PANTECE SoLUTiony’
Technology Beyond the Dreams

MICRO CONTROLLER BOARDS

PS-8086 Trainer Kit

USER MANUAL
& TECHNICAL REFERENCE

Contents
CHAPTER 1:INTRODUCTION......ccccemuremsresssnssesssnssenssnssenssnssensss 4
1.1 INTRODUCTION oo 4
1.2 PS -8086 BOARD OVERVIEW. ... 5
1.3 PS = 8086 SPECIFICATIONS ..o §)
CHAPTER - 2: SYSTEM DESCRIPTION.....cocctemrenrressenssnssenssnnses 7
2.1 HARD W ARE oo e e e !
1) 20 PIN EXPANSION CONNECTORS: ..o, 9

The 20 Pin FRC connector is used to interconnect with the
Interface cards like ADC, DAC, SWITCH/LED, RELAY
buzzer Interfaces etc. Pin details are given below 9
2) 50 PIN EXPANSION CONNECTOR:ovvvvvveeeeeeiiiie, 10
The 50 Pin FRC connector is used to interconnect with the
Interface cards like 8255, 8279, 8253/8251, 8259, 8257 and

the pin details are given DEIOWcccoovveeiiiiiiiiiii e, 10
2.4 KEYBOARD DETAILS ... 14
CHAPTER - 3 COMMANDS AND KEYS....ciriecennnnnsssncenn 14
3.1 RESEL..ciiiiii i 14
3.2 H (HELP MENU) ..o, 14
CHAPTER - 4 OPERATING INSTRUCTIONS......cccccirniinncnnns 15
4.1 POWERON ..., 15
7 3720 013 o) (ot (0) « SRR 16
1) PROGRAM ENTRY USING ASSEMBLER: 16
ENTERING MNEMONICS ..., 16
ENTERING ‘G'EXECUTING COMMANDcoovvvvvririiinnnnn, 19

4.3 ENTERING RESULT COMMAND: ... 19

4.4 DISASSEMBLERccooiiiiiiiiiiiiiee e 20
4.5 M (Modify External Memory):......ccccccevvvvvieineesinnnnnn 21
4.6 R (Register Display)ccccccveiiiiiiiiiiiiiiiicee e 21
4.7 T (Transfer Command)cccoecvvviiieiiiiiiniinnee e 22
4.8 N (Local Mode)ccccvviiiiiiiiiiii e 23
4.9 B (baud rate)oooviiiiiiiiiii 24
4.10 S (Serial Mode Key)uuvveviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 24
1) Initially connect the 9V adaptor to J10 connector 25
CHAPTER 6: EXAMPLE PROGRAMSccoounmmmmsemsamssnssnssassanas 30
6.1 Addition Of Two Bytes Of Data............cooovvvvvviiiinnnnnnnnnn, 30
6.3 MULTIPLICATION OF TWO BYTE DATA 34
6.4 DIVISION (2 BYTE/ 1 BYTE) ovvvviiiiiiiiiee, 36
6.5 BLOCK MOVE FROM ONE LOCATION TO ANOTHER38
6.6 SEARCHING ABYTEoooiiiiii e 41
6.7 GRAY CODE CONVERSION (Look Up Table)............. 43
6.8 SUM OF N CONSECUTIVE NUMBERS...........cccvveeenn, 45
6.9 ASCII TO HEX CODE CONVERSIONcccccoooiiiiiinnnnn, 46
6.10 BCD TO HEXA DECIMAL CONVERSION 48
6.11 HEXA DECIMAL TO ASCII CODE........cccccceevvivirnnnnn, 50
6.12 MATRIX ADDITIONcoviiiiiiiiiiiiii e 51
6.13 SEPERATING ODD AND EVEN........ccooocvieiiiiiiiinnnn, 54
6.14 FIBONACCI SERIESoooiiiiiiiiii e 56
6.15 FACTORIAL OF ANUMBERooocviiiiiiiiiiiinnnn, 58
6.16 FIND THE LARGEST NUMBER IN AN ARRAY 60
6.17 AVERAGE OF AN ARRAYError! Bookmark not
defined.
6.18 GENERATE SQUARE WAVE...........ccooiiiiiiiiee, 64
6.19 DESCENDING ORDERcccoooiiiiiiiiiie i, 65

6.20 ASCENDING ORDER ... 68

CHAPTER 1:INTRODUCTION

1.1 INTRODUCTION

The PS-8086 board which demonstrates the
capabilities of the 40-pin 8086 (various families) Sample
programs are provided to demonstrate the unique

features of the supported devices.
The PS-8086 Kit comes with the following:
1) PS-8086 Board
2) Sample devices (INTEL 8086/NEC 8086)
3) Cross cable (RS232)
4) CD-ROM, which contains:
a) Sample programs
b) PS-8086 Board User manual

5) Keyboard (101 keys)

Note: If you are missing any part of the kit, please

contact our support executive

1.2 PS -8086 BOARD OVERVIEW

Power Supply 20 Pin IO Header

8255 PPt

50 Pin Bus
Header

8086 Reset EEPROM LCD 8251 8253
CcPU 27C256 16*2 USART Timer

The PS — 86A board is based on Intel 8086 Microprocessor,
which operates at 6.144 MHz using the crystal of 18.432. The
board can operate using the 101/104 PC keyboard supplied
along with the trainer kit and 2 Line by 16-character LCD display
or from the PC (using the Terminal Emulation Software).
Microprocessor’s Address, Data and Control bus pins are

brought to the 50 pin FRC connector. PS -86A is equipped with

powerful software monitor in two-27C256 EPROM.

The monitor supports Video terminal RS$S232C interface, local
101keyboard and LCD display. The board has 64KB CMOS static
RAM (type 62256). PS -86A works on +9V DC.

1.3 PS-8086 SPECIFICATIONS

. 8086 Microprocessor operating at 18.432 MHz

16KB powerful software monitor two 27C256 EPROM
Three 16-bit programmable timers from 8253

48 programmable 1/0 lines from two nos. of 8255

. Serial interface using 8251

50 pin FRC connector for system bus expansion

. 20 pin FRC connector for user interface from 8255

. 9 pin D type connectors for RS 232 interface

© ® N O A~ W N

. Six different selectable baud rates from 150 to 9600

10. 101 PC type keyboard for entering user address/data
and for commands

11. Builtin line-by-line assemble and disassemble

12. User friendly software monitor for loading and

executing programs with break point facility

CHAPTER - 2: SYSTEM DESCRIPTION
2.1 HARDWARE
PROCESSOR CLOCK FREQUNCY:

8086 operates at 18.432 MHz clock.
MEMORY::
Monitor EPROM: 0000 —FFFF (SEGMENT)
System RAM: 0000 —FFFF (SEGMENT)

1000 — 3FFF (Reserved For Monitor program)

User RAM Area: 1100 - 3FFF

ALLOCATION OF EPROM:

START END ADDRESS | SOCKET |IC TOTAL

ADDRESS NO USED | CAPACITY

0000 FFFF U9 27256 32 KBYTE
us 27256 32 KBYTE

ALLOCATION OF RAM:

START END ADDRESS | SOCKET |IC TOTAL

ADDRESS NO USED | CAPACITY

0000 FFFF u10 62256 32 KBYTE
u11 62256 32 KBYTE

PARALLEL INTERFACE:

8255

SYSTEM MAPPING: I/0 mapped I/0O.

- Programmable peripheral interface.

The following are the 1/O addresses for 8255(GPIO 1):

SOCKET.NO | FUNCTION |ADDRESS |CONNECTOR.NO
CONTL REG FF26
U22 PORT A FF20 J8
PORT B FF22 GPIO |
PORT C FF24 J9(GPIO
|I&GPIOII)

The following are the I/O addresses for 8255(GPIO II):

SOCKET.NO | FUNCTION |ADDRESS |CONNECTOR.NO
CONTL REG FF36
Ule6 PORT A FF30 J6
PORT B FF32 GPIO I
PORT C FF34 J9(GPIO I&GPIOII)
TIMER INTERFACE:

8253 - Programmable Interval Timer:

SYSTEM MAPPING: I/0 mapped I/0.

CHANNEL 2:
Input clock :3 MHz
Output clock: Depends on selection of baud
rate.
Used for : Baud rate generation for 8521
USART.
1/0 ADDRESS:
SOCKET.NO | FUNCTION |ADDRESS |CONNECTOR.NO
CONTL REG FFO6
Uiz CHENNALO FFOO J2
CHENNAL 1 FFO2
CHANNEL 2 FFO4

2.2 CONNECTOR DETAILS
1) 20 PIN EXPANSION CONNECTORS:

The 20 Pin FRC connector is used to interconnect with the

Interface cards like ADC, DAC, SWITCH/LED, RELAY buzzer

Interfaces etc. Pin details are given below

J6 J8
PA0O 1 2 PAO1 PAO 1 2 PA1
PA02 3 4 PAO3 PA2 3 4 PA3
PAO4 5 6 PAO5 PA4 5 6 PA5
PAO6 7 8 PAO7 PA6 7 8 PA7
PB00 9 10 PBO1 PBO 9 10 PB1
PB02 11 12 PB03 PB2 11 12 PB3
PB04 13 14 PB05 PB4 13 14 PB5
PB06 15 16 PBO07 PB6 15 16 PB7
17 18 GND 17 18 GND
sv } i 19 20 GND sv } i 19 20 GND
20-PIN FRC 20-PIN FRC

2) 50 PIN EXPANSION CONNECTOR:

Interface cards like 8255, 8279, 8253/8251, 8259, 8257 and the

pin details are given below

HEADER 25X2

J9

PCO 1 2 PC1
PC2 3 4 PC3
pC4 5 6 PC5
PC6 7 8 PC7
PC00 9 10 PCO1
PC02 11 12 PC03
PC04 13 14 PCO05
PC06 15 16 PCO7
17 18 GND
5v } i 19 20 GND
20-PIN FRC

J7
—
GND 1 2 5v
DO 4 D1
D2 5 6 D3
D4 7 8 D5
D6 9 10 D7
A0 11 12 Al
A2 13 14 A3
A4 15 16 A5
A6 17 18 A7
A8 19 20 A9
A10 21 22 ALl
Al2 23 24 A13
Al4 25 26 Al5
PCLK 27 28 BHE
RESET 29 30 INTA
INTR 31 32 NMI
NC 33 34 HOLD
HLDA 35 36 RD
WR 37 38 MIO
ALE 39 40 NC
NC 41 42 NC
NC 43 44 Cs8
CS9 45 46 Cs10
RXD a7 48 TXD
VL 49 [50 GND_
5V }V | 0 GND_
—

The 50 Pin FRC connector is used to interconnect with the

3) KEYBOARD CONNECTOR:

2 - PC7 K/B data

A 4

4 -GND

A 4

1-PC6K/B CLK

5-VCC

A 4

4) 9PIN ‘D’ TYPE (FEMALE):

CTsS

8251 - Universal Synchronous / Asynchronous Receiver /
Transmitter.

RS232 Bridge Converter

BAUD CLOCK:

Baud clock for 8251 is programmable, provided by
Channel 2 of 8253

INPUT CLOCK FOR 8251:
3.072 MHz

DRIVERS USED:

MAX 232 is used for transmitting receiving of characters.

8251 UartI1/0 Address:
SOCKET.NO | FUNCTION ADDRESS CONNECTOR.NO
8251 CONTL FF10
u15 REG FF12 D2(SKT)
8251 DATA
5) LCD Interface:

JP1

¢
————<<LCD 2 5
RS
RW '2 10K
E R1

lwllw}
=)
‘w

R
|

w)
5

PR
NROOONOUAWNE
lw]
a

DO O0OO0000000O0C [Oe)]
o]
w

:

[
5
O

W)
(o]

13
14
15
16

O
3

>

2X16 LCD

Device used: 16 x 2 / 20 x 4 LCD module

System Mapping: I/0O mapped I/O.

SOCKET.NO | FUNCTION ADDRESS CONNECTOR.NO
LCD COMMAND | FF40
LCD DATA 7 N [—
6) RESET:

This key is located in the main 8086 board. On depressing
this key the program starts executing from the beginning or
reset address 0000. On power on reset it. Display PS - 86 in local

LCD display.
Y

2.3 POWER SUPPLY DETAILS:

PS trainer kit will work at 0 — 5v (1 amp) from the PS power
supply. Provision is made in PS power supply to bring out on
the front panel DC regulated voltage output for interfacing with
add-on cards.

+5V 1amp

[Supply Turned OFF
. Supply Turned ON

POWER SWITCH

2.4 KEYBOARD DETAILS

101 PC type keyboard is interfaced to Microcontroller
through its port pin. Communication between keyboard and
Microcontroller takes place using 2 wires — one for serial clock
and serial data (P1.6 and P1.7).

CHAPTER - 3 COMMANDS AND KEYS

3.1 Reset

This key is located in the main PS-86A board .On
depressing this key the programs. Starts executing from the

beginning or reset address 0000. On power on reset it. Displays
PS- 86A in local LCD display

3.2 H (HELP MENU)

This key is used go PS- 86A help menu and it will display
the following commands.

KEY FUNCTIONS

A <BEG> ASSEMBLE

B BAUD RATE

D <BEG> DISASSEMBLE

E <BEG><END> EXAMINE

G <BEG> EXECUTE

H HELP COMMANDS

| <INSERT> INTERNAL RAM

L <OFFSET> DOWN LODE

M <ADDR> MODIFY

N NORMAL MODE

Q QUIT

R <REG> REGISTER DISPLAY

S SERIAL TRANSFER

T BLOCK TRENSFER

<START><END><DS>

U <BEG><END> UP LODE

X DELETE BLACK
MEMORY

? INSTRUCTIONS

CHAPTER - 4 OPERATING INSTRUCTIONS

4.1 POWER ON

Connect the PS — 8051 board to the power having the
following specifications.

+9v DC 1Amp

Switch on the power supply after ensuring the correct voltages.

Following message will appear on the LCD display.

PS -- 86

On power on or after reset the display shows PS — 86 as a sign
on message. The prompt character —is displayed in the next line
informing the user, that the board is ready to accept the

commands.

4.2 Instruction
1) PROGRAM ENTRY USING ASSEMBLER:

ENTERING MNEMONICS

Example:

Press H for | Enter the starting Address
help
A1100

Enter Key J

User program starts from address 1100 and displays the
following and waits for the user data to be typed in the second

line

Example:

0000:1100:

MOV AX,1212 Enter the mnemonics

Enter Key <J

0000:1103: Enter the mnemonics
MOV BX,1212

Enter Key <J
Program end.

Exit Command: Double Enter you get the main menu

PS
86

2) PROGRAM ENTRY USING OPCODE:

Modify Memory

Press H for | Enter the starting Address
help
—-M1100

Enter Key <J

0000:1100:
18 _

0000:1100: Enter the opcode
18 B8_

Enter the Space Bar Key

0000:1101: Enter the opcode
34 12__

Enter the Space Bar Key

Program end. Exit Command:

Double Enter you get the Main Menu

ENTERING ‘G‘EXECUTING COMMAND

PS Enter starting address
86
—-G1100
Enter key .

After executing display

PS Executing display
86
—G1100
To EXIT Execution Mode PRESS ’RESET ‘Switch

4.3 ENTERING RESULT COMMAND:

Press H for| Enter the Memory Location
help
-M Enter Key <J
<address>

0000:1200:

24 _

8-bit Data

4.4 DISASSEMBLER

You get the output

Disassemble converts the hex byte stored in the memory into

equivalent mnemonics. To enter into disassemble mode, type D

in the command mode followed by the memory address.

Example:

Press H for
help
—D1100

1100: B8 12
12
MOV AX,1212

Enter the Space Bar Key

1103: BB 12
12
MOV AX,1212

Enter the starting address

Enter Key <J

Enter the space bar key

4.5 M (Modify External Memory):

Using this command the user can display/modify any external

memory address.

Modify External memory

Press H for| Enter the starting Address
help
—-M1100

4.6 R (Register Display)

Example:
Press H for| Enter the starting Address
help
—R Enter Key <J
AX=1104

Enter the Space Bar Key

BX=1204

Enter the space bar to see the remaining registers

4.7 T (Transfer Command)

Example:

Press ‘T
The source segment addresses 0000. The above command
transfer the memory content starting from source start address

1100 to destination start address 1200 till source end address
1500 is reached.

Src seg address 0000

Starting address 1100

End address 1200
Destination 1500
address
Block
Hansfer
Src seg
0000
Enter Key

start: 1100 Enter the 1100 address

end: 1200 Enter the 1200address

Enter Key <J for exit command

dest : 0 :
1500

Enter Key J

Transfer
Complete

Enter Key J for exit command

4.8 N (Local Mode)

When this key is depressed on PC keyboard, the PS — 8051 Kit
starts working through local 101 keyboard. Serial

communication is disabled. Following message will appear in

the LCD display.

! NORMAL
MODE !

4.9 B (baud rate)

Press the ‘B

2400 Enter the Space Bar Key

Enter Key <J SET the 9600 baud rate

Baud rates : 150, 300, 600, 1200, 2400, 4800, 9600
When using the serial Communication.

4.10 S (Serial Mode Key)

When this key is depressed the system start communicating

through connector.

All keys are disabled except reset.

! Serial Mode!

The system displays the message SERIAL MODE. To come back
to LCD mode (Normal Mode) user has to press the ‘N’ key in the

computer keyboard otherwise press the Reset button.

4.11 Programming The 8086 Trainer Kit:
PROCEDURE 1: TO ENTER THE MNEMONICS

1) Initially connect the 9V adaptor to J10 connector

2) Switch ON the PS-8086 kit using slide Switch SW1

3) “PS - 86" will be displayed on the LCD

4) Connect the Keyboard in PS/2 connector

5) Depress “A” starting address of the program for Ex: A1100

For ex: A1100 enter key

Type the mnemonics MOV AX, 1212press Enter key

Type the mnemonics MOV BX, 1212 press Enter key and

continue the same procedure till the end of the program

ADDRESS | OPCODES | MNEMONICS
1100 B8 1212 MOV AX,1212
1103 BB 1212 MOV BX,1212
1106 01 D8 ADD AX,BX
1108 BE 00 12 MOV S1,1200
110B 89 04 MOV [SI],AX
110D F4 HLT

6) To verify the code depress D starting address and depress
space bar to see next memory location

For Ex: D1100 and press spacebar till the end of the
program

7) To execute the program Depress “G staring address for Ex:
G1100.

8) To see the result depress “M result address” for Ex:
M1200.

9) To view the output in the Register depress ‘R’ and press
enter key in keyboard.

PROCEDURE 2: TO ENTER THE OPCODE

Follow the same procedure till step 4

1) Depress “M” starting address of the program for Ex:
M1100

For ex: M1100 press enter
Type the opcode B8 space bar
Type the opcode 12 space bar and continue the same till

the end of the program

ADDRESS | OPCODES | MNEMONICS
1100 B8 12 12 MOV AX,1212
1103 BB 12 12 MOV BX,1212
1106 01 D8 ADD AX,BX
1108 BE 00 12 MOV S1,1200
110B 89 04 MOV [SI],AX
110D F4 HLT

2) To view the code depress D starting address and depress
space bar to see next memory location

For Ex: D1100 and press spacebar till the end of the
program

3) To execute the program Depress “G staring address for Ex:
G1100.

4)To see the result depress “M result address” for Ex:
M1200.

5) To view the output in the Register depress ‘R’ and press

enter key in keyboard

Note: 1) “M” is used for displaying the result, for Ex: M8500
2) “M” is used to entering the Opcode.
3) “M” is used for entering the data.

Note: There are two ways to enter the program
1) Mnemonics method
2) Opcode method

Sample program is given to enter the program in both the
methods

CHAPTER - 5 PROGRAMMING DETAILS

PROGRAMMING 8086 OVERVIEW

» The 8086 Microprocessor uses a multiplexed 16 bit address
and address bus

» During the first clock of machine cycle the 16 bit address s
sent out on address/data bus

» These 16 bit addresses may be latched externally by the
address latch enable signals(ALE)

» 8086 Microprocessor can access 1024kb of external
memory using its 20 bit address and memory read/write
signals

» The 8086 provide s0, s1 and s2 signals for bus control.

» The 8086 Microprocessor has a 16 bit program counter (IP)
and 16 bit stack pointer (sp)

It has following set of 16 bit Registers:

AX —Accumulator

BX, CX, DX (These four register can be used as two 8 bit
register individually)

Index Register

SI = Source index

DI =™ Destination index

BP —" Base pointer index

Segment Register
CS ™" Code segment register
DS " Data segment register
ES™” Extra segment register
SS™" Stack segment register
FL™™ Flag register
Interrupts:
The 8086 have two interrupt
» External mask able interrupt (INTR)

» Non mask able interrupt (NMI)

BREAK POINT DISPLAY IN LOCAL MODE:

When break point is encountered, all the register
values are saved and the Acc. “AX=XXXX “Value is displayed in
the LCD display. Now use SPACE key to check register values

one by one

CHAPTER 6: EXAMPLE PROGRAMS

6.1 Addition Of Two Bytes Of Data

FLOW CHART:

A 4

Initialize the Memory pointer

A 4

Load data to AX and BX

A 4

Add two data of AX and BX

A 4

Store the result into Memory

A 4

EXIT

ALGORITHM:

1. Initialize the pointer to the memory for data and
result.

2. Load the data into AX, BX.

3. Add the two data of AX and BX registers.

4. Store the result into Memory from AX registers.

1. Input data’s (2 byte) are loaded into Memory address
1500.

2. LSB in 1500, MSB in 1501 — 1*' data.

3. LSB in 1502, MSB in 1503 — 2™ data.

Output:

1. Result stored in Memory address 1520.
2.1SBin 1520, MSB in 1521.

Program
ADDRESS OPCODE | MNEMONICS | COMMENTS
1100 BE 00 15 MOV SI, Move 1500 into S| pointer
1500
1103 AD LODSW Load the first data into AX
1104 89 C3 MOV BX, | Move AX value into BX
AX
1106 AD LODSW Load the second data into
AX
1107 01C3 ADD BX, AX Add BX and AX registers
1109 BF 20 15 MOV DI, Load 1520 address
1520 location into DI
110C 891D MOV [Dl], BX Store BX value into
memory
110E 74 HLT HALT
6.2 SUBTRACTION OF TWO BYTES OF DATA

FLOW CHART:

START

A 4

Initialize the Memory pointer

A 4

Load data’s into AX and BX

\4
Subtract these two data’s

A 4

Store the result into Memory

END

ALGORITHM:

1. Initialize the pointer to the memory for data and
result.

2. Load the two data’s into AX, BX.

3. Subtraction of these two bytes of data.

4. Store the result into Memory address 1520.

1. Input data’s (2 byte) are loaded into Memory address
1500.

2. LSB in 1500, MSB in 1501 — 1** data.

3. LSB in 1502, MSB in 1503 — 2" data.

OUTPUT:

1. Result stored in Memory address 1520.
2.1LSBin 1520, MSB in 1521.

Program:

ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 BE 00 15 | MOV SI,1500 |Load 1500 into SI

1103 AD LODSW Load the first data

1104 89 C3 MOV BX, AX Move AX value into BX
1106 AD LODSW Load the second data
1107 01C3 SUB BX, AX subtract AX from BX

1109 BF 20 15 | MOV DI, 1520 | Load 1520 address into DI
110C 891D MOV [DI],BX | Load BX value into DI
110E CC INT 3 Break point

6.3 MULTIPLICATION OF TWO BYTE DATA

FLOW CHART:

START

A 4

Initialize the Memory pointer Sl

A 4

Load the two data’s into AX, BX

A 4

Multiply of these two data’s

A 4

Store the result into Memory

END

ALGORITHM:

2.
3.
4,
5

. Input data’s (2 byte) are loaded into Memory address
1500.

INPUT:

. Initialize the pointer to the memory for data and

result.

Load the multiplier value into AX register.
Load multiplicand value in BX register.
Multiply of these two data’s.

. Store the result into Memory address 1520.

5. Load the multiplier value in 1500.
6. Load the multiplicand value in 1502.

OUTPUT:

1. Result stored in Memory address 1520.

Program:
ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 BE 00 15 | MOV SI,1500 | Load 1500 into SI
1103 AD LODSW Load the multiplicand value
1104 89 C3 MOV BX, AX | Load AX value into BX
1106 AD LODSW Load the multiplier value
1107 F7 E3 MUL BX Multiply two data
1109 BFO5 15 | MOV DI, 1520 | Load 1520 address into DI
110C 89 05 MOV [DI], AX | Store AX value into DI
110E 47 INC DI Increment the DI
110F 47 INC DI Increment the DI
1110 89 15 MOV [DI], BX | Store BX value into DI
1112 CC INT 3 Break point

6.4 DIVISION (2 BYTE/ 1 BYTE)

FLOW CHART:

START

Initialize the Memory pointer Sl

\ 4
Load the dividend and divisor values

\ 4

Divide these two data’s

A 4

Store the result into Memory

y
EXIT

ALGORITHM:

1. Initialize the pointer to the memory for result.
2. Load the dividend value into AX register.

3. Load the divisor value into BX register.

4. Divide these two data’s.

5. Store the result into Memory address 1520.

INPUT:

1. Dividend value loaded into AX register.
2. Divisor value loaded into BX register.

Output:

1. Result stored into 1520 address.
2. Quotient stored into 1522 address.
3. Remainder stored into 1523 address.

Program:
ADDRESS | OPCODE | MNEMONICS COMMENTS
1100 BA 0000 | MOV DX, 0000 Clear DX registers
1103 B8 FD FF | MOV AX, FFFD Load the dividend in AX
1106 BO9OFO0 | MOV BX, OF Load the divisor value in BX
1109 F7 F1 DIV BX Divide the two data’s
110B BF0015 | MOV DI, 1520 Load 1520 address into DI
110E 8805 MOV [DI], AL Load AL value into DI
1110 47 INC DI Increment DI
1111 88 25 MOV [Dl], AH Load AH value into DI
1113 47 INC DI Increment DI
1114 8915 MOV [Dl], DX Load DX value into DI
1116 CC INT3 Break point

6.5 BLOCK MOVE FROM ONE LOCATION TO ANOTHER

FLOW CHART:

START

A 4

Initialize the memory pointer

A\ 4

CL = No of count loaded into AL

»

\ 4
Transfer data to the desired location

CL= CL-1

Load next data in AL

NO

YES

Store the result into Memory

|
Cer >

ALGORITHM:

1. Initialize the pointer to the memory where data to be
transformed.

2. Load the AL register with the data from memory.

3. Initialize destination pointer to the memory where
data to stored.
4. Store data from AL register.

INPUT:
e |Input data from address 1500 which is pointed SI,
transferred to the desired Location.
e Number of byte in CL.

Output:

e Qutput —data in address 1550 is the moved data.

PROGRAM:

ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 B1 08 MOV CL, 08 Load 08 value into CL

1102 BE OO 14 | MOV SI, 1500 | Load 1500 into SI

1105 BF 50 14 | MOV DI, 1550 | Load 1550 into DI

1108 AC LODSB Load the data in AL Register

1109 88 05 MOV [Dl], AL Store the result in specified
Location

110B 47 INC DI Increment the pointer

110C FE C9 DECCL Decrement the pointer

110E 75 F8 JNZ 1108 Loop continues until the counter
is zero

1110 CC INT 3 Break point

6.6 SEARCHING A BYTE

START

v
Initialize the memory pointer

Flow Chart:

CL=Count DL =search byte

<
<

A 4

Load the data into AL register

CL=CL-1

If AL=DL

YES

Store searched byte & location

EXIT

Algorithm:
1. Initialize the pointer to the memory for storing data

and result.
2. Load DL with search byte.

3. Load CL with count.

4. Load AL with data from memory. Compare AL with DL

if its equal store the result else decrement counts go

to step2.

5. Store the result.

INPUT:

1. (Search the byte) A in 50 locations from 1500.

Output:
1. Store the result byte in 1600.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BF 00 13 | MOV DI, 1600 | Load 1600 into DI
1103 BEOO 12 | MOV SI, 1500 | Load 1500 into SI
1106 B1 50 MOV CL, 50 Load 50 into CL
1108 B2 OA MOV DL, OA | Load 10 into DL
110A AC LODSW Load CL register with the count
110B 38 C2 CMP DL, AL Compare DL and AL register
values
110D FE C9 DEC CL Decrement CL register
110F 75 05 121114 If count is zero then jump into
1114
1111 75 F7 JNZ 110A If count is not zero then jump
into 110A
1113 F4 HLT
1114 88 05 MOV [DI], AL | Load AL value into DI

1116 4E DECSI Decrement SI register
1117 89 F3 MOV BX, SI Load Sl value into BX
1119 47 INC DI Increment DI

111A 88 1D MOV [DI], BL | Store BL value into DI
111C 47 INC DI Increment DI

111D 88 3D MOV [DI], BH | Store BH value into DI
111F CC INT 3 Break point

6.7 GRAY CODE CONVERSION (Look Up Table)

Flow Chart:

START

A 4

Initialize the memory pointer

A 4

Load data into AL register

A 4
Convert AL into gray code

Store the result into Memory

A 4

EXIT

ALGORITHM:

1. Load the memory with truth table of gray codes.

2. Initialize the pointer to the memory for data and
result.

3. Load AL with the data from memory.

4. Convert gray code for that data.

5. Store the result into Memory.

INPUT : Data in 1500.
OUTPUT : Result in 1501.
Lookup Table :Start from 1600.
The look up table is provided by hex or of two bits in a byte
the value ranges from 00 to Of. 1600 - 00 01 03 02 06 07 05 04

Oc 0d Of Oe Oa Ob 09 08.

Program:

ADDRE | OPCODE | MNEMONIC | COMMENTS

SS S
1100 BB0O012 | MOV BX, | Load 1200 into BX
1600

1103 BE5011 | MOV SI, 1500 | Load 1500 into S

1106 AC LODSB Load the accumulator with the data
1107 D7 XLAT Check gray code for that data
1108 BF 5111 MOV DI, | Load 1501 address into DI
1501
110B 88 05 MOV [DI], AL | Store the gray code of the given
data

110D CC INT3 Break point

6.8 SUM OF N CONSECUTIVE NUMBERS

FLOW CHART:

START

Initialize the memory pointer SI

A 4

Load the data as BL =1, CL = count

A 4

TMn)=t(n-1)+t(n-2).BL=BL +1. AL =t(n).

NO

IfCL=0

YES

Store the result into Memory address 1600

EXIT

ALGORITHM:

1. Load the value of n.
2. t(n) =t(n-1)+t(n-2).
3.t(n-1)=t(n-2)+1.

4, n=n-1.
5. if n> 0 continue else go to step?2.
6. Initialize the pointer to memory for storing the result.
7. Store result.

INPUT :Load the value of n into CL.

OUTPUT : Resultis stored in 1600.

PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 B1 04 MOV CL,04 Load CL with value 04
1102 BO 00 MOV AL,00 Initialize 00 value into AL
1104 B3 01 MOV BL,01 Initialize 01 value into BL
1106 00 D8 ADD AL,BL Add previous and next value
1108 FE C3 INC BL Increment BL
110A FE CO DEC CL Decrement CL
110C 75 F8 JNZ 1106 Loop executes until the
desired value of n is reached

110E BF 00 20 | MOV DI,1600 | Store the resultin 1600
1111 89 05 MOV [DI],AX | Load AX value into DI
1113 CC INT3 Break point

6.9 ASCII TO HEX CODE CONVERSION

FLOW CHART:

START

A 4

Load AL with the input data

A 4

Subtract AL with 30HEX

YES

y
EXIT

Algorithm:

If
AL<=10

AL=AL-7

P
<

1. Load the input data in AL register.
2. Subtract 30 from AL register value.

3. If data is less than or equal to 16 terminate the

program.

4. Else subtract 7 from AL register value.

5. Result stored in AL register.

INPUT : Datainputin AL register.

OUTPUT : Data output in AL register.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BO 31 MOV AL,31 Get data 31 into AL
1102 2C30 SUB AL,30 Subtract 30 with the AL
1104 3C10 CMP AL,10 If data is less than or equal to 16 go to
110C
1106 72 04 JB 110C If 1% operand is below the 2™
operand then short jump into 110C
1108 74 02 JZ 110C If count zero then jump into to 110C
110A 2C07 SUB AL,07 Else subtract 7 from AL register value
110C CC INT 3 Break point

6.10 BCD TO HEXA DECIMAL CONVERSION

FLOW CHART:

START

\ 4

Load at with the data mask higher, lower bits

A 4

Multiply by 10 and add lower bits to it

V¥
Move higher bits into lower bits

A 4

EXIT

ALGORITHM:

1. Load the data in AL register.

2. Separate higher nibbles and (in) lower nibbles.

3. Move the higher nibbles (in) to lower nibbles position.
4. Multiply AL by 10.
5. Add lower nibbles.
6. Store the result into Memory.

INPUT:
Data in AL register.
OUTPUT:
Result in AL register.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BO 10 MOV AL,10 Load register AL with the data 10
1102 88 C4 MOV AH,AL Load AL value into AH
1104 80 E4 OF | AND AH,OF Mask higher bits
1107 88 E3 MOV BL,AH Load AH value into BL
1109 24 FO AND AL,FO Mask lower bits
110B B1 O4 MOV CL,04 Load 04 value into CL
110D D2 C8 ROR AL,CL Rotate the data from last 4bits
to first 4 bits
110F B7 OA MOV BH,0A Load 10 value into BH
1111 F6 E7 MUL BH Multiply by 10
1113 00 D8 ADD AL,BL Add lower nibble to the
multiplied data
1115 CC INT3 Break point

6.11 HEXA DECIMAL TO ASCII CODE

FLOW CHART:

START

Load AL register with the input data

YES
If AL<=9 AL=AL+7

NO <

Add AL register with 30

y

Store the result into Memory

A 4

EXIT

ALGORITHM:

1. Load AL with the input data.

2. Check If (AL<=9) then add 30 with AL register.
3. Else add 7 with AL register.

4. Result stored into AL register.

INPUT: Data in AL register.

OUTPUT:
Result in AL register.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BO OA MOV AL,0A Load register AL with the data
10
1102 3C09 CMP AL,09 If data less than 9 add 30 to
the data
1104 74 04 JZ 110A If count is zero then go to 110A
1106 72 02 JB 110A If 1°* operand is below than 2™
operand then short jump into
110A
1108 04 07 ADD AL,07 Else Add AL with 07
110A 04 30 ADD AL,30 add 30 with AL
110C CC INT3 Break point

6.12 MATRIX ADDITION

FLOW CHART:

START

A 4

Initialize memory pointer for the two matrix Sl and DI

A 4

Load the input data’s into CL = Count, AL = data

A 4

Add AL register with BL register
v

Store the result into Memory

\ 4

Decrement the count value in CL register

NO

If CL=0

YES

ALGORITHM:

1.Initialize the pointer to memory for data and result.
2.Load CL with count.

3.Add two matrices by each element.

4.Process continues until CL is O.

5.Store the result into Memory.

INPUT:

Data in 2000 consecutive location as rows and
columns for first matrix.

Data in 3000 consecutive location as rows and

columns for second matrix.

OUTPUT: Data in 3000 with 9 entries.
PROGRAM:

ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 B1 09 MOV CL, 09 Initialize 09 into CL register

1102 BE 0020 | MOV SI, 2000 |Load 2000 into SI for 1
matrix

1105 BF 0030 | MOV DI, 3000 | Load 3000 into DI for 2™
matrix

1108 8A 04 MOV AL, [SI] |Load AL with data of first
matrix

110A 8A 1D MOV BL, [DI] |Load BL with data of second
matrix

110C 00 D8 ADD AL, BL Add two data of AL and BL

110E 88 05 MOV [DI], AL | Store AL with data into DI

1110 47 INC DI Increment DI

1111 46 INC SI Increment S

1112 FE CO DEC CL Decrement CL

1114 75 F2 JNZ 1108 Loop continues until all
elements of
Matrix to added

1116 CC INT3 Break point

6.13 SEPERATING ODD AND EVEN

FLOW CHART:

START

A 4

Initialize the memory pointer

A 4
Load the data in AL register

A 4
Rotate the data in AL register

v YES
If carry set L Store the result
NO
YES

NO

ALGORITHM:

1. Initialize the pointer to memory for data and result.

2. Loaded the data in AL register from memory.

3. Rotate the AL register by one bit.

4. If carry flag is set then go to step2.

5. Store the even number as a result into the Memory.

INPUT:
Data in 2000 (mixer of odd and even numbers).
Count: number of bytes in CL.
OUTPUT:
Even numbers stored in 3000.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 B1 08 MOV CL, 08 Initialize 08 into CL
1102 BE OO 20 | MOV SI, 2000 | Load 2000 address into SI
1105 BF 0030 | MOV DI, 3000 | Load 3000 address into DI
1108 AC LODSB Load the counter value
1109 DO C8 RORAL,1 Rotate AL in one time
110B 72 FB JB 1108 If carry occurs go to L1 (odd
Data)
110D DO CO ROLAL, 1 Else rotate by left to get
original data
110F 88 05 MOV [D1], AL | Store the even data
1111 47 INC DI Increment DI
1112 FE C9 DEC CL Decrement CL
1114 75 F2 JNZ 1108 Loop executes until counter is
zero
1116 CC INT3 Break point

6.14 FIBONACCI SERIES

FLOEW CHART:

START

A 4

Initialize the memory pointer S

A 4

Load datainBL =t (n-1), AL =t (n) CL=count

»
»

v

TN+l =t(n-1)+t(n)

A 4
Decrement the CL register by one time

=

YES

Store the result into Memory address 2000

A 4

EXIT

ALGORITHM:

1.Initialize the pointer to memory for storing result.
2.Number of the counts loaded into CL register.

INPUT:

OUTPUT:

3.T(n+1)=t(n)+t(n-1).

4.Repeat the above process until count is 0.

Load number of terms in CL.

00 before executing the program).

Result in 2000 (clear the memory from 2000 by

PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 B1 10 MOV CL, 10 Initialize 10 into CL register
1102 B3 00 MOV BL, 00 Initialize 00 into BL register
1104 B2 01 MOV DL, 01 Initialize 01 into DL register
1106 BF 00 20 | MOV DI, 2000 | Load 2000 into DI
1109 88 DO MOV AL, DL Move DL value into AL
110B 00 D8 ADD AL, BL Add BL value with AL register
110D 88 05 MOV [DI],AL | Store AL value into DI.
110F 47 INC DI Increment DI
1110 88 D3 MOV BL, DL Move DL value BL register
1112 88 C2 MOV DL, AL Move AL value DL register
1114 FE C9 DECCL Decrement CL
1116 75 F3 JNZ110B If count is zero then go to

110B

1118 CC INT3 Breakpoint

6.15 FACTORIAL OF A NUMBER

FLOW CHART:

START

Initialize the memory pointer SI

v
Load datain BL =1, AL =1, CL = count

»
>

A 4

T(n-1)=(n-1)*t(n). BL=BL +1

A 4

Decrement the CL register value

NO

If CL=0

YES

Store the result into Memory address 2000

<
«

END

n'=n*(N-1)*(N-2)*...ccceeuenenn *1

ALGORITHM:

1. Load the counter with value of n into CL register.

2.T(n)=t(n-1)*t(n-2).
3. Repeat the process until n becomes to store result.

4. Initialize the pointer to memory to store result.

5. Store the result into Memory address 2000.

INPUT:
Load the value of n into CL register.
OUTPUT:
Result stored in Memory address 2000.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 B1 04 MOV CL, 04 Load the value of 04 in CL
1102 BO 01 MOV AL, 01 Initialize 01 into AL
1104 B3 01 MOV BL, 01 Initialize 01 into BL
1106 F6 E3 MUL BL Multiply previous value by next
Value
1108 FE C3 INC BL Increment BL
110A FE C9 DECCL Decrement CL
110C 75 F8 JNZ 1106 Loop continues until count is
Zero
110E BF 00 20 | MOV DI, 2000 | Load 2000 address into DI
1111 89 05 MOV [DI], AX | Store AX value into DI
1113 CC INT3 Break point

6.16 FIND THE LARGEST NUMBER IN AN ARRAY

START

Move the start address to a memory pointer

A 4
Initialize the counter with number of elements in array

'

Move the data pointed by the memory to registerl

'

Increment the memory pointer Sl

A 4

Decrement the counter in CL register

Compare regl data
with data pointed by
the memory

NO
YES

Is registerl
data greater?

A 4

Store the data

NO y

ALGORITHM:

1. Take the first number of the array.

2. Compare with next number.

3. Take the bigger one of the them.

4. Decrement the count in CL register.

5. If the count is not zero then continue from step 2.
6. Store the result into Memory address 9500.

INPUT:
Enter the size of array (count) in 9000.
Enter the data starting from 9001.
OUTPUT:
Result is stored in 9500.
PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BE 0090 | MOV S1,9000 | Load 9000 address into SI
1103 8A0C MOV CL,[S]] Load Sl value into CL
1105 46 INC SI Increment S|
1106 8A 04 MOV AL,[SI] Move the first data in AL
1108 FE C9 DEC CL Reduce the count
110A 46 INC SI Increment S|
110B 3A 04 CMP AL,[SI] if AL> [SI] then go to jump1 (no swap)
110D 73 02 JNB 1111 If count is zero then jump into 1111
110F 8A 04 MOV AL,[SI] Else store large no in to AL
1111 FE C9 DEC CL Decrement the count
1113 75 F5 JNZ 110A If count is not zero then jump into
110A
1115 BF 0095 | MOV DI,9500 | Else store the biggest number at 9500
1118 88 05 MOV [DI],AL | Store the AL value into DI
111A CC INT3 Break point

6.17 AVERAGE OF AN ARRAY

Move the start address to a memory pointer

FLOW CHART:

Initialize registerl with zero

Initialize counter with number of elements in an array

Save the count in register3

»
>

A 4

Move the data from the memory pointer address to register2

A 4
Add registerl to register2 and store into registerl

Increment the memory pointer & Decrement the counter

NO

Is count=0?

Divide register3 from register2 and store into register2

ALGORITHM:

1. Add the bytes one by one up to the count (CL).
2. Then divide the total with the count.

INPUT:
e Size of array (count) in CL = 6 (see the program).
e Enter the data starting from 9000h.

OUTPUT:

e Average is stored in AX register.
¢ Quotient in AL and the reminder in AH.

PROGRAM:
ADDRESS | OPCODE | MNEMONICS | COMMENTS
1100 BB0O0OOO | MOV BX,0000 | Load 0000 into BX
1103 BE 00 90 MOV S1,9000 | Array start address
1106 B80000 | MOV AX,0000 | Load 0000 into AX
1109 B1 06 MOV CL,06 Initialize 06 into CL register
110B 88 CD MOV CH,CL Load the count value into CH
110D 8A 1C MOV BL,[SI] Get the data byte
110F 00 D8 ADD AL,BL Add the data byte
1111 46 INC SI Increment the Sl pointer
1112 FE C9 DEC CL Check the count
1114 75 F7 JNZ 110D If count is not zero then go to
110D
1116 F6 F5 DIV CH Find the average by sum/count
1118 CC INT3 Break point

6.18 GENERATE SQUARE WAVE
1/O ADDRESS FOR 8253 /8254:
Counter0 = FFOO
Counterl => FF02
Counter2 => FF04
Counterreg 2 FF06

FLOW CHART:

START

A 4

Initialize 8253 with counter2 in mode 3

A 4

Load data ‘FF’ in LSB of counter?2

A 4

Load data ‘00’ in MSB of counter2

A 4

PROGRAM:

ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 BO B7 MOV AL,36 Load 36 into AL for generating
SQUARE

1102 BA 06 FF | MOV DX,FF06 Load FFO6 into DX

1105 EE OUT DX,AL Send the data to the timer

1106 BO 02 MOV AL,FF Load LSB count in the AL

1108 BAO4 FF | MOV DX,FFO4 Port address in DX

110B EE OUT DX,AL Output the AL contents to CLK 2

110C BO 00 MOV AL,00 Load MSB count in the AL

110E BA 04 FF | MOV DX,FF04 Load FFO4 into DX

1111 EE OUT DX,AL Output the AL content to CLK 2

1112 CC INT3 Break point

6.19 DESCENDING ORDER

ALGORITHM:

1.Get the first data and compare with the second data.

2.If the two data are in descending order then no swap.

3.Else swap the data byte by descending order and then
again compare the other data bytes up to the count.

4.Do the above the array is a ranged in descending order.

5.Finally the array is arranged in ascending order.

INPUT:
Enter the count in location 9000.
Enter the data location starting from 9001.

OUTPUT:

Result in descending order in the location 9001.

START

A 4
Load the counter with the number of elements in the array

FLOW CHART:

<
l

A 4
Move the data from the memory pointer to a register 1

Y
Increment the memory pointer Sl

A 4
Move the subsequent data to register 2
_> 7

Is
regl<reg2?
YES

Increment the memory pointer

Swap regl & reg2

A
Store regl data to memory pointer address

!

Increment the memory pointer

\ 4
Decrement the counter in one time

NO

Is Count =07

!

YES

PROGRAM:

ADDRESS | OPCODE | MNEMONICS COMMENTS

1100 BE 0090 | MOV SI, 9001 Load 9000 into SI

1103 8A 0C MOV CL, [SI] Load Sl value into CL

1105 BE OO 90 | MOV SI, 9000 get the count

1108 8A 14 MOV DL, [SI] Load SI count value into DL

110A 46 INC SI Increment the pointer

110B 8A 04 MOV AL, [SI] first data in AL

110D FE CA DEC DL Decrement DL

110F 74 16 121127 If count is zero then jump into
1127

1111 46 INC SI Increment Sl

1112 8A1C MOV BL, [Sl] Load SI count value into BL

1114 3AC3 CMP AL, BL if al > bl go to (jump1l)

1116 72 07 JB111F

1118 4E DECSI Decrement Sl

1119 88 04 MOV [SI],AL Load ACC value in SI

111B 88 D8 MOV AL, BL Store the greatest data

111D EB 03 JMP 1122 Jumpinto 1122

111F 4E DECSI Decrement S|

1120 88 1C MOV [Sl], BL Store the smallest data in
memory

1122 46 INC SI Increment Sl

1123 FE CA DEC DL Decrement DL

1125 75 EA JNZ 1111 If count is not zero then jump
into 1111

1127 88 04 MOV [SI], AL Load AL value into SI

1129 FE C9 DECCL Decrement CL

112B 75 D8 JNZ 1105 If count is not zero then jump
into 1105

112D CC INT3 Break point

6.20 ASCENDING ORDER

ALGORITHM:

1. Get the first data and compare with the second data.

2. If the two data are in ascending order then no swap.

3. Else swap the data byte by ascending order and then
again compare the other data bytes up to the count.

4. Do the above the array is arranged in ascending order.

5. Finally the array is arranged in ascending order.

INPUT:
Enter the count in location 9000.
Enter the data location starting from 9001.

OUTPUT:

Result in ascending order in the location 9001.

FLOW CHART:

START

A 4

Load the counter with the number of elements in the array

P
<

A 4
Move the data from the memory pointer to a register 1

A 4
Increment the memory pointer Sl

A 4
Move the subsequent data to register 2

NO

If
regl>reg2?

\ 4
Swap regl & reg2 YFS
\ 4
Increment the memory pointer Sl

v

Store registerl data to memory pointer address

A 4
Increment the memory pointer Sl

A 4

Decrement the counter value

Is
Count=0?

PROGRAM:

ADDRESS | OPCODE | MNEMONICS | COMMENTS

1100 BE OO0 90 | MOV SI, 9000 | Load 9000 into SI

1103 8A 0OC MOV CL, [SI] |Load Sl value into CL

1105 BE 00 90 | MOV SI, 9000 | Get second data

1108 8A 14 MOV DL, [SI] |Load Sl second data into
DL

110A 46 INC SI Increment S|

110B 8A 04 MOV AL, [SI] |Load Sl value into AL

110D FE CA DEC DL Decrement DL

110F 74 16 JZ 1127 If count is zero then go
to 1127

1111 46 INC SI Increment S|

1112 8A 1C MOV BL, [SI] |Load Sl value into BL

1114 38 D8 CMP AL, BL if AL> BL go to (jump1)

1116 72 07 JNB 111F

1118 4E DECSI Decrement SI

1119 88 04 MOV [SI],AL | Load AL value into SI

111B 88 D8 MOV AL, BL Load BL value into AL

111D EB 03 JMP 1122

111F 4E DEC SI Decrement Sl

1120 88 1C MOV [SI], BL | Load BL value into SI

1122 46 INC SI Increment S|

1123 FE CA DECDL Decrement DL

1125 75 EA JNZ 1111 If count is not zero then
goto 1111

1127 88 04 MOV [SI], AL | Load AL value into SI

1129 FE C9 DECCL Decrement CL

112B 75 D8 JNZ 1105 If count is not zero then
goto 1105

112D CC INT3 Breakpoint

ADDITIONAL PROGRAMS ON 8086
1) COMPARE STRING

ADDRESS | MNEMONICS
1100 LEA SI, [1200]
1104 LEA DI, [1300]
1108 MOV CX, 0003H
110b CLD
110c REPE CMPSB
110e JNZ NOTEQUAL
1110 MOV AL, 01
1112 MOV [1400], AL
1115 HLT
1116 NOTEQUAL: MOV
AL, 00
1118 MOV [1400], AL
111b HLT

CONDITION 1: (SAME STRING IN DATA1 AND DATAZ2)

1ST INPUT 2ND INPUT
1200 11 1300 11

1201 22 1301 22

1202 33 1302 33

OUTPUT: 1400:01
CONDITION 2: (DIFFERENT STRING IN DATA1 AND
DATAZ2)

1ST INPUT 2ND INPUT
1200 11 1300 44

1201 22 1301 55

1202 33 1302 66

OUTPUT: 1400:
2) MOV STRING PROGRAM

ADDRESS OPCODE
1100 MOVCX,[1500]
1104 LEA SI,[1600]
1108 LEA DI,[1700]
110c CLD

110d REP MOVSB
110f HLT

INPUT LOCATION

COUNT INPUT |DATAINPUT
1500 03 1601 22

1601 11 1602 33

OUT LOCATION

OUTPUT
1700 11

1701 22

1703 33

3) ONE'S COMPLEMENT OF A 16-BIT NUMBER

OBJECTIVE:

To find the one's complement of the data in register pair AX and
store the result at 1400.

THEORY:

In the one's complement of a binary number the ones are

changed to zeros and vice versa. It is one way of representing

negative numbers. All negative numbers start with a 1 at the

MSBit. For instance considering the hex number 5600 For ex:
5600 = 0101 0110 0000 0000

One's complement =1010 1001 1111 1111

= A9FF

EXAMPLE:

The example given is to find the one's complement of 1234 and
store it in memory location 1400.

Input :

Data: (AX) =0001 0010 0011 0100 =1234

Result: [1400] =11101101 1100 1011 = EDCB

MEMORY ADDRESS | OPCODE MNEMONICS
1100 C7C03412 MOVAX, 1234
1103 F7 DO NOT AX

1106 89 06 00 14 MOV [1400],AX
110A F4 HLT
PROCEDURE

i) Enter the above mnemonics into RAM memory from 1100

using the assembler command.

i) Using GO command execute the program and enter 1100.
This is the address from where execution of your program
starts.

iii) Press ENTER key to start execution.

iv) Reset the kit using RESET key.
4 MASKING OFF BITS SELECTIVELY

OBJECTIVE

To clear 8 selected bits, the 2nd HN and the HN in a 16 bit number.
THEORY

The logical AND instruction is used for masking off bits. The bits
which have to be cleared are to be AND with a logical zero and the
other bits are to be high. Hence to achieve the above objective,
AND with OFOF.

EXAMPLE: The 16 bit number is at location 1200 and the result
is at location 1400.

Input: [1200] = FF

[1201] = FF

Result: [1400] = OF

[1401] = OF

MEMORY ADDRESS | OPCODE MNEMONICS
1100 8B 06 00 12 MOV BX,1200
1104 81 EO OFOF AND AX,OFOF
1108 89 06 00 14 MOV [1400],AX
110C F4 HLT
PROCEDURE

The procedure outlined for previous exercises is to be followed
for this program also.

5) COMPUTING A BOOLEAN EXPRESSION

OBJECTIVE

To obtain a Boolean expression F which has 4 terms and 8

variables A,B,C,D,E,F,G,H. F = {{AB'CDE' + A'BCD(BCD+EFGH)}

THEORY

Evaluation of Boolean expressions through minimization
procedures is customary. But this example seeks to do the same
using the 8086 registers. The 4 minterms are in FOUR 8 bit

registers. Use of logical instructions to perform this is

consequential. Don't care variables are represented by set bits.
The correspondence is, ABCDEFGH)))) D7 D6 D5 D4 D3 D2 D1 DO
EXAMPLE: Input: AL=10110111B ------- B7

AH=01111111B ------ 7F

BL=11111111B ------ FF

BH=11111111B ------ FF

Result: [1100] =11111111B ------ FF

MEMORY ADDRESS | OPCODE MNEMONICS
1100 Cé6 CO B7 MOV AL, B7
1103 C6 CA7F MOV AH, 7F
1106 C6 C3 FF MOV BL, FF
1108 C6 C7 FF MOV BH, FF
110C 08 FB OR BL, BH

110E 20DC AND AH, BL
1110 08 EO OR AL, AH

1112 88060012 MOV [1200], AL
1116 F4 HLT

Pantech solutions creates information
packed technical documents like this one every
month. And our website is a rich and trusted
resource used by a vibrant online community of
more than 1,000,000 members from organization of
all shapes and sizes.

What do we sell?

Our products range from Various
Microcontroller development boards, DSP Boards,
FPGA/CPLD boards, Communication Kits, Power
electronics, Basic electronics, Robotics, Sensors,
Electronic components and much more . Our goal is
to make finding the parts and information you need
easier and affordable so you can create awesome
projects and training from Basic to Cutting edge
technology.

