the data. Optional input options is discussed 
below. 

The output msg returns any warning messages. 

Options  
 options  = a structure array with the following fields. 
 display: [ {'off'} | 'on'] Governs screen display. 
 matrix_threshold: {.15} Error threshold based on fraction of missing data in whole matrix. 
column_threshold:  {.25} Error threshold based on fraction of missing data in single column. 

See Also 

auto, mncn, rescale, scale 
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mlpca 
Purpose 

Maximum likelihood principal components analysis (user contributed). 

Synopsis 
 
[U,S,V,SOBJ,ErrFlag] = mlpca(x,stdx,p) 

Description 

MLPCA performs maximum likelihood principal components analysis assuming uncorrelated 
measurement errors. This is a method that attempts to provide an optimal estimation of the p-
dimensional subspace containing the data by taking into account uncertainties in the 
measurements, thereby dealing with those cases that cannot be treated by simple scaling. 
Inputs are x (m by n) the data matrix to be decomposed, stdx (m by n) matrix of standard 
deviations corresponding to the observations in x, and the number of factors into which the 
data is decomposed p. The outputs are U (m by p) orthonormal, S (p by p) diagonal, and V (n 
by p) orthonormal. The ML scores are given by U*S. Additional output SOBJ is the value of 
the objective function for the best model. For exact uncertainty estimates, this should follow 
a chi-squared distribution with (m-p)*(n-p) degrees of freedom. Additional output ErrFlag 
indicates the termination conditions of the function; 

ErrFlag = 0: normal termination (convergence), or 
ErrFlag = 1: maximum number of iterations exceeded. 

Also see: 

P.D. Wentzell and M.T. Lohnes, “Maximum Likelihood Principal Component Analysis with 
Correlated Measurement Errors Theoretical and Practical Considerations”, Chemom. Intell. 
Lab. Syst., 45, 65-85 (1999). 

P.D. Wentzell, D.T. Andrews, D.C. Hamilton, K. Faber, and B.R. Kowalski, "Maximum 
likelihood principal component analysis", J. Chemometrics 11(4), 339-366 (1997). 

P.D. Wentzell, D.T. Andrews, and B.R. Kowalski, "Maximum likelihood multivariate 
calibration", Anal. Chem., 69, 2299-2311 (1997). 

D.T. Andrews and P.D. Wentzell, "Applications of maximum likelihood principal 
components analysis: Incomplete data and calibration transfer", Anal. Chim. Acta, 350, 341-
352 (1997). 

See Also 

analysis, mcr, parafac, pca 
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mlr 
Purpose 

Multiple Linear Regression for multivariate Y. 

Synopsis 
 
model = mlr(x,y,options) 
pred  = mlr(x,model,options) 
valid = mlr(x,y,model,options) 

Description 

MLR identifies models of the form Xb = y + e. 

INPUTS: 
 y = X-block: predictor block (2-way array or DataSet Object) 
 y = Y-block: predictor block (2-way array or DataSet Object) 

OUTPUTS: 
 model = scalar, estimate of filtered data. 
 pred = structure array with predictions 
 valid = structure array with predictions 

Options  
 options  = a structure array with the following fields. 
 display: [ {'off'} | 'on'] Governs screen display to command line. 
 plots: [ 'none' | {'final'} ]  governs level of plotting. 
 preprocessing:  { [] [] } preprocessing structure (see PREPROCESS). 
 blockdetails: [ 'compact' | {'standard'} | 'all' ]   Extent of predictions and raw residuals 

included in model. 'standard' = only y-block, 'all' x and y blocks. 

See Also 

analysis, crossval, modelstruct, pcr, pls, preprocess, ridge 
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mlrengine 
Purpose 

Multiple Linear Regression computational engine. 

Synopsis 
 
reg = mlrengine(x,y,options) 

Description 

Inputs are an x-block x, y-block y and optional options structure. 

Output is the matrix of regression vectors reg. 

Options  
 options  = a structure array with the following fields. 
 display: [ {'off'} | 'on'] Governs screen display to command line. 
 ridge: [ 0 ] ridge parameter to use in regularizing the inverse. 

See Also 

analysis, pcr, pls 
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mncn 
Purpose 

Mean center data matrices. 

Synopsis 
 
[mcx,mx] = mncn(x,options) 

Description 

MNCN mean centers a matrix x and returns a matrix mcx with mean zero columns and a vector 
of means mx used to center the data. 

See Also 

auto, rescale, scale 
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modelselector 
Purpose 

Create or apply a model selector model. 

Synopsis 
 
model = 

modelselector(triggermodel,target_1,target_2,...,target_default); 
[target_model,applymodel] = modelselector(data,model) 

Description 

A Selector Model is a special model type which, when applied to new data, selects between 
two or more "target" models based on a "trigger" model. It is used to implement discrete 
local models when a single global model is not sufficient for all possible scenarios.  

For example, if a single PCA or PLS model does not perform sufficiently for all operating 
conditions but the operating conditions can be split into two or more easier-to-model subsets, 
a selector model can be used to choose between these subset models when applying the 
models to new data.  

Selector models consist of a trigger model (trigger) which can be either a PLSDA model or a 
set of one or more logical test strings and a set of two or more target models (target_1, 
target_2, etc) which can be any type of standard model structure or an empty array [ ] to 
indicate a null model.  

Guidelines and rules for trigger models: 

(A) A PLSDA trigger model can be created using the PLSDA function. Themodel should be 
built with data representative of the sample types to which each target model can be applied. 
The number of classes separated by the PLSDA model dictates the number of target models 
which can be selected from. The target models should be in the same order as the numerical 
class numbers used with PLSDA (e.g. if classes 1, 2 and 3 are used in PLSDA, the target 
models should be ordered so that target_1 is appropriate if the PLSDA model finds that a 
sample is class 1, target_2 is for class 2, and target_3 is for class 3.) 

(B) Logical test strings are specified as a trigger model by passing a cell containing one or 
more strings which perform a logical test on a variable from the data set. Variables are 
specified using either a label in double quotes (e.g. "flowrate"), or a axisscale value in quotes 
and square brackets (e.g. "[1530]"). The varaible can be used in any interpretable Matlab 
expression (including function calls) that returns a logical result. The simplest test could 
involve one of the Matlab logical comparison operators ( <  >  <=  >=  ==  and ~= ) and a 
value to which the given variable should be compared. For example, the target model: 

{'"Fe">1100' '"Fe"<500'}  
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tests if the variable named "Fe" is greater than 1100. If true, the target_1 model is applied, if 
not true, "Fe" is tested for being less than 500, and if so, target_2 is selected. If neither test is 
true, the "default" target model (i.e. target_3) is selected.  

Example 2: 

{'"[1745.3]"<=500'} 

tests if variable 1745.3 (on the variable axiscale) is less than or equal to 500. If true, target_1 
is selected, if not true, default target model is selected. If variable 1745.3 does not exist, it is 
interpolated from the provided data. 

When creating a selector model, there must be at least as many target models passed as there 
are classes (when trigger is a PLSDA model) or strings (when trigger is a cell of logical test 
strings). There may also be an additional target model (i.e. the "default" model) which is 
used if none of the classes or tests were positive. 

Note that target models may be any standard model structure including another selector 
model (thus allowing multi-layer selector trees). 

To apply a selector model, a single row of new data is passed as a dataset along with the 
selector model itself. The output is the selected target model (target_model) along with a 
unique description of the "branch(s)" taken to select the target model as a vector of branch 
numbers (applymodel). For example, given a multi-layer selector model containing: 
 
selector_model  -> target_1 = PCA_model_A1 
                   target_2 = Selector_model -> target_1 = PCA_model_B1 
                                                target_2 = PCA_model_B2  
                  target_3 = PCA_model_A2    
 

a returned value for applymodel of [2 1] implies that the second target model was selected 
from the first layer of target models, and this model was another selector model. From that 
second selector model, the first target model (PCA_model_B1) was selected and that is what 
was returned. 

Note that if there are multiple "branches" (trigger models) the data passed to modelselector 
must contain all the data necessary for all trigger models within the selector model. If some 
of those variables are not used by a given model, modelselector will automatically discard 
unneeded variables before applying each trigger model. 

See Also 

lwrpred, plsda, simca 
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modelstruct 
Purpose 

Constructs an empty model structure. 

Synopsis 
 
model = modelstruct(modeltype,pred) 

Description 

The output of many of the PLS_Toolbox functions is a single model structure in which the 
results of the analysis are contained. A structure is an organized group of variables all stored 
as "fields" of a single containing variable. The purpose of MODELSTRUCT is to create the 
empty model structures used by the various modeling routines. The type of structure 
requested is passed as the single string input modeltype and should be one of: 'pca', 'pcr', (for 
PCA or PCR models) 'nip', 'sim' (PLS models), or 'parafac' (PARAFAC model). 

Once the structures created by MODELSTRUCT are filled-in by the appropriate function (e.g. 
PLS, PCR, PCA), they contain all the results of the analysis and can be used as a single 
object for making further predictions or plots from the modeling results. In many cases, these 
models can be passed whole to another function. For example: 

 
opts.plots = 'none';      % turn off plots for PCA (see PCA) 
modl = pca(x, 3, opts);   % create a PCA model from data X 
modlrder(modl);           % display relevent model information 
plotscores(modl);         % plot scores from model 

Although the individual fields (contents) of each model vary between modeltypes, most 
contain at least these fields: 
 modeltype: name of model, 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for input data block (the first cell is 

empty if options.blockdetail = 'normal'), 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 
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Note that fields such as loads, tsqs and ssqresiduals are cell arrays of size [modes, 
blocks] where modes is the dimensionality of the data (e.g. for an array, modes = 2) and 
blocks is the number of blocks used by the analysis method (e.g. for PCA, blocks = 1, for 
PLS, blocks = 2). Thus, for a standard PCA model, loads will be a 2x1 cell containing 
"scores" in modl.loads{1,1} and traditional "loadings" in modl.loads{2,1}. 

Because the models are standard MATLAB structures, they can be examined using standard 
structure notation: 

 
>> modl.modeltype 
ans = 
PCA 
>> modl.loads 
ans =  
    [30x4 double] 
    [10x4 double] 

Additionally, the individual components of a model can be "exploded" into individual 
variables using the EXPLODE function. 

See Also 

analysis, explode, parafac, pca, pcr, pls 
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modelviewer 
Purpose 

Visualization of multi-way models. 

Synopsis 
 
model = modelviewer(model,x); 

Description 

MODELVIEWER provides a graphical view of a model by enabling overview of scores, loadings, 
residuals etc. in one overall figure. Individual modes can be assessed by clicking plots and 
enlarged figures created by right-clicking plots. 

INPUTS: 
 model = PARAFAC, Tucker, or NPLS model, and 
 x  = X-block: predictor block (2-way array or DataSet Object). 

OUTPUT: 
 model = standard model structure (See MODELSTRUCT). 

See Also 

plotgui, plotloads, plotscores 
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modlpred 
Purpose 

Predictions based on models created by ANALYSIS. 

Synopsis 
 
[yprdn,resn,tsqn,scoresn] = modlpred(newx,modl,plots) 
[yprdn,resn,scoresn] = modlpred(newx,bin,p,q,w,lv,plots); 

Description 

MODLPRED makes Y-block predictions based on an X-block and an existing regression model 
created using ANALYSIS. 

Inputs are the new X-block data newx in the units of the original data, the structure variable 
that contains the regression model modl, and an optional variable plots which suppresses the 
plots when set to 0 {default = 1}. 

Outputs are the Y-block predictions yprdn, residuals resn, T2 values tsqn, and scores 
scoresn. 

MODLPRED can also make predictions based on an existing PLS model constructed with the 
NIPALS algorithm from the PLS function. Inputs are the matrix of predictor variables newx, 
the PLS model inner-relation coefficients bin, the x-block loadings p, the y-block loadings q, 
the x-block weights w, the number of latent variables to use in prediction lv, and an optional 
variable plots which suppresses the plots when set to 0 {default = 1}. 

Outputs are the Y-block predictions yprdn, residuals resn, and the scores scoresn. Note 
that T2 are not calculated. 

See Also 

analysis, explode, modlrder, pca, pcapro, pcr, pls 
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modlrder 
Purpose 

Prints model information for standard model structures. 

Synopsis 
 
modlrder(modl) 

Description 

MODLRDER reads information contained in a standard model structure variable modl and prints 
the information to the command window. It can be used with models created by the 
following functions: ANALYSIS, NPLS, PARAFAC, PCA, PCR, PLS, ANALYSIS. 

Information includes date and time created and methods used to construct the model. There is 
no assignable output. 

See Also 

analysis, explode, modlpred, pcapro, ssqtable 
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mpca 
Purpose 

Multi-way (unfold) principal components analysis. 

Synopsis 
 
model = mpca(mwa,ncomp,options) 
model = mpca(mwa,ncomp,preprostring) 
pred = mpca(mwa,model,options) 
options = mpca('options') 

Description 

Principal Components Analysis of multi-way data using unfolding to a 2-way matrix 
followed by conventional PCA. 

Inputs to MPCA are the multi-way array mwa (class “double” or “dataset”) and the number of 
components to use in the model nocomp. To make predictions with new data the inputs are 
the multi-way array mwa and the MPCA model model. Optional input options is discussed 
below. 

The output model is a structure array with the following fields: 
 modeltype: 'MPCA', 
 datasource: structure array with information about the x-block, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: 1 by 2 cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for each input data block (this is empty 

if options.blockdetail = 'normal'), 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 

Options 
 options = a structure array with the following fields. 
 display: [ 'off' | {'on'} ]  governs level of display to command window, 
 plots: [ 'none' | {'final'} ]  governs level of plotting, 
 outputversion: [ 2 | {3} ]  governs output format, 
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 preprocessing: { [] }  preprocessing structure, {default is mean centering i.e. 
options.preprocessing = preprocess('default', 'mean center')} 
(see PREPROCESS), 

 blockdetails: [ 'compact' | {'standard'} | 'all' ]  extent of detail in 
predictions and residuals included in model structure ('standard' results 
in sum of squared residuals, and 'all' gives all x-block residuals), and 

 samplemode: [ {3} ]  mode (dimension) to use as the sample mode e.g. if it is 3 then it 
is assumed that mode 3 is the sample/object dimension i.e. if mwa is 
7x9x10 then the scores model.loads{1} will have 10 rows (it will be 
10xncomp). 

The default options can be retreived using: options = mpca('options');. 

It is also possible to input just the preprocessing option as an ordinary string in place of 
options and have the remainder of options filled in with the defaults from above. The 
following strings are valid: 
 'none': no scaling, 
 'auto': unfolds array then applies autoscaling, 
 'mncn': unfolds array then applies mean centering, or 
 'grps': {default} unfolds array then group/block scales each variable, i.e. the 

same variance scaling is used for each variable along its time trajectory 
(see GSCALE). 

MPCA will work with arrays of order 3 and higher. For higher order arrays, the last order is 
assumed to be the sample order, i.e. for an array of order n with the dimension of order n 
being m, the unfolded matrix will have m samples. For arrays of higher order the group 
scaling option will group together all data with the same order 2 index, for multiway array 
mwa, each mwa(:,j,:, ... ,:) will be scaled as a group. 

See Also 

analysis, evolvfa, ewfa, explode, parafac, pca, preprocess 
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mplot 
Purpose 

Automatic creation of subplots and plotting. 

Synopsis 
 
[rows,cols] = mplot(n,options) 
[rows,cols] = mplot([rows cols],options) 
[rows,cols] = mplot(rows,cols,options) 
[rows,cols] = mplot(y,options) 
[rows,cols] = mplot(x,y,options) 

Description 

Inputs can be one of four forms: 

(1) the number of subplots requested n, “best fit” onto the figure 

(2) the number of rows and columns for the subplot array [rows cols] 

(3) or data to plot y with or without reference data for the x-axis x. Each column of y is 
plotted in a single subplot on the figure. 

Outputs are the number of rows rows and columns cols used for the subplots. 

Examples 

Example 1. To automatically create a “best fit” of four empty subplots 
mplot(4) 

Example 2. To automatically create four subplots in a 4 x 1 arrangement 
mplot([4 1]) 

Example 3. To automatically plot three random columns, each in its own subplot 
mplot(rand(100,3)) 

Options 
 center: [ {'no'} | 'yes' ] governs centering of "left-over" plots at 
        bottom of figure (when an uneven number of plots are to be fit onto the 

screen, 
    axismode :   [ {''} | 'tight' ] governs axis settings 
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Algorithm 

When mplot is doing the “best fit”, it attempts to keep the number of rows and columns as 
close as possible in size (Except for n=3 which is done as a 3x1 figure). Thus, the plot 
progression is: 1x1, 2x1, 3x1, 2x2, 3x2, 3x3, 4x3, etc. 

See Also 

plotgui, subplot 
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ms_bin 
Purpose 

Bins Mass Spectral data into user-defined bins. 

Synopsis 
 
dso = ms_bin(data) 
dso = ms_bin(data, options) 

Description 

Often raw Mass Spec data is output in its original profile format (e.g., 14.5, 14.5, 14.6,...) and 
one requires "unit" mass resolution (e.g., 14, 15, 16,...) in order to reduce the size of the data 
and or analyze the data properly. In its default form the MS_BIN function will bin at unit 
resolution and return the data in a DataSet Object. Using the two optional parameters 
(resolution and round_off_point) the function can be adjusted to meet different requirements. 

INPUTS: 
 data :  a cell array with the data. Each cell will correspond to a row in the 

resulting dataset 'dso' and should contain nx2 numeric array of "xy" MS 
data: the first column contains the mass numbers, the second column 
contains the counts (intensities). The number of rows in the cells can be 
different. 

OUTPUTS: 
 dso :  dataset object 

Options 
 resolution : optional, defines the resolution. The default value is 1. 
 round_off_point : optional. Normally the round-off point is in the middle of the bin. For 

unit resolution it would be 0.5: everything below 0.5 will be rounded 
down, everything higher than 0.5 will be rounded up. In case the peak is 
asymmetrical other points are used, e.g. 0.65. The round off for the array 
m with the mass numbers is then: round(m+0.5-round_off_point); The 
asymmetric round-off is also valid for resolution lower than 1: the 
round_off_point is the relative position in the bin. 

See Also 

frpcr, stdfir, stdgen 
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mscorr 
Purpose 

Multiplicative scatter/signal correction (MSC). 

Synopsis 
 
[sx,alpha,beta,xref] = mscorr(x,xref,mc,win,specmode,subind) 

Description 

MSCORR performs multiplicative scatter correction (a.k.a. multiplicative signal correction) on 
an input matrix of spectra x (class “double”) regressed against a reference spectra xref (class 
“double”). If (xref) is empty or omitted, the mean of (x) is used as the reference. 

If the optional input mc is 1 {default} then an intercept is used. If mc is set to 0 (zero) then a 
force fit through zero is used. 

Optional input win is a NK element cell array of indices corresponding to windows to 
perform MSC, i.e. MSC is performed in each window win{i} for i=1:NK. In this case, 
(alpha and beta are not assigned). Optional input (specmode) defines which mode of the 
data is the spectral mode (default = 2) and is only used when (x) contains 3 or more modes. 
Optional input (subind) specifies the indices within the included spectral variables that are 
used to calculate the MSC correction factors (alpha and beta); default is that ALL included 
spectral variables are used. 

Outputs are the corrected spectra sx, the intercepts/offsets alpha, the multiplicative scatter 
factor/slope beta, and the reference spectrum xref. 

Algorithm 

For input spectra x (1xN) and reference spectra xref (1xN) the model is: 

 xTβ + α = xT
ref . 

and the corrected spectra xs (1xN) is given by: 

 xs = (xref -α)/β . 

See Also 

frpcr, stdfir, stdgen 
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mtfreadr 
Purpose 

Read / Import AdventaCT Multi-Trace Format (MTF) files. 

Synopsis 
 
data = mtfreadr(filename,combine) 
[data,lotinfo] = mtfreadr(filename,combine) 

Description 

Generic reader for AdventaCT Multi-Trace Format (MTF) files. Input is an optional filename 
filename If omitted, user is prompted to locate file. An optional input combine is a string 
instructing how to combine multiple traces found in the mtf file: 
 'none' :  returns a cell array containing datasets formed from each of the separate 

traces located in the MTF file.  
 'truncate' :  {default} truncates all traces to the shortest trace's length.  
 'pad' :  pads all traces with NaN's to the longest trace's length. 
 'stretch' :  uses linear interpolation to stretch all traces to the longest trace's length. 

The output data is either a DSO (3-way DSO if multiple traces were found) or a cell array 
containing all the trace DSOs. Note that if a given trace does not have a sufficient number of 
columns in all rows, column contents may be scrambed from the dropped point down. In this 
situation, a warning will be given. 

See Also 

areadr, spcreadr, xclgetdata, xclputdata, xclreadr
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ncrossval 
Purpose 

Cross-validation for multilinear PLS (NPLS). 

Synopsis 
 
[press,cumpress,rmsecv,rmsec,cvpred,misclassed] = 

ncrossval(x,y,rm,cvi,ncomp,out,pre) 

Description 

Performs cross-validation of NPLS. If two-way unfold-PLS is desired convert input x to two-
way x. By default, the data are centered across the first mode, but no scaling is applied. This 
can be changed by using additional input arguments. 

INPUTS: 
 x = X-block matrix, 
 y = Y-block matrix, and 
                      rm  = regression method (must be ‘npl’) 
           cvi = see CROSSVAL 
 ncomp = maximum number of factors. 
    out = see CROSSVAL 
    pre = see CROSSVAL 

OUTPUT: 
 See CROSSVAL 

See Also 

crossval, npls 
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nippls 
Purpose 

NIPALS Partial Least Squares computational engine. 

Synopsis 
 
[reg,ssq,xlds,ylds,wts,xscrs,yscrs,bin] = nippls(x,y,ncomp,options) 
options = nippls('options') 

Description 

Performs PLS regression using NIPALS algorithm. 

INPUTS: 
 x = X-block (M by Nx) and 
 y = Y-block (M by Ny). 

OPTIONAL INPUTS: 
 nocomp = number of components {default = rank of X-block}, and 
 options = discussed below. 

The default options can be retreived using: options = nippls('options');. 

OUTPUTS: 
 reg = matrix of regression vectors, 
 ssq = the sum of squares captured (ssq), 
 xlds = X-block loadings, 
 ylds = Y-block loadings, 
 wts = X-block weights, 
 xscrs = X-block scores, 
 yscrs = Y-block scores, and 
 bin = the inner relation coefficients. 

Note: The regression matrices are ordered in reg such that each Ny (number of y variables) 
rows correspond to the regression matrix for that particular number of latent variables. 
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Options 
 options = a structure containing the fields: 
 display: [ 'off' |{'on'}], governs display to command window. 

See Also 

pls, analysis, simpls 
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normaliz 
Purpose 

Normalizes rows of matrix to unit vectors. 

Synopsis 
 
[ndat,norms] = normaliz(dat)  
[ndat,norms] = normaliz(dat,out,normtype) 

Description 

NORMALIZ can be used for pattern normalization, which is useful for preprocessing in some 
pattern recognition applications and also for correction of pathlength effects for some 
quantification applications. 

The input is the data matrix dat. Optional input out suppresses warnings when set to 0 (zero) 
{default = 1} (warnings are given if the norm of a vector is zero). Optional input normtype 
can be used to specify the type of norm {default = 2}. If normtype is specified then out must 
be included, out can be empty []. 

The output is the matrix of normalized data ndat where the rows have been normalized, and 
the vector of norms used in the normalization norms. Warnings are given for any vectors 
with zero norm. 

Algorithm 

For a 1 by N vector x, the norm nx is given by 
1/
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∑  where p is normtype. The 

normalized 1 by N vector xn is given by x/nx. 

See Also 

auto, baseline, mncn, mscorr, snv 
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npls 
Purpose 

Multilinear-PLS (N-PLS) for true multi-way regression. 

Synopsis 
 
model = npls(x,y,ncomp,options) 
pred  = npls(x,ncomp,model,options) 
options = npls('options') 

Description 

NPLS fits a multilinear PLS1 or PLS2 regression model to x and y [R. Bro, J. Chemom., 
1996, 10(1), 47-62]. The NPLS function also can be used for calibration and prediction. 

INPUTS: 
 x = X-block, 
 y = Y-block, and 
 ncomp = the number of factors to compute, or 
 model = in prediction mode, this is a structure containing a NPLS model. 

OPTIONAL INPUTS: 
 options = discussed below. 

OUTPUT: 
 model = standard model structure (see: MODELSTRUCT) with the following fields: 
 modeltype: 'NPLS', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 reg: cell array with regression coefficients, 
 loads: cell array with model loadings for each mode/dimension, 
 core: cell array with the NPLS core, 
 pred: cell array with model predictions for each input data block, 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 
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Options 
 options = options structure containing the fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 plots: [ 'none' | {'final'} ], governs level of plotting, 
outputregrescoef: if this is set to 0 no regressions coefficients associated with the X-block 

directly are calculated (relevant for large arrays), and 
 blockdetails: [ {'standard'} | 'all' ], level of detail included in the model for 

predictions and residuals. 

See Also 

datahat, explode, gram, mpca, outerm, parafac, pls, tld, unfoldm 
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npreprocess 
Purpose 

Preprocessing of multi-way arrays. 

Synopsis 
 
[prex,prepar] = npreprocess(x,prepar,undo,options) 
prex = npreprocess(x,setting) 
prex = npreprocess(x,prepar) 
prex = npreprocess(x,prepar,1) 
options = npreprocess('options') 

Description 

NPREPROCESS is used for three different purposes: 

1) for centering and scaling multi-way arrays in which case the parameters (offsets and 
scales) are first calculated and then applied to the data, 

2) for preprocessing another data set according to (1), and 

3) for transforming preprocessed data back (undo preprocessing). 

INPUTS: 
 x = data array, and 
 settings = a two-row matrix (class "double") indicating which modes to center and 

scale. The matrix is: settings = [cent; scal]. E.g. 
  settings(1,:) = [1 0 1] => center across mode one and three, and 
  settings(2,:) = [1 1 0] => scale to unit variance within mode one 

and two. 

OPTIONAL INPUTS: 
 prepar = contains earlier defined mean and scale parameters, this data is required 

for applying or undoing preprocessing, 
 undo = when set to 1 this flag tells to undo/transform back, and 
 options = discussed below. 

OUTPUTS: 
 prex = the preprocessed data, and 
 prepar = a structure containing the necessary parameters to pre- and post-process 

other arrays. 
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Options 
 options = a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 iterproc: [ 'on' | {'off'} ], allows iterative preprocessing which is necessary 

for some combinations of centering and scaling (see User Manual), 
 scalefirst: [ {'on'} | 'off' ], defines that scaling is done before centering 

which may have implications in complex combinations of preprocessing 
(see User Manual), and 

 usemse: [ {'on'} | 'off' ], defines that mean square scaling is used instead 
of scaling by standard deviations as is common in two-way analysis. 

Examples 

To apply preprocessing with options: 
[prex,prepar] = npreprocess(x,settings,[],0,options); 

See Also 

auto, mncn, preprocess, rescale, scale 



 204 

oscapp 
Purpose 

Applies orthogonal signal correction model to new data. 

Synopsis 
 
newx = oscapp(x,nw,np,nofact) 

Description 

Inputs are the new data matrix x, weights from the OSC model nw, and loadings from the 
OSC np. 

Optional input nofact can be used to restrict the correction to a smaller of factors than 
originally calculated. 

The output is is the corrected data matrix newx. 

Note: input data x must be centered and scaled like the original data! 

See Also 

crossval, osccalc 
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osccalc 
Purpose 

Calculates orthogonal signal correction. 

Synopsis 
 
[nx,nw,np,nt] = osccalc(x,y,nocomp,iter,tol) 

Description 

Inputs are the matrix of scaled predictor variables x, scaled predicted variable(s) y, and the 
number of OSC components nocomp. 

Optional inputs are the maximum number of iterations used in attempting to maximize the 
variance captured by othogonal components iter {default = 0}, and the tolerance on percent 
of x variance to consider when forming the final w vector tol {default = 99.9}. 

Outputs are the OSC corrected predictor matrix nx, and the x-block weigths nw, loads np, and 
scores nt that were used in making the correction. 

Once the calibration is done, new (scaled) X data can be corrected by newx = x - 
x*nw*inv(np'*nw)*np';. See OSCAPP. 

See Also 

crossval, oscapp 
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outerm 
Purpose 

Computes the outer product of any number of vectors with multiple factors. 

Synopsis 
 
mwa = outerm(facts,lo,vect) 

Description 

The input to outer is a 1 by N cell array facts, where each cell contains a matrix of factors 
for one of the modes (a.k.a. ways, dimensions, or orders), with each factor being a column in 
the matrix. 

Optional inputs are lo the number of a mode to leave out in the formation of the outer 
product, and a flag vect which causes the function to not sum and reshape the final factors 
when set to 1. (This option is used in the alternating least squares steps in PARAFAC.) 

The output is the multiway array resulting from multiplying the factors together mwa, or the 
strung out individual factors. 

Examples: 
 
a = [[1:7]' [2 4 1 3 5 7 6]'];         %  7x2 
b = [sin([1:.5:5]') cos([1:.5:5]')];   %  9x2 
c = [[1:8 0 0]', [0 0 1:8]'];          % 10x2 
x = outerm({a,b,c});                   % 7x9x10 

See Also 

gram, mpca, parafac, tld 
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parafac 
Purpose 

PARAFAC (PARAllel FACtor analysis) for multi-way arrays 

Synopsis 
 
model   = parafac(X,initval,options) 
pred    = parafac(Xnew,model) 
options = parafac('options') 

Description 

PARAFAC will decompose an array of order N (where N ≥ 3) into the summation over the 
outer product of N vectors (a low-rank model). E.g. if N=3 then the array is size I by J by K. 
An example of three-way fluorescence data is shown below.. 

For example, twenty-seven samples containing different amounts of dissolved hydroquinone, 
tryptophan, phenylalanine, and dopa are measured spectrofluoremetrically using 233 
emission wavelengths (250-482 nm) and 24 excitation wavelengths (200-315 nm each 5 nm). 
A typical sample is also shown. 

X

27

24

233

X

27

24

233  

A four-component PARAFAC model of these data will give four factors, each corresponding 
to one of the chemical analytes. This is illustrated graphically below. The first mode scores 
(loadings in mode 1) in the matrix A (27×4) contain estimated relative concentrations of the 
four analytes in the 27 samples. The second mode loadings B (233×4) are estimated emission 
loadings and the third mode loadings C (24×4) are estimated excitation loadings. 
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In the PARAFAC algorithm, any missing values must be set to NaN or Inf and are then 
automatically handled by expectation maximization. This routine employs an alternating 
least squares (ALS) algorithm in combination with a line search. For 3-way data, the initial 
estimate of the loadings is usually obtained from the tri-linear decomposition (TLD). 

INPUTS: 
 x = the multiway array to be decomposed, and 
 ncomp =  the number of factors (components) to use, or 
 model =  a PARAFAC model structure (new data are fit to the model i.e. sample 

mode scores are calculated). 

OPTIONAL INPUTS: 
 initval =  cell array of initial values (initial guess) for the loadings (e.g. 

model.loads from a previous fit). If not used it can be 0 or [], and 
 options =  discussed below. 

OUTPUTS: 

The output model is a structure array with the following fields: 
 modeltype: 'PARAFAC', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: 1 by K cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for each input data block, 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 
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The output pred is a structure array that contains the approximation of the data if the options 
field blockdetails is set to 'all' (see next). 

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: [ {'final'} | 'all' | 'none' ], governs level of plotting, 
 weights: [], used for fitting a weighted loss function (discussed below), 
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative 

tolerance) (absolute tolerance) (maximum number of iterations) 
(maximum time in seconds)], 

 init: [ 0 ], defines how parameters are initialized (discussed below), 
 line: [ 0 | {1}] defines whether to use the line search {default uses it}, 
 algo: [ {'ALS'} | 'tld' | 'swatld' ] governs algorithm used, 
 iterative: settings for iterative reweighted least squares fitting (see help on weights 

below), 
 blockdetails: 'standard' 
 missdat: this option is not yet active, 
 samplemode: [1], defines which mode should be considered the sample or object 

mode, 
 constraints: {3x1 cell}, defines constraints on parameters (discussed below), and 
 coreconsist: [ {'on'} | 'off' ], governs calculation of core consistency (turning 

off may save time with large data sets and many components). 

The default options can be retrieved using: options = parafac('options');. 

WEIGHTS 

Through the use of the options field weights it is possible to fit a PARAFAC model in a 
weighted least squares sense The input is an array of the same size as the input data X holding 
individual weights for each element. The PARAFAC model is then fit in a weighted least 
squares sense. Instead of minimizing the frobenius norm ||x-M||2 where M is the PARAFAC 
model, the norm ||(x-M).*weights||2 is minimized. The algorithm used for weighted 
regression is based on a majorization step according to Kiers, Psychometrika, 62, 251-266, 
1997 which has the advantage of being computationally inexpensive. If alternatively, the 
field weights is set to ‘iterative’ then iteratively reweighted least squares fitting is used. 
The settings of this can be modified in the field iterative.cutoff_residuals which 
defines the cutoff for large residuals in terms of the number of robust standard deviations. 
The lower the number, the more subtle outliers will be ignored. 

INIT 

The options field init is used to govern how the initial guess for the loadings is obtained. If 
optional input initval is input then options.init is not used. The following choices for init 
are available. 
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Generally, options.init = 0, will do for well-behaved data whereas options.init = 10, 
will be suitable for difficult models. Difficult models are typically those with many 
components, with very correlated loadings, or models where there are indications that local 
minima are present. 
 init =  0, PARAFAC chooses initialization {default}, 
 init =  1, uses TLD (unless there are missing values then random is used), 
 init =  2, initializes loadings with random values, 
 init =  3, based on orthogonalization of random values (preferred over 2), 
 init =  4, based on singular value decomposition,  
 init =  5, based on compression which may be useful for large data, and 
 init >  5, based on best fit of many (the value options.init) small runs. 

CONSTRAINTS 

The options field constraints is used to employ constraints on the parameters. It is a cell 
array with number of elements equal to the number of modes of the input data X. Each cell 
contains a structure array with the following fields: 
 nonnegativity: [ {0} | 1 ], a 1 imposes non-negativity. 
 unimodality: [ {0} | 1 ], a 1 imposes unimodality (1 local maxima). 
 orthogonal: [ {0} | 1 ], constrain factors in this mode to be orthogonal. 
 orthonormal: [ {0} | 1 ], constrain factors in this mode to be orthonormal. 
 exponential: [ {0} | 1 ], a 1 fits an exponential function to the factors in this 

mode. 
smoothness.weight:[0 to 1], imposes smoothness using B-splines, 

values near 1 impose high smoothness and values close to 0, impose 
less smoothness. 

fixed.position: [ ], a matrix containing 1’s and 0’s of the same size as the 
corresponding loading matrix, with a 1 indicating where parameters are 
fixed. 

 fixed.value: [ ], a vector containing the fixed values. Thus, if B is the loading 
matrix, then we seek B(find(fixed.position)) = fixed.value. 
Therefore, fixed.value must be a matrix of the same size as the loadings 
matrix and with the corresponding elements to be fixed at their 
appropriate values. All other elements of fixed.value are disregarded. 

 fixed.weight: [ ], a scalar (0 ≤ fixed.weight ≤ 1) indicating how strongly the 
fixed.value is imposed. A value of 0 (zero) does not impose the 
constraint at all, whereas a value of 1 (one) fixes the constraint. 

 ridge.weight: [ ], a scalar value between 0 and 1 that introduces a ridging in the 
update of the loading matrix. It is a penalty on the size of the esimated 
loadings. The closer to 1, the higher the ridge. Ridging is useful when a 
problem is difficult to fit. 

 equality.G: [ ], matrix with N columns, where N is the number of factors, used with 
equality.H. If A is the loadings for this mode then the constraint is 
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imposed such that GAT = H. For example, if G is a row vector of ones 
and H is a vector of ones (1’s), this would impose closure. 

 equality.H: [ ], matrix of size consistent with the constriant imposed by 
equality.G. 

equality.weight: [ ], a scalar (0 ≤ equality.weight ≤ 1) indicating how strongly the 
equality.H and equality.G is imposed. A value of 0 (zero) does not 
impose the constraint at all, whereas a value of 1 (one) fixes the 
constraint. 

 leftprod: [0], If the loading matrix, B is of size JxR, the leftprod is a matrx G of 
size JxM. The loading B is then constrained to be of the form B = GH, 
where only H is updated. For example, G may be a certain JxJ subspace, 
if the loadings are to be within a certain subspace. 

 rightprod: [0], If the loading matrix, B is of size JxR, the rightprod is a matrx G of 
size MxR. The loading B is then constrained to be of the form B = HG, 
where only H is updated. For example, if rightprod is [1 1 0;0 0 1], 
then the first two components in B are forced to be the same. 

iterate_to_conv: [0], Usually the constraints are imposed within an iterative algorithm. 
Some of the constraints use iterative algorithms themselves. Setting 
iterate_to_conv to one, will force the iterative constraint algorithms 
to continue until convergence. 

 timeaxis: [], This field (if supplied) is used as the time axis when fitting loadings 
to a function (e.g. see exponential). Therefore, it must have the same 
number of elements as one of the loading vectors for this mode. 

 description: [1x1592 char],  

If the constraint in a mode is set as fixed, then the loadings of that mode will not be updated, 
hence the initial loadings stay fixed. 

Examples 

parafac demo gives a demonstration of the use of the PARAFAC algorithm. 

model = parafac(X,5) fits a five-component PARAFAC model to the array X using default 
settings. 

pred = parafac(Z,model) fits a parafac model to new data Z. The scores will be taken to 
be in the first mode, but you can change this by setting options.samplemodex to the mode 
which is the sample mode. Note, that the sample-mode dimension may be different for the 
old model and the new data, but all other dimensions must be the same. 

options = parafac('options'); generates a set of default settings for PARAFAC. 
options.plots = 0; sets the plotting off. 

options.init = 3; sets the initialization of PARAFAC to orthogonalized random numbers. 



 212 

options.samplemodex = 2; Defines the second mode to be the sample-mode. Useful, for 
example, when fitting an existing model to new data has to provide the scores in the second 
mode. 

model = parafac(X,2,options); fits a two-component PARAFAC model with the 
settings defined in options.  

parafac io shows the I/O of the algorithm. 

 

See Also 

datahat, explode, gram, mpca, outerm, parafac2, tld, tucker, unfoldm 
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parafac2 
Purpose 

PARAFAC2 (PARAllel FACtor analysis2) for multi-way arrays 

Synopsis 
 
model   = parafac2(X,ncomp);       %decomposition 
model   = parafac2(X,ncomp,options); 
model   = parafac2(X,initval); 
pred    = parafac2(Xnew,model);    %application 
options = parafac2('options'); 

Description 

The three-way PARAFAC2 model is best perceived as a model close to the ordinary 
PARAFAC model. The major difference is that strict trilinearity is no longer required, so 
PARAFAC2 can sometimes handle elution time shifts, varying batch trajectories etc. The 
ordinary PARAFAC model is also sometimes called the PARAFAC1 model to distinguish it 
from the PARAFAC2 model. 

In the PARAFAC1 model, one loading matrix is found for each mode. That implies that this 
loading matrix is the same across all levels for the other modes. For example, in a 
PARAFAC1 model of a data set with chromatographic spectrally detected experiments, the 
PARAFAC1 model ideally provides a loading matrix for e.g. the chromatographic mode 
which holds the true elution profiles of the chemical analytes. Thus, the PARAFAC1 model 
assumes that these elution profiles do not change shape in different experiments (only their 
magnitude). Such an assumption may be too strict and invalid. A little model error is seldom 
problematic, but if the structure of the data deviates considerably from the assumptions of the 
model, it can be impossible to fit a reasonable model. In the PARAFAC2 model, this 
trilinearity assumption is relaxed in one mode. A PARAFAC1 model of a three-way array is 
given by A, B and C (loading matrices in first, second and third mode). In PARAFAC2, the 
loadings in one mode can change from level to level. That is, assume that the third mode (C) 
of dimension K holds different samples (it is common practice, to have samples in the last 
mode for PARAFAC2). Instead of having a fixed first mode loading A for all samples, A 
may now vary from sample to sample. Thus for each sample, k, there is an individual A 
called Ak. The only restriction on Ak is that the cross-product Ak

TAk remains constant. This is 
in contrast to PARAFAC1 where A is simply the same for all k.  

Another way of imposing this constraint (Ak
TAk constant) is to say that each Ak is modeled 

as PkH where Pk is an orthogonal matrix of the same size as Ak and where H is a small 
quadratic matrix with dimension equal to the number of components. This different 
interpretation of the concept shows that the individual components Ak only differ up to a 
rotation. Hence, the latent variables are the same for all samples but may manifest 
themselves through different rotations. 
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The situations in which the PARAFAC2 model is valid can be difficult to understand 
because the flexibility compared to the PARAFAC1 model is somewhat abstract. However, 
one simple way to see the applicability of the PARAFAC2 model is that PARAFAC2 is 
worth considering in situations in which PARAFAC1 should ideally be valid, but where 
practical applications show that it is not. For example, it is often observed that the 
differences in elution profiles from experiment to experiment in chromatography makes the 
PARAFAC1 model difficult to fit. Many times PARAFAC2 can still handle such deviations 
even when the shifts in retention times are quite severe.  

It is possible to fit both the PARAFAC1 and the PARAFAC2 model. If both models give the 
same results (approximately), then PARAFAC1 is likely valid and then PARAFAC1 is 
preferred because it uses fewer degrees of freedom. If there are large deviations, PARAFAC2 
may be preferred. Note, though, that the K matrices Ak may have a larger variability than the 
corresponding A from the PARAFAC1 model because of the smaller amount of data that it is 
estimated from. This does not imply inadequacy but simply that there are differences in the 
way that the parameters are estimated.  

Another interesting type of application of PARAFAC2 follows from the insight that the 
constraint that Ak

TAk is constant. This directly implies that the individual slabs, Xk, of the 
array can have different lengths, hence different size Ak, yet still fulfill the constraint that 
Ak

TAk is constant. Thus, PARAFAC2 can also handle e.g. batch data where the data from 
each batch are obtained at different sampling rates or different sampling duration. This is a 
very powerful feature of the PARAFAC2 model compared to the PARAFAC1 model.  

The three-way PARAFAC2 model is given  

 Xk = AkDkBT + Ek = PkHDkBT + Ek, k = 1, .., K  

Xk is a slab of data (I×J) in which I may actually vary with K. K is the number of slabs and 
Ak (I×ncomp) are the first-mode loadings for the kth sample. Dk is a diagonal matrix that 
holds the kth row of C in its diagonal. C (K×comp) is the third mode loadings, H is an 
(ncomp×ncomp) matrix, and Pk is an (I×ncomp) orthogonal matrix. The output P is given as 
a cell array of length K where the kth cell element holds the (I×ncomp) matrix Pk. Thus, to 
get e.g. the second sample P, write P{2}, and to get the estimate of the first mode loadings, 
Ak, at this second frontal slab (k = 2), write P{2}*H.  

The model can also be fitted to more than three-way data. It is important then to be aware 
which mode is supposed to be fitted by separate loadings for each sample. The convention is 
that the first mode is the mode that has individual loadings and that these are defined across 
the last (the sample) mode. For example, chromatographic data with spectral detection can be 
arranged as the first mode being elution, the second spectral and the third mode being 
different experiments. Then different elution profiles (mode one) are found for each 
experiment (mode three). For multivariate batch process data, the array is typically arranged 
as time × variables × batches, meaning that the time trajectories (mode one) can vary from 
batch to batch (mode three). 
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INPUTS: 
 x = the multiway array to be decomposed,  
  If all slabs have similar size, x is an array. For example, for three-way 

data where the matrix of measurements for sample one is held in x1, for 
sample 2 in x2 etc. then X(:,:,1) = X1; X(:,:,2) = X2; etc. If the slabs 
have different size, X is a cell array (type <help cell> for more info on 
cells). Then X{1} = X1; X{2} = X2; etc., and 

 ncomp =  the number of factors (components) to use, or 
 model =  a PARAFAC model structure (new data are fit to the model i.e. sample 

mode scores are calculated). 

OPTIONAL INPUTS: 
 initval =  cell array of initial values (initial guess) for the loadings (e.g. 

model.loads from a previous fit). If not used it can be 0 or [], and 
 options =  discussed below. 

 

OUTPUTS: 

Data that are input as a cell-array in PARAFAC2 are converted to an array by zero-padding 
each samples first mode dimension in case of different first mode dimensions for different 
samples. Residuals etc. are also output as arrays. The output model is a structure array with 
the following fields: 
 modeltype: 'PARAFAC2', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: 1 by K cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for each input data block, 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 
 
The output pred is a structure array that contains the approximation of the data if the options 
field blockdetails is set to 'all' (see options). 
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Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: [ {'final'} | 'all' | 'none' ], governs level of plotting, 
 weights: [], used for fitting a weighted loss function, 
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative 

tolerance) (absolute tolerance) (maximum number of iterations) 
(maximum time in seconds)], 

 init: [ 0 ], defines how parameters are initialized (discussed below), 
 line: [ 0 | {1}] defines whether to use the line search {default uses it}, 
 algo: not applicable for PARAFAC2 as ALS is always used, 
 iterative: settings for iterative reweighted least squares fitting, 
 blockdetails: 'standard' 
 missdat: this option is not yet active, 
 samplemode: [3], defines which mode should be considered the sample or object 

mode (do not change in PARAFAC2), 
 constraints: {3x1 cell}, defines constraints on parameters (see PARAFAC), and 
 coreconsist: [ {'on'} | 'off' ], governs calculation of core consistency (turning 

off may save time with large data sets and many components). 

The default options can be retrieved using: options = parafac('options');. 

Note that samplemode should not be altered in PARAFAC2. See help on PARAFAC for help 
on the use of options for PARAFAC2. One important difference from PARAFAC is that 
constraints in the first mode do not apply to the estimated profiles, Ak, themselves but only to 
H. It is generally adviced not to use constraints in the first mode. 

Examples 

parafac2 demo for a demonstration of the use of the  PARAFAC2 algorithm. 

model = parafac2(X,5) fits a five-component PARAFAC2 model to the array X using 
default settings. 

options = parafac2('options'); generates a set of default settings for PARAFAC2. 
options.plots = 0; sets the plotting off. 

options.init = 3; sets the initialization of PARAFAC2 to orthogonalized random 
numbers. 

model = parafac2(X,2,options); fits a two-component PARAFAC2 model with the 
settings defined in options.  

parafac2 io shows the I/O of the algorithm. 
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See Also 

datahat, explode, gram, mpca, outerm, parafac, tld, tucker, unfoldm 
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parsemixed 
Purpose 

Parse numerical and text data into a DataSet Object. 

Synopsis 
 
data = parsemixed(a,b) 

Description 

Given two inputs containing a numerical array a and a matching cell array containing text b, 
PARSEMIXED outputs a DataSet object with a "logical" interpretation of the numerical and 
text data. It identifies contiguous block of numbers and then attempts to interpret text as 
labels and label names for that block of data. 

INPUTS: 
 a = numerical array containing the numerical portion of the data to parse 

(NOTE: NaN's are OK). 
 b = a cell array of the same size as (a) but containing any strings which were 

not interpretable as numbers. 

OUTPUT: 
 data = a DataSet object formed from the parsing of the input data. 

Options 
 options =  a structure array with the following fields: 
 labelcols: [] specifies one or more columns of the file which should be interpreted 

as text labels for rows even if parsable as numbers, 
 labelrows: [] specifies one or more rows of the file which should be interpreted as 

text labels for columns even if parsable as numbers, 
 includecols: [] Specifies one or more columns of the file which should be interpreted 

as the "include" field for ROWS of the matrix (i.e. this column specifies 
which rows should be included). Multiple items in this list will be 
combined using a logical "and" (all must be "1" to include field. 

 includerows: [] Specifies one or more rows of the file which should be interpreted as 
the "include" field for COLUMNS of the matrix (see above notes about 
includecols). 

 classcols: [] Specifies one or more columns of the file which should be interpreted 
as classes for rows of the data. 

 classrows: [] Specifies one or more rows of the file which should be interpreted as 
classes for columns of the data. 

 axisscalecols: [] Specifies one or more columns of the file which should be interpreted 
as axisscales for rows of the data. 
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 axisscalerows: [] Specifies one or more rows of the file which should be interpreted as 
axisscales for columns of the data. 

 compactdata:  [ 'no' | {'yes'} ]  Specifies if columns and rows which are entirely 
excluded should be permanently removed from the table. 

 waitbar:  [ 'off' | {'on'} ] Specifies whether waitbars should be shown 
while the data is being processed. 

See Also 

areadr, dataset, xclreadr, xlsreadr 



 220 

parseXML 
Purpose 

Convert XML file to a MATLAB structure. 

Synopsis 
 
object = parseXML(filename) 

Description 

Creates Matlab object from XML file. The format of the file must follow that used by 
ENCODEXML. Each XML tag will be encoded as a field in a Matlab structure. The top-
level tag will be the single field in the top-level of the returned structure and all sub-tags will 
be sub-fields therein. Contents of those fields can be specified using the following attributes: 

Tags with the attribute 'class' will be encoded using these rules: 

class="numeric"   : Contents of tag must be comma-delimited list of values with rows 
delimited by semicolons. Each row must have the same number of values (equal in length) or 
an error will result. Multi-way matricies can be encapulated in <tn mode="i"> tags where i is 
the mode that the enclosed item expands on (i>=3). 

class="cell"      : Contents encoded as Matlab cell. Format of contents is same as HTML table 
tags (<tr> for new row, <td> for new container/column) with the added tag of <tn mode="i"> 
to describe an multi-dimensional cell (see class="numeric"). 

class="string"    : Contents encoded as string or padded string array. If multiple row string, 
each row should be enclosed in <sr> tags.  

class="structure" : Used for struture arrays ONLY. Contents encoded into a structure array 
using array notation identical to that described for class="cell". If a structure is size [1 1] 
then it does not need to use array notation and must not be marked with this class attribute. 
Instead, the contents of the structure should simply be enclosed within the tag as sub-tags. 

class="dataset"   : Contents will be interpreted as a DataSet Object. Any tags which do not 
map to valid DataSet Object fields will be ignored. See the DataSet definition for details on 
valid fields and ENCODEXML for example of DataSet XML format. 

When class is omitted, a single-entry (non-array) structure is assumed. 

"Size" attribute: Tags of class "numeric", "cell", or "structure" (structure-array only) should 
also include the attribute size="[...]" which gives the size of the tag's contents. Value for size 
must be enclosed in square brackets and must be at least two elements long (use [0,0] for 
empty). For example <myvalue class="numeric" size="[3,4]"> says that the field myvalue 
will be numeric with 3 rows and 4 columns. Size can be multi-dimensional as needed 
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(size="[2,4,6,2]" implies that the contents of the tag will give a 4-dimensional array of the 
given sizes) 

If input (filename) is omitted, the user will be prompted for a file name  to read. 

See Also 

encodexml, xclreadr 
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pca 
Purpose 

Perform principal components analysis. 

Synopsis 
 
pca 
model = pca(data,ncomp,options);      %decomposition 
pred  = pca(newdata,model,options);   %application 
options = pca('options') 

Description 

Performs a principal component analysis decomposition of the input array data returning 
ncomp principal components. E.g. for an M by N matrix X the PCA model is X = TPT + E, 
where the scores matrix T is M by K, the loadings matrix P is N by K, the residuals matrix E 
is M by N, and K is the number of factors or principal components ncomp. The output model 
is a PCA model structure. This model can be applied to new data by passing the model 
structure to PCA along with new data newdata or by using PCAPRO. The output of PCA is a 
model structure with the following fields (see MODELSTRUCT for additional information): 
 modeltype: 'PCA', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for the input block (when 

blockdetail='normal' x-block predictions are not saved and this will 
be an empty array) 

 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 

If the inputs are a Mnew by N matrix newdata and and a PCA model model, then PCA applies 
the model to the new data. Preprocessing included in model will be applied to newdata. The 
output pred is structure, similar to model, that contains the new scores, and other predictions 
for newdata. 

Note: Calling pca with no inputs starts the graphical user interface (GUI) for this analysis 
method.  
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Options 
 options =  a structure array with the following fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 plots: [ 'none' | {'final'} ], governs level of plotting. 
 outputversion: [ 2 | {3} ], governs output format (discussed below), 
 algorithm: [ {'svd'} | 'maf' | 'robustpca' ], algorithm for decomposition, 
  Algorithm 'maf' requires Eigenvector's MIA_Toolbox. 
 preprocessing: {[]}, cell array containing a preprocessing structure (see PREPROCESS) 

defining preprocessing to use on the data (discussed below), 
 blockdetails: [ {'standard'} | 'all' ], level of detail included in the model for 

predictions and residuals. 
confidencelimit: [ {'0.95'} ], confidence level for Q and T2 limits. A value of zero (0) 

disables calculation of confidencelimits. 
 roptions: structure of options to pass to robpca (robust PCA engine from the Libra 

Toolbox). 
  alpha:[ {0.75} ], (1-alpha) measures the number of outliers the 

algorithcarbuggym should resist. Any value between 0.5 and 1 may be 
specified. These options are only used when algorithm is 'robustpca'. 

The default options can be retreived using: options = pca('options');. 

OUTPUTVERSION 

By default (options.outputversion = 3) the output of the function is a standard model 
structure model. If options.outputversion = 2, the output format is: 

 
[scores,loads,ssq,res,reslm,tsqlm,tsq] = pca(xblock1,2,options); 

where the outputs are 
 scores = x-block scores, 
 loads = x-block loadings 
 ssq = the sum of squares information,  
 res = the Q residuals, 
 reslim =  the estimated 95Found limit line for Q residuals, 
 tsqlim =  the estimated 95Found limit line for T2, and 
 tsq =  the Hotelling’s T2 values. 

PREPROCESSING 

The preprocessing field can be empty [] (indicating that no preprocessing of the data 
should be used), or it can contain a preprocessing structure output from the PREPROCESS 
function. For example options.preprocessing = {preprocess('default', 
'autoscale')}. This information is echoed in the output model in the 
model.detail.preprocessing field and is used when applying the PCA model to new data. 
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See Also 

analysis, evolvfa, ewfa, explode, parafac, plotloads, plotscores, 
preprocess, ssqtable 
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pcaengine 
Purpose 

Principal components analysis computational engine. 

Synopsis 
 
[ssq,datarank,loads,scores,msg] = pcaengine(data,ncomp,options) 
options = pcaengine('options') 

Description 

This function is intended primarily for use as the engine behind other more full featured PCA 
programs. The only required input is the data matrix data. 

Optional inputs include the number of principal components desired in the output ncomp, and 
a structure containing optional inputs options. If the number of components ncomp is not 
specified, the routine will return components up to the rank of the data datarank. 

The outputs are the variance or sum-of-squares captured table ssq, mathematical rank of the 
data datarank, principal component loadings loads, principal component scores scores, 
and a text variable containing any warning messages msg. 

To enhance speed, the routine is written so that only the specified outputs are computed. 

Options 
 options =  a structure array with the following fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 algorithm: [ {'regular'} | 'big' | 'auto'], tells which algorithm to use, 
  'regular', uses an SVD and calculates all eigenvectors and 

eigenvalues, 
  'big', calculates the “economy size” SVD, and 
  'auto', checks the size of the data matrix and automatically chooses 

between 'regular' and 'big' 

The default options can be retreived using: options = pcaengine('options');. 

See Also 

analysis, evolvfa, ewfa, explode, parafac, pca, ssqtable 
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pcapro 
Purpose 

Project new data onto an existing principal components model. 

Synopsis 
 
[scoresn,resn,tsqn] = pcapro(newdata,loads,ssq,reslm,tsqlm,plots) 
[scoresn,resn,tsqn] = pcapro(newdata,pcamod,plots) 

Description 

Inputs can be in two forms: 1) as a list of input variables, or 2) as a single model structure 
variable returned by ANALYSIS or PCA. 

1) If a list of input variables is used the inputs are the new data newdata scaled the same as 
the original data used to construct the model, the model loadings loads, the model variance 
info ssq, the limit for Q reslm, the limit for T2 tsqlm, and an optional variable plots which 
suppresses plotting when set to 0 {default plots = 1}. 

WARNING: Scaling for newdata should be the same as original data used to create the PCA 
model! 

The I/O format is: 
[scoresn,resn,tsqn] = pcapro(newdata,loads,ssq,q,tsq,plots) 

2) If the PCA model is input as the single model structure variable returned by ANALYSIS or 
PCA then the inputs are the new data newdata in the units of the original data, the structure 
variable that contains the PCA model pcamod, and an optional variable plots which 
suppresses the plots when set to 0 {default plots = 1}. 

NOTE: newdata will be preprocessed in PCAPRO using information stored in pcamod 
(pcamod.detail.preprocessing). 

The I/O format is: 
[scoresn,resn,tsqn] = pcapro(newdata,pcamod,plots) 

Outputs are the new scores scoresn, residuals resn, and T2 values tsqn. These are plotted if 
plots = 1 {default}. 

See Also 

datahat, analysis, explode, modlpred, pca, simca, tsqmtx 
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pcolormap 
Purpose 

Produces a pseudocolor map with labels. 

Synopsis 
 
pcolormap(data,maxdat,mindat) 
pcolormap(data,xlbl,ylbl,maxdat,mindat) 

Description 

PCOLORMAP produces a pseudocolor map of the M by N input matrix data. 

If data is class “double” the I/O format is: 
pcolormap(data,xlbl,ylbl,maxdat,mindat) 

If data is class “dataset” the I/O format is: 
pcolormap(data,maxdat,mindat) 

Optional inputs: 

(xlbl) a character array with m rows of sample labels if empty no labels are included, if == 1 
then xlbl = int2str([1:m]'); [xlbl = int2str([1:m]') used when size(xlbl,1)~=m],  

(ylbl) a character array with n rows of variable labels if empty no labels are included, if ==1 
then ylbl = int2str([1:n]'); [ylbl = int2str([1:n]') used when size(ylbl,1)~=n],  

(maxdat) a user defined maximum for scaling the color scale {default = max(max(data))}, 

(mindat) a user defined minimum for scaling the color scale {default = min(min(data))}. 

See Also 

corrmap, pcolor, rwb 
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pcr 
Purpose 

Principal components regression: multivariate inverse least squares regession. 

Synopsis 
 
model = pcr(x,y,ncomp,options)     %calibration 
pred  = pcr(x,model,options)       %prediction 
valid = pcr(x,y,model,options)     %validation 
options = pcr('options') 

Description 

PCR calculates a single principal components regression model using the given number of 
components ncomp to predict y from measurements x. 

To construct a PCR model, the inputs are x the predictor x-block (2-way array class “double” 
or “dataset”), y the predicted y-block (2-way array class “double” or “dataset”), ncomp the 
number of components to to be calculated (positive integer scalar) and the optional structure, 
options. The output is a standard model structure model with the following fields (see 
MODELSTRUCT): 
 modeltype: 'PCR', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 reg: regression vector, 
 loads: cell array with model loadings for each mode/dimension, 
 pred: 2 element cell array with model predictions for each input block (when 

options.blockdetail='normal' x-block predictions are not saved 
and this will be an empty array) and the y-block predictions. 

 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 

To make predictions the inputs are x the new predictor x-block (2-way array class “double” 
or “dataset”), and model the PCR model. The output pred is a structure, similar to model, 
that contains scores, predictions, etc. for the new data. 

If new y-block measurements are also available then the inputs are x the new predictor x-
block (2-way array class “double” or “dataset”), y the new predicted block (2-way array class 
“double” or “dataset”), and model the PCR model. The output valid is a structure, similar to 
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model, that contains scores, predictions, and additional y-block statistics etc. for the new 
data. 

In prediction and validation modes, the same model structure is used but predictions are 
provided in the model.detail.pred field. 

Note: Calling pcr with no inputs starts the graphical user interface (GUI) for this analysis 
method.  

Options 
 options =  a structure array with the following fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 plots: [ 'none' | {'final'} ], governs level of plotting, 
 outputversion: [ 2 | {3} ], governs output format (discussed below), 
 preprocessing: {[] []}, two element cell array containing preprocessing structures (see 

PREPROCESS) defining preprocessing to use on the x- and y-blocks (first 
and second elements respectively), 

 algorithm: [ {'svd'} | ' robustpcr' | ' correlationpcr' ], governs which 
algorithm to use. 'svd' is standard algorithm. 'robustpcr' is robust 
algorithm with automatic outlier detection. 'correlationpcr' is standard 
PCR with re-ordering of factors in order of y-variance captured. 

 blockdetails: ['compact' | {'standard'} | 'all'], extent of predictions and raw 
residuals included in model. 'standard' = only y-block, 'all' x and y 
blocks. 

confidencelimit: [ {'0.95'} ], confidence level for Q and T2 limits. A value of zero (0) 
disables calculation of confidence limits, 

 roptions: structure of options to pass to rpcr (robust PCR engine from the Libra 
Toolbox). Only used when algorithm is 'robustpcr', 

  alpha : [ {0.75} ], (1-alpha) measures the number of outliers the 
algorithm should resist. Any value between 0.5 and 1 may be specified. 
These options are only used when algorithm is 'robustpcr'. 

  intadjust : [ {0} ], if equal to one, the intercept adjustment for the 
LTS-regression will be calculated. See ltsregres.m for details (Libra 
Toolbox). 

The default options can be retreived using: options = pcr('options');. 

OUTPUTVERSION 

By default (options.outputversion = 3) the output of the function is a standard model 
structure model. If options.outputversion = 2, the output format is: 

 
[b,ssq,t,p] = pcr(x,y,ncomp,options) 

where the outputs are 
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 b = matrix of regression vectors or matrices for each number of principal 
components up to ncomp, 

 ssq = the sum of squares information,  
 t = x-block scores, and 
 p = x-block loadings. 

Note: The regression matrices are ordered in b such that each Ny (number of y-block 
variables) rows correspond to the regression matrix for that particular number of principal 
components. 

See Also 

analysis, crossval, frpcr, modelstruct, pca, pls, preprocess, analysis, 
ridge 
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pcrengine 
Purpose 

Principal components regression computational engine. 

Synopsis 
 
[reg,ssq,loads,scores,pcassq] = pcrengine(x,y,ncomp,options) 

Description 

PCRENGINE calculates the basic elements of a PCR model (see PCR). 

Inputs are x the predictor x-block, and y the predicted y-block. 

Optional input ncomp is the number of components to to be calculated (positive integer 
scalar). If the number of components ncomp is not specified, the routine will return 
components up to the rank of the x-block. Optional input options. is discussed below. 

Outputs are the matrix of regression vectors reg, the sum of squares captured ssq, x-block 
loadings loads, x-block scores scores, and the PCA ssqtable (pcassq). 

Note: The regression matrices are ordered in b such that each Ny (number of y-block 
variables) rows correspond to the regression matrix for that particular number of principal 
components. 

Options 
 options =  a structure array with the following fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 sortorder: [ {'x'} | 'y' ], governs order of factors in outputs. 'x' is standard 

PCR sort order (ordered in terms of X block variance captured). 'y' is 
Correlation PCR sort order (ordered in terms of Y block variance 
captured). 

The default options can be retreived using: options = pcrengine('options');. 

See Also 

analysis, pcr, pls 
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peakfind 
Purpose 

Automated identification of peaks. 

Synopsis 
 
[i0,iw] = peakfind(x,width,tolfac,w,options) 
[i0,iw] = peakfind(x,width,options) 

Description 

Given a set of measured traces (x) PEAKFIND attempts to find the location of the peaks. 
Different algorithms are available and each is discussed in the Algorithm Section. 

INPUTS: 
 x = MxN  matrix of measured traces. Each 1xN  row of (x) is an individual 

trace with potential peaks. 
 width = number of points in Savitzky-Golay filter. 

OPTIONAL INPUTS: 
 tolfac = tolerance on the estimated residuals, peaks heights are estimated to be 

> tolfac*residuals {default: tolfac = 3}. 
 w = odd scalar window width for determining local maxima {default: w = 

3} (see LOCALMAXIMA). 
 options = discussed below in the Options Section. 

OUTPUTS: 
 i0 = 1Mx  cell array with each cell containing the indices of the location of 

the major peaks for each of the M  traces. 
 iw = 1Mx  cell array with each cell containing the indices of the location of 

the windows containing each peak in (i0). (If not included in the output 
argument list, it is not calculated and the algorithm is slightly faster.) . 

Algorithm 

Each peak finding algorithm uses the smoothed and second derivative data (see SAVGOL) and 
an estimate of the residuals. The smoothed and second derivative are estimated as: 

d0 = savgol(x,width,2,0); 
d2 = savgol(x,width,2,2); 

The residuals are defined for the thi  row/trace as 
residuals = sqrt(mean((x(i,:)-d0(i,:)).^2)); 
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For options.algorithm = 'd0', locates a candidate set of peaks (pks) by identifying local 
maxima (within the specified window size) in the smoothed data: 

pks = localmax(d0(i,:),w); 

Next, the input (tolfac) is used to estimate two thresholds (tol0) and (tol2) using the 
smoothed and second derivative data: 

tol0 = tolfac*sqrt(mean((x(i,:)-d0(i,:)).^2)); 
tol2 = tol0*(max(d2(i,:))-min(d2(i,:)))/ … 
            (max(d0(i,:))-min(d0(i,:))); 

Finally, the set of major peaks are selected from the initial candidate set of peaks . To be 
accepted, the value of d0 and d2 at the peak location must surpass the estimated noise level 
of both d0 and d2 by the tolerance factor (tolfac). 

i0{i} = pks(d0(i,pks)>tol0 & d2(i,pks)<-tol2); 

For options.algorithm = 'd2', the algorithm operates similarly to what is described for 
d0 except that it locates candidate peaks as the local maxima on the second derivative data 
and to be accepted, a peak must only surpass the estimated noise level of d2 by the tolerance 
factor. That is, d0 is not considered at all in the calculation except to estimate the noise level. 

For options.algorithm = 'd2r', as with 'd2', 'd2r' locates peaks in the second derivative 
data, d2, but selects the final set as those peaks which have a "relative" height (difference 
between closest d2 peak valley and d2 peak top) which surpasses the estimated noise level of 
d2 by the tolerance factor, tolfac. 

Options 
options = structure array with the following fields: 
 name: 'options', name indicating that this is an options structure. 
 algorithm: [ {'d0'} | 'd2' | 'd2r' ] selects an algorithm used to identify peak 

location. These algorithms are complimentary and may work differently 
in the presense of backgrounds and other peak shape effects. 

  'd0' : locates a candidate set of peaks by identifying local maxima 
(within the specified window size) in the smoothed data (d0). Next, a 
threshold on d0 and the second derivative (d2) is used to select a final 
set of peaks from this candidate set. To be accepted, the value of d0 and 
d2 at the peak location must surpass the estimated noise level of both d0 
and d2 by the tolerance factor (tolfac). 

  'd2' : locates candidate peaks as local maxima in the smoothed 2nd 
derivative data (d2) and selects a final set of peaks as those candidate 
peaks which surpass (by the tolerance factor, tolfac) the estimated noise 
level of d2. d0 position or value is not considered in any part of the 
selection except to estimate the noise level. 

  'd2r' : as with 'd2', 'd2r' locates peaks in d2, but selects the final set as 
those peaks which have a "relative" height (difference between closest 
d2 peak valley and d2 peak top) which surpasses (by the tolerance 
factor, tolfac) the estimated noise level of d2. 

 npeaks:  The maximum number of peaks to find. 
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  {'all'} chooses all peaks that are > tolfac. 
  1,2,3, ... integer maximum number of peaks. 

 

See Also 

fitpeaks, localmax 
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peakfunction 
Purpose 

Outputs the estimated peaks from parameters in (peakdef) 

Synopsis 
 
[y,peakdef] = peakfunction(peakdef,ax) 

Description 

Given the multi-record standard peak structure (peakdef) and the corresponding 
wavelength/frequency axis (ax), the peak parameters in the field (peakdef.param) are used 
to generate peaks. This function is called by PEAKFITS and the result is the output (fit), and 
the peak area estimates in (peakdef) are updated. See PEAKFITS for more information. This 
function calls PEAKGAUSSIAN, PEAKLORENTZIAN, PEAKPVOIGT1, and PEAKVOIGT2. 

INPUTS: 
 peakdef = standard peak structure (see PEAKSTRUCT) output by fitpeaks. 
 ax = corresponding wavelength/frequency axis. This is also input to the 

function FITPEAKS. Peak positions are based on this axis. 

OUTPUTS: 
 y = estimated peaks based on the parameters in the input (peakdef). 
 peakdef = the original input (peakdef) with the area field estimated. 

Examples 
 
  ax            = 0:0.1:100; 
  y             = peakgaussian([2 51 8],ax);%Make known peak 
%Define first estimate and peak type 
  peakdef       = peakstruct; 
  peakdef.param = [0.1  43   5];      %coef, position, spread 
  peakdef.lb    = [0.0   0   0.0001]; %lower bounds on param 
  peakdef.penlb = [1 1 1]; 
  peakdef.ub    = [10 99.9  40];      %upper bounds on params 
  peakdef.penub = [1 1 1]; 
%Estimate fit and plot 
  yint   = peakfunction(peakdef,ax); 
  [peakdef,fval,exitflag,out] = fitpeaks(peakdef,y,ax); 
  yfit   = peakfunction(peakdef,ax); figure 
  plot(ax,yint,'m',ax,y,'b',ax,yfit,'r--') 
  legend('Initial','Actual','Fit') 
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See Also 

fitpeaks, peakgaussian, peaklorentzian, peakpvoigt1, peakpvoigt2, 
peakstruct 
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peakgaussian 
Purpose 

Outputs a Gaussian function, Jacobian, and Hessian for a given set of input parameters and 
axis. 

Synopsis 
 
 [y,y1,y2] = peakgaussian(x,ax) 

Description 

Given a 3-element vector of parameters (x) and a 1xN  vector of independent variables e.g. a 
wavelength or frequency axis (ax), PEAKGAUSSIAN outputs a Gaussian peak (y). If more than 
one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives are 
with respect to the parameters and are evaluated at (x). This function is called by 
PEAKFUNCTION. 

INPUTS: 
 x = 3 element vector with parameters 
  x(1) = coefficient 1x , 

  x(2) = mean 2x , and 

  x(3) = spread 3x . 

 ax = 1xN  vector of independent variables e.g. a wavelength or frequency 
axis with elements ia , 1, ,i N= … . 

OUTPUTS: 
 y = 1xN  vector with the Gaussian function, ( ),i iy f a= x . 

 y1 = 3xN matrix of the Jacobian of f  evaluated at (x). 
 y2 = 3 3x xN matrix of the Hessian of f  evaluated at (x). 

Algorithm 

The function is 
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Examples 
 
%Make a single known peak 
  ax            = 0:0.1:100; 
  y             = peakgaussian([2 51 8],ax); 
  plot(ax,y) 

See Also 

peakfunction, peaklorentzian, peakpvoigt1, peakpvoigt2, peakstruct 
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peakidtext 
Purpose 

Writes peak ID information on present graph of a set of peaks. 

Synopsis 
h = peakidtext(peakdef) 
 

Description 

When a set of peaks is plotted, PEAKIDTEXT can be used to put the peak id (peakdef.id) on 
the graph (see PEAKSTRUCT). For example, if (ax) is the wavelength, frequency, or time axis 
and (y) is a set of peaks then, for an initial guess given in (peakdef) the fit parameters are 
obtained using: 

peakdefo = fitpeaks(peakdef,y,ax); 

A plot can be made using: 
plot(ax,y,'b',ax,peakfunction(peakdefo,ax),'r') 

Next, labels are put on the graph using: 
peakidtext(peakdefo) 

This also puts a vertical line at the peak center and puts the text label, based on the  contents 
of the (peakdefo.id) field, near the peak maximum. 

INPUT: 
 peakdef = a standard peak structure (see PEAKSTRUCT). 

OUTPUT: 
 h = vector of handles corresponding to the individual text labels. 

See Also 

fitpeaks, peakfunction, peakstruct 
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peaklorentzian 
Purpose 

Outputs a Lorentzian function, Jacobian, and Hessian for a given set of input parameters and 
axis. 

Synopsis 
 
 [y,y1,y2] = peaklorentzian(x,ax) 

Description 

Given a 3-element vector of parameters (x) and a 1xN  vector of independent variables e.g. a 
wavelength or frequency axis (ax), PEAKLORENTZIAN outputs a Lorentzian peak (y). If more 
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives 
are with respect to the parameters and are evaluated at (x). This function is called by 
PEAKFUNCTION. 

INPUTS: 
 x = 3 element vector with parameters 
  x(1) = coefficient 1x , 

  x(2) = mean 2x , and 

  x(3) = spread 3x . 

 ax = 1xN  vector of independent variables e.g. a wavelength or frequency 
axis with elements ia , 1, ,i N= … . 

OUTPUTS: 
 y = 1xN  vector with the Lorentzian function, ( ),i iy f a= x . 

 y1 = 3xN matrix of the Jacobian of f  evaluated at (x). 
 y2 = 3 3x xN matrix of the Hessian of f  evaluated at (x). 

Algorithm 

The function is 
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Examples 
 
%Make a single known peak 
  ax            = 0:0.1:100; 
  y             = peaklorentzian([2 51 8],ax); 
  plot(ax,y) 

See Also 

peakfunction, peakgaussian, peakpvoigt1, peakpvoigt2, peakstruct 
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peakpvoigt1 
Purpose 

Outputs a pseudo-Voigt function, Jacobian, and Hessian for a given set of input parameters 
and axis. 

Synopsis 
 
 [y,y1,y2] = peakpvoigt1(x,ax) 

Description 

Given a 4-element vector of parameters (x) and a 1xN  vector of independent variables e.g. a 
wavelength or frequency axis (ax), PEAKPVOIGT1 outputs a pseudo-voit peak (y). If more 
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives 
are with respect to the parameters and are evaluated at (x). This function is called by 
PEAKFUNCTION. 

INPUTS: 
 x = 4 element vector with parameters 
  x(1) = coefficient 1x , 

  x(2) = mean 2x , 

  x(3) = spread 3x , and 

  x(4) = fraction Gaussian 4x . 

 ax = 1xN  vector of independent variables e.g. a wavelength or frequency 
axis with elements ia , 1, ,i N= … . 

OUTPUTS: 
 y = 1xN  vector with the Lorentzian function, ( ),i iy f a= x . 

 y1 = 4xN matrix of the Jacobian of f  evaluated at (x). 
 y2 = 4 4x xN matrix of the Hessian of f  evaluated at (x). 

Algorithm 

The function is 
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Examples 
 
%Make a single known peak 
  ax            = 0:0.1:100; 
  y             = peakpvoigt1([2 51 8 0.5],ax); 
  plot(ax,y) 

See Also 

peakfunction, peakgaussian, peaklorentzian, peakpvoigt2, peakstruct 
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peakpvoigt2 
Purpose 

Outputs a pseudo-Voigt function, Jacobian, and Hessian for a given set of input parameters 
and axis. 

Synopsis 
 
 [y,y1,y2] = peakpvoigt2(x,ax); 

Description 

Given a 4-element vector of parameters (x) and a 1xN  vector of independent variables e.g. a 
wavelength or frequency axis (ax), PEAKPVOIGT2 outputs a pseudo-voigt peak (y). If more 
than one output is requested, it also outputs the Jacobian (y1) and Hessian (y2). Derivatives 
are with respect to the parameters and are evaluated at (x). This function is called by 
PEAKFUNCTION. 

INPUTS: 
 x = 4 element vector with parameters 
  x(1) = coefficient 1x , 

  x(2) = mean 2x , 

  x(3) = spread 3x , and 

  x(4) = fraction Gaussian 4x . 

 ax = 1xN  vector of independent variables e.g. a wavelength or frequency 
axis with elements ia , 1, ,i N= … . 

OUTPUTS: 
 y = 1xN  vector with the Lorentzian function, ( ),i iy f a= x . 

 y1 = 4xN matrix of the Jacobian of f  evaluated at (x). 
 y2 = 4 4x xN matrix of the Hessian of f  evaluated at (x). 

Algorithm 

The function is 
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Examples 
 
%Make a single known peak 
  ax            = 0:0.1:100; 
  y             = peakpvoigt2([2 51 8 0.5],ax) 
  plot(ax,y) 

See Also 

peakfunction, peakgaussian, peaklorentzian, peakpvoigt1, peakstruct 
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peakstruct 
Purpose 

Makes an empty standard peak definition structure. 

Synopsis 
 
peakdef = peakstruct(fun,n) 

Description 

The output of PEAKSTRUCT is an empty standard peak structure, or multi-record peak 
structure.  

No input is required. Optional inputs can be used to create different types of default peak 
definitions in each of the structure records. 

OPTIONAL INPUTS: 
 fun = Peak function name {default = 'Gaussian'}. Available peak names 

(shapes) are: 
  'Gaussian', 'Lorentzian', 'PVoigt1', and 'PVoigt2'. 
 n = Number of records to include in the (peakdef) structure. 

OUTPUTS: 
 peakdef = A structure array with the following fields: 
 name: 'Peak', indentifies (peakdef) as a peak definition structure. 
 id: integer or character string peak identifier. 
 fun: peak function name {e.g.'Gaussian'}. 
 param: 1xP  vector of parameters for each peak function: 
 fun = 'Gaussian'; param = [height, position, width]. 
 fun = 'Lorenzian'; param = [height, position, width]. 
 fun = 'PVoigt1'; param = [height, position, width, fraction Gaussian], 

where 0 ≤ fraction Gaussian ≤ 1. 
 fun = 'PVoigt2'; param = [height, position, width, fraction Gaussian], 

where 0 ≤ fraction Gaussian ≤ 1. 
  Descriptions of the functions and parameters are given in the Algorithm 

section of the FITPEAKS entry in the reference manual. Also see 
PEAKFUNCTION. 

 lb: 1xP  vector of lower bounds on (.param). 
 penlb: 1xP  vector of penalties for lower bounds. If an entry is 0, then the 

corresponding lower bound is not active. 
 ub: 1xP  vector of upper bounds on (.param). 
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 penub: 1xP  vector of penalties for upper bounds. If an entry is 0, then the 
corresponding upper bound is not active. 

Examples 
 
peakdef = peakstruct('',3); 
disp(peakdef(2)) 
 
peakdef(2) = peakstruct('PVoigt1'); 
peakdef(2).id = '2: Voigt'; 
disp(peakdef(2)) 

See Also 

fitpeaks, peakfunction, peakgaussian, peaklorentzian, peakstruct, 
peakpvoigt1, peakpvoigt2 
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percentile 
Purpose 

Finds percentile point (similar to MEDIAN). 

Synopsis 
 
s = percentile(x,y) 

Description 

PERCENTILE finds the point in the data x where the fraction y has lower values. Input x is a 
MxN data array, and y is a percentile where 0<y<1. 

The output is a 1 by N vector s of percentile points (PERCENTILE works on the columns of x. 

See Also 

median 
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ploteigen 
Purpose 

Extracts information from a model needed to construct a dataset object for PLOTGUI. 

Synopsis 
 
a = ploteigen(modl, options) 

Description 

Extracts the variance captured, eigenvalue, and RMSE (root-mean-squared error) 
information from a model structure for viewing using PLOTGUI. The inputs are a standard 
model structure, modl, and an optional options structure, options, described below. The 
output, a, is a DataSet object which can be passed to PLOTGUI for viewing. 

Options 
 plots: [ 'none' | 'final' | {'auto'} ]   governs plotting behavior,  
  'auto' makes plots if no output is requested {default}. 
 figure: [ 'off' | {'on'} ], governs level of display to command window. 

See Also 

analysis, modelstruct, pca, pcr, plotgui, plotloads, pls 
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plotgui 
Purpose 

Interactive data viewer. 

Synopsis 
 
fig = plotgui(data) 
fig = plotgui(data,'PropertyName',PropertyValue,...) 
fig = plotgui('update','PropertyName',PropertyValue,...) 

Description 

Plots input data dat and provides a control toolbar in the Plot Controls window to select 
portions of the data to view. The toolbar allows interactive selection, exclusion, and classing 
of rows or columns of data. The PLOTGUI command has various display options that are 
given as 'PropertyName', PropertyValue pairs or as a single keyword. Properties and 
Keywords are discussed below. To modify options for an existing PLOTGUI figure without 
providing new data, use the 'update' keyword. 

PLOTGUI returns the handle of the figure in which the data is displayed (fig). 

Input dat can be class “double” or “dataset”. The description given below is generally listed 
for two-way data arrays. Options specific to data that are three-way or image are noted 
explicitly. PLOTGUI uses the dataset labels, classes, etc. when dat is class “dataset”. 

Plot Controls Toolbar 

The toolbar consists of 1) a menu bar with File, Edit, and 
View menus, 2) a figure selection dropdown menu, 3) three 
axis menus (labeled x, y, and z), 4) plot update controls Plot 
button and auto-update checkbox, and Select button. 

Each figure in the figure selection dropdown menu menu can 
be modified by the PLOTGUI controls. Selecting a figure from 
this menu will bring that figure into view and indicate the 
selected axis menu settings. A "+" or a "*" next to a figure's 
name indicates that it is linked with another figure (see 
Duplicate Figure below). 

The axis menus (labeled x, y, and z) select what parts of the 
data should be used for the plot. Each column or row 
selected in the y-axis menu will be plotted against the 
column, row or index selected in the x-axis menu. If any 
selection is made on the z-axis menu, then each y-axis selection is also plotted against the 
column or row selected in the z-axis menu to make a three-dimensional plot. 
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If the input dat is three-way it is assumed to be a multivariate image, and the y-axis is slice 
or slab and the figure default is imagesc(dat(:,:,1)). This is also true if dat is class 
“dataset” with the type field set to 'image' or 'image'. 

If the auto-update checkbox is selected, figures are updated automatically when new axis-
menu selections are made. Otherwise, the Plot button must be pressed before any changes 
are reflected in the figure. 

View Menu 

Various options associated with the viewed data are contained in the View menu. The 
specific options depend on the data being plotted. The View menu options are listed below. 
 Table: Opens a Plotted Data window that lists the numerical values of the 

plotted data. 
 Numbers: Displays the index number next to each plotted point. 
 Labels: Displays available lables next to each plotted point. If no labels are 

available this option is greyed out. 
 Classes: Uses available class information to give each plotted point a different 

symbol. If no class information is available this option is greyed out. 
The fly-out menu includes any class sets defined in the dataset as well as 
options to "Outline Class Groups". Group outlining allows drawing of 
lines to either enclose all samples in a group ("border points") or as a 
confidence boundry ("confidence ellipse"). 

 Declutter Labels: Controls the label/number decluttering options. Automatic modes 
remove labels when they overlap. "Selected Only" removes labels on all 
points except those which have been selected using the standard 
selection tools.  

 Label Angle: Changes the angle of (i.e. rotates) all labels in a plot. 
 Excluded Data: Shows any points which have been “excluded” from the data set. 
 Axis Lines: Places lines through the origin. 
 Log Scales: Switches axes between log and linear scaling. 
 Auto y-scale: When enabled, all plotted data items are scaled so that their y-axis 

values are on a similar scale (that is, they are each baselined and 
normalized). The different methods for y-scaling include: Sum, Length, 
Max. In each case, the given property is set equal to 1 for each plotted 
data item. In addition, if the plot has been zoomed, the y-scaling method 
is based only on the currently visible data. The scaling can be 
recalculated for any given zoomed view by selecting "Scale from current 
zoom". 

 Auto Contrast: Contrast enhancement for a slice/slab for multivariate images (only 
available when the data are 3-way or type image). 

 Duplicate Figure: Creates a duplicate copy of the current figure that is linked to the current 
figure i.e. if one figure is modified the other automatically changes to 
reflect the modification. The parent figure will have a "+" next to its 
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name in the figure selection dropdown menu and the child figure will 
have a "*". 

 Spawn Figure: Creates a duplicate copy of the current figure that is not controled by the 
Plot Controls toolbar. This is a simple MATLAB figure. 

 Dock Controls: When checked, the Plot Controls toolbar are “docked” next to the 
controled figure. 

 Settings: Allows the user to modify other view settings. 

 

Plot Menu 

Selects the "mode" in which the current data should be viewed. This can be either a summary 
of any given mode (Data Summary mode) or one of the standard modes of a data matrix 
including the rows, columns, or slabs.  
 
 Data Summary: Plots all the data, the mean, the standard deviation, or the mean ± the 

standard deviation. For Variables (columns) or Samples (rows) 
depending on what is selected in the x-axis. 

 Rows: Plots the data across rows selecting which rows (usually samples) to 
view. 

 Columns: Plots the data down the columns selecting which columns (usually 
variables) to view. 

 Slabs: Uses IMAGESC to view a slice/slab of a 3-way array (only available when 
the data are 3-way). 

 

Selection using the Select button 

The Select button allows the user to select plotted points in the current figure. After clicking 
Select, the current figure will be brought to the front and points are selected using the current 
selection tool (selected using the Tool button; see also Edit/Selection Mode menu). To 
extend a selection (i.e. add new points to the already selected points), use the shift-key while 
pressing the mouse button. To remove points from the selection, use the control-key while 
pressing the mouse button. To keep from making any selection, press "Esc" or "Escape". 

 

Edit Menu 

The Edit menu contains various actions relating to selections. The specific actions available 
depends on the current selection and PLOTGUI mode. The Edit menu options are listed below. 
 Select All: Selects all plotted points. 
 Deselect All: Deselects all plotted points. 
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 Select Class: Select all points of a given class or classes in the data (if any classes are 
defined). 

 Select Excluded: Selects all points which are currently excluded (see View/Excluded 
Data). 

 Selection Mode: Menu used to choose selection mode from the following: 
  Box: Click and drag a rubber band box around points, 
  Polygon: Click to mark the corners of a polygon around points and click 

on the intial point or press [Enter] to close the polygon, 
  Circle: Click to mark center of a circle, then click to mark the outside 

edge of the circle, 
  Ellipse: Click to mark center of an ellipse, click again to mark the minor 

axis size for the ellipse, then complete the selection by clicking to mark 
the size and direction of the major axis for the ellipse 

  Paintbrush: Click and drag to "paint" a selection onto points, 
  Lasso: Click and drag a free-form line to "ensnare" the points, 
  Single X: Click to select a single point on the x-axis, 
  Single Y: Click to select a single point on the y-axis, 
  X Range: Click and drag to select a range of points on the x-axis, 
  Y Range: Click and drag to select a range of points on the y-axis, and 
  Nearest: Click to select the nearest point. 
   Multiple Nearest: Click to select the nearest point, repeated until the 

[Enter] key is pressed. 
 Include All: Includes all excluded points (whether or not they are selected). 
Exclude Selection: Excludes (soft deletes) the selected points from the data set. See 

View/Excluded Data. 
Include Selection: Includes the selected points in the data set. See View/Excluded Data. 
Include Only Selection: Exclude all unselected points from the data set i.e. keep only the 

selected points. 
 Info on Selection: Get information on selected point (only available when a single point is 

selected). 
 Set Class: Set the class of the selected points. 
Exclude Plotted Data: Excludes all items currently selected in the y-axis menu for plotting. 

Note that unlike the other exclusion options in this menu, this and the 
next two options act on the mode selected in the Plot menu. 

Include Plotted Data: Includes all items currently selected in the y-axis menu for plotting. 
Include Only Plotted: Includes all items currently selected in the y-axis menu for plotting 

and only those items (all others are excluded). 
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File Menu 

The File menu contains various actions relating to files. The File menu options are listed 
below. 
 Load Data: Creates an interface for the user to load data into PLOTGUI from the base 

workspace or a file. 
 Save Data: Creates an interface for the user to save data from PLOTGUI to the base 

workspace or a file. 
 Open in Editor: Opens the given dataset in a linked DataSet Editor window. 
 Export Figure: Allows exporting the current figure to Various external programs 

(exporting will not function correctly if the given program is not 
installed on the computer). 

Save Selected Indices: Saves the current selection as a vector of indices. This can be used 
with the Load Selected Indices command to quickly store and reload 
different selections. 

Load Selected Indices: Load a vector of indices to use as a selection. 
Reset Controls: Refreshes Plot Controls. Useful if graphical objects are not correctly 

aligned. 
 

Properties and Keywords 

The following is a list of available properties. Each should be included as a 'PropertyName', 
PropertyValue pair in an initial PLOTGUI call or a PLOTGUI 'update' call. Note that calls to 
PLOTGUI for 'PropertyName' and PropertyValue are case insensitive. 

The current value of almost all properties can be retrieved using the getappdata function on 
the PLOTGUI figure and requesting the property of interest. Note that calls to GETAPPDATA are 
case sensitive and 'PropertyName' must be in all lower-case. The I/O format is: 

 
currentvalue = getappdata(fig,'propertyname') 

where fig is the handle of the PLOTGUI figure. If 'propertyname' is not included 
getappdata(fig) will list all the properties and their current values. Properties and their 
possible values follow: 

 AxisMenuValues:{[x] [y] [z]}, Two or three element cell containing 
indices or strings indicating which item, or items, to select in 
each of the three axis pull down menus. In [x] or [y] a value of 0 
(zero) means to select index number. In [z] a value of 'none' 
means to not use the z-axis. 

 AxisMenuDefaults:Axis menu defaults are axis menu values used if 
the axis menu values can not be restored. The input format is the 
same as axismenuvalues. 

 Figure:[scalar integer], Figure on which data should be plotted 
{default is current figure}. 
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 New:Key word – no associated PropertyValue. Creates a new figure 
for display of data. This is equivalent to an initial PLOTGUI 
call. 

 PlotBy:[scalar integer], Dimension (mode) for the axis menu 
selections: 0 = special "data browser", 1 = rows, 2 = columns, 
etc. (see View menu). The default is 2 or the number of modes in 
the data if larger than 2-way. 

 VSIndex:[ 1 1] {default}, Two element vector indicating if "Index" 
should be offered on x and y axis menus. A 1 indicates that it 
should be offered as a selection and a 0 indicates that it should 
not e.g. [1 1] indicates that it should be offered for both the x-
axis and y-axis. 

The following are image specific properties: 
 Image:Key word – no associated PropertyValue. Unfolds a 2 or 3-way 

array and displays it as and image, allowing selection, classing, 
and exclusion of individual pixels. 

 Unfold:Key word – no associated PropertyValue. Pseudonym for 
“image”. 

 AsImage:Key word – no associated PropertyValue. Display 3-way data 
that have already been unfolded as an image allowing selection, 
classing, and exclusion of individual pixels. 

The following are view properties: 
 ViewClasses: [1] {default}, Turns on View/Classes menu. A 0 (zero) turns it off. 

 ViewExcludedData:[1] {default}, Turns on View/Excluded Data menu. 
A 0 (zero) turns it off. 

 ViewLabels: [1] {default}, Turns on View/Labels menu. A 0 (zero) turns it off. 
 ViewNumbers: [1] {default}, Turns on View/Numbers menu. A 0 (zero) turns it off. 

The following are plot properties: 
 LineStyle: <string>, Defines line style (see PLOT). 
 PlotType: <string>, String used to select plot type {default [ ] is atuomatic 

selection}. Other values are 'scatter', 'bar', 'none' ('none' = do 
no plotting). 

 SelectionMarker:<string>, Defines marker style for selected points 
(see PLOT). 

The following are selection properties: 
 SelectionMode: <string>, Defines the selection mode. This can be any string listed 

under View/Selection Mode above. Also see GSELECT. 
 BrushWidth: [scalar integer number of pixels], This defines the brush width 

for use when selectionmode = 'paintbrush'. See View/Selection 
Mode/Paintbrush. 

 NoSelect: [0] {default}, When set to 0 this allows selections. When set to 1 no 
selection is allowed. 
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 NoInclud: [0] {default}, When set to 0 this allows changes to the inlclud field 
(i.e. it allows data to be excluded). When set to 1 no changes to the 
inlclud field are allowed (i.e. data can not be excluded). 

The following are on-event properties: 
 CloseGUICallback:Command(s) to execute when the figure is closed. 
 IncludChangeCallback:Command executed when includ field of the 

dataset is modified. 
 InfoReqCallback:Command executed when information on a selected 

point is requested. 
 PlotCommand:Command executed after plotting (e.g. draw limits, 

assign ButtonDownFcns, modifiy axes, …). 
 SelectionChangeCallback:Command executed when a selction is made.  
 SetClassCallback:Command executed when the class field of the 

dataset is changed. 

The following are confidence limit properties: 
 ConfLimits: Boolean flag to make "Conf. Limits" controls visible. 1 = show controls 

(PLOTGUI does nothing with these controls, thus the routine specified in 
'plotcommand' must be set to use values). 

 LimitsValue: Value for Conf. Limits editbox. 
 ShowLimits: Value for "Conf. Limits" checkbox (1 = checked). 

 

The following are figure linking properties (WARNING! Modifying these settings can lead 
to unexpected results!): 
 Children: Add new child of the current PLOTGUI figure (all child figures are 

updated when their parent is updated and closed when their parent is 
closed). Note: this property will only allow adding of additional 
children. Other modifications must be made using setappdata. 

 ControlBy: Reassign control for PLOTGUI figure. 
 Parent: Assign a parental link (Forces the parent figure to update if this figure is 

updated, also see 'Children'). 
 TimeStamp: Time-stamp of last time this figure was updated (can be set to any string 

to isolate figure from updating by parents). 

The following are other miscellaneous properties: 
 UIControl: Add extra uicontrol(s) to PLOTGUI control toolbar for use with current 

figure (buttons, sliders, etc.). The value passed to UIControl should be 
a cell in which each entry is the tag of a new object to create and the 
value of that field should contain a cell of uicontrol property / value 
pairs to set for that object. For example: 

  myobj.mybtn = {'style', 'pushbutton', 'string', 'new fig', 
'callback', 'figure'}; 

  plotgui('update','uicontrol',myobj)  
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  creates a button with the tag 'mybtn' on the controls for the current 
figure.  

  If the cell for any object does not contain a 'position' property for the 
object, PLOTGUI will manage the object's position. 

The following are read-only properties. These properties can only be viewed and are only 
accessible through the MATLAB getappdata command. 
 Selection: Cell array of currently selected values. Usually the same format as 

"includ" field of DataSet object where each cell represents the index of 
selected items in each dimension {rows, columns, slabs, ...}.  

  When selecting elements in greater than 2-dimensional data (and 
without the use of the 'image' keyword), two cells of this field will be 
pairs of selected indices: {x,y,[]} or {[],y,z}. 

 FigureType: 'PlotGUI' 
 DataSet: DataSet used in figure (or pointer to figure with actual dataset) 
  Note: This is set by calling PLOTGUI with a new dataset as an input. The 

actual DataSet can be retrieved using the getdataset command (see 
below). 

The following are other valid figure properties. See the MATLAB doc umentation on 
FIGURE properties for additional information. 

HandleVisibility, MenuBar, Name, NumberTitle, Position, Resize, Tag, ToolBar, Units, 
UserData, Visible, WindowStyle 

Examples 

fig = plotgui(mydata) plots mydata allowing user to select which column(s) of mydata 
to plot using pull-down menus. Figure number of plot is returned.  

plotgui(mydata,'plotby',1) or plotgui(mydata,'plotby','rows') plots mydata as 
in first example except that rows of mydata (dimension 1) are used for pull-down menus 
instead of columns. Note: When a PLOTGUI property is set for a given figure, the new value 
will be retained until a new value for that property is provided, even if new data is plotted on 
the same PLOTGUI figure. 

fig = plotgui(mydata,'plotby',1,'axismenuvalues',{[1] [2 3]}) plots rows of 
mydata; sets controls with row 1 selected for the x-axis and rows 2 and 3 selected for the y-
axis. Use: 

getappdata(fig,'axismenuvalues')  
to retrieve current axis menu settings. axispulldown 

plotgui(mydata,'viewclasses',1) plots mydata using symbols to identify the classes 
stored in dataset mydata. Use a value of 0 (zero) to turn off viewclasses.  

plotgui('update','viewclasses',1) Turns on viewclasses property for current figure 
without having to pass data to plot (substitute string 'update' for data) 
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mydata = plotgui('getdataset',fig) Retrieves mydata from figure fig.  

plotgui(myimage,'image') plots 3-way image myimage selecting slabs of the image for 
display. The keyword 'image' allows selection, classing and exclusion of pixels in the 
image. 

See Also 

dataset, analysis, plotloads, plotscores 
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plotloads 
Purpose 

Extract and display loadings information from model. 

Synopsis 
 
a = plotloads(modl,options) 
a = plotloads(loads,labels,classes) 
options = plotloads('options') 

Description 

Given a standard model structure, relevant loading information (e.g. labels) is collected and 
passed to PLOTGUI for plotting. The input is the model containing loadings to plot modl. (e.g. 
see MODELSTRUCT). Optional input options is discussed below. 

Input loads is a N by K loadings matrix (class “double”). Optional input labels is a character 
or cell array with N rows containing sample labels, and optional input classes is a vector with 
N integer elements of class identifiers. 

If no output is requested then PLOTLOADS initiates an interactive plotting utility to make 
loadings plots. If an output is requested, no plots are made, and the output a is a dataset 
object containing the loadings and labels, etc. 

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior, 

'auto' makes plots if no output is requested {default}, and 
 figure: [],governs where plots are made, when figure = [] plots are made in 

a new figure window {default}, this can also be a valid figure number 
(i.e. figure handle). 

The default options can be retreived using: options = plotloads('options');. 

See Also 

analysis, modelstruct, pca, pcr, plotgui, plotscores, pls 
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plotscores 
Purpose 

Extract and display scores information from model. 

Synopsis 
 
a = scoresplot(modl,options) 
a = scoresplot(modl,pred,options) 
a = plotscores(scores,labels,classes) 
options = plotscores('options') 

Description 

Given a standard model structure, relevant scores information (e.g. labels) is collected and 
passed to PLOTGUI for plotting. The input is the model containing scores to plot modl. (e.g. 
see MODELSTRUCT). A second input pred contains a test or validation structrure (see PCA) that 
can be plotted with scores in modl. Optional input options is discussed below. 

Input scores is a M by K scores matrix (class “double”). Optional input labels is a character 
or cell array with M rows containing sample labels, and optional input classes is a vector 
with M integer elements of class identifiers. 

If no output is requested then PLOTSCORES initiates an interactive plotting utility to make 
scores plots. If an output is requested, no plots are made, and the output a is a dataset object 
containing the scores and labels, etc. 

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior, 

'auto' makes plots if no output is requested {default}, 
 figure: [],governs where plots are made, when figure = [] plots are made in 

a new figure window {default}, this can also be a valid figure number 
(i.e. figure handle), and 

 sct: [ 0 | {1} ], tells whether to plot cal (modl scores) with test (pred 
scores), sct = 1 plots original calibration data with prediction set 
{default}. 

The default options can be retreived using: options = plotscores('options');. 

See Also 

analysis, modelstruct, pca, pcr, plotgui, plotloads, pls 
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pls 
Purpose 

Partial least squares regression for univariate or multivariate y-block. 

Synopsis 
 
model = pls(x,y,ncomp,options)       %calibration 
pred  = pls(x,model,options)         %prediction 
valid = pls(x,y,model,options)       %validation 
options = pls('options') 

Description 

PLS calculates a single partial least squares regression model using the given number of 
components ncomp to predict y from measurements x. 

To construct a PLS model, the inputs are x the predictor block (2-way array class “double” or 
class “datadet”), y the predicted block (2-way array class “double” or class “datadet”), ncomp 
the number of components to to be calculated (positive integer scalar), and the optional 
structure, options. The output is a standard model structure model with the following fields 
(see MODELSTRUCT): 
 modeltype: 'PLS', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 reg: regression vector, 
 loads: cell array with model loadings for each mode/dimension, 
 pred: 2 element cell array with model predictions for each input block (when 

options.blockdetail='normal' x-block predictions are not saved 
and this will be an empty array) and the y-block predictions. 

 wts: double array with X-block weights, 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
 detail: sub-structure with additional model details and results. 

To make predictions the inputs are x the new predictor x-block (2-way array class “double” 
or “dataset”), and model the PLS model. The output pred is a structure, similar to model, 
that contains scores, predictions, etc. for the new data. 
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If new y-block measurements are also available then the inputs are x the new predictor x-
block (2-way array class “double” or “dataset”), y the new predicted block (2-way array class 
“double” or “dataset”), and model the PLS model. The output valid is a structure, similar to 
model, that contains scores, predictions, and additional y-block statistics etc. for the new 
data. 

Note: Calling pls with no inputs starts the graphical user interface (GUI) for this analysis 
method.  

Options 
 options =  a structure array with the following fields: 
 display: [ 'off' | {'on'} ], governs level of display to command window, 
 plots [ 'none' | {'final'} ], governs level of plotting, 
 outputversion: [ 2 | {3} ], governs output format (see below), 
 preprocessing: {[] []}, two element cell array containing preprocessing structures (see 

PREPROCESS) defining preprocessing to use on the x- and y-blocks (first 
and second elements respectively) 

 algorithm: [ 'nip' | {'sim'} | 'robustpls' ], PLS algorithm to use: 
NIPALS or SIMPLS {default}, and 

 blockdetails: [ {'standard'} | 'all' ], extent of predictions and residuals 
included in model, 'standard' = only y-block, 'all' x- and y-blocks. 

confidencelimit: [ {'0.95'} ], confidence level for Q and T2 limits, a value of zero (0) 
disables calculation of confidence limits, 

 roptions: structure of options to pass to rsimpls (robust PLS engine from the Libra 
Toolbox). 

  alpha:[ {0.75} ], (1-alpha) measures the number of outliers the 
algorithm should resist. Any value between 0.5 and 1 may be specified. 
These options are only used when algorithm is 'robustpls'. 

The default options can be retreived using: options = pls('options');. 

OUTPUTVERSION 

By default (options.outputversion = 3) the output of the function is a standard model 
structure model. If options.outputversion = 2, the output format is: 

 
[b,ssq,p,q,w,t,u,bin] = pls(x,y,ncomp,options) 

where the outputs are 
 b = matrix of regression vectors or matrices for each number of principal 

components up to ncomp, 
 ssq = the sum of squares information, 
 p = x-block loadings, 
 q = y-block loadings, 
 w = x-block weights, 
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 t = x-block scores 
 u = y-block scores, and 
 bin = inner relation coefficients. 

Note: The regression matrices are ordered in b such that each Ny (number of y-block 
variables) rows correspond to the regression matrix for that particular number of principal 
components. 

Algorithm 

Note that unlike previous versions of the PLS function, the default algorithm (see Options, 
above) is the faster SIMPLS algorithm. If the alternate NIPALS algorithm is to be used, the 
options.algorithm field should be set to 'nip'. 

See Also 

analysis, crossval, modelstruct, nippls, pcr, plsda, preprocess, ridge, 
simpls 
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plsda 
Purpose 

Partial least squares discriminate analysis. 

Synopsis 
 
model = plsda(x,y,ncomp,options) 
model = plsda(x,ncomp,options) 
pred  = plsda(x,model,options) 
valid = plsda(x,y,model,options) 
options = plsda('options') 

Description 

PLSDA is a multivariate inverse least squares discrimination method used to classify samples. 
The y-block in a PLSDA model indicates which samples are in the class(es) of interest 
through either: 

 (A) a column vector of class numbers indicating class asignments: 

    y = [1 1 3 2]'; 

 (B) a matrix of one or more columns containing a logical zero (= not in class) or one (= in 
class) for each sample (row): 
    y = [1 0 0; 
         1 0 0; 
         0 0 1; 
         0 1 0] 

NOTE: When a vector of class numbers is used (case A, above), class zero (0) is reserved for 
"unknown" samples and, thus, samples of class zero are never used when calibrating a 
PLSDA model. The model will include predictions for these samples. 

The prediction from a PLSDA model is a value of nominally zero or one. A value closer to 
zero indicates the new sample is NOT in the modeled class; a value of one indicates a sample 
is in the modeled class. In practice a threshold between zero and one is determined above 
which a sample is in the class and below which a sample is not in the class (See, for example, 
PLSDTHRES). Similarly, a probability of a sample being inside or outside the class can be 
calculated using DISCRIMPROB. The predicted probability of each class is included in the 
output model structure in the field: 

model.details.predprobability 

 
INPUTS 
 x = X-block (predictor block) class "double" or "dataset", 
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        y = Y-block - OPTIONAL if x is a dataset containing classes for 
         sample mode (mode 1) otherwise, y is one of: 
          (A) column vector of sample classes for each sample in x -OPTIONAL 

if x is a dataset containing classes for sample mode (mode 1)  
 or (B) a logical array with 1 indicating class membership for each sample 

(rows) in one or more classes (columns)  
    ncomp =  the number of latent variables to be calculated (positive integer scalar). 
OUTPUT 
 model =  standard model structure containing the PLSDA model (See 

MODELSTRUCT). 
      pred =  structure array with predictions 
     valid =   structure array with predictionsz 

Note: Calling plsda with no inputs starts the graphical user interface (GUI) for this analysis 
method.  

Options 

         display: [ 'off' | {'on'} ]      governs level of display to command window. 

           plots: [ 'none' | {'final'} ]  governs level of plotting. 

   preprocessing: {[] []}  preprocessing structures for x and y blocks (see PREPROCESS). 

       algorithm: [ 'nip' | {'sim'} ]     PLS algorithm to use: NIPALS or SIMPLS 

    blockdetails: [ 'compact' | {'standard'} | 'all' ]  Extent of detail included in model. 

                    'standard' keeps only y-block, 'all' keeps both x- and y- blocks 

 

See Also 

class2logical, crossval, pls, plsdthres, simca 
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plsdaroc 
Purpose 

Calculate and display ROC curves for PLSDA model. 

Synopsis 
 
roc = plsdaroc(model,ycol,options) 

Description 

ROC curves can be used to assess the specificity and sensitivity possible with different 
predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an 
optional index into the y-columns used in the model ycol [default = all columns], and an 
options structure. Output is a dataset with the sensitivity/specificity data roc. 

Options 
 plots :   [ 'none' | {'final'}]    governs plotting on/off  

See Also 

discrimprob, plsda, plsdthres, simca 
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plsdthres 
Purpose 

Bayesian threshold determination for PLS Discriminate Analysis. 

Synopsis 
 
[threshold,misclassed,prob] = plsdthres(model,options) 
[threshold,misclassed,prob] = plsdthres(y,ypred,options) 

Description 

PLSDTHRES uses the distribution of calibration-sample predictions obtained from a PLS 
model built for two or more logical classes  to automatically determine a threshold value 
which will best split those classes with the least probability of false classifications for future 
predictions. It is assumed that the predicted values for each class are approximately normally 
distributed. The calibration can contain more than 2 classes, in which case thresholds to 
distinguish all classes will be determined. It is assumed that with more than 2 classes the 
primary misclassification threat is from the adjacent class(es). 

Inputs 
 y = measured Y-block values used in PLS, and 
 ypred = PLS predicted Y values for calibration samples. 
 model = a PLS/PLSDA model structure from which y and ypred should be 

obtained automatically. 

Outputs 
 threshold = [], vector of thresholds. If y consists of more than two classes, threshold 

will be a vector giving the upper bound y-value for each class. 
 misclassed = [], array containing the fraction of misclassifications for each class 

(rows): Column 1 = false negatives and Column 2 = false positives. 
 prob = lookup matrix of predicted y (column 1) vs. probability of each class 

(columns 2 to end). 
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Options 
options is a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: ['none' | 'final' | {'auto'} |], governs plotting behavior, 

'auto' makes plots if no output is requested {default}, 
 cost: [], vector of logarithmic cost biases for each class in y, cost is used to 

bias against misclassification of a particular class or classes {default = 
[] uses all zeros i.e. equal cost}. 

 prior: [], vector of prior probabilities of observing each class. If any class 
prior is Inf, the frequency of observation of that class in the calibration 
is used as its prior probability. If all priors are Inf, this has the effect of 
providing the fewest incorrect predictions assuming that the probability 
of observing a given class in future samples is similar to the frequency 
that class in the calibration set. {default = [] uses all ones i.e. equal 
priors.} 

See Also 

crossval, discrimprob, pls, simca 
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plsnipal 
Purpose 

Calculate single latent variables for partial least squares regression. 

Synopsis 
 
[p,q,w,t,u] = plsnipal(x,y) 

Description 

PLSNIPAL is called by the routine pls to calculate each latent variable in a partial least 
squares regression. 

Inputs x and y are either the x-block and y-block for calculation of the first latent variable, or 
the x-block and y-block residuals for calculation of subsequent latent variables. 

The outputs are p the x-block latent variable loadings, q the y-block variable loadings, w the 
x-block latent variable weights, t the x-block latent variable scores, and u the y-block latent 
variable scores. 

See Also 

nippls, pls, analysis, simpls 
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plspulsm 
Purpose 

Builds finite impulse response (FIR) models for multi-input single (MISO) output systems 
using partial least squares regression. 

Synopsis 
 
b = plspulsm(u,y,n,maxlv,split,delay) 

Description 

plspulsm calculates a vector of FIR coefficients b using PLS regression. Inputs are a matrix 
of process input vectors u, and a process output vector y. n is a row vector with the number 
of FIR coefficents to use for each input, maxlv is the maximum number of latent variables to 
consider, split is the number of times the model is rebuilt and tested during cross-
validation, and delay is a row vector containing the number of time units of delay for each 
input. 

Note: plspulsm uses contiguous blocks of data for cross-validation. 

Examples 

b = plspulsm([u1 u2],y,[25 15],5,10,[0 3]) 

This system has 2 inputs as column vectors u1 and u2 and a single output vector y. The FIR 
model will use 25 coefficients for input variable u1 and 15 coefficients for input variable u2. 
For this model a maximum of 5 latent variables will be considered. The cross validation split 
the data into 10 subsets. The number of time units of delay for the first input variable u1 is 0 
and for the second input variable u2 it is 3.  

See Also 

autocor, crosscor, fir2ss, wrtpulse 
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plsrsgcv 
Purpose 

Generates a matrix used to calculate residuals from a single data block using partial least 
squares regression models with cross vaildation. 

Synopsis 
 
coeff = plsrsgcv(data,lv,cvit,cvnum,out) 

Description 

coeff = plsrsgncv(data,lv,cvit,cvnum) calculates a matrix coeff from a single data 
block data. plsrsgncv calculates partial least squares regression models of each variable in 
the matrix data using the remaining variables and cross-validation with random test data 
blocks. The maximum number of latent variables to consider is lv, the number of test sets is 
cvit, and the number of samples in each test set is cvnum. Multiplying a new data matrix by 
the matrix coeff yields a matrix whose values are the difference between the new data and it's 
prediction based on the PLS regressions created by plsrsgncv. 

See Also 

plsrsgn, replace 
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plsrsgn 
Purpose 

Generates a matrix used to calculate residuals from a single data block using partial least 
squares regression models. 

Synopsis 
 
coeff = plsrsgn(data,lv,out) 

Description 

coeff = plsrsgn(data,lv) calculates a matrix coeff from a single data block data. 
plsrsgn calculates partial least squares regression models of each variable in the matrix data 
using the remaining variables and the number of latent variables lv. Multiplying a new data 
matrix by the matrix coeff yields a matrix whose values are the difference between the new 
data and it's prediction based on the PLS regressions created by plsrsgn. 

See Also 

plsrsgcv, replace 
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plttern 
Purpose 

Plots a 2D ternary diagram. 

Synopsis 
 
[tdata,h] = plttern(data,linestyle,x1lab,x2lab,x3lab) 

Description 

PLTTERN makes 2-D ternary plots of the data contained in the three column input matrix 
data. The columns of data correspond to concentrations ( ≥ 0 and real) and are normalized 
to fit in the range 0 to 100. Optional inputs x1lab, x2lab, x3lab are row vectors of text 
containing labels for the axes. The output tdata is the normalized concentration data. 

See Also 

dp, ellps, hline, pan, pltternf, vline, zline 
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pltternf 
Purpose 

Plots a 3D ternary diagram with frequency of occurrence. 

Synopsis 
 
tdata = plttern(data,x1lab,x2lab,x3lab); 

Description 

PLTTERN makes 3-D ternary plots of the data contained in the four column input matrix data. 
The first three columns of data correspond to concentrations ( ≥ 0 and real) and are 
normalized to fit in the range 0 to 100. The fourth column of data corresponds to the 
frequency of occurrence ( ≥ 0 and real). Optional inputs x1lab, x2lab, x3lab are row vectors 
of text containing labels for the axes. The output tdata is the normalized concentration data. 

See Also 

dp, ellps, hline, pan, plttern, vline, zline 
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polyinterp 
Purpose 

Polynomial interpolation, smoothing, and differentiation. 

Synopsis 
 
yi = polyinterp(x,y,xi,width,order,deriv); 

Description 

Estimates (yi) which is the smoothed values of (y) at the points in the vector (x). (If the 
points are evenly spaced use the SAVGOL function instead.) 

INPUTS: 
 y =  (M by N) matrix. Note that (y) is a matrix of ROW vectors to be 

smoothed. 
 x =  (1 by N) corresponding axis vector at the points at which (y) is given. 

OPTIONAL INPUTS: 
 xi =  a vector of points to interpolate to. 
 width =  specifies the number of points in the filter {default = 15}. 
 order =  the order of the polynomial {default = 2}. 
 deriv =  the derivative {default = 0}. 

Examples 

If y is a 5 by 100 matrix, x is a 1 by 100 vector, and xi is a 1 by 91 vector then 
polyinterp(x,y,xi,11,3,1) gives the 5 by 91 matrix of first-derivative row vectors 
resulting from an 11-point cubic interpolation to the 91 points in xi. 

See Also 

baseline, lamsel, mscorr, savgol, stdfir 
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polypls 
Purpose 

Calculate partial least squares regression models with polynomial inner relations. 

Synopsis 
 
[p,q,w,t,u,b,ssqdif] = polypls(x,y,lv,n) 

Description 

POLYPLS creates a partial least squares regression model with polynomial fit for the inner 
relation. Inputs are a matrix of predictor variables (x-block) x, a matrix of predicted variables 
(y-block) y, the number of latent variables lv, and the order of the polynomial n. 

Outputs are p the x-block latent variable loadings, q the y-block variable loadings, w the x-
block latent variable weights, t the x-block latent variable scores, u the y-block latent 
variable scores, b a matrix of polynomial coefficients for the inner relationship, and ssqdif a 
table of x- and y-block variance captured by the PLS model. 

Use POLYPRED to make predictions with new data. 

See Also 

lwrxy, pls, polypred 



 

 277

polypred 
Purpose 

Make predictions for partial least squares regression models with polynomial inner relations. 

Synopsis 
 
ypred = polypred(x,b,p,q,w,lv) 

Description 

POLYPRED uses parameters created by the routine POLYPLS to make predictions from a new x-
block matrix of predictor variables x. Inputs are b a matrix of polynomial coefficients for the 
inner relationship, p the x-block latent variable loadings, q the y-block variable loadings, w 
the x-block latent variable weights, and the number of latent variables lv. 

Note: It is important that the scaling of the new data x is the same as that used to create the 
model parameters in POLYPLS. 

See Also 

lwrxy, polypls, pls 
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preprocess 
Purpose 

Selection and application of preprocessing methods. 

Synopsis 
 
s = preprocess(s)                        %GUI preprocessing selection 
s = preprocess('default','methodname')             %Non-GUI selection 
[datap,sp] = preprocess('calibrate',s,data)   %single block calibrate 
[datap,sp] = preprocess('calibrate',s,xblock,yblock)     %multi-block 
datap = preprocess('apply',sp,data)                %apply to new data 
data = preprocess('undo',sp,datap)                %undo preprocessing 

Description 

PREPROCESS is a general tool to choose preprocessing steps and to perform these steps on 
data. See PREPROUSER for a description on how custom preprpocessing can be added to the 
standard proprocessings listed below. PREPROCESS has four basic command-line forms which 
include: 

1) SELECTION OF PREPROCESSING. 

The purpose of the following calls to PREPROCESS is to generate standard structure arrays that 
contain the desired preprocessing steps. 

 
s = preprocess; 

generates a GUI and allows the user to select preprocessing steps interactively. The output s 
is a standard preprocessing structure. 

 
s = preprocess(s); 

allows the user to interactively edit a previously identified preprocessing structure s. The 
output s is the edited preprocessing structure. 

 
s = preprocess('default','methodname'); 

returns the default structure for method 'methodname'. A list of strings that can be used for 
'methodname' can be viewed using the command: 

 
preprocess('keywords') 
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A list of standard methods 'methodname' follow: 
 'abs': takes the absolute value of the data (see ABS), 
 'autoscale': centers columns to zero mean and scales to unit variance (see AUTO), 
 'detrend': remove a linear trend (see BASELINE), 
'gls weighting': generalized least squares weighting (see GLSW), 
 'groupscale': group/block scaling (see GSCALE), 
 'mean center': center columns to have zero mean (see MNCN), 
 'msc (mean)': multiplicative scatter correction with offset, the mean is the reference 

spectrum (see MSCORR), 
'median center': center columns to have zero median (see MEDIAN), 
 'normalize': normalization of the rows (see NORMALIZ), 
 'osc': orthogonal signal correction (see OSCCALC and OSCAPP), 
 'sg': Savitsky-Golay smoothing and deriviatives (see SAVGOL), and 
 'snv': standard normal deviate (autoscale the rows, see SNV). 

The output is a standard preprocessing structure array s where each method to apply is a 
separate record. 

2) CALIBRATE. 

The objective of the following calls to PREPROCESS is to estimate preprocessing parameters, 
if any, from a calibration data set and perform preprocessing on the calibration data set. The 
I/O format is: 

 
[datap,sp] = preprocess('calibrate',s,data); 

The inputs are s a standard preprocessing structure and data the calibration data. The 
preprocessed data is returned in datap, and preprocessing parameters are returned in a 
modified preprocessing structure sp. Note that sp is used as an input with the 'apply' and 
'undo' commands described below. 

Short cuts for each method can also be used. Examples for 'mean center' and 
'autoscale' are 

 
[datap,sp] = preprocess('calibrate','mean center',data); 
[datap,sp] = preprocess('calibrate','autoscale',data); 

Preprocessing for some multi-block methods require that the y-block be passed also. The I/O 
format in these cases is: 

 
[datap,sp] = preprocess('calibrate',s,xblock,yblock); 

Preprocessing 'methodname' that require a y-block are: 
 'osc' 
 'gls weighting' 
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3) APPLY. 

The objective of the following call to PREPROCESS 
 
datap = preprocess('apply',sp,data) 

is to apply the calibrated preprocessing in sp to new data. Inputs are sp the modified 
preprocessing structure (See 2 above) and the data, data, to apply the preprocessing to. The 
output is preprocessed data datap that is class “dataset”. 

4) UNDO. 

The inverse of applying preprocessing is perfromed in the following call to PREPROCESS 
 
data = preprocess('undo',sp,datap); 

Inputs are sp the modified preprocessing structure (See 2 above) and the data, datap, (class 
“double” or “dataset”) from which the preprocessing is removed. Note that for some 
preprocessing methods an inverse does not exist or has not been defined and an 'undo' call 
will cause an error to occur. For example, 'osc' and 'sg'. One reason for not defining an 
inverse, or undo, is because it would require a significant amount of memory storage when 
data sets get large. 

See Also 

crossval, pca, pcr, pls, preprouser 
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preprouser 
Purpose 

User defined items for preprocess catalog. 

Synopsis 
 
preprouser(fig)  

Description 

Each method available in the preprocess function has an associated 'methodname' such as 
those listed in the help for preprocess. Each method is defined using a preprocessing 
structure that contains all the necessary information to perform calculations for that method. 
The standard methods are defined in the preprocatalog file, which should not be edited by 
the user. Additional user-defined methods can be defined in the preprouser file and the 
following text describes how the user to add custom preprocessing methods. A few example 
methods already exist in the preprouser file to guide the user. 

To add a custom user-defined preprocessing method, the user must 1) open the 
PREPROUSER.M file, 2) edit the file to create a structure with the fields described below, 3) 
after defining the structure add the line preprocess('addtocatalog',fig,usermethod), 
and 4) save and close the PREPROUSER.M file. 

The line added in Step 3 
 
preprocess('addtocatalog',fig,usermethod) 

makes the new custom method available to PREPROCESS. The input usermethod is the 
preprocessing structure containing the user-defined method, and fig is a figure handle 
passed to preprouser by preprocess. 

The methods defined in the preprocatalog and preprouser files are available to all 
functions making use of the preprocess function. 
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The fields in a preprocessing structure are listed here. Detailed descriptions and examples 
follow this list. 
 description: text string containing a description for the method, 
 calibrate: cell containing the line(s) of code to execute during a calibration 

operation (see command-line form 2 of PREPROCESS),  
 apply: cell containing the line(s) of code to execute during an apply operation 

(see command-line form 3 of PREPROCESS), 
 undo: cell containing the line(s) of code to execute during an undo operation 

(see command-line form 4 of PREPROCESS), 
 out: cell used to hold calibration-phase results for use in apply or undo (these 

are the parameters estimated from the calibration data and used to 
preprocess new data), 

 settingsgui: text string containing the function name of a method-specific GUI to 
invoke when the Settings button is pressed in the preprocessing GUI, 

 settingsonadd: [ 0 | {1} ], boolean: 1 = indicates that the settings GUI should be 
automatically brought up when method is "added" in the preprocessing 
GUI, 

 usesdataset: [ {0} | 1 ], boolean: indicates if this method should be passed a 
dataset object (1) or a an array (0) (e.g. class “double” or “uint8”), 

 caloutputs: integer: number of expected items in field out after calibration has been 
performed. This field is set by the user to tell PREPROCESS what the 
length of the cell in field out will be after calibration, 

 keyword: text string containing the 'methodname', this string is used in the call to 
PREPROCESS so that it will return the custom preprocessing structure (see 
command-line form 1 of PREPROCESS), and 

 userdata: user-defined variable often used to store method options. 

Detailed descriptions and examples for each field follow: 

DESCRIPTION: 

The description is a short (1-2 word) text string containing a description for the 
preprocessing method. The string will be displayed in the GUI and can also be used as a 
string keyword (see also keyword) to refer to this method. 

Example: 
 
pp.description = 'Mean Center'; 
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CALIBRATE, APPLY, UNDO: 

Each of these “command” fields contains a single cell consisting of a command string to be 
executed by PREPROCESS when performing calibration, apply, or undo operations (see 
command-line forms 2, 3, and 4 of PREPROCESS). Calibrate actions operate on original 
calibration data with the output parameters stored in the out field, whereas apply actions 
operate on new data using parameters stored in the out field as input(s). For methods which 
act on a single sample at a time, the calibrate and apply operations are often identical (for 
example, see the normalize example below). The undo action uses parameters stored in the 
out field as input(s) to remove preprocessing from previously preprocessed data. However, 
the undo action may be undefined for certain methods. If this is the case, the undo field 
should be an empty cell. 

To assure that all samples (rows) in the data have been appropriately preprocessed, an apply 
command is automatically performed following a calibrate call. Note that excluded 
variables are replaced with NaN. 

The command strings should be one or more valid MATLAB commands, each separated by a 
semicolon ';' (e.g. see EVAL). Each command will be executed inside the PREPROCESS 
environment in which the following variables are available: 
 data: The data field contains the data on which to operate and in which to 

return modified results. 
  If the field usesdataset is 1 (one) then data will be a DataSet object. 

In this case, it is expected that the function will calibrate using only 
included rows but apply and undo the preprocessing to all rows. 

  If the field usesdataset is 0 (zero) then data will be an array (e.g. 
class “double”). In this case, the function will calibrate using all rows 
and columns and will apply and undo the preprocessing to all rows and 
columns. 

 out: Contents of the preprocessing structure field out (described below). Any 
changes will be stored in the preprocessing structure for use in 
subsequent apply and undo commands. 

 userdata: Contents of the preprocessing structure field userdata (described 
below). Any changes will be stored in the preprocessing structure for 
later retrieval. 
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Several variables are available for use during command operations (calibarate, apply, and 
undo). However, these variables should not be changed by the commands and are considered 
“read-only”. 
 include:  When the field usesdataset = 1, the data is passed as a dataset object. 

In this case, include contains the contents of the original dataset 
object’s includ field. 

 otherdata:  Cell array of any inputs to PREPROCESS which followed the data in the 
input list. For example, it is used by PLS_Toolbox regression functions 
to pass the y-block for use in methods which require that information. 

 originaldata:  A dataset object which contains the original data unmodified by any 
preprocessing steps. For example, originaldata can be used to retrieve 
axis scale or class information even when usesdataset is 0 (zero). 

Examples: 

The following calibrate field performs mean-centering on data, returning both the mean-
centered data as well as the mean values which are stored in out{1}: 

pp.calibrate   = { '[data,out{1}] = mncn(data);' }; 

The following apply and undo fields use the scale and rescale functions to apply and 
undo the previously determined mean values (stored by the calibrate operation in out{1}) 
with new data: 

pp.apply       = { 'data = scale(data,out{1});' }; 
pp.undo        = { 'data = rescale(data,out{1});' }; 
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OUT: 

The out field is a cell array that contains the output parameters returned during the 
calibration operation. For example, if the following commands are run 

 
load wine 
s = preprocess('default','autoscale'); 
[dp,sp] = preprocess('calibrate',s,wine); 

then the out field of sp is a 1 by 2 cell array with the first cell, out{1}, containing the means 
of the variables in the dataset wine, and the second cell, out{2}, contains the standard 
deviations. These parameters are used in subsequent apply and undo commands. See the 
related field caloutputs. Prior to the calibration operation both the out and caloutputs 
fields are empty. 

SETTINGSGUI: 

The name of a graphical user interface (GUI) function that allows the user to set options for 
this method. The function is expected to take as its only input a standard preprocessing 
structure from which it should take the current settings. The function should output the same 
preprocessing structure modified to meet the user's specification. Typically, these changes 
are made to the userdata field and the commands in the calibrate, apply and undo fields 
use that field’s contents as input options. 

The design of GUIs for selection of options is beyond the scope of this document and the 
user is directed to the following example files, both of which use GUIs to modify the 
userdata field of a preprocessing structure: autoset.m  savgolset.m . 

Example: 
 
pp.settingsgui   = 'autoset'; 

SETTINGSONADD: 

The settingsonadd field contains a boolean (1=true, 0=false) value. If it is 1=true, then 
when the user adds the method in the PREPROCESS GUI, the method's settingsgui will be 
automatically invoked. If a method requires the user to make a selection of options, 
settingsonadd=1 will guarantee that the user has an opportunity to modify the options or at 
least choose the default settings. 

Example: 
 
pp.settingsonadd   = 1; 
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USESDATASET: 

The usesdataset field contains a boolean (1=true, 0=false) value. 

If it is 1=true, the preprocessing method is capable of handling dataset objects and 
PREPROCESS will pass the data as a dataset. It is the responsibility of the function(s) called by 
the method to appropriately handle the dataset’s includ field. 

If it is 0=false, the preprocssing method expects standard MATLAB classes (double, uint8, 
etc). PREPROCESS, which uses a dataset object internally to hold the data, will extract data 
from the dataset ojbect prior to calling this method. It will then reinsert the preprocessed data 
back into the dataset object after the method has been invoked.  

Although excluded columns are never extracted and excluded rows are not extracted when 
performing calibration operations, excluded rows are passed when performing apply and 
undo operations. 

Example: 
 
pp.usesdataset   = 0; 
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CALOUTPUTS: 

For functions which require a calibrate operation prior to an apply or undo (see the fields: 
calibrate and out), this field indicates how many values are expected in the out field. For 
example, in the case of mean centering the mean values stored in the field out are required to 
apply or undo the operation. Initially, out is an empty cell ({}). Following the calibration 
operation for mean centering, it becomes a single-item cell (length of one). For other 
calibration operations out may be a cell of length greater than one. 

By examining this cell’s length, PREPROCESS can determine if a preprocessing structure has 
already been calibrated and contains the necessary information. The caloutputs field, when 
greater than zero, indicates to PREPROCESS that it should test the out field prior to attempting 
an apply or undo. 

Example: in the case of mean-centering, the length of out should be 1 (one) after calibration. 
 
pp.caloutputs    = 1; 

KEYWORD: 

The field keyword is a string that can be used to retrieve the default preprocessing structure 
for this method. When retrieving a structure by keyword, PREPROCESS ignores any spaces 
and is case-insensitive. The keyword field (or the description string, discussed above) can 
be used in place of any preprocessing structure in calibrate and default calls to 
preprocess: 

 
pp = preprocess('default','meancenter'); 

Example: 
 
pp.keyword     = 'mncn'; 
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USERDATA: 

The field userdata contains additional user-defined data that can be changed during a 
calibration operation and retrieved for use in apply and undo operations. This field is often 
used to hold options for the preprocessing method which are then used by the commands in 
the calibrate, apply, and undo fields. 

Example: in SAVGOL several input variables are defined with various method options, then 
they are assembled into a vector in userdata: 

 
pp.userdata    = [windowsize order derivative]; 

Examples 

The following is the preprocessing structure used for sample normalization (see NORMALIZ). 
The calibrate and apply commands are identical and there is no information that is stored 
during the calibration phase, thus caloutputs is zero. There is no undo defined for this 
operation (this is because the normalization information required to undo the action is not 
being stored anywhere). The norm type (e.g. a 2-norm) of the normalization is set in 
userdata and is used in both calibrate and apply steps. 

 
pp.description = 'Normalize'; 
pp.calibrate   = {'data = normaliz(data,0,userdata(1));'}; 
pp.apply       = {'data = normaliz(data,0,userdata(1));'}; 
pp.undo        = {}; 
pp.out         = {}; 
pp.settingsgui   = 'normset'; 
pp.settingsonadd = 0; 
pp.usesdataset   = 0; 
pp.caloutputs    = 0; 
pp.keyword       = 'Normalize'; 
pp.userdata      = 2; 
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The following is the preprocessing structure used for Savitsky-Golay smoothing and 
derivatives (see SAVGOL). In many ways this structure is similar to the normalize structure 
except that SAVGOL takes a dataset object as input and, thus, usesdataset is set to 1. Also 
note that because of the various settings required by savgol, this method uses of the 
settingsonadd feature to bring up the settings GUI as soon as the method is added. 

 
pp.description = 'SG Smooth/Derivative'; 
pp.calibrate = 

{'data=savgol(data,userdata(1),userdata(2),userdata(3));'}; 
pp.apply     = 

{'data=savgol(data,userdata(1),userdata(2),userdata(3));'}; 
pp.undo      = {}; 
pp.out       = {}; 
pp.settingsgui   = 'savgolset'; 
pp.settingsonadd = 1; 
pp.usesdataset   = 1; 
pp.caloutputs    = 0; 
pp.keyword       = 'sg'; 
pp.userdata      = [ 15 2 0 ]; 

The following example creates a preprocessing structure to invoke multiplicative scatter 
correction (MSC, see MSCORR) using the mean of the calibration data as the target spectrum. 
The calibrate cell here contains two separate operations. The first calculates the mean 
spectrum and the second performs the MSC. The third input to the MSCORR function is a flag 
indicating whether an offset should also be removed. This flag is stored in the userdata field 
so that the settingsgui (mscorrset) can change the value easily. Note that there is no undo 
defined for this function. 

pp.description = 'MSC (mean)'; 
pp.calibrate   = { 'out{1}=mean(data); 

data=mscorr(data,out{1},userdata);' }; 
pp.apply       = { 'data = mscorr(data,out{1});' }; 
pp.undo        = {}; 
pp.out         = {}; 
pp.settingsgui = 'mscorrset'; 
pp.settingsonadd = 0; 
pp.usesdataset   = 0; 
pp.caloutputs    = 1; 
pp.keyword       = 'MSC (mean)'; 
pp.userdata      = 1; 

See Also 

preprocess 
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purity 
Purpose 

Calculation of pure variables. 

Synopsis 
 
[purint,purspec] = purity(data,ncomp,options); 
[model]          = purity(data,ncomp); 
[purint,purspec] = purity(data,ncomp,model); 
[model]          = purity(data,model); 

Description 

PURITY calculates pure variables and resolves data into ncomp spectra of the pure 
components (purspec) and their contributions (purint). For more information about the 
algorithm see PURITYENGINE. Data can be a matrix with the data or a dataset object. 

The output arguments purity_values contains the purity values for all the variables and 
can be plotted as the “purity spectrum”. The argument length_values contains the 
purity_values multiplied by the length of the variables. This results in a “length 
spectrum” that is easier to relate to the original data than the purity spectrum 
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The optional input options is a structure with the following fields 
  
 display: ['off'|{'on'}] display to command window. 
 plot: ['off'|{'on'}] plotting of result.  
 axistype: {2x1} [char] 
      Mode 1: [{continuous}|'discrete'|'bar'] 
      Mode 2: [{continuous}|'discrete'|'bar'] 
   defines plots. if emtpy the values of the (future) DSO field will be used 

in case they are not defined, the 'continuous' defaults will be used. 
 select: [{[]},[1 2]]  if empty, pure rows/columns will be selected from last slab, 

otherwise, the numbers identify from which slab(s) the pure 
rows/columns are selected. 

 offset: [3 10]  default noise correction factor for the two slabs. 
 offset_row2col: 3 scalar value row2col offset, default is offset(1). 
 mode: ['rows',{'cols'},'row2col']  determines if pure rows, cols are selected. 

row2col 2 is row-to-column solution. 
 algorithm: 'purityengine' defines algorithm used. 
 interactive: ['on',{'off'}, defines interactivity; 'on', 'cursor','inactivate','reactivate']         

'reactivate', 'cursor', 'inactivate', 'reactivate' are used for higher level calls 
for interactivity,'off' is used for demos and command mode applications.   

 resolve: ['off'|{'on'}] indicates if the resolved results are required or not. 

Examples 

Resolving 4 components in a data set: 
[purint,purspec]=purity(data,4) 

Algorithm 

The core algorithm is the function purityengine. 

See Also 

purityengine 
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purityengine 
Purpose 

Calculation of pure variables. 

Synopsis 
 
[purity_index,purity_values,length_values]=purityengine(data,... 
base,offset) 

Description 

PURITYENGINE calculates  the column index (purity_index) of the variable in data 
that has the largest angle with respect to base. For the first pure variable base should be 
empty: the program then substitutes a vector of ones for base. base generally contains 
previously determined pure variables. The argument offset gives a lower weight to 
variables with low values. Its value is based on a percentage of the maximum value of the 
mean of data. A typical value is 3. 

The output arguments purity_values contains the purity values for all the variables and 
can be plotted as the “purity spectrum”. The argument length_values contains the 
purity_values multiplied by the length of the variables. This results in a “length 
spectrum” that is easier to relate to the original data than the purity spectrum 

Examples 

Determination of three pure variables of a matrix data for an offset of 3 
 
[purity_index,purity_values,length_values]=purityengine(data,[],3); 
purity_array=[purity_index]; 
[purity_index,purity_values,length_values]=purityengine(data,... 
data(:,purity_array),3); 
purity_array=[ purity_array purity_index]; 
[purity_index,purity_values,length_values]=purityengine(data,... 
data(:,purity_array),3); 
purity_array=[ purity_array purity_index]; 

The indices of the three pure variables are in purity_array. A plot of purity_values and 
length_values  shows the successive stages of the pure variable extraction.  
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Algorithm 

The calculations are based on the MATLAB function subspace. The angle of every variable 
in the data is calculated with respect to the base: subspace(base,data(:,i)) 

See Also 

purity 
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qconcalc 
Purpose 

Calculate Q residuals contributions for predictions on a model. 

Synopsis 
 
qcon = qconcalc(newx,model)  
qcon = qconcalc(model);   %requires that model contains residuals 

Description 

Inputs are the new data newx and the 2-way PCA or regression model for which Q 
contributions should be calculated model.  

If the model was created using the "blockdetails = 'all'" option in PLS or PCA (or whatever 
function was used to create the model), then newx can be omitted to retrieve the Q 
contributions for the calibration data. Note that this option is not the default so it is unlikely 
this call will work unless you have specifically created the model with the appropriate call. 

See Also 

datahat, pca, pcr, pls, tconcalc 
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querydb 
Purpose 

Executes a query on a database defined by connection string. 

Synopsis 
 
out = querydb(connstr,sqlstr,options); 

Description 

This function is unsupported and is meant as a "simple" database connection tool. For more 
sophisticated connection tools and full support please see the Matlab Database Toolbox. 

JDBC connections require that the jdbc driver “.jar” file be added to the Matlab java 
classpath.  See the documentation for the Matlab commands ‘javaaddpath’ and 
‘javaclasspath’ for more information. For example, using the MySQL Connector/J 3.1 driver 
you'll need to add the "mysql-connector-java-3.1.12-bin.jar" file to your java class path.   

INPUTS 
 connstr : A connection string or a structure created using builddbstr. See 

BUILDDBSTR for more information. 
 sqlstr : A SQL statement to be executed on the connection. The SQL statement 

must be of proper syntax or it will fail. Default behavior is geared 
toward SELECT statements that return values. If attempting to execute a 
SQL command that doesn't return a value (e.g., CREATE TABLE) set 
the 'rtype' option to 'none'.  

  NOTE: Use a seperate program like Microsoft Access to formulate the 
SQL statement. Access queries can require some small changes in 
syntax. 

OUTPUTS 
 out : DataSet Object, Cell Array, or Scalar depending on 'rtype'. 

Options 
 rtype : [{'dso'} | 'cell' | 'none'] Return type, default is return SQL recordset as a 

DataSet Object using parsemixed.m to parse data in. If 'cell' then a cell 
array is returned with all values. If 'insert' then function will execute an 
"INSERT" type query and attempt to return the Auto Number ID (as a 
scalar) of the row created. If 'none' function will execute query and 
return an empty. 

 varlabels : [ {'none'} | 'fieldnames' ] Defines what should be used as variable labels 
on output DataSet Object (only used when rtype is 'dso'). 'fieldnames' 
uses the SQL field names for variable labels.  



 296 

 conntype : [ 'jdbc' | {'odbc'} ] Determines type of connection. ODBC uses a 
Windows ADO with Matlab (descibed above). JDBC connections only 
work when jdbc class files are on static java path. 

getaccesstables :  [ 'on' | {'off'} ] Short circuit to retrieve list of tables in Access 
database, similar to SHOW TABLES query in MySQL. Input 'sqlstr' 
will not be called when option is 'on'. 

Examples 

Assuming there is a connection string named ‘mydbconn’ already created using the 
builddbstr command. To return a DSO: 
 
>> sqlstr = ‘SELECT * FROM myTable’; 
>> mydso = querydb(mydbconn,sqlstr); 

To return a cell array: 
 
>> opts = querydb(‘options’); 
>> opts.rtype = ‘cell’; 
>> mycell = querydb(mydbconn,sqlstr,opts); 

See Also 

builddbstr, parsemixed 



 

 297

regcon 
Purpose 

Converts a regression model to y = ax + b form. 

Synopsis 
 
[a,b] = regcon(mod) 
[a,b] = regcon(regv,xmn,ymn) 
[a,b] = regcon(regv,xmn,ymn,xst,yst) 

Description 

REGCON can be used to convert a model mod generated by the PCR, PLS, or ANALYSIS 
functions. The outputs are the regression coefficients a and the intercept b such that y = ax + 
b. In this case the I/O syntax is: 

 
[a,b] = regcon(mod) 

Notes:  

(1) REGCON can will convert a regression model which uses Mean Centering, Autoscaling, 
or None as the preprocessing. Any other preprocessing will be rejected and cause an error. 

(2) If the model was built with some variables excluded, REGCON will infill with zeros as 
appropriate so that the output can be used on the original X-block with all variables present. 

REGCON can also be used to convert the individual parts of a regression model, including the 
column vector of regression coefficients regv, predictor variable means xmn, predicted 
variable means ymn, predictor variable scaling xst, and predicted variable scaling yst. If xmn 
or ymn is not supplied or is set equal to 0 or [], then it is assumed to be zero (i.e. no centering 
was used in the model). If xst or yst is not supplied or is set equal to 0 or [], then it is 
assumed to be one (i.e. no scaling was used in the model). In this case the I/O syntax is: 

 
[a,b] = regcon(regv,xmn,ymn,xst,yst) 

Examples 

[a,b] = regcon(mod);                using REGRESSION model 
[a,b] = regcon(regv,xmn,ymn);       mean centered only 
[a,b] = regcon(regv,xmn,ymn,xst,yst); mean centered and scaled 
[a,b] = regcon(regv,xmn,ymn,[],yst); x data centered but not scaled 
[a,b] = regcon(regv,0,0,xst,yst);   x and y scaled by not centered 

See Also 

analysis, auto, mncn, modlpred, modlrder, pcr, pls, ridge 



 298 

registerspec 
Purpose 

Shift spectra based on expected peak locations. 

Synopsis 
 
[data_i,axaxis,foundat] = registerspec(data,xaxis,peaks,options) 
peaks = registerspec(data,xaxis,options) 

Description 

REGISTERSPEC is used to correct spectra for shifts in x-axis (e.g. wavelength or frequency) 
registration. The alignment is based on either a polynomial or constrained-spline fit of 
reference peaks' observed position to their expected position. In contrast to other alignment 
methods (e.g. piecewise direct standardization or dynamic time warping), REGISTERSPEC 
may be more useful when 1) x-axis shifts are small and potentially non-linear, 2) only a few 
consistant reference peaks exist, and/or 3) when some of the spectral bands are expected to 
undergo significant shape changes in the normal range of observations.  

There are two modes used to call REGISTERSPEC. The first mode is used to align new spectra 
given a set of reference peaks. The second mode is used to help identify peaks in a 
calibration set that might be useful as reference peaks: 

Spectral Alignment: 
 
[data_i,axaxis,foundat] = registerspec(data,xaxis,peaks,options) 

When aligning new spectra to known reference peak positions, REGISTERSPEC takes as input 
a matrix or DataSet object containing spectra to be aligned, data, an x-axis reference for 
those spectra, xaxis, and a vector containing the expected positions of previously-identified 
reference peaks, peaks. Outputs are the spectra aligned to the reference peaks, data_i, the x-
axis scale for those spectra, axaxis (generally the same as xaxis, except as discussed below) 
and an array, foundat, of the observed shifts for each reference peak (columns) and each 
spectra in data (rows). 

If the input xaxis is omitted and data is a DataSet object containing axisscale information for 
the variables (data.axisscale{2}), this axis will be used as xaxis. Otherwise, a lack of 
input for xaxis will cause REGISTERSPEC to assume that the spectral channels are evenly 
spaced starting from a value of 1. 

In addition to correcting peak shifts, the sampling rate of the output spectra can be increased 
through cubic-spline interpolation. The options.interpolate setting (see below) controls 
the sampling rate of the output spectra. Generally the output axaxis is the same as the input 
xaxis. However, when interpolation is performed, the output axaxis will contain the x-axis 
values that correspond to the interpolated spectra in the input data. 
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Various options can be set through the optional input structure options. These are described 
in detail below. It is recommended that options.order, options.maxshift, and options.window 
be reviewed prior to use. Note that options.maxshift and options.window are input in 
absolute x-axis units and the desired input values will vary depending on the original x-axis 
interval (i.e. data-point spacing) and expected peak widths. In addition, the order of 
polynomial used to correct for shifts should be reviewed (options.order). It is generally best 
to keep the order as low as possible (<3 is preferable) to avoid over-fitting and unusual 
shifting at the ends of the spectrum. 

Reference Peak Identification: 
 
peaks = registerspec(data,xaxis,options) 

When using REGISTERSPEC to identify reference peaks, the spectral data and x-axis 
information is supplied alone without a list of reference peaks. In this mode, a set of spectra 
(often those used for a multivariate calibration model) are searched for peaks which show 
relatively consistant maxima. The algorithm first locates peaks on the mean spectrum by 
automatically identifying positions that show a clear inflection point as a peak maximum. 
Peaks located in the first step are then tested on the individual spectra and must meet the 
following criteria: 

(1)   For all obesrved spectra, the peak must contain a maximum value (i.e. the peak cannot 
be a shoulder without an inflection point). 

(2)   For all observed spectra, the peak must not shift more than the value set by 
options.maxshift (default is 4 x-axis units) from the peak's position in the mean spectrum. 

The output is a list of potential reference peaks. These should be examined carefully. There 
is no constraint that a peak have a signal to noise or signal to background level above that 
which permits the maximum to be found. Thus, very low-signal peaks could be returned as 
stable but not be observable in future spectra. Additionally, it may be useful to take the list of 
reference peaks and execute REGISTERSPEC on the calibration data itself to examine the 
extent and nature of shifting on the calibration data itself. 

Often this routine is used as a preprocessing step for a calibration model. In these cases, 
REGISTERSPEC should be run both on the original calibration data (first to locate reference 
bands, then a second time to subject the calibration data to the shift algorithm), as well as on 
future data prior to prediction. 

INPUTS 
      data =  matrix or DataSet of spectra 
     xaxis = optional frequencies or energies associated with each 
               variable in data {optional; default = use DataSet values, 
               otherwise use 1:n} 
     peaks = expected locations of peaks to use for shifting. If omitted, 
              'findpeaks' mode will be invoked and stable peaks will be 
               found in the data (see below). 
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OUTPUTS 
         data_i = shifted, interpolated data 
        axaxis = interpolated xaxis (will be equal to xaxis if no 
                  interpolation is requested) 
      foundat = matrix of peak shifts found for each peak (columns) in each 
                  spectrum (rows) 
        peaks = (only for 'findpeaks' mode) Locations of found peaks in 
                  xaxis units. 

Notes: If input (peaks) is omitted, the algorithm identifies peaks in the mean spectrum by 
setting peaks at every variable and allowing these to drift to the nearest maximum. It then 
locates the same peaks in each of the individual spectra and keeps only those peaks which 
could be located in all spectra with less shift than specified in options.maxshift. 

Examples 

To locate stable peaks in (unshifted) calibration data 
peaks = registerspec(calibrationdata); 

To correct x-axis shift in new data using previously identified peaks 
newdata_unshifted = registerspec(newdata,peaks); 

Options 
      display: [ {'on'} | 'off' ] governs command-line output 
         plots: [ {'none'} | 'fit' | 'final' ] governs plotting options 
         nopeaks: [ 'none' | {'warning'} | 'error' ] governs behavior when none 

of the reference peaks can be located. 
       shiftby: [{-0.1}] minimum shifting interval. A positive value is 
                  interpreted as being in absolute xaxis units and a 
                  negative value as relative to the smallest xaxis 
                  interval. 
   interpolate: [{[]}] interpolation interval for output spectra. Empty [] 
                  does no interpolation. A positive value is interpreted 
                  as being in absolute xaxis units and a negative value  
                  as relative to the smallest xaxis interval. 
      maxshift: [in xaxis units, {4}] maximum allowed peak shift (peaks 
                  which require more shift than this will NOT be used for 
                   xaxis correction). 
        window: [in xaxis units, {[]}] size of window to search for each 
                  peak. Empty [] uses automatic window based on maxshift. 
         order: order of polynomial (only used for polynomial algorithms) 
     algorithm:  xaxis correction algorithm. One of: 
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               'pchip':  constrained picewise spline (well behaved)  
               'poly':  {default} standard polynomial fit to found peaks 
'iterativepoly':  iterative polynomial fitting (order increased 
                             in each cycle - works better for badly shifted  
                             spectra) 
       'findpeaks':  locate non-moving peaks in whole dataset. 
                             Triggered by omission of the (peaks) input. 
         smoothing: [ 'off' | {'on'} ] governs use of smoothing algorithm during peak 

location. If 'on' each sub-window is smoothed prior to locating 
maximum in window. 

         smoothinfo: [width order] smoothing parameters to be passed to smoothing 
function (savgol) if enabled by smoothing option above. width is width 
of window in number of variables, order is order of polynomial. 
Default is width of 5 and order 2: [5 2]. 

Algorithm 

Correction of x-axis shift in a given spectrum is achieved by first locating the maximum 
value nearest to the expected peak locations using localized spline interpolation nearby the 
expected location (within options.maxshift axis units from the expected position). The 
observed peak locations are then compared to the expected peak locations and the difference 
is fit with the desired function (see options). The difference is finally removed from the 
spectrum using interpolation back to the expected frequency or wavelength values. 

Automatic peak location is achieved by attempting to locate peaks across the entire spectrum, 
then searching those peaks which show less than options.maxshift change in position 
throughout the set of calibration spectra.  

See Also 

alignmat, coadd, deresolv, stdfir, stdgen 
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replace 
Purpose 

Replace variables based on principal component analysis (PCA) or partial least squares 
(PLS) regression models. 

Synopsis 
 
rm = replace(model,vars) 
[rm,repdata] = replace(model,vars,data) 
repdata = replace(model,data) 

Description 

REPLACE replaces variables from data matrices with values most consistent with the given 
PCA or PLS model. Input model can be any of the following: 

1) a standard model structure generated by the PCA or PLS functions or the Anlysis GUI 

2) a set of loading column vectors (e.g., loads returned by the pca routine, or 
model.loads{2} if the output is a model structure) 

3) the PCA residual generating matrix (I-loads*loads´), or  

4) the PLS residuals generating matrix coeff returned by the plsrsgn routine.  

Optional input vars is a row vector containing the indices of the variables (columns) to be 
replaced. If omitted, the input data is searched for non-finite values (NaN, Inf) and these 
values are replaced.  

When vars in input, the outputs are the replacement matrix rm and the replaced data (if data 
was provided), repdata. Multiplication of a data matrix xnew by rm will replace variables 
with values most consistent with the given PCA or PLS model. If vars was not supplied, 
only repdata is output.  

Examples 

A PCA model was created on a data matrix xold giving a model structure model. The 
loadings, a set of loadings column vectors, were extracted to a variable loads using loads = 
model.loads{2};. It was found that the sensor measuring variable 9 has gone “bad” and we 
would like to replace it in the new data matrix xnew. A replacement matrix rm is first created 
using replace. 

rm = replace(loads,9); 

The new data matrix with variable 9 replaced rxnew is then calculated by multiplying xnew 
by rm. 
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rxnew = xnew*rm; 

See Also 

mdcheck, pca, plsrsgcv, plsrsgn 
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rescale 
Purpose 

Scales data back to original scaling. 

Synopsis 
 
rx = rescale(x,means,stds,options) 

Description 

Rescales a matrix x using the means means and standard deviation stds vectors specified.  
An optional input options is an options structure with the field: 

rx = rescale(x,means) rescales a mean centered matrix x using a vector of means. 

rx = rescale(x,means,stds) rescales an autoscaled matrix x using a vector of means, and 
vector of standard deviations stds. 

Options 
     stdthreshold: [ 0 ] scalar value or vector of standard deviation threshold values. If a 

standard deviation is below its corresponding threshold value, the 
threshold value will be used in lieu of the actual value. A scalar value is 
used as a threshold for all variables. 

See Also 

auto, medcn, mncn, npreprocess, preprocess, scale 
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residuallimit 
Purpose 

Esitmates confidence limits for sum squared residuals. 

Synopsis 
 
[rescl,s] = residuallimit(residuals,cl,options) 
[rescl,s] = residuallimit(model,cl,options) 
rescl     = residuallimit(s,cl,options) 
options = residuallimit('options');. 

Description 

Inputs are a matrix of residuals, residuals, and a frational confidence limit, cl, where 
0<cl<1 {default = 0.95}. For example, for a PCA model X = TPT + E, the input residuals 
is the matrix E which can be calculated using the datahat function or a standard model 
structure (model). Optional input options is discussed below. To calculate multiple 
confidence limits, cl can be a vector of fractional confidence limits. 

Two alternate methods of calling RESIDUALLIMIT are: 

(a) When using the Jackson-Mudholkar method (see options) the eigenvalues of the 
residuals, s, can be passed in place of residuals. This is typically faster than passing the 
residuals themselves. 

(b) A standard model structure, model, can be passed in place of residuals. In this case, 
RESIDUALLIMIT will locate valid residual information within the model and use that to 
calculate the limit. 

The output is the estimated residual limit rescl. When using the Jackson-Mudholkar 
algorithm, an additional output, s, is also returned containing eigenvalues of E. To improve 
speed, s can be used in place of residuals in subsequent calls to RESIDUALLIMIT for the 
same data. 

See Jackson (1991) for the details of the calculation. 

Options 
 options =  a structure array with the following fields: 
 algorithm: [ {'jm'} | 'chi2' | 'auto' ], governs choice of algorithm: 
  'jm', uses Jackson-Mudholkar method (slower, more robust), 
  'chi2', uses chi-squared moment method (faster, less robust with 

outliers), and 
  'auto' automatically selects based on data size (<300 rows or columns, 

use 'jm', otherwise, use 'chi2') 
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The default options can be retreived using: options = residuallimit('options');. 

Examples 

The following example will calculate the 95Found residuals confidence limit for a model, 
model, using the residual eigenvalues stored in the model: 

 
rescl = residuallimit(model,0.95); 

The following example will also calculate the 95Found residuals confidence limit for a 
model, model, but by using the actual residuals calculated from the calibration data, data, 
using the datahat function: 

 
[xhat,residuals] = datahat(model,data); 
rescl = residuallimit(residuals,0.95); 

See Also 

chilimit, analysis, datahat, pca 
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reversebytes 
Purpose 

Flips order of bytes in a word. 

Synopsis 
 
res = reversebytes(y,totalbytes,base) 

Description 

Generalized reversal of bytes. Inputs are y, the value(s) to operate on, the total number of 
bytes to swap totalbytes {default = 2} in each word, and the number base to work in base 
{default = 2^8 = 256 = 1 hex byte}. Note that the default is to swap 2 hex bytes in a 16 bit 
number.  

Examples 

To swap 4 BYTES in a 32 bit number: 
reversebytes(y,4) 

To swap 2 WORDS in a 32 bit number:  
reversebytes(y,2,2^16) 
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reviewmodel 
Purpose 

Examines a standard model structure for typical problems. 

Synopsis 
 
[warn,color,warningid] = reviewmodel(model,single) 

Description 

Given a standard PLS_Toolbox model structure, REVIEWMODEL examines the numerical 
and build information and returns textual warnings to advise the user of possible issues. 

INPUTS: 
 model : a standard model structure (or the handle to an Analysis GUI). 
 single : a flag where a value of 1 (one) indicates that only the single most urgent 

issue should be returned. 

OUTPUTS: 
 issues :  A structure array containing one or more issues identified in the model. 

The structure contains the following fields and may contain one or more 
records, or may be empty if no issues were identified. 

  issue - the text describing the issue. 
  color - a "color code" identifying the sevrity of the issue. 
  issueid - a unique ID identifying the issue. 

If no outputs are requested, any issues are simply displayed in the Command Window. 

See Also 
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ridge 
Purpose 

Ridge regression by Hoerl-Kennard-Baldwin. 

Synopsis 
 
[b,theta] = ridge(x,y,thetamax,divs,tf) 

Description 

RIDGE creates a ridge regression model for a matrix of predictor variables (x-block) x, and a 
vector of predicted variable (y-block) y. The maximum value of the ridge parameter to 
consider is given by thetamax (thetamax > 0). divs specifies the number of values of the 
ridge parameter between 0 and thetamax to be used for calculating the regression vector 
shown in the plots created by the ridge routine. 

The optional variable tf allows the user to position text on the plot when tf is set to 1. The 
text identifies the optimum of the ridge parameter theta and can be positioned with cursors 
or the mouse. 

Outputs are b the regression column vector at optimum ridge parameter theta. 

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A 
good starting guess when working with the method is to specify thetamax = 0.1 with divs 
= 20. 

See Also 

pcr, pls, analysis, ridgecv 
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ridgecv 
Purpose 

Ridge regression with cross validation. 

Synopsis 
 
[b,theta,cumpress] = ridge(x,y,thetamax,divs,split) 

Description 

The function ridgecv uses cross-validation to create a ridge regression model for a matrix of 
predictor variables (x-block) x, and a matrix of predicted variables (y-block) y. The 
maximum value of the ridge parameter to consider is given by thetamax (0 < thetamax). 
divs specifies the number of values of the ridge parameter between 0 and thetamax to be 
used for calculating models used in the cross validation and shown in plots created by the 
routine, and split is the number of times the model is rebuilt on a different subset of 
samples. 

Outputs are b the regression column vector at optimum ridge parameter theta as determined 
by cross-validation. 

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A 
good starting guess when working with the method is to specify thetamax = 0.1 with divs 
= 20. 

Note: RIDGECV uses the venetian blinds cross-validation method. 

See Also 

crossval, pcr, pls, analysis, ridge 
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rinverse 
Purpose 

Calculates pseudo inverse for PLS, PCR and RR models. 

Synopsis 
 
rinv = rinverse(mod,ncomp) 
rinv = rinverse(p,t,w,ncomp) 
rinv = rinverse(p,t,ncomp) 
rinv = rinverse(sx,theta) 

Description 

For the following I/O format: 
 
rinv = rinverse(mod,ncomp) 

The input mod is a model structure from PCR, PLS, or ANALYSIS and ncomp is the number of 
factors in the model (number of principal components or latent variables). 

For PLS models, the inputs are the loadings p, scores t, weights w and number of latent 
variables ncomp. For this case the I/O syntax is: 

rinv = rinverse(p,t,w,ncomp) 

For PCR models, the inputs are the loadings p, scores t, and number of principal components 
ncomp. For this case the I/O syntax is: 

rinv = rinverse(p,t,ncomp) 

For ridge regression (RR) models, the inputs are the scaled predictor x matrix sx and ridge 
parameter theta. 

rinv = rinverse(sx,theta) 

See Also 

pcr, pls, ridge, stdsslct 
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rmse 
Purpose 

Calculate Root Mean Square Difference(Error). 

Synopsis 
 
err = rmse(y1,y2) 

Description 

RMSE is used to calculate the root mean square difference between two vectors or matrices. 
If the vector or matrix is from a model estimation and measurements then the output is the 
Root Mean Square Error (RMSE). 

Output depends on the input: 

A) y1 is a matrix or vector 
 
 err = rmse(y1); 

The output err is the root mean square of the elements of y1. 

B) y1 is a matrix or vector, y2 the same size as y1 
 
 err = rmse(y1,y2); 

The output err is the root mean square of the difference between y1 and y2. 

C) y1 is a matrix or vector, y2 a column vector. 
 
 err = rmse(y1,y2); 

The output err is the root mean square of the difference between each column of y1 and y2. 

For example, y2 is a reference and the RMSE is calculated between each column of y1 and 
the vector y2. 

See Also 

crossval 
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rwb 
Purpose 

Red-white-blue color map. 

Synopsis 
 
map = rwb(m) 

Description 

Creates a red to white to blue colormap, useful for plotting values that range from -1 to 1, 
such as those generated by CORRMAP. Optional input m specifies the length of the colormap. 
With no inputs, RWB returns a colormap the same length as the current colormap. The 
output map is the m by 3 colormap matrix. 

See Also 

bone, colormap, cool, copper, corrcoef, corrmap, flag, gray, hot, hsv, pink 
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savgol 
Purpose 

Savitzky-Golay smoothing and differentiation. 

Synopsis 
 
[y_hat,cm] = savgol(y,width,order,deriv,options) 

Description 

SAVGOL performs Savitzky-Golay smoothing on a matrix of row vectors y. At each increment 
(column) a polynomial of order order is fitted to the number of points width surrounding the 
increment. An estimate for the value of the function (deriv = 0) or derivative of the function 
(deriv > 0) at the increment is calulated from the fit resulting in a smoothed function y_hat. 
E.g. see A. Savitzky and M.J.E. Golay, Anal. Chem. 36, 1627 (1964). 

[y_hat,cm] = savgol(y,width,order,deriv) allows the user to select the number of 
points in the filter width {default = 15}, the order of the polynomial to fit to the points 
order {default = 2}, and the order of the derivative deriv {default = 0}. 

Output cm allows the user to apply smoothing to additional matrices of the same size as y, 
e.g. y_hat2 = y2*cm where y2 is the same size as y used to determine cm. 

Note: width must be ≥ 3 and odd, and and deriv must be ≤ order. 

Options 
 options =  a structure array with the following fields: 
 useexcluded: [ {'true'} | 'false' ], governs how excluded data is handled by 

the algorithm. If 'true', excluded data is used when handling data on the 
edges of the excluded region (unusual excluded data may influence 
nearby non-excluded points). When 'false', excluded data is never used 
and edges of excluded regions are handled like edges of the spectrum 
(may introduce edge artifacts for some derivatives). 

 useexcluded: [ {'fast'} | 'polyinterp' ], governs how edges of data and 
excluded regions are handled. 'fast' is standard SavGol approach. 
'polyinterp' uses slower, but more stable polynomial interpolation 
algorithm. 

Examples 

If y is 3 by 100 then 
 
y_hat = savgol(y,11,4,2); 
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yields a 3 by 100 matrix y_hat that contains row vectors of the second derivative of rows of 
y resulting from an 11-point quartic Savitzky-Golay  smooth of each row of y. 

See Also 

baseline, baselinew, deresolv, lamsel, mscorr, polyinterp, savgolcv, 
stdfir, wlsbaseline 
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savgolcv 
Purpose 

Cross-validation for Savitzky-Golay smoothing and differentiation. 

Synopsis 
 
cumpress = savgolcv(x,y,lv,width,order,deriv,ind,rm,cvi,pre);  %for x 

class "double" 
cumpress = savgolcv(x,y,lv,width,order,deriv,[],rm,cvi,pre);   %for x 

class "dataset" 

Description 

SAVGOLCV performs cross-validation of Savitzky-Golay parameters: filter width, polynomial 
order, and derviative order. 

INPUT: 
 x = M by N matrix of predictor variables with ROW vectors to be smoothed 

(e.g. spectra), and 
 y = M by P matrix of predicted variables. 

OPTIONAL INPUTS: 
 ind = indices of columns of x to be used for calibration {default ind = [1:n] 

i.e. all x columns}. 

The following are optional Savitzky-Golay parameters (calls SAVGOL). By entering a vector, 
instead of a scalar, these variables are cross-validated. 
 width = number of points in filter {default width = [11 17 23]}. 
 order = polynomial order {default order = [2 3]}. 
 deriv = derivative order {default deriv = [0 1 2]}. 

The following are optional cross-validation parameters (calls CROSSVAL). 
 lv = maximum number of LVs {default lv = min(size(x))}. 
 rm = regression method. Options are: rm = 'nip', PLS via NIPALS algorithm; 

rm = 'sim', PLS via SIMPLS algorithm {default}, and rm = 'pcr', 
uses PCR. 

 cvi = cross-validation method. Options are: cvi = 'loo', leave-one-out, cvi 
= 'vet', venetian blinds {default}, cvi = 'con', contiguous blocks, 
and cvi = 'rnd', repeated random test sets. 

 split = number of subsets to split the data into {default = 5} and is required for 
cvi = 'vet', 'con', or 'rnd'. 

 iter = number of iterations {default = 5} and is required for cvi = 'rnd'. 
 mc = 0 supresses mean centering of subsets {default mc = 1}. 
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OUTPUT: 

The output is a 4 dimensional array with each dimension corresponding to one of the 
directions cross-validated over. 

 cumpress(i,:,:,:) =derivative dimension, 
 cumpress(:,j,:,:) =latent variable dimension, 
 cumpress(:,:,k,:) =window width dimension, and 
 cumpress(:,:,:,l) =polynomial order dimension. 

See Also 

baseline, crossval, lamsel, mscorr, savgol, specedit, stdfir 
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scale 
Purpose 

Scales data using specified means and std. devs. 

Synopsis 
 
sx = scale(x,means,stds,options) 

Description 

sx = scale(x,means) subtracts a vector means from a matrix x and returns the result as sx. 
If means is the vector of means this routine mean centers x. 

sx = scale(x,means,stds) subtracts a vector means from a matrix x, divides each column 
by the corresponding element in the vector stds and returns the result as sx. If means is the 
vector of means and stds is the vector of standard deviations this routine atuo-scales x so that 
each column of sx has zero mean and unit variance. 

The optional input options is an options structure contianing the field "stdthreshold" which 
defines a threshold value for standard deviation below which the threshold value will be used 
in lieu of the actual value. A scalar value is used as a threshold for all variables. A vector is 
assumed to be equal in length to stds and describes the threshold to use on each individual 
element. 

See Also 

auto, gscaler, medcn, mncn, npreprocess, preprocess, rescale 
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setpath 
Purpose 

Modifies and saves current directory 

Synopsis 
 
setpath(flag) 

Description 

SETPATH will modify the MATLAB path to include the current directory and all 
subdirectories and will save the path to the pathdef.m file. 

If the optional input flag i s set to 0 then only the current directory is saved 

See Also 

evriinstall 
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shuffle 
Purpose 

Randomly re-order matrix rows. 

Synopsis 
 
xr = shuffle(x) 
[xr,x2r,x3r,x4r...] = shuffle(x,x2,x3,x4...) 
[xr,x2r,x3r,...] = shuffle(x,x2,x3,...,'groups') 

Description 

SHUFFLE randomly re-orders the rows of the input matrix x and returns the results as xr. 

All additional inputs (x2, x3, ...) must have same number of rows as x, and will have their 
rows re-ordered to the same random order as xr. If the final input is the string groups then 
the first input is sorted into groups of matching rows and the order of the groups is randomly 
shuffled, keeping group members together. This is useful for random reordering of 
measurement replicates. If all the rows of the first input are unique, groups will have no 
effect on the behavior of shuffle. 

See Also 

delsamps 
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simca 
Purpose 

Create soft independent method of class analogy models for classification. 

Synopsis 
 
model = simca(x,ncomp,options)       %creates simca model on dataset 

x 
model = simca(x,classid,labels)      %models double x with class id 
pred  = simca(x,model,options);      %predictions on x with model 
options = simca('options');. 

Description 

The function SIMCA develops a SIMCA model, which is really a collection of PCA models, 
one for each class of data in the data set and is used for supervised pattern recognition. 

SIMCA cross-validates the PCA model of each class using leave-one-out cross-validation if 
the number of samples in the class is <= 20. If there are more than 20 samples, the data is 
split into 10 contiguous blocks. 

INPUTS: 
 x = M x N matrix of class “dataset” where class information is extracted 

from x.class{1,1} and labels from x.label{1,1}, or 
 x = M x N data matrix of class “double” and 
 classid =  M x 1 vector of class identifiers where each element is an integer 

identifying the class number of the corresponding sample. 
 model =  when making predictions, input model is a SIMCA model structure. 

OPIONAL INPUTS: 
 ncomp = integer, number of PCs to use in each model. This is rarely known a 

priori. When ncomp=[] {default} the user is querried for number of PCs 
for each class. 

 labels = a character array with M rows that is used to label samples on Q vs. T2 
plots, otherwise the class identifiers are used. 

 options =  a structure array discussed below. 

OUPUT: 
 model = model structure array with the following fields: 
 modeltype: 'SIMCA', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
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 info: additional model information, 
 description: cell array with text description of model, 
 submodel: structure array with each record containing the PCA model of each class 

(see PCA), and 
 detail: sub-structure with additional model details and results. 
 pred = is a structure, similar to model, that contains the SIMCA predictions. 

Additional, or other, fields in pred are: 
 rtsq: the reduced T2 (T2 divided by it’s 95Found confidence limit line) where 

each column corresponds to each class in the SIMCA model, 
 rq: the reduced Q (Q divided by it’s 95Found confidence limit line) where 

each column corresponds to each class in the SIMCA model, 
 nclass: the predicted class number (class to which the sample was closest when 

considering T2 and Q combined), and 
 submodelpred: structure array with each record containing the PCA model predictions 

for each class (see PCA). 

Note: Calling simca with no inputs starts the graphical user interface (GUI) for this analysis 
method.  

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: ['none' | {'final'} ], governs level of plotting, 
 staticplots: ['no' | {'yes'} ], produce ole-style "static" plots, 
 rule: [{'combined'} | 'final' | 'T2' | 'Q'], decision rule, 
 preprocessing: { [ ] }, a preprocessing structure (see PREPROCESS) that is used to 

preprocess data in each class. 

The default options can be retreived using: options = simca('options');. 

Note: with display='off', plots='none', nocomp=(>0 integer) and preprocessing 
specified that SIMCA can be run without command line interaction. 

See Also 

cluster, crossval, pca, plsdthres, discrimprob, plsdaroc, plsdthres 
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simpls 
Purpose 

Partial Least Squares regression using the SIMPLS algorithm. 

Synopsis 
 
[reg,ssq,xlds,ylds,wts,xscrs,yscrs,basis] = simpls(x,y,ncomp,options) 
options = simpls('options');. 

Description 

SIMPLS performs PLS regression using SIMPLS algorithm. 

INPUTS: 
 x = X-block (predictor block) class “double” or “dataset”, and 
 y = Y-block (predicted block) class “double” or “dataset”. 

OPIONAL INPUTS: 
 ncomp = integer, number of latent variables to use in {default = rank of X-block}, 

and 
 options =  a structure array discussed below. 

OUPUTS: 
 reg = matrix of regression vectors, 
 ssq = the sum of squares captured (ssq), 
 xlds = X-block loadings, 
 ylds = Y-block loadings, 
 wts = X-block weights, 
 xscrs = X-block scores, 
 yscrs = Y-block scores, and 
 basis = the basis of X-block loadings. 

Note: The regression matrices are ordered in reg such that each Ny (number of Y-block 
variables) rows correspond to the regression matrix for that particular number of latent 
variables. 

NOTE: in previous versions of SIMPLS, the X-block scores were unit length and the X-
block loadings contained the variance. As of Version 3.0, this algorithm now uses standard 
convention in which the X-block scores contain the variance. 
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Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, and 
 ranktest: [ 'none' | 'data' | 'scores' | {'auto'} ], governs type of 

rank test to perform. 
  'data' = single test on X-block (faster with smaller data blocks and 

more components), 
  'scores' = test during regression on scores matrix (faster with larger 

data matricies), 
  'auto' = automatic selection, or 
  'none' = assumes X-block has sufficient rank. 

The default options can be retreived using: options = simpls('options');. 

See Also 

crossval, modelstruct, pcr, plsnipal, preprocess, analysis 
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snv 
Purpose 

Standard Normal Variate scaling. 

Synopsis 
 
[xcorr,mns,sds] = snv(x,options);       %perform snv scaling 
x = snv(xcorr,mns,sds);         %undo snv 

Description 

Scales rows of the input x to be mean zero and unit standard deviation. This is the same as 
autoscaling the transpose of x. 

INPUT: 
 x = M by N matrix of data to be scaled (class "double" or "dataset"). 

OPTIONAL INPUTS: 
 options =  options structure passed to function "auto" when performing SNV 

scaling. See auto.m for available options (not valid for undo operation). 
 mns = a vector of length M of means, and 
 sds = vector of length M of standard deviations. 

OUTPUTS: 
 xcorr = the scaled data (xcorr will be the same class as x), 
 mns = vector of means for each row, and 
 sds = vector of standard deviations for each row. 

To rescale or “undo” SNV, inputs are xcorr, mns, and sds from a previous SNV call. The 
output will be the original x. 

See Also 

auto, normaliz, preprocess 
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spcreadr 
Purpose 

Reads a Galactic SPC file. 

Synopsis 
 
x = spcreadr(filename,subs,wlrange,options) 
[data,xaxis,auditlog] = spcreadr(filename,subs,wlrange,options) 

Description 

SPCREADR reads a Galactic SPC file. 

INPUT: 
 filename = a text string with the name of a SPC file or a cell of strings of SPC 

filenames. 
  If filename is omitted or blank, the user will be prompted to select a 

file graphically. 
  If filename is an empty cell {}, the user will be prompted to select a 

folder and then one or more SPC files in the folder the identified folder. 

OPTIONAL INPUTS: 
 subs = [], scalar or vector indicating the sub-files to read, e.g. [3] reads sub-file 

3, [3:9] reads sub-files 3 to 9, {default reads all sub-files} and 
 wlrange = [], two element vector (inclusive endpoints) of the wavelength range to 

return {default returns the entire wavelength range}. 

OUTPUTS: 
 x = a dataset object containing the spectrum, or 
 data = a data array with measured intensities, 
 xaxis = vector containing the wavelength axis, and 
 auditlog = char array with the log from the file. 

Options 
 options =  a structure array with the following fields: 
 axismatching: [ 'none' | 'intersect' |{'interpolate'} ], defines action taken 

when the x-axes of two spectra being read do not match. The options 
are: 

   'intersect' returns only the points where the spectral x-axis values 
overlap excatly. 
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  'interpolate' returns the overlapping portions with linear interpolation to 
match spectral points exactly. As no extrapolation will be done, the 
returned spectra will cover the smallest common spectral range.  

  'none' ignores x-axis differences as long as the number of data points is 
the same in all spectra. 

 textauditlog: [ {'no'} | 'yes' ], governs output of audit log contents. When 'yes', 
the auditlog is returned as a raw text array. Otherwise, the auditlog is 
returned as a structure with field names taken from  auditlog keys. 

See Also 

areadr, xclgetdata, xclputdata, xclreadr 
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specedit 
Purpose 

GUI for selecting spectral regions on a plot. 

Synopsis 
 
specedit(x,f) 

Description 

If input variable (x) is a vector SPECEDIT plots x (e.g. spectra) versus an optional input f e.g. 
wavelengths. If x is a matrix of spectra then SPECEDIT plots the mean of x where the rows of 
x correspond to different sample spectra and the columns of x correspond to different 
wavelengths. Regions of x can be selected using push buttons. The edited matrix input and 
column indices can be saved to the workspace interactively. 

See Also 

baseline, lamsel 
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ssqtable 
Purpose 

Prints variance captured table to the command window. 

Synopsis 
 
ssqtable(ssq,ncomp) 

Description 

SSQTABLE prints the variance captured table from input ssq to the command window for the 
desired number of factors ncomp. If ssq is a standard model structure (e.g. from ANALYSIS), 
the model information is displayed along with the variance captured table (see MODLRDER). If 
ncomp is omitted, the entire available tabe is displayed. 

Examples 

For a standard model structure called modl (e.g. as returned by, ANALYSIS, PCA, or PLS 
functions) 

ssqtable(modl.detail.ssq,5) 

will print the variance captured table only for the first 5 factors to the command window. 
Alternatively, 

ssqtable(modl,5) 

will print both the model information and the variance captured table for first 5 factors. 

See Also 

analysis, modlrder, pca, pcr, pls 
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stdfir 
Purpose 

Standardization using FIR filtering. 

Synopsis 
 
sspec = stdfir(nspec,rspec,win,mc) 

Description 

STDFIR is a moving window multiplicative scatter correction with a fixed window size. This 
algorithm uses an inverse least squares regression. (Also see MSCORR.) 

Inputs are nspec the new spectra to be standardized, rspec the standard spectra from the 
standard instrument (a row vector that is a reference spectrum), and win is the window width 
(must be an odd number). 

If the optional input mc is 1 {default} the regression allows for an offset and a slope, if mc is 
set to 0 only the slope is used (no offset is used i.e. it is a force fit through zero). 

The output is sspec the standardized spectra. This routine is based on the method discussed 
in 

Blank, T.B., Sum, S.T., Brown, S.D., and Monfre, S.L.,  "Transfer of Near-Infrared 
Multivariate Calibrations without Standards", Anal. Chem., 68(17), 2987-2995, 1996. 

See Also 

mscorr, stdgen 
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stdgen 
Purpose 

Piecewise and direct standardization transform generator. 

Synopsis 
 
[stdmat,stdvect] = stdgen(spec1,spec2,win,options) 
options = stdgen('options') 

Description 

STDGEN can be used to generate direct or piecewise direct standardization matrix with or 
without additive background correction. It can also be used to generate the transform using 
the “double window” method. The transform is based on spectra from two instruments, or 
original calibration spectra and drifted spectra from a single instrument. 

INPUTS: 
 spec1 = M by N1 spectra from the standard instrument, and 
 spec2 = M by N2 spectra from the instrument to be standarized. 

OPTIONAL INPUTS: 
 win = [], empty or a 1 or 2 element vector. 
  If win is a scalar then STDGEN uses a single window algorithm, 
  and if win is a 2 element vector it uses a double window algorithm. 
  win(1) = (odd) is the number of channels to be used for each transform, 

and 
  win(2) = (odd) is the number of channels to base the transform on. 
  If win is not input it is set to zero and direct standardization is used. 
 options =  a structure array discussed below. 

OUTPUTS: 
 stdmat = the transform matrix, and 
 stdvect = the additive background correction. 

Note: if only one output argument is given, no background correction is used.  

Options 
 options =  a structure array with the following fields: 
 tol: [ {0.01} ], tolerance used in forming local models (it equals the 

minimum relative size of singular values to include in each model), and 
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 maxpc: [ ], specifies the maximum number of PCs to be retained for each local 
model {default: []}. maxpc must be ≤ the number of transfer samples. If 
maxpc is not empty it supersedes tol. 

The default options can be retreived using: options = stdgen('options');. 

See Also 

baseline, distslct, mscorr, stdfir, stdize, stdsslct 
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stdize 
Purpose 

Standardizes new spectra using transform from STDGEN. 

Synopsis 
 
stdspec = stdize(nspec,stdmat,stdvect) 

Description 

Inputs are the new spectra to be standardized nspec, and the standardization matrix stdmat 
(output from STDGEN).  

Optional input stdvect is the offset vector (output from STDGEN). Note that if stdvect was 
calculated when generating the transform with STDGEN, then it should be input when applying 
the transform with STDIZE. 

The output is a matrix of the standardized spectra stdspec. 

See Also 

stdgen, stdsslct 
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stdsslct 
Purpose 

Selects subsets of spectra for use in instrument standardization based on sample leverage. 

Synopsis 
 
[specsub,specnos] = stdsslct(spec,nosamps,rinv) 

Description 

STDSSLCT selects samples for use in instrument standardization transform development based 
on their multivariate leverage. 

The inputs are the spectra to be used in generating the transform spec, and the number of 
samples to be selected for the subset nosamps. The optional input rinv uses the pseudo 
inverse from a calibration regression model to determine sample leverages. 

The outputs are the subset of spectra selected specsub, and the sample numbers (indices) of 
the selected spectra specnos. 

See Also 

distslct, doptimal, stdgen, stdize, rinverse 
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svdlgpls 
Purpose 

Dialog to save variable to workspace or MAT file. 

Synopsis 
 
[name,location] = svdlgpls(varin,message) 

Description 

SVDLPLS creates a dialog box to save a variable to the base workspace or a MATLAB file 
from a function (e.g. a GUI). Input varin is the variable to be saved. The dialog box allows 
the user to name varin to a new variable and select between saving into the base workspace 
or a file. Variables can be appended onto existing files by selecting the file from the file list 
or written into new files by providing a new file name. The location for the file can be 
selecetd from the folders listed in the file list and from the Look in menu at the top of the 
dialog box. Files are always MATLAB "mat" files. The optional text variable messag allows 
a message to be printed in the dialog box. 

Optional outputs give information about the variable name name and file location location 
used to save the variable. Location will be empty if saved to the base workspace. 

See Also 

erdlgpls, lddlgpls 
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tconcalc 
Purpose 

Calculate Hotellings T2 contributions for predictions on a model. 

Synopsis 
 
tcon = tconcalc(newx,model) 
tcon = tconcalc(pred,model) 
tcon = tconcalc(model) 

Description 

Inputs are the new data newx and the 2-way PCA or regression model for which T2 
contributions should be calculated model. Alternatively, the prediction structure pred 
calculated with new data can be used in place of the new data itself or both can be omitted 
(passing model only) to get T2 contributions for the calibration data. 

See Also 

datahat, pca, pcr, pls, qconcalc 
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testfitpeaks 
Purpose 

Demo calls to the FITPEAKS function. 

Synopsis 
 
[peakdef,fval,exitflag,output] = testfitpeaks(test) 

Description 

TESTFITPEAKS is a set of example calls to FITPEAKS. Editing this M-file provides some 
insight into how the peak fitting utilities can be used. 

No input is required. 

OPTIONAL INPUT: 
 test = calls different peak fitting examples. 
  test = 1 fits a single Gaussian peak. 
  test = 2 fits two Gaussian peaks. 
  test = 3 fits a single Lorentzian peak. 
  test = 4 fits two Lorentzian peaks. 
  test = 5 fits a Gaussian and Lorentzian peak. 
  test = 6 fits a single PVoigt2 peak. 
  test = 7 fits a Gaussian and a PVoigt2 peak. 
  test = 8 fits a Gaussian and a PVoigt1 peak. 
  test = 9 fits a single PVoigt1 peak. 

OUTPUTS: 
 peakdef = The input peak structure (peakdef) with parameters changed to 

correspond to the best fit values. 
 fval = Scalar value of the objective function evaluated at termination of 

FITPEAKS. 
 exitflag = Describes the exit condition (see LMOPTIMIZEBND). 
 out = Structure array with information on the optimization/fitting (see 

LMOPTIMIZEBND). 

See Also 

fitpeaks, peakfunction, peakstruct 
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testpeakdefs 
Purpose 

Checks peak parameters in a peak definition structure. 

Synopsis 
 
 [out,msg,loc] = testpeakdefs(peakdef) 

Description 

TESTPEAKDEFS checks the consistency of the peak definitions in a peak definition structure 
and is useful for checking the initial guess for (peakdef). This function examines each 
record of a peak definition structure (peakdef) and determines: 

1) if the lower bounds are lower than the initial guess (any parameters lower than the lower 
bounds is an error), 

2) if the upper bounds are higher than the initial guess (any parameters higher than the upper 
bounds is an error), and 

3) if the number of parameters in each peak definition are consistent with the corresponding 
peak function (peakdef.fun field). 

INPUT: 
 peakdef.fun = a multi-record peak definition structure array where each record is a 

peak definition. 

OUTPUTS: 
 out = output status code: 
  0  = no problems discovered. 
  -1 = problem encountered. 
 msg = error message (last error detected). 
 loc = location of detected problems. This is a two-column matrix with 

column one corresponding to a peak with an inconsistent definition, and 
column two corresponding to the inconsistent parameter definition (e.g. 
a paramter is < its lower bound). 

  If column two has a zero, this means that there is a peak definition with 
an inaccurate number of parameters for the specific peak shape (e.g. for 
peakdef.fun = Gaussian there are 3 parameters). 

See Also 

peakstruct 
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tld 
Purpose 

Trilinear decomposition. 

Synopsis 
 
model = tld(x,ncomp,scl,plots) 

Description 

The trilinear decomposition can be used to decompose a 3-way array as the summation over 
the outer product of triads of vectors. Inputs are the 3 way array x and the number of 
components to estimate ncomp. Optional input variables include scales for each of of the 
array axes, (scl1, scl2, scl3). These axes can be entered as 0 or [] placeholders. The output of 
TLD is a structured array (model) containing all of the model elements in the following 
fields: 
  date: model creation date stamp 
  time: model creation time stamp 
  size: size of the original input array 
  loads: 1 by 3 cell array of the loadings in each dimension 
  res: 1 by 3 cell array residuals summed over each dimension 
  scl: 1 by 3 cell array with scales for plotting loads 

Note that the model loadings are presented as unit vectors for the first two dimensions, 
remaining scale information is incorporated into the final (third) dimension. 

See Also 

gram, outerm, parafac 
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trendtool 
Purpose 

Univariate trend analysis tool. 

Synopsis 
 
trendtool(axis,data) 
trendtool(data) 
trendtool 

Description 

TRENDTOOL allows the user to graphically perform univariate analysis of two-way data. 
Inputs are axis which is the variable scale to plot against [can be omitted] and data the data 
to plot in which rows are samples. If data is omitted, the user is prompted to load a dataset 
to analyze. 

Right-clicking on the trend data plot allows placement of "markers". Markers return either 
the height at a point or integrated area between two points. Reference markers can be added 
to each marker to subtract the height at a point or subtract a two-point baseline from the 
associated marker. Markers can be saved or loaded using the toolbar buttons. A Waterfall 
plot (linked to axis range shown in data plot) can be created using the waterfall toolbar 
button.  

The results of the analysis are plotted in the trend results plot which shows a color-coded 
results of the univariate analysis and allows saving of the analysis results and selection of 
points to show in the trend data figure. 

See Also 

pca, plotgui
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tsqlim 

Purpose 

Calculates PCA confidence limits for Hotelling's T2. 

Synopsis 
 
tsqcl = tsqlim(m,pc,cl) 
tsqcl = tsqlim(model,cl) 

Description 

Inputs can be in one of two forms: 

(a) the number of samples m, the number of principal components used pc, and the fractional 
confidence limit, cl (0 < cl < 1) which can be a scalar or a vector (to calculate multiple 
confidence limits simultaneously). 

or (b) a standard model structure, model, and the fractional confidence limit, cl (0 < cl < 1). 

The output tsqcl is the confidence limit. See Jackson (1991). 

Examples 
 
tsqcl = tsqlim(15,2,0.95) 

 
model = pca(data,pc); tsqcl = tsqlim(model,0.95) 

See Also 

analysis, pca, pcr, pls 
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tsqmtx 
Purpose 

Calculates the Hotelling's T2 contributions for PCA. 

Synopsis 
 
[tsqmat,tsqs] = tsqmtx(x,model) 
[tsqmat,tsqs] = tsqmtx(x,p,ssq) 

Description 

TSQMTX calculates the Hotelling's T2 contributions for PCA. 

INPUTS: 
 x = data matrix (class “double” or “dataset), and 
 model =  model structure returned from ANALYSIS or PCA, or 
 p = PCA loadings, and 
 ssq =  variance captured table. 

If a PCA model structure model is input, the loadings and variance captured table are 
extracted from the model. Additionally, the preprocessing from the model is applied to the 
data prior to estimating the scores. However, if the loadings p and variance captured table 
ssq are passed as inputs then the data must be preprocessed in a manner similar to the data 
used to calibrate the PCA model. 

OUTPUTS: 
 tsqmat = indivual variable contributions to Hotelling's T2, and 
 tsqs = Hotelling's T2 for each sample. 

ALGORITHM 

If P is the loadings matrix and T is the scores matrix from the calibration data that had M 
samples, then S is a diagonal matrix defined as S = TTT/(M-1). For a new sample xnew (row 
vector that has been appropriately scaled) the T2 contribution tcon is calculated as tcon = 
xnewPS-1/2PT. 

See Also 

datahat, pca, pcr, pls 
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ttestp 
Purpose 

Evaluates t-distribution and its inverse. 

Synopsis 
 
y = ttestp(x,a,z) 

Description 

Evaluates a t-distribution with input flag z. For z = 1 the output y is the probability point for 
given t-statistic x with a degrees of freedom. For z = 2 the output y is the t-statistic for 
given probability point x with a degrees of freedom. 

Examples 

  y = ttestp(1.9606,5000,1) 

  y = 0.025 

  y = ttestp(0.005,5000,2) 

  y = 2.533 

See Also 

ftest, statdemo 
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tucker 
Purpose 

TUCKER analysis for n-way arrays. 

Synopsis 
 
model = tucker(x,ncomp,initval,options)          %tucker model 
pred  = tucker(x,model)                          %application 
options = tucker('options') 

Description 

TUCKER decomposes an array of order K (where K ≥ 3) into the summation over the outer 
product of K vectors. As opposed to PARAFAC every combination of factors in each mode 
are included (subspaces). Missing values must be NaN or Inf. 

INPUTS: 
 x = the multi-way array to be decomposed and 
 ncomp = the number of components to estimate, or 
 model =  a TUCKER model structure. 

OPTIONAL INPUTS: 
 initval = if initval is the loadings from a previous TUCKER model are then 

these are used as the initial starting values to estimate a final model,  
  if initval is a TUCKER model structure then mode 1 loadings (scores) 

are estimated from x and the loadings in the other modes (see output 
pred), 

 options =  discussed below. 

OUTPUTS: 
 model = a structure array with the following fields: 
 modeltype: 'TUCKER', 
 datasource: structure array with information about input data, 
 date: date of creation, 
 time: time of creation, 
 info: additional model information, 
 loads: 1 by K+1 cell array with model loadings for each mode/dimension, 
 pred: cell array with model predictions for each input data block, 
 tsqs: cell array with T2 values for each mode, 
 ssqresiduals: cell array with sum of squares residuals for each mode, 
 description: cell array with text description of model, and 
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 detail: sub-structure with additional model details and results. 
 pred = is a structure array, similar to model, that contains prediction results for 

new data fit to the TUCKER model. 

Options 
 options =  a structure array with the following fields: 
 display: [ {'on'} | 'off' ], governs level of display, 
 plots: [ {'final'} | 'all' | 'none' ], governs level of plotting, 
 weights: [], used for fitting a weighted loss function (discussed below), 
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative 

tolerance) (absolute tolerance) (maximum number of iterations) 
(maximum time in seconds)], 

 init: [ 0 ], defines how parameters are initialized (see PARAFAC), 
 line: [ 0 | {1}] defines whether to use the line search {default uses it}, 
 algo: this option is not yet active, 
 blockdetails: 'standard' 
 missdat: this option is not yet active, 
 samplemode: [1], defines which mode should be considered the sample or object 

mode and 
 constraints: {4x1 cell}, defines constraints on parameters (see PARAFAC). The first 

three cells define constraints on loadings whereas the last cell defines 
constraints on the core. 

The default options can be retreived using: options = tucker('options');. 

See Also 

datahat, gram, mpca, outerm, parafac, parafac2, tld, unfoldm 
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unfoldm 
Purpose 

Unfolds an augmented matrix for MPCA. 

Synopsis 
 
xmpca = unfoldm(xaug,nsamp) 

Description 

UNFOLDM unfolds the input matrix xaug to create a matrix of unfolded row vectors xmpca for 
MPCA. xaug contains nsamp matrices Aj augmented such that [xaug] = [A1; A2; ...; 
Ansamp]. For example, for xaug of size (nsamp*m by n) each matrix Aj is of size m by n. For 
Aj each m by 1 column ai is transposed and augmented such that [bj] = [a1', a2', ..., 
an'] and [xmpca] = [b1; b2; ...; bnsamp]. Note: the Aj should all be the same size. 

Examples 

a = [1     2     3 
     4     5     6 
    -1    -2    -3 
    -4    -5    -6] 

xmpca = unfoldm(a,2) 

xmpca = [1     4     2     5     3     6 
        -1    -4    -2    -5    -3    -6] 

See Also 

gscale, mpca, pca, reshape 
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unfoldmw 
Purpose 

Unfolds multiway arrays along specified order. 

Synopsis 
 
mwauf = unfoldmw(mwa,order) 

Description 

Inputs are the multiway array to be unfolded mwa (class “double” or “dataset”), and the 
dimension (or mode) number along which to perform the unfolding order. 

The output is the unfolded array mwauf (class “double” or “dataset” depending on the input 
class). 

When working with dataset objects, unfoldmw will create label and includ fields 
consistent with the input. This function is used in the development of PARAFAC models in 
the alternating least squares steps. 

See Also 

mpca, outerm, parafac, reshape, tld, unfoldm 
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updatemod 
Purpose 

Update model structure to be PLS_Toolbox 3.0 compatible. 

Synopsis 
 
umodl = updatemod(modl,data) 

Description 

The input modl is the PLS_Toolbox Version 2 PLS, PCR, or PCA model to be updated to 
Version 3. 

Optional input data is required if the model was constructed using a version older than 
Version 2.0.1c. 

The output is an updated Version 3.0 model umodl. 

See Also 

analysis, pca, pcr, pls 
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varcap 
Purpose 

Variance captured for each variable in PCA model. 

Synopsis 
 
vc = varcap(x,loads,scl,plots) 

Description 

VARCAP calculates and displays the percent variance captured for each variable and number 
of principal components in a PCA model. 

Inputs are the properly scaled M by N data x (i.e. scaled using the same scaling used when 
creating the PCA model) with associated N by K loadings matrix loads. 

Optional input scl (1 by N) specifies the x-axis for plotting. Optional input plots suppresses 
plotting when set to 0 {default = 1}. 

The output is a K by N matrix of variance captured vc for each variable and each number of 
PCs considered (vc is number of PCs by number of variables). A stacked bar chart of vc is 
also plotted. Optional input plots suppresses plotting when set to 0 {default = 1}. 

See Also 

analysis, pca 
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varcapy 
Purpose 

Calculate percent y-block variance captured by a PLS regression model. 

Synopsis 
 
vc = varcapy(model,options) 

Description 

VARCAPY Calculate percent y-block variance captured by a PLS regression model. Given a 
PLS regression model, VARCAPY calculates the percent of y-block variance captured by 
each latent variable of the model for each column of the y-block. 

Input is a standard PLS model structure. Outupt is a matrix containing the variance captured 
by each latent variable (rows) for each column of y (columns). 

Options 
 plots : [ 'none' |{'final'}] Governs plotting of results. 

See Also 

analysis, pca 
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varimax 
Purpose 

Orthogonal rotation of loadings. 

Synopsis 
 
vloads = varimax(loads,options); 

Description 

Input loads is a N by K matrix with orthogonal columns and the output vloads is a N by K 
matrix with orthogonal columns rotated to maximize the "raw varimax criterion". Optional 
input options is discussed below. 

Algorithm 

Under varimax the total simplicity S is maximized where
1

K

k
k

S S
=

= ∑ , and the simplicty for 

each factor (column) is ( )2
k k kS a a= −  where the overbar indicates the mean and ak is the kth 

column of vloads. 

The algorithm is based on Kaiser's VARIMAX Method (J.R. Magnus and H. Neudecker, 
Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Ed., 
pp 373-376, 1999). They note that if the algorithm converges, “which is not guaranteed, then 
a (local) maximum … has been found.” 

See Also 

analysis, pca 
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vip 
Purpose 

Calculate Variable Importance in Projection from regression model. 

Synopsis 
 
vip_scores = vip(mode) 

Description 

Variable Importance in Projection (VIP) scores estimate the importance of each variable in 
the projection used in a PLS model and is often used for variable selection. A variable with a 
VIP Score close to or greater than 1 (one) can be considered important in given model. 
Variables with VIP scores significantly less than 1 (one) are less important and might be 
good candidates for exclusion from the model. 

The input is a PLS model structure (model). The output (vip_scores) is a set of column 
vectors equal in length to the number of variables included in the model. It contains one 
column of VIP scores for each column of the original calibration y-block. 

See Chong & Jun, Chemo. Intell. Lab. Sys. 78 (2005) 103–112. 

See Also 

plotloads, pls, plsda 
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vline 
Purpose 

Place a vertical line in an existing figure. 

Synopsis 
 
h = vline(x,lc) 

Description 

VLINE draws a vertical line on an existing figure from the bottom axis to the top axis at at 
postions defined by x which can be a scalar or vector. If no input is used for x the default 
vaule is zero {default x = 0}. 

Optional input lc is used to define the line style and color as in normal plotting (see PLOT). If 
not inputs are supplied, VLINE draws a vertical green line at 0. 

Output h is the handle(s) of line(s) drawn. 

Examples 

vline([2.5 3],'-r') 

plots a vertical red line at x = 2.5 and 3. 

See Also 

dp, ellps, hline, pan, plot, plttern 
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wlsbaseline 
Purpose 

Weighted least squares baseline function. 

Synopsis 
 
[bldata,wts] = wlsbaseline(data,baseline,options) 
[bldata,wts] = wlsbaseline(data,order,options) 

Description 

Subtracts a baseline (or other signal) from a spectrum with the constraint that residuals below 
zero be weighted more heavily than those above zero. This achieves a robust "non-negaitve" 
residual fit when residuals of significant amplitude (e.g. signals on a background) are 
present. 

Inputs are data the spectral data, baseline the reference spectrum/spectra to use for 
baseline OR an integer value representing the order of polynomial baselining to use and 
options an optional options structure.  

Outputs are the baselined data bldata and the weightings wts indicating the amount of 
baseline which was removed from each spectrum in data. (i.e. bldata = data - 
wts*baseline) 

Polynomial baseline Option: If a positive scalar value is given instead of the input baseline, 
then a polynomial baseline of that order will be used. In this mode, any row of the output wts 
can be used with the polyval function to obtain the baseline removed from the corresponding 
row of data. 

Options 
    plots :  [{'none'} | 'debug' | 'intermediate' | 'final'] governs plots 
    weightmode :  [ {1} |  2 ] flag indicating which weighting mode to use. 
  Mode 1 = Power method. Negative residuals are weighted up by the 

power of 10.^(option.negw). All residuals are then raised to the power of 
(option.power) 

  Mode 2 = T squared method. Negative residuals are weighted up by the 
extent to which the surpass an estimate of the noise limit and the 
approximate t-limit defined by (option.tsqlim) 

    trbflag :  [ 'bottom' | 'top' ] baseline to top or bottom of data 
    negw :  {1} deweighting scale of negative values (10^negw) (used only for 

weightmode = 1), 
    power :  {2} exponential amplification of residuals (used only for weightmode = 

1), 
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 tsqlim :  [0.99] t-test confidence limit for significant negative residuals which 
need to be up-weighted. (used only for weightmode = 2), 

 nonneg :  ['no'|{'yes'}] flag to force non-negative baseline weighting, most often 
used when "real" spectra are used for baslineing and they should not be 
"flipped" by a negative weighting. Using nonneg = 'yes', 
WLSBASELINE an be used as a partial CLS prediction to estimate the 
concentration of a species when not all species' pure component spectra 
are known, 

    delta :  [1e-4] change-of-fit convergence criterion, 
    maxiter :  [100] maximum iterations allowed per spectrum, 
    maxtime :  [600] maximum time (in seconds) permitted for baselining of all data. 

Examples 

To swap 4 BYTES in a 32 bit number: 

See Also 

baseline, baselinew 
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wrtpulse 
Purpose 

Creates input and output matrices for finite impulse response (FIR) dynamic model 
identification and prediction. 

Synopsis 
 
[newu,newy] = wrtpulse(u,y,n,delay) 

Description 

WRTPULSE is used to write time series data with muliple inputs and a single output into a form 
to obtain finite impulse response (FIR) and ARX models. Inputs are a matrix of input vectors 
u, and an output vector y. n is a row vector with the number of coefficents to use for each 
input, and delay is a row vector containing the number of time units of delay for each input. 
The output is a matrix of lagged input variables newu and the corresponding output vector 
newy. 

See Also 

autocor, crosscor, fir2ss, plspulsm 
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wtfa 
Purpose 

Window target factor analysis. 

Synopsis 
 
[rho,angl,q,skl] = wtfa(spec,tspec,window,p,options) 

Description 

Inputs are a M by N data matrix spec, a K by N matrix of target spectra tspec, the window 
width window > 1, and the number of principal components, PCs, for modelling each window 
of spectra, p. The input p is used to govern the PCA model in each window: 
 p >= 1: (integer) number PCs is a constant p, 
 0 < p < 1: sets a relative criterion for selecting number of PCs in each window i.e. 

only the first set of PCs that together capture >=p*100Found of the 
variance in the window are used, or 

 p < 0: sets an absolute value for number of PCs i.e. factors with singular values 
<|p| are not used. EWFA (see EWFA) can be used as a guide for setting p 
when p<0. 

Outputs are the cosines rho between tspec and a p component PCA model of spec in each 
window, angl [= acos(rho)], and Q residuals q. Note that the output values near the end 
of the record (less than the half width of the window) are plotted as dashed lines and the 
window center is output in the variable skl. 

This routine is based on work in: Lohnes, M.T., Guy, R.D., and Wentzell, P.D., "Window 
Target-Testing Factor Analysis: Theory and Application to the Chromatographic Analysis of 
Complex Mixtures with Multiwavelength Flourescence Detection", Anal. Chim. Acta, 389, 
95-113 (1999). 
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Options 
 options = a structure array with the following fields: 
 plots: [ 'none' | {'angle'} | 'rho' | 'q' ], governs plotting, 
  'angle', plots projection angle {default}, 
  'rho', plots direction cosine, and 
  'q', plots Q residuals. 
 scale: [ ], is a M element time scale to plot against 

The default options can be retreived using: options = wtfa('options');. 

See Also 

evolvfa, ewfa, pca 
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xclgetdata 
Purpose 

Extract  a data table from an Excel spreadsheet. 

Synopsis 
 
xmat = xclgetdata(filename,datarange,formt) 

Description 

XCLGETDATA extracts a data table from an Excel spreadsheet using dynamic data exchange 
(DDE) and writes it to the variable xdat. This function only works on a PC, the spreadsheet 
must be open in Office 97 or higher, and character arrays can't be extracted. 

It has been observed that XCLGETDATA won't work unless a copy of the open spreadsheet is 
saved to the hard drive and the name in filename is exact. Also, if the function doesn't work 
check the Excel menu tools/options/general and ensure that the ignore other applications 
check box is unchecked. 

Examples 

To get a table data from the range C2 to T25 from the open workbook 'book1.xls': 
data =  xclgetdata('book1.xls','r2c3:r25c20'); 

To get a table data from 'Sheet2' the range D4 to F16 from the open workbook 'book1.xls': 
data =  xclgetdata('c:\book1.xls\sheet2','r4c4:r16c6'); 

See Also 

areadr, spcreadr, xclputdata, xclreadr 
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xclputdata 
Purpose 

Fill a data table in an Excel spreadsheet. 

Synopsis 
 
xclputdata(filename,datarange,xmat,formt) 

Description 

XCLPUTDATA fills a a range in an Excel spreadsheet using dynamic data exchange (DDE) 
with a data table contained in the variable xdat. This function only works on a PC, the 
spreadsheet must be open in Office 97 or higher. 

If the function doesn't work check the Excel menu tools/options/general and ensure that the 
ignore other applications check box is unchecked. 

Examples 

To place a 3x5 data table contained in the workspace variable xdat into the spreadsheet 
'book1.xls' in the range B2 to F4: 

xclputdata('book1.xls','r2c2:r4c6','xdat'); 

See Also 

areadr, spcreadr, xclgetdata, xclreadr 
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xclreadr 
Purpose 

Reads ASCII flat files from MS Excel and other spreadsheets as a DataSet Object. 

Synopsis 
 
out = xclreadr(file,delim,options) 

Description 

XCLREADR reads tab, space, comma, semicolon or bar delimited files with names on the 
columns (variables) and rows (samples). 

If XCLREADR is called with no input, or an empty matrix for file name file, a dialog box allows 
the user to select a file to read from the hard disk. 

INPUTS: 

file = One of the following identifications of files to read: 
 a)  a single string identifying the file to read  
  ('example.txt') 
 b)  a cell array of strings giving multiple files to read  
  ({'example_a' 'example_b' 'example_c'}) 
 c)  an empty array indicating that the user should be prompted to locate the 

file(s) to read  
  ([]) 

delim = An optional string used to specify the delimiter character. 

Supported delimiters include: 
 'tab'  or  '\t' or sprintf('\t') 
 'space'  or  ' ' 
 'comma'  or  ',' 
 'semi'   or  ';' 
 'bar'    or  '|' 

If (delim) is omitted, the file will be searched for a delimiter common to all rows of the file 
and producing an equal number of columns in the result. 

OUTPUTS: 

out = A DataSet object with date, time, info (data from cell (1,1)) the variable names vars, 
sample names samps, and data matrix data.  Note that the primary difference between this 
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function and the Mathworks function xlsread is the parsing of labels and output of a dataset 
object. 

Note that the primary difference between this function and the Mathworks function xlsread is 
the parsing of labels and output of a dataset object. 

Options 
 options = a structure array with the following fields: 
 parsing: [ 'manual' | {'automatic'} | 'auto_strict' ] determines the 

type of parsing to perform: 
  'automatic' : the file is automatically parsed for labels and header 

information. This works on many standard arrangements with different 
numbers of rows and column labels. May take some time to complete 
with larger files. See note below regarding additional options available 
with 'automatic' parsing. 

  'auto_strict' : faster automatic parsing which does not handle header 
lines, and expects that all row labels will be on the left-hand side of the 
data and all column labels will be on the top of the columns. If this 
returns the wrong result, try 'automatic'. 

  'manual' : the options below are used to determine the number of labels 
and header information. 

  Note that when the file type is XLS, 'automatic' parsing is always 
performed.  

  (the following options are only used when options.parsing='manual') 
commentcharacter: [''] any line that starts with the given character will be considered a 

comment and parsed into the"comment" field of the DataSet object. 
Deafult is no comment character. Example: '%' uses % as a 
commentcharacter. 

  NOTE: Only used with 'automatic' and 'manual' parsing, NOT with 
'auto_strict' parsing. 

 headerrows: [{0}] number of header rows to expect in the file. 
 rowlabels: [{1}] number of row labels to expect in the file. 
 collabels: [{1}] number of column labels to expect in the file. 
 
The default options can be retreived using: options = xclreadr('options'); 

In addition to the above options, if option parsing is set to 'automatic', any option used by the 
PARSEMIXED function can be input to XCLREADR. These options will be passed directly 
to PARSEMIXED for use in parsing the file. See PARSEMIXED for details. 

See Also 

areadr, dataset, spcreadr, xclgetdata, xclputdata, xlsreadr 
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xlsreadr 
Purpose 

Reads .XLS files from MS Excel and other spreadsheets. 

Synopsis 
 
out = xlsreadr(file,sheets,options) 

Description 

This function reads Microsoft XLS files, parses the contents into a DataSet object. If called 
with no input a dialog box allows the user to select a file to read from the hard disk. Optional 
input file is a text string with the file name. Optional input (file) is a text string with the file 
name. Optional input (sheets) is a cell array containing the names of one or more sheets in 
XLS file to read. Optional input (options) specifies the parsing options. For details on these 
options, see PARSEMIXED. 

Note that the primary difference between this function and the Mathworks function xlsread 
is the parsing of labels and output of a dataset object. 

See Also 

areadr, dataset, xclgetdata, xclreadr 
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xyreadr 
Purpose 

Reads one or more ASCII XY or XY... files into a DataSet object. 

Synopsis 
 
out = xyreadr(file,delim,options) 

Description 

Reads standard XY ASCII files in which the first column is a column of axisscale values 
(wavelengths, retention times, etc) and the second and possibly subsequent column(s) are 
values measured at the corresponding axisscale values. Returns a DataSet object with the X 
as the axisscale in the file and all Y columns (both in the same file and in multiple files) 
concatenated and transposed as rows.  

It is REQUIRED that, if multiple files are being read, they must all have the same X range. If 
this is not true, the import may fail. 

INPUTS: 

file = One of the following identifications of files to read: 
 a)  a single string identifying the file to read  
  ('example.txt') 
 b)  a cell array of strings giving multiple files to read  
  ({'example_a' 'example_b' 'example_c'}) 
 c)  an empty array indicating that the user should be prompted to locate the 

file(s) to read  
  ([]) 

delim = An optional string used to specify the delimiter character. 

Supported delimiters include: 
 'tab'  or  '\t' or sprintf('\t') 
 'space'  or  ' ' 
 'comma'  or  ',' 
 'semi'   or  ';' 
 'bar'    or  '|' 

If (delim) is omitted, the file will be searched for a delimiter common to all rows of the file 
and producing an equal number of columns in the result. 

OUTPUTS: 
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out = a DataSet object with the first column of the file(s) stored as the axisscale{2} values 
and all subsequent column(s) stored as rows of data. 

Options: 
commentcharacter: [''] any line that starts with the given character will be considered a 

comment and parsed into the"comment" field of the DataSet object. 
Deafult is no comment character. Example: '%' uses % as a 
commentcharacter. 

 headerrows: [{0}] number of header rows to expect in the file. 
 waitbar: [ 'off' |{'on'} ] governs use of waitbars to show progress. 

See Also 

areadr, dataset, xclgetdata, xclreadr 
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yscale 
Purpose 

Rescale the y-axis limits on each subplot in a figure. 

Synopsis 
 
yscale(infscale,xrange,allaxes) 
ax = yscale(infscale,xrange,allaxes) 

Description 

Each axes on a subplot is rescaled so that the y-scale tightly fits the maximum and minimum 
of the displayed data. The input infscale, when set to 1 (one), also rescales each line object 
on each axes to tightly fit the new limits (i.e. inf-scales each line object relative to one 
another). Default is 0 scale axis to data. The input xrange uses the specified x-axis 
range for scaling rather than the current axis settings. 

If the single output ax is requested, the plots are not rescaled, but the axis which would have 
been used is returned. 

The optional third input allaxes rescales the specified axis or axes handles. Default is to 
rescale all axes. 
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zline 
Purpose 

Adds vertical lines to 3D figure at specified locations. 

Synopsis 
 
h = zline(x,y,lc) 

Description 

ZLINE draws a vertical line on an existing 3D figure from the bottom axis to the top axis at at 
postions defined by x and y which can be a scalar or vector. If no input is used for x and y the 
default vaule is zero {default = 0}. 

Optional input lc is used to define the line style and color as in normal plotting (see PLOT). If 
not inputs are supplied, ZLINE draws a vertical green line at 0. 

Output h is the handle(s) of line(s) drawn. 

Examples 

zline(2.5, 1.2,'-r') 

plots a vertical red line at x = 2.5 and y = 1.2. 

See Also 

dp, ellps, hline, pan, plot, plttern, vline 
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chitest 
Purpose 

Uses chi-squared to test if sample has a specific distribution. 

Synopsis 
 
vals = chitest(x,distname,classes) 

Description 

Assesses how well a particular distribution fits the data (x).  

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 
 
 distribution =   Optional distribution name to assume as the parent distribution for 

thesample. If this argument is missing, then 'normal' is assumed. This 
argument must be in single quotes and the name may be abbreviated. 

 
 classes =  Optional argument naming the number of equal probability intervals for 

which counts should be collected for the test. If this argument is 
missing, then the number of classes is taken to be 

    
max{x}− min{x}

3.5 var{x}
length{x}

 
  

 
  +1 

   where {x} is the smallest integer z  such that z  ≤ x.  If specified, the 
number of classes may not be greater than the length of the data vector. 
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OUTPUTS: 
 
The return value is a structure with fields: 

 
 chi2 =  value of the test statistic x2( ) 

 pval = p-value associated with the test statistic   
 df = degrees of freedom of the test 
 classes = number of intervals for which counts are obtained 
 parameters = maximum likelihood estimates 
 E = expected counts for the classes 
 O = observed counts for the classes 
 
Note: If a sample contains all negative values, then some of the overlay distributions will not 
be drawn as they are not applicable. If only some of the sample is made up of negative 
values, these values are ignored in obtaining the maximum likelihood estimates and 
subsequent results. 

Examples 
 
chitest(x) 
chitest(x,'exp') 
chitest(x,'logistic',12) 

See Also 

distfit, kstest, plotcqq, plotkd, plotqq 
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ck_function 
Purpose 

Validates distribution function string. 

Synopsis 
 
string = ck_function(string) 

Description 

Translates various function string names into internal keyword. Abbreviations can be used 
with distribution function. For instance, the following example will produce the density 
distribution at x: 
 
>> n = normdf('d',x); 

INPUTS: 
'cumulative'  'c'  'cdf'  
'density'  'd' 'pdf' 
'quantile'  'q' 'inv' 'inverse' 
'random'       'r' 

OUTPUTS: 
'cumulative' 
'density' 
'quantile' 
'random' 

Examples 

string = ck_function(string); 

See Also 

ensurep 
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cqtool 
Purpose 

Interactive conditional quantile-quantile plot gui. 

Synopsis 
 
cqtool(x) 

Description 

Assesses how well a particular distribution fits the data (x). Conditional quantile plots as 
described in the 1986 Kafadar and Spiegelman article “An alternative to ordinary q-q plots” 
in Computational Statistics & Data Analysis are also available in this toolbox 

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 

Examples 
 
cqtool(x) 

 
 
Note: If a sample contains all negative values, then some of the overlay distributions will not 
be drawn as they are not applicable. If only some of the sample is made up of negative 
values, these values are ignored in obtaining the maximum likelihood estimates and 
subsequent results. 
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See Also 

plotedf, plotkd, plotcq, plotqq, plotsym 
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distfit 
Purpose 

Chitest for all distributions. 

Synopsis 
 
res = distfit(x,options) 

Description 

This command will perform the chi-squared test for all supported distributions and then 
present a list of the supported distributions from the most likely parent distribution to the 
least likely (along with the associated p-values).The default behavior is to display a figure 
containing the results. This can be disabled using options. 

NOTE: Some distributions will ignore parts of the sample that are not part of the supported 
range. 

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 

OUTPUTS: 
 
The return value is a structure with fields: 

 
 dist =  names of candidate distributions. 
 pval = p-value associated with the test statistic. 

Options: 
 
 name : 'options', name indicating that this is an options structure, 
 plots :  [ 'none' | {'final'} ]  governs level of plotting, 
 

Examples 
 
distfit(x) 

See Also 

chitest 
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ensurep 
Purpose 

Verifies that input contains only probabilities in [0,1]. 

Synopsis 
 
prob = ensurep(prob) 

Description 

The input is a real (x) and the output is (prob): 

    If x > 1, then prob = 1. 

    If x < 0, then prob = 0. 

    If x imaginary, inf, or NaN, then prob = NaN. 

Examples 
 
prob = ensurep(prob); 

See Also 

ck_function 



 376 

kdensity 
Purpose 

Calculates the kernel density estimate. 

Synopsis 
 
[kde, newx] = kdensity(x,code,width,n,at) 

Description 

Produces the kernel density estimate of the data contained in the input vector (x) which must 
be real.  

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 
 code = Integer between 1 and 7 indicating which kernel to use. 
   1 - Bivwight 
   2 - Cosine 
   3 - Epanechnikov {default} 
   4 - Gaussian 
   5 - Parzen 
   6 - Triangle 
 width = scalar, optional window width to use in the kernel calculation. If not 

specified, then the optimal window width is used according to the 
calculation: 

    min σ x,
p75 − p25

1.349
   

   
0.9
n

 
 

 
 

0.20

 

 n = scalar, number of points at which to estimate the density. 
 at = vector, allows the user to specify a vector of points at which the density 

should be estimated. By using this option, it makes it easier to overlay 
density estimates for different samples on the same graph. 

OUTPUTS: 
 newx = x input returned. 
 kde =  The return value is a structure with fields. 
 x = vector of points where density was estimated. Will be the same as 'at' 

input if used. 
 fx = ? 
 n = number of points at which to estimate density. Same as 'n' input if used. 
 width = window width used. Same as 'width' input if used.  
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 kernel =  name of kernel used.  
 

Examples 
 
kde = kdensity(x,2); 
kde = kdensity(x,2,22.4); 
kde = kdensity(x,2,22.4,50); 
kde = kdensity(x,2,22.4,50,y); 

See Also 

plotkd 
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kstest 
Purpose 

Kolmogorov-Smirnov test that a sample has a specified distribution. 

Synopsis 
 
vals = kstest(x,distname) 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
  distname =string, optional distribution name to assume as the parent 

distribution for the sample. Default value is 'normal'.  

OUTPUTS: 
 
The return value is a structure with fields (larger values indicate rejecting the named 
distribution as a candidate parent distribution for the sample). The ks is the value of the 
Kolmogorov-Smirnov statistic and is n  times the maximum difference of the distributions. 
The maximum difference in the distributions is returned as Dn. 

 
 Ks =  value of the adjusted test statistic. 
 Dn = unadjusted test statistic. 
 parameters = maximum likelihood estimates. 

Examples 
 
kstest(x) 
kstest(x,'exp') 

See Also 

CHITEST, DISTFIT 
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ktool 
Purpose 

GUI tool for investigating the kernel density of a sample. 

Synopsis 
 
ktool(x) 

Description 

Investigate density estimates interactively with various kernel density estimates. Kernel 
densities are calculated using the kernel with an overlaid best-fit density.  

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

OUTPUTS: 
 
 No outputs. 

Examples 
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Note: If a sample contains all negative values, then some of the overlay distributions will not 
be drawn as they are not applicable. If only some of the sample is made up of negative 
values, these values are ignored in obtaining the maximum likelihood estimates and 
subsequent results. 
 

See Also 

cqtool, plotcqq, plotkd, plotqq, qtool 
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means 
Purpose 

Calculates the algebraic, harmonic, and geometric mean of a vector. 

Synopsis 
 
vals = means(x) 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

OUTPUTS: 
 
The return value is a structure with fields: 

 
 amean =  arithmetic mean. 
 na = number of obs used in amean calculation. 
 hmean = harmonic mean. 
 nh =  number of obs used in hmean calculation. 
 gmean = geometric mean. 
 ng = number of obs used in gmean calculation. 
 

Examples 
 
mns = means(x); 

See Also 

summary 
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newtondf 
Purpose 

Newton's root finder. 

Synopsis 
 
[quantile,exitflag] = newtondf(q,distfun,x,a,b,maxits,tol) 

Description 

Newton's root finder for a given quantile 

INPUTS: 
 q = matrix, the quantile point of interest 
 distfun = string, distribution function name. 
 x = matrix, original input matrix 
 a =  matrix, scale parameter 
 b = matrix, shape parameter 
 maxits = scalar, maximum number of iterations 
 tol = scalar, tolerance 

OUTPUTS: 
 quantile = matrix, quantile 
 exitflag = 0 if no error, 1 if maximum iterations is exceeded 

Examples 

[quantile,exitflag] = newtondf(q,distfun,x,a,b); 
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parammle 
Purpose 

Maximum likelihood parameter estimates. 

Synopsis 
 
params = parammle(x,distname) 

Description 

Use parammle to obtain the best fit parameter estimates for a supported distribution.  

Note: Some distributions (beta, Cauchy, gamma, Gumbel, and Weibull) will take longer to 
find the maximum likelihood estimates as the estimators are not analytically known. They 
are solved for by optimizing the likelihood.  

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 distname = string, optional distribution name to assume as the parent distribution for 

the sample. Default value is 'normal'.  

OUTPUTS: 
 
The return value is a structure with up to 3 fields depending on the distribution (distname).  

 
 a =  first paramter. 
 b = second parameter (if necessary). 
 c = third parameter (if necessary). 
 

Examples 
 
params = parammle(x,'exponential') 

See Also 

chitest 
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pctile1 
Purpose 

Returns the Pth percentile of a data vector. 

Synopsis 
 
pctile = pctile1(x,p) 

Description 

The return value (pctile) is the specified percentile of the sample. This is the function used 
by the summary command. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 p = integer (1,100), percentile to calculate. 

Examples 
 
pctl = pctile1(x,50) 

See Also 

pctile2 
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pctile2 
Purpose 

Returns the Pth percentile of a data vector. 

Synopsis 
 
pctile = pctile2(x,p) 

Description 

The return value (pctile) is the specified percentile of the sample. This is an alternative to 
the pctile1 command used by the summary command. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 p = integer (1,100), percentile to calculate. 

Examples 
 
pctl = pctile2(x,50) 

See Also 

pctile1 
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plotcqq 
Purpose 

Conditional quantile-quantile plot. 

Synopsis 
 
vals = plotcqq(x,distname,translate) 

Description 

Plots a conditional QQplot of a sample in vector (x). Conditional quantile plots as described 
in the 1986 Kafadar and Spiegelman article “An alternative to ordinary q-q plots” in 
Computational Statistics & Data Analysis are also available in this toolbox. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 distname = string, optional distribution name to assume as the parent distribution for 

the sample. Default value is 'normal'.  
 translate = scalar, axis translation. 

OUTPUTS: 
 
The return value is a structure with the following fields: 

 
 q =  quantile of the named distribution. 
 u = values at which the quantiles were evaluated. 

Examples 
 
vals = plotcqq(x) 
vals = plotcqq(x,'normal') 
vals = plotcqq(x,'beta') 

See Also 

plotedf, plotkd, plotqq, plotsym 
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plotedf 
Purpose 

Empirical distribution fuction plot. 

Synopsis 
 
plotedf(x) 

Description 

Displays a plot of the estimated cumulative distribution..  

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

Examples 
 
plotedf(x) 

See Also 

plotcqq, plotpct, plotqq, plotkd 
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plotkd 
Purpose 

Kernel density plot. 

Synopsis 
 
plotkd(x,distname,kernel,userw,translate) 

Description 

Provides a kernel density plot of the input x and an overlay. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 distname = string, optional distribution name to assume as the parent distribution for 

the sample. Default value is 'normal'.  
 kernel = Integer between 1 and 7 indicating which kernel to use. 
   1 - Bivwight 
   2 - Cosine 
   3 - Epanechnikov {default} 
   4 - Gaussian 
   5 - Parzen 
   6 - Triangle 

 userw = scalar, the optional window width to use in the kernel calculation. If not 
specified, then the optimal window width is used according to the 
calculation: 

   min σ x,
p75 − p25

1.349
   

   
0.9
n

 
 

 
 

0.20

 

 translate = scalar, axis translation. 

Examples 
 
plotkd(x) 
plotkd(x,'normal') 

See Also 

plotcqq, plotedf, plotqq, plotsym 
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plotpct 
Purpose 

Percentile plot. 

Synopsis 
 
plotpct(x) 

Description 

Creates a percentile plot of the input (x). Plotted percentiles of centered and scaled x(i) 
versus i/(N+1). 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

Examples 
 
plotpct(x) 

See Also 

plotcqq, plotedf, plotqq, plotkd 
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plotqq 
Purpose 

Quantile-quantile plot. 

Synopsis 
 
vals = plotqq(x,distname,options) 

Description 

Makes a quantile-quantile plot of a sample in the input (x) against the optional input 
(distname). A 45 degree line is also plotted. The larger the deviation from the reference line 
the more likely it is the input (x) does not come from the distribution (distname). 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 distname = string, optional distribution name to assume as the parent distribution for 

the sample. Default value is 'normal'. If distname = 'select' or = '', the 
user is prompted to select one of the valid distribution types to use. If 
distname = 'auto' or 'automatic' then the best fitting distribution is used 
as determined by DISTFIT. 

 translate = scalar, axis translation. 

OUTPUTS: 
 
The return value is a structure with the following fields: 

 
 q =  quantile of the named distribution. 
 u = values at which the quantiles were evaluated. 

Options 
 plots: [ 'none' | {'final'} ] Governs plotting. If 'none', no plot is created 

and the function simply returns the fit (see outputs). 
 histogram: [ {'off'} | 'on' ] Governs the plotting of a histogram of the 

measured and reference distribution below the main QQ plot. 
 translate: [ 0 ] translate the x axis by this offset {default = 0}.  
 varname: [ '' ] label name to use on x-axis and title. Default is empty which 

uses the actual input variable name. 
 color: [ 'b' ] symbol color to use for the plot(s). 

Examples 
 
vals = plotqq(x) 
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vals = plotqq(x,'normal') 
vals = plotqq(x,'beta') 

See Also 

plotedf, plotkd, plotcqq, plotsym 
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plotsym 
Purpose 

Symmetry plot. 

Synopsis 
 
vals = plotsym(x) 

Description 

Plotted are the distances above the median versus the distances below the median. In other 
words median - x(i)versus x(n+1-i) - median . If the distribution is symmetric, then all points 
should lie on a diagonal line. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

Examples 
 
plotsym(x) 

See Also 

plotedf, plotkd, plotcqq, plotqq 
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qtool 
Purpose 

Interactive quantile-quantile plot gui. 

Synopsis 
 
qtool(x) 

Description 

Assesses how well a particular distribution fits the data (x).  

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 

Examples 
 
qtool(x) 

 
 
Note: If a sample contains all negative values, then some of the overlay distributions will not 
be drawn as they are not applicable. If only some of the sample is made up of negative 
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values, these values are ignored in obtaining the maximum likelihood estimates and 
subsequent results. 

See Also 

plotedf, plotkd, plotqq, plotsym 
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resize 
Purpose 

Resizes arguments to same length. 

Synopsis 
 
[xout,varargout] = resize(x,varargin) 

Description 

Inputs (x) and (v) can be scalars, vectors, matrices, or multidimensional arrays. The function 
will attempt to resize all inputs to the largest size of each dimension for any given input as 
repeated multiple of itself. If input is a scalar, the function will return that scalar. 

Examples 
 
   (newx,newv1,newv2) = resize(x,v1,v2,v3); 
      
original sizes are: 
        x  - 2x2x2 
        v1 - 2x6 
        v2 - 4x1 
        v3 - 1x1 
new sizes are: 
        newx  - 4x6x2 
        newv1 - 4x6x2 
        newv2 - 4x6x2 
        newv3 - 1x1 

See Also 

repmat 



 396 

summary 
Purpose 

Summarizing statistics for sample data. 

Synopsis 
 
summ = sumary(x) 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 

Outputs: 
 
The return value is a structure with fields: 

 
 mean = mean of the sample   
 std = standard deviation of the sample  
 n = number of observations   
 min = minimum value in the sample  
 max = maximum value in the sample  
 p10 = tenth percentile   
 p25 = twenty-fifth percentile (lower quartile)  
 p50 = fiftieth percentile (median)   
 p75 = seventy-fifth percentile (upper quartile)   
 p90 = nintieth percentile   
 skew = skewness   
 kurt = kurtosis 
 

Examples 
 
summ = summary(x); 

See Also 

means 
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ttest1 
Purpose 

One sample t-test. 

Synopsis 
 
result = ttest1(x,mu,test) 

Description 

Calculates a one sample t-test for sample (x). 

INPUTS: 
 x = The name of a matrix (column vector) in which the sample data is 

stored. 
 mu = scalar, the null hypthesis value for the mean {default = 0}. 
 ttest = [-1,{0},1] indicates what ttest is for: 
   -1 - lower tail   H0: mean(x) <= mean(y) 
    0 - wo-tail     H0: mean(x) ~= mean(y) {default} 
    1 - upper tail   H0: mean(x) >= mean(y) 

OUTPUTS: 

The output (result) a structure with the following fields: 
 t = test statistic. 
 p = probability value 
 mean = mean of x 
 var = variance of x  
 n =  length of x  
 se = standard error 
 df = degress of freedom  
 hyp =  hypothesis being tested 

Examples 
 
result = ttest1(x); 
result = ttest1(x,mu);  
result = ttest1(x,mu,test); 

See Also 

ttest2e, ttest2u, ttest2p 
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ttest2e 
Purpose 

Two sample t-test (assuming equal variance). 

Synopsis 
 
result = ttest2e(x,y,test) 

Description 

Calculates a two sample t-test for samples (x) and (y) assuming equal variance. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 y = matrix (column vector) in which the sample data is stored. 
 ttest = [-1,{0},1] indicates what ttest is for: 
   -1 - lower tail   H0: mean(x) <= mean(y) 
    0 - wo-tail     H0: mean(x) ~= mean(y) {default} 
    1 - upper tail   H0: mean(x) >= mean(y) 

OUTPUTS: 

The output (result) a structure with the following fields: 
 t = test statistic. 
 p = probability value 
 mean1 = mean of x 
 mean2 = mean of y 
 var1 = variance of x  
 var2 = variance of y 
 n1 =  length of x  
 n2 =  length of y 
 pse = pooled standard error 
 df = degress of freedom  
 hyp =  hypothesis being tested 
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Examples 
 
result = ttest2e(x,y); 
result = ttest2e(x,y,test); 

See Also 

ttest1, ttest2u, ttest2p 
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ttest2p 

Purpose 

Two sample paired t-test. 

Synopsis 
 
result = ttest2e(x,y,test) 

Description 

Calculates a two sample paired t-test for samples (x) and (y). 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 y = matrix (column vector) in which the sample data is stored. 
 ttest = [-1,{0},1] indicates what ttest is for: 
   -1 - lower tail   H0: mean(x) <= mean(y) 
    0 - wo-tail     H0: mean(x) ~= mean(y) {default} 
    1 - upper tail   H0: mean(x) >= mean(y) 

OUTPUTS: 

The output (result) a structure with the following fields: 
 t = test statistic. 
 p = probability value 
 mean = mean of x - y 
 var = variance of x - y  
 n =  length of x - y  
 se = standard error 
 df = degress of freedom  
 hyp =  hypothesis being tested 

Examples 
 
result = ttest2p(x,y); 
result = ttest2p(x,y,test); 

See Also 

ttest1, ttest2e, ttest2u 
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ttest2u 
Purpose 

Two sample t-test (assuming unequal variance). 

Synopsis 
 
result = ttest2u(x,y,test,dfapp) 

Description 

Calculates a two sample t-test for samples (x) and (y) assuming unequal variance. 

INPUTS: 
 x = matrix (column vector) in which the sample data is stored. 
 y = matrix (column vector) in which the sample data is stored. 
 ttest = [-1,{0},1] indicates what ttest is for: 
   -1 - lower tail   H0: mean(x) <= mean(y) 
    0 - wo-tail     H0: mean(x) ~= mean(y) {default} 
    1 - upper tail   H0: mean(x) >= mean(y) 
 dfapp = [{-1}, 1] indicates which degree of freedom calculation to use. 
   -1 - indicates Welch's approximate degrees of freedom {default} 
   1  - indicates Satterthwaite's approximate degrees of freedom 

OUTPUTS: 

The output (result) a structure with the following fields: 
 t = test statistic. 
 p = probability value 
 mean1 = mean of x 
 mean2 = mean of y 
 var1 = variance of x  
 var2 = variance of y 
 n1 =  length of x  
 n2 =  length of y 
 pse = pooled standard error 
 df = degress of freedom  
 app = 'Satterthwaite' or 'Welch' 
 hyp =  hypothesis being tested 

Examples 
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result = ttest2u(x,y); 
result = ttest2u(x,y,test); 
result = ttest2e(x,y,test,dfapp); 

See Also 

ttest1, ttest2u, ttest2p 
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Distribution Fitting Tool Set - Distribution 
Functions 
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betadf 
Purpose 

Beta distribution. 

Synopsis 
 
prob = betadf(function,x,a,b,options) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Beta distribution.   

This distribution is commonly used to model activity time. In its usual form, the data must be 
in (0,1), but this toolbox will allow both a location and scale parameter (in addition to the a 
and b above). This may be symmetric or asymmetric. 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (0,1).  
  for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real and nonnegative). 
  b = shape parameter (real and nonnegative). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results. 



 

 405

Options 

options is a structure array with the following fields: 
 name: 'options', name indicating that this is an options structure, 
 scale: {1}, scale for the ordinate, and 
 offset: {0}, offset for the ordinate. 

The default options structure can be retrieved using: options = betadf('options'). 

Examples 

Cumulative: 
 
>> prob = betadf('c', [0.85 0.9],1,2) 
prob = 

0.9775 0.9900 
 
>> x    = [0:0.01:1]; 
>> plot(x,betadf('c',x,1,2),'b-',x,betadf('c',x,0.5,0.5),'r-') 

Density: 
 
>> prob = betadf('d', 0.9, 1, 2) 
prob = 
0.2000 
 
>> x    = [0:0.01:1]; 
>> plot(x,betadf('d',x,1,2),'b-',x,betadf('d',x,0.5,0.5),'r-') 

Quantile: 
 
>> prob = betadf('q',[0.9775 0.9900]',1,2) 
prob = 
    0.8500 
    0.9000 

Random: 
 
>> prob = betadf('r',[5 1],1,2) 
prob = 
    0.3791 
    0.2549 
    0.8169 
    0.0216 
    0.1516 
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See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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cauchydf 
Purpose 

Cauchy distribution. 

Synopsis 
 
prob = cauchydf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Cauchy distribution.  

This distribution is equivalent to a t-distribution with zero degrees of freedom and is 
symmetric. 

From: http://www.brighton-webs.co.uk/distributions/cauchy.asp 

(The Cauchy distribution is a symmetrical, and to use a technical term, heavy tailed.  Heavy 
tailed means that a high proportion of the population is comprised of extreme values. 

There is no analytical definition of moment based properties (e.g. mean, variance etc.) thus 
the parameters are typically described as the location parameter and a scale factor.  The most 
easily derived property is the median for this reason and for consistency with the rest of the 
site, the parameters have been defined as the median and a scale factor. 

The moment based properties derived from a set of random numbers do not provide any 
useful information on the properties of the distribution. 

The Cauchy distribution is also known as the Lorentzian Distribution. 

An application of the Cauchy distribution is in software testing where it is necessary to use 
datasets which contain a few extreme values which might trigger some adverse reaction.) 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = median or location parameter (real). 
  b = scale parameter (real and positive). Describes distribution of data around 

the mode. 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results. 

Examples 

Cumulative: 
 
>> x    = [-5:0.1:5]; 
>> prob = cauchydf('c',x); 
>> plot(x,prob), vline 
 
>> x    = [-8:0.1:8]; 
>> prob = cauchydf('c',x); 
>> plot(x,prob), vline([0; cauchydf('q',[0.9 0.95])']) 

Density: 
 
>> prob = cauchydf('d',x); 
>> plot(x,prob), vline 
 
>> x    = [-8:0.1:8]; 
>> prob = cauchydf('d',x); 
>> plot(x,prob), vline([0; cauchydf('q',[0.9 0.95])']) 

Quantile: 
 
>> x2 = cauchydf('q',cauchydf('c',x)); 
>> plot(x,x2,'.'), dp 
 



 

 409

Random: 
 
>> prob = cauchydf('r',[4 1]) 
prob = 
    0.0480 
   -1.0204 
    5.7400 
   -0.2175 

See Also 

betadr, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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chidf 
Purpose 

Chi-squared distribution. 

Synopsis 
 
prob = chidf(function,x,a) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.  

The chi-squared distribution usually models data that are positive (such as the sum of 
physical measurements). With integer degrees of freedom parameter v, it is equal to the sum 
of v normally distributed variates. This toolbox does not require that the degrees of freedom 
be integral and will ignore negative values in a sample. Chi-squared distributions have 
variance equal to twice the mean. 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (0,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = degrees of freedom parameter (positive integer). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results. 
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Examples 

Cumulative: 
 
>> prob = chidf('c',[3.7942 4.6052],2) 
prob = 
    0.8500    0.9000 
 
>> x = 0:0.1:8; 
>> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r') 

Density: 
 
>> prob = chidf('d',[3.7942 4.6052],2) 
prob = 
    0.0750    0.0500 
 
>> x = 0:0.1:8; 
>> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r') 

Quantile: 
 
>> prob = chidf('q',[0.85 0.9],2) 
prob = 
     3.7942    4.6052 

Random: 
 
>> prob = chidf('r',[4 1],2) 
prob = 
    0.1023 
    2.9295 
    0.9990 
    1.4432 

See Also 

betadr, cauchydf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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expdf 
Purpose 

Exponential distribution. 

Synopsis 
 
prob = expdf(function,x,a) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for an Exponential distribution.  

The exponential distribution is commonly used to measure lifetime data (time to failure of 
light bulbs, time to failure of a particular resistor on a circuit board, etc.). It may also 
measure time between events. The distribution is skewed to the right. The variance is equal 
to the square of the mean in this distribution. Negative values in the sample are ignored. 

( ) ( )exp= −f x a ax  

( ) ( )1 exp= − −F x ax  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = mean/scale parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = expdf('c',[3.7942 4.6052],2) 
prob = 
    0.8500    0.9000 
 
>> x = 0:0.1:8; 
>> plot(x,expdf('c',x,2),'b',x,expdf('c',x,0.5),'r') 

Density: 
 
>> prob = expdf('d',[3.7942 4.6052],2) 
prob = 
    0.0750    0.0500 
 
>> x = 0:0.1:8; 
>> plot(x,expdf('d',x,2),'b',x,expdf('d',x,0.5),'r') 

Quantile: 
 
>> prob = expdf('q',[0.85 0.9],2) 
prob = 
     3.7942    4.6052 

Random: 
 
>> prob = expdf('r',[4 1],2) 
prob = 
    0.3271 
    2.3940 
    0.9508 
    3.9324 

See Also 

betadr, cauchydf, chidf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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gammadf 
Purpose 

Gamma distribution. 

Synopsis 
 
prob = gammadf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Gamma distribution.  

This distribution is commonly used to measure lifetime data (like the exponential 
distribution). The variance may be smaller, equal, or larger than the mean for this distribution 
and may also be symmetric or asymmetric. Negative values in the sample are ignored. 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (0,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real and nonnegative). 
  b = shape parameter (real and nonnegative). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = gammadf('c',0.99,0.5) 
prob = 
    0.8406 
 
>> x    = [0:0.1:10]; 
>> plot(x,gammadf('c',x,2),'b-',x,gammadf('c',x,0.5),'r-') 

Density: 
 
>> prob = gammadf('d',0.99,0.5) 
prob = 
0.2107 
 
>> x    = [0:0.1:10]; 
>> plot(x,gammadf('d',x,2),'b-',x,gammadf('d',x,0.5),'r-') 

Quantile: 
 
>> prob = gammadf('q',0.99,0.5) 
prob = 
    3.3174 

Random: 
 
>> prob = gammadf('r',[4 1],2) 
ans = 
    0.4549 
    0.4638 
    0.3426 
    0.5011 

See Also 

betadr, cauchydf, chidf, expdf, gumbeldf, laplacedf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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gumbeldf 
Purpose 

Gumbel distribution. 

Synopsis 
 
prob = gumbeldf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Gumbel distribution.  

This distribution is also known as the Type I extreme value distribution. It is an alternative to 
the Weibull distribution. 

( ) ( ) ( )

( ) ( ) ( )

/ 2 2 /2
2

/2
2 2

/

1

 
  

 
  

−+

+

Γ

Γ Γ +
=

a aa b

a ba b a
b

a b x

x
f x  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = mode/location parameter (real). 
  b = scale parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = gumbeldf('c',0.99,0.5,1) 
prob = 
    0.5419 
>> x    = [0:0.1:10]; 
>> plot(x,gumbeldf('c',x,2),'b-',x,gumbeldf('c',x,0.5),'r-') 

Density: 
 
>> prob = gumbeldf('d',0.99,0.5,1) 
prob = 
0.3320 
 
>> x    = [0:0.1:10]; 
>> plot(x,gumbeldf('d',x,2),'b-',x,gumbeldf('d',x,0.5),'r-') 

Quantile: 
 
>> prob = gumbeldf('q',0.99,0.5,1) 
prob = 
    5.1001 

Random: 
 
>> prob = gumbeldf('r',[4 1],2,1) 
ans = 
 
    3.8437 
    2.6508 
    2.3566 
    4.2479 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, laplacedf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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laplacedf 
Purpose 

Laplace distribution. 

Synopsis 
 
prob = laplacedf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Laplace distribution.  

This distribution is a symmetric distribution also known as the double exponential 
distribution. It is more peaked than the normal distribution Leptokurtic rather than 
mesokurtic means that it has a sharper peak at the mean in the density plot than a similar 
normal density 

( ) ( )1
2 exp −= − x a

b bf x  

( ) [ ] ( ) [ ] ( )1 1
2 2exp 1 exp− −= − Ι < + − − Ι ≥a x x a

b bF x x a x a  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (0,1).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real and positive). 
  b = shape parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = laplacedf('c',0.99,1,2) 
prob = 
    0.4975 
 
>> x    = [0:0.1:10]; 
>> plot(x,laplacedf('c',x,1,2),'b-',x,laplacedf('c',x,3,7),'r-') 

Density: 
 
>> prob = laplacedf('d',0.99,1,1) 
prob = 
    0.4950 
 
>> x    = [0:0.1:10]; 
>> plot(x,laplacedf('d',x,2,1),'b-',x,laplacedf('d',x,0.5,1),'r-') 

Quantile: 
 
>> prob = laplacedf('q',0.99,0.5,1) 
prob = 
    4.4120 

Random: 
 
>> prob = laplacedf('r',[4 1],2,1) 
ans = 
    0.4549 
    0.4638 
    0.3426 
    0.5011 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, logisdf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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logisdf 
Purpose 

Logistic distribution. 

Synopsis 
 
prob = logisdf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Logistic distribution.  

This distribution is a common alternative to the normal distribution. It is symmetric and 
many times used when data represents midpoints of interval data (data collected in such a 
way that a range instead or an exact value is collected). The variance may be smaller, equal, 
or larger than the mean for this distribution. 

( ) ( )

( )
2

exp /

1 exp /

 
  

      

− −

+ − −
=

x a b

b x a b
f x  

( ) ( ){ }1 1
2 21 tanh /= + −  F x x a b  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = mean parameter (real). 
  b = standard deviation parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = logisdf('c',0.99,1,2) 
prob = 
    0.4988 
 
>> x    = [0:0.1:10]; 
>> plot(x,logisdf('c',x,1,2),'b-',x,logisdf('c',x,3,.5),'r-') 

Density: 
 
>> prob = logisdf('d',0.99,1,2) 
prob = 
    0.1250 
 
>> x    = [0:0.1:10]; 
>> plot(x,logisdf('d',x,2,1),'b-',x,logisdf('d',x,0.5,1),'r-') 

Quantile: 
 
>> prob = logisdf('q',0.99,1,2) 
prob = 
   10.1902 

Random: 
 
>> prob = logisdf('r',[4 1],2,1) 
ans = 
    0.4549 
    0.4638 
    0.3426 
    0.5011 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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lognormdf 
Purpose 

Lognormal distribution. 

Synopsis 
 
prob = lognormdf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Lognormal distribution. 

This distribution may be used to characterize data that are themselves products or attribute 
data (square footage, acreage, etc.). The distribution is skewed to the right, but for very large 
means, may look nearly symmetric. Negative values in the sample are ignored. 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = mean parameter (real and positive). 
  b = standard deviation parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  



 

 423

Examples 

Cumulative: 
 
>> prob = lognormdf('c',0.99,1,2) 
prob = 
    0.3068 
 
>> x    = [0:0.1:10]; 
>> plot(x,lognormdf('c',x,1,2),'b-',x,lognormdf('c',x,3,7),'r-') 

Density: 
 
>> prob = lognormdf('d',0.99,1,1) 
prob = 
    0.2420 
 
>> x    = [0:0.1:10]; 
>> plot(x,lognormdf('d',x,2,1),'b-',x,lognormdf('d',x,0.5,1),'r-') 

Quantile: 
 
>> prob = lognormdf('q',0.99,0.5,1) 
prob = 
   16.8837 

Random: 
 
>> prob = lognormdf('r',[4 1],2,1) 
ans = 
   13.5191 
    4.4913 
   19.8518 
    8.7712 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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normdf 
Purpose 

Normal / Gaussian distribution. 

Synopsis 
 
prob = normdf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution.  

This distribution is used for many data types including physical attributes and sums of 
quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than 
the mean. 
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INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = mode/location parameter (real). 
  b = scale parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = normdf('c',[1.9600 2.5758]) 
ans = 
    0.9750    0.9950 
 
>> x = -5:.1:5; 
>> plot(x,normdf('c',x,0,1)), vline([ 0 ; normdf('q',[0.975; 0.995],0,1)]) 

Density: 
 
>> prob = normdf('d',[1.9600 2.5758],0,1) 
ans = 
    0.0584    0.0145 
 
>> x = -5:.1:5; 
>> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)]) 

Quantile: 
 
>>   
ans = 
    1.9600    2.5758 

Random: 
 
>> prob = normdf('r',[4 1],0,1) 
ans = 
   -0.4326 
   -1.6656 
    0.1253 
    0.2877 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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paretodf 
Purpose 

Pareto distribution. 

Synopsis 
 
prob = paretodf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Pareto distribution.  

This distribution is commonly used to model financial data (especially insurance data). It is 
skewed to the right and the variance may be smaller, equal, or larger than the mean. Negative 
values in the sample are ignored. 

( ) 1/ += b bf x ba x  

( ) ( )1 /= − bF x a x  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real and positive). 
  b = shape parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = paretodf('c',2,1,2) 
prob = 
    0.7500 
 
>> x    = [0:0.1:10]; 
>> plot(x,paretodf('c',x,1,2),'b-',x,paretodf('c',x,3,7),'r-') 

Density: 
 
>> prob = paretodf('d',2,1,1) 
prob = 
    0.2500 
 
>> x    = [0:0.1:10]; 
>> plot(x,paretodf('d',x,2,1),'b-',x,paretodf('d',x,0.5,1),'r-') 

Quantile: 
 
>> prob = paretodf('q',0.5,1,2) 
prob = 
    1.4142 

Random: 
 
>> prob = paretodf('r',[4 1],2,1) 
ans = 
   40.1037 
    2.6012 
    5.0870 
    3.8909 

 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, raydf, triangledf, unifdf, weibulldf 
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raydf 
Purpose 

Rayleigh distribution. 

Synopsis 
 
prob = raydf(function,x,a) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Rayleigh distribution.  

This distribution is commonly used to model lifetime data (time to failure). It is skewed to 
the right and the variance is usually larger than the mean (though it can be smaller or equal). 
Negative values in the sample are ignored. 

( ) ( ) ( )2 2 2/ exp / 2 = − f x x a x a  

( ) ( )2 21 exp / 2 = − − F x x a  

INPUTS: 
 function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real). 

Note: If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to 
the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = raydf('c',2,1) 
prob = 
    0.8647 
 
>> x    = [0:0.1:10]; 
>> plot(x,raydf('c',x,1),'b-',x,raydf('c',x,3),'r-') 

Density: 
 
>> prob = raydf('d',2,1) 
prob = 
    0.2707 
 
>> x    = [0:0.1:10]; 
>> plot(x,raydf('d',x,2),'b-',x,raydf('d',x,0.5),'r-') 

Quantile: 
 
>> prob = raydf('q',0.5,1) 
prob = 
    1.1774 

Random: 
 
>> prob = raydf('r',[4 1],2) 
ans = 
    4.2135 
    3.3893 
    2.2085 
    0.3865 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, triangledf, unifdf, weibulldf 
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tdf 
Purpose 

Student's t distribution. 

Synopsis 
 
prob = tdf(function,x,a) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Student's t distribution.  

 

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (0,1).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a =  scale parameter (real) 

Note: If inputs (x and a) are not equal in size, the function will attempt to resize all inputs to 
the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf 
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triangledf 
Purpose 

Triangle distribution. 

Synopsis 
 
prob = triangledf(function,x,a,b,c) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Triangle distribution.  

This distribution is usually used for rough models of data and is triangular in shape (hence 
the name). 

( ) ( )
( )( ) ( ) ( )

( )( ) ( )2 2− −
− − − −= Ι ≤ ≤ + Ι ≤ ≤x a b x

b a c a b a b cf x a x c c x b  

( ) ( )
( )( ) ( ) ( )

( )( ) ( )
2 2

1− −
− − − −= Ι ≤ ≤ + − Ι ≤ ≤x a b x

b a c a b c c aF x a x c c x b  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored (-inf,inf).  
   quantile - interval (0,1). 
   random - vector indicating the size of the random matrix to create. 
 a = "min" parameter (real, <= mode). 
  b = "max" parameter (real, >= mode). 
  c = "mode" parameter (real, >= min and <=max). 

Note: If inputs (x, a, b, and c) are not equal in size, the function will attempt to resize all 
inputs to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but will convert them to NaN. 
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Examples 

Cumulative: 
 
>> prob = triangledf('c',2,1,3,2) 
prob = 
    0.5000 
 
>> x    = [0:0.1:10]; 
>> plot(x,triangledf('c',x,1,3,2),'b-',x,triangledf('c',x,1,5,3),'r-') 

Density: 
 
>> prob = triangledf('d',2,1,3,2) 
prob = 
    1.0000 
 
>> x    = [0:0.1:10]; 
>> plot(x,triangledf('d',x,0,3,0),'b-',x,triangledf('d',x,1,3,2),'r-') 

Quantile: 
 
>> prob = triangledf('q',0.5,1,3,2) 
prob = 
    2.0000 

Random: 
 
>> prob = triangledf('r',[4 1],1,3,2) 
ans = 
    2.2817 
    1.9431 
    2.1094 
    2.2585 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, raydf, unifdf, weibulldf 
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unifdf 
Purpose 

Uniform distribution. 

Synopsis 
 
prob = unifdf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Uniform distribution.  

This distribution is used when all possible outcomes of an experiment are equally likely. The 
distribution is flat with no peak. 

( ) 1
−= b af x  

( ) −
−= x a

b aF x  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = "min" parameter (real). 
  b = "max" parameter (real and >= min). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results.  
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Examples 

Cumulative: 
 
>> prob = unifdf('c',1.5,1,2) 
prob = 
    0.5000 
 
>> x    = [0:0.1:10]; 
>> plot(x,unifdf('c',x,1,2),'b-',x,unifdf('c',x,3,7),'r-') 

Density: 
 
>> prob = unifdf('d',1.5,1,2) 
prob = 
    1.0000 
 
>> x    = [0:0.01:10]; 
>> plot(x,unifdf('d',x,1,3),'b-',x,unifdf('d',x,1,4),'r-') 
>> ylim([0 1]) 

Quantile: 
 
>> prob = unifdf('q',0.5,1,2) 
prob = 
    1.5 

Random: 
 
>> prob = unifdf('r',[4 1],2,1) 
ans = 
    1.9218 
    1.7382 
    1.1763 
    1.4057 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, raydf, triangledf, weibulldf 
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weibulldf 
Purpose 

Weibull distribution. 

Synopsis 
 
prob = weibulldf(function,x,a,b) 

Description 

Estimates cumulative distribution function (cumulative, cdf), probability density function 
(density, pdf), quantile (inverse of cdf), or random numbers for a Weibull distribution.  

This distribution is used to model lifetime data (time to failure). It is skewed to the right, but 
may appear symmetric for data in which there are relatively no small outcomes. Negative 
values in the sample are ignored. 

( ) ( ) ( )1 / exp /−  = − 
bb bf x bx a x a  

( ) ( )1 exp / = − − 
bF x x a  

INPUTS: 
 function =  [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the 

functionality to be used. Note that the function recognizes the first letter 
of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. 

 x = matrix in which the sample data is stored, in the interval (-inf,inf).  
   for function=quantile - matrix with values in the interval (0,1). 
   for function=random - vector indicating the size of the random matrix to 

create. 
 a = scale parameter (real). 
  b = shape parameter (real and positive). 

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs 
to the largest input using the RESIZE function.  

Note: Functions will typically allow input values outside of the acceptable range to be passed 
but such values will return NaN in the results. 
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Examples 

Cumulative: 
 
>> prob = weibulldf('c',2,1,2) 
prob = 
    0.9817 
 
>> x    = [0:0.1:10]; 
>> plot(x,weibulldf('c',x,1,2),'b-',x,weibulldf('c',x,3,7),'r-') 

Density: 
 
>> prob = weibulldf('d',2,1,1) 
prob = 
    0.1353 
 
>> x    = [0:0.1:10]; 
>> plot(x,weibulldf('d',x,2,1),'b-',x,weibulldf('d',x,0.5,1),'r-') 

Quantile: 
 
>> prob = weibulldf('q',0.5,1,2) 
prob = 
    0.8326 

Random: 
 
>> prob = weibulldf('r',[4 1],2,1) 
ans = 
    5.4812 
    4.9755 
    1.0562 
    4.4820 

See Also 

betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, 
lognormdf, normdf, paretodf, raydf, triangledf, unifdf 

 

 


