
Package ‘synbreed’
October 6, 2015

Type Package

Title Framework for the Analysis of Genomic Prediction Data using R

Version 0.11-22

Date 2015-10-06

Author Valentin Wimmer, Hans-Juergen Auinger, Theresa Albrecht, Chris-Carolin Schoen with con-
tributions by Larry Schaeffer, Malena Erbe, Ulrike Ober, Chris-
tian Reimer, Yvonne Badke and Peter VandeHaar

Depends R (>= 2.14)

Imports methods, doBy, igraph, lattice, MASS, LDheatmap, abind, BGLR,
regress (>= 1.3-8)

Suggests synbreedData (>= 1.5)

Maintainer Hans-Juergen Auinger <auinger@tum.de>

Description A collection of functions required for genomic prediction which were devel-
oped within the Synbreed project for synergistic plant and animal breed-
ing (www.synbreed.tum.de). This covers data processing, data visualization, and analy-
sis. All functions are embedded within the framework of a single, unified data object. The imple-
mentation is flexible with respect to a wide range of data formats in plant and animal breed-
ing. This research was funded by the German Federal Ministry of Education and Re-
search (BMBF) within the AgroClustEr Synbreed - Synergistic plant and animal breed-
ing (FKZ 0315528A).

URL http://synbreed.r-forge.r-project.org/

License GPL-3

LazyLoad yes

LazyData no

ZipData no

Repository CRAN

Repository/R-Forge/Project synbreed

Repository/R-Forge/Revision 579

Repository/R-Forge/DateTimeStamp 2015-10-06 09:19:26

Date/Publication 2015-10-06 14:04:27

NeedsCompilation no

1

http://synbreed.r-forge.r-project.org/

2 R topics documented:

R topics documented:

add.individuals . 3
add.markers . 4
codeGeno . 6
create.gpData . 10
create.pedigree . 13
crossVal . 14
discard.individuals . 18
discard.markers . 19
gpData2cross . 20
gpData2data.frame . 22
gpMod . 24
kin . 27
LDDist . 30
LDMap . 31
manhattanPlot . 33
MME . 34
pairwiseLD . 36
plot.LDdf . 38
plot.LDmat . 39
plot.pedigree . 40
plot.relationshipMatrix . 41
plotGenMap . 42
plotNeighbourLD . 44
predict.gpMod . 45
read.vcf2list . 47
read.vcf2matrix . 48
simul.pedigree . 49
simul.phenotype . 50
summary.cvData . 51
summary.gpData . 52
summary.gpMod . 53
summary.LDdf . 53
summary.pedigree . 54
summary.relationshipMatrix . 55
summaryGenMap . 56
write.beagle . 57
write.plink . 58
write.relationshipMatrix . 59
write.vcf . 60
[.GenMap . 61
[.relationshipMatrix . 62

Index 63

add.individuals 3

add.individuals Add new individuals to objects of class gpData

Description

This function extends an object of class gpData by adding new phenotypes, genotypes and pedigree.

Usage

add.individuals(gpData, pheno = NULL, geno = NULL,
pedigree = NULL, covar = NULL, repl=NULL)

Arguments

gpData object of class gpData to be updated

pheno data.frame with new rows for phenotypes with rownames indicating individu-
als. For repeated values the ID should be stored in a column with name "ID".

geno matrix with new rows for genotypic data with rownames indicating individuals

pedigree data.frame with new rows for pedigree data

covar data.frame with new rows for covar information with rownames indicating
individuals

repl The column of the pheno data.frame for the replicated measures. If the values
are not repeated or this column is named "repl" this argument is not needed.

Details

colnames in geno, pheno and pedigree must match existing names in gpData object.

Value

object of class gpData with new individuals

Author(s)

Valentin Wimmer

See Also

add.markers, discard.individuals

4 add.markers

Examples

set.seed(311)
pheno <- data.frame(Yield = rnorm(10,200,5),Height=rnorm(10,100,1))
rownames(pheno) <- letters[1:10]
geno <- matrix(sample(c("A","A/B","B",NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- letters[1:10]
colnames(geno) <- paste("M",1:12,sep="")
one SNP is not mapped (M5)
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
map <- map[-5,]
rownames(map) <- paste("M",c(1:4,6:12),sep="")
gp <- create.gpData(pheno=pheno,geno=geno,map=map)
summary(gp)

#new phenotypic data
newPheno <- data.frame(Yield=200,Height=100,row.names="newLine")
simulating genotypic data
newGeno <- matrix(sample(c("A","A/B","B"),ncol(gp$geno),replace=TRUE),nrow=1)
rownames(newGeno) <- "newLine"
new pedigree
newPedigree <- create.pedigree(ID="newLine",Par1=0,Par2=0,gener=0)

gp2 <- add.individuals(gp,pheno=newPheno,geno=newGeno,pedigree=newPedigree)

Not run:
add one new DH line to maize data
library(synbreedData)
data(maize)
newDHpheno <- data.frame(Trait=1000,row.names="newDH")
simulating genotypic data
newDHgeno <- matrix(sample(c(0,1),ncol(maize$geno),replace=TRUE),nrow=1)
rownames(newDHgeno) <- "newDH"
new pedigree
newDHpedigree <- create.pedigree(ID="newDH",Par1=0,Par2=0,gener=0)
new covar information
newDHcovar <- data.frame(family=NA,DH=1,tbv=1000,row.names="newDH")

add individual
maize2 <- add.individuals(maize,newDHpheno,newDHgeno,newDHpedigree,newDHcovar)
summary(maize2)

End(Not run)

add.markers Add new markers to an object of class gpData

add.markers 5

Description

This function adds new markers to the element geno of an object of class gpData and updates the
marker map.

Usage

add.markers(gpData, geno, map)

Arguments

gpData object of class gpData to be updated

geno matrix with new columns

map data.frame with columns ’chr’ and ’pos’ for new markers

Details

rownames in argument geno must match rownames in the element geno object of class gpData.

Value

object of class gpData with new markers

Author(s)

Valentin Wimmer

See Also

add.individuals, discard.markers

Examples

creating gpData object
phenotypic data
pheno <- data.frame(Yield = rnorm(10,100,5), Height = rnorm(10,10,1))
rownames(pheno) <- 1:10
genotypic data
geno <- matrix(sample(c(1,0,2,NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- 1:10
genetic map
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
colnames(geno) <- rownames(map) <- paste("M",1:12,sep="")
as gpData object
gp <- create.gpData(pheno,geno,map)

new data
geno2 <- matrix(c(0,0,1,1,1,2,2,1,1,2,1,2,0,2,1,1,1,2,2,2),ncol=2)
rownames(geno2) <- 1:10

6 codeGeno

map2 <- data.frame(pos=c(0.3,5),chr=c(1,2))
rownames(map2) <- colnames(geno2) <- c("M13","M14")

adding new markers
gp2 <- add.markers(gp,geno2,map2)
summary(gp2)
summary(gp)

codeGeno Recode genotypic data, imputation of missing values and preselection
of markers

Description

This function combines all algorithms for processing of marker data within synbreed package.
Raw marker data is a matrix with elements of arbitrary format (e.g. alleles coded as pair of ob-
served alleles "A/T","G/C", ... , or by genotypes "AA", "BB", "AB"). The function is limited to
biallelic markers with a maximum of 3 genotypes per locus. Raw data is recoded into the number
of copies of a reference allele, i.e. 0, 1 and 2. Imputation of missing values can be done by random
sampling from allele distribution, the Beagle software or family information (see details). Addi-
tional preselection of markers can be carried out according to the minor allele frequency and/or
fraction of missing values.

Usage

codeGeno(gpData,impute=FALSE,
impute.type=c("random","family","beagle","beagleAfterFamily","beagleNoRand",

"beagleAfterFamilyNoRand","fix"),
replace.value=NULL, maf=NULL, nmiss=NULL, label.heter="AB",

reference.allele="minor", keep.list=NULL, keep.identical=TRUE, verbose=FALSE,
minFam=5, showBeagleOutput=FALSE, tester=NULL, print.report=FALSE, check=FALSE)

Arguments

gpData object of class gpData with arbitrary coding in element geno. Missing values
have to be coded as NA.

impute logical. Should missing value be replaced by imputing?

impute.type character with one out of "fix", "random" , "family", "beagle", "beagleAfterFamily"
, "beagleAfterFamilyNoRand", "beagleAfterFamilyNoRand" (default = "random").
See details.

replace.value numeric scalar to replace missing values in case impute.type="fix".

maf numeric scalar. Threshold to discard markers due to the minor allele frequency
(MAF). Markers with a MAF < maf are discarded, thus maf in [0,0.5]. If map in
gpData is available, markers are also removed from map.

codeGeno 7

nmiss numeric scalar. Markers with more than nmiss fraction of missing values are
discarded, thus nmiss in [0,1]. If map in gpData is available, markers are also
removed from map.

label.heter This is either a scalar or vector of characters to identify heterozygous genotypes
or a function returning TRUE if an element of the marker matrix is the heterozy-
gous genotype. Defining a function is useful, if number of unique heterozygous
genotypes is large, i.e. if genotypes are coded by alleles. If the heterozygous
genotype is coded like "A/T","G/C", ..., "AG", "CG", ..., "T:C", "G:A", ... or
"G|T", "A|C", ... then label.heter="alleleCoding" can be used. Note that
heterozygous values must be identified unambiguously by label.heter. Use
label.heter=NULL if there are only homozygous genotypes, i.e. in DH lines,
to speed up computation and restrict imputation to values 0 and 2.

reference.allele

Define the reference allele which is used for the coding. Default is "minor",
i.e. data is coded by the number of copies of the minor allele. Alternatively,
reference.allele can specify a single character defining the reference allele
for all markers, or a vector defining marker-specific reference alleles (using the
same order as of the markers in gpData). In case you have already a gpObject
with info$codeGeno == TRUE, and like only to use higher maf or remove du-
plicated markers, you can use the option "keep", than the coding of the original
object is kept.

keep.list A vector with the names of markers, which should be kept during the process of
coding and filtering.

keep.identical logical. Should duplicated markers be kept? NOTE: From a set of identical
markers (with respect to the non-missing alleles) the one with the smallest num-
ber of missing values is kept. For those with an identical number of missing
values, the first one is kept and all others are removed.

verbose logical. If TRUE verbose output is generated during the steps of the algorithm.
This is useful to obtain numbers of discarded markers due to different criteria.

minFam For impute.type family and beagleAfterFamily, each family should have at
least minFam members with available information for a marker to impute missing
values according to the family. The default is 5.

showBeagleOutput

logical. Would you like to see the output of the Beagle software package? The
default is FALSE.

tester This option is in testing mode at the moment.

print.report logical. Should a file SNPreport.txt be generated containing further infor-
mation on SNPs. This includes SNP name, original coding of major and minor
allele, MAF and number of imputed values.

check This option has as default FALSE. If something seems to be wrong with the cod-
ing, with the option check=TRUE the function tries to catch the error.

Details

Coding of genotypic data is done in the following order (depending on choice of arguments; not all
steps are performed):

8 codeGeno

1. Discarding markers with fraction > nmiss of missing values

2. Recoding alleles from character/factor/numeric into the number of copies of the minor alleles,
i.e. 0, 1 and 2. In codeGeno, in the first step heterozygous genotypes are coded as 1. From the
other genotypes, the less frequent genotype is coded as 2 and the remaining genotype as 0. Note
that function codeGeno will terminate with an error whenever more than three genotypes are found.

2.1 Discarding duplicated markers if keep.identical=FALSE before starting of the imputing step.
From identical marker based on pairwise complete oberservations one is discarded randomly. For
getting identical results use the function set.seed() before code.geno().

3. Replace missing values by replace.value or impute missing values according to one of the
following methods:

Imputing is done according to impute.type

"family" This option is only suitable for homozygous individuals (such as doubled-haploid lines)
structured in families. Suppose an observation i is missing (NA) for a marker j in family
k. If marker j is fixed in family k, the imputed value will be the fixed allele. If marker j is
segregating for the population k, the value is 0 with probability of 0.5 and 2 with probability
of 0.5. To use this algorithm, family information has to be stored as variable family in list
element covar of an object of class gpData. This column should contain a character or
numeric to identify family of all genotyped individuals.

"beagle" Use Beagle Genetic Analysis Software Package version 4.0 (r1399) (Browning and Brown-
ing 2007; 2013) to infer missing genotypes is used. This software is a java program, so that
you have to install java (>=1.7) and make it available at your computer. If you use the beagle
option, please cite the original papers in publications. Beagle uses a HMM to reconstruct miss-
ing genotypes by the flanking markers. Function codeGeno will create a directory beagle for
Beagle input and output files (if it does not exist) and run Beagle with default settings. The
information on marker position is taken from element map. Indeed, the postion in map$pos
must be available for all markers. The program can only handle the position units "bp", "kb"
and "Mb". Make sure that there are than only integer numbers for the unit "bp", because bea-
gle can only work with integer numbers. By default, three genotypes 0, 1, 2 are imputed. To
restrict the imputation only to homozygous genotypes, use label.heter=NULL.

"beagleAfterFamily" In the first step, missing genotypes are imputed according to the algo-
rithm with impute.type="family", but only for markers that are fixed within the family.
Moreover, markers with a missing position (map$pos=NA) are imputed using the algorithm of
impute.type="family". In the second step, the remaining genotypes are imputed by Beagle.
For details of this see the description of the beagle option.

"beagleNoRand" and "beagleAfterFamilyNoRand" The same as the option beagle, respec-
tively beagleAfterFamily, except that markers without map information will be not imputed.

"random" The missing values for a marker j are sampled from the marginal allele distribution of
marker j. With 2 possible genotypes (to force this option, use label.heter=NULL), i.e. 0 and
2, values are sampled from distribution with probabilities P (x = 0) = 1− p and P (x = 2) =
p, where p is the minor allele frequency of marker j. In the standardd case of 3 genotypes,
i.e. with heterozygous genotypes, values are sampled from distribution P (x = 0) = (1− p)2,
P (x = 1) = p(1− p) and P (x = 2) = p2 assuming Hardy-Weinberg equilibrium for all loci.

"fix" All missing values are imputed by replace.value. Note that only 0, 1 or 2 should be chosen.

4. Recoding of alleles after imputation, if necessary due to changes in allele frequencies caused by
the imputed alleles

codeGeno 9

5. Discarding markers with a minor allele frequency of <= maf

6. Discarding duplicated markers if keep.identical=FALSE. From identical marker based on pair-
wise complete oberservations one is discarded randomly. For getting identical results use the func-
tion set.seed() before code.geno().

7. Restoring original data format (gpData, matrix or data.frame)

Information about imputing is reported after a call of codeGeno.

Note: Beagle is included in the synbreed package. Once required, Beagle is called using path.package().

Value

An object of class gpData containing the recoded marker matrix. If maf or nmiss were specified
or keep.identical=FALSE, dimension of geno and map may be reduced due to selection of mark-
ers. The genotype which is homozygous for the minor allele is coded as 2, the other homozygous
genotype is coded as 0 and heterozygous genotype is coded as 1.

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

References

S R Browning and B L Browning (2007) Rapid and accurate haplotype phasing and missing data
inference for whole genome association studies using localized haplotype clustering. Am J Hum
Genet 81:1084-1097

B L Browning and S R Browning (2013) Improving the accuracy and efficiency of identity by
descent detection in population data. Genetics 194(2):459-471

Examples

create marker data for 9 SNPs and 10 homozygous individuals
snp9 <- matrix(c(

"AA", "AA", "AA", "BB", "AA", "AA", "AA", "AA", NA,
"AA", "AA", "BB", "BB", "AA", "AA", "BB", "AA", NA,
"AA", "AA", "AB", "BB", "AB", "AA", "AA", "BB", NA,
"AA", "AA", "BB", "BB", "AA", "AA", "AA", "AA", NA,
"AA", "AA", "BB", "AB", "AA", "BB", "BB", "BB", "AB",
"AA", "AA", "BB", "BB", "AA", NA, "BB", "AA", NA,
"AB", "AA", "BB", "BB", "BB", "AA", "BB", "BB", NA,
"AA", "AA", NA, "BB", NA, "AA", "AA", "AA", "AA",
"AA", NA, NA, "BB", "BB", "BB", "BB", "BB", "AA",
"AA", NA, "AA", "BB", "BB", "BB", "AA", "AA", NA),
ncol=9,byrow=TRUE)

set names for markers and individuals
colnames(snp9) <- paste("SNP",1:9,sep="")
rownames(snp9) <- paste("ID",1:10+100,sep="")

create object of class 'gpData'
gp <- create.gpData(geno=snp9)

10 create.gpData

code genotypic data
gp.coded <- codeGeno(gp,impute=TRUE,impute.type="random")

comparison
gp.coded$geno
gp$geno

example with heterogeneous stock mice
Not run:
library(synbreedData)
data(mice)
summary(mice)
heterozygous values must be labeled (may run some seconds)
mice.coded <- codeGeno(mice,label.heter=function(x) substr(x,1,1)!=substr(x,3,3))

example with maize data and imputing by family
data(maize)
first only recode alleles
maize.coded <- codeGeno(maize,label.heter=NULL)

set 200 random chosen values to NA
set.seed(123)
ind1 <- sample(1:nrow(maize.coded $geno),200)
ind2 <- sample(1:ncol(maize.coded $geno),200)
original <- maize.coded$geno[cbind(ind1,ind2)]

maize.coded$geno[cbind(ind1,ind2)] <- NA
imputing of missing values by family structure
maize.imputed <- codeGeno(maize.coded,impute=TRUE,impute.type="family",label.heter=NULL)

compare in a cross table
imputed <- maize.imputed$geno[cbind(ind1,ind2)]
(t1 <- table(original,imputed))
sum of correct replacements
sum(diag(t1))/sum(t1)

compare with random imputation
maize.random <- codeGeno(maize.coded,impute=TRUE,impute.type="random",label.heter=NULL)
imputed2 <- maize.random$geno[cbind(ind1,ind2)]
(t2 <- table(original,imputed2))
sum of correct replacements
sum(diag(t2))/sum(t2)

End(Not run)

create.gpData Create genomic prediction data object

create.gpData 11

Description

This function combines all raw data sources in a single, unified data object of class gpData. This is
a list with elements for phenotypic, genotypic, marker map, pedigree and further covariate data.
All elements are optional.

Usage

create.gpData(pheno = NULL, geno = NULL, map = NULL, pedigree = NULL,
family = NULL, covar = NULL, reorderMap = TRUE,
map.unit = "cM", repeated = NULL, modCovar = NULL)

Arguments

pheno data.frame with individuals organized in rows and traits organized in columns.
For unrepeated measures unique rownames should identify individuals. For re-
peated measures, the first column identifies individuals and a second column
indicates repetitions (see also argument repeated).

geno matrix with individuals organized in rows and markers organized in columns.
Genotypes could be coded arbitrarily. Missing values should be coded as NA.
Colums or rows with only missing values not allowed. Unique rownames iden-
tify individuals and unique colnames markers. If no rownames are available,
they are taken from element pheno (if available and if dimension matches). If
no colnames are used, the rownames of map are used if dimension matches.

map data.frame with one row for each marker and two columns (named chr and
pos). First columns gives the chromosome (numeric or character but not
factor) and second column the position on the chromosome in centimorgan or
the physical distance relative to the reference sequence in basepairs. Unique
rownames indicate the marker names which should match with marker names
in geno. Note that order and number of markers must not be identical with the
order in geno. If this is the case, gaps in the map are filled with NA to ensure the
same number and order as in element geno of the resulting gpData object.

pedigree Object of class pedigree.
family data.frame assigning individuals to families with names of individuals in rownames

This information could be used for replacing of missing values with function
codeGeno.

covar data.frame with further covariates for all individuals that either appear in pheno,
geno or pedigree$ID, e.g. sex or age. rownames must be specified to identify
individuals. Typically this element is not specified by the user.

reorderMap logical. Should markers in geno and map be reordered by chromosome number
and position within chromosome according to map (default = TRUE)?

map.unit Character. Unit of position in map, i.e. ’cM’ for genetic distance or ’bp’ for
physical distance (default = ’cM’).

repeated This column is used to identify the replications of the phenotypic values. The
unique values become the names of the third dimension of the pheno object in
the gpData. This argument is only required for repeated measurements.

modCovar vector with colnames which identify columns with covariables in pheno. This
argument is only required for repeated measurements.

12 create.gpData

Details

The class gpData is designed to provide a unified framework for data related to genomic prediction
analysis. Every data source can be omitted. In this case, the corresponding argument must be
NULL. By default (argument reorderMap), markers in geno are ordered by their position in map.
Individuals are ordered in alphabetical order.

An object of class gpData can contain different subsets of individuals or markers in the elements
pheno, geno and pedigree. In this case the id in covar comprises all individuals that either
appear in pheno, geno and pedigree. Two additional columns in covar named phenotyped and
genotyped are automatically generated to identify individuals that appear in the corresponding
gpData object.

Value

Object of class gpData which is a list with the following elements

covar data.frame with information on individuals

pheno array (individuals x traits x replications) with phenotypic data

geno matrix marker matrix containing genotypic data. Columns (marker) are in the
same order as in map (if reorderMap=TRUE.)

pedigree object of class pedigree

map data.frame with columns ’chr’ and ’pos’ and markers sorted by ’pos’ within
’chr’

phenoCovars array with phenotypic covariates

info list with additional information on data (coding of data, unit in map) From
synbreed version 0.11-11 on the function codeGeno adds here the package ver-
sion which was used to do the coding. There are differences in codings between
version 0.10-11 and 0.11-0!

Note

In case of missing row names or column names in one item, information is substituted from other el-
ements (assuming the same order of individuals/markers) and a warning specifying the assumptions
is returned. Please check them carefully.

Author(s)

Valentin Wimmer and Hans-Juergen Auinger with contributions be Peter VandeHaar

See Also

codeGeno, summary.gpData, gpData2data.frame

Examples

set.seed(123)
9 plants with 2 traits
n <- 9 # only for n > 6

create.pedigree 13

pheno <- data.frame(Yield = rnorm(n,200,5), Height=rnorm(n,100,1))
rownames(pheno) <- letters[1:n]

marker matrix
geno <- matrix(sample(c("AA","AB","BB",NA),size=n*12,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=n)
rownames(geno) <- letters[n:1]
colnames(geno) <- paste("M",1:12,sep="")

genetic map
one SNP is not mapped (M5) and will therefore be removed
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
map <- map[-5,]
rownames(map) <- paste("M",c(1:4,6:12),sep="")

simulate pedigree
ped <- simul.pedigree(3,c(3,3,n-6))

combine in one object
gp <- create.gpData(pheno,geno,map,ped)
summary(gp)

9 plants with 2 traits , 3 replcations
n <- 9 #
pheno <- data.frame(ID = rep(letters[1:n],3), rep = rep(1:3,each=n),

Yield = rnorm(3*n,200,5), Height=rnorm(3*n,100,1))

combine in one object
gp2 <- create.gpData(pheno,geno,map,repeated="rep")
summary(gp2)

create.pedigree Create pedigree object

Description

This function can be used to create a pedigree object.

Usage

create.pedigree(ID, Par1, Par2, gener=NULL,sex=NULL,add.ancestors=FALSE)

Arguments

ID vector of unique IDs identifying individuals

Par1 vector of IDs identifying parent 1 (with animals: sire)

Par2 vector of IDs identifying parent 2 (with animals: dam)

14 crossVal

gener vector identifying the generation. If NULL gener will be 0 for unknown parents
and max(gener(Par1),gener(Par2))+1 for generations 1,... .

sex vector identifying the sex (female=0 and male=1).

add.ancestors logical. Add ancestors which do not occur in ID to the pedigree.

Details

Missing values for parents in the pedigree should be coded with 0 for numeric ID or NA for character
ID.

Value

An object of class pedigree. Column gener starts from 0 and pedigree is sorted by generation.

Author(s)

Valentin Wimmer

See Also

plot.pedigree

Examples

example with 9 individuals
id <- 1:9
par1 <- c(0,0,0,0,1,1,1,4,7)
par2 <- c(0,0,0,0,2,3,2,5,8)
gener <- c(0,0,0,0,1,1,1,2,3)

create pedigree object (using argument gener)
ped <- create.pedigree(id,par1,par2,gener)
ped
plot(ped)

create pedigree object (without using argument gener)
ped2 <- create.pedigree(id,par1,par2)
ped2

crossVal Cross validation of different prediction models

Description

Function for the application of the cross validation procedure on prediction models with fixed and
random effects. Covariance matrices must be committed to the function and variance components
can be committed or reestimated with ASReml or the BLR function.

crossVal 15

Usage

crossVal(gpData, trait=1, cov.matrix = NULL, k = 2, Rep = 1, Seed = NULL,
sampling = c("random", "within popStruc", "across popStruc","commit"),
TS=NULL,ES=NULL, varComp = NULL, popStruc = NULL, VC.est = c("commit",
"ASReml","BRR","BL"),verbose=FALSE,...)

Arguments

gpData Object of class gpData

trait numeric or character. The name or number of the trait in the gpData object
to be used as trait.

cov.matrix list including covariance matrices for the random effects. Size and order of
rows and columns should be equal to rownames of y. If no covariance is given,
an identity matrix and marker genotypes are used for a marker regression. In
general, a covariance matrix should be non-singular and positive definite to be
invertible, if this is not the case, a constant of 1e-5 is added to the diagonal
elements of the covariance matrix.

k numeric. Number of folds for k-fold cross validation, thus k should be in
[2,nrow(y)] (default=2).

Rep numeric. Number of replications (default = 1).

Seed numeric. Number for set.seed() to make results reproducable.

sampling Different sampling strategies can be "random", "within popStruc" or "across popStruc".
If sampling is "commit" test sets have to specified in TS (see Details).

TS A (optional) list of vectors with IDs for the test set in each fold within a list of
replications, same layout as output for id.TS .

ES A (optional) list of IDs for the estimation set in each fold within each replication.

varComp A vector of variance components for the random effects, which has to be spec-
ified if VC.est="commit". The first variance components should be the same
order as the given covariance matrices, the last given variance component is for
the residuals.

popStruc Vector of length nrow(y) assigning individuals to a population structure. If no
popStruc is defined, family information of gpData is used. Only required for
options sampling="within popStruc" or sampling="across popStruc"

VC.est Should variance components be reestimated with "ASReml" or with Bayesian
Ridge Regression "BRR" or Bayesian Lasso "BL" of the BLR package within the
estimation set of each fold in the cross validation? If VC.est="commit", the
variance components have to be defined in varComp. For ASReml, ASReml soft-
ware has to be installed on the system.

verbose Logical. Whether output shows replications and folds.

... further arguments to be used by the genomic prediction models, i.e. prior values
and MCMC options for the BLR function (see BLR).

16 crossVal

Details

In cross validation the data set is splitted into an estimation (ES) and a test set (TS). The effects
are estimated with the ES and used to predict observations in the TS. For sampling into ES and TS,
k-fold cross validation is applied, where the data set is splitted into k subsets and k-1 comprising
the ES and 1 is the TS, repeated for each subset.

To account for the family structure (Albrecht et al. 2011), sampling can be defined as:

random Does not account for family structure, random sampling within the complete data set

within popStruc Accounts for within population structure information, e.g. each family is splitted
into k subsets

across popStruc Accounts for across population structure information, e.g. ES and TS contains a
set of complete families

The following mixed model equation is used for VC.est="commit":

y = Xb+ Zu+ e

with
u ∼ N(0,Gσ2

u)

gives the mixed model equations(
X′X X′Z

Z′X Z′Z+G−1
σ2
e

σ2
u

)(
b
u

)
=

(
X′y
Z′y

)

Value

An object of class list with following items:

bu Estimated fixed and random effects of each fold within each replication.

n.DS Size of the data set (ES+TS) in each fold.

y.TS Predicted values of all test sets within each replication.

n.TS Size of the test set in each fold.

id.TS List of IDs of each test sets within a list of each replication.

PredAbi Predictive ability of each fold within each replication calculated as correlation
coefficient r(yTS , ŷTS).

rankCor Spearman’s rank correlation of each fold within each replication calculated be-
tween yTS and ŷTS .

mse Mean squared error of each fold within each replication calculated between yTS
and ŷTS .

bias Regression coefficients of a regression of the observed values on the predicted
values in the TS. A regression coefficient < 1 implies inflation of predicted
values, and a coefficient of > 1 deflation of predicted values.

m10 Mean of observed values for the 10% best predicted of each replication. The k
test sets are pooled within each replication.

crossVal 17

k Number of folds

Rep Replications

sampling Sampling method

Seed Seed for set.seed()

rep.seed Calculated seeds for each replication

nr.ranEff Number of random effects

VC.est.method Method for the variance components (committed or reestimated with ASReml/BRR/BL)

Author(s)

Theresa Albrecht

References

Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schoen CC
(2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339-350

Mosier CI (1951) I. Problems and design of cross-validation 1. Educ Psychol Measurement 11:5-11

Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, et al. (2010) Prediction of genetic val-
ues of quantitative traits in plant breeding using pedigree and molecular markers, Genetics 186:713-
724

Gustavo de los Campos and Paulino Perez Rodriguez, (2010). BLR: Bayesian Linear Regression.
R package version 1.2. http://CRAN.R-project.org/package=BLR

See Also

summary.cvData

Examples

loading the maize data set
Not run:
library(synbreedData)
data(maize)
maize2 <- codeGeno(maize)
U <- kin(maize2,ret="realized")
cross validation
cv.maize <- crossVal(maize2,cov.matrix=list(U),k=5,Rep=1,

Seed=123,sampling="random",varComp=c(26.5282,48.5785),VC.est="commit")
cv.maize2 <- crossVal(maize2,k=5,Rep=1,

Seed=123,sampling="random",varComp=c(0.0704447,48.5785),VC.est="commit")
comparing results, both are equal!
cv.maize$PredAbi
cv.maize2$PredAbi
summary(cv.maize)
summary(cv.maize2)

End(Not run)

18 discard.individuals

discard.individuals Subsets for objects of class gpData

Description

The function produce subsets from an object of class gpData with reduced individuals. Individual
information will be discarded from elements geno, pheno, covar and pedigree.

Usage

discard.individuals(gpData, which, keepPedigree = FALSE)

Arguments

gpData object of class gpData

which character vector either identifying names of individuals get discarded from a
gpData-object.

keepPedigree logical. Should the individual only be removed from elements geno and pheno
but kept in the pedigree?

Value

Object of class gpData

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

See Also

create.gpData, add.individuals, add.markers, discard.markers

Examples

example data
set.seed(311)
pheno <- data.frame(Yield = rnorm(10,200,5),Height=rnorm(10,100,1))
rownames(pheno) <- letters[1:10]
geno <- matrix(sample(c("A","A/B","B",NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- letters[1:10]
colnames(geno) <- paste("M",1:12,sep="")
one SNP is not mapped (M5)
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
map <- map[-5,]
rownames(map) <- paste("M",c(1:4,6:12),sep="")
gp <- create.gpData(pheno=pheno,geno=geno,map=map)

discard.markers 19

summary(gp)

discard genotypes with missing values in the marker matrix
gp3 <- discard.individuals(gp,names(which(rowSums(is.na(gp$geno))>0)))
summary(gp3)

Not run:
add one new DH line to maize data
library(synbreedData)
data(maize)

delete individual
maize2 <- discard.individuals(maize,rownames(maize$geno)[1:10])
summary(maize2)

End(Not run)

discard.markers Subsets for objects of class gpData

Description

The function produces subsets from an object of class gpData with reduced markers. Marker infor-
martion will be discarded from elements geno and map

Usage

discard.markers(gpData, which)

Arguments

gpData object of class gpData

which character vector identifying names of markers which get discarded in geno from
a gpData-object.

Value

Object of class gpData

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

See Also

create.gpData, add.markers, add.individuals, discard.individuals

20 gpData2cross

Examples

example data
set.seed(311)
pheno <- data.frame(Yield = rnorm(10,200,5),Height=rnorm(10,100,1))
rownames(pheno) <- letters[1:10]
geno <- matrix(sample(c("A","A/B","B",NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- letters[1:10]
colnames(geno) <- paste("M",1:12,sep="")
one SNP is not mapped (M5)
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
map <- map[-5,]
rownames(map) <- paste("M",c(1:4,6:12),sep="")
gp <- create.gpData(pheno=pheno,geno=geno,map=map)
summary(gp)

remove unmapped SNP M5 (which has no postion in the map)
gp2 <- discard.markers(gp,"M5")
summary(gp2)

Not run:
add one new DH line to maize data
library(synbreedData)
data(maize)

delete markers
maize2 <- discard.individuals(maize,colnames(maize$geno)[1:50])
summary(maize2)

End(Not run)

gpData2cross Conversion between objects of class ’cross’ and ’gpData’

Description

Function to convert an object of class gpData to an object of class cross (F2 intercross class in
the package qtl) and vice versa. If not done before, function codeGeno is used for recoding in
gpData2cross.

Usage

gpData2cross(gpData,...)
cross2gpData(cross)

gpData2cross 21

Arguments

gpData object of class gpData with non-empty elements for pheno, geno and map

cross object of class cross

... further arguments for function codeGeno. Only used in gpData2cross.

Details

In cross, genotypic data is splitted into chromosomes while in gpData genotypic data comprises all
chromosomes because separation into chromosomes in not required for genomic prediction. Note
that coding of genotypic data differs between classes. In gpData, genotypic data is coded as the
number of copies of the minor allele, i.e. 0, 1 and 2. Thus, function codeGeno should be applied to
gpData before using gpData2cross to ensure correct coding. In cross, coding for F2 intercross is:
AA = 1, AB = 2, BB = 3. When using gpData2cross or cross2gpData, resulting genotypic data
has correct format.

Value

Object of class cross of gpData for function gpData2cross and cross2gpData, respectively.

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

References

Broman, K. W. and Churchill, S. S. (2003). R/qtl: Qtl mapping in experimental crosses. Bioinfor-
matics, (19):889-890.

See Also

create.gpData, read.cross , codeGeno

Examples

Not run:
library(synbreedData)
from gpData to cross
data(maize)
maizeC <- codeGeno(maize)
maize.cross <- gpData2cross(maizeC)
descriptive statistics
summary(maize.cross)
plot(maize.cross)

use function scanone
maize.cross <- calc.genoprob(maize.cross, step=2.5)
result <- scanone(maize.cross, pheno.col=1, method="em")
display of LOD curve along the chromosome
plot(result)

22 gpData2data.frame

from cross to gpData
data(fake.f2)
fake.f2.gpData <- cross2gpData(fake.f2)
summary(fake.f2.gpData)

End(Not run)

gpData2data.frame Merge of phenotypic and genotypic data

Description

Create a data.frame out of phenotypic and genotypic data in object of class gpData by merging
datasets using the common id. The shared data set could either include individuals with phenotypes
and genotypes (default) or additional unphenotyped or ungenotyped individuals. In the latter cases,
the missing observations are filled by NA’s.

Usage

gpData2data.frame(gpData,trait=1,onlyPheno=FALSE,all.pheno=FALSE,
all.geno=FALSE,repl=NULL,phenoCovars=TRUE,...)

Arguments

gpData object of class gpData

trait numeric or character. A vector with the names or numbers of the trait that
should be extracted from pheno. Default is 1.

onlyPheno scalar logical. Only return phenotypic data.

all.pheno scalar logical. Include all individuals with phenotypes in the data.frame and
fill the genotypic data with NA.

all.geno scalar logical. Include all individuals with genotypes in the data.frame and
fill the phenotypic data with NA.

repl character or numeric. A vector which contains names or numbers of replica-
tion that should be drawn from the phenotypic values and covariates. Default is
NULL, i.e. all values are used.

phenoCovars logical. If TRUE, columns with the phenotypic covariables are attached from
element phenoCovars to the data.frame. Only required for repeated measure-
ments.

... further arguments to be used in function reshape. The argument times could
be useful to rename the levels of the grouping variable (such as locations or
environments).

gpData2data.frame 23

Details

Argument all.geno can be used to predict the genetic value of individuals without phenotypic
records using the BLR package. Here, the genetic value of individuals with NA as phenotype is
predicted by the marker profile.

For multiple measures, phenotypic data in object gpData is arranged with replicates in an array.
With gpData2data.frame this could be reshaped to "long" format with multiple observations in
one column. In this case, one column for the phenotype and 2 additional columns for the id and the
levels of the grouping variable (such as replications, years of locations in multi-environment trials)
are added.

Value

A data.frame with the individuals names in the first column, the phenotypes in the next column(s)
and the marker genotypes in subsequent columns.

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

See Also

create.gpData, reshape

Examples

example data with unrepeated observations
set.seed(311)

simulating genotypic and phenotypic data
pheno <- data.frame(Yield = rnorm(12,100,5),Height=rnorm(12,100,1))
rownames(pheno) <- letters[4:15]
geno <- matrix(sample(c("A","A/B","B",NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- letters[1:10]
colnames(geno) <- paste("M",1:12,sep="")
different subset of individuals in pheno and geno

create 'gpData' object
gp <- create.gpData(pheno=pheno,geno=geno)
summary(gp)
gp$covar

as data.frame with individuals with genotypes and phenotypes
gpData2data.frame(gp,trait=1:2)
as data.frame with all individuals with phenotypes
gpData2data.frame(gp,1:2,all.pheno=TRUE)
as data.frame with all individuals with genotypes
gpData2data.frame(gp,1:2,all.geno=TRUE)

example with repeated observations
set.seed(311)

24 gpMod

simulating genotypic and phenotypic data
pheno <- data.frame(ID = letters[1:10], Trait = c(rnorm(10,1,2),rnorm(10,2,0.2),

rbeta(10,2,4)), repl = rep(1:3, each=10))
geno <- matrix(rep(c(1,0,2),10),nrow=10)
colnames(geno) <- c("M1","M2","M3")
rownames(geno) <- letters[1:10]

create 'gpData' object
gp <- create.gpData(pheno=pheno,geno=geno, repeated="repl")

reshape of phenotypic data and merge of genotypic data,
levels of grouping variable loc are named "a", "b" and "c"
gpData2data.frame(gp,onlyPheno=FALSE,times=letters[1:3])

gpMod Genomic predictions models for objects of class gpData

Description

This function fits genomic prediction models based on phenotypic and genotypic data in an ob-
ject of class gpData. The possible models are Best Linear Unbiased Prediction (BLUP) using a
pedigree-based or a marker-based genetic relationship matrix and Bayesian Lasso (BL) or Bayesian
Ridge regression (BRR). BLUP models are fitted using the REML implementation of the regress
package (Clifford and McCullagh, 2012). The Bayesian regression models are fitted using the
Gibbs-Sampler of the BLR package (de los Campos and Perez, 2010). The covariance structure
in the BLUP model is defined by an object of class relationshipMatrix. The training set for
the model fit consists of all individuals with phenotypes and genotypes. All data is restricted to
individuals from the training set used to fit the model.

Usage

gpMod(gpData, model=c("BLUP","BL","BRR"), kin=NULL, predict=FALSE, trait=1,
repl=NULL, markerEffects=FALSE, fixed=NULL, random=NULL, ...)

Arguments

gpData object of class gpData
model character. Type of genomic prediction model. "BLUP" indicates best linear

unbiased prediction (BLUP) using REML for both pedigree-based (P-BLUP)
and marker-based (G-BLUP) model. "BL" and "BRR" indicate Bayesian Lasso
and Bayesian Ridge Regression, respectively.

kin object of class relationshipMatrix (only required for model = "BLUP"). Use
a pedigree-based kinship to evaluate P-BLUP or a marker-based kinship to eval-
uate G-BLUP. For "BL" and "BRR", also a kinship structure may be used as
additional polygenic effect u in the Bayesian regression models (see BLR pack-
age).

gpMod 25

predict logical. If TRUE, genetic values will be predicted for genotyped but not phe-
notyped individuals. Default is FALSE. Note that this option is only meaning-
ful for marker-based models. For pedigree-based model, please use function
predict.gpMod.

trait numeric or character. A vector with names or numbers of the traits to fit the
model

repl numeric or character. A vector with names or numbers of the repeated values
of gpData$pheno to fit the model

markerEffects logical. Should marker effects be estimated for a G-BLUP model, i.e. RR-
BLUP? In this case, argument kin is ignored (see Details). Plose note, that
in this case also the variance components pertaining to model G-BLUP are re-
ported instead of those from the G-BLUP model (see vignette). If the variance
components are committed to crossVal, it must be guaranteed that there also
the RR-BLUP model is used, e.g. no cov.matrix object should be specified.

fixed A formula for fixed effects. The details of model specification are the same as
for lm (only right hand side required). Only for model="BLUP".

random A formula for random effects of the model. Specifies the matrices to include
in the covariance structure. Each term is either a symmetric matrix, or a factor.
Independent Gaussian random effects are included by passing the corresponding
block factor. For mor details see regress. Only for model="BLUP"

... further arguments to be used by the genomic prediction models, i.e. prior values
and MCMC options for the BLR function (see BLR) or parameters for the REML
algorithm in regress.

Details

By default, an overall mean is added to the model. If no kin is specified and model = "BLUP", a
G-BLUP model will be fitted. For BLUP, further fixed and random effects can be added through
the arguments fixed and random.

The marker effects m̂ in the RR-BLUP model (available with markerEffects) are calculated as

m̂ = X ′G−1ĝ

with X being the marker matrix, G = XX ′ and hatg the vector of predicted genetic values.

Only a subset of the individuals - the training set - is used to fit the model. This contains all
individuals with phenotypes and genotypes. If kin does not match the dimension of the training set
(if, e.g. ancestors are included), the respective rows and columns from the trainings set are choosen.

Value

Object of class gpMod which is a list of

fit The model fit returned by the genomic prediction method
model The model type, see ’Arguments’
y The phenotypic records for the individuals in the training set
g The predicted genetic values for the individuals in the training set
m Predicted SNP effects (if available)
kin Matrix kin

26 gpMod

Note

The verbose output of the BLR function is written to a file BLRout.txt in the working directory to
prevent the screen output from overload.

Author(s)

Valentin Wimmer, Hans-Juergen Auinger and Theresa Albrecht

References

Clifford D, McCullagh P (2012). regress: Gaussian Linear Models with Linear Covariance Struc-
ture. R package version 1.3-8, URL http://www.csiro.au.

Gustavo de los Campos and Paulino Perez Rodriguez, (2010). BLR: Bayesian Linear Regression.
R package version 1.2. http://CRAN.R-project.org/package=BLR

See Also

kin, crossVal

Examples

Not run:
library(synbreedData)
data(maize)
maizeC <- codeGeno(maize)

pedigree-based (expected) kinship matrix
K <- kin(maizeC,ret="kin",DH=maize$covar$DH)

marker-based (realized) relationship matrix
divide by an additional factor 2
because for testcross prediction the kinship of DH lines is used
U <- kin(maizeC,ret="realized")/2
BLUP models
P-BLUP
mod1 <- gpMod(maizeC,model="BLUP",kin=K)
G-BLUP
mod2 <- gpMod(maizeC,model="BLUP",kin=U)

Bayesian Lasso
prior <- list(varE=list(df=3,S=35),lambda = list(shape=0.52,rate=1e-4,value=20,type='random'))
mod3 <- gpMod(maizeC,model="BL",prior=prior,nIter=6000,burnIn=1000,thin=5)

summary(mod1)
summary(mod2)
summary(mod3)
End(Not run)

kin 27

kin Relatedness based on pedigree or marker data

Description

This function implements different measures of relatedness between individuals in an object of class
gpData: (1) Expected relatedness based on pedigree and (2) realized relatedness based on marker
data. See ’Details’. The function uses as first argument an object of class gpData. An argument
ret controls the type of relatedness coefficient.

Usage

kin(gpData, ret=c("add","kin","dom","gam","realized","realizedAB",
"sm","sm-smin","gaussian"),

DH=NULL, maf=NULL, selfing=NULL, lambda=1)

Arguments

gpData object of class gpData

ret character. The type of relationship matrix to be returned. See ’Details’.

DH logical vector of length n. TRUE or 1 if individual is a doubled-haploid (DH)
line and FALSE or 0 otherwise. This option is only used, if ret argument is
"add" or "kin".

maf numeric vector of length equal the number of markers. Supply values for the pi
of each marker, which were used to correct the allele counts in ret="realized"
and ret="realizedAB". If not specified, pi equals the minor allele frequency
of each locus.

selfing numeric vector of length n. It is used as the number of selfings of an recombi-
nant inbred line individual. This option is only used, if ret argument is "add"
or "kin".

lambda numeric bandwidth parameter for the gaussian kernel. Only used for calculating
the gaussian kernel.

Details

Pedigree based relatedness (return arguments "add", "kin", "dom", and "gam")

Function kin provides different types of measures for pedigree based relatedness. An element
pedigree must be available in the object of class gpData. In all cases, the first step is to build
the gametic relationship. The gametic relationship is of order 2n as each individual has two alleles
(e.g. individual A has alleles A1 and A2). The gametic relationship is defined as the matrix of
probabilities that two alleles are identical by descent (IBD). Note that the diagonal elements of
the gametic relationship matrix are 1. The off-diagonals of individuals with unknown or unrelated
parents in the pedigree are 0. If ret="gam" is specified, the gametic relationship matrix constructed
by pedigree is returned.

28 kin

The gametic relationship matrix can be used to construct other types of relationship matrices. If
ret="add", the additive numerator relationship matrix is returned. The additive relationship of
individuals A (alleles A1, A2) and B (alleles B1, B2) is given by the entries of the gametic rela-
tionship matrix

0.5 · [(A1, B1) + (A1, B2) + (A2, B1) + (A2, B2)] ,

where (A1, B1) denotes the element [A1,B1] in the gametic relationship matrix. If ret="kin", the
kinship matrix is returned which is half of the additive relationship matrix.

If ret="dom", the dominance relationship matrix is returned. The dominance relationship matrix
between individuals A (A1, A2) and B (B1, B2) in case of no inbreeding is given by

[(A1, B1) · (A2, B2) + (A1, B2) · (A2, B1)] ,

where (A1, C1) denotes the element [A1,C1] in the gametic relationship matrix.

Marker based relatedness (return arguments "realized","realizedAB", "sm", and "sm-smin")

Function kin provides different types of measures for marker based relatedness. An element geno
must be available in the object of class gpData. Furthermore, genotypes must be coded by the
number of copies of the minor allele, i.e. function codeGeno must be applied in advance.

If ret="realized", the realized relatedness between individuals is computed according to the for-
mulas in Habier et al. (2007) or vanRaden (2008)

U =
ZZ ′

2
∑
pi(1− pi)

where Z = W − P , W is the marker matrix, P contains the allele frequencies multiplied by 2, pi
is the allele frequency of marker i, and the sum is over all loci.

If ret="realizedAB", the realized relatedness between individuals is computed according to the
formula in Astle and Balding (2009)

U =
1

M

∑ (wi − 2pi)(wi − 2pi)
′

2pi(1− pi)

where wi is the marker genotype, pi is the allele frequency at marker locus i, and M is the number
of marker loci, and the sum is over all loci.

If ret="sm", the realized relatedness between individuals is computed according to the simple
matching coefficient (Reif et al. 2005). The simple matching coefficient counts the number of
shared alleles across loci. It can only be applied to homozygous inbred lines, i.e. only genotypes 0
and 2. To account for loci that are alike in state but not identical by descent (IBD), Hayes and God-
dard (2008) correct the simple matching coefficient by the minimum of observed simple matching
coefficients

s− smin
1− smin

where s is the matrix of simple matching coefficients. This formula is used with argument ret="sm-smin".

If ret="gaussian", the euklidian distances distEuk for all individuals are calculated. The val-
ues of distEuk are than used to calculate similarity coefficients between the individuals with
exp(distEuk^2/numMarker). Be aware that this relationship matrix scales theoretically between
0 and 1!

kin 29

Value

An object of class "relationshipMatrix".

Author(s)

Valentin Wimmer and Theresa Albrecht, with contributions by Yvonne Badke

References

Habier D, Fernando R, Dekkers J (2007). The Impact of Genetic Relationship information on
Genome-Assisted Breeding Values. Genetics, 177, 2389 – 2397.

vanRaden, P. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science,
91:4414 – 4423.

Astle, W., and D.J. Balding (2009). Population Structure and Cryptic Relatedness in Genetic Asso-
ciation Studies. Statistical Science, 24(4), 451 – 471.

Reif, J.C.; Melchinger, A. E. and Frisch, M. Genetical and mathematical properties of similarity
and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Science,
January-February 2005, vol. 45, no. 1, p. 1-7.

Rogers, J., 1972 Measures of genetic similarity and genetic distance. In Studies in genetics VII,
volume 7213. Univ. of Texas, Austin

Hayes, B. J., and M. E. Goddard. 2008. Technical note: Prediction of breeding values using marker
derived relationship matrices. J. Anim. Sci. 86

See Also

plot.relationshipMatrix

Examples

#=========================
(1) pedigree based relatedness
#=========================
Not run:
library(synbreedData)
data(maize)
K <- kin(maize,ret="kin")
plot(K)

End(Not run)

#=========================
(2) marker based relatedness
#=========================
Not run:
data(maize)
U <- kin(codeGeno(maize),ret="realized")
plot(U)

30 LDDist

End(Not run)

Example for Legarra et al. (2009), J. Dairy Sci. 92: p. 4660
id <- 1:17
par1 <- c(0,0,0,0,0,0,0,0,1,3,5,7,9,11,4,13,13)
par2 <- c(0,0,0,0,0,0,0,0,2,4,6,8,10,12,11,15,14)
ped <- create.pedigree(id,par1,par2)
gp <- create.gpData(pedigree=ped)

additive relationship
A <- kin(gp,ret="add")
dominance relationship
D <- kin(gp,ret="dom")

LDDist LD versus distance Plot

Description

Visualization of pairwise Linkage Disequilibrium (LD) estimates generated by function pairwiseLD
versus marker distance. A single plot is generated for every chromosome.

Usage

LDDist(LDdf,chr=NULL,type="p",breaks=NULL,n=NULL,file=NULL,fileFormat="pdf",
onefile=TRUE,colL=2,colD=1,...)

Arguments

LDdf object of class LDdf which is the output of function pairwiseLD and argument
type="data.frame"

chr numeric scalar or vector. Return value is a plot for each chromosome in chr.
Note: Remember to add in a batch-script one empty line for each chromosome,
if you use more than one chromosome!

type Character string to specify the type of plot. Use "p" for a scatterplot, "bars"
for stacked bars or "nls" for scatterplot together with nonlinear regression curve
according to Hill and Weir (1988).

breaks list containing breaks for stacked bars (optional, only for type="bars"). Com-
ponents are dist with breaks for distance on x-axis and r2 for breaks on for r2
on y-axis. By default, 5 equal spaced categories for dist and r2 are used.

n numeric. Number of observations used to estimate LD. Only required for type="nls".

file character. path to a file where plot is saved to (optional).

fileFormat character. At the moment two file formats are supported: pdf and png. Default
is "pdf".

onefile logical. If fileFormat = "pdf" you can decide, if you like to have all
graphics in one file or in multiple files.

LDMap 31

colL The color for the line if type="nls" is used. In other cases without a meaning.

colD The color for the dots in the plot of type="nls" and type="p"

... Further arguments for plot

Author(s)

Valentin Wimmer, Hans-Juergen Auinger and Theresa Albrecht

References

For nonlinear regression curve: Hill WG, Weir BS (1988) Variances and covariances of squared
linkage disequilibria in finite populations. Theor Popul Biol 33:54-78.

See Also

pairwiseLD, LDMap

Examples

Not run:
library(synbreedData)
maize data example
data(maize)
maizeC <- codeGeno(maize)

LD for chr 1
maizeLD <- pairwiseLD(maizeC,chr=1,type="data.frame")
scatterplot
LDDist(maizeLD,type="p",pch=19,colD=hsv(alpha=0.1,v=0))

stacked bars with default categories
LDDist(maizeLD,type="bars")

stacked bars with user-defined categories
LDDist(maizeLD,type="bars",breaks=list(dist=c(0,10,20,40,60,180),
r2=c(1,0.6,0.4,0.3,0.1,0)))

End(Not run)

LDMap LD Heatmap

Description

Visualization of pairwise Linkage Disequilibrium (LD) estimates generated by function pairwiseLD
in a LD heatmap for each chromosome using the LDheatmap package (Shin et al, 2006) .

32 LDMap

Usage

LDMap(LDmat,gpData,chr=NULL,file=NULL,fileFormat="pdf",onefile=TRUE,...)

Arguments

LDmat Object of class LDmat generated by function pairwiseLD and argument type="matrix"

gpData Object of class gpData that was used in pairwiseLD

chr numeric. Return value is a plot for each chromosome in chr.

file Optionally a path to a file where the plot is saved to

fileFormat character. At the moment two file formats are supported: pdf and png. Default
is "pdf".

onefile logical. If fileFormat = "pdf" you can decide, if you like to have all
graphics in one file or in multiple files.

... Further arguments that could be passed to function LDheatmap

Details

Note: If you have an LDmat-object with more than one chromosome and you like to plot all chro-
mosomes, you need to put an empty line for each chromosome in your script after the LDMap
function!

Author(s)

Hans-Juergen Auinger, Theresa Albrecht and Valentin Wimmer

References

Shin JH, Blay S, McNeney B, Graham J (2006). LDheatmap: An R Function for Graphical Display
of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. Journal of Statistical
Software, 16, Code Snippet 3. URL http://stat-db.stat.sfu.ca: 8080/statgen/research/LDheatmap/.

See Also

pairwiseLD, LDheatmap, LDDist

Examples

Not run:
library(synbreedData)
data(maize)
maizeC <- codeGeno(maize)

LD for chr 1
maizeLD <- pairwiseLD(maizeC,chr=1,type="matrix")
LDMap(maizeLD,maizeC)

End(Not run)

manhattanPlot 33

manhattanPlot Manhattan plot for SNP effects

Description

Plot of SNP effects along the chromosome, e.g. for the visualization of marker effects generated by
function gpMod.

Usage

manhattanPlot(b, gpData = NULL, colored = FALSE, add = FALSE,
pch = 19, ylab = NULL, ...)

Arguments

b object of class gpMod with marker effects or numeric vector of marker effects to
plot

gpData object of class gpData with map position

colored logical. Color the chromosomes?. The default is FALSE with chromosomes
distinguished by grey tones.

add If TRUE, the plot is added to an existing plot. The default is FALSE.

pch a vector of plotting characters or symbols: see points. The default is an open
circle.

ylab a title for the y axis: see title.

... further arguments for function plot

Author(s)

Valentin Wimmer

Examples

Not run:
library(synbreedData)
data(mice)
plot only random noise
b <- rexp(ncol(mice$geno),3)
manhattanPlot(b,mice)

End(Not run)

34 MME

MME Mixed Model Equations

Description

Set up Mixed Model Equations for given design matrices, i.e. variance components for random
effects must be known.

Usage

MME(X, Z, GI, RI, y)

Arguments

X Design matrix for fixed effects

Z Design matrix for random effects

GI Inverse of (estimated) variance-covariance matrix of random (genetic) effects
multplied by the ratio of residual to genetic variance

RI Inverse of (estimated) variance-covariance matrix of residuals (without multi-
plying with a constant, i.e. σ2

e)

y Vector of phenotypic records

Details

The linear mixed model is given by

y = Xb+ Zu+ e

with u ∼ N(0,G) and e ∼ N(0,R). Solutions for fixed effects b and random effects u are
obtained by solving the corresponding mixed model equations (Henderson, 1984)(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

)(
b̂
û

)
=

(
X′R−1y
Z′R−1y

)
Matrix on left hand side of mixed model equation is denoted by LHS and matrix on the right hand
side of MME is denoted as RHS. Generalized Inverse of LHS equals prediction error variance
matrix. Square root of diagonal values multiplied with σ2

e equals standard error of prediction. Note
that variance components for fixed and random effects are not estimated by this function but have
to be specified by the user, i.e. G−1 must be multiplied with shrinkage factor σ

2
e

σ2
g

.

Value

A list with the following arguments

b Estimations for fixed effects vector

u Predictions for random effects vector

MME 35

LHS left hand side of MME
RHS right hand side of MME
C Generalized inverse of LHS. This is the prediction error variance matrix
SEP Standard error of prediction for fixed and random effects
SST Sum of Squares Total
SSR Sum of Squares due to Regression
residuals Vector of residuals

Author(s)

Valentin Wimmer

References

Henderson, C. R. 1984. Applications of Linear Models in Animal Breeding. Univ. of Guelph,
Guelph, ON, Canada.

See Also

regress, crossVal

Examples

Not run:
library(synbreedData)
data(maize)

realized kinship matrix
maizeC <- codeGeno(maize)
U <- kin(maizeC,ret="realized")/2

solution with gpMod
m <- gpMod(maizeC,kin=U,model="BLUP")

solution with MME
diag(U) <- diag(U) + 0.000001 # to avoid singularities
determine shrinkage parameter
lambda <- mfitsigma[2]/ mfitsigma[1]
multiply G with shrinkage parameter
GI <- solve(U)*lambda
y <- maizeC$pheno[,1,]
n <- length(y)
X <- matrix(1,ncol=1,nrow=n)
mme <- MME(y=y,Z=diag(n),GI=GI,X=X,RI=diag(n))

comparison
head(mfitpredicted[,1]-mfitbeta)
head(mme$u)

End(Not run)

36 pairwiseLD

pairwiseLD Pairwise LD between markers

Description

Estimate pairwise Linkage Disequilibrium (LD) between markers measured as r2 using an object
of class gpData. For the general case, a gateway to the software PLINK (Purcell et al. 2007) is
established to estimate the LD. A within-R solution is only available for marker data with only
2 genotypes, i.e. homozgous inbred lines. Return value is an object of class LDdf which is a
data.frame with one row per marker pair or an object of class LDMat which is a matrix with all
marker pairs. Additionally, the euclidian distance between position of markers is computed and
returned.

Usage

pairwiseLD(gpData, chr = NULL, type = c("data.frame", "matrix"),
use.plink=FALSE, ld.threshold=0,
ld.window=99999, rm.unmapped = TRUE)

Arguments

gpData object of class gpData with elements geno and map

chr numeric scalar or vector. Return value is a list with pairwise LD of all markers
for each chromosome in chr.

type character. Specifies the type of return value (see ’Value’).

use.plink logical. Should the software PLINK be used for the computation?

ld.threshold numeric. Threshold for the LD to thin the output. Only pairwise LD>ld.threshold
is reported when PLINK is used. This argument can only be used for type="data.frame".

ld.window numeric. Window size for pairwise differences which will be reported by PLINK
(only for use.plink=TRUE; argument --ld-window-kb in PLINK) to thin the
output dimensions. Only SNP pairs with a distance < ld.window are reported
(default = 99999).

rm.unmapped logical. Remove markers with unknown postion in map before using PLINK?

Details

The function write.plink is called to prepare the input files and the script for PLINK. The ex-
ecutive PLINK file plink.exe must be available (e.g. in the working directory or through path
variables). The function pairwiseLD calls PLINK and reads the results. The evaluation is per-
formed separately for every chromosome. The measure for LD is r2. This is defined as

D = pAB − pApB

and

r2 =
D2

pApBpapb

pairwiseLD 37

where pAB is defined as the observed frequency of haplotype AB, pA = 1 − pa and pB = 1 − pb
the observed frequencies of alleles A and B. If the number of markers is high, a threshold for the
LD can be used to thin the output. In this case, only pairwise LD above the threshold is reported
(argument --ld-window-r2 in PLINK).

Default PLINK options used –no-parents –no-sex –no-pheno –allow-no-sex –ld-window p –ld-
window-kb 99999

Value

For type="data.frame" an object of class LDdf with one element for each chromosome is returned.
Each element is a data.frame with columns marker1, marker2, r2 and distance for all p(p−1)/2
marker pairs (or thinned, see ’Details’).

For type="matrix" an object of class LDmat with one element for each chromosome is returned.
Each element is a list of 2: a p × p matrix with pairwise LD and the corresponding p × p matrix
with pairwise distances.

Author(s)

Valentin Wimmer

References

Hill WG, Robertson A (1968). Linkage Disequilibrium in Finite Populations. Theoretical and
Applied Genetics, 6(38), 226 - 231.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC (2007) PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

LDDist, LDMap

Examples

Not run:
library(synbreedData)
data(maize)
maizeC <- codeGeno(maize)
maizeLD <- pairwiseLD(maizeC,chr=1,type="data.frame")

End(Not run)

38 plot.LDdf

plot.LDdf Plot function for class LDdf

Description

The function visualises wheter the LD between adjacent values or visualization of pairwise Linkage
Disequilibrium (LD) estimates generated by function pairwiseLD versus marker distance. A single
plot is generated for every chromosome.

Usage

S3 method for class 'LDdf'
plot(x, gpData, plotType = "dist", dense = FALSE, nMarker = TRUE,

centr = NULL, chr = NULL, type = "p",breaks = NULL, n = NULL,
file = NULL, fileFormat = "pdf", onefile = TRUE, colL = 2,
colD = 1, ...)

Arguments

x Object of class LDdf, i.e the output of function pairwiseLD with argument
type="data.frame".

gpData Object of class gpData with object map

plotType You can decide, if you like to have a plot with the LD of the neighbouring
markers (option "neighbour"), or you like to have a scatter plot of distance and
LD (default option "dist").

dense For plotType="neighbour", logical. Should density visualization for high-
density genetic maps be used?

nMarker For plotType="neighbour", logical. Print number of markers for each chro-
mosome?

centr For plotType="neighbour", numeric vector. Positions for the centromeres in
the same order as chromosomes in map. If "maize", centromere positions of
maize in Mbp are used.

chr For plotType="dist", numeric scalar or vector. Return value is a plot for each
chromosome in chr. Note: Remember to add in a batch-script one empty line
for each chromosome, if you use more than one chromosome!

type For plotType="dist", character string to specify the type of plot. Use "p"
for a scatterplot, "bars" for stacked bars or "nls" for scatterplot together with
nonlinear regression curve according to Hill and Weir (1988).

breaks For plotType="dist", list containing breaks for stacked bars (optional, only
for type="bars"). Components are dist with breaks for distance on x-axis and
r2 for breaks on for r2 on y-axis. By default, 5 equal spaced categories for dist
and r2 are used.

n For plotType="dist", numeric. Number of observations used to estimate LD.
Only required for type="nls".

plot.LDmat 39

file Optionally a path to a file where the plot is saved to

fileFormat character. At the moment two file formats are supported: pdf and png. Default
is "pdf".

onefile logical. If fileFormat = "pdf" you can decide, if you like to have all
graphics in one file or in multiple files.

colL The color for the line if type="nls" is used. In other cases without a meaning.

colD The color for the dots in the plot of type="nls" and type="p"

... further graphical arguments for function plot

Details

For more Details see at plotNeighbourLD or LDDist

Author(s)

Hans-Juergen Auinger

See Also

plotNeighbourLD, LDDist, plotGenMap, pairwiseLD

plot.LDmat Plot function for class LDmat

Description

A function to visualize Linkage Disequilibrium estimates between adjacent markers or isualization
of pairwise Linkage Disequilibrium (LD) estimates generated by function pairwiseLD in a LD
heatmap for each chromosome using the LDheatmap package (Shin et al, 2006) .

Usage

S3 method for class 'LDmat'
plot(x, gpData, plotType = "map", dense = FALSE,

nMarker = TRUE, centr = NULL, chr = NULL,
file = NULL, fileFormat = "pdf", onefile = TRUE, ...)

Arguments

x Object of class LDmat, i.e the output of function pairwiseLD with argument
type="matrix".

gpData Object of class gpData with object map

plotType You can decide, if you like to have a plot with the LD of the neighbouring
markers (option "neighbour"), or you like to have a heatmap of the LD (default
option "map").

40 plot.pedigree

dense For plotType="neighbour", logical. Should density visualization for high-
density genetic maps be used?

nMarker For plotType="neighbour", logical. Print number of markers for each chro-
mosome?

centr For plotType="neighbour", numeric vector. Positions for the centromeres in
the same order as chromosomes in map. If "maize", centromere positions of
maize in Mbp are used.

chr For plotType="map", numeric scalar or vector. Return value is a plot for each
chromosome in chr. Note: Remember to add in a batch-script one empty line
for each chromosome, if you use more than one chromosome!

file Optionally a path to a file where the plot is saved to
fileFormat character. At the moment two file formats are supported: pdf and png. Default

is "pdf".
onefile logical. If fileFormat = "pdf" you can decide, if you like to have all

graphics in one file or in multiple files.
... Further arguments that could be passed to function LDheatmap

Details

For more details see at plotNeighbourLD or LDMap

Author(s)

Hans-Juergen Auinger

See Also

plotNeighbourLD, LDDist, plotGenMap, pairwiseLD

plot.pedigree Visualization of pedigree

Description

A function to visualize pedigree structure by a graph using the igraph package. Each genotype is
represented as vertex and direct offsprings are linked by an edge.

Usage

S3 method for class 'pedigree'
plot(x, effect = NULL,...)

Arguments

x object of class pedigree or object of class gpData with element pedigree
effect vector of length nrow(pedigree) with effects to plot on the x axis
... Other arguments for function igraph.plotting

plot.relationshipMatrix 41

Details

The pedigree is structured top to bottom. The first generation is printed in the first line. Links over
more than one generation are possible as well as genotypes with only one (known) parent. Usually,
no structure in one generation is plotted. If an effect is given, the genotypes are ordered by this
effect in the horizontal direction and a labeled axis is plotted at the bottom.

Value

A named graph visualizing the pedigree structure. Color is used to distinguish sex.

Note

This function uses the plotting method for graphs in the library igraph

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

See Also

create.pedigree, simul.pedigree

Examples

example with 9 individuals
id <- 1:9
par1 <- c(0,0,0,0,1,1,1,4,7)
par2 <- c(0,0,0,0,2,3,2,5,8)
gener <- c(0,0,0,0,1,1,1,2,3)

create pedigree object
ped <- create.pedigree(id,par1,par2,gener)
plot(ped)

plot.relationshipMatrix

Heatmap for relationship Matrix

Description

Visualization for objects of class relationshipMatrix using a heatmap of pairwise relatedness
coefficients.

Usage

S3 method for class 'relationshipMatrix'
plot(x, levelbreaks=NULL, ...)

42 plotGenMap

Arguments

x Object of class relationshipMatrix

levelbreaks Defined breaks in the color scheme of the levelplot. If you make to many breaks,
the color scheme repeats!

... further graphical arguments passed to function levelplot in package lattice.
To create equal colorkeys for two heatmaps, use at=seq(from,to,length=9).

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

Examples

small pedigree
ped <- simul.pedigree(gener=4,7)
gp <- create.gpData(pedigree=ped)
A <- kin(gp,ret="add")
plot(A)

big pedigree
Not run:
library(synbreedData)
data(maize)
K <- kin(maize,ret="kin")
U <- kin(codeGeno(maize),ret="realized")/2
equal colorkeys
plot(K,levelbreaks=seq(0,2,length=9))
plot(U,levelbreaks=seq(0,2,length=9))

End(Not run)

plotGenMap Plot marker map

Description

A function to visualize low and high-density marker maps.

Usage

S3 method for class 'GenMap'
plot(x, dense = FALSE, nMarker = TRUE, bw=1,

centr=NULL, file=NULL, fileFormat="pdf",...)

plotGenMap(map, dense = FALSE, nMarker = TRUE, bw=1,
centr=NULL, file=NULL, fileFormat="pdf",...)

plotGenMap 43

Arguments

x object of class GenMap, i. e. the map object in a gpData-object

map object of class gpData with object map or a data.frame with columns ’chr’
(specifying the chromosome of the marker) and ’pos’ (position of the marker
within chromosome measured with genetic or physical distances)

dense logical. Should density visualization for high-density genetic maps be used?

nMarker logical. Print number of markers for each chromosome?

bw numeric. Bandwidth to use for dense=TRUE to control the resolution (default =
1 [map unit]).

centr numeric vector. Positions for the centromeres in the same order as chromo-
somes in map. If "maize", centromere positions of maize in Mbp are used (ac-
cording to maizeGDB, version 2).

file Optionally a path to a file where the plot is saved to

fileFormat character. At the moment two file formats are supported: pdf and png. Default
is "pdf".

... further graphical arguments for function plot

Details

In the low density plot, the unique positions of markers are plotted as horizontal lines. In the
high-density plot, the distribution of the markers is visualized as a heatmap of density estimation
together with a color key. In this case, the number of markers within an interval of equal bandwidth
bw is counted. The high density plot is typically useful if the number of markers exceeds 200 per
chromosome on average.

Value

Plot of the marker positions within each chromosome. One chromosome is displayed from the first
to the last marker.

Author(s)

Valentin Wimmer and Hans-Juergen Auinger

See Also

create.gpData

Examples

Not run:
library(synbreedData)
low density plot
data(maize)
plotGenMap(maize)

high density plot

44 plotNeighbourLD

data(mice)
plotGenMap(mice,dense=TRUE,nMarker=FALSE)

End(Not run)

plotNeighbourLD Plot neighbour linkage disequilibrium

Description

A function to visualize Linkage Disequilibrium estimates between adjacent markers.

Usage

plotNeighbourLD(LD, gpData, dense=FALSE, nMarker = TRUE,
centr=NULL, file=NULL, fileFormat="pdf", ...)

Arguments

LD object of class LDmat, i.e the output of function pairwiseLD using argument
type="matrix".

gpData object of class gpData with object map or a data.frame with columns ’chr’
(specifying the chromosome of the marker) and ’pos’ (position of the marker
within chromosome measured with genetic or physical distances)

dense logical. Should density visualization for high-density genetic maps be used?

nMarker logical. Print number of markers for each chromosome?

centr numeric vector. Positions for the centromeres in the same order as chromo-
somes in map. If "maize", centromere positions of maize in Mbp are used.

file Optionally a path to a file where the plot is saved to

fileFormat character. At the moment two file formats are supported: pdf and png. Default
is "pdf".

... further graphical arguments for function plot

Details

The plot is similar to plotGenMap with the option dense=TRUE, but here the LD between adjacent
markers is plotted along the chromosomes.

Value

Plot of neighbour LD along each chromosome. One chromosome is displayed from the first to the
last marker.

Author(s)

Theresa Albrecht and Hans-Juergen Auinger

predict.gpMod 45

See Also

plotGenMap, pairwiseLD

Examples

Not run:
library(synbreedData)
data(maize)
maize2 <-codeGeno(maize)
LD <- pairwiseLD(maize2,chr=1:10,type="matrix")
plotNeighbourLD(LD,maize2,nMarker=FALSE)

End(Not run)

predict.gpMod Prediction for genomic prediction models.

Description

S3 predict method for objects of class gpMod. A genomic prediction model is used to predict the
genetic performance for e.g. unphenotyped individuals using an object of class gpMod estimated by
a training set.

Usage

S3 method for class 'gpMod'
predict(object,newdata,...)

Arguments

object object of class gpMod which is the model used for the prediction. If the model
includes a relationshipMatrix, this must include both the individuals in the
training data used for fitting gpMod and those which sould be predicted in newdata
(see example below).

newdata for model="BL" and "BRR" an object of class gpData with the marker data of
the unphenotyped individuals. For model="BLUP" a character vector with the
names of the individuals to predict. If newdata=NULL, the genetic performances
of the individuals for the training set are returned.

... not used

Details

For models, model="RR" and "BL", the prediction for the unphenotyped individuals is given by

ĝ′ = µ̂+W ′m̂

with the estimates taken from the gpMod object. For the prediction using model="BLUP", the full
relationship matrix including individuals of the training set and the prediction set must be specified
in the gpMod. This model is used to predict the unphenotyped individuals of the prediction set by
solving the corresponding mixed model equations using the variance components of the fit in gpMod.

46 predict.gpMod

Value

a named vector with the predicted genetic values for all individuals in newdata.

Author(s)

Valentin Wimmer

References

Henderson C (1977) Best linear unbiased prediction of breeding values not in the model for records.
Journal of Dairy Science 60:783-787

Henderson CR (1984). Applications of linear models in animal breeding. University of Guelph.

See Also

gpMod

Examples

Example from Henderson (1977)
dat <- data.frame(y=c(132,147,156,172),time=c(1,2,1,2),animal=c(1,2,3,4))
ped <- create.pedigree(ID=c(6,5,1,2,3,4),Par1=c(0,0,5,5,1,6),Par2=c(0,0,0,0,6,2))
gp <- create.gpData(pheno=dat,pedigree=ped)
A <- kin(gp,ret="add")

assuming h2=sigma2u/(sigma2u+sigma2)=0.5
no REML fit possible due to the limited number of observations
y <- c(132,147,156,172)
names(y) <- paste(1:4)
mod1 <- list(fit=list(sigma=c(1,1)),kin=A,model="BLUP",y=y,m=NULL)
matrix A included all individuals (including those which should be predicted)
class(mod1) <- "gpMod"
predict(mod1,c("5","6"))

prediction 'by hand'
X <- matrix(1,ncol=1,nrow=4)
Z <- diag(6)[-c(1,2),]
AI <- solve(A)
RI <- diag(4)

res <- MME(X,Z,AI,RI,y)
res$b + res$u[1:2]

read.vcf2list 47

read.vcf2list Read data of a vcf-file to a matrix

Description

Function for easily read genomic data in vcf-Format to a list, which contains the map information
and the marker information.

Usage

read.vcf2list(file, FORMAT = "GT", coding = c("allele", "ref"), IDinRow = TRUE)

Arguments

file character. The name of the file which the data are to be read from.
FORMAT character. The default is "GT". If there are more formats in your vcf-file you

can decide which one you like to have in your output matrix.
coding This option has only an effect with FORMAT="GT". allele gives you back the

alles as defined as REF and ALT in your vcf-file. ref gives you back "0" for
the reference allele and "1" for the alternative allele.

IDinRow logical. Default is TRUE, this means the genotypes are in the rows and the
markers in the column. For FALSE it is the other way round.

Value

A list with a matrix (matrix) containing a representation of the genotypic data in the file and a map
of classes GenMap and data.frame.

Author(s)

Hans-Juergen Auinger

See Also

write.vcf

Examples

Not run:
library(synbreedData)
data(maize)
maize$info$map.unit <- "kb"
maize <- codeGeno(maize)
write.vcf(maize, "maize.vcf")
genInfo <- read.vcf2list("maize.vcf")

End(Not run)

48 read.vcf2matrix

read.vcf2matrix Read data of a vcf-file to a matrix

Description

To easily read genomic data in vcf-Format to a matrix. Function codeGeno uses read.vcf2matrix
with imputing by beagle.

Usage

read.vcf2matrix(file, FORMAT = "GT", coding = c("allele", "ref"), IDinRow = TRUE)

Arguments

file character. The name of the file which the data are to be read from.

FORMAT character. The default is "GT". If there are more formats in your vcf-file you
can decide which one you like to have in your output matrix.

coding This option has only an effect with FORMAT="GT". allele gives you back the
alles as defined as REF and ALT in your vcf-file. ref gives you back "0" for
the reference allele and "1" for the alternative allele.

IDinRow logical. Default is TRUE, this means the genotypes are in the rows and the
markers in the column. For FALSE it is the other way round.

Value

A matrix (matrix) containing a representation of the data in the file.

Author(s)

Hans-Juergen Auinger

See Also

write.vcf

Examples

Not run:
library(synbreedData)
data(maize)
maize$info$map.unit <- "kb"
maize <- codeGeno(maize)
write.vcf(maize, "maize.vcf")
geno <- read.vcf2matrix("maize.vcf")

End(Not run)

simul.pedigree 49

simul.pedigree Simulation of pedigree structure

Description

This function can be used to simulate a pedigree for a given number of generations and individu-
als. Function assumes random mating within generations. Inbred individuals may be generated by
chance.

Usage

simul.pedigree(generations = 2, ids = 4, animals=FALSE,familySize=1)

Arguments

generations integer. Number of generations to simulate

ids integer or vector of integers. Number of genotypes in each generation. If
length equal one, the same number will be replicated and used for each genera-
tion.

animals logical. Should a pedigree for animals be simulated (no inbreeding)? See
’Details’.

familySize numeric. Number of individuals in each full-sib family in the last generation.

Details

If animals=FALSE, the parents for the current generation will be randomly chosen out of the geno-
types in the last generation. If Par1 = Par2, an inbreed is generated. If animal=TRUE, each ID is
either sire or dam. Each ID is progeny of one sire and one dam.

Value

An object of class pedigree with N=sum(ids) genotypes.

Author(s)

Valentin Wimmer

See Also

simul.phenotype, create.pedigree, plot.pedigree

50 simul.phenotype

Examples

example for plants
ped <- simul.pedigree(gener=4,ids=c(3,5,8,8))
plot(ped)
#example for animals
peda <- simul.pedigree(gener=4,ids=c(3,5,8,8),animals=TRUE)
plot(peda)

simul.phenotype Simulation of a field trial with single trait

Description

Simulates observations from a field trial using an animal model. The field trial consists of multiple
locations and randomized complete block design within locations. A single quantitative trait is
simulated according to the model Trait ~ id(A) + block + loc + e.

Usage

simul.phenotype(pedigree = NULL, A = NULL, mu = 100, vc = NULL,
Nloc = 1, Nrepl = 1)

Arguments

pedigree object of class "pedigree"

A object of class "relationshipMatrix"

mu numeric; Overall mean of the trait.

vc list containing the variance components. vc consists of elements sigma2e,
sigma2a, sigma2l, sigma2b with the variance components of the residual, the
additive genetic effect, the location effect and the block effect.

Nloc numeric. Number of locations in the field trial.

Nrepl Numeric. Number of complete blocks within location.

Details

Either pedigree or A must be specified. If pedigree is given, pedigree information is used to set up
numerator relationship matrix with function kinship. If unrelated individuals should be used for
simulation, use identity matrix for A. True breeding values for N individuals is simulated according
to following distribution

tbv ∼ N(0,Aσ2
a)

Observations are simulated according to

y ∼ N(mu+ tbv + block + loc, σ2
e)

If no location or block effects should appear, use sigma2l=0 and/or sigma2b=0.

summary.cvData 51

Value

A data.frame with containing the simulated values for trait and the following variables

ID Factor identifying the individuals. Names are extracted from pedigree or row-
names of A

Loc Factor for Location

Block Factor for Block within Location

Trait Trait observations

TBV Simulated values for true breeding values of individuals

Results are sorted for locations within individuals.

Author(s)

Valentin Wimmer

See Also

simul.pedigree

Examples

Not run:
ped <- simul.pedigree(gener=5)
varcom <- list(sigma2e=25,sigma2a=36,sigma2l=9,sigma2b=4)
field trial with 3 locations and 2 blocks within locations
data.simul <- simul.phenotype(ped,mu=10,vc=varcom,Nloc=3,Nrepl=2)
head(data.simul)
analysis of variance
anova(lm(Trait~ID+Loc+Loc:Block,data=data.simul))

End(Not run)

summary.cvData Summary of options and results of the cross validation procedure

Description

summary method for class "cvData"

Usage

S3 method for class 'cvData'
summary(object,...)

52 summary.gpData

Arguments

object object of class "cvData"

... not used

Author(s)

Theresa Albrecht

See Also

crossVal

summary.gpData Summary for class gpData

Description

S3 summary method for objects of class gpData

Usage

S3 method for class 'gpData'
summary(object,...)

Arguments

object object of class gpData

... not used

Author(s)

Valentin Wimmer

Examples

Not run:
library(synbreedData)
data(maize)
summary(maize)

End(Not run)

summary.gpMod 53

summary.gpMod Summary for class gpMod

Description

S3 summary method for objects of class gpMod

Usage

S3 method for class 'gpMod'
summary(object,...)

Arguments

object object of class gpMod

... not used

See Also

gpMod

Examples

Not run:
library(synbreedData)
data(maize)
maizeC <- codeGeno(maize)
marker-based (realized) relationship matrix
U <- kin(maizeC,ret="realized")/2

BLUP model
mod <- gpMod(maizeC,model="BLUP",kin=U)
summary(mod)

End(Not run)

summary.LDdf Summary for LD objects

Description

Summary method for class ”LDdf” and ”LDmat”

54 summary.pedigree

Usage

S3 method for class 'LDdf'
summary(object,...)
S3 method for class 'LDmat'
summary(object,...)

Arguments

object object of class LDdf or LDmat which is the output of function pairwiseLD and
argument type="data.frame" or type="matrix"

... not used

Details

Returns for each chromosome: Number of markers; mean, minimum and maximum LD measured
as r2; fraction of markers with r2 > 0.2; maximum distance of markers

Author(s)

Valentin Wimmer

See Also

pairwiseLD, ~~~

Examples

Not run:
library(synbreed)
data(maize)
maizeC <- codeGeno(maize)
maizeLD <- pairwiseLD(maizeC,chr=1:10,type="data.frame")
maizeLDm <- pairwiseLD(maizeC,chr=1:10,type="matrix")
summary(maizeLD)
summary(maizeLDm)

End(Not run)

summary.pedigree Summary of pedigree information

Description

Summary method for class ”pedigree”

Usage

S3 method for class 'pedigree'
summary(object,...)

summary.relationshipMatrix 55

Arguments

object object of class ”pedigree”
... not used

Author(s)

Valentin Wimmer

Examples

plant pedigree
ped <- simul.pedigree(gener=4,7)
summary(ped)

animal pedigree
ped <- simul.pedigree(gener=4,7,animals=TRUE)
summary(ped)

summary.relationshipMatrix

Summary of relationship matrices

Description

Summary method for class ”relationshipMatrix”

Usage

S3 method for class 'relationshipMatrix'
summary(object,...)

Arguments

object object of class ”relationshipMatrix”
... not used

Author(s)

Valentin Wimmer

Examples

Not run:
library(synbreedData)
data(maize)
U <- kin(codeGeno(maize),ret="realized")
summary(U)

End(Not run)

56 summaryGenMap

summaryGenMap Summary of marker map information

Description

This function can be used to summarize information from a marker map in an object of class gpData.
Return value is a data.frame with one row for each chromosome and one row summarizing all
chromosomes.

Usage

summaryGenMap(map)

Arguments

map data.frame with columns chr and pos or a gpData object with element map

Details

Summary statistics of differences are based on euclidian distances between markers with non-
missing position in map, i.e. pos!=NA.

Value

A data.frame with one row for each chromosome and the intersection of all chromosomes and
columns

noM number of markers
range range of positions, i.e. difference between first and last marker
avDist avarage distance of markers
maxDist maximum distance of markers
minDist minimum distance of markers

Author(s)

Valentin Wimmer

See Also

create.gpData

Examples

Not run:
library(synbreedData)
data(maize)
summaryGenMap(maize)

End(Not run)

write.beagle 57

write.beagle Prepare genotypic data for Beagle

Description

Create input file for Beagle software (Browning and Browning 2009) from an object of class
gpData. This function is created for usage within function codeGeno to impute missing values.

Usage

write.beagle(gp, wdir = getwd(), prefix)

Arguments

gp gpData object with elements geno and map

wdir character. Directory for Beagle input files

prefix character. Prefix for Beagle input files.

Details

The Beagle software must be used chromosomewise. Consequently, gp should contain only data
from one chromosome (use discard.markers, see Examples).

Value

No value is returned. Function creates files [prefix]ingput.bgl with genotypic data in Beagle
input format and [prefix]marker.txt with marker information used by Beagle.

Author(s)

Valentin Wimmer

References

B L Browning and S R Browning (2009) A unified approach to genotype imputation and haplotype
phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210-22

See Also

codeGeno

58 write.plink

Examples

map <- data.frame(chr=c(1,1,1,1,1,2,2,2,2),pos=1:9)
geno <- matrix(sample(c(0,1,2,NA),size=10*9,replace=TRUE),nrow=10,ncol=9)
colnames(geno) <- rownames(map) <- paste("SNP",1:9,sep="")
rownames(geno) <- paste("ID",1:10+100,sep="")

gp <- create.gpData(geno=geno,map=map)
gp1 <- discard.markers(gp,rownames(map[map$chr!=1,]))
Not run: write.beagle(gp1,prefix="test")

write.plink Prepare data for PLINK

Description

Create input files and corresponding script for PLINK (Purcell et al. 2007) to estimate pairwise LD
through function pairwiseLD.

Usage

write.plink(gp, wdir = getwd(), prefix = paste(substitute(gp)),
ld.threshold = 0, type = c("data.frame", "matrix"),
ld.window=99999)

Arguments

gp gpData object with elements geno and map

wdir character. Directory for PLINK input files

prefix character. Prefix for PLINK input files.

ld.threshold numeric. Threshold for the LD used in PLINK.

type character. Specifies the type of return value for PLINK.

ld.window numeric. Window size for pairwise differences which will be reported by PLINK
(only for use.plink=TRUE; argument --ld-window-kb in PLINK) to thin the
output dimensions. Only SNP pairs with a distance < ld.window are reported
(default = 99999).

Value

No value returned. Files prefix.map, prefix.ped and prefixPlinkScript.txt are created in
the working directory

Author(s)

Valentin Wimmer

write.relationshipMatrix 59

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC (2007) PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

pairwiseLD

Examples

Not run:
library(synbreedData)
write.plink(maize,type="data.frame")
End(Not run)

write.relationshipMatrix

Writing relationshipMatrix in table format

Description

This function can be used to write an object of class "relationshipMatrix" in the table format used
by other software, i.e. WOMBAT or ASReml. The resulting table has three columns, the row, the
column and the entry of the (inverse) relationshipMatrix.

Usage

write.relationshipMatrix(x, file = NULL,
sorting=c("WOMBAT","ASReml"),
type=c("ginv", "inv", "none"), digits = 10)

Arguments

x Object of class "relationshipMatrix"

file Path where the output should be written . If NULL the result is returned in R.

sorting Type of sorting. Use "WOMBAT" for ’row-wise’ sorting of the table and "AS-
Reml" for ’column-wise’ sorting.

type A character string indicating which form of relationshipMatrix should be
returned. One of "ginv" (Moore-Penrose generalized inverse), "inv" (inverse),
or "none" (no inverse).

digits Numeric. The result is rounded to digits.

60 write.vcf

Details

Note that "WOMBAT" only uses the generalized inverse relationship matrix and expects a file
with the name "ranef.gin", where ’ranef’ is the name of the random effect with option ’GIN’ in
the ’MODEL’ part of the parameter file. For ASREML, either the relationship could be saved as
"*.grm" or its generalized inverse as "*.giv".

Author(s)

Valentin Wimmer

References

Meyer, K. (2006) WOMBAT - A tool for mixed model analyses in quantitative genetics by REML,
J. Zhejinag Uni SCIENCE B 8: 815-821.

Gilmour, A., Cullis B., Welham S., and Thompson R. (2000) ASREML. program user manual.
NSW Agriculture, Orange Agricultural Institute, Forest Road, Orange, Australia .

Examples

Not run:
example with 9 individuals
id <- 1:9
par1 <- c(0,0,0,0,1,1,1,4,7)
par2 <- c(0,0,0,0,2,3,2,5,8)
gener <- c(0,0,0,0,1,1,1,2,3)
ped <- create.pedigree(id,par1,par2,gener)
gp <- create.gpData(pedigree=ped)

A <- kin(ped,ret="add")
write.relationshipMatrix(A,type="ginv")

End(Not run)

write.vcf Prepare genotypic data in vcf-Format

Description

Create vcf-file for miscellaneous applications. Within the package it is used to write files for beagle
usage.

Usage

write.vcf(gp, file, unphased=TRUE)

[.GenMap 61

Arguments

gp gpData object with elements geno and map

file character. Filename for writing the file.

unphased logical. The default is TRUE. Than the seperator between the alleles is "/",
and the possible codings are "0/0" for 0 in the genotype matrix, "0/1" for 1
and "1/1" for 2. For getting a phased output, use unphased=FALSE. Than the
seperator is "|". For hetercygous genotypes you have to change the 1 to -1 if
you like to get the coding "1|0", So posible codings in this case are "0|0" for
0 in the genotype matrix, "0|1" for 1, "1|0" for -1 and "1|1" for 2.

Details

The function writes a vcf-file. The format of the output is "GT". Other formats are not supported.

Value

No value is returned. Function creates files [prefix]ingput.bgl with genotypic data in Beagle
input format and [prefix]marker.txt with marker information used by Beagle.

Author(s)

Hans-Juergen Auinger

See Also

read.vcf2matrix, codeGeno

Examples

map <- data.frame(chr=c(1,1,1,1,1,2,2,2,2),pos=1:9)
geno <- matrix(sample(c(0,1,2,NA),size=10*9,replace=TRUE),nrow=10,ncol=9)
colnames(geno) <- rownames(map) <- paste("SNP",1:9,sep="")
rownames(geno) <- paste("ID",1:10+100,sep="")

gp <- create.gpData(geno=geno,map=map)
gp1 <- discard.markers(gp,rownames(map[map$chr!=1,]))
Not run: write.vcf(gp1,prefix="test")

[.GenMap Extract or replace part of map data.frame

Description

Extract or replace part of an object of class GenMap.

62 [.relationshipMatrix

Usage

S3 method for class 'GenMap'
x[...]

Arguments

x object of class ”GenMap”

... indices

Examples

Not run:
data(maize)
head(maize$map)

End(Not run)

[.relationshipMatrix Extract or replace part of relationship matrix

Description

Extract or replace part of an object of class relationshipMatrix.

Usage

S3 method for class 'relationshipMatrix'
x[...]

Arguments

x object of class ”relationshipMatrix”

... indices

Examples

Not run:
data(maize)
U <- kin(codeGeno(maize),ret="realized")
U[1:3,1:3]

End(Not run)

Index

∗Topic IO
write.relationshipMatrix, 59

∗Topic \textasciitildekwd1
plot.LDdf, 38
plot.LDmat, 39

∗Topic \textasciitildekwd2
plot.LDdf, 38
plot.LDmat, 39

∗Topic hplot
LDDist, 30
LDMap, 31
manhattanPlot, 33
plot.pedigree, 40
plot.relationshipMatrix, 41
plotGenMap, 42
plotNeighbourLD, 44

∗Topic manip
add.individuals, 3
add.markers, 4
codeGeno, 6
create.gpData, 10
create.pedigree, 13
discard.individuals, 18
discard.markers, 19
gpData2data.frame, 22
write.beagle, 57
write.plink, 58
write.vcf, 60

∗Topic methods
summary.cvData, 51
summary.gpData, 52
summary.gpMod, 53
summary.LDdf, 53
summary.pedigree, 54
summary.relationshipMatrix, 55

[.GenMap, 61
[.relationshipMatrix, 62

add.individuals, 3, 5, 18, 19
add.markers, 3, 4, 18, 19

BLR, 15, 25

codeGeno, 6, 12, 21, 57, 61
create.gpData, 10, 18, 19, 21, 23, 43, 56
create.pedigree, 13, 41, 49
cross2gpData (gpData2cross), 20
crossVal, 14, 26, 35, 52

discard.individuals, 3, 18, 19
discard.markers, 5, 18, 19

gpData2cross, 20
gpData2data.frame, 12, 22
gpMod, 24, 46, 53

kin, 26, 27

LDDist, 30, 32, 37, 39, 40
LDheatmap, 32
LDMap, 31, 31, 37, 40

manhattanPlot, 33
matrix, 47, 48
MME, 34

pairwiseLD, 31, 32, 36, 39, 40, 45, 54, 59
plot.GenMap (plotGenMap), 42
plot.LDdf, 38
plot.LDmat, 39
plot.pedigree, 14, 40, 49
plot.relationshipMatrix, 29, 41
plotGenMap, 39, 40, 42, 45
plotNeighbourLD, 39, 40, 44
points, 33
predict.gpMod, 45
print.summary.cvData (summary.cvData),

51
print.summary.gpData (summary.gpData),

52
print.summary.gpMod (summary.gpMod), 53

63

64 INDEX

print.summary.gpModList
(summary.gpMod), 53

print.summary.pedigree
(summary.pedigree), 54

print.summary.relationshipMatrix
(summary.relationshipMatrix),
55

read.cross, 21
read.vcf2list, 47
read.vcf2matrix, 48, 61
regress, 25, 35
reshape, 23

simul.pedigree, 41, 49, 51
simul.phenotype, 49, 50
summary.cvData, 17, 51
summary.gpData, 12, 52
summary.gpMod, 53
summary.gpModList (summary.gpMod), 53
summary.LDdf, 53
summary.LDmat (summary.LDdf), 53
summary.pedigree, 54
summary.relationshipMatrix, 55
summaryGenMap, 56

title, 33

write.beagle, 57
write.plink, 58
write.relationshipMatrix, 59
write.vcf, 47, 48, 60

	add.individuals
	add.markers
	codeGeno
	create.gpData
	create.pedigree
	crossVal
	discard.individuals
	discard.markers
	gpData2cross
	gpData2data.frame
	gpMod
	kin
	LDDist
	LDMap
	manhattanPlot
	MME
	pairwiseLD
	plot.LDdf
	plot.LDmat
	plot.pedigree
	plot.relationshipMatrix
	plotGenMap
	plotNeighbourLD
	predict.gpMod
	read.vcf2list
	read.vcf2matrix
	simul.pedigree
	simul.phenotype
	summary.cvData
	summary.gpData
	summary.gpMod
	summary.LDdf
	summary.pedigree
	summary.relationshipMatrix
	summaryGenMap
	write.beagle
	write.plink
	write.relationshipMatrix
	write.vcf
	[.GenMap
	[.relationshipMatrix
	Index

