AD2700/ADA2700 User's Manual

MMMm Ital

Real Time Devices, Inc.

"Accessing the Analog World"

■ AD2700/ADA2700 **■** User's Manual

REAL TIME DEVICES, INC. 820 North University Drive Post Office Box 906 State College, Pennsylvania 16804 USA Phone: (814) 234-8087 FAX: (814) 234-5218

Published by Real Time Devices, Inc. 820 N. University Dr. P.O. Box 906 State College, PA 16804 USA

Copyright © 1992 by Real Time Devices, Inc. All rights reserved

Printed in U.S.A.

Table of Contents

INTRODUCTION	<i>i</i> -1
Analog-to-Digital Conversion	i_3
Digital-to-Analog Conversion (ADA2700 Only)	<i>i</i> -3
8254 Timer/Counter	<i>i</i> -3
Digital I/O	
What Comes With Your Board	<i>i-</i> 4
Board Accessories	
Applications Software and Toolkit	<i>i-</i> 4
Hardware Accessories	<i>i-</i> 4
Using This Manual	<i>i-</i> 4
When You Need Help	<i>i-</i> 4
CHAPTER 1 — BOARD SETTINGS	1-1
Factory-Configured Switch and Jumper Settings	
P3 — Analog Input Voltage Range (Factory Setting: 10 Volts)	
P4 — Analog Input Voltage Polarity (Factory Setting: +/-)	
P5 — DMA Request Channel (Factory Setting: Disabled)	
P6 — DMA Acknowledge Channel (Factory Setting: Disabled)	
P7 — 8254 Timer/Counter Clock Sources (Factory Settings: CLK1-OSC, CLK2-OT1, PCK)	
P8 Interrupt Source and Channel (Factory Setting: Jumpers on OT2 & G; Interrupt Chs Disabled)	1-6
P10 — DAC 1 Output Voltage Range (Factory Setting: +5 to -5 volts)	1-7
P11 — DAC 2 Output Voltage Range (Factory Setting: +5 to -5 volts)	1-8
P13 — Single-Ended/Differential Analog Inputs (Factory Setting: Single-Ended)	1-8
P14 — A/D Converter Status/External Gate 2 Monitor (Factory Setting: EOC (A/D Converter Status)).	1-9
P15 — A/D Data Word Bit State Set (Factory Setting: +/-)	1-9
S1 — Base Address (Factory Setting: 300 hex (768 decimal))	1-9
S2 — Buffer Bypass Switch (Factory Setting: OPEN (Not Bypassed))	1-10
Pull-up/Pull-down Resistors on Digital I/O Lines Gm, Gain Multiplier Circuitry	1-11
CHAPTER 2 — BOARD INSTALLATION	2-1
Board Installation	2-3
External I/O Connections	2-3
Connecting the Analog Input Pins	2-4
Connecting the Trigger In and Trigger Out Pins, Cascading Boards	2-6
Connecting the Analog Outputs (ADA2700 Only)	2-6
Connecting the Timer/Counters and Digital I/O	2-6
Running the 2700DIAG Diagnostics Program	2-6
CHAPTER 3 — HARDWARE DESCRIPTION	3-1
A/D Conversion Circuitry	
Analog Inputs	3-3
A/D Converter	
Data Transfer	3-4
D/A Converters (ADA2700 Only)	

Timer/Counters	3-4
Digital I/O, Programmable Peripheral Interface	3-5
Interrupts	
CHAPTER 4 — BOARD OPERATION AND PROGRAMMING	
Defining the I/O Map	
BA + 0: Read Data/Start Convert (Read/Write)	
BA + 2: Read Status/Reset (Read/Write)	
BA + 4: Channel/Gain/Board Functions Select (Read/Write)	
BA + 6: Reserved	
BA + 8: D/A Converter 1 (ADA2700 DAC1) (Write Only)	4-5
BA + 10: D/A Converter 2 (ADA2700 DAC2) (Write Only)	4-5
BA + 12: Reserved	4-5
BA + 14: Reserved	4-5
BA + 16: PPI Port A — Digital I/O (Read/Write)	4-6
BA + 18: PPI Port B — Digital I/O (Read/Write)	4-6
BA + 20: PPI Port C — Digital I/O (Read/Write)	4-6
BA + 22: 8255 PPI Control Word (Write Only)	4-6
BA + 24: 8254 Timer/Counter 0 (Read/Write)	
BA + 26: 8254 Timer/Counter 1 (Read/Write)	4-8
BA + 28: 8254 Timer/Counter 2 (Read/Write)	4-8
BA + 30: 8254 Control Word (Write Only)	
Programming the 2700	4-9
Clearing and Setting Bits in a Port	
A/D Conversions	
Initializing the Board	
Selecting a Channel	
Setting the Gain	4-11
Enabling and Disabling the External Trigger	
Enabling and Disabling IRQ	
Conversion Modes/Triggering	
Starting an A/D Conversion	
Monitoring Conversion Status (DMA Done or End-of-Convert)	
Reading the Converted Data	4-13
Programming the Pacer Clock	
Interrupts	
What Is an Interrupt?	4-15
Interrupt Request Lines	
8259 Programmable Interrupt Controllers	
Interrupt Mask Registers (IMR)	
End-of-Interrupt (EOI) Command	4-16
What Exactly Happens When an Interrupt Occurs?	
Using Interrupts in Your Programs	
Writing an Interrupt Service Routine (ISR)	
Saving the Startup Interrupt Mask Register (IMR) and Interrupt Vector	
Restoring the Startup IMR and Interrupt Vector	
Common Interrupt Mistakes	
Data Transfers Using DMA	
Choosing a DMA Channel	
Allocating a DMA Buffer	
Calculating the Page and Offset of a Buffer	
Setting the DMA Page Register	
The DMA Controller	4-21

DMA Single Mask Register	
DMA Mode Register	4-22
Programming the DMA Controller	4-22
Programming the 2700 for DMA	4-22
Monitoring for DMA Done	4-23
Common DMA Problems	4-23
D/A Conversions	4-23
Timer/Counters	4-74
Digital I/O	4-25
Example Programs and Flow Diagrams	4-26
C and Pascal Programs	4-26
Flow Diagrams	4_27
Single Convert Flow Diagram (Figure 4-4)	4-27
DMA Flow Diagram (Figure 4-5)	
Interrupts Flow Diagram (Figure 4-6)	
D/A Conversion Flow Diagram (ADA2700 Only) (Figure 4-7)	
CHAPTER 5 — CALIBRATION	
Required Equipment	5_3
A/D Calibration	5-4
Unipolar Calibration	5-4
Bipolar Calibration	
Bipolar Range Adjustments: -5 to +5 Volts	5-5
Bipolar Range Adjustments: -10 to +10 Volts	5-6
D/A Calibration (ADA2700)	
APPENDIX A — AD2700/ADA2700 SPECIFICATIONS	
APPENDIX B — P2 AND P12 CONNECTOR PIN ASSIGNMENTS	B-1
APPENDIX C — COMPONENT DATA SHEETS	C-1
APPENDIX D — CONFIGURING THE 2700 FOR SIGNAL*MATH	D-1
APPENDIX E — CONFIGURING THE 2700 FOR ATLANTIS	E-1
APPENDIX F — WARRANTY	

iv

LIST OF ILLUSTRATIONS

1-1	Board Layout Showing Factory-Configured Settings	
1-2	Analog Input Voltage Range Jumper, P3	
1-3	Analog Input Voltage Polarity Jumper, P4	
1-4	DMA Request Channel Jumper, P5	
1-5	DMA Acknowledge Channel Jumper, P6	
1-6	8254 Timer/Counter Clock Source Jumpers, P7	
1-7	8254 Timer/Counter Circuit Block Diagram	
1-8	Interrupt Channel Jumper, P8	
1-9	Pulling Down the Interrupt Request Line	
1-10	DAC 1 Output Voltage Range Jumper, P10	
1-11	DAC 2 Output Voltage Range Jumper, P11	
1-12	Single-Ended/Differential Analog Input Signal Type Jumpers, P13	
1-13	A/D Converter Status/External Gate 2 Monitor Jumper, P14	
1-14	A/D Data Word Bit State Set Jumper, P15	
1-15	Base Address Switch, S1	
1-16	Port C Buffer Circuitry	
1-17	Pull-up/Pull-down Resistor Circuitry	
1-18	Adding Pull-ups and Pull-downs to Digital I/O Lines	
1-19	Gain Circuitry and Formulas for Calculating Gm and f	1-14
1-20	Diagram for Removal of Solder Short	
2-1	P2 I/O Connector and P12 On-board Connector Pin Assignments	
2-2	Single-Ended Input Connections	2-5
2-3	Differential Input Connections	2-5
2-4	Cascading Two Boards for Simultaneous Sampling	
3-1	AD2700/ADA2700 Block Diagram	
3-2	8254 Timer/Counter Circuit Block Diagram	
4-1	A/D Conversion Timing Diagram, All Modes	
4-2	Pacer Clock Block Diagram	4-14
4-3	8254 Timer/Counter Circuit Block Diagram	
4-4	Single Conversion Flow Diagram	4-27
4-5	DMA Flow Diagram	4-28
4-6	Interrupts Flow Diagram	
4-7	D/A Conversion Flow Diagram	
5-1	Board Layout	

vi

INTRODUCTION

i-2

The AD2700 and ADA2700 Advanced Industrial Control boards turn your IBM[®] PC/AT or compatible into a high-speed, high-performance data acquisition and control system. Installed within a single expansion slot in the computer, each 2700 series board features:

- 8 differential or 16 single-ended analog input channels,
- 12-bit, 5 microsecond analog-to-digital converter with 150 kHz throughput,
- $\pm 5, \pm 10$, or 0 to +10 volt input range,
- Programmable gains of 1, 2, 4, and 8 with an on-board gain multiplier circuit,
- Three conversion modes,
- DMA transfer,
- Trigger in and trigger out for external triggering or cascading boards,
- 16-bit AT bus compatibility,
- · 24 TTL/CMOS buffered 8255-based digital I/O lines with optional pull-up or pull-down resistors,
- Three 16-bit timer/counters (two cascaded for pacer clock),
- Two 12-bit digital-to-analog output channels with dedicated grounds (ADA2700 only),
- $\pm 5, \pm 10, 0$ to +5, or 0 to +10 volt analog output range (ADA2700 only),
- Turbo Pascal and Turbo C source code; diagnostics program.

The following paragraphs briefly describe the major functions of the board. A more detailed discussion of board functions is included in Chapter 3, *Hardware Operation*, and Chapter 4, *Board Operation and Programming*. The board setup is described in Chapter 1, *Board Settings*.

Analog-to-Digital Conversion

The analog-to-digital (A/D) circuitry receives up to 8 differential or 16 single-ended analog inputs and converts these inputs into 12-bit digital data words which can then be read and/or transferred to PC memory. The board is factory set for single-ended input channels.

The analog input voltage range is jumper-selectable for bipolar ranges of -5 to +5 volts or -10 to +10 volts, or a unipolar range of 0 to +10 volts. The board is factory set for -5 to +5 volts. Overvoltage protection to \pm 35 volts is provided at the inputs. The high-performance A/D converter supports fast-settling, software-programmable gains of 1, 2, 4, and 8 with on-board gain multiplier circuitry so that you can customize the input gain.

A/D conversions are performed in 5 microseconds, and the maximum throughput rate is 150 kHz. Conversions are controlled through software, by an on-board pacer clock, or by an external trigger brought onto the board through the I/O connector.

The converted data can be transferred through the PC data bus to PC memory in one of two ways: by using the microprocessor or by using direct memory access (DMA). The mode of transfer is software-selectable and the DMA channel is chosen by jumper settings on the board. The PC data bus is used to read and/or transfer data to PC memory. In the DMA transfer mode, you can make continuous transfers directly to PC memory without going through the processor.

Digital-to-Analog Conversion (ADA2700 Only)

The digital-to-analog (D/A) circuitry on the ADA2700 features two independent 12-bit analog output channels with individually jumper-selectable output ranges of -5 to +5 volts, -10 to +10 volts, 0 to +5 volts, or 0 to +10 volts. Data is programmed into the D/A converter and a conversion is automatically triggered for a channel through a single write operation. Access through DMA is not available.

8254 Timer/Counter

An 8254 programmable interval timer contains three 16-bit, 8-MHz timer/counters to support a wide range of timing and counting functions. Two of the timer/counters are cascaded and can be used internally for the pacer clock. The third is available for counting applications, or it can be cascaded to the other two timer/counters.

Digital I/O

The 2700 has 24 TTL/CMOS-compatible digital I/O lines which can be directly interfaced with external devices or signals to sense switch closures, trigger digital events, or activate solid-state relays. These lines are provided by the on-board 8255 programmable peripheral interface chip. The 8255 can be operated in one of two modes: Mode 0 or Mode 1. To ensure high driving capacity, CMOS buffers are installed. TTL buffers are available on request.

Pads for installing and activating pull-up or pull-down resistors are included on the board. Installation procedures are given near the end of Chapter 1, *Board Settings*.

What Comes With Your Board

You receive the following items in your 2700 package:

- · AD2700 or ADA2700 interface board
- · Software and diagnostics diskette with Turbo Pascal and Turbo C source code
- User's manual

If any item is missing or damaged, please call Real Time Devices' Customer Service Department at (814) 234-8087. If you require service outside the U.S., contact your local distributor.

Board Accessories

In addition to the items included in your 2700 package, Real Time Devices offers a full line of software and hardware accessories. Call your local distributor or our main office for more information about these accessories and for help in choosing the best items to support your board's application.

Application Software and Drivers

Our custom application software packages provide excellent data acquisition and analysis support. Use SIGNAL*MATH for integrated data acquisition and sophisticated digital signal processing and analysis, or ATLANTIS for real-time monitoring and data acquisition. rtdLinx and rtdLinx/labLinx drivers provide full-featured high level interfaces between the 2700 and custom or third party software, including LABTECH NOTEBOOK, NOTEBOOK/XE, and LT/CONTROL. rtdLinx source code is available for a one-time fee. Our Pascal and C Programmer's Toolkit provides routines with documented source code for custom programming.

Hardware Accessories

Hardware accessories for the 2700 include the MX32 analog input expansion board which can expand a single input channel on your 2700 to 16 differential or 32 single-ended input channels, MR series mechanical relay output boards, OP series optoisolated digital input boards, the TS16 temperature sensor board, the TB50 terminal board and XB50 prototype/terminal board for easy signal access and prototype development, the EX-XT and EX-AT extender boards for simplified testing and debugging of prototype circuitry, and XT50 twisted pair wire flat ribbon cable assembly for external interfacing.

Using This Manual

This manual is intended to help you install your new board and get it running quickly, while also providing enough detail about the board and its functions so that you can enjoy maximum use of its features even in the most complex applications. We assume that you already have an understanding of data acquisition principles and that you can customize the example software or write your own applications programs.

When You Need Help

This manual and the example programs in the software package included with your board provide enough information to properly use all of the board's features. If you have any problems installing or using this board, contact our Technical Support Department, (814) 234-8087, during regular business hours, eastern standard time or eastern daylight time, or send a FAX requesting assistance to (814) 234-5218. When sending a FAX request, please include your company's name and address, your name, your telephone number, and a brief description of the problem.

CHAPTER 1

BOARD SETTINGS

The AD2700 and ADA2700 boards have jumper and switch settings you can change if necessary for your application. The 2700 is factory-configured with the most often used settings. The factory settings are listed and shown on a diagram in the beginning of this chapter. Should you need to change these settings, use these easy-to-follow instructions before you install the board in your computer.

Note that DIP switch S2 is provided to bypass the Port C buffers and allow Mode 1 operation of the 8255. Also note that by installing resistor packs at the four locations, and soldering jumpers in the desired locations in the associated pads, you can configure your digital I/O lines to be pulled up or pulled down. This procedure is explained near the end of this chapter.

By installing components at R1, R2, TR4, and C46, you can add your own gain multiplier to the software programmable binary gains of 1, 2, 4, and 8. The gain multiplier circuitry is described at the end of this chapter.

1-2

Factory-Configured Switch and Jumper Settings

Table 1-1 lists the factory settings of the user-configurable jumpers and switch on the AD2700 and ADA2700 boards. Figure 1-1 (on the next page) shows the board layout and the locations of the factory-set jumpers. The following paragraphs explain how to change the factory settings. Pay special attention to the setting of S1, the base address switch, to avoid address contention when you first use your board in your system.

Table 1-1 — Factory Settings			
Switch/ Jumper Function Controlled		Factory Settings (Jumpers Installed)	
P3	Sets the analog input voltage range	10 volts	
P4	Sets the analog input voltage polarity	Bipolar (-5 to +5 volts) (must be the same as P15)	
P5	Sets the DMA request (DRQ) channel	Disabled	
P6	Sets the DMA acknowledge (DACK) channel	Disabled	
P 7	Sets the clock sources for the 8254 timer/counters (TC0-TC2); connects TC1 out (PCK) to A/D trigger	Jumpers installed on CLK1-OSC, CLK2-OT1, & PCK	
P8	Connects one of four interrupt sources to an interrupt channel; pulls tri-state buffer to ground (G) for multiple interrupt applications	Jumpers installed on G (ground for buffer) & OT2; interrupt channels disabled	
P10	Sets the D/A output voltage range for DAC 1	+5 to -5 volts	
P11	Sets the D/A output voltage range for DAC 2	+5 to -5 volts	
P13	Selects single-ended or differential analog input type	Single-ended (jumpers installed on three SE pins)	
P14	Selects the A/D converter status or the external gate of timer/counter 2 to be available for monitoring	EOC (A/D converter status)	
P15	Sets the state of the top 4 bits (the bits not used by the 12-bit converter) of the 16-bit A/D output word	Bipolar (must be the same as P4)	
S1	Sets the base address	300 hex (768 decimal)	
S2	Bypasses 8255 Port C buffers for Mode 1 operation	Open (buffers not bypassed)	

P3 — Analog Input Voltage Range (Factory Setting: 10 Volts)

This header connector, shown in Figure 1-2, sets the analog input voltage range for 10 or 20 volts. Note that if the jumper is installed on 20V, then P4 can only be set for bipolar (+/-). The input ranges allowed by the 2700 are $\pm 5, \pm 10$, and 0 to ± 10 volts.

P3	20V 10V		
	•	•	
	•	•	

Fig. 1-2 — Analog Input Voltage Range Jumper, P3

P4 — Analog Input Voltage Polarity (Factory Setting: +/-)

This header connector, shown in Figure 1-3, sets the analog input voltage polarity for unipolar (+) or bipolar (+/-). If the jumper on P3 is installed on 20V, then P4 can only be set for bipolar (+/-). The input ranges allowed by the 2700 are $\pm 5, \pm 10$, and 0 to ± 10 volts. NOTE: P4 and P15 must be set the same for proper board operation.

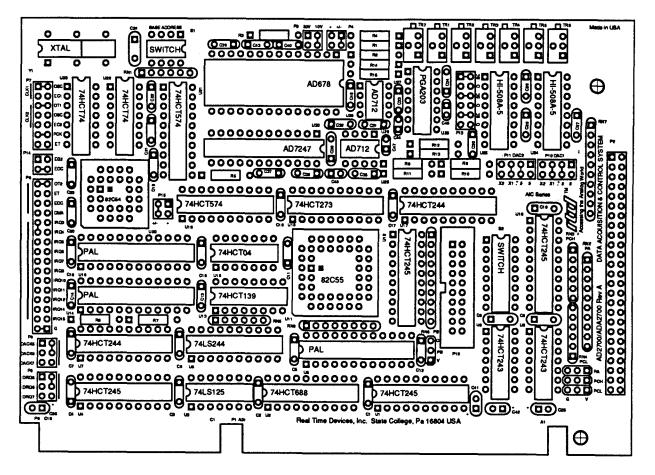


Fig. 1-1 — Board Layout Showing Factory-Configured Settings

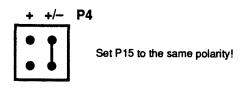


Fig. 1-3 — Analog Input Voltage Polarity Jumper, P4

P5 — DMA Request Channel (Factory Setting: Disabled)

This header connector, shown in Figure 1-4, lets you select channel 5, 6, or 7 for DMA transfers. This line, the DMA request line (DRQ), must be set to the same channel as the DACK line on P6. The factory setting is DMA disabled. Note that if any other device in your system is already using your selected DMA channel, channel contention will result, causing erratic operation.

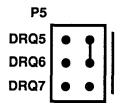


Fig. 1-4 --- DMA Request Channel Jumper, P5

P6 — DMA Acknowledge Channel (Factory Setting: Disabled)

This header connector, shown in Figure 1-5, lets you select channel 5, 6, or 7 for DMA transfers. This line, the DMA acknowledge line (DACK), must be set to the same channel as the DRQ line on P5. The factory setting is DMA disabled. Note that if any other device in your system is already using your selected DMA channel, channel contention will result, causing erratic operation.

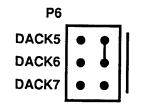


Fig. 1-5 — DMA Acknowledge Channel Jumper, P6

P7 — 8254 Timer/Counter Clock Sources (Factory Settings: CLK1-OSC, CLK2-OT1, PCK)

This header connector, shown in Figure 1-6, lets you select the clock sources for the 8254 timer/counters, TC0, TC1, and TC2. TC0 and TC1 are cascaded to form the pacer clock. You must install two or three jumpers in order to properly use the timer/counter features, including the pacer clock. Figure 1-7 shows a block diagram of the timer/ counter circuitry to help you in making these connections.

The clock source for TC0 and TC1 is selected by placing a jumper on OSC or EC1 on CLK1 (the two pairs of pins at the top of the header). OSC is the on-board 8-MHz clock and EC1 is an external clock source you connect through the external I/O connector (P2-45).

Below the CLK1 pins are three pairs of pins labeled CLK2. These pins are used to select the clock source for TC2. OT1 connects the output of TC1 to the clock pin of TC2. Installing a jumper here cascades all three timer/ counters, a feature necessary when using SIGNAL*MATH or ATLANTIS software (see Appendixes D and E). OSC is the on-board 8-MHz clock, and EC2 is connected to the same external clock source as EC1 (P2-45).

The last two pins on this header, PCK and ET, let you use the pacer clock (PCK) or an external trigger (ET) to trigger A/D conversions. A jumper must be placed on PCK in order to use the pacer clock (output from TC1). Or, you can place the jumper across ET and connect any external trigger to P2-39 to trigger the A/D converter.

NOTES: You must disconnect the pacer clock by removing the PCK jumper and install the jumper of ET whenever you use the external trigger line. You must have one jumper installed on one of the two CLK1 selections and one jumper installed on one of the three CLK2 selections.

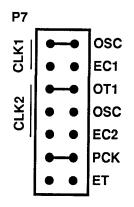


Fig. 1-6 — 8254 Timer/Counter Clock Source Jumpers, P7

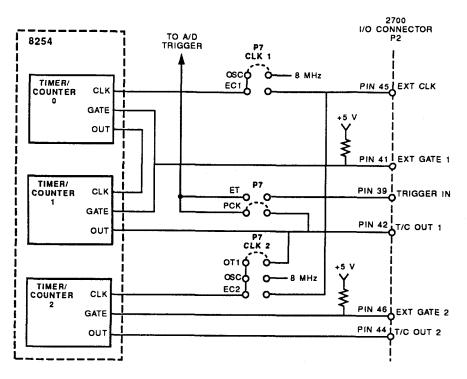


Fig. 1-7 — 8254 Timer/Counter Circuit Block Diagram

P8 — Interrupt Source and Channel (Factory Setting: Jumpers on OT2 & G; Interrupt Channels Disabled)

This header connector, shown in Figure 1-8, lets you connect any one of the four interrupt sources to any of 11 interrupt channels, IRQ9 (highest priority channel) through IRQ12, IRQ14, IRQ15, and then back to IRQ3 through

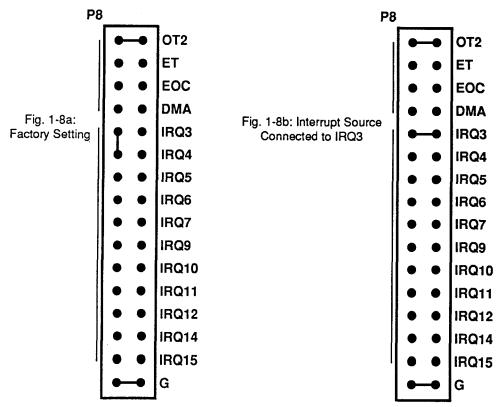


Fig. 1-8 — Interrupt Channel Jumper, P8

IRQ7 (lowest priority). Chapter 4 explains interrupt channel prioritization in detail. To activate a channel, you must install a jumper horizontally across the desired IRQ channel. Figure 1-8a shows the factory setting; Figure 1-8b shows the interrupt source connected to IRQ3.

At the top of the header, you can select any one of four signal sources to generate an interrupt. An interrupt source is chosen by placing a jumper across the desired pair of pins. The interrupt sources available are the the output of timer/counter 2 (OT2), external trigger (ET), A/D end-of-convert (EOC), and DMA done (DMA).

When jumpered, the bottom pair of pins on P8, labeled G, connects a 1 kilohm pull-down resistor to the output of a high-impedance tri-state driver which carries the interrupt request signal. This pull-down resistor drives the interrupt request line low whenever interrupts are not active. Whenever an interrupt request is made, the tri-state buffer is enabled, forcing the output high and generating an interrupt. You can monitor the interrupt status through bit 2 in the status word (I/O address location BA + 2). After the interrupt has been serviced, the reset command returns the IRQ line low, disabling the tri-state buffer, and pulling the output low again. Figure 1-9 shows this circuit. Because the interrupt request line is driven low only by the pull-down resistor, you can have two or more boards which share the same IRQ channel. You can tell which board issued the interrupt request by monitoring each board's IRQ status bit.

NOTE: When you use multiple boards that share the same interrupt, only one board should have the G jumper installed. The rest should be disconnected. Whenever you operate a single board, the G jumper should be installed.

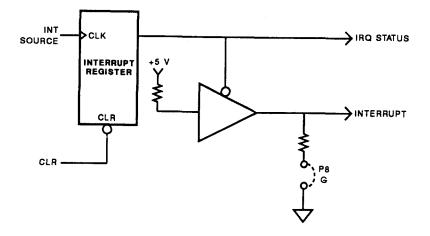


Fig. 1-9 — Pulling Down the Interrupt Request Line

P10 — DAC 1 Output Voltage Range (Factory Setting: +5 to -5 volts)

This header connector, shown in Figure 1-10, sets the output voltage range for DAC 1 at 0 to $+5, \pm 5, 0$ to +10, or ± 10 volts. Two jumpers must be installed, one to select the range and one to select the multiplier. The two rightmost jumpers select the range, bipolar (± 5) or unipolar (5). The two leftmost jumpers select the multiplier, X2 or X1. When a jumper is on the X2 multiplier pins, the range values become ± 10 and 10. The table below shows the four possible combinations of jumper settings, and the diagram shows the ± 5 volt bipolar setting. This header does not have to be set the same as P11.

	Jumpers (Left to Right)			
Voltage Range	X2	X1	±5	5
-5 to +5 volts	OFF	ON	ON	OFF
0 to +5 volts	OFF	ON	OFF	ON
-10 to +10 volts	ON	OFF	ON	OFF
0 to +10 volts	ON	OFF	OFF	ON

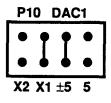


Fig. 1-10 — DAC 1 Output Voltage Range Jumper, P10

P11 — DAC 2 Output Voltage Range (Factory Setting: +5 to -5 volts)

This header connector, shown in Figure 1-11, sets the output voltage range for DAC 2 at 0 to +5, ± 5 , 0 to +10, or ± 10 volts. Two jumpers must be installed, one to select the range and one to select the multiplier. The two rightmost jumpers select the range, bipolar (± 5) or unipolar (5). The two leftmost jumpers select the multiplier, X2 or X1. When a jumper is on the X2 multiplier pins, the range values become ± 10 and 10. The table below shows the four possible combinations of jumper settings, and the diagram shows the ± 5 volt bipolar setting. This header does not have to be set the same as P10.

Voltage Range	Jumpers (Left to Right)			
and Polarity	X2	X1	±5	5
-5 to +5 volts	OFF	ON	ON	OFF
0 to +5 volts	OFF	ON	OFF	ON
-10 to +10 volts	ON	OFF	ON	OFF
0 to +10 volts	ON	OFF	OFF	ON

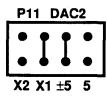


Fig. 1-11 — DAC 2 Output Voltage Range Jumper, P11

P13 — Single-Ended/Differential Analog Inputs (Factory Setting: Single-Ended)

This header connector, shown in Figure 1-12, configures the 2700 for 8 differential or 16 single-ended analog input channels. When operating in the single-ended mode, three jumpers must be installed across the SE pins. When operating in the differential mode, two jumpers must be installed across the D pins. DO NOT install jumpers across both SE and D pins at the same time!

••	SЕ
• •	0
	SE
• •	۵
• - •	SE
P13	•

Fig. 1-12 — Single-Ended/Differential Analog Input Signal Type Jumpers, P13

P14 — A/D Converter Status/External Gate 2 Monitor (Factory Setting: EOC (A/D Converter Status))

This header connector, shown in Figure 1-13, lets you select either the A/D converter status or the external gate input of timer/counter 2 to be available for monitoring at bit 3 of the status word (BA + 2). The A/D converter status provides a direct read of the A/D converter's availability for starting conversions. This line goes low when a conversion starts, then goes high when the conversion is completed. Chapter 4 provides a more detailed explanation of this status signal.

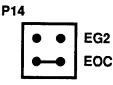


Fig. 1-13 — A/D Converter Status/External Gate 2 Monitor Jumper, P14

P15 — A/D Data Word Bit State Set (Factory Setting: +/-)

This header connector, shown in Figure 1-14, sets the state of the unused four bits in the 16-bit A/D data word. This header ensures that these four topmost bits are set at 0 for unipolar conversions and at the same state as the MSB of the 12-bit A/D converted data for bipolar conversions. Chapter 4, BA + 0, explains this in more detail. NOTE: P15 and P4 must be set the same for proper board operation.

Fig. 1-14 — A/D Data Word Bit State Set Jumper, P15

S1 — Base Address (Factory Setting: 300 hex (768 decimal))

One of the most common causes of failure when you are first trying your board is address contention. Some of your computer's I/O space is already occupied by internal I/O and other peripherals. When the 2700 board attempts to use I/O address locations already used by another device, contention results and the board does not work.

To avoid this problem, the 2700 has an easily accessible four-position DIP switch, S1, which lets you select any one of 16 starting addresses in the computer's I/O. Should the factory setting of 300 hex (768 decimal) be unsuitable for your system, you can select a different base address simply by setting the switches to any one of the values listed in Table 1-2. The table shows the switch settings and their corresponding decimal and hexadecimal (in parentheses) values. Make sure that you verify the order of the switch numbers on the switch (1 through 4) before setting them. When the switches are pulled forward, they are OPEN, or set to logic 1, as labeled on the DIP switch package. When you set the base address for your board, record the value in the table inside the back cover. Figure 1-15 shows the DIP switch set for a base address of 300 hex (768 decimal).

Base Address Decimal / (Hex)	Switch Setting 4 3 2 1	Base Address Decimal / (Hex)	Switch Setting 4 3 2 1
512 / (200)	0000	768 / (300)	1000
544 / (220)	0001	800 / (320)	1001
576 / (240)	0010	832 / (340)	1010
608 / (260)	0011	864 / (360)	1011
640 / (280)	0100	896 / (380)	1100
672 / (2A0)	0101	928 / (3A0)	1101
704 / (2C0)	0110	960 / (3C0)	1110
736 / (2E0)	0111	992 / (3E0)	1111

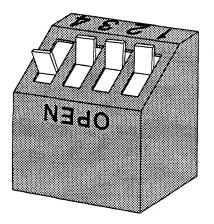


Fig. 1-15 - Base Address Switch, S1

S2 — Buffer Bypass Switch (Factory Setting: OPEN (Not Bypassed))

When operating the 8255 in Mode 1, the lines of Port C function as control lines, some as outputs and some as inputs. When using Mode 1, the Port C buffers must be removed and bypassed to allow the Port C lines to be individually set as inputs or outputs. Figure 1-16 shows the Port C buffers, and the following steps tell you how to configure the board for Mode 1 operation.

To remove buffering from Port C:

- 1. Close DIP switches 1 through 8 on S2.
- 2. Remove U8 from the board.
- 3. Remove U9 from the board.

CAUTION: Remember, whenever you close the switches, be sure to remove the buffers, U8 and U9, from the board. Failure to do so may damage the board.

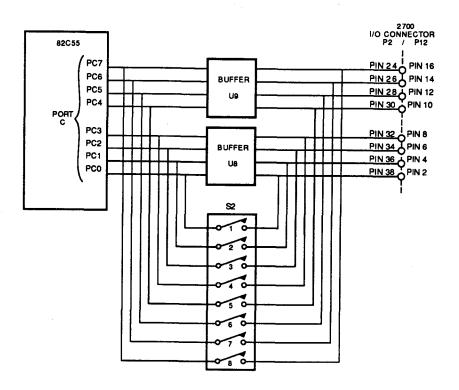


Fig. 1-16 — Port C Buffer Circuitry

Pull-up/Pull-down Resistors on Digital I/O Lines

The 8255 programmable peripheral interface provides 24 TTL/CMOS compatible digital I/O lines which can be interfaced with external devices. These lines are divided into four groups: eight Port A lines, eight Port B lines, four Port C Lower lines, and four Port C Upper lines. You can install and connect pull-up or pull-down resistors for any or all of these four groups of lines. You may want to pull lines up for connection to switches. This will pull the line high when the switch is disconnected. Or, you may want to pull lines down for connection to relays which control turning motors on and off. These motors turn on when the digital lines controlling them are high. The Port A and Port B lines of the 8255 automatically power up as inputs - which can float high - during the few moments before the board is first initialized. This can cause the external devices connected to these lines to operate erratically. By pulling these lines down, when the data acquisition system is first turned on, the motors will not switch on before the 8255 is initialized.

To use the pull-up/pull-down feature, you must first install 10 kilohm resistor packs in any or all of the four locations around the 20-pin P12 connector and near the bottom of the P2 I/O connector, labeled PA, PB, PCL, and PCH. PA and PB take 10-pin packs, and PCL and PCH take 6-pin packs. Figure 1-17 shows a blowup of the PA, PCL, and PCL, and PCH resistor pack locations. PB is located to the left of P12.

After the resistor packs are installed, you must connect them into the circuit as pull-ups or pull-downs. Locate the three-hole pads on the board near the resistor packs. They are labeled G (for ground) on one end and V (for +5V) on the other end. The middle hole is common. PA is for Port A, PB is for Port B, PCL is for Port C Lower, and PCH is for Port C Upper. Figure 1-17 shows these pads. To operate as pull-ups, solder a jumper wire between the common pin (middle pin of the three) and the V pin. For pull-downs, solder a jumper wire between the common pin (middle pin) and the G pin. Figure 1-18 shows Port A lines with pull-ups, Port C Lower with pull-downs, and Port C Upper with no resistors.

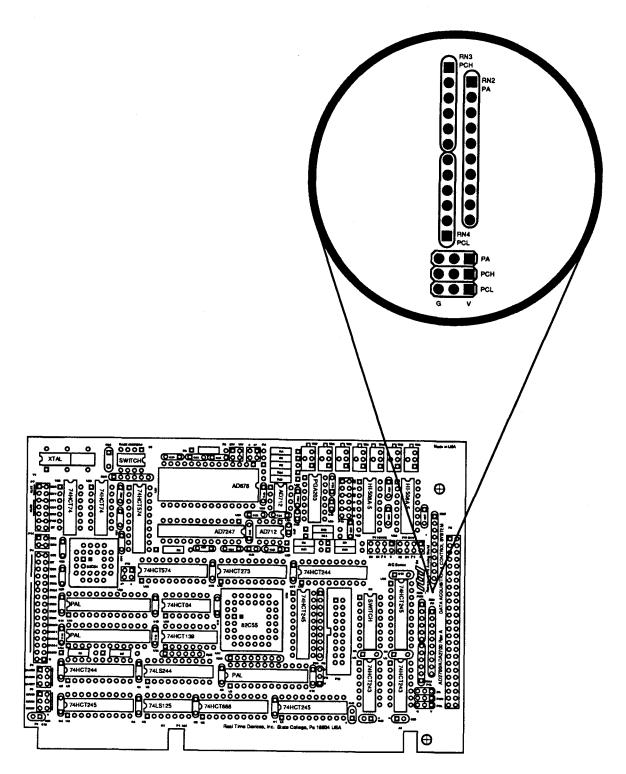


Fig. 1-17 — Pull-up/Pull-down Resistor Circuitry

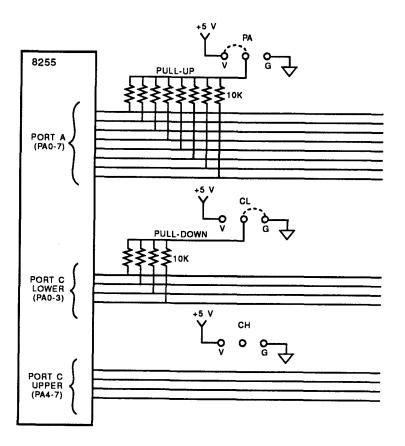


Fig. 1-18 — Adding Pull-ups and Pull-downs to Digital I/O Lines

Gm, Gain Multiplier Circuitry

The 2700 has software programmable binary gains of 1, 2, 4, and 8. A gain multiplier circuit, Gm, is provided so that you can easily configure special gain settings for a specific application. Note that when you use this feature and set up the board for a gain of other than 1, all of the input channels will operate only at your custom gain setting. In other words, if you install circuitry which gives you a gain multiplier of 10, then the four programmable gains available are 10, 20, 40, and 80.

Gm is derived by adding resistors R1 and R2, trimpot TR4, and capacitor C46, all located in the upper part, just to the right of center on the board. The resistors and trimpot combine to set the gain, as shown in the formula in Figure 1-19. Capacitor C46 is provided so that you can add low-pass filtering in the gain circuit. If your input signal is a slowly changing one and you do not need to measure it at a higher rate, you may want to add a capacitor at C46 in order to reduce the input frequency range and in turn reduce the noise on your input signal. The formula for setting the frequency is given in the diagram. Figure 1-19 shows how the Gm circuitry is configured.

As shown in Figure 1-19, a solder short must be removed from the board to activate the Gm circuitry. This short is located on the bottom side of the board under U27 (AD712 IC). Figure 1-20 shows the location of the solder short.

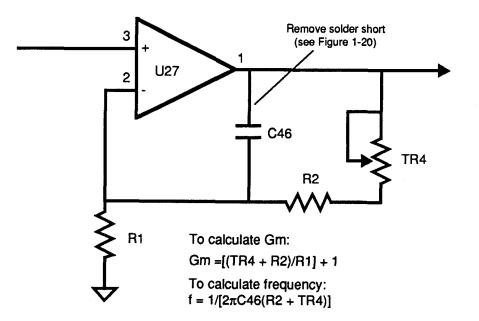


Fig. 1-19 — Gain Circuitry and Formulas for Calculating Gm and f

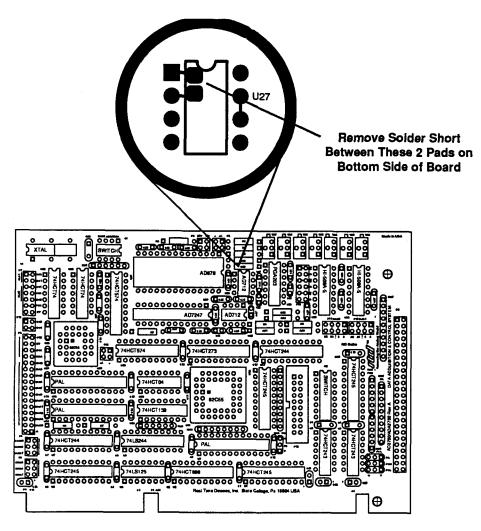


Fig. 1-20 — Diagram for Removal of Solder Short

CHAPTER 2

BOARD INSTALLATION

The 2700 board is easy to install in your PC/AT or compatible computer. This chapter tells you step-by-step how to install and connect the board.

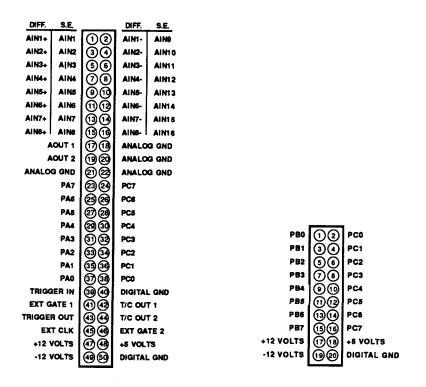
After you have installed the board and made all of your connections, you can turn your system on and run the 2700DIAG board diagnostics program included on your example software disk to verify that your board is working.

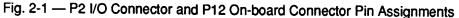
Board Installation

Keep the board in its antistatic bag until you are ready to install it in your computer. When removing it from the bag, hold the board at the edges and do not touch the components or connectors.

Before installing the board in your computer, check the jumper and switch settings. Chapter 1 reviews the factory settings and how to change them. If you need to change any settings, refer to the appropriate instructions in Chapter 1. Note that incompatible jumper settings can result in unpredictable board operation and erratic response.

To install the board:


- 1. Turn OFF the power to your AT computer.
- 2. Remove the top cover of the computer housing (refer to your owner's manual if you do not already know how to do this).
- 3. Select any unused expansion slot and remove the slot bracket.
- 4. Touch the metal housing of the computer to discharge any static buildup and then remove the board from its antistatic bag.
- 5. If you are using the 20-pin P12 connector for 8255 digital I/O operations, connect the mating connector to it before installing the board in the PC. Note that the P2 I/O connector mounting bracket has an oversized cutout to allow space for running the cable to P12 through the same I/O slot. If you want to run both cables through the same slot, you must make these connections before installing the board.
- 6. Holding the board by its edges, orient it so that its card edge (bus) connectors line up with the expansion slot connectors in the bottom of the selected expansion slot.
- 7. After carefully positioning the board in the expansion slot so that the card edge connectors are resting on the computer's bus connectors, gently and evenly press down on the board until it is secured in the slot.

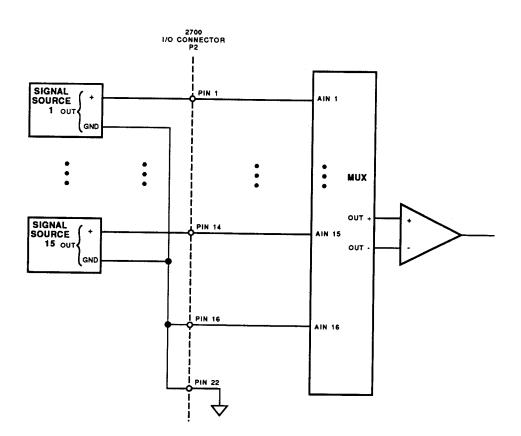

NOTE: Do not force the board into the slot. If the board does not slide into place, remove it and try again. Wiggling the board or exerting too much pressure can result in damage to the board or to the computer.

8. After the board is installed, secure the slot bracket back into place and put the cover back on your computer. The board is now ready to be connected via the external I/O connector at the rear panel of your computer. Be sure to observe the keying when connecting your external cable to the I/O connector.

External I/O Connections

Figure 2-1 shows the 2700's P2 50-pin I/O connector and P12 on-board 20-pin connector pinouts. Refer to these diagrams as you make your I/O connections.

Connecting the Analog Input Pins


The analog inputs on the 2700 can be set for single-ended or differential operation.


NOTE: It is good practice to connect all unused channels to ground, as shown in the following diagrams. Failure to do so may affect the accuracy of your results.

Single-Ended. When operating in the single-ended mode, connect the high side of the analog input to one of the analog input channels, AIN1 through AIN16, and connect the low side to an ANALOG GND (pins 18 and 20-22 on P2). Figure 2-2 shows how these connections are made.

Differential. When operating in the differential mode, twisted pair cable is recommended to reduce the effects of magnetic coupling at the inputs. Your signal source may or may not have a separate ground reference. When using the differential mode, you should install a 10 kilohm resistor pack at location RN7 on the board to provide a reference to ground for signal sources without a separate ground reference.

First, connect the high side of the analog input to the selected analog input channel, AIN1+ through AIN8+, and connect the low side of the input to the corresponding AIN- pin. Then, for signal sources with a separate ground reference, connect the ground from the signal source to an ANALOG GND (pins 18 and 20-22 on P2). Figure 2-3 shows how these connections are made.

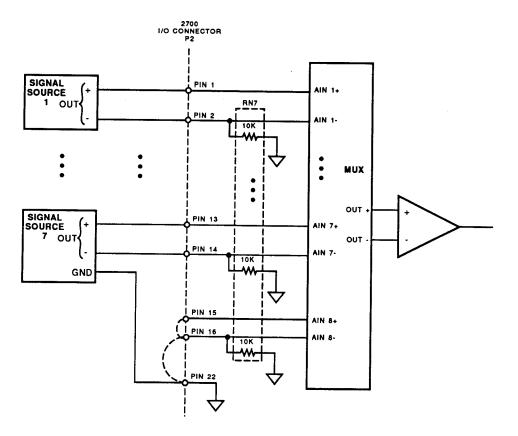


Fig. 2-3 — Differential Input Connections

Connecting the Trigger In and Trigger Out Pins, Cascading Boards

The 2700 board has an external trigger input (P2-39) and output (P2-43) so that conversions can be started based on external events, or so that two or more boards can be cascaded and run synchronously in a "master/slave" configuration. By cascading two (or more) boards as shown in Figure 2-4, they can be triggered to start an A/D conversion at the same time (sampling uncertainty is less than 50 nanoseconds). When you cascade boards, be sure to set each board for a different base address (see Chapter 1), or system contention will result.

NOTE: When cascading boards, the sampling uncertainty is less than 50 nanoseconds. If this level of uncertainty is too great for your application, you can connect the trigger signal to the trigger input of each board. In this configuration, the boards are not cascaded, but rather driven by the same trigger pulse at the same time, and the sampling uncertainty is reduced to less than 5 nanoseconds.

If you apply an external trigger to the board's trigger in pin, note that a jumper should be installed on ET on P7 (see Chapter 1). The board is triggered on the positive edge of the pulse and the pulse duration should be at least 100 nanoseconds.

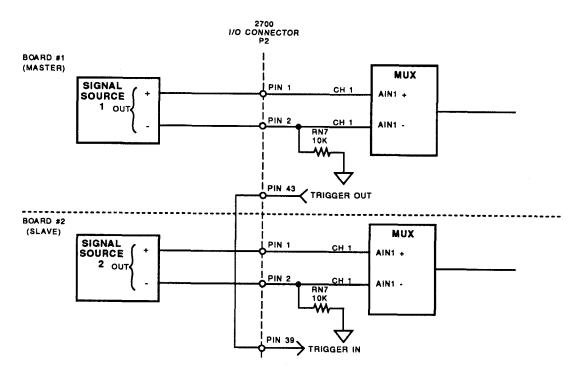


Fig. 2-4 - Cascading Two Boards for Simultaneous Sampling

Connecting the Analog Outputs (ADA2700 Only)

For each of the two D/A outputs, connect the high side of the device receiving the output to the AOUT channel (P2-17 or P2-19) and connect the low side of the device to an ANALOG GND (P2-18 or P2-20).

Connecting the Timer/Counters and Digital I/O

For all of these connections, the high side of an external signal source or destination device is connected to the appropriate signal pin on the P2 I/O connector or on P12, and the low side is connected to any DIGITAL GND.

Running the 2700DIAG Diagnostics Program

Now that your board is ready to use, you will want to try it out. An easy-to-use, menu-driven diagnostics program, 2700DIAG, is included with your example software to help you verify your board's operation. You can also use this program to make sure that your current base address setting does not contend with another device.

HARDWARE DESCRIPTION

This chapter describes the features of the 2700 hardware. The major circuits are the A/D, the D/A, the timer/counters, and the digital I/O lines. This chapter also describes the hardware-select-able interrupts.

The 2700 board has four major circuits, the A/D, the D/A (ADA2700 only), the timer/counters, and the digital I/O lines. Figure 3-1 shows the block diagram of the board. This chapter describes the hardware which makes up the major circuits and hardware-selectable interrupts.

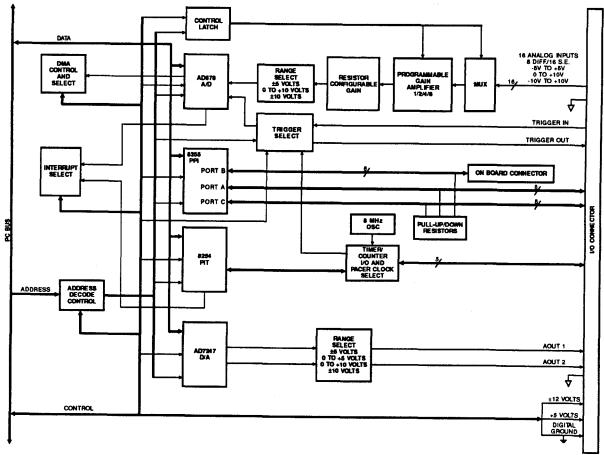


Fig. 3-1 — AD2700/ADA2700 Block Diagram

A/D Conversion Circuitry

The 2700 performs analog-to-digital conversions on up to 8 differential or 16 single-ended software-selectable analog input channels. The following paragraphs describe the A/D circuitry.

Analog Inputs

The input voltage range is jumper-selectable for -5 to +5 volts, -10 to +10 volts, or 0 to +10 volts. Softwareprogrammable binary gains of 1, 2, 4, and 8 let you amplify lower level signals to more closely match the board's input ranges. These gains can be customized for even greater input control by adding a gain multiplying circuit as described in Chapter 1. Overvoltage protection to ± 35 volts is provided at the inputs.

A/D Converter

The AD678 12-bit successive approximation A/D converter accurately digitizes dynamic input voltages in 5 microseconds, for a maximum throughput rate of 200 kHz for the converter alone. The AD678 contains a sampleand-hold amplifier, a 12-bit A/D converter, a 5-volt reference, a clock, and a digital interface to provide a complete A/D conversion function on a single chip. Its low-power CMOS logic combined with a high-precision, low-noise design give you accurate results.

Conversions are controlled through software (internally triggered) or by an external trigger brought onto the board through the I/O connector. An on-board pacer clock can be used to control the conversion rate. Conversion modes are described in Chapter 4, *Board Operation and Programming*.

Data Transfer

The converted data can be transferred through the PC data bus to PC memory in one of two ways: by using the microprocessor or by using direct memory access (DMA). Data bus transfers take more processor time to execute. They use polling and interrupts to determine when data has been acquired and is ready for transfer. DMA places data directly into the PC's memory, one byte at a time, with minimal use of processor time. DMA transfers are managed by the DMA controller as a background function of the PC, letting you operate at higher throughput rates. The maximum throughput rate of the 2700 is 150 kHz.

D/A Converters (ADA2700 Only)

Two independent 12-bit analog output channels are included on the ADA2700. The analog outputs are generated by two 12-bit D/A converters with independent jumper-selectable output ranges of ± 5 , ± 10 , 0 to +5, or 0 to +10 volts. The ± 10 volt range has a resolution of 4.88 millivolts, the ± 5 and 0 to +10 volt ranges have a resolution of 2.44 millivolts, and the 0 to +5 volt range has a resolution of 1.22 millivolts.

Timer/Counters

An 8254 programmable interval timer provides three 16-bit, 8-MHz timer/counters to support a wide range of timing and counting functions. Two of the timer/counters, TC0 and TC1, are cascaded so that they can be used for the pacer clock. The pacer clock is described in Chapter 4. You can use the remaining timer/counter, TC2, for counting applications, or cascade it to TC0 and TC1 for timing applications. Figure 3-2 shows the timer/counter circuitry.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in Chapter 4. The command word also lets you set up the mode of operation. The six programmable modes are:

- Mode 0 Event Counter (Interrupt on Terminal Count)
- Mode 1 Hardware-Retriggerable One-Shot
- Mode 2 Rate Generator
- Mode 3 Square Wave Mode

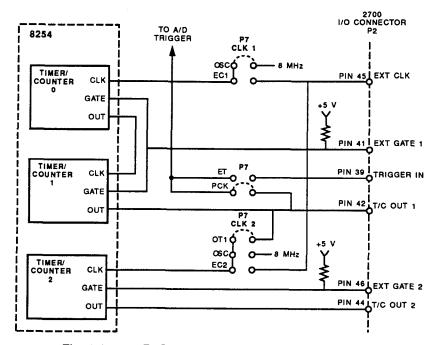


Fig. 3-2 — 8254 Timer/Counter Circuit Block Diagram

Mode 4 Software-Triggered Strobe

Mode 5 Hardware Triggered Strobe (Retriggerable)

These modes are detailed in the 8254 Data Sheet, reprinted from Intel in Appendix C.

Digital I/O, Programmable Peripheral Interface

The programmable peripheral interface (PPI) is used for digital I/O functions. This high-performance TTL/ CMOS compatible chip has 24 digital I/O lines divided into two groups of 12 lines each:

Group A — Port A (8 lines) and Port C Upper (4 lines); Group B — Port B (8 lines) and Port C Lower (4 lines).

Port A and Port C are available at the external I/O connector, P2. Port B and Port C are available at the on-board 20-pin connector, P12. You can use these ports in one of two PPI operating modes, Mode 0 or Mode 1. **Do not try to use Mode 2 operation!** The 2700 does not support Mode 2. When operating in Mode 1, the on-board buffers must be removed from the Port C lines. This procedure is described in Chapter 1 in the S2 DIP switch discussion. The 2700 operating modes are:

Mode 0 — Basic input/output. Lets you use simple input and output operation for a port. Data is written to or read from the specified port.

Mode 1 — Strobed input/output. Lets you transfer I/O data from Port A or Port B in conjunction with strobes or handshaking signals.

These modes are detailed in the 8255 Data Sheet, reprinted from Intel in Appendix C.

The bidirectional buffers on the 8255's I/O lines monitor the 8255 control word to automatically set their direction. Hardware changes to the buffer circuitry are required only when using Mode 1, where the Port C buffers must be removed as described in Chapter 1.

Interrupts

The 2700 has four jumper-selectable interrupt sources: end-of-convert, DMA done, the external trigger, and the output of timer/counter 2. The end-of-convert signal can be used to interrupt the computer when an A/D conversion is completed. The DMA done is used in the DMA mode to signal an interrupt whenever a DMA transfer is completed. The external trigger at the I/O connector can be used to generate an interrupt whenever the trigger line changes from low to high. Or, the output of timer/counter 2 can generate an interrupt whenever the count reaches 0. Chapter 1 tells you how to set the jumpers on the interrupt header connector P8, and Chapter 4 describes how to program interrupts.

BOARD OPERATION AND PROGRAMMING

This chapter shows you how to program and use your 2700 board by writing to and reading from the AT bus in 8- or 16-bit words. It provides a complete description of the I/O map, a detailed description of programming operations and operating modes, and flow diagrams to aid you in programming. The example programs included on the disk in your board package are listed at the end of this chapter. These programs, written in Turbo C and Turbo Pascal, include source code to simplify your applications programming.

4-2

Defining the I/O Map

The I/O map for the AD2700 and ADA2700 is shown in Table 4-1 below. As shown, the 2700 occupies 32 consecutive I/O port locations.

Because of the 16-bit structure of the AT bus, every other address location is used. Our programming structure uses the 16-bit command for reading the A/D converted data and for programming the two ADA2700 D/A converters. All other read/write operations are 8-bit operations.

The base address (designated as BA) can be selected using DIP switch S1 as described in Chapter 1, *Board Settings*. This switch can be accessed without removing the board from the connector. S1 is factory set at 300 hex (768 decimal). The following sections describe the register contents of each address used in the I/O map.

	Table 4-1 — AD2700/AD	A2700 I/O Map	
Register Description	Read Function	Write Function	Address * (Decimai)
Read Data/Start Convert	Read 12-bit A/D converted data word	Start A/D conversion	BA + 0
Read Status/Reset	Read status word	Resets board so that it is ready to start A/D conversions	BA + 2
Channel/Gain/ Board Functions	Read current channel & gain settings	Program channel & gain; external trigger enable, IRQ enable	BA + 4
Reserved	Not used	Not used	BA + 6
D/A Converter 1 (ADA2700 Only)	Not used	Program 12-bit DAC1 and start conversion	BA + 8
D/A Converter 2 (ADA2700 Only)	Not used	Program 12-bit DAC2 and start conversion	BA + 10
Reserved	Not used	Not used	BA + 12
Reserved	Not used	Not used	BA + 14
8255 PPI Port A	Read Port A digital input lines	Program Port A digital output lines	BA + 16
8255 PPI Port B	Read Port B digital input lines	Program Port B digital output lines	BA + 18
8255 PPI Port C	Read Port C digital input lines	Program Port C digital output lines	BA + 20
3255 PPI Control Word	Not used	Program PPI configuration	BA + 22
3254 Timer/Counter 0 Used for pacer clock)	Read count value	Load count register	BA + 24
3254 Timer/Counter 1 Used for pacer clock)	Read count value	Load count register	BA + 26
3254 Timer/Counter 2 Available for external use)	Read count value	Load count register	BA + 28
254 Timer/Counter Control Word	Not used	Program counter mode	BA + 30
BA = Base Address			

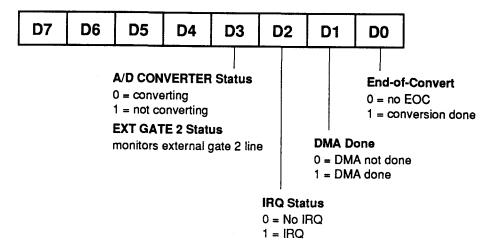
BA + 0: Read Data/Start Convert (Read/Write)

16-bit operation. A read provides the 12-bit A/D converted data in a right justified format as shown below. When jumpers on P4 and P15 are set for bipolar conversions, the data word's four most significant bits match the MSB of the A/D converted data (bit 12). This is necessary to provide the correct twos complement representation of the converted data. When P4 and P15 are set for unipolar conversions, these top four bits are 0.

A write starts an A/D conversion (data written is irrelevant).

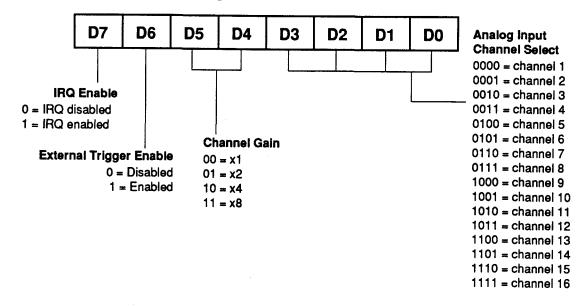
BIPO	LAR	DATA	WORD:
------	-----	------	-------

UN


D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
Bit 12	Bit 12	Bit 12	Bit 12	Bit 12 (MSB)		Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 (LSB)
		WOR	D:												
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
0	0	0	0	Bit 12 (MSB)	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 (LSB)

(LSB)

BA + 2: Read Status/Reset (Read/Write)

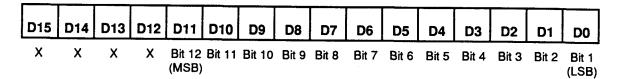

8-bit operation. A read provides the four status bits defined below. The end-of-convert bit goes high when a conversion is complete and does not go low until the data is read, useful information when using external triggering to start conversions. The DMA done bit goes high when you are in the DMA mode and the DMA transfer is complete. The IRQ status bit goes high when an interrupt has occurred and stays high until a reset command is sent (BA + 2). D3 shows the status of either the A/D converter status signal or the external gate input for timer/counter 2, depending on the setting of jumper P14. Unlike the EOC status at bit 0, the A/D converter status goes low when a conversion starts and then goes high as soon as the conversion is completed. When the input has been sampled and a conversion is in progress, this line goes low. At this time, the analog input channel can be changed, allowing maximum throughput for channel scanning.

A write resets internal registers so that the board is ready to start conversions. The data written is irrelevant; the act of writing to this address clears the board. A reset command resets the end-of-convert, DMA done, and IRQ status bits to 0.

BA + 4: Channel/Gain/Board Functions Select (Read/Write)

8-bit operation. Programs the analog input channel and gain, and enables the IRQ and external trigger. Reading this register shows you the current settings.

BA + 6: Reserved


BA + 8: D/A Converter 1 (ADA2700 DAC1) (Write Only)

16-bit operation. Programs the 12-bit digital word for DAC1 in a right-justified format as shown below. The act of writing to this port starts a D/A conversion on channel 1.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
					Bit 11	Bit 10									

BA + 10: D/A Converter 2 (ADA2700 DAC2) (Write Only)

16-bit operation. Programs the 12-bit digital word for DAC2 in a right-justified format as shown below. The act of writing to this port starts a D/A conversion on channel 2.

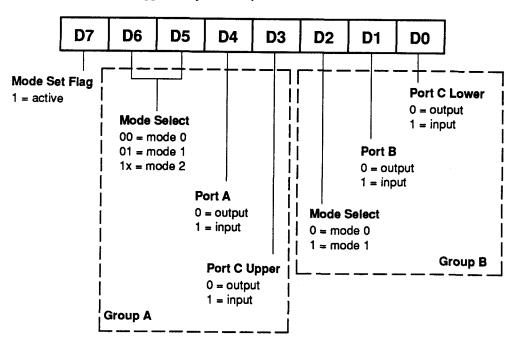
BA + 12: Reserved

BA + 14: Reserved

BA + 16: PPI Port A — Digital I/O (Read/Write)

8-bit operation. Transfers the 8-bit Port A digital input and digital output data between the board and an external device. A read transfers data from the external device, through P2, and into PPI Port A; a write transfers the written data from Port A through P2 to an external device.

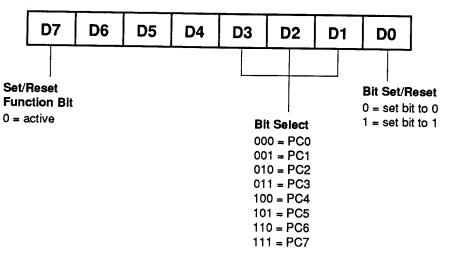
BA + 18: PPI Port B — Digital I/O (Read/Write)

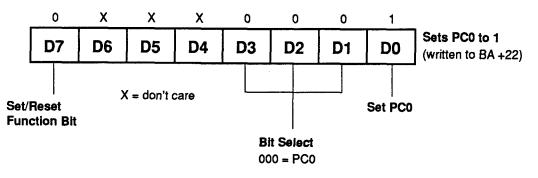

8-bit operation. Transfers the 8-bit Port B digital input and digital output data between the board and an external device. A read transfers data from the external device, through P12 (the on-board 20-pin connector), and into PPI Port B; a write transfers the written data from Port B through P12 to an external device.

BA + 20: PPI Port C - Digital I/O (Read/Write)

8-bit operation. Transfers the two 4-bit Port C digital input and digital output data groups (Port C Upper and Port C Lower) between the board and an external device. A read transfers data from the external device, through P2 and P12 (the on-board 20-pin connector), and into PPI Port C; a write transfers the written data from Port C through P2 and P12 to an external device.

BA + 22: 8255 PPI Control Word (Write Only)


8-bit operation. When bit 7 of this word is set to 1, a write programs the PPI configuration. Bit 6 must always be set to 0 (Mode 2 operation is not supported by the 2700).


	825	5 Port I/O Flo	w Direction a	nd Control Words, Mo	de O	
Gr	oup A	Gro	oup B	Cont	rol Word	
Port A	Port C Upper	Port B	Port C B Lower Binary Decima		Decimal	Hex
Output	Output	Output	Output	1000000	128	80
Output	Output	Output	Input	1000001	129	81
Output	Output	Input	Output	1000010	130	82
Output	Output	Input	Input	10000011	131	83
Output	Input	Output	Output	10001000	136	88
Output	Input	Output	Input	10001001	137	89
Output	Input	Input	Output	10001010	138	8A
Output	Input	Input	Input	10001011	139	8B
Input	Output	Output	Output	10010000	144	90
Input	Output	Output	Input	10010001	145	91
Input	Output	Input	Output	10010010	146	92
Input	Output	Input	Input	10010011	147	93
Input	Input	Output	Output	10011000	152	98
Input	Input	Output	Input	10011001	153	99
Input	Input	Input	Output	10011010	154	9A
Input	Input	Input	Input	10011011	155	

The table below shows the control words for the 16 possible Mode 0 Port I/O combinations.

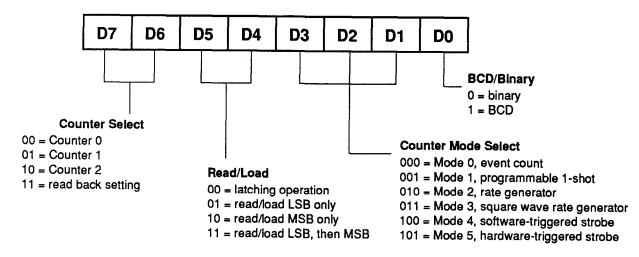
When bit 7 of the PPI control word is set to 0, a write can be used to individually program the Port C lines.

For example, if you want to set Port C bit 0 to 1, you would set up the control word so that bit 7 is 0; bits 1, 2, and 3 are 0 (this selects PC0); and bit 0 is 1 (this sets PC0 to 1). The control word is set up like this:

BA + 24: 8254 Timer/Counter 0 (Read/Write)

8-bit operation. A read shows the count in the counter, and two write operations load the counter with a new 16-bit value in two 8-bit steps, LSB followed by MSB. The counter must be loaded in two 8-bit steps! Counting begins as soon as the count is loaded. This counter is cascaded with TC1 to form the 32-bit on-board pacer clock.

BA + 26: 8254 Timer/Counter 1 (Read/Write)


8-bit operation. A read shows the count in the counter, and two write operations load the counter with a new 16-bit value in two 8-bit steps, LSB followed by MSB. The counter must be loaded in two 8-bit steps! Counting begins as soon as the count is loaded. This counter is cascaded with TC0 to form the 32-bit on-board pacer clock.

BA + 28: 8254 Timer/Counter 2 (Read/Write)

8-bit operation. A read shows the count in the counter, and two write operations load the counter with a new 16-bit value in two 8-bit steps, LSB followed by MSB. The counter must be loaded in two 8-bit steps! Counting begins as soon as the count is loaded. This counter can be cascaded to TC0 and TC1 or it can be used independently.

BA + 30: 8254 Control Word (Write Only)

8-bit operation. Accesses the 8254 control register to directly control the three timer/counters.

Programming the 2700

This section gives you some general information about programming and the AD2700 and ADA2700 boards, and then walks you through the major 2700 programming functions. These descriptions will help you as you use the example programs included with the board and the programming flow diagrams at the end of this chapter. All of the program descriptions in this section use decimal values unless otherwise specified.

The 2700 is programmed by writing to and reading from the correct I/O port locations on the board. These I/O ports were defined in the previous section. Because the 2700 is AT bus compatible, reading the A/D converter data and writing the D/A converter data is done in a 16-bit word format. All other operations are done in an 8-bit word format. High-level languages such as Pascal, C, and C++ make it very easy to read/write these ports. The table below shows you how to read from and write to I/O ports in Turbo C and Turbo Pascal.

Language	Read 8 Bits	Write 8 Bits	Read 16 Bits	Write 16 Bits
Turbo C	Data = inportb(Address)	outportb(Address, Data)	Data = inport(Address)	outport(Address, Data)
Turbo Pascal	Data := Port[Address]	Port[Address] := Data	Data := PortW[Address]	PortW[Address] := Data

In addition to being able to read/write the I/O ports on the 2700, you must be able to perform a variety of operations that you might not normally use in your programming. The table below shows you some of the operators discussed in this section, with an example of how each is used with Pascal and C.

Language	Modulus	Integer Division	AND	OR
С	%	/	&	
	a = b % c	a = b / c	a = b & c	a=b c
Pascal	MOD	DIV	AND	OR
	a := b MOD c	a := b DIV c	a := b AND c	a := b OR c

Many compilers have functions that can read/write either 8 or 16 bits from/to an I/O port. For example, Turbo Pascal uses **Port** for 8-bit port operations and **PortW** for 16 bits, Turbo C uses **inportb** for an 8-bit read of a port and **inport** for a 16-bit read. **Be sure to use the correct function for 8- and 16-bit operations with the 2700!**

Clearing and Setting Bits in a Port

When you clear or set one or more bits in a port, you must be careful that you do not change the status of the other bits. You can preserve the status of all bits you do not wish to change by proper use of the AND and OR binary operators. Using AND and OR, single or multiple bits can be easily cleared in one operation.

To clear a single bit in a port, AND the current value of the port with the value b, where $b = 255 - 2^{bit}$.

Example: Clear bit 5 in a port. Read in the current value of the port, AND it with 223 $(223 = 255 - 2^5)$, and then write the resulting value to the port. In Pascal, this is programmed as:

V := Port[PortAddress]; V := V AND 223; Port[PortAddress] := V;

To set a single bit in a port, OR the current value of the port with the value b, where $b = 2^{bit}$.

Example: Set bit 3 in a port. Read in the current value of the port, OR it with 8 ($8 = 2^3$), and then write the resulting value to the port. In Pascal, this is programmed as:

V := Port[PortAddress]; V := V OR 8; Port[PortAddress] := V; Setting or clearing more than one bit at a time is accomplished just as easily. To clear multiple bits in a port, AND the current value of the port with the value b, where b = 255 - (the sum of the values of the bits to be cleared). Note that the bits do not have to be consecutive.

Example: Clear bits 2, 4, and 6 in a port. Read in the current value of the port, AND it with 171 $(171 = 255 - 2^2 - 2^4 - 2^6)$, and then write the resulting value to the port. In C, this is programmed as:

v = inportb(port_address); v = v & 171; outportb(port address, v);

To set multiple bits in a port, OR the current value of the port with the value b, where b = the sum of the individual bits to be set. Note that the bits to be set do not have to be consecutive.

Example: Set bits 3, 5, and 7 in a port. Read in the current value of the port, OR it with 168 $(168 = 2^3 + 2^5 + 2^7)$, and then write the resulting value back to the port. In C, this is programmed as:

```
v = inportb(port_address);
v = v | 168;
outportb(port_address, v);
```

Often, assigning a range of bits is a mixture of setting and clearing operations. You can set or clear each bit individually or use a faster method of first clearing all the bits in the range then setting only those bits that must be set using the method shown above for setting multiple bits in a port. The following example shows how this twostep operation is done.

Example: Assign bits 3, 4, and 5 in a port to 101 (bits 3 and 5 set, bit 4 cleared). First, read in the port and clear bits 3, 4, and 5 by ANDing them with 199. Then set bits 3 and 5 by ORing them with 40, and finally write the resulting value back to the port. In C, this is programmed as:

```
v = inportb(port_address);
v = v & 199;
v = v | 40;
outportb(port_address, v);
```

A final note: Don't be intimidated by the binary operators AND and OR and try to use operators for which you have a better intuition. For instance, if you are tempted to use addition and subtraction to set and clear bits in place of the methods shown above, DON'T! Addition and subtraction may seem logical, but they will not work if you try to clear a bit that is already clear or set a bit that is already set. For example, you might think that to set bit 5 of a port, you simply need to read in the port, add $32 (2^5)$ to that value, and then write the resulting value back to the port. This works fine if bit 5 is not already set. But, what happens when bit 5 *is* already set? Bits 0 to 4 will be unaffected and we can't say for sure what happens to bits 6 and 7, but we can say for sure that bit 5 ends up cleared instead of being set. A similar problem happens when you use subtraction to clear a bit in place of the method shown above.

Now that you know how to clear and set bits, we are ready to look at the programming steps for the 2700 board functions.

A/D Conversions

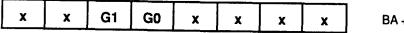
The following paragraphs walk you through the programming steps for performing A/D conversions. Detailed information about the conversion modes is presented in this section. You can follow these steps on the flow diagrams at the end of this chapter and in our example programs included with the board. In this discussion, BA refers to the base address.

• Initializing the Board

Start your program by resetting the 2700 board. This is done by writing to the CLEAR port located at BA + 2. The actual value you write to this port is irrelevant. After resetting the board following power-up, take an A/D

reading and throw it away to make sure the converter is initialized and contains no unwanted data. After the A/D reading is taken, send a second CLEAR command to BA + 2. After clearing the board, you may want to initialize the 8255 for Mode 0 or Mode 1 operation and configure your I/O. Refer to the 8255 control word description, BA + 22, presented earlier to determine the value of the word you write for initialization. Now the board is initialized and ready to run.

Selecting a Channel


To select a conversion channel, you must assign values to bits 0 through 3 at BA + 4. The table below shows you how to determine the bit settings. Note that if you do not want to change the gain setting, also programmed through BA + 4, you must preserve it when you set the channel.

	x	x	X	x	СНЗ	CH2	CH1	СНО	BA + 4
--	---	---	---	---	-----	-----	-----	-----	--------

Channel	СНЗ	CH2	CH1	СНО	Channel	СНЗ	CH2	CH1	CH0
1	0	0	0	0	9	1	0	0	0
2	0	0	0	1	10	1	0	0	1
3	0	0	1	0	11	1	0	1	0
4	0	0	1	1	12	1	0	1	1
5	0	1	0	0	13	1	1	0	0
6	0	1	0	1	14	1	1	0	1
7	0	1	1	0	15	1	1	1	0
8	0	1	1	1	16	1	1	1	1

Setting the Gain

You may choose among the various levels of programmable gain by setting bits 4 and 5 at BA + 4. The table below shows you how to determine the bit settings for the gain you need. If you have a gain multiplying resistor installed as described in Chapter 1, then our actual gain values will be those in the table multiplied by the gain multiplier's value. Note that if you do not want to change the channel setting, also programmed through BA + 4, you must preserve it when you set the gain.

BA + 4

Gain	G1	G0
1	0	0
2	0	1
4	1	0
8	1	1

· Enabling and Disabling the External Trigger

Any time you use the external trigger or the pacer clock, this bit at port BA + 4 must be set high to enable A/D conversions.

Enabling and Disabling IRQ

Any time you use interrupts, this bit at port BA + 4 must be set high to enable the on-board interrupt circuitry.

Conversion Modes/Triggering

The 2700 has three triggering (conversion) modes. Figure 4-1 shows the timing diagram for A/D conversions. This section describes the conversion modes.

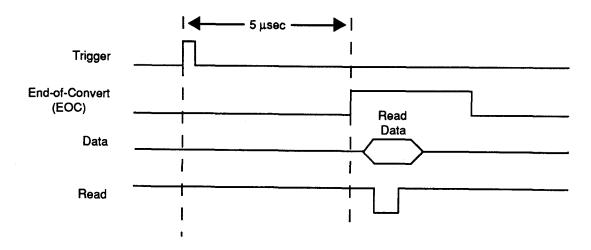


Fig. 4-1 — A/D Conversion Timing Diagram, All Modes

Internal vs. External Triggering. With internal triggering (also called software triggering), conversions are initiated by writing a value to the START CONVERT port at BA + 0 on the board. With external triggering, conversions are initiated by applying a high TTL signal with a pulse duration of at least 100 nanoseconds to the external TRIGGER IN pin (P2-39). Any TTL signal can be used as a trigger source. In fact, you can use the timer/ counter outputs as a trigger source.

Software trigger. In this mode, a single specified channel is sampled whenever a value is written to the START CONVERT port, BA + 0. The active channel is the one specified at port BA + 4.

This is the easiest of all triggering modes. It can be used in a wide variety of applications, such as sample every time a key is pressed on the keyboard, sample with each iteration of a loop, or watch the system clock and sample every five seconds. See the SOFTTRIG sample program in C and Pascal.

Pacer Clock. In this mode, conversions are continuously performed at the pacer clock rate. To use this mode, you must program the pacer clock to run at the desired rate (see the pacer clock discussion later in this chapter). The PCK jumper on P7 must be installed to use the pacer clock.

This is the ideal mode for filling an array with data. Triggering is automatic, so your program is spared the chore of monitoring the pacer clock to determine when to sample. See the MULTI sample program in C and Pascal.

External Trigger. In this mode, a single conversion is initiated by the rising edge of an external trigger pulse.

This mode is implemented when an external device is used to determine when to sample. See the EXTTRIG sample program in C and Pascal.

Starting an A/D Conversion

Software triggered single conversions are started by writing to the START CONVERT port at BA + 0. The value you write is irrelevant. For single conversions, you must write to this port to initiate *every* conversion. Externally triggered single conversions and multiple conversions triggered by the pacer clock through the external trigger are started by the first pulse present after the external trigger has been enabled.

Monitoring Conversion Status (DMA Done or End-of-Convert)

The A/D conversion status can be monitored through the DMA done flag or through the end-of-convert (EOC) bit in the STATUS port at BA +2. When doing DMA transfers, you will want to monitor the DMA done flag for a transition from low to high. This tells you when a DMA transfer is complete and data has been placed in the PC's memory. The EOC line is available for monitoring conversion status when performing single conversions not using DMA transfer. When the EOC goes from low to high, the A/D converter has completed its conversion and the data is ready to read. The EOC line stays high following a conversion until the data has been read. Then the line goes back to low until the next conversion is complete.

Reading the Converted Data

A single read operation of port BA + 0 provides the 12-bit A/D conversion in the right-justified format defined in the I/O map section at the beginning of this chapter.

The output code and the resolution of the conversion vary, depending on the input voltage range selected. Bipolar conversions are in twos complement form, and unipolar conversions are straight binary. The key digital codes and their input voltage values are given for each range in the three tables which follow.

A/D Bipolar Code Table (±5V; twos complement)								
input Voltage	input Voltage Output Code							
+4.998 volts	MSB 0111	1111	1111 LSB					
+2.500 volts	0100	0000	0000					
0 volts	0000	0000	0000					
00244 volts	1111	1111	1111					
-5.000 volts	1000	0000	0000					
1 LSB = 2.44 millivo	Its							

A/D Bipolar Code Table (±10V; twos complement)								
Input Voltage	Input Voltage Output Code							
+9.995 volts	MSB 0111	1111	1111 LSB					
+5.000 volts	0100	0000	0000					
0 volts	0000	0000	0000					
00488 volts	1111	1111	1111					
-10.000 volts	1000	0000	0000					
1 LSB = 4.88 millivol	1 LSB = 4.88 millivolts							

A/D Unipolar Code Table (0 to +10V; straight binary)			
Input Voltage	Out	tput Co	ode
+9.99756 volts	MSB 1111	1111	1111 LSB
+5.00000 volts	1000	0000	0000
0 volts	0000	0000	0000
1 LSB = 2.44 millivo	olts		

Programming the Pacer Clock

Two of the three 16-bit timer/counters in the 8254 programmable interval timer are cascaded to form the onboard pacer clock, shown in Figure 4-2. When you want to use the pacer clock for continuous A/D conversions, you must program the clock rate. To find the value you must load into the clock to produce the desired rate, you first have to calculate the value of Divider 1 (Timer/Counter 0) and Divider 2 (Timer/Counter 1) shown in the diagram. The formulas for making this calculation are as follows:

Pacer clock frequency = Clock Source Frequency/(Divider 1 x Divider 2) Divider 1 x Divider 2 = Clock Source Frequency/Pacer Clock Frequency

To set the pacer clock frequency at 100 kHz using the on-board 8-MHz clock source, this equation becomes:

Divider 1 x Divider 2 = 8 MHz/100 kHz ---> 80 = 8 MHz/100 kHz

After you determine the value of Divider 1 x Divider 2, you then divide the result by the least common denominator. The least common denominator is the value that is loaded into Divider 1, and the result of the division, the quotient, is loaded into Divider 2. In our example above, the least common denominator is 2, so Divider 1 equals 2, and Divider 2 equals 80/2, or 40. The table below lists some common pacer clock frequencies and the counter settings (using the on-board 8-MHz clock source).

After you calculate the decimal value of each divider, you can convert the result to a hex value if it is easier for you when loading the count into the 16-bit counter.

To set up the pacer clock on the 2700, follow these steps:

- 1. Select a clock source (the 8-MHz on-board clock or an external clock source).
- 2. Program Timer/Counter 0 for Mode 2 operation.
- 3. Program Timer/Counter 1 for Mode 2 operation.
- 4. Load Divider 1 LSB.
- 5. Load Divider 1 MSB.
- 6. Load Divider 2 LSB.
- 7. Load Divider 2 MSB.

The pacer clock starts running as soon as the last divider is loaded. A/D conversions can be started and stopped by enabling and disabling the external trigger.

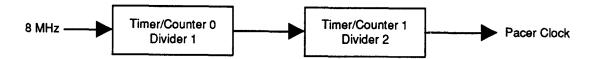


Fig. 4-2 — Pacer Clock Block Diagram

Pacer Clock	Divider 1 decimal / (hex)	Divider 2 decimal / (hex)
148 kHz	2 / (0002)	27 / (001B)
100 kHz	2 / (0002)	40 / (0028)
50 kHz	2 / (0002)	80 / (0050)
10 kHz	2 / (0002)	400 / (0190)
1 kHz	2 / (0002)	4000 / (0FA0)
100 Hz	2 / (0002)	40000 / (9C40)

Interrupts

• What Is an Interrupt?

An interrupt is an event that causes the processor in your computer to temporarily halt its current process and execute another routine. Upon completion of the new routine, control is returned to the original routine at the point where its execution was interrupted.

Interrupts are very handy for dealing with asynchronous events (events that occur at less than regular intervals). Keyboard activity is a good example; your computer cannot predict when you might press a key and it would be a waste of processor time for it to do nothing while waiting for a keystroke to occur. Thus, the interrupt scheme is used and the processor proceeds with other tasks. Then, when a keystroke does occur, the keyboard 'interrupts' the processor, and the processor gets the keyboard data, places it in memory, and then returns to what it was doing before it was interrupted. Other common devices that use interrupts are modems, disk drives, and mice.

Your 2700 board can interrupt the processor when a variety of conditions are met, such as DMA done, timer countdown finished, end-of-convert, and external trigger. By using these interrupts, you can write software that effectively deals with real world events.

Interrupt Request Lines

To allow different peripheral devices to generate interrupts on the same computer, the AT bus has 16 different interrupt request (IRQ) lines. A transition from low to high on one of these lines generates an interrupt request which is handled by one of the AT's two interrupt control chips. One chip handles IRQ0 through IRQ7 and the other chip handles IRQ8 through IRQ15. The controller which handles IRQ8-IRQ15 is chained to the first controller through the IRQ2 line. When an IRQ line is brought high, the interrupt controllers check to see if interrupts are to be acknowledged from that IRQ and, if another interrupt is already in progress, they decide if the new request should supersede the one in progress or if it has to wait until the one in progress is done. This prioritizing allows an interrupt to be interrupted if the second request has a higher priority. The priority level is determined by the number of the IRQ. Because of the configuration of the two controllers, with one chained to the other through IRQ2, the priority scheme is a little unusual. IRQ0 has the highest priority, IRQ1 is second-highest, then priority jumps to IRQ8, IRQ9, IRQ10, IRQ11, IRQ12, IRQ13, IRQ14, and IRQ15, and then following IRQ15, it jumps back to IRQ3, IRQ4, IRQ5, IRQ6, and finally, the lowest priority, IRQ7. This sequence makes sense if you consider that the controller that handles IRQ8-IRQ15 is routed through IRQ2.

8259 Programmable Interrupt Controllers

The chips responsible for handling interrupt requests in the PC are the 8259 Programmable Interrupt Controllers. The 8259 that handles IRQ0-IRQ7 is referred to as 8259A, and the 8259 that handles IRQ8-IRQ15 is referred to as 8259B. To use interrupts, you need to know how to read and set the 8259 interrupt mask registers (IMR) and how to send the end-of-interrupt (EOI) command to the 8259s.

Interrupt Mask Registers (IMR)

Each bit in the interrupt mask register (IMR) contains the mask status of an IRQ line; in 8259A, bit 0 is for IRQ0, bit 1 is for IRQ1, and so on, while in 8259B, bit 0 is for IRQ8, bit 1 is for IRQ9, and so on. If a bit is set (equal to 1), then the corresponding IRQ is masked and it will not generate an interrupt. If a bit is clear (equal to 0), then the corresponding IRQ is unmasked and can generate interrupts. The IMR for IRQ0-IRQ7 is programmed through port 21H, and the IMR for IRQ8-IRQ15 is programmed through port A1H.

IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0	I/O Port 21H
IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10	IRQ9	IRQ8	I/O Port A1H

For all bits:

0 = IRQ unmasked (enabled)

1 = IRQ masked (disabled)

• End-of-Interrupt (EOI) Command

After an interrupt service routine is complete, the appropriate 8259 interrupt controller must be notified. When using IRQ0-IRQ7, this is done by writing the value 20H to I/O port 20H only; when using IRQ8-IRQ15, you must write the value 20H to I/O ports 20H and A0H.

What Exactly Happens When an Interrupt Occurs?

Understanding the sequence of events when an interrupt is triggered is necessary to properly write software interrupt handlers. When an interrupt request line is driven high by a peripheral device (such as the 2700), the interrupt controllers check to see if interrupts are enabled for that IRQ, and then check to see if other interrupts are active or requested and determine which interrupt has priority. The interrupt controllers then interrupt the processor. The current code segment (CS), instruction pointer (IP), and flags are pushed on the stack for storage, and a new CS and IP are loaded from a table that exists in the lowest 1024 bytes of memory. This table is referred to as the interrupt vector table and each entry is called an interrupt vector. Once the new CS and IP are loaded from the interrupt vector table, the processor begins executing the code located at CS:IP. When the interrupt routine is completed, the CS, IP, and flags that were pushed on the stack when the interrupt occurred are now popped from the stack and execution resumes from the point where it was interrupted.

Using Interrupts in Your Programs

Adding interrupts to your software is not as difficult as it may seem, and what they add in terms of performance is often worth the effort. Note, however, that although it is not that hard to use interrupts, the smallest mistake will often lead to a system hang that requires a reboot. This can be both frustrating and time-consuming. But, after a few tries, you'll get the bugs worked out and enjoy the benefits of properly executed interrupts. In addition to reading the following paragraphs, study the INTRPTS source code included on your 2700 program disk for a better understanding of interrupt program development.

Writing an Interrupt Service Routine (ISR)

The first step in adding interrupts to your software is to write the interrupt service routine (ISR). This is the routine that will automatically be executed each time an interrupt request occurs on the specified IRQ. An ISR is different than standard routines that you write. First, on entrance, the processor registers should be pushed onto the stack **BEFORE** you do anything else. Second, just before exiting your ISR, you must clear the interrupt status of the 2700 and write an end-of-interrupt command to the 8259 controller(s). Since 8259B generates a request on IRQ2 which is handled by 8259A, an EOI must be sent to both 8259A and 8259B for IRQ8-IRQ15. Finally, when exiting the ISR, in addition to popping all the registers you pushed on entrance, you must use the IRET instruction and **not** a plain RET. The IRET automatically pops the flags, CS, and IP that were pushed when the interrupt was called.

If you find yourself intimidated by these requirements, take heart. Most Pascal and C compilers allow you to identify a procedure (function) as an interrupt type and will automatically add these instructions to your ISR, with one important exception: most compilers **do not** automatically add the end-of-interrupt command to the procedure; you must do this yourself. Other than this and the few exceptions discussed below, you can write your ISR just like any other routine. It can call other functions and procedures in your program and it can access global data. If you are writing your first ISR, we recommend that you stick to the basics; just something that will convince you that it works, such as incrementing a global variable.

NOTE: If you are writing an ISR using assembly language, you are responsible for pushing and popping registers and using IRET instead of RET.

There are a few cautions you must consider when writing your ISR. The most important is, do not use any DOS functions or routines that call DOS functions from within an ISR. DOS is not reentrant; that is, a DOS function cannot call itself. In typical programming, this will not happen because of the way DOS is written. But what about when using interrupts? Then, you could have a situation such as this in your program. If DOS function X is being executed when an interrupt occurs and the interrupt routine makes a call to DOS function X, then function X is essentially being called while it is already active. Such a reentrancy attempt spells disaster because DOS functions are not written to support it. This is a complex concept and you do not need to understand it. Just make sure that you do not call any DOS functions from within your ISR. The one wrinkle is that, unfortunately, it is not

obvious which library routines included with your compiler use DOS functions. A rule of thumb is that routines which write to the screen, or check the status of or read the keyboard, and any disk I/O routines use DOS and should be avoided in your ISR.

The same problem of reentrancy exists for many floating point emulators as well, meaning you may have to avoid floating point (real) math in your ISR.

Note that the problem of reentrancy exists, no matter what programming language you are using. Even if you are writing your ISR in assembly language, DOS and many floating point emulators are not reentrant. Of course, there are ways around this problem, such as those which involve checking to see if any DOS functions are currently active when your ISR is called, but such solutions are well beyond the scope of this discussion.

The second major concern when writing your ISR is to make it as short as possible in terms of execution time. Spending long periods of time in your ISR may mean that other important interrupts are being ignored. Also, if you spend too long in your ISR, it may be called again before you have completed handling the first run. This often leads to a hang that requires a reboot.

Your ISR should have this structure:

- Push any processor registers used in your ISR. Most C and Pascal interrupt routines automatically do this for you.
- Put the body of your routine here.
- Clear the interrupt bit on the 2700 by writing any value to BA + 2.
- Issue the EOI command to the 8259 interrupt controller by writing 20H to port 20H and port A0H (if you are using IRQ8-IRQ15).
- Pop all registers pushed on entrance. Most C and Pascal interrupt routines automatically do this for you.

The following C and Pascal examples show what the shell of your ISR should be like:

In C:

In Pascal:

Saving the Startup Interrupt Mask Register (IMR) and Interrupt Vector

The next step after writing the ISR is to save the startup state of the interrupt mask register and the interrupt vector that you will be using. The IMR for IRQ0-IRQ7 is located at I/O port 21H; the IMR for IRQ8-IRQ15 is located at I/O port A1H. The interrupt vector you will be using is located in the interrupt vector table which is simply an array of 256 four-byte pointers and is located in the first 1024 bytes of memory (Segment = 0, Offset = 0). You can read this value directly, but it is a better practice to use DOS function 35H (get interrupt vector). Most C and Pascal compilers provide a library routine for reading the value of a vector. The vectors for IRQ0-IRQ7 are vectors 8 through 15, where IRQ0 uses vector 8, IRQ1 uses vector 9, and so on. The vectors for IRQ8-IRQ15 are vectors 70H through 77H, where IRQ8 uses vector 70H, IRQ9 uses vector 71H, and so on. Thus, if the 2700 will be using IRQ15, you should save the value of interrupt vector 77H.

Before you install your ISR, temporarily mask out the IRQ you will be using. This prevents the IRQ from requesting an interrupt while you are installing and initializing your ISR. To mask the IRQ, read in the current IMR at I/O port 21H for IRQ0-IRQ7, or at I/O port A1H for IRQ8-IRQ15 and set the bit that corresponds to your IRQ (remember, setting a bit disables interrupts on that IRQ while clearing a bit enables them). The IMR on 8259A is arranged so that bit 0 is for IRQ0, bit 1 is for IRQ1, and so on. The IMR on 8259B is arranged so that bit 0 is for IRQ9, and so on. See the paragraph entitled *Interrupt Mask Register (IMR)* earlier in this chapter for help in determining your IRQ's bit. After setting the bit, write the new value to I/O port 21H (IRQ0-IRQ7) or I/O port A1H (IRQ8-IRQ15).

With the startup IMR saved and the interrupts on your IRQ temporarily disabled, you can assign the interrupt vector to point to your ISR. Again, you can overwrite the appropriate entry in the vector table with a direct memory write, but this is a bad practice. Instead, use either DOS function 25H (set interrupt vector) or, if your compiler provides it, the library routine for setting an interrupt vector. Remember that vectors 8-15 are for IRQ0-IRQ7 and vectors 70H-77H are for IRQ8-IRQ15.

If you need to program the source of your interrupts, do that next. For example, if you are using the programmable interval timer to generate interrupts, you must program it to run in the proper mode and at the proper rate.

Finally, clear the bit in the IMR for the IRQ you are using. This enables interrupts on the IRQ.

Restoring the Startup IMR and Interrupt Vector

Before exiting your program, you must restore the interrupt mask register and interrupt vectors to the state they were in before your program started. To restore the IMR, write the value that was saved when your program started to I/O port 21H for IRQ0-IRQ7 or I/O port A1H for IRQ8-IRQ15. Restore the interrupt vector that was saved at startup with either DOS function 25H (set interrupt vector), or use the library routine supplied with your compiler. Performing these two steps will guarantee that the interrupt status of your computer is the same after running your program as it was before your program started running.

Common Interrupt Mistakes

- Remember that hardware interrupts are numbered 8 through 15 for IRQ0-IRQ7 and 70H through 77H for IRQ8-IRQ15.
- Two of the most common mistakes when writing an ISR are forgetting to clear the interrupt status of the 2700 and forgetting to issue the EOI command to the appropriate 8259 interrupt controller before exiting the ISR.

Data Transfers Using DMA

Direct Memory Access (DMA) transfers data between a peripheral device and PC memory without using the processor as an intermediate. Bypassing the processor in this way allows very fast transfer rates. All PCs contain the necessary hardware components for accomplishing DMA. However, software support for DMA is not included as part of the BIOS or DOS, leaving you with the task of programming the DMA controller yourself. With a little care, such programming can be successfully and efficiently achieved.

The following discussion is based on using the DMA controller to get data from a peripheral device and write it to memory. The opposite can also be done; the DMA controller can read data from memory and pass it to a peripheral device. There are a few minor differences, mostly in programming the DMA controller, but in general the process is the same.

The following steps are required when using DMA:

- 1. Choose a DMA channel.
- 2. Allocate a buffer.
- 3. Calculate the page and offset of the buffer.
- 4. Set the DMA page register.
- 5. Program the 8237 DMA controller.
- 6. Program device generating data (2700).
- 7. Wait until DMA is complete.
- 8. Disable DMA.

Each step is detailed in the following paragraphs.

Choosing a DMA Channel

There are a number of DMA channels available on the PC for use by peripheral devices. The 2700 can use DMA channel 5, 6, or 7. The factory setting is DMA disabled. You can arbitrarily choose any of these; in most cases your choice will be fine. Occasionally though, you will have another peripheral device (for example, a tape backup or Bernoulli drive) that also uses the DMA channel you have selected. This will certainly cause erratic results and can be hard to detect. The best approach to pinpoint this problem is to read the documentation for the other peripheral devices in your system and try to determine which DMA channel each uses.

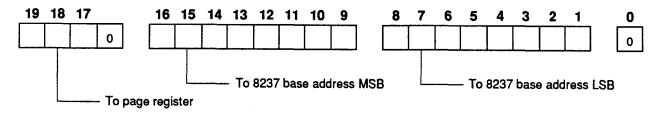
Allocating a DMA Buffer

When using DMA, you must have a location in memory where the 8237 DMA controller will place the 16-bit data words which contain the 12-bit A/D converted data from the 2700 board. This buffer can be either static or dynamically allocated. The buffer must start on a word boundary (i.e., even numbered address). You should force your compiler to use word alignment for data. Be sure that its location will not change while DMA is in progress. The following code examples show how to allocate buffers for use with DMA.

In Pascal:

```
Var Buffer : Array[1..10000] of Byte; { static allocation }
-or-
Var Buffer : ^Byte; {dynamic allocation }
...
Buffer := GetMem(10000);
In C:
char Buffer[10000]; /* static allocation */
-or-
char *Buffer; /* dynamic allocation */
...
Buffer = calloc(10000, 0);
```

· Calculating the Page and Offset of a Buffer


Once you have a buffer into which to place your data, you must inform the 8237 DMA controller of the location of this buffer. This is a little more complex than it sounds because the DMA controller uses a **page**:offset memory scheme, while you are probably used to thinking about your computer's memory in terms of a **segment**:offset scheme. Paged memory is simply memory that occupies contiguous, **non-overlapping** blocks of memory, with each block being 64K (one page) in length. The first page (page 0) starts at the first byte of memory, the second page (page 1) starts at byte 65536, the third page (page 2) at byte 131072, and so on. A computer with 640K of memory has 10 pages of memory.

The DMA controller can write to (or read from) only one page without being reprogrammed. This means that the DMA controller has access to only 64K of memory at a time. If you program it to use page 3, it cannot use any other page until you reprogram it to do so.

When DMA is started, the DMA controller is programmed to place data at a specified offset into a specified page (for example, start writing at word 512 of page 3). Each time a word of data is written by the controller, the offset is automatically incremented so the next word will be placed in the next memory location. The problem for you when programming these values is figuring out what the corresponding page and offset are for your buffer. Most compilers contain macros or functions that allow you to directly determine the segment and offset of a data structure, but not the page and offset. Therefore, you must calculate the page number and offset yourself. Probably the most intuitive way of doing this is to convert the segment:offset address of your buffer to a linear address and then convert that linear address to a page:offset address. The table at the top of the next page shows functions/ macros for determining the segment and offset of a buffer.

Language	Segment	Offset
с	FP_SEG s = FP_SEG(&Buffer)	FP_OFF o = FP_OFF(&Buffer)
Pascal	Seg S := Seg(Buffer)	Ofs O := Ofs(Buffer)

Once you've determined the segment and offset, multiply the segment by 16 and add the offset to give you the linear address. (Make sure you store this result as a long integer, or DWORD, or the results will be meaningless.) The linear address is a 20-bit value, with the upper 4 bits representing the page and the lower 16 bits representing the offset into the page. Even though the upper 4 bits are the page, only the upper 3 bits, D17, D18, and D19, are sent to what is called the page register. The remaining bit for the page, D16, is sent to the base address register of the DMA controller along with bits D1 through D15. Since the buffer sits on a word boundary, bit D0 must be zero, and is ignored. The following diagram shows you to which registers the components of the 20-bit linear address are sent.

The following examples show you how to calculate the linear address and break it into components to be sent to the various registers.

In Pascal:

<pre>Segment := SEG(Buffer); Offset := OFS(Buffer); LinearAddress := Segment * 16 + Offset; PageBits := (LinearAddress DIV 65536) AND \$0E;</pre>	<pre>{ get segment of buffer } { get offset of buffer } { calculate linear address } { determine page corresponding to this linear address and clear least significant bit }</pre>
OffsetBits := (LinearAddress SHR 2) MOD 65536;	
In C:	
<pre>segment = FP_SEG(&Buffer); offset = FP_OFS(&Buffer); linear_address = segment * 16 + offset; pagebits = (linear_address / 65536) & 0x0E;</pre>	<pre>/* get segment of buffer */ /* get offset of buffer */ /* calculate linear address */ /* determine page corresponding to this linear address and clear least significant bit */</pre>
offset_bits = (linear_address >> 2) % 65536;	

Beware! There is one big catch when using page-based addresses. The 8237 DMA controller cannot write properly to a buffer that 'straddles' a page boundary. A buffer straddles a page boundary if one part of the buffer resides in one page of memory while another part resides in the following page. The DMA controller cannot properly write to such a buffer because the DMA controller can only write to one page without reprogramming. When it reaches the end of the current page, it does not start writing to the next page. Instead, it starts writing back at the first byte of the current page. This can be disastrous if the beginning of the page does not correspond to your buffer. More often than not, this location is being used by the code portion of your program or the operating system, and writing data to it will almost always causes erratic behavior and an eventual system crash.

You must check to see if your buffer straddles a page boundary and, if it does, take action to prevent the DMA controller from trying to write to the portion that continues on the next page You can reduce the size of the buffer or try to reposition the buffer. However, this can be difficult when using large static data structures, and often, the only solution is to use dynamically allocated memory.

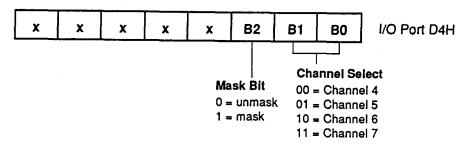
Setting the DMA Page Register

Oddly enough, you do not inform the DMA controller directly of the page to be used. Instead, you put the page to be used into the DMA page register, with the least significant bit set to zero. The DMA page register is separate from the DMA controller, as shown in the table below.

DMA Channel	Location of Page Register	
5	8B/(139)	
6	89/(137)	
7	8A/(138)	

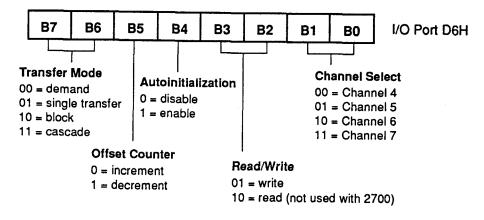
The DMA Controller

The DMA controller is made up of two complex 8237 chips, one for DMA channels 0-3, and one for channels 4-7, that occupy 32 contiguous bytes of the AT I/O port space starting with port COH. A complete discussion of how it operates is beyond the scope of this manual; only relevant information is included here. The DMA controller is programmed by writing to the DMA registers in your AT. The table below lists these registers.


DMA	DMA Registers		
Address hex/(decimal)	Register Description		
8B/(139)	Channel 5 DMA Page Select		
C4/(196)	Channel 5 DMA Base Address		
C6/(198)	Channel 5 DMA Count		
89/(137)	Channel 6 DMA Page Select		
C8/(200)	Channel 6 DMA Base Address		
CA/(202)	Channel 6 DMA Count		
8A/(138)	Channel 7 DMA Page Select		
CC/(204)	Channel 7 DMA Base Address		
CE/(206)	Channel 7 DMA Count		
D4/(212)	Mask Register		
D6/(214)	Mode Register		
D8/(216)	Byte Pointer Flip-Flop		

If you are using DMA channel 5, write your page offset bits to port C4H and the count to C6H; for channel 6, write the offset to C8H and the count to CAH; for channel 7, write the offset to CCH and the count to CEH. The page offset bits are the bits you calculated as shown above. Count indicates the number of samples that you want the DMA controller to transfer. The value that you write to the DMA controller is (number of samples - 1). The single mask register and mode register are described below.

DMA Single Mask Register


The DMA single mask register is used to enable or disable DMA on a specified DMA channel. You should mask (disable) DMA on the DMA channel you will be using while programming the DMA controller. After the

DMA controller has been programmed and the 2700 has been programmed to sample data, you can enable DMA by clearing the mask bit for the DMA channel you are using. You should manually disable DMA by setting the mask bit before exiting your program or, if for some reason, sampling is halted before the DMA controller has transferred all the data it was programmed to transfer. If you leave DMA enabled and it has not transferred all the data it was programmed to transfer, it will resume transfers the next time data appears at the A/D converter. This can spell disaster if your program has ended and the buffer has be reallocated to another application.

DMA Mode Register

The DMA mode register is used to set parameters for the DMA channel you will be using. The read/write bits are self explanatory; the read mode cannot be used with the 2700. Autoinitialization allows the DMA controller to automatically start over once it has transferred the requested number of words. Decrement means the DMA controller should decrement its offset counter after each transfer; the default is increment. We recommend that you use either the demand or single transfer mode when transferring data.

Programming the DMA Controller

To program the DMA controller, follow these steps:

1. Disable DMA on the channel you are using.

- 2. Write the DMA mode register to choose the DMA parameters.
- 3. Write the page offset bits (D1-D16) of your buffer.
- 4. Write the number of samples to transfer.

5. Enable DMA on the channel you are using.

Programming the 2700 for DMA

Once you have set up the DMA controller, you must program the 2700 for DMA. The following steps list this procedure:

1. Program the pacer clock (if appropriate).

- 2. Set the IRQ enable bit in BA + 4.
- 3. Set the external trigger enable bit in BA + 4.
- 4. Monitor for DMA done.

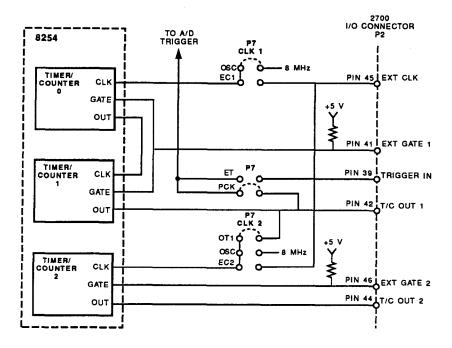
Monitoring for DMA Done

There are two ways to monitor for DMA done. The easiest is to poll the DMA done bit in the 2700 status register (BA +2). While DMA is in progress, the bit is clear (0). When DMA is complete, the bit is set (1). The second way to check is to use the DMA done signal to generate an interrupt. An interrupt can immediately notify your program that DMA is done and any actions can be taken as needed. Both methods are demonstrated in the sample C and Pascal programs, the polling method in the program named DMA and the interrupt method in DMASTR.

Common DMA Problems

- Make sure that your buffer is large enough to hold all of the data you program the DMA controller to transfer.
- Check to be sure that your buffer does not straddle a page boundary.
- Remember that the value for the number of samples for the DMA controller to transfer is equal to (the number of samples 1). This is because as the DMA controller counts down, it transfers a sample when the count reaches 0.
- If you terminate sampling before the DMA controller has transferred the number of bytes it was programmed for, be sure to disable DMA by setting the mask bit in the single mask register.

D/A Conversions


The two D/A converters can be individually programmed to convert 12-bit digital words into a voltage in the range of ± 5 , ± 10 , 0 to +5, or 0 to +10 volts. DAC1 is programmed by writing the 12-bit digital data word to BA + 8. DAC2 is identical, with the data word written to BA + 10. The following tables list the key digital codes and corresponding output voltages for the D/A converters.

D/A Converter Unipolar Calibration Table			
	Ideal Output Voltage (in millivolts)		
D/A Bit Weight	0 to +5 V	0 to +10 V	
4095 (Max. Output)	4998.8	9997.6	
2048	2500.0	5000.0	
1024	1250.0	2500.0	
512	625.00	1250.0	
256	312.50	625.00	
128	156.250	312.50	
64	78.125	156.250	
32	39.063	78.125	
16	19.5313	39.063	
8	9.7656	19.5313	
4	4.8828	9.7656	
2	2.4414	4.8828	
1	1.2207	2.4414	
0	0.0000	0.0000	

D/A Converter Bipolar Calibration Table			
	ideal Output Voltage (in millivolts)		
D/A Bit Weight	±5 V	±10 V	
4095 (Max. Output)	+4997.6	+9995.1	
2048	0.0	0.0	
1024	-2500.0	-5000.0	
512	-3750.0	-7500.0	
256	-4375.0	-8750.0	
128	-4687.5	-9375.0	
64	-4843.8	-9687.5	
32	-4921.9	-9843.8	
16	-4960.9	-9921.9	
8	-4980.5	-9960.9	
4	-4990.2	-9980.5	
2	-4995.1	-9990.2	
1	-4997.6	-9995.1	
0	-5000.0	-10000.0	

Timer/Counters

An 8254 programmable interval timer provides three 16-bit, 8-MHz timer/counters for timing and counting functions such as frequency measurement, event counting, and interrupts. Two of the timer/counters are cascaded and can be used for the pacer clock. The remaining timer/counter is available for your use. Figure 4-3 shows the timer/counter circuitry.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in the I/O map section at the beginning of this chapter.

One of two clock sources, the on-board 8-MHz crystal or the external clock (P2-45) can be selected as the clock input to TC0 or TC2. The diagram shows how these clock sources are connected to the timer/counters.

Two gate sources are available at the I/O connector (P2-41 and P2-46). When a gate is disconnected, an onboard pull-up resistor automatically pulls the gate high, enabling the timer/counter.

The output from Timer/Counter 1 is available at the T/C OUT 1 pin (P2-42) and Timer Counter 2's output is available at T/C 2 OUT (P2-44), where they can be used for interrupt generation, as an A/D trigger, or for counting functions.

The timer/counters can be programmed to operate in one of six modes, depending on your application. The following paragraphs briefly describe each mode.

Mode 0, Event Counter (Interrupt on Terminal Count). This mode is typically used for event counting. While the timer/counter counts down, the output is low, and when the count is complete, it goes high. The output stays high until a new Mode 0 control word is written to the timer/counter.

Mode 1, Hardware-Retriggerable One-Shot. The output is initially high and goes low on the clock pulse following a trigger to begin the one-shot pulse. The output remains low until the count reaches 0, and then goes high and remains high until the clock pulse after the next trigger.

Mode 2, Rate Generator. This mode functions like a divide-by-N counter and is typically used to generate a real-time clock interrupt. The output is initially high, and when the count decrements to 1, the output goes low for one clock pulse. The output then goes high again, the timer/counter reloads the initial count, and the process is repeated. This sequence continues indefinitely.

Mode 3, Square Wave Mode. Similar to Mode 2 except for the duty cycle output, this mode is typically used for baud rate generation. The output is initially high, and when the count decrements to one-half its initial count, the output goes low for the remainder of the count. The timer/counter reloads and the output goes high again. This process repeats indefinitely.

Mode 4, Software-Triggered Strobe. The output is initially high. When the initial count expires, the output goes low for one clock pulse and then goes high again. Counting is "triggered" by writing the initial count.

Mode 5, Hardware Triggered Strobe (Retriggerable). The output is initially high. Counting is triggered by the rising edge of the gate input. When the initial count has expired, the output goes low for one clock pulse and then goes high again.

Digital I/O

The 24 8255 PPI-based digital I/O lines can be used to transfer data between the computer and external devices. Because the lines are buffered, only Mode 0 or Mode 1 operation can be used. When using Mode 1, remove the Port C buffers as described in Chapter 1. The digital input lines can have pull-up or pull-down resistors installed, as described in Chapter 1.

Example Programs and Flow Diagrams

Included with the 2700 is a set of example programs that demonstrate the use of many of the board's features. These examples are written in C and Pascal. Also included is an easy-to-use menu-driven diagnostics program, 2700DIAG, which is especially helpful when you are first checking out your board after installation and when calibrating the board (Chapter 5).

Before using the software included with your board, make a backup copy of the disk. You may make as many backups as you need.

C and Pascal Programs

These programs are source code files so that you can easily develop your own custom software for your 2700 board. In the C directory, 2700.H and 2700.INC contain all the functions needed to implement the main C programs. H defines the addresses and INC contains the routines called by the main programs. In the Pascal directory, 2700.PNC contains all of the procedures needed to implement the main Pascal programs.

Analog-to-Digital:	
SOFTTRIG EXTTRIG MULTI	Demonstrates how to use the software trigger mode for acquiring data. Similar to SOFTTRIG except that an external trigger is used. Shows how to fill an array with data using a software trigger.
Timer/Counters:	
TIMER	A short program demonstrating how to program the 8254 for use as a timer.
Digital I/O:	
DIGITAL	Simple program that shows how to read and write the digital I/O lines.
Digital-to-Analog:	
DAC WAVES	Shows how to use the DACs. Uses A/D channel 1 to monitor the output of DAC1. A more complex program that shows how to use the 8254 timer and the DACs as a waveform generator.
Interrupts:	
INTRPTS INTSTRM	Shows the bare essentials required for using interrupts. A complete program showing interrupt-based streaming to disk.
DMA:	
DMA	Demonstrates how to use DMA to transfer acquired data to a memory buffer. Buffer can
DMASTRM	be written to disk and viewed with the included VIEWDAT program. Demonstrates how to use DMA for disk streaming. Very high continuous acquisition rates can be obtained.

Flow Diagrams

The following paragraphs provide descriptions and flow diagrams for some of the 2700's A/D and D/A conversion functions. These diagrams will help you to build your own custom applications programs.

• Single Convert Flow Diagram (Figure 4-4)

This flow diagram shows you the steps for taking a single sample on a selected channel. A sample is taken each time you send the Start Convert command. All of the samples will be taken on the same channel and at the same gain until you change the value in port BA + 4. Changing this value before each Start Convert command is issued lets you take the next reading from a different channel at a different gain.

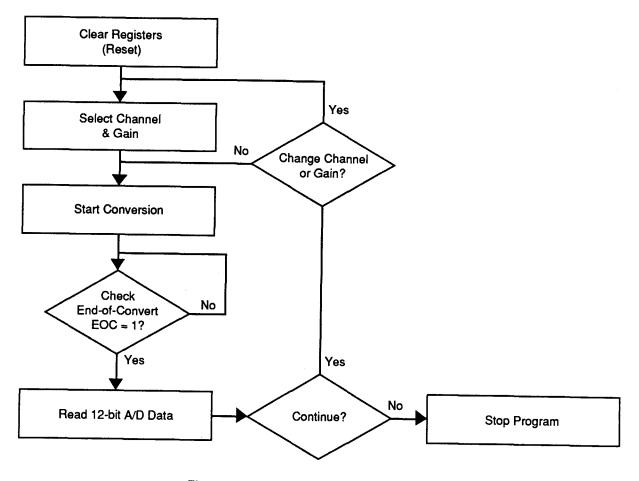


Fig. 4-4 — Single Conversion Flow Diagram

• DMA Flow Diagram (Figure 4-5)

This flow diagram shows you how to take samples and transfer the data directly into the computer's memory. You can use DMA channel 5, 6, or 7 to transfer data to the computer's memory. The pacer clock can be used to set the sampling interval.

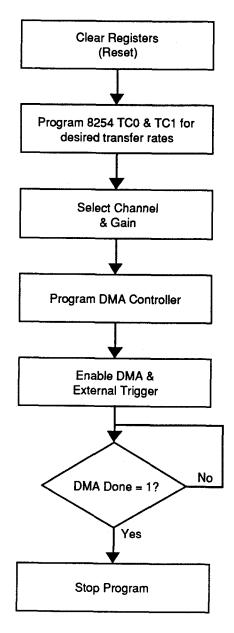


Fig. 4-5 - DMA Flow Diagram

• Interrupts Flow Diagram (Figure 4-6)

This flow diagram shows you how to program an interrupt routine for your 2700. The diagram parallels the interrupts discussion included earlier in this chapter. You can use this diagram in conjunction with the detailed text in this chapter to develop an interrupt program for your 2700.

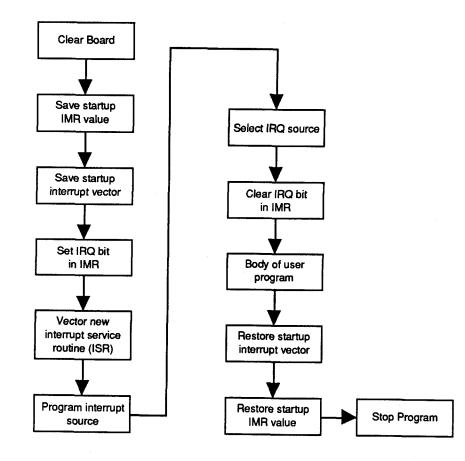


Fig. 4-6 — Interrupts Flow Diagram

• D/A Conversion Flow Diagram (ADA2700 Only) (Figure 4-7)

This flow diagram shows you how to generate a voltage output through the D/A converter on the ADA2700. A conversion is initiated each time the digital data is written to the D/A converter.

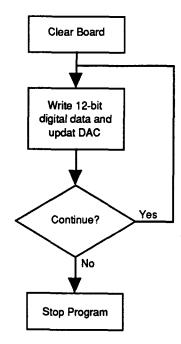


Fig. 4-7 — D/A Conversion Flow Diagram

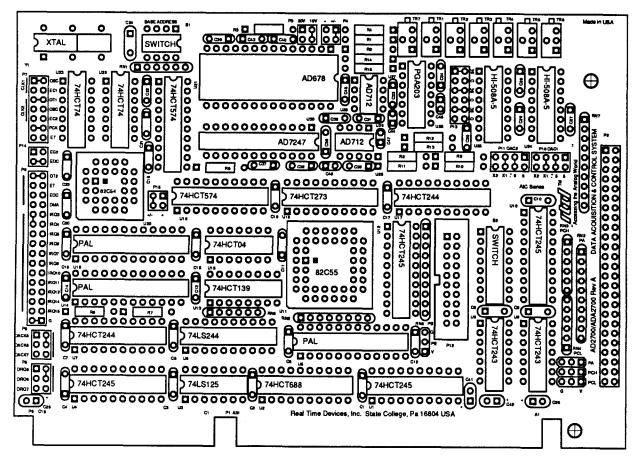
CHAPTER 5

CALIBRATION

This chapter tells you how to calibrate the 2700 using the 2700DIAG calibration program included in the example software package and six trimpots on the board. These trimpots calibrate the A/D converter gain and offset and the D/A X2 multiplier output.

5-2

This chapter tells you how to calibrate the A/D converter gain and offset and the D/A converter X2 multiplier (ADA2700 only). All A/D and D/A ranges are factory-calibrated before shipping. Any time you suspect inaccurate readings, you can check the accuracy of your conversions using the procedure below, and make adjustments as necessary. Using the 2700DIAG diagnostics program is a convenient way to monitor conversions while you calibrate the board.


Calibration is done with the board installed in your system. You can access the trimpots at the edge of the board. Power up the system and let the board circuitry stabilize for 15 minutes before you start calibrating.

Required Equipment

The following equipment is required for calibration:

- Precision Voltage Source: -10 to +10 volts
- Digital Voltmeter: 5-1/2 digits
- Small Screwdriver (for trimpot adjustment)

While not required, the 2700DIAG diagnostics program (included with example software) is helpful when performing calibrations. Figure 5-1 shows the board layout with the trimpots located along the top edge of the board (TR7 at left, followed by TR1 through TR6).

Fig. 5-1 — Board Layout

A/D Calibration

Two procedures are used to calibrate the A/D converter for all input voltage ranges. The first procedure calibrates the converter for the unipolar range (0 to +10 volts), and the second procedure calibrates the bipolar ranges (± 5 , ± 10 volts). Table 5-1 shows the ideal input voltage for each bit weight for the unipolar, straight binary range, and Table 5-2 shows the ideal voltage for each bit weight for the bipolar, twos complement ranges.

Unipolar Calibration

Two adjustments are made to calibrate the A/D converter for the unipolar range of 0 to ± 10 volts. One is the offset adjustment, and the other is the full scale, or gain, adjustment. Trimpot TR7 is used to make the offset adjustment, and trimpot TR2 is used for gain adjustment. This calibration procedure is performed with the board set up for a 0 to ± 10 volt input range. Before making these adjustments, make sure that the jumper on P3 is set for ± 10 volt and the jumpers on P4 and P15 are set for \pm .

Use analog input channel 1 and set it for a gain of 1 while calibrating the board. Connect your precision voltage source to channel 1. Set the voltage source to +1.22070 millivolts, start a conversion, and read the resulting data. Adjust trimpot TR7 until it flickers between the values listed in the table at the top of the next page. Next, set the voltage to +9.49829 volts, and repeat the procedure, this time adjusting TR2 until the data flickers between the values in the table. Note that the value used to adjust the full scale voltage is not the ideal full scale value for a 0 to +10 volt input range. This value is used because it is the maximum value at which the A/D converter is guaranteed to be linear, and ensures accurate calibration results.

	Table 5-1 — A/D Converter Bit Weights, Unipolar, Straight Binary								
	Ideat Input Voltage (millivolts)								
A/D Bit Weight	0 to +10 Volts								
1111 1111 1111	+9997.6								
1000 0000 0000	+5000.0								
0100 0000 0000	+2500.0								
0010 0000 0000	+1250.0								
0001 0000 0000	+625.00								
0000 1000 0000	+312.50								
0000 0100 0000	+156.250								
0000 0010 0000	+78.125								
0000 0001 0000	+39.063								
0000 0000 1000	+19.5313								
0000 0000 0100	+9.7656								
0000 0000 0010	+4.8828								
0000 0000 0001	+2.4414								
0000 0000 0000	+0.0000								

Data Values fo	Data Values for Calibrating Unipolar 10 Volt Range (0 to +10 volts)									
	Offset (TR7) Input Voltage = +1.22070 mV	Converter Gain (TR2) Input Voltage = +9.49829 V								
A/D Converted Data	0000 0000 0000 0000 0000 0001	1111 0011 0010 1111 0011 0011								

Bipolar Calibration

Bipolar Range Adjustments: -5 to +5 Volts

Two adjustments are made to calibrate the A/D converter for the bipolar range of -5 to +5 volts. One is the offset adjustment, and the other is the full scale, or gain, adjustment. Trimpot TR3 is used to make the offset adjustment, and trimpot TR2 is used for gain adjustment. Before making these adjustments, make sure that the jumper on P3 is set for 10V and the jumpers on P4 and P15 are set for +/-.

Use analog input channel 1 and set it for a gain of 1 while calibrating the board. Connect your precision voltage source to channel 1. Set the voltage source to -4.99878 volts, start a conversion, and read the resulting data. Adjust trimpot TR3 until it flickers between the values listed in the table below. Next, set the voltage to +4.99634 volts, and repeat the procedure, this time adjusting TR2 until the data flickers between the values in the table.

Data Values for	Calibrating Bipolar 10 Volt Ra	nge (-5 to +5 volts)
	Offset (TR3) Input Voltage = -4.99878V	Converter Gain (TR2) Input Voltage = +4.99634V
A/D Converted Data	1000 0000 0000 1000 0000 0001	0111 1111 1110 0111 1111 1111

Table 5-2 — A/D Converter Bit Weights, Bipolar, Twos Complement								
		ideal Input Vo	Ideal Input Voltage (millivolts)					
A/D Bi	t Weight	-5 to +5 Volts	-10 to +10 Volts					
1111 1	111 1111	-2.44	-4.88					
1000 0	0000 0000	-5000.00	-10000.00					
0100 0	0000 0000	+2500.00	+5000.00					
0010 0	0000 0000	+1250.00	+2500.00					
0001 00	0000 0000	+625.00	+1250.00					
0000 10	0000 0000	+312.50	+625.00					
0000 0	0000 000	+156.25	+312.50					
0000 00	010 0000	+78.13	+156.25					
0000 00	001 0000	+39.06	+78.13					
0000 00	000 1000	+19.53	+39.06					
0000 00	00 0100	+9.77	+19.53					
0000 00	00 0010	+4.88	+9.77					
0000 00	00 0001	+2.44	+4.88					
0000 00	00 0000	0.00	0.00					

Bipolar Range Adjustments: -10 to +10 Volts

To adjust the bipolar 20-volt range (-10 to +10 volts), change the jumper on P3 so that it is installed across the 20V pins. Leave the P4 and P15 jumpers at +/-. Then, set the input voltage to +5.0000 volts and adjust TR1 until the output matches the data in the table below.

Data Value for Calibrating Bipolar 20 Volt Range (-10 to +10 volts)						
	TR1 Input Voltage = +5.0000V					
A/D Converted Data	0100 0000 0000					

D/A Calibration (ADA2700)

The D/A converter requires no calibration for the X1 ranges (0 to +5 and ± 5 volts). The following paragraph describes the calibration procedure for the X2 multiplier ranges.

To calibrate for X2 (0 to +10 or ± 10 volts), set the DAC output voltage range to 0 to +10 volts (jumpers on X2 and 5 on P10, AOUT1, or P11, AOUT2). Then, program the corresponding D/A converter (DAC1 or DAC2) with the digital value 2048. The ideal DAC output for 2048 at X2 (0 to +10 volt range) is 5.0000 volts. Adjust TR5 for AOUT1 and TR6 for AOUT2 until 5.0000 volts is read at the output. Table 5-3 lists the ideal output voltages per bit weight for unipolar ranges and Table 5-4 lists the ideal output voltages for bipolar ranges.

Table 5-3 — D/A Converter Unipolar Calibration Table							
	Ideal Output Voltage (in millivolts)						
D/A Bit Weight	0 to +5 V	0 to +10 V					
1095 (Max. Output)	4998.8	9997.6					
2048	2500.0	5000.0					
1024	1250.0	2500.0					
512	625.00	1250.0					
256	312.50	625.00					
128	156.250	312.50					
64	78.125	156.250					
32	39.063	78.125					
16	19.5313	39.063					
8	9.7656	19.5313					
4	4.8828	9.7656					
2	2.4414	4.8828					
1	1.2207	2.4414					
0	0.0000	0.0000					

Table 5-4 — D/A Converter Bipolar Calibration Table						
	Ideal Output Voltage (in millivolts)					
D/A Bit Weight	±5 V	±10 V				
1095 (Max. Output)	+4997.6	+9995.1				
2048	0.0	0.0				
1024	-2500.0	-5000.0				
512	-3750.0	-7500.0				
256	-4375.0	-8750.0				
128	-4687.5	-9375.0				
64	-4843.8	-9687.5				
32	-4921.9	-9843.8				
16	-4960.9	-9921.9				
8	-4980.5	-9960.9				
4	-4990.2	-9980.5				
2	-4995.1	-9990.2				
1	-4997.6	-9995.1				
0	-5000.0	-10000.0				

5-8

APPENDIX A

AD2700/ADA2700 SPECIFICATIONS

A-2

AD2700/ADA2700 Characteristics Typical @ 25° C

Interface	
Switch-selectable base address, I/O map Jumper-selectable interrupts & DMA cha	pped nnel
Analog Input	
8 differential or 16 single-ended inputs	
Input impedance, each channel	>10 megohms
Gains, software-selectable	
Gain error	05%, typ; 0.25%, max
Input ranges	+5, +10, or 0 to +10 volts
Guaranteed linearity across input ranges	±5, ±9.5, and 0 to +9.5 volts
Overvoltage protection	+35 Vdc
Common mode input voltage	±10 volts, max
Settling time (gain = 1)	5 μsec, max
A/D Converter	AD678
Туре	Successive approximation
Resolution	12 bits (2.44 mV @ 10V; 4.88 mV @ 20V)
Linearity	±1 LSB, typ
Throughout	5 μsec, typ
Pacer Clock	
	9 minutes to 5 μsec
Digital I/O	CMOS 82C55
Number of lines	
Logic compatibility	
(Configurable High-level output voltage	with optional I/O pull-up/pull-down resistors)
I ow-level output voltage	
High-level input voltage	0.45V, max 2.2V, min; 5.5V, max
Low-level input voltage	-0.3V, min; 0.8V, max
High-level output current, Isource	
	TTL buffer: -16 mA max
Low-level output current, Isink	
	TTL buffer: 64 mA max
Input load current	±10 μA
Input capacitance,	
C(IN)@F=1MHZ	
Output capacitance, C(OUT)<@F=1MHz	
D/A Converter (ADA2700 Only)	
Analog outputs	AD7237
Resolution	2 channels
Output ranges	
Relative accuracy	±1 LSB, max
Full-scale accuracy	±5 LSB, max
Non-linearity	±5 ESB, max
Settling time	
Timer/Counters	CMOS 82C54
Three 16-bit down counters (2 cascaded, 1	l independent)
6 programmable operating modes	. ,
Counter input source	External clock (8 MHz, max) or
	on-board 8-MHz clock
Counter outputs	Available externally; used as PC interrupts
Counter gate source	External gate or always enabled

Miscellaneous inputs/Outputs (PC bus-sourced)

±5 volts, ±12 volts, ground

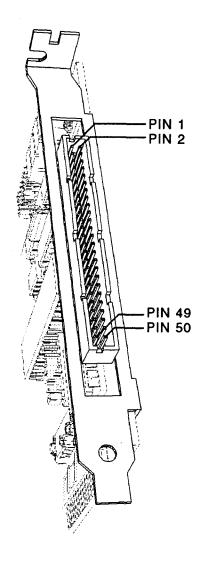
Current Requirements

185 mA @ +5 volts; 44 mA @ +12 volts; 42 mA @ -12 volts

Connectors

P2: 50-pin right angle shrouded box header P12: 20-pin box connector

Size


4.2"H x 6.375"L (107mm x 162mm)

APPENDIX B

P2 AND P12 CONNECTOR PIN ASSIGNMENTS

P2 Connector

DIFF.	S.E.		DIFF.	S.E.			
AIN1+	AINI	12	AIN1-	AI N9			
AIN2+	AIN2	34	AIN2-	AIN10			
AIN3+	AIN3	56	AIN3-	AIN11			
AIN4+	AIN4	Ō3	AIN4-	AIN12			
AIN5+	AIN5	910	AIN5-	AIN13			
AIN6+	AIN6	1	AIN6-	AIN14			
AIN7+	AIN7	1314	AIN7-	AIN15			
AIN8+	AINS	1919	AIN8-	AIN16			
	OUT 1	\bigcirc	ANALO	g gnd			
	OUT 2	1920	ANALO	g gnd			
ANALOG GND		2122	ANALOG GND				
	PA7	2324	PC7				
	PA6	2526	PC6				
	PA5	@ 8	PC5				
	P A4	2939	PC4				
	PA3	<u> (1)</u>	PC3				
	PA2	3334	PC2				
	PA1	33	PC1				
	PA0	I III	PC0				
TRIGO	GER IN	3940	DIGITA	L GND			
EXT	IATE 1	€1€	T/C OU	T 1			
TRIGGE	ROUT	4344	T/C OU	Т 2			
EX		4546	EXT GA	TE 2			
+12	VOLTS	4748	+5 VOL	TS			
-12	VOLTS	4960	DIGITA	L GND			
	•						

P12 Connector

PBO	(1)	PCO
PB1		PC1
PB2	56	PC2
PB3	73	PC3
PB4	90	PC4
PB5	(1)	PC5
PB6	1314	PC6
PB7	1516	PC7
+12 VOLTS	1718	+5 VOLTS
-12 VOLTS	1	DIGITAL GND

B-4

APPENDIX C

COMPONENT DATA SHEETS

. •

Intel 82C54 Programmable Interval Timer Data Sheet Reprint

82C54 CHMOS PROGRAMMABLE INTERVAL TIMER

- Compatible with all Intel and most other microprocessors
- High Speed, "Zero Wait State" Operation with 8 MHz 8086/88 and 80186/188
- Handles Inputs from DC to 8 MHz — 10 MHz for 82C54-2
- Available in EXPRESS
 Standard Temperature Range
 Extended Temperature Range

- Three independent 16-bit counters
- Low Power CHMOS — I_{CC} = 10 mA @ 8 MHz Count frequency
- Completely TTL Compatible
- Six Programmable Counter Modes
- Binary or BCD counting
- Status Read Back Command
- Available in 24-Pin DIP and 28-Pin PLCC

The Intel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is designed to solve the timing control problems common in microcomputer system design. It provides three independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All modes are software programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset of the 8253.

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator, programmable one-shot, and in many other applications.

The 82C54 is fabricated on Intel's advanced CHMOS III technology which provides low power consumption with performance equal to or greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP and 28-pin plastic leaded chip carrier (PLCC) packages.

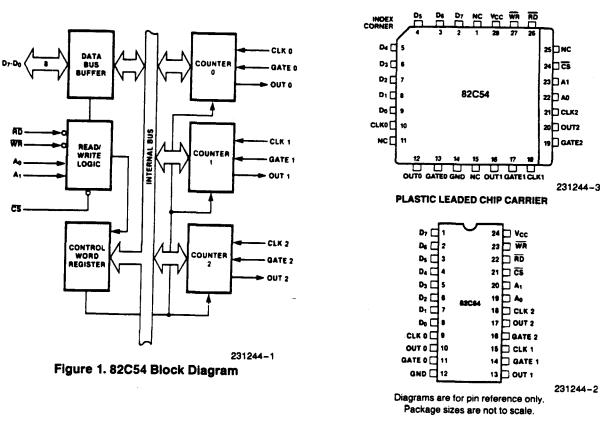


Figure 2. 82C54 Pinout

Symbol	Pi	Pin Number Type		Function					
Januar	DIP	PLCC	Туре	Function					
D ₇ -D ₀	1-8	2-9	1/0	Data: Bidirectional tri-state data bus lines, connected to system data bus.					
CLK 0	9	10		Clock 0: Clock input of Counter 0.					
OUT 0	10	12	0	Output 0: O	utput of Count	er 0.			
GATE 0	11	13		Gate 0: Gate	e input of Cour	nter 0.			
GND	12	14		Ground: Pov	ver supply con	nection.			
OUT 1	13	16	0	Out 1: Outpu	ut of Counter 1	•			
GATE 1	14	17		Gate 1: Gate	e input of Cour	nter 1.			
CLK 1	15	.18		Clock 1: Clo	ck input of Cou	unter 1.			
GATE 2	16	19		Gate 2: Gate	input of Coun	nter 2.			
OUT 2	17	20	0	Out 2: Outpu	ut of Counter 2	•			
CLK 2	18	21		Clock 2: Clock input of Counter 2.					
A ₁ , A ₀	20-19	23-22		or the Contro	ol Word Regist	ne of the three Counters er for read or write ected to the system			
				A ₁	A 0	Selects			
				0 0 1 1	0 1 0 1	Counter 0 Counter 1 Counter 2 Control Word Register			
CS	21	24	I	Chip Select: A low on this input enables the $82C54$ to respond to \overline{RD} and \overline{WR} signals. \overline{RD} and \overline{WR} are ignored otherwise.					
RD	22	26	I	Read Contro operations.	I: This input is	low during CPU read			
WR	23	27	ł	Write Contro operations.	I: This input is	low during CPU write			
V _{CC}	24	28		Power: +5V	power supply	connection.			
NC		1, 11, 15, 25		No Connect	·····				

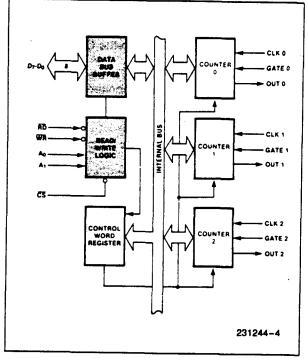
Table 1. Pin Description

FUNCTIONAL DESCRIPTION

General

The 82C54 is a programmable interval timer/counter designed for use with Intel microcomputer systems. It is a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.

The 82C54 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in software, the programmer configures the 82C54 to match his requirements and programs one of the counters for the desired delay. After the desired delay, the 82C54 will interrupt the CPU. Software overhead is minimal and variable length delays can easily be accommodated.

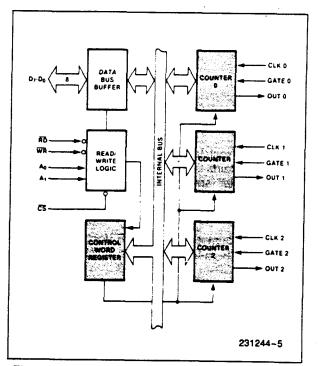

Some of the other counter/timer functions common to microcomputers which can be implemented with the 82C54 are:

- Real time clock
- Even counter
- Digital one-shot
- Programmable rate generator
- Square wave generator
- Binary rate multiplier
- Complex waveform generator
- Complex motor controller

Block Diagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to interface the 82C54 to the system bus (see Figure 3).


READ/WRITE LOGIC

The Read/Write Logic accepts inputs from the system bus and generates control signals for the other functional blocks of the 82C54. A₁ and A₀ select one of the three counters or the Control Word Register to be read from/written into. A "low" on the RD input tells the 82C54 that the CPU is reading one of the counters. A "low" on the WR input tells the 82C54 that the CPU is writing either a Control Word or an initial count. Both RD and WR are qualified by CS; RD and WR are ignored unless the 82C54 has been selected by holding \overline{CS} low.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected by the Read/Write Logic when A_1 , $A_0 = 11$. If the CPU then does a write operation to the 82C54, the data is stored in the Control Word Register and is interpreted as a Control Word used to define the operation of the Counters.

The Control Word Register can only be written to; status information is available with the Read-Back Command.

Figure 4. Block Diagram Showing Control Word Register and Counter Functions

COUNTER 0, COUNTER 1, COUNTER 2

These three functional blocks are identical in operation, so only a single Counter will be described. The internal block diagram of a single counter is shown in Figure 5.

The Counters are fully independent. Each Counter may operate in a different Mode.

The Control Word Register is shown in the figure; it is not part of the Counter itself, but its contents determine how the Counter operates.

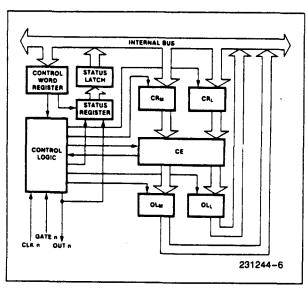


Figure 5. Internal Block Diagram of a Counter

The status register, shown in the Figure, when latched, contains the current contents of the Control Word Register and status of the output and null count flag. (See detailed explanation of the Read-Back command.)

The actual counter is labelled CE (for "Counting Element"). It is a 16-bit presettable synchronous down counter.

 OL_M and OL_L are two 8-bit latches. OL stands for "Output Latch"; the subscripts M and L stand for "Most significant byte" and "Least significant byte" respectively. Both are normally referred to as one unit and called just OL. These latches normally "follow" the CE, but if a suitable Counter Latch Command is sent to the 82C54, the latches "latch" the present count until read by the CPU and then return to "following" the CE. One latch at a time is enabled by the counter's Control Logic to drive the internal bus. This is how the 16-bit Counter communicates over the 8-bit internal bus. Note that the CE itself cannot be read; whenever you read the count, it is the OL that is being read.

Similarly, there are two 8-bit registers called CR_M and CR_L (for "Count Register"). Both are normally referred to as one unit and called just CR. When a new count is written to the Counter, the count is

stored in the CR and later transferred to the CE. The Control Logic allows one register at a time to be loaded from the internal bus. Both bytes are transferred to the CE simultaneously. CR_M and CR_L are cleared when the Counter is programmed. In this way, if the Counter has been programmed for one byte counts (either most significant byte only or least significant byte only) the other byte will be zero. Note that the CE cannot be written into; whenever a count is written, it is written into the CR.

The Control Logic is also shown in the diagram. CLK n, GATE n, and OUT n are all connected to the outside world through the Control Logic.

82C54 SYSTEM INTERFACE

The 82C54 is treated by the systems software as an array of peripheral I/O ports; three are counters and the fourth is a control register for MODE programming.

Basically, the select inputs A_0 , A_1 connect to the A_0 , A_1 address bus signals of the CPU. The \overline{CS} can be derived directly from the address bus using a linear select method. Or it can be connected to the output of a decoder, such as an Intel 8205 for larger systems.

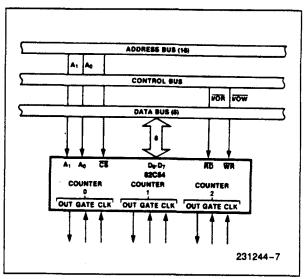


Figure 6. 82C54 System Interface

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 82C54 is undefined. The Mode, count value, and output of all Counters are undefined.

How each Counter operates is determined when it is programmed. Each Counter must be programmed before it can be used. Unused counters need not be programmed.

Programming the 82C54

Counters are programmed by writing a Control Word and then an initial count. The control word format is shown in Figure 7.

All Control Words are written into the Control Word Register, which is selected when A_1 , $A_0 = 11$. The Control Word itself specifies which Counter is being programmed.

By contrast, initial counts are written into the Counters, not the Control Word Register. The A_1 , A_0 inputs are used to select the Counter to be written into. The format of the initial count is determined by the Control Word used.

1, A(0 =	11 CS =	0 F	<u>ID</u> = 1	WR	= 0							
	D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0												
				SC1	SC0	RW1	RW0	M2	M 1	MO	BCD]	
ю —	Sel	ect Counte	er:					м —	MOD	E:			
SC	1	SC0	r					N	12	A	A 1	MO	
0		0	Se	elect Co	ounter	0			0		0	0	Mode 0
0		1	Se	elect Co	ounter	1			0		0	1	Mode 1
1		0	Se	lect Co	ounter	2		X			1	0	Mode 2
1		1		ad-Ba				;	K		1	1	Mode 3
			(5	ее неа	d Oper	rations)		·	1		0	0	Mode 4
		ad/Write:						·	1		0	1	Mode 5
1WF		·· • · · · · · · · · · · · · · · · · ·	atab					BCD:					
Ŭ	Ŭ	Counter L Operation		Comma	ano (se	e neau		0	E	linary	Counte	er 16-bits	
0	1	Read/Wr	ite lea	ist sign	ificant	byte on	ly.	1		Binary Coded Decimal (BCD) Cou			BCD) Counter
1	0	Read/Wr	ite mo	ost sign	ificant	byte on	ly.			(4 Decades)			,
1 1 Read/Write least significant byte first, then most significant byte.						st,							

Figure 7. Control Word Format

Write Operations

The programming procedure for the 82C54 is very flexible. Only two conventions need to be remembered:

- 1) For each Counter, the Control Word must be written before the initial count is written.
- 2) The initial count must follow the count format specified in the Control Word (least significant byte only, most significant byte only, or least significant byte and then most significant byte).

Since the Control Word Register and the three Counters have separate addresses (selected by the A1, A0 inputs), and each Control Word specifies the Counter it applies to (SC0, SC1 bits), no special instruction sequence is required. Any programming sequence that follows the conventions above is acceptable.

A new initial count may be written to a Counter at any time without affecting the Counter's programmed Mode in any way. Counting will be affected as described in the Mode definitions. The new count must follow the programmed count format.

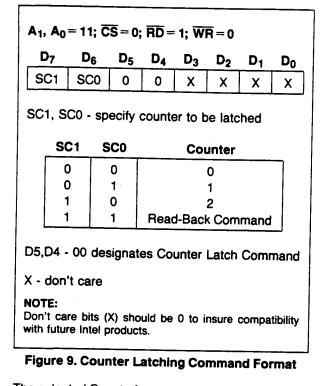
If a Counter is programmed to read/write two-byte counts, the following precaution applies: A program must not transfer control between writing the first and second byte to another routine which also writes into that same Counter. Otherwise, the Counter will be loaded with an incorrect count.

		A1	A ₀		A1	A
Control Word —	Counter 0	1	1	Control Word — Counter 2	1	1
LSB of count —	Counter 0	0	0	Control Word — Counter 1	1	1
MSB of count —	Counter 0	0	0	Control Word — Counter 0	1	1
Control Word —	Counter 1	1	1	LSB of count — Counter 2	1	0
LSB of count —	Counter 1	0	1	MSB of count Counter 2	1	Ō
MSB of count —	oountor 1	0	1	LSB of count — Counter 1	0	1
Control Word —		1	1	MSB of count — Counter 1	0	1
LSB of count —		1	0	LSB of count — Counter 0	0	Ó
MSB of count —	Counter 2	1	0	MSB of count — Counter 0	0	0
		A 1	Ao		A 1	Ao
Control Word —	Counter 0	1	1	Control Word — Counter 1	1	1
O	Counter 1	1	1	Control Word — Counter 0	4	1
Counter Word —		•				
Control Word —		1	1	LSB of count — Counter 1	ò	1
	Counter 2	1	1 0	LSB of count — Counter 1 Control Word — Counter 2	0	, 1 1
Control Word -	Counter 2	1 1 0	1 0 1		0 1 0	1 1 0
Control Word — LSB of count —	Counter 2 Counter 2	1 1 0 0	1 0 1 0	Control Word — Counter 2	1	1 1 0 1
Control Word — LSB of count — LSB of count —	Counter 2 Counter 2 Counter 1 Counter 0	-	1 0 1 0 0	Control Word — Counter 2 LSB of count — Counter 0	1 0	1 1 0 1 0
Control Word — LSB of count — LSB of count — LSB of count —	Counter 2 Counter 2 Counter 1 Counter 0 Counter 0	0	-	Control Word — Counter 2 LSB of count — Counter 0 MSB of count — Counter 1	1 0	1 1 0 1 0

In all four examples, all counters are programmed to read/write two-byte counts. These are only four of many possible programming sequences.

Figure 8. A Few Possible Programming Sequences

Read Operations


It is often desirable to read the value of a Counter without disturbing the count in progress. This is easily done in the 82C54.

There are three possible methods for reading the counters: a simple read operation, the Counter

Latch Command, and the Read-Back Command. Each is explained below. The first method is to perform a simple read operation. To read the Counter, which is selected with the A1, A0 inputs, the CLK input of the selected Counter must be inhibited by using either the GATE input or external logic. Otherwise, the count may be in the process of changing when it is read, giving an undefined result.

COUNTER LATCH COMMAND

The second method uses the "Counter Latch Command". Like a Control Word, this command is written to the Control Word Register, which is selected when A_1 , $A_0 = 11$. Also like a Control Word, the SC0, SC1 bits select one of the three Counters, but two other bits, D5 and D4, distinguish this command from a Control Word.

The selected Counter's output latch (OL) latches the count at the time the Counter Latch Command is received. This count is held in the latch until it is read by the CPU (or until the Counter is reprogrammed). The count is then unlatched automatically and the OL returns to "following" the counting element (CE). This allows reading the contents of the Counters "on the fly" without affecting counting in progress. Multiple Counter Latch Commands may be used to latch more than one Counter. Each latched Counter's OL holds its count until it is read. Counter Latch Commands do not affect the programmed Mode of the Counter in any way.

If a Counter is latched and then, some time later, latched again before the count is read, the second Counter Latch Command is ignored. The count read will be the count at the time the first Counter Latch Command was issued.

With either method, the count must be read according to the programmed format; specifically, if the Counter is programmed for two byte counts, two bytes must be read. The two bytes do not have to be read one right after the other; read or write or programming operations of other Counters may be inserted between them.

Another feature of the 82C54 is that reads and writes of the same Counter may be interleaved; for example, if the Counter is programmed for two byte counts, the following sequence is valid.

- 1. Read least significant byte.
- 2. Write new least significant byte.
- 3. Read most significant byte.
- 4. Write new most significant byte.

If a Counter is programmed to read/write two-byte counts, the following precaution applies; A program must not transfer control between reading the first and second byte to another routine which also reads from that same Counter. Otherwise, an incorrect count will be read.

READ-BACK COMMAND

The third method uses the Read-Back command. This command allows the user to check the count value, programmed Mode, and current state of the OUT pin and Null Count flag of the selected counter(s).

The command is written into the Control Word Register and has the format shown in Figure 10. The command applies to the counters selected by setting their corresponding bits D3,D2,D1 = 1.

A0, A1 = 11 \overline{CS} = 0 \overline{RD} = 1 \overline{WR} = 0									
D7 D6	D ₅	D4	D ₃	D ₂	D ₁	D ₀			
1 1	COUNT	STATUS	CNT 2	CNT 1	CNT 0	0			
$D_4: 0 = D_3: 1 = D_2: 1 = D_1: 1 =$	Latch sta Select ca Select ca Select ca	ounter 1	ected co	ounter(s)				

Figure 10. Read-Back Command Format

The read-back command may be used to latch multiple counter output latches (OL) by setting the $\overline{\text{COUNT}}$ bit D5=0 and selecting the desired counter(s). This single command is functionally equivalent to several counter latch commands, one for each counter latched. Each counter's latched count is held until it is read (or the counter is reprogrammed). That counter is automatically unlatched when read, but other counters remain latched until they are read. If multiple count read-back commands are issued to the same counter without reading the count, all but the first are ignored; i.e., the count which will be read is the count at the time the first read-back command was issued.

The read-back command may also be used to latch status information of selected counter(s) by setting \overline{STATUS} bit D4=0. Status must be latched to be read; status of a counter is accessed by a read from that counter.

The counter status format is shown in Figure 11. Bits D5 through D0 contain the counter's programmed Mode exactly as written in the last Mode Control Word. OUTPUT bit D7 contains the current state of the OUT pin. This allows the user to monitor the counter's output via software, possibly eliminating some hardware from a system.

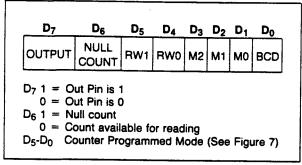


Figure 11. Status Byte

NULL COUNT bit D6 indicates when the last count written to the counter register (CR) has been loaded into the counting element (CE). The exact time this happens depends on the Mode of the counter and is described in the Mode Definitions, but until the count is loaded into the counting element (CE), it can't be read from the counter. If the count is latched or read before this time, the count value will not reflect the new count just written. The operation of Null Count is shown in Figure 12.

THIS ACTION:	CAUSES:
A. Write to the control word register:[1]	Null count = 1
B. Write to the count register (CR); ^[2]	Null count = 1
C. New count is loaded into CE (CR \rightarrow CE);	Null count = 0

have its null count set to 1. Null count bits of other counters are unaffected.

^[2] If the counter is programmed for two-byte counts (least significant byte then most significant byte) null count goes to 1 when the second byte is written.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s) are performed without reading the status, all but the first are ignored; i.e., the status that will be read is the status of the counter at the time the first status read-back command was issued.

Both count and status of the selected counter(s) may be latched simultaneously by setting both \overline{COUNT} and \overline{STATUS} bits D5,D4=0. This is functionally the same as issuing two separate read-back commands at once, and the above discussions apply here also. Specifically, if multiple count and/or status read-back commands are issued to the same counter(s) without any intervening reads, all but the first are ignored. This is illustrated in Figure 13.

If both count and status of a counter are latched, the first read operation of that counter will return latched status, regardless of which was latched first. The next one or two reads (depending on whether the counter is programmed for one or two type counts) return latched count. Subsequent reads return unlatched count.

Command				ł						
D7	D ₆	D ₅	D ₄	D_3	D ₂	D ₁	D ₀	Description	Results	
1	1	0	0	0	0	1	0	Read back count and status of Counter 0	Count and status latched for Counter 0	
1	1	1	0	0	1	0	0	Read back status of Counter 1	Status latched for Counter 1	
1	1	1	0	1	1	0	0	Read back status of Counters 2, 1	Status latched for Counter 2, but not Counter 1	
1	1	0	1	1	0	0	0	Read back count of Counter 2	Count latched for Counter 2	
1	1	0	0	0	1	0	0	Read back count and status of Counter 1	Count latched for Counter 1 but not status	
1	1	1	0	0	0	1	0	Read back status of Counter 1	Command ignored, status already latched for Counter	

Figure 13. Read-Back Command Example

ĊS	RD	WR	A ₁	A ₀	
0	1	0	0	0	Write into Counter 0
0	1	0	0	1	Write into Counter 1
0	1	0	1	0	Write into Counter 2
0	1	0	1	1	Write Control Word
0	0	1	0	0	Read from Counter 0
0	0	1	0	1	Read from Counter 1
0	0	1	1	0	Read from Counter 2
0	0	1	1	1	No-Operation (3-State)
1	X	X	X	Х	No-Operation (3-State)
0	1	1	X	X	No-Operation (3-State)

Figure 14. Read/Write Operations Summary

Mode Definitions

The following are defined for use in describing the operation of the 82C54.

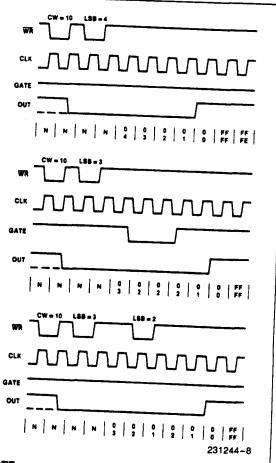
- CLK PULSE: a rising edge, then a falling edge, in that order, of a Counter's CLK input.
- TRIGGER: a rising edge of a Counter's GATE input.

COUNTER LOADING: the transfer of a count from the CR to the CE (refer to the "Functional Description")

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the Control Word is written, OUT is initially low, and will remain low until the Counter reaches zero. OUT then goes high and remains high until a new count or a new Mode 0 Control Word is written into the Counter.

GATE = 1 enables counting; GATE = 0 disables counting. GATE has no effect on OUT.


After the Control Word and initial count are written to a Counter, the initial count will be loaded on the next CLK pulse. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not go high until N + 1 CLK pulses after the initial count is written.

If a new count is written to the Counter, it will be loaded on the next CLK pulse and counting will continue from the new count. If a two-byte count is written, the following happens:

- 1) Writing the first byte disables counting. OUT is set low immediately (no clock pulse required).
- 2) Writing the second byte allows the new count to be loaded on the next CLK pulse.

This allows the counting sequence to be synchronized by software. Again, OUT does not go high until N + 1 CLK pulses after the new count of N is written.

If an initial count is written while GATE = 0, it will still be loaded on the next CLK pulse. When GATEgoes high, OUT will go high N CLK pulses later; no CLK pulse is needed to load the Counter as this has already been done.

NOTE:

The Following Conventions Apply To All Mode Timing Diagrams:

1. Counters are programmed for binary (not BCD) counting and for Reading/Writing least significant byte (LSB) only.

2. The counter is always selected (CS always low).

3. CW stands for "Control Word"; CW = 10 means a control word of 10, hex is written to the counter.

4. LSB stands for "Least Significant Byte" of count.5. Numbers below diagrams are count values.

The lower number is the least significant byte.

The upper number is the most significant byte. Since the counter is programmed to Read/Write LSB only, the most significant byte cannot be read. N stands for an undefined count.

Vertical lines show transitions between count values.

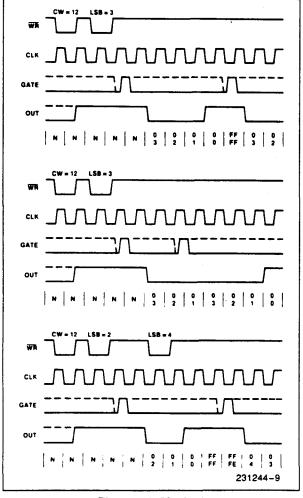
Figure 15. Mode 0

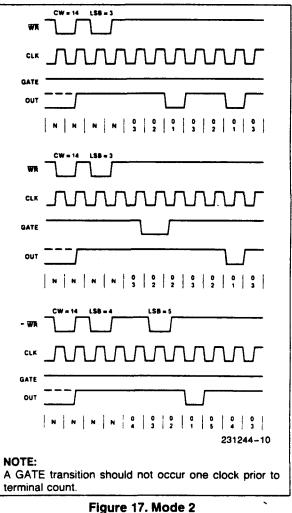
MODE 1: HARDWARE RETRIGGERABLE ONE-SHOT

OUT will be initially high. OUT will go low on the CLK pulse following a trigger to begin the one-shot pulse, and will remain low until the Counter reaches zero. OUT will then go high and remain high until the CLK pulse after the next trigger.

After writing the Control Word and initial count, the Counter is armed. A trigger results in loading the Counter and setting OUT low on the next CLK pulse, thus starting the one-shot pulse. An initial count of N will result in a one-shot pulse N CLK cycles in duration. The one-shot is retriggerable, hence OUT will remain low for N CLK pulses after any trigger. The one-shot pulse can be repeated without rewriting the same count into the counter. GATE has no effect on OUT.

If a new count is written to the Counter during a oneshot pulse, the current one-shot is not affected unless the Counter is retriggered. In that case, the Counter is loaded with the new count and the oneshot pulse continues until the new count expires.




Figure 16. Mode 1

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. It is typicially used to generate a Real Time Clock interrupt. OUT will initially be high. When the initial count has decremented to 1, OUT goes low for one CLK pulse. OUT then goes high again, the Counter reloads the initial count and the process is repeated. Mode 2 is periodic; the same sequence is repeated indefinitely. For an initial count of N, the sequence repeats every N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables counting. If GATE goes low during an output pulse, OUT is set high immediately. A trigger reloads the Counter with the initial count on the next CLK pulse; OUT goes low N CLK pulses after the trigger. Thus the GATE input can be used to synchronize the Counter.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. OUT goes low N CLK Pulses after the initial count is written. This allows the Counter to be synchronized by software also.

intel

Writing a new count while counting does not affect the current counting sequence. If a trigger is received after writing a new count but before the end of the current period, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from the new count. Otherwise, the new count will be loaded at the end of the current counting cycle. In mode 2, a COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation. Mode 3 is similar to Mode 2 except for the duty cycle of OUT. OUT will initially be high. When half the initial count has expired, OUT goes low for the remainder of the count. Mode 3 is periodic; the sequence above is repeated indefinitely. An initial count of N results in a square wave with a period of N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables counting. If GATE goes low while OUT is low, OUT is set high immediately; no CLK pulse is required. A trigger reloads the Counter with the initial count on the next CLK pulse. Thus the GATE input can be used to synchronize the Counter.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. This allows the Counter to be synchronized by software also.

Writing a new count while counting does not affect the current counting sequence. If a trigger is received after writing a new count but before the end of the current half-cycle of the square wave, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from the new count. Otherwise, the new count will be loaded at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is loaded on one CLK pulse and then is decremented by two on succeeding CLK pulses. When the count expires OUT changes value and the Counter is reloaded with the initial count. The above process is repeated indefinitely.

Odd counts: OUT is initially high. The initial count minus one (an even number) is loaded on one CLK pulse and then is decremented by two on succeeding CLK pulses. One CLK pulse *after* the count expires, OUT goes low and the Counter is reloaded with the initial count minus one. Succeeding CLK pulses decrement the count by two. When the count expires, OUT goes high again and the Counter is reloaded with the initial count minus one. The above process is repeated indefinitely. So for odd counts, OUT will be high for (N + 1)/2 counts and low for (N - 1)/2 counts.

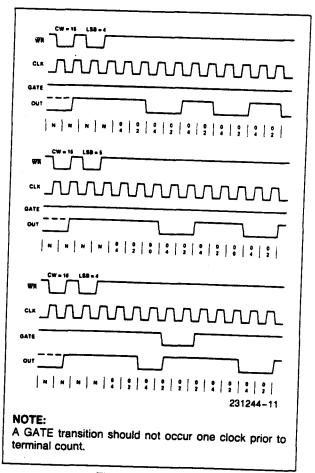


Figure 18. Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count expires, OUT will go low for one CLK pulse and then go high again. The counting sequence is "triggered" by writing the initial count.

GATE = 1 enables counting; GATE = 0 disables counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not strobe low until N + 1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be loaded on the next CLK pulse and counting will continue from the new count. If a two-byte count is written, the following happens:

- 1) Writing the first byte has no effect on counting.
- 2) Writing the second byte allows the new count to be loaded on the next CLK pulse.

This allows the sequence to be "retriggered" by software. OUT strobes low N+1 CLK pulses after the new count of N is written.

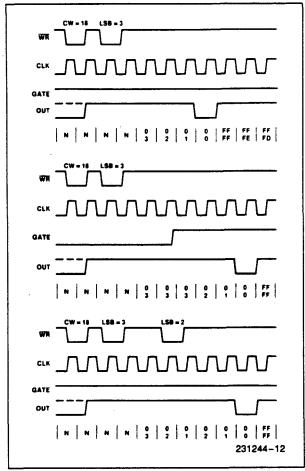


Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE (RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a rising edge of GATE. When the initial count has expired, OUT will go low for one CLK pulse and then go high again.

After writing the Control Word and initial count, the counter will not be loaded until the CLK pulse after a trigger. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not strobe low until N+1 CLK pulses after a trigger.

A trigger results in the Counter being loaded with the initial count on the next CLK pulse. The counting sequence is retriggerable. OUT will not strobe low for N + 1 CLK pulses after any trigger. GATE has no effect on OUT.

If a new count is written during counting, the current counting sequence will not be affected. If a trigger occurs after the new count is written but before the current count expires, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from there.

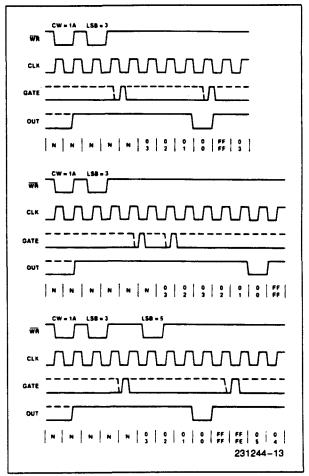


Figure 20. Mode 5

Signai Status Modes	Low Or Going Low	Rising	High
0	Disables counting	_	Enables counting
1	-	 1) Initiates counting 2) Resets output after next clock 	_
2	 Disables counting Sets output immediately high 	Initiates counting	Enables counting
3	 Disables counting Sets output immediately high 	Initiates counting	Enables counting
4	Disables counting	_	Enables counting
5	_	Initiates counting	

Figure 21. Gate Pin Operations Summary

0 1 0 1 1 0 2 2 0
1 1 0 2 2 0
2 2 0
3 2 0
4 1 0

Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all Control Logic is immediately reset and OUT goes to a known initial state; no CLK pulses are required for this.

GATE

The GATE input is always sampled on the rising edge of CLK. In Modes 0, 2, 3, and 4 the GATE input is level sensitive, and the logic level is sampled on the rising edge of CLK. In Modes 1, 2, 3, and 5 the GATE input is rising-edge sensitive. In these Modes, a rising edge of GATE (trigger) sets an edge-sensitive flip-flop in the Counter. This flip-flop is then sampled on the next rising edge of CLK; the flip-flop is reset immediately after it is sampled. In this way, a trigger will be detected no matter when it occurs-a high logic level does not have to be maintained until the next rising edge of CLK. Note that in Modes 2 and 3, the GATE input is both edge- and level-sensitive. In Modes 2 and 3, if a CLK source other than the system clock is used, GATE should be pulsed immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decremented on the falling edge of CLK.

The largest possible initial count is 0; this is equivalent to 2^{16} for binary counting and 10^4 for BCD counting.

The Counter does not stop when it reaches zero. In Modes 0, 1, 4, and 5 the Counter "wraps around" to the highest count, either FFFF hex for binary counting or 9999 for BCD counting, and continues counting. Modes 2 and 3 are periodic; the Counter reloads itself with the initial count and continues counting from there.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	65° to + 150°C
Supply Voltage	-0.5 to +8.0V
Operating Voltage	. + 4V to + 7V
Voltage on any InputGND	
Voltage on any OutputGND-0.5V	
Power Dissipation	1 Watt

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V \pm 10%, GND = 0V) (T_A = -40°C to +85°C for Extended Temperature)

Symbol	Parameter	Min	Max	Units	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	V	
VIH	Input High Voltage	2.0	$V_{\rm CC}$ + 0.5	V	
VOL	Output Low Voltage		0.4	V	$I_{OL} = 2.5 \mathrm{mA}$
V _{OH}	Output High Voltage	3.0 V _{CC} – 0.4		v v	$l_{OH} = -2.5 \text{ mA}$ $l_{OH} = -100 \mu \text{A}$
Ι _{ΙL}	Input Load Current		± 2.0	μΑ	$V_{IN} = V_{CC}$ to 0V
IOFL	Output Float Leakage Current		±10	μA	$V_{OUT} = V_{CC}$ to 0.0V
ICC	V _{CC} Supply Current		20	mA	Clk Freq = 8MHz 82C54 10MHz 82C54-2
ICCSB	V _{CC} Supply Current-Standby		10	μΑ	$\begin{array}{l} CLK \ Freq \ = \ DC \\ \overline{CS} \ = \ V_{CC}. \\ All \ Inputs/Data \ Bus \ V_{CC} \\ All \ Outputs \ Floating \end{array}$
ICCSB1	V _{CC} Supply Current-Standby		150	μA	$\frac{\text{CLK Freq}}{\text{CS}} = \text{V}_{\text{CC}}. \text{ All Other Inputs,} \\ \text{I/O Pins} = \text{V}_{\text{GND}}. \text{ Outputs Open}$
CIN	Input Capacitance		10	pF	f _c = 1 MHz
C1/0	I/O Capacitance		20	pF	Unmeasured pins
COUT	Output Capacitance		20	pF	returned to GND ⁽⁵⁾

A.C. CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V \pm 10%, GND = 0V) (T_A = -40°C to +85°C for Extended Temperature)

BUS PARAMETERS (Note 1) READ CYCLE

Symbol	Parameter	82	C54	820	54-2	Units
Cymbol	F al allie (Cl	Min	Max	Min	Max	
t _{AR}	Address Stable Before RD ↓	45		30		ns
tSR	CS Stable Before RD ↓	0		0		ns
t _{RA}	Address Hold Time After RD 1	0		0		ns
t _{RR}	RD Pulse Width	150		95		ns
t _{RD}	Data Delay from $\overline{\text{RD}}\downarrow$		120		85	ns
t _{AD}	Data Delay from Address		220		185	ns
t _{DF}	RD↑ to Data Floating	5	90	5	65	ns
t _{RV}	Command Recovery Time	200		165		ns

NOTE:

1. AC timings measured at V_{OH} = 2.0V, V_{OL} = 0.8V.

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol	Parameter	82	C54	820		
		Min	Max	Min	Max	Units
t _{AW}	Address Stable Before WR J	0		0		
tsw	CS Stable Before WR J	0		0		ns
twa	Address Hold Time After WR↑	0				ns
tww	WR Pulse Width	150		05		ns
t _{DW}	Data Setup Time Before WR↑	120		95		ns
t _{WD}	Data Hold Time After WR↑	120		95		ns
t _{RV}	Command Recovery Time	0		0		ns
	Command Hecovery Time	200		165		ns

CLOCK AND GATE

Symbol	Parameter	82	C54	820	254-2	Units
······································		Min	Max	Min	Max	
^t CLK	Clock Period	125	DC	100	DC	ns
tpwH	High Pulse Width	60(3)	†	30(3)		
t _{PWL}	Low Pulse Width	60(3)		50(3)		ns
T _R	Clock Rise Time		25		25	ns
t _F	Clock Fall Time		25	<u> </u>	25	ns
tgw	Gate Width High	50		50		ns
tGL	Gate Width Low	50		50		ns
tgs	Gate Setup Time to CLK 1	50	·····	40	<u> </u>	ns
t _{GH}	Gate Hold Time After CLK 1	50(2)		50(2)		ns
T _{OD}	Output Delay from CLK J		150		100	ns
todg	Output Delay from Gate J		120		100	ns
twc	CLK Delay for Loading(4)	0	55		100	ns
twg	Gate Delay for Sampling ⁽⁴⁾	-5		0	55	ns
two	OUT Delay from Mode Write		50	-5	40	ns
t _{CL}	CLK Set Up for Count Latch		260		240	ns
	OLICOURT Laton	-40	45	-40	40	ns

NOTES:

2. In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 82C54-2) of the rising clock edge may not be detected.

3. Low-going glitches that violate tPWH, tPWL may cause errors requiring counter reprogramming. 4. Except for Extended Temp., See Extended Temp. A.C. Characteristics below.

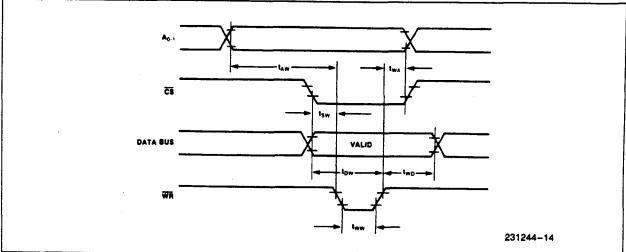
5. Sampled not 100% tested. $T_A = 25^{\circ}C$.

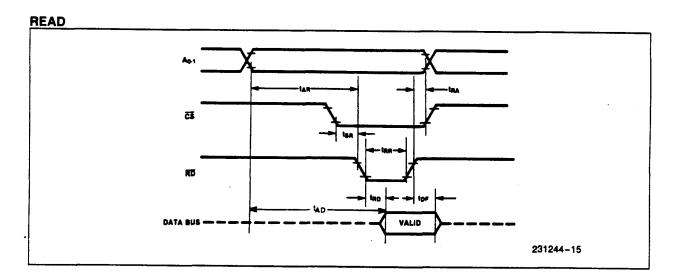
6. If CLK present at Twc min then Count equals N+2 CLK pulses, Twc max equals Count N+1 CLK pulse. Twc min to T_{WC} max, count will be either N+1 or N+2 CLK pulses.

7. In Modes 1 and 5, if GATE is present when writing a new Count value, at Twg min Counter will not be triggered, at Twg max Counter will be triggered.

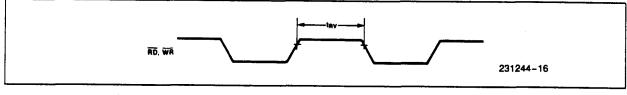
8. If CLK present when writing a Counter Latch or ReadBack Command, at T_{CL} min CLK will be reflected in count value latched, at T_{CL} max CLK will not be reflected in the count value latched. Writing a Counter Latch or ReadBack Command between T_{CL} min and T_{WL} max will result in a latched count vallue which is \pm one least significant bit.

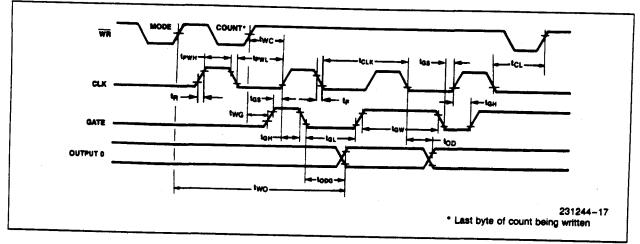
Symbol	Parameter	82C54		82C54-2		
		Min	Max	Min	Max	Units
twc	CLK Delay for Loading	- 25	25	-25	25	ns
t _{WG}	Gate Delay for Sampling	- 25	25	-25	25	
······································					20	ns

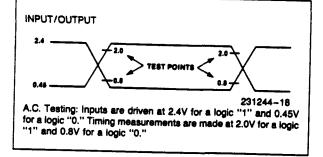

EXTENDED TEMPERATURE ($T_A = -40^{\circ}$ C to $+85^{\circ}$ C for Extended Temperature)

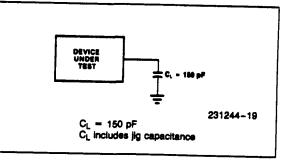

intel

82C54


WAVEFORMS




RECOVERY


CLOCK AND GATE

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

Intel 82C55A Programmable Peripheral Interface Data Sheet Reprint

82C55A CHMOS PROGRAMMABLE PERIPHERAL INTERFACE

- Compatible with all Intel and Most Other Microprocessors
- High Speed, "Zero Wait State" Operation with 8 MHz 8086/88 and 80186/188
- 24 Programmable I/O Pins
- Low Power CHMOS
- Completely TTL Compatible

- Control Word Read-Back Capability
- Direct Bit Set/Reset Capability
- 2.5 mA DC Drive Capability on all I/O Port Outputs
- Available in 40-Pin DIP and 44-Pin PLCC
- Available in EXPRESS
 Standard Temperature Range
 Extended Temperature Range

The Intel 82C55A is a high-performance, CHMOS version of the industry standard 8255A general purpose programmable I/O device which is designed for use with all Intel and most other microprocessors. It provides 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. The 82C55A is pin compatible with the NMOS 8255A and 8255A-5.

In MODE 0, each group of 12 I/O pins may be programmed in sets of 4 and 8 to be inputs or outputs. In MODE 1, each group may be programmed to have 8 lines of input or output. 3 of the remaining 4 pins are used for handshaking and interrupt control signals. MODE 2 is a strobed bi-directional bus configuration.

The 82C55A is fabricated on Intel's advanced CHMOS III technology which provides low power consumption with performance equal to or greater than the equivalent NMOS product. The 82C55A is available in 40-pin DIP and 44-pin plastic leaded chip carrier (PLCC) packages.

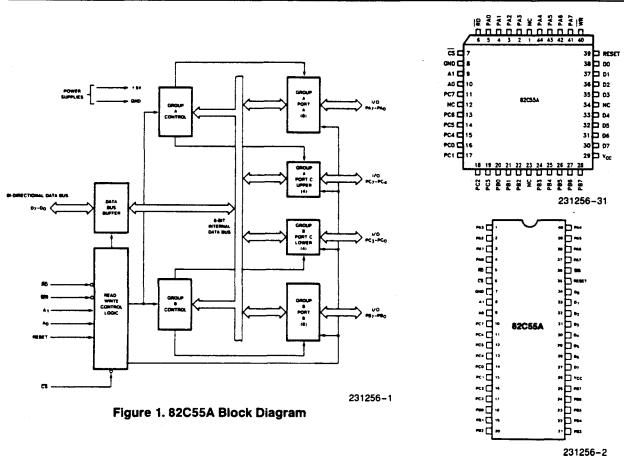


Figure 2. 82C55A Pinout Diagrams are for pin reference only. Package sizes are not to scale.

Symb	ol Pin Dip	Number PLCC	Туре	Name and Function							
PA ₃₋₀	1-4	2-5	1/0			PORT A, PINS 0–3: Lower nibble of an 8-bit data output latc buffer and an 8-bit data input latch.					
RD	5	6							during CPU read operation		
CS	6	7	1	respo	READ CONTROL: This input is low during CPU read operat CHIP SELECT: A low on this input enables the 82C55A to respond to RD and WR signals. RD and WR are ignored otherwise.						
GND	7	8			em Gro	Ind					
A ₁₋₀	8-9	9-10	1	ADDF	RESS: T	hese in lection	put sign of one (als, in c of the th	conjunction \overline{RD} and \overline{WR} , are ports or the control		
				A ₁	A ₀	RD	WR	CS	Input Operation (Read		
				0	0	0	1	0	Port A - Data Bus		
			-	0	1	0	1	0	Port B - Data Bus		
				1	0	0	1	0	Port C - Data Bus		
			}	1	1	0	1	0	Control Word - Data Bus		
					-				Output Operation (Write		
				0	0	1	0	0	Data Bus - Port A		
				0	1	1	0	0	Data Bus - Port B		
				1	0	1	0	0	Data Bus - Port C		
				1	1	1	0	0	Data Bus - Control		
									Disable Function		
				X	X	X	X	1	Data Bus - 3 - State		
PC7-4	10-13			X	X	1	1	0	Data Bus - 3 - State		
*/		11,13–15	1/0	can be 4-bit po	divided ort conta outputs a	into two ins a 4-	a input i 0 4-bit p bit latch	ouffer (r orts und and it (an 8-bit data output latch/ no latch for input). This port der the mode control. Each can be used for the control s in conjunction with ports		
C ₀₋₃	14-17	16-19	1/0	PORT	C, PINS	0-3: Lo	ower nit	ble of F	Port C.		
'B ₀₋₇	18–25	20-22, 24-28	1/0		B, PINS	0-7: Ar			out latch/buffer and an 8-		
cc	26	29		SYSTE	_	_	5V Pow	er Supp	lv.		
7-0	27-34	30-33, 35-38	1/0	DATA E	BUS: Bi-	directio			ta bus lines, connected to		
ESET	35	39	1	RESET:	IESET: A high on this input clears the control register and all orts are set to the input mode.						
Ŕ	36	40	1	WRITE	VRITE CONTROL: This input is low during CPU write perations.						
A ₇₋₄	37-40	41-44	1/0	PORT A	Derations. ORT A, PINS 4-7: Upper nibble of an 8-bit data output latch/ uffer and an 8-bit data input latch.						
C		1, 12, 23, 34		No Conr			,				

82C55A FUNCTIONAL DESCRIPTION

General

The 82C55A is a programmable peripheral interface device designed for use in Intel microcomputer systems. Its function is that of a general purpose I/O component to interface peripheral equipment to the microcomputer system bus. The functional configuration of the 82C55A is programmed by the system software so that normally no external logic is necessary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to interface the 82C55A to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the 82C55A. The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 82C55A. Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control Logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7–C4) Control Group B - Port B and Port C lower (C3–C0)

The control word register can be both written and read as shown in the address decode table in the pin descriptions. Figure 6 shows the control word format for both Read and Write operations. When the control word is read, bit D7 will always be a logic "1", as this implies control word mode information.

Ports A, B, and C

The 82C55A contains three 8-bit ports (A, B, and C). All can be configured in a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 82C55A.

Port A. One 8-bit data output latch/buffer and one 8-bit input latch buffer. Both "pull-up" and "pull-down" bus hold devices are present on Port A.

Port B. One 8-bit data input/output latch/buffer. Only "pull-up" bus hold devices are present on Port B.

Port C. One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B. Only "pull-up" bus hold devices are present on Port C.

See Figure 4 for the bus-hold circuit configuration for Port A, B, and C.

82C55A

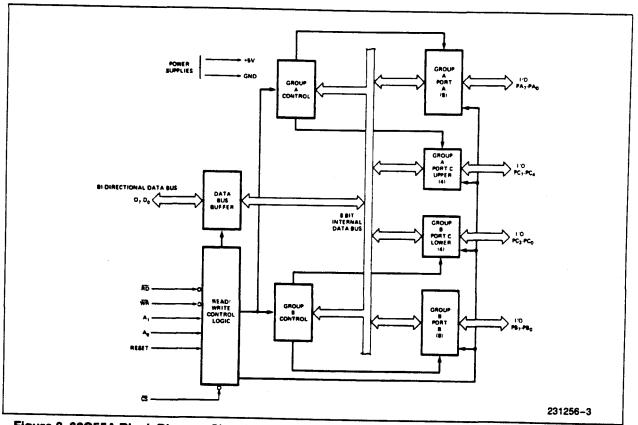


Figure 3. 82C55A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

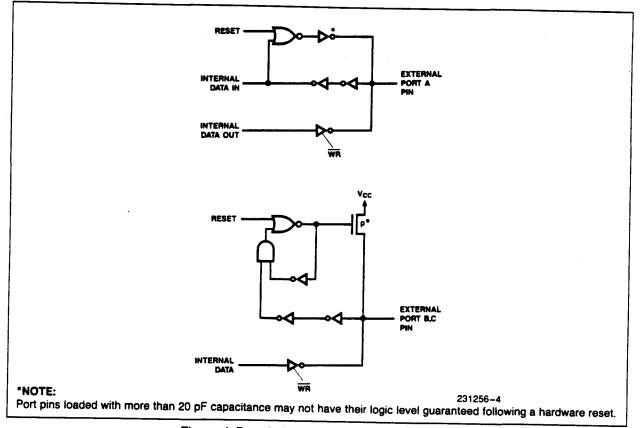


Figure 4. Port A, B, C, Bus-hold Configuration

82C55A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can be selected by the system software:

- Mode 0 Basic input/output
- Mode 1 Strobed Input/output
- Mode 2 Bi-directional Bus

When the reset input goes "high" all ports will be set to the input mode with all 24 port lines held at a logic "one" level by the internal bus hold devices (see Figure 4 Note). After the reset is removed the 82C55A can remain in the input mode with no additional initialization required. This eliminates the need for pullup or pulldown devices in "all CMOS" designs. During the execution of the system program, any of the other modes may be selected by using a single output instruction. This allows a single 82C55A to service a variety of peripheral devices with a simple software maintenance routine.

The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flip-flops, will be reset whenever the mode is changed. Modes may be combined so that their functional definition can be "tailored" to almost any I/O structure. For instance; Group B can be programmed in Mode 0 to monitor simple switch closings or display computational results, Group A could be programmed in Mode 1 to monitor a keyboard or tape reader on an interrupt-driven basis.

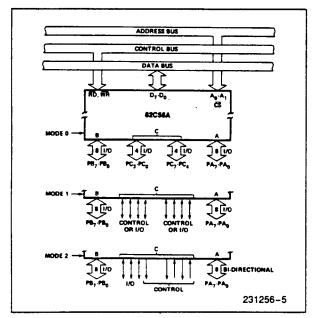


Figure 5. Basic Mode Definitions and Bus Interface

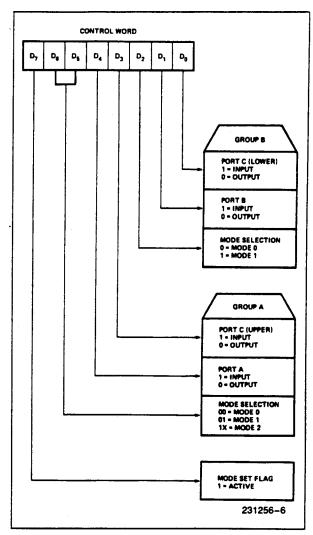


Figure 6. Mode Definition Format

The mode definitions and possible mode combinations may seem confusing at first but after a cursory review of the complete device operation a simple, logical I/O approach will surface. The design of the 82C55A has taken into account things such as efficient PC board layout, control signal definition vs PC layout and complete functional flexibility to support almost any peripheral device with no external logic. Such design represents the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a single OUTput instruction. This feature reduces software requirements in Control-based applications.

When Port C is being used as status/control for Port A or B, these bits can be set or reset by using the Bit Set/Reset operation just as if they were data output ports.

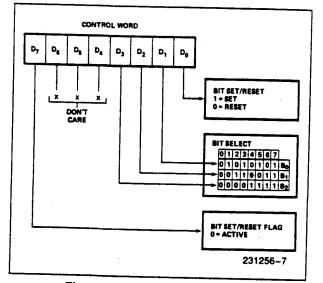


Figure 7. Bit Set/Reset Format

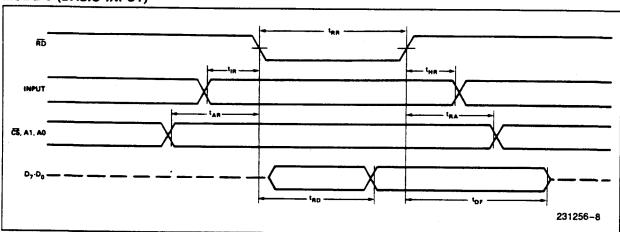
Interrupt Control Functions

When the 82C55A is programmed to operate in mode 1 or mode 2, control signals are provided that can be used as interrupt request inputs to the CPU. The interrupt request signals, generated from port C, can be inhibited or enabled by setting or resetting the associated INTE flip-flop, using the bit set/reset function of port C.

This function allows the Programmer to disallow or allow a specific I/O device to interrupt the CPU without affecting any other device in the interrupt structure.

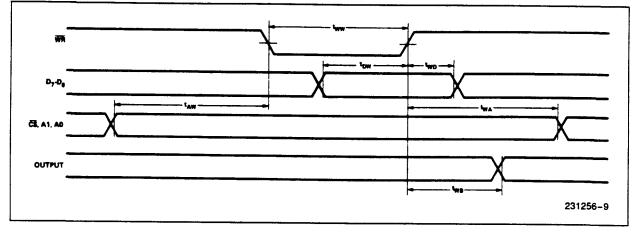
INTE flip-flop definition:

(BIT-SET)—INTE is SET—Interrupt enable (BIT-RESET)—INTE is RESET—Interrupt disable


Note:

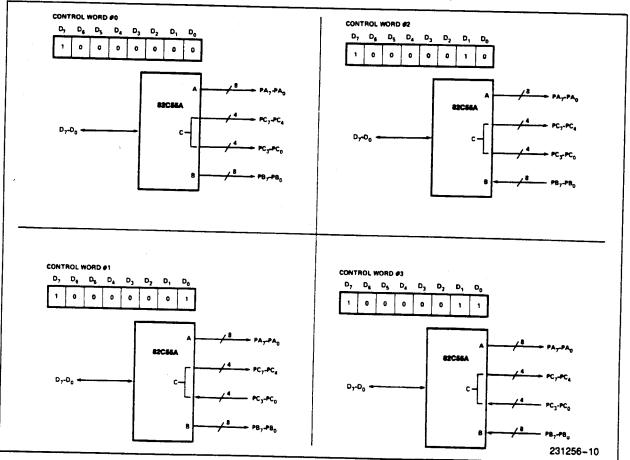
All Mask flip-flops are automatically reset during mode selection and device Reset.

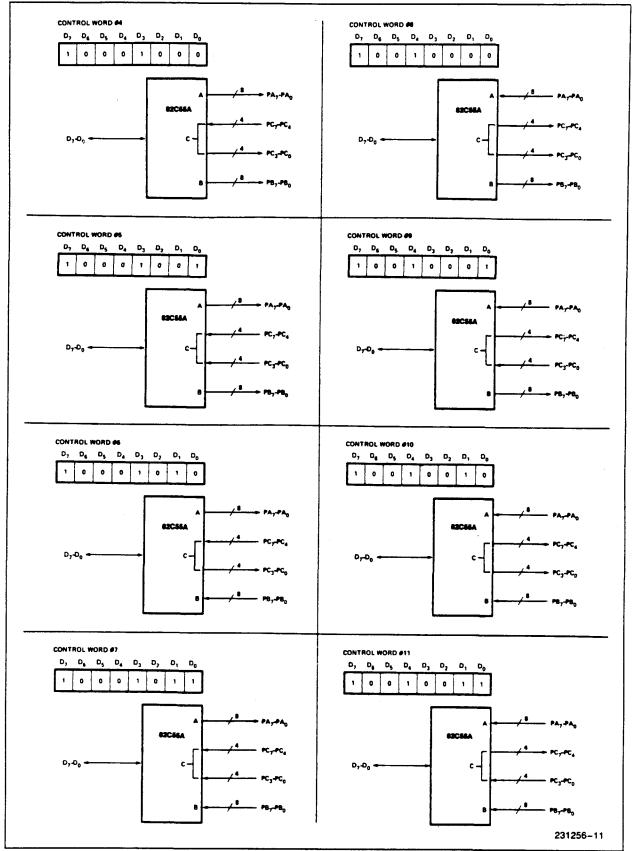
Operating Modes


Mode 0 (Basic Input/Output). This functional configuration provides simple input and output operations for each of the three ports. No "handshaking" is required, data is simply written to or read from a specified port. Mode 0 Basic Functional Definitions:

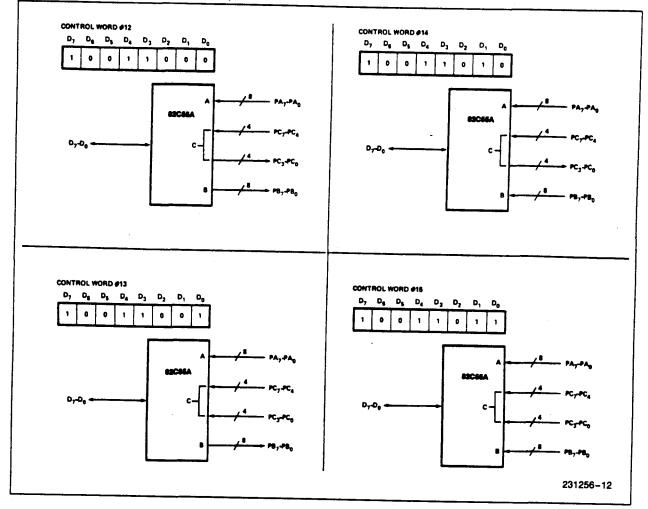
- Two 8-bit ports and two 4-bit ports.
- Any port can be input or output.
- Outputs are latched.
- Inputs are not latched.
- 16 different Input/Output configurations are possible in this Mode.

MODE 0 (BASIC INPUT)


MODE 0 (BASIC OUTPUT)


	A		B	GR	OUP A	Τ	GR	OUP B
D ₄	D ₃	D ₁	D ₀	PORT A	PORT C (UPPER)	#	PORT B	PORT C (LOWER)
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT
0	0	0	1	OUTPUT	OUTPUT	1	OUTPUT	INPUT
0	0	1	0	OUTPUT	OUTPUT	· 2	INPUT	OUTPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT

MODE 0 Port Definition


MODE 0 Configurations

MODE 0 Configurations (Continued)

MODE 0 Configurations (Continued)

Operating Modes

يوي برسم، مرجب الرواليونو لي الحرار المحاجوان المحاج

MODE 1 (Strobed Input/Output). This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals. In mode 1, Port A and Port B use the lines on Port C to generate or accept these "handshaking" signals.

Mode 1 Basic functional Definitions:

- Two Groups (Group A and Group B).
- Each group contains one 8-bit data port and one 4-bit control/data port.
- The 8-bit data port can be either input or output Both inputs and outputs are latched.
- The 4-bit port is used for control and status of the 8-bit data port.

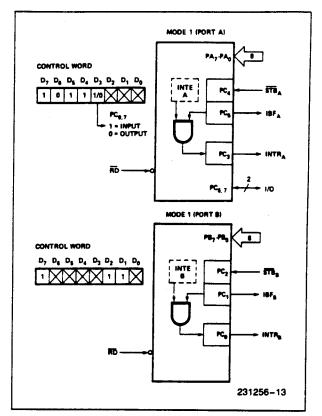
Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been loaded into the input latch; in essence, an acknowledgement. IBF is set by STB input being low and is reset by the rising edge of the RD input.

INTR (Interrupt Request)


A "high" on this output can be used to interrupt the CPU when an input device is requesting service. INTR is set by the \overline{STB} is a "one", IBF is a "one" and INTE is a "one". It is reset by the falling edge of \overline{RD} . This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

INTE A

Controlled by bit set/reset of PC4.

INTE B

Controlled by bit set/reset of PC2.

Figure 8. MODE 1 Input

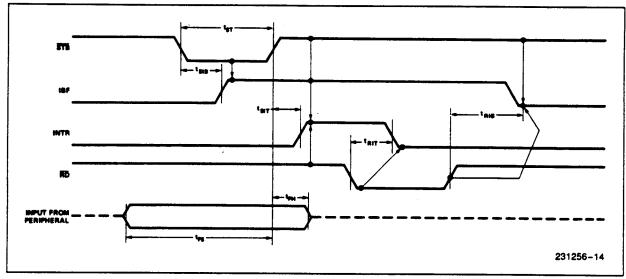


Figure 9. MODE 1 (Strobed Input)

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will go "low" to indicate that the CPU has written data out to the specified port. The OBF F/F will be set by the rising edge of the WR input and reset by ACK Input being low.

ACK (Acknowledge Input). A "low" on this input informs the 82C55A that the data from Port A or Port B has been accepted. In essence, a response from the peripheral device indicating that it has received the data output by the CPU.

INTR (Interrupt Request). A "high" on this output can be used to interrupt the CPU when an output device has accepted data transmitted by the CPU. INTR is set when ACK is a "one", OBF is a "one" and INTE is a "one". It is reset by the falling edge of WR.

INTE A

Controlled by bit set/reset of PC₆. **INTE B**

Controlled by bit set/reset of PC2.

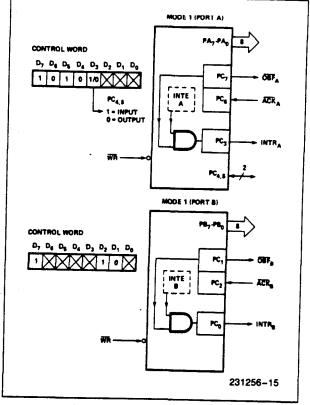


Figure 10. MODE 1 Output

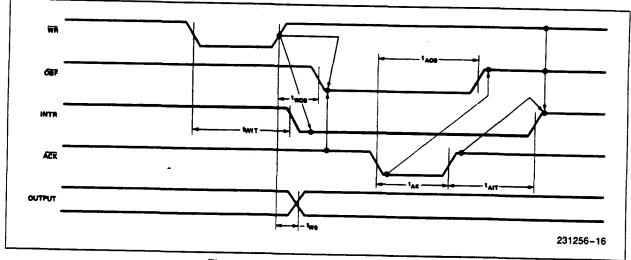


Figure 11. MODE 1 (Strobed Output)

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed I/O applications.

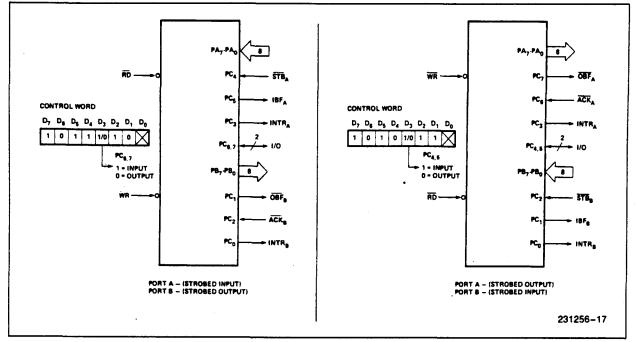


Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O).This functional configuration provides a means for communicating with a peripheral device or structure on a single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O). "Handshaking" signals are provided to maintain proper bus flow discipline in a similar manner to MODE 1. Interrupt generation and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

- Used in Group A only.
- One 8-bit, bi-directional bus port (Port A) and a 5bit control port (Port C).
- Both inputs and outputs are latched.
- The 5-bit control port (Port C) is used for control and status for the 8-bit, bi-directional bus port (Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can be used to interrupt the CPU for input or output operations.

Output Operations

OBF (Output Buffer Full). The OBF output will go "low" to indicate that the CPU has written data out to port A.

ACK (Acknowledge). A "low" on this input enables the tri-state output buffer of Port A to send out the data. Otherwise, the output buffer will be in the high impedance state.

INTE 1 (The INTE Flip-Flop Associated with OBF). Controlled by bit set/reset of PC₆.

Input Operations

STB (Strobe Input). A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F). A "high" on this output indicates that data has been loaded into the input latch.

INTE 2 (The INTE Flip-Flop Associated with IBF). Controlled by bit set/reset of PC_4 .

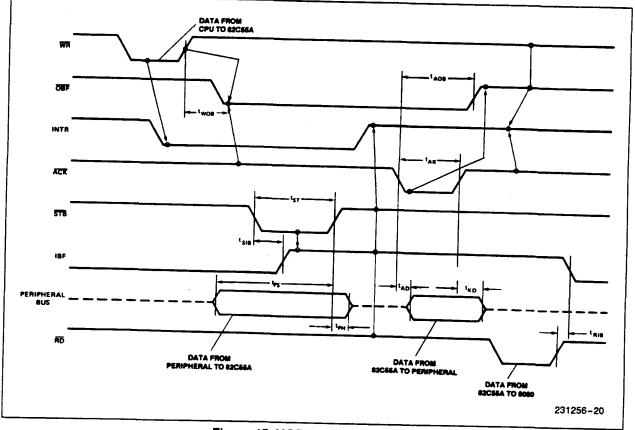
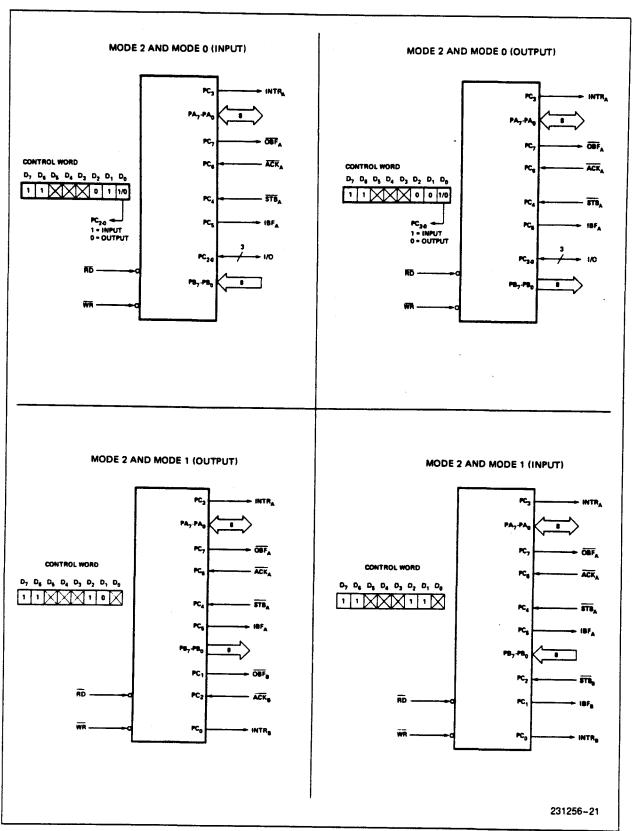



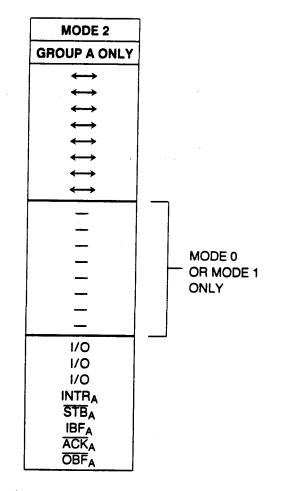
Figure 14. MODE 2


Figure 15. MODE 2 (Bidirectional)

NOTE:

......

Any sequence where \overline{WR} occurs before \overline{ACK} , and \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF • $\overline{MASK} \bullet \overline{STB} \bullet \overline{RD} + \overline{OBF} \bullet \overline{MASK} \bullet \overline{ACK} \bullet \overline{WR}$) intel


82C55A

Mode	Defi	inition	Summary
------	------	---------	---------

	MO	DE 0]	MO	DE 1
	IN	Ουτ		IN	OUT
PA ₀	IN	OUT		IN	OUT
PA ₁	IN	OUT		IN	OUT
PA ₂	IN	OUT		IN	OUT
PA ₃	IN	OUT		IN	OUT
PA4	IN	OUT		IN	OUT
PA ₅	IN	OUT		IN	OUT
PA ₆	IN	OUT		IN	OUT
PA ₇	IN	OUT		IN	OUT
PB ₀	IN	OUT		IN	OUT
PB ₁	IN	OUT		IN	OUT
PB ₂	IN∙	OUT		IN	OUT
PB ₃	IN	OUT		IN	
PB ₄	IN	OUT		IN	OUT
PB ₅	IN	OUT		IN	
PB ₆	IN	OUT		IN	OUT
PB7	IN	OUT		IN	OUT
PC ₀	IN	OUT		INTRB	INTRB
PC ₁	IN	OUT		IBF _B	OBFB
PC ₂	IN	OUT		STBB	ACKB
PC ₃	IN	OUT		INTRA	INTRA
PC₄	IN	OUT		STBA	1/0
PC ₅	IN	OUT		IBFA	1/0
PC ₆	IN	OUT		1/0	ACKA
PC ₇	IN	OUT		1/0	OBFA

Special Mode Combination Considerations

There are several combinations of modes possible. For any combination, some or all of the Port C lines are used for control or status. The remaining bits are either inputs or outputs as defined by a "Set Mode" command.

During a read of Port C, the state of all the Port C lines, except the \overrightarrow{ACK} and \overrightarrow{STB} lines, will be placed on the data bus. In place of the \overrightarrow{ACK} and \overrightarrow{STB} line states, flag status will appear on the data bus in the PC2, PC4, and PC6 bit positions as illustrated by Figure 18.

Through a "Write Port C" command, only the Port C pins programmed as outputs in a Mode 0 group can be written. No other pins can be affected by a "Write Port C" command, nor can the interrupt enable flags be accessed. To write to any Port C output programmed as an output in a Mode 1 group or to change an interrupt enable flag, the "Set/Reset Port C Bit" command must be used.

With a "Set/Reset Port C Bit" command, any Port C line programmed as an output (including INTR, IBF and OBF) can be written, or an interrupt enable flag can be either set or reset. Port C lines programmed as inputs, including ACK and STB lines, associated with Port C are not affected by a "Set/Reset Port C Bit" command. Writing to the corresponding Port C bit positions of the ACK and STB lines with the "Set/Reset Port C Bit" command will affect the Group A and Group B interrupt enable flags, as illustrated in Figure 18.

Current Drive Capability

Any output on Port A, B or C can sink or source 2.5 mA. This feature allows the 82C55A to directly drive Darlington type drivers and high-voltage displays that require such sink or source current.

Reading Port C Status

In Mode 0, Port C transfers data to or from the peripheral device. When the 82C55A is programmed to function in Modes 1 or 2, Port C generates or accepts "hand-shaking" signals with the peripheral device. Reading the contents of Port C allows the programmer to test or verify the "status" of each peripheral device and change the program flow accordingly.

There is no special instruction to read the status information from Port C. A normal read operation of Port C is executed to perform this function.

	INPUT CONFIGURATION											
D7	D ₆	D ₅		D4	D ₃	D ₂	D ₁	D ₀				
1/0	1/0	IBF₄	IN	TEA		INTEB	IBFB	INTRB				
њ <u>.</u>	GROUP A GROUP B											
D7	[D5		D ₃	D ₂	D1	Do				
OBF,	N IN	TEA	1/0	1/0		INTEB		INTRB				
		GRC	UP.	G	ROUP	B						

Figure 17a. MODE 1 Status Word Format

D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀
OBFA	INTE ₁	IBFA	INTE ₂	INTRA			
· .	G	ROUF	° A		G	ROUP	В
(Defined	By Moo	te 0 or	Mode 1	Selection)		

Figure 17b. MODE 2 Status Word Format

Interrupt Enable Flag	Position	Alternate Port C Pin Signal (Mode)
INTE B	PC2	ACK _B (Output Mode 1) or STB _B (Input Mode 1)
INTE A2	PC4	STB _A (Input Mode 1 or Mode 2)
INTE A1	PC6	ACKA (Output Mode 1 or Mode 2

Figure 18. Interrupt Enable Flags in Modes 1 and 2

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to + 70°C
Storage Temperature 65°C to + 150°C
Supply Voltage 0.5 to + 8.0V
Operating Voltage+ 4V to + 7V
Voltage on any InputGND-2V to + 6.5V
Voltage on any Output GND-0.5V to V_{CC} + 0.5V
Power Dissipation1 Watt

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = +5V \pm 10\%$, GND = 0V ($T_A = -40^{\circ}C$ to +85°C for Extended Temperture)

Parameter	Min	Max	Units	Test Conditions
Input Low Voltage	-0.5	0.8	V	
Input High Voltage	2.0	Vcc	v	
Output Low Voltage		0.4	V	I _{OL} = 2.5 mA
Output High Voltage	3.0 V _{CC} - 0.4		V V	$i_{OH} = -2.5 \text{ mA}$ $i_{OH} = -100 \mu \text{A}$
Input Leakage Current		±1	μΑ	$V_{IN} = V_{CC} \text{ to } 0V$ (Note 1)
Output Float Leakage Current		±10	μΑ	$V_{IN} = V_{CC} \text{ to } 0V$ (Note 2)
Darlington Drive Current	±2.5	(Note 4)	mA	Ports A, B, C $R_{ext} = 500\Omega$ $V_{ext} = 1.7V$
Port Hold Low Leakage Current	+ 50	+ 300	μA	V _{OUT} = 1.0V Port A only
Port Hold High Leakage Current	- 50	-300	μA	V _{OUT} = 3.0V Ports A, B, C
Port Hold Low Overdrive Current	- 350		 μΑ	V _{OUT} = 0.8V
Port Hold High Overdrive Current	+ 350		μA	$V_{OUT} = 3.0V$
V _{CC} Supply Current		10	mA	(Note 3)
V _{CC} Supply Current-Standby		10	μA	$V_{CC} = 5.5V$ $V_{IN} = V_{CC} \text{ or GND}$ Port Conditions If I/P = Open/High $O/P = Open Only$ With Data Bus = $High/Low$ $\overline{CS} = High$ Reset = Low Pure Inputs =
	Input Low Voltage Input High Voltage Output Low Voltage Output Low Voltage Input Leakage Current Output Float Leakage Current Darlington Drive Current Port Hold Low Leakage Current Port Hold High Leakage Current Port Hold High Overdrive Current Port Hold High Overdrive Current	Input Low Voltage-0.5Input High Voltage2.0Output Low Voltage3.0Output High Voltage3.0VCC - 0.41Input Leakage Current2Output Float Leakage Current2Darlington Drive Current± 2.5Port Hold Low Leakage Current+ 50Port Hold High Leakage Current-50Port Hold High Overdrive Current-350Port Hold High Overdrive Current+ 350VCC Supply Current-350	Input Low Voltage -0.5 0.8 Input High Voltage 2.0 V_{CC} Output Low Voltage 0.4 Output High Voltage 3.0 V _{CC} - 0.4 $V_{CC} - 0.4$ Input Leakage Current ± 1 Output Float Leakage Current ± 10 Darlington Drive Current ± 2.5 Port Hold Low Leakage Current $+50$ Port Hold Low Voltage Current -350 Port Hold High Leakage Current -350 Port Hold High Overdrive Current $+350$ V _{CC} Supply Current 10	Input Low Voltage -0.5 0.8 VInput High Voltage 2.0 V_{CC} VOutput Low Voltage 0.4 VOutput High Voltage 3.0 $V_{CC} - 0.4$ VInput Leakage Current ± 1 μA Output Float Leakage Current ± 10 μA Darlington Drive Current ± 2.5 (Note 4)mAPort Hold Low Leakage Current -50 -300 μA Port Hold High Leakage Current -350 μA Port Hold High Overdrive Current $+350$ μA Port Hold High Overdrive Current $+350$ μA VCC Supply Current 10 mA

NOTES:

1. Pins A₁, A₀, CS, WR, RD, Reset. 2. Data Bus: Ports B, C.

3. Outputs open.

4. Limit output current to 4.0 mA.

CAPACITANCE

 $T_A = 25^{\circ}C, V_{CC} = GND = 0V$

Symbol	Parameter	Min	Max	Units	Test Conditions	
CIN	Input Capacitance		10	pF	Unmeasured plns	
C _{1/O}	I/O Capacitance		20	pF	returned to GND $f_c = 1 MHz^{(5)}$	

NOTE:

5. Sampled not 100% tested.

A.C. CHARACTERISTICS

 $T_A = 0^\circ$ to 70°C, $V_{CC} = +5V \pm 10\%$, GND = 0V $T_A = -40^\circ$ C to +85°C for Extended Temperature

BUS PARAMETERS

READ CYCLE

Symbol	Parameter	82C	55A-2	Units	Test
		Min	Max	Unita	Conditions
t _{AR}	Address Stable Before RD ↓	0		ns	
t _{RA}	Address Hold Time After RD ↑	0		ns	······································
t _{RR}	RD Pulse Width	150		ns	
t _{RD}	Data Delay from RD J		120	ns	
t _{DF}	RD↑ to Data Floating	10	75	ns	
t _{RV}	Recovery Time between RD/WR	200		ns	

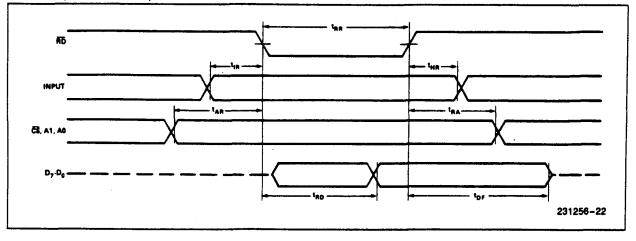
WRITE CYCLE

Symbol	Parameter	82C	55 A- 2	Units	Test	
		Min	Max		Conditions	
t _{AW}	Address Stable Before WR J	0		ns		
t _{WA}	Address Hold Time After WR ↑	20		ns	Ports A & B	
		20		ns	Port C	
tww	WR Pulse Width	100		ns	-	
t _{DW}	Data Setup Time Before WR 1	100		ns	······	
t _{WD}	Data Hold Time After WR 1	30		ns	Ports A & B	
		30		ns	Port C	

OTHER TIMINGS

Symbol	Parameter	82C55A-2		Units	
		Min	Max	Conditions	Test
twB	$\overline{WR} = 1$ to Output		350	ns	
tin	Peripheral Data Before RD	0		ns	
t _{HR}	Peripheral Data After RD	0		ns	
t _{AK}	ACK Pulse Width	200		ns	
tst	STB Pulse Width	100		ns	
tps	Per. Data Before STB High	20		ns	
tpH	Per. Data After STBHigh	50		ns	
t _{AD}	$\overline{ACK} = 0$ to Output		175	ns	<u> </u>
t _{KD}	$\overline{ACK} = 1$ to Output Float	20	250	ns	
twob	$\overline{WR} = 1$ to $\overline{OBF} = 0$		150	ns	
t _{AOB}	$\overline{ACK} = 0$ to $\overline{OBF} = 1$		150	ns	
tsib	$\overline{\text{STB}} = 0$ to IBF = 1		150	ns	
t _{RIB}	$\overline{RD} = 1$ to $IBF = 0$		150	ns	
t _{RIT}	$\overline{RD} = 0$ to $INTR = 0$		200	ns	
tSIT	$\overline{STB} = 1$ to $INTR = 1$		150	ns	
t _{AIT}	$\overline{ACK} = 1$ to INTR = 1		150	ns	
twit	$\overline{WR} = 0$ to $INTR = 0$		200	ns	see note
t _{RES}	Reset Pulse Width	500		ns	see note 2

NOTE:

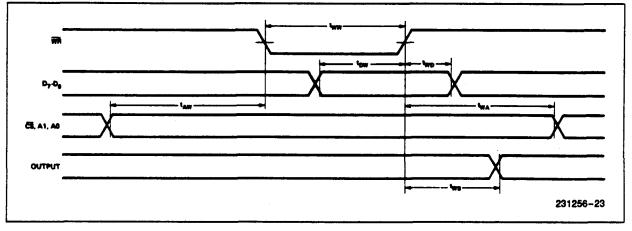

-

.

1. INTR \uparrow may occur as early as $\overline{WR}\downarrow$. 2. Pulse width of initial Reset pulse after power on must be at least 50 µSec. Subsequent Reset pulses may be 500 ns

WAVEFORMS

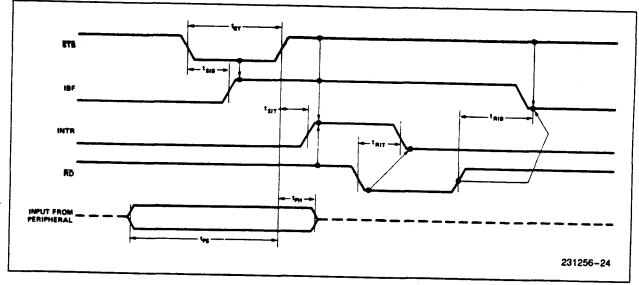
MODE 0 (BASIC INPUT)

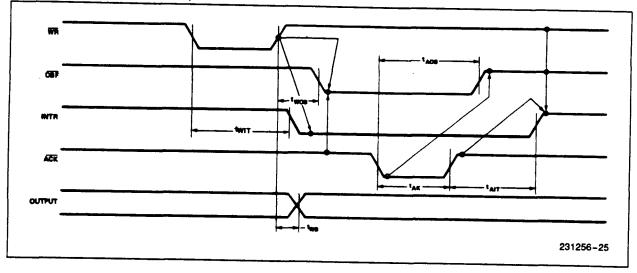


MODE 0 (BASIC OUTPUT)

*****.

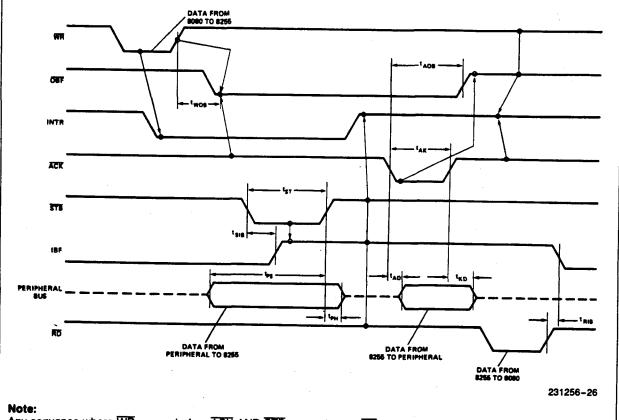
.....



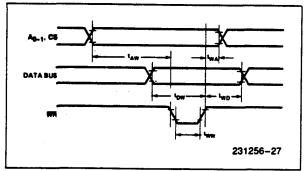

. .

WAVEFORMS (Continued)

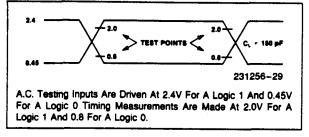
MODE 1 (STROBED INPUT)



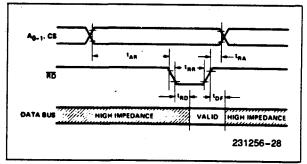
MODE 1 (STROBED OUTPUT)

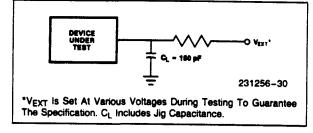

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)



Any sequence where \overline{WR} occurs before \overline{ACK} AND \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF • $\overline{MASK} • \overline{STB} • \overline{RD} + \overline{OBF} • \overline{MASK} • \overline{ACK} • \overline{WR}$)


WRITE TIMING


A.C. TESTING INPUT, OUTPUT WAVEFORM

READ TIMING

A.C. TESTING LOAD CIRCUIT

APPENDIX D

CONFIGURING THE 2700 FOR SIGNAL*MATH

D-2

Jumper and Switch Settings

When running SIGNAL*MATH, you may have to change some of the 2700's on-board jumpers from their factory-set positions. Before using SIGNAL*MATH on the 2700 board, check the following switch and jumpers:

- S1 Base address
- P7 8254 timer/counter I/O configuration
- P8 Interrupts

The board layout is shown in Figure D-1.

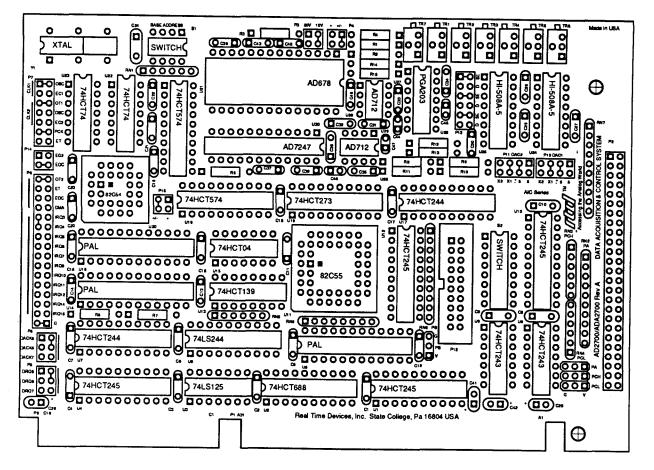


Fig. D-1 - 2700 Board Layout

S1 — Base Address

SIGNAL*MATH assumes that the base address of your 2700 is the factory setting of 300 hex (768 decimal). If you change this setting, you must run the ADAINST program and reset the base address.

NOTE: When using the ADAINST program, you can enter the base address in decimal or hexadecimal notation. When entering a hex value, you must precede the number by a dollar sign (for example, \$300).

P7 — 8254 Timer/Counter I/O Configuration

The 8254 must be configured with the three jumpers placed between the pins as shown in Figure D-2. This configuration is the same as the factory setting. After setting the jumpers, verify that each is in the proper location. Any remaining jumpers must be removed from the P7 header connector.

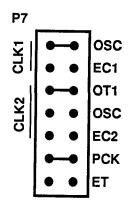


Fig. D-2 - 8254 Timer/Counter Clock Source Jumpers, P7

P8 — Interrupts

To select an IRQ channel and an interrupt source, you must install three jumpers on this header connector. To configure this header for SIGNAL*MATH, place one jumper across the pins of your desired IRQ channel, place the second jumper across the pins labeled EOC, and place third jumper across the pins labeled G. Make certain that there are no other jumpers on this connector. Also, make sure that the IRQ channel you have selected is not used by any other device in your system. Valid IRQ selections with SIGNAL*MATH are IRQ9 through IRQ12, IRQ14, and IRQ15. IRQ3 through IRQ7 cannot be used. Figure D-3 shows you how to configure P8 for IRQ channel 10.

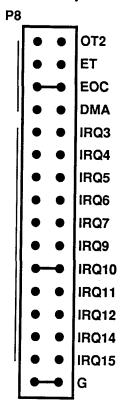
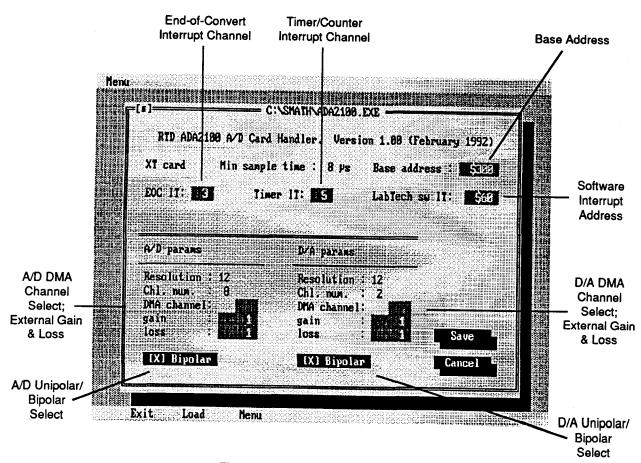


Fig. D-3 — Interrupts and Interrupt Channel Jumpers, P8

Running ADAINST

After the jumpers and switch are set and the 2700 board is installed in the computer, you are ready to configure SIGNAL*MATH so that it is compatible with your board's settings. This is done by running the ADAINST driver installation program. After running the program, open ADA2700.EXE from the *Open a File* menu. You will see a screen similar to the screen shown in Figure D-4 below. The factory default settings are shown in the illustration. Your settings may or may not match the default settings, depending on whether you have made changes to these settings before.

Base Address. The board's base address setting is entered in the upper right block, as shown in the diagram. The factory setting for all Real Time Devices boards is 300 hex (768 decimal). The base address can be entered as a decimal or hexadecimal value (hex values must be preceded by a dollar sign (for example, \$300)). Refer to your board's manual if you need help in determining the correct value to enter.


EOC IT (End-of-Convert Interrupt). In this block, enter the IRQ channel number which corresponds to your jumper setting on P8. Valid channels are IRQ9 through IRQ12, IRQ14, and IRQ15.

Timer IT (Timer/Counter Interrupt). This block is not used on the 2700, and should be left blank.

LabTech SW IT (LABTECH NOTEBOOK Software Interrupt). This sets the software interrupt address where LABTECH NOTEBOOK's labLINX driver is installed. The factory setting is \$60. This setting can be ignored when running SIGNAL*MATH.

A/D Parameters. Six A/D board parameters are listed: resolution, number of channels, active DMA channel, gain, loss, and input voltage polarity.

Resolution and number of channels are fixed by the program for your board.

If you are using DMA transfer, you must enter the channel number which corresponds to the jumper settings in the DMA channel block. Valid channels numbers are 5, 6, and 7.

The next two blocks, gain and loss, are provided so that you can make adjustments for external gain or loss, other than the programmable gain settings available on the board. For example, on the 2700, you can set a gain multiplier circuit by adding some resistors which are external to the programmable gain amplifier. If your gain multiplier circuit is set for a gain of 2, then you must tell SIGNAL*MATH this setting by entering 2 for gain. If your input signal is externally attenuated, then you can adjust for this by setting a value other than 1 for loss. Numbers must be entered as whole decimal values. The factory default setting for gain and loss is 1.

For a bipolar input range, an X should be placed before Bipolar on the screen (default setting). For unipolar operation, remove the X.

D/A Parameters (ADA2700 Only). Six D/A board parameters are listed: resolution, number of channels, active DMA channel, gain, loss, and input voltage polarity. Resolution and number of channels are fixed. For the ADA2700, DMA is not used and should be left blank. Gain and loss are provided so that you can make adjustments for external gain or loss, as described above for the A/D parameters. For a bipolar output range, an X should be placed before Bipolar on the screen (default setting). For unipolar operation, remove the X.

APPENDIX E

CONFIGURING THE 2700 FOR ATLANTIS

If you have purchased ATLANTIS data acquisition and real time monitoring application software for your 2700, please note that the ATLANTIS drivers for your board must be loaded from your example software disk into the same directory as the ATLANTIS.EXE program. When running the ATLANTIS data acquisition software you may have to change some of the 2700's on-board jumpers from their factory-set positions. Before using ATLANTIS on the 2700 board, check the following switch and jumpers:

- S1 Base address
- P7 8254 timer/counter I/O configuration
- P8 Interrupts

Figure E-1 shows the board layout.

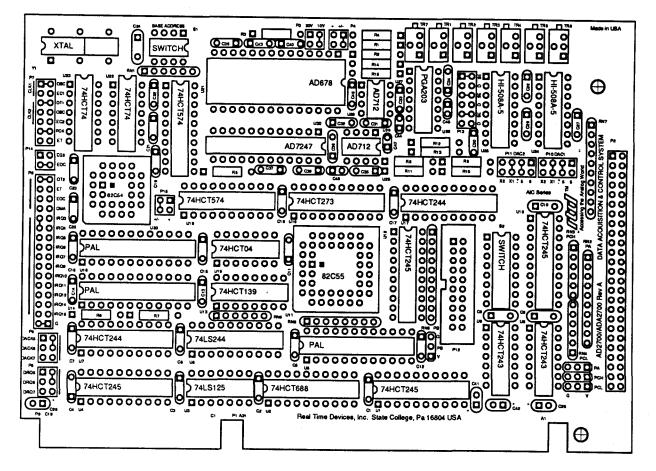


Fig. E-1 - 2700 Board Layout

S1 — Base Address

ATLANTIS assumes that the base address of your 2700 is the factory setting of 300 hex (see Chapter 1). If you changed this setting, you must run the ATINST program and reset the base address.

NOTE: The ATINST program requires the base address to be entered in decimal notation.

P7 — 8254 Timer/Counter I/O Configuration

The 8254 must be configured with the three jumpers placed between the pins as shown in Figure E-2. This configuration is the same as the factory setting. After setting the jumpers, verify that each is in the proper location. Any remaining jumpers must be removed from the P7 header connector.

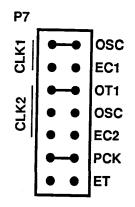


Fig. E-2 - 8254 Timer/Counter Clock Source Jumpers, P7

P8— Interrupts

To select an IRQ channel and an interrupt source, you must install three jumpers on this header connector. To configure this header for ATLANTIS, place one jumper across the pins of your desired IRQ channel, place the second jumper across the pins labeled OT2, and place third jumper across the pins labeled G. Make certain that there are no other jumpers on this connector. Also, make sure that the IRQ channel you have selected is not used by any other device in your system. Figure E-3 shows you how to configure P8 for IRQ channel 9.

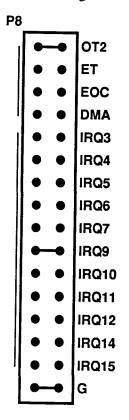


Fig. E-3 — Interrupts and Interrupt Channel Jumpers, P8

APPENDIX F

WARRANTY

F-2

LIMITED WARRANTY

Real Time Devices, Inc. warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from REAL TIME DE-VICES. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, REAL TIME DEVICES will repair or replace, at its option, any defective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to REAL TIME DEVICES. All replaced parts and products become the property of REAL TIME DEVICES. Before returning any product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAM-AGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow the operating instructions that are provided by REAL TIME DEVICES, "acts of God" or other contingencies beyond the control of REAL TIME DEVICES), OR AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN REAL TIME DEVICES. EXCEPT AS EX-PRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND REAL TIME DEVICES EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL REAL TIME DEVICES BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAM-AGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSE-QUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITA-TIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR EXCLU-SIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

AD2700/ADA2700 User Settings Base I/O Address:					
IRQ Channel:					
DMA Channel:					