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I‘d have to say Robotics is my favorite issue theme. We get to feature
some of the most fascinating projects. That’s not to say the 11 other
themes throughout the rest of the year don’t attract great applications. It’s
just that this particular topic brings out an incredibly high level of creativi-
ty among designers. Their excitement for these inventive and fun projects
is contagious. Each year I look forward to reading about the newest
advances in robotics and the interesting ways they’re being applied. We
selected a few for this issue that are sure to give you some great ideas for
your own projects.

A couple Atmel AVR 2004 Design Contest winners used the contest as
an opportunity to experiment with AVR microcontrollers in robotics appli-
cations, and the results were impressive. Turn to page 12 to learn about
the AVRcam. Designed around ATmega8 and ATtiny12 microcontrollers,
this camera provides real-time tracking of multiple different-colored objects
in addition to still photography capability. John Orlando discusses his
range of goals—which included designing an inexpensive system that
would be easily expandable—and how he and codesigner Brent Taylor
accomplished them. Their successful design won them Second Prize in
the contest. The well-designed AVRcam is also appropriate for motion
detection and object recognition applications.

For another terrific AVR-based robotics application, turn to page 44.
Eric Gagnon won Honorable Mention for his 32-channel RC digital servo
controller. This ATmega8515L microcontroller-based project is well suited
for projects that require versatile servos, including walking robots and ani-
matronics applications. By upgrading from typical RC servos to digital RC
servos, he achieved a hardware-based solution that features 16-bit accu-
racy and 12-bit resolution. In the first part of this two-part series, Eric cov-
ers the architecture. Be sure to come back next month, when he’ll discuss
the circuits and FPGAs.

Columnist Jeff Bachiochi also delves into robotics as he analyzes
Paratech’s quantum tunneling composite (QTC) technology  (page 48). He
wanted to explore ways to improve the sensitivity, or rather a lack thereof,
of robots. Sensitivity and input feedback will become increasingly impor-
tant as robots become more integrated into fields such as manufacturing
and military applications. By adding QTC sensors to his Heathkit Hero, Jeff
was able to make the robot pick up an egg without crushing it.

Finally, we have an interesting article entitled “Three-Axis Stepper
Motor Driver,” written by the design team of Viraj Bhanage, Prajakta
Deshpande, and Praveen Deshpande (page 68). Their RC system, which
was built around Philips P89C51RD2 and Atmel AT89C2051 microcon-
trollers, improves component control. It was designed to aid laser techni-
cians who have to precisely control optical components.

I hope you enjoy reading these intriguing articles as much as I did. A
special thank you goes out to the Connecticut State Police for allowing us
to photograph their bomb disposal robot for the this month’s cover. One
last note to the robotics enthusiasts headed to Hartford this month: Good
luck in the Trinity College Fire-Fighting Home Robot Contest!
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NEW PRODUCT NEWS Edited by John Gorsky

A new reflective optical sensor capable of detecting
objects at operating distances of up to 40 mm is now avail-
able. The surface-mount TCND5000 reflective sensor,
which includes an IR emitter and PIN photodiode in a sin-
gle package, is well suited for use in object presence sen-
sors, touch sensors, and proximity sensors in a broad range

of consumer, industrial, and automotive applications.
With high sensitivity and an operating distance from 

2 mm to as great as 40 mm, the highly integrated
TCND5000 sensor offers designers a compact and reliable
solution for enhancing the performance of electronic sys-
tems such as cell phones, in which the device compen-
sates for the proximity of your ear and adjusts the volume
of the speakerphone function accordingly.

The sensor’s high-intensity IR emitter features an oper-
ating wavelength of 950 nm, while a 950-nm IR band-pass
filter eliminates interference from daylight. An optical
barrier between the emitter and detector reduces crosstalk
to very low levels.

The TCND5000 sensor is 6 mm × 3.76 mm × 3.9 mm
(h). The WEEE-compliant sensor is a restriction of haz-
ardous substances (RoHS) device. It meets JEDEC level 4
standards and are available in a lead-free, surface-mount-
style package. The sensor is designed for IR reflow solder-
ing with a peak temperature of 260°C; therefore, it’s suit-
able for lead-free solder processes. 

Pricing in 50,000-piece quantities starts at $75 per
100 pieces.

Vishay Intertechnology, Inc.
www.vishay.com

OPTICAL SENSOR OPERATES AT DISTANCES UP TO 40 mm

http://www.vishay.com
http://www.dynoninstruments.com
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NEW PRODUCT NEWS Edited by John Gorsky

Four new high pin-count, high-density members of the
PIC18Fxxxx family are now available. These devices
offer a cost-effective 96 and 128 KB of self-reprogramma-
ble, high-endurance flash memory with up to 10 MIPS
performance over a wide
operating voltage range (2
to 5.5 V). These features,
combined with nanoWatt
Technology power man-
agement and a rich set of
analog and digital periph-
erals, allow the microcon-
troller series to compete
with 16-bit devices in
high-end embedded appli-
cations while retaining
ease of use and helping
you to preserve your 8-bit
development tool and
software investments.

This family meets the
needs of engineers with 
8-bit code and develop-
ment tools. There’s a
growing need for micro-
controllers with increased

computational power and larger program memory sizes
because of the transition of code development method-
ologies from assembly to C language. The PIC18F8722 8-
bit microcontroller series addresses these performance

and memory needs by
providing linear access
(no pages) to a memory
space as large as 2 MB,
while offering complete
code and tool compatibil-
ity with smaller
Microchip microcon-
trollers. In addition, the
new microcontrollers
include two synchronous
serial ports (capable of
SPI or I2C) and two asyn-
chronous serial ports
(LIN-capable USARTs) for
expanded connectivity. 

Pricing starts at $6.81
in 10,000-piece quanti-
ties.

Microchip Technology Inc.
www.microchip.com

40-MHz PICs WITH SELF-REPROGRAMMABLE MEMORY

http://www.microchip.com
http://www.pcbpool.com


Problem 1—Is it possible to create a digital
all-pass filter that has a group delay that’s
a fraction of the sample period?

Problem 2—In digital signal-processing
applications, there is sometimes an effect
known as the Gibbs phenomenon, which
is a characteristic ringing associated with
sharp edges and transients. Is this a func-
tion of sampling, quantization, or filtering
in the system? Or is it a combination of
all three? Is this a problem?

CIRCUIT CELLAR®

What’s your EQ?—The answers are posted at 
www.circuitcellar.com/eq.htm

You may contact the quizmasters at eq@circuitcellar.com

Test  Your  EQ
Edited by David TweedCIRCUIT CELLAR 

Problem 3—If you could operate your
automobile on Mars, what would the brak-
ing distances be like relative to Earth?

Problem 4—What are the five built-in and
10 “transient” commands that come in a
standard CP/M 2.2 distribution? What’s
the difference between the two categories?

Contributed David Tweed
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the CMUcam isn’t very extensible
because almost all of the SX28’s
resources are required for the aforemen-
tioned image-processing task. A step up
from the CMUcam is the Cognachrome
system (www.newtonlabs.com), which
is capable of tracking multiple objects
of various colors at 60 frames per sec-
ond. This system, which costs several
thousand dollars, performs much of its
image processing in hardware to achieve
its impressive processing tasks.  

I had considered trying to develop a
small, real-time vision engine for several
years. This effort mostly involved back-
of-the-envelope calculations about the
kind of processor/logic needed to process
a pixel stream and the amount of
RAM needed to make it work. It seemed
like an interesting problem. The bottom
line was that I wanted to give my robots
the ability to see the world around
them. This article describes how I did it.

In terms of image processing, I was
interested in being able to track multi-
ple objects of different colors in real
time, defined as 30 frames per second,
which is about as fast as the human
eye can perceive a change. This would
allow my robots to map their world
according to specific color codings. I
also wanted to be able to take full-
color snapshots with the system in
order to evaluate its surroundings. 

In addition to the requirements of a

I‘ve always been amazed by how
well humans perceive and react to the
world around them in real time. I can
drive a car at 65 mph on the express-
way, following the white lane-separa-
tion stripes and the yellow border
stripes, without getting into an accident.
Throw me a ball, and I’ll catch it—or at
least get out of the way before it hits
me. Trying to figure out how to mimic
some of these capabilities in a man-made
system has driven my interest in robot-
ics ever since I was 6 years old. This is
in part the reason that I’ve found a life-
long hobby in robotics.

The eyes are arguably the most
complicated sensors attached to the
human body. Thus, artificial vision
systems tend to be extremely complex.
These systems typically require a con-
siderable amount of computing power to
acquire and process their environments
in real time. The end goal of most vision
systems is to determine specific infor-
mation about the environment: How
many different objects exist? Are
objects moving? What are the colors of
the objects? How far away are the
objects? The answers to these ques-
tions enable the appropriate post-pro-
cessing of the environment, as would
be required by a particular application.

Several existing systems can per-
form vision processing at different lev-
els of capability. For hobbyists, the
CMUcam is a small, low-cost system
capable of tracking one colored object
at 16.7 frames per second (www-
2.cs.cmu.edu/~cmucam/). It uses a
Ubicom SX28 microcontroller running
at 75 MHz to acquire and process
images through software. However,

generic image-processing engine, I
wanted the system to be inexpensive,
easy to build, and easily expandable so
I could add new features as needed. I
also wanted to be able to do the majori-
ty of the software development in a
high-level programming language such
as C. This would allow me to test algo-
rithms on different platforms before
moving to the target hardware. Finally, I
wanted to be able to program the system
in-circuit so that I could easily test new
ideas. And thus, the AVRcam was born.

VISION SYSTEM SYNOPSIS
A vision system is typically a sub-

system of a larger entity, thus taking
the burden of the computationally
intensive image-processing task off
the main controller. The purposes of a
vision system are to sample and
process images, and then provide high-
level post-processed image informa-
tion to the main controller. A generic
vision subsystem is shown in Figure 1.

The image-processing chain begins by
capturing the images of interest with an
image sensor. Typically, a CMOS or
CCD camera is used to capture an image
and convert it into a series of electrical
signals. Color cameras have tiny filters
over each sensor element. This allows
only a specific wavelength of light to
pass through to the sensor. Thus, an
array of sensor elements with red, green,
and blue filters results in a color image
being captured by the camera because all
colors can be created by combining
these three. These sampled pixel signals
are then output from the camera in
either digital or analog format.  

Next, a computing element is

FEATURE ARTICLE by John Orlando

AVRcam

Imager
Sensor

Computing
element

User
interface

Figure 1—A generic image-processing system must be
capable of sampling an image, processing the image,
and providing the processed results to the outside world.

The AVRcam is a low-cost image-processing engine. The system shows great promise for
robotics applications, as well as motion detection and object recognition.

A Low-Cost Embedded Vision System
Second Prize
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required to receive the sampled
pixel signals and to perform the
necessary processing. The hard-
ware required for this task
ranges from a small 8-bit micro-
controller to a full-blown PC.
The exact processing required
varies by application, and usually
performs tasks such as looking
for abrupt changes in sampled
pixels or calculating the average pixel
value across an entire image. 

The computing element also has
some throughput requirements because
it must be fast enough both to sample
the pixel stream and to perform the
needed processing. In some cases, it’s
useful for the computing element to
sample an entire frame of pixels from
the camera and store it in memory to
allow the entire image to be processed
at once after it’s captured. However,
the amount of memory required for
such a task can be large, adding addi-
tional hardware to the system.  

Finally, after an image is processed,
the resultant data needs to be output
so that some other computing entity
can make use of it. The post-processed
data typically contains the high-level
visual information extracted from the
scene. This user interface isn’t nor-
mally going to be an actual user, but
this abstraction is a good way to think
about the interface to the vision system.

AVRcam
The AVRcam uses the OmniVision

OV6620 CMOS color image sensor,
which provides a digital stream of
pixel data (see Photo 1). The sensor is
available already mounted to a circuit
board with supporting components
and a lens in the form of the C3088
evaluation board. The pixel data is pro-
vided in Bayer format, which means
that red, green, and blue pixels are inter-
leaved to generate a colorful image. 

The OV6620 has a native resolution
of 352 × 288 pixels. It can be config-
ured to a lower resolution of 176 ×
144 pixels. This sensor provides the
digitized pixel samples of each frame
at a rate of 30 frames per second
through two 8-bit data buses. The sen-
sor also provides various timing sig-
nals needed for synchronization, such
as a pixel clock (PCLK), a horizontal

reference signal to indicate a new line
is about to start (HREF), and a vertical
sync signal to indicate a new frame is
about to start (VSYNC).  

An Atmel ATmega8 microcontroller
processes the OV6620’s stream of pix-
els. It has a Harvard architecture and a
RISC instruction set, providing many
single clock-cycle instructions. The
ATmega8 also provides a rich set of
on-chip peripherals, such as 8- and
16-bit timers, external interrupts, hard-
ware UART, and plenty of general-pur-
pose I/O for sampling the data buses. 

The AVRcam’s user interface is pro-
vided through the on-chip hardware
UART, which offers a simple way for
external devices to communicate with
the AVRcam. A simple protocol
allows you to command and control
the system. All post-processed object
tracking information is provided
through this UART as well.

SIMPLE HARDWARE
The AVRcam hardware’s sim-

plicity contributes to the sys-
tem’s low cost and low-power
consumption (see Figure 2). The
upper nibble of each pixel data
bus on the OV6620 is connected
directly to the lower nibble of
the ATmega8’s port B and port C,
which are both configured as

inputs. Note that the lower nibble of
each pixel data bus isn’t connected
to the ATmega8. Early experiments
showed that the system would be capa-
ble of differentiating and tracking color
blobs effectively with only 4 bits of
color data per channel. This reduces the
range of each of the three color chan-
nels (red, green, and blue) from 256 pos-
sible values (28) down to 16 possible
values (24). Thus, the system can rep-
resent 1,024 different colors (24 × 3). 

The vertical sync (VSYNC) signal
from the OV6620 is connected to the
ATmega8’s external interrupt 1, which
allows the microcontroller to be inter-
rupted every time a new frame is
about to begin. The horizontal refer-
ence (HREF) signal, which is connect-
ed to external interrupt 2, triggers
each time a new line of pixel data is
about to begin. Finally, the pixel clock
(PCLK) signal from the OV6620 is

Photo 1—The AVRcam measures 2.4″ × 1.9″. The OV6620 CMOS color
image sensor provides a digital stream of pixel data.

Figure 2—Building the low-cost AVRcam is fairly simple. An Atmel ATmega8 microcontroller drives the system.
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directly connected to the
ATmega8’s 16-bit Timer1. The
timer is configured to count exter-
nal rising-edge transitions with an
interrupt on overflow. It’s preloaded
to overflow after an entire line of
pixel data has been sampled.

Although the OV6620 provides a
multitude of signals, there’s still a
considerable amount of data flowing
from the OV6620 to the ATmega8
that needs to be processed. How
much data? Approximately 3 mil-
lion bits per second!

That’s a lot of data! It’s actually too
much data, so a couple of simplifica-
tions are made.  

For starters, there are twice as many
green pixels as there are red and blue,
and only one green is needed. So, every
other green pixel is ignored. In addition,
when the system is tracking colors,
every other two-pixel block is skipped,
reducing the horizontal resolution to
88 pixels per line. This leaves the actual
amount of data to be processed a little
over 1 million bits per second. How can
this much data be processed? Figures 3
and 4 demonstrate the main reasons.  

Another hardware trick is to use the
17.7-MHz crystal source from the
OV6620 to drive the clock input of
the ATmega8. The microcontroller is
only rated to run up to 16 MHz, so this
is clearly exceeding its limitations,
but only slightly. The benefit here is
huge: there’s inherent synchronization
between the pixel data flowing from the
image sensor and the sampling of pixel
data on the ATmega8. Thus, after syn-
chronization at the beginning of each
image line, it isn’t necessary to sam-
ple PCLK to determine when valid
data exists on the data buses. Ensuring
the sampling of the pixel buses at the
appropriate time (or, in this case, after
the appropriate number of executed
instructions) is the only requirement.  

TWO’S A CROWD
There is only one problem with the

aforementioned scenario. The 17.7-MHz

4 176

30

 bits
pixel

  
 pixels
line

  

144 lines
frame

  
 frames

seecond

× ×

×

crystal signal isn’t output by the
OV6620 by default; however, setting one
of the registers in the OV6620 through
its I2C interface can enable it. But the
ATmega8 can’t set this register in the
camera because it has no clock source to
execute instructions. Ah, yes, the old
chicken before the egg problem. The
best solution I could come up with was
to add the smallest possible microcon-
troller to the board (to take care of set-
ting up the appropriate register on the
OV6620 to output its clock source).   

Enter the AVR ATtiny12. This
small 8-pin microcontroller had
everything I needed: an inter-
nal 1-MHz oscillator and up
to six I/O lines. Two of the
I/O lines were configured to
bit-bang an I2C interface to
configure the appropriate reg-
ister on the OV6620 to output
its clock signal. I used anoth-
er I/O line to hold the
ATmega8 in Reset mode until
the clock signal was set up
and stable. This solution
worked well, and added only
a slight delay at start-up.

There isn’t much left to the
hardware. The system
includes a standard MAX232
level-conversion chip, which
supports RS-232-level serial
communications through the
ATmega8’s UART, in addi-
tion to TTL-level signaling.
Finally, the standard AVR
STK200/300 10-pin ISP header
is integrated in with the sys-
tem to allow for the complete
reprogramming of the
ATmega8’s firmware.

AVRcam SOFTWARE
The software behind the AVRcam

ties everything together and
makes the system work. Figure 3,
a class diagram of the AVRcam
firmware, highlights the main mod-
ules in the system. As you can see,
a simple executive sits at the center
of the system. It’s used to dispatch
events to the classes as needed. 

There are actually two types of
events in the system: regular events
and fast events (denoted in the code
by EV_xxx or FEV_xxx). Regular
events are low-priority events

placed in an event FIFO. Fast events are
placed in an event bit mask because the
time to insert and remove them from
a FIFO is too long. Fast events are used
for the time-critical events, like a line of
pixels ending. Regular events are used
for less time-sensitive events, such as
when a serial byte of data is received.

The user-interface manager is
responsible for parsing and processing
incoming serial commands from the
UART interface. It also generates the
appropriate responses. This includes
publishing events after a command is
received. The camera configuration

User interface
manager

Color 
map

UART
Interface

UART
rx FIF0

UART
tx FIF0

Executive

Camera
configuration

manager

I2C
Interface

I2C
and 
FIF0

Camera
interface

Frame
manager

Tracked
object
table

Current
line buffer

Previous
line buffer

Class Major data structureKey:

Figure 3—Familiarize yourself with the AVRcam software architec-
ture. Here are the major classes with their data structures.

Sleep until VSYNC interrupts
and wakes the system up.

Set up the pointers to the currentLineBuffer,
set up the intial pixel-run, point the Y and Z
index registers to the color map, and enable the 
HREF interrupt and sleep until HREF wakes
the system up.

Read the UV bus (red pixel), and use it to index 
into the red color map to extract redLookup.

Read the Y bus (green pixel), and use it to index 
into the green color map to extract greenLookup

Read the UV bus (blue pixel), and use it to index 
into the blue color map to extract blueLookup.

Color = redLookup & greenLookup &
blueLookup

Has the pixel count
overflow occured?

Color == LastColor?

Y

Y

N

Close out last
run length

Exit

N

Add new entry to run-length line

Set LastColor = Color

Waste cycles until the pixel block ends

Must
complete

in 16 clock
cycles

Must
complete

in 16 clock
cycles

Figure 4—The heart of the low-level camera interface samples pix-
els, maps them to actual colors, and run-length ecodes the image
line, all in 16 clock cycles.
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manager is responsible for configuring
the internal registers in the OV6620. 

The frame manager provides most
of the line-level processing tasks, such
as finding connected regions between
two contiguous lines of pixels. It also
provides frame-level processing such
as parsing through the tracked-object
table to remove objects that are too
small to be considered tracked objects.
Finally, the camera interface provides
the low-level interface to the OV6620
through the pixel data buses and the
various synchronization signals.

The vast majority of the AVRcam
firmware was written in the C program-
ming language, using the open-source
AVR-GCC C compiler that’s part of the
WinAVR distribution. The ANSI-compli-
ant C compiler does an excellent job at
generating code. And, best of all, it’s free,
which is one of the reasons why it’s so
popular. In keeping with the spirit of
open-source code, all of the source code
developed for the AVRcam project was
released as open source under the GNU
General Public License (GPL) in the hope
that other developers would improve and
enhance the system. 

The AVRcam definitely has space
left on the ATmega8 for new features.
Approximately 4 KB of the 8-KB on-
chip flash program memory, 700 bytes
of the 1-KB on-chip RAM, and 48 bytes
of the 512 bytes of EEPROM are used by
the firmware. You may download the
code from the Circuit Cellar ftp site.
Although most of the code was written
in C language, the two functions at the
heart of the system were coded in
assembly language to ensure that they
met some extremely strict timing
requirements. One of these functions is
used for color blob tracking. The other
is for image dumping.

The color blob tracking function is
required to do a lot in a short amount
of time (see Figure 4). Essentially, it
needs to sample the red, green, and
blue pixels, map that RGB combina-
tion into an actual color of interest in
the color map (or no color if it doesn’t
match one), and run-length encode the
line to reduce the amount of data
required to process the image. All of this
must take place in 16 clock cycles!
Needless to say, there isn’t a cycle to
spare in the routine. Getting the routine

exactly right took me several weeks of
plotting, which included a change in the
hardware to remap which pixel data bus
was connected to which I/O port on the
ATmega8. The complete source code
for this function is shown in Listing 1
(page 16).

This routine uses a novel algorithm
for mapping individual color channels
to a particular color in the color
map.[1] Typical implementations use a
large look-up table in which the indi-
vidual channels form an index into a

color table to extract the actual color
represented. If this solution were used, a
look-up table containing 212 entries, or
4 KB, would be required. Considering
the ATmega8 has only 1 KB of RAM,
this solution isn’t feasible. The algorithm
I used required only 48 bytes of pre-
cious RAM to provide a map that deter-
mined if a combination of red, green,
and blue map into a trackable color.

SEEING IS BELIEVING
In addition to the AVRcam

http://www.cadsoftusa.com
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the AVRcam. It displays the captured
image in both a Bayer format and a
bilinear-interpolated version in which it
calculates a 12-bit color value for each
pixel in the image. Each image dump
takes about 4 s to transmit the full
image back to the PC at a data rate of
115.2 kbps. This image then can be used
to better understand how the AVRcam
views the surrounding environment.  

A dumped image also can be used to
configure the color map on the
AVRcam. You can use the color map
to set the bounds of the eight colors
that the AVRcam can track. In addi-

firmware, my friend Brent Taylor
developed a PC application called
AVRcamVIEW to provide a cross-plat-
form calibration and test environment
for the AVRcam. The application,
which makes the system accessible to
anyone with a PC, was written in
Java. It can be executed on any plat-
form with the appropriate Java run-
time engine. (Windows, Linux, and
Mac OSX are currently supported.)
Note that it interfaces to the AVRcam
through the RS-232 port on the PC.

AVRcamVIEW allows you to take
full-resolution color snapshots with

Listing 1—The core function is for sampling pixels, mapping to colors, and run-length encoding the line. The
routine has strict timing requirements regarding the number of cycles it takes to execute.

*******************************************************************
;Track frame handler 
*******************************************************************
_trackFrame:
sleep  ; ...And we wait for HREF to wake us up
;Returning from the interrupt/sleep wakeup will consume 14 clock
;cycles (seven to wake up from idle sleep, three to vector, and four
;to return)
;Disable the HREF interrupt
in tmp1, _SFR_IO_ADDR(GICR)
andi tmp1, HREF_INTERRUPT_DISABLE_MASK
out _SFR_IO_ADDR(GICR), tmp1
;A couple of NOPs are needed here to sync up the pixel data determined
;empirically by trial and error.
nop
nop
*******************************************************************
;Acquire pixel block (R-G-B triplet)
*******************************************************************
_acquirePixelBlock: ;Clock Cycle Count
in   ZL,RB_PORT     ;sample the red value (PINB) (1)
in   YL,G_PORT      ;sample the green value (PINC) (1)
andi YL,0x0F        ;clear the high nibble (1)
ldd  color,Z+RED_MEM_OFFSET ;lookup red membership (2)
in   ZL,RB_PORT     ;sample the blue value (PINB) (1)
ldd  greenData,Y+GREEN_MEM_OFFSET ;green membership(2)
ldd  blueData,Z+BLUE_MEM_OFFSET   ;blue membership (2)
and  color,greenData ;mask memberships together (1)
and  color,blueData  ;to produce the final color (1)
;If some interrupt routine came in and set our T flag in SREG, then we
;need to hop out and blow away this frame’s data (common cleanup).
brts _cleanUpTrackingLine                  (not set…1)
cp color,lastColor ; check if the run continues (1)
breq  _acquirePixelBlock  ; (it does…2)

; ___________
; 16 clock cycles
; (16 clock cycles = 1 pixelBlock time)
;Toggle the debug line to indicate a color change
sbi  _SFR_IO_ADDR(PORTD),PD6
nop
cbi  _SFR_IO_ADDR(PORTD),PD6
mov  tmp2,pixelRunStart ;Get the count value of the current pixel run

;Get the current TCNT1 value, reload the pixel RunStart for the next
;run, and calculate pixel run
in   pixelCount,_SFR_IO_ADDR(TCNT1L) 
mov  pixelRunStart,pixelCount
sub  pixelCount,tmp2
st   X+,lastColor    ;Record the color run in the current
st   X+,pixelCount   ;Line buffer with its length
mov  lastColor,color ;Set lastColor so you can figure out when 

;it changes.
Nop ;Waste one more cycle for a total of 16
rjmp _acquirePixelBlock

http://www.keil.com
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tion, you can tweak the map to allow
for more variation in a particular color
channel. After it’s downloaded to the
AVRcam, it will use the new color map
the next time color tracking is enabled. 

When tracking is enabled, a series of
tracking packets containing the number
of currently tracked objects, the colors
of each tracked object, and the bounding
box coordinates of each tracked object
are sent via the user interface. Up to
eight objects can be tracked simultane-
ously. The AVRcamVIEW application
allows you to see the tracking results
in real time as objects are being tracked. 

The application also provides a
time-stamped log of all the packets
from the AVRcam. You can save the
log as a text file or XML file specific to
the AVRcam protocol. This will enable
you to analyze the tracking packets at
a later time. Photo 2 is a screen shot of
the AVRcamVIEW application track-
ing multiple objects simultaneously.

ChiBots TEST
After I had the AVRcam working in

various test environments, it was
time to give it a real-world test. The
Chicago Area Robotics Group
(www.chibots.org) holds a robot contest
twice a year. Each ChiBots contest con-
sists of several different events, includ-
ing basic and advanced line following,
mini sumo wrestling, solar roller, and
maze solving. I had entered my EyeBo
robot (now in version 3) in the line-

following contests in the past, but now
it was time to strap the AVRcam to
my robot and see how it would fare
against the competition in the ChiBots
2004 competition (see Photo 3). 

The line-following contests require
each robot to follow a white line on a
black background. Each robot must
complete three laps around the
course. The robot that completes the
laps the fastest wins the contest.
Typical entries use infrared sensors
facing straight down to determine if
the robot is straying off the line and
to perform the needed adjustment. I
attached my AVRcam to the EyeBo-3
so that it could see approximately 2′
ahead and track the line visually. The
color map was set to track the color
white, thus providing bounding box
information about the line.  

In practice, however, the white line
appeared as one tracked object without
enough contour information to describe
the orientation of the line ahead. I made
a simple, one-line firmware modifica-
tion to the AVRcam to force the system
to start tracking a new object after the
currently tracked object reached a verti-
cal height of 17 pixels. This resulted
in the AVRcam tracking eight white
bounding boxes that followed the con-
tour of the tracked line (see Photo 2).  

I arrived early at the ChiBots con-
test site so I could take snapshots of
the course with the AVRcam. This
helped me determine how white the

line appeared to the system. The
course seemed much more difficult
than previous ones, so I was excited to
set the EyeBo-3 free to see how it
would hold up (see Photo 4).  

When it was my turn to run, I nerv-
ously powered up my robot. It immedi-
ately locked on the line and started fol-
lowing it. When it approached the zigza-
ging section (normally, the most difficult
portion of the course), it zipped right
through it without skipping a beat. The
junctions proved to be a challenge
because they weren’t all 90° angles. The
EyeBo-3 took a wrong turn once or
twice, as did all of the other robots. 

My EyeBo-3 ended up winning sec-
ond place in the advanced line-follow-
ing contest. The AVRcam worked exact-
ly as I had expected. It allowed the robot
to see the course and make decisions
based on the visual information. 

Now all that’s left is to figure out how
to use the tracking information to better
follow the line ahead. I guess that’ll have
to wait for EyeBo-4 and the next contest.

A LONG, STRANGE JOURNEY
The AVRcam is a great project. It

allowed me to have a crack at build-
ing a low-cost, embedded vision
engine that enables my robots to see
the world around them. 

The system has a lot of potential.
I’m thinking about including motion
detection and object recognition.
Because of the open-source nature of the
project, anyone can experiment with
the code and add features as needed.  

I’m thinking about adding a generic
analog video input to allow for an
NTSC or PAL video signal to be used
as the image source. This would allow

Photo 3—The EyeBo-3, with the AVRcam, was my
entry in the ChiBots 2004 line-following contest.

Photo 2—Take a look at the real-time tracking results from the AVRcam. It’s tracking a white line on a black back-
ground, which has been segmented into eight different tracked objects.
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like to thank my mom, Anne Orlando,
for teaching me the meaning of hard
work and perseverance. Her example
has provided me with a foundation
like none other. Finally, I’d like to
thank my friend Brent Taylor for
developing the AVRcamVIEW applica-
tion. It turned out great!

John Orlando received his B.S.E.E. from
the Rose-Hulman Institute of
Technology in 1998. He is currently
finishing his M.S. in computer science
at the Illinois Institute of Technology.
John is a software engineer for the
Applied Technology research group at
Motorola. He also owns JROBOT
(www.jrobot.net), which specializes in
various robotic endeavors. He is an
active member of the Chicago Area
Robotics Group. You can reach John
at john@jrobot.net.
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the system to work with any of the
small video cameras that are abundant
on the market today. But such a project
may require a step up from the good ol’
AVR. I guess I’ll have to wait and see. I
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Lindsay for putting up with my robotics
addiction. She knew how important
this project was to me and gave me the
time I needed to make it work. I’d also

Photo 4—Take a look at the advanced line-following
course for the ChiBots November 2004 competition.
Looks like fun, doesn’t it?
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article, you’ll be able to create your
own simple USB data acquisition
device. Most importantly, though,
you’ll know how to develop with an
ARM-based microcontroller, how to use
a USB-to-UART bridge, and how to
make a PC GUI to tie it all together.

SYSTEM OVERVIEW
I usually design my own boards, but

for this project I used a couple of evalu-
ation boards to implement my minimal
USB data acquisition system. The boards
are readily available, so a hardware design
isn’t required to get up and running.

The system is comprised of two
boards, an analog temperature sensor,
and a PC running the GUI (see Figure 1).
The Keil MCB2130 evaluation board
contains the new ARM-based LPC2138
microcontroller (see Photo 1). The
MCU reads the temperature sensor’s
analog output voltage via its ADC and
sends the reading via its UART. For
this particular application, I used the
board’s serial port circuitry (RS-232
transceiver and connector), expansion
connector (for hooking in the tempera-
ture sensor), and power input connec-

Just ask any of my friends, and they’ll
tell you I’m definitely an embedded
system nut. I love trying out the latest
microcontrollers and chips that can
breathe new life into my designs. A
couple of my current favorites are
Philips ARM-based microcontrollers
and USB-to-UART bridges. I incorpo-
rated both of these types of devices
into my last few designs and I’ve been
extremely impressed with the results.

Another recent addition to my bag
of tricks has been on the front end of
my designs. Adding simple PC graphi-
cal user interfaces (GUI) that can com-
municate with my embedded designs
has put the finishing touches on them.
By adding a nice PC GUI that can
communicate with the embedded sys-
tem over a serial port, you can per-
form things like system setup, real-
time diagnostics, and tests. Besides
these benefits, your end user or cus-
tomer will have a more professional,
user-friendly interface to work with. 

After thinking about ways to combine
all of this in a single project, I decided
to build a simple USB data acquisition
project. The system collects tempera-
ture data from an analog
temperature sensor and
graphs it via a PC GUI.
Everyone wants to collect
data of some sort (tempera-
ture in my case). And what
better way than over USB
via an ARM-based micro-
controller? Of course, tak-
ing the data and doing
something with it is also
an important part of the
process, so I’ll show you a
PC GUI. By the end of the

tion. One of the board’s neat features is
that it’s powered from an on-board USB
connector. This means you don’t need
a clunky wall wart to power the sys-
tem. You can just run another USB
line to it for power. This is a definite
advantage to using USB, as long as your
board doesn’t draw more power than
the USB connection can handle.

The Silicon Labs CP2101 evaluation
board contains the CP2101 USB-to-
UART bridge chip and an RS-232 trans-
ceiver. This allows you to plug in an RS-
232 communicating device on one side
and a USB communicating device on the
other. The board and its virtual COM
port software drivers form the link

between the MCB2130
board’s RS-232 port and
the PC’s USB port.

The National
Semiconductor LM60 is a
simple three-pin analog
Celsius temperature sen-
sor. It’s wired into the
expansion connector on
the MCB2130 board,
which connects to the
LPC2138’s ADC to read
the analog voltage from
the sensor. Its output is

FEATURE ARTICLE by Bruce M. Pride

Simple USB Data Acquisition
Simple data acquisition is only a project away. Bruce shows you how to build a simple data
acquisition device around an LPC2138.The system features a simple GUI that allows you to
view graphed data instead of the streaming serial data in a terminal emulator session.

MCB2130
Board

P3

P2 LPC2138

3.3 V
PO-27
GND

3.3 V
vOUT

GND

LM60 Temperature sensor

J3

CP2101

J1

CP2101-EB
Board

USB

RS-232

PC with VB
GUI

USB

Figure 1—Where does the power come from? The USB is used for more than just commu-
nicating with the PC; it’s also used to power both boards, which enables you to remove
those ugly black wall warts. The schematics are posted on the Circuit Cellar ftp site.

Photo 1—I used a Keil ULINK JTAG debugger to in-cir-
cuit debug and program the LPC2138 microcontroller. I
soldered an LM60 temperature sensor to the prototyp-
ing area of the MCB2130 board.
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linearly proportional to temperature
(6.25 mV/°C), and it has a DC offset of
424 mV to accommodate negative tem-
peratures. This makes it a fairly easy
sensor to deal with in software after
it’s read via the LPC2138’s ADC.

The PC contains the Visual Basic
GUI. It reads the raw temperature
data sampled by the ADC over the vir-
tual USB COM port, converts it to
temperature, and displays and charts
the results over time. The GUI puts the
finishing touches on the design, making
it a more user-friendly and professional-
looking system. Imagine how much eas-
ier it will be to look at graphed data
instead of the streaming serial data in
a terminal emulator session.

LPC2138 MCU
The LPC2138 is one of Philips’s

newest ARM-based microcontrollers.
Having previously designed with the

LPC2106, the LPC2138 piqued my inter-
est given its vast assortment of added
peripherals. The addition of ADCs,
DACs converters, an external memory
controller, and edge-sensitive interrupts
made it the perfect migration part for
my LPC2106 designs (see Figure 2). 

The small LPC2138 contains every-
thing but the kitchen sink. In addition
to a ton of peripherals and general-pur-
pose I/O, it’s loaded with 512 KB of flash
memory (128 bits wide for high speed)
and 32 KB of RAM—definitely not the
typical memory sizes I’m used to seeing
in plain-vanilla 8-bit microcontrollers.
Another remarkable feature is the chip’s
size. The 64-pin QFP part measures in
at 10 mm × 10 mm, making it perfect
for tightly spaced applications. 

And then, of course, there’s the one
thing that makes this microcontroller
shine: an ARM 32-bit ARM7TDMI-S
core. This 32-bit ARM core yields

54 MIPS when running at 60 MHz,
which is easily achieved by utilizing
the LPC2138’s on-board PLL. So, not
only do you get a vast number of
peripherals and tons of memory, you
get all the benefits of using an ARM
core! What are the benefits, you ask?
An obvious one is its high perform-
ance and low-power consumption
combination. Others are its vast soft-
ware tool support, real-time debug-
ging, and code density options
(Thumb) for high-volume applica-
tions with memory restrictions. 

The ARM core definitely has
found its way into numerous appli-
cations via microprocessors, ASICs,
SoCs, and FPGAs. And now, with
its growing use in cost-effective
microcontrollers, I may think twice
before choosing a performance-lim-
ited 8-bit microcontroller for my
next application. Either way, if
you’re into embedded design, there’s
no doubt that having ARM experi-
ence under your belt would be bene-
ficial to your career. ARM is an inter-
esting and detailed topic in and of
itself. Refer to the Resources section
of this article for more information. 

I hope I’ve piqued your interest in
the LPC2138. Now let’s examine
how the LPC2138 fits into the USB
ARM data acquisition (DAQ) design. 

DAQ VIA ARM
In this simple USB ARM DAQ

application, the LPC2138 must read
analog temperature sensor voltage at a
timed interval. The data must be for-
matted and then sent to the MCB2130
board’s serial port. Therefore, you
must use the LPC2138’s timer periph-
eral for the interval timer, its A/D
peripheral for reading the analog tem-
perature sensor voltage, and its UART
peripheral for serial communication. 

The LPC2138’s timer is a 32-bit
timer/counter with a programmable
32-bit prescaler. It’s an extremely flex-
ible timer given its capture channels,
match registers, external outputs, and
interrupt capabilities. I preloaded a
timer match register for this applica-
tion. The LPC2138 generates a timer
interrupt when the timer counter
matches this value. Its A/D converter
is a 10-bit successive approximation
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Figure 2—A 32-bit ARM7 core lies at the heart of the LPC2138. Given the chip’s high-performance core and numer-
ous peripherals, it can cover a vast number of applications.
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A/D converter. A 10-bit reading of the
analog temperature sensor provides
more than enough resolution for the
USB ARM DAQ example. 

The LPC2138’s UART is your typical
UART with data rate generation, but it
also includes 16-byte receive and trans-
mit FIFOs for added flexibility. Given
that temperature data is sent out every
few minutes, the data rate is set to
9,600 bps. Now that you’re familiar
with the LPC2138’s peripherals, let’s
move on to the embedded software.

EMBEDDED SOFTWARE
Before writing actual LPC2138

application code, the device needs to be
set up after it’s powered on. Fortunately,
most IDEs will either set this up for you
or provide some kind of boot assembly
code to handle the task. For this par-
ticular project, I used the evaluation
version (16-KB code size limitation) of
the Keil µVision3 environment. I was
pleasantly surprised with its boot-up
implementation. The graphical config-
uration wizard allows you to modify
the proper setup registers for your appli-
cation. This made the boot and start-
up process transparent and allowed
me to focus on the application itself.  

Let’s look at the LPC2138’s PLL setup
as an example. To change the PLL mul-
tiplier value on the LPC2138, you must
perform a few extra steps after writing
the new multiplier and control values to
the PLLCFG and PLLCON registers.
These steps entail writing 0xAA and
then 0x55 to the PLL feed register
(PLLFEED). This action loads the PLL
control and configuration information
from the PLLCON and PLLCFG regis-
ters into the shadow registers that actu-
ally affect PLL operation. It’s basically
a good way to prevent accidental chang-
ing of the PLL value. This code imple-
mentation is taken care of with the pro-
vided boot code in µVision3. Punching
in the desired multiplier in the GUI
automatically updates the boot code. I
learned this the hard way in a different
IDE when designing with the LPC2106.
The point is that using the graphical
configuration tool is an easy and fast
way to set up the microcontroller so you
can start working on your application.  

Now that the boot up code is taken
care of, let’s concentrate on the main

application. I chose C language over
the native ARM assembly language to
write the driver and application code.
So, the next step involved writing a C
code driver for a timer interrupt, an
A/D scan, and the UART. Fortunately,
the example C code that came with the
µVision3 IDE had examples for all the
peripherals. I modified and used them.  

The code for each peripheral was
extremely straightforward and easy to
understand and integrate. Creating the
application code, including the C code
for each peripheral, resulted in the
code shown in Listing 1. In this code a
timer match interrupt occurs from the
interval timer, and then the AIN-1
A/D channel is read to sample the
analog output voltage from the LM60
temperature sensor. The analog tem-
perature data is then masked because
only 10 bits are valid because of the
10-bit A/D resolution. Now the read-
ing is ready to be sent out the serial
port via the UART through the
printf statement. Listing 1 is all the
code you need to read the LM60 tem-

perature sensor every few minutes
and send the raw ASCII-converted
A/D result out of the serial port.

You must download code to the
board and begin debugging at this
point. I used the ULINK JTAG debug-
ger, which integrates nicely with the
Keil µVision3 IDE. The debugger con-
nects to the MCB2130 debug connector
and communicates directly with the
ARM7 core inside the LPC2138 via its
EmbeddedICE logic (see Photo 1). 

The typical debug options are avail-
able in µVision3. Single stepping,
watch windows, break points, and
memory snooping are all possible
with the LPC2138. An interesting
item in the µVision3 IDE is the ability
to interact with LPC2138 peripherals
while the program is idle. A separate
GUI can be opened for the various
LPC2138 peripherals that allows for
interaction and control of them. Things
like manually scanning the LPC2138’s
A/D converter and flipping of one
of its GPIO bits are possible. A cou-
ple of the windows are shown in

Listing 1—The C function from the LPC2138 takes care of reading the LM60 temperature sensor via its on-
board A/D converter. The data is then sent out the serial port to the PC running the Visual Basic application.

void tc0 (void) __irq //Timer counter 0 interrupt executes 
//every second at 60-MHz CPU clock 
//for testing purposes

{
static char LedFlag = 0;
unsigned int AtoDValue;

if (LedFlag == 0)  //Simply toggle the on-board 
//LED for debug

{
IOSET1 =   0x00010000;
LedFlag = 1;
}

else
{
IOCLR1 =   0x00010000;
LedFlag = 0;
}

AD0CR |= 0x01200000; //Start an A/D conversion 
do 

{
AtoDValue = AD0DR; //Read A/D data register 
} 

while ((AtoDValue & 0x80000000) == 0); //Wait for end of A/D 
//conversion 

AD0CR &= ~0x01000000; //Stop A/D conversion 
AtoDValue = (AtoDValue >> 6) & 0x03FF; //Extract AIN1 10-bit A/D value 
printf (“A%d\n”, AtoDValue); //Output A/D conversion result to 

//serial port 

T0IR        = 1;        //Clear interrupt flag        
VICVectAddr = 0;          //Acknowledge ARM interrupt 
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Photo 2. This is a good way to
get to know some of the periph-
erals and their associated regis-
ters on the LPC2138. Given all
these features, I quickly down-
loaded code to the board, ran it,
and debugged it.

CROSSING THE BRIDGE
After the code is running on the

LPC2138, the raw temperature
data exits the MCB2130 board’s
serial port and meets the USB-to-
UART bridge board, which con-
tains the CP2101 USB-to-UART
bridge controller and an RS-232
transceiver. The board’s power
also comes from the USB port,
once again eliminating the need
for an ugly wall wart power sup-
ply. I used the board to convert
RS-232 serial data from the MCB2130
board to compatible USB data for the PC. 

The CP2101 is highly integrated and
requires no components other than a
USB connector. It includes a USB 2.0
full-speed function controller, USB trans-
ceiver, oscillator, EEPROM, and asyn-
chronous serial data bus (UART) with
full modem control signals. The device’s
packaging is an unbelievably compact
5 mm × 5 mm MLP-28. I’ve soldered
many surface-mount components under
the microscope on prototype boards, but
this device was by far the trickiest, espe-
cially because it doesn’t have external
leads! (If you plan on soldering by
hand, make your PCB footprint pads a
bit longer to allow for better solder
flow with a fine-tipped iron.) 

Looking toward the software end of
things, the nice part about using this
device is that special software isn’t
needed for the RS-232-to-USB conver-
sion. This allows USB communication
to become totally transparent for the
LPC2138 and its UART. Just connect
the LPC2138 UART pins to the CP2101,
and it will take care of the rest. 

You’ve probably guessed that there
must be some software intervention for
CP2101 data to get to the PC over USB.
Yes, there is. It’s via a virtual COM port
driver installed on the PC side. These
drivers make your USB port seem like
another COM port on your PC’s operat-
ing system (thus the virtual COM port
name). Silicon Labs provides the virtual

COM port drivers with its development
board for Windows, MAC, and Linux.

The interesting thing about the drivers
is that existing PC applications, like ter-
minal emulators, will work with them.
You can have a terminal session over
USB or use existing applications that use
COM ports to talk over USB. The
Visual Basic PC application does this.

DAQ GUI
The user interface is the final piece of

the USB ARM DAQ system. It’s the fin-
ishing touch that gives the system a pro-
fessional-looking way to view the tem-
perature data. The serial data feeding the
GUI comes from the USB port and origi-
nates from the CP2101 bridge board. The
PC application thinks the data is coming
over a standard COM port. In reality,
however, it gets data from the USB port
via the Silicon Labs virtual COM port
driver. This gives you the benefit of
using the USB port for communication
without all the complexity because it
looks like just another serial COM port.

The GUI was developed in Visual
Basic. If you’re familiar with BASIC
programming languages like Qbasic,
you’ll probably find the migration to
Visual Basic to be fairly straightforward.
Writing code for various actions or
events, like receiving serial characters or
a button click, is extremely simple. For
this application, the goal was to take
serial data from the virtual COM port,
convert it from a raw temperature

A/D value to a real temperature
(Celsius), and then graph and
display it. Visual Basic provided
the control components for the
graphing and the serial data
communications, and I wrote the
temperature conversion code.  

The serial data is received over
the COM port. It’s provided by a
control component called
MSComm Control in Visual
Basic. By simply adding this com-
ponent to the project, you can set
up and open and close serial ports
(data rate, etc.). It also allows you
to respond to a variety of events,
like receiving characters.

The COM port speed is preset
to 9,600 bps to match the speed
from the MCB2130 board. The
receive Comm event will pro-

vide a receive character event and
allow viewing and reacting to incoming
serial characters from the virtual
COM port. After the raw temperature
A/D data has been received, it can be
converted to real temperature data for
graphing. This conversion involves
multiplying the raw temperature data,
which is the LPC2138’s A/D sampled
voltage, by the A/D reference (3.3 V)
divided by 10 bits (210 = 1,024). Following
this, the LM60 sensor’s 424-mV offset
must be subtracted. The value left
must be divided by 6.25 (6.25 mV/°C)
to get the actual temperature in
degrees Celsius, and then converted to
an integer. 

After the temperature conversion is
finished, MSChart Control provides
the graphing. By adding this compo-
nent to the project, a variety of charts
and display options are provided for
graphing data. Little set-up code is
needed because the chart is set up
beforehand via the chart properties
windows. This is definitely an advan-
tage. You can modify the component
controls via a categorized list of options
without having to write code to do it. 

Combing all the control component
interface and application code results
in the code in Listing 2 (page 26),
which is all you need to accept a seri-
al string from the virtual COM port
via USB, convert it to degrees Celsius,
and graph and display it. Graphing the
data takes only one real line of code! 

Photo 2—The debug peripheral windows in the Keil debugger were use-
ful when I was experimenting with the ADC and GPIO port bits. They
enabled me to scan the ADC for the analog temperature value prior to
connecting up the GUI and to alter the state of the GPIO bits at will. This
eliminated the need for writing special test code.
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This is a powerful design tool for
GUIs. The end result is shown in
Photo 3. The temperature data is
graphed nicely (the red line), and the
current temperature updates every time
a serial string is received over the virtual
COM port. This puts the finishing touch
on the USB ARM DAQ system and
makes for a professional-looking demo.

SWITCHING TO ARM?
I hope you now have a better under-

standing of ARM-based microcon-
trollers, USB-to-UART bridges, and
the process of implementing simple
GUIs. You can combine all three to
make a simple data acquisition device.  

The new ARM microcontrollers like
the LPC2138 are opening doors for
designers, many of whom are now
questioning the use of the venerable
8-bit microcontroller for some applica-
tions. When you account for the ARM7
core’s processing power, low-power
consumption, vast number of periph-
erals, memory size, tool/debug sup-
port, and incredibly small physical
footprint, switching to a 32-bit ARM
microcontroller may be a reasonable
choice.

The USB-to-UART bridges like the
CP2101 make it simple to update UART
peripherals on microcontrollers (or lega-
cy RS-232 devices) and enable USB
connectivity. Embedded code isn’t
required to make this transition, so the
update process is fairly seamless. The
virtual COM port drivers provided by
companies like Silicon Labs also allow
PC applications, such as the Visual Basic
GUI I created, to send and receive USB

data without additional code overhead.
The Visual Basic-based GUI allows

for a professional-looking GUI in an
easy-to-use design environment. The
built-in component controls put the
complex pieces in a simple format
that you can easily integrate into your
application. The language should be
familiar to anyone with BASIC lan-
guage experience. Explore these topics
in greater detail before you begin your
project. Good luck! I

Listing 2—The Visual Basic code takes the serial string from the LPC2138, converts it, and then graphs it to the chart.

Case A_COMMAND ‘Temperature sensor A reading
CommandInProcess = False   ‘End of current command              
If (CurrentStringSize >= 1) Then ‘Get any characters?
ArrayCount = 1          ‘Start of data

For i = ArrayCount To CurrentStringSize
TemperatureString = TemperatureString & TemperatureSerialData(i)

‘Make the string
Next i
Led1.LED_Colour = vbRed ‘Blink the virtual LED
Timer1.Enabled = True
TemperatureDecNum = Val(TemperatureString) ‘Convert string to decimal
DebugText.Text = “Raw A to D value = “ & TemperatureDecNum  ’Display

‘raw A/D value as read from LM60 
‘sensor via the LPC2138’s ADC

TemperatureDecNum = TemperatureDecNum * (3.3 / 1024) ‘Convert 
‘A/D reading, 3.3-V ref/10 bit A/D

TemperatureDecNum = TemperatureDecNum - 0.424 ‘Remove 424-mV offset
TemperatureDecNum = TemperatureDecNum / 0.00625 ‘6.25 mV per 

‘degree C 
Temperature = TemperatureDecNum  ‘Convert the converted value to

‘an integer
TemperatureText.Text = Temperature & “°c” ‘Output the string
With MSChart1 ‘Now lets graph it

.Data = TemperatureDecNum ‘Plot data to current location 
‘(autoincrement is on)

End With
End If
End Select ‘Command finished

Photo 3—Watching live graphics updates is a lot more inter-
esting than watching raw datastreams in a terminal emulator.

SOURCES
MCB2130 board and ULINK JTAG
Keil Software, Inc.
www.keil.com

Visual Basic 6.0
Microsoft
www.microsoft.com

LM60 Temperature sensor
National Semiconductor 
www.national.com

LPC2138 Microcontroller
Philips Semiconductors
www.semiconductors.philips.com

CP2101 USB-to-RS-232 bridge
Silicon Labs
www.silabs.com

PROJECT FILES
To download the code and schematics,
go to ftp.circuitcellar.com/pub/Circuit
_Cellar/2005/177.

RESOURCES
S. Furber, ARM System-on-Chip
Architecture, Addison-Wesley, Boston, 2000.

R. Martin, “ARMs to ARMs,” Circuit
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Prelim. Datasheet, rev. 0.1, Nov. 2004.
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imagination. We agreed that the exper-
iments had to combine topics from
the course syllabus and maintain the
objective of stimulating student inter-
est. One of the first successful
attempts at this was based on a design
that included a toy truck and a motor-
ized gate. A small-scale simulation of
an automatic remote gate entry system
evolved after we purchased a basic toy
truck with a battery-operated motor.
The result incorporated aspects of wire-
less communication and networking,
optical sensors, motor control, and, of
course, microcontroller applications—
all of which are covered in our courses.

SYSTEM MODULES
My students work in pairs because

many of them don’t have experience

Keeping students interested in a sub-
ject area can be a major headache. Some
teachers argue that applied disciplines
have the luxury of lab work that stirs
interest in students. This may be true,
but it’s an ongoing challenge, particular-
ly in the dynamic field of electronics. 

Years ago, teachers wooed their class-
es with demonstrations of technolo-
gies that were beyond the means of their
students. But times have changed. Today,
kids can buy off-the-shelf gizmos with
the sort of processing power that would
have been the envy of the NASA engi-
neers who won the race to the moon.

Here at the University of the West
Indies in Barbados, a major requirement
in my microcontroller applications course
(ELET3150) is a lab. Course lectures
are traditionally reinforced by laboratory
experiments. Almost every major topic
mentioned on a syllabus is allocated a
separate experiment to illustrate the prin-
ciples taught in the classroom. Students
taking the course are usually comput-
er science majors (mainly program-
mers, who have a tendency to think that
CPUs come only in desktop and laptop
machines). Many of these students would
rather take a basic digital course, but they
probably haven’t had too much hands-
on experience at a component level.

Rapidly growing technologies (e.g.,
embedded control and photonics)
demand a more dynamic structure. As
the number of lecture topics increases,
so does the number of experiments. To
avoid a plethora of separate experi-
ments, consolidation is required and a
process to combine topics into a single
experiment is mandatory.

Prior to instituting this process, a
few instructors decided to make an
effort to capture the students’ atten-
tion and hopefully light a fire in their

with microcontrollers. They’re first
given a basic scenario of how the sim-
ulation should unfold. A command
center located a safe distance from a
gate controls the entry of vehicles into
a compound. The students’ task is to set
up a wireless control system that com-
municates with the gate and the vehicle. 

The project introduces students to
the concept of a master/slave multi-
processor environment. During pre-
liminary discussions with tutors, the
students soon realize that this is the
way to go. The concept of distributed
processing is also discussed at this stage.

Next, the three modules of the sys-
tem are outlined and a basic flowchart is
developed (see Figure 1). Each system is
equipped with a transceiver, even if both
sections (transmitter and receiver) aren’t
used, in anticipation of future experi-
ments based on these systems, which
may require both sections in a module.

Motion and position detectors are
added to increase the command center’s
intelligence. Optical sensors are used,
because they are inexpensive, to mon-
itor the truck. The sensors, which
operate on a simple proximity reflection
principle, should be infrared (not visible)
to minimize room light interference.
The microcontroller, however, doesn’t
have interrupt capability, so the virtue
of interrupts (hardware) versus polling
(software) arises for discussion. Although
hardware interrupts win the debate, stu-
dents are compelled to move ahead
knowing they aren’t available! 

Both truck and gate modules contain
motors, one analog and one digital (step-
per motor). The students are instructed
to examine analog motor speed control
and direction principles, which necessi-
tates a discussion of H-bridge operation
and PWM control. The trucks, however,

FEATURE ARTICLE by Peter Gibbs

Automatic Gate Control

StartProgC
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truck?
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Figure 1—ProgC is the main program in the command
center. ProgG and ProgT handle gate and truck control.

Peter’s automatic gate control simulation project involves everything from wireless communi-
cation to motor control. Read on to learn how to build the controllers and place the sensors.
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only move forward in this
simulation, so a single
MOSFET is fine and will
employ PWM, which is
easily implemented in the
microcontroller software
by a single command.

The gate module uses a
stepper motor. I discuss
with students the methods
of driving steppers so they
learn that a dedicated step-
per motor IC controller can
ease the main controller’s
work. This illustrates a
simple example of hardware
distributed processing, a
concept that’s developed
later in the course.

I cover other concepts
too. For instance, I explain
the principle of handshak-
ing and its importance in
the process of sending and
acknowledging commands
between the modules.
Students quickly realize
the need for an agreed upon

protocol (for message trans-
mission), unique addresses
for each module in a sys-
tem, the acknowledgement
of a command, and the dis-
asters that can occur when
they aren’t present and a
problem arises. The need
for features such as error
checking, checksums, and
CRC becomes apparent
even though our basic sim-
ulation doesn’t include all
of these niceties.

SIMULATION
Let’s take a look at how

the entry simulation
works. As a truck
approaches a closed gate, a
ground sensor tells the
command center to send a
wireless signal to the truck
to stop it. The truck stops
before the gate and signals
its status to the command
center, which then signals
the gate control to open the
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Figure 2—All three modules include a BASIC Stamp 2, a small transmitter, and a small
receiver. The truck controller has an additional MOSFET for turning the motor on and off (a).
The command center has ground optical sensors (b). The gate controller has a stepper
motor interface and optical sensors for detecting openings and closings (c). The truck
approaching from the right crosses sensor S1 and initiates the simulation (d).
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gate. It then waits for the gate control to
indicate that the gate is indeed open. 

After receiving a gate-open signal,
the command center tells the truck to
proceed forward. After the truck pass-
es the gate, it triggers another ground
sensor, which is monitored by the
command center. This indicates that
the vehicle is now safely inside the
gate. The command center then tells
the truck to stop and it informs the gate
control to close the gate. The experi-
ment is over after the control closes the
gate and informs the command center.

Figure 2 shows the apparatus and con-
nections. Figure 3a is a schematic of the
truck controller with a single addition-
al MOSFET for turning the motor on and
off. Figure 3b is a diagram of the com-
mand center with ground optical sensors.
The gate controller has a stepper motor
interface and optical sensors for open-
ing and closing the gate (see Figure 3c).

COMPONENTS
BASIC Stamp 2 microcontrollers

control the three electronic modules in
the design: the command center, the
truck, and the gate controller. There’s
a degree of overkill here. Less powerful
controllers can be substituted in, but
for quick and easy development, I used
an interpreter rather than a compiler.

The modules are equipped with a
Ming Microsystem wireless transmit-
ter (TX-99) and a receiver (RE-99) pair,
which are distributed by Reynolds
Electronics. Operating at 300 MHz
(AM), the transceiver setup is adequate
for the short distances of the experi-
ment. The transmitter requires a short
(9.36″) wire antenna, whereas the
receiver has its own built-in loop anten-
na. Both modules operate from 5 VDC,
drawing a meager 1.6 mA each.

The master microcontroller in the
command center handles communica-
tion and monitors two ground sensors,
S1 and S2, which are reflective optical
sensors for detecting the truck posi-
tion. The microcontroller in the gate
control monitors two slotted optical
sensors to detect gate open/gate close
positions. It also controls the stepper
motor that operates the gate. 

The microcontroller in the truck
receives command center signals and
sends back status data. It also controls

the small siren circuit that comes
with the truck. The virtues of the
BASIC Stamp 2 are well known. 

The stepper motor operating the gate,
as well as the optical sensors for position
direction, is from an old floppy drive.
Although an SAA1027 stepper motor
driver IC generates the control pulses to
operate the motor, you can experiment
with other methods. The SAA1027
requires 3 bits to operate its functions:
step, direction, and reset. Photo 1 shows
the layout and main components.

CIRCUITRY
The setup is mounted on a 6′ × 1.5′ ×

0.75″ sheet of wood. The circuit
boards are screwed into the base with
0.5″ plastic spacers. 

The command center consists of a
BASIC Stamp 2 board, a Ming RX-99
receiver and TX-99 transmitter, and opti-
cal sensors S1 and S2. Bit 0 connects to
the TX-99’s data input from the BASIC
Stamp 2 board. Bit 15 receives data from
the RE-99, while bits 8 and 9 receive
input status from the optical sen-

a)

b)

c)

Figure 3—All the modules have RS-232C connections to a PC for programming. The truck controller uses a power
MOSFET to control a small motor (a). The command center interfaces to two reflective optical sensors (b). The gate
controller uses a stepper motor IC to simplify the process of driving the motor (c).
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sors—S1 and S2, respectively—regard-
ing the truck’s position. The circuits
are powered by 5 VDC (see Figure 2b).

The gate controller consists of a
BASIC Stamp 2 board, a Ming RX-99
receiver and TX-99 transmitter, opti-
cal sensors S3 and S3, a stepper motor
driver board, and a motor. Bit 0 con-
nects to the TX-99’s data input from
the BASIC Stamp 2 board. Bit 15
receives data from the RE-99. Bits 8
and 9 receive input status from the
optical sensors—S3 and S4, respective-
ly—regarding the gate’s position. Bits 1,
2, and 3 control the direction, step,
and reset signals to the stepper motor IC

(SAA1027). The motor and IC are pow-
ered by 12 VDC. The remaining boards
are powered by 5 VDC (see Figure 2c). 

The truck controller consists of a
BASIC Stamp 2 board, a Ming RX-99
receiver and TX-99 transmitter, an N-
channel FET that controls the small ana-
log truck motor, and the siren circuit
board. Bit 15 receives data from the RE-
99. Bit 1 controls the siren. Bit 0 controls
the motor’s speed via the Stamp’s PWM
command. A 9-VDC PP9 battery powers
the BASIC Stamp 2. The BS2 regulated 5-
V output (pin 21) powers the RE-99. The
truck’s motor and siren are powered by a
3-VDC battery system (two type AA)
mounted under the truck (see Figure 2a).
Photo 2 shows the truck’s components.

SOFTWARE
Three separate STAMP programs are

required, one for each of the three
modules. Try developing a minimal
working system before adding
advanced features. Sample programs
are posted on the Circuit Cellar ftp
site: ProgC, ProgG, and ProgT. ProgC
is the master program. ProgG and

ProgT are slave programs.
Following power-up and port initial-

ization, all of the programs enter
polling loops. ProgG and ProgT wait
for commands from ProgC, which
checks if the gate is closed and waits
for the truck to approach. The simula-
tion is now ready to begin! The event
initiates when the truck crosses optical
sensor S1. This causes ProgC to fall
out of its polling loop and immediate-
ly transmit a stop command to ProgT.

You should experiment at each

Photo 1—The simulation starts with the truck approaching
the plastic gate attached to the stepper motor’s hub. A wire
antenna sticks out the top of the truck. A safety switch
(on/off) is on top of the truck.

Photo 2—The truck’s siren, speaker, and motor are origi-
nal components. The modules are new. The 9-V battery is
hidden under the BASIC Stamp 2. The 3-V motor battery
system is in a small compartment under the speaker.

http://www.iknowsystems.com
http://www.earthlcd.com
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stage with various methods to deter-
mine if a specific task/command was
successful. Did the truck stop? ProgC
may assume the command was success-
ful. To be sure, repeat the command
twice, and wait 2 s. (An errant truck
would have passed S1 by now.) Next,
check S1. If S1 detects a truck, assume
that the truck has stopped. Otherwise,
assume it hasn’t stopped. Go to start,
modify, and try again! An errant truck
will crash into the gate at this stage
unless you call out the Marines. Pick up
the truck and check the system for
errors. Try another approach.

Assuming the truck stops, ProgC
delays and then transmits an open gate
command to ProgG. A check is per-
formed to determine if the command
was successful. Repeat the command
twice and wait 1 s. (The gate should have
moved up by now.) Next, check S3 to
determine if gate still closed. If S3 detects
an open gate, assume the gate is open, or
else assume it didn’t respond. Go to start,
modify, and try again. Once again, you
must troubleshoot the system.

After the gate opens, ProgC waits

for ProgG to send a gate open confir-
mation. After receiving the signal, ProgC
transmits a go command to ProgT for the
truck to proceed into the compound.
Again, the command repeats, and then
ProgC proceeds to poll optical sensor S2.
This indicates that the truck has moved
past the gate and is inside the compound.

After ProgC detects that the truck is
inside, a stop command to ProgT
stops the truck. Then a close gate
command transmits to ProgG. ProgC
waits for confirmation from ProgG
and its work is done.

After initialization, ProgT waits end-
lessly for commands from ProgC. Only
two commands are understood: stop and
go. After executing a command, a confir-
mation of receipt status is sent back to
ProgC. Now its back to the polling loop.

Like ProgT, ProgG also waits endless-
ly for commands from ProgC. Only two
commands are understood: open gate
and close gate. After executing one, a
confirmation of receipt status is sent
back to ProgC and polling begins again.

These three basic controlling pro-
grams are enough to test that the simu-

lation works. Now you can add bells
and whistles. For instance, you can turn
on the siren whenever the truck is in
motion. Attach a spare receiver to a
PC and the PC will monitor all transmis-
sions and then display the progress of the
simulation as it unfolds, textually and
graphically. I implemented the former
and it has proven to be extremely useful
for debugging. With lots of unused bits on
the controllers, start adding some LEDs
to indicate status, maybe headlights for
the truck. Use your imagination!

IMPROVEMENTS
Improvisation is the keyword for low-

budget projects. You can always scrounge
parts from old equipment. It isn’t hard to
find unused disk drives, hard drives, CD-
ROMs, printers, and other peripherals. 

Most of the problems associated
with this project are related to unreli-
able data reception. The transceivers
are extremely inexpensive. When you
apply power, the transmitter section
will transmit the carrier. You’ll now
have three transmitters of identical
frequency flooding the airwaves and

http://www.arcom.com
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SOURCES
BASIC Stamp 2 
Parallax Inc.
www.parallax.com

SAA1027 Stepper motor driver
Philips Semiconductors
www.semiconductors.philips.com

RX-99 and TX-99 RF modules
Reynolds Electronics (distributor)
www.rentron.com

PROJECT FILES
To download the code, go to ftp.circuit

Peter Gibbs is a senior lecturer in
physics and electronics at the University
of the West Indies (Cave Hill) in
Barbados. He holds bachelor’s degrees in

without T/R switches. The receivers
will get blasted close up, but the basic
system will work (to a certain degree).

You could use a few of the micro-
controller port bits in each module to
control the power to the transmitter
and receiver. For instance, when the
command center is transmitting, its
receiver section is powered down, as are
the transmitter sections of the truck and
gate. These modifications will imme-
diately improve data communication.

Using an MCU with interrupt capabili-
ties will eliminate wasteful software
polling loops. Improving the communica-
tions protocol and adding error-correcting
techniques and checksums will create a
more reliable system. Replacing optical
detection with ultrasonic sensors will
eliminate the process of planting sensors
in the truck’s path. Using FM trans-
ceivers rather than AM ones will surely
improve reliability. And the list goes on.

I’ve asked my students to suggest
improvements like these in their
reports. Some have gone a bit further.
A student recently suggested planting
a solenoid under the truck’s path in
front of the gate. The idea is to
destroy hostile vehicles that attempt
to enter the compound. Deadly force!

PERFECT PROJECT
This project has excited my students.

Most of all, it has generated meaning-
ful answers to the “what if” questions
they’ve asked along the way. Many
students now realize that they can use
a computer for more than surfing the
Internet and playing games. They now
know that the majority of processors go
into control applications, not PCs. When
they begin, they view the experiment as
a simple modeling and simulation exer-
cise. But it quickly dawns on them that
it could easily become complicated. 

My students have willingly committed
extra time to this project, despite its sim-
plicity. I think it’s the sort of spark that
can ignite a lifelong interest in design.
How do I know? I still remember the
excitement of turning on and off my first
LED under TRS-80 software control. I

physics and math as well as a diploma of
education from the University of the
West Indies. He also earned a master’s
degree in physics from the University of
Guelph (Ontario). When he isn’t work-
ing on embedded systems control
apps, he enjoys long-distance swim-
ming. He recently swam across Lake
Ontario in 18 h, 40 min. You may con-
tact him at pgibbs@uwichill.edu.bb.
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Nothing is ever 100% secure. No
matter how many layers of security you
use, a determined attacker can under-
mine your product. As gloomy as this
sounds, your challenge is to figure out
what you need to protect in your product
and how much it’s worth to protect it.

REVERSE ENGINEERING
Reverse engineering a product usu-

ally requires knowledge of the part
numbers and functionalities of the
major components on the board.
Understanding what the components
do may provide details about particu-
lar signal lines that may be useful for
active probing during operation. The
part numbers and the manufacturer’s
marking on the package easily identify
components. An attacker can also fol-
low their traces to see how they inter-
connect with other components. Nearly
all IC manufacturers post component
datasheets on the ’Net. On-line services
like IC Master (www.icmaster.com) and
Data Sheet Locator (www.datasheetloca-
tor.com) provide part number searches
and pinout and package data for hun-
dreds of thousands of components.

Welcome back! Last month I
described security-related design solu-
tions for your product’s enclosure. My
goal was to help you understand and
mitigate some of the risks associated
with attacks against your product.
Designing the right enclosure can pre-
vent tampering and reduce the possi-
bility of passive attacks. This month
I’ll peel back a layer of the embedded
system and describe security issues on
the circuit board level. Many of the
weaknesses, security vulnerabilities,
and design flaws of a product are identi-
fied when you analyze the circuit board.

There are a number of things you
can do to make attacks against a prod-
uct more difficult. To help you under-
stand what you’re up against, I’ll
describe a few successful hardware
attacks. By studying such attacks, you’ll
learn how to improve your products. 

CIRCUIT-LEVEL ATTACKS
Basic circuit board-level attacks range

from the modification of microprocessor
content to the replacement of compo-
nents. More advanced attacks involve
microprobing (i.e., a chip package is
opened, its internals are accessed with
semiconductor test equipment, and
the internal data paths are observed or
manipulated) or fault generation
attacks in which the device operates
under environmental stress conditions
outside its designed operational range
(e.g., extreme temperature, supply
voltage variations and spikes, protocol
violations, and partial system resets). 

To increase the difficulty of reverse
engineering and device identification,
I recommend scratching off the marks
on the top of your chips. This is
known as demarking, or black top-
ping. Depending on the quantities of
ICs you are ordering, you may be able
to ask the manufacturer to leave the
markings off of the devices you order.
The next best option is to remove the
markings in-house during the manu-
facturing process. You can use a laser
etcher or demarking machine (typical-
ly a controlled microbead blasting
process that removes all identifiable
markings from the device). You can
also use a stainless steel brush or
small sander (manual or computer-
controlled) to remove the markings.

Using off-the-shelf components
make it extremely easy for an attacker
to obtain information about your
product. Designing with proprietary,
custom devices (or at least off-the-
shelf cores with custom functionality)
will prevent most attackers from easi-
ly reverse engineering them. But this
solution isn’t practical for all designs. 

ACCESSING COMPONENTS
Make sure sensitive components

that are most likely to be targeted for
an attack (e.g., a microprocessor con-
taining product firmware, ROM, RAM,
and programmable logic) are difficult to
access. Covering specific components
with a conformal coating or an epoxy
resin can help to prevent tampering. 

Conformal coatings and encapsu-
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Photo 1—Early USB authentication tokens improperly
used epoxy encapsulation to cover a serial EEPROM.
The adjacent footprint can be used to read the contents
of the protected device.

In the first part of this series, Joe described superficial design solutions that will help protect
your embedded products. This month he sheds light on security issues related to the circuit
board. He’ s got your entire design covered.
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lates are typically used to protect
devices from moisture, fungus, dust,
corrosion, and tampering. Urethane
provides a hard, durable coating that
offers excellent abrasion and solvent
resistance. It shrinks significantly dur-
ing curing, which may stress compo-
nents. Epoxies also offer excellent
resistance to moisture and solvents.
Usually consisting of a two-part resin,
the coating also shrinks during curing,
leaving a hard, difficult to remove
film that makes it difficult for attack-
ers to probe the device and remove it
from the board.

Such products are provided by a
large number of manufacturers.
Unfortunately, I don’t know of any
coatings that are specifically designed
for security purposes (meaning that an
attacker can’t remove them without
harming the underlying components).
Note that chemicals like methylene
chloride, sulfuric acid, and fuming
nitric acid can remove protective coat-
ings, so be sure your compound is suit-
able for the protection level you desire. 

When conformal coating is incorpo-
rated in a design to protect compo-
nents, make sure that it serves its
intended purpose. Photo 1 shows an
example of an early USB authentica-
tion device that stored critical data on
the encapsulated serial EEPROM.
Aside from being able to scrape off the
epoxy with a hobby knife to gain
access to the device’s surface-mount
pins, an attacker could simply solder
wires to the exposed footprint adjacent
to the device, which is intended for
another serial EEPROM, and read the
memory contents using an industry-
standard device programmer. The mis-
use of epoxy coupled with the device’s
accessibility could result in a success-
ful attack on the product.[1]

Using ball grid array (BGA) packages
increases the difficulty of casual prob-
ing, manipulation, and attack because
all die connections are located under-
neath the device’s packaging.
However, debugging with these pack-
ages is difficult. Manufacturing is typ-
ically more expensive because X-rays
verify that the solder has properly bond-
ed to each of the ball leads. A dedicat-
ed attacker could remove the target
device and add a socket for easier access.

As a result, it’s recommended to place
critical devices in areas of the circuit
board that may not have enough area
or vertical height around the component
for a socket to be mounted properly. 

Another solution is to employ chip-
on-board (COB) packaging, in which
the silicon die of the integrated circuit
is mounted directly to the PCB and
protected by epoxy encapsulation.
Even though methods exist to gain
access to COB devices, and even
though an attacker can probe vias and
traces extending from the encapsulate,
direct manipulation with the device
and its connections are less of a threat.
Using COB devices also increases man-
ufacturing costs and isn’t necessarily
supported by all manufacturers because
specialized equipment is required to
manipulate the wire bonds between
the silicon die and the circuit board. 

A relatively new technology known
as chip-in-board (CIB) embeds the sili-
con die within the layers of a PCB.
The concept is similar to COB,
although a cavity is created in the cir-
cuit board to hold the die. An encap-
sulate is filled in over the die and cav-
ity, creating a flat PCB surface. I don’t
know what kind of financial burden
this technology creates.  

DIE ANALYSIS ATTACKS
The analysis of IC dies, although

commonly done for failure analysis
and chip design, long has been the
most difficult vector for attack pur-
poses. With access to the die, an
attacker may be able to bypass many
of the available on-chip security mecha-
nisms to determine the device’s content.
Such attacks are more likely to occur
if the adversary can’t easily remove
the device from the board but still has
space to access the component freely.

Decapsulation products, such as those
made by Nippon Scientific (www.nsc-
net.co.jp/e) and ULTRA TEC
Manufacturing (www.ultratecusa.com),
will delid or decap the top of the hous-
ing from ICs (using hazardous chemical
or mechanical means, or a combination
of both) while leaving the die intact and
fully functional. Furthermore, after a
successful attack, the IC package can be
refilled with an epoxy encapsulate and
the device will still operate normally.

Equipment has become available on
the surplus market and the prices
have been reduced to an affordable
level (approximately $10,000 to
$15,000). Many academic institutions
also provide access to such equipment.

After the die is accessible, a tech-
nique known as voltage contrast
microscopy can be performed with a
scanning electron microscope to visu-
ally (and passively) extract voltage
information from a flash ROM storage
cell.[2] It also would be possible for an
attacker to physically modify the die
(e.g., changing the security bits’ set-
tings). Using focused ion beams (FIB),
specialist companies like Fibics
(www.fibics.com) and FIB International
(www.fibinternational.com) can cut bond
pads to remove a trace or add ion deposits
to add a jumper or set a bit on the die. 

Oliver Kömmerling and Markus
Kuhn’s 1999 article, “Design
Principles for Tamper-Resistant
Smartcard Processors,” details tech-
niques to extract software and data
from smart card processors, including
manual microprobing, laser cutting,
FIB manipulation, glitch attacks, and
power analysis. Much of this attack
research is based on Friedrich Beck’s
Integrated Circuit Failure Analysis,
which details failure analysis techniques
for opening the package/chip insulation,
etching procedures for removing layers
of chip structure, and health and safe-
ty procedures. Even though all of
these die analysis attacks are easier
said than done, the available technolo-
gy is fascinating and the threat is real.

BUS PROTECTION 
Device operation and information

can be gleaned by analyzing an embed-
ded system’s internal address, data,
and control bus lines using a logic
analyzer, digital oscilloscope, or cus-
tom circuitry. Targeted bus lines could
be probed by simply removing the sol-
der mask on the outer layers of a cir-
cuit board. Critical traces should be
hidden on inner board layers. Trace
paths should be obfuscated to prevent
the easy reverse engineering of the cir-
cuitry. Use buried vias—which con-
nect two or more inner layers (but no
outer layer) and cannot be seen from
either side of the board—to reduce



potential probing points for the
attacker. If a multilayer board isn’t
used, protective encapsulant should be
applied at least to the target traces. 

In Hacking the Xbox: An
Introduction to Reverse Engineering,
Andrew Huang describes a tap board
used to intercept data transfer over
the Xbox’s HyperTransport bus.
Huang was able to retrieve the sym-
metric encryption key used for the
protection of a secret boot loader,
which ultimately allowed him to exe-
cute untrusted code on the system.
This attack might have been prevent-
ed if those critical bus lines were on
internal board layers. 

MEMORY DEVICES
Most memory devices are notori-

ously insecure. Some have security
features that prevent access to data,
whether through fuses in ROMs and
boot block protection in flash memory
or via a password-protected memory
area. Even though they may be able to
be bypassed with die manipulation
attacks, such features should be used
because they will sufficiently raise the
bar against attackers who may be try-
ing to clone or reverse engineer the
device. In this case, they add an
insignificant level of protection.

Atmel’s CryptoMemory family of
devices includes EEPROMs and syn-
chronous and asynchronous flash
memory with authentication, pass-
word, and encryption features
(www.atmel.com/products/secure-
mem). Most standard memory devices
don’t have this type of functionality
and are readable, often in-circuit, with
standard tools.

Reading RAM or other volatile stor-
age areas may yield temporarily stored
system data or other useful informa-
tion (e.g., cryptographic keys or plain-
text left behind from an encryption
routine). In Data Remanence in
Semiconductor Devices, Peter
Gutmann shows that it’s extremely
difficult to securely and totally erase
data from RAM and nonvolatile mem-
ory. This means that remnants of
such data still may exist; they may be
retrievable from devices long after
power has been removed or the mem-
ory contents have been rewritten.

(Temperature also plays a role in the
retention of data, but the retention
time is unpredictable even between
two of the same memory device.) 

Unfortunately, there aren’t many
practical solutions to avoid the known
problems. The current best practice is
to limit the amount of time that criti-
cal data is stored in the same regions
of memory. Storing data in a fixed
RAM location can lead to burn-in that
will enable data recoverability even if
power is removed from the volatile
device. Either move the secret around
to different RAM locations (while over-
writing the previous area) or periodical-
ly flip the stored bits of the secret.

PLDs & FPGAs
Depending on the product, protect-

ing your intellectual property inside
programmable logic devices (PLDs)
and field programmable gate arrays
(FPGAs) can be just as important as pro-
tecting firmware and data in memory.
Essentially, SRAM-based devices are the
most vulnerable to attack because of
their requirement to have configuration
memory external to the device (stored in
separate nonvolatile memory or program
firmware), which is then loaded into the
FPGA at power-up. The bitstream
between the configuration memory and
FPGA simply needs to be monitored to
retrieve the FPGA configuration.

Currently available flash memory-
based FPGA devices are arguably more
secure than their SRAM-based siblings.
Some product types worth investigat-
ing further are Actel’s Antifuse FPGAs
(www.actel.com) and QuickLogic
FPGAs (www.quicklogic.com), both of
which eliminate the need for external
configuration memories required by
SRAM-based devices.

With your programmable logic,
make sure you implement protection
against simple I/O scan attacks, in
which an adversary attempts to
reverse engineer a programmable logic
design by cycling through all possible
combinations of inputs and then mon-
itoring the outputs to determine the
internal logic functions. This type of
attack is easiest against low-density
PLDs with dedicated inputs and out-
puts and for designs containing only
asynchronous circuits and latches. A
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solution is to use unused pins on the
device to detect probing or tampering.
Pins can be set to inputs, and if they
detect a level change, the device can
assume it’s being probed and can per-
form a countermeasure or response. 

When designing state machines in
FPGAs, ensure that all conditions are
covered and there are defaults in place
for unused conditions. Otherwise, an
attacker may be able to put the FPGA
into an indeterminate state through
fault-generation attacks. 

Also, consider adding digital water-
marks to your design in the form of
unique features or attributes that can
be used later, if necessary, to prove
that a design claimed to be original by
a competitor is actually a copy. Legal
means are usually the last resort when
protecting your intellectual property,
but having some hidden identifier
might make your case much stronger. 

POWER SUPPLY
Precautions should be taken to pre-

vent the intentional variation of the
power and clock. Minimum and maxi-
mum operating limits should be defined
and protected using comparators or
supervisory circuitry (available from
manufacturers like Maxim and Linear
Technology). Don’t rely on the end user
to supply a voltage within the recom-
mended operating conditions. Using a
low-dropout linear regulator or DC-
DC converter (instead of a direct volt-
age input into your system) will help
ensure that your circuit receives power
within its expected range, regardless
of an improper voltage supplied at the
input. Such circuitry can be bypassed
if the attacker has access to the board. 

An attacker can use power supply
variation to gain access to your sys-
tem. For instance, he can clear the
security bit in a PIC16C84 microcon-
troller without erasing the remaining
memory, thus gaining complete access
to the once-protected area. This is
achieved by raising VCC to 0.5 VPP

(approximately 13.5 V) during repeated
write access to the security bit.[3]

An attacker also can passively mon-
itor the power supply fluctuations to
determine information stored on a
device. In “Introduction to
Differential Power Analysis and
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Related Attacks,” the authors describe
the process of monitoring the electri-
cal activity of a smart card and using
mathematical methods to determine
cryptographic keys. Simple power
analysis (SPA) is a predecessor to DPA in
which an attacker directly observes a
system’s power consumption, which
varies according to the operation the
microprocessor’s performing. Intensive
operations, such as cryptographic
functions, can be easily identified. 

Although SPA attacks primarily use
visual inspection to identify relevant
power fluctuations, DPA attacks use sta-
tistical analysis and error correction
techniques to extract information corre-
lated to secret keys. In “Power Analysis
Attack Countermeasures and Their
Weaknesses,” Thomas Messerges
looks at five countermeasures to pre-
vent such attacks, including a noise
generator using power randomization,
power signal filtering using active and
passive filters, detachable power sup-
plies, and time randomization by desyn-
chronizing the clock. He discusses the
pros and cons of each. 

I/O PORT PROPERTIES
All unused I/O pins should be dis-

abled or set to a fixed state. For exam-
ple, the Motorola MC68328 DragonBall
processor enables by default the clock
output (CLKO) pin at reset. CLKO,
which is used for testing the internal
PLL, outputs a 16.67-MHz sine wave
on the pin. If it isn’t disabled during
normal device operation, the extrane-
ous signal may cause unwanted noise. 

Unused I/O pins can be configured to
detect probing or tampering by setting
them to inputs and waiting for a level
change. If one is detected, the device can
assume it’s being probed and initiate a
response. This type of detection mecha-
nism would work only while the device
is active, which is the most likely time
for probing by an attacker to occur.

In order to prevent against ESD
attacks, implement ESD protection
devices on any connectors or I/O pins
(e.g., keypads, buttons, switches, or
displays) exposted to the outside
world. ESD protection can simply be
in the form of clamping diodes or
transient voltage suppressor (TVS)

devices. Manufacturers include Vishay
(www.transzorb.com/diodes/protec-
tion-tvs-esd) and Semtech
(www.semtech.com).

CRYPTOGRAPHY
The strength of a cryptography

implementation relies on the secrecy
of a key, not the employed algorithm.
However, it’s insufficient to assume
that a large key size will guarantee
security. Even if a trusted encryption
algorithm like DES or AES is used,
improper implementation could make
the product easy to break. You must
have a complete understanding of the
requirements and functionality of an
encryption solution before it’s imple-
mented in a system. Many times, com-
panies will claim to encryption in their
product, when in reality, it’s nothing
more than a simple encoding scheme
(usually some type of logical operation
like an XOR against a constant block).
Rolling your own custom encryption
solutions is typically a bad idea because
they end up being extremely insecure. 

An example of improperly used
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THINK LIKE THE ENEMY
It has been said that the only way to

stop an attacker is to think like one.
Stay aware of the latest attack
methodologies and trends, which will
enable you to choose the proper means
of protection for your particular product
and help you keep tabs on what attack-
ers might attempt against your product.

Try to break the security of your
product. Fix it, and try to break it
again. Allow time for this iterative
process during the design cycle. Don’t
release a version of your product and
plan to implement security into a later
revision. Properly retrofitting security
mechanisms into an existing product
is extremely difficult, and political
and financial pressures usually prevent
it from actually happening. 

Although I’ve only scratched the
surface of the topic of embedded secu-
rity, you can use this series of articles
as an embedded security cookbook.
You have a lot of security options to
choose from for your particular design.

Hopefully, I’ve left you with the
confidence (and a twinge of fear) to
design secure products. Good luck
with your future projects. I
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A while ago, I ordered a cheap
white-LED flashlight along with a
batch of other electronic parts. When I
dropped in three AA cells and poked
the switch, one of the four LEDs
began flickering like a strobe light. For
what it had cost, it wasn’t worth
returning. Yes, I felt like a fool even
though the calendar didn’t read April 1.

The “circuit,” if you can call it that,
inside the flashlight consisted of the
battery, a switch, and four white LEDs
in parallel. No current-limiting resis-
tor, no voltage regulator, no nothing.
Well, maybe that’s the reason why my
good LED flashlight cost me five
times more than this thing!

Early in your first electronics class,
you learn the exponential relation
between a diode’s current (I) and its
terminal voltage (V):

I0 is the diode’s reverse leakage current,
ranging from a few nanoamps to a few
milliamps. The value of kBT/q is approx-
imately 25 mV at room temperature. For
example, with I0 = 1 nA, the current is
54 nA at 100 mV, 3 µA at 200 mV,
485 mA at 500 mV, and 235 MA at 1 V.
Yes, 235 mega-amps. Work it out!

Although the simple formula obvi-
ously doesn’t reflect reality, it’s true
that small changes in the voltage
applied to a diode cause huge changes
in its current. Let’s take a detailed look
at some LEDs, shed some light on the
innards of that flashlight, and see how
to drive LEDs correctly.

CURRENT DRIVE
Diodes must be driven from a current

I = I e   10

qV
k TB -( )

40 Issue 177    April 2005 CIRCUIT CELLAR® www.circuitcellar.com

source, not a voltage source, to maintain
control over their current. You’ve certain-
ly used a simple series resistor to limit
the current available from a voltage
source, which, although it isn’t a great
current source, is often good enough for
LEDs. When you’re characterizing diodes,
though, you need a current source that
permits simple, stable adjustments, while
preventing overcurrent accidents (a.k.a.
releasing the magic smoke).

Figure 1 shows a quick and easy
adjustable current source. The op-amp
regulates the transistor’s base current so
the voltage across R1 equals the voltage
set by the trimpot. With R1 = 10 W, the
voltage across it is numerically equal to
10 times its current: 100 mV for 10 mA.

The 39-kΩ resistor in series with the 1-
kΩ trimpot limits the maximum set point
to 300 mV and the maximum current to
30 mA, 50% over the usual 20-mA oper-
ating current for small LEDs. Because
you’ll directly measure the current while
adjusting the trimpot, there’s no need for

high-precision resistors. You can use any
op-amp and small NPN transistor.

Figure 2a shows the forward voltage
across 10 supposedly identical white
LEDs from my collection, measured at
currents ranging from 1 to 30 mA. I
drove all 10 LEDs in series from a 40-V
power supply, recorded the forward volt-
age across each LED, and massaged the
results in a spreadsheet. You can down-
load the results, along with measure-
ments and graphs for several more color-
ful LEDs, from the Circuit Cellar ftp site.

The LEDs’ datasheet states that the
forward voltage is typically 3.6 V and
less than 4 V at the 20-mA maximum
current. The maximum DC current
allowed is 30 mA, although the peak
current can be 100 mA for 10 ms at
most, with a 10% duty cycle. The over-
all power dissipation must be less than
120 mW. All of the LEDs in my sam-
ple lie well within their specifications.

Even over this limited range of cur-
rents, you can easily see the exponential
shape of the curves. Figure 2b plots each
diode’s forward voltage against the log-
arithm of the current, a task that for-
merly required semi-log graph paper,
to show that all but one of the curves
have the expected straight line shape.

LED D evidently has a problem
because its forward voltage tops out
around 3.65 V and actually drops
slightly between 25 and 30 mA. This
is particularly obvious in Figure 2b,
with a distinct bend in the upper end
of its curve. I measured this LED sev-
eral times and came up with similar
results, so it’s not my technique!

TERMINAL CONDITIONS
The voltage-versus-current graph for a

Foolish LED Tricks

Figure 1—This simple current sink drives LEDs with a
constant current. The power supply must be a few volts
higher than the total LED forward drop.

Ed recently bought a cheap LED flashlight that barely worked. Rather than ask for a refund,
he rebuilt the flashlight and learned a lot about LED technology in the process.

ABOVE THE GROUND PLANE by Ed Nisley



for easy repair, so I used
Gorilla Glue to secure
the battered LED assem-
bly in place. When I
reassembled the flash-
light, a second LED
began blinking merrily
away. Now, one failure
could be a bad part. Two
failures represent a trend!

I took the flashlight
apart again, albeit with
considerably more diffi-
culty, removed the LED
assembly, and unsoldered
the LEDs. No matter
what I discovered, I
would replace all of the
LEDs this time!

One of the non-blink-
ing LEDs failed at 30 mA
before I began recording
its voltage. Although
that’s above the usual 20-
mA continuous rating, a
device intended for use
directly across three AA
cells shouldn’t fail at
such a low current. That
makes three failures of
the four original LEDs.

The blinking LED
worked fine for currents
under approximately
18 mA. Above that level,
it exhibited brief, inter-
mittent open-circuit fail-
ures. Although I couldn’t
see anything obviously
wrong with the internal
wire-bond attachments, I
don’t have failure analy-
sis facilities.

Figure 2c shows the
voltage-versus-current
curves for the two
remaining flashlight
LEDs, the first white
LED I installed, and a red
LED as a baseline.
Notice that the forward
voltages for the two flashlight LEDs are
much, much higher than that of the
white LED from my stash.

The flashlight uses three AA cells that
provide approximately 1.6 V each when
they’re new for a maximum of 4.8 V.
The non-blinking LED passes 15 mA at

that voltage; the blinking LED passes
less than 10 mA. Why it blinks at that
current, I cannot say, other than that AA
cells certainly differ from my test rig.

Notice that the graph also shows that
current through my white LED is off-
scale high. Ooops! Well, if you’ve never
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particular LED tells you two things. As
with my circuit, if you know the cur-
rent, the graph tells you the resulting
voltage. It also shows the current the
LED draws at a given voltage.

Pop quiz: suppose a designer connect-
ed LEDs D and C in parallel with a
3.100-V voltage source. What would be
the forward current in each LED? Extra
credit: What about their brightness?

Peering at Figure 2a, you can see that
the curve for LED D crosses the 3.100-V
line at 1 mA and LED C’s curve crosses
at 5 mA. That makes a five-to-one differ-
ence in current, although the other LEDs
in this (tiny) sample would be more
closely matched. Because LED bright-
ness is roughly proportional to current,
LED C would be five times brighter than
LED D. I found it impossible to take a
credible photograph, but the difference
is “eyeballometrically” obvious.

Not only does brightness vary with
current, it also depends on the exact
composition of the LED, which varies
from batch to batch. Despite what you
think you know about the precision of
semiconductor manufacturing, there’s a
lot of art and magic ritual involved, so
LEDs from different batches can vary
dramatically.

If you’re using multiple LEDs for
backlighting or displays, you’ll want
consistent brightness. Tweaking the cur-
rent of each LED isn’t feasible, so you
must buy brightness-matched LEDs.

Manufacturers test each LED in every
production lot for brightness (at a specif-
ic current, typically 20 mA) and sort
them into bins. LEDs within each bin
differ by about a factor of two, and the
range across all bins spans several orders
of magnitude. Every functional LED
goes into one of the bins, which makes
every LED salable: the brightest LEDs
command the highest prices and the
dimmest ones go to surplus dealers.

For critical applications, such as back-
lights, a second sorting within each
brightness bin groups the LEDs by
color. You can specify extremely accu-
rately matched LEDs if you pay a premi-
um price for the testing and sorting.

FAILURE ANALYSIS
Shortly after I got the blinking LED

flashlight, I took it apart and replaced
the offending LED. It wasn’t designed

Figure 2a—Ten nominally identical white LEDs show a wide variation in for-
ward voltage for a given current. The voltage for LED D, the top trace, actually
drops slightly between 25 and 30 mA. What would happen if you were to
apply a 3.75-V voltage source to its terminals? b—Plotting the forward voltage
against the log of the current shows that the relation isn’t exactly exponential,
but it’s extremely close, except for LED D, which obviously has some prob-
lems. c—The two upper traces are LEDs from a cheap flashlight. The middle
trace is a good-quality white LED. The lower trace is an old red LED for com-
parison. The top trace stops at 15 mA, just before the LED began flickering.

a)

b)

c)



LEDs aligned in snug-fitting holes,
which work much better than the
original, rather flimsy plastic.

The four LEDs contain the same chip
as those profiled in Figure 2a, but in a dif-

made a mistake like that, you’re a better
engineer than me. The diode’s internal
bulk resistance limits its actual maxi-
mum current, and the bond wires didn’t
vaporize in this case.

I suspect the LEDs in that flashlight
came from a production-line sort for
high forward voltage. This was a cheap
flashlight and I doubt the manufacturer
bought a custom run of LEDs. The fact
that three of the LEDs failed under what
seem like normal conditions makes it
reasonable to assume that these are, in
fact, production line culls.

DOING IT RIGHT
Because LED brightness is proportion-
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al to current and current is expo-
nentially related to voltage, LED
flashlights become dim extremely
quickly as their batteries discharge.
The nominal fully discharged volt-
age for alkaline cells is approxi-
mately 0.8 V, so the voltage in a
three-cell flashlight varies from
approximately 4.8 V down to 2.4 V.
Figure 2c shows that the correspon-
ding currents range from 15 mA

down to just about zero, so you’d proba-
bly replace the cells at 4 V and 6 mA,
thus wasting much of their capacity.

More expensive flashlights use a power
supply to boost and regulate the bat-
tery voltage. I decided to use a Maxim
MAX1595EUA33, which charge-pumps a
nominal 3-V battery to a regulated 3.3-V
output. The schematic in Figure 3 shows
that the entire power supply consists
of only four parts. As you’ll see, R1
isn’t required.

I replaced one of the three AA cells in
my flashlight with a machined aluminum
gizmo holding the charge-pump circuit
and four white LEDs, as shown in Photo
1a. Photo 1b shows a rear view of the

Photo 1a—The charge pump circuit replaces one of the
three AA cells in the flashlight. I machined the aluminum
cylinder from a slightly larger toothed-belt drive pulley.
b—The four matched LEDs align on their flanges in
closely fitted holes. The black epoxy blob simply holds
them in place.

b)

a)

Figure 3—A MAX1595 regulated charge pump produces a
nominal 3.3 V from two AA cells to drive about 70 mA into
four white LEDs. In theory, anyway!

http://www.rs485.com
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ferent case that produces a 20° beam
width. I selected four LEDs that differed
by only 4 mA at 3.250 V. (The complete
data is in the spreadsheet posted on the
Circuit Cellar ftp site.) Figure 4a shows
their combined current as a function of
voltage. They draw almost exactly 80
mA, an average of 20 mA each, at 3.300 V,
which is a perfect match for the
MAX1595’s nominal output. Incidentally,
that tidy exponential curve is real data.
I’m not making it up!

I measured the supply’s input current
and output voltage as a function of its
input voltage to get an idea of how it
would perform as the battery discharged.
Figure 4b shows that the output voltage
remains between 3.25 and 3.20 V as the
battery voltage drops from 3.2 to 1.9 V.
The output hits 3 V just before the
MAX1595 automatically shuts down.

Comparing the output voltage to the
LED characteristics, you can see that the
current varies between 60 and 40 mA,
dropping to 10 mA just before MAX1595
shuts off at 1.6 V. The LEDs will run with
reasonably consistent brightness, decreas-
ing by a third, over much of the battery’s
life. That’s fine because a single LED
brightness bin covers a factor of two dif-
ference at the factory.

I don’t know what causes the kink in
the MAX1595’s output for input voltages
near 2.9 V. The current is fairly close to
the chip’s rating, so the LEDs may pose a
difficult load: a low-voltage drop in the
regulator with a relatively high and
rapidly increasing current.

The MAX1595 datasheet calls for three
ceramic capacitors, which, because of
their lower ESR, have better efficiency
than electrolytic capacitors. My parts

stash doesn’t include 1-µF ceramics. I
used a tantalum electrolytic capacitor on
the input and an aluminum capacitor on
the output with a 220-nF ceramic pump
capacitor. That’s the most critical capaci-
tor, and, because it sees both forward and
reverse voltages, it mustn’t be polarized.

At 2.6 V in and 3.25 V out, the supply
draws 323 mW from the battery. At that
voltage, Figure 4a shows that the four
LEDs dissipate approximately 180 mW for
an overall efficiency of 55%. That’s the
trade-off for a nearly constant light output
over the life of the batteries.

For comparison, a 3-V flashlight bulb
draws 530 mA and dissipates 1.6 W. My
favorite little incandescent penlight may
have a tighter, brighter beam, but it uses
five times more power than this LED
flashlight.

Because the regulator’s voltage output
is closely matched to the LED characteris-
tics, I omitted a ballast resistor and its
power loss. The current variation over the
supply’s voltage range is well within the
LED’s specifications. Pragmatically speak-
ing, the MAX1595EUA33 can’t produce
much more than 80 mA with a 3-V input.
The LEDs are safe from destruction, even
by a voltage-source power supply.

If your LEDs require more than 3.3 V,
the MAX1595EUA50 produces 5 V. The
circuit board layout includes space for R1,
which is the ballast resistor to convert
that voltage source into an LED driver.

CONTACT RELEASE
After all that effort, I’m pleased to

report that the rebuilt LED flashlight
works much better, with a better beam
and constant bright light. If you’re illumi-
nating a gizmo with white LEDs, check

PROJECT FILES
To download the code and graphs, go
to ftp.circuitcellar.com/pub/Circuit_
Cellar/2005/177.

SOURCES
LEDs
All Electronics 
www.allelectronics.com

Electronic Goldmine
www.goldmine-elec.com/default.htm

LED Supply
www.ledsupply.com

Ed Nisley is an E.E, P.E., and author
in Poughkeepsie, N.Y. You may con-
tact him at ed.nisley@ieee.org. Write
“Circuit Cellar” in the subject line to
clear the spam filters.

RESOURCES
Eagle CAD circuit design, www.cad
softusa.com.

General LED information, http://led
museum.home.att.net/leduv.htm.

Maxim Integrated Products, “MAX1595:
Regulated 3.3V/5.0V Step-Up/Step-
Down Charge Pump,” 19-2107, rev. 1,
2002, www.maxim-ic.com.

out the latest generation of LED driver
ICs (the MAX1595 is just one example)
for better ways to get the job done.
There’s no need to be foolish anymore!

I just got a surplus batch of four-LED
clusters intended for two-cell flashlights.
As expected, one has a dim LED, and they
all have poor construction. That sup-
ports my theory that rejected LEDs
wind up in cheap flashlights. I

Figure 4a—The voltage-versus-current characteristic of four matched white LEDs will work nicely with a 3.3-V source. Isn’t that a pretty curve? b—The MAX1595EUA33 output
remains between 3.2 and 3.25 V through most of the battery’s usable life. The LED current will vary between 40 and 60 mA, a visually indistinguishable difference.

a) b)

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2005/177
http://www.cadsoftusa.com
http://ledmuseum.home.att.net/leduv.htm
http://www.maxim-ic.com
http://www.allelectronics.com
http://www.goldmine-elec.com/default.htm
http://www.ledsupply.com
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servo shaft allow it to generate rotary
and push-pull motions. Whereas a DC
motor rotates continuously with the
application of a voltage, an RC servo
uses an internal electronic angular
position control loop, which moves the
servo to a commanded position and
holds it in that position until the power
is removed or the command changes.

RC servos also contain internal
gearing, which can provide large out-
put torques. Different servo sizes and
shapes are available, as well as plastic
and metal gearing options. Three
wires are used to interface to an RC
servo. The first two are the servo power
and the ground wires. The third is the
angular position control signal input.

Powering RC servos is often done
with rechargeable battery packs.
Servos can usually accept an input
voltage between 4.8 and 6 VDC.
Depending on the mechanical load
applied to the output shaft and the
size of the servo, its current draw can
climb into the 1 A range. The no-load
operating current for a standard servo

Several months ago, I saw an adver-
tisement for a 25-channel radio-con-
trolled (RC) serial servo controller. A
serial servo controller’s function is to
control multiple RC servos while pro-
viding a simple serial command inter-
face. Armed with a renewed interest
in the subject, I decided to research
the market further. It turns out that a
number of commercial products allow
for serial-based control of RC servos,
most of which only support up to
eight channels at 8-bit resolution.  

RC servos have enjoyed a long peri-
od of popularity among RC enthusi-
asts. The recent explosion in home-
brew robotics projects has created a
new home for the versatile servos.
Robotic insects in particular require a
large number of servos to generate
walking motion. As well, some anima-
tronics creations demand numerous ser-
vos to bring them to life. In the past you
were limited to purchasing several seri-
al servo controllers and chaining them
together to support the high number
of channels. Things are different now.  

In this article I’ll describe a true
hardware-based, 32-channel digital
serial servo controller that’s well suit-
ed for these applications. Unlike all the
other commercial offerings, this design
uses true dedicated parallel hardware
resources for PWM pulse train generation
at 16-bit accuracy and 12-bit resolution
with all 32 channels fully synchronized!

SERVO BASICS
Photo 1 shows a typical RC servo.

Different horn attachments for the

is in the 100 to 200 mA range. When
powering several servos from the same
supply, you must ensure that the current
rating on the power supply is adequate.

The command signal input to an RC
servo is a PWM digital pulse train (see
Figure 1). The amplitude of the PWM
pulse is nominally 3 to 5 V.  The pulse
train has a period between 20 ms (50 Hz)
and 16 ms (60 Hz). The period’s actual
value isn’t critical. 

The width of the positive pulse,
which can vary between 1 and 2 ms,
determines the absolute angular position
of the servo. A pulse width of 1.5 ms
corresponds to the center position of the
servo travel. A typical servo will swing
through a 90° range corresponding to a
1- to 2-ms pulse width variation. This
range, however, can also vary from servo
to servo, so check the specifications. 

Most servo vendors provide a safety
margin that allows their servos to
rotate beyond the 90° when sending
commands outside the 1- to 2-ms
boundary. As a result, a lot of com-
mercial servo control boards support
an extended mode, where the pulse
varies between 0.5 and 2.5 ms. Be
careful, though, because crashing the
servo in its hard stops can damage its
gears. This is why some board vendors
also allow you to set soft limits on
each servo channel so that minimum
and maximum positions can be set
and stored in nonvolatile memory.

The angular resolution of a typical
servo is of roughly 0.7° out of a 90°
range, or 7 bits, because of the built-in
dead-band of approximately 8 µs that’s

FEATURE ARTICLE by Eric Gagnon

Digital RC Servo Controller (Part 1)

Photo 1—A typical RC hobby servo has removable
horn attachments to generate rotary or push-pull
motions. Three wires are used to interface to a servo
driver. Different servo manufacturers may use different
wire color codes and pinouts.

The days of linking serial servo controllers to support a high number of channels are over. In
the first part of this series, Eric explores RC serial servo controller theory. Plan on using a
32-channel controller in your next robotics project.

32-Channel DesignContest  Winner
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needed to reduce
mechanical oscillations
(servo chatter). This
means that 8 µs is the
smallest practical posi-
tional increment in a
pulse width command.
On the other hand, the
absolute servo position-
ing accuracy is affected
by the mechanical back-
lash and material prop-
erties. The newer digital
servos claim a resolu-
tion of up to 10 bits, or
0.09° (1 to 3 µs dead-
band), at the expense of higher power
consumption.

The trick for a lot of beginners is to
figure out how to actually generate the
PWM signal to control one or more ser-
vos simultaneously. A microcontroller is
usually part of the solution. Most new
MCUs have a dedicated hardware PWM
capability, but they’re commonly limited
to one to four channels. Also, because
the useful pulse control range of the
PWM waveform in the specific RC servo
application is only 1 ms out of 20 ms
(i.e., 5% of the full scale PWM range),
you get limited effective output reso-
lution. For instance, a dedicated PWM
module in an MCU using an 8-bit count-
er would only provide an effective PWM
output resolution of 12 steps (256 × 5%),
or 4 bits, instead of 8 bits. The generic
PWM module is designed to cover a
full range of 20 ms, with 8 bits as
opposed to covering the servo’s 1 ms use-
ful range with 8 bits. Likewise, a generic
16-bit PWM module would generate
an effective 12 bits of servo resolution. 

A solution to this problem is to
perform the PWM waveform entirely
in firmware through bit banging.
Unfortunately, this can use up a lot of
the MCU’s resources. It requires criti-
cal firmware timing. A simpler
approach is to purchase a purpose-built
servo controller board and let it handle
the critical multichannel timing while
sending low overhead position com-
mands on a standard serial port (UART).

COMMERCIAL CONTROLLERS
Scott Edwards Electronics’s Mini SSC II

is the best-established serial servo
controller on the market. It allows you

to control up to eight RC servo channels
simultaneously. The Mini SSC II uses an
efficient unidirectional binary serial pro-
tocol for controlling the servo chan-
nels (see Figure 2). This protocol has
quickly become the de facto standard.[1]

A large number of serial servo con-
troller boards on the market now
mimic this protocol; nevertheless, oth-
ers use their own proprietary versions.
Current board vendors include Pontech,
New Micros, Pololu, Lynxmotion,
Picobytes, and Parallax. It seems as
though a new one appears every month!

On the software side, a few vendors
have developed generic servo control
software that supports the Mini SSC II
protocol (as well as others). These
include Brookshire Software with its
Visual Servo Automation, Reynolds
Electronics’s Robo-Ware, Mister
Computer’s Mini SSC Panel, and
Roscoe Robotics with various offerings. 

PRODUCT LIMITATIONS
With few notable exceptions, most of

the current low-cost RC servo controller
boards on the market exhibit some type
of functional trade-off or limitation. Of
course, depending on the end application,
these trade-offs may or may not result
in appreciable performance differences.

Serial RC servo controllers have sev-
eral desirable properties like a low-jitter
PWM waveform gener-
ated preferably in hard-
ware and greater than
10-bit resolution for
the new high-accuracy
digital servos. They also
have a large number of
parallel channels to

accommodate demanding
applications. The con-
trollers have fully syn-
chronized servo channels
to ensure accurate servo
trajectory tracking, and
they include independent
programmable soft limits
to limit the range of trav-
el of servos. The speed
control on each channel
is to reduce servo twitch-
ing when commanding
large motions. There are
programmable servo
start-up positions too. 

Also note that you have the ability
(optional) to turn off servos (i.e., go
limp) and allow them to be moved
manually. The serial servo controller’s
UART data rates can be changed to
suit your application. Finally, you can
transparently daisy chain several con-
trollers for system expansion.

Currently, market offerings appear to
be partitioned into three main cate-
gories. The first represents the boards,
which control only a limited number
of channels (1 through 4). These boards
typically use an MCU with built-in
hardware PWM generation modules.
Doing the PWM in hardware reduces
pulse jitter. The waveforms usually can
be synchronized. However, the effective
position resolution may not be the full
8 bits, so carefully examine the speci-
fications. The small number of PWM
channels supported makes this approach
the low-cost low end of the spectrum.

A second category of servo con-
trollers offers up to eight channels
(sometimes 16). These boards general-
ly use an MCU with firmware-based
bit-banging generation of the PWM on
all channels. The bit-banged algorithm
is based either on timed interrupts or
simply on the open-loop firmware
delays (or a combination of both).
Probably the simplest interrupt-based
implementation of a multichannel

0xFF (Sync value) 0x00–0xFE (Servo #) 0x00–FE (Position)

Byte 1 Byte 2 Byte 3

Figure 2—The Mini SSC II serial servo controller protocol has become the de facto
standard supported by many vendors. Note that 3 binary bytes of data are sent to
command a servo position.The 0xFF value is reserved as the sync marker. Servo
addresses and position commands are limited to the 0 to 254 range as a result.

16 to 20 ms

1 ms

3 to 5 V

3 to 5 V

2 ms

VCTRL (V)

t (milliseconds)

t (milliseconds)

0° 

90° 

VCTRL (V)

Figure 1—An RC servo position control signal consists of a pulse-width modulated digital pulse
train. The 1.5-ms pulse width moves the servo to its middle range, or center position. Varying the
pulse width from 1 to 2 ms will rotate the servo from one extreme to the next.



PWM would be to generate an inter-
rupt at the finest granularity (resolu-
tion) of the output PWM signal, say,
8 µs for a standard servo. Therefore, at
each clock tick, a system counter is
incremented. A table of the pulse
widths for each channel is then scanned
and the corresponding I/O port pins
are toggled low when the main count-
er has exceeded the respective counts. 

After the 20-ms window is reached,
all the PWM lines are set high again and
the cycle repeats. This doesn’t always
work too well because the resulting
interrupt rate is higher than 125 kHz.
Because of the high overhead, most 8-bit
MCUs don’t have enough horsepower
to do the processing required between
the interrupt clock ticks!  

A slightly better interrupt-based
approach is to use the MCU’s built-in
timer. At the beginning of a PWM pulse,
the timer is reloaded with the length of
the pulse. It’s automatically decre-
mented by the internal hardware clock.
When it reaches zero, an interrupt is
generated. At that point the MCU
lowers the port pin, reloads the balance
of the 20-ms delay to raise the pin high
again, and starts the cycle over. This
works fine for one channel, but when
a large number of multiple channels are
involved, the MCU must manage and
share the timer with all 8/16 parallel
channels. It means establishing a global
schedule of all time deltas between the
falling edge of one channel and that of
the next channel to be toggled off.  

The problem here is that if two
channels must be toggled off at the
same time (or one time step after each
other), the interrupt will be triggered
too quickly for the MCU to have time
to respond and reload the
counter. This results in tim-
ing errors. In fact, you can
verify this by commanding
two or more channels to
have the same pulse width
(or even a few counts apart).
By looking at the PWM
signals on an oscilloscope,
you may see timing errors.  

To attempt to solve this
problem, a serial servo
controller will stagger the
pulses of the 8/16 channels
in time so that the pulse

for the first channel is generated. This
is followed by the pulse for the next
channel and so on (see Figure 3). At any
point in time, the MCU resources are
only focused on generating the timing
for a single pulse, which greatly simpli-
fies the firmware. The limitation here
is that in 16 to 20 ms of overall peri-
od, you can only squeeze in between
16 and 20 concurrent channels before
filling up the possible time slots. Now
the servos aren’t synchronized. In other
words, there’s almost a 16- to 20-ms
delay between updating the pulse
width of the first channel and that of
the last channel. This can result in a
5° to 6° degree dynamic tracking mis-
match for a standard 0.2 s/60° servo. 

In addition to all of this, the MCU’s
internal UART, which must process
incoming serial commands, can also
generate additional interrupts. This adds
random jitter to the PWM waveforms.

There are numerous other approach-
es to generating PWM pulses, such as
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fixed code-timing loops and precomput-
ed lookup tables. Most exhibit addition-
al limitations. For example, by turning
off system interrupts, the UART, which
must also process serial commands,
has to be polled during the dead time
between the periodic pulses. This usu-
ally restricts the maximum data rate.

Finally, the third category of RC con-
trollers on the market positioned at the
higher end of the spectrum includes
those with more than 16 channels using
hardware-based PWM generation. One
notable example is the New Micros
25-channel ServoPod, which uses a DSP
with internal dedicated hardware PWM
generation. I’ll introduce you to a novel
FPGA-based approach belonging to the
third category. It’s a true 32-channel
hardware-based PWM generation unit
under the tight control of an MCUthat’s
responsible for all higher-level functions.

SYSTEM ARCHITECTURE
One of the best ways to generate jitter-

free, accurate, synchronized,
multichannel PWM signals
is through a hardware
implementation. Figure 4
depicts the overall circuit.

A Xilinx FPGA contains
an internal array of 32 inde-
pendent PWM generation
units each tailored to gen-
erate a 0.5- to 2.5-ms
pulse at 12-bit resolution
(0.5 µs) and 16-bit timing
accuracy. Each of these
channels is dedicated to
the control of one servo. A

FPGA

PWM
FPGA

Program
memory

CLK
INT

ADDR/DATA

ALE
RD
WR

Atmel
MCU

Regulators
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Figure 4—A Xilinx FPGA contains the 32 parallel hardware PWM generator modules. The
modules are controlled through memory-mapped registers. The heart of the circuit is the
ATmega8515L MCU, which makes full use of its external memory bus. A level shifter con-
nects the board to a standard RS-232 PC serial port.

Channel 1

Channel 2

Channel N

16 to 20 ms

Channel 1

Channel 2

Channel N

Synchronized PWM channels:
all pulses start at the same time on

 every PWM channel

Nonsynchronized PWM channels:
pulse start staggered in time on

 every PWM channel

Figure 3—Take a look at the differences between synchronized multichannel PWM generation (a) and nonsynchro-
nized (staggered) PWM generation (b). The illustrations aren’t drawn to scale. All of the PWM channel pulses in a
start at the same point. This ensures that all servos move synchronously. The scenario in b results in relative servo
trajectory tracking delays.

a) b)
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small Xilinx flash program memory is
used to load the FPGA code every
time the board is powered.  

An ATmega8515L MCU is the heart of
the system. Making full use of its exter-
nal memory bus interface, it controls the
set up and operation of the 32 memory-
mapped PWM generation units and
handles other system activities. 

The ATmega8515L is responsible for
running the serial protocol and updat-
ing the PWM registers. An external
interrupt pin times the loading of the
registers to occur in the dead time of
the PWM cycle so that runt pulses
aren’t generated. The ATmega8515L
also runs the servo speed control algo-
rithms and performs real-time limit
checking on each servo axis. The
speed and soft travel limits on each
channel are user-defined and stored in
the nonvolatile EEPROM memory
inside the ATmega8515L. An RS-232
level shifter allows for access to the
ATmega8515L via a standard serial port.

STAY TUNED
So far I’ve explored the theory

SOURCES
ATmega8515L Microcontroller
Atmel Corp.
www.atmel.com

25-Channel ServoPod
New Micros
www.newmicros.com

SV203 Servo controller
Pontech
www.pontech.com

Servo control software
Roscoe Robotics
http://members.aol.com/iamflb/

Mini SSC II servo controller
Scott Edward Electronics, Inc.
www.seetron.com

FPGAs and development tools
Xilinx, Inc.
www.xilinx.com

Eric Gagnon, M.A.Sc., P.E., has been
hooked on electronics since the age of
12. He earned both of his degrees in elec-
trical engineering from the University
of Ottawa. Eric has more than 10 years
of embedded design experience. He
has worked on projects related to the
International Space Station, industrial
robotics, 3-D machine vision, and
embedded video. Eric currently runs
Digital Creation Labs, Inc. (www.digital
creationlabs.com). You can contact him
at egagnon@digitalcreationlabs.com.

REFERENCE
[1] Scott Edwards Electronics, “Mini SSC

II Serial Servo Controller,” SSC-ASD2,
www.seetron.com/pdf/ssc2_mnl.pdf.

PROJECT FILES
To download the code, go to ftp.circuit
cellar.com/pub/Circuit_Cellar/2004/177.

behind RC serial servo controllers,
reviewed some commercial offerings,
and introduced the architecture of a
true hardware-based 32-channel con-
troller. Next month, I will present the
circuit schematics and delve deeper
into FPGA territory to expose the inner
workings of the circuit. Until then,
start sharpening your FPGA skills. I
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(please play carefully here) and lightly
draw it across your finger pad. Can
you feel each time the pin rubs over
one of those tiny ridges? It’s just like
scratching a phonograph needle over a
record’s grooves. (No this won’t work
on CDs, although they will skip if the
surface is scratched, but that’s another
story.) Not only do fingerprints help
detect movement, they also aid
in judging speed.

Wouldn’t it be nice if your
favorite robot had a similar sen-
sitivity? In this column, I’ll
introduce you to Peratech’s
quantum tunneling composite
(QTC) technology. I used it in a
Heathkit Hero robot project.

ROBOTICS
Intelligence alone does not a

robot make. Robotics projects
depend on the synergy of I/O
functions and intelligence. 

You can watch robots slug it
out in an RC arena with flippers

Touch your thumb and index
finger together. I’ll wait. Feel
that? Now try the same thing
using different pressures. Feel
any difference? No? Me neither.
Except for the muscle strain I
felt, I couldn’t gauge the amount
of pressure. Nevertheless, I can
pick up an egg with out crushing
it. What allows me to do this?

Understanding of the world
would be difficult without your
sense of touch. Although your
entire body is sensitive to
touch, your glabrous areas (e.g.,
fingers and toe pads) are more sensi-
tive because of the types of skin recep-
tors found there (see Figure 1). Your
epidermis, the top layer of skin, con-
tains Merkel cells that respond to
pressure on the skin and Meissner cor-
puscles that respond to vibrations (20 to
40 Hz). Below the epidermis is the der-
mis, which houses Ruffini endings
that respond to pressure and Pacinian
corpuscles that respond to vibrations
(150 to 300 Hz). Nerve fibers behave
in two distinct ways. The Ruffini end-
ings are slow-adapting receptors that
fire based on an on-going stimulus.
The Pacinian corpuscles are rapidly
adapting receptors that fire with
changing activity. Think of it like the
difference between speed and accelera-
tion (see Figure 2).  

Crime scene investigators use fin-
gerprints for identification purposes.
But those little valleys and ridges are
more than identifying marks; they
play an important role in your sense of
touch. Take a sharp object like a pin

and blades. But the robots
aren’t autonomous; they require
an operator. They have no input
feedback between the processor
and an output function. The only
input feedback is what the opera-
tor sees. Locomotion accuracy is
based solely on the operator’s
ability to adjust the robot’s move-
ment in real time. Weapons are
also operated in this fashion.
Many times, however, winning a
battle depends more on equip-
ment functionality than on a par-
ticular battlefield strategy.

Robots are also used on assembly
lines. Do the sparks generated by
automatic line welders fill you with a
feeling of respect for industrial power,
or do they worry you about the future
of the human labor force? The point
here is that even those robots have lit-
tle or no feedback. Many will contin-
ue performing their programmed tasks

Hairy skin Glabrous skin

Meissner’s
corpuscle

Merkel disk 
receptor

Pacinian
corpuscle Peripheral

nerve bundle

Epidermis

Ruffini
ending

Dermis

Figure 1—The sense of touch comes from two types of nerve cells.
Merkel cells and Ruffini endings respond to pressure. Meissner and
Pacinian corpuscles respond to vibration. Both types are found beneath
the glabrous skin of the body.

Stay in Touch
FROM THE BENCH by Jeff Bachiochi

Peratech’s quantum tunneling composite (QTC) technology is going to change the way you
approach your robotics projects. Read on to learn how Jeff softened the grip of a Heathkit
Hero robot with a QTC sensor.

Sensor Material for Robotics Applications

Touch
Modality

Receptors

Meissner’s
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Intensity and time course

Neural
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Figure 2—Take a look at how each type of nerve cell responds
to stimuli. The pressure cells respond only to changes in pres-
sure. The vibration cells have a continuous response.
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even when the product is removed or
a person gets in the way. Dumb, but
efficient. This may be fine if humans
are removed from the picture, but the
future of robotics is changing. As
industrial technology evolves, robots
will be tasked to work more closely
with laborers. This will create a new
set of safety issues that will be tack-
led only by way of feedback. Although
feedback can be used to prevent a
robot from doing harm, it’s also a
requirement for accomplishing tasks
effectively. 

Many robots are currently used as
autonomous delivery vehicles. When
the technology was first introduced, the
robots simply followed lines, but it
quickly became clear that external
issues were preventing tasks from reach-
ing completion. The first line-following
robots couldn’t avoid the obstacles in
their paths. As a result, input feedback
has become the eyes and ears robots use
to make autonomous decisions.  

ROBOTIC TOUCH
You touch things to explore your

environment. Touching things also
helps you form emotional bonds with
other people. 

The bit is the ultimate input. It’s
decisively simple. Yes/no. On/off.
Open/close. It either is or it isn’t.
Most microcontrollers give the bit its
own instructions. Robots use switches
to acquire binary information.
Although other types of input can give
the robot a sense of where it stands in
relation to other objects, the robot’s
bumpers indicate when it comes into
contact with something. The problem,
of course, is that objects can hit the
robot without striking a bumper.
Someday robots will be covered with a
sensory material like human skin.

After a robot has the ability to move
around freely, it can provide delivery
assistance. Having the ability to load
and unload the cargo would make the
robot truly autonomous. This might
be the mail, medicine, or your favorite
beverage. The best appendage would
be some kind of arm that could grasp
objects. Sounds easy, right?

Assuming you’ve perfected the
robot’s ability to move around and
position its arm, you’ve got to address
the issue of touch. How much force is
needed to pick up an object? You can
design an end effector that’s matched
to the necessary function. For
instance, an arm with a scoop would-
n’t necessarily require information
about the items it would scoop.
However, an arm with a grasping
effector would require feedback to
complete the task. Again, simple and
specific tasks can be performed using
simple feedback switches. The switch
contacts should be positioned within the
grasping effector. OK, so now your robot
can grab a rock, but what about an egg?

WITHSTANDING PRESSURE
ICs come in either antistatic plastic

tubes or black foam. The latter con-
tains carbon particles in the foam.
This allows IC pins to be shorted
together so a floating pin won’t pick
up a potentially damaging external
charge. This material can be used as
pressure sensitive material because it
has a measurable resistance.
Unfortunately, there are some serious
drawbacks to using this material. It’s a
high-resistance material that lowers
its resistance with pressure. Because it
doesn’t return to its original uncom-

pressed state after the compression is
released, it’s difficult to get repeated
accuracy. Another problem is that the
foam can crumble with use.

The idea of using some material to
directly measure pressure is a useful
one. Popular solid-state pressure sen-
sors can measure air and liquid pres-
sures (see Photo 1). Load cells measure
weight and force through tension and
compression (see Photo 2). Resistive
ink force sensors come the closest to
the use of the black conductive foam
(see Photo 3). One of the newest
entries in this market is Peratech’s
QTC material, which has the relaxed
qualities of a switch (off) with the
compressed qualities of a conductive
material (see Photo 4).

QTC MATERIAL
QTC material is made from metal

particles (as opposed to carbon) com-
bined with an elastomeric binder.
Unstressed, the material looks like an

Photo 1—Solid-state pressure sensors contain sensing
elements that consist of four piezoresistors buried in
the face of a thin, chemically etched silicon diaphragm.
A pressure change causes the diaphragm to flex, thus
inducing a stress or strain in the diaphragm and the
buried resistors. The resistor values change in propor-
tion to the applied stress.

Photo 2—The load cell uses strain gages usually in a
full bridge format to measure the load applied directly
to a point on the sensor.

Photo 3—Tekscan uses a thin semiconductive coating
(ink) to produce Flexiforce, which is a flexible tactile
force sensor.

Photo 4—QTC components from Peratech come in
four basic styles: Pills, Switch Substrates, and Cable
and Force Sensors. Pills can be added to current switch
designs to change any push-to-make switch into a fully
proportional voltage or current controller. Switch sub-
strates can be incorporated into membrane or keypad
switches to provide far greater reliability and optionally
proportional control. Cable can be used in machine pro-
tection or security applications, or it can detect the
presence or removal of loads. Force sensors, which
offer considerably more range than standard force
sensing resistors, are much more resilient to handling
and environmental factors.



insulator. Applying a mechanical
deformation initiates conduction. An
almost metallic conduction is
achieved with sufficient pressure.
Table 1 shows how using carbon or
metallic particles in the composite
changes the material’s properties.

The compression of carbon-based
composites enables carbon particles to
come in contact with one another
resulting in conductive pathways. The
metal particles in QTCs don’t touch;
they’re just extremely close. In fact,
they’re so close that quantum tunnel-
ing is possible between particles.
Quantum tunneling is the effect by
which a free electron within a conduc-
tor passes through an insulator even
though it doesn’t support free elec-
trons. Based on a constant electron
energy level, compressing the QTC
material essentially reduces the insu-
lation barrier. This allows some elec-
trons to tunnel through. Conversely,
electron tunneling can occur (for any
given unstressed QTC) if you raise the
applied voltage (electron energy).

Stress on the QTC material pro-
duces a resistance change that’s an
inverse exponential function of the
applied force. Actually, the way in
which the QTC material is com-
pressed affects its behavioral curve
because external compression in one

50 Issue 177    April 2005 CIRCUIT CELLAR® www.circuitcellar.com

Photo 5—You can see the conductors inside the clear
packing tape sandwich. Holes punched in the upper
tape allow a QTC Pill to make contact with the conduc-
tors. Double-sided foam tape on the fingertip shows
how a QTC Pill is held over the conductors.

direction distorts the material in mul-
tiple directions. Peratech can adjust
the behavior of QTC during the man-
ufacturing process by varying the
composite mix and physical dimen-
sions. It developed four basic parts
that cover a wide number of uses.

QTC SWITCH SUBSTRATE
For touch pads and keypads, the QTC

Switch Substrate is a thin application of
QTC on the aluminum side of a poly-
ester sheet. When placed over inter-digit
electrodes (PCB traces), the material
provides a conductive path between
digits when compressed on the traces. 

The QTC Switch Substrate material
comes in three sensitivities. Unlike
membrane switches, an insulation
spacer isn’t necessary. This simpli-
fies the manufacturing process. You
also have the benefit of each set of
contacts becoming variable pressure-
sensitive inputs. 

QTC PILL
You can use the QTC Pill for low-

power applications that require the
direct control of devices like motors
or lights. The QTC Pill is a 1 mm
thick piece of QTC material (3.6 mm
square). It can be used as a switch
across PCB traces (like the Switch
Substrate sheet), or it can go right in
series with any low-power device,
thus replacing the power switch con-
tacts and adding a variable speed fea-
ture to the device. For high-powered
devices, the QTC Pill can operate as
the gate control to the power circuitry.

QTC CABLE
If your robotics project requires

machinery safety guards, bumper
detection, or impact counting, the
QTC Cable is the solution you’re
looking for. QTC Cable is manufac-
tured like RG-59 coax cable. The core
insulator located between the inner
conductor and the outer shield
replaced with QTC material. 

Note that the QTC Cable can be
terminated with a standard BNC plug.
Its minimum bend radius (10 cm) pre-
vents erroneous switching.

QTC FORCE SENSORS
A QTC Force Sensor has a large lam-

inated surface area capable of sensing
large impacts. It can be manufactured
in various sizes and shapes to over 1 m. 

Similar to the Switch Substrate, the
Force Sensor features a connector tail
for electrical attachment via conduc-
tive epoxy, solder, or riveting. The
choice of lamination provides some
level of force/impact distribution.
When mounted to a hard flat surface,
you can alter the sensor’s sensitivity
by adjusting the size of a pressure
spreader attached to the top surface.

MY HERO
What comes to your mind when you

see the word “robot”? Many people
think about R2-D2 and C-3P0. (Kudos to
George Lucas for making these two
robots popular trivia subjects.) Robotics
enthusiasts usually think of the
Heathkit Hero, which was one of the
most successful robots ever produced.
You won’t find robots on Heathkit’s
web site (www.heathkit.com); however,
you can follow the support link to sites
that are continuing the proud tradition.

Although the original Hero’s arm

Table 1—Conductive foam has been manufactured using carbon for years now. Peratech’s metallic approach has
significant benefits. This chart shows the resistivity and current carrying differences between the two methods.

Composite material
used

Unstressed Fully stressed
Change in force for a 10×

change in resistance
Current

carrying capacity
Carbon 105 Ω 102 Ω Medium Low

Metal 1012 Ω < 1 Ω Low High

Photo 6—My Hero robot can successfully pick up an
egg without cracking the shell. To avoid the safety
issues of coexisting with humans, the robots of the
future will need an extensive array of sensors.
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could reach out, it couldn’t
touch things because its
gripper lacked feedback.
Peratech’s PTC material
can solve this problem, and
today’s flexible circuitry is
ideal for adding this type of
sensor to the Hero’s gripper. 

I built a prototype sensor.
First, I scouted out some
flex circuitry I could hack.
There are some nice flex
items used in disk drives. I
experimented with a short
section of multi-conductor
0.5-mm flex cable by plac-
ing a QTC Pill on the unin-
sulated contacts of one end. I then
measured the opposite end’s contact
with an ohmmeter. This worked well
because the QTC Pill bridged many
contacts and added redundancy
against trace failure. It also comes
with a means of terminating the con-
nections using a standard flex cable
connector. This proved the theory to
be a sound one; however, it didn’t fit
the Hero’s gripper in its stock state. I
quickly realized that this had to be a
custom job.

My Hero’s gripper has a cross sec-
tion similar to that shown in Figure 3.
The inside of the gripper has a raised
center section, which is the first area
to touch an object. The sensor’s design
made use of this surface. I picked up
some thin sheet metal stock from a
local hobby shop and cut a few 0.1″
conductors. I wrapped the inside of
the gripper with two parallel contacts
with several QTC Pills located along
them. I originally wanted to use sen-
sors on the inside of both gripper fin-

gers in order to detect the pressure
placed on an object between them. After
looking at the gripper, I realized I need-
ed to sense only one side of its finger.
I decided that the second sensor would
make more sense on the gripper’s fin-
gertip (sensing the complete closure of
the gripper). Knowing when the grip-
per is completely closed indicates
when an object is too small to grasp
(unless the gripper tips are used).

Photo 5 shows the sensor I made
using clear packing tape to position and
seal the contacts. Using a paper punch
(in the top piece of packing tape), I posi-
tioned holes over the contacts where the
QTC Pills were to be located. The dou-
ble-sided foam tape atop the assembled
sensor’s contacts had corresponding
holes punched. The wells, which hold a
QTC Pill, have a top conducting disk
punched from the thin sheet metal
stock placed on top of them. The dou-
ble-sided tape holds the sensor on the
gripper; it allows a surface of rubber
(from a Playtex glove) to seal the entire

sensor. The rubber
also prevents the
gripper’s surface from
becoming slippery.

You can surface-
mount the circuit in
Figure 4 to flex cir-
cuitry to make a
complete sensor
package. The SPI
interface allows an
internal ADC to
measure each sensor
and report back with
sensor pressure data.

Alternatively, you can pro-
gram a TTL output as a
go/no-go output using pre-
programmed EEPROM val-
ues as trigger points. The
SPI interface can set or
redefine these values. Your
biggest concern should be
choosing the divider resis-
tors. These are based on the
type of QTC material you’re
using and the gripper’s sen-
sitivity requirements. 

ELECTRIC DREAMS
Although my Hero still

needs sensors to guide its
hand toward an object, it can now grip
things without mashing them to bits
(see Photo 6). Robots of the future may
be covered with skin made of QTC
material. We’ve come a long way, baby.
And although we have a long way to go,
it’s a seemingly small technological
advance like this that will make all of
our dreams possible. I

Double-sided
foam tape

with hole punched

Metal
Rubber skin

Peratech Pill

Double-sided
foam tape

Cross section
of robot’s finger

Metal contacts
with packing tape layers

Wire connections

Packing tape sandwich
(sticky sides together)

Hole punched
in top packing tape

Metal contact

Peratech Pill

Figure 3—The lower drawing shows the prototype sensor based on the Hero’s gripper dimen-
sions. The top drawing shows you how the sensor is mounted on the Hero’s gripper finger.

Figure 4—The use of a surface-mount processor enables you to construct the
complete sensor on a flex circuit. This design uses SPI for communication with
the robot. This could be I2C, USB, or any other type communication channel you
may be using on your robot.

Jeff Bachiochi (pronounced BAH-key-
AH-key) has been writing for Circuit
Cellar since 1988. His background
includes product design and manu-
facturing. He may be reached at jeff.
bachiochi@circuitcellar.com.
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month. I won’t be telling you anything
you don’t know when I say that the
AVR is an extremely popular micro-
controller. But have you had the
chance to sit down and read through
an AVR datasheet lately? 

Depending on the microcontroller,
there are lots of knobs to twist and
hardware configurations to choose
from. If you go with an AVR, you’ll be
breadboarding or creating PCBs to
implement your initial and final
designs. At minimum, you’ll need a
regulated power source, a clock
source, and a microcontroller reset cir-
cuit. If you need to communicate
(most embedded designs do), you’ll
probably have to design in network
interface circuitry. Chances are that
somewhere down the road you’ll need
to revise your firmware or squash a
latent bug. So, you’ll have to design in
a user-friendly programming port as
well. There’s never enough extra
SRAM floating around. Depending on
what your little AVR will have to do,
you may find yourself clipping on an
external SRAM IC.

If an AVR project is in your future,
and if some of the aforementioned
requirements sound familiar, don’t
reinvent the wheel at your bench.
Take some time to get familiar with
Micromint’s new Micro64, which is a
modular AVR-based controller housed
in a 42-pin, 1.5-cubic-inch potted brick.

Micro64 BASICS
The Micro64’s core is an ATmega64

microcontroller running at 11.0592 MHz.
As you may already know, the
ATmega64 natively supports 64 KB of

As most of you know, designing a
professional embedded project that
requires a microcontroller complex, a
PCB, and a protective enclosure from
scratch isn’t a trivial task. Many hours
go into the mental design process
before you spend days transforming
your ideas into hardware. All aspects
of the new design must be thoroughly
thought through. Sometimes the
enclosure is more difficult to create
than the circuitry it envelopes.
Making mistakes, especially when it
comes to the enclosure, during the
design and prototype process will cost
you both time and money.  

It’s always a good idea to know how
your final product will be used. But it
isn’t always possible. I’ve designed
stuff for a particular purpose (at least
it was in my mind) that my customers
found handy for a different applica-
tion. For example, suppose your
embedded design must be able to be
networked with similar devices or
with devices capable of speaking your
design’s network language. To add a
little insult to injury, what if your
design needs to speak multiple proto-
cols and you don’t know which one
you’ll encounter in the field. What do
you design in? What do you leave out?
Oh, yeah, cost is a significant factor
too. What do you do?

A number of reputable manufactur-
ers offer numerous types of microcon-
trollers. You also can procure modu-
larized microcontroller platforms that
house some of the common off-the-
shelf microcontrollers from third-party
companies. The Atmel ATmega64 is
the microcontroller of choice this

in-system reprogrammable flash mem-
ory, 2 KB of EEPROM, and 4 KB of
SRAM. Micromint’s Phil Champagne
enhanced the raw AVR core embedded
within the Micro64. He added a full
32 KB of SRAM and a factory-loaded
bootloader application that shares the
AVR flash memory space with a set of
factory-loaded, flash memory-resident
utilities that provide you easy access to
the Micro64’s unique hardware features.

The Micro64A incorporates an
optional two-channel 12-bit A/D con-
verter. Both the Micro64A and stan-
dard Micro64 include the AVR stan-
dard on-chip, eight-channel, 10-bit
A/D converter. The ante is upped on
the communications side because
both models sport upgraded multi-
functional USART subsystems. A
Micromint C library module provides
code to enable both USART0 and
USART1 in TTL, RS-232C, RS-485, or
RS-422 modes. 

Forget about selecting and populat-
ing a clock source and building up a
regulated power supply. The Micro64
internalizes both functions. You can
run the Micro64 with a 12-V wall
wart. The 11.0592-MHz clock circuit
is, shall I say, potted in. If you choose
the Micro64 or the Micro64A, you’ll
be able to use the bootloader utilities
to exercise the Micro64’s real-time
clock/calendar. And, yes, there’s a bat-
tery input pin (VBAT) to keep the time
real while the other Micro64 subsys-
tems are snoozing.

Phil did a great job with the Micro64’s
enhancements. He also managed to
squeeze in and reserve 29 general-
purpose I/O lines, four timer/counters

Test-Driving the Micro64

APPLIED PCs by Fred Eady

Planning an AVR-based industrial control or data logging application? Check out the Micro64,
which is a modular AVR-based controller housed in a 42-pin, 1.5-cubic-inch potted brick.
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with Compare and PWM modes, a
two-wire (I2C) interface, and an SPI
port. The AVR’s standard power man-
agement modes and watchdog timer
are also available. The Micro64 com-
munications subsystem makes it easy
to network a number of Micro64
modules.

I’ve written enough about the
Micro64 hardware. Download the
datasheet and application notes from
Micromint’s web site for more infor-
mation. Now I’ll describe how I
applied some power to the Micro64
and test-drove it.

CODING THE Micro64
My Micro64 came with a develop-

ment board that provides all of the
necessary power and communication
hookups. Supporting power circuitry,
communications subsystems, and a
large breadboard area surround the
Micro64 (see Photo 1). The various
jumpers allow the communications
port to be configured for RS-485, RS-
232, or RS-422 operation. Screw ter-
minals make easy work of attaching
the Micro64 to a twisted-pair, half-
duplex RS-485 or RS-422 network.
The Micro64 development board is
configured for standard RS-232C,
which allows you to connect immedi-
ately to your PC’s serial port via the
Micro64 development board’s
DS14C232C RS-232 converter IC.

The Micro64 is based on the
ATmega64, which means you can pro-
gram it using AVR assembler, C lan-
guage, or compiled BASIC. Micro64
example code for CodeVisionAVR and
BASCOM-AVR is posted on
Micromint’s web site.  

Micromint’s bootloader program
that runs on your PC communicates
with the Micro64 bootloader firmware
via a fast serial connection. There’s a
copy of BASCOM-AVR in the Florida
room’s compiler library. I came across
the latest version of CodeVisionAVR
as well. I have CodeVisionAVR up and
running right now. So, as Steven Stills
would say, “love the one you’re with.”

CodeVisionAVR & Micro64
CodeVisionAVR is an AVR C com-

piler from the house that Pavel built:
HP InfoTech. CodeVisionAVR’s

strength lies in its simplicity. The
CodeVisionAVR C compiler is easy to
set up and just as easy to learn to use.
The support is outstanding as well. 

The CodeVisionAVR compiler fol-
lows as closely to the ANSI standards
as the AVR architecture will allow it
to before giving in to the quirks of
the AVR. The package includes a
bunch of utilities that do everything
from drive LCDs to configure and
communicate with Dallas 1-Wire 
protocol devices.

If you can’t find what you want in the
example code, you can rub the lamp and
summon the CodeWizardAVR auto-
matic program generator. There’s a big
chunk of external SRAM begging to be
used in the Micro64 brick. I dusted off
the old lamp and called on the Wizard
to see if he would help me write a
simple Micro64 external SRAM
read/write application.

After opening the CodeVisionAVR
IDE, I opted to create a new project.  I
was asked if I wanted to call upon the
Wizard. I did, and Photo 2a appeared
on my screen. As you can see, I chose
to create an application project. 

The next step involved choosing the
appropriate amount of external SRAM
and defining how it should be
accessed. My choices are shown in
Photo 2b. I found that the Micro64
worked well with or without adding
wait states. The external SRAM was
addressed immediately following the
AVR’s 4-KB chunk of on-chip SRAM.

For the ATmega64, the first external
SRAM address was 0x1100, with an
ending address of 0x7FFF. The lower
4 KB of external SRAM is overlaid by
the ATmega64’s internal block of
SRAM. Therefore, there is effectively
only 28 KB of external SRAM avail-
able. If you need to access all 32 KB of
external SRAM, the ATmega64
datasheet describes a way to mask the
high address bits and swap in and out
of External Memory mode to get at
the hidden SRAM. Phil has also pre-
pared an application note detailing
how you can get at the 32 KB of
SRAM within the Micro64.

USART1 was used by the Micro64
bootloader. However, I wanted to spill
my SRAM read results out of a serial
port, and that left USART0 as my only
choice. Note that 9,600 bps was fast
enough. I really didn’t need a receiver
for this application. Entering my
USART0 configuration choices in
Photo 2c was as far into Micro64 hard-
ware configuration as I needed to go. I
wasn’t planning to use any of the
other Micro64 peripherals in this spin. 

I took some time to fill in some of
the project information just to see
where the Wizard would put it (see
Photo 2d). After that, I generated my
configuration and saved the files
(micro64_sram.c, micro64_sram.prj,

Photo 1—The Micro64 was designed to participate in
rugged industrial environments. The light-footed
ATmega64 coupled with the 32 KB of SRAM allows the
Micro64 to be used in a variety of applications.

Photo 2—I like to use Wizards to check my work. I’m old fashioned. I like to beat the datasheet pages ragged.
When I’m done, I run the Wizards to see if I did things correctly.

a) c)b) d)
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and micro64_sram.cwp) in my project
folder. I cleaned up the original
Wizard-generated code in Listing 1 by
eliminating all of the unwanted ini-
tialization code for the ports, interrupts,
and timers.

The next step involved adding source
content that I knew I would need to
select and use the Micro64’s USART0.
For starters, I added an include state-
ment for the Micromint communica-
tions library (MMRS485.h). I declared a
COM variable. The value of the COM
variable determined which USART
would be used in the application. 

I accessed the Micro64 external
SRAM with simple pointers. In addi-
tion to bringing in support for
USART0, I added the local variables
*sram_pointer and sram_data (see
Listing 2). I aimed the pointer
(*sram_pointer) at the first external
SRAM location following the on-chip
4 KB of SRAM (0x1100) and read the
SRAM location to put a stick in the
ground for what was there already. I
then pushed 0xAA into the same exter-
nal SRAM cubby I was pointing to and
read the location again. 

Now that you know how it’s done
with the CodeVisionAVR C compiler,
let’s take a look at a similar external
SRAM read/write task. I used the BAS-
COM compiler.

BASCOM-AVR
The BASCOM-AVR BASIC compiler

is similar to the CodeVisionAVR C
compiler in that there are plenty of
good examples and AVR-biased utili-
ties included in the package. Some of
the built-in BASCOM-AVR goodies are
shown in Photo 3a, which is where I
began setting up the BASCOM-AVR
compiler for the external SRAM appli-
cation. I selected wait states in this
spin just for grins. The only other tabs
I had to access were both of the
Communication tabs, which allowed
me to set the microcontroller clock
speed and designate a default data rate
and PC COM port. 

I entered the Micro64 clock frequen-
cy and microcontroller USART0 data
rate in the window shown in Photo
3b. The entries in Photo 3c are for the
terminal emulator built into the BAS-
COM-AVR IDE. 

Listing 2—I didn’t have to tap too many keys to get this little code snippet compiled and running. I can envision
all sorts of data structures in external SRAM that can be exploited with this simple pointer technique.

#include <mega64.h>  
#include <MMRS485.h> //Micromint’s library for using both USARTs
#include <stdio.h>
// Declare your global variables here
int COM;             //If COM = 0, then use USART0 if it = 1 and 
//then use USART1.
void main(void)
{
//Declare your local variables here
unsigned int *sram_pointer;
unsigned char sram_data;
*******************************************************************
//External SRAM page configuration: 
//1100h–1FFFh/2000h–7FFFh
//Lower page wait state(s): None
//Upper page wait state(s): None
MCUCR=0x80;
XMCRA=0x10;
*******************************************************************
COM = 0;
//USART0 initialization
//Communication parameters: 8 Data, 1 Stop, No Parity
//USART0 Receiver: Off
//USART0 Transmitter: On
//USART0 Mode: Asynchronous
//USART0 Baud rate: 9600
UCSR0A=0x00;
UCSR0B=0x08;
UCSR0C=0x06;
UBRR0H=0x00;
UBRR0L=0x47; 
*******************************************************************
sram_pointer = 0x1100;     //Aim at SRAM location  
sram_data = *sram_pointer; //Read targeted SRAM location
printf(“\r\nSRAM Data at 0x%04X BEFORE = 0x%02X”,sram_pointer,sram_data);  
sram_data = 0xAA;
*sram_pointer = sram_data;   //Write targeted SRAM location
sram_data = *sram_pointer;   //Read targeted SRAM location
printf(“\r\nSRAM Data at 0x%04X AFTER  = 0x%02X”,sram_pointer,sram_data); 
while(1);
}

Listing 1—If you take the time to enter all your hardware information into the CodeWizardAVR tabs, you’ll end
up with a skeleton source code page with all the peripheral initialization code in place. It sure beats tracking
down the bits in the datasheet.

#include <mega64.h>
//Standard I/O functions
#include <stdio.h>
//Declare your global variables here
void main(void)
{
// Declare your local variables here
//External SRAM page configuration: 
//1100h–1FFFh/2000h–7FFFh
//Lower page wait state(s): None
// Upper page wait state(s): None
MCUCR=0x80;
XMCRA=0x10;
//USART0 initialization
//Communication parameters: 8 Data, 1 Stop, No Parity
//USART0 Receiver: Off
//USART0 Transmitter: On
//USART0 Mode: Asynchronous
//USART0 Baud rate: 9600
UCSR0A=0x00;
UCSR0B=0x08;
UCSR0C=0x06;
UBRR0H=0x00;
UBRR0L=0x47;
while (1)

{
// Place your code here

};
}
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The rubber hit the road in Listing 3.
BASCOM-AVR allows you to carve out
a chunk of external SRAM using the
$xramstart and $xramsize opera-
tors. The $xramstart operator allows
you to begin at a desired point within
the external SRAM address range while
the $xramsize operator overrides the
size of the external SRAM I designat-
ed in the set-up window in Photo 3a. 

After configuring and initializing the
Micro64’s USART0, I defined XRAM
byte Sram_data and XRAM pointer
Sram_pointer. The actual external
SRAM data location I was exercising
was at 0x0100 (Sram_data). I created a
pointer to the external SRAM memo-
ry location (Sram_pointer) using the
BASCOM-AVR’s Overlay parameter.
This allowed me to access the Micro64’s
external SRAM via pointers, just as I
had done with CodeVisionAVR. 

Both BASCOM-AVR and CodeVision-
AVR include terminal emulators in
their IDEs. Photo 4 (page 59) is the
combined result of running the
CodeVisionAVR C and the BASCOM-
AVR BASIC external SRAM access
code I’ve just described.

HOW’D HE DO THAT?
So as not to put the cart before the

horse, I need to explain how I set up
my Micro64 development board in
relation to the Micro64 Bootloader PC
application. Photo 5 (page 59) pretty
much tells the story. I attached the
Micro64’s USART1 to my PC’s COM1
via the Micro64’s development board
nine-pin shell connector J2. I used
COM1 as the bootloader programming
port for both the CodeVisionAVR and
BASCOM-AVR environments. I per-
manently attached COM2 to the
USART0 port on the Micro64 (J3). I used

it to pass data between the Micro64
and the respective IDE terminal emu-
lators in both compiler environments.

Programming the Micro64 with the
bootloader arrangement was fast and
easy. After the C or BASIC code was
compiled into a hex file, I simply
selected the resultant hex file in the
Application Code window and clicked
the Download button. I then pressed
the Micro64 Reset button and the
bootloader components on the PC and
within the Micro64 communicated
and performed the download/program
operation. If I had any EEPROM data
to load into the Micro64, the pro-
gram/download operation was identical
to the application data download/pro-
gram sequence (see Photo 5).

Micro64 UTILITIES
The Micro64’s utilities, which are a

group of functions preloaded with the
bootloader into the upper 4 KB of pro-
gram space, are one of the neatest
things about it. Data relating to the
functions is passed via a block of

reserved SRAM between addresses
0x0FFB and 0x0FFF. The functions
cover processes of using the 12-bit
A/D converter, the real-time clock,
and the I2C communications subsystem.

Suppose you want your application to
read the RTC and determine the day of
the week. For the Micro64, the function
that reads the day of the week is located
at offset 0x7D05. To access this partic-
ular function via the CodeVisionAVR,
you must declare and define the func-
tion with the following statement:

void(*Read_Day_Of_Week)(void)=
0x7D05;

Either the result of the operation or an
error indication will transmit via
SRAM addresses 0x0FFE and 0x0FFF.

You must define the SRAM area to
obtain the resultant data. A simple C
statement does this: 

unsigned int Result @ 0x0FFE  

Assuming you do the housekeeping

Photo 3—You can’t miss if you have the right set of numbers. As you can see in the tab structures, you can invoke some hefty automation within your BASCOM-AVR project.

Listing 3—Use of the Overlay operator is a clever way to create a pointer in BASIC language. The idea here is
the same as with the CodeVisionAVR C code. The only real difference is where the compilers choose to call
the beginning of the external SRAM space.

$regfile = “m64def.dat”
$baud1 = 9600
$xramstart = &H100
$xramsize = &H1000
‘Configure the serial port.
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
‘Open the serial port
Open “com1:” For Random As #1
Dim Sram_data As Xram Byte At &H0100
Dim Sram_pointer As Xram Byte At &H0100 Overlay
Sram_pointer = &H00
Print #1 , “SRAM LOCATION 0x0100 BEFORE = 0x” ; Hex(sram_pointer)
Sram_pointer = &HAA
Print #1 , “SRAM LOCATION 0x0100 AFTER  = 0x” ; Hex(sram_pointer)
Close #1
End

a) c)b)
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correctly, all you have to do
to get the day of the week is
call the function at 0x7D05: 

(*Read_Day_Of_Week) (); 

The Result variable will be
held at SRAM location
0x0FFE in the form of an inte-
ger. As a result, all you have to
do is simply read the Result
memory location to obtain
the day of the week. Now I’ll
show you how to do this
with the language of BASCOM-AVR.

Things are different with BASCOM-
AVR. You don’t need to declare and
define the function because inline
assembler statements perform the
function call. The BASCOM-AVR
function call for the day of the week
looks like this:

$asm
!Call $7D05
$end Asm

The function of your SRAM word at
0x0FFE is the same in BASCOM-AVR
and CodeVisionAVR. It’s declared in
BASCOM-AVR in this manner: 

Dim Result As Word At &HFFE

After you’ve made the inline assembler
call, the result will be passed on to
the BASCOM-AVR application via the
word at SRAM location 0x0FFE. Again,
just like you did with CodeVisionAVR,
you must simply read the result loca-
tion that you defined using a word
variable that’s been defined and
declared in the BASCOM-AVR appli-
cation. For instance, if you declare
“Day_Of_Week” as a word (Dim
Day_Of_Week As Word), then getting
the day of the week data would be as
simple as Day_Of_Week = Result.

If the day of the week isn’t correct,
you must be able to correct it by writ-
ing to the RTC. As far as calling the
functions goes, the song remains the
same, with the exception of stuffing the
reserved SRAM location 0x0FFD with
the day of the week data and calling the
write day of week function at 0x7D29.

After you’ve got the hang of making
the calls, stuff in your parameters and

retrieve your resultant data. You can
easily navigate and use any of the
Micro64 built-in functions. For
instance, the I2C send-byte and
receive-byte functions (0x7CB8 and
0x7CDD, respectively) utilize the
function-reserved SRAM address of
0x0FFB as the holder of the I2C slave
address with reserved SRAM location
0x0FFC carrying the I2C data. The call
to the I2C function is performed in an
identical manner to the function calls
I’ve described for reading and writing
the RTC. The idea is to provide a sim-
ple interface to the Micro64’s
enhancements.

LAYING BRICKS
You probably noticed there’s a

Micro128 brick in Photo 5 that’s
based on the ATmega128. The
Micro128 operates in the same way as
the Micro64; however, the Micro128’s
program memory space is doubled
along with the doubling of the
Micro128’s EEPROM memory space.
Of course, calling the functions is no
different from what I’ve described. But
the function call addresses will be dif-
ferent for the Micro128. All the differ-

ences between the Micro64
and the Micro128 bricks are
described in the
Micro64/128 datasheet.

Whether you’re an
advanced microcontroller
system designer or a what-
pin-is-that? beginner, it’s
easy to harness the power of
the Micromint AVR bricks.
I’ve heard that making and
transporting the mortar is
the hardest work associated
with bricklaying. If I were to

equate programming the Micro64 with
laying bricks, I would say that the
mortar (CodeVisionAVR and BAS-
COM-AVR) has been perfectly pre-
mixed and the bricks (Micro64 and
Micro128) are the highest quality. The
Micro64 is perfectly suited for net-
worked industrial control and data-
logging applications. Embedding a
Micro64 in your next project won’t be
complicated. I

Photo 4—Accessing the Micro64’s external SRAM is extremely simple after you’ve got
the hang of using the pointers. Both the CodeVisionAVR and BASCOM-AVR compilers
are easy to use and loaded with tools to make your project design flow smoothly.

Photo 5—It doesn’t get much easier than this. Just
compile your code into a hex file, point to it, click the
Download button, and reset the Micro64.
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CppUnitLite
The key to adapting Michael’s

CppUnitLite for an embedded system
involved minimizing memory usage in
order to ensure that it would fit with-
in the embedded system environment.
In particular, we replaced print state-
ments that involved formatting with
simpler ones like puts(astring).
The sheer generality of the formatting
associated with statements like cout
<< value and printf(“%d”, value)
pulls sufficient code from the <stdio>
library to occupy most of the available
program memory space, possibly leav-
ing little room for additional code. 

The changes don’t solve all the prob-
lems associated with the reports generat-
ed during TDD in a live rather than sim-
ulated environment. Messages are sent
back from the target to the develop-
ment environment over a serial, USB,
or JTAG connection. Transmitting
strings is a complex task. The target
must be stopped and switched into
Emulator Interrupt mode. This per-

In the first part of this series, we intro-
duced you to the idea of test-driven
development (TDD). Briefly described,
TDD involves replacing volumes of
documents for customer requirements
and developer ideas with a series of spec-
ified and agreed upon tests before coding
starts. The TDD environment offers
advantages to those of you who want to
fully embrace the TDD concepts. It’s also
advantageous to those of you who real-
ize that an automated test environment
quickens the familiar test-last approach.

Last month we also showed you a
simple high school recruitment proj-
ect that featured the Analog Devices
ADSP-BF533 Blackfin microcontroller
(see Photo 1). We explained that devel-
oping up-front customer tests is a
new, hard-to-acquire skill. However,
using TDD for developer tests
involves a change in point of view
rather than a total change of mind-set. 

Lastly, we showed you how to
develop tests for the software to cal-
culate the temperature from the duty
cycle of an Analog Devices TMP03
thermal sensor. Note that this tem-
perature calculation was a straight
software testing issue. This could
have been handled with the original
CppUnitLite TDD environment devel-
oped by Michael Feathers and distrib-
uted under the terms and conditions
of the GNU license
(http://c2.com/cgi/wiki?CppUnitLite). 

In this article, we’ll describe the
process of modifying TDD to produce
a prototype TDD environment for
embedded systems. 

mits the message to be wangled out of
the target one character at a time, but
it completely disrupts the real-time
operation of the embedded system. 

There is a background telemetry
channel (BTC) in the ADSP-BF533
Blackfin development environment
specifically designed to permit message
interchange with minimal disruption of
real-time operation. We’ve demonstrated
the advantages of BTC embedded TDD,
but we have more work to do before
gaining the full advantage of this high-
speed communication channel.

EMBEDDED TDD
The modified TDD environment’s

source code was compiled, linked, and
downloaded to the embedded system
without changes to the standard envi-
ronment running on the VisualDSP++
IDE that came with the evaluation
board. Given that the code was written
in C++ language, we didn’t expect any
compatibility issues. We were con-
cerned, however, about code size issues.

The original TDD environment
requires a number of key extensions
to be added for use in the embedded
system environment. The first
requirement is the ability to reconfig-
ure the hardware environment to a
known state prior to issuing a series
of tests. To capture this functionali-
ty, we developed three new hard-
ware-oriented TDD procedures. The
__CaptureKnownState() function is
called as the first line of a main()
function run on a powered board. It
automatically saves the C++ initial

FEATURE ARTICLE by Mike Smith et al.

Practical Application for TDD (Part 2)

Photo 1—The 500-Mhz ADSP-BF533 Blackfin EZ-Lite
evaluation board has audio and video capability and
digital inputs. There are six LEDs that can flash.

Last month you learned about the numerous advantages to test-driven development (TDD),
which is a primary component of an agile development technique. Now you’ll find out how to
build a prototype TDD environment for an embedded system.

Automated Test-Driven Environment



environmental setup to a file. We
wrote this function to be easily
upgradeable when new features of the
embedded system are added (i.e.,
when new peripherals are developed).
__SaveUserRegAndReset() and
__RecoverUserReg() are a pair of
functions used at the start and end of
a test. The former saves the current
user processor state and resets the sys-
tem to a known state. The latter
restores the initial user processor state. 

The jury is out regarding the utility
of the functions. Having the system in
a known state before testing prevents
many errors; however, we found that
testing with a system that’s uninten-
tionally in an unknown state also
uncovers unexpected system configu-
ration issues.

A second useful hardware test
group, the WatchData class and
WATCH_MEMORY_RANGE() macro, pro-
vides the ability to watch planned (or
unintentional) action in a memory
range on the processor. These work
through hardware breakpoints on a
running system rather than via static
profiling on an architectural simulator
or statistical profiling (snapping a
quick look) on a running system. This
test class was initially developed as an
instructor test. An instructor (with
close knowledge of the system archi-
tecture) would write such a test to
examine whether or not students learn-
ing about a processor have properly
configured the registers of a peripheral. 

In practice, this test class proved to
be much more utilitarian. It’s a test
that might be useful if you
know exactly what needs to
be done, but you’re distracted
by an interruption in the mid-
dle of the creative process. Used
in this way, it’s probably better
called the AVOID_LSD_ERROR
test class, where LSD stands
for the little stupid details
that waste time. 

Finally, Timer class provides
a series of timing utilities and
a test. The first permits a
measurement of the execution
time of a MEASURE_EXECU-
TION_TIME(Func(pars))
macro. The second is an
actual test called

MAXTIME_ASSERT(Func(pars)),
which determines whether or not a
function satisfies some strict real-time
test. This is the first of a series of
functional and nonfunctional tests for
embedded systems planned for devel-
opment. An example of a nonfunc-
tional test is MAXPOWER_ASSERT(),
which is used to determine, as a design
requirement, whether or not a given
algorithm meets the specific power
restriction designated by a customer. 

The proposed timer and WatchData
classes are conceptually general, but
they must be implemented specifically
in order to meet the available resources
on a given processor. At the same time,
they mustn’t restrict the normal devel-
opment of code. The hardware watch-
point unit on the Blackfin processor
can determine the number of reads and
writes in either data or program RAM.
These were used for the WatchData
class. The Blackfin timer class was
developed with the system clock. 

HARDWARE SETUP
Figure 1 is a diagram of our thermal

arm wrestling video game. The major
hardware component involves the need
to read the asynchronous signals from
the two temperature sensors and to
determine the values of the two switches
that reset and start the game. The four
inputs—programmable flags (PF)—are
easily accessible on the Blackfin EZ-Lite
evaluation board.

Our original idea was to use an
approach where changes on the PF-driv-
en interrupts cause changes in various
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flags, allowing the main task to transi-
tion between three states: waiting for
the game to start; playing the game; and
resetting the game while it’s running (or
after a winner has been determined). The
interrupts on the temperature sensor-
driven lines would be used to access the
value of a free-running core timer. This
timing information can be processed
to generate the temperature values. 

We decided instead to use a single
core timer-driven interrupt rather
than four PF-driven interrupts. During
the timer interrupt routine, we can
determine the sense of the input sig-
nals and set the necessary flags to
transfer between the main task states.
We also can count the number of
interrupts between the various high-
to-low and low-to-high transitions of
the temperature sensors. The counts
would be sufficient as only a ratio of
times, rather than absolute times, is
needed to calculate the temperature.
We can guarantee sufficient precision
in the time counts by having the
timer interrupts occur frequently.

TIMER TESTS
You’d think setting up the Blackfin

core timer would be a simple task. You
must place the required period (reload
value) in the TPERIOD register and
put the initial count in the TCOUNT
register. Next, you have to set the
TSCALE register. This determines the
relationship between the core timer
clock and the 500-MHz system clock.
All that remains is switching the bits
in the TCNTL control register so the

timer comes out of Low-Power
mode, the automatic reload
feature is enabled, and the
timer is on.

Everything seems straightfor-
ward, so why bother to write a
test? Listing 1 (page 62) shows
the SetCoreTimer() test.
Listing 2 (page 62) shows the
Blackfin assembly code
required to satisfy the test.
During the test, a WatchData
class object called coretimer-
_reg is established to watch
the action occurring among
the four memory-mapped core
timer registers. The expected
register values after the

ADSP-
TMP03
Sensor

ADSP-
TMP03
Sensor

5 V
Voltage

level
shifter

ADSP-BF533

PF
10

PF
11

Core timer

Video
generator

Video output

Figure 1—Two ADSP-TMP03 thermal sensors provide square waves whose duty
cycles vary with temperature.The pulse signals (5 V) are limited to 3 V by a resis-
tor/Zener diode network before being fed into the PF signal lines of the Blackfin
evaluation board.The on-chip core timers are used to determine the duty cycles.
The calculated temperatures are used to position the game cursor on video frames
stored in the SDRAM on the board. A background DMA task transfers the video
frames from the SDRAM to the video decoder and then to the video screen.
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SetCoreTimerASM() function are set
up and used for validation. 

The WATCH_MEMORY_RANGE macro
is called to use hardware breakpoints
to record the internal events when
activating the SetCoreTimerASM()
function. Finally, two checks are
made. Using the getReadsWrites()
method of the WatchData class, the
first determines whether the expected
number of writes occurs to four core-
timer registers. The second, using the
getFinalValue() method, compares
the actual final and expected values of
the core timer registers.

The Blackfin assembly code in
Listing 2 is easy to follow because of
the processor’s C language-like assem-
bly code syntax in the processor. First,
a pointer register is initialized with
the address of the required memory-
mapped core timer register. Following
this, the function’s incoming parame-
ters COUNT (in R0), PERIOD (in R1),
and SCALE (in R2) are stored in the
timer registers. The old timer control
value is stored and then returned when
the function exits (in R0) before the
timer is enabled in the required mode. 

As it turns out, this code sequence, as
written, requires the expected four
writes to the timer registers, together
with an additional reading of the timer
control register (to capture its initial
value) that wasn’t taken into account
during the initial test design. Because
the initial test was developed when only
four reads and writes were planned,
the test macro must be rewritten to
CHECK(coretimer_reg.getReadsWr
ites()==5); to meet the true
SetCoreTimer() function require-
ments. The test and code match per-
fectly after this change. Or do they?
Listing 3 shows the test some students
wrote as part of an assignment using
TDD to validate their SetupTimer()
routines. Much to our embarrassment,
our code didn’t pass that test. Can you
spot the difference between the tests?
More importantly, why did our code
pass our test and fail the students’?

The students’ test was a better test.
We used the same values for both the
PERIOD and COUNT registers. A
developer could have switched the
values when writing to the core timer
registers. That code would’ve passed a

test where the same period and count
values were used, but it would’ve con-
tained a serious hidden defect. The

students’ test avoids this potential
defect. The assembly language code in
Listing 2 doesn’t suffer from this

Listing 2—Setting up the core timer registers requires three writes with passed parameters and a fourth with
a known fixed value.

.global _SetCoreTimerASM;

.section L1_code;
//ulong SetCoreTimerASM(ulong count, ulong period, ulong scale);
_SetCoreTimerASM:     

P0.H = hi(TCOUNT);    P0.L = lo(TCOUNT);
[P0] = R0;  //First parameter passed in R0
ssync;
P0.H = hi(TPERIOD);   P0.L = lo(TPERIOD);
[P0] = R1; //Second parameter passed in R1
ssync;
P0.H = hi(TSCALE); P0.L = lo(TSCALE);
[P0] = R2; //Third parameter passed in R2
ssync;
P1.H = hi(TCNTL); P0.L = lo(TCNTL);
R0 = [P1];  //Return the old control register value
ssync;
R1 = 7;       //RELOAD | ENABLE | NORMALPOWER
[P1] = R1;   //Activate the timer
ssync;

_SetCoreTimerASM.END:
RTS;

Listing 3—This student-developed test might be a better test than the one in Listing 1. Different values are
assigned to the period and count registers. This can catch a code defect where writes to these registers have
been swapped when implementing the SetCoreTimer() function. Although our SetCoreTimerASM()
assembly function routine doesn’t have that particular code defect, it still fails the test.

#define SCALE 0
#define PERIOD 0x2000
#define COUNT 0x4000
typedef ulong unsigned long int;
TEST(Test_SetCoreTimer, STUDENT) {

__SaveUserRegAndReset ( );
WatchDataClass<unsigned long> coretimer_reg(4, pTCNTL, pTPERIOD, 
pTSCALE, pTCOUNT);

//Setup expected values
unsigned long expected_value[] = {0x0, PERIOD, SCALE, COUNT};
WATCH_MEMORY_RANGE(coretimer_reg,  

(SetCoreTimerASM(COUNT, PERIOD, SCALE)), 
READ_CHECK | WRITE_CHECK);

__RestoreUserReg( );
CHECK(coretimer_reg.getReadsWrites() = = 4);
ARRAYS_EQUAL(expected_value, 

coretimer_reg.getFinalValue(), 4);
}

Listing 1—The test for the SetupCoreTimerASM() function is straightforward. Three known parame-
ters pass into the function for direct placement into the core timer register. A fourth constant value is placed in
another register. However, the students revealed a fatal flaw in our test.

#define SCALE 0
#define PERIOD 0x2000
#define COUNT 0x2000
typedef ulong unsigned long int;
TEST(Test_SetCoreTimer, INSTRUCTOR) {

__SaveUserRegAndReset ( );
WatchData<unsigned long> coretimer_reg(4, pTCNTL, pTPERIOD,pTSCALE,pTCOUNT);
//Set up expected values

unsigned long expected_value[] = {0x0, PERIOD, SCALE, COUNT};
WATCH_MEMORY_RANGE(coretimer_reg,  

(SetCoreTimerASM(COUNT, PERIOD, SCALE)), 
READ_CHECK | WRITE_CHECK);

__RestoreUserReg( );
CHECK(coretimer_reg.getReadsWrites() = = 4);
ARRAYS_EQUAL(expected_value, coretimer_reg.getFinalValue(), 4);

}
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defect, but it fails the students’ test.
Our code failed because of a feature in
the Blackfin silicon that wasn’t in the
hardware manual. 

The Blackfin processor has a num-
ber of timers: the core timer (used in
this project), a system clock, a watch-
dog timer, and three pulse-width-mod-
ulated timers for various microcon-
troller applications. The PWM timers
are designed to continuously change
duty cycles. However, the core timer
typically isn’t programmed in this
mode. Its standard mode of operation
is to produce interrupts at regular
intervals, which means the period
value is continuously used to reload
the count value. If the core timer is
powered down, loading the PERIOD
register automatically loads the
COUNT register with the same value.  

We wrote the assembly code version
of the SetupCoreTimerASM() func-
tion from the bottom up (i.e., the first
parameter into a timer register, the
second parameter into a register, and
so on). However, because of the way
the timer hardware had been opti-
mized, this meant that the value put
into the COUNT register was over-
written with a PERIOD value that
was written to the timer registers at a
later time. If we had used a top-down
approach (i.e., third parameter, rather
than the first, into a Blackfin register,
etc.), or if we had had a different order
of the parameters in the function proto-
type, then the COUNT register value
wouldn’t have been destroyed by the
period value. This result indicated
an unanticipated advantage in the
WatchData class: the ability to spot

undocumented features and changes
between different releases of the board
and other hardware.

FLAG TESTING
Because of space limitations and

processor-specific characteristics of
the code, we won’t explain how the
core timer interrupt service routine
(ISR) measures the temperature sen-
sors and switch positions. Nor will we
explain how to set up the code and

use the digital level programmable
flags. However, the tests developed
for these routines reveal the capabili-
ties, limitations, and potential of the
TDD environment. 

Listing 4 tests for the core timer
ISR’s basic functionality. A software
interrupt is issued using the raise()
procedure found in the standard C lan-
guage development. A software inter-
rupt occurs each time around a loop.
The ISR is supposed to increment a
known semaphore number_core-
timer_interrupts. The regis-
ter_handler() function provides
calls the VisualDSP C++ run-time
environment to place the ISR’s address
in the event handler and unmask the
timer interrupt bit in the global
IMASK interrupt mask. 

It was unclear whether or not a soft-
ware interrupt produced by calling the
raise() function requires a corre-
sponding call to a lower() function
to clear the interrupt and stop reen-
trance to the ISR. Therefore, we
added an additional CHECK() opera-
tion to ensure that the number of

Listing 4—This test demonstrates the test for the ISR.

#include <sys/exception.h>
EX_INTERRUPT_HANDLER(InterruptHandler);
extern volatile long int number_coretimer_interrupts;
#include <signal.h> 
TEST(INTERRUPT_TEST, Coretimer) {

__SaveUserRegAndReset ( );
register_handler(ik_timer, InterruptHandler);
int number_of_times_round_loop = 0;
number_coretimer_interrupts = 0;  
while (number_coretimer_interrupts < 10) {

raise(ik_timer); //Force a software interrupt
number_of_times_round_loop++;

}
register_handler(ik_timer, EX_INT_IGNORE); 
CHECK(number_of_times_round_loop = = 10);
__RestoreUserReg( );

}

http://www.lemosint.com
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times the ISR was entered was equal
to the number of calls to raise(),
which should be equal to the number
of times around the loop. In hindsight,
this was a pointless test. If a call to
the lower() function is required to
stop the ISR being reentered, then the
CHECK() statement wouldn’t be
reached. Regardless, the test shown in
Listing 5 demonstrates the functional-
ity of the ISR. 

Developing the test for the func-
tionality of the programmable flag
input routines showed us the prob-
lems. We needed to push the test-
driven environment to the next
level. Now the tests must involve
peripherals with externally generated
signals rather than the internal sig-
nals provided by the core timer. One
possible solution is to switch the tests
away from the real board and place
them on the architecturally accurate
simulation environment available
with the development IDDE.
Although the VisualDSP++ IDDE for
the ADSP-BF533 supports numerous
peripheral simulations, PF simula-

Listing 5—Known input signals can be manually established prior to the test. But this approach defeats the
purpose of an automated testing approach.

TEST(CheckPFInput, MANUALTEST) {
__SaveUserRegAndReset ( );
WatchData<unsigned short> pf_reg
(1, (unsigned short*) pFIO_FLAG_D);

//Set up a return value
unsigned short ret_value = 0;
WaitForHardwareReady(“Set switch pattern to 0x03”);
ResetPFForInputASM( );
WATCH_MEMORY_RANGE(
pf_reg, (ret_value = ReadPFASM( )),
READ_CHECK | WRITE_CHECK);
__RestoreUserReg();
unsigned short expect_val = 0x03;
USHORTS_EQUAL(expect_val, ret_value);
CHECK(pf_reg.getReadsWrites() = = 1);
__RestoreUserReg( );

}

Listing 6—You can avoid the process of manually setting the input signals by using other internal or external
resources to simulate the timing of expected signals from controlled devices. But keep in mind that the reliable
and accurate generation of the simulated signals, as well as the recovery of the simulation from (probable)
error states, can be complex and time-consuming.

volatile long int __LEDstate = 0;
volatile long int __number_of_interrupts = 0; 
//Interrupt task using a variable duty-cycle
//TIMER2 signal to mimic the changes in the pulse-width modulated
//ADSP-TMP03 temperature sensor signal
EX_INTERRUPT_HANDLER(SimulateTMP03_ISR) {

__number_of_interrupts++;
*pTIMER_STATUS |= TIMIL2;

//Clear the interrupt
if ((__number_of_interrupts & 1) == 1) { (Continued)

http://www.jkmicro.com
http://www.faabmedia.com
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tion is slated for a later release.  
The second approach we attempted

was to fake the input signals by writ-
ing known values to the FIO_FLAG_D
PF input register and pretend that the
signals came from an outside device.
However, the FIO_FLAG_D I/O regis-
ter appears to be like many I/O regis-
ters on other processors. If you write a
value to a pin that’s configured as an
input, the written value is ignored. We
still think we might be able to get
around this limitation, but it won’t
happen in the immediate future. A dif-
ferent approach is required for simu-
lating the expected external signals.

Listings 5 and 6 show two different
approaches to this problem. The test
in Listing 5 involves manually setting
up a known input hardware configura-
tion and then testing for the input. It’s
straightforward, but this approach
completely defeats the automated
testing procedure that’s a major fea-
ture of the TDD environment. Manual
set up is just too inconvenient to be
practical.

An automated test is programmed

Listing 6—Continued.

__LEDstate  |= _TMP03_HIGH_STATE;
//Output current simulated TMP03 signal

WriteOutputASM(__LEDstate);
//Prepare for next simulation state

*pTIMER2_PERIOD = TIMER2_LOW_STATE;
}
else {

__LEDstate &= TMP03_LOW_MASK;
//Output current simulated TMP03 signal

WriteOutputASM(__LEDstate);
//Prepare for next simulation state

*pTIMER2_PERIOD = TIMER2_HIGH_STATE;
}

}
TEST(MeasureTemperature, AUTOMATEDTEST) {

__SaveUserRegAndReset ( );
temperatureValue4 value;

//Estabilsh the simulation environment using the signal from the 
//pulse-width modulated Timer2 signal to mimic the TMP03 sensor signal 

register_handler(ik_ivg11, SimulateTMP03_ISR);
ActivateOutputASM( );
ResetPFForInputASM( );

//Test may hang if correct functionality not present
//Test environment will hang if output is not connected to input 
//prior to test
//Put out status message

puts(“Testing MeasureTemperature( )\n”);
for (int count = 0; count < 4; count++) {

__SetUpTimer2(TIMER2_LOW_STATE);
__ActivateTimer2Interrupt( );
value = MeasureTemperature(FAHRENHEIT);
__DeactivateTimer2Interrupts( );

//Expected result is within 2 of 272
SHORTS_CHECK(abs(value- 272), <=, 2);

}
__RestoreUserReg( );

}

http://www.usbee.com
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in Listing 6. The output lines used to
control the LED display on the
Blackfin evaluation board are looped
back to the PF input lines. A back-
ground interrupt task involving one of
the processor’s timers is used to
mimic the TMP03 temperature sensor
signal. A self-test was performed in
this situation using the LED and PF
lines on one board. However, for more
complex tests, it would be practical to
store the test code in the flash memo-
ry of a second Blackfin board. The sec-
ond board could be used to generate a
variety of video, audio, and logic-level
tests in response to requests from the
TDD package on the first board trans-
mitted over the high-speed serial port
(SPORT), over low-speed UART, over
the high-speed serial parallel inter-
face (SPI), or through the JTAG emu-
lation environment’s available multi-
processor capability. 

Having an easy approach to generat-
ing these hardware tests is the next
step in our research project. We’re
examining the possibility of adapting
the automated software component
environment (a typical software engi-
neering design process) to generate or
make easily available tests that can be
used across a variety of platforms and
design requirements.

TDD SUGGESTIONS
We described how we added func-

tionality to a TDD environment to
make it suitable for hardware and soft-
ware design in small embedded sys-
tems. We demonstrated the system’s
capabilities through the design of our
thermal arm wrestling game. 

This system provides an automated
test environment for embedded sys-
tems capable of handling standard
code validation, core timer operations
(including interrupts), and basic I/O.
The ADSP-BF533 Blackfin microcon-
troller’s numerous internal resources
support the hardware side of the TDD.
We found that the current state of this
TDD tool has made it easier to devel-
op and explain hardware-based proj-
ects at the university level. 

We are left with some questions
though. Is this approach practical for
embedded systems with less internal
resources than the Blackfin? Can we

develop a simple automated signal
generator than runs on a second
embedded system in response to sig-
nals from the system being tested? Is
our system unnecessarily complicat-
ed? Are the issues we covered simply
an indication that our TDD environ-
ment has moved out of its diapers and
into the real world? We’d love to hear
from you. Any suggestions? I

RESOURCE
TDD tutorials, The University of
Calgary, www.enel.ucalgary.ca/
People/Smith/embeddedTDD/.

SOURCE
ADSP-BF533 Blackfin microcontroller,
TigerSHARC family, and TMP03
Analog Devices
www.analog.com
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He is a professor of electrical and com-
puter engineering at the University of
Calgary, Canada. You may contact him
at smithmr@ucalgary.ca.

Moreno Bariffi is an international
internship student visiting from the
University of Applied Science,
Fribourg, Switzerland. You may con-
tact him at mbariffi@hotmail.com.
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sizes, they’re classified according to
their number of stator phases. Two-
phase motors are the most common,
although three- and five-phase motors
provide higher stepping resolution. 

In terms of drive electronics, the
number of electronic switches
required to achieve motion may classi-
fy stepper motors. You can have a
unipolar drive requiring two switches
per phase or a bipolar drive with four
switches per phase. The latter is more
popular because it yields more torque
than the unipolar scheme. Most
motors provide all the winding leads
externally. This gives you the flexibili-
ty to connect them in either a unipo-
lar or bipolar configuration. 

A stepper motor’s dynamics are con-
trolled by its time constant, L/R,
where L is the motor winding induc-
tance and R is the total resistance in
the winding current path. The step-
ping speed obtained is mainly gov-

We recently visited a high-power
laser laboratory. We learned that laser
output is generated through a sequential
chain of amplifiers. Numerous optical
components (e.g. lenses, filters, and mir-
rors) are placed in the laser’s path. The
critical components that require fre-
quent adjustment are mounted on a
motorized precision x-y platform. 

Our assignment was to find a new
way to control the 2-D position of the
optical components (typical resolution
is 10 µm). In a few cases, however, a
third motor (z-axis) was also used to
control the height and angle of rota-
tion of optics and targets. Because
there were so many optical compo-
nents to manage, we wanted to create
a remote control industrial workstation
in the facility’s laser control room. In
addition, we wanted the lab technicians
to be able to store each component’s
x-y-z absolute position in a database. 

After studying all of the lab’s needs,
we developed a general-purpose, three-
axis stepper motor driver (see Photo 1).
We also wrote firmware that allows you
to configure and remotely control one or
more drives from a PC. The firmware
gained in power as the drive was used
for more applications. In the first part of
this series, we’ll focus on the hardware.

MOTOR DRIVING
Stepper motors are widely used as dig-

ital actuators for position control appli-
cations. Their shafts rotate in an angular
fashion whenever a current pulse is
sequentially applied to their windings.
Available in a variety of shapes and

erned by the slew rate of the winding
current in a stepper motor. 

At lower step rates, the current easily
slews to the peak value (IRATED) before a
direction change. As motor speed
increases, the current won’t reach the
full value because the time between
the current direction change is shorter.
Therefore, to achieve the same torque
at a higher speed, you should increase
the rate of rise of the winding current.
To do so, increase the supply voltage
for the motor (VMOTOR) well above the
product of the motor current (IRATED)
and winding resistance (R). The wind-
ing current will now peak to VMOTOR/R.
Decreasing the L/R time constant of
the winding and increasing the voltage
applied across the winding increases
the winding current slew rate.

To achieve a desired velocity profile,
a motor and drive combination must
generate enough torque to accelerate
the load inertia at the desired rates
and drive the load torque at desired
speeds. The size of the bipolar motor
generally dictates its low-speed torque.
The ability of the driver to force cur-
rent through the windings of the
motor dictates the high-speed torque.

You can drive a bipolar stepper
motor at its rated voltage using an H-
Bridge such as an L298 or one imple-
mented discretely using power transis-
tors. Because the motor winding
resistance is the only current-limiting
element, you can’t allow the VCC of
the H-Bridge to exceed the motor’s
rated voltage. This puts an upper limit
on the motor current slew rate as the

FEATURE ARTICLE by Viraj Bhanage, Prajakta Deshpande, & Praveen Deshpande  

Design Basics

Photo 1—Take a look at the driver in the 42T, 3U Euro case.
If the motors rotate continuously, you must have proper venti-
lation to cool the L298N IC already mounted on the heatsink.

Three-Axis Stepper Motor Driver (Part 1)

Technicians in high-tech laser laboratories use optical components such as lenses, mirrors,
and filters to direct laser output. A multiple-axis stepper motor controller gives technicians
greater control over the components. Special firmware enables remote control from a PC.
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time constant is fixed. To overcome
this limitation, add a series power
resistor to reduce the L/R time constant
of the winding and increase the motor
supply voltage beyond the rated value. 

This scheme generates an L/R drive.
One disadvantage to this approach is
significant power dissipation in the
series resistance that affects the drive’s
efficiency. Another approach involves
using a chopper drive by applying VCC

(VRATED) with a feedback driver switch-
ing the H-Bridge to hold the winding
current at the rated value. A low-value
resistance in the H-Bridge’s ground lead
converts the winding current into pro-
portional feedback voltage. This feed-
back voltage is compared to the refer-
ence voltage in a control loop. 

When the feedback voltage is less
than the reference voltage, full supply
voltage is applied across the winding.
When the feedback voltage is equal to
the reference voltage, the winding is
short circuited to reduce the current.
This chopping action limits the value
of peak current to a level determined
by the reference voltage, and thereby
improves the drive efficiency to better
than 75%. A single IC (e.g., L297) con-
tains all the electronics needed to real-
ize a chopper drive.

MCU SUPERVISOR
In principle, you can drive a stepper

motor via push buttons that provide
manually controlled clock and direction
signals. Adding an MCU gives you
preprogrammed precision motion con-
trol at the click of a button. A low-cost,
8-bit microcontroller with enough inte-
grated memory and peripheral devices
will keep the project within our budget.
Choosing the right development tools
for the code is equally as important.

We chose Philips’s P89C51RD2 for a
number of reasons. Most importantly,
it has 64-KB downloadable flash mem-
ory and 1-KB data on-chip memory.
This enables you to build a single-chip
application without adding external
memory devices other than the non-
volatile storage. The microcontroller
also has on-chip boot ROM, which
enables you to download the firmware
code via an RS-232 serial interface to
the 64-KB flash memory. This elimi-
nates the need for a resident monitor,

and it simplifies the overall develop-
ment process. No extra debugging
hardware! The microcontroller has all
the necessary blocks available for gener-
ating the clock and direction signals that
can drive multiple stepper motors with-
out much CPU intervention. This frees
up the CPU to perform other functions
such as data acquisition and control.

For driving the motors, you need to
consider two parameters: motor speed
and direction. The former is proportional
to the rate at which clock pulses are fed
to the L279 (i.e., the frequency at which
the square wave must be controlled to
maintain a constant motor speed). The
motor speed is typically specified in
terms of revolutions per minute (RPM).
If you know the motor’s steps per revolu-
tion specification, you can compute the
number of steps to fire per minute,
which in turn gives you the required
pulse repetition rate or frequency. 

You can generate a square wave by
toggling a port line in the software.
But this requires the CPU’s full atten-
tion. The requirement
of driving two or more
motors simultaneously
and independently com-
plicates the situation.
The P89C51RD2 has
five programmable
counter array (PCA) chan-
nels. This on-chip periph-
eral is similar in function
to the popular Intel 8254
programmable timer IC. 

The PCA provides
more timing capabilities
with less CPU interven-
tion than standard
timer/counters. Its
advantages include
reduced software over-
head and improved accu-
racy. The PCA consists of
a dedicated timer/counter
that serves as the time
base for an array of five
compare/capture mod-
ules. PCA timer modules
are all 16 bits wide. If an
external event is associat-
ed with a module, the
function is shared with
the corresponding port 1
pin. If the module is not

using the port pin, the pin still can be
used for standard I/O. Each of the five
modules can be programmed in any one
of several modes: Rising and Falling
Edge Capture, Software Timer, High-
Speed Output (HSO), Watchdog Timer,
and Pulse-Width Modulator (PWM).

The timer/counter for the PCA is a
free-running 16-bit timer consisting of
registers CH and CL, which are the high
and low bytes of the count values. It’s
the only timer that can service the PCA.
The clock input can be selected from
any one of four sources. Special-function
register CMOD contains the count pulse
select bits (CPS1 and CPS0) that specify
the PCA timer input. This register
also contains the ECF bit, which
enables an interrupt when the counter
overflows. In addition, you have the
option of turning off the PCA timer in
Idle mode by setting the counter idle bit
(CIDL) to reduce power consumption.
Each of the five compare/capture mod-
ules has a mode register called
CCAPMn (n, e, 0,1,2,3, or 4) to select

CH CL Comparator CCAPOH CCAPOL

PCA Timer Match Module 0

Toggle P1.3 CCFO Set

PCA Interrupt (optional)

Next 
compare value

CCAPOH CCAPOL

 Clear CCFO 

Exit

Interrupt
service routine

CIDL

CMOD: Counter mode register

WDTE —— — CPS1 CPS0 ECF

Address = 0D9H
Not bit addressable

Reset value = 00XX X000B

CF

CCON: Counter control register

CR CCF4— CCF3 CCF2 CCF1 CCF0

Address = 0D8H
Bit addressable

Reset value = 00X0 0000B

—

CCAPMn: Compare/Capture mode register

ECOMn CAPNnCAPPn MATn TOGn PWMn ECCFn

Address  = 0DAH (n=0)
Reset value = X000 0000B

0DBH (n=1)
0DCH (n=2)
0DDH (n=3)
0DEH (n=4)

Figure 1—The PCA hardware is extremely useful for timing generation and
monitoring independent of the CPU.You can use the PCA to run the motor
in the background using its HSO mode.
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the function it will perform. The
ECCFn bit enables an interrupt to
occur when a module’s event flag is set.

HSO mode toggles a port pin when a
match occurs between the PCA timer
and the preloaded value in the compare
registers (see Figure 1, page 69). This pro-
vides more accuracy than the process of
toggling pins in software because the
toggle occurs before it branches to an
interrupt (i.e., interrupt latency will not
affect the accuracy of the output). In fact,
the interrupt is optional. Only if you
want to change the time for the next tog-
gle is it necessary to update the compare
registers. Otherwise, the next toggle will
occur when the PCA timer rolls over and
matches the last compare value.

You can use HSO mode for pro-
grammable square wave generation.
You need to load an appropriate 16-bit
value into the 16-bit PCA module regis-
ter and configure it for HSO mode. It
sets the CCF0 flag that generates a PCA
interrupt. In the interrupt service rou-
tine, you can reload the module regis-
ter CCAPMn (next value to compare) to
make additional comparisons. This way
you’ll generate a programmable square
wave signal that you can use to drive a
stepper motor along with a sequencer.
Because the chosen PCA module han-
dles most of the driving, you can drive
the motor in the background. This also
enables you to assign a PCA module to
each stepper motor sequencer. You
can drive all of them in the background
simultaneously and independently.

You can also configure the PCA
hardware module to count pulses.
Thus, you can count an encoder’s out-
put pulses to know how far the motor
has reached in a closed-loop system.

DRIVER ELECTRONICS
Figure 2 shows a three-axis stepper

motor driver. The P89C51RD2 (IC1),
which has a built-in oscillator, requires
only an external crystal (Y1) and two
capacitors (C1 and C2). Although we
could have used any crystal frequency
up to 20 MHz, we chose 11.0592 MHz
because it provides many standard data
rates for communication with the PC. 

Capacitor C3, R21, and diode D25
form a power-on reset circuit. You may
connect an external push button reset
switch with CN1. A three-wire RS-

Figure 2—The three-axis stepper motor driver is implemented as a compact single-board driver with on-board ter-
minations emerging from the back of a 42T, 3U Euro instrument case.
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232 serial interface on a nine-pin D-type
male connector (CN3) is implemented
by way of a MAX232 (IC2) transceiver. 

The stepper motor sequencer IC
L297 is the heart of the driver. In the
past, we’ve used three similar devices
(IC3, IC4, and IC5) for the x, y, and z-
axis motors, respectively. An external
resistor (R22), an external capacitor
(C9), and an on-chip oscillator circuit
(IC3) generate a common clock signal for
all the L297 devices. Each L297 device
generates four logic output signals and
two enable signals for driving the L298
H-Bridge device in Chopper mode. 

We assigned MCU (IC1) ports (P0,
P2, and P3) for each motor axis. The
ports are bit addressable, so the individ-
ual port pins are used to drive the differ-
ent motor control signals (e.g., CLK,
ENABLE, HALF/FULL STEP CONTROL,
etc.) of the corresponding L297 IC. 

The L298 driver IC (IC7, IC8, and
IC9) has a dual H-Bridge for driving a
two-phase stepper motor in bipolar con-
figuration. The D1 through D28 diodes
are 2-A, freewheeling diodes that pro-
vide an alternative path for the induc-
tive decaying current when the power to
the motor winding is suddenly removed. 

R15/16, R17/18, and R19/20 are
high-power sense resistor pairs used
for sensing the motor winding current
in each phase for each motor. Each of
the three potentiometers R23 through
R25 provides necessary reference voltage
for IC L297 to generate the required
chopper output in a closed-loop control.
You should adjust these potentiometers
for the appropriate reference voltage
for each motor, and take into account
the values of the sense resistor and
required motor winding current. 

Connectors CN4, CN5, and CN6
have L298 outputs where you can con-
nect the x, y, and z motors along with
optional optical/mechanical end-limit
detection logic. We used a Sanyo
Denki 200-step-per-revolution, 2-A
stepper motor for each motor axis.
You may need to detect the end limits
while driving a linear transnational
stage coupled to a stepper motor. 

Resistors R1 through R6 are current-
limiting resistors for driving the LED
inside an optical interrupter used as an
end-limit detector. Alternatively, they
act as pull-up resistors if you have

mechanical end-limit switches. An
RC circuit (R7 and C13) debounces
the mechanical limit switches. 

The AT24C01 (IC6) is a 128-byte
serial EEPROM into which the
firmware stores the configuration
information. Because IC1 doesn’t have
a hardware I2C serial port, the interface
is implemented in software. You can
make motor power supply connections
with the CN7 connector. You can use
any unregulated power supply between
12 and 35 V for the motor. We prefer
an SMPS as an efficient, compact
alternative to the linear power supply.

We used the Flash Magic freeware
utility to program IC1 through the RS-
232 serial interface. You must place
JP1 in the 2–3 position and push the
reset switch. This invokes an on-chip
boot ROM on IC1. Flash Magic handles
the protocol for downloading the Intel
hex format executable file to the on-chip
flash memory. It also enables you to pro-
gram the security bits that protect your
code! The utility supports in-circuit pro-
gramming (ICP) and in-system pro-
gramming (ISP) for most Philips MCUs.

MOTOR CONTROL
You can drive the motors with the

aforementioned hardware. You need a
user interface to control the motors
from a front panel. Most of the
P89C51RD2’s hardware resources are
occupied in motor control circuit. You’re
left with only an RS-232 serial port and a
few I/O port lines. We wanted to be able
to control the motors remotely (using an
RS-232 or RS-485 serial interface), so
we implemented a complete command
set for PC configuration and control. 

Listing 1 (page 76) shows the rudimen-
tary code we used for driving each step-
per motor by toggling the motor’s corre-
sponding clock signal. You may use this
code to test the driver. You can also test
the half/full-step operation by setting the
corresponding pin to 0 or 1. You can
change the motor’s speed by adjusting
the delay between adjacent clock pulses.
If the motor is driving a linear transition-
al stage, you can detect the limiting posi-
tion by monitoring two switches often
installed at the endpoints.

You might be unwilling to devote a
PC for the alignment job. So, we decid-
ed to use the free I/O lines to interface

a tiny 20-pin (AT89C2051) slave micro-
controller that acts as a 4 × 20 LCD and
keypad controller interface. To simplify
the system, we assigned three keys
(move up, move down, and go home in a
column) to each motor. You can invoke
the system configuration menu and
adjust the various motor parameters
using the plus and minus keys.

Figure 3 (page 76) is a schematic of the
keyboard and display interface. The LCD
has a 4- to 8-bit data bus and three
control lines. The keyboard is arranged
in a 3 × 4 matrix. To conserve the I/O
lines, the 4-bit LCD data bus is shared
with return lines of the keypad. The on-
chip UART on the slave microcontroller
provides the necessary serial commu-
nication link for full-duplex communi-
cation with the host P89C51RD2. 

The P89C51RD2 has only one UART
channel that’s reserved for the RS-232
remote control interface. The other
UART channel required for communica-
tion with the keypad and display con-
troller (89C2051) is implemented in soft-
ware. Note that the software implemen-
tation has a drawback. You can’t receive
the serial data in the background. For
this reason, the serial communication
protocol with P89C2051 is implemented
in a command/respond fashion. 

The P89C2051 doesn’t speak up by
itself; it responds only when it’s polled
by the host CPU. One I/O line is
reserved for notifying the host CPU
when a valid key is detected. This frees
the host CPU from frequent polling of
the P89C2051 for a key. (Polling the
slave at 9,600 bps requires an exchange
of at least 1 byte requiring a minimum
of approximately 2-ms CPU time!) 

Refer to Listing 2 (page 77) for a taste
of the firmware inside the P89C2051.
Timer0 scans the matrix keypad every
10 ms. A state machine provides key
detection, debouncing, repeating, and
other keypad features. A serial interrupt
is generated when a command is
received. The code invokes the appropri-
ate command handling function using a
function pointer array. You may down-
load the complete code for the P89C2051
slave from the Circuit Cellar ftp site.

ROOM FOR IMPROVEMENT
You’ll have to make a few changes if

you want the driver to be a completely
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able to provide
enough torque at a
certain point
because of excessive
friction. This results
in a mismatch
between the actual
and computed posi-
tion. The solution is
to incorporate a
rotary encoder for
position feedback.
The encoder would
emit a number of
pulses corresponding
to the angular incre-
mented movement

when coupled directly to the shaft. By
counting the encoder pulses, you can
obtain information about the actual
angular movement. You can derive a
signal for the direction of the rotation
from the encoder output. You can

count the encoder pulses using one of
the PCA channels programmed to
detect rising and falling edges. 

A disadvantage of using a PCA
counter is that it doesn’t support up and
down counting; therefore, if the motor
changes direction, the PCA counter
would still count up and the actual posi-
tion would be lost. Special devices are
available for encoder-to-microprocessor
interfacing (e.g., LS7166). Such devices
incorporate a filter circuit at their
inputs to eliminate the effect of noise.

FIRMWARE TO COME
Are you ready to build a generic mul-

tiple-axis stepper motor controller? Next
month, we’ll describe the firmware.
Until then, happy (step) motoring! I

general-purpose stepping motor con-
troller. The motor current is presently
programmable via a potentiometer. You
can adjust the voltage on the reference
pin of L297 and divide it by the sense
resistor value to set the motor current.
This requires you to expose the poten-
tiometer from the front panel and insert
a screwdriver to set the required voltage.

The board doesn’t have an on-board
ADC, so you must measure the refer-
ence voltage with a voltmeter as you
set up. You must open the top panel to
do so. If you want to do it remotely
with a PC or without opening the box,
you can use a DAC to generate the
reference voltage. This requires you to
add one DAC per motor. There’s one
more option. You can implement a
DAC using a PWM. If you can spare a
few PCA channels or a timer, this can
be done in software. We didn’t do it
because we were short on time.

Another significant improvement
would be to incorporate microstepping.
To do so, you must apply sine and
cosine currents to the two windings of
the motor. This would require a dual
DAC or two PWM channels for gener-
ating the sine and cosine voltages. But
the L297 device doesn’t support sepa-
rate VREFERENCE input for each motor
winding phase, so you can’t microstep
with it. You must replace the
sequencer IC with an L6502 for
microstepping and redesign the drive.

Stepper motors are often used in an
open loop without feedback. You may
have an application in which you need
to generate precise motion control. A
stepper motor can miss a step if it isn’t

Figure 3—The 4 × 20 LCD and 4 × 4 matrix keypad controller are implemented
with a 20-pin AT89C2051 MCS-51 derivative. The tiny board is mounted on the
LCD. It can be hooked to any microcontroller with a three-wire serial interface.

Viraj Bhanage received a bachelor’s
degree in electronics and telecommuni-
cation from Shivaji University,

Listing 1—Use this code to test stepper motor hardware after connecting the motors and its power supply.
You can set the motor’s speed as well as select the direction of rotation and full- and half-step operation.

//Code to test stepper motor hardware
#include<reg51f.h> //Header file for P89C51RD2 CPU
sbit M1Dir = P0^0; //0 - counter clock wise, 1 - clock wise
sbit M1HalfFull = P0^1; //0 - Full step , 1 - Half step operation
sbit M1Clock = P0^2; //Clock input
sbit M1En = P0^3; //Enable/Disable motor1 control
sbit M1Lim1 = P0^6; //Limit switch1
sbit M1Lim2 = P0^7; //Limit switch2

#define DIRCCW 0 //Motor direction is counter clock wise
#define DIRCW 1 //Motor direction is clock wise
#define HALFSTEP 1 //Half step
#define FULLSTEP 0 //Full step

#define XMOTOR 1 //Define constant to indicate XMOTOR
#define YMOTOR 2 //Define constant to indicate YMOTOR
#define ZMOTOR 3 //Define constant to indicate ZMOTOR

#define MEDIUM_SPEED_DELAY 180  //Delay between clock pulses
//Run ‘motor’ one step in current direction
char RunMotor(char motor)
{
unsigned char d= MEDIUM_SPEED_DELAY; //Medium speed is selected
char limit=0; //Indicates limit reached

switch(motor) {
case XMOTOR: //Code for XMOTOR
{
if (GetMotorDirection(motor) == DIRCW) {

limit = ReadLim2(motor);
}
else { //DIRCCW
limit = ReadLim1(motor);
}
if (limit==0) return 0;   //Indicate motor limit 
M1Clock = 1; //CLK = 1
M1Clock = 0; //CLK = 0
while(d—); //Wait for specified delay
M1Clock = 1; //CLK = 1
d = MEDIUM_SPEED_DELAY; //Wait for a delay
while(d—);
return 1; //Operation success

} (Continued)
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Listing 2—This code fragment is for the LCD and matrix keypad controller implementation using the
P89C2051 microcontroller. With this code, you can connect the keypad and display to any microcontroller with
a three-wire serial interface.

#include <reg51.h>
typedef void (*Fn_Pointer)(void);//Makes it easy to invoke req’ed func
Fn_Pointer fn_ptr1[] = {MyStatus, SendKBStatus, SendKey, //Keypad func

ClrLCDCmd, DspChr, GotoXYCmd, DspStr}; //LCD related functions

bit EvCmd; //Reading and processing command

void SerComInPtr (void) interrupt 4 //Receive command in serial ISR
{

if (TI) { //Interrupt is due to TI flag
fTxEmpty = 1; //Store TI status
TI =0 //Clear TI to avoid further interrupt
return; //Transmission section done

}
//Command byte is received. Go Process the command

TI = fTxEmpty;  //Restore TI flag to use SendChrw() function
ES = 0; //Disable the serial ISR for the moment
Cmd = RecvChrw();//Read command byte
EvCmd=1; //Notify that command is received

}

void  Timer0ISR (void) interrupt 1 //Scan a matrix keypad
{

TH0 = COUNTHIGH; //Reload the timer0 16-bit register
TL0 = COUNTLOW;    //For 10-ms keypad scanning
TR0=1; //Run the timer0
Kbd();              //Execute the keypad state machine

}

code char Sign_OnMsg[] = “Keypad & LCD server”;

main() 
{

InitSer51();         //Init serial port 9600,8,N,1
InitLCD();           //Init the 4 × 20 LCD
Str2LCD(Sign_OnMsg); //Notify this controller ready
GotoXY(0,3);         //Position cursor at (0,3)

TMOD = 0x21;         //Timer0 (mode1), timer1-serial
TH0  = COUNTHIGH;  
TL0  = COUNTLOW;     //Init timer for 10 ms
TR0  = 1;            //Run timer0
ET0  = 1;           //Enable timer0 Interrupt
ES   = 1; //Enable serial Interrupt
EA   = 1;            //Enable global interrupt

while(1) {
if (EvCmd) {  //Is valid command ready?

if (Cmd < 7) {
(*fn_ptr1[Cmd])();//Receive & process command 
EvCmdServed =1; //Notify command executed

}
ES =1; //Enable serial interrupt
EvCmd=0; //Clear previous command

}
}

}

Praveen Deshpande holds a bachelor’s
degree in electronics engineering from
the Regional Engineering College (REC),
Nagpur, India. He is currently working as
a senior scientific officer in the field of
distributed data acquisition and control.
His interests include real-time operating
systems and distributed control. You
may contact him at ppd@cat.ernet.in.

RESOURCES
Intel Corp., “8XC51 FA/FB/FC PCA
Cookbook,” AP-440, February 1990.

———“MCS 51 Microcontroller
Family User’s Manual,” http://devel-
oper.intel.com/design/mcs51/manu-
als/272383.htm.

T. Kenjo, Stepping Motors and Their
Microprocessor Control, Oxford
Clarendon Press, 1985.

Philips Semiconductors,
“Comprehensive Product Catalog,”
9397 750 11146, vol. 5, April 2003.

STMicroelectronics, “The L297
Stepper Motor Controller,” AN470,
November 2003.

PROJECT FILES
To download the code, go to ftp.ciruit
cellar.com/pub/Circuit_Cellar/2005/177.

SOURCES
AT89C2051 Microcontroller
Atmel Corp.
www.atmel.com

P89C51RD2 Microcontroller
Philips Semiconductors
www.semiconductors.philips.com

L297 Stepper motor controller
STMicroelectronics
www.st.com

Prajakta Deshpande holds a B.S. from
Sagar University, India and an M.C.A.
from Barkatullah Vishwa Vidyalaya,
Bhopal, India. She is a lecturer in
computer science. Prajakta may
reach her at ppd@nettaxi.com.

Kolhapur, India. He currently designs
laser-based instruments. Viraj is inter-
ested in laser-based instrumentation for
industrial and meteorological applica-
tions and embedded systems. You may
contact him at viraj@cat.ernet.in.

Listing 1—Continued.

break;
}

}
//Rotate motor for N steps
unsigned long RotateMotor(char motor, unsigned long int NumOfSteps)
{
unsigned long int c;
unsigned int k;

for (c=0; c < NumOfSteps; c++) {
if(RunMotor (motor) == 0) return (c);

}
}

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2005/177
http://developer.intel.com/design/mcs51/manuals/272383.htm
http://www.atmel.com
http://www.semiconductors.philips.com
http://www.st.com


the issue with provision for the so-called
target peripheral list (TPL). In essence,
this concedes the fact that the aforemen-
tioned PDA manufacturer may prefer to
support only their own add-on keyboards.

Another oft-cited example of the
need for OTG is the idea of a digital
camera being able to connect directly
to a printer instead of having to two-
step a picture file from the camera to
the PC, and then from the PC to the
printer. But instead, how about just
giving the printer itself limited USB
host capability? Check out the photo
printers down at the emporium, and
you’ll see that’s exactly what’s hap-
pening (look for the PictBridge logo).

Remember that the original success
of USB was only by virtue of a huge
up-front investment by Intel. They
put USB connectors on the mother-
board long before there was much of
anything to plug in. That made sense
for Intel, because it made PCs easier
to use (more sales, more add-ons, less
support). Oh, yeah, because they don’t
make the gadgets that plug into USB,
the commoditization of add-ons was
no skin off their nose. 

So, who’s going to volunteer to drive
USB OTG? Given its goal to eliminate
the PC as a middleman, I doubt Intel
will be leading the charge. What other
valiant supplier will take the risk of
being first, and maybe last, on the
block? And of that short list, who has
the muscle to move the market?

Think I’m being overly pessimistic
about OTG? Well, check out the mar-
ket predictions in Eric Huang’s “USB
On-The-Go Overview,” which was
presented at an August 2004 USB
OTG training seminar (see Figure 1).[1]

78 Issue 177    April 2005 CIRCUIT CELLAR® www.circuitcellar.com

in the years since the announcement.
The annual PR ritual invariably includes
a prediction that USB OTG-enabled
devices will be “on the shelf” by “the
end of this year” (i.e., whatever year it
was when the hopeful hype was penned).
There may be some shelves somewhere
with OTG on them, but they aren’t the
ones at my local electronics emporium.

Sure, OTG makes sense from
50,000′. From that lofty vantage point,
oxygen deprivation-induced euphoria
tends to make a lot of ideas look good,
including the 99% that go nowhere.
Only from a much lower altitude do
the messy details, and the devils that
come with them, become apparent. 

Yes, the first OTG-capable chips are
peeking out from behind the curtain.
Usually, the availability of silicon says
a standard’s time has arrived. But in
OTG’s case, I think it just means
there’s no more avoiding the troubling
issues that remain. Chief among these is
the fundamental assumption that
universal device-to-device connectivity
is a good thing. As the old saying goes,
“where you stand is where you sit.” For
instance, consider one example of a prob-
lem OTG is supposed to fix. Many PDA
users buy full-size keyboards for entering
large amounts of data. And each brand
of PDA typically has its own proprietary
keyboard offering. Wouldn’t it be nice
if every PDA user could instead choose
from a variety of standard keyboards
without being tied to one brand? The
answer is yes if you’re Joe-PDA keyboard
user. But what if you’re the PDA man-
ufacturer? Do you really want your
valuable add-on keyboard monopoly
destroyed by cheapo clone keyboards?

In fact, the OTG crew recognized

It was way back in September 1996
when I first wrote about the then nas-
cent Universal Serial Bus (“Oh Say
Can USB?” Circuit Cellar, 74). Now,
after 10 years (and more than 1 billion
USB devices, according to www.usb.org),
it’s clear that USB is a boon for PC
connectivity and is here to stay.  

Reports of the demise of the classic
serial and parallel ports are slightly,
but only slightly, exaggerated.
Printers, keyboards, mice, and all
manner of PC-oriented gadgets are on
board with USB. Now it’s time for the
embedded crowd to follow suit.

Porting embedded applications to USB
isn’t a new concept. There have been
more than a few articles on the sub-
ject right here in Circuit Cellar. (Refer
to the resources section of this article for
a list of them.) Nevertheless, time and
silicon march on, so let’s take a look
this month at the latest and greatest.

GOING, GOING, GONE?
But let’s start with some not so

great. What’s up with USB On-the-Go?
Not much, as far as I can tell.

To refresh your memory, the USB
On-the-Go (OTG) initiative was
announced to great fanfare way back
in 2001. The idea behind OTG has
been to evolve USB beyond its PC-
centric host/device architecture to a
more democratic peer-to-peer
device/device nirvana. OTG propo-
nents look forward to the day when
your cell phone, PDA, MP3 player,
etc. can talk directly to each other
without needing a PC in the loop.

Sounds good, but don’t hold your
breath. If you poke around the ’Net,
you’ll find all manner of press releases

USB Easy Riders

SILICON UPDATE by Tom Cantrell

Tom takes a closer look at USB technology and the process of upgrading applications with
USB connectivity. Chips like the CP2102 make the procedure a whole lot easier.
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The OTG projections look rather
yawn-inspiring if you ask me.

KEEP IT SIMPLE
Rather than spending time on

tomorrow’s problems of tomorrow,
I’m more interested in ways to get a
simple, not to mention home-brew,
gadget hooked up to USB today,
preferably with a minimum of muss
and fuss. One option is to use one of the
many USB-enabled MCUs as the basis
for your design. The good news is that
there is a large and ever-growing list of
parts to choose from. Nevertheless, your
choice of platform is limited (i.e., the
number of USB-enabled MCUs is a tiny
fraction of the entire MCU universe).  

Another concern is that you may
have to learn more than you want to
about the innards of USB, even pre-
suming a lot of support from the chip
supplier (sample drivers, application
notes, etc.). At the least you’ll have to
delve into the subject enough to
assure yourself that handling the USB
stuff doesn’t compromise your appli-
cation’s performance and robustness.

After you decide to sell a USB gadg-
et to the unwashed masses, the PC-
side driver becomes a huge stumbling
block. Writing the driver is one thing,
but it’s a problem that pales in com-
parison to the fact that
you’re now in the PC soft-
ware business whether or
not you like it. Calls in
the middle of the night
from brand X PC users.
Upgrades and bug fixes.
Microsoft sneezes and you
catch pneumonia. Yechh!

One good idea is to
piggyback on the drivers
Microsoft already provides.
The simplest and most
generic is to impersonate
a keyboard or mouse as a
member of the human
interface device (HID)
class. It might be tempting
to go for a higher perform-
ance class (such as mass
storage and, most recently,
video), but they come
with a lot more baggage,
overhead, and complexity.

I’ve concluded that, for

now, one of the best ways (cer-
tainly the easiest) to get on board
is a simple USB-to-serial adapter
solution. In conjunction with a
virtual COM port (VCP) driver on
the PC, a converter can allow seri-
al port-based applications to hook
up to USB, yet run as they are
with no hardware or software
changes. If you’re connecting an
existing design that includes an
RS-232 transceiver and the famil-
iar DE-9 or DB-25 connector,
there are plenty of off-the-shelf convert-
er dongles to choose from.

Besides compatibility and simplici-
ty, using a converter offloads all of the
USB processing from your host MCU.
And now you have the luxury of choos-
ing any MCU with a UART (hardware
or bit-banged) for your application pro-
cessing. If you have the luxury of mak-
ing a PCB, you can streamline things a
lot by connecting a USB-to-serial adapter
directly to your UART, eliminating
the need for two RS-232 transceivers
and connectors, and presenting a clean
USB-only facade to the outside world. 

Kudos to Future Technology
Devices International (FTDI) for mov-
ing the USB-to-serial adapter forward.
Besides highly integrated chips, which
you’ll find under the hood of many

stand-alone converters, they deliver a
royalty-free VCP driver. They also sup-
port a direct driver option that comes
with the requisite dynamic link library
(DLL) and application program interface
(API). In short, FTDI bites the PC soft-
ware bullet (i.e., maintenance, support,
bug fixes, etc.) so you don’t have to.

FTDI’s latest chip, the FT2232C,
incorporates a lot of features (see
Figure 2). Like earlier versions (e.g.,
FT232BM), it includes practically
everything you need for a USB serial
solution. On the USB side of the chip,
you just need to provide a 6-MHz
clock (boosted to the 48-MHz clock
USB required by an integrated PLL) and
a handful of discretes and power logic
depending on whether your USB gadg-
et is bus-powered or self-powered.

Bus-powered designs are
served with an on-chip
voltage regulator that con-
verts the nominal 5-V
USB bus voltage to 3.3 V.  

You can choose to add
a small serial EEPROM
chip if you want to over-
ride the default USB set-
tings (vendor ID, product
description, transfer
mode, etc.). The EEP-
ROM connects directly
to the ’2232C and FTDI
provides a utility that
allows programming it
via USB. The EEPROM
can be shared with a
local MCU by virtue of
the fact that the ’2232C
EEPROM interface pins
(i.e., chip select, clock, and
date) are tristated when
the chip is held in reset.

It’s on the MCU inter-

VCC

3.3-V
LDO

Regulator
3V3OUT

USB
Transceiver

USBDP

USBDM

Serial
interface
engine
(SIE)

USB
DPLL

6-MHz
Oscillator

XTOUT

XTIN

TEST
GND

x8 Clock
multiplier

48 MHz
12 MHz

USB
Protocol
 engine

PWRCTL
PWREN#

48 MHz Data rate 
generator

Dual-port TX
buffer

128 bytes

Dual-port RX
buffer

384 bytes

Dual-port TX 
buffer

128 bytes

Dual-port RX
buffer

384 bytes

Data rate
Generator

Reset
generator

48 MHz

RESET#

3V3OUT

Channel A

Multipurpose
UART/FIF0
controller

RSTOUT#

ADBUS0
ADBUS1
ADBUS2
ADBUS3
ADBUS4
ADBUS5
ADBUS6
ADBUS7

ACBUS0
ACBUS1

ACBUS2
ACBUS3

SI/WUA

Channel B

Multipurpose
UART/FIF0
controller

BDBUS0
BDBUS1
BDBUS2
BDBUS3
BDBUS4
BDBUS5
BDBUS6
BDBUS7

BCBUS0
BCBUS1

BCBUS2
BCBUS3

SI/WUB
EEPROM
Interface

EECS
EESK
EEDATA

Figure 2—FTDI started the USB-to-serial adapter chip craze. Now they’re upping the ante
with the two-channel FT2232C.
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Figure 1—Ready, set, don’t go. USB On-the-Go faces a long
and winding road before it achieves anything near the popularity
of the original. (Source: In-Stat/MDR February 2004)
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face side of the part that
the ’2232C breaks new
ground, starting with two
completely independent
ports. The power-up
default configuration has
both ports configured as PC
COM port-style UARTs
including a complete set
of modem control lines
(RTS, CTS, etc.). The big
news is that the ports also
can be configured in a vari-
ety of other modes,
including FIFO, MCU bus
emulation, and clocked
serial. These additional
modes enable higher per-
formance across a broad
range of applications. In some cases
they may even eliminate the need for
an MCU altogether. 

For instance, to support the migra-
tion of PC-based emulators, download-
ers, and flash memory programmers to
USB, the ’2232C Clock Serial mode
provides the basis for USB-JTAG emu-
lators. Another option described in the
datasheet is an optoisolated connection
to serve the growing stable of industri-
al and scientific add-ons (e.g., data log-
ging and digital oscilloscope).  

KEEP IT SIMPLER 
Witnessing the success of FTDI, it’s

no surprise to see competitors emerge.
As an aside in last month’s column,
“’51 Favorites,” I noted that Silicon
Labs’s (formerly Cygnal) ’51 evaluation
board exploited their serial-to-USB
adapter chip, the CP2102 (see Figure 3).
Let’s take a closer look.

In terms of basic functionality, the
CP2102 is similar to FTDI’s FT232BM.

Both are minimalist converters featur-
ing the aforementioned USB direct
connection on one side and a COM
port-oriented UART with a full comple-
ment of modem controls on the other.
Like the FTDI parts, royalty-free drivers
(both Virtual COM Port and Direct DLL)
are available. However, although similar
in terms of basic functionality, the
CP2102 delivers some key cost-saving
advantages when it comes to design-in.

In what I believe may be a first, the
CP2102 integrates the 48-MHz USB
clock on-chip, completely eliminating
the need for an external clock source
(crystal, resonator, etc.). This is quite an
accomplishment, because the on-chip
clock must be accurate enough to meet
USB specs, a nontrivial challenge consid-
ering aging and varying environmental
factors (e.g., temperature and voltage).

The CP2102 also integrates the EEP-
ROM required for nondefault USB set-
tings that would otherwise require an
external chip (as is the case for the
FTDI parts). Like FTDI, Silicon Labs
provides a PC-based utility for pro-
gramming the EEPROM via USB.

Although both the Silicon Labs and
FTDI parts have a similar pin count (28
pins for the CP2102 and 32 pins for the
FT232BM), the CP2102 at only 5 mm ×
5 mm has a much smaller footprint than
the 9 mm × 9 mm FT232BM. Another
key spec difference is the –40° to 85°C
temperature range for the CP2102 ver-
sus 0° to 70°C range for the FT232BM. 

Price projections always come with
caveats related to volume, timing,

channel (direct versus distribution),
and your negotiating skill, not to
mention the challenge posed by edito-
rial lead times. That being said, as I
write this column, it appears pricing
for the two parts is similar at about $5
in low quantity dropping to $2.50 in
high volume. Obviously, given its inte-
grated clock and EEPROM, this gives a
system cost advantage to the CP2102.

GETTING VIRTUAL
I decided to give the CP2102 evalua-

tion board a look-see. The $49 board
implements the usual USB-to-RS-232
adapter function in two chips (the
CP2102 and a Sipex RS-232 transceiver),
the requisite connectors, and little
else (see Photo 1).

The CD that comes with the kit
includes Virtual COM port drivers for
Windows (98 through XP), Mac (OS-9
and OS-X), and Linux 2.40.  The driver
installation seemed a bit quirky. After
plugging in the board to the PC USB
port, I went through two sessions with
the Windows New Hardware Wizard.
First it installed the CP210X USB com-
posite device and then the CP210x USB-
to-UART bridge controller.  All went
well, and I used the Windows device
manager to verify that the CP2102 board
was assigned to an open COM port slot.

Thanks to the COM port imperson-
ation, initial checkout is easy using a
simple terminal emulator such as
HyperTerminal, which comes with
Windows. However, I’ve always found
that program, admittedly designed with

Figure 3—Silicon Laboratories’s CP2102 represents a new low in USB-to-serial adapter chips: lower chip count, lower power, and
less board space.
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modems in mind, a little clunky when it
comes to direct RS-232 communications.
Instead, I usually use an emulator called
MTTTY, which is a sample program that
comes with a Microsoft serial port appli-
cation note, itself useful reading.[2]

To start, I set up a simple loop-back
configuration, connecting the PC’s
real COM port to the CP2102 board’s
virtual COM port. I had to admit
some concern that between Windows,
MTTTY, and the Silicon Labs VCP
driver, the PC might get all choked up
trying to talk to itself. But, as shown
in Photo 2, I was able to connect each
copy of MTTTY to its COM port (real
and virtual, respectively) and establish
communication.

Next, I moved up to true computer-to-
computer communication. The configu-
ration consisted of a new and fast XP PC
and an old slow Windows 98 laptop. I
experimented in both directions with
each computer taking a turn connecting
by real (RS-232) and virtual (USB) COM
ports. This confirmed that both versions

of the VCP driver (i.e., XP
and Windows 98) were func-
tional and could talk with
each other.

Next, I exercised the vari-
ous handshaking features,
both hardware (RTS/CTS
and DTR/DSR) and software
(XON/XOFF). As expected,
with handshaking disabled, I
was able to induce overrun
errors when transferring a
big file from the fast com-
puter to the slow laptop (see
Photo 3). With handshaking
enabled the overrun prob-
lem went away, and the file
transferred successfully.
This serves as a reminder
that even though the

CP2102 does an admirable job, it can’t
work miracles such as making a slow
computer fast. 

Data rates are another
possible gotcha. The
CP2102 datasheet touts
the chip’s ability to
deliver data at up to
1 Mbps. Besides the fact
such a high rate would
no doubt push the
envelope of what a par-
ticular PC can handle,
most existing applica-
tions don’t know about
anything above and
beyond the standard
data rates (e.g., 300 bps
to 115.2 kbps). 

To add a twist, the
workaround is different
depending on your specific PC operating
system. For Windows 98, it’s possible
to access the UART control registers
directly to program the desired data
rate. However, XP doesn’t allow appli-

cation software
to have direct
access to chips.
(Stop me before I
crash again.) The
recommended
hack is to change
the clock divisor
factors stored in
the USB .INF file
to allow a non-
standard data rate

to impersonate a standard one. For
example, you could set the entry corre-
sponding to 115.2 kbps with the clock
divisor factors corresponding to 1
Mbps. Then, when an application
specifies 115.2 kbps, the rate is actually
set to 1 Mbps behind the scenes.

Although it’s tempting to succumb to
the illusion of real COM ports, don’t for-
get there’s a lot that goes on between the
two ends of the virtual connection.
Consider an example application that
takes direct control of the modem con-
trol lines, perhaps to monitor a switch
closure or drive an LED. With a real
COM port, it’s possible to get a reason-
ably accurate handle on the timing. But
a virtual COM port introduces a degree
of uncertainty due to the fact the actual
I/O timing depends on USB scheduling
beyond the control of your application.

I wrote a simple test program in BBC

BASIC to demonstrate the difference
(see Photo 4).  Refer to the “London
Calling” sidebar (page 84) for more
information about BBC BASIC. All the
program does is sit in a tight loop tog-
gling the RTS line as fast as possible. Sure
enough, probing with an oscilloscope
revealed the real RTS line was switching
about 100 times faster than the virtual
one (e.g., 20 kHz versus 200 Hz).  

The oscilloscope session also served
as a cautionary tale that has nothing to
do with the CP2102 directly, but rather
the RS-232 interface. I noticed the
voltage swing was twice as high on the
RTS output from the PC (e.g., ± 10 V)
compared to the output from the USB

Photo 2—After installing the virtual COM port (VCP) drivers, you can
perform initial CP2102 loop-back tests on a single PC by running one
copy of a terminal emulator talking to the virtual COM port and one
copy talking to the real COM port.

Photo 3—The CP2102 includes a healthy amount of buffer RAM to support
high data rates, but take care not to overdo it. In this case, transferring a large
file from a fast to a slow PC caused overruns on the latter. Use hardware and
software handshaking (or lower the data rate) to make the problem go away.

Photo 4—It may not matter in most applications, but this simple program to toggle the RTS
line reveals there are low-level timing differences between a real and virtual COM port.
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bus-powered RS-232 transceiver on
the CP2102 board (e.g., ±5 V). I didn’t
have any problems myself, but it isn’t
hard to imagine scenarios (cabling,
noise, using an RS-232 line as a power
source) in which the difference could
lead to glitches and head scratching.

JUMPSTART
Chips like the CP2102 minimize the

pain of upgrading your application
with USB connectivity. Yes, you could
just stick with RS-232 and rely on users
to buy their own USB-to-RS-232 con-
verter dongle. That may seem like an
easy way out, but does it really make
sense?

Consider the fact that by the time you
add an RS-232 transceiver and DE-9 con-
nector, there will be little (if any) cost,

RESOURCES
J. Axelson, “USB Chip Choices:
Finding a Peripheral Controller,”
Circuit Cellar, 120, July 2000.

J. Bachiochi, “USB DMX,” Circuit
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———“USB in Embedded Design,”
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Cheap USB Connectivity,” Circuit
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USB Implementers Forum,
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size, or power consumption advantage
compared to a USB-to-serial adapter chip
and connector (the latter is optional as
with a USB keyboard or mouse).

Presenting a USB-only face to the
world also gives your design the credi-
bility associated with products from
major players who have the wherewith-
al to roll their own USB solution. It also
delivers cross-platform plug ability (e.g.,
PC, Mac, Linux, etc.) that a serial or
parallel solution can’t.

Finally, the hope that leaving the USB
issue to the user will relieve you of sup-
port headaches is likely an illusion.
The fact is that if the user has a problem
using your RS-232 gadget with an exter-
nal USB converter dongle, you have a
problem too. Chances are you’ll still get
a call if a problem arises, and you may

end up having even more USB-related
support headaches (e.g., multiple ven-
dors dongles, drivers, etc.) than if you
were to bite the bullet and take charge
of the USB side of the equation yourself.

There’s no doubt that the time has
come to ditch the past and get on the
USB bandwagon. The only question I
have is, What the heck should I do with
my closet full of soon-to-be-obsolete
nine-pin (and even older 25-pin) RS-232
stuff? Oh well, that’s progress. I

London Calling
I wanted to write some simple programs to check out the CP2102. Given the

USB connection, that meant programming the PC instead of a simple SBC that I
would typically use. However, I hadn’t been keeping up with the times, especially
when it came to today’s complicated PC programming mega-suites. Studying up
on the subject a bit, I quickly convinced myself that the fancy tools out there
were not only overkill, but also way too bloaty to get my hands around in short
order. Oh, for the good old days when PCs came with a simple BASIC built in.

Almost as a matter of whimsy, I punched “BASIC for Windows” in Google,
which faithfully reported 25 million hits. Sigh. But wait, right there on the first
page, I saw three links for a “BBC BASIC for Windows.” What the heck? No
harm in clicking.

BBC BASIC goes back to the roots of personal computing in the United
Kingdom, even before the IBM PC days, a story filled with names from the past
like Acorn (progenitor of ARM), Sinclair, and even CP/M. I enjoyed the trip
down memory lane, but even better the fact I came away with a free download
evaluation version of BBC BASIC for Windows. Head on over to www.cix.co.
uk/~rrussell/products/bbcwin/bbcwin.html and check it out.

Compared to the original BASICs of yore, BBC for BASIC is extremely improved.
You can have long variable names, and line numbers are only required for state-
ments that are the target of branches. Fortunately, you don’t need many of those
because it has a good complement of structured programming features (e.g., proce-
dures with local variables), making for readable code instead of GOTO spaghetti.

Otherwise, BBC BASIC is an interesting mix of powerful features (32-bit integer
and 32- or 64-bit floating-point math) and eclectic ones (obscure graphics com-
mands from the days of Teletext and EGA). The GUI is simple and clean, just the
thing for dashing out some one-liners, and it has excellent built-in HELP. Best of
all, it came with a healthy complement of serial I/O features that were easy to
use and worked properly on both my XP and Windows 98 PCs.

The bad news is the free evaluation version is limited to 8 KB of program
space. The good news is that because it’s a tokenizing interpreter, 8 KB goes
further than you might imagine. For example, the program I wrote to toggle the
RTS line only consumed a couple of hundred bytes. Or go ahead and splurge on
the full version, which is only £29.99 and includes a compiler (generate an
.EXE file). Jolly good show, I say!

SOURCES
FT232BM and FT2232C Chip
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www.ftdichip.com

CP2102 Chip
Silicon Laboratories
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The average person these days has dozens of portable devices. We’ve got radios, laptops, cell phones, flashlights, cameras, navigation sys-
tems, iPods, PDAs, LCD TVs, DVD players, etc. Let’s face it. We live in a gadget-happy universe. As much as we might want to deny it, we love
the whole idea that science fiction is fast becoming science reality. Take cell phones as just one example. “Personal communicators” were bare-
ly thought of 20 years ago, but today you can have a cell phone with a 0.5-megapixel color view screen and features scheduling, word process-
ing, GPS navigation and mapping, FM radio, a web browser, a TV receiver, an MP3 player, a digital camera, a video player, and a voice recorder.
Cell phones are fast becoming the Swiss Army knives of our electronic universe.

Of course, these feature-laden devices are a great idea until you turn on a few of the functions and the batteries die after about 10 min. How
many times has your laptop’s battery icon claimed it has, say, 3 hours and 41 min. left, but an hour later little flashing things start appearing on
the screen, warning you of a low battery and imminent shutdown? The manufacturer of the laptop neglected to tell you that the 4-hour battery
life drops 30% if the screen is on (so you can actually read it), and another 50% if the Wi-Fi is running (the only reason you bought the laptop).

Battery technology is the one critical part of our electronic universe that never heard about Moore’s law. What kind of processing improve-
ment have we seen since 1965? A million times? I just read that disk drive capacity alone has increased over 400,000% in the last 15 years.
Rechargeable battery capacity (energy density) has increased just 300% in the same period of time. All the great features we want in portable
devices aren’t missing because of a lack of technology. It’s just that the available battery power can’t handle their present level of electronic
integration.

Battery design is fundamentally an issue of chemistry. Battery technology hasn’t changed much because the periodic table hasn’t changed
either. Every time you start your car, keep in mind that it’s using basically the same lead acid battery designed by Gaston Plante in 1859. All
those NiCd batteries used in your power tools trace back to discoveries by Waldmar Jungner in 1899. Talk about a slow evolution.

Energy density improvements in recent years are primarily the result of fiddling with the zinc-copper-lead-carbon-nickel-cadmium-mercury-
lithium soup to tailor specialized power curves. The good news is that Li-ion batteries have made many of the devices we use today a reality
simply because we finally have enough power to run them. The bad news is that we may not be able to tweak the chemistry much more.
Conventional battery technology might still improve, but that will take a long time, and it will never result in the magic bullet that gadget manu-
facturers really want as a portable energy source.

In the meantime, how do we keep adding new features to all these gadgets? First, we improve efficiency. If companies want to sell portable
computers with everything including the kitchen sink and more than a half-hour run-time, then they have to design special energy-efficient
processors and circuitry that shut off unused buses, logic, and memory blocks. They also need to find an alternative to energy-wasting LCD
backlights for portable devices with video displays. One technology with potential is organic LED (OLED) display. Of course, there are little prob-
lems. It’s expensive, fragile, and the colors fade. But hey, all that used to be true about the stuff we commonly use today.

The ultimate solution is a fuel cell battery. On the drawing board for the last 50 years, a fuel cell is essentially a battery that combines hydro-
gen and oxygen to produce electricity. Conceivably, when you need to recharge, you would simply pour in a little methanol and away you would
go. Like gasoline in a car engine, the appealing advantage is that, for a given volume, methanol has far greater energy density than something
like Li-ion. Of course, before fuel cells become a reality, there are little issues to deal with: some fuel cells like to run at 350°C; they prefer being
constant-current generators; and they’re made with expensive platinum. Plus, methanol is hard to find, and you can’t get on a plane with it. Of
course, every technological advance started with lots of technical obstacles and naysayers predicting their failure. If you look at how far we’ve
come, you can easily envision that fuel cell batteries will be in common use eventually. I for one never want a battery that is dead as a doornail
again. I prefer the option where I can simply say, “Fill ’er up.”

Dead as a Doornail

��

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

PRIORITY INTERRUPT



http://www.tech-tools.com


http://www.parallax.com

