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1

1 Introduction

e-surge (which stands for MultiEvent Generalized Survival Estimation) is a program for fitting Mul-

tievent models [37] to capture-recapture(CR) data. Multievent models are an extension of multistate

models in which observations do not necessarily correspond to states. Several programs exist for CR

analysis (e.g., [23, 50, 9]) but e-surge is the first general program for Multievent models. e-surge

also incorporates a new and extremely flexible way of defining the transition probabilities; because of

this it is useful even when multievent considerations do not apply (for example in multistate models,

see [15], [47]).

Because the observations in Multievent models do not necessarily correspond to individual states,

they can handle state uncertainty. As a consequence, they provide a general framework for problem

such as:

• Heterogeneity of capture, survival or any parameter of interest [35, 37, 34].

• Determination of the sex when sex is not available [33, 40].

• Memory model [22, 1, 37, 43].

• Animal epidemiology model [12].

In addition e-surge can handle models conditional to the first occasion. So, it provides a natural

framework for

• Stop over duration [38].

• Closed population [52].

• Occupancy models [31].

e-surge benefits from the experience gained in developing m-surge [9], a program for multistate

CR analysis. m-surge introduced a powerful language for describing the set of multistate CR models,

reduced statistics for any classes of age, and advanced numerical algorithms. e-surge has similar

capabilities for maximum likelihood estimation of complex age and time-dependent models with linear

constraints among parameters, in a generalized linear model fashion. Its features include:

• A tool for defining general models. A general model is mainly defined by the structure of the

transition matrix and the encounter matrix. In m-surge and mark transition probabilities are

defined either directly, or in terms of survival and transition conditional on survival. e-surge

is unique in permitting more than these two steps in defining transition and encounter matrices

and initial state vector. We call this feature DES for Decomposition in Elementary Steps. The

transition and encounter matrices and the initial state vector are constructed using a pattern

generator called gepat.
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• A powerful model description language. Constrained models are built using a language interpreted

by a generator of constrained matrices (called also design matrices) called gemaco. This powerful

language is similar to those used in general statistical software packages such as SAS, R, Genstat

or GLIM; for instance, the formula t+g generates a model with additive effects of time and group.

gemaco avoids tedious and error-prone matrix manipulations.

• Advanced convergence diagnostics. Convergence to the maximum likelihood estimator is a very

sensitive issue in Multievent models. In e-surge, the user gains a greater control over convergence

through a choice of non-linear solvers and of starting options including the results of previous

models, random initial values and multiple random initial values. In addition, warnings are issued

if the program stops at a saddle-point rather than a minimum.

• The detection of redundant parameters. e-surge analyzes the likelihood in the neighborhood of

the point of convergence and lists the parameters that are apparently redundant. Redundancy

can then be double-checked by drawing profile likelihood curves.

e-surge is freely downloadable from http://ftp.cefe.cnrs.fr/biom/Soft-CR/. The program is

constantly improved and new capabilities are added. Although e-surge has been extensively tested by

many people using a variety of pilot data sets, we cannot totally exclude the presence of bugs. We are

grateful to you for reporting any problems by e-mail to remi.choquet@cefe.cnrs.fr.

The purpose of this manual is to provide practical instructions for using e-surge 1.8 along with

some underlying theory. We assume familiarity with the basic notions of CR methodology. We rec-

ommend reading: [52] for a general review of CR models, [25] for an overview of constrained models

and generalized linear model philosophy in CR analyses, [27] for a review of multistate models, [37] for

a description of Multievent models, [17, 7] for individual and group random effects. The rest of the

manual presents:

• The notation and models covered by e-surge (chapter 2)

• The generator of general model (gepat; chapter 3)

• The language and tools for building constrained models (gemaco; chapter 4)

• Data input (chapter 5)

• An example of a session with e-surge (chapter 6)

• Some advanced tools (chapters 7 and 8)

• The outputs (chapter 9)

• A few warnings (chapter 10).
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2 Models

2.1 Notation

Our presentation of Multievent models will use the following general notations and follow as much as

possible those of [37]:

N the number of states.

U the number of events.

K the number of occasions.

A the maximum age class.

NG the number of groups.

LI, LT, LB the number of steps in the decomposition for initial state, transition and event.

i = 1, . . . , N the index of the previous (or departure) state.

j = 1, . . . , N the index of the current (or arrival) state.

u = 1, . . . , U the index of the current event.

k = 1, . . . ,K the occasion index.

a = 1, . . . , A the index of current age classes.

ng = 1, . . . , NG the index of the current group.

` = 1, . . . , LI, LT , or LB the elementary step index.

E = {e1, ..., eN} the set of states, where eN = † for the death.

Ω = {v1, ..., vU} the set of events, where v1 = ’not seen’.

All transition matrices are written with i as row index and j as column index, following the Markov chain

convention in which transitions are from rows to columns, rather than the column-to-row convention

used in matrix population models. Encounter matrices use j (denoting the state) as row index and u

(denoting an event) as column index.

2.2 Multievent models

The time-dependent Multievent model assumes that individuals move independently among a finite set

E of states over a finite number K of sampling occasions, and that successive states obey a Markov

chain. The successive states occupied by an individual are not observed directly. Rather, at each

occasion k, one member of a finite set Ω of events is observed. The event observed at occasion k is

assumed to depend only on the unobserved underlying state of the individual at that occasion.

Unlike traditional practice in CR (but similar to [16, 37] and consistent to Markov Chain property

[29]), the dead (†) is explicitly included in E. By convention, in e-surge it appears last in the list of

states. Similarly, the event “not seen” is explicitly included in Ω, in which it appears first.
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Multievent models are defined in terms of three kinds of parameters: initial state probabilities π,

transition probabilities φ, and encounter probabilities b. For group g, we have

• πk,gi the probability of being in state ei when first encountered at index of time k,

• φk,a,gij the probability of being in state ej at index of time k + 1 if in state ei at index of time k,

for the interval a since first capture.

• bk,a,gju the probability of event vu for an animal in state ej at index of time k, at occasion a since

first capture (including first capture),

• Π = (πi) denotes the (1×N) vector of initial state probabilities,

• Φ = (φij) denotes the (N × N) matrix of unconditional transition probabilities, i.e. the matrix

of probabilities that an individual moves from one state to another state over a time interval.

• B = (bju) denotes the (N × U) matrix of event probabilities.

Together, (Π,Φ,B) define the general model (GM) under which an umbrella model (UM) retained by

Goodness of Fit can be fitted (see Figure 1 for the relation between GM and UM). These matrices are

row stochastic, and are called, respectively, the full initial state vector, the full transition matrix, and

the full event matrix in e-surge. The relation of each of these matrices to the classical CAS model

and to the memory model are given in [37]. These models belong to the class of Hidden Markov Models

(HMM, see for example [29, 2]).

Figure 1: Definition of the umbrella model(UM) under the general model (GM) by setting specific
variation in parameter.

2.3 Umbrella models

An important but not always obvious notion in model selection is the umbrella model (UM). The UM is

a general model with specified variation in parameters, which is later subjected to constraints to define
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biological hypotheses of interest. In other words, the UM is the most general model that can be fitted,

and the one within which all other models examined are nested.

The UM depends on the settings of several main options in e-surge. Because there are several

choices for these options, there are several potential UMs in e-surge and it is possible to shift from one

to another during a session. However, this should be done with care because the meaning of a model

may be lost if the underlying UM is not remembered.

There are six potential sources of variation in the parameters:

1. groups, i.e. permanent categories of individuals, such as sexes or species, or discrete unconnected

study sites,

2. age, i.e., number of occasions or intervals elapsed since first capture,

3. time,

4. state of departure,

5. state of arrival,

6. current event.

In the UM, parameters are always allowed to vary freely over time and among groups. Only the number

of states and the number of age classes can be set to different values.

Decomposition in Elementary Steps

It is sometimes useful to define the full initial state, full transition, and/or full encounter matrices as

arising from a sequence of “life processes”. The familiar decomposition of the transition matrix into

survival and transition conditional on survival (implemented in m-surge) is an example of this, but in

some cases more steps may be involved.

In an approach similar to that used for periodic matrix population models ([3], Chapter 14) but

between two dates or at one occasion, the full matrices are written as products of elementary matrices.

Π =
LI∏
`=1

Π(`)

Φ =

LT∏
`=1

Φ(`) (1)

B =
LB∏
`=1

B(`)

The intermediate states involved in the sequence of life processes may not be the same as the basic set

of states in the model. Thus the elementary matrices need not be square.



6 CHAPTER 2. MODELS

For example, in [21], a new parameterization of CAS models is presented in which movement among

sites is described in terms of the probability of leaving the site of origin and the probability of settling in

the destination site conditional on leaving. This parameterization is then used to address the influence

of local perturbations on site fidelity and settlement decisions of emigrants in a subdivided population of

Black-headed Gulls, Larus ridibundus. This two-step processes can be expressed by a product of three

elementary probability matrices, the first describing survival, the second describing the probability

of emigration conditional on survival (i.e., fidelity to the site of origin), and the third describing the

probability of the destination site conditional on emigration.

Such decompositions can be used to model any multi-step processes. For example, the memory model

can be defined this way in either separate or combined formulation [10]. In e-surge, the structures of

the elementary matrices are defined by a tool called gepat (for GEnerator of PATtern, see chapter 3).

Age dependence

In the UM, survival, transitions, and encounters may depend on age (i.e., time since first capture, not

necessarily true chronological age). The user specifies an oldest relevant age class; all animals this age

or older are combined into a single age-class. While restricting the range of ages restricts the range of

models that can be fitted, it may greatly save memory and reduce computation time.

For transitions or survival, common choices for the maximum relevant age are 1 (A = 1), which

implies no age effect, and 2 (A = 2), which creates a model in which the first age class is contrasted to

older animals (this is particularly useful when animals are marked as young). Setting A = 2 can also

be used to treat transience [41].

Specifying age-dependence in encounters is slightly more complicated. In multistate (as opposed to

multievent) applications, all calculations are conditional on the first encounter and hence the probability

of that first encounter is not estimated. In multievent formulations, the first encounter may be an event

rather than a state, and thus e-surge has the option of modelling the probability of the initial event

(see Figure 2). Therefore, e-surge always considers at least two age classes for encounters, allowing

the first event probability (first class of age) to be modelled or not. Thus if one chooses a maximum

age A = 1, which implies no age effect, e-surge creates 2 classes for first and next encounter. If one

sets A = 2, e-surge creates 3 classes(with age) for events.

In e-surge, parameters are ordered in memory according to their type as follows, with the leftmost

indices varying first and the rightmost last.

π : current state > time > group > step

φ : previous state > next state > time > age > group > step

b : previous state > current event > time > age > group > step
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Figure 2: Two individual histories and their associated probabilities

Capture is modeled by a constant first capture rate Pr(1) vs a constant recapture rate Pr(2). Here Pr(1)

represents the first class of ’age’ of event and Pr(2) represents the second class of ’age’ of event. The
index for one age class in event is the number of occasions spent since first capture plus one.

A 6= 1 Πtime,group,(step)

Φtime,age=A,group,(step)

Btime,age=A+1,group,(step)

A = 1 Πtime,group,(step)

Φtime,...,group,(step)

Btime,age=2,group,(step)

Table 1: Variations considered in the parameters of the umbrella models of e-surge

The type of variation is represented by upper indices for time, age, group and step. A is the number of
age classes for transition.

2.4 Constrained models

Model-building in e-surge (as in m-surge and mark) proceeds by imposing linear constraints on

the parameters of the umbrella model, in the spirit of generalized linear models [25]. The vector θ of

”biological parameters” (parameters of direct interest to the biologist e.g., θ = (π,φ, b), organized as

a vector) is expressed as a linear transformation of a vector β of ”mathematical parameters”. To keep

the biological parameters, which are probabilities, in their permissible range (0,1), a link function f is

generally applied (see 2.5):

f(θ) = Xβ (2)
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or, equivalently,

θ = f−1(Xβ) (3)

The matrix X is a ”matrix of constraints”. It can be a genuine design matrix in the case of a designed

experiment. In general, it expresses hypotheses about the dependence of the parameters on stage (of

departure or arrival), age (since first capture), time, group, and/or covariates. The design matrix is

built by the program gemaco (GEnerator of MAtrices of COnstraints) see Section 4), using the

model definition language described below. Often X will contain both discrete indicator 0/1 variables

(for equality constraints) and continuous covariates (e.g., effort or weather covariates). An overview of

linear constraints in CR models with a single state is given by [25], linear constraints in multistate are

considered in [5].

An important difference in the application of gemaco in e-surge, as compared to m-surge, is

that the gemaco keywords (“from”, “to”, etc.) in e-surge refer to the elementary matrices. The rows

(from) and columns (to) in these matrices do not necessarily correspond to the states in the model (e.g.,

in the encounter matrix, the columns refer to events, not states). Care is thus required in writing down

the gemaco specification.

2.5 The link function

The biological parameters θ are probabilities, and hence must lie within the interval [0, 1]. To satisfy

this constraint but still allow the optimization routines to work with mathematical parameters β that

range over (−∞,+∞), a ”link function” is applied to the parameters. The link function is a one-to-one

continuous transformation. In practice, very small or very large β values are transformed into θ = 0 or

θ = 1, so in practice some estimates may fall on the boundary of parameter space. e-surge provides

two link functions; the generalized logit and the identity link.

Transition probabilities must not only lie within the unit interval, but must sum on each row to

1. Consider two transition probabilities on the same row of Φ, φ11 and φ12. The transformations

φ11 = logit−1(θ11) and φ12 = logit−1(θ12) will assure that φ11 and φ12 are both in the unit interval,

but will not guarantee that φ11 + φ12 ≤ 1. The generalized (or multinomial) logit, denoted as logitgen,

ensures that all parameters and their sum are within (0, 1). For the first N-1 transitions parameters

among the (φij)j=1,...,N , this transformation is defined as

logitgen(φij) = log
φij

1−
∑N−1

k=1 φik
, j = 1, . . . , N − 1 (4)

For N non null transition probabilities on a row, the logitgen transformation is applied to the N −1

parameters. When N = 2, the generalized logit reduces to the logit. With more than two states, some

additive effects cannot be modelled meaningfully with the generalized logit, because parallelism is not

as clearly defined as with the logit link. In such cases, the identity link may be used in e-surge. A
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specific algorithm is then used to keep estimates in range, but this algorithm is slower and is not used

as the default option.

2.6 Unequal time intervals

e-surge permits calculations based on unequal time intervals for any steps of transition Φ(l) (see Equa-

tion 1) of your choice (see section 5.5 and 5.6 for practical use). Each row of the considered transition

matrix should not contain more than one parameter and its complementary. The implementation of

power of matrices should be considered to allow any kind of transition. This feature is not presently

available. If survival, the true parameter (estimated by e-surge) is then survival per unit of time

denoted s instead of survival over the whole interval denoted S. The length of the time interval ∆t is

used to back-calculate the estimate of survival over the interval: S = s∆t.

2.7 Maximum likelihood estimation

The likelihood of a model is proportional to the probability of the data given that model. The basic

unit of data in e-surge is the capture history; reduced-form data descriptions like the m-array are not

available in general for multievent models. Thus the likelihood calculation depends on the application of

the transition probabilities to individual capture histories. (See [37] for a presentation of this approach

or [16] for an ad hoc method to deal with uncertain states). Let h = (o1, . . . , oK) be a capture history

with first encounter at time e, event (ok)k=1,...,K has any value between 0 and U and β a vector of

parameters. Then

P (h|β) = ΠeD
(
Be,1(·, oe)

)( K∏
k=e+1

Φk−1,k−eD
(
Bk,k−e+1(·, ok)

))
1N (5)

where Bt,a(·, ot) is the otth column of the encounter matrix B at time t and age a and D(x) is a matrix

with x on the diagonals and zeros elsewhere, and 1N is a N column-vector of ones.

Assuming that individuals are independent, the likelihood for the entire set of capture histories is

obtained as the product of the likelihoods for each history,

L(β) = C
∏
h

P (h|β)nh (6)

where C is a constant and nh is the number of copies of capture history h in the data set.

The maximum likelihood estimation(MLE) algorithm is as follows

1. Select an initial value for the vector β of mathematical parameters.

2. Calculate the vector of biological parameters θ = f−1(Xβ).
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3. Calculate the elementary matrices, and (as the product of the elementary matrices) each of the

full matrices Π, Φ, and B.

4. Use the full matrices to calculate the probability P (h|β) of each capture history according to

Equation 5.

5. Calculate the relative deviance

Dev(β) = −2 (logL(β)− logC) = −2
∑
h

nh logP (h|β)

6. Iterate steps 2–5 in a Quasi-Newton minimization algorithm or a Expectation-Maximization (EM)

algorithm or by-product algorithms updating the vector of mathematical parameters β to decrease

Dev(β), until convergence.

7. Obtain in turn the MLE’s and the deviance and various by-products of Maximum Likelihood

estimation.

2.8 Factorizing the likelihood

Multievent CR calculations condition on the first capture of the individual. Because of this, non-

observable states (including the ’dead’ state) cannot appear as initial states, and hence they are elim-

inated from the vector Π by setting the corresponding probabilities to zero. The remaining, non-zero

initial state probabilities can be hard to estimate if they are time-varying. However, when one initial

observable state corresponds to a single type of event, and when the first event probabilities are inde-

pendent from later event probabilities, then Π and B·,1 can be estimated independently of the other

parameters. In fact, we can show that there exists a unique decomposition (β1,β2) of the parameter

vector β, such that

Dev(β) = Dev(β1) + Dev(β2) (7)

where

Dev(β1) = −2
∑
h

nh ∗ log(ΠeD
(
Be,1(·, oe)

)
1N ), (8)

Dev(β2) = −2
∑
h

nh ∗ log(xeh

(
K∏

k=e+1

Φk−1,k−eD
(
Bk,k−e+1(·, ok)

))
1N ), (9)

with β1 the vector of mathematical parameters linked to the initial state probabilities Π and first

encounter probabilities B·,1,

β2 is the vector of mathematical parameters linked to the transition probabilities Φ and subsequent

encounter probabilities B·,2:A+1 and

(xeh)i =

{
1 if (ΠeD(Be,1(·, oe))1N )i > 0

0 else
i = 1, . . . , N. (10)
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Internal note When one state corresponds to a single type of event at recapture then we can easily

demonstrate than the m-array for time dependent model (or extended m-array for age dependent model,

[9]) is a set of sufficient statistics for the recapture part of the model.

2.9 Individual covariates

e-surge can handle individual covariates. Considering the general form of GLM f(Θ) = Xβ with

β the vector of fixed effects is computationally demanding because of the dimension of the problem

with so many potential effects. Thus, we have implemented the following restricted form of GLM by

constraining separately the two following sets of effect.

• Set of effect 1: time, age, cohort and group effects.

• Set of effect 2: individual effect.

The result is the following form of GLM implemented in e-surge.

f(Θn) = X0β0 +Xnβ1 (11)

with Xn : individual-specific matrices of individual covariates, they are never stored in the computer

because of the memory size needed but rather they are computed each time.

2.10 Independent and identically distributed (i.i.d.) random effect

The class of mixed effects models that E-SURGE may consider can be expressed in the form of general-

ized linear mixed models (GLMM). Considering the general form of GLMM f(Θ) = Xβ+Zb with β the

vector of fixed effects and b the vector of random effects, we have implemented the following restricted

form of GLMM by constraining separately the set of effects 1 and 2.

f(Θn) = X0β0 +Xnβ1 +

P∑
p=1

Zpbp +

P+Q∑
p=P+1

Zp,nbp,n n = 1, . . . , NI (12)

where bp ∈ Rsp and bp,n ∈ R are random effects given by{
bp ∼ N (0, σ2

l × Isp), p = 1, . . . , P,

bp,n ∼ N (0, σ2
p), p = P + 1, . . . , P +Q.

(13)

bp : random effects associated to the set of effects 1 (p = 1, . . . , P ),

sp : number of levels of the random effect l (sp = NG for a group random effects),

bp,n : individual random effects assuming that individuals are independent (p = P + 1, . . . , P +Q).
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Matrices Zp,n contain either 0, 1 or values of individual covariates and are never stored. Because we

assume that individuals are independent then covariance matrices for each random effect are diagonal.

We use this property to implement efficient algorithms for individuals and groups random effects, see

[7, 17].

For individuals

E-SURGE can handle mixed models with individual random effects only (P = 0) [7, 17]:

f(Θn) = X0β0 +Xnβ1 +

Q∑
p=1

Zp,nbp,n (14)

with bp,n in the form of equation (13). There is no limit for the number of random effects that we can

build. However for Q > 2 the fitting step may be time consuming.

Example 1: Survival varying with individual covariates and random effect. The following model has

been used in [19] with a constant survival across time but dependent on an individual covariates (the

body weight denoted by m) and from an individual random effect (bn).

logit(φn) = β0 + β1mn + bn, n = 1, . . . , NI (15)

where bn ∼ N (0, σ2
b ), (i.i.d.).

For groups

E-SURGE can also handle mixed models with group random effects only (Q = 0) [7]:

f(Θn) = X0β0 +Xnβ1 +

P∑
p=1

Zpbp (16)

with bp in the form of equation (13). There is no limit for the number of random effects that we can

build. However for P > 2 the fitting step may be time consuming.

Example 2: We consider a basic model where recapture rates vary with a group random effect.

logit(pg) = β0 + bg, g = 1, . . . , NG (17)

where bg ∼ N (0, σ2
b ), (i.i.d).

2.11 Conditionality on the first occasion

Since the version 1.7, e-surge can handled models whose probabilities are written conditional on the

first occasion rather that conditional on the first encounter. So that, it provides a natural framework
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for stop over duration (SOD), closed population and occupancy models. By default, the conditionality

is on the first encounter (Conditional on 1st Capture). To handle an open or a closed population model

with conditionality on the first Occasion, choose the option Conditional on 1st Occasion. To handle a

occupancy model, choose the option Occupancy (see Figure 3).

Figure 3: Conditionality options

Important note: Neither individual covariates nor random effects are currently implemented in

e-surge for models conditional on the first occasion. But a trick can be used to get round this problem

for occupancy models. To do that, add a one to each observation of the data set, so that each first ”non-

zero event” occurs at the first occasion. Select then the option Markovian states only > Conditional on

1st Capture. By this way, we can do all models with individual covariates and random effects described

respectively in sections 2.9 and 2.10.

Open and closed population

The conditional probability of history h denoted PC(h) is defined by

PC(h|β) =
P (h|β)

1− P (∅|β)
, (18)

with

P (h|β) = ΠD
(
B1(·, o1)

)( K∏
k=2

Φk−1D
(
Bk(·, ok)

))
1N

where P (∅|β) is the probability of an individual to remain unseen at all occasions (i.e. the probability

of a history to be empty). Since the time spend since the first capture is not defined, we set A = 1 and

the age indices vanish in the previous formulae. The likelihood is:

L(β) =
∏
h

PC(h|β)nh (19)

As by-products, the estimated number of individuals present or passing though the site is∑
h nh

1− P (∅|β̂)
.

In the particular case of a closed population model, it is assumed that no new individuals enter in

the area, that no individuals leave the area and that there is no mortality. So the survival parameters
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has to be fixed to one in the model. For violation of closed population model assumptions and ways to

manage them, see [52].

In the case of an open population, we can for example model the SOD when the probability to leave

the area is time-dependent only [46].

Occupancy models

In occupancy models [30], we follow patches over time. As we know where patches are, the capture rate

is equal to one. Thus the observation ’0’ has no longer to be called ’not seen’. Rather the observation

’0’ gives an information about the state of patches. In that context, an empty history is the absurd

situation where a know patch is never visited. The mathematical consequence is that

P (∅|β) = 0.

As e-surge allows you to deal with imperfect detection thus at least all models described in [31] can

be fit.

Note: e-surge do not currently manage empty event (patches which are not visited at some

occasions). However if empty events are distributed randomly then an additional parameter can be

used to take into account this lack of information.

2.12 Non-linear model

e-surge is now able to fit a continuous function, for example associated to a hazard function. To that

purpose, a semi-Markov formulation of the CJS model has been developed in [11]:

• to consider continuous function (which are parametric) in relation to the age of the individual,

• to deal with left censoring (defined in the headed format, 5.3) to allow individual to start at

different ages.

As an original contribution of regular function (with well-defined second derivative), we can estimate

the onset of senescence using geometrical property [11]. To handle such a model, choose the option

Models > Markovian & semi-Markovian states > Conditional on 1st Capture (see Figure 4).

Figure 4: Semi-Markov option
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3 Flexible generation of a general model: GEPAT

3.1 Overview

gepat (for GEnerator of PATtern of elementary matrices) makes it possible to generate the GM using

the elementary matrices in Equation 1 under which the UM is defined (see Figure 1). Denoting this

model as DES for Decomposition in Elementary Steps and denoting the number of elementary matrices

of each type LI, LT, LB, we have DES(LI, LT, LB).

This feature was chosen in the context of uncertainty (see [33, 37]) to allow

• models described by Equation 1 to be expressed as linear models,

• application of constraint on each parameter separately by a language, here gemaco.

This approach allows the specification of complex models while avoiding non-linear constraints algo-

rithm for parameter in-range. Non-linear constraints can then be handled in a very efficient way with

unconstrained algorithms.

It is also helpful in multistate problems without uncertain states, because it allows biologists to

specify models in more details. Developing life cycle models in terms of such “lower-level” parame-

ters has a long tradition in various branches of population biology (e.g., [3]), but it is now also used

for encounter probabilities and initial probabilities. For some recent examples, in a CR context, see

[21, 13, 48, 34, 24, 45].

By default in e-surge, LI = LT = LB = 1. Examples of such one-step process (DES(1,1,1)) are

the combined CAS model, or the combined memory model.

However, by setting LI, LT and/or LB to values greater than one and using gepat, it is possible

to define the pattern of each of the elementary matrices at each step, it becomes possible to fit many

models difficult or impossible to estimate elsewhere.

Here we present several examples to clarify the steps in the analysis.

Another strong characteristic of the implementation of DES in e-surge is that Φ(l) with 1 ≤ l ≤ LT
define a transition matrix from E(l − 1) to E(l) where E(l) can be another set of states than E.

The same feature is also available for initial state and encounter matrices, which is entirely new for

the model in CR. An example is draw in Figure 5.

We will see that it is now possible to generate new general model in the context of linear model in

CR.
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Figure 5: Decomposition of the conditional event probabilities: For sex determination in [33], two steps
are needed for encounter to generate the GM. In the diagram, S represents the set of states males or
females, O the intermediate set of events and O’ the effective set of events.

3.2 A combined formulation of the Arnason-Schwarz model

In this formulation, transition probabilities combine both survival and movement among states condi-

tional on survival. This is a typical case of DES(1,1,1). In the CAS model the state of an observed

individual is always known without error. Thus, with 2 sites, the set of states is

E = {1, 2, †}

and the set of events is

Ω = {’not seen’, ’seen in 1’, ’seen in 2’}.

The initial state matrix at occasion k is

Πk =
(
πk 1− πk

)
(20)

Note that in e-surge the state † is always removed from the full initial state vector because individuals

are all still alive at first release occasion.

The transition matrix at occasion k maps individuals from E to E:

Φk =


φk11 φk12 1− φk11 − φk12

φk21 φk22 1− φk21 − φk22

0 0 1

 (21)

Rows and columns of Φ both correspond to states.
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The event matrices for the first capture and for subsequent captures, at occasion k, are

Bk,1 =


0 1 0

0 0 1

1 0 0

 (22)

Bk,2 =


1− pk1 pk1 0

1− pk2 0 pk2

1 0 0

 (23)

B maps individuals from E to Ω; the rows of B thus correspond to states and the columns correspond

to events. Because first captures are not modelled in the CAS model, Bk,1 says that at its first capture

an individual in state 1 will be encountered in ’seen in 1’ with probability 1, etc. For later captures,

there is a probability pk1 of being seen in 1 at occasion k, and so on.

The matrices Π, Φ and B are row-stochastic (i.e., the sum of each row equals one). Thus one of

the entries in each row is redundant, and need not be estimated. In many cases, some of the entries

are fixed equal to 0, and also need not be estimated. The specification of which entries are redundant,

which are to be estimated, and which are fixed at 0 is done with a pattern matrix associated with each

of the initial state, transition, and encounter matrices. The entries of the pattern matrix corresponding

to redundant entries are set equal to character ’*’ (there will be one such entry in each row). The entries

of the pattern matrix corresponding to parameters to be estimated are set equal to any letter from the

alphabet. The entries corresponding to fixed zero values are set equal to character ’-’.

This is confusing, but can be made clear by example. Denote the pattern matrices by PΠ, PΦ,

and PB. Then the pattern matrices for the combined CAS model are

Πk =
(
πk 1− πk

)
PΠ =

(
π ∗

)
(24)

Φk =


φk11 φk12 1− φk11 − φk12

φk21 φk22 1− φk21 − φk22

0 0 1

 PΦ =


φ φ ∗
φ φ ∗
− − ∗

 (25)

Bk,1 =


0 1 0

0 0 1

1 0 0

 PB =


∗ p −
∗ − p

∗ − −

 (26)

Bk,2 =


1− pk1 pk1 0

1− pk2 0 pk2

1 0 0

 PB =


∗ p −
∗ − p

∗ − −

 (27)

Note 1 Each elementary matrix has only one pattern constant across age. So the pattern of each

encounter elementary matrix is the same for first and next encounters.
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Note 2 Factorisation of the likelihood can be done for this model (see section 2.8), permitting

probablities π to be estimated separately from probabilities φ and p.

3.3 The separate formulation for the Arnason-Schwarz model

In this formulation, survival and movement conditional on survival are separated; this is a typical case

of DES(1,2,1). The two set of states remain constant across the two steps life processes

E(0) = {’site 1’,’site 2’,†}

E(1) = {’site 1’,’site 2’,†}

and the set of events Ω is the same as in the combined model. The initial state matrix and its corre-

sponding pattern matrix are

Πk =
(
πk 1− πk

)
PΠ =

(
π ∗

)
(28)

There are now two elementary transition matrices, one corresponding to survival and one to transitions

(noted ψ) conditional on survival, each of which has its own pattern matrix:

Φk,(1) =


sk1 0 1− sk1
0 sk2 1− sk2
0 0 1

 PΦ(1) =


s − ∗
− s ∗
− − ∗

 (29)

Φk,(2) =


ψk11 1− ψk11 0

1− ψk22 ψk22 0

0 0 1

 PΦ(2) =


ψ ∗ −
∗ ψ −
− − ∗

 (30)

There is one elementary detection matrices, constant at the first capture and time varying to recapture,

with a pattern matrix corresponding to both

Bk,1 =


0 1 0

0 0 1

1 0 0

 (31)

Bk,2 =


1− pk1 pk1 0

1− pk2 0 pk2

1 0 0

 PB =


∗ p −
∗ − p

∗ − −

 (32)

Note that as in the combined CAS model, probabilities π can be estimated separately from proba-

bilities ψ and p.
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3.4 A version of the Arnason-Schwarz model with site fidelity

parametrization

Now we consider a version of the Arnason-Schwarz model in which the probability of transition con-

ditional on survival is further subdivided into a probability of leaving the site (the complement of site

fidelity), and a probability of moving to each other site conditional on leaving [21]. This is a DES(1,3,1)

general model.

With 3 sites, assuming that if an animal is seen its state is known without error, the set of events

(i.e., the results of observations) is

Ω = {’not seen’, ’seen at 1’, ’seen at 2’, ’seen at 3’}

Defining sets of intermediate states.

In the classical separate formulation of the Arnason-Schwarz model, the set of possible states for an

individual is the same for both elementary matrices (survival and transition conditional on survival). In

general, however, there may be a different set of states at each of the elementary steps. In constructing

the elementary matrices and their states, it may be helpful to use a directed acyclic graph (DAG) used

in many area to represent relations between items. Figure 6 shows the formulation of the Grosbois

model. In this formulation, states are denoted as numbered nodes on a row. Each step in the life

process is represented by a subsequent row, and the possible transitions are denoted by arrows. The

initial set of states is repeated at the bottom of the graph.

In the Grosbois site fidelity model, the sets of states are

E(0) = {’site 1’,’site 2’,’site 3’,†}

E(1) = {’site 1’,’site 2’,’site 3’,†}

E(2) = {’staying in 1’,’leaving 1’,’staying in 2’,’leaving 2’,

’staying in 3’,’leaving 3’,†} (33)

Matrices and pattern matrices

The initial state matrix and its pattern matrix are

Πk =
(
πk1 πk2 1− πk1 − πk2

)
PΠ =

(
π π ∗

)
(34)

The first elementary transition matrix (for survival) maps from E(0) to E(1), and hence is of dimension

4× 4:

Φk,(1) =


sk1 0 0 1− sk1
0 sk2 0 1− sk2
0 0 sk3 1− sk3
0 0 0 1

 PΦ(1) =


s − − ∗
− s − ∗
− − s ∗
− − − ∗

 (35)
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Figure 6: DAG of the Grosbois model: We use a directed acyclic graph (commonly abbreviated to DAG
in the statistical literature) to describe life processes model inside one occasion for the AS site-fidelity
model, showing the transitions for survival, fidelity given survival, and destination given movement.
Transition probabilities are shown on the pathways originating in Site 1 and for the dead; the transition
probabilities on the other arrows follow the same pattern. The row-stochastic matrix Φ(1) projects from
row 1 to row 2 of the graph. The matrix Φ(2) projects from row 2 to row 3, and the matrix Φ(3) projects
from row 3 to row 4 (i.e., form row 3 back to row 1).

The second elementary matrix (for site fidelity given survival) maps from E(1) to E(2), and hence is

4× 7. Letting fi be the probability of remaining in site i given survival, we have

Φk,(2) =


f1 1− f1 0 0 0 0 0

0 0 f2 1− f2 0 0 0

0 0 0 0 f3 1− f3 0

0 0 0 0 0 0 1

 PΦ(2) =


f ∗ − − − − −
− − f ∗ − − −
− − − − f ∗ −
− − − − − − ∗


(36)

The third elementary matrix (for movement conditional on emigration) maps from E(2) back to E(0),

and so is of dimension 7× 4:

Φk,(3) =



1 0 0 0

0 ψk12 1− ψk12 0

0 1 0 0

ψk21 0 1− ψk21 0

0 0 1 0

ψk31 1− ψk31 0 0

0 0 0 1


PΦ(3) =



∗ − − −
− ψ ∗ −
− ∗ − −
ψ − ∗ −
− − ∗ −
ψ ∗ − −
− − − ∗


(37)
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The event matrices B map from the set E(0) of states to the set Ω of events, and thus are of dimension

4× 4.

Bk,1 =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 (38)

Bk,2 =


1− pk1 pk1 0 0

1− pk2 0 pk2 0

1− pk3 0 0 pk3

1 0 0 0

 PB =


∗ p − −
∗ − p −
∗ − − p

∗ − − −

 (39)

Important note: the choice of states for the intermediate transitions is not always unique.

There may be more than one equivalent way to group individuals, and at the present the only advice we

can give is to determine from the structure of the model what information needs to be kept at any one

step in order to define the probability of subsequent transitions. For example, in the models described

here, the future transitions of a dead individual (these transitions are boring; the individual just remains

dead) do not depend on which state the individual died from. Thus E(1) includes only one dead state.

But the future transitions of individuals that leave a site do depend on what site the individual left

from. Thus E(2) must include separate states for individuals who left from site 1, left from site 2, and

left from site 3. In any case, the numbering of the states is completely arbitrary; changing the numbers

simply exchanges rows and columns of the elementary matrices.

3.5 GEPAT in practice

gepat is a tool for defining the pattern matrices PΠ, PΦ, and PB. In the current version of gepat,

the user enters the number of steps (LI, LT, LB) for each kind of parameter. For each step of each

parameter, the user enters a pattern matrix, by rows. The matrix

T =


t11 · · · t1J
...

. . .
...

tI1 · · · tIJ

 (40)

would be entered in gepat using a graphical interface. See section 6.3 for details.
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3.6 The vector of biological parameter

Components of the vector of biological parameter θ are dependent upon the definition of pattern ma-

trices. Are considered as biological parameters the set of elements which can be potentialy constrained,

i.e. the set of elements which are not labelled by a ’-’ in pattern matrices. Let considered as a example

PΦ(1) (in equation (29), the vector θ restricted to the survival matrix Φ(1) for a given occasion and a

given age is

θ = (s1, s2, 1− s1, 1− s2, 1)′. (41)

Each element of θ in (41) is labelled in the pattern matrix (29) either by a letter (s1, s2) or by a ’*’

(1− s1, 1− s2, 1). Now, the vector θ, restricted to the survival but with full variation in time and age

with 2 occasions of recapture(K = 3), becomes:

θ = (s1,1
1 , s1,1

2 , 1− s1,1
1 , 1− s1,1

2 , 1, s2,1
1 , s2,1

2 , 1− s2,1
1 , 1− s2,1

2 , 1,

s2,2
1 , s2,2

2 , 1− s2,2
1 , 1− s2,2

2 , 1)′. (42)

where upper indices stand for time and age, where lower indice stands for site, and where v′ is the

transpose of v.
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4 Constrained models made easy: GEMACO

The definition of models in terms of constraints on each of the elementary matrices is carried out with

gemaco [5], which is also part of m-surge [9].

The most important new aspect in e-surge is that the gemaco keywords “from” and “to, current”

now refer to the rows and columns of the elementary matrices, rather than the full matrix.

4.1 Overview

With gemaco, one of the salient features of e-surge or m-surge, you will be able to generate easily

the constraint matrix X associated with the model. For the sake of simplicity, a different sub-matrix of

constraints is defined for each type of initial, transition and encounter parameter. Overall, there is LI+

LT +LB sub-matrices of constraints. e-surge assembles them to do the overall matrix of constraints.

For instance with a DES(1,2,1) general model (see section 2.3), with matricesX1,X2,X3,X4 associated

to inital states, survivals, movements and events probabilities respectively, the overall matrix is, in block

matrix notation:

X =


X1 0 0 0

0 X2 0 0

0 0 X3 0

0 0 0 X4

 ,

associated to the block vector

θ =


θ1

θ2

θ3

θ4

 .

The main step in defining a matrix of constraint for one type of parameter consists in typing a phrase

using the Model Definition Language (or mdl for short). This phrase will be interpreted by gemaco

to build X automatically. The mdl language is based on reserved keywords for various effects, such as

time (t) or group (g), and operators. This language expands the tensor notation for analysis of variance

models ([51], see [32] p.41) adapted to and advocated for cjs models by [25]. Several other steps, some

of which are optional, to build constrained models, will be examined later. We recommend that you

carefully read the presentation of the mdl and work through the examples to progressively learn how

to ”speak mdl ”. You will soon realize that gemaco along with its mdl offers very wide possibilities

that make the building of nearly any biologically meaningful model a fairly easy task.
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4.2 Keywords for main effects

In capture-recapture modeling, several classical effects, such as time, age and group, have been widely

used to explain variability in the data [25]. In the mdl of gemaco, these effects are represented

by reserved keywords, with synonyms to facilitate writing models. The effects and their associated

keywords are described in Table 5. These effects are here considered by themselves, i.e., as main effects

in an analysis of variance sense. They can also be combined as seen in the next paragraph. As a first

example of the capabilities of gemaco, let us assume we want to run a cjs-type model with survival

constant over time but varying among groups, and recapture probability varying with time only. All

one needs to do then is to define the structure for survival and recapture probabilities to be g and t,

respectively, exactly as in the tensor notation of this model (φg, pt). The time-dependent cjs model is

written as (φt, pt).

How is the MDL phrase time interpreted by GEMACO ?.

Let us consider with time variation in survival probability over 2 geographical sites(3 states) and K = 3

occasions (i.e. 2 intervals). The vector of survival parameters θ2 is defined by Equation 42.

Defining the model as time or for short t creates a matrix X2 with as many rows as components

in θ2, in the same order. Columns in Table 2 correspond to the time index and values(0/1) correspond

to indicator variables for time. The constraint matrix X (left part) is generated by gemaco according

F To T A G

X2 =



1 0
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0



1 1 1 1 1
2 2 1 1 1
1 3 1 1 1
2 3 1 1 1
3 3 1 1 1
1 1 2 1 1
2 2 2 1 1
1 3 2 1 1
2 3 2 1 1
3 3 2 1 1
1 1 2 2 1
2 2 2 2 1
1 3 2 2 1
2 3 2 2 1
3 3 2 2 1︸ ︷︷ ︸

Coordinates

Table 2: Phrase time interpreted by gemaco.

to the component of the vector θ2 described in Equation 42. The coordinates (F,To,T,A,G) of the
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components correspond respectively to (From, To, Time, Age, Group) and are displayed in the right

part.

How is the MDL phrase age interpreted by GEMACO ?.

Defining the model as a (for age) creates a matrixX2 with A columns when the umbrella model contains

A classes of age, with A = K − 1. X2 is given in Table 3 with A = 2 for θ2 given by Equation 42.

F To T A G

X2 =



1 0
1 0
0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0



1 1 1 1 1
2 2 1 1 1
1 3 1 1 1
2 3 1 1 1
3 3 1 1 1
1 1 2 1 1
2 2 2 1 1
1 3 2 1 1
2 3 2 1 1
3 3 2 1 1
1 1 2 2 1
2 2 2 2 1
1 3 2 2 1
2 3 2 2 1
3 3 2 2 1

Table 3: Constraint matrix associated to age and generated by gemaco: The constraint matrixX2 (left
part) is generated by gemaco according to the component of the vector θ2 described in Equation 42.
The coordinates (F,To,T,A,G) of the components correspond respectively to (From, To, Time, Age,
Group) and are displayed in the right part.

Note that if A = 1 then a = a(1), else if A = 2 then a = a(1, 2) as a(2) = a(2 : K − 1) (see

section 4.6) else if A = 3 then a = a(1, 2, 3).

How is the MDL phrase group interpreted by GEMACO ?.

With 2 groups, the vector of survival parameters θ2 becomes

θ2 = (s1,1,1
1 , s1,1,1

2 , 1− s1,1,1
1 , 1− s1,1,1

2 , 1, s2,1,1
1 , s2,1,1

2 , 1− s2,1,1
1 , 1− s2,1,1

2 , 1,

s2,2,1
1 , s2,2,1

2 , 1− s2,2,1
1 , 1− s2,2,1

2 , 1,

s1,1,2
1 , s1,1,2

2 , 1− s1,1,2
1 , 1− s1,1,2

2 , 1, s2,1,2
1 , s2,1,2

2 , 1− s2,1,2
1 , 1− s2,1,2

2 , 1,

s2,2,2
1 , s2,2,2

2 , 1− s2,2,2
1 , 1− s2,2,2

2 , 1)′. (43)

and defining the model as t for time or g for group leads to matrices X2 and Y with twice as many

rows, see Table 4.
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F To T A G

X2 =



1 0
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0



and Y =



1 0
1 0
0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0
0 1
0 1
0 0
0 0
0 0



1 1 1 1 1
2 2 1 1 1
1 3 1 1 1
2 3 1 1 1
3 3 1 1 1
1 1 2 1 1
2 2 2 1 1
1 3 2 1 1
2 3 2 1 1
3 3 2 1 1
1 1 2 2 1
2 2 2 2 1
1 3 2 2 1
2 3 2 2 1
3 3 2 2 1
1 1 1 1 2
2 2 1 1 2
1 3 1 1 2
2 3 1 1 2
3 3 1 1 2
1 1 2 1 2
2 2 2 1 2
1 3 2 1 2
2 3 2 1 2
3 3 2 1 2
1 1 2 2 2
2 2 2 2 2
1 3 2 2 2
2 3 2 2 2
3 3 2 2 2

Table 4: Phrases time and group interpreted by gemaco: Constraint matrices respectively X2 and
Y (left part) are generated by gemaco according to the component of the vector θ2 described in
Equation 43. The coordinates (F,To,T,A,G) of the components correspond respectively to (From, To,
Time, Age, Group) and are displayed in the right part.
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How are the MDL phrases from and to interpreted by GEMACO ?

Effects from and to take their meaning only when there are several states (more than 2 without the

state † ). When from, or, for short, f is applied to survival-transition probabilities , matrices Φ of

Equation 21 will be equal to:


φ1 φ1 1− 2× φ1

φ2 φ2 1− 2× φ2

0 0 1


(remember! rows = previous state, columns = next state)

If the structure to is used, the survival-transition probabilities will be equal to:
φ1 φ2 1−

∑
i=1,2 φi

φ1 φ2 1−
∑

i=1,2 φi

0 0 1


It will be seen that the two main effects (from, to) can in turn be combined to form model with

other effects. The keywords (d, od, ld, ud) described in Table 5 correspond to specific combinations of

categories of from and to.

4.3 Combining effects with operators

Two operators can be used to combine effects to generate more complex models. Let a and b be two

factors with ma and mb categories, respectively.

• Dot product (.): ‘a.b’ is the product column by column of a by b, i.e. the set of all combina-

tions of categories of the factors a and b, i.e. a model with interaction. The result a.b is a factor

with ma x mb categories. This dot product is the “crossing operator” of [32, pp 48–70].

• Sum (+): ‘a+b’ joins the columns of a and b. If the intercept (constant column equal to one)

is obtained as linear combination of the variables in a and also of those in b, the first column

of b is suppressed to avoid linear redundancy. The result a+b has then ma + mb − 1 columns.

Otherwise, all the columns of a and b are kept.

For θ2 given by Equation 43, one obtains for t.g and t+ g, respectively, the matrices in Table 6.

The dot and sum operators have a well-known role in single-state models: for instance the cjs

model run independently by group will be denoted as (φg·t, pg·t). The dot operator is very useful in

combination with the from and to effects when there is more than one state (s > 1): from.to applied

to the survival-transition matrix Equation 21 induces a variation by rows and columns, i.e. a matrix
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Table 5: Effects and keywords used in the Model Definition Language(mdl) of gemaco. Phrases in
mdl are interpreted in gemaco to build the matrices of constraints X.

Effects Keywords and synonyms Comments

Constant or Intercept intercept, i To obtain constant parameters

Time time, t

Categorical variation over time (”factor” with K-1a or Kb

levels)

afor transition
bfor initial state and for encounter

Age age, a

Categorical variation over age (time elapsed since first
capture) (”factor” with K-1a or Kb levels). More refined
age variations are introduced later

afor transition
bfor encounter

Cohorta

aObtained only with A =
K − 1 classes of age

cohort, c

Categorical variation between cohorts (batches of indi-
viduals released for the first time with a mark on a same
occasion) (”factor” with K-1 a or K b levels)

afor transition
bfor initial state and for encounter

Group group, g Categorical variation between groups

Departure state (”from”) or
previous state (capture)

from, f,previous, p Forces rows in elementary matrices to differ.

Arrival state (”‘to”’) or cur-
rent state (encounter)

to, next, n, current Forces columns in elementary matrices to differ

Diagonal d Constant diagonal terms in a s x s matrix of parameters

Off-Diagonal od Constant off-diagonal terms in a s x s matrix of param-
eters

Upper diagonals ud Constant terms in each upper diagonal of a s x s matrix

Lower diagonals ld Constant terms in each lower diagonal of a s x s matrix

First encounter firste Constant first encounter(i.e. a(1))

Next encounter laste Age independent next encounter(i.e. a(2 : A+ 1))

Covariates x See section 4.4

Individual covariates xind See section 4.5

Individual ind See section 4.11



4.3. COMBINING EFFECTS WITH OPERATORS 29

F To T A G

X2 =



1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



and Y =



1 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0
0 0 0
0 0 0
1 0 1
1 0 1
0 0 0
0 0 0
0 0 0
0 1 1
0 1 1
0 0 0
0 0 0
0 0 0
0 1 1
0 1 1
0 0 0
0 0 0
0 0 0



1 1 1 1 1
2 2 1 1 1
1 3 1 1 1
2 3 1 1 1
3 3 1 1 1
1 1 2 1 1
2 2 2 1 1
1 3 2 1 1
2 3 2 1 1
3 3 2 1 1
1 1 2 2 1
2 2 2 2 1
1 3 2 2 1
2 3 2 2 1
3 3 2 2 1
1 1 1 1 2
2 2 1 1 2
1 3 1 1 2
2 3 1 1 2
3 3 1 1 2
1 1 2 1 2
2 2 2 1 2
1 3 2 1 2
2 3 2 1 2
3 3 2 1 2
1 1 2 2 2
2 2 2 2 2
1 3 2 2 2
2 3 2 2 2
3 3 2 2 2

Table 6: Phrases time.group and time + group interpreted by gemaco. Constraint matrices respec-
tively X2 and Y are generated by gemaco according to the component of the vector θ2 described in
Equation 43. The coordinates (F, To, T, A, G) of the components correspond respectively to (From,
To, Time, Age, Group) and are displayed in the right part.

with all elements different: 
β1 β3 1− β1 − β3

β2 β4 1− β2 − β4

0 0 1


Several effects can be combined using these operators since in a.b and a+ b, a and b can themselves be

model formulae.

The dot operator has priority over the + operator. This order can be changed using brackets as for

instance in [a+ t].g.
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4.4 External covariates

Let us assume that a time-dependent covariate x is available as a column vector x =

(
x1

x2

)
. The X2

matrix (associated to θ2 given by Equation 42) corresponding to a linear effect of this time-dependent

covariate within model t is X =



1 x1

1 x1

0 0

0 0

0 0

1 x2

1 x2

0 0

0 0

0 0

1 x2

1 x2

0 0

0 0

0 0



, generated by the phrase i+ t ∗ x.

Thus, the matrix product of a factor by an external covariate is a way of replacing this factor by

the linear effect of the covariate. Contrary to the dot (“.”) and sum (“+”) operators, the “*” operator

which is indeed to the traditional matrix product is neither commutative nor associative. The default

priority order of operations is (+ < . <*), and, as above, can be changed using brackets (e.g., [a.t] ∗x).

Several covariates related to different effects can be used simultaneously provided they are prepared

in a same file with a specific format (see section 5.4). They are then used as x(1), x(2),. . . (e.g.,

i+ t ∗ x(1) + t ∗ x(2)).

4.5 Individual covariates

A dedicated keyword xind

Syntax : xind(list) : consider a list of individual covariates given in the input capture-recapture file

(see chapter 5).

Example: We would like to have the survival depending on two individual covariates x(1) and x(2).

Index n is for individual n.

S = i+ xind(1, 2) builds a model where, logit(φ(n)) = β0 + β1 × x(1)
n + β2 × x(2)

n
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How act operators on xind ?

Matrix product ∗ allows one slope associated to a set of covariates.

Syntax: effect ∗ xind(list(levels of effect))

Example: We want to build a model where only one slope is associated to a set of individual

covariates varying with occasion k (1 < k < K − 1).

S = i+ t ∗ xind(1 K − 1) builds a model where, logit(φk,n) = β0 + β1 × xkn

Dot product . allows one effect to act on a set of covariates.

Syntax: effect.xind(list)

Example: We want to build a model where a different slope is associated to a covariate at each

occasion.

S = i+ t.xind builds a model where, logit(φk,n) = β0 + βk × xn

Operator > allows to restrict the effect of a covariate to a set of occasions, groups,etc...

Syntax: effect > xind(list).

Example: We want to build a model where the covariate applies only to occasions 1, 3 and

5.

S = i+ t(1, 3, 5) > xind builds a model where,

logit(φk 6=(1,3,5),n) = β0 and logit(φk=(1,3,5),n) = β0 + β1 × xn

4.6 Aggregation of parameters: lists

e-surge offers several possibilities of “grouping parameters” in the broad sense. First, one often needs

to build effects that are less complex than full dependence on time, age or any other factor. Such effects

on models are obtained by lumping categories. For instance in an analysis of European Dipper data over

6 years, floods decreased survival in years 2 and 3 [25]. The resulting X2 matrix is obtained by lumping

years 2 and 3 on the one hand, and year 1, 4, 5, and 6 on the other hand. This is done in e-surge

using lists of categories, each list corresponding to a set of categories lumped together. In the Dipper

example, the model formula to reduce the variation over time to two levels is t(1 4 5 6, 2 3). Similarly,

over 7 occasions, to distinguish the first year after capture from the other ones, as two age-classes, one
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will use a(1, 2 3 4 5 6 7) or a(1, 2 : 7). The overall syntax keyword(list1, list2, . . . , listm) where lists

(defined below) are separated by commas generates a factor with m levels. Each list can be either:

• a list of integers “j k l. . . ”

Example: a(1) is the first age class. a(1 2) aggregates the first two age classes.

• a discrete interval “i:j” as a shortcut for the set of integers {i,i+1,. . . ,j}.
Example: a(3 : 7) is equivalent to a(3 4 5 6 7).

• a series of indices i : k : j as a shortcut for the set of integers {i, i+k, i+2k,. . . }, in which two

successive integers are separated by the step k.

Example: a(3 : 2 : 7) and a(3 : 2 : 8) are both equivalent to a(3 5 7).

• A composite list using “;” and square brackets, according to the syntax list = [list1; list2; . . .]

Example: a([2 : 3; 6 : 7; 10]) is equivalent to a(2 3 6 7 10).

The syntax keyword(list) constrains all parameters in the list to be equal, and leaves the param-

eters corresponding to the other categories of the effect in keyword unconstrained. In terms of the

corresponding X matrix, it sums the columns in the list to produce a single column and leaves the

other unchanged. If only two age-classes (A = 2) are used for the umbrella model then the model can

be re-written a(1, 2) instead of a(1, 2 : 7). The + operator can also be used in this context: the formula

t(1 4 5 6, 2 3) in the dipper example above is equivalent to the formula t(1 4 5 6)+ t(2 3). In this type of

combination, when one wants to keep a series of consecutive categories (or equivalently, of factor levels)

distinct, one can also use the sign “ ” to replace the list with commas as separators. The overall syntax

is keyword(. . . , i j, . . .) which constrains all levels between i and j to be different.

Example: t(1 : 3, 4 6)=t(1 2 3, 4, 5, 6) forces levels 1, 2, 3 to be equal and keeps levels 4, 5, 6 different.

4.7 Aggregation of parameters: the aggregation operator

Lists make it possible only to aggregate parameters within a same main effect. The aggregation oper-

ator “&” makes it possible to aggregate parameters corresponding to categories of different effects, i.e.

which cannot be handled within a same list.

• Aggregation (&): The syntax a&b sums each column of the matrix corresponding to a (which

can be effect1(list1)) with each column of the matrix corresponding to b (which can be effect2(list2)).

If the numbers of columns are not equal then the last columns of the effect with the largest number

of columns are kept unchanged. It is particularly useful and most commonly used with a single

column in each of the terms aggregated, to form a single new column as in the following example.
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Example: f(1).to(1)&to(2) applied to the combined survival transition for two states builds the

following constraint {φ11 = φ12 = φ22}.

The default priority order of operations is (+ < &<. <*).

4.8 Keyword ”others”

Assume we are modeling data with two groups and three occasions of recapture, with two mathematical

parameters defined by t(1, 2).g(1) and that we want to constrain all the other biological parameters to

be equal to a third mathematical parameter. This third parameter may be defined by t(3).g(1)&g(2).

The overall model definition will thus be t(1, 2).g(1) + t(3).g(1)&g(2). Using the keyword others makes

this simpler. The model can be simply defined as t(1, 2).g(1) + others.

Important note: This keyword must always be used at the end of the sentence as “model+others”.

This keyword is particularly useful for multievent models when many parameters have to be fixed

to a same value. In this case, one first defines the mathematical parameters of interest and then simply

add the keyword others to account for all remaining parameters.

4.9 Shortcuts

Definition of shortcuts

In order to keep model definitions as simple and readable as possible, e-surge makes it possible to use

shortcuts. The user associates a shortcut name to an expression written with the mdl via a graphical

interface (see Figure 7).

A shortcut name begins by a letter followed by any letters or figures (Ex : sex for g(1,2)). A

shortcut can be combined to another shortcut (Ex : sex.t for g(1, 2).t). Then, gemaco substitutes

every occurrence of the shortcut name by the equivalent expression.

The syntax for addressing shortcut levels or of any part of a sentence is (see section 4.7):

shortcut(list1, list2, ...)

Shortcuts in practice

Let us consider for instance data consisting of individuals marked as juveniles and as adults. Juveniles

are stored in group one and adults in group two. Individuals are considered as juveniles only during

their first year and thereafter become adults.

We can create two shortcuts; Juv for [a(1).g(1)] and Ad for [a(2 : 5).g(1)&g(2)]. For a model in which

survival is different for juveniles and adults and is constant over time, one simply writes Ad + Juv.
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Figure 7: Shortcut creation interface

gemaco automatically replaces the sentence Ad + Juv by [a(1).g(1)] + [a(2 : 5).g(1)&g(2)]. We can

test, as usual, for effects affecting separately juveniles and adults. For example, the sentence Ad.t+Juv

considers a time-dependent survival for adults only.

The shortcut ”realage” be defined as [a(1).g(1) + a(2 : 5).g(1)&g(2)] with 2 levels. We can build models

Ad+ Juv and Ad.t+ Juv respectively with the two phrases realage and realage(1).t+ realage(2).

4.10 Redundancy in matrices

Each matrix Π,Φ, B is row-stochastic, i.e., the sum of each row is equal to one. Thus, for a matrix of

size R x S, fewer than R x (S-1) parameters out of the R x S parameters have to be estimated. One

redundant parameter has to be chosen for each row. This is open to user’s choice, based on a pattern

matrix T made of character. The T matrix of size R x S is made of ’*’, ’-’ and alphabetical letter,

with rows corresponding to previous states and columns to next state (or current event), as usual. For

each non zero elements of the row-stochastic matrix (either Π,Φ, B), trs is equal to any alphabetical

letter except for one element per row that is set to ’*’ to define the position of the redundant param-
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eter for this row. Again, there must be a single star (’*’) in each row. For each element structurally

egal to 0 (either Π,Φ, B), trs is equal to character ’-’. For instance, if we want to use the parame-

ters {ψ11, ψ12, ψ21, ψ22, ψ32, ψ33} of Equation 30 adapted to 3 states instead of using the parameters

{ψ12, ψ13, ψ21, ψ23, ψ31, ψ32}, we have to change the transition pattern matrix from


∗ ψ ψ −
ψ ∗ ψ −
ψ ψ ∗ −
− − − ∗



which is the default, to


ψ ψ ∗ −
ψ ψ ∗ −
∗ ψ ψ −
− − − ∗



4.11 Random effects

For random effects, we extend the mdl for fixed effects [5]. Therefore, we introduce a new built-in key-

word factor denoted ind for individual random effects, and implement random effects for groups with

the keyword random, which translate fixed effects into random effects. These additions fit naturally

into E-SURGE’s model specification syntax. However contrary to traditional effect like time, age, group,

direct addressing of levels of ind (one level corresponding to one individual) is not currently allowed.

We extend also the operator + to concatenate fixed effect and random effect to generate mixed models

of the form (14,16). Examples include:

The phrase i+ weight+ ind models equation (15).

The phrase i+ random(group) models equation (17).

More generally, two general forms of phrase are currently allowed

phrase1 + phrase2.ind for equation (14) and

phrase1 + random(phrase2) for equation (16),

where phrase1 and phrase2 are any general phrases for fixed effects.

Note: The phrase random(ind) is equivalent to the phrase ind.
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4.12 A list of models

The mdl in gemaco has been considerably expanded over the notation originally proposed by [25]. It

is flexible and powerful even for cjs models. A comparison between the two notations for a few models

frequently used is provided in Table 7.

Table 7: Correspondence between models in the notation of [25] and in the mdl in gemaco [5].

Model in the notation of [25] For survival in gemaco For event in gemaco

t ∗ g t.g firste+ nexte.t.g
t+ g t+ g firste+ nexte.[t+ g]
a2 + t a(1, 2 : A) + t −
a2 ∗ t a(1, 2 : A).t −
a2 ∗ g a(1, 2 : A).g −
a2 + g a(1, 2 : A) + g −
t+m − firste+ nexte.[a(2, 3 : A+ 1) + t]
t ∗m − firste+ a(2, 3 : A+ 1).t
g ∗m − firste+ a(2, 3 : A+ 1).g
g +ma

aFor models with trap ef-
fect(denoted m), the data must be
decomposed according to [36, 8]

−
firste+nexte.[a(2,3:A+1)+g]a

asame as
a(1)+a(2:A+1).[a(2,3:A+1)+g]

4.13 Aggregating mathematical parameters

gemaco allows you aggregate levels inside or between a effect inside a step defined in gepat (for example

the survival). But it is impossible with gemaco to set equality between parameters of different type. In

e-surge, we can do it by aggregating mathematical parameters. To do this, select the option Setting >

Set equality between parameters of various types after defining the model in gemaco but before ivfv

(see Figure 8).

e-surge ask you lists of integer at which constraint will apply (see Figure 9).

4.14 Non-linear model

When the option Models > Markovian & semi-Markovian states > Conditional on 1st Capture is

selected, steps in gemaco and in ivfv interfaces are two-fold. In gemaco, first defined the linear model

a usually (but using the intercept for the survival) then exit. A new menu appears, see Figure 10. Several

continuous functions associated to different hazard functions are available [11], select one of them. In

ivfv, fix the only one parameter link to the survival to 1, fix also the relevant capture rate (like the
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Figure 8: Set equality between mathematical parameters

Figure 9: Set equality between param. of various types: User’s should enter lists of integer at which
constraint will apply like ’{1 4:6} {2:3}’. Here mathematical parameters 1, 4, 5 and 6 are set equals as
well as mathematical parameters 2 and 3. Lists must be separated by a space (i.e. } ’space’ {).
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Figure 10: Menu for the choice of the survival: After exiting gemaco, the user must select a continuous
function thank to a new menu. Several hazard functions are available as well as a non-parametric
function (i.e. full age dependant survival) and a geometrical distribution (i.e. constant survival)

Figure 11: Menu for setting the initial values of the continuous function.

first one corresponding to firste to 1) then exit. A new menu appears, see Figure 11, for setting the

initial values of the continuous function.
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5 Data input

CR data typically consist of recapture history data (e1 . . . ek . . . eK ) with associated number of animals

(eff1 eff2 . . . effNG ). A negative value for effng means that the animals were removed at the occasion of

last capture. e-surge recognizes three file formats for CR data input, the biomeco, the mark where

numbers (instead of letters) are used as labels for states and the headed format. This implies that 9

states at most can be handled using the mark format. Any number of states can be considered with

the biomeco or the headed format.

5.1 The BIOMECO format

This format stems for the statistical ecology software biomeco [28]. It makes it possible to label rows

and columns via external files. This may be advantageous for proper retrieval of CR data, using, e.g.,

individual band numbers as labels for rows when there is one row per individual. The filename ( dummy

sign $ ) can be used if you do not want to create specific label files. The biomeco format, described in

Table 8 (see also [39]) can also be used in input and output in u-care.

NH K+NG
Filename1
Filename2
e1,1

a e12 . . . e1,K eff1,1
b . . . eff1,NG

...
eNH,1 eNH,2 . . . eNH,K effNH,1 . . . effNH,NG

aintegers enh,k must be separated by spaces(not tabular)
breal numbers effnh,ng must be separated by spaces(not tabular)

Filename1 and Filename2 : names of files with row and column labels,respectively,
K : number of capture occasions,
NG : number of groups,
NH : number of capture histories,
K+NG : total number of columns in the file.

Table 8: Description of the biomeco format as applied to CR data

enh,k is either 0, if the individual nh is not seen at occasion k, or u, if individual nh is seen in the

event u, (u = 1, . . . , U) at occasion k. The set of values (enh,1 enh,2 . . . enh,K) is the capture history

enh,. and the associated vector effnh,ng is the number of animals with history enh,. (nh = 1, . . . , NH) in

group ng (ng = 1, . . . , NG). Negative value for eff means that animals are removed immediately after

last capture.
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Remarks:

• e-surge does not allow external filenames. Only the dummy sign $ is accepted in place of

filename1 and filename2. We plan to use such names for labels of rows and columns respectively

in further versions.

5.2 The MARK format

Alternatively, the input data file can be in mark format [50] described in Table 9.

e1,1
ae1,2 . . . e1,K eff1,1

b . . . eff1,NG;
...
eNH,1eNH,2 . . . eNH,K effNH,1 . . . effNH,NG;

aintegers enh,k are written without data separator
breal numbers effnh,ng must be separated by spaces(not tabulator)

Table 9: Description of the mark format

e-surge asks then the number of columns containing covariates. By default, this value is zero (no

external variable) as such covariates are not presently handled by e-surge. Note that the enh,k have to

be contiguous, i.e. not separated by a blank (in contrast to the biomeco format). e-surge uses only

digits and not letters for states and the maximum number of states with the mark format in e-surge

is presently 9.

5.3 The HEADED format

The format

This format is a more general format in the sense that it includes the two previous formats with an

explicit label for each column. Using meaningful names as labels may be advantageous for proper

retrieval of CR data. Numbers are used as labels for events thus the number of events is not limited.

e-surge uses only digits and not letters for states.

Note that the enh,k have to be separated by a blank or a tabular if the number of states is higher than

9.

Comments are accepted and should be written between ’/*’ and ’*/’.
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Header line with formatted column names
e1,1

a e1,2 . . . e1,K eff1,1
b . . . eff1,NG c1,1

c . . . c1,NC i1,1
d i1,2

...
eNH,1 eNH,2 . . . eNH,K effNH,1 . . . effNH,NG cNH,1 . . . cNH,S iNH,1 iNH,2

aintegers or reals enh,k must be separated by spaces or tabulars if number of states is higher than 9
breal numbers effnh,ng must be separated by spaces or tabular
cnumbers ou letter cnh,nc must be separated by spaces or tabular
dreal numbers inh,t must be separated by spaces or tabular

K : number of capture occasions,
NG : number of groups,
NH : number of capture histories,
NC : number of covariables,
2 : number of informative variables (censoring variables),
The Header line contains the K+NG+S+2 formatted column labels.

Table 10: Description of the headed format

The Header Line

The header line contains a label for each column to permit e-surge to read several kind of data. The

label syntax is :

[format indicator] key-word [label]

• The key-words

Several kind of data are allowed and classified according to key-words.

Variable Type Key-Word Definition

History ei,j H: Recapture History data

Sample Size effi,k S: Associated number of animals

Left Censoring ii,1 When the animal was censored before the first capture :

LC: =


real age at the first capture if left censoring

-1 if left censoring but unknown age

0 if no left censoring.

Right Censoring ii,2 RC: =

{
-1 if the animal is removed at the last capture

0 if no right censoring.

Covariable ci,h COV: Explanatory Variables (predictors), ID.

• The format-indicator

The format-indicator allows e-surge to identify the variable format. By default, when the format-

indicator is not mentionned, variables are considered as numeric. To read character variables, it is
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necessary to specify the format-indicator $ as in SAS.

S:SampleSize $COV:Sex COV:weight

55 Male 1.2

12 Female 2.3

41 Female 0.9

• The label

A label is mandatory for all covariables and optional for the others. It is a word beginning by a letter

followed by any letters or figures. The covariable labels will be used to build the model in e-surge.

Important note: The left censoring is only implemented for the Models > Markovian & semi-

Markovian states > Conditional on 1st Capture option. In that case, for programming convenience,

it is necessary to add as much columns of 0 (for occasions) as the value of the maximal age of left

censoring.

A headed format example

H:C1 H: H:C3 H:C4 S: COV:weight COV:height LC:dead RC: $COV:sex $COV:Couple

1 0 12 0 1 24.2 31 0 0 male A

0 0 4 1 1 18.2 28 5 -1 female A

0 0 0 1 1 33.7 52 0 0 female B

0 0 2 12 1 10.1 33 0 0 male B

0 0 1 4 1 10.7 18 4 0 male C

Automatic shortcuts/clusters creation and use

When a qualitative covariate is find in the file and selected by the user (see Figure 12), a shortcut (see

Figure 7) or a cluster (see Figure 13) is automatically build according to the number of modalities:

• Shortcuts

If the number of modalities (levels) is lower or equal to 50, a shortcut is created which can be

used as a fixed or a random effect.

• Clusters

If the number of modalities (levels) is strictly larger than 50, a cluster is created by grouping

individuals by modality. It can be used only as a ”cluster” random effect (currently not available

but very soon available).
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Figure 12: Covariate selection interface

Figure 13: Cluster interface
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5.4 File of external covariates

The format of the file is described in Table 11.

n is the number of external covariates xi stored as successive rows of ki values.

n
k1 k2 . . . kn
x11 x12 . . . x1k1
...
xn1 xn2 . . . xnkn

Table 11: Description of the external covariates file

5.5 File of time intervals

The file of time intervals is a row of K − 1 real numbers as in Table 12.

t1
a t2 . . . tK−1

areal numbers ti must be separated by spaces(not tabulator)

K − 1 : number of time interval,
ti : time interval 1 ≤ i ≤ K − 1

Table 12: Description of the file of time intervals

5.6 Selecting steps for unequal time interval

e-surge allows the user to select steps at which unequal time intervals apply. One or more steps can

be considered. By default, unequal time intervals apply to step one. This can be change by selecting

Unequal time intervals: # of steps in the menu Setting(see Figure 14). A dialog box appears (see

Figure 15) asking for the steps.

5.7 File of initial values fixed values

The structure input file for Initial Values and Fixed Values in e-surge is described in Table 13.
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Figure 14: Select steps from the main menu

Figure 15: UTI applied to transition: User’s should enter a list of integer at which unequal time interval
will apply like ’1 3’. By default, unequal time intervals apply to step 1.
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nI nT nB
########## INIT ##########
typ1 β1
...
typnI βnI
########## TRANSITION ##########
typnI+1 βnI+1
...
typnI+nT βnI+nT
########## ENCOUNTER ##########
typnI+nT+1 βnI+nT+1
...
typnI+nT+nB βnI+nT+nB

Table 13: Description of the file of Initial and Fixed values

βi is a real and typi is an integer giving the type of βi :

typi=


0 if βi is an initial value

1 if βi is a fixed value in the logitgen link scale(if applied)

2 if βi is a fixed value in the identity scale

typi = 1 is usefull to fix mathematical parameters whereas typi = 2 is usefull to fix biological parameters

to 1 or 0.
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6 A short session

In this chapter, we show how to use e-surge based on a version of the Conditional Arnason-Schwarz

model with site fidelity parametrization (see section 3.4). The data are those used in [22] and come

from a 6-year study of a seabird between 1984 and 1999, for the study of movements of the Canada

Geese between three sites. The following steps that are necessary to obtain the parameter estimates

are listed below:

• Open a session (i.e. a frame that will contain the specifics of the data and the analysis results for

future retrieval),

• Load the capture histories data if the session is new,

• Build a general model containing an umbrella model (based in particular on appropriate Goodness-

of-fit test in u-care) using the gepat interface,

• Specify and build further constraints using the gemaco interface,

• Fix parameters and/or change initial values if needed using the ivfv interface,

• Run the model,

• Examine and interpret the results.

We will go through these steps in the following paragraphs. The general organization of e-surge is

summarized in Figure 16.

Figure 16: General organization of e-surge.
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6.1 Main window of E-SURGE

After invoking e-surge (e.g., from Windows Explorer by double-clicking on e-surge.exe), we are

presented with the main window of e-surge (see Figure 17). The window is divided in four areas

(namely Data Status, Advanced Numerical Options, Compute a Model and Output) and the toolbar

has six menus (namely Start, Data, Models, Setting, Run & See).

Figure 17: Main windows of e-surge with a toolbar and 4 distinct areas: The aspect of the window is
that before the data set has been loaded (a short description of the data is given in the ”Data status”
area) but before any model has been defined (see area ”Fit a model”). In this area, four buttons give
access to the gepat interface, the gemaco interface, the ivfv (Initial Values and Fixed Values) interface
and the run (Deviance Minimization routine, or solver). At the stage considered here, no button is
activated.

6.2 Opening a session

In the Start menu, you can select either a new or an old session (or exit from the program). If you

want to begin a new session, you first select the option open a new session. A window will appear
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asking where you want to store the results during the working session. For example, use the name

firststep.mod as in Figure 18.

Figure 18: Open a new session “firststep”

(This analysis was run under a French version of Windows)

All essential pieces of information about data and computations will be stored in this session file and

it will be saved automatically for future use when you exit e-surge. Next, you must load the capture

histories data (prepared as either a biomeco, a mark or a headed format file).

Figure 19: Read the data from the Biomeco file geese.rh (This analysis was run under a French version
of Windows)

Select the option ”Open a Biomeco file” in the Data menu and select your file. In our example the
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file is geese.rh as it is shown in Figure 19.

Once you have loaded your data file, the area ”Data status” is automatically updated with a descrip-

tion of the data. When an old session is opened, the data set is loaded automatically and e-surge gives

a short description of the data in the ”Data status” area of the main window (see Figure 17). You can,

and must if necessary, change the number of groups, the number of states and events and the number

of age classes by pressing the Modify button (change the current values, see Figure 20 ).

Figure 20: Change the number of age classes from 5 to 1.

The choice of an appropriate number of age classes leads to a faster algorithm and is thus recom-

mended if appropriate. Select 1 age class in Figure 20 for time dependent model. All result files will be

saved in the directory of the current session file.

6.3 Building the pattern matrices for the CAS model with site

fidelity parametrization using GEPAT

The next step is to specify in e-surge, the pattern of the matrices PΠ,PΦ(1),PΦ(2),PΦ(3),PB defined

respectively in equations (34,35,36,37,39). When the button gepat in the Compute a model area of

the main window (Figure 17) is pressed (or alternatively gepat in the Setting menu is selected), the

gepat window opens (Figure 21). This window has a toolbar with three menus (Parameters, Input-

Output for patterns, Pre-defined Patterns), four areas (Sentence for pattern, Matrix pattern, Options,

Automatic Patterns) and three edit boxes related to the number of steps(’1’), the current step(’1’) and

its label(’IS’).

The matrix pattern PΠ is by default already defined as in Equation 34 (Please note that often this

pattern has to be modified) For the four others matrix patterns, proceed step by step as follows:
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Figure 21: Window structure of the gepat interface : The default patterns for transitions and encounters
matrices are those of the combined formulation of the cas general model. The default matrix pattern
for initial state will be kept unchanged.

• First, select Transition in the menu Parameters, change the number of steps to 3 and optionaly

the label of the current step 1 to S (or any convenient label for survival). Change the matrix

pattern to Equation 35, the result is given in Figure 22. To obtain this diagonal matrix, you can

click on the button Diagonal Matrix.

• Select the current step 2 by clicking on the adjacent right arrow. Change the label to F(or any

convenient label for fidelity). Define the size of the matrix in the options area, enter 4 for the

number of rows and 7 for the number of columns and click on the button update now. Replace

the empty matrix pattern by Equation 36, the result should be the one visualize in Figure 23.

• Select the current step 3 by clicking again one time on the right arrow. Change the label to M(or

any convenient label for settlement). Define the size of the matrix in the options area, enter 7

for the number of rows and 4 for the number of columns and click on the button update now.

Replace the empty pattern matrix by Equation 37, the result should be the same than the one

display in Figure 24.

• Last, select Event in the menu Parameters. Change the pattern matrix to Equation 39, the result

is given in Figure 25.
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Figure 22: Matrix pattern in gepat for survival corresponding to Equation 35.

Figure 23: Matrix pattern in gepat for fidelity corresponding to Equation 36.
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Figure 24: Matrix pattern in gepat to Equation 37.

Figure 25: Matrix pattern in gepat for encounter corresponding to Equation 39.
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The general model under which the CAS model with site fidelity parametrization is now fully

specified and you can leave the GEPAT interface by clicking on the button EXIT in the lower part

of the window. However before exiting, you can save matrix patterns for an upcoming use. To that

purpose, select Save file with Patterns in the Input-Output for patterns menu.

Presently, two link functions are available in e-surge, the generalized logit and identity links. You

can choose between these two links in the Setting menu. For now, select the generalized logit link (the

default link). This action completes the specification of the general model for the current session.

Before running any model, unequal time intervals (see section 2.6) can be used by selecting in the

Setting menu the Unequal time intervals sub-menu. e-surge asked for a file of unequal time intervals

(see section 5.5). By default, unequal time intervals are applied to the first step of transition.

In our example, initial state probabilities will be estimated. The first step to compute these estimates

is to select Initial, Transition & Encounter in the menu Models | If any factorisation (see Figure 26).

See section 2.8 for details about the corresponding full likelihood. To skip Initial states probabilities

from transitions probabilities and encounter probabilities, select Transition & Encounter in the menu

Models | If any factorisation. In this case, only the partial likelihood (conditionial to the first capture)

is considered.

Figure 26: Menu to estimate or to skip initial state probabilities

6.4 Building the CAS model with site fidelity parametrization using

GEMACO

The next step is to specify more precisely the particular model to fit. This model is always nested within

the umbrella model and appropriate restrictions are implemented through constraints on parameters.

For people used to mark or surge, building constraints means creating design matrices. One great

feature of e-surge is that, constraints are specified by means of a Model Definition Language inter-

preted by gemaco. When the button gemaco in the compute a model area of the main window (see

Figure 17) is pressed (or alternatively gemaco in the Setting menu is selected), the gemaco window

opens (see Figure 27). This window has a toolbar with four menus (Input-Output for constraint ma-

trix, Parameters, Parameters and Gemaco) and four areas (Model definition, Shortcuts for sentences,

Transitions pattern and Constraint matrix) in Figure 27.
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Figure 27: Window structure of the gemaco interface : As shown here, the initial state part of the
cas model has just been built. The notation current.t means that the initial states vary by current site
(current) and time step (t). The corresponding design matrix, automatically created by gemaco, has
popped up in the Constraint matrix area.

Constraints on each type of parameters (initial states, transitions (survival, fidelity, settlement)

and encounter) are defined in turn independently of each other. Select each parameter type from the

Parameters menu or by clicking repeatedly on the top button with the name of the currently active type

(e.g. initial state in Figure 27). For the cas model with site fidelity parametrization that we intend to

fit to the goose data set, proceed step by step as follows:

• First, select initial state, enter the string ”current.t” in the Model definition area, and validate

it by clicking out of the Model definition area. The button Call Gemaco is now activated. Click

on it or select call Gemaco in the Gemaco menu. The design matrix appears in the Constraint

matrix area. The initial state part of the model is now defined.

• Select transitions in the menu Parameters, select current step 1 corresponding to survival, enter

the string ”f.t” in the Model definition area (”f = from” and ”t = time”), and validate it by

clicking out of the Model definition area. The button Call Gemaco is now activated. Click on it
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or select call Gemaco in the Gemaco menu. The design matrix appears in the Constraint matrix

area. The survival part of the model is now defined.

• Select current step 2 corresponding to fidelity, enter the string ”f.t” in the Model definition area,

validate it and call gemaco.

• Select current step 3 corresponding to settlement, enter the string ”f.to.t” in the Model definition

area, validate it and call gemaco.

• Select Event in the menu Parameters, enter the string ”firste + nexte.current.t” in the Model

definition area (”a = age”), validate it and call Gemaco. The first encounter (denoted as firste vs

nexte for re-encounter) corresponding to the probability of capture ( include Bk,1) will be fixed

to one later on in ivfv.

The cas model with site fidelity parametrization is now fully specified and you can leave the interface

by clicking on the button EXIT in the lower part of the window. However if you want to linger some

more within the gemaco interface, here are some indications of what you can do.

For each kind of parameters, two steps are compulsory and four steps are optional.

• (Optional) Select an external file if any external effects are involved (see section 4.4). To stan-

dardize these external covariates, select file with external variables to standardize. A file with

standardized variables is created and saved as the original file with a ”std ” suffix.

• (Optional) Define shortcuts in shortcuts for sentences before gemaco (see section 4.9 for its use).

Click on the button Add shortcut to define a new shortcut. You can also select a shortcut and

erase it by clicking on delete shortcut or you can also load and save shortcuts from the menu

Pre-defined Shortcuts. At the end of the session, shortcuts are saved with the session. With a

new session, if no shortcuts is already defined, a default file is loaded to which you can of course

add your own shortcuts.

• (Optional) Change the pattern for transitions in the Transitions pattern area (see section 4.10

for its use). The position of the zero in each row represents the parameter that is not constraint

directly. To change it, first select the row concerned and then move to the desired position the

bottom cursor.

• Enter a string in the Model definition area and validate it by clicking out of the Model definition

area (see section 4.12 for examples).

• Call gemaco by clicking on the button call Gemaco. If the model is correctly specified, the

constraint matrix appears in the top left corner of the window in the Constraint matrix area.
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• (Optional) Create user-defined models. Save the matrix displayed in the Constraint matrix area,

(toolbar Input-Output for constraint matrix), then you can change it using an external editor

(such as WordPad or TextPad or vim) so that the new design matrix represents the model you

would like to fit. Finally you can save this new matrix. You can then load it in m-surge (using

toolbar Input-Output for constraint matrix).

• (Optional) Build all the model together from the menu Gemaco | Call Gemaco (all phrases).

6.5 Changing Initial Values or Fixing Values of parameters (IVFV)

The ivfv interface serves to help in reaching convergence of a model by setting initial values to replace

default values or to set one or more parameters at a pre-determined value (“fixed values”). To do that :

- click on the button ivfv (“initial values, fixed values”) in the Compute a model area of the main

window (see Figure 17). A new window will appear similar to that of Figure 28. By default, each

parameter has been assigned an initial value equal to 0.5.

- Select the encounter part to fix the first encounter parameter to 1. In our example parameter 1

appears in Figure 28. Next to Beta #1 on the left is the chain “1 2 1 1 1 1”. The 1 2 sequence

means that the beta parameter corresponds to the capture probability of events 2 (seen as a 1)

for animals in state 1, the fourth indice 1 indicates the first class of age (the first capture).

- On the same line, you should replace the value 0.5 with 1. This is the new starting value for

parameter #1.

- Check the box nearby to fix this parameter. Now, parameter #1 is excluded from the optimization

process. Its value is frozen at the initial value you have just entered.

- Click on the button Exit to exit the ivfv interface.

It may also useful to fix some parameters to pre-determined values. In the cas model, the recapture

probability at the last occasion is not identifiable separately from the survival probability over the last

interval. Fixing the three last recapture probabilities to 1 does not change the results and may indeed

facilitate convergence.

There is an option Initial Value in the main window (see Figure 17) to change the way initial values

or fixing values are set. You may want to play with it and see the change in the ivfv interface. Fixing

and selecting initial values can be done either on the ]0, 1[ axis (i.e.; on the biological parameter scale

without link like θ = β), or on the real axis (i.e.; on the mathematical parameter scale f(θ) = β). In

the latter case, it is the transformed value (i.e. the logit or the generalized logit) of the parameter that

is set. This can be specified via the toolbar menu item Value space. Finally, the set of initial values

can be saved in a file and reloaded later (file option of the toolbar).
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Figure 28: IVFV interface: The encounter parameter 1 is fixed to one in the [0,1] scale. This is because
the box“fixing or setting initial values of Beta ?”is activated. In the current figure the capture parameter
2 is not fixed. Iterations will start for this parameter with an initial value equal to 0.5.



6.6. SETTING OPTIMIZATION PARAMETERS AND RUNNING THE MODEL 59

6.6 Setting optimization parameters and running the model

Before running the model, it is possible to change the numerical options that govern the optimization

algorithm in the Advanced Numerical Options area of the main window (see Figure 17). Because our

example is a relatively simple model with good data, the maximum number of iterations may be reduced

to 200 (see Figure 29). Also we can set the tolerance to parameters change to 0.0000001. This is one

of the two stopping criteria of the algorithm: the lower the tolerances, the more precise the result is. If

the maximum number of iterations is small as here, we recommend you set the Convergence option to

Continue (after n cycle)?. If no stopping criterion is satisfied after n cycles of 200 iterations, e-surge

will ask you whether to go on with n cycles of 200 additional iterations or stop (here, n = 3). To run

the model, click on run which is the red button in the Compute a Model area of the main window (see

Figure 17). This button becomes active once you exit ivfv.

Figure 29: Advanced Numerical Options: The tolerance on change in parameters has been set to 10−7,
the maximum number of iterations is 200. If no convergence is achieved after 3 cycles of 200 iterations,
e-surge will ask whether to continue for 3 cycles of 200 more iterations (the continue after n cycle?
option has been set with n = 3) or not. The analytical gradient will be used to compute the rank
(default, rather than with the Hessian) and a detailed output of the iterations will be displayed in a
dos window. The Hessian is needed to get standard errors estimates.

Now the model is being fit. The rank of the model conditional on the data is estimated by comput-

ing the rank of a matrix composed of the gradient of each history probability collapsed together and

estimated near the mles. Getting the correct value for the rank of the model is critical for model selec-

tion and we implemented a very precise algorithm using a numerical version of the Catchpole Morgam

Freeman approach [43, 6](see also section 7.2). e-surge suggests a model rank by default that you can
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modify. Here, the rank is estimated correctly at 69 (see Figure 30).

After convergence, i.e. minimization of the deviance, the Hessian matrix can be calculated optionally

by ticking the compute Hessian option in area 2 and running again. The Hessian is the matrix of second

order derivatives of the log-likelihood and is used to approximate the variance-covariance matrix of the

estimated parameters. It is computed by a finite difference scheme using either

• the deviance, by default when the finite difference gradient is used for optimization.

• the analytical gradient, when the analytical gradient is used for optimization. The option very

efficient in m-surge is not presently recommended in e-surge because of the additional cost

needed to compute the analytical gradient for Multievent model.

The variance-covariance matrix is approximated by the generalized inverse of the Hessian matrix. The

rank of the model conditional on the data can also be estimated from the numerical rank of the Hessian

matrix [49], but this new estimate is generally less precise than the default one.

Figure 30: “Give model rank” window: The estimated rank is 69 and a model name has to be chosen
for the CAS model with site fidelity parametrization.

6.7 Output of results

The previously fitted models of the session, their deviances and aics are permanently displayed in the

Output area (see Figure 31). If more than one model has been run, these models are sorted from top

to bottom by increasing qaic values.

When the optimization of a new model stops, the program examines whether it has not stopped

at a saddle point in which case a warning is issued (see section 10.2). Then, it looks for redundant

parameters. This is done by analyzing the singular values of a derivative matrix ([see 43, 6] for details

and section 7.2) at 4 points in the neighborhood of the mle and at the mle itself. The estimated model

rank at each of the five points is shown in the dos window (see Figure 31) while one list of potentially

redundant parameters corresponding are listed for each point in the output file (see Figure 32). The
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Figure 31: Output of e-surge I : Informations in the dos window: While a model is being fitted,
information about the iterations scrolls down the left dos window. Once convergence has been reached,
the numerical ranks of the model at 4 points in the neighborhood of the mles and at the mles itself
(5th value) are displayed. The right bottom window (Output area of the main window) permanently
displays the previously fitted models ordered by aic, with the following pieces of information: model
name, rank, deviance and aic. Once validated, the new model will take its place in this window. A
warning occurs saying that estimates are on a saddle point. To avoid this problem, run again the model
after fixing the last three capture rates to 1 and decreasing tolerances to 10−8.

user is then prompted to validate the estimated rank and to name the model. This done, the new model

takes its place in the list of previous models maintained in the Output area of the main window (see

Figure 31).

After each model fit, the results are also saved automatically in two files named namemodel.out and

namemodel.xls in the working directory. The mouse cursor flick during the save of the Excel file. The

model name by default is model? where “?” is replaced by a number. The text file can be displayed by

selecting the model in the Output area of the main window (Figure 17), and then clicking the button

View file of results. The corresponding file with generic name *.out is opened by the editor. The Excel

file can be opened by Excel and it can be automatically laid out by clicking on Update output Excel
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Figure 32: Output of e-surge II: Result of the potentially redundant parameters : The cas model
without the last captures fixed to 1 is known to be redundant, with a fall of rank equal to the number
of states. However, with sparse data, this may be worse. Here the formal result is verified. The above
temporary window displays for each of the 5 points near the mle (see text and caption of Figure 31)
the number of singular values of the derivative matrix (see [4] below the indicated threshold (here
9.2387e− 006), the number of additional singular values below a less selective threshold and the indices
of the potentially redundant mathematical parameters (here there are none).

file shape in the Run and see menu. We recommend you associate files with a suffix .out to the editor

of your choice. Similarly, the Hessian and the estimated variance co-variance matrices are saved in the

Excel file and in a temporary file named Hessian.tmp and may be retrieved using an editor. Any model

can be retrieved by selecting a model in the Output window part and by clicking the Retrieve model

button. The model selection can also be exported to Excel using the Export to Excel button.
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7 Advanced tools for numerical issues

Critical issues particularly for multistate models are the risk of numerical convergence to a local rather

than the global minimum and problems of parameter redundancy. Several advanced tools have been

made available in e-surge to address these issues. The diagnostic tool for parameter redundancy is

available for any Markovian models, but only for fixed effect model without an individual covariate.

7.1 Initial values

The default “constant initial values”may lead to a local minimum of the deviance. To reach the absolute

minimum, the initial value should ideally be chosen near the unknown mles. In the absence of clues

about good starting values, a possibility is to change the initial values once or repeatedly at random;

another to start from the results of a previous model. The two approaches are available in e-surge.

• Use random initial values (option Random). Repeated random initial values are particularly useful

(option Multiple Random): over several successive runs, you will most of time get convergence at

least once at the global minimum of the deviance, even if there are local minima.

• Use mles of the previous model (option From last model) as initial values. As an example, the

mles of the jmv model are more easily attained by starting from the mles of the corresponding

cas model. e-surge automatically adapts parameter values to fit the structure of the current

model.

• Use random initial values (option Multiple Random from IVFV files) defined in IVFV files(see

section 5.7 for the definition of IVFV file). To use this option, you must first define a file as

Table 14 containing the number of initial values and the name of each IVFV file.

n
name file1.fix
...
name filen.fix

Table 14: Multiple random values from IVFV file: The first line of the file containts n the number of
starting values and the next lines n names of ivfv files.

Important note: Like in multistate models, in multievent models, no method totally guarantees

convergence to the global minimum of the deviance. Based on our experience, we recommend to use

the option EM(20)+quasi-Newton available for the option Markovian states only > Conditional on 1st

Capture.
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7.2 A numerical approach for redundancy

Another crucial point is parameter redundancy. In their version adapted to multistate models [18], ad-

vanced users may use the formal methods of [4] for studying parameter redundancy. The key advantage

of this method is that estimable functions of the redundant parameters are explicitly identified. This

enables the user to fix the values of some redundant parameters to render the model full rank and above

all to interpret the values of the estimable parameters confidently. When this method cannot be applied

(e.g., for complex models), redundancy can be examined by looking at estimated standard errors (see

[20]). In e-surge, a parameter not at a boundary but with a very large or null standard error is in

general redundant. However, this approach is often unreliable.

The numerical version of the cmf approach is more reliable and has been implemented in e-surge.

It was used as a tool in [43] to demonstrate that some memory model are full rank. This approach [6]

considers the properties of the numerical derivative matrix rather than those of the formal derivative

matrix. The local rank, conditional on data, is estimated as the number of non-zero singular values and

the redundant mathematical parameters are identified. The only limitation is that estimable functions

of the redundant parameters are not explicitly identified. To improve precision, the calculations are

performed at 5 points by e-surge: the first 4 are neighbors of the mles shifted out of boundaries and

the last one is the mles itself. The estimated numerical rank provided by e-surge the maximum of the

5 ranks obtained. The list of potentially redundant parameters is established as the union of indices of

potentially redundant parameters at each point where the rank is maximal. This set of indices indicates

which parameters should be considered carefully for interpretation. Recall that direct interpretation of

parameters involved in redundancy is not relevant.

The rank of a model can drop locally, although on a set of interior values of measure 0 (the probability

to draw such an interior point is zero and four times in a row almost never) ([43]). Such an increase

also happens when a parameter is estimated at a boundary (see the legend of Figure 32). This local

redundancy often occurs at the mles in which case the set of indices increases at point 5 (the mles). In

case of doubt about the identifiability of a mathematical parameter, we recommend drawing the profile

deviance. The cas model with site fidelity parametrization with 3 states and no fixed parameters has

its parameters over the last interval redundant: the last three survivals (parameters 25, 26 and 27), the

last 3 fidelity (parameters 40, 41 and 42 ) and the last 3 transitions (parameters 55, 56 and 57) and the

last 3 captures (parameters 70, 71 and 72). The last list of indices (build at the mles) contains two

more parameters, two transitions (parameters 45 and 48). This could be an instance of a local drop of

rank. However, checking the estimated values shows that this parameter is estimated at the boundary

(its estimated value is zero because there is no such transition in the data set). This is not a case of
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redundancy.

8 Advanced tools for output

Several advanced tools have been made available in e-surge to give additional output. Only the non-

parametric bootstrap is general. The other tools are currently only available for the option Markovian

states only > Conditional on 1st Capture.

8.1 State dependent probabilities of CR histories

One may wish to consider the probability of each histories or the probability of an individual conditional

to its history to be in state D at first encounter e and in state A at the last occasion K . This approach

is related to the Bayes theorem and was used in [35] to obtain a post allocation of individual animals

to classes of heterogeneity. To obtain these quantities in e-surge, select View history state dependent

probability in the menu Run & See, see Figure 33.

Figure 33: To save probability of each histories, select View history state dependent probability in the
menu Run & See

After the parameters have been estimated, e-surge creates a file named ’histories.tmp’ which contains

for each history h

P (h)

and

P (D,A/h) =
P (D,A, h)∑a=1,N

d=1,N−1 P (d, a, h)

Each conditional probabilities P(D,A/h) and the associated marginals are stored in an array like:

d > a 1 . . . N P (d/h)

1 P (d = 1, a = 1/h) P (d = 1, a = N/h) P (d = 1/h)
...

...
N − 1 P (d = N − 1, a = 1/h) . . . P (d = N − 1, a = N/h) P (d = N − 1/h)

P (a = 1/h) P (a = N/h) 1

Figure 34 illustrate the output associated to the model used in chapter 6.
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Figure 34: First four capture histories extracted from the file ’histories.tmp’.
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8.2 Non-parametric Bootstrap

e-surge allows you to do non-parametric bootstrap. Select the option RUN & See > Run Options >

Bootstrap (see Figure 35) and set the number of iterates (by default 1). A file named ’bootstrap.txt’ is

saved containing first the list of deviances and followed by a list of vectors of mathematical parameters.

To prevent for local minima, it is highly recommended to used the Multiple Random option (sec-

tion 10.1) to fit the model at each iterate of the bootstrap .

Figure 35: Selecting the non-parametric bootstrap option

8.3 The Viterbi and the Counting algorithms

The Viterbi and the counting algorithms were developed by [44] in the context of capture-recapture for

estimating the lifetime reproductive success (LRS). The Viterbi algorithm reconstitutes the life of the

individual: The most probable underlying state sequence or more generally a set of state sequences such

that the cumulative probability reached a fixed threshold. From that sequences, it is easy to calculate

the LRS or any quantitative value of interest.

To do this, select the option Run > Compute reconstituted histories (viterbi). A menu appears (See

Figure 37), the sentence ’1:173’ selects all the histories 1 to 173, the number ’4’ asks for the 4 most

probable sequences for each history. All the details (by histories) are saved in the file ’viterbi.txt’.

Originally, the counting algorithm estimates the occurrences of the hidden states in the life of the

individual. This algorithm is faster than the Viterbi algorithm but as implemented by [44] gives less

informations. So, we generalized this algorithm to evaluate the number of transition between states.

To do this, select the option Run > Count transition numbers. A menu appears (See Figure 37),

the sentence ’1:173’ selects all the histories 1 to 173, the sentence ’2:4’ selects states of interest for the

LRS (here, state 2=’1 fawn’, state 3=’2 fawns’, state 4=’3 fawns’). A resume is given by e-surge.

Numberofindividuals =

212

# of occasions in a state: mean, se and ci

===========================================
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mean =

0.9386 1.2949 1.5392

se =

0.0790 0.1184 0.1279

ci(:,:,1) =

0.7829 1.0615 1.2871

ci(:,:,2) =

1.0943 1.5282 1.7914

===========================================

# of transition between states: mean, se and ci

===========================================

ans =

0.1943 0.2215 0.2311

0.2071 0.4064 0.2559

0.2155 0.3165 0.7392

ans =

0.0335 0.0279 0.0287

0.0328 0.0683 0.0319

0.0301 0.0347 0.0842
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ans =

0.1284 0.1664 0.1746

0.1425 0.2717 0.1931

0.1562 0.2480 0.5732

ans =

0.2603 0.2765 0.2877

0.2717 0.5411 0.3188

0.2748 0.3850 0.9051

===========================================

full details saved in file counting.txt

From this resume, an estimate of the LRS is given by the formula 0.9386×1 + 1.2949×2 + 1.5392×3 =

8.1460. All the details (by histories) are saved in the file ’counting.txt’.

Important notes:

• These two algorithms are availables only for fixed effect (not individual effect).

• More elaborate sentences can be used to select histories of interest. For example, the sentence

’find(his(:,1)>=2)’ selects all histories of the first cohort.

Figure 36: Menu for the Viterbi algorithm
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Figure 37: Menu for the Counting algorithm
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8.4 Tests for environmental covariates in presence of a random

effect

To test for environmental covariates in presence of a time random effect whitout fitting the random

effect, there is two options[26].

• using a permutation test,

• using a ANODEV F-test ( or its t-test version when a one side test is suitable )

In both cases, build the model with environmental covariates following the usual three steps gemaco,

gepat and ivfv.

To do the permutation test, select the option, RUN > Permutation test.

To do the standard test, select the option RUN > ANODEV test. In addition to the deviances of

constant and time-dependent models, e-surge asks for the Excel file containing the time-dependent

model with estimated variances. With this last option, e-surge compute an estimates of the residual

variance.

Important remark: This option is available only for the first step of transition which is in general

the step for survival.

9 Interpreting the output

In this chapter, we will go through the output file obtained at the end of chapter 6. Some of these

informations and others are also available in the corresponding Excel file.

9.1 CAS output file

The content of the cas output file is given in chapter 13 in detail. The lines are numbered from 1 to

499 (abbreviated L1 to L499 hereafter).

9.2 File heading (L1-L9)

Lines 1 to 4 are where information about the version of e-surge used (L1), the name of the current

output file (L3), and the data file (L4) are given. Lines 5-9 give some basic and essential information

about the data, such as the number of occasions (L5), the number of states (L6), the number of events

(L7), the number of groups (L8) and the number of age classes (L9).
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9.3 Information about the model (L11-L21)

Lines 10 to 68 provide information about the fitted model. The name of the model is given on L11. Lines

25 to 68 give, for each step, the matrix pattern defined in gepat and the Model Definition Language

phrase used in gemaco to build the constrained matrix. The initial values of each beta value are given

in line 18 on the real axis (i.e., after logit or generalized logit transformation).

The indices of the beta values that were fixed are given in line 20 and the corresponding fixed values

on the scale ]0,1[ appear in line 21. Only results for free beta parameters are later given from L350 to

L423.

9.4 Minimization (L23-L26 and L355-L426)

Lines 69 to 73 give the advanced numerical options used by the unconstrained nonlinear minimization

algorithm. e-surge uses a Quasi-Newton algorithm [14], an Expectation-Maximization algorithm (EM)

[42] or a hybrid algorithm (20 iterations of EM followed by a Quasi-Newton algorithm) when the

generalized logit is used as a link function. One of these non-linear solvers can be chosen by the user

in e-surge. If available for the model under consideration, the hybrid algorithm is recommended. A

constrained nonlinear algorithm is used with the identity link. On line 69 it is noted which link function

has been used (logitgen in our case). Line 70 mentions that the gradient of the deviance has been

calculated numerically (a centered finite difference scheme applied to the deviance is used to compute

the gradient). Otherwise, the gradient is computed analytically. In lines 71 and 72, tolerances tolf

and tolx used as criteria of convergence are given. Stopping criteria recommended by [14][p347] are

used.

The minimization process gives a local minimum which is not necessarily global [27]. Running the

same model with other different initial values is currently the main method to check if another, lower

minimum of the deviance can be achieved. Research is currently underway to help with this difficult

problem. See also sections 7.1.

e-surge computes the eigenvalues of the Hessian matrix (L428 to L499), based on the singular

value decomposition (svd). These eigenvalues indicate the redundancy and reliability of the parameter

estimates. If the eigenvalues are:

1) All strictly positive: e-surge has found a local minimum of the deviance function and provides

estimates and confidence intervals for all the estimators.

2) Some negative or positive but near zero: some parameters of the model cannot be identified. In

this case, e-surge decides how many eigenvalues can be considered as equal to zero according to a

threshold.

3) Strictly negative and far from zero: e-surge did not reach a minimum and the parameter estimates

are unreliable. A warning appears if any eigenvalue is lower than −10−6 ∗ λ1 (where λ1 is the
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largest eigenvalue). In this case, the advice is to set smaller tolerances and re-run the same model.

Sometimes, it is not enough and the model has some difficulties to achieve convergence, i.e. estimates

are close to the mles but numerical difficulties slow down the convergence. Fixing some parameters

is another possibility and is very efficient: for example fixing the last capture probabilities to one

for the CAS model or fixing to zero capture probabilities at occasion when there is no capture.

9.5 Deviance, AIC and related topics (L35-L44 and L431- L502)

First, the time needed to obtain the parameter estimates and the time needed to calculate the Hessian

are respectively given in L90 and L91, together with the number of iterations(L93). Line 75 and 76 give

the deviance and the Akaike information criterion amended for overdispersion (Qaic):

QAIC = dev/ĉ+ 2 ∗ rank

L84 gives ĉ (c-hat, provided by the user according to the results of gof tests; default is 1. and L79 gives

an estimate of the rank of the model conditional on the data. By default in e-surge, the rank is the

maximum of numerical rank of derivatives matrix [43]) of the summary statistics calculated at several

neighbors (µ) of the mles (section 7.2). The algorithm to compute the rank is summarized below:

1. Choose a point µ near the mles.

2. Compute Dµ the derivatives matrix at µ.

3. Normalize Dµ by Gµ.

4. Compute U , V orthogonal matrices and E diagonal matrix such that U tDµGµV = E.

5. Estimate rank(µ) =
∑

i(ei ≥ mεe1) where m is the number of columns of Dµ.

The rank can be also estimated less precisely by the numerical rank of the computed Hessian plus the

estimated number of boundary parameters, based on a threshold to decide which eigenvalues listed

in L428 to L499 can be considered as equal to zero, (as mentioned in the previous paragraph). This

threshold criterion λi ≥ ∗10−7 ∗ λ1 , where n is the size of the Hessian matrix (L78) and λ1 its largest

eigenvalue. Thus instead of the current value estimated by the numerical CMF method (section 7.2),

L79 may give the number of eigenvalues which satisfy this criterion plus the estimated number of

boundary parameters (L80). Following [49], another less severe threshold is applied in e-surge as

λi ≥ n ∗ 10−4 ∗ λ1.

The difference between the results of the application of the two thresholds is given in L82. These

results can be used together with theoretical calculations for advanced investigations of redundancy

issue. In this example, we see from L428-L499 that the rank is at least 70, as all eigenvalues but two

(-0.00000801 0.00172081) are clearly larger than 0. However, two estimates are considered as being



74 CHAPTER 9. INTERPRETING THE OUTPUT

on a boundary. [49] recommend considering such parameters as non-redundant. Furthermore, the

convergence was not achieved in this case, two eigenvalues are lower than zero. Hence the number of

non-redundant parameters is taken to be 72, which is a bad estimate for the rank.

9.6 Beta estimates (L355-L426)

The Maximum Likelihood Estimates (mles) of the “mathematical parameters” (β̂ ) are given along with

their 95% confidence intervals and their standard errors. Fixed betas do not appear. The standard errors

(SEs) are derived from the matrix of variance-covariance computed as the inverse of the second order

derivative matrix of the likelihood or equivalently as the first order derivative matrix of the analytical

gradient of the likelihood. The 95 % confidence interval β − 1.96 SE
√
ĉ, β + 1.96 SE

√
ĉ relies on the

asymptotic Gaussian distribution of mles.

9.7 MLEs of parameters and standard errors (L134-L348)

In lines 229 to 343, the mles of the ”biological parameters” θ̂ = Xβ̂, their confidence intervals and

standard errors are listed. To easily identify the parameters, their row number in the X matrix is given.

The concerned states, occasions, ages, groups and steps are also given in this order according to the

letters ”F To T A G S” (line 227) which refers to: From, To, Time, Age, Group, Step in order. Irrelevant

values are set to 0.

Example: ”S( 2, 2)( 4, 1)( 1 1)” means probability of survival(step 1), from state 2, at occasion 4 (i.e.,

between occasions 4 and 5), for age 1 and group 1 (there is only one age classes and one group).

Considering the number of biological parameter, users are helped by

• an Excel file copy,

• a summary of lines 229 to 343 given from lines 151 to 221.

The covariance matrix of Xβ̂ is obtained from that of β̂,Σ(β̂) as XΣ(β̂)Xt = Σ(θ̂). Standard errors of

x = logit−1(Xβ̂) are computed by the delta method. 95 % ci are obtained by back-transforming the

endpoints of 95% CI of Xβ̂. As a consequence, the confidence interval of the parameter xi is

⌊
logit−1

(
θ̂ − 1.96V (θ̂)

√
ĉ
)
i
, logit−1

(
θ̂ + 1.96V (θ̂)

√
ĉ
)
i

⌋
For parameters obtained using the generalized-logit link function, the delta method is first applied

to θ = logit(logitgen−1(Xβ̂)). Then, we proceed as above to obtain standard errors and confidence
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intervals for x = logit−1(θ).

10 A few warnings

The estimates and other results provided by e-surge are obtained via a complex numerical analysis

procedure. Users must be aware of various complications that may arise; to find improvements and

solutions is an active area of research.

10.1 Local minima

The optimization procedure used by e-surge gives a minimum of the deviance function and not nec-

essarily the global minimum. Repeating minimization with different initial values is currently one of

the only practical solutions to this problem (see section 7.1). Another method is to use initial values

computed from the mles of a simpler model, e.g., to use mles of a time-constant model as initial values

for the optimization of a time-dependent model. This approach is available in e-surge by first running

the simpler model, and then, selecting the start from last model option in the Advanced Numerical

Options before running a finer model. This allows the new model to start from the solution of the

previous one. Our preliminary investigations with this approach yielded promising results when the

simpler model was well chosen.

10.2 Saddle point

Estimates at a saddle point are always the results of a bad convergence and/or a difficult problem. To

avoid it, several solutions may be advocated:

1. If the convergence is not attained, try to help the convergence by fixing appropriate parameters.

Some capture rates which are known to be zero may be fixed to zero. Some parameters involved

in the redundancy like the last capture rates for the cjs model may be fixed to one.

2. If the convergence is attained, reduce tolerances.

10.3 Additive models

Because of the redundancy inherent in categorical variables, the sentence t+g is reduced to t+g(2 NG).

The first column of g is automatically deleted as the sum of t and the sum of g are both equal to the

intercept. For the sentence g + t, the first column of t is deleted. However, the two formulations are

equivalent to the model t+ g because the resulting X matrices will generate the same linear subspaces,

i.e., in turn, lead to the same final parameter estimates and minimal deviance value .
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10.4 Generalized logit

Additive effects with the generalized logit do not generate the usual parallel responses. Pending further

investigations, we recommend not using additive effects with the generalized logit. However, for the

combined survival-transition formulation with one state and the separate survival-transition formulation

with two states, the logit and generalized logit coincide.

11 Acknowledgements

We warmly thank Lauriane Rouan, Christine Hunter, Stéphanie Jenouvrier, Cédric Juillet, Jean-
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ones:

• The software will be used for an academic or research purpose only. In particular, it will not be
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• Due acknowledgement will be made for the use of e-surge program in research reports or publi-

cations, mentioning the program as well as the publication related to the program (our preferred

option for obvious reasons) or the manual.

• The user recognizes to be aware that the software is a research product and is provided without

any expressed or implied warranty. There is no warranty of any kind concerning the fitness of the

software for any particular purpose.
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13 Output text file

1 E-SURGE V 1.7.1,23-Sep-2010

2

3 OUTPUT FILE : C:\Erika\workshop\TUTORIALS\Ex3 - geese\CAS.out

4 Data File :C:\Erika\workshop\TUTORIALS\Ex3 - geese\Geese.rh

5 Number of occasions : 6

6 Number of states : 4

7 Number of events : 4

8 Number of groups : 1

9 Number of age classes : 1

10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

11 Model Name : Model1

12 Model formula (or file) :

13 For Initial State:IS - Step 1 - (12): current.t

14 For Transition:M - Step 1 - (15): f.t

15 For Transition:F - Step 2 - (15): f.t

16 For Transition:T - Step 3 - (15): f.to.t

17 For Event:E - Step 1 - (16): firste+nexte.current.t

18 Init(values) -0.000000,-0.000000,-0.000000,-0.000000 ... 0.000000,

19 Init(indices) 1, 2, 3, 4, 5, 6, ... 72, 73,

20 Fix(values) 1.000000,

21 Fix(indices) 58,

22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

23 Full Model Details

24 --------------------

25 # of step for initial state :1

26 Phrase for step 1 : current.t

27 Number of shortcuts : 0

28 Pattern matrix :

29 p p *

30 Name file for covariates : defaultfile

31

32 # of step for transition : 3

33 Phrase for step 1 : f.t

34 Number of shortcuts : 0

35 Pattern matrix :
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36 y - - *

37 - y - *

38 - - y *

39 - - - *

40 Phrase for step 2 : f.t

41 Number of shortcuts : 0

42 Pattern matrix :

43 z * - - - - -

44 - - z * - - -

45 - - - - z * -

46 - - - - - - *

47 Phrase for step 3 : f.to.t

48 Number of shortcuts : 0

49 Pattern matrix :

50 * - - -

51 - d * -

52 -* - -

53 d - * -

54 - - * -

55 d * - -

56 - - - *

57 Name file for covariates : defaultfile

58

59 # of step for encounter : 1

60 Phrase for step 1 : firste+nexte.current.t

61 Number of shortcuts : 0

62 Pattern matrix :

63 * b - -

64 * - b -

65 * - - b

66 * - - -

67 Name file for covariates : defaultfile

68 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

69 Link function : logitgen

70 Explicit gradient : off

71 TOLF : 0.0000001

72 TOLX : 0.0000001
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73 Order for the Gauss-Hermite interpolation : 15.000000

74 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

75 dev(PI)+dev(PHI,B) = 116414.612

76 QAIC = 116552.612

77

78 Number of mathematical parameters : 72.000000

79 Estimated model rank applicable to the data : 69.000000

80 Estimated number of boundary parameters : 2.000000

81

82 WARNING : there might be 0 further non identifiable parameters

83

84 c hat used for the QAIC : 1.000000

85 Model type = 0(Markovian), >0(Unavailable) : 0.000000

86 Conditionality = 0(1st capture), 1(1st occasion), 2(Closed) : 0.000000

87 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

88 Method for the Gauss-Hermite interpolation : unknown

89 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

90 Time for optimisation : 1.215743e+001 seconds

91 Time for Hessian : 2.745516e+001 seconds

92

93 Number of iterations for optimisation : 84

94 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

95 Informations about parameter identifiability :

96 ---------------------------------------------------------

97 69 singular values bigger than :9.2387e-006

98 May be0 more parameters are non-estimables

99 ---------------------------------------------------------

100 9 quantities solutions of3 partial derivatives equations,

101 made of redundant parameters (indices below) are estimables

102 25 26 27 40 41 42 55 56 57 70 71 72

103 25 26 27 40 41 42 55 56 57 70 71 72

104 25 26 27 40 41 42 55 56 57 70 71 72

......

......

137 ---------------------------------------------------------

138 11 quantities solutions of3 partial derivatives equations,

139 made of redundant parameters (indices below) are estimables
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140 25 26 27 40 41 42 45 48 55 56 57 70 71 72

141 25 26 27 40 41 42 45 48 55 56 57 70 71 72

142 25 26 27 40 41 42 45 48 55 56 57 70 71 72

143

144 Maximum Likelihood Estimates

145 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

146 Reduced set of parameters

147 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

148 Index Estimates | Lower & Upper 95 percent CI | S.E.

149 F To T A G S

150 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

151 Par# 1# IS( 1, 1)( 1, 1)( 1 1) | 0.224670873 0.211123372 0.238824520 0.007066957

152 Par# 2# IS( 1, 2)( 1, 1)( 1 1) | 0.597023446 0.580654624 0.613178976 0.008299832

......

......

160 Par# 16# IS( 1, 1)( 6, 1)( 1 1) | 0.202304724 0.175603208 0.231924148 0.014365353

161 Par# 17# IS( 1, 2)( 6, 1)( 1 1) | 0.450704260 0.416098003 0.485794108 0.017808202

162 Par# 19# M( 1, 1)( 1, 1)( 1 1) | 0.631613156 0.579582626 0.680751334 0.025889372

163 Par# 20# M( 2, 2)( 1, 1)( 1 1) | 0.742891360 0.703481678 0.778710814 0.019209356

......

......

175 Par# 48# M( 2, 2)( 5, 1)( 1 1) | 0.401722974 0.375928707 0.428073091 0.013313691

176 Par# 49# M( 3, 3)( 5, 1)( 1 1) | 0.623398935 0.569533095 0.674378087 0.026837606

177 Par# 54# F( 1, 1)( 1, 1)( 1 2) | 0.778638230 0.720419147 0.827634547 0.027367239

178 Par# 56# F( 2, 3)( 1, 1)( 1 2) | 0.901196378 0.876701846 0.921261837 0.011313145

......

......

190 Par# 84# F( 2, 3)( 5, 1)( 1 2) | 0.819115054 0.792772322 0.842773232 0.012748695

191 Par# 86# F( 3, 5)( 5, 1)( 1 2) | 0.735238092 0.691715302 0.774618492 0.021175829

192 Par# 90# T( 4, 1)( 1, 1)( 1 3) | 0.887027523 0.772978810 0.947661013 0.042718142

193 Par# 91# T( 6, 1)( 1, 1)( 1 3) | 0.263997269 0.178922130 0.371234867 0.049405648

......

......

204 Par# 131# T( 6, 1)( 5, 1)( 1 3) | 0.122292640 0.083089655 0.176433064 0.023559032

205 Par# 132# T( 2, 2)( 5, 1)( 1 3) | 0.974046985 0.909740540 0.992895327 0.016956592

206 Par# 143# E( 1, 2)( 1, 1)( 1 1) | 1.000000000 1.000000000 1.000000000 0.000000000

207 Par# 185# E( 1, 2)( 2, 2)( 1 1) | 0.618845204 0.548023405 0.684949372 0.035136109
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......

......

220 Par# 214# E( 2, 3)( 6, 2)( 1 1) | 0.707113893 0.670609870 0.741134050 0.018012035

221 Par# 215# E( 3, 4)( 6, 2)( 1 1) | 0.385297408 0.339917748 0.432763412 0.023749312

222

223 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

224 Parameters

225 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

226 Index Estimates | Lower & Upper 95 percent CI | S.E.

227 F To T A G S

228 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

229 Par# 1# IS( 1, 1)( 1, 1)( 1, 1) | 0.224670873 0.211123372 0.238824520 0.007066957

230 Par# 2# IS( 1, 2)( 1, 1)( 1, 1) | 0.597023446 0.580654624 0.613178976 0.008299832

......

......

145 Par# 17# IS( 1, 2)( 6, 1)( 1, 1) | 0.450704260 0.416098003 0.485794108 0.017808202

146 Par# 18# IS( 1, 3)( 6, 1)( 1, 1) | 0.346991015 0.314411399 0.381070122 0.017026884

147 Par# 19# M( 1, 1)( 1, 1)( 1, 1) | 0.631613156 0.579582626 0.680751334 0.025889372

148 Par# 20# M( 2, 2)( 1, 1)( 1, 1) | 0.742891360 0.703481678 0.778710814 0.019209356

......

......

179 Par# 52# M( 3, 4)( 5, 1)( 1, 1) | 0.376601065 0.325621913 0.430466905 0.026837606

180 Par# 53# M( 4, 4)( 5, 1)( 1, 1) | 1.000000000 1.000000000 1.000000000 0.000000000

181 Par# 54# F( 1, 1)( 1, 1)( 1, 2) | 0.778638230 0.720419147 0.827634547 0.027367239

182 Par# 55# F( 1, 2)( 1, 1)( 1, 2) | 0.221361770 0.172365453 0.279580853 0.027367239

......

......

213 Par# 87# F( 3, 6)( 5, 1)( 1, 2) | 0.264761908 0.225381508 0.308284698 0.021175829

214 Par# 88# F( 4, 7)( 5, 1)( 1, 2) | 1.000000000 1.000000000 1.000000000 0.000000000

215 Par# 89# T( 1, 1)( 1, 1)( 1, 3) | 1.000000000 1.000000000 1.000000000 0.000000000

216 Par# 90# T( 4, 1)( 1, 1)( 1, 3) | 0.887027523 0.772978810 0.947661013 0.042718142

......

......

263 Par# 137# T( 5, 3)( 5, 1)( 1, 3) | 1.000000000 1.000000000 1.000000000 0.000000000

264 Par# 138# T( 7, 4)( 5, 1)( 1, 3) | 1.000000000 1.000000000 1.000000000 0.000000000

265 Par# 139# E( 1, 1)( 1, 1)( 1, 1) | 0.000000000 0.000000000 0.000000000 0.000000000

266 Par# 140# E( 2, 1)( 1, 1)( 1, 1) | 0.000000000 0.000000000 0.000000000 0.000000000
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......

......

342 Par# 214# E( 2, 3)( 6, 2)( 1, 1) | 0.707113893 0.670609870 0.741134050 0.018012035

343 Par# 215# E( 3, 4)( 6, 2)( 1, 1) | 0.385297408 0.339917748 0.432763412 0.023749312

344

345 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

346 Beta (Mathematical parameters)

347 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

348 Index Beta | Lower & Upper 95 percent CI | S.E.

349 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

350 Beta# 1# | +0.231137158 +0.125789960 +0.336484355 +0.053748570

351 Beta# 2# | +1.208456999 +1.118874734 +1.298039263 +0.045705237

......

......

360 Beta# 11# | -0.539523790 -0.735544318 -0.343503262 +0.100010473

361 Beta# 12# | +0.261512495 +0.103114152 +0.419910838 +0.080815481

362 #####################################################################

363 Beta# 13# | +0.539143521 +0.321060268 +0.757226773 +0.111266966

364 Beta# 14# | +1.061051094 +0.863932820 +1.258169368 +0.100570548

......

......

406 Beta# 56# | -1.970896378 -2.401089488 -1.540703268 +0.219486281

407 Beta# 57# | +3.625171738 +2.310471023 +4.939872454 +0.670765671

408 #####################################################################

409 Beta# 58# | +0.484649587 +0.192687597 +0.776611578 +0.148960199

410 Beta# 59# | -0.229668409 -0.367699756 -0.091637062 +0.070424157

......

......

422 Beta# 71# | +0.881407926 +0.710944699 +1.051871152 +0.086971034

423 Beta# 72# | -0.467123038 -0.663660781 -0.270585295 +0.100274359

424 #####################################################################

425 ---------------------------

426 Hessian eigenvalues

427 ---------------------------

428 -1.94745573

429 -1.70465435

......



83

......

498 2259.51584662

499 2296.98055316
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