
Emotiv 

Software Development Kit 
User Manual for Release 2.0.0.20 



TABLE OF CONTENTS 

DIRECTORY OF FIGURES _______________________________________________ 4 

DIRECTORY OF TABLES ________________________________________________ 6 

DIRECTORY OF LISTINGS _______________________________________________ 7 

1. Introduction ________________________________________________________ 8 

1.1 Glossary _______________________________________________________________ 8 

1.2 Trademarks ____________________________________________________________ 9 

1.3 Regulatory Information: _______________________________________________ 10 

Quick Start Guide ___________________________________________________ 12 

2. Getting Started ___________________________________________________ 18 

2.1 Hardware Components _______________________________________________ 18 
2.1.1 Charging the Neuroheadset Battery _______________________________________ 18 

2.2 Emotiv SDK Installation _________________________________________________ 19 
2.2.1 Minimum Hardware and Software requirements ____________________________ 19 
2.2.2 Included Emotiv SDK software _____________________________________________ 19 
2.2.3 USB Receiver Installation ___________________________________________________ 19 
2.2.4 Emotiv SDK Installation ____________________________________________________ 19 

2.3 Start Menu Options ____________________________________________________ 22 

3. Emotiv Control Panel™ ____________________________________________ 23 

3.1 EMOENGINE STATUS PANE _____________________________________________ 23 
3.1.1 ENGINE STATUS____________________________________________________________ 24 
3.1.2 USER STATUS ______________________________________________________________ 24 
3.1.3 Sensor Contact Quality Display ____________________________________________ 24 

3.2 HEADSET SETUP ________________________________________________________ 25 
3.2.1 Achieving Good Signal Quality ____________________________________________ 26 

3.3 EXPRESSIV™ SUITE _____________________________________________________ 27 
3.3.1 Understanding the EXPRESSIV SUITE Panel Display ___________________________ 27 
3.3.2 Sensitivity Adjustment Panel _______________________________________________ 28 
3.3.3 Training Panel ____________________________________________________________ 29 

3.4 AFFECTIV™ SUITE ______________________________________________________ 30 
3.4.1 AFFECTIV SUITE Introduction ________________________________________________ 30 
3.4.2 Understanding the Affectiv Panel Display ___________________________________ 30 
3.4.3 AFFECTIV SUITE Detection Details ___________________________________________ 31 

3.5 COGNITIV™ SUITE _____________________________________________________ 31 
3.5.1 COGNITIV SUITE Introduction _______________________________________________ 31 
3.5.2 Understanding the Cognitiv Panel Display __________________________________ 32 
3.5.3 Cognitiv Training __________________________________________________________ 33 
3.5.4 Training Neutral ___________________________________________________________ 35 
3.5.5 CLEAR TRAINING DATA Button _____________________________________________ 35 
3.5.6 Advanced Cognitiv Options _______________________________________________ 35 
3.5.7 Cognitiv Tips ______________________________________________________________ 35 



3.5.8 Cognitiv Settings __________________________________________________________ 36 
3.5.9 Cognitiv Challenge _______________________________________________________ 41 

4. Emotiv SDK Tools __________________________________________________ 42 

4.1 Introduction to EmoKey™______________________________________________ 42 
4.1.1 Connecting EmoKey to Emotiv EmoEngine _________________________________ 42 
4.1.2 Configuring EmoKey Rules _________________________________________________ 43 
4.1.3 EmoKey Keyboard Emulation ______________________________________________ 44 
4.1.4 Configuring EmoKey Rule Trigger Conditions ________________________________ 45 
4.1.5 Saving Rules to an EmoKey Mapping file ___________________________________ 46 

4.2 EmoComposer™ usage _______________________________________________ 46 
4.2.1 Interactive mode _________________________________________________________ 47 
4.2.2 EmoScript Mode __________________________________________________________ 49 

5. Programming with the Emotiv SDK __________________________________ 51 

5.1 Overview _____________________________________________________________ 51 

5.2 Introduction to the Emotiv API and Emotiv EmoEngine™ _________________ 51 

5.3 Development Scenarios Supported by EE_EngineRemoteConnect _______ 53 

5.4 Example 1 – EmoStateLogger __________________________________________ 53 

5.5 Example 2 – Expressiv™ Demo _________________________________________ 56 

5.6 Example 3 – Profile Management ______________________________________ 61 

5.7 Example 4 – Cognitiv™ Demo _________________________________________ 63 
5.7.1 Training for Cognitiv _______________________________________________________ 64 

5.8 Example 5 – EEG Logger Demo ________________________________________ 67 

5.9 Example 6 – Affectiv Demo ____________________________________________ 69 

5.10 Example 7 – EmoState and EEGLogger ________________________________ 73 

5.11 Example 8 – Gyro Data _______________________________________________ 75 

5.12 Example 9 – Multi Dongle Connection _________________________________ 79 

5.13 Example 10 – Multi Dongle EEGLogger ________________________________ 80 

5.14 DotNetEmotivSDK Test ________________________________________________ 83 

6. Troubleshooting ___________________________________________________ 84 

Appendix 1 EML Language Specification _____________________________ 88 

A1.1 Introduction ______________________________________________________ 88 

A1.2 EML Example _____________________________________________________ 88 
A1.2.1 EML Header _________________________________________________________ 89 
A1.2.2 EmoState Events in EML ______________________________________________ 89 

Appendix 2 Emotiv EmoEngine™ Error Codes _________________________ 95 

Appendix 3 Emotiv EmoEngine™ Events ______________________________ 97 

Appendix 4 Redistributing Emotiv EmoEngine™ with your application ___ 98 



DIRECTORY OF FIGURES 

Figure 1 Emotiv SDK Setup ________________________________________________________ 18 

Figure 2 Emotiv SDK  Setup wizard _________________________________________________ 20 

Figure 3 Enter Order and Serial Number. ___________________________________________ 21 

Figure 4 Installation Complete dialog ______________________________________________ 22 

Figure 5 Windows Firewall warning about Emotiv Control Panel – select Unblock _____ 23 

Figure 6 EmoEngine Status Pane __________________________________________________ 24 

Figure 7 HEADSET SETUP Panel _____________________________________________________ 25 

Figure 8 EXPRESSIV SUITE Sensitivity Adjustment Panel _______________________________ 27 

Figure 9 EXPRESSIV SUITE Training Panel ____________________________________________ 29 

Figure 10 AFFECTIV SUITE Panel ___________________________________________________ 30 

Figure 11 COGNITIV SUITE Panel __________________________________________________ 32 

Figure 12 Cognitiv  training in action______________________________________________ 33 

Figure 13 Accepting or Rejecting a Cognitiv Training Session _______________________ 34 

Figure 14 Set 3D Model __________________________________________________________ 36 

Figure 15 Demo actions for model _______________________________________________ 37 

Figure 16 IMPORT  MODEL _______________________________________________________ 37 

Figure 17 EDIT SCALE, POSITION for model _________________________________________ 38 

Figure 18 Add texture for model ___________________________________________________ 38 

Figure 19 Model after add texture ________________________________________________ 39 

Figure 20 Select model for Cognitiv ______________________________________________ 39 

Figure 21 EXPORT MODEL _______________________________________________________ 40 

Figure 22 IMPORT MODEL from .ems file ___________________________________________ 41 

Figure 23 The Challenge tab _____________________________________________________ 41 

Figure 24 EmoKey Connect Menu ________________________________________________ 42 

Figure 25 Example EmoKey Mapping _____________________________________________ 43 

Figure 26 EmoKey System Tray Icon _______________________________________________ 44 

Figure 27 Defining Keys and Keystroke Behavior ___________________________________ 45 

Figure 28 Defining an EmoKey Condition _________________________________________ 46 

Figure 29 EmoComposer interactive mode _______________________________________ 47 

Figure 30 EmoComposer EmoScript Mode ________________________________________ 49 

Figure 31 Using the API to communicate with the EmoEngine ______________________ 52 

Figure 32 Expressiv training command and event sequence _______________________ 58 

Figure 33 Cognitiv training _______________________________________________________ 65 

Figure 34 Normal and Triangle template shapes ___________________________________ 92 



Figure 35 Morphing a template __________________________________________________ 93 

Figure 36 Morphed template ____________________________________________________ 93 

 



DIRECTORY OF TABLES 

Table 1 EmoKey Rule Definition Fields _____________________________________________ 44 

Table 2 EmoKey Trigger Condition Fields __________________________________________ 46 

Table 3 BlueAvatar control syntax ________________________________________________ 57 

Table 4 Time values in EML documents ____________________________________________ 90 

Table 5 Detection groups in EML document _______________________________________ 92 

Table 6 Attributes for an event specification ______________________________________ 94 

Table 7 Emotiv EmoEngine™ Error Codes _________________________________________ 96 

Table 8 Emotiv EmoEngine™ Events ______________________________________________ 97 
 



DIRECTORY OF LISTINGS 

Listing 1 Connect to the EmoEngine 54 

Listing 2 Buffer creation and management 55 

Listing 3 Disconnecting from the EmoEngine 55 

Listing 4 Excerpt from ExpressivDemo code 56 

Listing 5 Extracting Expressiv event  details 59 

Listing 6 Training “smile” and “neutral” in ExpressivDemo 61 

Listing 7 Retrieve the base profile 61 

Listing 8 Get the profile for a particular user 62 

Listing 9 Setting a user profile 62 

Listing 10 Managing profiles 63 

Listing 11 Querying EmoState for Cognitiv detection results 64 

Listing 12 Extracting Cognitiv event  details 65 

Listing 13 Training “push” and “neutral” with CognitivDemo 67 

Listing 14 Access to EEG data 68 

Listing 15 Start Acquiring Data 68 

Listing 16 Acquiring Data 69 

Listing 17 Creat log_file_name 70 

Listing 18 Connect to EmoEngine and EmoComposer 71 

Listing 19 Log score to csv file 73 

Listing 20 Log score to EEG_Data.csv and Affectiv_Data.csv 74 

Listing 21 Write data channels and score 75 

Listing 22 Gyro Data 78 

Listing 23 Multi Dongle Connection 80 

Listing 24 Creat data1.csv and data2.csv for Multi Dongle EEGLogger 80 

Listing 25 Write data1.csv and data2.csv file 83 

Listing 26 EML Document Example 89 

Listing 27 EML Header 89 

Listing 28 Sequence in EML document 90 

Listing 29 Configuring detections to automatically reset 92 

 



1. Introduction 

This document is intended as a guide for Emotiv SDK and SDKLite developers.  It describes 

different aspects of the Emotiv Software Development Kit (SDK), including: 

 

 Getting Started:  Basic information about installing the Emotiv SDK hardware 

  and software. 

 Emotiv Control Panel™:  Introduction to Emotiv Control Panel, an application that 

  configures and demonstrates the Emotiv detection suites. 

 Emotiv SDK Tools:  Usage guide for EmoKey™ and EmoComposer™, tools that  

   help you develop applications with the Emotiv SDK. 

 Emotiv API Introduction: Introduction to programming with the Emotiv API and an 

  explanation of the code examples included with the SDK. 

If you have any queries beyond the scope of this document, please contact the Emotiv 

SDK support team. 

1.1 Glossary 

Affectiv™ The detection suite that deciphers a user’s emotional state. 

SDK 

Neuroheadset 

The headset worn by the user, which interprets brain signals and 

sends the information to Emotiv EmoEngine™. 

Cognitiv™ The detection suite that recognizes a user’s conscious thoughts. 

Default Profile A generic profile template that contains default settings for a new 

user.  See Profile. 

Detection A high-level concept that refers to the proprietary algorithms running 

on the neuroheadset and in Emotiv EmoEngine which, working 

together, recognize a specific type of facial expression, emotion, or 

mental state.  Detections are organized into three different suites: 

Expressiv, Affectiv, and Cognitiv. 

EML EmoComposer™ Markup Language – an XML-based syntax that can 

be interpreted by EmoComposer to playback predefined EmoState 

values. 

Emotiv API Emotiv Application Programming Interface: a library of functions, 

provided by Emotiv to application developers, which enables them 

to write software applications that work with Emotiv neuroheadsets 

and the Emotiv detection suites. 

Emotiv EPOC™ The neuroheadset that will be available with Emotiv’s consumer 

product. 

Emotiv SDK The Emotiv Software Development Kit: a toolset that allows 

development of applications and games to interact with Emotiv  

EmoEngine™ and Emotiv neuroheadsets. 

Emotiv SDKLite™ A version of the Emotiv SDK that uses neuroheadset emulation to 

allow integration with new and existing software.  Software 

developed with the SDKLite will be compatible with the Emotiv 

EPOC™ headset. 

EmoComposer™ An Emotiv EmoEngine™ emulator designed to speed-up the 



development of Emotiv-compatible software applications. 

Emotiv 

EmoEngine™ 

A logical abstraction exposed by the Emotiv API.  EmoEngine 

communicates with the Emotiv neuroheadset, manages user-

specific and application-specific settings, and translates the Emotiv 

detection results into an EmoState. 

EmoKey™ Tool to translate EmoStates™ into signals that emulate traditional 

input devices (such as keyboard). 

EmoScript™ A text file containing EML, which can be interpreted by 

EmoComposer to automate the generation of predefined 

EmoStates.  Also refers to the operational mode of EmoComposer in 

which this playback occurs.  

EmoState™ A data structure containing information about the current state of all 

activated Emotiv detections.  This data structure is generated by 

Emotiv EmoEngine and reported to applications that use the Emotiv 

API. 

Expressiv™ The detection suite that identifies a user’s facial expressions. 

Player Synonym for User. 

Profile A user profile contains user-specific data created and used by the 

EmoEngine to assist in personalizing Emotiv detection results.  When 

created with Emotiv Control Panel, all users’ profiles are saved to the 

profile.bin file in the Emotiv program files directory. 

User A person who is wearing a neuroheadset and interacting with 

Emotiv-enabled software.  Each user should have a unique profile. 

 

 

1.2 Trademarks 

The following are trademarks of Emotiv. 

The absence of a product or service name or logo from this list does not constitute a 

waiver of Emotiv’s trademark or other intellectual property rights concerning that name 

or logo. 

Affectiv™ 

Cognitiv™ 

EmoComposer™ 

EmoKey™ 

EmoScript™ 

EmoState™ 

Emotiv Control Panel™ 

Emotiv EmoEngine™ 

Emotiv EPOC™ 

Emotiv SDKLite™ 

Expressiv™ 



1.3 Regulatory Information: 

USA - FCC Requirements Part 15 CFR47 

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two 

conditions: 

1. This device may not cause harmful interference, and 

2. This device must accept any interference received, including interference that may cause 

undesired operation. 

This equipment has been tested and found to comply with the limits for a Class B digital device, 

pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection 

against harmful interference in a residential installation. This equipment generates, uses, and can 

radiate radio frequency energy and, if not installed and used in accordance with the instructions, 

may cause harmful interference to radio communications. However, there is no guarantee that 

interference will not occur in a particular installation. If this equipment does cause harmful 

interference to radio or television reception which can be determined by turning the radio or 

television off and on, the user is encouraged to try to correct interference by one or more of the 

following measures: 

1. Reorient or relocate the receiving antenna. 

2. Increase the separation between the equipment and receiver. 

3. Connect the equipment into an outlet on another circuit. 

4. Consult the dealer or an experienced radio/TV technician for help. 

NOTE: Modifications not expressly approved by Emotiv could void the user’s authority to operate 

the equipment 

 

Canada 

This device complies with RSS-210 of Industry Canada (IC). Operation is subject to the following 

two conditions: 

1. This device may not cause interference, and 

2. This device must accept any interference received, including interference that may cause 

undesired operation of this device. 

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la 

Classe B est conforme à la norme NMB-003 du Canada. 

 



Europe, Australia, New Zealand 

Product Name and Model: Emotiv EPOC Model 1.0 

Product description: EPOC Neuroheadset, USB-01 Transceiver, Hydrator Pack + charger or 
charge cable 

 

conforms to the following Product Specifications and Regulations: 

 

EMC and Telecom: Class B 

ETSI EN 300 440-2 V1.4.1 

EN 301 489-1 

EN 301 489-3 

AS/NZS CISPR22 :2009 

AS/NZS 4268 :2008 

FCC CFR 47 Part 15C (identifiers XUE-EPOC01, XUE-USBD01) 

 

Safety: 

EN 60950-1:2006 

IEC 60950-1:2005 (2nd Edition) 

AS/NZS 60950.1:2003 including amendments 1, 2 & 3 

CB Certificate JPTUV-029914 (TUV Rheinland) 

 

The product herewith complies with the requirements of the Low Voltage Directive 2006/95/EC, 
the EMC Directive 2004/108/EC, the R&TTE Directive 1999/5/EC, and carries the CE and C-Tick 
marks accordingly. 

 

 

 



Quick Start Guide 

 

 

Items in the EPOC Headset Kit 

 

Make sure all items are present in your kit before starting. 

 

 Headset Assembly with Rechargeable Lithium battery already installed 

 USB Transceiver Dongle 

 Hydration Sensor Pack with 16 Sensor Units 

 Saline solution 

 50/60Hz 100-250 VAC Battery Charger (US customers) or USB charger (non-US 
customers) 

 CD Installation Disk for Windows XP or Vista (only for EPOC consumer headset. SDKs 
are delivered electronically) 

 

 

 

 

 



Initial charging of headset 

 

Make sure the small switch on the rear underside of the headset is set to the “Off” position before 
starting. 

 

Plug the mini USB cable attached to the supplied battery charger into the slot at the top of the 
headset and to the USB port on your PC or the power cord into a 50 or 60 Hz 100-250 V 
electrical outlet. 

 

 

 

 

 

 

 

 

 

 

 

The Lithium battery can be recharged to 100% capacity in approximately 4 hours depending on 
the initial state of charge.  Charging for 30 minutes usually yields about a 10% increase in charge. 

 

The EPOC Headset contains two status LEDs located at the rear and next to the power switch at 
the back of the headband. When the power switch is set to the “on” position, the rear LED will 
illuminate and appear blue if there is sufficient charge for correct operation, unless charging is in 
progress. The charging LED will appear red during battery charging; when the battery is fully-
charged, the charging LED will display green. 

 

NOTE:  The Headset should not be charged when still on the head. 

 

 

Software Installation 

 

Insert the supplied EPOC CD setup disk into your computer's CD/DVD drive and follow the step-
by-step installation instructions. 

 

 

 

 

 



After software installation, start-up the EPOC Control Panel program, loading the Headset Setup 
screen. 

Hydrating the Sensors 

 

Open the Saline Hydration Sensor Pack with the white felt inserts inside. The inserts will 
eventually be mounted in the headset arms but must be properly wetted with saline solution first.  
Begin wetting each of the felt inserts with the supplied saline solution.  The felts should be wet to 
the touch, but not soaking wet!  

 

Note: This is standard multipurpose contact lens saline solution and is available from any local 
drug store in case you run out of solution.  However, the bottle supplied with the kit should be 
sufficient initially. See the User Manual on the EPOC CD setup disk for recommendations. 

 

Add a few drops of saline to saturate the large white hydrator pad attached to the top cover of the 
hydrator, then close the cover and gently shake the hydrator pack.  This will maintain the 
moisture of the felt pads when they are not in use. Open the pack and check that each of the 
pads had been wetted.  If not fully wetted, then add a drop or two of saline to any pads not 
sufficiently wet using the dropper bottle.  Be careful not to over-wet the pads. If you have 
connection problems, add more saline to each felt pad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sensor Assembly 

 

After the wetting process, remove the sensor units with their felt pads from the hydrator pack and 
insert each one into the black plastic headset arms, turning each one clockwise one-quarter turn 
until you feel a definite "click".  The "click" indicates each sensor is correctly installed in a headset 
arm.  If you have difficulty with this step, apply a little more force until you feel the "click" but be 
careful not to exert excessive force as damage might occur.  Please see the Troubleshooting 
section if the sensors do not click in place easily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE:  When not in use, the sensor units should be removed from the headset arms and stored 
in the hydrator pack for subsequent use. 

 

 

 

 

 

 

 

 

 

 

 

 



Pairing the Neuroheadset 

 

Insert the supplied USB Transceiver Dongle into one of your computer's USB slots. Use a USB 
extension cable and position the Transceiver in a prominent location away from your monitor and 
PC to improve poor reception. 

 

 

 

 

 

 

 

 

Then turn-on the headset using the switch at the bottom end of the headset, holding it close to 
the Transceiver. 

 

 

Headset Placement 

 

You are now ready to put the EPOC headset on your head.  Using both hands, slide the headset 
down from the top of your head. Place the arms approximately as depicted, being careful to place 
the sensors with the black rubber insert on the bone just behind each ear lobe.  Correct 
placement of the rubber sensor is critical for correct operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notice the 2 front sensors should be approximately at the hairline or about the width of 3 fingers 
above your eyebrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the headset is in position, press and hold the 2 reference sensors (located just above and 
behind your ears) for about 5-10 seconds. Good contact of reference sensors is the key for a 
good signal.  Check that the lights corresponding to these 2 reference sensors turn from red to 
green in the EPOC Control Panel Headset Setup screen. 

 

 

 

 

 

 

 

 

 

 

 

 

Gently press and hold each remaining sensor against your scalp until all the lights corresponding 
to those sensors turn to green in the EPOC Control Panel. 

If you are unable to get anything except 2 red sensors, add saline to the reference and other 
sensors, or try the alternate reference locations – swap the reference sensors with the rubber 
comfort pads located directly behind the ears, making sure the reference sensors contact directly 
onto the bare skin on the bony bump. 



2. Getting Started 

2.1 Hardware Components 

The Emotiv SDK consists of one or two SDK neuroheadsets, one or two USB wireless 

receivers, and an installation CD.  Emotiv SDKLite does not ship with any hardware 

components.  The neuroheadsets capture users’ brainwave (EEG) signals.  After being 

converted to digital form, the brainwaves are processed, and the results are wirelessly 

transmitted to the USB receivers.  A post-processing software component called Emotiv 

EmoEngine™ runs on the PC and exposes Emotiv detection results to applications via the 

Emotiv Application Programming Interface (Emotiv API). 

 

 

Figure 1 Emotiv SDK Setup 

 

For more detailed hardware setup and neuroheadset fitting instructions, please see the 

“Emotiv SDK Hardware Setup.pdf” file shipped to SDK customers. 

2.1.1 Charging the Neuroheadset Battery 

The neuroheadset contains a built-in battery which is designed to run for approximately 

12 hours when fully charged.  To charge the neuroheadset battery, set the power switch 

to the “off” position, and plug the neuroheadset into the Emotiv battery charger using 

the mini-USB cable provided with the neuroheadset.  Using the battery charger, a fully-

drained battery can be recharged to 100% capacity in approximately 6 hours; charging 

for 30 minutes usually yields about a 10% increase in charge. 

Alternatively, you may recharge the neuroheadset by connecting it directly to a USB port 

on your computer.  Please note that this method takes the same amount of time to 

charge the battery. 



The neuroheadset contains a status LED located next to the power switch at the back of 

the headband.  When the power switch is set to the “on” position, the LED will illuminate 

and appear blue if there is sufficient charge for correct operation.  The LED will appear 

red during battery charging; when the battery is fully-charged, the LED will display green. 

2.2 Emotiv SDK Installation 

This section guides you through the process of installing the Emotiv Software 

Development Kit on a Windows PC.  

2.2.1 Minimum Hardware and Software requirements 

 2.4 GHz Intel Pentium 4 processor (or equivalent). 

 Microsoft Windows XP with Service Pack 2 or Microsoft Windows Vista. 

 1GB RAM. 

 50 MB available disk space. 

 One or two unused USB 2.0 ports (depending on the number of neuroheadsets you 

wish to use simultaneously) 

 

The program displays best when the DPI setting in Windows is 100% 

2.2.2 Included Emotiv SDK software 

SDKLite developers will download the compressed file Emotiv_SDKLite_vError! Reference 

source not found..exe, which contains both the SDKLite software and this User Manual. 

SDK developers will download the relevant Edition of the SDK that has all software 

needed for Emotiv SDK installation. Log in to your account at www.emotiv.com and 

navigate to My Emotiv ~> Purchases. Your SDK Edition should be available for download. 

Please also note the installation keys available from the KEY icon next to the DOWNLOAD 

button. 

2.2.3 USB Receiver Installation 

(This section is not relevant for SDKLite developers). 

Plug the provided Emotiv USB receiver(s) into an unused USB port on your computer.  

Each receiver should be recognized and installed automatically by your computer as a 

USB Human Interface Device.  The receivers follow the USB Human Interface Device 

standard so no additional hardware drivers are required to be installed.  Please wait for a 

moment until Windows indicates that the new hardware is installed and ready to use. 

2.2.4 Emotiv SDK Installation 

This section explains the steps involved in installing the Emotiv SDK software.  If an older 

version of the Emotiv SDK is present in your computer, we recommend that you uninstall it 

before proceeding. 

Step 1 Using Windows Explorer, access the Emotiv SDK installer downloaded from the 

website.  

Step 2 Run the Emotiv Developer Edition SDK v2.0.0.20 Installer file.  An Emotiv Developer 

Edition SDK v2.0.0.20 Setup window will appear after a few seconds. 

 

http://www.emotiv.com/


 

Figure 2 Emotiv SDK  Setup wizard 

Step 3 Click Next to start the installation process. You will be asked to enter Order and 

Serial Number. These numbers are available from the KEY icon next to the DOWNLOAD 

button at My Emotiv => Purchase. Enter these numbers and click Next. 

 

Note: when you enter the correct serial key and order number,  a pop-up box will 

appear indicating the “Serial number is valid”. Click OK and proceed to the next step. 



 

Figure 3 Enter Order and Serial Number. 

 

Step 4 If you haven’t uninstalled and older version of the Emotiv SDK, you may be asked if 

you wish to uninstall the older copy before proceeding.  Multiple copies of the SDK can 

coexist on the same machine but you must be careful not to “mix and match” 

components from multiple installations. 

Step 5 After a few seconds, an Installation Complete dialog will appear. 

 



 

Figure 4 Installation Complete dialog 

Step 6 Click Finish to complete the installation. 

2.3 Start Menu Options 

Once you have installed the SDK, you will find the following in Start > Programs: 

 Emotiv Developer Edition SDK v2.0.0.20  

 Control Panel  

 Control Panel A program to test and tune detection suites 

available in the Emotiv SDK. 

 Documentation  

 API Reference Emotiv API programmer’s reference guide 

 User Manual This document 

 Tools  

 EmoComposer An EmoEngine emulator 

 EmoKey Tool to map EmoStates to keyboard input to other 

programs. 

 Uninstall To uninstall the Emotiv SDK 



3. Emotiv Control Panel™  

This section explains how to use Emotiv Control Panel to explore the Emotiv detection 

suites.  Refer to Section 5, Programming with the Emotiv SDK, for information about using 

the Control Panel to assist application development with the Emotiv SDK. 

Launch Emotiv Control Panel by selecting Windows Start → Programs → Emotiv 

Developer Edition SDK v2.0.0.20 → Control Panel → Control Panel.  When the Control 

Panel is launched for the first time, your firewall software (if installed on your computer) 

may notify you that the Control Panel is trying to accept connections from the network 

(port 3008).  The notification message may be similar to the dialog shown in Figure 5.  For 

proper operation, you must allow Emotiv Control Panel to use this port by selecting 

Unblock (or a similar option, depending on your firewall software).  

 

 

Figure 5 Windows Firewall warning about Emotiv Control Panel – select Unblock 

 

Emotiv delivers the Emotiv API in the form of a dynamically linked library named edk.dll.  

Emotiv Control Panel provides a GUI (graphical user interface)that interfaces with Emotiv 

EmoEngine through the Emotiv API.  The Control Panel user interface showcases the 

EmoEngine’s capabilities to decipher brain signals and present them in useful forms using 

Emotiv’s detection suites.   

3.1 EMOENGINE STATUS PANE 

The top pane of Emotiv Control Panel is known as the EmoEngine Status Pane.  This pane 

displays indicators that provide real-time information about EmoEngine status and 

neuroheadset sensor contact quality.  It also exposes user profile management controls. 

 



 

Figure 6 EmoEngine Status Pane 

3.1.1 ENGINE STATUS 

By default, the Control Panel will automatically connect to the EmoEngine when 

launched.  In this mode, it will automatically discover attached USB receivers and Emotiv 

neuroheadsets.  Alternatively, you may choose to connect to EmoComposer, Emotiv’s 

EmoEngine emulator tool, from the Connect menu.  SDKLite Developers: you will need to 

change this menu setting and connect to EmoComposer.  Please note that 

EmoComposer should be launched prior to selecting this option in Control Panel. 

 

There are four status indicators: 

 SYSTEM STATUS: A summary of the general EmoEngine status. 

 SYSTEM UP TIME: The timestamp (in seconds) attached to the most recently received 

EmoState event.  Generally, this corresponds to the length of time that the 

EmoEngine has been running with a neuroheadset connected to the USB receiver 

 WIRELESS SIGNAL: This displays the quality of the connection between the 

neuroheadset and the Emotiv wireless USB receiver connected to your machine.  If 

you have not yet connected, the display will show “No Signal”.  If the wireless signal 

strength drops too low (displayed as “Bad” or “No Signal”) then no detection results 

will be transmitted and the Control Panel will disable its detection suite UI controls. 

 BATTERY POWER: Displays an approximation of the remaining charge in the 

neuroheadset’s built-in battery.  Not yet supported by all SDK neuroheadsets. 

3.1.2 USER STATUS 

Use the controls in this section to manage user profiles and assign a specific user (via their 

profile) to a specific attached neuroheadset.  Although the EmoEngine supports up to 

two simultaneously connected neuroheadsets, Emotiv Control Panel only displays status 

information and detection results for a single neuroheadset at a time.  The HEADSET 

combo box allows you to specify the neuroheadset that has the current “focus.”  In 

Figure 6, the USER STATUS controls tell us that the Control Panel is currently displaying 

information for the user with profile “ec”, wearing neuroheadset “0.” Note: headset 

numbering begins with 0 and not 1 as you might expect. 

Other operations that are supported include adding, saving, removing, and switching 

between user profiles.  Note: Emotiv Control Panel will automatically save user profile 

data to disk when it exits so it is generally not necessary to use the Save Profile button. 

3.1.3 Sensor Contact Quality Display 

Accurate detection results depend on good sensor contact and EEG signal quality.  This 

display is a visual representation of the current contact quality of the individual 

neuroheadset sensors.  The display is a smaller copy of the contact quality visualization 

found on the Control Panel’s HEADSET SETUP tab.  Please see Section Error! Reference 

source not found. for more information about fitting the neuroheadset and achieving 

good EEG signal quality. 



3.2 HEADSET SETUP 

The HEADSET SETUP panel is displayed by default when starting Emotiv Control Panel.  The 

main function of this panel is to display contact quality feedback for the neuroheadset’s 

EEG sensors and provide guidance to the user in fitting the neuroheadset correctly.  It is 

extremely important for the user to achieve the best possible contact quality before 

proceeding to the other Emotiv Control Panel tabs.  Poor contact quality will result in 

poor Emotiv detection results.     

 

 

Figure 7 HEADSET SETUP Panel 

 

The image on the left is a representation of the sensor locations when looking down from 

above onto the user’s head.  Each circle represents one sensor and its approximate 

location when wearing the SDK headset.  The color of the sensor circle is a representation 

of the contact quality.  To achieve the best possible contact quality, all of the sensors 

should show as green.  Other sensor colors indicate: 

Black  No signal 

Red   Very poor signal 

Orange Poor signal 

Yellow  Fair signal 

Green  Good signal 

 

The setup procedure used to achieve good contact quality is outlined below.  Only after 

the neuroheadset sensor contact quality has been verified, should you move on to other 

Emotiv Control Panel tabs.  



 

3.2.1 Achieving Good Signal Quality 

Note to SDKLite Developers: This section is not required, but it may be useful to 

understand how contact quality information may need to be conveyed to the user for 

standalone, Emotiv-enabled applications. 

Step 1 Before putting on the SDK neuroheadset, ensure that each of the 16 electrode 

recesses are fitted with a moist felt pad.  If the pads are not already moist, wet them with 

saline solution before inserting into the headset, or, alternatively, use a medicine dropper 

to carefully moisten the pads while already in place.   

Step 2  Switch on the neuroheadset, and verify that the built-in battery is charged and is 

providing power by looking for the blue LED located near the power switch at the back 

of the headset.  If the headset battery needs charging, then set the power switch to the 

off position, and plug the headset into the Emotiv battery charger using the mini-USB 

cable provided with the neuroheadset.  Allow the neuroheadset battery to charge for at 

least 15 minutes before trying again.   

Step 3 Verify that the WIRELESS SIGNAL reception is reported as “Good” by looking at the 

ENGINE STATUS area in the EmoEngine Status Pane (described in Section Error! Reference 

source not found.). If the WIRELESS SIGNAL status is reported as “Bad” or “No Signal”, then 

make sure that the Emotiv Wireless USB Receiver is inserted into a USB port on your 

computer and that the single LED on the top half of the receiver is on continuously or 

flickering very rapidly. If the LED is blinking slowly or is not illuminated, then remove the 

receiver from the computer, reinsert it, and try again. Remove any metallic or dense 

physical obstructions located near the receiver or the neuroheadset, and move away 

from any powerful sources of electromagnetic interference, such as microwave ovens, 

large motors, or high-powered radio transmitters. 

Step 4 Put on the neuroheadset by gently pulling apart the headband and lowering the 

sensor arms onto your head from the top down, near the rear of the skull.  Next, slide the 

headset forward until the sensors closest to the headset pivot points are located directly 

above your ears and as close to your hairline as possible. Adjust the fit so that the 

rectangular compartments at the front ends of the headband sit comfortably just above 

and behind your ears. Tilt the headset so that the two lowest, frontmost sensors are 

symmetric on your forehead and positioned 2 to 2.5 inches above your eyebrows.  

Finally, check that all sensors are touching your head and, if not, then fine tune the 

headset fit by gently sliding the headset in small increments until an ideal fit has been 

achieved.   

Step 5 Starting with the two sensors just above and behind your ears (these are reference 

sensors for which good contact with your scalp is essential), adjust the sensors so they 

make proper contact with your scalp (i.e. show green on the contact quality display). If 

the indicators are: 

Black: Check that the sensor has a felt pad fitted.  Check that the felt pad is pressing 

firmly against your scalp.  Then try re-moistening the felt pad.  If problems persist, this 

may indicate a problem with the neuroheadset. 

Yellow, Orange, or Red: The sensor has not established a good conductive path with 

your scalp.  Check that the felt pad is making comfortable, yet firm, contact with your 

scalp.  Try shifting the headset slightly back and forth on your head, or press gently on 

the troublesome sensor to improve contact.  If the contact is adequate, ensure that 

the felt pad is moist.  If the sensor’s indicator color becomes lighter, the signal quality is 



improving.  If the sensor’s indicator color is getting darker the signal quality is 

deteriorating.  If problems still persist, try parting the hair in the vicinity of the electrode 

so the felt pad touches your scalp. 

Step 6 Repeat  for each of the remaining sensors until all of the sensors have adequate 

contact quality (i.e. are predominantly showing green). 

If at any time the reference sensors (located just above and behind your ears) no longer 

have a good connection (i.e. are not showing green), immediately restore these sensors 

to green before proceeding further.   

 

3.3 EXPRESSIV™ SUITE 

 

 

Figure 8 EXPRESSIV SUITE Sensitivity Adjustment Panel 

3.3.1 Understanding the EXPRESSIV SUITE Panel Display 

On the left-hand side of the EXPRESSIV SUITE panel is a simple avatar.  The avatar will 

mimic your facial expressions, in camera view (i.e. not mirrored). 

In the center of the panel is a series of graphs, indicating the various expression 

detection event signals.  These graphs show a short history of the detections listed.  The 

graphs should be interpreted as follows: 

 BLINK: low level indicates a non-blink state, while a high level indicates a blink. 

 RIGHT WINK / LEFT WINK: these two detections share a common graph line.  A center 

level indicates no wink, low level indicates a left wink and high level indicates a right 

wink. 

 LOOK RIGHT / LEFT: these two detections share a common graph line and a single 

sensitivity slider control.  A center level indicates eyes looking straight ahead, while a 

low level indicates eyes looking left, and a high level indicates eyes looking right. 



 RAISE BROW: low level indicates no expression has been detected, high level 

indicates a maximum level of expression detected.  The graph level will increase or 

decrease depending on the level of expression detected. 

 FURROW BROW: low level indicates no expression has been detected, high level 

indicates a maximum level of expression detected.  The graph level will increase or 

decrease depending on the level of expression detected. 

 SMILE: low level indicates no expression has been detected, high level indicates a 

maximum level of expression detected.  The graph level will increase or decrease 

depending on the level of expression detected. 

 CLENCH: low level indicates no expression has been detected, high level indicates a 

maximum level of expression detected.  The graph level will increase or decrease 

depending on the level of expression detected. 

 RIGHT SMIRK / LEFT SMIRK: these two detections share a common graph line.  A 

center level indicates no smirk, low level indicates a left smirk and high level indicates 

a right smirk. 

 LAUGH: low level indicates no expression has been detected, high level indicates a 

maximum level of expression detected.  The graph level will increase or decrease 

depending on the level of expression detected. 

On the right-hand side of the panel are two additional panels: Sensitivity and Training.   

These panels are explained further in the following two sections. 

3.3.2 Sensitivity Adjustment Panel 

The Control Panel offers sensitivity adjustments for the Expressiv Suite detections.  This is 

controlled through sliders to the right of corresponding graph.   

 

For each facial expression, check the performance of the detection.  If you feel that the 

Expressiv detection is not responding readily to a particular expression, then increase the 

sensitivity for that expression.  If you feel that it is too easy to trigger a particular 

expression, or you are seeing “false positive” expressions, then decrease the sensitivity for 

that expression.  Sensitivity can be increased or decreased by moving the sensitivity slider 

to the right or left, respectively. 

 

Expressiv supports two types of “signatures” that are used to classify input from the 

neuroheadset as indicating a particular facial expression.  The icon to the right of the 

sliders is an indicator of whether the Universal Signature or Trained Signature is being 

used.  A circle with three dots is shown when the Universal Signature is active, while a 

circle with one dot inside indicates that a Trained Signature is active.  An empty circle 

indicates that a Trained Signature has been selected, but that no training data has been 

collected for this action, and so it is currently disabled.  The default signature, the 

Universal Signature, is designed to work well for a large population of users for the 

supported facial expressions.   

 

If the application or user requires more accuracy or customization, then you may decide 

to use a Trained Signature as described below. 



3.3.3 Training Panel 

 

Figure 9 EXPRESSIV SUITE Training Panel 

 

In this mode, Expressiv requires the user to train the system by performing the desired 

action before it can be detected.  As the user supplies more training data, the accuracy 

of the Expressiv detection typically improves.  If you elect to use a Trained Signature, the 

system will only detect actions for which the user has supplied training data.  The user 

must provide training data for a neutral expression and at least one other supported 

expression before the Trained Signature can be activated with the Use Trained Signature 

checkbox.  Important note: not all Expressiv expressions can be trained.  In particular, eye 

and eyelid-related expressions (i.e. “blink”, “wink”, “look left”, and “look right”) can not 

be trained and always rely on the Universal Signature. 



 

3.4 AFFECTIV™ SUITE 

 

 

Figure 10 AFFECTIV SUITE Panel 

3.4.1 AFFECTIV SUITE Introduction 

The Affectiv Suite reports real time changes in the subjective emotions experienced by 

the user.  Emotiv currently offers three distinct Affectiv detections: Engagement, 

Instantaneous Excitement, and Long-Term Excitement.  See Section 3.4.3 below for a 

description of these detections.  The Affectiv detections look for brainwave 

characteristics that are universal in nature and don’t require an explicit training or 

signature-building step on the part of the user.  However, individual data is collected for 

each user and is saved in the user’s profile while the Affectiv Suite runs.  This data is used 

to rescale the Affectiv Suite results and improve the detection accuracy over time.  For 

this reason, it is very important that a new user profile is selected when a new user puts on 

the neuroheadset. 

3.4.2 Understanding the Affectiv Panel Display 

The AFFECTIV SUITE  panel contains two graphs which can be customized to display 

different combinations of detections and time scales.  By default, the top chart is 

configured to plot 30 seconds of data for the Engagement and Instantaneous 

Excitement detections.  The bottom chart defaults to display 5 minutes worth of data for 

the Long-Term Excitement detection.  The values that are plotted on the graphs are the 

output scores returned by the Affectiv detections. 

The controls to the right of the charts can be used to select the detection output to be 

plotted and to customize the color of each plot.  The DISPLAY LENGTH edit box allows 

you to customize the time scale for the associated chart. 



3.4.3 AFFECTIV SUITE Detection Details 

Instantaneous Excitement is experienced as an awareness or feeling of physiological 

arousal with a positive value.  Excitement is characterized by activation in the 

sympathetic nervous system which results in a range of physiological responses including 

pupil dilation, eye widening, sweat gland stimulation, heart rate and muscle tension 

increases, blood diversion, and digestive inhibition. 

Related emotions: titillation, nervousness, agitation 

Scoring behavior: In general, the greater the increase in physiological arousal the greater 

the output score for the detection.  The Instantaneous Excitement detection is tuned to 

provide output scores that more accurately reflect short-term changes in excitement 

over time periods as short as several seconds.  

Long-Term Excitement is experienced and defined in the same way as Instantaneous 

Excitement, but the detection is designed and tuned to be more accurate when 

measuring changes in excitement over longer time periods, typically measured in 

minutes. 

Engagement is experienced as alertness and the conscious direction of attention 

towards task-relevant stimuli.  It is characterized by increased physiological arousal and 

beta waves (a well-known type of EEG waveform) along with attenuated alpha waves 

(another type of EEG waveform).  The opposite pole of this detection is referred to as 

“Boredom” in Emotiv Control Panel and the Emotiv API; however, please note that this 

does not always correspond to a subjective emotional experience that all users describe 

as boredom. 

Related emotions: alertness, vigilance, concentration, stimulation, interest 

Scoring behavior: The greater the attention, focus and cognitive workload, the greater 

the output score reported by the detection.  Examples of engaging video game events 

that result in a peak in the detection are difficult tasks requiring concentration, 

discovering something new, and entering a new area.  Deaths in a game often result in 

bell-shaped transient responses.  Shooting or sniping targets also produce similar transient 

responses.  Writing something on paper or typing typically increase the engagement 

score, while closing the eyes almost always rapidly decreases the score. 

 

 

3.5 COGNITIV™ SUITE 

3.5.1 COGNITIV SUITE Introduction 

The Cognitiv detection suite evaluates a user’s real time brainwave activity to discern the 

user’s conscious intent to perform distinct physical actions on a real or virtual object.  The 

detection is designed to work with up to 13 different actions: 6 directional movements 

(push, pull, left, right, up and down) and 6 rotations (clockwise, counter-clockwise, left, 

right, forward and backward) plus one additional action that exists only in the realm of 

the user’s imagination: disappear.   

Cognitiv allows the user to choose up to 4 actions that can be recognized at any given 

time.  The detection reports a single action or neutral (i.e. no action) at a time, along 

with an action power which represents the detection’s certainty that the user has 

entered the cognitive state associated with that action. 



Increasing the number of concurrent actions increases the difficulty in maintaining 

conscious control over the Cognitiv detection results.  Almost all new users readily gain 

control over a single action quite quickly.  Learning to control multiple actions typically 

requires practice and becomes progressively harder as additional actions are added.  

Although Emotiv Control Panel allows a user to select up to 4 actions at a time, it is 

important that each user masters the use of the Cognitiv detection one action at a time, 

only increasing the number of concurrent actions after he has first gained confidence 

and accuracy with a lower number of actions. 

 

 

Figure 11 COGNITIV SUITE Panel 

3.5.2 Understanding the Cognitiv Panel Display 

The COGNITIV  SUITE panel uses a virtual 3D cube to display an animated representation 

of the Cognitiv detection output.  This 3D cube is also used to assist the user in visualizing 

the intended action during the training process.  The Power gauge to the left of the 3D 

display is an indicator of the “action power”, or relative certainty that the user is 

consciously visualizing the current action. 

The default tab on the Cognitiv panel is the Action tab.  This tab displays information 

about the current state of the Cognitiv detection and allows the user to define the 

current set of actions.  

In order to enable the Cognitiv detection, each chosen action, plus the Neutral action, 

must first be trained.  For more information about the training process please refer to 

Section 3.5.3 below.  Alongside each currently selected action is another gauge 

displaying a SKILL RATING. This skill rating is calculated during the training process and 

provides a measure of how consistently the user can mentally perform the intended 

action.  It is necessary to train the same action at least two times before the action skill is 

updated.  The OVERALL SKILL RATING is simply the average of all the individual action 



skills and can be used as a general measure of the user’s skill with the selected set of 

actions and existing training data. 

A green checkmark is used to indicate that the corresponding action has been trained; 

a red X indicates a lack of training data.  Remember, in order for the Cognitiv detection 

to be activated, all actions, plus Neutral (the user’s background mental state) must be 

trained. 

Use the ADD, REMOVE, and EDIT push buttons to modify the number and type of enabled 

actions. 

3.5.3 Cognitiv Training 

The Cognitiv training process enables the EmoEngine to analyze your brainwaves and 

develop a personalized signature which corresponds to each particular action, as well as 

the background state, or “neutral”.  As the EmoEngine learns and refines the signatures 

for each of the actions, as well as neutral, detections become more precise and easier 

to perform. 

 

 

Figure 12 Cognitiv  training in action 

The Training tab contains the user interface controls that support the Cognitiv training 

process.  The training process consists of three steps: 

First, select an action from the dropdown list.  Actions that have already been trained 

are paired with a green checkmark; actions with no training data are paired with a red 

X.  Only actions that have been selected on the Action tab are available for training.  

The default action is one without training data; otherwise the default action is “Neutral.”   

Next, when you are ready to begin imagining or visualizing the action you wish to train, 

press the START TRAINING button.  During the training process it is very important to 

maintain your mental focus for the duration of the training period (currently 8 seconds).  



Physical gestures, such as pushing an imaginary object with one hand, may be used to 

heighten your focus on the intended action, but are not required.  You should also refrain 

from making substantial head movements or dramatic facial expressions during the 

training period, as these actions can interfere with the recorded EEG signal. 

Initially, the cube on screen will not move, as the system has not yet acquired the training 

data necessary to construct a personalized signature for the current set of actions.  After 

Neutral and each enabled action have been trained at least once, the Cognitiv 

detection is activated and the cube will respond to the Cognitiv detection, and your 

mental control, in real time.   

Some users will find it easier to maintain the necessary mental focus if the cube is 

automatically animated to perform the intended action as a visualization aid during 

training.  If you think you will benefit from this, then you may select the Animate model 

according to training action checkbox.  Otherwise, the cube will remain stationary or, if 

you have already supplied training data and the detection is active, will be animated by 

the current detection results for the action being trained, while you supply new training 

data. 

Finally, you are prompted to accept or reject the training recording.  Ideal Cognitiv 

detection performance is typically achieved by supplying consistent training data (i.e. a 

consistent mental visualization on the part of the user) across several training sessions for 

each enabled action.  The ability to reject the last training recording allows you to 

decide whether you were able to remain mentally focused on the appropriate action 

during the last training session.  Alternatively, you may press the ABORT  TRAINING button 

to abort the training recording if you are interrupted, become distracted, or notice 

problems with the neuroheadset contact quality indicators during the recording.  

A training session is automatically discarded if the wireless signal strength or EEG signal 

quality is poor for a significant portion of the training period.  A notification will be 

displayed to the user if this has occurred. 

 

Figure 13 Accepting or Rejecting a Cognitiv Training Session 



3.5.4 Training Neutral 

The Neutral “action” refers to the user’s passive mental state; one that isn’t associated 

with any of the selected Cognitiv actions.  While training Neutral, you should enter a 

mental state that doesn’t involve the other Cognitiv actions.  Typically this means 

engaging in passive mental activities such as reading or just relaxing.  However, to 

minimize “false-positive” Cognitiv action results (i.e. incorrect reporting of unintended 

actions), it may also be helpful to emulate other mental states and facial expressions that 

are likely to be encountered in the application context and environment in which you’ll 

be using Cognitiv.  For many users, providing more Neutral training data will result in 

better overall Cognitiv performance.  In order to facilitate the acquisition of this data, 

and because most users have an easier time maintaining a relaxed mental state for 

longer periods of time, the Training tab provides a second method for training Neutral. 

The RECORD NEUTRAL button allows you to record up to 30 seconds of Neutral training 

data.  The recording will automatically finish, and the Cognitiv signature will be rebuilt, 

after 30 seconds, or you may press the STOP TRAINING button at any time you feel 

sufficient data has been collected.  Note: at least 6 seconds of recorded data will be 

required to update the signature with data collected using the RECORD NEUTRAL button. 

3.5.5 CLEAR TRAINING DATA Button 

Occasionally, you may find that a particular trained action doesn’t work as well as it 

once did.  This may indicate that the training data used to construct your personalized 

Cognitiv signature was “contaminated” by a more recent, inconsistent training session or 

that some characteristics of your brainwaves have changed over time.  It may also 

happen that you wish to change the mental imagery or technique that you associate 

with a particular action.  In either situation, you can use the CLEAR TRAINING DATA 

button to delete the training data for the selected action.  Keep in mind that doing so 

will disable the Cognitiv detection until new training data has been recorded for this 

action.  

3.5.6 Advanced Cognitiv Options 

The Advanced tab exposes settings and controls that allow you to customize the 

behavior of the Cognitiv detection.  By default, the Cognitiv detection is pre-configured 

in a manner that produces the best results for the largest population of users and 

environments.  It is strongly recommended that you only change these settings with the 

guidance of Emotiv personnel who are better acquainted with the internal details of the 

Emotiv EmoEngine. 

3.5.7 Cognitiv Tips 

Mental dexterity with the Cognitiv Suite is a skill that will improve over time.  As you learn 

to train distinct, reproducible mental states for each action, the detection becomes 

increasingly precise.  Most users typically achieve their best results after training each 

action several times.  Overtraining can sometimes produce a decrease in accuracy – 

although this may also indicate a lack of consistency and mental fatigue.  Practice and 

experience will help determine the ideal amount of training required for each individual 

user. 

If it becomes hard for you to return to neutral (i.e. to stop the cube from moving) you 

should try refreshing your mental state by momentarily shifting your focus away from the 

screen and relaxing.  It is easy to become immersed in the experience and to have the 

Cognitiv actions at the “front of your mind” while trying to be neutral. 



Successful training relies on consistency and focus.  For best results, you must perform the 

intended action continuously for the full training period.  It is common for novice users to 

become distracted at some point during the training period and then mentally restart an 

action, but this practice will result in poorer results than training with a mental focus that 

spans the entire training period. 

A short latency, of up to two seconds, in the initiation and cessation of the cube’s 

animated action on screen is typical. 

3.5.8 Cognitiv Settings 

SETTINGS is a new feature of Emotiv SDK Control Panel. You can use your EPOC headset 

to customize and control imported 3D Objects. 

First you have to Import your model, edit the scale to suit, and arrange the background 

to create custom scenery. Then you can use the EPOC Cognitiv Suite to control any 3D 

Object in the Control Panel window. 

Cube: 

The Cube tab allows you to set the Background, Surface and Frame for the usual Cube. 

There are two types display for cube: Image and 3D cube. 

3D settings 

There are two included 3D Models which may be selected 

 

 

Figure 14 Set 3D Model 

Select the 3D Object from the Option tab and use the EPOC headset to control them in 

Cognitiv Suite. 

 

 



  

Figure 15 Demo actions for model 

 

You can combine multiple actions to control the model (RotateClockwise and 

Left/Right) or (RotateReverse vs Left/Right). 

IMPORT MODEL: 

IMPORT MODEL allows the user to set up the scene with your own3D models (.3ds format 

only) which can be manipulated using your mental commands. 

Step 1: Import model  

 

 

Figure 16 IMPORT  MODEL 

 

 

Step 2: Place the models in your desired position then add Texture for Model 



 

Figure 17 EDIT SCALE, POSITION for model 

 

 

 

Figure 18 Add texture for model 

 

 



 

 

Step 3: Repeat step 1 and step 2 until your scene is completed 

 

 

Figure 19 Model after add texture 

 

Step 4: Select any model in that scene. You can use the EPOC headset to control it. 

 

      

Figure 20 Select model for Cognitiv 

 

Step 5: IMPORT MODEL and Export Setting 

Export Setting: After you have created a scene you like and want to save it to be able to 

use it again next time you can use the Export Settings. This file is saved with an. ems  

 



 

Figure 21 EXPORT MODEL 

 

IMPORT MODEL: If you want to reload a scene which you have saved the previous use, 

you can reload it from .ems. 

The file idea1.ems is provided as an example.  

 



Figure 22 IMPORT MODEL from .ems file 

 

The program also supports tools for manipulating the design: 

Key G: enable/disable Grid 

Key V: show camera Viewport 

Key S: Pause/Run Action 

3.5.9 Cognitiv Challenge 

The Challenge tab allows you to play with cube model and submit your score to Emotiv’s 

website. You need to select at least one trained action to begin play. 

 

Figure 23 The Challenge tab 

Click the START button to begin playing. After you finish playing, you can enter your Emotiv 
website login user name and password then click SUBMIT SCORE to submit score to Emotiv’s 
website. The HIGHSCORE button displays the highest score online. 

The right-hand table displays Scores recorded only on your local machine 

 

 



4. Emotiv SDK Tools 

This section explains the software utilities provided with the Emotiv SDK: EmoKey™ and 

EmoComposer™. 

EmoKey allows you to connect detection results received from the EmoEngine to 

predefined keystrokes according to easy-to-define, logical rules.  This functionality may 

be used to experiment with the headset as an input controller during application 

development.  It also provides a mechanism for integrating the Emotiv neuroheadset 

with a preexisting application via the application’s legacy keyboard interface.   

EmoComposer emulates the behavior of the EmoEngine with an attached Emotiv 

neuroheadset.  It is intended to be used as a development and testing tool; it makes it 

easy to send simulated EmoEngine events and request responses to applications using 

the Emotiv API in a transparent and deterministic way. 

4.1 Introduction to EmoKey™ 

EmoKey translates Emotiv detection results to predefined sequences of keystrokes 

according to logical rules defined by the user through the EmoKey user interface.  A set 

of rules, known as an “EmoKey Mapping”, can be saved for later reuse.  EmoKey 

communicates with Emotiv EmoEngine in the same manner as would a third-party 

application: by using the Emotiv API exposed by edk.dll.   

4.1.1 Connecting EmoKey to Emotiv EmoEngine 

By default, EmoKey will attempt to connect to Emotiv Control Panel when the 

application launches.  If Emotiv Control Panel isn’t running, then EmoKey will display a 

warning message above the system tray.  The reason EmoKey connects to the Control 

Panel, instead of connecting directly to the EmoEngine and the neuroheadset, is to allow 

the user to select his profile, configure the detection suite settings, and get contact 

quality feedback through the Control Panel user interface.  Please see Section 5.3 for 

more details about when Emotiv SDK developers might wish to follow a similar strategy. 

EmoKey can also be connected to EmoComposer.  This is useful when creating and 

testing a new EmoKey Mapping since the user can easily generate EmoState update 

events that satisfy the conditions for rules defined in EmoKey.  Refer to Section 4.2 for 

more information about EmoComposer. 

 

Figure 24 EmoKey Connect Menu 

EmoKey’s connection settings can be changed by using the application’s Connect 

menu. If EmoKey is not able to connect to the target application (usually because the 

connection target is not running), then the EmoKey icon in the system tray will be drawn 

as gray, instead of orange). If this occurs, then run the desired application (either Emotiv 

Control Panel or EmoComposer) and then select Reconnect from the Connect menu. 



4.1.2 Configuring EmoKey Rules 

 

Figure 25 Example EmoKey Mapping 

Figure 25 shows an example of an EmoKey Mapping as it might be configured to 

communicate with an Instant Messenger (IM) application.  In this example, EmoKey will 

translate Laugh events generated by Emotiv’s Expressiv Suite to the text “LOL” (as long as 

the Affectiv Suite’s Instantaneous Excitement detection is also reporting a score > 0.3), 

which causes the IM program to send “LOL” automatically when the user is laughing. 

The topmost table in EmoKey contains user interface controls that allow you to define 

rules that specify which keystrokes are emulated. Rules can be added by clicking on the 

Add Rule button.  Existing rules can be deleted by selecting the appropriate row and 

pressing the Delete Rule button.  In Figure 25, two rules, named “LOL” and “Wink”, were 

added.  Rules can be edited as outlined below, in Table 1. 



 

Field Description Notes 

Enabled Checkbox to selectively enable or 

disable individual rules 

The indicator “light” will turn green 

when the rule conditions are 

satisfied. 

Player Identifies the neuroheadset that is 

associated with this rule 

Player 1 corresponds to user ID 0 in 

EmoComposer and Control Panel. 

Name User-friendly rule name Edit by double clicking on the cell. 

Key Keystroke sequence to be sent to 

the Windows input queue 

Edit by double clicking on the cell. 

Behavior Checkbox to control whether the 

key sequence is sent only once, or 

repeatedly, each time an 

EmoState update satisfies the rule 

conditions 

If checked, then EmoKey must 

receive an EmoState update that 

does NOT satisfy the rule’s 

conditions before this rule can be 

triggered again. 

Table 1 EmoKey Rule Definition Fields 

 

4.1.3 EmoKey Keyboard Emulation 

EmoKey emulates a Windows-compatible keyboard and sends keyboard input to the 

Windows operating system’s input queue.  The application with the input focus will 

receive the emulated keystrokes.  In practice, this often means that EmoKey is run in the 

background.  Please note that closing the EmoKey window will only hide the application 

window and that it will continue to run.  When running, the EmoKey/Emotiv icon will be 

visible in the Windows system tray.  Double-click on this icon to bring EmoKey back to the 

foreground.  Choose Quit from the Application or system-tray menu to really quit the 

application. 

 

 

Figure 26 EmoKey System Tray Icon 

 

Double-clicking in the Key field of a rule will bring up the Keys dialog as shown in Error! 

Reference source not found.. 



 

Figure 27 Defining Keys and Keystroke Behavior 

The Keys dialog allows the user to specify the desired keystrokes and customize the 

keystroke behavior.  The customizable options include: 

 Holding a key press: hold the key down for the duration of the rule activation period.  

The Hold the key checkbox is only enabled when a single key has been specified in 

the keystroke edit box. 

 Hot keys or special keyboard keys: any combination of control, alt, shift, the Windows 

key, and another keystroke.  You may also use this option if you need to specify 

special keys such as Caps Lock, Shift, or Enter. 

 Key press duration and delay times: some applications, especially games, are 

sensitive to the timing of key presses.  If necessary, use these controls to adjust the 

simulated keyboard behavior. 

 

4.1.4 Configuring EmoKey Rule Trigger Conditions 

The Trigger Conditions table in EmoKey contains user interface controls that allow you to 

define logical conditions that determine when the corresponding rule is activated.  

Clicking on a new rule in the Rules table will refresh the contents of the Trigger Conditions 

table, causing it to display only the conditions associated with the selected rule. 

Conditions can be added by clicking on the Add Condition button.  Existing rules can be 

deleted by selecting the appropriate condition and pressing the Delete Condition 

button.  In Figure 25, two conditions, which examine the state of the Expressiv Laugh 

detection and the Affectiv Instantaneous Excitement detection, respectively, are 

associated with the LOL rule.  All enabled conditions must be satisfied by the most recent 

EmoState update received from Emotiv Control Panel or EmoComposer for a rule to be 

triggered. 

The fields of the Trigger Conditions table are described below, in Table 2. 



 

Field Description 

Enabled Checkbox to selectively enable or disable individual trigger 

conditions 

Action The name of the Expressiv expression, Affectiv detection, or Cognitiv 

action being examined by this condition. 

Trigger Description of the trigger condition being evaluated 

Value For non-binary trigger conditions, the value being compared to the 

action score returned by the designated detection  

Table 2 EmoKey Trigger Condition Fields 

 

Double-clicking on any of the fields of a condition in the Trigger Conditions table will 

reveal the Configure Condition dialog box, as shown in Figure 28.  Use the controls on this 

dialog to specify an action (or detection) name, a comparison function, and a value, 

that must evaluate to true for this condition to be satisfied. 

  

Figure 28 Defining an EmoKey Condition 

 

4.1.5 Saving Rules to an EmoKey Mapping file 

EmoKey allows you to save the current set of rule definitions to an EmoKey Mapping file 

that can be reloaded for subsequent use.  Use the appropriate command in EmoKey’s 

Application menu to rename, save, and load EmoKey mapping files. 

4.2 EmoComposer™ usage 

EmoComposer allows you to send user-defined EmoStates™ to Emotiv Control Panel, 

EmoKey, or any other application that makes use of the Emotiv API.  EmoComposer 

supports two modes of EmoState generation: Interactive mode and EmoScript mode.  In 

addition to generating EmoStates, EmoComposer can also simulate Emotiv EmoEngine’s 

handling of profile management and training requests. 



SDKLite users will rely on EmoComposer to simulate the behavior of Emotiv EmoEngine 

and Emotiv neuroheadsets.  However, it is a very useful tool for all Emotiv SDK developers, 

allowing for easy experimentation with the Emotiv API early in the development process, 

and facilitating manual and automated testing later in the development cycle. 

4.2.1 Interactive mode 

   

  

Figure 29 EmoComposer interactive mode 

EmoComposer Interactive mode allows you to define and send specific EmoState values 

to any application using the Emotiv SDK.  The user interface settings are described below. 

 Player: choose the player number who’s EmoState you wish to define and send.  The 

player number defaults to 0.  When the player number is changed for the first time, an 

application connected to EmoComposer will receive an EE_UserAdded event with 

the new player number reported as the user ID. 

 Wireless: sets the simulated wireless signal strength.  Note: if the signal strength is set to 

“Bad” or “No Signal” then EmoComposer™ simulates the behavior of the EmoEngine 

by setting subsequent EmoState detection values and signal quality values to 0. 

 Contact Quality tab: this tab allows you to adjust the reported contact quality for 

each sensor on the Emotiv neuroheadset.  When the Contact Quality tab is active, all 

other EmoState detection values are set to 0.  You can choose between typical 

sensor signal quality readings by selecting a preset from the General Settings drop-

down list box.  If you choose the Custom preset, each sensor value can be controlled 



individually by clicking on a sensor and then selecting a new CQ Status value in the 

Sensor Details box.  Note that the two sensors above and behind the ears, 

correspond to the reference sensors on the Emotiv SDK Neuroheadset, must always 

report a CQ value of Good and cannot be adjusted.  

 Detection tab: this tab allows you to interactively control EmoState™ detection values 

and training result values.  When the Detection tab is active, the contact quality 

values for generated EmoStates will always be set to EEG_CQ_GOOD. 

 EmoState: define the detection settings in an EmoState™ by selecting the particular 

event type for each detection group in the appropriate drop-down list box.  Set the 

event’s value in the spin box adjacent to the event name.  You can define your own 

time value in the Time edit box, or allow EmoComposer™ to set the value 

automatically by incrementing it by the value of the EmoState Interval spin box after 

each EmoState™ is sent.  The Affectiv™ Excitement state is unique in that the 

EmoEngine returns both short-term (for Instantaneous Excitement) and long-term 

values.  EmoComposer™ simulates the long-term value calculation adequately 

enough for testing purposes but does not reproduce the exact algorithm used by the 

Affectiv detection suite in EmoEngine™.  Note that the value for the eye detections is 

binary (Active or Inactive) and that it is automatically reset to be Inactive after an 

EmoState™ is sent.  If Auto Repeat mode is active, then you can press and hold the 

Activate button to maintain a particular eye state across multiple time intervals.  Also 

note that the value for a neutral Cognitiv™ detection is automatically set to 0. 

 Training Results: specify the desired return value for EmoEngine™ requests generated 

for the current player by the EE_CognitivSetTrainingControl and 

EE_ExpressivSetTrainingControl functions.   

 EmoEngine Log:  contents are intended to give developers a clearer picture about 

how the EmoEngine processes requests generated by various Emotiv API functions.  

The log displays three different output types:  Request, Reply, CogResult, and 

ExpResult.  An API function call that results in a new request to the EmoEngine will 

cause a Request output line to be displayed in the log.  The multitude of API 

functions are translated to roughly a dozen different strings intended to allow the 

Emotiv SDK developer to see that an API function call has been serviced .  These 

strings include: PROFILE_ADD_USER, PROFILE_CHANGE_USER, PROFILE_REMOVE_USER, 

PROFILE_LIST_USER, PROFILE_GET_CURRENT_USER, PROFILE_LOAD, PROFILE_SAVE, 

EXPRESSIV_GET, EXPRESSIV_SET, AFFECTIV_GET, AFFECTIV_SET, COGNITIV_SET 

and COGNITIV_GET.  Because of the comparatively complex API protocol used to 

facilitate training the Cognitiv™ algorithms, we display additional detail when we 

receive training control messages generated by the 

EE_CognitivSetTrainingControl API function.  These strings are: COGNITIV_START, 

COGNITIV_ACCEPT, and COGNITIV_REJECT, which correspond to the 

EE_TrainingControl_t constants exposed to developers in edk.h.  Similar strings are 

used for the equivalent Expressiv messages.  All other request types are displayed as 

API_REQUEST.  The Reply output line displays the error code and is either green or 

red, depending on whether an error has occurred (i.e. the error code != 0).  The 

CogResult and ExpResult outputs are used to inform the developer of an 

asynchronous response sent from the EmoEngine via an EmoState update as the 

result of an active Cognitiv or Expressiv training request. 

 Send: sends the EmoState™ to a connected application or the Emotiv Control Panel.  

Note that Control Panel will display “Cannot Acquire Data” until the first EmoState™ is 

received from EmoComposer. 

 Auto Repeat: check this box to tell EmoComposer™ to automatically send 

EmoStates™ at the time interval specified in the EmoState™ Interval spin box.  Use the 



Start/Stop button to turn the automated send on and off.  You may interact with the 

EmoState™ controls to dynamically change the EmoState™ values while the 

automated send is active.  Note: switching between the Contact Quality and 

Detection tabs in Interactive mode will automatically stop an automated send. 

4.2.2 EmoScript Mode 

   

Figure 30 EmoComposer EmoScript Mode 

EmoComposer™ EmoScript mode allows you to playback a predefined sequence of 

EmoState™ values to any application using the EmoEngine.  The user interface settings 

are described below.  EmoScript files are written in EML (EmoComposer™ Markup 

Language).  EML syntax details can be found in the EML Language Specification section 

in Appendix 1 of this document.  

 Player: choose the player number to associate with the generated EmoStates™. 

 File: click the “...” button to select and load an EmoScript file from disk.  If the file 

loads successfully then the timeline slider bar and Start button will be activated.  If an 

error occurs, a message box will appear with a description and approximate location 

in the file. 

 Timeline Slider: move the slider control to see the EmoState™ and signal quality 

values for any point on the timeline defined by the EmoScript file. 

 Start/Stop button: starts and stops the playback of the EmoState™ values generated 

by the EmoScript file. 

 Wireless: the wireless signal strength setting is disabled while in EmoScript mode and 

the wireless signal strength is always set to “Good.” 



 Contact Quality tab: the indicators on the head model correspond to the values 

defined by the contact_quality tag at specific time code in the EmoScript file.  If 

no contact_quality tag has been specified then the contact quality values in the 

generated EmoStates default to CQ_GOOD. 

 Detection tab: this tab allows you to view EmoState detection values and provides 

interactive control over training result values.  Unlike Real Time Interactive mode, the 

signal quality and detection values are determined entirely by the contents of the 

EmoScript file and you can switch between the Signal Quality tab and the Detection 

tab to view the appropriate data during playback or timeline navigation. 

 EmoState: the values displayed correspond to the EmoState™ values for a particular 

point in time as defined by the EmoScript file.  Note that these EmoScript values are 

not interactive and cannot be modified by the user (use the Interactive mode for this 

instead). 

 Training Results and EmoEngine Log: these controls operate exactly the same as they 

do in Interactive Mode.  See the Interactive Mode documentation (above) for more 

details. 



5. Programming with the Emotiv SDK 

5.1 Overview 

This section introduces key concepts for using the Emotiv SDK to build software that is 

compatible with Emotiv headsets.  It also walks you through some sample programs that 

demonstrate these concepts and serve as a tutorial to help you get started with the 

Emotiv API. The sample programs are written in C++ and are intended to be compiled 

with Microsoft Visual Studio 2005 (Visual Studio 2008 is also supported).  They are installed 

with the Emotiv SDK and are organized into a Microsoft Visual Studio 2005 solution, 

EmoTutorials.sln, which can be found in the \doc\Examples directory of your installation. 

5.2 Introduction to the Emotiv API and Emotiv EmoEngine™ 

The Emotiv API is exposed as an ANSI C interface that is declared in 3 header files (edk.h, 

EmoStateDLL.h, edkErrorCode.h) and implemented in 2 Windows DLLs (edk.dll and 

edk_utils.dll).  C or C++ applications that use the Emotiv API simply include edk.h and link 

with edk.dll.  See Appendix 4 for a complete description of redistributable Emotiv SDK 

components and installation requirements for your application. 

The Emotiv EmoEngine refers to the logical abstraction of the functionality that Emotiv 

provides in edk.dll.  The EmoEngine communicates with the Emotiv headset, receives 

preprocessed EEG and gyroscope data, manages user-specific or application-specific 

settings, performs post-processing, and translates the Emotiv detection results into an 

easy-to-use structure called an EmoState.  Emotiv API functions that modify or retrieve 

EmoEngine settings are prefixed with “EE_.” 

 

EmoEngine (EDK.dll)

EmoState 

Buffer

Emotiv 

API

EmoState and 

EmoEvent query 

handling

Game Process

 
 

 

Emotiv Epoc
EEG and Gyro 

Post-Processing

Control 

Logic

Game AI

Game Input 

Loop

Game UI

 

Figure 1 Integrating the EmoEngine and Emotiv EPOC with a videogame  

 

An EmoState is an opaque data structure that contains the current state of the Emotiv 

detections, which, in turn, reflect the user’s facial, emotional and cognitive state.  

EmoState data is retrieved by Emotiv API functions that are prefixed with “ES_.”  



EmoStates and other Emotiv API data structures are typically referenced through 

opaque handles (e.g. EmoStateHandle and EmoEngineEventHandle).  These data 

structures and their handles are allocated and freed using the appropriate Emotiv API 

functions (e.g. EE_EmoEngineEventCreate and EE_EmoEngineEventFree). 

 

Open a connection to 

EmoEngine

Close the connection 

to EmoEngine

New EmoEngine 

Event

Code to handle the 

EmoEngine Event

Continue ...

Some Code Blocks ...

M
A

I
N

 L
O

O
P

I
N

I
T

T
E
R

M
I
N

A
T
I
O

N

YES NO

 

Figure 31 Using the API to communicate with the EmoEngine 

Figure 31 above shows a high-level flow chart for applications that incorporate the 

EmoEngine.  During initialization, and prior to calling Emotiv API functions, your 

application must establish a connection to the EmoEngine by calling EE_EngineConnect 

or EE_EngineRemoteConnect.  Use EE_EngineConnect when you wish to communicate 

directly with an Emotiv headset.  Use EE_EngineRemoteConnect if you are using SDKLite 

and/or wish to connect your application to EmoComposer or Emotiv Control Panel.  

More details about using EE_EngineRemoteConnect follow in Section 5.3.  

 



The EmoEngine communicates with your application by publishing events that can be 

retrieved by calling EE_EngineGetNextEvent().  For near real-time responsiveness, most 

applications should poll for new EmoStates at least 10-15 times per second.  This is 

typically done in an application’s main event loop or, in the case of most videogames, 

when other input devices are periodically queried.  Before your application terminates, 

the connection to EmoEngine should be explicitly closed by calling 

EE_EngineDisconnect(). 

There are three main categories of EmoEngine events that your application should 

handle:  

 Hardware-related events: Events that communicate when users connect or 

disconnect Emotiv input devices to the computer (e.g. EE_UserAdded). 

 New EmoState events: Events that communicate changes in the user’s facial, 

cognitive and emotional state. You can retrieve the updated EmoState by calling 

EE_EmoEngineEventGetEmoState(). (e.g. EE_EmoStateUpdated). 

 Suite-specific events: Events related to training and configuring the Cognitiv and 

Expressiv detection suites (e.g. EE_CognitivEvent). 

A complete list of all EmoEngine events can be found in Appendix 3 . 

Most Emotiv API functions are declared to return a value of type int.  The return value 

should be checked to verify the correct operation of the API function call.  Most Emotiv 

API functions return EDK_OK if they succeed.  Error codes are defined in edkErrorCode.h 

and documented in Appendix 2. 

5.3 Development Scenarios Supported by EE_EngineRemoteConnect 

The EE_EngineRemoteConnect() API should be used in place of EE_EngineConnect() 

in the following circumstances: 

1. The application is being developed with Emotiv SDKLite.  This version of the SDK 

does not include an Emotiv headset so all Emotiv API function calls communicate 

with EmoComposer, the EmoEngine emulator that is described in Section 4.2.  

EmoComposer listens on port 1726 so an application that wishes to connect to an 

instance of EmoComposer running on the same computer must call 

EE_EngineRemoteConnect(“127.0.0.1”, 1726). 

2. The developer wishes to test his application’s behavior in a deterministic fashion 

by manually selecting which Emotiv detection results to send to the application.  

In this case, the developer should connect to EmoComposer as described in the 

previous item. 

3. The developer wants to speed the development process by beginning his 

application integration with the EmoEngine and the Emotiv headset without 

having to construct all of the UI and application logic required to support 

detection tuning, training, profile management and headset contact quality 

feedback.   To support this case, Emotiv Control Panel can act as a proxy for 

either the real, headset-integrated EmoEngine or EmoComposer.  Control Panel 

listens on port 3008 so an application that wishes to connect to Control Panel 

must call EE_EngineRemoteConnect(“127.0.0.1”, 3008). 

5.4 Example 1 – EmoStateLogger 

This example demonstrates the use of the core Emotiv API functions described in Sections 

5.2 and 5.3.  It logs all Emotiv detection results for the attached users after successfully 

establishing a connection to Emotiv EmoEngine™ or EmoComposer™. 



 

// ... print some instructions... 

std::string input; 

std::getline(std::cin, input, '\n'); 

option = atoi(input.c_str()); 

 

switch (option) { 

 case 1: { 

  if (EE_EngineConnect() != EDK_OK) { 

   throw exception("Emotiv Engine start up failed."); 

  } 

  break; 

 } 

 case 2: { 

  std::cout << "Target IP of EmoComposer? [127.0.0.1] "; 

  std::getline(std::cin, input, '\n'); 

  if (input.empty()) { 

   input = std::string("127.0.0.1"); 

  } 

  if (EE_EngineRemoteConnect(input.c_str(), 1726) != EDK_OK){ 

   throw exception("Cannot connect to EmoComposer!"); 

  } 

  break; 

 } 

 default: 

  throw exception("Invalid option..."); 

  break; 

} 

Listing 1 Connect to the EmoEngine 

The program first initializes the connection with Emotiv EmoEngine™ by calling 

EE_EngineConnect() or, with EmoComposer™, via EE_EngineRemoteConnect() 

together with the target IP address of the EmoComposer machine and the fixed port 

1726.  It ensures that the remote connection has been successfully established by 

verifying the return value of the EE_EngineRemoteConnect() function.  



 

EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 

EmoStateHandle eState  = EE_EmoStateCreate(); 

unsigned int userID  = 0; 

while (...) { 

int state = EE_EngineGetNextEvent(eEvent); 

// New event needs to be handled 

if (state == EDK_OK) { 

  EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 

  EE_EmoEngineEventGetUserId(eEvent, &userID); 

  // Log the EmoState if it has been updated 

  if (eventType == EE_EmoStateUpdated) { 

   // New EmoState from user 

   EE_EmoEngineEventGetEmoState(eEvent, eState); 

   // Log the new EmoState 

   logEmoState(ofs, userID, eState, writeHeader); 

   writeHeader = false; 

  } 

 } 

} 

Listing 2 Buffer creation and management 

An EmoEngineEventHandle is created by EE_EmoEngineEventCreate().  An 

EmoState™ buffer is created by calling EE_EmoStateCreate().  The program then 

queries the EmoEngine to get the current EmoEngine event by invoking 

EE_EngineGetNextEvent().  If the result of getting the event type using 

EE_EmoEngineEventGetType() is EE_EmoStateUpdated, then there is a new detection 

event for a particular user (extract via EE_EmoEngineEventGetUserID()).  The function 

EE_EmoEngineEventGetEmoState() can be used to copy the EmoState™ information 

from the event handle into the pre-allocated EmoState buffer. 

Note that EE_EngineGetNextEvent() will return EDK_NO_EVENT if no new events have 

been published by EmoEngine since the previous call.  The user should also check for 

other error codes returned from EE_EngineGetNextEvent() to handle potential 

problems that are reported by the EmoEngine. 

Specific detection results are retrieved from an EmoState by calling the corresponding 

EmoState accessor functions defined in EmoState.h.  For example, to access the blink 

detection, ES_ExpressivIsBlink(eState) should be used. 

 

EE_EngineDisconnect(); 

EE_EmoStateFree(eState); 

EE_EmoEngineEventFree(eEvent); 

Listing 3 Disconnecting from the EmoEngine 

Before the end of the program, EE_EngineDisconnect() is called to terminate the 

connection with the EmoEngine and free up resources associated with the connection.  

The user should also call EE_EmoStateFree() and EE_EmoEngineEventFree() to free 

up memory allocated for the EmoState buffer and EmoEngineEventHandle. 

Before compiling the example, use the Property Pages and set the Configuration 

PropertiesDebuggingCommand Arguments to the name of the log file you wish to 

create, such as log.txt, and then build the example. 



To test the example, launch EmoComposer.  Start a new instance of EmoStateLogger 

and when prompted, select option 2 (Connect to EmoComposer).  The EmoStates 

generated by EmoComposer will then be logged to the file log.txt.  

Tip: If you examine the log file, and it is empty, it may be because you have not used the 

controls in the EmoComposer to generate any EmoStates.  SDKLite users should only 

choose option 2 to connect to EmoComposer since option 1 (Connect to EmoEngine) 

assumes that the user will attach a neuroheadset to the computer. 

 

5.5 Example 2 – Expressiv™ Demo 

This example demonstrates how an application can use the Expressiv™ detection suite to 

control an animated head model called BlueAvatar.  The model emulates the facial 

expressions made by the user wearing an Emotiv headset.  As in Example 1, 

ExpressivDemo connects to Emotiv EmoEngine™ and retrieves EmoStates™ for all 

attached users.  The EmoState is examined to determine which facial expression best 

matches the user’s face.  ExpressivDemo communicates the detected expressions to the 

separate BlueAvatar application by sending a UDP packet which follows a simple, pre-

defined protocol. 

The Expressiv state from the EmoEngine can be separated into three groups of mutually-

exclusive facial expressions: 

 Upper face actions: Raised eyebrows, furrowed eyebrows 

 Eye related actions: Blink, Wink left, Wink right, Look left, Look right 

 Lower face actions: Smile, Smirk left, Smirk right, Clench, Laugh 

 

EmoStateHandle eState = EE_EmoStateCreate(); 

... 

EE_ExpressivAlgo_t upperFaceType = 

ES_ExpressivGetUpperFaceAction(eState); 

EE_ExpressivAlgo_t lowerFaceType = 

ES_ExpressivGetLowerFaceAction(eState); 

float upperFaceAmp = ES_ExpressivGetUpperFaceActionPower(eState); 

float lowerFaceAmp = ES_ExpressivGetLowerFaceActionPower(eState); 

Listing 4 Excerpt from ExpressivDemo code 

This code fragment from ExpressivDemo shows how upper and lower face actions can 

be extracted from an EmoState buffer using the Emotiv API functions 

ES_ExpressivGetUpperFaceAction() and ES_ExpressivGetLowerFaceAction(), 

respectively.  In order to describe the upper and lower face actions more precisely, a 

floating point  value ranging from 0.0 to 1.0 is associated with each action to express its 

“power”, or degree of movement, and can be extracted via the 

ES_ExpressivGetUpperFaceActionPower() and 

ES_ExpressivGetLowerFaceActionPower() functions. 

Eye and eyelid-related state can be accessed via the API functions which contain the 

corresponding expression name such as ES_ExpressivIsBlink(), 

ES_ExpressivIsLeftWink(), ES_ExpressivIsLookingRight(), etc. 

The protocol that ExpressivDemo uses to control the BlueAvatar motion is very simple.  

Each facial expression result will be translated to plain ASCII text, with the letter prefix 

describing the type of expression, optionally followed by the amplitude value if it is an 

upper or lower face action.  Multiple expressions can be sent to the head model at the 



same time in a comma separated form.  However, only one expression per Expressiv 

grouping is permitted (the effects of sending smile and clench together or blinking while 

winking are undefined by the BlueAvatar).  Table 3 below excerpts the syntax of some of 

expressions supported by the protocol. 

Expressiv™ action type Corresponding ASCII Text 

(case sensitive) 

Amplitude value 

Blink B n/a 

Wink left l n/a 

Wink right r n/a 

Look left L n/a 

Look right R n/a 

Eyebrow b 0 to 100 integer 

Smile S 0 to 100 integer 

Clench G 0 to 100 integer 

Table 3 BlueAvatar control syntax 

Some examples: 

 Blink and smile with amplitude 0.5: B,S50 

 Eyebrow with amplitude 0.6 and clench with amplitude 0.3: b60, G30 

 Wink left and smile with amplitude 1.0: l, S100 

The prepared ASCII text is subsequently sent to the BlueAvatar via UDP socket.  

ExpressivDemo supports sending expression strings for multiple users.  BlueAvatar should 

start listening to port 30000 for the first user.  Whenever a subsequent Emotiv USB receiver 

is plugged-in, ExpressivDemo will increment the target port number of the associated 

BlueAvatar application by one.  Tip: when an Emotiv USB receiver is removed and then 

reinserted, ExpressivDemo will consider this as a new Emotiv EPOC and still increases the 

sending UDP port by one. 

In addition to translating Expressiv results into commands to the BlueAvatar, the 

ExpressivDemo also implements a very simple command-line interpreter that can be 

used to demonstrate the use of personalized, trained signatures with the Expressiv suite.   

Expressiv supports two types of “signatures” that are used to classify input from the Emotiv 

headset as indicating a particular facial expression.   

The default signature is known as the universal signature, and it is designed to work well 

for a large population of users for the supported facial expressions.  If the application or 

user requires more accuracy or customization, then you may decide to use a trained 

signature.  In this mode, Expressiv requires the user to train the system by performing the 

desired action before it can be detected.  As the user supplies more training data, the 

accuracy of the Expressiv detection typically improves.  If you elect to use a trained 

signature, the system will only detect actions for which the user has supplied training 

data.  The user must provide training data for a neutral expression and at least one other 

supported expression before the trained signature can be activated.  Important note: 

not all Expressiv expressions can be trained.  In particular, eye and eyelid-related 

expressions (i.e. “blink”, “wink”, “look left”, and “look right”) can not be trained. 

The API functions that configure the Expressiv detections are prefixed with “EE_Expressiv.”  

The training_exp command corresponds to the EE_ExpressivSetTrainingAction() 



function.  The trained_sig command corresponds to the 

EE_ExpressivGetTrainedSignatureAvailable() function.  Type “help” at the 

ExpressivDemo command prompt to see a complete set of supported commands. 

The figure below illustrates the function call and event sequence required to record 

training data for use with Expressiv.  It will be useful to first familiarize yourself with the 

training procedure on the Expressiv tab in Emotiv Control Panel before attempting to use 

the Expressiv training API functions. 

 

Expressiv Detection EDK API Application

EE_ExpressivSetTrainingAction( EE_ExpressivAlgo_t )

EE_ExpressivSetTrainingControl( EXP_START )

EE_ExpressivTrainingStarted event

Signal is clean : EE_ExpressivTrainingSucceeded event

Signal is noisy : EE_ExpressivTrainingFailed event

Restart Training

EE_ExpressivSetTrainingControl( EXP_ACCEPT )

Ask for Accept/Reject

EE_ExpressivSetTrainingControl( EXP_REJECT )

2 sec delay

8 sec training period

update signature

EE_ExpressivTrainingCompleted event

 

Figure 32 Expressiv training command and event sequence 

 

The below sequence diagram describes the process of training an Expressiv facial 

expression.  The Expressiv-specific training events are declared as enumerated type 

EE_ExpressivEvent_t in EDK.h.  Note that this type differs from the EE_Event_t type 

used by top-level EmoEngine Events.   



 

EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 

if (EE_EngineGetNextEvent(eEvent) == EDK_OK) { 

 EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 

 if (eventType == EE_ExpressivEvent) { 

  EE_ExpressivEvent_t cEvt=EE_ExpressivEventGetType(eEvent); 

  ... 

} 

Listing 5 Extracting Expressiv event  details 

 

Before the start of a training session, the expression type must be first set with the API 

function EE_ExpressivSetTrainingAction().  In EmoStateDLL.h, the enumerated 

type EE_ExpressivAlgo_t defines all the expressions supported for detection.  Please 

note, however, that only non-eye-related detections (lower face and upper face) can 

be trained.  If an expression is not set before the start of training, EXP_NEUTRAL will be 

used as the default. 

EE_ExpressivSetTrainingControl() can then be called with argument EXP_START to 

start the training the target expression.  In EDK.h, enumerated type 

EE_ExpressivTrainingControl_t defines the control command constants for Expressiv 

training.  If the training can be started, an EE_ExpressivTrainingStarted event will be 

sent after approximately 2 seconds.  The user should be prompted to engage and hold 

the desired facial expression prior to sending the EXP_START command.  The training 

update will begin after the EmoEngine sends the EE_ExpressivTrainingStarted 

event.  This delay will help to avoid training with undesirable EEG artifacts resulting from 

transitioning from the user’s current expression to the intended facial expression. 

After approximately 8 seconds, two possible events will be sent from the EmoEngine™: 

EE_ExpressivTrainingSucceeded: If the quality of the EEG signal during the training 

session was sufficiently good to update the Expressiv algorithm’s trained signature, the 

EmoEngine will enter a waiting state to confirm the training update, which will be 

explained below. 

EE_ExpressivTrainingFailed: If the quality of the EEG signal during the training session 

was not good enough to update the trained signature then the Expressiv training process 

will be reset automatically, and user should be asked to start the training again. 

If the training session succeeded (EE_ExpressivTrainingSucceeded was received) 

then the user should be asked whether to accept or reject the session.  The user may wish 

to reject the training session if he feels that he was unable to maintain the desired 

expression throughout the duration of the training period. The user’s response is then 

submitted to the EmoEngine through the API call EE_ExpressivSetTrainingControl() 

with argument EXP_ACCEPT or EXP_REJECT.  If the training is rejected, then the 

application should wait until it receives the EE_ExpressivTrainingRejected event 

before restarting the training process.  If the training is accepted, EmoEngine™ will 

rebuild the user’s trained Expressiv™ signature, and an 

EE_ExpressivTrainingCompleted event will be sent out once the calibration is done.  

Note that this signature building process may take up several seconds depending on 

system resources, the number of expression being trained, and the number of training 

sessions recorded for each expression. 



To run the ExpressivDemo example, launch the Emotiv Control Panel and EmoComposer.  

In the Emotiv Control Panel select ConnectTo EmoComposer, accept the default 

values and then enter a new profile name.  Next, navigate to the 

doc\Examples\example2\blueavatar folder and launch the BlueAvatar application.  

Enter 30000 as the UDP port and press the Start Listening button.  Finally, start a new 

instance of ExpressivDemo, and observe that when you use the Upperface, Lowerface or 

Eye controls in  EmoComposer, the BlueAvatar model responds accordingly. 

Next, experiment with the training commands available in ExpressivDemo to better 

understand the Expressiv training procedure described above.  Listing 6 shows a sample 

ExpressivDemo sessions that demonstrates how to train an expression. 

 

Emotiv Engine started! 

Type "exit" to quit, "help" to list available commands... 

ExpressivDemo> 

New user 0 added, sending Expressiv animation to localhost:30000... 

ExpressivDemo> trained_sig 0 

==> Querying availability of a trained Expressiv signature for user 

0... 

A trained Expressiv signature is not available for user 0 

 

ExpressivDemo> training_exp 0 neutral 

==> Setting Expressiv training expression for user 0 to neutral... 

 

ExpressivDemo> training_start 0 

==> Start Expressiv training for user 0... 

 

ExpressivDemo> 

Expressiv training for user 0 STARTED! 

ExpressivDemo> 

Expressiv training for user 0 SUCCEEDED! 

ExpressivDemo> training_accept 0 

==> Accepting Expressiv training for user 0... 

 

ExpressivDemo> 

Expressiv training for user 0 COMPLETED! 

ExpressivDemo> training_exp 0 smile 

==> Setting Expressiv training expression for user 0 to smile... 

 

ExpressivDemo> training_start 0 

==> Start Expressiv training for user 0... 

 

ExpressivDemo> 

Expressiv training for user 0 STARTED! 

ExpressivDemo> 

Expressiv training for user 0 SUCCEEDED! 

ExpressivDemo> training_accept 0 

==> Accepting Expressiv training for user 0... 

 

ExpressivDemo> 

Expressiv training for user 0 COMPLETED! 

ExpressivDemo> trained_sig 0 

==> Querying availability of a trained Expressiv signature for user 

0... 

A trained Expressiv signature is  available for user 0 

 



ExpressivDemo> set_sig 0 1 

==> Switching to a trained Expressiv signature for user 0... 

 

ExpressivDemo> 

Listing 6 Training “smile” and “neutral” in ExpressivDemo 

 

5.6 Example 3 – Profile Management 

User-specific detection settings, including trained Cognitiv™ and Expressiv™ signature 

data, currently enabled Cognitiv actions, Cognitiv and Expressiv sensitivity settings, and 

Affectiv calibration data, are saved in a user profile that can be retrieved from the 

EmoEngine and restored at a later time. 

This example demonstrates the API functions that can be used to manage a user’s profile 

within Emotiv EmoEngine™.  Please note that this example requires the Boost C++ Library 

in order to build correctly.  Boost is a modern, open source, peer-reviewed, C++ library 

with many powerful and useful components for general-purpose, cross-platform 

development.  For more information and detailed instructions on installing the Boost 

library please visit http://www.boost.org.  

 

if (EE_EngineConnect() == EDK_OK) { 

    // Allocate an internal structure to hold profile data 

    EmoEngineEventHandle eProfile = EE_ProfileEventCreate(); 

 // Retrieve the base profile and attach it to the eProfile handle 

 EE_GetBaseProfile(eProfile); 

} 

Listing 7 Retrieve the base profile 

EE_EngineConnect() or EE_EngineRemoteConnect()  must be called before 

manipulating EmoEngine profiles.  Profiles are attached to a special kind of event handle 

that is constructed by calling EE_ProfileEventCreate().  After successfully connecting 

to EmoEngine, a base profile, which contains initial settings for all detections, may be 

obtained via the API call EE_GetBaseProfile().   

This function is not required in order to interact with the EmoEngine profile mechanism – a 

new user profile with all appropriate default settings is automatically created when a user 

connects to EmoEngine and the EE_UserAdded event is generated - it is, however, useful 

for certain types of applications that wish to maintain valid profile data for each saved 

user. 

It is much more useful to be able to retrieve the custom settings of an active user.  Listing 

8 demonstrates how to retrieve this data from EmoEngine. 

 

if (EE_GetUserProfile(userID, eProfile) != EDK_OK) { 

 // error in arguments... 

} 

// Determine the size of a buffer to store the user’s profile data 

unsigned int profileSize; 

if (EE_GetUserProfileSize(eProfile, &profileSize) != EDK_OK) { 

    // you didn’t check the return value above… 

} 

// Copy the content of profile byte stream into local buffer 



unsigned char* profileBuffer = new unsigned char[profileSize]; 

int result; 

result=EE_GetUserProfileBytes(eProfile, profileBuffer, profileSize); 

 

Listing 8 Get the profile for a particular user 

EE_GetUserProfile() is used to get the profile in use for a particular user.  This function 

requires a valid user ID and an EmoEngineEventHandle previously obtained via a call to 

EE_ProfileEventCreate().  Once again, the return value should always be checked.  

If successful, an internal representation of the user’s profile will be attached to the 

EmoEngineEventHandle and a serialized, binary representation can be retrieved by 

using the EE_GetUserProfileSize()and EE_EngineGetUserProfileBytes() 

functions, as illustrated above. 

The application is then free to manage this binary profile data in the manner that best fits 

its purpose and operating environment.  For example, the application programmer may 

choose to save it to disk, persist it in a database or attach it to another app-specific data 

structure that holds its own per-user data. 

 

unsigned int profileSize = 0; 

unsigned char* profileBuf = NULL; 

 

// assign and populate profileBuf and profileSize correctly 

... 

 

if (EE_SetUserProfile(userID, profileBuf, profileSize) != EDK_OK) { 

 // error in arguments... 

} 

Listing 9 Setting a user profile 

 

EE_SetUserProfile() is used to dynamically set the profile for a particular user.  In 

Listing 9, the profileBuf is a pointer to the buffer of the binary profile and profileSize 

is an integer storing the number of bytes of the buffer.  The binary data can be obtained 

from the base profile if there is no previously saved profile, or if the application wants to 

return to the default settings.  The return value should always be checked to ensure the 

request has been made successfully. 

 

... 

EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 

EE_EmoEngineEventGetUserId(eEvent, &userID); 

switch (eventType) { 

 // New Emotiv device connected 

 case EE_UserAdded:      

  ... 

  break; 

     

 // Emotiv device disconnected 

 case EE_UserRemoved: 

  ... 

  break; 

 



 // Handle EmoState update 

 case EE_EmoStateUpdated: 

  ... 

  break; 

 

 default: 

  break; 

} 

... 

Listing 10 Managing profiles 

Examples 1 and 2 focused chiefly on the proper handling of the EE_EmoStateUpdated 

event to accomplish their tasks.  Two new event types are required to properly manage 

EmoEngine profiles in Example 3: 

1. EE_UserAdded: Whenever a new Emotiv USB receiver is plugged into the 

computer, EmoEngine will generate an EE_UserAdded event.  In this case, the 

application should create a mapping between the Emotiv user ID for the new 

device and any application-specific user identifier.  The Emotiv USB receiver 

provides 4 LEDs that can be used to display a player number that is assigned by 

the application.  After receiving the EE_UserAdded event, the 

EE_SetHardwarePlayerDisplay() function can be called to provide a visual 

indication of which receiver is being used by each player in a game. 

2. EE_UserRemoved: When an existing Emotiv USB receiver is removed from the host 

computer, EmoEngine™ will send an EE_UserRemoved event to the application 

and release internal resources associated with that Emotiv device.  The user 

profile that is coupled with the removed Emotiv EPOC™ will be embedded in the 

event as well.  The developer can retrieve the binary profile using the 

EE_GetUserProfileSize() and EE_GetUserProfileBytes() functions as 

described above.  The binary profile can be saved onto disc to decrease 

memory usage, or kept in the memory to minimize the I/O overhead, and can be 

reused at a later time if the same user reconnects. 

5.7 Example 4 – Cognitiv™ Demo 

This example demonstrates how the user’s conscious mental intention can be recognized 

by the Cognitiv™ detection and used to control the movement of a 3D virtual object.  It 

also shows the steps required to train the Cognitiv suite to recognize distinct mental 

actions for an individual user.   

The design of the CognitivDemo application is quite similar to the ExpressivDemo 

covered in Example 2.  In Example 2, ExpressivDemo retrieves EmoStates™ from Emotiv 

EmoEngine™ and uses the EmoState data describing the user’s facial expressions to 

control an external avatar.  In this example, information about the cognitive mental 

activity of the users is extracted instead.  The output of the Cognitiv detection indicates 

whether users are mentally engaged in one of the trained Cognitiv actions (pushing, 

lifting, rotating, etc.) at any given time.  Based on the Cognitiv results, corresponding 

commands are sent to a separate application called EmoCube to control the movement 

of a 3D cube. 

Commands are communicated to EmoCube via a UDP network connection.  As in 

Example 2, the network protocol is very simple: an action is communicated as two 

comma-separated, ASCII-formatted values.  The first is the action type returned by 



ES_CognitivGetCurrentAction(), and the other is the action power returned by 

ES_CognitivGetCurrentActionPower(), as shown in Listing 11. 

 

void sendCognitivAnimation(SocketClient& sock, EmoStateHandle eState) 

{ 

 std::ostringstream os; 

 

 EE_CognitivAction_t actionType; 

actionType = ES_CognitivGetCurrentAction(eState); 

 float actionPower; 

actionPower = ES_CognitivGetCurrentActionPower(eState); 

 

 os << static_cast<int>(actionType) << "," 

   << static_cast<int>(actionPower*100.0f); 

 sock.SendBytes(os.str()); 

} 

Listing 11 Querying EmoState for Cognitiv detection results 

5.7.1 Training for Cognitiv 

The Cognitiv detection suite requires a training process in order to recognize when a user 

is consciously imagining or visualizing one of the supported Cognitiv actions.  Unlike the 

Expressiv suite, there is no universal signature that will work well across multiple individuals.  

An application creates a trained Cognitiv signature for an individual user by calling the 

appropriate Cognitiv API functions and correctly handling appropriate EmoEngine 

events.  The training protocol is very similar to that described in Example 2 in order to 

create a trained signature for Expressiv. 

To better understand the API calling sequence, an explanation of the Cognitiv detection 

is required.  As with Expressiv, it will be useful to first familiarize yourself with the operation 

of the Cognitiv tab in Emotiv Control Panel before attempting to use the Cognitiv API 

functions.   

Cognitiv can be configured to recognize and distinguish between up to 4 distinct actions 

at a given time.  New users typically require practice in order to reliably evoke and switch 

between the mental states used for training each Cognitiv action.  As such, it is 

imperative that a user first masters a single action before enabling two concurrent 

actions, two actions before three, and so forth. 

During the training update process, it is important to maintain the quality of the EEG 

signal and the consistency of the mental imagery associated with the action being 

trained.  Users should refrain from moving and should relax their face and neck in order 

to limit other potential sources of interference with their EEG signal. 

Unlike Expressiv, the Cognitiv algorithm does not include a delay after receiving the 

COG_START training command before it starts recording new training data. 



Cognitiv Detection EDK API Application

EE_CognitivSetTrainingAction( EE_CognitivAction_t )

EE_CognitivSetTrainingControl( COG_START )

EE_CognitivTrainingStarted event

Signal is clean : EE_CognitivTrainingSucceeded event

Signal is noisy : EE_CognitivTrainingFailed event

Restart Training

EE_CognitivSetTrainingControl( COG_ACCEPT )

Ask for Accept/Reject

EE_CognitivSetTrainingControl( COG_REJECT )

8 sec training period

update signature

EE_CognitivTrainingCompleted event

 

Figure 33 Cognitiv training 

The above sequence diagram describes the process of carrying out Cognitiv training on 

a particular action.  The Cognitiv-specific events are declared as enumerated type 

EE_CognitivEvent_t in EDK.h.  Note that this type differs from the EE_Event_t type 

used by top-level EmoEngine Events.  The code snippet in Listing 12 illustrates the 

procedure for extracting Cognitiv-specific event information from the EmoEngine event. 

 

EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 

if (EE_EngineGetNextEvent(eEvent) == EDK_OK) { 

 EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 

 if (eventType == EE_CognitivEvent) { 

  EE_CognitivEvent_t cEvt = EE_CognitivEventGetType(eEvent); 

  ... 

} 

Listing 12 Extracting Cognitiv event  details 

 



Before the start of a training session, the action type must be first set with the API function 

EE_CognitivSetTrainingAction().  In EmoStateDLL.h, the enumerated type 

EE_CognitivAction_t defines all the Cognitiv actions that are currently supported 

(COG_PUSH, COG_LIFT, etc.).  If an action is not set before the start of training, 

COG_NEUTRAL will be used as the default. 

EE_CognitivSetTrainingControl() can then be called with argument COG_START to 

start the training on the target action.  In EDK.h, enumerated type 

EE_CognitivTrainingControl_t defines the control command constants for Cognitiv 

training.  If the training can be started, an EE_CognitivTrainingStarted event will be 

sent almost immediately.  The user should be prompted to visualize or imagine the 

appropriate action prior to sending the COG_START command.  The training update will 

begin after the EmoEngine sends the EE_CognitivTrainingStarted event.  This delay 

will help to avoid training with undesirable EEG artifacts resulting from transitioning from a 

“neutral” mental state to the desired mental action state. 

After approximately 8 seconds, two possible events will be sent from the EmoEngine™: 

EE_CognitivTrainingSucceeded: If the quality of the EEG signal during the training 

session was sufficiently good to update the algorithms trained signature, EmoEngine™ will 

enter a waiting state to confirm the training update, which will be explained below. 

EE_CognitivTrainingFailed: If the quality of the EEG signal during the training session 

was not good enough to update the trained signature then the Cognitiv™ training 

process will be reset automatically, and user should be asked to start the training again. 

If the training session succeeded (EE_CognitivTrainingSucceeded was received) then 

the user should be asked whether to accept or reject the session.  The user may wish to 

reject the training session if he feels that he was unable to evoke or maintain a consistent 

mental state for the entire duration of the training period. The user’s response is then 

submitted to the EmoEngine through the API call EE_CognitivSetTrainingControl() 

with argument COG_ACCEPT or COG_REJECT.  If the training is rejected, then the 

application should wait until it receives the EE_CognitivTrainingRejected event 

before restarting the training process.  If the training is accepted, EmoEngine™ will 

rebuild the user’s trained Cognitiv™ signature, and an EE_CognitivTrainingCompleted 

event will be sent out once the calibration is done.  Note that this signature building 

process may take up several seconds depending on system resources, the number of 

actions being trained, and the number of training sessions recorded for each action. 

To test the example, launch the Emotiv Control Panel and the EmoComposer.  In the 

Emotiv Control Panel select ConnectTo EmoComposer and accept the default values 

and then enter a new profile name.  Navigate to the \example4\EmoCube folder and 

launch the EmoCube, enter 20000 as the UDP port and select Start Server.  Start a new 

instance of CognitivDemo, and observe that when you use the Cognitiv control in the 

EmoComposer the EmoCube responds accordingly. 

Next, experiment with the training commands available in CognitivDemo to better 

understand the Cognitiv training procedure described above.   Listing 13 shows a sample 

CognitivDemo session that demonstrates how to train.   



 

CognitivDemo> set_actions 0 push lift 

==> Setting Cognitiv active actions for user 0... 

 

CognitivDemo> 

Cognitiv signature for user 0 UPDATED! 

CognitivDemo> training_action 0 push 

==> Setting Cognitiv training action for user 0 to "push"... 

 

CognitivDemo> training_start 0 

==> Start Cognitiv training for user 0... 

 

CognitivDemo> 

Cognitiv training for user 0 STARTED! 

CognitivDemo> 

Cognitiv training for user 0 SUCCEEDED! 

CognitivDemo> training_accept 0 

==> Accepting Cognitiv training for user 0... 

 

CognitivDemo> 

Cognitiv training for user 0 COMPLETED! 

CognitivDemo> training_action 0 neutral 

==> Setting Cognitiv training action for user 0 to "neutral"... 

 

CognitivDemo> training_start 0 

==> Start Cognitiv training for user 0... 

 

CognitivDemo> 

Cognitiv training for user 0 STARTED! 

CognitivDemo> 

Cognitiv training for user 0 SUCCEEDED! 

CognitivDemo> training_accept 0 

==> Accepting Cognitiv training for user 0... 

 

CognitivDemo> 

Cognitiv training for user 0 COMPLETED! 

CognitivDemo> 

Listing 13 Training “push” and “neutral” with CognitivDemo 

 

5.8 Example 5 – EEG Logger Demo 

This example demonstrates how to extract live EEG data using the EmoEngineTM  in C++.  

Data is read from the headset and sent to an output file for later analysis. Please note 

that this examples only works with the SDK versions that allow raw EEG access (Research, 

Education and Enterprise Plus). 

The example starts in the same manner as the earlier examples (see Listing 1 & 2, Section 

5.4). A connection is made to the EmoEngine through a call to EE_EngineConnect(), or to 

EmoComposer through a call to EE_EngineRemoteConnect(). The EmoEngine event 

handlers and EmoState Buffer’s are also created as before. 

 

 



  float secs       = 1; 

  … 

            DataHandle hData = EE_DataCreate(); 

  DataSetBufferSizeInSec(secs); 

 

  std::cout << "Buffer size in secs:" << secs << std::endl; 

  …==> Setting Cognitiv active actions for user 0... 

 

 

Listing 14 Access to EEG data 

Access to EEG measurements requires the creation of a DataHandle, a handle that is 

used to provide access to the underlying data. This handle is initialized with a call to 

EE_DataCreate(). During the measurement process, EmoEngine will maintain a data 

buffer of sampled data, measured in seconds. This data buffer must be initialized with a 

call to DataSetBufferSizeInSec(…), prior to collecting any data. 

 

 while (…) 

 

  state = EE_EngineGetNextEvent(eEvent); 

 

  if (state == EDK_OK) { 

 

   EE_Event_t eventType = 

EE_EmoEngineEventGetType(eEvent); 

   EE_EmoEngineEventGetUserId(eEvent, &userID); 

 

    // Log the EmoState if it has been updated 

 

    if (eventType == EE_UserAdded) { 

      

 

     EE_DataAcquisitionEnable(userID,true); 

     readytocollect = true; 

    } 

   } 

Listing 15 Start Acquiring Data 

When the connection to EmoEngine is first made via EE_EngineConnect(), the engine will 

not have registered a valid user. The trigger for this registration is an EE_UserAdded event, 

which is raised shortly after the connection is made.  Once the user is registered, it is 

possible to enable data acquisition via a call to DataAcquisitionEnable.  With this 

enabled, EmoEngine will start collecting EEG for the user, storing it in the internal 

EmoEngine sample buffer. Note that the developer’s application should access the EEG 

data at a rate that will ensure the sample buffer is not overrun. 

 

 if (readytocollect) 

 

… 

       

  DataUpdateHandle (0, hData); 

 

  unsigned int nSamplesTaken=0; 

  DataGetNumberOfSample(hData,&nSamplesTaken); 



   

  if (nSamplesTaken != 0)  

  … 

   double* data = new double[nSamplesTaken]; 

   EE_DataGet(hData, targetChannelList[i], data, 

nSamplesTaken); 

   delete[] data; 

Listing 16 Acquiring Data 

To initiate retrieval of the latest EEG buffered data, a call is made to 

DataUpdateHandle(). When this function is processed, EmoEngine will ready the latest 

buffered data for access via the hData handle. All data captured since the last call to 

DataUpdateHandle will be retrieved. Place a call to DataGetNumberOfSample() to 

establish how much buffered data is currently available. The number of samples can be 

used to set up a buffer for retrieval into your application as shown. 

Finally, to transfer the data into a buffer in our application, we call the EE_DataGet 

function. To retrieve the buffer we need to choose from one of the available data 

channels: 

ED_COUNTER,ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7,  

ED_P7, ED_O1, ED_O2, ED_P8, ED_T8, ED_FC6, ED_F4, 

ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP,  

ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL 

 

For example, to retrieve the first sample of data held in the sensor AF3, place a call to 

EE_DataGet as follows: 

 

  EE_DataGet(hData, ED_AF3, databuffer, 1); 

 

You may retrieve all the samples held in the buffer using the bufferSizeInSample 

parameter. 

Finally, we need to ensure correct clean up by disconnecting from the EmoEngine and 

free all associated memory. 

EE_EngineDisconnect(); 

EE_EmoStateFree(eState); 

EE_EmoEngineEventFree(eEvent); 

 

 

5.9 Example 6 – Affectiv Demo 

Affectiv Demo allows log score of Affectiv( including raw score and scaled score) in csv 

file format. 

The program runs with command line syntax: EmoStateLogger [log_file_name], 

log_file_name is set by the user. 



 
 
 if (argc != 2) 
       { 

throw std::exception("Please supply the log file name.\nUsage:                                
EmoStateLogger [log_file_name]."); 

 } 

       

Listing 17 Creat log_file_name 

 

The example starts in the same manner as the earlier examples (see Listing 1 & 2, Section 

5.4). A connection is made to the EmoEngine through a call to EE_EngineConnect(), or to 

EmoComposer through a call to EE_EngineRemoteConnect(). 

 
 
std::cout << "====================================================" << std::endl; 
std::cout << "Example to show how to log the EmoState from EmoEngine/EmoComposer." 
<< std::endl; 
std::cout << "=====================================================" << std::endl; 
std::cout << "Press '1' to start and connect to the EmoEngine      " << std::endl; 
std::cout << "Press '2' to connect to the EmoComposer              " << std::endl; 
std::cout << ">> "; 
std::getline(std::cin, input, '\n'); 
option = atoi(input.c_str()); 
 
switch (option) { 
 case 1: 
      { 
      if (EE_EngineConnect() != EDK_OK) { 
           throw std::exception("Emotiv Engine start up failed."); 
      } 
      break; 
      } 
 case 2: 
      { 
  std::cout << "Target IP of EmoComposer? [127.0.0.1] "; 
  std::getline(std::cin, input, '\n'); 
  if (input.empty()) { 
     input = std::string("127.0.0.1"); 
     } 
  if (EE_EngineRemoteConnect(input.c_str(), composerPort) != EDK_OK) 
                  { 
       std::string errMsg = "Cannot connect to EmoComposer on [" 

+ input + "]"; 
   throw std::exception(errMsg.c_str()); 
   } 
   break; 
   } 
 default: 
  throw std::exception("Invalid option..."); 
  break; 
  } 
 
 
std::cout << "Start receiving Affectiv Score! Press any key to stop logging...\n" 



<< std::endl; 
std::ofstream ofs(argv[1]); 
//std::ofstream ofs("test.csv"); 
bool writeHeader = true; 
 
while (!_kbhit()) { 
 
       state = EE_EngineGetNextEvent(eEvent); 
 
 // New event needs to be handled 
 if (state == EDK_OK) { 
  EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 
  EE_EmoEngineEventGetUserId(eEvent, &userID); 
 
 // Log the EmoState if it has been updated 
 if (eventType == EE_EmoStateUpdated) { 
 
  EE_EmoEngineEventGetEmoState(eEvent, eState); 
  const float timestamp = ES_GetTimeFromStart(eState); 
              printf("%10.3fs : New Affectiv score from user %d ...\r", timestamp, 

userID); 
 

logAffectivScore(ofs, userID, eState, writeHeader); 
writeHeader = false; 

  } 
  } 
 else if (state != EDK_NO_EVENT) { 
  std::cout << "Internal error in Emotiv Engine!" << std::endl; 
 break; 
  } 
 
 Sleep(1); 
  } 
 
 ofs.close(); 
 } 
 catch (const std::exception& e) { 
  std::cerr << e.what() << std::endl; 
  std::cout << "Press any key to exit..." << std::endl; 
  getchar(); 
 } 

 

Listing 18 Connect to EmoEngine and EmoComposer 

 

Log file log.csv has columns as time (time from the beginning of the log), user id, raw 

score, min, max, scaled score of the Affective (frustration, engagement, mediation, 

excitement 

 
 
 // Create the top header 
 if (withHeader) { 
  os << "Time,"; 
  os << "UserID,"; 
  os << "Frustration raw score,"; 



  os << "Frustration min score,"; 
  os << "Frustration max score,"; 
  os << "Frustration scaled score,"; 
  os << "Engagement boredom raw score,"; 
  os << "Engagement boredom min score,"; 
  os << "Engagement boredom max score,"; 
  os << "Engagement boredom scaled score,"; 
  os << "Meditation raw score,"; 
  os << "Meditation min score,"; 
  os << "Meditation max score,"; 
  os << "Meditation scaled score,"; 
  os << "Excitement raw score,"; 
  os << "Excitement min score,"; 
  os << "Excitement max score,"; 
  os << "Excitement scaled score,"; 
  os << std::endl; 
 } 
 // Log the time stamp and user ID 
 os << ES_GetTimeFromStart(eState) << ","; 
 os << userID << ","; 
 // Affectiv results 
 double rawScore=0; 
 double minScale=0; 
 double maxScale=0;  
 double scaledScore=0; 
 ES_AffectivGetFrustrationModelParams(eState,&rawScore,&minScale,&maxScale
); 
 os << rawScore << ","; 
 os << minScale << ","; 
 os << maxScale << ","; 
 if (minScale==maxScale) 
 { 
  os << "undefined" << ","; 
 } 
 else{ 
  CaculateScale(rawScore,maxScale, minScale,scaledScore); 
  os << scaledScore << ","; 
 }   
 ES_AffectivGetEngagementBoredomModelParams(eState,&rawScore,&minScale,&ma
xScale); 
 os << rawScore << ","; 
 os << minScale << ","; 
 os << maxScale << ","; 
 if (minScale==maxScale) 
 { 
  os << "undefined" << ","; 
 } 
 else{ 
  CaculateScale(rawScore,maxScale, minScale,scaledScore); 
  os << scaledScore << ","; 
 }   
 ES_AffectivGetMeditationModelParams(eState,&rawScore,&minScale,&maxScale)
; 
 os << rawScore << ","; 
 os << minScale << ","; 
 os << maxScale << ","; 
 if (minScale==maxScale) 
 { 



  os << "undefined" << ","; 
 } 
 else{ 
  CaculateScale(rawScore,maxScale, minScale,scaledScore); 
  os << scaledScore << ","; 
 }   
 ES_AffectivGetExcitementShortTermModelParams(eState,&rawScore,&minScale,&
maxScale); 
 os << rawScore << ","; 
 os << minScale << ","; 
 os << maxScale << ","; 
 if (minScale==maxScale) 
 { 
  os << "undefined" << ","; 
 } 
 else{ 
  CaculateScale(rawScore,maxScale, minScale,scaledScore); 
  os << scaledScore << ","; 
 }   
 os << std::endl; 
} 
void CaculateScale (double& rawScore, double& maxScale, double& minScale, 
double& scaledScore){ 
  
 if (rawScore<minScale) 
 { 
  scaledScore =0; 
 }else if (rawScore>maxScale) 
 { 
  scaledScore = 1; 
 } 
 else{ 
  scaledScore = (rawScore-minScale)/(maxScale-minScale); 
 } 
} 
 

 

Listing 19 Log score to csv file 

 

Finally, we need to ensure correct clean up by disconnecting from the EmoEngine and 

free all associated memory. 

EE_EngineDisconnect(); 

EE_EmoStateFree(eState); 

EE_EmoEngineEventFree(eEvent); 

 

 

5.10 Example 7 – EmoState and EEGLogger   

This example demonstrates the use of the core Emotiv API functions described in Sections 

5.2 and 5.3.  It logs all Emotiv detection results for the attached users after successfully 

establishing a connection to Emotiv EmoEngine™ or EmoComposer™. 



Please note that this examples only works with the SDK versions that allow raw EEG 

access (Research, Education and Enterprise Plus). 

The data is recorded in EEG_Data.csv files and Affectiv_Data.csv, they put in the folder .. 

\ bin \. 

 
std::cout << "Start receiving EEG Data and affectiv data! Press any key to stop 
logging...\n" << std::endl; 
std::ofstream ofs("../bin/EEG_Data.csv",std::ios::trunc); 
ofs << header << std::endl; 
std::ofstream ofs2("../bin/Affectiv_Data.csv",std::ios::trunc); 
ofs2 << affectivSuitesName << std::endl; 
   
DataHandle hData = EE_DataCreate(); 
EE_DataSetBufferSizeInSec(secs); 
 
std::cout << "Buffer size in secs:" << secs << std::endl; 

 

Listing 20 Log score to EEG_Data.csv and Affectiv_Data.csv 

 

EEG_Data.csv file stores  channels : ED_COUNTER, 

  ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7,  

  ED_P7, ED_O1, ED_O2, ED_P8, ED_T8,  

  ED_FC6, ED_F4, ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP,  

  ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL 

  

Affectiv_Data.csv file stores : Engagement, Frustration, Meditation, Excitement 

 
while (!_kbhit()) { 
 
 state = EE_EngineGetNextEvent(eEvent); 
 EE_Event_t eventType; 
 
 if (state == EDK_OK) { 
 
  eventType = EE_EmoEngineEventGetType(eEvent); 
  EE_EmoEngineEventGetUserId(eEvent, &userID); 
  EE_EmoEngineEventGetEmoState(eEvent, eState); 
 // Log the EmoState if it has been updated 
 if (eventType == EE_UserAdded) { 
  std::cout << "User added"; 
  EE_DataAcquisitionEnable(userID,true); 
  readytocollect = true; 
  } 
    
 
 if (readytocollect && (eventType == EE_EmoStateUpdated)) { 
             
  EE_DataUpdateHandle(0, hData); 
 
  unsigned int nSamplesTaken=0; 

EE_DataGetNumberOfSample(hData,&nSamplesTaken); 
  std::cout << "Updated " << nSamplesTaken << std::endl; 



       
 
 if (nSamplesTaken != 0  ) { 
 
  double* data = new double[nSamplesTaken]; 
  for(int sampleIdx=0 ; sampleIdx<(int)nSamplesTaken ; ++ sampleIdx)   
  { 
 for (int i = 0 ; <sizeof(targetChannelList)/sizeof(EE_DataChannel_t) 

; i++) { 
 
  EE_DataGet(hData, targetChannelList[i], data, nSamplesTaken); 
  ofs << data[sampleIdx] << ","; 
   }  
  ofs << std::endl; 
  } 
  delete[] data;        
  } 
   
float affEngegement = ES_AffectivGetEngagementBoredomScore(eState); 
float affFrus = ES_AffectivGetFrustrationScore(eState); 
float affMed = ES_AffectivGetMeditationScore(eState); 
float affExcitement = ES_AffectivGetExcitementShortTermScore(eState); 
printf("Engagement: %f, Frustration: %f, ...\n",affEngegement,affFrus); 
ofs2<<affEngegement<<","<<affFrus<<","<<affMed<<","<<affExcitement<<","<<std::endl
; 
} 
} 
Sleep(100); 
} 
 
ofs.close(); 
ofs2.close(); 
EE_DataFree(hData); 
 
} 

 

Listing 21 Write data channels and score 

Before the end of the program, EE_EngineDisconnect() is called to terminate the 

connection with the EmoEngine and free up resources associated with the connection.  

The user should also call EE_EmoStateFree() and EE_EmoEngineEventFree() to free 

up memory allocated for the EmoState buffer and EmoEngineEventHandle 

5.11 Example 8 – Gyro Data   

Gyro data example allows  built-in  2-axis  gyroscope position. 

 Simply turn your head from left to right, up and down. You will also notice  the red 

indicator dot move in accordance with the movement of your head/gyroscope.  

 

 
void display(void) 
{ 
   glClear(GL_COLOR_BUFFER_BIT); 
   glPushMatrix(); 



   
   glColor3f(1.0,1.0,1.0); 
   drawCircle(800,100); 
   glColor3f(0.0,0.0,1.0); 
   drawCircle(maxRadius-4000,800); 
   glColor3f(0.0,1.0,1.0); 
   drawCircle(maxRadius,1000); 
  
   
   glColor3f(1.0, 0.0, 0.0);    
   glRectf(currX-400.0, currY-400.0, currX+400.0, currY+400.0); 
    
   glPopMatrix(); 
   glutSwapBuffers(); 
} 
 
void changeXY(int x) // x = 0 : idle 
{  
 if( currX >0 ) 
 { 
  float temp = currY/currX;      
  currX -= incOrDec; 
  currY = temp*currX; 
 } 
 else if( currX < 0) 
 {  
  float temp = currY/currX;   
  currX += incOrDec; 
  currY = temp*currX; 
 } 
 else  
 { 
  if( currY > 0 ) currY -= incOrDec; 
  else if( currY <0 ) currY += incOrDec; 
 }     
 if( x == 0) 
 { 
  if( (abs(currX) <= incOrDec) && (abs(currY) <= incOrDec)) 
  { 
   xmax = 0; 
   ymax = 0; 
  } 
  else 
  { 
   xmax = currX; 
   ymax = currY; 
  } 
 } 
 else 
 { 
  if( (abs(currX) <= incOrDec) && (abs(currY) <= incOrDec)) 
  { 
   xmax = 0; 
   ymax = 0; 
  } 
 } 
} 
 



 
void updateDisplay(void) 
{    
   int gyroX = 0,gyroY = 0; 
   EE_HeadsetGetGyroDelta(0,&gyroX,&gyroY); 
   xmax += gyroX; 
   ymax += gyroY; 
 
   if( outOfBound ) 
   { 
    if( preX != gyroX && preY != gyroY ) 
    { 
     xmax = currX; 
     ymax = currY; 
    } 
   } 
 
   double val = sqrt((float)(xmax*xmax + ymax*ymax)); 
   
    std::cout <<"xmax : " << xmax <<" ; ymax : " << ymax << std::endl; 
 
    
   if( val >= maxRadius ) 
   { 
    changeXY(1);  
    outOfBound = true; 
    preX = gyroX; 
    preY = gyroY; 
   } 
   else 
   {   
    outOfBound = false; 
  if(oldXVal == gyroX && oldYVal == gyroY) 
  { 
   ++count; 
   if( count > 10 ) 
   {          
    changeXY(0); 
   } 
  } 
  else 
  { 
   count = 0; 
   currX = xmax; 
   currY = ymax; 
   oldXVal = gyroX; 
   oldYVal = gyroY;    
  } 
   } 
   Sleep(15); 
   glutPostRedisplay();  
} 
void reshape(int w, int h) 
{ 
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode(GL_PROJECTION); 
   glLoadIdentity(); 
   glOrtho(-50000.0, 50000.0, -50000.0, 50000.0, -1.0, 1.0); 



   glMatrixMode(GL_MODELVIEW); 
   glLoadIdentity(); 
} 
void mouse(int button, int state, int x, int y)  
{ 
   switch (button) { 
      case GLUT_LEFT_BUTTON: 
         if (state == GLUT_DOWN) 
            glutIdleFunc(updateDisplay); 
         break; 
      case GLUT_MIDDLE_BUTTON: 
         if (state == GLUT_DOWN) 
            glutIdleFunc(NULL); 
         break; 
      default: 
         break; 
   }   
} 
/*  
 *  Request double buffer display mode. 
 *  Register mouse input callback functions 
 */ 
int main(int argc, char** argv) 
{ 
   EmoEngineEventHandle hEvent = EE_EmoEngineEventCreate(); 
   EmoStateHandle eState = EE_EmoStateCreate(); 
   unsigned int userID = -1; 
   EE_EngineConnect();  
   if(oneTime) 
   { 
      printf("Start after 8 seconds\n"); 
   Sleep(8000); 
   oneTime = false; 
   } 
 
   globalElapsed = GetTickCount(); 
 
   glutInit(&argc, argv); 
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB); 
   glutInitWindowSize (650, 650);  
   glutInitWindowPosition (100, 100); 
   glutCreateWindow (argv[0]); 
   init (); 
   glutDisplayFunc(display);  
   glutReshapeFunc(reshape);  
   glutIdleFunc(updateDisplay); 
   glutMainLoop(); 

 

Listing 22 Gyro Data 

Before the end of the program, EE_EngineDisconnect() is called to terminate the 

connection with the EmoEngine and free up resources associated with the connection.  

The user should also call EE_EmoStateFree() and EE_EmoEngineEventFree() to free up 

memory allocated for the EmoState buffer and EmoEngineEventHandle 

 



5.12 Example 9 – Multi Dongle Connection 

This example captures event when you plug or unplug dongle .  

Every time you plug or unplug dongle, there is a notice that dongle ID is added or 

removed 

 
int main(int argc,char** argv[]) 
{ 
 EmoEngineEventHandle hEvent = EE_EmoEngineEventCreate(); 
 EmoStateHandle eState = EE_EmoStateCreate(); 
 unsigned int userID = -1; 
 list<int> listUser; 
 
 if( EE_EngineConnect() == EDK_OK ) 
 { 
  while(!_kbhit())  
  { 
  int state = EE_EngineGetNextEvent(hEvent); 
  if( state == EDK_OK ) 
  { 
   EE_Event_t eventType = EE_EmoEngineEventGetType(hEvent); 
    
   EE_EmoEngineEventGetUserId(hEvent, &userID); 
   if(userID==-1) 
    continue;    
 
   if(eventType == EE_EmoStateUpdated  ) 
   {         
 // Copies an EmoState returned with a EE_EmoStateUpdate event 

to memory referenced by an EmoStateHandle.  
if(EE_EmoEngineEventGetEmoState(hEvent,eState)==EDK_OK) 

   { 
     
 if(EE_GetUserProfile(userID,hEvent)==EDK_OK) 

    { 
    //Affective score, short term excitement   
    
    cout <<"userID: " << userID  <<endl; 

  cout <<"    affectiv excitement score: " <<    
ES_AffectivGetExcitementShortTermScore (eState) << endl; 

 cout <<"    expressiv smile extent : " << 
ES_ExpressivGetSmileExtent(eState) <<endl;  
      

      } 
 
       
     }      
      
    } 
    // userremoved event 
    else if( eventType == EE_UserRemoved ) 
    { 
     cout <<"user ID: "<<userID<<" have removed" <<       

endl;  
     listUser.remove(userID); 
    } 



    // useradded event  
    else if(eventType == EE_UserAdded) 
    { 
     listUser.push_back(userID); 
     cout <<"user ID: "<<userID<<" have added" << 

endl; 
    }   
    userID=-1; 
   }    
  } 
 } 

 

Listing 23 Multi Dongle Connection 

Before the end of the program, EE_EngineDisconnect() is called to terminate the 

connection with the EmoEngine and free up resources associated with the connection.  

The user should also call EE_EmoStateFree() and EE_EmoEngineEventFree() to free up 

memory allocated for the EmoState buffer and EmoEngineEventHandle 

5.13 Example 10 – Multi Dongle EEGLogger 

This example logs EEG data from two headset to data1.csv và data2.csv file in folder 

“..\bin\”. 

 
// Create some structures to hold the data 
 EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 
 EmoStateHandle eState = EE_EmoStateCreate(); 
 
 std::ofstream ofs1("../bin/data1.csv",std::ios::trunc); 
 ofs1 << header << std::endl; 
 std::ofstream ofs2("../bin/data2.csv",std::ios::trunc); 
 ofs2 << header << std::endl; 

 

Listing 24 Creat data1.csv and data2.csv for Multi Dongle EEGLogger 

 

Please note that this examples only works with the SDK versions that allow raw EEG 

access (Research, Education and Enterprise Plus). 

 

 

Data1.csv or data2.csv file stores  channels : ED_COUNTER, 

  ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7,  

  ED_P7, ED_O1, ED_O2, ED_P8, ED_T8,  

  ED_FC6, ED_F4, ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP,  

  ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL 

 

 
 
// Make sure we're connect 
if( EE_EngineConnect() == EDK_OK ) 
{ 
 



// Create the data holder 
 DataHandle eData = EE_DataCreate(); 
 EE_DataSetBufferSizeInSec(secs); 
 
// Let them know about it 
 std::cout << "Buffer size in secs:" << secs << std::endl; 
 
// How many samples per file? 
 int samples_per_file = 384;  // 3 seconds 
// Presumably this will fail when we no longer 
// receive data... 
 while(!_kbhit())  
  { 
  // Grab the next event. 
  // We seem to mainly care about user adds and removes 
  int state = EE_EngineGetNextEvent(eEvent);  
  if( state == EDK_OK )  
  { 
  // Grab some info about the event 
  EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); // same 

    
  EE_EmoEngineEventGetUserId(eEvent, &userID); // same 
 
  // Do nothing if no user... 
  if(userID==-1) { 
   continue;  
    } 
     
 
  // Add the user to the list, if necessary     
  if (eventType == EE_UserAdded)  
  { 
   std::cout << "User added: " << userID << endl; 
   EE_DataAcquisitionEnable(userID,true); 
   userList[numUsers++] = userID; 
 
  // Check 
  if (numUsers > 2) 
  { 
   throw std::exception("Too many users!"); 
  }      
  }  
  else if (eventType == EE_UserRemoved) 
  { 
   cout << "User removed: " << userID << endl; 
   if (userList[0] == userID) 
    { 
    userList[0] = userList[1]; 
    userList[1] = -1; 
    numUsers--; 
    } 
   else if (userList[1] == userID) 
    { 
    userList[1] = -1; 
    numUsers--; 
     }  
    } 
     



    // Might be ready to get going. 
    if (numUsers == 2) { 
     readytocollect = true; 
    }  
                           else { 
     readytocollect = false; 
    } 
          }  
 
   //EE_DataUpdateHandle(userID, eData); 
 
   // If we've got both, then start collecting 
   if (readytocollect && (state==EDK_OK))  
   {   
   int check = EE_DataUpdateHandle(userID, eData); 
   unsigned int nSamplesTaken=0; 
   EE_DataGetNumberOfSample(eData,&nSamplesTaken); 
 
   if( userID == 0 ) 
   { 
         if( nSamplesTaken != 0)  
    { 
    IsHeadset1On = true; 
    if( onetime) { write = userID; onetime = false; } 
 for (int c = 0 ; c < sizeof(targetChannelList) 

/sizeof(EE_DataChannel_t) ; c++) 
    {        
    data1[c] = new double[nSamplesTaken]; 
                           EE_DataGet(eData, targetChannelList[c], data1[c], 

nSamplesTaken); 
    numberOfSample1 = nSamplesTaken; 
    } 
    } 
   else IsHeadset1On = false; 
    } 
 
   if( userID == 1  ) 
   {   
    if(nSamplesTaken != 0)  
    { 
    IsHeadset2On = true; 
    if( onetime) { write = userID; onetime = false; } 
  for (int c = 0 ; c < sizeof(targetChannelList)/ 

sizeof(EE_DataChannel_t) ; c++) 
    { 
    data2[c] = new double[nSamplesTaken]; 
  EE_DataGet(eData, targetChannelList[c], data2[c], 

nSamplesTaken); 
    numberOfSample2 = nSamplesTaken; 
    } 
    } 
   else  
    IsHeadset2On = false;       

     
    } 
         
  if( IsHeadset1On && IsHeadset2On)  
   {  



   cout <<"Update " << 0 <<" : " << numberOfSample1 << endl; 
   for (int c = 0 ; c < numberOfSample1  ; c++) 
   { 
                     for (int i = 0 ; i<sizeof(targetChannelList)/ 

sizeof(EE_DataChannel_t) ; i++) 
   { 
    ofs1 << data1[i][c] <<","; 
   } 
    ofs1 << std::endl; 
   //delete data1[c]; 
   } 
   cout <<"Update " << 1 <<" : " << numberOfSample2 << endl; 
   for (int c = 0 ; c < numberOfSample2  ; c++) 
   { 
                     for (int i = 0 ; i<sizeof(targetChannelList)/ 

sizeof(EE_DataChannel_t) ; i++) 
   {  
    ofs2 << data2[i][c] << ","; 
   } 
    ofs2 << std::endl; 
   //delete[] data2[c]; 
   } 
 
   // Don't overload */ 
   //Sleep(100);  
   IsHeadset1On = false; 
   IsHeadset2On = false; 
    } 
   } 
  } 
 } 
 ofs1.close(); 
 ofs2.close(); 

 

  

Listing 25 Write data1.csv and data2.csv file 

Finally, we need to ensure correct clean up by disconnecting from the EmoEngine and 

free all associated memory. 

EE_EngineDisconnect(); 

EE_EmoStateFree(eState); 

EE_EmoEngineEventFree(eEvent); 

 

 

 

 

5.14 DotNetEmotivSDK Test 

The Emotiv SDK comes with C# support. The wrapper is provided at 

\doc\examples\DotNet\DotNetEmotivSDK. The test project at 



\doc\examples_DotNet\DotNetEmotivSDKTest demonstrates how programmers can 

interface with the Emotiv SDK via the C# wrapper. 

It’s highly recommended that developers taking advantage of this test project read 

through other sections of these chapters. Concepts about the EmoEngine, the 

EmoEvents and EmoState are the same. DotNetEmotivSDK is merely a C# wrapper for the 

native C++ Emotiv SDK. 

6. Troubleshooting 

Transceiver Dongle lights don’t work (Should see either one slow flashing LED – if unpaired – or 
one bright and one dim LED – if paired).  

 Try different USB port, different computer.  

 Check other USB equipment works in same port 

 Possible LED failure – carry on regardless 

 

Transceiver Dongle not recognized (USB “ding” on insertion,  stream of Hardware Identifier 
strings observed on first installation) 

 Use only on XP, Window Vista and Windows 7 and virtual Windows XP/Vista/7 machines 
in Mac OS X 

 Check Device Manager list as Dongle is inserted and removed. 

 Try different USB port, different computer. 

 If Control Panel is running it will ask for User Profile selection when the Transceiver 
Dongle is recognized, whether the neuroheadset is paired or not 

 

Does not pair (Transceiver Dongle switches from single slow flashing LED to one bright & one 
dim LED if correctly paired) 

 Check for blue LED on neuroheadset (recharge neuroheadset if absent). 

 Hold neuroheadset very close to USB, switch off and on. 

 Unplug and replace Transceiver Dongle in USB port, repeat pairing attempt 

 Obtain a USB male - USB female extension cable and plug into the PC. Attach the 
Transceiver Dongle to the extension cable and position in a prominent location away from 
your PC, monitor, wireless router and other sources of radio-frequency interference. 

 Turn off or disconnect other wireless and Bluetooth devices in the area to isolate possible 
causes 

 



Weak wireless connection or repeated drop-outs (expected range 3-5 metres within line of sight) 

 Move closer to the Transceiver Dongle 

 Obtain a USB male - USB female extension cable and plug into the PC. Attach the 
Transceiver Dongle to the extension cable and position in a prominent location away from 
your PC, monitor, wireless router and other sources of radio-frequency interference. 

 Turn off or disconnect other wireless and Bluetooth devices in the area to isolate possible 
causes 

 Turn off neuroheadset, unplug Transceiver Dongle and repeat the pairing exercise 

 

Sensors do not positively lock in place (sensors should click in place as they are rotated a 
quarter-turn clockwise after insertion into the socket) 

 Sensors are made deliberately tight to start with and the locking tabs are slightly 
deformed to the correct shape during the first fitting. Sometimes the sensors are very 
tight and the user feels they will not turn further into the socket. 

 Take each sensor in turn and use an empty socket in the Hydrator Pack. Forcibly rotate 
the sensor fully clockwise in the socket until a definite click is felt (use a cloth or tool to 
hold the sensor if your fingers are easily damaged). Click and unclick the sensor into the 
socket a few times to complete the process. 

 The sensor can now be fitted to the headset, Make sure you feel a distinct catch as you 
rotate the sensor into the socket and the finger tabs are aligned along the axis of each 
arm. 

 

All sensors black except RED references (directly below ears on Contact Quality map) 

 Start with RUBBER COMFORT PADS in locations directly behind the ears. 

 The primary reference sensor locations are behind the head, elevated at about 30 
degrees backwards behind the ears (see diagram in main section of this manual) 

 Ensure reference sensors and at least one forehead sensor are sufficiently wet 

 Ensure all sensors are properly located in the neuroheadset receptacles. They should not 
spin or fall out when gently moved. 

 Try to minimize the amount of hair trapped underneath the reference sensors. The 
neuroheadset can be wriggled to allow the sensors to pass through the hair, or you can 
try to displace some of the hair with a pencil or similar. 

 Gently press reference sensors onto the head for at least 5 seconds, then release. It may 
take another 20 seconds or so for the sensors to respond. 

 Gently press wet forehead sensor for 5 seconds then release. It may take another 20 
seconds or so for the sensors to respond. 



 If still no signals, switch reference sensors to the alternate location as follows: remove the 
RUBBER COMFORT PADS (including the plastic holders) from their location behind the 
ears. They should twist out just like any of the sensors. Move the felt pads from the usual 
reference locations and place them in the sockets recently vacated by the RUBBER 
COMFORT PADS. You can put the COMFORT PADS into the original reference sockets, 
or leave them out if you prefer. Make sure you don’t lose them if you choose to leave 
them out.  

 Make sure the sensors are sufficiently damp and repeat the above procedure, taking care 
to locate the new reference sensors onto a patch of bare skin on or near the bony lump 
located just behind the ear flap. Within a few seconds the sensors should come to life, 
especially if you press gently on some of the other sensors for a few seconds. 

 

One or both of the sensors immediately adjacent to the ears remains black. 

 These sensors are located on the main body of the Arm assembly, closest to the arm 
pivot point. They detect activity in the temporal lobes and are known as T7 (left side) and 
T8 (right side). A combination of the shape of the arm assembly and the user’s head 
shape (particularly long, narrow heads with relatively flat sides)  can sometimes result in 
these sensors failing to touch the head, being held off by some of the other sensors. 

 Check that the sensors are clean and attached properly as per the general comments in 
the next section 

 Check that the sensors are clean and attached properly as per the general  

 Remove the RUBBER COMFORT PAD including the plastic holder, from the side or 
sides where the contact cannot be achieved. The neuroheadset can be worn comfortably 
without these pads for people with this head shape, and no harm will come to the 
connector sockets because they are fully enclosed. The change in balance point is 
usually sufficient to ensure contact occurs. 

 In the unlikely event that contact is still impossible to obtain, you can use a longer felt pad 
or use a cotton ball soaked in saline to fill the gap or replace the felt piece. 

 

One or more sensors remain black or red for every fitting and user 

 Check that the sensor is properly located in the socket. It should click firmly in place, the 
finger tabs should be aligned along the axis of the arm and it should not freely rotate in 
the socket. 

 Check that the sensor is sufficiently damp for operation 

 Check that the sensor is applying gentle but positive pressure to your head in this 
location. When pressed, it should not move inwards. You may find that slightly relocating 
the neuroheadset settles the sensors into a better location 

 Remove the neuroheadset and gently press the felt pad into the sensor. It should 
protrude by no more than 2mm. It should also feel damp and be free of obstructions. 



 Remove the sensor and inspect it. The sensor should have a felt pad on the front side 
and a domed gold-plated metal plate which is visible from the rear side. The metal plate 
should be clean and free of obstructions at least across the central third of the domed 
section in order to make proper contact when inserted. 

 Check the socket. Make sure the gold contact plate is clean and there is nothing trapped 
in the socket which could affect the contact. The gold contacts inside the socket consist 
of three spring tabs which bend slightly upwards towards the sensor. Make sure they are 
not bent away, damaged or dirty. 

 Swap a different sensor into that location from somewhere that is known to be working. 
This will eliminate a faulty sensor 

 Please contact Customer Service if you cannot resolve this problem and the location 
seems to be failing for each fitting and all users. 

If you have other problems or your problem is not rectified by the above procedures, please 
check the updated Troubleshooting information, visit our Live Chat Support, initiate a support 
ticket at www.emotiv.com or email support@emotiv.com for further assistance. 

http://www.emotiv.com/
mailto:support@emotiv.com


Appendix 1 EML Language Specification 

A1.1  Introduction 

EmoComposer™ is a hardware emulator for the Emotiv Software Development Kit.  Using 

EmoComposer, game developers can emulate the behavior of Emotiv EmoEngine™ 

without needing to spend time in the real Emotiv EPOC™.  EmoComposer operates in 

two modes, interactive and EmoScript playback.  

In interactive mode, EmoComposer provides game developers with real time control 

over generating emulated detection events.  EmoComposer also responds to a game’s 

requests in real time.  In EmoScript mode, game developers can pre-define these two-

way interactions by preparing an EmoComposer Markup Language (EML) document.  

EML documents are XML documents that can be interpreted by EmoComposer.  This 

section outlines the EML specification. 

A1.2  EML Example 

A typical EML document is shown in Listing 26 below: 

01 <?xml version="1.0" encoding="utf-8"?> 

02 <!DOCTYPE EML> 

03 <EML version="1.0" language="en_US"> 

04  <config> 

05    <autoreset value ="1" group="expressiv_eye" event="blink" /> 

06    <autoreset value ="1" group="expressiv_eye" event="wink_left" 

/> 

07    <autoreset value ="1" group="expressiv_eye" event="wink_right" 

/> 

08  </config> 

09  <sequence> 

10    <time value="0s15t"> 

11      <cognitiv event="push" value ="0.85" /> 

12      <expressiv_upperface event="eyebrow_raised" value ="0.85" /> 

13      <expressiv_lowerface event="clench" value ="0.85" /> 

14      <expressiv_eye event="blink" value="1" /> 

15      <affectiv event="excitement_short_term" value="1" /> 

16      <affectiv event=”excitement_long_term”  value=”0.6” /> 

17      <contact_quality value="G, G, G, G, G, G, F, F, G, 

18           G, G, G, G, G, G, G, G, G" /> 

19    </time> 

20    <time value="2s4t"> 

21      <cognitiv event="push" value ="0" /> 

22      <expressiv_upperface event="eyebrow_raised" value ="0.75" /> 

23      <expressiv_lowerface event="clench" value ="0.5" /> 

24      <expressiv_eye event="blink" value="1" /> 

25      <affectiv event="excitement_short_term" value="0.7" /> 

26      <affectiv event="excitement_long_term"  value="0.6" /> 

27    </time> 

28    <time value="3s6t"> 

29 <cognitiv event="push" shape="normal" offset_left="0.4" 

offset_right="0.2"  

30          scale_width="1.5" scale_height="0.8" /> 

31      <expressiv_upperface event="eyebrow_raised" value ="0.85" /> 

32      <expressiv_lowerface event="clench" value ="0.85" /> 

33      <expressiv_eye event="blink" value="1" repeat=”1”  

34          repeat_interval=”0.5” repeat_num=”15” /> 



35      <affectiv event="excitement_short_term" value="0.4" /> 

36      <affectiv event="excitement_long_term" value="0.5" /> 

37    </time>     

38  </sequence> 

39 </EML> 

Listing 26 EML Document Example 

Apart from standard headers (lines 1-3 and 39), an EML document consists of two 

sections: 

 config: Section to configure global parameter for the EmoComposer behaviors. 

 sequence: Section to define detection events as they would occur in a real Emotiv 

SDK. 

A1.2.1 EML Header 

Line 1-3 specifies the EML header.  EML is a special implementation of a generic XML 

document which uses UTF-8 encoding and English US language.  Line 2 is a normal XML 

comment to specify the document type and is optional. 

01 <?xml version="1.0" encoding="utf-8"?> 

02 <!DOCTYPE EML> 

03 <EML version="1.0" language="en_US"> 

Listing 27 EML Header 

 

A1.2.2 EmoState Events in EML 

EmoState events are defined within the <sequence> element.  In Listing 28, the 

<sequence> element is between line 9 and line 38: 

09  <sequence> 

10    <time value="0s15t"> 

11      <cognitiv event="push" value ="0.85" /> 

12      <expressiv_upperface event="eyebrow_raised" value ="0.85" /> 

13      <expressiv_lowerface event="clench" value ="0.85" /> 

14      <expressiv_eye event="blink" value="1" /> 

15      <affectiv event="excitement_short_term" value="1" /> 

16      <affectiv event=”excitement_long_term”  value=”0.6” /> 

17      <contact_quality value="G, G, G, G, F, F, P, F, G, 

18           G, G, G, G, G, G, G, G, G" /> 

19    </time> 

20    <time value="2s4t"> 

21      <cognitiv event="push" value ="0" /> 

22      <expressiv_upperface event="eyebrow_raised" value ="0.75" /> 

23      <expressiv_lowerface event="clench" value ="0.5" /> 

24      <expressiv_eye event="blink" value="1" /> 

25      <affectiv event="excitement_short_term" value="0.7" /> 

26      <affectiv event="excitement_long_term"  value="0.6" /> 

27    </time> 

28    <time value="3s6t"> 

29 <cognitiv event="push" shape="normal" offset_left="0.4" 

offset_right="0.2"  

30          scale_width="1.5" scale_height="0.8" /> 

31      <expressiv_upperface event="eyebrow_raised" value ="0.85" /> 

32      <expressiv_lowerface event="clench" value ="0.85" /> 

33      <expressiv_eye event="blink" value="1" repeat=”1”  



34          repeat_interval=”0.5” repeat_num=”15” /> 

35      <affectiv event="excitement_short_term" value="0.4" /> 

36      <affectiv event="excitement_long_term" value="0.5" /> 

37    </time>     

38  </sequence> 

Listing 28 Sequence in EML document 

The <sequence> section consists of a series of discrete times at which there are events 

that will be sent from the EmoComposer to the game.  These time events are ascending 

in time.  Since each second is divided into 32 ticks (or frames), the time value in this 

example should be understood as follows: 

Time Line Number Description 

value = "0s15t" 10 This event is at 0 seconds and 15th frame 

value = "2s4t" 20 This event is at 2 seconds and 4th frame 

value = "3s6t" 28 This event is at 3 seconds and 6th frame 

Table 4 Time values in EML documents 

At each time event, game developers can specify up to six different parameters, 

corresponding to the five distinct detection groups plus the current signal quality: 

Detection Group Events Notes 

cognitiv push 

pull 

lift 

drop 

left 

right 

rotate_left 

rotate_right 

rotate_clockwise 

rotate_counter_clockwise 

rotate_forwards 

rotate_reverse 

disappear 

 

expressiv_eye blink 

wink_left 

wink_right 

look_left 

look_right 

“value” attribute is treated as 

a boolean (0 or not 0) to 

determine whether to set the 

specified eye state. 

expressiv_upperface eyebrow_raised 

furrow 

 

expressiv_lowerface smile  



clench 

laugh 

smirk_left 

smirk_right 

affectiv excitement_short_term 

excitement_long_term 

engagement_boredom 

Notes: 

1. The affectiv tag is a 

special case in that it is 

allowed to appear multiple 

times, in order to simulate 

output from all the Affectiv 

detections. 

2. In order to simulate the 

behavior of the EmoEngine™, 

both short and long term 

values should be specified for 

excitement. 

signal_quality value This tag has been deprecated.  

It has been replaced with the 

contact_quality tag.   

Expects “value” attribute to 

be formatted as 18 comma-

separated floating point values 

between 0 and 1.  The first two 

values must be the same. 

contact_quality value Expects “value” attribute to 

be formatted as 18 comma-

separated character codes 

that correspond to valid CQ 

constants: 

G = EEG_CQ_GOOD 

F = EEG_CQ_FAIR 

P = EEG_CQ_POOR 

VB = EEG_CQ_VERY_BAD 

NS = EEG_CQ_NO_SIGNAL 

The first two values must be the 

same, and can only be set to 

G, VB, or NS, in order to most 

accurately simulate possible 

values produced by the Emotiv 

neuroheadset hardware. 

The order of the character 

codes is the same as the 

contants in the 

EE_InputChannels_enum 

declared in EmoStateDLL.h.  

Note that two of the channels, 



FP1 and FP2, do not currently 

exist on the SDK or EPOC 

neuroheadsets. 

Table 5 Detection groups in EML document 

Detection group names are created by grouping mutually exclusive events together.  For 

example, only one of {blink, wink_left, wink_right, look_left, look_right} can 

happen at a given time, hence the grouping expressiv_eye.  

Cognitiv detection group belongs to the Cognitiv Detection Suite.  Expressiv_eye, 

Expressiv_upperface, and Expressiv_lowerface detection groups belong to the 

Expressiv Detection Suite.  Affectiv detection group belongs to the Affectiv Detection 

Suite. 

In its simplest form, a detection definition parameter looks like: 

<cognitiv event="push" value="0.85" />, which is a discrete push action of the 

Cognitiv detection group with a value of 0.85.  In EML, the maximum amplitude for any 

detection event is 1.  By default, the detection event retains its value for this detection 

group until the game developer explicitly set it to a different value.  However, game 

developers can also alter the reset behaviors as shown in the config section where the 

values for blink, wink_left, wink_right of the expressiv_eye detection group 

automatically reset themselves. 

04  <config> 

05    <autoreset value ="1" group="expressiv_eye" event="blink" /> 

06    <autoreset value ="1" group="expressiv_eye" event="wink_left" 

/> 

07    <autoreset value ="1" group="expressiv_eye" event="wink_right" 

/> 

08  </config> 

Listing 29 Configuring detections to automatically reset 

Instead of a discrete detection event as above, game developers can also define a 

series of detection events based on an event template function.  An event template 

function generates a burst of discrete events according to the following parameters: 

 shape: “normal” or “triangle” 

 offset_left, offset_right, scale_width: A template has a 1 second width by 

default.  These three parameters allow game developers to morph the template 

shape in the time domain. 

 scale_height: A template, by default, has maximum amplitude of 1.  This parameter 

allows game developers to morph the template’s height. 

Normal and Triangle shapes are shown below: 

 

Figure 34 Normal and Triangle template shapes 

An example of morphing template to specify detection event is:  

29 <cognitiv event="push" shape="normal" offset_left="0.4" 

offset_right="0.2"  

30          scale_width="1.5" scale_height="0.8" /> 



The above detection event can be illustrated as below: 

First, start with a normal template with height = 1 and width = 1.  Second, the 

template is adjusted by offset_left and offset_right.  It now has a height of 1 and 

a width of 1-0.4-0.2 = 0.4. 

offset_left = 0.4 offset_right=0.2

1

 

Figure 35 Morphing a template 

Last, after height is scaled by scale_height and width is scaled by scale_width, the 

template becomes: 

 

Figure 36 Morphed template 

Full specifications of an event’s attributes is shown below: 

Attribute Description Required 

[detection_group] One of six available detection 

groups as specified in Table 5. 

Yes 

event=[event_name] Corresponding values of the 

[detection_group] as 

specified in Table 5. 

Yes 

value=[value] A detection event can be 

interpreted as either a 

discrete event or a series of 

events whose values are 

determined by an event 

template function.  

The presence of the “value” 

attribute indicates that this is a 

Either “value” or 

“shape” attribute must 

be specified. 

If “value” is present, 

none of the event 

template attributes 

(shape, offset_left, 

offset_right, 



discrete event. scale_width, 

scale_height) are 

allowed 

 

shape=[shape] The presence of the “shape” 

attribute indicates that this 

represents the starting point 

for a series of events 

generated according to an 

event template function. 

Allowed values are “normal” 

and “triangle”. 

Either “value” or 

“shape” attribute must 

be specified. 

If “shape” is present, 

then the “value” 

attribute is not 

allowed. 

 

offset_left=[offset_left] This attribute is a parameter of 

an event template function 

(see above for a detailed 

description of its meaning). 

offset_left+offset_right 

must be less than 1. 

The “shape” attribute 

must also be specified. 

The “value” attribute 

can not be specified. 

 

offset_right=[offset_right] This attribute is a parameter of 

an event template function 

(see above for a detailed 

description of its meaning). 

offset_left+offset_right 

must be less than 1. 

The “shape” attribute 

must also be specified. 

The “value” attribute 

can not be specified. 

 

scale_width=[scale_width] This attribute is a parameter of 

an event template function 

(see above for a detailed 

description of its meaning). 

Must be greater than 0. 

 

The “shape” attribute 

must also be specified. 

The “value” attribute 

can not be specified. 

 

scale_height=[scale_height] This attribute is a parameter of 

an event template function 

(see above for a detailed 

description of its meaning). 

0 < scale_height <= 1 

 

- The “shape” attribute 

must also be specified. 

- The “value” attribute 

can not be specified. 

 

Table 6 Attributes for an event specification 



Appendix 2 Emotiv EmoEngine™ Error Codes 

Every time you use a function provided by the API, the value returned indicates the 

EmoEngine™ status.  Table 7 below shows possible EmoEngine error codes and their 

meanings.  Unless the returned code is EDK OK, there is an error.  Explanations of these 

messages are in Table 7 below. 

 

EmoEngine Error Code Hex 

Value 

Description 

EDK_OK 0x0000 Operation has been carried out 

successfully. 

EDK_UNKNOWN_ERROR 0x0001 An internal fatal error occurred. 

EDK_INVALID_PROFILE_ARCHIVE 0x0101 Most likely returned by 

EE_SetUserProfile() when the 

content of the supplied buffer is not a 

valid serialized EmoEngine profile. 

EDK_NO_USER_FOR_BASE_PROFILE 0x0102 Returns when trying to query the user 

ID of a base profile. 

EDK_CANNOT_ACQUIRE_DATA 0x0200 Returns when EmoEngine is unable to 

acquire any signal from Emotiv 

EPOC™ for processing 

EDK_BUFFER_TOO_SMALL 0x0300 Most likely returned by 

EE_GetUserProfile() when the size 

of the supplied buffer is not large 

enough to hold the profile. 

EDK_OUT_OF_RANGE 0x0301 One of the parameters supplied to 

the function is out of range. 

EDK_INVALID_PARAMETER 0x0302 One of the parameters supplied to 

the function is invalid (e.g. null 

pointers, zero size buffer) 

EDK_PARAMETER_LOCKED 0x0303 The parameter value is currently 

locked by a running detection and 

cannot be modified at this time. 

EDK_COG_INVALID_TRAINING_ACTION 0x0304 The specified action is not an 

allowed training action at this time. 

EDK_COG_INVALID_TRAINING_CONTROL 0x0305 The specified control flag is not an 

allowed training control at this time. 

EDK_COG_INVALID_ACTIVE_ACTION 0x0306 An undefined action bit has been set 

in the actions bit vector. 

EDK_COG_EXCESS_MAX_ACTIONS 0x0307 The current action bit vector contains 

more than maximum number of 

concurrent actions. 

EDK_EXP_NO_SIG_AVAILABLE 0x0308 A trained signature is not currently 



EmoEngine Error Code Hex 

Value 

Description 

available for use – some actions may 

still require training data. 

EDK_INVALID_USER_ID 0x0400 The user ID supplied to the function is 

invalid. 

EDK_EMOENGINE_UNINITIALIZED 0x0500 EmoEngine™ needs to be initialized 

via calling EE_EngineConnect() or 

EE_EngineRemoteConnect() before 

calling any other APIs. 

EDK_EMOENGINE_DISCONNECTED 0x0501 The connection with EmoEngine™ 

via EE_EngineRemoteConnect() has 

been lost. 

EDK_EMOENGINE_PROXY_ERROR 0x0502 Returned by 

EE_EngineRemoteConnect() when 

the connection to the EmoEngine™ 

cannot be established. 

EDK_NO_EVENT 0x0600 Returned by 

EE_EngineGetNextEvent() when 

there is no pending event. 

EDK_GYRO_NOT_CALIBRATED 0x0700 The gyroscope is not calibrated.  

Please ask the user to remain still for 

.5 seconds. 

EDK_OPTIMIZATION_IS_ON 0x0800 Operation failed due to algorithm 

optimization settings. 

Table 7 Emotiv EmoEngine™ Error Codes 



Appendix 3 Emotiv EmoEngine™ Events 

In order for an application to communicate with Emotiv EmoEngine, the program must 

regularly check for new EmoEngine events and handle them accordingly.  Emotiv 

EmoEngine events are listed in Table 8 below:  

 

EmoEngine events Hex 

Value 

Description 

EE_UserAdded 0x0010 New user is registered with the EmoEngine 

EE_UserRemoved 0x0020 User is removed from the EmoEngine’s user 

list 

EE_EmoStateUpdated 0x0040 New detection is available 

EE_ProfileEvent 0x0080 Notification from EmoEngine in response 

to a request to acquire profile of an user 

EE_CognitivEvent  0x0100 Event related to Cognitiv detection suite.  

Use the EE_CognitivGetEventType 

function to retrieve the Cognitiv-specific 

event type.  

EE_ExpressivEvent 0x0200 Event related to the Expressiv detection 

suite.  Use the 
EE_ExpressivGetEventType function 

to retrieve the Expressiv-specific event 

type. 

EE_InternalStateChanged 0x0400 Not generated for most applications.  

Used by Emotiv Control Panel to inform UI 

that a remotely connected application 

has modified the state of the embedded 

EmoEngine through the API. 

EE_EmulatorError 0x0001 EmoEngine internal error. 

Table 8 Emotiv EmoEngine™ Events 



Appendix 4 Redistributing Emotiv EmoEngine™ with 

your application 

An application constructed to use Emotiv EmoEngine™ requires that EDK.dll be installed 

on the end-user’s computer.  EDK.dll has been compiled with Microsoft Visual Studio 2005 

(VC 8.0) SP1 and depends upon the shared C/C++ run-time libraries (CRT) that ship with 

this version of the compiler.  The appropriate shared run-time libraries are installed on the 

application developer’s machine by the Emotiv SDK™ Installer, but the developer is 

responsible for ensuring that the appropriate run-time libraries are installed on an end-

user’s computer by the developer’s application installer before EDK.dll can be used on 

that machine. 

If the application developer is using Visual Studio 2005 SP1+ to build her application then 

it is likely that no additional run-time libraries, beyond those already required by the 

application, need to be installed on the end-user’s computer in order to support EDK.dll.  

Specifically, EDK.dll requires that Microsoft.VC80.CRT version 8.0.50727.762 or later be 

installed on the end-user’s machine.  Please see the following Microsoft documentation: 

Redistributing Visual C++ files and Visual C++ Libraries as Shared Side-by-Side Assemblies 

for more information about how to install the appropriate Microsoft shared run-time 

libraries or contact Emotiv’s SDK support team for further assistance. 

If the application is built using an older or newer major version of the Visual Studio 

compiler, such as Visual Studio 2003 or 2008, or another compiler altogether, then EDK.dll 

and the application will use different copies of the C/C++ run-time library (CRT).  This will 

usually not cause a problem because EDK.dll doesn’t rely on any shared static state with 

the application’s instance of the CRT, but the application developer needs to be aware 

of some potentially subtle implications of using multiple instances of the CRT in the same 

process.  Please refer to Microsoft’s C Run-Time Libraries (CRT) documentation for more 

information on this subject.  Depending on the particular compiler/run-time library 

mismatch involved, Emotiv may be able to provide a custom build of EDK.dll for 

developers who wish to use another compiler.  Please contact the Emotiv SDK support 

team if you think you might require such a custom build. 

 

 

http://msdn2.microsoft.com/en-us/library/ms235299(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms235299(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/abx4dbyh(VS.80).aspx

