
LuaCOM User Manual
(Version 1.1)

Vinicius Almendra Renato Cerqueira

27th June 2003

Contents

1 Introduction 3
1.1 Features. 3
1.2 How to use . 3
1.3 Some information about samples. 4

2 LuaCOM Elements 5
2.1 LuaCOM API . 5
2.2 LuaCOM objects . 7
2.3 ActiveX binding. 8

2.3.1 Implementingdispinterfaces in Lua 8
2.3.2 Using Methods and Properties. 10
2.3.3 Connection Points. 13
2.3.4 Parameter Passing. 15
2.3.5 Exception Handling . 17

2.4 Type Conversion . 17
2.4.1 Boolean values. 17
2.4.2 Pointers toIDispatch and LuaCOM objects. 18
2.4.3 Pointers toIUnknown . 18
2.4.4 Arrays and Tables. 18
2.4.5 CURRENCYtype . 19
2.4.6 DATEtype . 19
2.4.7 Error Handling. 19

3 Implementing COM objects in Lua 20
3.1 Introduction. 20
3.2 Is it really useful?. 20
3.3 Terminology. 21
3.4 Building a LuaCOM COM server. 22

3.4.1 Specify the component. 22
3.4.2 Objects to be exported. 22
3.4.3 Building the type library. 22
3.4.4 Registration Information. 22
3.4.5 Registering the Component Object. 23
3.4.6 Implementing and Exposing the Component. 23
3.4.7 Initialization and Termination. 23

3.5 Running the COM server. 23

1

3.6 Generating Events. 23

4 Release Information 24
4.1 Limitations . 24
4.2 Known bugs. 25
4.3 Future Enhancements. 25
4.4 Visual Basicc© issue . 26
4.5 History . 26

5 Reference 29
5.1 The C/C++ API. 29
5.2 The Lua API . 35

6 Credits 48

2

Chapter 1

Introduction

LuaCOM is an add-on library to the Lua language that allows Lua programs to use and implement
objects that follow Microsoft’sComponent Object Model(COM) specificationand use theActiveX
technology(or OLE automation) for property access and method calls.

1.1 Features

Currently, the LuaCOM library supports the following features:

• dynamic instantiation of COM objects registered in the system registry, via theCreateObject
method;

• dynamic access to running COM objects viaGetObject ;

• COM method calls as normal Lua function calls;

• property access as normal table field access;

• type conversion between OLE Automation types and Lua types;

• object disposal using Lua garbage collection mechanism;

• implementation of COM interfaces and objects using Lua tables;

• use of COM connection point mechanism for bidirectional communication and event handling;

• fully compatible with Lua 5 and with Lua 4;

• use of COM objects without type information.

1.2 How to use

Using LuaCOM is straightforward: you just have to link your program with LuaCOM’s library, in-
clude the LuaCOM’s header —luacom.h — and call the proper initialization and termination func-
tions before using any of LuaCOM’s functionalities. Here is an example of a simpleCprogram using
LuaCOM.

3

/*
* Sample C program using luacom
*/

#include <stdio.h>
#include <ole2.h> // needed for OleInitialize and OleUninitialize
#include <lua.h>

#include "luacom.h"

int main (int argc, char *argv[]) {

/* COM initialization */
CoInitialize(NULL);

/* library initialization */

lua_State *L = lua_open();

luacom_open(L);

if(lua_dofile("activex_sample.lua") != 0) {
puts("Error running sample.lua!");
exit(1);

}
luacom_close(L);
lua_close(L);

CoUninitialize(NULL);
return 0;

}

Notice that it’s necessary to initialize COM beforelua_open and to terminate it only after the last
lua_close , otherwise faults may occur.

1.3 Some information about samples

The sample codes shown in this documentation are all for Lua 5, although most of them should also
run in Lua 4. Anyway, Lua 4 specific samples can be found in the documentation for the previous
version of LuaCOM.

4

Chapter 2

LuaCOM Elements

LuaCOM is composed by the following elements:

• LuaCOM API, used primarily to initialize the library, create objects, implement ActiveX inter-
faces in Lua and to manipulate connection points;

• LuaCOM objects, which make available in Lua ActiveX objects and interfaces;

• ActiveX binding, which translates accesses on LuaCOM objects to ActiveX interface calls and
ActiveX accesses on an interface implemented in Lua to Lua function calls or table accesses;

• LuaCOM type conversion rules, which govern the type conversion between Lua and ActiveX
values;

• LuaCOM parameter passing rules, which describe how LuaCOM translate a Lua parameter list
to a COM one and vice versa.

2.1 LuaCOM API

The LuaCOM API is divided in two parts: the Lua API and the C/C++ API. The C/C++ API is used
primarily for initialization of the library and for low-level construction of LuaCOM objects. The Lua
API permits Lua programs to access all the functionality of LuaCOM. All the API is accessible as
functions inside a global table namedluacom ; hereafter these functions will be called LuaCOM
methods1. Below there is summary of the LuaCOM API. Detailed information on these methods is
available in chapter5.

1In version 1.1 the old API is still accessible when LuaCOM is used with Lua 4, so that code written for LuaCOM 1.0
still works with LuaCOM 1.1. It means that all functions of the API can be accessed asluacom <function> or as
luacom.<function> . This may change in the next versions, so upgrade your code as soon as possible!

5

Lua API
Method Description

CreateObject Creates a LuaCOM object.

NewObject Creates a LuaCOM object implemented in
Lua.

GetObject Creates a LuaCOM object associated with an
instance of an already running ActiveX
object.

ExposeObject Exposes a LuaCOM object, so that other
applications can get a reference to it.

RevokeObject Undoes the operation ofExposeObject .

RegisterObject Fills in the registry entries necessary for
exposing a COM object.

Connect Creates a connection point between an object
and a Lua table.

ImplInterface Implements an IDispatch interface using a
Lua table.

ImplInterfaceFromTypelib Implements an IDispatch interface described
in a Type Library using a Lua table.

addConnection Connects two LuaCOM objects.

releaseConnection Disconnects a LuaCOM object from its
connection point.

isMember Checks whether a name correspond to a
method or a property of an LuaCOM object.

ProgIDfromCLSID Gets the ProgID associated with a CLSID.

CLSIDfromProgID Gets the CLSID associated with a ProgID.

GetIUnknown Returns anIUnknown interface to a
LuaCOM object as a userdata.

DumpTypeInfo Dumps to the console the type information of
the specified LuaCOM object. This method
should be used only for debugging purposes.

6

C/C++ API
Function Description

luacom_open Initializes the LuaCOM library in a
Lua state. It must be called before any
use of LuaCOM features.

luacom_close LuaCOM’s termination function.

luacom_detectAutomation This function is a helper to create
COM servers. It looks in the command
line for the switches “/Automation”
and “/Register” and call some
user-defined Lua functions
accordingly.

luacom_IDispatch2LuaCOM Takes an IDispatch interface and
creates a LuaCOM object to expose it,
pushing the object on the Lua stack.

2.2 LuaCOM objects

LuaCOM deals withLuaCOM objects, which are no more than a Lua table with the LuaCOM metat-
able and a reference to the LuaCOM C++ object; this one is, in turn, a proxy for the ActiveX object: it
holds anIDispatch pointer to the object and translates Lua accesses to ActiveX calls and property
accesses. Here is a sample where a LuaCOM object is used:

-- Instantiate a Microsoft(R) Calendar Object
calendar = luacom.CreateObject("MSCAL.Calendar")

-- Error check
if calendar == nil then

print("Error creating object")
exit(1)

end

-- Method call
calendar:AboutBox()

-- Property Get
current_day = calendar.Day

-- Property Put
calendar.Month = calendar.Month + 1

print(current_day)

7

print(calendar.Month)

LuaCOM objects can be created using the LuaCOM Lua API; there are a number of methods that
return LuaCOM objects. The most relevant ones areCreateObject andGetObject . LuaCOM
objects may also be created on demand implicitly, when a return or output value of a COM method is
adispinterface .

LuaCOM objects are released through Lua’s garbage collection mechanism, so there isn’t any
explicit API method to destroy them.

A LuaCOM object may be passed as an argument to method calls on other LuaCOM objects,
if these methods expect an argument of typedispinterface . Here is a sample to illustrate this
situation:

-- Gets a running instance of Excel
excel = luacom.GetObject("Excel.Application")

-- Gets the set of worksheets
sheets = excel.Worksheets

-- gets the first two sheets
sheet1 = sheets:Item(1)
sheet2 = sheets:Item(2)

-- Exchange them (here we pass the second sheet as a parameter
-- to a method)
sheet1:Move(nil, sheet2)

There are two kinds of LuaCOM objects:typedandgenericones. The typed ones are those whose
COM object has type information. The generic ones are those whose COM object does not supply
any type information. This distinction is important in some situations.

2.3 ActiveX binding

The ActiveX binding is responsible for translating the table accesses to the LuaCOM object to ActiveX
interface calls. Besides that, it also provides a mechanism for implementing ActiveXdispinterfaces
using ordinary Lua tables.

2.3.1 Implementingdispinterfaces in Lua

The ActiveX binding has aC++ class that implements a genericIDispatch interface. The imple-
mentation of this class translates the method calls and property accesses done on the objects of this
class to Lua calls and table accesses. So, one may implement an ActiveX interface entirely in Lua
provided it has a type library describing it. This type library may be a stand-alone one (referenced by
its location on the file system) or may be associated with some registered component. In this case, it
may be referenced by theProgID of the component.

The C++ objects of this class can be used in any place where anIDispatch or IUnknown
interface is expected. Follows a sample implementation of an ActiveXdispinterface in Lua.

8

-- Creates and fills the Lua table that will implement the
-- ActiveX interface

events_table = {}

function events_table:AfterUpdate()
print("AfterUpdate called!")

end

-- Here we implement the interface DCalendarEvents, which is part
-- of the Microsoft(R) Calendar object, whose ProgID is MSCAL.Calendar

events_obj = luacom.ImplInterface(
events_table,
"MSCAL.Calendar",
"DCalendarEvents")

-- Checks for errors
--
if events_obj == nil then

print("Implementation failed")
exit(1)

end

-- Tests the interface: this must generate a call to the events:AfterUpdate
-- defined above
--
events_obj:AfterUpdate()

If the interface to be implemented is described in a stand-alone type library, the methodImplInterfaceFromTypelib
must be used instead:

-- Creates and fills the Lua table that will implement the
-- ActiveX interface

hello_table = {}

function hello:Hello()
print("Hello World!")

end

-- Here we implement the interface IHello
--
hello_obj = luacom.ImplInterfaceFromTypelib("hello.tlb","IHello")

9

-- Checks for errors
--
if hello_obj == nil then

print("Implementation failed")
os.exit(1)

end

-- Tests the interface
--
hello_obj:Hello()

Both methods return a LuaCOM object, whose corresponding ActiveX object is implemented by
the supplied table. So, any Lua calls to this LuaCOM object will be translated to ActiveX calls which,
in turn, will be translated back to Lua calls on the implementation table. This LuaCOM object can
be passed as an argument to ActiveX methods who expect adispinterface or to LuaCOM API
methods (likeaddConnection).

One can also use theNewObject method, which is best suited to the situation where one needs
to create a complete ActiveX object in Lua and wants to export it, so that it can be accessed through
COM by any running application.

2.3.2 Using Methods and Properties

The ActiveX interfaces have two “types” of members: properties and methods. LuaCOM deals with
both.

Method accesses are done in the same way as calling Lua functions stored in a table and having a
“self” parameter:

obj = luacom.CreateObject("TEST.Test")

if obj == nil then
exit(1)

end

-- method call
a = obj:Teste(1,2)

-- another one
obj:Teste2(a+1)

It’s important to notice the need of using the colon – “:” – for method calls. Although LuaCOM
does not use theself parameter that Lua passes in this case, its presence is assumed, that is, LuaCOM
always skips the first parameter in the case of method calls; forgetting it may cause nasty bugs.

Accessing properties is much like the same of accessing fields in Lua tables:

10

obj = luacom.CreateObject("TEST.Test")

if obj == nil then
exit(1)

end

-- property access
a = obj.TestData

-- property setting
obj.TestData = a + 1

Properties may also be accessed as methods. This is mandatory when dealing with parameterized
properties, that it, ones that accept (or demand) parameters. A common example of this situation is
the “Item” property of collections.

-- property access
a = obj:TestData()

-- Parametrized property access
b = obj:TestInfo(2)

-- Accessing collections
c = obj.Files:Item(2)

Notice that the colon – “:” – must also be used in this situation.
When accessing properties with method calls, LuaCOM always translates the method call to a

read access (property get). To set the value of a property using a method call, it’s necessary append
the prefix “set”2 to the property name and the new value must be supplied as the last argument.

-- property access
a = obj:TestData()

-- Setting the property
b = obj:setTestInfo(2)

-- Setting a parametrized property
c = obj.Files:setItem(2, "test.txt")

The prefix “get” may also be used, to clarify the code, although it’s not necessary, as the default
behavior is to make a read access.

-- property access
a = obj:getTestData()

2In a future version it might be allowed to change the prefix.

11

b = obj:getTestInfo(2)

c = obj.Files:getItem(2)

Generic LuaCOM objects

To read or write properties in generic LuaCOM objects, it’s necessary access them as method calls
with the right prefix (get/set). The simpler semantic of table field access does not work here.

obj_typ = luacom.CreateObject("Some.TypedObject")
obj_untyp = luacom.CreateObject("Untyped.Object")

-- property read (get)
a = obj_typ.Value
b = obj_untyp:getValue()

-- property write (set)
obj.typ = a + 1
obj_untyp:setValue(b + 1)

Property Access in Lua

When implementing a COM interface in Lua, LuaCOM also supports the concept of property and of
indexed properties. LuaCOM translate property reads and writes to table field accesses:

interface = {}

interface.Test = 1
interface.TestIndex = {2,3}

obj = luacom.ImplInterface(interface, "TEST.Test", "ITest")

-- must print "1"
print(obj.Test)

-- must print nil (if there is no member named Test2)
print(obj.Test2)

-- this writes the filed Test
obj.Test = 1

-- Indexed property read. Must return 3 (remember that
-- indexed tables start at 1 in Lua)
i = obj:TestIndex(2)

-- Sets the indexed field
obj:setTestIndex(2,4)

12

-- Now must return 4
i = obj:TestIndex(2)

2.3.3 Connection Points

Theconnection pointsare part of a standard ActiveX mechanism whose primary objective is to allow
the ActiveX object to notify its owner of any kind of events. The connection point works as an “event
sink”, where events and notifications go through.

To establish a connection using LuaCOM, the owner of the ActiveX object must create a table
to implement the connection interface, whose description is provided by the ActiveX object (this
interface is called asourceinterface) and then call the API methodConnect , passing as arguments
the LuaCOM object for the ActiveX object and the implementation table. Doing this, LuaCOM will
automatically find the default source interface, create a LuaCOM object implemented by the supplied
table and then connect this object to the ActiveX object. Here follows a sample:

-- Creates the ActiveX object
--
calendar = luacom.CreateObject("MSCAL.Calendar")

if calendar == nil then
os.exit(1)

end

-- Creates implementation table
--
calendar_events = {}

function calendar_events:AfterUpdate()
print("Calendar updated!")

end

-- Connects object and table
--
res = luacom.Connect(calendar, calendar_events)

if res == nil then
exit(1)

end

-- This should trigger the AfterUpdate event
--
calendar:NextMonth()

It’s also possible to separately create a LuaCOM object implementing the connection point source
interface and then connect it to the object usingAddConnection .

13

-- Creates the ActiveX object
--
calendar = luacom.CreateObject("MSCAL.Calendar")

if calendar == nil then
print("Error instantiating calendar")
os.exit(1)

end

-- Creates implementation table
--
calendar_events = {}

function calendar_events:AfterUpdate()
print("Calendar updated!")

end

-- Creates LuaCOM object implemented by calendar_events
--
event_handler = luacom.ImplInterface(calendar_events,

"MSCAL.Calendar",
"DCalendarEvents")

if event_handler == nil then
print("Error implementing DCalendarEvents")
exit(1)

end

-- Connects both objects
--
luacom.addConnection(calendar, event_handler)

-- This should trigger the AfterUpdate event
--
calendar:NextMonth()

-- This disconnects the connection point established
--
luacom.releaseConnection(calendar)

-- This should NOT trigger the AfterUpdate event
--
calendar:NextMonth()

14

2.3.4 Parameter Passing

LuaCOM has some policies concerning parameter passing. They specify how LuaCOM will translate
COM parameter lists to Lua and vice-versa. There are two different situations to which these policies
apply: calling a method of a COM object from Lua and calling a Lua function from COM. The main
question here is how to deal with the different types of parameters supported by COM (“in” param-
eters, “out” parameters, “in-out” parameters, “optional” parameters and “defaultvalue” parameters).
There is also a special policy concerning generic LuaCOM objects.

Calling COM from Lua

This situation happens when accessing a property or calling a method of a COM object through the
LuaCOM object. Here follows a sample:

word = luacom.GetObject("Word.Application")

-- Here we are calling the "Move" method of the Application object of
-- a running instance of Microsoft(R) Word(R)
word:Move(100,100)

In this situation, there are two steps in the parameter passing process:

1. convert Lua parameters to COM (this will be called the “lua2com” situation);

2. convert COM’s return valueand output values back to Lua (this will be called the “com2lua”
situation).

lua2com situation The translation is done based on the type information of the method (or prop-
erty); it’s done following the order the parameters appear in the type information of the method. The
Lua parameters are used in the same order. For each parameter there are three possibilities:

The parameter is an “in” parameter LuaCOM gets the first Lua parameter not yet converted and
converts it to COM using LuaCOM type conversion engine.

The parameter is an “out” parameter LuaCOM ignores this parameter, as it will only be filled by
the called method. That is, the “out” parameters SHOULD NOT appear in the Lua parameter
list.

The parameter is an “in-out” parameter LuaCOM does the same as for “in” parameters.

When the caller of the method wants to omit a parameter, it must pass thenil value; LuaCOM
then proceeds accordingly, informing the called method about the omission of the parameter. If the
parameter has a default value, it is used instead. Notice that LuaCOM does not complain when one
omits non-optional parameters. In fact, LuaCOM ignores the fact that a parameter is or isn’t optional.
It leaves the responsibility for checking this to the implementation of the called method.

15

com2lua situation When the called method finishes, LuaCOM translates the return value and the
output values (that is, the values of the “out” and “in-out” parameters) to Lua return values. That
is, the method return value is returned to the Lua code as the first return value; the output values
are returned in the order they appear in the parameter list (notice that here we use the Lua feature of
multiple return values). If the method does not have return values, that is, is a “void ” method, the
return values will be the output values. If there are no output values either, then there will be no return
values.

The called method can omit the return value or the output values; LuaCOM them will returnnil
for each omitted value.

To illustrate these concepts, here follows a sample of these situations. First, we show an excerpt
of anODLfile describing a method of a COM object:

HRESULT TestShort(
[in] short p1, // an "in" parameter
[out] short* p2, // an "out" parameter
[in,out] short* p3, // an "in-out" parameter
[out,retval] short* retval); // the return value

Now follows a sample of what happens when calling the method:

-- assume that "com" is a LuaCOM object

-- Here we set p1 = 1, p3 = 2 and leave p2 uninitialized
-- When the method returns, r1 = retval and r2 = p2 and r3 = p3
r1, r2, r3 = com:TestShort(1,2)

-- WRONG! The are only two in/in-out parameters! Out parameters
-- are ignored in the lua2com parameter translation
r1, r2, r3 = com:TestShort(1,2,3) -- WRONG!

-- Here p1 = 1, p2 is uninitialized and p3 is omitted.
r1, r2, r3 = com:TestShort(1)

-- Here we ignore the output value p3
r1,r2 = com:TestShort(1)

-- Here we ignore all output values (including the return value)
com:TestShort(1,2)

Generic LuaCOM objects When dealing with generic LuaCOM objects, the binding adopts a dif-
ferent policy: allLua parameters are converted to COM ones as “in-out” parameters. If the called
method sets a return value, it is returned to Lua. As all parameters are set as “in-out”, all of them will
be returned back to Lua, modified or not by the called method.

16

Calling Lua from COM

This situation happens when one implements a COMdispinterface in Lua. The ActiveX binding
has to translate the COM method calls to Lua function calls. The policy here concerning parameter
list translation is the same as the one above, just exchanging “Lua” for “COM” and vice-versa. That
is, all “in” an “in-out” COM parameters are translated to parameters to the Lua function call (the
output parameters are ignored). When the call finishes, the first return value is translated as the return
value of the COM method and the other return values are translated as the “in-out” and “out” values,
following the order they appear in the method’s type information. Continuing the previous example,
here we show the implementation of a method callable from COM:

implementation = {}

-- This method receives TWO in/in-out parameters
function implementation:TestShort(p1, p2)

-- the first one is the retval, the second the first out param
-- the third the second out param (in fact, an in-out param)
return p1+p2, p1-p2, p1*p2

end

-- Implements an interface
obj = luacom.ImplInterface(implementation, "TEST.Test", ITest)

-- calls the function implementation:TestShort via COM
r1, r2, r3 = obj:TestShort(1,2)

2.3.5 Exception Handling

COM exceptions are converted tolua_error ’s containing the data of the exception.

2.4 Type Conversion

LuaCOM is responsible for converting values from COM to Lua and vice versa. Most of the types can
be mapped from COM to Lua and vice versa without trouble. But there are some types for which the
mapping is not obvious. LuaCOM then uses some predefined rules to do the type conversion. These
rules must be known to avoid misinterpretation of the conversion results and to avoid errors.

2.4.1 Boolean values

Lua 5 LuaCOM uses the boolean valuestrue and false , but does not works with the older
convention (nil and non-nil ; see paragraph below).

Lua 4 This version of Lua uses thenil value as false and non-nil values as true. As LuaCOM
gives a special meaning fornil values in the parameter list, it can’t use Lua convention for true and
false values; instead, LuaCOM uses theC convention: the true value is a number different from zero
and the false value is the number zero. Here follows a sample:

17

-- This function alters the state of the of the window.
-- state is a Lua boolean value
-- window is a LuaCOM object

function showWindow(window, state)

if state then
window.Visible = 1

-- this has the same result
windows.Visible = -10

else
window.Visible = 0

end

end

-- Shows window
showWindow(window, 1)

-- Hides window
showWindow(window, nil)

2.4.2 Pointers toIDispatch and LuaCOM objects

A pointer toIDispatch is converted to a LuaCOMobject whose implementation is provided by this
pointer. A LuaCOMobject is converted to COM simply passing its interface implementation to COM.

2.4.3 Pointers toIUnknown

LuaCOM just allows passing and receivingIUnknown pointers; it does not operate on them. They
are converted from/to userdatas with a specific metatable.

2.4.4 Arrays and Tables

LuaCOM converts Lua tables toSAFEARRAY’s and vice-versa. To be converted, Lua tables must be
“array-like”, that is, all of its elements must be or “scalars” or tables of the same length. These tables
must also be “array-like”. Here are some samples of how is this conversion done:

Lua table Safe Array

table = {"name", "phone"} [
”name” ”phone”

]
table = {{1,2},{4,9}}

[
1 2
4 9

]

18

2.4.5 CURRENCYtype

The CURRENCYvalues are converted to Lua as numbers. When converting a value to COM where
a CURRENCYis expected, LuaCOM accepts both numbers and strings formatted using the current
locale for currency values. Notice that this is highly dependent on the configuration and LuaCOM just
uses the VARIANT conversion functions.

2.4.6 DATEtype

When converting from COM to Lua, theDATEvalues are transformed in strings formatted according
to the current locale. The converse is true: LuaCOM converts strings formatted according to the
current locale toDATEvalues.

2.4.7 Error Handling

When LuaCOM cannot convert a value from or to COM it issues an exception, that may be translated
to a lua_error or to a COM exception, depending on who is the one being called.

19

Chapter 3

Implementing COM objects in Lua

(This chapter is under construction. Please report bugs, mistakes or suggestions.)

3.1 Introduction

With LuaCOM it is possible to implement full-fledged COM objects using Lua. Here we understand
a COM object as a composite of these parts:

• a server, which implements one or more COM objects;

• registry information, which associates a CLSID (Class ID) to a tripleserver – type library –
default interface;

• a ProgID (Programmatic Identifier) which is a name associated to a CLSID;

• a type library containing a CoClass element.

The registry information maps a ProgID to a CLSID, which is, in turn, mapped to a server. The
type information describes the component, that is, which interfaces it exposes and what is the default
interface.

LuaCOM simplifies these tasks providing some helper functions to deal with registration and
instantiation of COM servers. By now LuaCOM supports only EXE servers, although we do not see
any problem in extending it to support DLL servers as well.

3.2 Is it really useful?

Some might argue that it would be better to implement COM object in languages like C++ or Visual
Basicc©. That’s true in many situations, and false in several others. First, dealing with COM is not
easy and LuaCOM hides most its complexities; besides that, there is another compelling reason for
using LuaCOM at least in some situations: the semantics of Lua tables and the way LuaCOM is
implemented allows one to do some neat things:

• to expose as a COM object any object that can be accessed via Lua through a table. These
might be CORBA objects, C++ objects, C structures, Lua code etc. Using this feature, a legacy
application or library may be “upgraded” to COM world with little extra work;

20

• to use COM objects anywhere a Lua table is expected. For example, a COM object might be
“exported” as a CORBA object, accessible through a network;

• to add and to redefine methods of an instance of a COM object. This might be very useful in the
preceding situations: an object of interest might be incremented and them exported to another
client.

Of course all this flexibility comes at some cost, primarily performance. Anyway, depending on
the application, the performance drawback might be negligible.

LuaCOM does not solve all problems: there is still the need of a type library, which must be build
using third party tools.

3.3 Terminology

To avoid misunderstandings, here we’ll supply the meaning we give to some terms used in this chapter.
We don’t provide formal definitions: we just want to ease the understanding of some concepts. To
better understand these concepts, see COM’s documentation.

Component a piece of software with some functionality that can be used by other components. It’s
composed by a set of objects that implement this functionality.

Component Object an object through which all the functionality of a component can be accessed,
including its other objects. This object may have many interfaces.

Application Object A component object with a interface that comprises all the top-level functional-
ity of a component; the client does not need to use other interfaces of the component object.
This concept simplifies the understanding of a component, as it puts all its functionalities in
an hierarchical manner (an application object together with its sub-objects, which can only be
accessed through methods and properties of the application object).

COM server Some piece of code that implements one or more component objects. A COM server
must tell the other applications and components which component objects it makes available. It
does soexposingthem.

CoClass A type library describing a component should have a CoClass entry, specifying some infor-
mation about the component:

• a name, differentiating one CoClass from others in the same type library;

• its CLSID, the unique identifier that distinguishes this component from all others;

• the interfaces of the component object, telling which one is the default. In a typical situ-
ation, only one interface will be supplied; thus the component object could be called an
Application object for that component;

• the source interface, that is, the interface the component uses to send events to the client.
This interface is not implemented by the component: it justusesobjects that implement
this interface.

Lua Application Object It’s the Lua table used to implement the Application Object.

21

3.4 Building a LuaCOM COM server

There are some steps to build a COM server using LuaCOM:

1. specify the component;

2. identify what is going to be exported: Lua application object and its sub-objects;

3. build a type library for the component;

4. define the registration information for the component;

5. register the Component object;

6. implement and expose the COM objects;

7. add COM initialization and termination code.

3.4.1 Specify the component

This is the first step: to define what functionality the component will expose. This functionality is
represented by an hierarchy of objects, rooted in the Application object. Each of these objects should
implement an interface.

Example Suppose we have a Lua library that implements the access of databases contained in a
specific DBMS. This library has three types of objects: databases, queries and records. In COM world,
this could be represented by an Application object that opens databases and returns a Database Object.
A Database object has, among others, a Query method. This method receives a SQL statement and
returns a Query object. The Query object is a collection, which can be iterated using the parameterized
property Records, which returns an object of type Record.

3.4.2 Objects to be exported

The objects to be exported are those belonging to the hierarchy rooted in the Application object. In
Lua world, objects are ordinarily represented as tables or userdatas. So it’s necessary to identify (or
to implement) the Lua tables used to implement the objects to be exported.

3.4.3 Building the type library

The type library should contain entries for all the interfaces of exported objects and an entry for the
CoClass, specifying the interface of the Application object and the interface used to send events.

The most common way to build a type library is to write an IDL describing the type library
and them use an IDL compiler, such as Microsoft’sc© MIDL. Notice that all the interfaces must be
dispinterfaces, that is, must inherit fromIDispatch , and must have the flagoleautomation .

3.4.4 Registration Information

Here we must specify the information that is used by COM to locate the component. See documenta-
tion of RegisterObject .

22

3.4.5 Registering the Component Object

Before being accessed by other applications, the component object must be registered in the system
registry. This can be done with the methodRegisterObject . This task can be simplified using
the functionluacom_detectAutomation ; using this function the registration of the component
can be done just running the server with the/Register command-line switch.

3.4.6 Implementing and Exposing the Component

Here we’re dealing with COM objects implemented in Lua. Typically the COM server will call a Lua
function (likeStartAutomation) to do this task.

There are two different situations, which one demands different actions:

Implementing the Application Object Here we must use the LuaCOM methodNewObject to cre-
ate a COM object and bind it to the table of the Lua Application Object. Them this object must
be made available to other applications throughExposeObject .

Implementing other objects The other objects of the component are obtained via the Lua Appli-
cation Object as return values of functions or as values stored in the fields of the Lua Ap-
plication Object (that is, via property access). These object should be implemented using
ImplInterface . They can be implemented in the initialization (and then be stored some-
where) or can be implemented on-demand (that is, each time a COM object should be return, a
call to ImplInterface is made).

Notice that the fields of the Lua table used to implement COM component will only be accessible
if they are present in the type library. If not, they are invisible to COM.

3.4.7 Initialization and Termination

Initialization

The COM server must call the COM initialization functions (OleInitialize orCoInitialize)
before LuaCOM is started. Other initialization task is the implementation and exposition of the COM
objects. This task can be greatly simplified using the C/C++ LuaCOM API functionluacom_detectAutomation .

Termination

The COM server must call (in Lua)RevokeObject for each exposed object. Then it must call the
COM termination functions AFTERlua_close has been called; otherwise fatal errors may occur.

3.5 Running the COM server

A COM server built following the preceding guidelines can be used as any other COM object, that is,
usingCoCreateInstance , CreateObject or something like these.

3.6 Generating Events

The methodNewObject returns a userdata that can be used to send events to clients (see chapter5
for the reference ofNewObject).

23

Chapter 4

Release Information

Here is provided miscellaneous information specific to the current version of LuaCOM. Here are
recorded the current limitations of LuaCOM, its known bugs, the history of modifications since the
former version, technical details etc.

4.1 Limitations

Here are listed the current limitations of LuaCOM, as of the current version, and information about
future relaxation of this restrictions.

• LuaCOM currently supports only exposes COM objects as “single use” objects. That might
be circumvented by exposing many times the same object. This restriction might be removed
under request;

• the implementation of DLL server via LuaCOM isn’t supported; this may be implemented in
the next release;

• LuaCOM does not use theIEnumVARIANT interface for enumerations. It’s necessary to use
the “Item” field; this may be implemented in the next release;

• there is no “UnRegisterObject ” method yet. Objects registered withRegisterObject
must be removed from the registry manually (or using another tool); this is due to the next
release;

• LuaCOM does not support named parameters; this will be implemented in the next version.
It means that a Lua function called from a COM application that uses named parameters may
received these not in the order they appear in the type library. This situation happens, e.g., when
using Excelc© from LuaCOM and trying to receive events;

• LuaCOM doesn’t support COM methods with variable number of parameters. This could be
circumvented passing the optional parameters inside a table, but this hasn’t been tested. This
may be implemented under request;

• there isn’t support for converting tables that are not “array-like”. This may be relaxed in a future
version, depending on the feasibility;

24

• LuaCOM only allows one connection point for each ActiveX object. This limitation may be
relaxed in future versions;

• it’s not possible to create an instance of an ActiveX object whose initialization is done through
a persistence interface (IPersistStream , IPersistStorage etc). Anyway, most of the
ActiveX objects already tested initialize themselves throughCoCreateInstance . Initial-
ization via persistence interfaces is planned for a future release;

• LuaCOM doesn’t provide access to COM interfaces that doesn’t inherit fromIDispatch
interface. That is, only Automation Objects are supported. This restriction is due to the late-
binding feature provided by LuaCOM. It’s possible to provide access to these COM interfaces
via a ”proxy” Automation Object, which translate calls made through automation to vtable
(early-binding) calls. It’s also possible to implement this ”proxy” directly using LuaCOM
C/C++ API, but this hasn’t been tested nor tried;

• currently, almost all exceptions generate a call tolua_error , possibly aborting the Lua code.
Where some degree of exception handling is needed, the Lua functioncall might be used. A
better exception handling mechanism might be implemented at request.

4.2 Known bugs

Here are recorded the known bugs present in LuaCOM. If any other bugs are found, please report
them through LuaCOM’s home page.

• LuaCOM only implements late-bound interfaces, but accepts a QueryInterface for early-bound
ones. This erroneous behavior is due to the way a VB client sends events to the server. See
section4.4;

• when a table of LuaCOM objects (that is, a SAFEARRAY ofIDispatch pointers) is passed
as a parameter to a COM object, these LuaCOM objects might not be disposed automatically
and may leak;

• when a COM object implemented in Lua is called from VBScript, the “in-out” parameters of
type SAFEARRAY cannot be modified. If they are, VBScript will complain with a COM error.

4.3 Future Enhancements

Besides the enhancements listed in the sections4.1and4.2, there are other planned enhancements:

• to improve the overall performance of LuaCOM;

• type-conversion “metamethod”, allowing the customization of the type conversion mechanism;

• better feedback when errors happen during the execution of LuaCOM API methods, besides
returningnil ;

• dynamic creation of type libraries;

• better support for creating full-fledged COM objects using Lua.

25

4.4 Visual Basicc© issue

A COM server implemented with LuaCOM can be used in VB with no trouble:

Public lc as Object

Set lc = CreateObject("MyCOMObject.InLuaCOM")

lc.showWindow

b = lc.getData(3)

lc.Quit

But if one wants to received events generated by a COM object implemented using LuaCOM,
then it’s necessary to use VB’sPublic WithEvents :

Public WithEvents obj as MyCOMObject.Application

Set obj = CreateObject("MyCOMObject.Application")

Private Sub obj_genericEvent()
’ Put your event code here

End Sub

Here there is a problem: when VB assigns the result ofCreateObject to obj variable, it tries
to get an early bound interface (as far as I know, VB only uses late-bound interfaces with variables of
typeObject). LuaCOM does not work with early-bound interfaces (known as vtable). If you call
any method using theobj variable, VB will throw an exception.

The solution we adopted was to accept a QueryInterface for a early-bound interface (thus allowing
the use ofPublic WithEvents). Then the clientmustdo a “typecast” to use correctly the COM
object:

Public WithEvents obj_dummy as MyCOMObject.Application
Public obj as Object

Set obj_dummy = CreateObject("MyCOMObject.Application")
Set obj = obj_dummy

This way the client may call methods of the COM object using theobj variable.

4.5 History

Version 1.1

• LuaCOM is now compatible with Lua 4 and Lua 5. It’s just a matter of linking with the right
library;

26

• when used with Lua 5, LuaCOM uses booleans to better match the Automation types;

• all functions of LuaCOM’s Lua API are now grouped together in a single table calledluacom ,
although they are still accessible globally asluacom <function> in the Lua 4 version of
the library;

• now it’s possible to create instances of Microsoftc©Office c© applications (Excelc©, Powerpointc©
etc.). It was only possible to use them via GetObject; now you can create a new instance of these
applications usingluacom.CreateObject ;

• when compiled with theNDEBUGflag, LuaCOM does not use any kind of terminal output
anymore (printf , cout etc). This could break some applications.

Version 1.0

• property access modified: now parameterized properties must be accessed as functions using a
prefix to differentiate property read and write. If the prefix is omitted, a property get is assumed;

• syntax “obj.Property(param) ” is no longer supported. A colon – “:” – must be used:
“obj:Property(param) ”;

• better support for implementation of COM objects, including registration and event generation;

• Type conversion engine rewritten. Now it adheres more firmly to the types specified in the type
libraries;

• binding rewritten to better support “out” and “in-out” parameters and to adhere more strictly to
the recommended memory allocation policies for COM;

• COM objects without type information are now supported.

Version 0.9.2

• removal ofLUACOMTRUEand LUACOMFALSE constants; now booleans follow the same
convention of the C language;

• memory and interface leaks fixed;

• some functions of the API have slightly different names;

• changes in memory allocation policy, to follow more strictly practices recommended in COM
documentation;

• parameter passing policies changed;

• added limited support forIUnknown pointers;

• changes in type conversion;

• added limited support for implementing and registering COM objects in Lua

27

Version 0.9.1

• conversion to Lua 4;

• better handling of different kinds of type information (e.g. now can access Microsoft Internet
Explorerc© object);

• now handles more gracefully exceptions and errors;

• added support for optional parameters with default values;

• LuaCOM does not initializes COM libraries anymore; this is left to the user;

• more stringent behavior about the syntax of method calls and property access (methods with “:”
and properties with “.”).

28

Chapter 5

Reference

5.1 The C/C++ API

luacom open

Prototype

void luacom_open(lua_State* L);

Description

This function initializes the LuaCOM library, creates the globalluacom table and fills it with
LuaCOM methods in the given Lua state. Notice that it’s necessary to initialize COM before, us-
ing OleInitialize or CoInitialize or something like that.

Sample

int main()
{

lua_State *L = lua_open(0);

OleInitialize(NULL);

luacom_open(L);

.

.

.
}

luacom close

Prototype

void luacom_close(lua_State* L);

29

Description

This function is intended to clean up the data structures associated with LuaCOM in a specific
Lua state (L). Currently, it does nothing, but in future releases it will do. So, do not remove from
your code! It must be also called before the COM termination functions (OleUninitialize and
CoInitialize) and beforelua close .

Sample

int main()
{

lua_State *L = lua_open(0);

OleInitialize(NULL);

luacom_open(L);

.

.

.

luacom_close(L);

lua_close(L);

OleUninitialize();
}

luacom detectAutomation

Prototype

int luacom_detectAutomation(lua_State *L, int argc, char *argv[]);

Description

This function gets from the top of the Lua stack a table which should hold two fields named “StartAu-
tomation” and “Register” (these fields should contain functions that implement these actions). Then
it searches the command line (providedargc andargv) for the switches “/Automation” or “/Reg-
ister”. If one of these switches is found, it then calls the corresponding function in the Lua table.
Finally it returns a value telling what happened, so the caller function may change its course of action
(if needed).

This function is simply a helper for those implementing Automation servers using LuaCOM. Most
of the work should be done by the Lua code, using the methodsRegisterObject , NewObject ,
andExposeObject .

30

Sample

/*
* com_object.cpp
*
* This sample C++ code initializes the libraries and
* the COM engine to export a COM object implemented in Lua
*/

#include <ole2.h>

// libraries
extern "C"
{
#include <lua.h>
#include <lualib.h>
}

#include <luacom.h>

int main (int argc, char *argv[])
{

int a = 0;

CoInitialize(NULL);

IupOpen();

lua_State *L = lua_open(0);

lua_baselibopen (L);
lua_strlibopen(L);
lua_iolibopen(L);

luacom_open(L);

lua_dofile(L, "implementation.lua");

// Pushes the table containing the functions
// responsible for the initialization of the
// COM object

lua_getglobal(L, "COM");

31

// detects whether the program was invoked for Automation,
// registration or none of that

int result = luacom_detectAutomation(L, argc, argv);

switch(result)
{
case LUACOM_AUTOMATION:

// runs the message loop, as all the needed initialization
// has already been performed
MessageLoop();
break;

case LUACOM_NOAUTOMATION:
// This only works as a COM server
printf("Error. This is a COM server\n");
break;

case LUACOM_REGISTER:
// Notifies that the COM object has been
// registered
printf("COM object successfully registered.");
break;

case LUACOM_AUTOMATION_ERROR:
// detectAutomation found /Automation or /Register but
// the initialization Lua functions returned some error
printf("Error starting Automation");
break;

}

luacom_close(L);
lua_close(L);

CoUninitialize();

return 0;
}

-- implementation.lua
--
-- This is a sample implementation of a COM server in Lua
--

-- This is the implementation of the COM object

32

TestObj = {}

function TestObj:showWindow()
dialog.show()

end

function TestObj:hideWindow()
dialog.hide()

end

-- Here we create and populate the table to
-- be used with detectAutomation

COM = {}

-- This functions creates the COM object to be
-- exported and exposes it.
function COM:StartAutomation()

-- creates the object using its default interface

COMAppObject, events, e = luacom.NewObject(TestObj, "TESTE.Teste")

-- This error will be caught by detectAutomation
if COMAppObject == nil then

error("NewObject failed: "..e)
end

-- Exposes the object
cookie = luacom.ExposeObject(COMAppObject)
if cookie == nil then

error("ExposeObject failed!")
end

end

function COM:Register()

-- fills table with registration information
local reginfo = {}
reginfo.VersionIndependentProgID = "TESTE.Teste"

33

reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
reginfo.ComponentName = "Test Component"
reginfo.Arguments = "/Automation"

-- stores component information in the registry
local res = luacom.RegisterObject(reginfo)
if res == nil then

error("RegisterObject failed!")
end

end

luacom IDispatch2LuaCOM

Prototype

int luacom_IDispatch2LuaCOM(lua_State *L, void *pdisp_arg);

Description

This functions takes a pointer toIDispatch , creates a LuaCOM object for it and pushes it in the
Lua stack. This function is useful when one gets an interface for a COM object fromC/C++ code
and wants to use it in Lua.

Sample

void CreateAndExport(lua_State* L)
{

// Creates the object
IUnknown *obj = CreateObj();

// Gets the IDispatch
IDispatch* pdisp = NULL;
QueryInterface(IID_IDISPATCH, &pdisp);

// pushes onto lua stack
luacom_IDispatch2LuaCOM(L, (void *) pdisp);

}

34

5.2 The Lua API

CreateObject

Use

luacom_obj = luacom.CreateObject(ProgID)

Description

This method finds the Class ID referenced by the ProgID parameter and creates an instance of the
object with this Class ID. If there is any problem (ProgID not found, error instantiating object), the
method returns nil.

Parameters

Parameter Type

ProgID String

Return Values

Return Item Possible Values

luacomobj LuaCOM object
nil

Sample

inet_obj = luacom.CreateObject("InetCtls.Inet")

if inet_obj == nil then
print("Error! Object could not be created!")

end

Connect

Use

implemented_obj = luacom.Connect(luacom_obj, implementation_table)

Description

This method finds the default source interface of the objectluacom_obj , creates an instance of
this interface whose implementation is given byimplementation_table and creates a connec-
tion point between theluacom_obj and the implemented source interface. Any calls made by
the luacom_obj to the source interface implementation will be translated to Lua calls to member
function present in theimplementation_table . If the method succeeds, the LuaCOM object
implemented byimplementation_table is returned; otherwise,nil is returned.

35

Parameters

Parameter Type

luacom_obj LuaCOM object
implementation_table Table or userdata

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

Sample

events_handler = {}

function events_handler:NewValue(new_value)
print(new_value)

end

events_obj = luacom.Connect(luacom_obj, events_handler)

ImplInterface

Use

implemented_obj = luacom.ImplInterface(impl_table, ProgID, interface_name)

Description

This method finds the type library associated with the ProgID and tries to find the type information
of an interface called “interfacename”. If it does, then creates an object whose implementation is
“impl table”, that is, any method call or property access on this object is translated to calls or access
on the members of the table. Then it makes a LuaCOM object for the implemented interface and
returns it. If there are any problems in the process (ProgID not found, interface not found, interface
isn’t adispinterface), the method returns nil.

Parameters

Parameter Type

impl_table table or userdata
ProgID string

interface_name string

36

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

Sample

myobject = {}

function myobject:MyMethod()
print("My method!")

end

myobject.Property = "teste"

luacom_obj = luacom.ImplInterface(myobject, "TEST.Test", "ITest")

-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)

-- this call is done through COM
luacom_obj:MyMethod()
print(luacom_obj.Property)

ImplInterfaceFromTypelib

Use

impl_obj = luacom.ImplInterfaceFromTypelib(
impl_table,
typelib_path,
interface_name,
coclass_name)

Description

This method loads the type library whose file path is “typelibpath” and tries to find the type informa-
tion of an interface called “interfacename”. If it does, then creates an object whose implementation
is “impl table”, that is, any method call or property access on this object is translated to calls or access
on the members of the table. Then it makes a LuaCOM object for the implemented interface and re-
turns it. If there are any problems in the process (ProgID not found, interface not found, interface isn’t
a dispinterface), the method returns nil. The “coclassname” parameter is optional; it is only
needed if the resulting LuaCOM object is to be passed to the methodsConnect , AddConnection
or ExposeObject . This parameter specifies the Component Object class name to which the inter-
face belongs, as one interface may be used in more than one “coclass”.

37

Parameters

Parameter Type

impl_table table or userdata
typelib_path string

interface_name string
coclass_name (optional) string

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

Sample

myobject = {}

function myobject:MyMethod()
print("My method!")

end

myobject.Property = "teste"

luacom_obj = luacom.ImplInterfaceFromTypelib(myobject, "test.tlb",
"ITest", "Test")

-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)

-- this call is done through COM
luacom_obj:MyMethod()
print(luacom_obj.Property)

GetObject

Use

luacom_obj = luacom.GetObject(ProgID)

Description

This method finds the Class ID referenced by the ProgID parameter and tries to find a running instance
of the object having this Class ID. If there is any problem (ProgID not found, object is not running),
the method returns nil.

38

Parameters

Parameter Type

ProgID String

Return Values

Return Item Possible Values

luacomobj LuaCOM object
nil

Sample

excel = luacom.GetObject("Excel.Application")

if excel == nil then
print("Error! Could not get object!")

end

NewObject

Use

implemented_obj, events_sink, errmsg = luacom.NewObject(impl_table, ProgID)

Description

This method is analogous toImplInterface , doing just a step further: it locates the default inter-
face for the ProgID and uses its type information. That is, this method creates a Lua implementation
of a COM object’s default interface. This is useful when implementing a complete COM object in
Lua. It also creates a connection point for sending events to the client application and returns it as the
second return value. If there are any problems in the process (ProgID not found, default interface is
not adispinterface etc), the method returns nil twice and returns the error message as the third
return value.

To send events to the client application, just call methods of the event sink table returned. The
method call will be translated to COM calls to each connection. These calls may contain parameters
(as specified in the type information).

Parameters

Parameter Type

impl_table table or userdata
ProgID string

39

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

eventsink event sink table
nil

errmsg error message in the case
of failure
nil

Sample

myobject = {}

function myobject:MyMethod()
print("My method!")

end

myobject.Property = "teste"

obj, evt, err = luacom.NewObject(myobject, "TEST.Test")

-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)

-- this call is done through COM
luacom_obj:MyMethod()
print(luacom_obj.Property)

-- here we sink events
evt:Event1()

ExposeObject

Use

cookie = luacom.ExposeObject(luacom_obj)

Description

This method creates and registers aclass factoryfor luacom obj , so that other running applications
can use it. It returns a cookie that must be used to unregister the object. If the method fails, it returns
nil .

ATTENTION: the object MUST be unregistered (usingRevokeObject) before callingluacom close
or lua close , otherwise unhandled exceptions might occur.

40

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

Return Item Possible Values

cookie number
nil

Sample

myobject = luacom.NewObject(impl_table, "Word.Application")

cookie = luacom.ExposeObject(myobject)

function end_of_application()
luacom.RevokeObject(cookie)

end

RegisterObject

Use

result = luacom.RegisterObject(registration_info)

Description

This method creates the necessary registry entries for a COM object, using the information inregistration info
table. If the component is successfully registered, the method returns a non-nil value.

Theregistration info table must contain the following fields1:

VersionIndependentProgID This field must contain a string describing the programmatic identifier
for the component, e.g. “MyCompany.MyApplication”.

ProgID The same as VersionIndependentProgID but with a version number, e.g. “MyCompany.MyApplication.2”.

TypeLib The file name of the type library describing the component. This file name should contain a
path, if the type library isn’t in the same folder of the executable. Samples:mytypelib.tlb ,
c:\app\test.tlb , test.exe\1 (this last one can be used when the type library is bound
to the executable as a resource).

CoClass The name of the component class. There must be acoclass entry in the type library with
the same name or the registration will fail.

1For a better description of these fields, see COM’s documentation.

41

ComponentName This is the human-readable name of the component.

Arguments This field specifies what arguments will be supplied to the component executable when
started via COM. Normally it should contain “/Automation ”.

This method is not a generic “registering tool” for COM components, as it assumes the component
to be registered is implemented by the running executable during registration.

Parameters

Parameter Type

registrationinfo table with registration information

Return Values

Return Item Possible Values

result nil or non-nil value

Sample

-- Lua registration code

function RegisterComponent()

reginfo.VersionIndependentProgID = "TESTE.Teste"

-- Adds version information
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"

reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
reginfo.ComponentName = "Test Component"
reginfo.Arguments = "/Automation"

local res = luacom.RegisterObject(reginfo)

return res

end

addConnection

Use

result = luacom.addConnection(client, server)

42

Description

This method connects two LuaCOM objects, setting theserver as an event sink for theclient ,
that is, the client will call methods of the server to notify events (following the COM model). This will
only work if theclient supports connection points of theserver ’s type. If the method succeeds,
it returns 1; otherwise, it returnsnil .

Parameters

Parameter Type

client LuaCOM object
server LuaCOM object

Return Values

Return Item Possible Values

result number
nil

Sample

obj = luacom.CreateObject("TEST.Test")

event_sink = {}

function event_sink:KeyPress(keynumber)
print(keynumber)

end

event_obj = luacom.ImplInterface(
event_sink, "TEST.Test", "ITestEvents")

result = luacom.addConnection(obj, event_obj)

if result == nil then
print("Error!")
exit(1)

end

releaseConnection

Use

luacom.releaseConnection(client)

Description

This method disconnects a LuaCOM object from its event sink.

43

Parameters

Parameter Type

client LuaCOM object

Return Values

There are none.

Sample

obj = luacom.CreateObject("TEST.Test")

event_sink = {}

function event_sink:KeyPress(keynumber)
print(keynumber)

end

event_obj = luacom.ImplInterface(
event_sink, "TEST.Test", "ITestEvents")

result = luacom.addConnection(obj, event_obj)

if result == nil then
print("Error!")
exit(1)

end

.

.

.

luacom.releaseConnection(obj)

ProgIDfromCLSID

Use

progID = luacom.ProgIDfromCLSID(clsid)

Description

This method is a proxy for the Win32 functionProgIDFromCLSID .

44

Parameters

Parameter Type

clsid string

Return Values

Return Item Possible Values

progID string
nil

Sample

progid = luacom.ProgIDfromCLSID("{8E27C92B-1264-101C-8A2F-040224009C02}")
obj = luacom.CreateObject(progid)

CLSIDfromProgID

Use

clsid = luacom.CLSIDfromProgID(progID)

Description

It’s the inverse ofProgIDfromCLSID .

ShowHelp

Use

luacom.ShowHelp(luacom_obj)

Description

This method tries to locate theluacom obj ’s help file in its type information and shows it.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

None.

45

Sample

obj = luacom.CreateObject("TEST.Test")

luacom.ShowHelp(obj)

GetIUnknown

Use

iunknown = luacom.GetIUnknown(luacom_obj)

Description

This method returns a userdata holding theIUnknown interface pointer to the COM object be-
hind luacom obj . It’s important to notice that Lua does not duplicates userdata: many calls to
GetIUnknown for the same LuaCOM object will return the same userdata. This means that the
reference count for theIUnknown interface will be incremented only once (that is, the first time the
userdata is pushed) and will be decremented only when all the references to that userdata go out of
scope (that is, when the userdata suffers garbage collection).

One possible use for this method is to check whether two LuaCOM objects reference the same
COM object.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

Return Item Possible Values

iunknown userdata with IUnknown
metatable
nil

Sample

-- Creates two LuaCOM objects for the same COM object
-- (a running instance of Microsoft Word(R))

word1 = luacom.GetObject("Word.Application")
word2 = luacom.GetObject("Word.Application")

-- These two userdata should be the same
unk1 = luacom.GetIUnknown(word1)
unk2 = luacom.GetIUnknown(word2)

46

assert(unk1 == unk2)

isMember

Use

answer = luacom.isMember(luacom_obj, member_name)

Description

This method returns true (that is, different fromnil) if there exists a method or a property of the
luacom obj namedmember name.

Parameters

Parameter Type

luacomobj LuaCOM object
membername string

Return Values

Return Item Possible Values

answer nil or non-nil

Sample

obj = luacom.CreateObject("MyObject.Test")

if luacom.isMember(obj, "Test") then
result = obj:Test()

end

47

Chapter 6

Credits

LuaCOM has been developed by Renato Cerqueira and Vinicius Almendra. The project has been
sponsored by TeCGraf (Technology Group on Computer Graphics).

48

	Introduction
	Features
	How to use
	Some information about samples

	LuaCOM Elements
	LuaCOM API
	LuaCOM objects
	ActiveX binding
	Implementing dispinterfaces in Lua
	Using Methods and Properties
	Connection Points
	Parameter Passing
	Exception Handling

	Type Conversion
	Boolean values
	Pointers to IDispatch and LuaCOM objects
	Pointers to IUnknown
	Arrays and Tables
	CURRENCY type
	DATE type
	Error Handling

	Implementing COM objects in Lua
	Introduction
	Is it really useful?
	Terminology
	Building a LuaCOM COM server
	Specify the component
	Objects to be exported
	Building the type library
	Registration Information
	Registering the Component Object
	Implementing and Exposing the Component
	Initialization and Termination

	Running the COM server
	Generating Events

	Release Information
	Limitations
	Known bugs
	Future Enhancements
	Visual Basic© issue
	History

	Reference
	The C/C++ API
	The Lua API

	Credits

