
�

�

CESIMO Working Paper IT�����

GLIDER Reference Manual

Version ��� �for MS�DOS operating system�

c������ ���� CESIMO � IEAC Universidad de Los Andes

CESIMO Working Paper IT�����

GLIDER Reference Manual

Version ��� �for MS�DOS operating system�

August� ����

c������ ���� CESIMO � IEAC Universidad de Los Andes

CESIMO �Simulation and Modeling Research Center� Universidad de los Andes� M�erida� Venezuela

phone ����	
�
���	
� fax ����	
�
���	�� email cesimo�ula�ve

ii

Contents

� INTRODUCTION �

��� Characteristics of the GLIDER Simulation Language �

����� Example of discrete simulation �

����� Example of continuous simulation �

��� Types of nodes �

��	 Nodes with indexes �

��� Example �� Simple Serving System �

����� Description of the process �

����� Trace of the operations �

����	 Standard Statistics ��

��
 Example �� Port with Three Types of Piers ��

��
�� Remarks about the program ��

��
�� Standard Statistics ��

��� Compilation Details ��

� DECLARATIONS ��

��� TYPE ��

����� Simple types �

����� Pointer types ��

����	 Structured types ��

����� String types ��

����
 Procedural types ��

��� CONST ��

��	 VAR �	

��� NODES �	

��
 MESSAGES ��

��� GFUNCTIONS ��

��� TABLES �

��
 DBTABLES �

��� PROCEDURES ��

���� STATISTICS �

� INITIALIZATIONS ��

	�� Initial Values to Simple Variables and Arrays ��

	�� Initial Capacity Values to R Type Nodes � 	�

	�	 Values to Functions Given by Pairs of Values � 	�

	�� Values to Frequency Table Parameters � 	�

iii

iv CONTENTS

	�
 Values from DBASE IV Tables to Arrays � 	�

	�� Initial Activations � 	�

	�� Interactive Experiments � 	�

� SYSTEM PREDEFINED NODES ��

��� I �Input� type nodes � 		

����� Code � 		

����� Activation � 		

����	 Function � 		

����� Relation with other nodes � 	�

����
 Indexes � 	�

����� Examples � 	�

��� L �Line� type nodes � 	

����� Code � 	

����� Activation � 	

����	 Function � 	

����� Relation with other nodes� Identifying of IL with EL � � � � � � � � � � � � � � � � � � 	�

����
 Indexes � 	�

����� Examples � 	�

��	 G �Gate� type nodes � 	�

��	�� Code � 	�

��	�� Activation � 	�

��	�	 Function � 	�

��	�� Relation with other nodes � 	�

��	�
 Indexes � 	�

��	�� Examples � 	

��� R �Resource� type nodes � 	

����� Code � 	

����� Activation � 	�

����	 Function � 	�

����� Relation with other nodes ��

����
 Indexes ��

����� Examples ��

��
 D �Decision� type nodes ��

��
�� Code ��

��
�� Activation ��

��
�	 Function ��

��
�� Relation with other nodes ��

��
�
 Indexes ��

��
�� Examples ��

��� E �Exit� type nodes ��

����� Code ��

����� Activation ��

����	 Function ��

����� Relation with other nodes ��

����
 Indexes ��

����� Examples ��

CONTENTS v

��� C �Continuous� type of nodes ��

����� Code �	

����� Activation �	

����	 Function �	

����� Relation with other nodes �	

����
 Indexes �	

����� Continuous Variables Declaration �	

����� Examples ��

��
 A �Autonomous� type nodes ��

��
�� Code ��

��
�� Activation ��

��
�	 Function ��

��
�� Relation with other nodes ��

��
�
 Indexes ��

��
�� Examples ��

��� General type nodes ��

����� Code ��

����� Activation ��

����	 Function ��

����� Relation with other nodes ��

����
 Indexes �

� NETWORK ��

�� De�ning a node ��

���� Heading ��

���� Code �
�

�� Processing the network �
�

� INSTRUCTIONS ��

��� ASSEMBLE assembles messages in a representative message � � � � � � � � � � � � � � � � � � �
�

��� ASSI assigns values to arrays and multiple nodes �
�

��	 COPYMESS makes copies of a message �

��� CREATE creates a message �
�

��
 DBUPDATE updates a DBASE IV table ��

��� DEASSEMBLE disassembles assembled messages ��

��� DOEVENT permits instruction execution only once in the event � � � � � � � � � � � � � � � � ��

��
 DONODE prevents instruction execution during network scanning � � � � � � � � � � � � � � � ��

��� EXTR extracts a message from a list �	

���� FILE writes values in a text �le �	

���� GRAPH draws graphics during a run ��

���� INTI allows interactive change of data ��

���	 IT schedules next activation of the node �

���� LOAD imports a DBASE IV table to an array ��

���
 NT schedules a new activation of the node to a future time ��

���� OUTG writes variable and array values with titles ��

���� PREEMPTION allows a message to preempt another that is using the resource � � � � � � � � ��

���
 REL takes a message out of the IL of an R type node ��

vi CONTENTS

���� RELEASE manages the message released in a R type node �	

���� REPORT allows to write an output report in �les ��

���� SCAN scans and processes a list of messages ��

���� SELECT selects messages from ELs of a D type node �

���	 SENDTO sends messages in process to lists ��

���� STATE controls activations and state of G type node �

���
 STAY schedules exit time from a R type node ��

���� SYNCHRONIZE retains messages in the EL to release them together � � � � � � � � � � � � �
�

���� TITLE puts title to an experiment �
�

���
 TSIM sets duration to the simulation run �
�

���� UNLOAD releases memory used to import DBASE IV table � � � � � � � � � � � � � � � � � � �
�

��	� USE de�nes the quantity of resource to be used �
�

� PROCEDURES 	�

��� ACT schedules a future activation of a node �
�

��� BEGINSCAN repeats the scanning of a list �
�

��	 BLOCK blocks future events of release at a type R node �

��� CLRSTAT re�starts the gathering of statistics �

��
 DEACT deactivates a node �
�

��� DEBLOCK suppresses blocking of node �
�

��� ENDSIMUL ends the simulation at the end of the actual event � � � � � � � � � � � � � � � � �
�

��
 EXTFEL extracts an event from the FEL �
�

��� FIFO puts the message at the end of the IL of a L type node � � � � � � � � � � � � � � � � � �

���� FREE frees a resource �

���� LIFO puts the message at the beginning of the IL of a L type node � � � � � � � � � � � � � � �
�

���� MENU calls the Run Interactive Menu �
�

���	 METHOD sets the method of integration in a C type node ��

���� NOTFREE inhibits the release of a resource ��

���
 ORDER puts the message in the IL of a L node in a given order � � � � � � � � � � � � � � � � ��

���� PAUSE stops the execution ��

���� PUTFEL adds an event to the Future Event List ��

���
 RETARD produces a delayed function from a given function of time � � � � � � � � � � � � � � ��

���� SORT sorts a list of messages ��

���� STAT displays the statistics �	

���� STOPSCAN stops the scanning of a list of messages �	

���� TAB adds values to a frequency table ��

���	 TRACE starts the tracing �

���� TRANS transfers a message �

���
 UNTRACE stops the tracing ��

���� UPDATE updates messages �elds or �eld variables ��

	 FUNCTIONS ��

�� LL number of messages of a list �

�� MAXL maximum number of messages of a list �

�	 MINL minimum number of messages of a list �

�� MEDL mean length of a list �

�
 DMEDL deviation of the mean length of a list ��

CONTENTS vii

�� MSTL mean waiting time in a list ��

�� DMSTL deviation of mean waiting time in a list ��

�
 TFREE time that the list was free ��

�� ENTR number of entries in a list ���

��� MAX maximum value of a pair of real expressions ���

��� MAXI maximum value of a pair of integer expressions ���

��� MIN minimum value of a pair of real expressions ���

��	 MINI minimum value of a pair of integer expressions ���

��� MODUL rest from dividing two real expressions ���

��
 BER random value from a Bernoulli distribution ���

��� BETA random value from a Beta distribution ���

��� BIN random value from a Binomial distribution ���

��
 ERLG random value from an Erlang distribution ���

��� EXPO random value from an Exponential distribution ���

��� GAMMA random value from a Gamma distribution ���

��� GAUSS random positive value from a Normal distribution� ���

��� LOGNORM random value from a Lognormal distribution ���

��	 NORM random value from a Normal distribution ��	

��� POISSON random value from a Poisson distribution ��	

��
 RAND random value from a multivariate distribution ��	

��� TRIA random value from a Triangular distribution ��

��� UNIF random value from a real Uniform distribution ��

��
 UNIFI random value from an integer Uniform distribution ���

��� WEIBULL random value from a Weibull distribution ���

� RESERVED WORDS �
�

��� Message variables ���

��� Event variables ���

��	 Indexed node variable ��

��� Control and state variables ��

��
 Node dependent variables ��

��� Variables depending on user�s variables ��

��� Variables that may be initialized by the user ���

��
 Classes of declarations ���

��� GLIDER or Pascal prede�ned types ���

���� Pascal separators ���

���� GLIDER types of functions �GFUNCTIONS� ���

���� GLIDER separators ���

���	 Operators ���

���� GLIDER instructions and procedures ���

���
 Pascal procedures ���

���� GLIDER functions ���

���� Pascal functions ���

���
 Colors ���

���� Pascal constants ���

���� Other reserved words ���

���� Types of Node ���

���� Constants ���

viii CONTENTS

�
 OPERATION ���

���� GLIDER system ��	

���� Source program ���

���	 Operation without environment ���

���� Initial menu ���

���
 Run interactive menu ���

���� Tracing ��

���� Statistics ��

���
 Final Menu ���

�� DEVELOPMENT OF GLIDER ���

���� The GLIDER group ���

���� How to get the GLIDER ���

���	 Di�erences of Version ��� �July ����� with the previous versions � � � � � � � � � � � � � � � � ��

���	�� Introduction ��

���	�� Version alfa ���

� and beta ���
�� ��

���	�	 Version � �February ����� ��

���	�� Version ��� �May ����� ���

���	�
 Version ��� �May ���	� and Version ��� �November ���	� � � � � � � � � � � � � � � � � ���

���	�� Version 	�� �April ����� and 	�� �September ����� ���

���	�� Version ��� �July ����� ���

Chapter �

INTRODUCTION

��� Characteristics of the GLIDER Simulation Language

GLIDER� is a language for simulation of both continuous and discrete systems� The system to be simulated
is seen as a set of subsystems� that exchange information in di�erent ways� The subsystems can store�
transform� transmit� create� and eliminate information� GLIDER has the following features to represent
systems and information processes�

� Subsystems are represented by nodes of a network� Nodes may be of di�erent types according to
their functions�

� Information transformation is described and performed by program code associated to each node�

� Information exchange among nodes is done by the action of the code on shared variables or �les� and
also by passing messages from a node to other�

� Information is stored in variables� �les or in lists of received messages in the nodes�

Two simple examples follow to give a general idea how GLIDER programs look like�

����� Example of discrete simulation

� Railroad System��

In a simple railroad system� trains� with a number of coaches equal

to a random number from �� to ��� depart from a station each ��

minutes� After �� minutes of travel� the trains reach their destination�

The program writes the time of arrival and the number of coaches�

For clarity� in all the manual� GLIDER and Pascal reserved words are in

upper case letters	 user identifications are in lower cases with normally

the first letter in upper case�

NETWORK

Depart
I� Railroad �� Coaches �
 UNIFI
������	 IT �
 ��	

Railroad
R� Destination �� STAY �
 ��	

Destination
E� �� WRITELN
�A train arrives at time���

TIME� �Its length is�� Coaches�	

PAUSE	

�A complete set of examples can be found in the GLIDER examples book or in the directory DEMOS of the GLIDER disk�
�The GLIDER and PASCAL reserved words are all in capital letters� In the case of user words� only the �rst letter is capital�

�

� CHAPTER �� INTRODUCTION

INIT TSIM �
 ����	 ACT
Depart� ��	

DECL MESSAGES Depart
Coaches� INTEGER�	

STATISTICS ALLNODES	

END�

The program has the following sections�

� Heading section with title and explanations�

� NETWORK section that describes the nodes �subsystems� and the relations among them�

� INIT section that sets the simulation time and the node to be �rstly activated at simulation start� It
may include other initializations �see Chapter 	��

� DECL section that declares the structure of the messages and the statistics required� It may include
declarations of other variables and elements of the program �see Chapter ���

It follows a description of the NETWORK section and its functions� After each node name follows a letter
between parenthesis indicating its type and the successor node to which messages can be sent� Depart is a
node of I �Input� type� When executed� it generates a message and sends it to the successor node Railroad�
The message in this example represents a train� It has an integer type �eld calledCoaches� that indicates
the number of coaches� In the code of the node �after the separator ��� this �eld is set to a value given by
a GLIDER function UNIFI that produces a random integer number� in this case between �� and ��� A new
activation of the Depart node is scheduled after an Interval Time of �
 time units�

The node Railroad is of R �Resource� type� When executed� it processes the message and it stores it
temporarily in an internal list �IL�� The code sets� by means of the GLIDER instruction STAY� that the
message must remain in the node for a time equal to �
� When the message is released� it is sent to the
node Destination�

The node Destination is of E �Exit� type� It takes the message� executes the instruction of the code �it
writes� for instance� �A train arrives at ���� Its length is ���� and it deletes the message� See that the value
���� is transported by the message in the variable Coaches� After writing� the program stops �instruction
PAUSE� and when any key is pressed the simulation continues� New trains are generated in Depart each
�
 units time� then they pass to Railroad� and so on�

The above source program is the input to the compiler system that translates it and runs the simulation�
The simulation time is not the real processing time� It takes the value at each event� At the beginning is
�� when the �rst train arrives is �
� when the second train departs is �
� when the second train arrives it is
��� when the third train departs it is ��� etc�

����� Example of continuous simulation

�

Plantation with periodic cuts�

In a plantation the quantity of wood growths according to a

logistic curve whose differential equation is�

w�
 k �
� � w � wm� � w

When the quantity is greater than wm� a cutting process starts

which decides the proportion of wood to be extracted according

to a function of the actual price� p
TIME� and the mean price pm�

The time for the cut process is negligible compared with the

rates of growth�

NETWORK

���� CHARACTERISTICS OF THE GLIDER SIMULATION LANGUAGE 	

Growth
C� �� w� �
 k �
� � w � wmax� � w	

if w �
 wm then ACT
Cut� ��	

GRAPH
�� ��� BLACK	 TIME� �� �� WHITE	 W� �� ��Wood� �� ������ GREEN	

price
TIME�� �� �� Price� �� ���� YELLOW�	

Cut
A� �� w �
 w � MIN
��� � wm� MinCut � MAX
�� cc�
price
TIME� � pm���	

INIT TSIM �
 ��	 ACT
Growth� ��	

k �
 ����	 wm �
 ����	 MinCut �
 ���	 cc �
 ����	 pm �
 ��	

w �
 ���	 wmax �
 ����	

DT�Growth �
 �����	

price �
 �� �� � ��� �� � ��� �� � ��� �� � ��� �� � ��� �� �

��� ��	

DECL VAR k� wm� wmax� MinCut� cc� pm� real	 w� CONT	

GFUNCTIONS price SPLINE
real�� real� �	

END�

The type C node Growth solves the di�erential equation� When w �
 wm the node Cut� of A type� is
activated� This reduces the mass of wood by a quantity that is 	�� of the wm at most� and MinCut at least�
Within these limits it depends on the di�erence between actual price and average price pm of the wood� The
variable w must be declared of CONT �continuous� type�

The time function price is given by the � pairs of values indicated in the INIT section� For the time �� its
value is 	�� for the time ��� it is ��� etc� It is declared of real argument� real value and the interpolation is
made by a SPLINE algorithm�

A graph is programmed to display� during the run� w and the price as a function of TIME�

In the INIT section� values to the parameters and to the initial value of the variable w are given� The
integration interval DT Growth is also set� All variables are declared in the DECL section�

In GLIDER programs the basic features are implemented in the following way�

� Each node is speci�ed by a name� a node type� and normally a list of successors �nodes to which it
can send messages�� The type of the node must be de�ned� The type implies speci�c ways of being
activated and processing the messages�

� The code can include�

� Instructions in Pascal language �Turbo Pascal in the present implementation��

� Structured GLIDER instructions�

� Procedures and functions of the GLIDER library�

� System generated instructions�

� Information exchange among nodes is accomplished by allowing the code of di�erent nodes to share
some of the data �global variables� �les� �elds of the messages�� The messages are structured like
records in the Pascal language� The user can declare di�erent types of records with di�erent types of
�elds� They may be used to represent entities traveling from one node to another�

� Information is stored in variables� �les and in messages� Messages are stored in two basic lists that are
associated with some nodes�

� EL �Entry List� of received messages to be processed by the node� They may be used to represent
queues or waiting lines�

� IL �Internal List� where messages can be stored until they are extracted� Usually they are used
to represent entities using a facility or remaining in delay lines�

� CHAPTER �� INTRODUCTION

The abbreviations EL and IL will be respectively used for Entry List and Internal List� with the plurals ELs
and ILs�

In addition to the global variables and variables local to nodes� that are declared by the user� the system
introduces global�eld variables for each �eld of each message structure declared by the user� The name of
these variables is equal to the name of the �eld� When a message is processed� the values of the �elds of the
message are transferred to the �eld variables� So the user�s code can use and change these values referring
to them by its simple name� When the process of the message is over� the values of the �eld variables are
passed to the �elds of the message�

When messages of di�erent structure have some �elds with the same name� they correspond to the same
�eld variable� This allows to deal with di�erent entities sharing common properties�

The execution of the code of a node is called the activation of the node� At a point during the simulation
it may be necessary to schedule the activation of certain nodes for the future� The schedule is kept in a list
calledFEL �Future Event List�� Each element in the FEL represents a pending event� It contains a reference
to the node to be activated and the time at which the activation must take place� This list is automatically
processed by the system� but the user may also handle it through special GLIDER procedures�

The order of activation of the nodes is essential to the simulation� An event �activation fact� begins with the
processing of the element of the FEL� that has the minimum time value� The node referred by this element
is activated �executed� and this starts the event execution�

The code of the node may cause changes in the values of the variables� execution of procedures and message
processing� In particular this execution may cause message exchanges� It can also change conditions that
allow other nodes to move messages or change values of variables� All this must be done in these events�
To perform all these changes it follows a scanning of all the nodes that could be a�ected by the execution
of the node� These scanned nodes are then activated� The scanning is repeated cyclically until no further
movements of messages are possible� The event processing is then ended and the following event from the
FEL will be considered� During the execution of an event the state of the system changes and new future
events are scheduled� The value of the simulation time do not change during the transformations produced
in the event� When a new event is executed the time variable is updated to the time of the event indicated in
the FEL� So the simulation process goes on until an end condition speci�ed by the user �nishes the simulation
run� The user must be aware of the two ways in which a node can be activated� by an event that refers
to the node� which starts a new event� or by scanning of the network during an event�

��� Types of nodes

A summary of the characteristics of the prede�ned node types is shown in the following list� Any node can
be activated by an event that refers to it� Others �not all� may be also activated during the network
scanning process� Some node types have EL and IL� others only EL� others none of them� When activation
is attempted by the scanning process� it may be inhibited in certain conditions �EL empty�� Otherwise the
code is executed each time that the node is scanned� The user can avoid these repetitions by means
of special instructions� All activation of a node starts a scanning process with the exception of type C nodes�

See Chapter � for a detailed account of the processing of the di�erent node types�

� I
Input� Generates messages that enter the simulation process� It creates messages and sends them
to the successor nodes� It has neither EL nor IL� It may only be activated by an event that refers to
it� It is never activated again by the scanning of the network�

� L
Line� Simulates queue discipline� The messages that enter its EL are passed to its IL where they
remain in the order indicated by the code� This order may be FIFO �First In First Out� LIFO �Last
In First Out� or any other programmed by the user� It is activated by an event or during the scanning
of the network if the EL is not empty�

� G
Gate� Stops or allows message �ow� It has an EL for the retained messages� It may be activated
by an event or during the scanning of the network if the EL is not empty� The instruction STATE�
used to change the state of the gate� is only executed if the node is activated explicitly by an event
which refers to the node�

���� NODES WITH INDEXES

� R
Resource� Simulates resources used by messages� A real value �called the node capacity� is
associated to the Resource type node� The messages in the EL represent entities that demand a
certain quantity of that capacity during a certain period of time� The code has two parts� One
examines the incomingmessages� the other processes the outgoing messages� The EL is examined and�
for each message� it is checked if the demanded quantity is available� If it is so� the message is moved
to the IL� the time of future depart is scheduled in the FEL� and the quantity of resource used for the
message is subtracted from the available capacity� If there is not enough capacity� the message remains
in the EL� When the depart event is executed� the message with the corresponding time of depart is
extracted from the IL and it is sent to the successor node� If there are more than one successor� a copy
is sent to each of them� The user can also control this process of message sending using the RELEASE
instruction� Each time the node moves a message� the network is scanned� The part of the code that
processes the departing message is only activated by a departing event and executed only once in the
event process� The part that deals with the incomingmessages in the EL may be activated during the
scanning of the network� but only if the EL is not empty�

� D
Decision� Selects messages from predecessor nodes and sends them to successor nodes� It has an
EL for each predecessor� Some messages are taking from the ELs and sent to the successor nodes
according to the selection rules indicated in the code� It is activated during the scanning process and
only if any of the EL has messages�

� E
Exit� Destroys messages� The message in the EL is processed� The code in the node is executed
and the message is destroyed� The node is activated during the scanning of the network if the EL is
not empty�

� C
Continuous� Solves systems of ordinary di�erential equations of �rst order� It accepts instructions
of the form �variable�� �
 �expression�� The system considers a succession of such instructions
as a system of di�erential equations� When the node is activated� the solving process starts� It may be
interrupted and continued when the node is deactivated or activated by special instructions� During
the execution the node schedules its own activation at each integration step� This activations does not
cause scanning of the network� C type nodes have neither EL nor IL�

� A
Autonomous� Executes events at scheduled times� It is only activated by an event that refers
to it� It is not activated again during the scanning of the network� It has neither EL nor IL� It can
activate itself and other nodes� change variables� and send messages�

� X
General� Used to general processes programmed by the user� These nodes may be designed by
any other letter di�erent of G� L� I� D� E� R� C� A� The node is activated during scanning processes
�this is the main di�erence with the A type�� It has not EL or IL unless this is explicitly required by
the user� The management of these lists must be programmed by the user with the help of GLIDER
instructions and procedures�

��� Nodes with indexes

The nodes �Except those of C or D type� can have a subscript or index that can take values �� �� ���� until
a maximum value that must be declared by the user in the node heading� Indexed nodes are equivalent to
a set of nodes of the same type equal to the declared maximum� These nodes share a common code� They
are used to represent sets of similar subsystems�

When activated during the scan of the network� they are activated sequentially� When activated by an event
that refers to I and A type nodes� only the node with the index of the event is activated� An index variable
INO takes the value of the index of the currently executed node� The user has access to that index in order
to be able to control di�erences when processing the common code� The multiplicity or dimension of the
node is declared as arrays in PASCAL� i�e�� in the form ����N��

Example�

Window
R� ������ Exit�� Exit� �� �code�

� CHAPTER �� INTRODUCTION

This line declares that the node named Window is of R type� its successor nodes are Exit� and Exit�� It
consists in
 nodes that share the �code��

The nodes without index are called simple� those with index are calledmultiple nodes� The number of
nodes of a multiple node is called its dimension or multiplicity�

The nodes of a multiple R type node can be of di�erent capacity�

��� Example �� Simple Serving System

The problem is to compute the queues and waiting times of people that are to be served one by one in a
window� They enter the system at random and the serving times are also random� After being served they
left the system� The GLIDER program may be as follows�

Simulation of a simple serving system�

Patrons enter the system to be served at a window�

The times between arrivals are taken at random from an exponential

distribution with mean Tba� The patrons are served or form a queue

in front of the window� The serving time is taken from a gaussian

distribution with mean� MeanWait and standard deviation� StaDev�

Once they are served they go to Exit to leave the system�

The simulation is to go until time ����� Statistics of nodes are

required� For clarity reserved words are written in uppercase letters�

NETWORK

Entry
I� Window �� IT �
 EXPO
Tba�	

Window
R� Exit �� STAY �
 GAUSS
MeanWait� StaDev�	

Exit ��

INIT TSIM �
 ����	 ACT
Entry� ��	 Tba �
 �	 MeanWait �
 ���	

StaDev �
 ���	

DECL VAR Tba� MeanWait� StaDev� REAL	

STATISTICS Entry� Window� Exit	

END�

The program has four sections divided by three separators�

NETWORK� INIT and DECL�

� The initial section is a text that can be used to put the title of the program� author� date� etc� An
explanation may be included that can be extended to a full documentation� The only restriction is
that no line of the text can start with the word NETWORK because this is the separator to the next
section�

� NETWORK section must start with this word as the �rst in the �rst line of the section �comments
between parenthesis � � or
� �� may however be included at any place in which a blank is allowed��
This section contains the nodes of the program� The name of each node must be at the beginning of
the line �except blanks and comments�� The heading of a node also includes the type of the node �a
letter between
� � and the successors nodes� The characters �� terminate the heading� after them
the code may follows� The code is written in free format from column � to �
� The word INIT at the
beginning of a line indicates the end of the NETWORK section� See Chapters � and
 for more details�
The structured instructions of GLIDER �like STAY �
 �expression� are described in Chapter
�� the procedures �like ACT� in Chapter �� the functions �like EXPO or GAUSS�� in Chapter
� For
each user programmed node� the compiler will generate a procedure that contains the user code and
system provided code to perform the other operations of the node implied by its type� This procedure
is executed when the node is activated�

���� EXAMPLE �� SIMPLE SERVING SYSTEM �

� INIT section contains instructions to give initial values to the variables and parameters for the simu�
lation run� It may contain the speci�cation of the total simulation time by assignation of the value to
the system variable TSIM� There are other ways to �nish the simulation�

This section must contain at least an ACT procedure to activate one node of the network to start the
simulation� In the example the node Entry� indicated in the �rst argument� will be activated at a time
equal to the time of the initialization �that is � by default� plus the value of the second argument �also
� in this example�� Thus� it is activated at the beginning of the simulation�

Values are assigned to the parameters Tba� MeanWait and StaDev� Complete algorithms may be
included in this section� In this section may also be assigned� capacities to R nodes� values to user
de�ned functions� frequency table parameters and database tables� See Chapter 	 for details�

� DECL section contains the declaration of some elements of the program introduced by the user� These
names must be di�erent of the reserved or system words �see Chapter ���

The subsection VAR contains the declarations of the variables� The subsection STATISTICS may
contain node names and variable names from which statistics are wanted� In this case only node
statistics are requested�

Other declarations of data corresponding to the base language may be done here �types� constants�
records� arrays� sets� �les�� The procedures and functions declared and programmed by the user must
be also included in this section�

Function de�ned by pairs of values �a special feature of the GLIDER language�� the data base tables�
frequency tables and the structure of the messages must be also declared here� See Chapter � for
details�

Lexicographic remark�

� The text of the model must be written on columns � to �
�

� The translator is case insensitive in the DOS version� Window may be written WINDOW�

� Comments may be included within parenthesis � � or
� ��

� The names of nodes in the node heading� as Entry and sections as NETWORK� must be the �rst
names in its lines� but can be preceded by comments� otherwise the format is free�

����� Description of the process

The execution of the program starts with the INIT section� The total simulation time is assigned to the
GLIDER variableTSIM� The GLIDER variableTIME� that keeps the value of the time during the simulation�
is initialized to �� The user could put explicitly other assignation �even a negative number��

The GLIDER procedure ACT schedules an activation for the actual time plus the second argument �here
also �� but it may be a real expression� so the �rst activation will happen at TIME � � in this example�
The other instructions of the INIT section assign values to the parameters� �

Then the execution of the NETWORK section starts� The components of the simulated system� entrance�
window and exit are represented by the nodes Entry� Window� and Exit in the NETWORK� The patrons
are represented by the messages that each node may send to its successor�

The node Entry is of I type� Its successor �node to which messages can be sent� is the node Window� In
this case we could omit the explicit indication of successor� the GLIDER system takes the following node as
successor by default� An I type node �or more exactly the procedure into which the compiler translates it��
when activated� generates a message� and sends it to the end of the EL of the successor node� This is done
automatically by the GLIDER system� In this node a next arrival event �i�e�� the next activation of the
node Entry� may also be scheduled� This is done by assigning a value to the system variable IT �Interval
Time�� This value is interpreted as the time that has to pass until the next arrival� In this case� this interval is
the value computed by the function EXPO� that generates a pseudorandom value taken from an exponential

 CHAPTER �� INTRODUCTION

distribution �see Chapter
 for further explanations�� So the GLIDER schedules a new activation of Entry�
This activation will occur at a time that is equal to the actual value of TIME plus the value assigned to IT�
The user can also control the sending of the message to other nodes by means of a SENDTO instruction�
Values to the �elds of the message can also be assigned in the code of this node�

The node Window simulates a resource� in this case the window where the patrons are served� The capacity is
� by default �no other capacity was assigned� so that only one message can enter the IL� The messages enter
the EL of the node� This EL represents the queue of patrons at the window� The IL represents the patron
being served� When the node Window is activated during the scanning process of the network �and
this will happen because the node Entry started such a scanning�� the procedure of the node type R� if the
IL is empty� searches the EL� If it is empty nothing is further done� If it has messages� the procedure takes
the �rst message to pass it to the IL� If the IL was occupied �it contains a message representing a patron
using the resource� the incomingmessage remains in the EL� When a message is introduced in the IL� that
means that a new service starts� Then the GLIDER system schedules an event of end of service� That is�
a future activation of the node Window at a time equal to the actual value of TIME plus the value assigned
to the variable STAY� In this case the value is taken at random from a gaussian distribution� That time
is also kept in a �eld of the message as its exit time� When that future activation takes place� the node
Window is again activated� but now by the event that refers to it� In this case� the procedure searches
the IL for a message having an exit time equal to the time of the event �that is� the actual time�� In this
simple case only one message may be in the IL� The message is then extracted and sent to the EL of the
successor node Exit� As this message movement triggers a new scanning of the network� the node Window
is now activated by the scanning process with is IL empty� So it searches again to see if there are in the
EL other message to be passed to the IL� If it is so� a storage process as the explained above will happen�
Otherwise� the Window remains idle�

The node Exit is of E type �when the type is not declared� the compiler assumes that the type is indicated
by the �rst letter of its name�� When it is activated �as a consequence of the scanning of the network started
by the extraction event in the node Window�� the procedure of the node Exit removes the message of its EL
and destroys it� restoring the freed memory to a free memory pool� During all these operations statistics are
recorded of the lists� and the use of the resources�

����� Trace of the operations

The user can ask� from the Run Interactive Menu� for an execution of the events one by one and a display
of some of the e�ects of the executions� This is useful for a detailed understanding of the process and for
debugging purposes�

A partial trace of the simulation of this program is shown below� To follow the trace the following remarks
must be regarded�

� Before each event� the status of the Future Event List is displayed�

� The next event is taken from the �rst element of this list�

� At the beginning notice that the only event is the arrival introduced in the INIT section� The index is
� �the node is a simple one� an the event parameter is ��

� The line� �������������������������������� indicates the beginning of an event� Its number
�order of the node in the NETWORK� and the index IEV is indicated� Then the name of the node
�rstly activated is shown�

� The procedures executed in the activation are indicated�

In the example the trace displays the content of the FEL� It only has the event scheduled by the ACT
instruction in the INIT section� This event is an activation of the node Entry at TIME � �� The index of
the event is � and the event parameter is ��

The EVENT �� that activates the node Entry at time �� starts adding other event number � �next activation�
to the FEL for the future time ��	
	 �this number comes from the EXPO function��

���� EXAMPLE �� SIMPLE SERVING SYSTEM �

A message numbered � � that was generated at Entry is added to the EL of the node Window� that
previously had length LL equal to �� Notice that the messages generated in a node contains a sequential
number and the name of that node�

Following the scanning of the network the node Window is activated�

The message � �generated at Entry� is examined� then extracted from the EL�

An event of type � �activation of node Window� is put into the FEL to schedule the end of service at time
������

The extracted message is added to the IL of the node Window�

Three events of type � �arrivals� happen at times ��	
	� ��

 and ����
� These are intercalated in the FEL
before the end of service event� scheduled for TIME ������

The generated messages are added to EL Window and remain there because the IL is occupied�

The next event is of type � �activation ofWindow� at TIME ����� scheduled at TIME �� This event examines
the IL of Window seeking for a message with EXIT TIME ������ The message is extracted and added to
the EL of the Exit node�

Then the EL of Window is examined� The next message �number �� in the queue �EL Window� is extracted�
its exit time is scheduled at time ���
� and the message is added to the IL of Window� The followingmessage
�number 	� is also examined but as the IL is occupied� the message remains in the EL�

In the same event the node Exit is activated� the message number � extracted from its EL and deleted�

The network �excluded the Entry node that is of I type� is scanned again and� as no messages are moved�
the next event in the FEL is processed�

The reader can continue the examination of this simulation� In this simple example only two events are at
most in the FEL �next arrival and next end of service�� In more complex models the FEL can be longer�

The examination of traces is very useful to understand the GLIDER system works� It is also very important
for debugging�

Future Event List at Time �����

NODE ENTRY T ����� IND � EVP �

EVENT � IEV � �������������������������������� TIME �����

NODE ENTRY���

ADD TO FEL EV � IEV � TIME ���	�

ADD MESS�
 � GEN ENTRY TO EL�WINDOW � LL � TIME �����

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

EXT�MESS�
 � GEN ENTRY FROM EL�WINDOW � LL � TIME �����

ADD TO FEL EV � IEV � TIME
�
��
ADD MESS�
 � GEN ENTRY TO IL�WINDOW � LL � TIME �����

Future Event List at Time �����

NODE ENTRY T ���	� IND � EVP �

NODE WINDOW T
�
�� IND � EVP �

EVENT � IEV � �������������������������������� TIME ���	�

NODE ENTRY���

ADD TO FEL EV � IEV � TIME �����

ADD MESS�
 � GEN ENTRY TO EL�WINDOW � LL � TIME ���	�

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

Future Event List at Time ���	�

NODE ENTRY T ����� IND � EVP �

NODE WINDOW T
�
�� IND � EVP �

�� CHAPTER �� INTRODUCTION

EVENT � IEV � �������������������������������� TIME �����

NODE ENTRY���

ADD TO FEL EV � IEV � TIME
����

ADD MESS�
 � GEN ENTRY TO EL�WINDOW � LL � TIME �����

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

Future Event List at Time �����

NODE ENTRY T
���� IND � EVP �
NODE WINDOW T
�
�� IND � EVP �

EVENT � IEV � �������������������������������� TIME
����

NODE ENTRY���

ADD TO FEL EV � IEV � TIME ����

ADD MESS�

 GEN ENTRY TO EL�WINDOW � LL � TIME
����

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

Future Event List at Time
����

NODE WINDOW T
�
�� IND � EVP �

NODE ENTRY T ����
 IND � EVP �

EVENT � IEV � �������������������������������� TIME
�
��

NODE WINDOW���

EXAM�LIST IL�WINDOW � SEEK EXIT TIME
�
��

EXT�MESS�
 � GEN ENTRY FROM IL�WINDOW � LL � TIME
�
��

ADD MESS�
 � GEN ENTRY TO EL�EXIT � LL � TIME
�
��

EXA�MESS�
 � GEN ENTRY

EXT�MESS�
 � GEN ENTRY FROM EL�WINDOW � LL � TIME
�
��

ADD TO FEL EV � IEV � TIME ����

ADD MESS�
 � GEN ENTRY TO IL�WINDOW � LL � TIME
�
��

EXA�MESS�
 � GEN ENTRY

NODE EXIT���

EXT�MESS�
 � GEN ENTRY FROM EL�EXIT � LL � TIME
�
��

DELETED MESS
 � GENERATED IN ENTRY AT �����
NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

Future Event List at Time
�
��

NODE ENTRY T ����
 IND � EVP �

NODE WINDOW T ����
 IND � EVP �

EVENT � IEV � �������������������������������� TIME ����

NODE ENTRY���

ADD TO FEL EV � IEV � TIME �����

ADD MESS�
 	 GEN ENTRY TO EL�WINDOW � LL � TIME ����

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

NODE WINDOW���

EXA�MESS�
 � GEN ENTRY

Future Event List at Time ����

NODE WINDOW T ����
 IND � EVP �

NODE ENTRY T ����� IND � EVP �

���� EXAMPLE �� SIMPLE SERVING SYSTEM ��

EVENT � IEV � �������������������������������� TIME ����

NODE WINDOW���

EXAM�LIST IL�WINDOW � SEEK EXIT TIME ����

EXT�MESS�
 � GEN ENTRY FROM IL�WINDOW � LL � TIME ����

ADD MESS�
 � GEN ENTRY TO EL�EXIT � LL � TIME ����

EXA�MESS�
 � GEN ENTRY

EXT�MESS�
 � GEN ENTRY FROM EL�WINDOW � LL � TIME ����

ADD TO FEL EV � IEV � TIME ����	�

ADD MESS�
 � GEN ENTRY TO IL�WINDOW � LL � TIME ����

EXA�MESS�

 GEN ENTRY

NODE EXIT���

EXT�MESS�
 � GEN ENTRY FROM EL�EXIT � LL � TIME ����

DELETED MESS
 � GENERATED IN ENTRY AT ���	�

NODE WINDOW���

EXA�MESS�

 GEN ENTRY

Future Event List at Time ����

NODE ENTRY T ����� IND � EVP �

NODE WINDOW T ����	� IND � EVP �

EVENT � IEV � �������������������������������� TIME �����

NODE ENTRY���

ADD TO FEL EV � IEV � TIME ������

ADD MESS�
 � GEN ENTRY TO EL�WINDOW � LL � TIME �����

NODE WINDOW���

EXA�MESS�

 GEN ENTRY

NODE WINDOW���

EXA�MESS�

 GEN ENTRY

Future Event List at Time �����

NODE WINDOW T ����	� IND � EVP �

NODE ENTRY T ������ IND � EVP �

EVENT � IEV � �������������������������������� TIME ����	�

NODE WINDOW���

EXAM�LIST IL�WINDOW � SEEK EXIT TIME ����	�

EXT�MESS�
 � GEN ENTRY FROM IL�WINDOW � LL � TIME ����	�

ADD MESS�
 � GEN ENTRY TO EL�EXIT � LL � TIME ����	�

EXA�MESS�

 GEN ENTRY

EXT�MESS�

 GEN ENTRY FROM EL�WINDOW � LL � TIME ����	�
ADD TO FEL EV � IEV � TIME ������

ADD MESS�

 GEN ENTRY TO IL�WINDOW � LL � TIME ����	�

EXA�MESS�
 	 GEN ENTRY

NODE EXIT���

EXT�MESS�
 � GEN ENTRY FROM EL�EXIT � LL � TIME ����	�

DELETED MESS
 � GENERATED IN ENTRY AT �����

NODE WINDOW���

EXA�MESS�
 	 GEN ENTRY

Future Event List at Time ����	�

NODE ENTRY T ������ IND � EVP �

NODE WINDOW T ������ IND � EVP �

EVENT � IEV � �������������������������������� TIME ������

NODE ENTRY���

�� CHAPTER �� INTRODUCTION

����� Standard Statistics

When required by the declaration STATISTICS� the GLIDER produces an output with statistics of nodes
and variables� This statistics are always displayed at the end of the simulation� but they can be shown at
any time during the run by program indication or by an operator interruption that calls the Run Interactive
Menu� Statistics for one run of the simulation example follows�

Basic Experiment

Time ������� Time Stat� ������� Replication � ��� ������ ��h 	�m ��s

Elapsed time �h �m ���s
Nod�Ind Ant�Li
Ent Lgth Max Mean Dev MaxSt MeanSt Dev T�Free

ENTRY

�
 Gen� ���

WINDOW

� EL ��� �� �� �����	� ��
���� ����	
� �
����	 ����	�� ��

IL ��
 � � ������� ��� 	���	�� ������� �����	� ���

EXIT

� EL ��� � � ��� ��� ��� ��� ��� ������

Time in System� Mean �����
� Dev� ������� Max� ��
��	� Min�
�
����

Var�Ind Mean�t� Dev��t� Max� Min� Mean�v� Dev��v� Actual

U�WINDOW � ������� ��� ������� ��� ��	���	 ��	���� �������

The title of the experiment is by default �Basic Experiment�� The user can put other titles by program �see
instruction TITLE� ����� or from the Menu�

The total simulation time and the last time in which the Statistics were cleared �see procedure CLRSTAT�
���� are also shown�

If replications of the experiment are asked for� the number of the replication is given�

The date and time of the beginning of the execution and the computing time spent in the simulation are
also recorded�

For the I type nodes the number of generated messages is shown�

For each EL and IL the number of entries� the actual length and the maximum length are displayed� The
statistics show the mean length and its deviation� the maximum and mean waiting time of the messages in
the list� its deviation and the time that the list remained empty�

For the E type nodes the mean time in the system of the messages destroyed at the node and its deviation
are recorded�

In this example only the used time of the resources are displayed� because no other variables in the STATIS�
TICS were requested� The statistics given are the mean and deviation of the variables as a function of time�
the maximum and minimum values� the mean and deviation of the values and the actual ��nal� value�

��� Example �� Port with Three Types of Piers

This is the simulation of a port that has three types of piers to receive di�erent types of ships�

�� ships with general charge�

�� ships that bring charge to be discharged in bulk to silos� and

	� ships that come to be repaired�

The port has an entry channel in which only a ship at a time is allowed to pass� The same channel is used
to enter to the piers and to exit� once the operation in the port is �nished�

���� EXAMPLE �� PORT WITH THREE TYPES OF PIERS �	

Model of a Port�
C� Domingo ��������

Ships arrive at a port with interval times with exponential

distribution with mean Tbarr�

There are � types of ships� The type is selected from an empirical

random distribution by means of a function FTyp�

According to the type they go to the piers �� � or ��

The ships are queued before the entry channel� A ship is allowed to

pass only if the channel is free and the ship has a place in the pier

of its type�

The time spent in passing the channel is a fixed value TChannel�

In the pier the ship remains a time taken from a Gamma distribution

The mean TPier depends on the type� The deviation is ��� of the mean�

Each ship uses only one position in the pier�

To the served ships the type � is assigned and they are sent to the

channel to exit the system�

Make a frequency table of the mean time in the system�

Experiment with different serving times in the piers�

NETWORK

Entrance
I� �� IT �
 EXPO
Tbarr�	 ShiTyp �
 FTyp	

Control
G� �� IF
F�Pier�ShiTyp� � �� and
F�Channel � ��

THEN SENDTO
Channel�	

Channel
R� Pier�ShiTyp�� Departure ��

RELEASE IF ShiTyp
 � THEN SENDTO
Exit�

ELSE SENDTO
Pier�ShiTyp��	

STAY �
 TChannel	

Pier
R� ������ Channel ��

STAY �
 GAMMA
TPier�ShiTyp�� ��� � TPier�ShiTyp��	

USE �
 �	 ShiTyp �
 �	

Departure
E� �� TinSys �
 TIME � GT	 TAB
TinSys� TabTSys�	

INIT

TSIM �
 ����	 ACT
Entrance� ��	

Tbarr �
 �	
�Mean time between arrivals ��

TChannel �
 ���	
�Time to pass the channel ��

FTyp �
 �� �� � �� �� � �� ��	
�Values of frequency of types ��

ASSI Pier������ �

�� �� ��	
�Capacities of the piers ��

ASSI TPier������ �

��� ��� ���	
�Mean time spent in the piers ��

TabTSys �
 �� ��� �	
�Parameters of the frequency table��

TITLE �
 �Port� Basic experiment�	

INTI TPier� �� �� Time in the Pier 	

DECL

VAR Tbarr� TinSys� TChannel� REAL	

TPier� ARRAY������ OF REAL	

MESSAGES Entrance
ShiTyp� INTEGER�	
�structure of the messages ��

TABLES TinSys� TabTSys	
�table of frequencies for TinSys ��

GFUNCTIONS FTyp FREQ
INTEGER�� REAL� �	
�frequency function ��

STATISTICS ALLNODES	

�� CHAPTER �� INTRODUCTION

END�

����� Remarks about the program

The ships are represented by messages generated by the I type node Entrance� The messages have a
�eld ShiTyp� To declare� that the messages must have this �eld� a declaration is issued in the subsection
MESSAGES of the DECL section with reference to the generating node�

The Entrance node assign value ��� � or 	� to the ShiTyp parameter of the generated message� The value
is given by the function FTyp de�ned in the GFUNCTIONS declaration� The values of the frequencies are
given in the INIT �value � frequency
�� value � frequency ��� value 	 frequency ���� The function FTyp

produces a random number �� �� or 	 according to those frequencies� It is assigned to the �eld ShiTyp of the
message� The messages are sent to the EL of the node Control�

In the Control node� that represents the control of entry to the port� the GLIDER generated variable
F�Pier�ShiTyp� holds at each moment the value of the free capacity of the node Pier�ShiTyp�� The
maximum capacities are assigned in the INIT section� � for the Pier �� 	 for the Pier �� � for the Pier ��
F�Channel has the same meaning for the resource Channel� In this case it is � if the channel is free and
� if it is engaged� When the Control node� that is a type G node� scans the EL of messages and executes
the code for each message� Only if it �nd a message for which is true the condition of the if �there is free
capacity in the Pier of its type and the Channel is free�� the SENDTO instruction is executed� This extracts
the message from the EL and sends it to the EL of the node Channel�

The channel is represented by the resource type node Channel� When activated by the scanning of the
network� this node takes the message in its EL and passes it to the IL �this will be empty because the
Control only allows to pass a message if F�Channel
 �� that means that no message is using the resource�
The exit from the channel is scheduled for a later time given by the user de�ned variable TChannel� When the
message abandons the resource� it is not automatically managed� because there is a RELEASE instruction
that takes care of the outgoing message� In the instruction associated to the RELEASE the message is
disposed according to its type� If it is �� �� or 	 it is send respectively to the Pier���� Pier���� or Pier�	��
If it has type � �that is the type that will be assigned to the ships abandoning the piers� it is sent to the
Departure node�

The node Pier is a multiple node of dimension 	� Each node represents a di�erent pier� each may receive
the corresponding type of ship� The capacity of each node is assigned in the INIT section as said above�
When the capacity is di�erent of �� the user has to de�ne the quantity of resource used by each message�
This is done by the instruction USE �� �� i�e�� it is assumed that all the ships use the same space� equal to
� unit of the resource� This would be di�erent with ship of very di�erent size�

The operation time in the pier is taken from a Gamma distribution� for di�erent types of ships the mean
value used is di�erent� The values of the means are assigned in the INIT section� Notice that the type of
the received ship is put to �� After the operation it is sent to Channel and after passing the channel� the
ship of type � is sent to Departure�

The departure node is of E type� It takes each message of its EL� executes the code and destroys the message�
The code is the computation of the time spent in the system� The GT is a GLIDER de�ned �eld of the
message that keeps its generation time� As TIME is the value of the actual time� TIME � GT is the total
time that the message remained in the system� The procedure TAB put this value in the frequency table
TabTSys� This table was declared in the DECL section� The parameters of the table are assigned in INIT�
In this case the initial value of the table is �� and there will be �
 intervals of length
� The table and a
histogram is shown when requested by the user�

The instruction INTI in the INIT section allows for interactive change of the values of TPier for di�erent
experiments�

����� Standard Statistics

Port� Basic experiment

Time ������� Time Stat� ������� Replication � ��� ������ ��h ��m �s

���� EXAMPLE �� PORT WITH THREE TYPES OF PIERS �

Elapsed time �h �m �����s

Nod�Ind Ant�Li �Ent Lgth Max Mean Dev MaxSt MeanSt Dev T�Free

ENTRANCE

� � Gen� ���

CONTROL

� EL ��� � � ������� ������� ������� ������� ������� �����

CHANNEL

� EL ��� � � ������� ������� ������� ������� ������� ������

IL ��� � � ������� ������� ������� ������� ������� ������

PIER

� EL ��� � � ������� ������� ������� ������� ������� ������

IL ��� � � ������� ������� ������� ������� ������� �����

� EL ��� � � ����� � ������� ������� ������� ������� ������

IL ��� � � ������� ������� ������� ������� ������� �����

� EL �� � � ������� ������� ������� ������� ������� �����

IL �� � � ������� ������� ������� ������� ��� �����

DEPARTURE

� EL ��� � � ��� ��� ��� ��� ��� ������

Time in System� Mean ������� Dev� ������� Max� ������� Min� �������

Var�Ind Mean
t� Dev�
t� Max� Min� Mean
v� Dev�
v� Actual

U�CHANNEL � ������� ������� ������� ��� ������� ������� ���

U�PIER � ������� ������� ������� ��� ������� ������� �������

U�PIER � ������� ������� ������� ��� ������� ������� ���

U�PIER � ������� ������� ������� ��� ������� ������� �������

Table TABTSYS of variable TINSYS

Interval Freq� Rel�Fr�

��� ���� � �����

������� ���� � �����

������� ����� � ������

�������� ����� �� ���

�������� ����� �� ���������������������������������������

�������� ����� �� ��

�������� ����� �� �����������������

�������� ����� �� �������������

�������� ����� � �������

�������� ����� � ������

�������� ����� � ������

�������� ����� � ������

�������� ����� � �����

�������� ����� � �����

�������� ����� � �����

�������� ����� � �����

�
 ����� �� �������������

Total ��� �����

�� CHAPTER �� INTRODUCTION

��� Compilation Details

Although compiling details are transparent to users some information may be useful�

The source program is written in a �le� It is read and processed by the GLIDER compiler that translates it
to several units of Pascal code�

The program code of the nodes are translated into procedures� The messages are translated into records that
may have di�erent structures� according to the �elds declared in the MESSAGES declarations� The actual
items that are in the ELs and ILs are �xed structure records �for all kinds of messages� called indicators
of messages� They have pointers to the true messages� and some auxiliary �elds� number of the message�
original node name and pointer to the following indicator in the list �or NIL if it is the last��

The program so produced by the GLIDER compiler may be then compiled and executed by a Pascal system�

Chapter �

DECLARATIONS

A GLIDER program uses variables of di�erent types� GLIDER includes de�nitions for certain types� vari�
ables� constants� functions and procedures required for general processing� Others are also system de�ned
to meet special requirements of particular models�

Besides� users may de�ne types� variables� constants� functions and procedures needed to program their
models� Other instances of language elements may also be de�ned� messages� functions given by pairs of
values� frequency tables� data base tables� and needed statistics�

All user�s variables must be explicitly declared� as mandatory in Pascal�

The names assigned to types� variables� constants� functions and procedures are called identi�ers� They
are strings of at most twelve characters� including letters� numbers and the sign � The �rst character in the
identi�er must be a letter� GLIDER is case insensitive �� so Water Temp and WATER temp are the same
variable�

A declared identi�er must not duplicate any system or previously user de�ned identi�er� See Chapter � for
a list of system de�ned identi�ers�

The declaration section begins with the separator DECL as the �rst word of a line� Identi�ers are declared
in the following subsections of the DECL section� according to their element class�

�� TYPE types
�� CONST constants
	� VAR variables
�� NODES nodes

� MESSAGES messages
�� GFUNCTIONS user�s functions de�ned by values
�� TABLES frequency tables

� DBTABLES tables from a data based system
�� PROCEDURES user�s built procedures and functions
��� STATISTICS required from nodes and variables

A declaration consists of the name of the element class �one of the above� followed by identi�er declarations�
according to the syntax described in the following sections�

��� TYPE

A type declaration speci�es to the compiler that a given identi�er or name will designate a type of data
that may be referred to in the program� i�e�� an abstract set of data values�

�Note that the GLIDER UNIX version is case sensitive� see GLIDER UNIX Version Manual�

��

�
 CHAPTER �� DECLARATIONS

There are types already de�ned by the GLIDER or Pascal system �REAL� INTEGER� BOOLEAN� CONT�
POINTER etc���

Each variable in a program must be declared indicating its type� With this information the compiler reserve
to that variable enough memory space to hold its values� that must belong to the type� This information
also could be used by the compiler to validate that only values belonging to the type are assigned at run
time�

Type identi�ers may be referred to in other type declarations in order to de�ne new types� A trivial case is
to de�ne an �alias� to an existing type� as in the following example� Decimal
 REAL

The true usefulness of type declaration is not this mere �alias� to prede�ned types� but when new structured
types have to be de�ned�

New types may be de�ned for convenience of clarity and maintenance� otherwise type speci�cations for
variables may be stated directly in variable declarations�

In the following example the new type Arr
 is declared�

TYPE Arr�
 ARRAY������ OF REAL	

With this new type the programmer can avoid to declare the variables A� B� z� X in this way�

VAR A� B� ARRAY������ OF REAL	�������	

����������������������

VAR z� ARRAY������ OF REAL	 ��� X� ARRAY������ OF REAL	

Instead� the programmer only needs to write�

VAR A� B� Arr�	�������	

VAR z� Arr�	����	 X� Arr�	���

Note the use of the � sign for new type declarations whereas the � sign is used for type speci�cation in variable
declarations�

New types declarations are mandatory in Pascal when the user needs to pass a structured variable in the
parameter list of a function or procedure� as Pascal syntax only accepts type identi�ers in parameter list
declarations�

The reader may consult Pascal and TurboPascal bibliography for a complete description on types� Restric�
tions or changes in GLIDER to Pascal syntax and use will be stated when appropriate�

GLIDER includes the following prede�ned types and type constructors for new type declarations or variable
type speci�cations�

����� Simple types

The following table shows the set of simple types in GLIDER� Besides the simple Pascal types� GLIDER
adds the CONT� RET and FREQ simple types�

REAL Real numbers
INTEGER Integer numbers
LONGINT Long integer numbers
BOOLEAN Logic values �TRUE or FALSE�
CHAR ASCII character set
WORD Non negative integers
BYTE Non negative integers in the range ����

STR	
 ASCII character set
TEXT ASCII character set
CONT Continuous �for variables with derivatives in

di�erential equations�� Must be used in VAR
only for a list of contiguous variables� See ����

���� TYPE ��

RET Retard� To be used in the RETARD procedure� Must be
used in VAR only� See �����

FREQ For component type of arrays to be used as
multivariate frequency tables�

The user may also declare as new simple types�

� Enumerated types� ordered sets of identi�ers�

The syntax is�

�type identifier�

�list of identifiers��	

Example�
Size

Small� Medium� Large� Extralarge�	

Medium is then a constant of type Size� Order relations hold� for instance� Small � Large is true�
ord
Large� has the value 	�

� Subrange types� subranges of any ordered type �INTEGER� LONGINT� CHAR� WORD� BYTE�
and user�s de�ned enumerated types� The syntax is�
�type identifier�
 �initial value� �� �final value�

Examples�

VAR CapLetter� �A� �� �Z�	

LargeSizes�
Large �� ExtraLarge�	

TYPE Digits
 � �� �	

����� Pointer types

� POINTER� Is a general pointer type� Variables of this type may be used as temporal storage for
pointer values� i�e�� values of addresses of program elements �variables� functions or procedures� in the
space of memory locations at run time�

Example� VAR Ppa� POINTER	

� Typed pointers� They are speci�c pointer types� Variables of speci�c pointer type may hold values
of addresses of program elements of the speci�ed type in the space of memory locations at run time�

The syntax of the declaration is�
�pointer type identifier�
 �type identifier�

It de�nes a new pointer type to element values of the identifier type� which may be a simple or
structured type�

Example�

Ptra
 Train	

Train
 Record

Engine� STRING���	

Wagon� ARRAY�� �� ��� of REAL	

Follows� Ptra	

END	

If PTrain� Ptra is declared in the VAR subsection of DECL� then the pointer variable PTrain is supposed
to point to a record with the shown structure� The variable PTrain �Wagon��� refers to the third array
element of the �eld Wagon of the Train type record pointed by PTrain�

These user�s declared records are seldom used in GLIDER because messages su�ces for almost all the
uses and they are internally handled by GLIDER instructions and procedures�

Pointer variable value assignment results from dynamic memory allocation �Pascal procedure NEW� or
from direct assignment of memory addresses values� as returned by function ADDR
 �� for instance� Pointer
variables must be carefully used�

�� CHAPTER �� DECLARATIONS

����� Structured types

Structured type constructors allow programmers to de�ne as new types complex information structures with
components of the same or di�erent types� They are�

� ARRAY� To declare as new type a succession of a �xed quantity of components of the same type�
The components of a variable of any ARRAY type occupy contiguous memory locations and can be
individually referred to by using one or more indexes�

The syntax of the type declaration is�

�type identifier�
 ARRAY�ni� �� nf�� OF �component type�	

for unidimensional arrays� or

�type identifier�
 ARRAY�ni� �� nf�� ni� �� nf�� ���� OF �component type�	

for multidimensional arrays� Note that GLIDER restricts the array declaration syntax of index types
to subranges� whereas Pascal accepts any ordinal type speci�cation�

The �rst index can take values from ni� to nf�� the second from ni� to nf�� etc� The values of the
indexes may be of type INTEGER� LONGINT� BYTE� WORD or enumerated type�

Examples�

TYPE Vec
ARRAY���� �� OF REAL	

VAR X�Z�Vec	 Mat�ARRAY������ ����� OF CHAR	

ShirtPrice�ARRAY�Small� �XLarge� Cotton�� Silk� OF REAL	

Vec will be a simple array with index values from �
 to
�
Mat a two index array� the �rst from � to 	� the second from � to 	� The successive elements in the
memory will be�
Mat��� ��	 Mat��� ��	 Mat��� ��	 Mat��� ��	 Mat��� ��	 Mat��� ��	

The rightmost indexes change �rst�
ShirtPrice has� as indexes� values of an enumerated type that have to be de�ned previously� for
example with declarations�

Size

Small� Medium� Large� XLarge�	

Fabric

Dacron� Cotton� Flax� Silk�	

� RECORD� To declare as new type a succession of components or �elds� each of them of a declared
type� Thus� the �eld components of a record may be of di�erent types whereas array components are
of the same type�

The syntax of the declaration is�

�type identifier�
 RECORD �list of field declarations� END	

The �eld declarations of the list are separated by �

Examples�

PShip� Ship	

Ship
 RECORD

Draft� Displacement� REAL	

LoadClass� ARRAY������	

Pfs� PShip	
�Pointer to the next ship��

END	

TYPE Mo

January� February� March� April� May�

June� July� August� September� October�

November� December�	

���� TYPE ��

DayType

 � �� ���	

VAR Birthday� RECORD Month� Mo	 Day� DayType	

Year� WORD	 END

Bounty� Ship	 PConvoy� PShip	

The Ship record type has a pointer type �eld for building lists of records of this type� In VAR a type
record variable Bounty is de�ned� The pointer variable PConvoy can be used to construct a list of
records of type Ship�

The record variable Birthday has �elds type Mo with the values of the months and Day whose values
range from � to 	�� The �eld Year is of the prede�ned type WORD� for this reason� it can take values
from � to �

	
�

Fields of a record type variable are referred to by the variable name followed by the character� followed
by the �eld name�

Example�

Birthday�Year

refers to the value of the �eld Year in the variable Birthday�

� FILE� To declare as new type unlimited successions of components of a speci�ed type� The system
manages the existence of the components of a �le type variable in external I�O devices at run time�

The syntax is�

�file type identifier�
 FILE OF �type identifier�

�type identifier� must not be another �le type identi�er or any structured type identi�er with a
�le type identi�er as component type�

Example�

FileShip� FILE OF Ship	

The Pascal prede�ned type TEXT is a �le of CHAR type for which Pascal has special variable processing�

� SET� To declare as new type the power set of an ordinal type� called the base type� The power set of
the base type is the set of all its subsets� including the empty set� The cardinality� i�e�� the number of
elements of the base type� has to be not greater than �
�� This restriction excludes as base type the
ordinal types INTEGER� LONGINT and WORD�

Values of a set type are sets that can be operated with the set operators

�� �� �

Also are de�ned the logical binary IN operator relating a base type value with a SET type value and
the set constructor using the characters � and � as delimiters� The empty set is the expression� � ��

The syntax is�

�name�
 SET OF �ordered type�	

Examples�

TYPE COLOR
 SET OF
Red� Yellow� Green� Brown�	

VAR Paint� Hue� Dye� COLOR	

Digit� SET OF � �� �	

Paint can take as value any of the �� subsets of the elements indicated in the declaration of its type
�including the empty and the total set��
Digit may take as value any subset of the digits� One assignation of value may be �
Digit�
 ��� �� ��	

In this case the expression � IN Digit Is true� � IN Digit is false�
If Paint �
 �Red� Yellow� and Hue �
 �Red� Green� Yellow�

then Dye �
 Hue � Paint � �Brown� would have the elements Red and Brown�

�� CHAPTER �� DECLARATIONS

����� String types

To declare as new type a succession of characters of variable length ranging from � to a maximum declared�
The syntax is�

�type identifier �
 STRING��positive integer number��	

If ��positive integer number�� is omitted in type speci�cation for variable declaration� the maximum
length �

 is assumed� i�e�� the word STRING alone is a prede�ned type identi�er�

Examples�

TYPE Names� STRING����

VAR Roll� ARRAY��������� OF Names	 Trademark� STRING����	

LongLine� STRING	

Roll is an array of ���� elements� each of them is a string that may contain up to �
 characters� LongLine
may contain up to �

 characters� Trademark may contain up to ���

����� Procedural types

PROCEDURE or FUNCTION types are declared by writing the prototype or heading pattern for a class of
procedures or functions� i�e�� the set of procedures or function that have the same pattern for parameter list
declaration and that return the same type of value in the case of functions� The variables declared of these
type can take as values names of procedures or function that conform with the prototype� i�e�� that belong
to the speci�ed class� The syntax is�

�type identifier �
 PROCEDURE
�parameter list�� or

�type identifier �
 FUNCTION
�parameter list�� � �returned type�

Example�

TYPE TyProcess
 PROCEDURE
Material� Machine� INTEGER�	

VAR Pro�� Pro�� TyProcess	

The variables Pro�� Pro�� can take the name of any procedure with any name conforming with the declared
prototype� See ��� for declarations of procedures and functions in GLIDER�

��� CONST

Constants are identi�ers to which values are assigned at compiler time or at initial run time� as implemented
in the TurboPascal extension of Pascal�

Compiler time declared constants cannot be the target of any assignment operation at run time� The
declaration syntax for compiler time declared constants is�

�identifier�
 �value�	 where

�value� may be a constant expression of any type� The declared constant implicitly takes the same type�

Initial run time declared constants have their type explicitly declared and can be the target of assignment
operation at run time�

The declaration syntax for initial run time declared constants is�

�identifier� � �type�
 �list of values�	

Examples�

CONST

Flow� REAL
 ����	 Quantity� INTEGER
 ��	

ch� �Y�	

Load� ARRAY������ OF REAL

���� ���� ����	

Markov� ARRAY������ ����� OF REAL

���� ���� �����

���� ���� �����

���� ���� �����	

���� VAR �	

��� VAR

Variables declared in the DECL section are global to the model program� i�e�� they may be used anywhere
in the program�

Variables declared in a node are local to that node and can only be used in the node�s code� Their values
are not retained after node processing�

Variables declared in the MESSAGES subsection of the DECL section� are �elds of each generated message
and may have di�erent values in di�erent messages� Field variables are variables introduced by the
GLIDER system� one for each �eld name in messages� having the name of the �eld� They are global� and
change their values each time a message is processed� taking the values of the corresponding �elds of the
processed messages� Note that if messages of di�erent structure have �elds of the same name they must be
of the same type� and GLIDER introduces for them only one �eld variable�

Example�

MESSAGES Cans
Diameter� Height� Weight� REAL�	

Packages
Length� Wide� Height� Weight� REAL�	

The �elds Height and Weight are in both record messages� Field variables having these names are system
created so di�erent messages may share same processes on these characteristics�

The declaration of variables reserves memory for them�

After the VAR speci�cation one or more declarations of the following type follow�

�list of variable names� � �type�	

The �list of variable names� consists of one identi�er or many identi�ers separated by commas�

�type� may be a prede�ned type identi�er� a user de�ned type identi�er or a type speci�cation written with
the same syntax given for type declarations�

Examples�

DECL

TYPE

VecType

Small� Large� Truck�	

Color

Rer�L� Yellow�L� Green�L�	

VecChar
 RECORD Size� Weight� REAL	 VType� VecType	 END	

VAR VMax� Length� Slope� REAL	

Ntotal� j� k� INTEGER	 Semaf� Color	

Vehicle� ARRAY�� �� ��� of VecChar	

Connections� ARRAY�� �� �� � �� �� of BOOLEAN	

X� Y� CONT	

InpFreq� ARRAY�� �� �� � �� �� OF FREQ	

TabVeh� TEXT	

��� NODES

In this section the user may instruct GLIDER to assign IL and�or EL to general type nodes declared in the
NETWORK section� The declarations must have the heading NODES� After this one or more declarations
follow� The declaration syntax is�

�node identifier�
 ! EL ! IL ! EL�IL ! �	

�node identifier� is the name of a general type node� Index must not be included in this declaration�
According to the arguments the node will have EL or IL or both�

Examples�

NODES Synchr
EL�	 Proc
EL� IL�	

�� CHAPTER �� DECLARATIONS

��� MESSAGES

In this section the user may de�ne structures of messages with user�s de�ned �elds� besides the default �elds
�see ����� The declarations must have the heading MESSAGES� After this one or more message declarations
follow� The declaration syntax is�

! �node identifier� ! �message identifier� !
�list of field declaration��	

�node identifier� is the name of a I type node� Index must not be included in this declaration� The
declaration de�nes the structure of the messages generated at that Input type node�

�message identifier� is an identi�er that may be used by a CREATE instruction to generate messages
with the declared structure� The CREATE instruction may be used in any node� except I type nodes

�list of field declaration� is a list of �eld declarations with the same syntax that the RECORD
structure declaration�

Examples�

ShipArr
I� �� ShipType �
 FTypeFreq	 IT �
 EXPO
Tba�ord
ShipType��	

��������������������������������������

TrainContr
A� ��

��������������������������������

CREATE
Train� BEGIN

WCars �
 Round
TotalLoad � Capacity�	

SENDTO
Yard� END	

��������������������������������������

DECL

TYPE St

Freighter� Tanker� Barge�

MESSAGES ShipArr
ShipType� St	 Load� ARRAY�� �� �� OF REAL	 Displ� REAL�	

Train
WCars� INTEGER	 Capacity� REAL�	

In the node ShipArr� messages representing di�erent types of simulated ships are generated� The characteris�
tics ��elds of the message� are� ship type� �ve quantities indicatingdi�erent kinds of loads� and displacement�
In the node TrainContr� according to conditions computed by a complex code� the decision of sending a
message �train� to a yard is taken�

��� GFUNCTIONS

GLIDER allows to de�ne functions of one variable given by a set of pairs of values �points�� The �rst
element of the pair is the value of the argument �it belongs to the domain�� The second is the corresponding
value of the function� The type of the argument� type of the function and the method of interpolation must
be declared� This declaration has the heading GFUNCTIONS followed by declarations with syntax�

�function identifier� �interpolation method�

�argument type�� � �function type� � �maximum number of points�	

�interpolation method� indicates the method to be used to compute values for intermediate values of
arguments not given in the set of pairs� The methods may be�

� DISC� intermediate values are not allowed� The function is only de�ned for the values given in the set
of pairs�

� STAIR� the function value corresponding to an intermediate value of the argument is the corresponding
to the more near value of the arguments in the set of values lesser than the given argument� i�e�� the
function is supposed piecewise constant and continuous from the right�

� POLYG� a linear interpolation is used�

� SPLINE� a cubic spline interpolation is used�

���� TABLES �

� FREQ� is not an interpolationmethod� The value of the function is taken at random among the possible
values of the �rst element of each pair� The second element is interpreted as proportional to the
probability of the corresponding �rst value�

�argument type� and �function type� may conform with the following table�

argument value
DISC enumerate or real enumerate or real
STAIR real real
POLYG real real
SPLINE real real
FREQ enumerate or real real ��� ��

�maximum number of points� is a positive integer that indicates the maximum number of pairs of values
that de�ne the function�

In 	�	 the assignation of the set of pairs of values to a function is described�

Example�

GFUNCTIONS Temp POLYG
REAL�� REAL� �	

pH SPLINE
REAL�� REAL� ��	

Price STAIR
REAL�� REAL� �	

CarTyp FREQ
CarType�� REAL� �	

Cost DISC
Size�� REAL� �	

��	 TABLES

In order to display statistical results in the form of frequency tables and histograms the names of the tables
must be declared� The header of the declaration is TABLES� It must be followed by one or more declarations
of the form�

�variable identifier� � �table identifier�	

�variable identifier� is the name of a simple real variable whose values through time are to be tabulated�

�table identifier� is the identi�er assigned to the table�

The tabulation of values must be commanded by the user with the TAB procedure �see ������

��
 DBTABLES

The GLIDER system can import� update� and export �les generated by a data base system �DBASE IV in
this implementation�� A data base �le is a succession of records� each with a set of �elds� All the records in a
�le have the same structure� The records usually describe the characteristics of individuals of a set �people�
objects� years� cities� etc�� by means of the values of the �elds� These are simple tables�

DBASE �le in order to be suitable for GLIDER processing must have as its �rst �eld in its record structure
a primary key �eld named with the same �le or table name�

Association tables are used when the values of a relation of two �or more� sets have to be described�
For each combination set of two �or more� individuals� one of each set� there is an entry in the table that
describes� by one or more �elds� the characteristics of the relation� In the actual version only complete tables
can be imported� i�e�� all the possible combinations of records in the associated tables must appear� In an
association table of N simple tables the names of these tables must appear as the �rst N �elds in each record�
conforming the primary key of the association�

The user must give in a DBTABLES declaration� the names of the tables and the association indicator �i�e��
how many simple tables are associated in the declared table��
The declarations have DBTABLES as a heading� followed by one or more declarations�

�� CHAPTER �� DECLARATIONS

�table name� � �association indicator�

These declarations must be separated by commas and each or some groups of them may be delimited by �
�� The groups are also separated by commas�

�table name� is a name of an existing DBASE �le optionally preceded with directory path�

�association indicator� is a number from � to
� If omitted� � is assumed �simple table��

The declarations that are in a group within � � are assumed to have the same structure�

Example�

DBTABLES
GroupP�� GroupP���
Goods��
ConsPatt� �� CPat�� ��	

Declares two simple tables� GroupP�� GroupP� of the same structure� a simple table Goods of di�erent
structure and two tables that are association of two tables and have the same structure� The two �rst �elds
of ConsPatt must have as name the name of the two simple tables that ConsPatt associates� Such simple
tables must have been declared before�

All the declared tables must exist as DBASE tables� The compiler uses information from these tables� If
they are in other directory the table names must include the path� To handle these tables the GLIDER
system provides the instructions� LOAD� UNLOAD �see ����� ������ and UPDATE �see ������

The system declares the following variables�

N �table name� is an integer whose value is the number of records of the table�

NOM �name of a simple table� is a constant array of N �name� elements that contains the values �usu�
ally key names� of the �rst �eld of the table�

For each table integer constants are declared with the names in the �rst �eld and successive values �� �� 	 ���
N �name� � They are useful in the program to refer to records by name�

The types of the �elds may be� REAL� INTEGER� STRING or BOOLEAN�

Example�

DBTABLES
 "Pop"Group��
 "Econ"Goods��

 "Modat"ConsPatt� �� "Modat"Consp� ��	

The �le Group in the directory Pop may be�

Fields Group Size Income Savings EmplFrac

Records

� Entrep� ����� ���������� ��������� ����

� Entrep� ������ ���������� ��������� ����

� Entrep� ������ ��������� �������� ����

� Worker� ������ ��������� ������� ����

� ������������������������������������� ����

� SelfEmp ������ �������� �������� ����

This table contains some characteristics of di�erent population groups�

The system generates the constants N�Group �value �� and the array NOM�Group

�values �Entrep��� �Entrep��� �� � �SelfEmp���

The constants Entrep�
 �� Entrep�
 ����� SelfEmp
 � are also de�ned�

An array of length � is dynamically allocated in memory at run time for each �eld� The instruction LOAD

imports the data from the �le table� So the instruction�

LOAD
Group� Size� Income�	

loads the record values of the table Group into the system created arrays Size and Income� So� Income�Worker��

 ������� The model program can now use and change the values of these array� The instruction DBUPDATE

can pass these modi�ed data to the original �le or to other �le with the same structure� When the values
are no longer needed in the simulation they can be discarded by an UNLOAD instruction and the memory they
used is freed�

If the table Goods have the following �elds and values�

��	� PROCEDURES ��

Fields Goods Production PrizeIndex

Records

� Housing ������ ����

� Food ������� ����

� Clothing ����� ����

� ��� ��� ���

� Health ����� ����

� Education ������ ����

Then the system generates N�Goods
 �	 NOM�Goods
 �Housing�� �Food�� etc� and the constants� Housing
 ��
Food
 �� etc� This table contains some characteristics of certain goods� The table ConsPatt will describe
the consumption pattern of the population groups indicating how much each group consumes of each good�
One part of this table may be�

Fields Group Goods Consumpt Priority

Records

� Entrep� Housing ������ �

� Entrep� Food ������ �

� Entrep� Clothing ������ �

� ��� ��� ��� �

� Entrep� Health ������ �

� Entrep� Education ������ �

� Entrep� Housing ����� �

�� Entrep� Food ����� �

�� Entrep� Clothing ����� �

� ��� ��� ��� �

�� Entrep� Health ������ �

�� Entrep� Education ������ �

� ��� ��� ��� �

�� SelfEmp Housing ���� �

�� SelfEmp Food ���� �

�� SelfEmp Clothing ���� �

� ��� ��� ��� �

�� SelfEmp Health ���� �

�� SelfEmp Education ���� �

When this table is loaded the system pass the values to an array called ConsPatt with two indexes and sizes
of � rows and
 columns� So� ConsPatt�Entrep�� Food�
 ������

��� PROCEDURES

The user can program functions and procedures as in the base Pascal language�� Procedure and function
declarations must be placed under the heading PROCEDURES of the DECL section�

In these functions and procedures� instructions of the base Pascal language as well as GLIDER functions
can be used� In addition to the instructions STOPSCAN and BEGINSCAN� the following �all but IT� NT�
DEACT� DOEVENT� DONODE� common GLIDER instructions and procedures� enumerated in Chapters
� and �� may be used� They are�

ACT� BLOCK� ASSI� CLRSTAT� DEBLOCK� DBUPDATE� ENDSIMUL� EXTFEL� EXTR�
FILE� FREE� GRAPH� INTI� LOAD� MENU� OUTG� PAUSE� PUTFEL� REL� REPORT�
SCAN� SORT� STAT� TAB� TITLE� TRACE� TRANS� TSIM� UNLOAD� UNTRACE� UP�
DATE� USE�

�Conforming to TurboPascal version ���

�
 CHAPTER �� DECLARATIONS

However names of nodes� lists� GFUNCTIONS and database tables cannot be used as formal parameters in
the present version� This restricts the usefulness of these instructions in procedures�

Type declarations� procedure declarations and function declarations within a function or procedure are not
allowed�

Examples�

PROCEDURES

PROCEDURE CountActBar
VAR n� INTEGER�	

BEGIN

ACT
Bar���	 n �
 n � �	

WRITELN
�Bar activated�� n� � times###��	

END	

FUNCTION CubicRoot
z� REAL�� REAL	

BEGIN CubicRoot �
 EXP
LN
z� � � END	

PROCEDURE FirstTrue
VAR Count� BoolArray	 i� INTEGER�	

VAR j� INTEGER	

BEGIN

j �
 �	

WHILE
j �
 �� AND NOT Count�j� do j �
 j � �	

IF j
 � THEN i �
 � ELSE i �
 j

END	

Calls to these procedures may be�

CountActBar
N�	

CubicRoot
�������	

FirstTrue
CON� k�	

It was defined� TYPE BoolArray
 ARRAY�� � ��� OF BOOLEAN	�

���� STATISTICS

The GLIDER system collects statistics of nodes and variables� The nodes and variables for which statistics
are desired must be speci�ed by the user� After the heading STATISTICS� a list of node identi�ers and
simple real variable identi�ers may follow�

The variables for which statistics are required� must be initialized in INIT�

If one of the elements of the list is the reserved word ALLNODES� the statistics of all nodes are given�

The statistics are always displayed at the end of the simulation run� but they may also be called by the
STAT procedure in the program or by user�s interruption during the execution of the program�

Examples�

STATISTICS Dock� Crane� TotalWeight	

Statistics of the nodes Dock and Crane� and the variable TotalWeight will be displayed�

STATISTICS ALLNODES� TotalCash� Money���� Money����

NumberTrans	

Statistics of all the nodes� and the variables TotalCash� Money���� Money���� and NumberTrans will be
displayed�

Chapter �

INITIALIZATIONS

In the INIT section of a GLIDER program the user puts the instructions to give the particular values to the
data to be used in a simulation run� These are assignation for�

�� Initial values to simple variables an arrays�

�� Initial capacity values to R type nodes�

	� Values of functions given by pairs of values�

�� Values of frequency tables parameters�

� Values from DBASE IV tables to arrays�

�� Initial activation of nodes�

�� Experimental variables

��� Initial Values to Simple Variables and Arrays

For simple or indexed variables assignative instructions are used�

Examples�

Pressure �
 ��	 Temp �
 �����	 R �
 ������E � �	 n�
�	 CH �
 �Y�	

Volume �
 n � R � Temp � Pressure	

FOR i �
 � TO � DO Concentr�i� �
 Fconc	

Fconc may be a user�s de�ned function� a FREQ type function� etc�

For arrays the ASSI instruction �see ���� may be used�

Examples�

ASSI Conc������ �

����� ����� ����� ����� ����� ����� �����	

ASSI OrigDest������ ����� �

���� ���� ���� �����

���� ���� ���� �����

���� ���� ���� �����

���� ���� ���� �����		

Reading from keyboard or �les may be used�

Examples�

WRITE
�Relative Humidity ��	 READLN
RelHum�	

i �
 �	

WHILE NOT EOF
AbsRateFile� DO

BEGIN READLN
AbsRateFile� AbsRate�i�� i �
 i � � END	

��

	� CHAPTER �� INITIALIZATIONS

��� Initial Capacity Values to R Type Nodes

For simple or indexed R nodes an assignation is used� For multiple nodes an ASSI instruction �see ���� may
be used� The initialization updates the following system variables�

� M �node name� that contains the maximum capacity�

� U �node name� that contains the actual used capacity� It is initialized to ��

� F �node name� that contains the actual free capacity� It is initialized to M �node name��

The assignation must be also made in any node� However� if a new capacity are assigned to a R node� less
than the actual value of U �node name� the system does not made any warning� Updating of F �node name�

or U �node name� is not automatically made� The user must change these values �see example below�� The
IL of the node is not altered�

Examples�

Storage �
 �E�	

Ocean �
 MAXREAL	

Pier��� �
 �	

ASSI ParkingLot������ �

��� ��� ��� ���	

If at some point in the execution the values are� M�ParkingLot���
 ��� U�ParkingLot���
 ���
F�ParkingLot���
 �� and it is needed to change the capacity to ��� the following instructions must be
put�
M�ParkingLot��� �
 ���	

F�ParkingLot��� �
 M�ParkingLot��� � U�ParkingLot���	 �must be 	��

If the needed change of M�ParkingLot��� is to
�� it results�
F�ParkingLot���
 ���	 The value of U�ParkingLot��� remains ���

The system does not delete the excess messages in the IL� When enough resource is freed during the run�
the used and free quantities will recover the normal new maximum �
�� and minimum ��� possible values�

��� Values to Functions Given by Pairs of Values

These functions are de�ned in ���� To assign values to them a special assignation is used� Its structure is�

�name of the function� �
 �list of pairs�

The pairs are separated by �� Each pair is�

�value of argument�� �value of function�

Examples�

Rain �
 �� �� ���� �� ���� �� ��� ��� ���� ��� ���� ��� ���� ���

���� ��� ����� �� ����� �� ����� �� ����� �� ����� ��	

Tax �
 �� � ������ � ������ �� ������ �� ���������	

FVehType �
 �� Car ��� Van ��� Truck	

FrVesselType �
 �� ��� ��� �� ��� ��	

Assuming that the �rst is of type POLYG �linear interpolation� the value Rain���� would be� as the �� fall
in the interval
�
��

Rain����
 �� �
�� � ��� �
�� � ��� �
�� � ���
 �����

Rain�����
 ��

Rain����� not defined

Assuming that Tax is of STAIR type �piecewise constant� it would be�

���� VALUES TO FREQUENCY TABLE PARAMETERS 	�

Tax
����
 � Tax
�����
 � Tax
������
 �� Tax
������
 ��

If VehType is of type DISC� then� VehType���
 Truck VehType����� not de�ned�

Assuming that FVesselType is of FREQ type then the probability that its value is � would be�
�� �
��� � �� � ���
 ��������

��� Values to Frequency Table Parameters

The de�nition of these tables is given in ���� To assign values to the parameters� after a heading TABLES�
the following assignation have to be made�

�table name� �
 �initial value�� �number of intervals�� �wide of the interval�	

�table name� is a name declared as table in DECL�
�initial value� is a real value�
�number of intervals� is an integer value�
�wide of the interval� is a real value�

The system adds lower class for the values below �initial value� and an upper class for the values beyond
the last class�

Examples�

TABLES TABTba �
 ���� �� ���	 TFrTemp �
 ��� ��� �	

TABTba is a frequency table for values from � to �� �
 intervals of wide
��

��� Values from DBASE IV Tables to Arrays

The de�nition and use of these tables are explained in section ��
� To store the values in the DBASE IV
tables into arrays the instruction LOAD �see ����� is used� This instruction may be used in the NETWORK
section too�

��� Initial Activations

Some node must be activated in the INIT section in order to start the simulation run� This is made by an
ACT procedure �see �����

Example

ACT
Hairdresser� ��	

FOR i �
 � TO � DO ACT
Pump�i�� UNIF
���� �����	

��	 Interactive Experiments

Values assigned to variables in the INIT section can be changed interactively during the simulation or
between di�erent runs of the same model� To do that� the assignation instructions must be included between
the words EXPER and ENDEXP� The variables in this range are called experimental variables� The
assignation must be of the form�

�identifier� �
 �value
s��

�identifier� corresponds to a experimental variable of the type�

� simple variable�

� element of an array�

	� CHAPTER �� INITIALIZATIONS

� name of a type R node�

� functions given by pairs of values�

� name of a frequency table�

When the option read Experiment and continue is selected in the Menu� the system displays the values
of these variables in the form�

�identifier�
 �value
s��

and it askes for a �le name� This �le will contain the assignation of the experimental variables in the de�ned
format� The order and quantity may be di�erent of those of the declaration in the INIT�

Example�

EXPER

TSIM �
 ����	 A �
 ����	

Fx �
 �� �� � � �� � � �� �	

Reci �
 ���	

S �
 �	

Table� �
 �� ��� �� �	

ENDEXP

The program will be run with the assigned values of these variables� If the E option in the run interactive
menu �see section ���
� is selected� the system prompts�

ENTER NAME OF DATA FILE

The user must write the name of an input data �le �may be CON for the keyboard�� The �le must begin
for a line with a title for the experiment and lines follows of assignation like those in the INIT without the
characters � � or � For instance�

Fx
 ��� � � �

� �

S �
 � Table�
 � �� �

TSIM
 ����

END

The system reads the data and assigns the values to the variables until the END is found� The system display
the new values that can be corrected or accepted by the user� When accepted� the simulation continues�

Chapter �

SYSTEM PREDEFINED NODES

The GLIDER system provides di�erent types of nodes that di�er in the activation and message processing�
They are summarized in the Introduction� This chapter gives a detailed description and examples� In the
following we refer to GLIDER common instructions and procedures to instructions and procedures
that can be used in any type of node� In general are instructions or procedures whose action does not depend
on the message being processed� They are�

ACT� BEGINSCAN� BLOCK� ASSI� CLRSTAT� DEACT� DEBLOCK� DBUPDATE� DO�
EVENT� DONODE� ENDSIMUL� EXTFEL� EXTR� FILE� FREE� GRAPH� INTI� IT� LOAD�
MENU� NT� OUTG� PAUSE� PUTFEL� REL� REPORT� SCAN� SORT� STAT� STOPSCAN�
TAB� TITLE� TRACE� TRANS� TSIM� UNLOAD� UNTRACE� UPDATE� USE�

BEGINSCAN and STOPSCAN are included here� because they can be used in any nodes as part of the
associate instruction of SCAN�

The admissible Pascal and GLIDER instructions� functions and procedures� are listed in chapters �� � and

�

��� I
Input� type nodes

This type of nodes are used to simulate entrance of items to the system� An I type node creates messages
and sends them to the successor nodes�
It has neither EL nor IL�

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions and the GLIDER instructions SENDTO and COPYMESS�

����� Activation

It may be activated only by an event that points to the node� and only during the �rst scanning of the
network� If it has an index� only the node with the index of the event is activated�

����� Function

When activated�

�� If there is an IT instruction� a next activation of the node is scheduled to happen at the time TIME �
IT�

�� A message is generated that always contains the default �elds�

		

	� CHAPTER �� SYSTEM PREDEFINED NODES

� GT Generation Time� contains the value of TIME at the generation�

� USE quantity of resource to be used in node R� Initialized to � as default value�

� ET to put the time of entrance in a list �EL or IL��

� XT to put the time of future exit from a list �EL or IL��

� NUMBER number of the message generated in the node�

� NODE name of the node�

The user can change the USE by a USE instruction�
NUMBER� NODE and GT remain constant�
ET are changed by the GLIDER system each time the message enters a list�
XT is updated each time the message enters a IL and a departure time from it is scheduled�

	� The user�s instructions are processed� These may usually be assignation of values to the message
�elds and SENDTO instructions to the message to other nodes �one and only one SENDTO is to be
executed��
Assignation of values to the �elds are made by assigning values to the corresponding �eld variables�
If there is not a SENDTO instruction in the code� the message is automatically sent to the successor
node� If there are more than one successor� a copy is sent to each successor�

�� Before the sending of the message the actual values of the �eld variables are passed to the message
�elds�

����� Relation with other nodes

The node must have successors that can accept messages in their EL� but it must not have predecessors�

����� Indexes

In a multiple node the activations of the nodes occur independently� In this case� a successor must be
explicitly indicated� If the successor has index too� then a SENDTO instruction may indicate the destination
node�

����� Examples

�� I��

This node can only be activated from the INIT section or from another node� It generates a message
and sends it to the successor node �by default the following in the program��

�� MainEntrance
I� Office�� Office� ��

IF Number � �� THEN IT �
 TRIA
TBAMin� TBAMode� TBAMax�	

ClassOff �
 FunClass	

IF ClassOff
 Normal THEN SENDTO
Office�� ELSE SENDTO
Office��	

���

INIT TIME �
 �	 TSIM �
 ����	 ACT
MainEntrance� ��	

TBAMin �
 �	 TBAMode �
 �	 TBAMax �
 �	

FunClass �
 Normal� � � Special� �	

DECL TYPE Tc

Normal� Special�	

VAR TBAMin� TBAMode� TBAMax� REAL	

MESSAGES MainEntrance
ClassOff� Tc	 h� REAL�	

GFUNCTIONS FunClass FREQ
Tc�� REAL� �	

���� L
LINE� TYPE NODES 	

Messages are generated and sent to Office� or Office� according to the �eld ClassOff� whose value
is given by the function FunClass� Up to �� messages are generated� The time between successive
generations are taken from a triangular distribution�

	� Samples
I� �� �� �� LabSec�INO� �� IT �
 EXPO
MeanArrT�INO��	

BactConc �
 GAMMA
MBac�INO�� ��� � MBac�INO��	

SENDTO
LabSec�INO��	

LabSec
R� �� �� �� �� STAY �
 ����� � BactConc	

INIT TSIM �
 ����	

ASSI MeanArrT������ �

���� ���� ���� ���� ���� ����� ����	

FOR I �
 � TO � DO ACT
Samples�I�� EXPO
MeanArrT�I���	

ASSI MBac�� �� �� �

��� ���� ��� ���� ���� ���� ����	

DECL

VAR MBac� ARRAY�� �� �� OF REAL	 I� INTEGER	

MeanArrT� ARRAY�� �� �� OF REAL	

MESSAGES Samples
BactConc� REAL�	

The messages �samples to be analyzed in a Lab� arrive at random from seven original points and after
being assigned a value for BactConc by means of a GAMMA function� they are delivered to one of the
seven nodes LabSec �according to their source��

�� Hangar
I� Quarry�INO�� Mine� City �� SENDTO
City�	

COPYMESS
�� IF ICOPY �
 � THEN SENDTO
Quarry�ICOPY��

ELSE SENDTO
Mine�	

The produced message �Truck� is sent to City� Five copies are made� The ���� and 	 are sent
respectively to Quarry���� Quarry���� and Quarry���� The other two �� and
� are sent to Mine�

��� L
Line� type nodes

This type of nodes are used to simulate queue disciplines and sorting lines of items� Messages coming to
the node EL are passed to its IL� where they are set in the order indicated by the code� This may be FIFO
�First In First Out�� LIFO �Last In First Out� or any other order programmed by the user�

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions� the GLIDER procedures LIFO� FIFO and ORDER� and the GLIDER instructions
SENDTO� ASSEMBLE� SYNCHRONIZE and CREATE�

����� Activation

It is activated by an event that refers to it or during the scanning of the network if the EL is not empty�

����� Function

�� When the node is activated the EL is scanned and each message is extracted one by one� For each
extracted message the �elds are transferred to the corresponding �eld variables and the code is executed�
If there are not LIFO� ORDER� or SENDTO instructions in the code the message is put at the end of
the IL�

�� If FIFO is executed� the message is put at the end of the IL�

	� CHAPTER �� SYSTEM PREDEFINED NODES

	� If LIFO is executed� the message is put at the beginning of the IL�

�� If ORDER is executed� the message is put in the IL according to the speci�cation of this procedure
�See ���
� that may sort the IL according to the values of a variable�

� If SENDTO is executed the message is not added to the IL but sent to the list�s� indicated in the
SENDTO�

�� Before the transfer the �eld variable values are passed to the messages �elds� Only one of the instruc�
tions LIFO� FIFO� ORDER� or SENDTO must be executed if some of them are in the code� The
messages in the IL are not extracted automatically in the node� To extract a message from the IL a
user�s instruction must be executed �in this or other node� or the action of automatic instructions from
other nodes �see below� are required�

����� Relation with other nodes� Identifying of IL with EL

The node must have predecessors that can send messages and may have successors that accept messages�
None of them may be other L type nodes�
If the only successor is a node of G� E� R or D type� or the general type with EL� then the IL of the L node
is identi�ed with the EL of the G� E� D� R or general node� The multiplicity must be the same� These
successors will manage automatically the IL of the L type node�

����� Indexes

A multiple L type node has multiple ELs and ILs� They correspond each other� A message in the j EL is
passed to the j IL� The variable INO has the number of the node being executed�

����� Examples

�� L ��

The incomingmessages are stored into the EL L� When the node is activated they pass to the IL L in
the same order �FIFO discipline�

�� Queues
L� ������ Gate�INO�� Out��

IF LL
EL�Gate�INO�� �
 � THEN SENDTO
Out� ELSE FIFO	

The messages in the ELs are sent to the corresponding ILs �which are the ELs of the Gate node��
When one of this lists has � messages or more� the messages are sent to Out�

	� OrdQueue
L� E �� IF LL
IL�OrdQueue� � ��

THEN SENDTO
E�

ELSE IF Priority � � THEN FIFO

ELSE ORDER
Priority� D�	

If the queue is greater than �
 the message is sent to E� Otherwise� if the �eld Priority is � or more it
is ordered by descending Priority� otherwise by increasing time of arrival�

�� QFiles
L� �� P �
 A � Length�a � C	 ORDER
P� A�	

The messages are ordered by the ascending values �A� of the variable P computed from the �eld
Length�a and the parameters A and C�

��� G
Gate� type nodes

This type of node retains or allows message �ow� The nodes type G have an EL for the retained messages�

���� G
GATE� TYPE NODES 	�

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions� the GLIDER instructions ASSEMBLE� COPYMESS� CREATE� DEASSEMBLE� SYN�
CHRONIZE� SENDTO� STATE and the procedures STOPSCAN and BEGINSCAN� If there is a STATE
instruction �only one is allowed�� it must be the �rst in the code� Its associated instruction may contain
Pascal instructions� functions and procedures� GLIDER common instructions and procedures� and GLIDER
functions� It cannot have SENDTO instructions�

����� Activation

It is activated by an event or during the scanning of the network if the EL is not empty� The instruction
STATE� used to change the state of the gate� is only executed if the node is activated by an event which
refers to the node�

����� Function

�� When the node is activated by an event that refers to the node and there is an instruction STATE�
this is �rst executed� After this execution or when the node is activated because the scanning of the
network� the other �non STATE� part of the code may be executed�

�� If the EL is not empty� it is scanned starting from the �rst message� Each message is examined�
the values of the �elds are passed to the corresponding �eld variables and the user code is executed�
After this execution� if the message was not extracted� the �elds are updated to the values of the �eld
variables �that could have been changed� and the scanning continues�

	� If in the above process a SENDTO instruction is executed� the �elds are updated� the message is
extracted and sent to the indicated list�s� or successor node�s�� The scanning of the EL continues�

�� If a STOPSCAN procedure is executed� the scanning is stopped and the process of the node �nishes�
However� it may be re�started during the same event if the scan of the network activates again the
node� STOPSCAN is used� for instance� if the sending of further messages depends on the changes
caused in other nodes by the actually sent message�

� If a BEGINSCAN procedure is executed� the scanning begins again from the �rst element� This may
be useful if the sending of a message change the sending conditions of the already examined messages�
Unwise use of this procedure may cause a loop�

�� Note that the sending of message from a G type node must be explicitly ordered by a SENDTO
instruction� To send a message a SENDTO must be executed one and only one time for the examined
message�

����� Relation with other nodes

A G type node must have some predecessor and some successor� If the predecessor is a L type node the IL
of this is the same of the EL of the G type node� If the G is multiple the predecessor L must have the same
multiplicity�

����� Indexes

A multiple G type node has as many EL as its multiplicity� When it is activated all the nodes are executed
sequentially� The variable INO has the number of the node being executed�

	
 CHAPTER �� SYSTEM PREDEFINED NODES

����� Examples

�� G��

When activated� this node scans the EL and nothing is made� From other nodes it is possible to extract
and modify the messages of its EL�

�� Inspect
G� Sale� Repair �� IF Defect

THEN BEGIN STOPSCAN	 SENDTO
Repair� END

ELSE SENDTO
Sale�	

If the boolean �eld Defect of the message �article� is TRUE� the examination of the list stops and the
message is sent to Repair� Otherwise� it is sent to Sale� In the �rst case� the scan is stopped �will
continue in the next activation during the same event�� in the second case� the scan continues� Note
that the STOPSCAN must be used only if it is necessary �see next example� because it increases the
processing time by repeating the scanning of the network�

	� Semaf
G� Street �� STATE BEGIN Green �
 NOT Green	 IT �
 �� END	

IF
LL
IL�Street� � ��� AND Green

THEN SENDTO
Street�	 STOPSCAN	

Each �
 units of time the boolean variable Green changes its true value� The node allows the messages
�cars� to pass if Green is true and the IL of the successor node Street has less than �� messages�
When a message passes� the scanning of the EL is stopped to allow the change in the IL of Street�
Without the STOPSCAN more than �� messages would be sent to Street� On the other hand� if the
condition is not ful�lled stopping of the scan avoids unnecessary examination of the EL� Eventually�
future changes in the IL of Street will produce a network scanning an a new activation of Semaf�

�� Control
G� Machine�INO� �� SENDTO
Machine�FREE��	

The message �object to be processed� is sent to the �rst free Machine �with free capacity�� If there is
no free Machine� the message remains in the EL of Control�

� Selection
G� ��

IF
Typ
 Special� AND First

THEN BEGIN SENDTO
Depot�	 BEGINSCAN	 First �
 FALSE END

ELSE IF NOT First THEN SENDTO
Depot�	

Among the messages in the EL of Selection there is one and only one with the �eld Typ
 Special�
Only after it pass all� the others may pass� The boolean variable First is originally TRUE�

��� R
Resource� type nodes

This type of nodes simulates resources used by the entities represented by the messages� A real value� called
the node capacity� is associated to the node� The messages in the EL represent entities that demand a
certain quantity of that capacity during a certain time� The EL is examined and� for each message� it
is checked if the demanded quantity is available� If it is so� the message is moved to the IL� the time of
future depart is scheduled in the FEL� and the quantity of resource used for the message is subtracted to
the available capacity� If there is not enough capacity� the message remains in the EL� When the departing
event is executed� the message is removed from the IL and sent to the successor nodes� So� the node has two
function an accepting function that assigns resource to a message and put it in the IL and a departing
function that extracts the message of the IL and frees resource�

����� Code

The type R node may contain Pascal instructions� functions and procedures� GLIDER common instructions
and procedures� GLIDER functions� the GLIDER instructions PREEMPTION� RELEASE� STAY� If there
is an instruction RELEASE �only one is allowed� it must be the �rst in the code� Its associated instruction

���� R
RESOURCE� TYPE NODES 	�

may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures
and GLIDER functions� the instructions SENDTO� DEASSEMBLE� EXTR� CREATE� and COPYMESS�
and the procedures NOTFREE� BLOCK and DEBLOCK�

����� Activation

The part of the code that processes the departing message �that may be a system generated code or a user�s
programmed RELEASE instruction� is only activated by a departing event that refers to the node� This
event can be only introduced in the FEL by the node itself when a STAY instruction is executed� The node
must not be activated by an ACT instruction�
The part that controls the entrance of the messages to the IL is activated during the scanning of the network
when the EL is not empty�

����� Function

�� If there is no RELEASE instruction� the departing of a message from the IL is automatically made as
follows� when the depart event pointing to the node is executed� the message with the time of depart
XT equals to the actual value of TIME �i�e�� the time of the departing event� is extracted from the IL
and sent to the successor nodes� If there are more than one successor node� copies are sent to all of
them� The value of the freed and used resource account is updated �see 	 below� The part of the code
used by the system to process the departing message is only executed one time in the event and is not
repeated during the scanning of the network�

�� The user can control the departing process of the message by means of a RELEASE instruction� This
is only executed if the R type node is activated by an event that refers to the node� The associated
instruction is executed only one time at the beginningof the event and not repeated during the scanning
of the network�
The execution begins� as in the automatic case� by seeking the �rst message with an exit time XT
equal to the actual TIME� If it is not found� a message error of �empty list� is given� If it is found� the
message is extracted� the �elds are copied in the �eld variables and the user�s code in the associated
instruction is executed� This code must have a SENDTO instruction to send the message to one �or
various� successor nodes� Before this sending� the �elds of the message are updated at the values of
the �eld variables�

	� After the sending of the message the capacity of the node is updated adding the value of the USE
�eld to the free capacity �variable F��node�� and subtracting the value of USE to the used capacity
�variable U��node��� This resource freeing can be inhibited if a NOTFREE procedure appears in the
associated instruction of the RELEASE instruction� This is used in applications in which some items
abandon the resource� but this requires an additional time to be available again� The freeing is made
elsewhere by a FREE procedure at a latter time�

�� The part of the code that pass the messages to the EL �accepting function� is executed when the EL
is not empty� It examines the messages in the EL starting from the �rst� For each examined message
the �elds are passed to the �eld variables� and the user�s instructions in this part are executed� One
of them may be a STAY �
 �expression� instruction� The required amount of resource �USE �eld�
is compared with the available resource �F��node� variable�� If USE is greater than F��node�� the
message remains in the EL and the scanning of the EL continues� Otherwise� the message is extracted�
the event of its future departing is scheduled �if there was an STAY instruction� and the message is
added at the end of the IL�
The capacity of the R node is updated subtracting the value of the USE �eld of the message to the free
capacity �variable F��node�� and adding the value of USE to the used capacity �variable U��node���
The scan of the EL continues to look for other candidates to use the resource� If there is not STAY
instruction and one message enters the IL� no departing event is generated� The message will remain
in the IL until it is extracted by an instruction REL �see ���
�� that refers to the IL of the node� It
extracts the �rst message without assigned exit time� it updates the quantity of free and used resource

�� CHAPTER �� SYSTEM PREDEFINED NODES

and it sends the message to the desired node�
It is important to remark� that the EL is examined and the user�s code executed even if there is not
resource available� If the user wants to avoid repetition of all the code or part of it� she or he must
program the conditions for that omission�

Example�

IF F�Parking � � THEN STAY �
 LOGNORMAL
TPark� DTPark�

avoids to compute the STAY if there is no room in Parking�

� If there is the instruction PREEMPTION �see ������ some of the above operations are modi�ed�

�� If the capacity of the node was de�ned as MAXREAL� it is assumed to be in�nite and no update is
made in the free or used capacity�

����� Relation with other nodes

A R type node must have predecessors and successors� If the predecessor is a L type node� the EL is the
same IL of the L node� Both nodes must have the same multiplicity�

����� Indexes

Multiple nodes are processed successively� when the node is activated during the scanning of the network�
The INO variable takes the value of the index of the processed node�
If the multiple node is activated by a departing event� only the departing part �system produced or RE�
LEASE� of the node with the index of the event is processed�

����� Examples

�� Disposal
R� ��

��������������

INIT Disposal �
 MAXREAL	

The node Disposal enters any quantity of messages �compatible with memory available� in its IL �
They may be extracted by a REL instruction in other node�

�� Crane
R� Base �� RELEASE BEGIN Transported �
 TRUE	

NOTFREE	 SENDTO
Base�	

END	

STAY �
 GAMMA
Travel�T� Dev�T�	

If the Crane is free �capacity � is assumed�� a message �box� takes it� it uses the resource for a time
took from a GAMMA distribution� When this time is over� the boolean �eld Transported is put to
TRUE and the message is sent to Base without freeing the resource� This must be freed by a REL
instruction�

	� Sea
R� �� STAY �
 FTravelTime
VesselType�	

��

INIT ��� Sea �
 MAXREAL	

The messages �vessels� enter the resource Sea of in�nite capacity and remain there for a time given by
a function FTravelTime that depends on VesselType�

���� D
DECISION� TYPE NODES ��

��� D
Decision� type nodes

This type of node selects messages from predecessor nodes and sends them to successor nodes� D type
nodes have an EL for each predecessor� Some messages are taking from the ELs and sent to the
successor nodes according to the selection rules indicated by the code�

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and proce�
dures� GLIDER functions� the GLIDER instructions SELECT� SENDTO� ASSEMBLE� DEASSEMBLE
SYNCHRONIZE� CREATE and COPYMESS�
If the node has more than one predecessor� the SELECT instruction must be used�

����� Activation

It is activated by an event that refers to it or during the scanning of the network� if some of the ELs is not
empty�

����� Function

�� If there are only one EL� each message� from the �rst to the last� is extracted from the EL� For each
message the values of the �elds are passed to the �eld variables and the code is executed� The code
must have a SENDTO instruction for the message� The �elds are updated before the message is sent
to some list�

�� If there are many predecessors� there is one EL for each� Then a SELECT instruction must be
executed� that selects messages from some EL and sent them to other nodes� See ���� for details of
this instruction�

����� Relation with other nodes

A type D node must have predecessors and successors�

����� Indexes

A type D node cannot have indexes�

����� Examples

�� Queue� ��

Queue� ��

Queue� ��

ReArrange
D� Proc�� Proc� ��

SELECT
Queue�� Queue�� Queue�� J� IF Size
 � THEN SENDTO
Proc��

ELSE SENDTO
Proc��

The ReArrange node takes J messages from each Queue �in the order in which they appear in the
SELECT� and according to the value of the �eld Size it sends them to Proc� or Proc��

�� Divide
D� �� IF Good THEN SENDTO
FIRST� Pile�

ELSE SENDTO
Garbage�	

�� CHAPTER �� SYSTEM PREDEFINED NODES

��� E
Exit� type nodes

These nodes destroy messages� The messages in the EL are processed� The code in the node is executed
and the messages are destroyed� The node is activated during the scanning of the network if the EL is not
empty�

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions� and the GLIDER instructions SENDTO� CREATE and DEASSEMBLE�

����� Activation

It is activated by an event that refers to it or during the scanning of the network� if the EL is not empty�

����� Function

�� The EL is scanned from the beginning to the end�

�� For each examined message the values of the �elds pass to the �eld variables and the code is executed�

	� If there is a SENDTO instruction� the �elds of the message are updated and the message is sent to
other node� Otherwise� the message is destroyed and the used memory may be re�used�

����� Relation with other nodes

An E type node must have predecessors and may have successors�

����� Indexes

If a multiple E type node is activated the nodes are executed successively� The value of the variable INO
corresponds to the node being processed�

����� Examples

�� E ��

The messages arriving at E are destroyed�

�� Exit
E� �� Tis �
 GT � TIME	 Tab
Tis� TablST�	

���

INIT

TablST �
 ���� ��� ���	

���

DECL

TABLES Tis� TablST	

The time that the messages remained in the system is computed by subtracting from the actual TIME
the generation time GT� This value is recorded in a frequency table�

��	 C
Continuous� type of nodes

This nodes solve systems of ordinary di�erential equations of �rst order� This nodes do not have EL or IL�

���� C
CONTINUOUS� TYPE OF NODES �	

����� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions� the GLIDER instruction CREATE� and the procedures RETARD and METHOD �see
���
 and ���	��
It accepts successions of instructions of the form �variable�� �
 �expression�� These may be mixed with
other type of instructions� The system considers a series of such instructions of the above type without other
type of instructions among them as a system of di�erential equations� So� various di�erential systems can
be represented in a unique node separated by ordinary instructions� The systems of the same node share a
commonMETHOD and path of integration� In di�erent C type nodes the METHOD and path of integration
may be di�erent� In the above instruction �variable� is a variable that was declared of CONT �continuous�
type� It may have a numerical index� If the variable TIME appears in some equation� it must be represented
by this name� If the value is transferred to other variable� then both will di�er without knowledge of the
user� because the solving algorithm changes the variable TIME without updating the user�s variable�

����� Activation

The node is �rst activated from the INIT section or from other node� Then the solving process starts� During
the execution the node activates itself at each integration step� This activations does not produce scanning
of the network� They may be interrupted and continued when the node is deactivated or activated by the
instructions ACT and DEACT�

����� Function

�� In a C type node one or more systems of di�erential equations are solved� The whole code is executed
at each integration path and the execution of the events of all the program interleaved with those
of the di�erential equations� On the other hand� the C node can generate events and messages by
conditions that may depend on the values computed for the di�erential equations� Thus� a symbiosis
of continuous and discrete simulation is complete�

�� As the self�activations of the node do not produce scanning of the network� all actions in the network
that depend on the values computed by the di�erential equations must be explicitly programmed in
the node �see examples below�� The C type node can be called to be executed at any time from any
other node� The calling instruction is�

�name of the C node �
��	

When this happens the node solves the systems for the actual value of the time and then the control
goes back to the calling code� So an updated value of the computed variables can be used by the calling
code� The C type node continues solving the system at the originally prescribed intervals�

����� Relation with other nodes

The node has not predecessors but it can have successors to which messages may be sent� As was explained
above� the node can be called from any node for an instantaneous evaluation of the continuous variables�

����� Indexes

Type C nodes cannot have index�

����� Continuous Variables Declaration

The variables that appear as derivatives must be declared of CONT type� All the CONT and RET type
variables must be declared together�

Example�

�� CHAPTER �� SYSTEM PREDEFINED NODES

C�� C�� CONT	 Rr� REAL	 H�� H�� CONT	 ExitPro� RET� �	

is incorrect� A correct declaration is�

C�� C�� CONT	 ExitPro� RET� �	 H�� H�� CONT	 ExitPro� RET� �	 Rr� REAL	

or may be�

C�� H�� C�� H�� CONT	 ExitPro� RET� �	 Rr� REAL	

note that the order within the list is irrelevant�

����� Examples

�� Tank Source for TankCar�

A tank receives a flow of water given by a function FEntry
TIME�

and has an outflow proportional to the Level of the tank� This is

expressed in the differential equation for the Level� When the

Level exceeds �m the SendTankCar subsystem is activated� Further

sending is inhibited until the TankCar completes its work� The

SendTankCar subsystem sends the TankCar to Travel� When the Travel

to the place in which the Tank is� finishes the Level is lowered

in a quantity corresponding to the volume of the TankCar� The

TankCar is eliminated and the SendTankCar system may be activated

again if Level � �� There is an hourly Inspection that puts Alarm

to TRUE when it finds the Level less than �� Then the Recovering

process begins by decreasing the rate of outflow until the Level

��� is reached�

NETWORK

Tank
C� �� Level� �
 KQLevel � FEntry
TIME� � KOLevel � Level	

IF Alarm OR Recovering THEN KOLevel �
 ������

ELSE KOLevel �
 ������	

IF
Level � ���� AND Send

THEN BEGIN ACT
SendTankCar� ��	 Send �
 FALSE END	

SendTankCar
A� Travel ��

CREATE
TankCar� BEGIN

VTankCar �
 UNIF
����� �����	

SENDTO
Travel�	

END	

Inspection
A� �� Tank
��	
�Update Level��

IF Level � ��� THEN BEGIN Alarm �
 TRUE	

Recovering �
 TRUE

END	

IF Level � ��� THEN Recovering �
 FALSE	

ACT
Inspection� �����	

Travel
R� �� RELEASE BEGIN

Level �
 Level � VTankCar � KQLevel	

SENDTO
Exit�	

Send �
 TRUE	

END	

���� C
CONTINUOUS� TYPE OF NODES �

STAY �
 TravelTime	

Exit ��

Gra
A� �� IT �
 ��	

GRAPH
�� ������ BLACK	 TIME� �� �� WHITE	

Level� �� �� Alt� �� ��� GREEN�	

INIT ACT
Tank� ��	 ACT
Inspection� ��	 ACT
Gra� ��	

TSIM �
 �����	

TravelTime �
 ���	

Travel �
 MAXREAL	

DT�Tank �
 ���	 Level �
 ���	

KQLevel �
 ����	
� ��M�M ��

KOLevel �
 ������	
� ��Seg ��

FEntry �
 ���� ��� � �������� ��� � �������� ��� �

�������� ��� � �������� ���	

Alarm �
 FALSE	 Recovering �
 FALSE	

Send �
 TRUE	

DECL VAR KQLevel� KOLevel� TravelTime� REAL	

Level� CONT	 Alarm� Send� Recovering� BOOLEAN	

MESSAGES TankCar
VTankCar� REAL�	

GFUNCTIONS FEntry POLYG
REAL�� REAL� �	

STATISTICS ALLNODES	

END�

�� TEST OF DIFFERENTIAL EQUATIONS

Computed known solutions of some systems of differential equations�

NETWORK

C� �� Y� �
 R	
�Y �
 SIN
T���

X���� �
 ���	
�X��� LINEAR SLOPE �����

X���� �
 ���	
�X��� LINEAR SLOPE �����

R� �
 �Y	
�R �
 COS
T���

X���� �
 X���	
�X��� PARABOLA��

Z� �
 �R	
�Z �
 �SEN
T���

C� �� Z� �
 ����	
�X��� LINEAR SLOPE ������

X���� �
 �X���	
�X��� COS
T���

X���� �
 X���	
�X��� �SIN
T���

S� �
 Z � �	
�X��� PARABOLA��

Gra�
A� �� IT �
 ������	

GRAPH
�� ���� BLACK	 TIME� �� �� WHITE	

Y� �� �� SEN� ��� �� RED	

R� �� �� COS� ��� �� GREEN	

X���� �� �� Lp��� ���� ��� YELLOW	

X���� �� �� Lp��� ���� ��� MAGENTA	

X���� �� �� Parab�� ���� ��� LIGHTGREEN	

Z� �� �� MSen� ��� �� BLUE�	

�� CHAPTER �� SYSTEM PREDEFINED NODES

Gra�
A� �� IT �
 ������	

GRAPH
�� ���� BLACK	 TIME� �� �� WHITE	

X���� �� �� Lp��� ���� ��� YELLOW	

X���� �� �� Parab�� ���� ��� LIGHTGREEN	

Z� �� �� MSen� ��� �� BLUE	

S� �� �� Parab�� ���� ��� BROWN�	

INIT TSIM �
 ���	 Tc �
 �	

INTI Tc� �� Tc
� FOR C�� � FOR C�� 	

IF Tc
 � THEN BEGIN ACT
C�� ��	 ACT
Gra�� �� END

ELSE BEGIN ACT
C�� ��	 ACT
Gra�� �� END	

DT�C� �
 ������	 DT�C� �
 ������	

Y �
 �	 R �
 �	 X��� �
 �	 X��� �
 �	 X��� �
 �	 Z �
 �	 S �
 �	

DECL VAR X� ARRAY�� �� �� OF CONT	 Z� S� Y� R� CONT	 Tc� INTEGER	

END�

��
 A
Autonomous� type nodes

These nodes execute their code at scheduled times� They have neither EL nor IL� They may activate
themselves and other nodes� change variables and send messages�

��	�� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and proce�
dures� GLIDER functions� and the GLIDER instructions CREATE and SENDTO� The common instruction
UPDATE can only be used in the associated instruction of CREATE or SENDTO�

��	�� Activation

An A type node is only activated by an event that refers to it� It is not activated again during the scanning
of the network� If the node is multiple� only the node with index value equal to the index of the event is
activated�

��	�� Function

When the node is activated the code is executed�

��	�� Relation with other nodes

It have not predecessors but may have successors if messages are created in it and sent to other nodes�

��	�� Indexes

A multiple type A node is a set of independent nodes that can be activated independently�

��	�� Examples

�� Print
A� �� IT �
 ���	 Annual	

Each 	�
 unit times the procedure Annual is called �for instance to print a report of the state of the
model�� The node must be activated for the �rst time from other node or from the INIT section�

��	� GENERAL TYPE NODES ��

�� GraphProPri
A� �� IT �
 �����	

GRAPH
�� ��� BLACK� TIME� �� �� WHITE	

Prod� �� �� Production� �� ����� RED	

Price� �� �� PriceInd� �� �� Yellow�	

Each interval time of ����
 units �
 times per year� points with the new values of Prod and Price are
added to the time graphic and united by a line to the previous point� The node must be activated for
the �rst time from other nodes or from the INIT section�

	� NewStr
A� NewSource �� IT �
 ���	

If CondStCh THEN

BEGIN

ACT
NewSource� ��	

CREATE
MessSource�

SENDTO
NewSource�	

DEACT
Inst��	

ACT
Proc�� ���	

STAT	

CLRSTAT	

END	

Each ��
 units of time the boolean function CondStCh �that may compute conditions for a structural
change� is evaluated� If it is TRUE� the nodes NewSource and� with a delay� Proc� are activated� The
Inst� is deactivated� A message is sent to the newly activated node� The statistics are displayed and
then initialized for a new statistical gathering�

��� General type nodes

Used to general processes programmed by the user� A node of this type may be designed by any other letter
di�erent of G� L� I� D� E� R� C� A� The node is activated during scanning processes �this is the main di�erence
with the A type�� It has not EL or IL unless this is explicitly required by the user in a NODES declaration�
The management of these lists must be programmed by the user with the help of GLIDER instructions and
procedures�

��
�� Code

It may contain Pascal instructions� functions and procedures� GLIDER common instructions and procedures�
GLIDER functions� and the GLIDER instruction SENDTO� CREATE� DEASSEMBLE� ASSEMBLE and
SYNCHRONIZE�

��
�� Activation

It is activated by an event that refers to the node or during the scanning of the network �this is the di�erence
from an A type node��

��
�� Function

The activation consists in the execution of the code� Allmanagement of messages must be explicitly indicated
in the user�s code by means of Pascal or GLIDER instructions and procedures�

��
�� Relation with other nodes

Predecessors and successors are only required if the node must receive and send messages�

�
 CHAPTER �� SYSTEM PREDEFINED NODES

��
�� Indexes

When it is activated� all the nodes are executed� The variable INO has the number of the node being
executed�

Chapter �

NETWORK

The NETWORK section of a GLIDER program describes the relationships among the subsystems and the
code that simulates their behavior� In what follows the general rules to write this section and the way in
which it is processed are described�

��� De�ning a node

The node has two parts� a heading part and a code part� The structure is�

�heading� �� �code�

����� Heading

This part declares the name� the type � the successors and the local variables� The heading has the following
structure�

�name� � �type� � �index range� � �list of successors�

� �LABEL� �list of labels�	� � �VAR �declarations of local variables�	� �

Items between �� may be omitted

� �name� is an identi�er � see Chapter �� that indicates the name of the node� It is also the declaration
of the node�

� �type� is a letter that designs the type of the node �See Chapter � and Chapter ��� If omitted the
�rst letter of the name is assumed to describe the type�

� �index range� is a range indicator of the form� �� �� �positive integer��� If omitted the node
is assumed simple�

� �list of successors� is a list of node names� They are the nodes to which messages may be sent�
Multiple nodes must have an index� If the list is omitted and the node needs a successor� the system
tries to see if the following node is a feasible successor� If so� it will be the successor� Otherwise� an
error condition occurs�

� �LABEL � �list of labels�	�� If labels are used in the code� they must be declared here� the list is
formed by numbers or identi�ers separated by commas� The labels are local to the node and all must
be used�

� �VAR �list of declarations of local variables�	�� This is to declare local variables as in the
VAR part of the section DECL �see ��	��

��

� CHAPTER �� NETWORK

Examples�

Ingoing ��

Crane
R� ������ Belt�INO� VAR Vel� real	 MaxWeight� ARRAY OF REAL	 ��

Control
G� Street LABEL� �� EndCont ��

����� Code

Node code may be empty� In this case� no separator � is required after ��� If it is not empty� it may be a
succession of combinations of Pascal and GLIDER elements� For instance�

� Simple Pascal instructions�

Example�

Results
A� �� TotCash �
 TotNum � Price	 Quant �
 Quant � �	

� Compound and structured Pascal instructions�

Example�

FindMax
A� �� M �
 �	

FOR J �
 � TO NTot DO IF Bag�J� � M THEN M �
 Bag�J�	

WRITELN
� The most heavy weights �� M�	

� Compound and structured Pascal instructions including GLIDER instructions�

Example�

ConTower
D� �� IF International THEN SENDTO
Runway�I�

ELSE SENDTO
Runway�N�	

� GLIDER instructions�

Example�

Robot�
X� Robot� �� ASSEMBLE
ELIM� �� EQUFIELD
L�� SENDTO
Robot��	

� GLIDER procedures�

Example�

Q�
L� �� ORDER
Temp� A�	

� Compound and structured Pascal instructions� including GLIDER procedures and instructions�

Example�

ActDec
A� �� IF Danger THEN ACT
Proc�Emer� ELSE ACT
Proc�Norm�	

� A succession of the above items�

Restrictions in the use and order of the instructions in the code are explained in Chapter ��

���� PROCESSING THE NETWORK
�

��� Processing the network

The processing of the network starts when a node is activated by an event� The procedure in the node is
executed� After this a scanning of the network starts� The successive nodes are examined one by one in
the programming order� if they are of G� L� D� E� R� or general type� The nodes of types I� A and C are
skipped in the scanning� If the EL is non empty� the code is executed� When the last node in the program
is scanned� the scanning continues with the �rst one� until the node activated at the beginning of the event
is reached� If during this process a movement of messages occurred� then the scanning is repeated again�
When in a cycle no message is moved� the event �nishes and the next event in the FEL will be processed�
This scanning makes possible to take into account the consequences that the original event produced in
other nodes� Even if the original node do not move messages� the scan is necessary because it can modify
restrictions that maintain certain nodes inactive� Although in most practical cases the programmer may
be unaware of this process� in complicated situations may be important to consider the activation process�
Some processes that would be simultaneous may fail to do so in certain cases�

Example� If in a point of time three variables must change simultaneously� for instance X �� Z �� U and
the changes are in di�erent nodes�

A �� Z �
 X � �	

B ��

C �� X �
 X � �	

D �� U �
 Z � �	

E ��

then if the event starts in node C and no message is moved in the event� the scanning will not produce the
change of U due to the change of X� This may be solved by changing the order of the nodes or by a procedure
ACT�A� �� in the node D� The user must decide from the nature of the problem what chain of modi�cation
makes sense and what are the adequate activations�

Problems of this type may occur also in ordinary programming� but they are more easily avoided because
the order of execution is more explicit for the programmer� Another consequence of the scanning of the
network is that some instruction may be unnecessarily executed many times� This may produce waste of
time or erroneous results�

Example�

Gate
G� �� IF
Class
 Good� OR
LL
EL�Gate� � �� SENDTO
Market� END	

Insp �
 Insp � �	

The EL of Gate is examined and if the condition is ful�lled the messages are sent to Market� In Insp it is
supposed to take into account the number of inspected messages� However� as the EL may not be exhausted
in one activation of the node �up to three not Good items may remain� in a further activation in the same
event the remaining messages are inspected again given a false value of the inspected number�

The user can avoid the e�ects of the repeated execution of some or all the instructions of a node using the
instructions DONODE and DOEVENT �see ��� and ��
�� Example�

Gate
G� �� IF
Class
 Good� OR
LL
EL�Gate� � �� SENDTO
Market�	

DOEVENT Insp �
 Insp � �	

In this case the instruction Insp �
 Insp � � is executed only the �rst time the node is activated�

The type C nodes activate themselves automatically each integration interval� For example� if a message
must be sent when Level reaches or exceeds ��	��� the program

Tank
C� �� Level� �
 Inflow � K � Level	

IF Level
 ����� THEN CREATE
Mess� SENDTO
Center�	

may fail if Level do not reach exactly that value� If we put�

� CHAPTER �� NETWORK

Tank
C� �� Level� �
 Inflow � K � Level	

IF Level �
 ����� THEN CREATE
Mess� SENDTO
Center�	

after the value is reached� a message is sent during each integration interval� One solution may be�

Tank
C� �� Level� �
 Inflow � K � Level	

IF
MesNotSent and
Level � ���� �� THEN

CREATE
Mess� BEGIN SENDTO
Control�	

MesNotSent
 FALSE

END	

MesNotSent is a boolean variable originallyTRUE� When the condition is ful�lled for the �rst time a message
is sent and MesNotSent becomes FALSE� so� no more messages are sent�

Chapter �

INSTRUCTIONS

GLIDER instructions are structured instructions characterized by a name� a list of parameters� that may be
variable in length� and in many cases an associated simple or structured instruction� This last may contain
certain GLIDER instructions and procedures� In this sense they are like structured instructions of general
purpose languages� GLIDER instructions execute complex procedures and are translated into many basic
instructions and procedure calls� They are used to create and copy messages� to manage the movements of
messages� to examine and change the entry and internal lists of the nodes� to write or read �les� to make
graphics� etc�

In this chapter� the following conventions and de�nitions are used�

� names of the elements of the language are put within � �� Example� �variable� means the name of
a variable�

� elements that can be omitted are within � ��

� if an element of the language is between ! it means that there are other alternatives for the element�
The other alternatives are also between ! and only one of them must be used� Example�
! LAST ! FIRST !

in a syntactical description� means that one of the two� the word LAST� or the word FIRST� must
appear�

� �integer value� is an integer variable taking only positive values or a positive integer�
Examples� 	� 		�� J � J was de�ned as INTEGER� LONGINT� WORD or BYTE and must have a
positive value��

� �node� means the name of a node� If the node is multiple the name must include the index within � ��
Examples� Machine� Carrier�	�� Take are examples of node names�They must have been declared as
nodes in the program �see chapters � and
�� The node Carrier must have been declared as a multiple
node�

� �list of �elements� � means a list of the items indicated by elements separated by commas�
Examples�
�list of �integer values� � may be a list as� J� 	 �	
�� h�
�list of �nodes� � may be� Machine� Carrier�j�� Inspect� where Machine� Carrier and Inspect were
de�ned as nodes elsewhere� Carrier was de�ned as a multiple node�

� the lists of messages are denoted in the program by �
! EL ! IL!��node� �
�name of predecessor node���

The node name of a multiple node must include the index between � ��
If the node is of D type and has many predecessors and� for that reason� it has many EL� the name of
the node must include the name of the predecessor node�
Example� EL Machine� IL Carrier���� EL Take�Queue	� are examples of list names�

	

� CHAPTER �� INSTRUCTIONS

The �rst one is the entry list of the node Machine� The second one is the internal list of the node
Carrier� EL Take�Queue	� is the EL of the node Take� that has many ELs� It indicates the name of
the EL for the messages that come from the node Queue	�

� �list� in the syntactical description represents the name of an IL �internal list� or EL �entry list� of
messages of a node�

� �associated instruction� is a �Pascal instruction� simple or structured� that is included as part
of a GLIDER instruction� The associated instruction may include GLIDER functions and procedures
and the GLIDER instructions that are allowed in each case� It may also be a unique GLIDER instruc�
tion or a list of GLIDER instructions and procedures between the separators BEGIN ��� END�
Example�

SCAN
EL�Machine� BEGIN j �
 UNIF
�� ��	

IF a � � THEN SENDTO
Carrier�j��

END	

SCAN is a GLIDER instruction �see ����� used to scan a list of messages �in this case the EL of the node
Machine�� The associated instruction between BEGIN ��� END is executed for each scanned message�
The variable j of the message is set to the value given by the random GLIDER function UNIF� If the
value of a is less than
 the message is taken out of the EL and sent to the EL of the node Carrier�j��
Here� the associate instruction is a Pascal compound instruction �between BEGIN ��� END� which
contains an assignative instruction and an IF instruction containing a GLIDER instruction SENDTO�

� �field� is the name of a simple or indexed variable that was declared as a �eld of a message�

� �PASCAL instruction� is a PASCAL instruction structured or simple�

� �simple PASCAL instruction� is an assignative instruction�
�variable� �
 �expression�� or a call to a procedure or a input or output instruction or a GOTO
instruction�

� �structured PASCAL instruction� is a PASCAL instruction of the type IF� CASE� WHILE� FOR�
REPEAT or a compound instruction �set of instructions delimited by BEGIN ��� END �� Where a
simple PASCAL instruction is allowable� it is possible also to put a GLIDER instruction or a GLIDER
procedure�
Example�

WHILE �logical expression� DO

BEGIN

�GLIDER instruction�	

IF �logical expression� THEN �GLIDER instruction�

ELSE �GLIDER procedure�	

END	

There are restrictions� that depend on the type of node and of the GLIDER instruction� in which the
GLIDER instruction or procedure is used�
Example� In the associated instruction of a GLIDER instruction SCAN it is not allowed to use another
SCAN instruction� Within an associated instruction� GLIDER instructions with associated instructions
are� in general� forbidden� except in the case of the associated instruction of a RELEASE and STATE
instructions�

� �nest of constants� is a set of simple INTEGER� REAL� CHAR or STRING constants in a nest
as it is used in PASCAL to give values to indexed constants� The whole set is included within � �� its
elements are constants or successions corresponding to the successive values of the �rst index� Each
succession is included within � �� Each � � is formed by constants or successions corresponding to the
successive values of the second index� etc� Successions and values are separated by commas�
Example� the array M of 	 indexes of dimension �x	x	 formed by the two matrices of 	x	�

� � � � � �

� � � � � �

� � � � � �

in which the �rst index� that indicates the matrix� the second the line and the third the column� is
represented by�

�� �� ���
�� �� ���
�� �� �� � �

�� �� ���
�� �� ���
�� �� ����

The element M��� �� 	� has the value
�

� �assignative instruction�� �expression�� �real expression��

�integer expression�� �logical expression�� �real variable��

�integer variable�� �boolean variable�� �character variable�

are de�ned as in PASCAL�

� GLIDER functions may be used in the same way as PASCAL functions�

Some of the instructions and procedures �see Chapters � and �� may be used in any node� They are
called common instructions and procedures� They are�

ACT� BEGINSCAN� BLOCK� ASSI� CLRSTAT� DEACT� DEBLOCK� DBUPDATE�
DOEVENT� DONODE� ENDSIMUL� EXTFEL� EXTR� FILE� FREE� GRAPH� INTI�
IT� LOAD� MENU� NT� OUTG� PAUSE� PUTFEL� REL� REPORT� SCAN� SORT�
STAT�STOPSCAN� TAB� TITLE� TRACE� TRANS� TSIM� UNLOAD� UNTRACE� UP�
DATE� USE�

BEGINSCAN and STOPSCAN are included here� because they can be used in any nodes as part of
the associate instruction of SCAN�

� �structured GLIDER instructions� are the following �a brief comment about the function is indi�
cated� �

�� ASSEMBLE assembles various messages in a representative message�

�� ASSI assigns values to arrays and multiple nodes�

	� COPY makes copies of a message�

�� CREATE creates a message�

� DBUPDATE updates a DBASE table�

�� DEASSEMBLE disassembles messages put together by an ASSEMBLE�

�� DOEVENT makes the associated instruction executed only one time each event�

� DONODE makes the associated instruction executed only one time and only if the event starts
in the node�

�� EXTR extracts a message from a list�

��� FILE writes values in a �le�

��� GRAPH draws graphics during a run�

��� INTI allows interactive changes of data values�

�	� IT schedules a new activation of the node after an Interval Time ahead the actual time�

��� LOAD imports the content of a DBASE IV table to an array�

�
� NT schedules a new activation of the node at a future time�

��� OUTG writes variable and array values with titles�

��� PREEMPTION allows a message displace another message from the IL of a R type node and to
put itself in that IL�

� CHAPTER �� INSTRUCTIONS

�
� REL makes a message to go out of the IL of a R type node�

��� RELEASE manages the message released in a R type node�

��� REPORT allows to write an output report in a �le�

��� SCAN examines a list of messages allowing changes and extractions�

��� SELECT selects messages from the di�erent EL of a D type node�

�	� SENDTO sends messages in process to lists�

��� STATE allows to change status variables and control activations of a G type node�

�
� STAY indicates the time of staying of a message in the IL of a R type node and gives that value
to a variable STAY�

��� SYNCHRONIZE retains a certain number of messages in the EL to release them together at the
same time�

��� TSIM sets the duration of the simulation run and gives that value to a variable TSIM�

�
� TITLE allows to put titles to the experiments�

��� UNLOAD releases the memory of an array used to import a DBASE IV table�

	�� USE allows to de�ne the quantity of resource to be used by a message in a R type node and puts
this value in a variable USE�

In the following the syntax and function of each one of these instructions are described� A sign � is put after
each instruction� This separator may be omitted before an END or ELSE separator�

��� ASSEMBLE assembles messages in a representative message

Syntax�

ASSEMBLE
 ! ELIM ! FIRST ! NEW !� !�integer value� ! ALL!� !�logic expression�

! EQUFIELD
�field�� ! � �associated instruction�	

The ASSEMBLE instruction is used to join a set of messages that came to a node� maybe at di�erent
times� and to represent the set by only one message� named representant� The representant may be the
�rst assembled or a new message� Represented messages may be deleted or maintained in a list for
further disassembling� The associated instruction must contain a SENDTO instruction to dispose of the
representant�
The instruction is suited to simulate loading and transportation of things� using the representant as the
transporter�

ASSEMBLE can be used in a node with an EL that has the ability to send messages
nodes
of G� L� D� and general type with EL��

When this instruction is executed� the EL is scanned from the beginning� Each message �comparing mes�
sage� is compared with those �compared messages� that follow it� The �rst comparing message is the �rst
one in the EL� The values of the �elds of the comparing message are in the field variables� Those of
the compared message are put in the O��variables�� The comparison consists in the evaluation of the
�logic expression� that may include field variables of the comparing messages� O��variables� of
the compared message� and any other type of variables and constants� If the expression is TRUE both� the
comparing and compared messages� are candidates to be assembled� When all messages are compared� the
second message in the EL is taken as the new comparing message� which is compared with those that follow
it� The process is repeated so that all the possible comparisons are made� If at any point of the process a
number of candidates reach the value expressed by �integer value�� the assemble is successful� Then� the
assembled messages are taken out of the list and the �associated instruction� is executed� The whole
process is then repeated to see if another successful assemble group of the required size is possible with the
remaining messages�
If the parameter ALL is used� there is not limit for the assembled set�

���� ASSI ASSIGNS VALUES TO ARRAYS AND MULTIPLE NODES
�

If the �logical expression� is reduced to the constant TRUE� the messages are unconditionally assembled
up to the speci�ed number �or all the messages if ALL is used��
If there is not successful assemble at all� nothing is done and the �associated instruction� is not exe�
cuted�
If the function EQUFIELD
�field�� is used instead of the �logical condition�� the messages� which have
the same values on that �eld� are assembled�
In all cases� it is assumed that all the messages in the EL have the �elds that are used by the assembling
conditions�
Which message is the representant and the fate of the assembled messages depends on the �rst parameter�

� ELIM indicates that the representant is the �rst of the assembled group and the remaining of the group
are eliminated�

� FIRST indicates that the representant is the �rst of the assembled group and the rest are put in an
assembled list pointed by the representant� This allows the retrieval of them by a DEASSEMBLE
instruction� If the representant has yet an assembled list from a previous assemble process� the new
assembled messages are added to this list�

� NEW indicates that a new message is created as representant of the assembled group� The values
of its �elds are copied from the �rst of the group� but they can be changed in the �associated

instruction�� This new message points to the assembled list so that it may be later retrieved
through a DEASSEMBLE instruction�

The �associated instruction�� executed for each successful assemble� may have instructions to change
the �elds of the representant �assigning values to �eld variables� and must have a SENDTO instruction to
dispose of the representant� Note that this �associated instruction� may change the values of variables
in the �logical condition� and in the �integer value� so changing the assemble conditions for the next
group or for a new execution of the ASSEMBLE instruction� Assembled messages cannot be changed� If
there was some successful assemble the variable SYNC is put to TRUE� otherwise it is put to FALSE�
See the instruction SYNCHRONIZE �������

Examples�

�� Unite�Parts �� ASSEMBLE
ELIM� �� EQUFIELD
Typed��

BEGIN Status �
 Finished� SENDTO
Paint� END	

Groups of three messages with equal values in the �eld Typed are sought for� When a group is found�
the �rst message is marked as Finished in its �eld Status and sent to the EL of the node Paint� The
other two messages of the group are deleted� The node Unite�Parts is of the common type�

�� FormGroups
G� �� ASSEMBLE
FIRST� N�
Age � ��� AND
O�Age � ����

BEGIN Leader �
 TRUE	 SENDTO
Tour� END	

IF NOT SYNC AND
N � �� THEN N �
 N � �	

The process attempts to form groups of size N �whose value was de�ned elsewhere� of messages with
the value of the �eld Age � ��� When a group is found� the �rst one is marked putting to TRUE its
�eld Leader and sent to the node Tour� keeping a point to the assembled messages� All the possible
groups of this size are formed by the ASSEMBLE instruction� When the instruction is �nished� as the
node is of G type� the process is repeated if the EL is not empty starting again for the �rst message of
the EL� When an attempt to form groups is not successful� the variable SYNC is put to FALSE by the
ASSEMBLE instruction and the size of the sought group is reduced by one� The process is repeated
until groups of size two are sought for�

��� ASSI assigns values to arrays and multiple nodes

Syntax�

 CHAPTER �� INSTRUCTIONS

ASSI�! �variable� ! �node� ! �range� �
 �nest of constants�	

This instruction is used to assign values to arrays of any number of indexes or capacity to multiple nodes�
�variable� is a name of an indexed variable�
�node� a name of a indexed node�
�range� is a range of indexes within the range de�ned for the node or variable�

ASSI can be used in any type of node�

Examples�

�� Let Alpha be an array of CHAR of one index� The instruction�

ASSI Alpha����� �

�a�� �r�� �s��	

assigns the values �a� to Alpha���� �r� to Alpha�	�� �s� to Alpha����
If r was declared r� ARRAY����	� ����� ����� OF INTEGER then the instruction�

ASSI r������ ����� ����� �

�� ���
�� ���
�� �� ��

�� ���
�� ���
�� �� � �

assigns the values�

r��� �� ��
 �	 r��� �� ��
 �	

r��� �� ��
 �	 r��� �� ��
 �	

r��� �� ��
 �	 r��� �� ��
 �	

r��� �� ��
 �	 r��� �� ��
 �	

r��� �� ��
 �	 r��� �� ��
 �	

r��� �� ��
 �	 r��� �� ��
 �	

the instruction does not assign values to the elements�

r��� �� �� r��� �� �� r��� �� �� r��� �� �� r��� �� �� r��� �� ��

�� The following instruction assigns the paths of 	 clients in a supermarket�

ASSI Paths������ ����� �

�Stage � Stage � Stage � Stage � Stage ��

 � Client �� �Entry�� �Fruits�� �Bread�� �Beverage�� �Exit���

 � Client �� �Entry�� �Bread� � �Canned�Food� �Exit�� � ���

 � Client �� �Entry�� �Pastry�� �Bread� �Fruits�� �Exit�� �	

The value assigned to Path��� 	� is �Canned Food� as the third stage of the second client� Texts between
fg are comments to explain the data�

��� COPYMESS makes copies of a message

Syntax�

COPYMESS
�integer value�� �associated instruction�	

This instruction produces a number of copies of the message that is being processed� equal to the value of
�integer value� �that must be greater than zero� and for each copy executes the �associated instruction��
All �elds of the original are copied�

���� CREATE CREATES A MESSAGE
�

The �associated instruction� must have a SENDTO instruction to dispose of the copy� Before it�
instructions can be used to change the values of the �elds� To do this the names of the O��fields� must
be used�

The originalmessage must be processed through instructions outside the �associated instruction� before
or after the COPYMESS� If it is not sent to a node� it will be lost�

The global control variable ICOPY takes the value of the generated copy� Its value is not recorded in the
copied message� If the programmer wants to keep it� a �eld must be de�ned in the message for this purpose
and the value of ICOPY must be passed to each copy in the �associated instruction��

COPYMESS can be used only in G� I� D nodes and in the RELEASE instruction of an R node�

Examples�

�� COPYMESS
N�Offices� BEGIN Nc �
 ICOPY � �	 SENDTO
Office�nc�� END	

SENDTO
Office����

A number of copies equal to the actual value of N�Offices are generated and sent �with an indication
of its number plus one� to the nodes Office���� Office���� etc� The original is sent to Office����

�� The following code may be used to initialize a simulation of a queue system with the system not empty�
Six messages are sent at TIME with ��� value to the node Bridge with a negative generation time�

Entrance
I� Bridge �� IT �
 EXPO
Tell�	 SENDTO
Bridge�	

FillSys
I� �� GT �
 ���	 TIME �
 GT	 SENDTO
Bridge�	

COPYMESS
��

BEGIN GT �
 �Ant�ICOPY�	 TIME �
 GT	 SENDTO
Bridge� END	

Bridge
R� �� STAY �
 �	

���������������������

INIT ACT
FillSys� ��	 ASSI Ant������ �

�� �� �� �� ��	

The node FillSys creates a virtual past before TIME � � in which it sends six messages to Bridge�
It �nishes its action when he puts TIME to zero � Ant��� ��

��� CREATE creates a message

Syntax�

CREATE
 ! �message name� ! �node� ! � �associated instruction�	

This instruction is used to create messages in nodes that are not of I type�

It creates a message with the structure de�ned in the declaration MESSAGES with the name indicated in
�message name��
If �node� is used� this may be a name of a I type node and the structure of the created message will be that
of the messages that can be created by that I type node� It may also be a general type node for which a
message structure has been de�ned�
After one message is created� the �associated instruction� is executed� The �associated instruction�

must have a SENDTO instruction to send the generated message to a list�

In the �associated instruction� values may be given to the �elds of the created instruction by means of
the names of the �field� variables �not the O��fields��� This must be done before the message is sent to
the EL of a node�

This instruction can be used in nodes of G� L� D� E� R� A� C� or general type�

Examples�

�� Death
E� Heaven �� N �
 N � �	

CREATE
Soul�

BEGIN Nc �
 N	 SENDTO
Heaven� END	

�� CHAPTER �� INSTRUCTIONS

������������������

INIT N �
 �	

������������������

DECL VAR N� INTEGER	 MESSAGES Soul
Nc� INTEGER�	

For each message that reach the node Death and it is destroyed a new message with the structure
de�ned in the MESSAGE declaration Soul is created and sent to Heaven� The number of creation is
counted in the global variable N and stored in the �eld Nc of the message� As the destroyed and
generated messages may have di�erent structures� the process may be useful to simulate the change of
the structure of a message�

�� Prod�Order
I� �� IT �
 EXPO
Tb�Orders�	 Recep�Time �
 TIME	

Control
R� File�Order� Ship�Order ��

RELEASE BEGIN

SENDTO
Ship�Order�	

CREATE
Prod�Order�

BEGIN

Control�Time �
 TIME	

SENDTO
File�Order�

END

END	

STAY �
 Insp�Time �
� � UNIF
����� �����	

��

INIT ACT
Prod�Order� ��	 TSIM �
 ���	 Tb�Orders �
 �	 Insp�Time �
 �	

DECL

VAR Insp�Time� Tb�Orders� REAL	

MESSAGES Prod�Order
Quantity� INTEGER	 Name� STRING����	

Recep�Time� Control�Time� Ship�Time� REAL�	

Messages �orders� produced by Prod�Order are sent to Control to be inspected and then sent to
Ship�Order� For each order sent to Ship�Order a message of the same structure is created an sent to
File�Order with the value of the control time in the �eld Control�Time�

��� DBUPDATE updates a DBASE IV table

Syntax�

DBUPDATE
�source table�� �destination table�� �list of fields��	

This instruction is used to update a DBASE IV table ��destination table�� with the values of �elds that
were previously loaded in an array from another table ��source table��� Both tables must have the same
structure� Eventually they may be the same table�
Most frequently DBUPDATE is used in this case� �elds of a table are imported� by means of a LOAD
instruction� into arrays in the running program� these arrays are changed by the simulation process� Then
the new values may be returned� by means of the DBUPDATE instruction� to the same table or to another
table that may be void or �lled with any number of records� The �list of fields� indicates what �elds
have to be updated into the �destination table��
After the execution of the DBUPDATE� the �destination table� remains with the same number of records
than the �source table�� See declaration DBTABLE ���
� and instruction LOAD �������

UPDATE can be used in any type of node�

Example�

LOAD
Student�� Name� Identif� Age� Year� Score�	

���������������������������������������

���� DEASSEMBLE DISASSEMBLES ASSEMBLED MESSAGES ��

FOR J �
 � TO N�Student� DO Student��Age�J� �
 Student��Age�J���	

���������������������������������������

DBUPDATE
Student�� Student�� Age� Year� Score�	

���������������������������������������

DECL

DBTABLES
"MainFiles"Student�� "NewFiles"Student��	

The �elds Age� Year� Score of the DBASE table Student� are charged in the running program through the
LOAD instruction into the arrays Student��Name� Student��Identif� etc� They may be changed by the
program� An example of the change of age is shown� After the changes are made� the values are written by
means of the DBUPDATE instruction into the corresponding �elds of the table Student�� The other �elds
of the table Student� remain unchanged� The variables N�Student�� Student��Age and similar variables
for the other �elds are introduced automatically by the system with the information taken from the declared
DBASE IV tables� They may be managed by the programmer as arrays with index corresponding to the
record number� Note that the two �les may be in di�erent directories� See example in section ��
�

��� DEASSEMBLE disassembles assembled messages

Syntax�

DEASSEMBLE �associated instruction�	

This instruction is used to extract messages from an assemble list generated by an ASSEMBLE instruction�
When it is processed� it is supposed that a message is being processed� Then it is checked if the message has
a pointer to an assemble list� If there is not that list� nothing is done� If there is a pointer to a list� the list is
scanned from the beginning to the end and� for each message� the �associated instruction� is executed�
The �elds of the message are in the O��fields�� If the �associated instruction� executes a SENDTO�
the O��fields� are passed to the message which is extracted from the assemble list and it is sent to the
indicated node� If no sending is occured� the O��fields�� that may have been changed� are passed to the
message and this remains in the assemble list� The representant message �see instruction ASSEMBLE� ����
may be disposed before or after the execution of the DEASSEMBLE instruction�

DEASSEMBLE may be used in nodes of G� D� E �and of general type and in the RELEASE
instruction of an R node�

Examples�

�� Travel
R� �� RELEASE

DEASSEMBLE SENDTO
Depot�Typ��	 SENDTO
Parking�	

STAY �
 Travel�Time
Weather�	

After remaining in the IL of the node Travel for a time that is a function of the variable Weather�
the representants are released and their assembled lists are disassembled� Messages of the assembled
list �transported items� are sent to the di�erent nodes Depot according the value of the �eld Typ� the
representant �transporter� is sent to the node Parking�

�� Bus�Stop Exit�Pas
E� ��

DEASSEMBLE

BEGIN By�Bus �
 TRUE	 N�Arr �
 N � �	

IF By�Air THEN SENDTO
Airport�

ELSE SENDTO
RailRoad�

END	

Messages �passengers� of the assembled list of the �rst message �bus� are marked in the �eld By�Air

to TRUE and a number of arrival is put to each �N was initialized to ��� Those with the �eld By�Air

are sent to the node Airport� the others are sent to Railroad� As the node is of E type� the original
message is destroyed �See example �	� GLIDER examples book��

�� CHAPTER �� INSTRUCTIONS

��	 DOEVENT permits instruction execution only once in the

event

Syntax�

DOEVENT �associated instruction�	

DOEVENT is used to avoid repeated executions of an instruction or a set of instructions caused by repeated
scanning of the network�
When this instruction is executed� the �associated instruction� is only executed in the �rst scanning of
the nodes during an event�
In a multiple node the e�ect occurs for all the nodes� See instruction DONODE ���
��

This instruction can be used in any type of node�

Example�

MainGate
G� ��

DOEVENT N �
 �	

IF Apt AND
IL
EL�Work� � ���

THEN BEGIN SENDTO
Work�	 N �
 N � �	 STOPSCAN END	

Messages in the EL of MainGate with the �eld A
 TRUE are sent to Work� one in each revision of the node
�because of the STOPSCAN procedure� see ������ This is made so to check the length of the IL�Work�
The number of messages sent in the event is registered in the variable N� The DOEVENT avoids repeated
initializations to � in the successive sending�

��
 DONODE prevents instruction execution during network

scanning

Syntax�

DONODE �associated instruction�	

DONODE is used when an instruction or a set of instructions must be executed only in the event that
activates the node� where the instruction appears� and only in the �rst activation of the node� When the node
with this instruction is activated as the �rst in the execution of an event� the �associated instruction�

is executed� Execution is skipped in the activations produced by scanning of the network� In a multiple
node the e�ect occurs for all the nodes�
See instruction DOEVENT �����

This instruction can be used in any type of node�

Examples�

�� Road�Entr
I� �� IT �
 EXPO
����	

Traffic�Contr
G� �� DONODE BEGIN SENDTO
Road�	 IT �
 �� END	

Messages �cars� leaving the node Road�Entr are stopped at Traffic�Control� Each �� time units
the accumulated messages are sent to Road� It is assumed that the messages are not recycled to
Traffic�Contr in the event that activates that node�

�� Road�Entr
I� �� IT �
 EXPO
����	

Traffic�Contr
G� �� STATE BEGIN N �
 �	 IT �
 �� END	

DONODE

IF N � �

THEN BEGIN N �
 N � �	 SENDTO
Road� END

ELSE STOPSCAN	

��	� EXTR EXTRACTS A MESSAGE FROM A LIST �	

Messages �cars� leaving the node Road�Entr are stopped at Traffic�Control� Each �� time units
the node is activated and the instruction associated to STATE is executed� This instruction puts N

to � and schedules a new activation �� units of time later� It is executed only one time regardless
the messages in the EL� The DONODE is then executed for the messages accumulated in the EL of
Traffic�Control� The associated instruction sends up to three messages to Road�

��� EXTR extracts a message from a list

Syntax�

EXTR
�list name�� �pointer�� �associate instruction�	

It is used to extract a message from a list of messages�
�list name� indicates the list�
�pointer� is a variable declared of POINTER type or may be FIRST or LAST�
The pointed message �or the �rst or last� is extracted� the values of its �elds are passed to the O��variables�
and the �associate instruction� is executed� After this� the values in the O��variables� are passed to
the �elds of the messages� The �associate instruction� must have a SENDTO instruction to send the
message to a list�

This instruction can be used in any type of node and in the associated instruction of a RE�
LEASE�

Example�

Process�
R� Process�� ProcFile� ��

RELEASE BEGIN SENDTO
Process��	

SCAN
IL�ProcFile�� PFile�

IF NumP�
 O�NumP� THEN STOPSCAN	

EXTR
IL�PartFile� PFile� SENDTO
ProcFile��

END	

STAY �
 UNIF
��� ���	

When a message �object to be processed� leaves the node Process� is sent to Process�� Then a IL �used
to simulate a �le� is scanned until a message is found with the same value in the �eld NumP� as the leaving
message� The found message� that is now pointed by the POINTER PFile� is extracted and sent to the
node ProcFile��

���� FILE writes values in a text �le

Syntax�

FILE
�file name�� �list of expression �format� ��	

It is used to write a line of data in a text �le� The user may also use the instructions of the Pascal language
to write �les� FILE instruction relieves the user from declare� assign� open� and close the �les�

�file name� is a valid name of �le� If the �le exists� it is overwritten by the new data� If it does not� then
it is created and opened at the beginning of the simulation and closed at the end of the simulation�

�list of expression �format� � is a list of expressions as the lists in WRITE or WRITELN in Pascal�
Expressions must not be broken in di�erent lines�

Generated text �les have the following structure�

� A heading of strings each with the expressions in the list �one each line�� The format is omitted�

� A symbol � � to indicate the end of the heading�

�� CHAPTER �� INSTRUCTIONS

� The values recorded� one line each execution of a FILE instruction�

� If there are replications then� for the second� third� etc�� replication� the list of expressions is omitted�
and instead of � �� the number of the replication� � �� � 	� etc� precedes the data of each replication�
Thus� only one �le is made with all the data generated by the replications�

The system introduces an extra blank space between contiguous values� If many FILE instructions write in
the same �le� the order of the lines in the �le is the order of the executions�

If the �le is to be used with the Graphic option� the list would consist of simple real variables without format�

This instruction can be used in any type of node�

Example�

Aa �� FOR I �
 � TO � DO

FILE
Arxm� I � Azz� �� �� Ch�� I� �� B�I�� �� �� Azz�	

INIT ACT
Aa� ��	

Azz �
 ��	 Ch� �
 �J�	 ASSI B������ �

��� ��� ���	

The �le Arxm� if written only for one execution of node Aa� will contain�

I � Azz

Ch�

I

B�I�

Azz

"�

������ J � ���� ������������E���

������ J � ���� ������������E���

������ J � ���� ������������E���

See example
 �GLIDER examples book� for a �le to be used with the Graphic option�

���� GRAPH draws graphics during a run

Syntax�

GRAPH
�initial time�� �final time�� �background color� � ��title� � 	

� TIME� �format�� �color� � 	 �list of variable descriptors��	

It is used to display graphics during the simulation run� When executed for the �rst time� it constructs the
axis� reference lines� numbers on the axis� displays the names given to the variables and scales and marks the
initial values of the variables to be graphed� In the following executions it adds a new point to the curves of
the variables being graphed and unites the points to the the already displayed curves�

�initial time� and �final time� are two real numbers indicating the simulation time in which the graphic
starts and ends respectively�

�background color� is the color that is to be assigned to the background�

�title� is a string of characters �without � or � �� If it is used� it will appear as a title in the graphic� It
may be omitted�

TIME� �format�� �color� is only used when the independent variable will be the TIME of the simulation�

�format� is a Pascal format to write the values of the TIME along the horizontal axis�

�color� is the color of the horizontal axis and the values on it�

�list of variable descriptors� is a list of items describing the parameters to represent the variables to
be depicted�

����� GRAPH DRAWS GRAPHICS DURING A RUN �

If TIME� �format�� �color� is omitted� the variable of the �rst descriptor is taken as independent variable
and its values are on the horizontal axis� Variable descriptors are separated by �

�list of variable descriptors� consists of the followingelements� separated by commas� They describe
the variables to be graphed �

� �real expression�� that expresses the value to be graphed� it may be a single variable or constant�

� �format� gives the format for the values on the axis� it consists of�
�number of places�� �number of decimals��

� �name of the graphed values�� a name that will appear in the graph� It is a string of characters
without blanks� apostrophes or commas�

� �minimum value�� a real number with the minimum value expected�

� �maximum value�� a real number with the maximum value expected�

� �color for the curve�� color must be anyone of the following list�

BLUE GREEN CYAN RED MAGENTA
BROWN LIGHTGRAY DARKGREY LIGHTBLUELIGHTGREEN
LIGHTCYAN LIGHTRED LIGHTMAGENTAYELLOW WHITE

For the background color� the BLACK may also be used�

Descriptors are separated by ��

Up to �� variables may be represented in a graph� GRAPH may be used in any node but it must be executed
only one time during each activation� If there are many GRAPH instructions� only one must be executed in
a simulation run� When TIME is used as independent variable and a screen is full� the display is stopped
half a second� the displayed graph is erased and the display continues in a new screen� The user can use the
key PAUSE to stop the graphic and then to re�start the simulationwith any key� It is possible to control the
horizontal scale by changing the interval of the successive activations of the node that contains the GRAPH
instruction� The more frequent the activations the more extended is the graph�

The horizontal axis of the screen is divided in �� parts� If the total length of the axis is for example
	�
pixels �the number of horizontal pixels in the total screen assumed ��� minus ��� for a free space at both
sides� each part has
	 pixels� At each new call and execution of the instruction GRAPH the new point is
advanced one pixel so it takes
	 time units to advance a part� If successive calls are made each ����
 time
units� the part represents the part of the curve generated in
	 ����
 � ���� units of simulation time� If
the calls are made each �����
 time units� the same part of the graph represents the curve generated in only
	�	� units of time� The represented curve appears then stretched twice in the horizontal direction�

This instruction can be used in nodes of any type�

Examples�

�� Aa �� IT �
 Dta	 Y �
 SIN
� � PI � ��� � TIME�	

Ag �� IT �
 Dtg	

GRAPH
�� ��� BLACK	 TIME� �� �� WHITE	

Y� �� �� Sinus� ��� �� LIGHTBLUE�	

INIT TSIM �
 ��	 ACT
Aa� ��	 ACT
Ag� ��	

Dtg �
 ����������	

Dta �
 ���������	

DECL VAR Dta� Dtg� Y� REAL	

A sinusoidal curve is displayed� Note that each calculated point is displayed two times� because Dtg
is half of Dta� As a complete wave takes ��� units of time� in a screen as the described above each
horizontal division is
	 �����
	��
 � ��	���
 and in the �� divisions �	����
� enter almost � waves�

�� CHAPTER �� INSTRUCTIONS

�� Entrance
I� �� IT �
 EXPO
TBA�	 ACT
Gra� ��	

Teller
R� �� STAY �
 EXPO
Tat� ��	

Exit
E� �� ACT
Gra� ��	

Gra
A� �� GRAPH
�� ������ BLACK	 TIME� �� �� WHITE	

LL
EL�Taq�� �� �� Queue� �� ���� GREEN�	

The program is a simulation of a simple bank teller and a graphic of the queue is made� Each time a
client enters or leaves the Teller� the Gra node is activated and the length of the queue �EL of Teller�
is put into the graph�

See examples ��� �
� ��� ��� �
� �� �GLIDER examples book��

���� INTI allows interactive change of data

Syntax�

INTI �variable�� �format�� �title�	

INTI �list of GFUNCTIONS�	

This instruction allows the interactive modi�cation of initialized data�

�variable� is the name of a simple or indexed �with only one index� arithmetical variable�

If the variable has an index the name must be followed by�

��lowest value� �� �highest value�� that indicates the range of the array to be changed�

�format� consists of two integers �number of places�� �number of decimals�� This de�ne the format of
the values presented to the user�

�title� is a string of characters without � or apostrophes that contains a description of the variable�

This instructionmay be used in the INIT and NETWORK but never within GLIDER instruc�
tions or I�O instructions�

Examples�

�� INIT

�������������������

Alfa �
 �����	

�������������������

INTI Alfa� �� �� Scattering angle 	

When this instruction is executed� Alfa must have an assigned value� Let it be ���

 As it appears in
the INIT section �see chapter 	�� it will appear before the simulation in the screen�

Scattering angle ����

C to continue� other to modify

If C �or c� is pressed� nothing is done and the execution continues� If another key is pressed� it appears�

Scattering angle

The user must write the new value and press enter� For example� if ��� is written� then the following
appears�

Scattering angle ����

C to continue� other to modify

The user may change this value again� When C or c is pressed� the variable Alfa takes the last assigned
value�

����� INTI ALLOWS INTERACTIVE CHANGE OF DATA ��

�� ASSI Temp������ �

�������� �������� �������� ������� ��������	

INTI Temp������� �� �� Furnaces Temperatures	

When INTI is executed� it appears in the screen�

Furnaces Temperatures

� � � � �

������ ������ ������ ������ ������

C to continue� other to modify

If the user press C or c� it appears�

Modify number

The user must indicate the number �� to
� to be modi�ed� The system asks for the new value� The
system rewrites the array modi�ed and asks for new modi�cations until C or c is pressed�

See examples �� ��
� �� ��� �	� ��� ��� �
� �� �GLIDER examples book��

	� The second form of this instruction allows the interactive modi�cation of functions de�ned by the user
as GFUNCTIONS� The mouse must be installed to use this option�
See example �� �GLIDER examples book��

Example�

INIT

���

Poli �
 �� �� � ��� �� � ��� �� � ��� �� � ��� �� � ���� ��	

Spli� �
 �� �� � ��� �� � ���� ��	

Spli� �
 �� � � �� �� � ��� �� � ��� �� � ��� �� � ��� �� � ���� ��	

Spli� �
 �� �� � ��� �� � ��� �� � ��� �� � ��� �� � ��� �� � ���� ��	

Esca �
 �� �� � ��� �� � ��� �� � ��� �� � ��� �� � ���� ��	

FrecR �
 �� ��� � ���� � � ���� ���	

FrecA �
 �� ��� � �� ��� � �� ��� ��� ���	

DiscoN �
 �� ��� � �� ��� � �� ��� � ���� �	

DiscoA �
 Aa� � � Bb� � � Cc� � � Dd� �	

DiscoR �
 ���� ��� � ���� ��� � ���� ��� � ���� ���	

���

INTI FrecR� Poli� Esca� Spli�� Spli�� Spli�� FrecA�

DiscoN� DiscoA� DiscoR	

���

TYPE Letters

Aa� Bb� Cc� Dd�	

VAR Let� Letters	

GFUNCTIONS Poli POLYG
REAL�� REAL� �	

Spli� SPLINE
REAL�� REAL� �	

Spli� SPLINE
REAL�� REAL� ��	

Spli� SPLINE
REAL�� REAL� ��	

Esca STAIR
REAL�� REAL� �	

FrecR FREQ
REAL�� REAL� �	

FrecA FREQ
INTEGER�� REAL� �	

DiscoN DISC
INTEGER�� REAL� ��	

DiscoA DISC
Letters�� REAL� ��	

DiscoR DISC
REAL�� REAL� ��	

When the INTI is executed� a graph of Poli appears on the screen� If the user press � in the mouse� the
system continues displaying the graph of Spli�� The XY points indicated in the program are shown

�
 CHAPTER �� INSTRUCTIONS

as small circles and the curve is plotted� When a graph is shown and the user press � in the mouse
with the cursor in a point� the following cases may occur�

a� The cursor is on a point of the function� For instance in the Spli� the cursor is in X � �
 Y �
�
�or within the circle at this point�� Then this point is deleted and a new graphic without it appears�

b� The cursor is very near in X to one of the points but with a di�erent ordinate �Y�� For instance in X
� �
���	 Y � �	�
 in the example Spli�� Then the old near X remains but the old Y is substituted by
the new one� In the example the point ��
�
�� is replaced by ��
� �	�
�� The new graph is displayed�

c� The cursor is clearly away from all XY de�ned points� Then if the X is REAL� a new point is
introduced� If the X is scalar or INTEGER the Y is assigned to the nearest X� the Y is changed but
no new X is introduced� For instance� in the case of the DiscoA function� if the cursor is in a position
between Aa and Bb but near of the Bb and the Y is ���� then the point �Bb� 	� is replaced by the �Bb�
����� The new graph is displayed�

The user can introduce many changes one by one� but the total number of points cannot exceed the
maximum declared� In the example� only up to � points can be added to Spli�� When � is pressed to
change to the next graphic� the user has the option of storing the new values in a �le�

���� IT schedules next activation of the node

Syntax�

IT �
 �real expression�	

This instruction is used to activate the node in which it appears after an interval time given by the current
value of �real expression�� When executed� the value of �real expression� is assigned to the variable
IT and an event is put in the future event list �FEL� with�

� The node number equal to the number in the NETWORK of the node being executed �this node
number is not used by the programmer� who refers to the nodes by its names��

� An index equal to the current value of INO �� for single nodes �� �� 	� �� for successive executions of a
multiple node��

� Even parameter equal to the current value of EVP�

� Time equal to the current value of TIME � �real expression�� that is to say TIME � IT�

When the node is multiple� the instruction may be executed many times� In each execution an event is
entered in the FEL� The successive values of the index are �� �� 	� �� etc�

See instruction NT ����
� and procedure ACT ������

The instruction can be used in any node� except of C type�

Examples�

�� Ent
I� Lathe�INO� �� IT �
 UNIF
����� �����	 SENDTO
Lathe�MIN��	

Lathe
R� ������ ��

Messages �parts� are generated each time the node Ent is activated� This happens at intervals taken
at random from a uniform distribution between ���� and ���	� The messages go to the less crowded of
the four nodes Lathe�

�� Signal
I� �� IF TIME � ����

THEN IT �
 ���� � TIME

ELSE WRITELN
�This is the last signal��	

If the node is activated before the TIME � ����� then an activation is scheduled for the time ���� and
then the message This is the last signal is written�

����� LOAD IMPORTS A DBASE IV TABLE TO AN ARRAY ��

	� Gate�n�
G� ������ ��

STATE BEGIN OPEN �
 NOT OPEN	 IT �
 Interval�INO�	 END	

IF OPEN THEN SENDTO
Deposit�INO��	

���

INIT

ASSI Interval������

��� ��� ���	

Incoming messages are retained each in its gate while the gate is closed and allowed to passed to
Deposit when the gate is open� The gates are alternatively closed and open� The intervals of each
state OPEN and NOT OPEN are equal for a gate but are di�erent for the di�erent gates� For the �rst gate
they are ��� for the second �	� for the third ���

See examples �� �� ��� �	� �
 �GLIDER examples book��

���� LOAD imports a DBASE IV table to an array

Syntax�

LOAD
�table�� �list of fields��	

This instruction is used to load values in a DBASE IV table into arrays that can be managed for the
GLIDER program� The �elds of the �table� indicated in the �list of fields� are stored in a series of
arrays named �table� � �name of field� that were generated by the system by means of the information
of the DBTABLE declaration�

This instruction can be used in nodes of any type�

See declaration DBTABLE ���
�� instruction LOAD ������ and examples in section ��
�

���� NT schedules a new activation of the node to a future time

Syntax�

NT �
 �real expression�	

This instruction is used to activate the node in which it appears at a future time� given by the current value
of �real expression��

When executed� an event is put in the future event list �FEL� with�

� The node number equal to the number of the node being executed�

� An index equal to the current value of INO �� for single nodes �� �� 	 �� for successive executions of a
multiple node��

� Even parameter equal to the current value of EVP�

� Time equal to the current value of �real expression��

When the node is multiple� the instruction may be executed many times� In each execution an event is
entered in the FEL�

The instruction can be used in any node� except of C type�

See instruction IT ����	� and procedure ACT ������

Example�

Signal
I� �� IF TIME � ����

THEN NT �
 ����

ELSE WRITELN
�This is the last signal��	

If the node is activated before the TIME ������ then an activation is scheduled for the time ���� and then
the message This is the last signal is written�

�� CHAPTER �� INSTRUCTIONS

���� OUTG writes variable and array values with titles

Syntax�

OUTG �variable�� �file�� �format�� �name�	

It is used to write values of a single or indexed variable �with only one index� preceded by a written name�
The output is always made for the screen�

� �variable� is the name of an INTEGER or REAL variable� If it is indexed� the �range� must follow
the �name��

� �file� is a �le variable corresponding to a text �le that the user must de�ne� open and close� If
��file� is omitted then the output is displayed in the screen only�

� �format� is a Pascal format for the data�

� �name� is a string of characters without � or �� It will appear in the written output�

This instruction can be used in nodes of any type�

See instruction REPORT �������

Example�

Lock
R� �� STAY �
 ���	

���

Results
A� �� Ttcs �
 MSTL
EL�Lock�	

OUTG Ttcs� WaitFile� �� �� Mean waiting at lock entrance 	

PAUSE	 CLOSE
WaitFile�	 ENDSIMUL	

���

INIT

���

ACT
Results� ���	

ASSIGN
WaitFile� �Waitf�Pas��	 REWRITE
WaitFile�	

���

DECL VAR Ttcs� REAL	 WaitFile� TEXT	

If the mean permanence of messages �ships� queue at the entrance �EL� of the node Lock was ������ then�
when this instruction is executed� the following is written in the screen and in the �le Waitf�Pas�

Mean waiting at lock entrance ����

The procedure PAUSE stops the process to allow to read the output�

OUTG Pass�Number������� �� Number of passengers at each bus stop	

If the content of the array Pass�Number is �� �� ��� ��
� ��� then the following is written in the screen�

Number of passengers at each bus stop

� � � � � �

� � �� � � ��

See examples �� �� �
 �GLIDER examples book��

����� PREEMPTIONALLOWSAMESSAGETOPREEMPTANOTHERTHAT IS USING THERESOURCE��

���	 PREEMPTION allows a message to preempt another that

is using the resource

Syntax�

PREEMPTION
�logical expression� � �REMA � � �associated instruction�	

This instruction is used to remove a message that is occupying a resource represented by a R type node of
size � with a STAY instruction� It may be used only in a R type node of capacity �� but not in the RELEASE
instruction� It is executed when some message is in the EL and it is examined� When executed� the IL is
checked� If it is void� the message enters the IL and nothing more is done� If it is not free� then the �elds of the
message in the IL are passed to the corresponding O��fields� and the �logical expression� is evaluated�
If it is FALSE� the examined message remains in the EL and nothing more is done� If it is TRUE� then the
occupying message is removed from the IL and the new message occupies the resource �enters the IL�� When
this preemption process happens� the �associated instruction� is executed� The preempted message is
disposed by a SENDTO instruction that must be in the �associated instruction�� This instruction may
change the �elds of the preempted message before the SENDTO is executed� If the option REMA is present�
the preempted message must have a REAL �eld called REMA that the user must de�ne and initialize to
zero� Then the remaining time �time that the preempted message would yet remain in the IL� is stored
into the �eld REMA� When this message regains the resource with its REMA �eld di�erent from zero� then
the time that has to remain in the IL is taken from the REMA instead of using the one indicated by the
instruction STAY� This value might have previously been changed in the �associated instruction�� The
REMA �eld is automatically put to zero when the message regains the resource�

The �logical expression� may have global variables� local variables� �eld variables of the examined mes�
sages and O��fields� of the occupant message� Note that if the removed message has a �eld REMA and�
instead of regaining the node from which it was removed� it enters another R node� the time to remain there
would be taken from the REMA and not from the STAY of this node� unless the REMA were explicitly put
to zero�

PREEMPTION can only be used in the non RELEASE part of the code of an R type node of
capacity � and before the STAY instruction�

Example�

Messages
patients� that arrive at Hospital have a Disease

type and a Status of seriousness� The Critical are put at the

beginning of the queue for Diagnostic� In Diagnostic a Critical

can remove a non Critical from attention� The removed is sent

at the beginning of the queue� Its future time of attention is the

remaining time increased ���� After the Diagnostic the messages

are sent to one node of the multiple node Treatment according to

their Disease�

Note the declaration and initialization of the field REMA�

One defect of the program� if one Critical is in the IL and two

other Critical arrive� then they will be put in the queue
EL� in

reverse order� See instruction SCAN
����� for a solution�

Note that it is also unrealistic that the variables Status

and Disease were uncorrelated�� See RAND function
����� for a solution�

NETWORK

���

Patient
I� �� IT �
 EXPO
����	 Disease �
 Fdisease	

Status �
 Fstatus	 REMA �
 �	

Hospital
G� �� IF Status
 Critical THEN SENDTO
FIRST� Diagnostic�

ELSE SENDTO
Diagnostic�	

�� CHAPTER �� INSTRUCTIONS

Diagnostic
R� Diagnostic� Treatment�INO� ��

RELEASE BEGIN Disn �
 Ord
Disease�	 SENDTO
Treatment�Dis�� END	

PREEMPTION

Status
 Critical� AND
O�Status � Critical�� REMA�

BEGIN REMA �
 REMA � ���	 SENDTO
FIRST� Diagnostic� END	

STAY �
 GAMMA
MDiag� DDiag�	

���

INIT

Fdisease �
 Hurt��� � Infectous��� � Shock��� � Hearth��� � Internal���	

Fstatus �
 Non�Serious� �� � Medium� �� � Serious� �� � Critical� ��	

���

DECL TYPE St

Non�Serious� Medium� Serious� Critical�	

Dis

Hurt� Infectious� Shock� Heart� Internal�	

MESSAGES Patient
Disease� Dis	 Status� St	 REMA� REAL�	

GFUNCTIONS

Fdisease FREQ
Dis�� REAL� �	

Fstatus FREQ
St�� REAL� �	

See example
 �GLIDER examples book��

���
 REL takes a message out of the IL of an R type node

Syntax�

REL
�internal list of node R�� �logical expression�� �associated instruction�	

This instruction is used to extract a message from the IL of a R type node�

When executed� a search starts at the IL of the node� looking for the �rst message for which �logical

expression� is true� If there is not such a message nothing is done� If it is found� it is extracted from the
IL and the �associated instruction� is executed� If a time of exit is scheduled for a normal release of
the resource� the corresponding event of the FEL is removed to eliminate the scheduling�

If there is extraction of message� the boolean variable EXTREL is put to TRUE� otherwise� it remains
FALSE� The values in the �elds of the extracted messages are passed to the corresponding O��variables��

The �associated instruction� must have a SENDTO instruction to dispose of the extracted instruction�
Before the SENDTO is executed� instructions can be used to change the values of the �elds� To do this� the
names of the O��fields� must be used�

This instruction can be used in nodes of any type�

Example�

NETWORK

Entry
I� �� IT �
 EXPO
��	 Urgency �
 Round
TRIA
�� �����	

WRITELN
�Enter � �� Number� ��� Urgency �� Urgency� ��	

PAUSE	

Ward
R� �� USE �
 �	

Call
A� Physician ��

REL
IL�Ward� O�Urgency � ��� �
TIME � O�Et� � ��

SENDTO
Physician�	

IF NOT EXTREL AND
U�Ward � �� AND
LL
EL�Physician� � ��

THEN EXTR
IL�Ward�FIRST� SENDTO
Physician�	

IT �
 ��	

���	� RELEASE MANAGES THE MESSAGE RELEASED IN A R TYPE NODE �	

Physician
R� �� STAY �
 TRIA
�� �� ��	

Exit
E� �� WRITELN
�Exit � �� Number� �� � Urgency �� Urgency� ��	

PAUSE	

INIT TSIM �
 ���	 Urgency �
 �	 ACT
Entry� ��	 ACT
Call� ��	

DECL MESSAGES Entry
Urgency� INTEGER�	

Messages �patients� are admitted into the Ward if there is room enough� Each �� minutes Call is activated�
This extracts the �rst message for which the value of the �eld Urgency plus a multiple of the waiting time
is greater than
� The extracted message is sent to the node Physician� If no message ful�lls this condition
the �rst one in the queue is extracted and sent�

See example �� �GLIDER examples book��

���� RELEASE manages the message released in a R type node

Syntax�

RELEASE � ALL � �associated instruction�	

This instruction is used to manage the messages that abandon the IL of a R type node� when the scheduled
time is over� It is used when the default disposition of the message is not desired� The user may program a
di�erent procedure in the �associated instruction�� This may includes changes in the �elds� conditional
sending to di�erent nodes� and a NOTFREE instruction to inhibit the freeing of the used resource� It
may also contain common GLIDER instructions and procedures� but their associated instructions must not
contain GLIDER instructions with associated instructions�

The instruction� when it is used� must be the �rst in the code of the node� It is executed only if the node is
activated by an event� The execution is not repeated during the scanning of the network�

When the instruction is executed� a scanning of the IL starts� looking for a message with the exit time of the
IL �that is recorded in the �eld XT�� If such a message is not found� an error condition occurs� If it is found�
its �elds are passed to the corresponding �eld variables and the �associated instruction� is executed�
This instruction must execute a SENDTO instruction to dispose of the message�

In the process �unless NOTFREE is used� a quantity of resource is freed that is equal to the value of the
USE parameter of the message� So� the variable F��node� is increased by USE and U��node� is decreased
by USE� If the capacity of the resource is the constant MAXREAL� the resource is considered of in�nite
capacity and no change in those variables is made�

If the ALL parameter is used� the search for other messages with the same XT continues until all of them
are processed�

This instruction can be used in R type nodes�

Example�

Physician
R� ��

RELEASE BEGIN Revised �
 TRUE	 SENDTO
Treatment�Disease�� END	

STAY�
TRIA
�� �� ��	

Messages �patients� that leave the node Physician after completing its scheduled time of attention �given
at the entrance by the instruction STAY� are tagged putting TRUE its �eld Revised� Then they are sent
to one node of the multiple node Treatment according the value of their �eld Disease�

See examples � and �	 �GLIDER examples book��

�� CHAPTER �� INSTRUCTIONS

���� REPORT allows to write an output report in �les

Syntax�

REPORT �code� ENDREPORT	

This instruction is used to show and �le user�s built reports of partial or �nal results of a simulation run�
All the instructions between the delimiters REPORT and ENDREPORT are executed� Pascal instructions
�WRITE� WRITELN� etc�� and common GLIDER instructions �in particular OUTG� can be included�

Before writing� the GLIDER system asks for the name of the �le to write in� CON is used to write in the
screen� LPT� to the line printer� Instructions that write some output will do that in the �les indicated by
the user just before the writing� After �nishing� the system asks if another writing is required� The same
writing may be repeated in di�erent �les �for instance �rst in the screen and after in a disk or printer��

If it is desired that some included writing instructions use other �le than that indicated for the whole report�
the �le variable OUTF must be used in those instructions� The user have to assign a �le name to this
variable in the INIT section �see chapter 	��

This instruction can be used in nodes of any type�

See example �
 �GLIDER examples book��

���� SCAN scans and processes a list of messages

Syntax�

SCAN
�list name�� � �pointer� �� �associated instruction�	

This instruction is used to examine lists of messages to point� modify and extract messages�

�list name� is a name of an IL or EL� It may be of any node�

�pointer� is a variable declared as POINTER�

When executed� it scans the list indicated� For each scanned message the �elds are passed to the O��fields�
and the �associated instruction� is executed� Then the O��fields� are passed to the �elds of the
message� The scanning may be suspended when a STOPSCAN instruction is executed� Otherwise� it
continues until the end of the list is reached� If a �pointer� is included� it will contain a point to the last
processed message� A system generated pointer points to the previous message in the list� This allows the
user to manage the pointed message�

If during the execution of the �associated instruction� a SENDTO instruction is executed the message
in process is extracted and sent to the place indicated by the SENDTO� The scanning continues�

This instruction can be used in nodes of any type�

Examples�

�� Heating
A� Process �� IT �
 ��	

SCAN
EL�Line�

BEGIN

O�Temp �
 O�Temp � UNIF
���� ����	

IF O�Temp � ���� THEN SENDTO
Process�	

END	

When Heating is activated �each �� units of time� the EL of a node Line is scanned� A quantity
�random value between ��� and ��	� is added to the value of the �eld Temp of the message� If one
message surpasses the value �
�	� it is extracted and sent to Process�

�� Depot
R� ��

TakeHighest
A� Group ��

����� SELECT SELECTS MESSAGES FROM ELS OF A D TYPE NODE �

H �
 �	 PHigh �
 NIL	

SCAN
IL�Depot� Pt�

IF O�Height � H THEN

BEGIN PHigh �
 Pt	 H �
 O�Height END	

SCAN
EL�Group� Pg� IF O�X
 � THEN STOPSCAN	

IF PHigh �� NIL THEN EXTR
IL�Depot� PHigh� SENDTO
Pg� A� Group�	

When TakeHighest is activated� the message of the IL of Depot with highest value in the �eld Height
is found and sent to the EL of Group and put after the �rst message with �eld X equal to 	�

���� SELECT selects messages from ELs of a D type node

Syntax�

SELECT
! �list of nodes� ! �multiple node� �range� !� �integer value��

�associated instruction�	

It is used to select messages from ELs of a type D node corresponding to its predecessors�

�list of nodes� is a list of predecessor nodes of the D type node�

�multiple node � �range� is the name of an antecessor multiple node with a range within the range of
the node indexes�

�integer value� is an integer positive constant or an integer type variable with positive values�

When the instruction is executed� the ELs of the node are examined in the order in which they appear in the
list� If the predecessor is a multiplenode� the successive indexed nodes indicated in the �range� are examined�
A quantity of messages equal to �integer value� �or less if there are not enough in the EL� are extracted�
For each extracted message the �elds are passed to the O��fields� and the �associated instruction� is
executed� This must have a SENDTO instruction to send the message to any list� If the SENDTO is not
executed� the message remains in its EL�

The selected maximumcan be known and modi�ed for the next selection using the MAXSEL system variable�
If the predecessor is a multiple node� the index of the EL actually examined is indicated in INO� MAXSEL
and INO may be used in the �associated instruction�

The instruction only can be used in type D nodes and if and only if there are more than one
predecessor or the predecessor is an indexed node�

Examples�

�� Proda
I� Sel �� IT �
 Tproa � UNIF
���� ����	

Prodb
I� Sel �� IT �
 Tprob � UNIF
���� ����	

Prodc
I� Sel �� IT �
 Tproc � UNIF
���� ����	

Sel
D� Assemb ��

I �
 MINI
LL
EL�Sel
Proda���

MINI
LL
EL�Sel
Prodb��� LL
EL�Sel
Prodc����	

IF I �
 � THEN SELECT
Proda� Prodb� Prodc� I� SENDTO
Assemb�	

Assemb
E� ��

Messages �parts to be assembled� are produced at Proda� Prodb and Prodc and sent to 	 queues that
are the ELs of Sel� When the minimumquantity in the queues is �� then � messages are selected from
each queue and sent to Assemb�

�� Parts of five different types are produced at Pr with different

processing times� They are sent to a Selection subsystem�

When the production of each kind accumulates the required quantities�

given by the function FQuantReq�
for some types more than that may

be produced� the required quantities are selected and sent to Assembly�

This simulation is a part of a bigger model� Its purpose is to see

�� CHAPTER �� INSTRUCTIONS

how many assembles can be made and how many unmatched parts remain�

NETWORK

Pr
I� ������ Selection ��

IT �
 UNIF
Tmin�INO�� Tmax�INO��	 PartType �
 INO	 SENDTO
Selection�	

Selection
D� �� �Evaluate extraction condition� � Extract �
 TRUE	

FOR INO �
 � TO � DO IF LL
EL�Selection
PR�INO��� � FQuantReq
INO�

THEN Extract �
 FALSE	

MAXSEL �
 FQuantReq
��	

IF Extract THEN

SELECT
PR������� MAXSEL�

BEGIN MAXSEL �
 FQuantReq
INO�	 SENDTO
Assembly�	

WRITELN
MAXSEL�� Selected Type ��INO �or PartType� �	

END	

Assembly
E� �� WRITELN
TIME� �� �� � ���Out From PartType �� PartType�	

PAUSE	

INIT

TSIM �
 ��	 FOR INO �
 � TO � DO ACT
PR�INO�� UNIF
Tmin�INO�� Tmax�INO���	

TITLE �
 �Test Select I�	

ASSI Tmin������ �

���� ���� ���� ���� ����	

ASSI Tmax������ �

���� ���� ���� ���� ����	

FQuantReq �
 �� � � �� � � �� � � �� � � �� �	

DECL VAR Extract� BOOLEAN	 Tmin� Tmax� ARRAY������ OF REAL	

MESSAGES Pr
PartType� INTEGER�	

GFUNCTIONS FQuantReq DISC
INTEGER�� INTEGER� �	

STATISTICS ALLNODES	

END�

���� SENDTO sends messages in process to lists

Syntax�

SENDTO
� ! �pointer�� ! A ! B !�! FIRST ! LAST !�� �destination list
s���	

This instruction is used to send messages to one or more lists of messages�
�destination list� is a list of names of nodes or lists �they may be of the form EL��node� or IL��node��

Message in process is sent to all these destinations �if the list has more than one element� copies are sent
at each destination�� If one destination is indicated by a node� it is assumed that it must be sent to the EL
of the node�

The place in the destination list in which the message is put� depends on the �rst parameter�

� LAST the message will be appended at the end of the list�

� FIRST the message will be put at the beginning of the list�

� �pointer�� B the message is put before the pointed message�

� �pointer�� A the message is put after the pointed message�

� If the �rst parameter is omitted� LAST is assumed�

����� SENDTO SENDS MESSAGES IN PROCESS TO LISTS ��

When SENDTO is executed� the values in the �eld variables are passed to the �elds of the message and this
is put in the indicated place�

If this instruction is within an �associated instruction� of a GLIDER instruction� then the values in the
O��fields� are passed to the message �except for the CREATE in which the �eld variables are used�� In
the case the SENDTO is in an �associated instruction�� the sent message is�

� In ASSEMBLE� the representant of the assembled messages�

� In COPYMESS� each copy made of the original message�

� In CREATE� the created message�

� In DEASSEMBLE� each message that is taken o� the assembled list�

� In EXTR� the extracted message�

� In PREEMPTION� the removed �preempted� message�

� In REL� the extracted from the IL�

� In RELEASE� the extracted from the IL�

� In SCAN� the actually examined message�

� In SELECT� each selected message�

� In SYNCHRONIZE� each synchronized message�

SENDTO can be used in type G� L� I� D� E� A� and general type nodes� and in the �associated

instruction� of the GLIDER instructions indicated above� such as in the RELEASE instruc�
tion�

The nodes referred to in the SENDTO instruction must be explicitly indicated in the list of successors� unless
there are only one successor and it is implicitly de�ned as such by being the following in the program�

If the successor is a multiple node� the user have three alternatives to send a message to its ELs�

� To indicate the desired index in the node speci�ed in the SENDTO�

� To use the reserved word MIN as index� In this case� the message is sent to the �rst node for which
the sum� �Length of the EL� � �quantity of used resource� is the minimum� That means the
less engaged node of the array�

� To use the reserved word FREE as index� In this case� the message is sent to the EL of the �rst node
that has the EL empty� If all the ELs have messages� the message is not sent� This option only may
be used in the code of a type G node� Not sent messages remain in the EL of the node�

Examples�

�� Mail
D� �� SENDTO
Director� Secretary� File�	

Copies of the message received at Mail are sent to the nodes Director� Secretary� and File�

�� Discrim
G� Queue �� IF Class
 Friend THEN SENDTO
FIRST� Queue�

ELSE SENDTO
LAST� Queue�	

	� Parkman
G� Parkinglot�INO� �� SENDTO
Parkinglot�MIN��	

Parkinglot
R� Street �� STAY �
 GAMMA
Tpark� DevTpark�	

�
 CHAPTER �� INSTRUCTIONS

�� Ii �� IT �
 �	 Pr �
 UNIFI
�� ��	

OrdQueue
G� LINE �� IF LineGate
 Closed

THEN

BEGIN

SCAN
EL�Line� Poin� IF Pr � O�Pr

THEN STOPSCAN	

IF Poin � � NIL THEN SENDTO
Poin� B� Line�

ELSE SENDTO
LAST�Line�	

END

ELSE SENDTO
Line�	

Line
G� �� STATE BEGIN

IF LineGate
 Closed THEN LineGate �
 Open

ELSE LineGate �
 Closed	

IT �
 �

END	

IF LineGate
 Open THEN SENDTO
Process�	

INIT TSIM �
 ���	 ACT
Ii� ��	 LineGate �
 Open	 ACT
Line� ��	

DECL TYPE Opcl

Closed� Open�	

VAR LineGate� Opcl	 Poin� POINTER	

MESSAGES Ii
Pr� INTEGER�	

END�

Messages� with priorities from � to � in the �eld Pr� arrive at OrdQueue and they are passed to Line if
the variable LineGate has the value Open� In this case� they continue to Process� LineGate is Open
and Closed each
 time units� If LineGate is closed� then when a message reaches OrdQueue� a scan
process of the EL of Line starts� If a message in the EL is found with priority less than the incoming
message� then this is put before of that in the EL� So� the EL is always ordered in decreasing order of
priority� In this system the entities that arrive when the gate is open are allowed to pass� when they
have to wait� they are sorted according to their priority� This type of sorting may be more easily done
using a type L node�

See examples �� �� ��
� ��� ��� ��� �	� �
 �GLIDER examples book��

���� STATE controls activations and state of G type node

Syntax�

STATE �associated instruction�	

It is used to change the state in a type G node� The state is speci�ed by the user using variables of any
type� and giving them values by means of any code�

It may be used only in type G nodes� If it is used must be the �rst instruction in the code�

The �associated instruction� is only executed if the event refers to the node� No execution is made
during the scanning of the network�

The instruction is executed even if the EL of the node is empty�

If the node is a multiple one� the instruction is activated and the value of the index IEV of the event element
is passed to the variable INO� Thus� the programmer can control the execution for the di�erent nodes�

The �associated instruction� cannot have SENDTO instructions but can use Pascal and common
GLIDER instructions�

Examples�

����� STAY SCHEDULES EXIT TIME FROM A R TYPE NODE ��

�� Portal
G� �� STATE IF p
 open

THEN BEGIN p �
 closed	 IT �
 �� END

ELSE BEGIN p �
 open	 IT �
 �� END	

IF p
 open THEN SENDTO
Castle� ELSE STOPSCAN	

Messages �Knights� that arrived at Portal only pass to Castle if the value of p is open� Due to the
STOPSCAN only one message of the EL �the �rst one� is considered if p is closed� The STATE
instruction works in an independent way� The variable p is put closed by �� units of time� and open
by �� units of time alternatively� To start this process the node Portal must be �rstly activated from
other part of the program�

The part of the code outside the �associated instruction� of the STATE �the second IF instruction�
is executed each time the node Portal is activated during the scanning of the network if the EL is not
empty�

�� RandomSend
G� ��

STATE BEGIN j �
 �	 u �
 UNIF
�� ��	

WHILE tran�i�j� � u DO i �
 i � �	 j �
 i	

IT �
 perm�i�

END	

SENDTO
Destination�j��	

tran is a matrix with accumulated values of a probability distribution in each column� It can� for
instance� be de�ned by�

ASSI tran������ ����� �

 ���� ���� �����

 ���� ���� �����

 ���� ���� �����	

This corresponds to the transition probability matrix T�

��� ��� ���

T
 ��� ��� ���

��� ��� ���

If it is j � �� the probability of transition to � is ���� to � is ��
� to 	 is ���� See that�
Tran��� �� �� ���� Tran��� �� �� ��� � ��
� Tran�	� �� �� ��� � ��
 � ���� When a message in the EL of
the node is processed and a initial value was assigned to j �that is the state of the RandomSend node��
then a random value between � and � is assigned to u� The WHILE cycle searches from top to bottom
in the column j� for the last row for which u � Tran�i� j�� So� the probability of a certain �nal value
of i is the value of T�i�j�� That i value is assigned to j� The next change of state is made after a
time given in the Perm array� Messages arriving during this time interval are sent to Destination�j��
So� the destination varies according to states that change at random with the transition probabilities
given by the matrix T�

���� STAY schedules exit time from a R type node

Syntax�

STAY �
 �real expression�	

It is used to assign value to the time that a processed message will remains in the IL of a R type node�

It is only used in a R type node�

When executed a message enters the IL� an event is scheduled in the future to extract this message� More
exactly� an event element is introduced in the FEL that refers to the R type node� to be executed at a time

� CHAPTER �� INSTRUCTIONS

TIME � STAY �with the assigned value for the STAY�� The index of the event is taken from the variable INO
and the event parameter will be the actual value of the variable IEV� If the node contains a PREEMPTION
instruction with a REMA parameter� the message must have a REMA �eld� The system checks the value
of this �eld� If its value is not equal to zero� the time of execution of the event will be TIME � REMA� See
PREEMPTION instruction �������

See examples �� �� 	� ��
� �� ��
 �with PREEMPTION and REMA�� �� ��� ��� �	� ��� �
 �GLIDER examples
book��

���� SYNCHRONIZE retains messages in the EL to release them

together

Syntax�

SYNCHRONIZE
�integer value� ! ALL ! � ! �logic expression� !

EQUFIELD
�field�� ! � �associated instruction�	

SYNCHRONIZE is used to retain messages that come to a node� maybe at di�erent times� and to release
together a set of them at the same time �synchronized� when certain conditions are met� The associated
instruction must contain a SENDTO instruction to send the synchronized set�

The instruction is suited to simulate synchronization processes in assembling lines� and gathering items for
batch processing�

The instruction must be used in a node with an EL that has the ability to send messages

nodes of G� L� D� and general type with EL��

When this instruction is executed the EL is scanned from the beginning� Each message �comparing mes�
sage� is compared with those �compared messages� that follow it� The �rst comparing message is the �rst
one in the EL� The values of the �elds of the comparing message are in the field variables� Those of
the compared message are put in the O��variables�� The comparison consists in the evaluation of the
�logic expression�� that may include field variables of the comparing messages� O��variables� of
the compared message and any other type of variables and constants� If the expression is TRUE� both� the
comparing and compared messages� are candidates to be synchronized� When all messages are compared�
the second message in the EL is taken as the new comparing message which is compared with those that
follow it� The process is repeated so that all the possible comparisons are made� If at any point of the process
a number of candidates reach the value expressed by �integer value�� then synchronization is successful�
Then� the synchronized messages are taken out of the list one by one and for each synchronized message the
�associated instruction� is executed� The whole process is then repeated to see if another successful
synchronization group of the required size is possible with the remaining messages�

If the parameter ALL is used� there is not limit for the synchronized set�

If the �logical expression� is reduced to the constant TRUE� the messages are inconditionally synchro�
nized up to the speci�ed number �or all the messages if ALL is used��

If there is not successful synchronization at all� nothing is done and the �associated instruction� is not
executed�

If the function EQUFIELD
�field�� is used instead of the �logical condition�� messages with the same
values on that �eld are synchronized�

In all cases� it is assumed that all the messages in the EL have the �elds that are used by the synchronizing
conditions�

The �associated instruction� executed for each successful synchronization� may have instructions to
change the �elds of the messages �assigning values to �eld variables� and must have a SENDTO instruction
to dispose of the message that represents them� Note that this �associated instruction� may change the
values of variables in the �logical condition� and in the �integer value�� so changing the synchroniza�
tion conditions for the next group or for a new execution of the SYNCHRONIZE instruction� If there was
some successful synchronization� the variable SYNC is put to TRUE� otherwise it is put to FALSE�

See the instruction ASSEMBLE ������ See example �� �GLIDER examples book��

����� TITLE PUTS TITLE TO AN EXPERIMENT
�

���	 TITLE puts title to an experiment

Syntax�

TITLE �
 �string constant�	

It is used to put a title heading to the tables of the standard statistics�

�string constant� is a string constant that may have up to
� characters�

The variable TITLE takes the value of this constant and can be used in any writing instruction� When the
standard statistics are written� this title is written at the beginning� If no value is assigned to TITLE� its
default value is !BASIC EXPERIMENT� �

This instruction can be used in nodes of any type�

Example�

T �
 ������	

TITLE �
 �Experiment with Low Temperature� T � ���� �	

���
 TSIM sets duration to the simulation run

Syntax�

TSIM �
 �real expression�	

It is used to set the simulation duration� The GLIDER system variable TSIM is set to the value of
�real variable� and the end of the simulation is scheduled for a future time equal to TSIM� The end
of the simulation can also be done using the ENDSIMUL instruction� If none of these instructions is found�
an error condition arises� If many ENDSIMUL instructions are present� the �rst one executed will end the
simulation� If many TSIM instructions are executed� the last executed de�nes the simulation time�

This instruction can be used in nodes of any type and in the INIT section�

���� UNLOAD releases memory used to import DBASE IV ta�

ble

Syntax�

UNLOAD
 �DBASE IV table name�� �list of table fields��	

It is used to eliminate from the dynamic memory the data �array� corresponding to a DBASE IV table� The
freed space may be used by the running program�

�DBASE IV table name� is the name of a table declared in DBTABLES declaration�

�list of table fields� is a list of �elds of the table that correspond to the arrays to be deleted�

This instruction can be used in nodes of any type�

See examples in section ��
�

���� USE de�nes the quantity of resource to be used

Syntax�

USE �
 �real expression��	

� CHAPTER �� INSTRUCTIONS

It is used to de�ne the quantity of resource to be used for a message�

The instruction assigns the value of �real expression� to the �eld USE of the actually processed message�
When the message is processed by a R type node� the message will try to use that quantity of resource� The
value of the USE �eld can be changed any number of times during a simulation run�

This instruction can be used in nodes of any type�

Example�

Warehouse
R� �� IF BoxSize
 Large THEN USE �
 � ELSE USE �
 ���	

Chapter �

PROCEDURES

GLIDER procedures are�

�� ACT schedules future activation of a node�

�� BEGINSCAN repeats the scanning of an EL�

	� BLOCK blocks future release events of node�

�� CLRSTAT initializes the gathering of statistics�

� DEACT deactivates a node�

�� DEBLOCK suppresses blocking of future release events of node�

�� ENDSIMUL ends the simulation at the end of the actual event�

� EXTFEL extracts an event from the FEL�

�� FIFO puts the message at the end of the IL of a L type node�

��� FREE frees a resource�

��� LIFO puts the message at the beginning of the IL of a L type node�

��� MENU calls the Run Interactive Menu�

�	� METHOD de�nes the method of integration in a C type node�

��� NOTFREE inhibits the release of a resource�

�
� ORDER puts the message in the IL of a L type node in a given order�

��� PAUSE stops the execution�

��� PUTFEL adds an event to the FEL�

�
� RETARD produces a delayed function from a given function of time�

��� SORT sorts a list of messages�

��� STAT displays the statistics�

��� STOPSCAN stops the scan of a list of messages�

��� TAB adds a value to a frequency table�

�	� TRACE starts the tracing�

	

� CHAPTER �� PROCEDURES

��� TRANS sends an element from a list to another list�

�
� UNTRACE stops the tracing�

��� UPDATE updates �eld variables or �elds of a message�

This chapter notation is the same of the chapter ��

	�� ACT schedules a future activation of a node

Syntax�

ACT
�node name�� �real expression��	

It is used to schedule a node activation in a future time�

�node name� is the name of the node to be activated�
�real expression� is a real expression whose value indicates the time from now until the future activation�

When this instruction is executed� a future event is put in the FEL� The event node is the indicated by
�node name� � The time of the event is TIME��real expression�� Here TIME is the system variable that
contains the value of the actual simulation time�
The index and the event parameter of the event are the actual values of the variables INO and IEV respec�
tively�

This procedure can be used in nodes of any type�

Examples�

ACT
SubwayDepart� ��	 ACT
Controller� ��	

FOR i �
 � TO � DO ACT
Arrivals�i�� EXPO
TMBarr�i��	

The components of the multiple node Arrivals are activated for future times taken from an exponential
distribution with mean values depending on the node�

	�� BEGINSCAN repeats the scanning of a list

Syntax�

BEGINSCAN	

It is used to re�start the scanning of the list being processed� usually after the list has been altered� When
this instruction is executed the scanning of the list starts again from the beginning�

The user should be careful in using this procedure� lest a loop may happen� If the BEGINSCAN is executed
continually during the scan of a non vanishing list� a loop will result�

This procedure can be used in nodes of G type and in the associated instruction of SCAN �

Example�

Ent
I� �� COPYMESS
��� BEGIN Age �
 UNIFI
������	 SENDTO
CheckAge� END	

SENDTO
CheckAge�	

CheckAge
G� Egress �� A �
 �	

SCAN
EL�CheckAge�Points�

IF O�Age � A THEN BEGIN PointOld �
 Points	 A �
 O�Age END	

TRANS
EL�CheckAge� PointOld� A� EL�Egress� LAST�	

BEGINSCAN	

��

INIT ACT
Ent� ��	

���� BLOCK BLOCKS FUTURE EVENTS OF RELEASE AT A TYPE R NODE

��

DECL VAR A� INTEGER	

Points� PointOld� POINTER	

MESSAGES Ent
Age� INTEGER�	

Messages �persons� that arrive to CheckAge are sent to Egress by decreasing order of the �eld value Age�

	�� BLOCK blocks future events of release at a type R node

Syntax�

BLOCK
�node name��	

It stops the creation of events in the node� Those events that would activate the node and are already in
the FEL are put in suspended state �their SU parameters are set TRUE� so that they are not executed
although their execution time are less than TIME� If the node to block is already blocked nothing is done�
When the event state is changed again to active state �see DEBLOCK� ���� the delayed events are executed
at the actual time�

This procedure can be used in nodes of any type�

Example�

Arrivals
I� �� IT �
 Farr
TIME�	

IF LL
EL�Entrance� � � THEN BLOCK
Arrivals�	

Entrance �� RELEASE BEGIN SENDTO
Parking�

LL
EL�Reception� � � THEN DEBLOCK
Arrivals�	

END	

STAY �
 TicketTime	

Messages �cars� are generated at irregular times given by the function Farr
TIME�� When a queue of � is
formed at the parking Entrance the generation is stopped �the scheduled next arrival is suspended� until
the queue is less than
� See DEBLOCK procedure ����� for another example�

	�� CLRSTAT re�starts the gathering of statistics

Syntax�

CLRSTAT	

It is used to reset to zero the variables in which the statistics are accumulated� Thus the statistics are
counted since the last time in which a procedure of this type is executed� That time is recorded in the
standard statistics�

This procedure can be used in nodes of any type�

Examples�

PassTrans
A� ��

IT �
 ����	

IF ABS
Qma � MEDL
EL�Tell�� �
��� �
Qma � MEDL
EL�Tell��� � ����

THEN BEGIN Stable �
 TRUE	 CLRSTAT	 BLOCK
PassTrans�

END

ELSE BEGIN Qma �
 MEDL
EL�Tell�	 CLRSTAT	

END	

���

INIT TSIM �
 �����	 ACT
PassTrans� ����	 Qma �
 �	 Stable �
 FALSE	

� CHAPTER �� PROCEDURES

At intervals of ���� time units� the queue EL�Tell is examined� The previous mean length Qma is compared
with the mean length in the last ���� time units� This is given by the GLIDER function MEDL� If the
di�erence� compared with the mean of the two values� is less than 	�� the queue is considered stable� a new
count of statistics begin� and the node is blocked� Otherwise� the last value of the mean is saved in Qma�
and a new statistical count is initialized for the next ���� time units� Statistics at the end of the run are
counted since the beginning of the stable situation� This procedure tries to avoid the in�uence on statistics
of the transient produced when starting with a void queue�

	�� DEACT deactivates a node

Syntax�

DEACT
�node name��	

It is used to deactivate a node� i�e� to suppress the future event that would turn out it active� A typical use
is to stop the integration in a C type of node that solve di�erential equations�

This procedure can be used in nodes of any type�

Examples�

Growth
c� �� Diameter� �
 KGrowth �
� � Diameter � DMax� � Diameter	

If Diameter � �� then DEACT
Growth�	

CREATE
CutMessage� SENDTO
Saw�	

While the node Growth is active� it computes the change in time according to the shown di�erential equation
�logistic growth�� When the variable Diameter exceeds
�� the process of integration is stopped and a
message is created and sent to Saw�

Warning
I� �� IT �
 Week	 SENDTO
Debtor�	

IF Number � Enough THEN

BEGIN DEACT
Warning�	 ACT
Procedure�� �� END	

The node Warning produces messages and sends them to Debtor� When the NUMBER of the messages
exceeds the value Enough� the sending is stopped and the node Procedure� is activated�

	�� DEBLOCK suppresses blocking of node

Syntax�

DEBLOCK
�node name��	

It is used to �nish the block state of a node �inhibition of sending messages�� Its action consists in suppressing
the suspended state of the next event activation of the node and to execute the event at the actual time� If
the node were not blocked nothing is done�

This procedure can be used in nodes of any type�

Example�

Inc �� IT �
 EXPO
����	 SENDTO
FirstProc�	

IF LL
EL�FirstProc� �
 � THEN BLOCK
Inc�	

FirstProc
R� �� RELEASE

BEGIN SENDTO
SecProc�	

IF LL
EL�SecProc� �
 � THEN BLOCK
FirstProc�	

END	

STAY �
 EXPO
�� ��	

���� ENDSIMUL ENDS THE SIMULATION AT THE END OF THE ACTUAL EVENT
�

IF LL
EL�FirstProc� � � THEN DEBLOCK
Inc�	

SecProc
R� �� STAY �
 ���	

IF LL
EL�SecProc� � � THEN DEBLOCK
FirstProc�	

Exit ��

INIT TSIM �
 ����	 ACT
INC� ��	

FirstProc �
 �	

IF
LL
EL�FirstProc� � � THEN DEBLOCK
FirstProc�	

Messages �objects� arrive the at Inc� They must undergo a process in parallel �� at most� and then a
sequential process� The queues before these processes have a limited capacity and the movement of the
messages must be blocked upstream when this quantity is reached� Arrivals at Inc are stopped when the
queue at FirstProc �capacity �� is equal to �� After certain time in FirstProc messages pass to SecProc to
be processed one by one� The queue in SecProc is limited to
� When it contains
 messages� the SecProc

in FirstProc is stopped� See that the node Inc can block itself after it has sent the message to FirstProc�
checking the followingqueue� The node FirstProc also can block itself after sending the message to SecProc�
Each node can deblock the former when it scan its EL to extract �if possible� one message�

	�	 ENDSIMUL ends the simulation at the end of the actual

event

Syntax�

ENDSIMUL	

It is used to stop the simulation run� When it is executed� the actual event execution is completed and the
simulation run is terminated�

This procedure can be used in nodes of any type�

Examples�

Pop �
 Pop � �	 IF Pop
 ���� THEN ENDSIMUL	

WRITELN
�Polis population is �� Pop�	 PAUSE	

When this code is executed� the written message is displayed and the operation pauses until a key is pressed�
If� when the code is executed� the value of Pop is
���� after this pause� the simulation run �nishes�

Result
A� �� WRITELN
�Maximum Obtained �� MaxProfit� �� ��	

WRITELN
�Press C to continue	 any other to finish ��	

Ch �
 READKEY	

IF
Ch
 �c�� OR
Ch
 �C��

THEN BEGIN ACT
StartSearch� ��	 ACT
Result� ������ END

ELSE ENDSIMUL	

When the node Result is activated� the value of MaxProfit is displayed� The message

Press C to continue	 any other to finish

appears� and the computer stops waiting for the pressing of a key� If this is C or c the StartSearch node is
activated and the simulation continues� The node Result is scheduled for a new activation ����� units of
time afterwards� If other key is pressed the simulation ends�

	�
 EXTFEL extracts an event from the FEL

Syntax�

 CHAPTER �� PROCEDURES

EXTFEL
�node name�� �time�� �index�� �event parameter��	

It is used to extract an event from the Future Event List� Parameters of the instruction are the elements
��elds� of the event to be extracted�
�node name�� is the name of the node which the event points to� It must be explicitly indicated�
�time�� is a real expression whose value is the time of the event� If it is negative� it is not taken into account�
�index�� is the index of the node� If it is �� it is not taken into account�
�parameter� is the event parameter� If it is �� it is not taken into account�

This procedure can be used in nodes of any type�

The �rst event �if any� found with the speci�ed values is destroyed and used memory released�

Example�

Avenue
R� Exit ��

���������������������������������

Accident
A� �� EXTFEL
Avenue� TimeExit� �� ��	

The �rst event� that schedules the exit of the IL of Avenue that has an scheduled exit time equals to TimeExit�
is eliminated�

	�� FIFO puts the message at the end of the IL of a L type node

Syntax�

FIFO	

It is used to add a message to the end of the IL of a L type node� The �rst message in the EL of the L type
node is passed to the end of the IL� The IL is formed in the order of arrival �FIFO order�� As this order
is the same that the default order in which the EL is processed� the FIFO procedure can be omitted unless
other order speci�cations are also used in the same node�

It may be used only in L type nodes�

Example�

LinePile �� IF Box THEN LIFO ELSE FIFO

Messages� that have the �eld Box equal to TRUE� are added at the beginning of the IL� the others at the
end �see FIFO procedure� ����� When they are extracted from the IL in the order of this list those with
Box
 TRUE are extracted in LIFO order �that who came last is extracted �rst� as in a pile of boxes� After
these are the messages with Box
 FALSE ordered as they arrived�

	��� FREE frees a resource

Syntax�

FREE
�node name��	

It is used to release a resource from the R type node that was left by the message without releasing the
resource at the leaving time �see NOTFREE procedure� ������ The quantity of resource freed from the
indicated node is equal to the actual value of the USE variable� The procedure may be executed in any
node when processing any message or no message at all� However� in most usual applications� it is executed
while processing the message that left the resource without releasing the used capacity� In many applications
the message has to do other things� or await certain time� before the abandoned resource become available�

This procedure can be used in nodes of any type�

Example�

����� LIFO PUTS THE MESSAGE AT THE BEGINNING OF THE IL OF A L TYPE NODE
�

Crane
R� Return� ProcLoad� Command��

RELEASE

IF HeapSize � � THEN BEGIN NOTFREE	 SENDTO
Return� ProcLoad� END

ELSE SENDTO
Command� ProcLoad�	

IF F�Crane �
 � THEN

BEGIN

STAY �
 GAMMA
MTCrane� DevTCrane�	

LoadCrane �
 MINI
HeapSize� UNIFI
�� ���	

HeapSize �
 HeapSize � LoadCrane	

END	

Return
R� Crane��

RELEASE BEGIN FREE
Crane�	 SENDTO
FIRST� Crane� END	

STAY �
 ReturnTime � TRIA
�� �� ��	

A crane have to remove a heap of packages that may be transported in groups that have� at random with
the same probability� � or 	 packages� The time to handle and transport the load is taken from a GAMMA
distribution� When the heap is reduced to zero� the process �nishes and the crane is available to transport
another heap when that is commanded� If the remaining heap is not zero� the crane have to return to
continue the removal� The crane is not available during this period� Continuation of the process has priority
over any other new process of heap transportation�
Crane operation is simulated by a node Crane of capacity �� It is activated by a message that represents the
order to operate� This messages can queue in the EL of Crane� The message has a �eld HeapSize with the
size of the heap to be removed and a �eld LoadCrane to keep the transported quantity� When the message
is processed the LoadCrane is computed �all the heap or � or 	� and the time delay in loading and transport
is taken into account� When this process �nishes the message is sent to ProcLoad to process the actual load�
If the heap is not empty� a copy is sent to a node Return to account for the delay to return near the heap�
Otherwise� the copy is sent to Command that decides about new command messages to remove heaps� In the
Return node the message is delayed a time for the return and then sent to the Crane again� before other
commands� to continue the heap removal�
Notice the condition IF F�Crane
 � to avoid execution of instructions without transfer of the message to
the IL�

	��� LIFO puts the message at the beginning of the IL of a L

type node

Syntax�

LIFO	

It is used to pass a message from the EL to the beginning of the IL of a L type node� The �rst message in
the EL of the L type node is passed to the beginning of the IL� The IL is formed in the order reverse to that
of arrival �LIFO order��

It may be used only in L type nodes�

Example�

Cellar
L� �� FIFO	

Messages coming to Cellar are put in the EL in order reverse to the arrival order �LIFO order��

	��� MENU calls the Run Interactive Menu

�

Syntax�

�� CHAPTER �� PROCEDURES

MENU	

It is used to call the Run Interactive Menu �see ���
��

This procedure can be used in nodes of any type�

	��� METHOD sets the method of integration in a C type node

Syntax�

METHOD
! �RKF� ! �EUL� ! �RK�� !�	

It is used in a type C node to set the integration method of the di�erential equations in the node� If RKF
is used� the method will be a Runge Kutta method of fourth order with a �fth order calculation to estimate
the error �Runge Kutta Fehlberg�� The integration path is changed according to the error� If RK� is used�
the method will be a Runge Kutta of fourth order� If EUL is used� the method will be the simple Euler
method of the �rst order� RKF is the more exact and slower� EUL is the less exact and faster�

EABS and EREL are used with RKF method of integration to change the integration step when the error
in one step exceeds� respectively in absolute or relative value� the values of these variables� Default options
are EABS � ������� EREL � �������

This procedure may be used only in C type nodes� If used� it must be put at the beginning of the
code�

Example�

Growth
C� �� METHOD
RK��	

Size� �
 K�Growth �
� � Size � MaxSize� � Size	

Quantity� �
 MaxQuant � K�Incr � Quantity	

Biomass �
 SpGr � Size � Quantity	

HeatEffect
C� �� METHOD
EUL�	

K�Growth� �
 K�Growth�Max � Ctg
Temp� � K�Growth	

K�Incr� �
 K�Incr�Max � Cti
Temp� � K�Incr	

It is supposed that K�Growth and K�Incr growth very slowly with Temp so that a less exact but more fast
integration method may be used�

	��� NOTFREE inhibits the release of a resource

Syntax�

NOTFREE	

It is used to suppress the release of capacity by the messages going out of the IL of a R type node�

This procedure may be used only in the RELEASE instruction of R type nodes�

Example�

Lock
R� Ocean ��

RELEASE BEGIN NOTFREE	 SENDTO
Ocean� Fill� END	

STAY �
 T�Enter � T�Ebbing � T�Leaving	

Fill
R� Elim �� RELEASE BEGIN FREE
Lock�	 SENDTO
DestrMess� END	

STAY �
 T�Filling	

Messages �vessels� queue up at a lock to go down to the ocean level� The time spent in the dock is for the
entrance maneuvers� lowering the level of the water� and going out� The dock is again freed for use after the
dock attains again the upper level� This is simulating by not freeing the lock when the message goes out
and by sending a copy to the node Fill� This delays the message by the �lling time and then the resource is
freed� See FREE procedure �section ������

����� ORDER PUTS THE MESSAGE IN THE IL OF A L NODE IN A GIVEN ORDER ��

	��� ORDER puts the message in the IL of a L node in a given

order

Syntax�

ORDER
�real variable�� ! A ! D!�	

It is used to put the IL of a L type node in a certain order� Messages arriving to the EL are passed to the
IL and put�

� If the second argument is A� before the �rst in the IL that has greater the value of �real variable��

� If the second argument is D� before the �rst with lower value of �real variable��

� If none is found� the message is put at the end of the IL�

With the argument A an ascending order is obtained� with the D a descending order�

It may be used only in L type nodes�

Examples�

OrdLine
L� �� if Prior �
 � then order
Prior� D� else FIFO	

Messages with the value in the �eld Prior �
 � are ordered in the IL by descending order of Prior� The
others are put in the order of arrival at the end of the IL�

LinBatch
L� �� ORDER
ProcTime� A�	 k �
 ��	

OrdBatch
G� �� IF
LL
IL�LinBatch� �
 k� and
F�Process � ��

THEN BEGIN SENDTO
Process�	 k �
 k � � END	

Process
R� �� STAY �
 ProcTime	

INIT TSIM �
 ���	 ACT
Arrival� ��	 Process �
 ��	

Messages �parts� that need di�erent times to be processed at Process ��eld ProcTime� must be ordered in
increasing order of the process time to optimize the processing� This is done by batches of ��� The node
LinBatch produces this ordering� When the arriving messages make a queue of �� and Process is idle� the
queue is sent� in the attained order� to the node Process� See SORT procedure �section ������

	��� PAUSE stops the execution

Syntax�

PAUSE	

It is used to stop the execution of a simulation run� The user can restarts the simulation by pressing any
key�

This procedure can be used in nodes of any type�

	��	 PUTFEL adds an event to the Future Event List

Syntax�

PUTFEL
!A ! B!� �node name�� �time�� �index�� �parameter��	

It is used to put an event in the FEL� The parameters of the instruction are the elements ��elds� of the event
to be aggregated�

�� CHAPTER �� PROCEDURES

� �node name� is the name of the node which the event points to�

� �time� is a real expression whose value is the time of the event

� �index� is the index of the node� It must be an integer value�

� �parameter� is the event parameter� an integer value from � to �

�

The element is aggregated to the FEL keeping the ascending order of time� If there is one with exactly
the same value put in �time� it is put After �A� or Before �B� of it according to the �rst parameter� See
EXTFEL procedure �section ��
��

This procedure can be used in nodes of any type�

	��
 RETARD produces a delayed function from a given func�

tion of time

Syntax�

RETARD
�order�� �delayed output�� �delay�� �input��	

It is used to generate values delayed and smoothed of an time dependent variable�
�order� is a number from � to 	� that indicates the order of the retard�

�delayed output� is a variable that was declared of RET type�

�delay� is a real parameter�

�input� is a real expression�

The procedure may be used only in a type C node� so that� when the node is active� it is processed repeatedly
at small intervals of time� As the �input� variable or expression takes successive values� the values of the
�delayed output� in each repetition tend to approach� with certain �delay�� those of the �input�� The
form of approach depends on the �order� of the RETARD� For low order the output is the input smoothed�
For higher orders the output is more and more like the input but retarded in time by the quantity �delay��

The output variable must be declared in a declaration in the form�

�variable name�� RET� �order��

An order n delay is calculated for a set of n di�erential equations�

This procedure may be only used in a type C node�

Example�

Spp
C� ��

Demand� �
 K � Demand � GovDemand
TIME�	

RETARD
�� Supply� Ret�Months� Percep � Demand�	

The values of Demand are produced by the di�erential equation� The Supply tends to adjust to the Demand

a�ected by a perception factor of the Demand� This factor may depend on other socioeconomic variables�

	��� SORT sorts a list of messages

Syntax�

SORT
�list name�� �field��! A ! D!�	

It is used to order an EL or IL by the ascending �A� or descending �D� values of o �eld of the messages�

This procedure can be used in nodes of any type�

Example�

���
� STAT DISPLAYS THE STATISTICS �	

OrdBatch
G� �� IF
LL
EL�OrdBatch� �
 ��� and
F�Process � ��

THEN BEGIN SORT
EL�OrdBatch� ProcTime� A�	

SCAN
EL�OrdBatch� SENDTO
Process�	

END	

Process
R� �� STAY �
 ProcTime	

INIT TSIM �
 ���	 ACT
Arrival� ��	 Process �
 ��	

DECL MESSAGES Arrival
ProcTime� REAL�	

Messages �parts�� that need di�erent times to be processed at Process ��eld ProcTime�� must be ordered in
increasing order of the process time to optimize the processing� This have to be done by batches of �� parts�
The node OrdBatch produces this ordering� When the arriving messages make a queue of �� and Process

is idle� the queue is sorted in ascending order of ProcTime and it is send� in the attained order� to the node
Process�

	��� STAT displays the statistics

Syntax�

STAT	

It is used to display the standard statistics during the simulation run�

This procedure can be used in nodes of any type�

Examples�

WriteStat
a� �� IT �
 ���	

Statistics are display each ��� units of time� The node WriteStat must be activated from outside the �rst
time�

Rep
G� �� IF Reports and
EL�Memory � ��� then STAT	 Sendto
DEC�	

Each time a message with the �eld Reports equal to TRUE arrive and the queue in node Memory is greater
than ��� the statistics are shown�

	��� STOPSCAN stops the scanning of a list of messages

Syntax�

STOPSCAN	

It is used to stop the scanning of a list �EL or IL�� When used in a SCAN instruction the list is that indicated
in the instruction� If it is used in a type G node outside a GLIDER instruction the list is the EL of the node�

This procedure can be used in nodes of G type� and within a SCAN instruction� in any type
of node permitting SCAN�

Example�

Test STOPSCAN Example �

NETWORK

Tour�Gate
G� Ballon�Gate ��

TotWeight �
 TotWeight � Weight	

IF
TotWeight �
 ���� AND NOT Complete

THEN BEGIN SENDTO
Balloon�Gate�	 END

ELSE BEGIN STOPSCAN	

Complete �
 TRUE	 TotWeight �
 �	

�� CHAPTER �� PROCEDURES

END	

Balloon�Gate
G� �� IF Complete and Present

THEN BEGIN SENDTO
Tour�	

IF LL
EL�Ballon�Gate�
 � THEN

BEGIN NBatch �
 NBatch � �	 Complete �
 FALSE	

Present �
 FALSE	 TotWeight �
 �	

END	

END	

Tour
R� ��

RELEASE Present �
 TRUE	

STAY �
 UNIF
��� ���	

Exit
E� ��

INIT ACT
Entrance� ��	 NBatch �
 �	 TotWeight �
 �	

Present �
 TRUE	 Complete �
 FALSE	 Tour �
 MAXREAL	

DECL VAR NBatch� INTEGER	 TotWeight� REAL	

Present� Complete� BOOLEAN	

MESSAGES Entrance
Weight� REAL�	

STATISTICS ALLNODES	

Messages �passengers for a balloon� are weighted at Tour�Gate� While the total weight is less than �	�
and Complete was FALSE they are sent to Balloon�Gate� When one incoming message cause the weight
to exceed �	�� the scanning of the EL is stopped� Complete is put to TRUE and TotWeight to zero�
No more passengers can pass the Tour�Gate� Then Balloon�Gate can operate if the balloon is present

Present
 TRUE�� The messages in the EL are sent to Tour� Complete and Present are put to FALSE
and the batch is counted� TotWeight is set to zero to permit the gathering of a new batch of passengers�
The Tour takes between
� and �	 minutes� When it �nishes the passengers went to Outside and Present

becomes TRUE�

	��� TAB adds values to a frequency table

Syntax�

TAB
�real variable�� �table name��	

It is used to count a value for a frequency table� �table name� must have been declared in a TABLES
declaration �see ����� Parameters of the tables must be initialized in the INIT section �see 	���� The actual
value of the �real variable� is classi�ed to de�ne to which frequency class of the table it belongs and
one is added to the count of this class� The frequency classes and a histogram are shown when a display of
the standard statistics is produced� This is always done at the end of the simulation� but also can be done
interactively at any moment of the run or by the program using the STAT instruction� See ���� and ����
for declaration and description of the standard statistics�

This procedure can be used in nodes of any type�

Example

Ent�People
I� �� IT �
 EXPO
�����	 L�Queue �
 LL
EL�Couter�	

TAB
L�Queue� TabQue�	

��

Exit
e� �� L�Queue �
 LL
EL�Counter�	 TAB
L�Queue� TabQue�	

��

INIT

TabQueue �
 �� ��� �	

��

����� TRACE STARTS THE TRACING �

DECL VAR L�Queue� REAL	

TABLES L�Queue� TabQueue	

Messages �people� enter the system and queue at the node Counter �not shown�� They exit at node Exit�
When these events happen� the queue changes� The length of the queue is passed to a real variable L�Queue
and is registered at the frequency table TabQueue� This table has �� classes �intervals� of length � and starts
at the value ��

	��� TRACE starts the tracing

Syntax�

TRACE	

It is used to put the trace mode that displays a detailed account of the events process� messages movements�
FEL evolution� etc�� useful for debugging� It must not be executed if the system is displaying a graphic�

This procedure can be used in nodes of any type� It has not e�ect if used in the INIT�

Example�

IF EL�Shop � �� THEN TRACE ELSE IF EL�Shop �
 � THEN UNTRACE	

If the queue in Shop is greater than �� the trace starts� when the queue decreases and becomes
 or less the
trace is stopped�

	��� TRANS transfers a message

Syntax�

TRANS
�origin list�� ! FIRST ! LAST! �origin pointer� !� ! A ! B !�

�destination list�� ! FIRST ! LAST ! �destination pointer� !�	

It is used to transfer a message from one position in a list to another position in another or the same list�

� �origin list� is the name of the list from which the message is taken�

� FIRST ! LAST ! �origin pointer� indicates the position of the message to be sent�

� �destination list� is the name of the list to which the message has to be sent�

� ! A ! B ! is only used if a �destination pointer� follows� It is used to indicate if the message
has to be put after or before the position indicated by the pointer�

� FIRST ! LAST ! �destination pointer� indicates the position to which the message has to be sent�

This procedure can be used in nodes of any type�

Example�

SCAN
IL�Depot� P�Item� IF Cost � ��� THEN STOPSCAN	

TRANS
IL�Depot� P�Item� B� NewProc� P�Rear�	

After a scan in IL of node Dept the �rst message with Cost � ��� is pointed� Then it is transferred to the
EL of node NewProc before the element pointed by P Rear�

�� CHAPTER �� PROCEDURES

	��� UNTRACE stops the tracing

Syntax�

UNTRACE	

It is used to stop the trace mode that displays a detailed account of the events process� messages movements�
FEL evolution� etc�� useful for debugging�

This procedure can be used in nodes of any type� It has not e�ect if used in the INIT�

It must not be executed if the system is displaying a graphic�

Example�

IF TIME � ���� THEN UNTRACE	

Tracing mode is suppressed after the time �����

	��� UPDATE updates messages �elds or �eld variables

Syntax�

UPDATE
 ! MESS ! O�MESS ! VAR ! O�VAR ! �	

It is used to pass the values of �elds from a message in process to the corresponding �eld variables or�
alternatively the actual values of the �eld variables to the corresponding �elds of the message in process�
The argument indicates what has to be updated�

This procedure can be used only in nodes that process messages code of I� G� R� L� D� E type�
general nodes and associate instructions of GLIDER instructions that processes messages�

Example�

Inspect
G� Continue �� IF pH � � THEN SENDTO
Continue�

ELSE BEGIN Acid �
 TRUE	

UPDATE
MESS�	

END	

While the EL of Inspect is searching� the messages with pH � � are sent to the EL of the Continue node�
The others are left in the EL of Inspect after putting their Acid �eld to TRUE� Without the UPDATE the
�eld Acid is not changed�

Chapter �

FUNCTIONS

The GLIDER provides a set of functions that give values of characteristics of the lists� some simple mathe�
matical functions �besides those provided by the Pascal language� and some random functions that generate
random variates� These functions can be used in any place in the INIT and NETWORK sections in which
a variable of the same type is allowed� Here is a list of these functions an the returned values�

�� LL number of messages of a list�

�� MAXL maximum number of messages of a list�

	� MINL minimum number of messages of a list�

�� MEDL mean length of a list�

� DMEDL deviation of the mean length of a list�

�� MSTL mean time of staying time in a list�

�� DMSTL deviation of the mean time of staying time in a list�

� TFREE time that the list was free�

�� ENTR number of entries in a list�

��� MAX maximum value of a pair of real expressions�

��� MAXI maximum value of a pair of integer expressions�

��� MIN minimum value of a pair of real expressions�

�	� MINI minimum value of a pair of integer expressions�

��� MODUL rest from dividing two real expressions�

�
� BER random value from a Bernoulli distribution�

��� BETA random value from a Beta distribution�

��� BIN random value from a Binomial distribution�

�
� ERLG random value from an Erlang distribution�

��� EXPO random value from an Exponential distribution�

��� GAMMA random value from a Gamma distribution�

��� GAUSS random positive value from a Normal distribution�

��

�
 CHAPTER �� FUNCTIONS

��� LOGNORM random value from a Lognormal distribution�

�	� NORM random value from a Normal distribution�

��� POISSON random value from a Poisson distribution�

�
� RAND random value from a Multivariate distribution�

��� TRIA random value from a Triangular distribution�

��� UNIF random value from a real Uniform distribution�

�
� UNIFI random value from an integer Uniform distribution�

��� WEIBULL random value from a Weibull distribution�

�� LL number of messages of a list

Syntax�

LL
�list name��	

Returns the value �INTEGER� of the length of the list �EL or IL� indicated in �list name�� Example�

IF LL
Clerk�� �
 � � LL
Clerk�� THEN SENDTO
Clerk��

ELSE SENDTO
Clerk��	

�� MAXL maximum number of messages of a list

Syntax�

MAXL
�list name��	

Returns the value �INTEGER� of the maximumvalue attained for the list �EL or IL� indicated in �list name��

Example�

WRITELN
�The maximum in the third queue was �� MAXL
EL�Dec
Gat���	

�� MINL minimum number of messages of a list

Syntax�

MINL
�list name��	

Returns the value �INTEGER� of the minimumvalue attained for the list �EL or IL� indicated in �list name��

Example�

MaxiFreeSpa�i� �
 ParkSpa�i� � MIN
IL�Parking�i��	

�� MEDL mean length of a list

Syntax�

MEDL
�list name��	

Returns the value �REAL� of the mean of the length as a function of time for the list �EL or IL� indicated
in �list name��

Example�

IF MEDL
EL�Mac���� � ��� � MEDL
EL�Mac����

THEN T�Mac��� �
 ��� � M�Mac���	

���� DMEDL DEVIATION OF THE MEAN LENGTH OF A LIST ��

�� DMEDL deviation of the mean length of a list

Syntax�

DMEDL
�list name��	

Returns the value �REAL� of the standard deviation of the mean of the length as a function of time for the
list �EL or IL� indicated in �list name��

Example�

WRITELN
�Coefficient of variation for queue ��

DMEDL
EL�Office� � MEDL
EL�Office�� �� ��	

�� MSTL mean waiting time in a list

Syntax�

MSTL
�list name��	

Returns the value �REAL� of the mean of the waiting time of the messages that left the list �EL or IL�
indicated in �list name��

Example�

IF MSTL
EL�Park���� � MSTL
Park����� THEN SENDTO
Park����

ELSE SENDTO
Park����	

�	 DMSTL deviation of mean waiting time in a list

Syntax�

DMSTL
�list name��	

Returns the value �REAL� of the standard deviation of the mean of the waiting time of the messages that
left the list �EL or IL� indicated in �list name��

Example�

IF DMSTL
EL�Door�A� � DMSTL
Door�B� THEN Ch �
 �A�

ELSE Ch �
 �B�	

WRITELN
�Queue in door ��Ch�� had greater fluctuation��	

�
 TFREE time that the list was free

Syntax�

TFREE
�list name��	

Returns the value �REAL� of total time in which the list �EL or IL� indicated in �list name� was void�

Example�

Access
I� A�B �� IT �
 UNIF
�� ��	 IF BER
Prob�A� THEN SENDTO
A�

ELSE SENDTO
B�	

Prob�A �

� � TFREE
EL�A�� �

� � TFREE
EL�A�� �
� � TFREE
EL�A���	

��� CHAPTER �� FUNCTIONS

�� ENTR number of entries in a list

Syntax�

ENTR
�list name��	

Returns the value �INTEGER� of the number of entries in the list �EL or IL� indicated in �list name��

Example�

IF ENTR
EL�Theater� � ��� THEN BLOCK
Th�Arrival�	

��� MAX maximum value of a pair of real expressions

Syntax�

MAX
�real expression�� �real expression��	

Returns the value of that �real expression� that is greater�

Example�

n�
�	 m �
 MAX
�� MAX
�� n�� � �	

The value assigned to m is
�

��� MAXI maximum value of a pair of integer expressions

Syntax�

MAXI
�integer expression�� �integer expression��	

Returns the value of that �integer expression� that is greater�

��� MIN minimum value of a pair of real expressions

Syntax�

MIN
�real expression�� �real expression��	

Returns the value of that �real expression� that is lower�

��� MINI minimum value of a pair of integer expressions

Syntax�

MINI
�integer expression�� �integer expression��	

Returns the value of that �integer expression� that is lower�

Example�

Me �
 MAXI
MINI
X�� X��� MAXI
MINI
X�� X��� MINI
X�� X����	

WRITELN
�Medium is ��Me�	

����� MODUL REST FROM DIVIDING TWO REAL EXPRESSIONS ���

��� MODUL rest from dividing two real expressions

Syntax�

MODUL
�real expression�� �real expression��	

Returns the remainder that results from dividing the value of the �rst �real expression� by the second
�real expression�� when the division is performed until the units in the quotient�

Example� MODUL�
��� 	����
� is computed by dividing
�� � 	����
 � �
MODUL�
��� 	����
� is computed by�
�� � � 	����
 � �
�
� �assuming the year equal to 	����
 days�
��
days are � years plus �
�
 days�

��� BER random value from a Bernoulli distribution

Syntax�

BER
�real expression�� � �stream� ��	

Returns the BOOLEANvalue TRUE with a probability equal to the value of �real expression� and FALSE
with a probability of � � �real expression�� The probabilities are computed with random numbers taken
from the stream indicated by �stream�� This is an integer from � to ��� If omitted� � is assumed�

Example�

IF BER
���� THEN SENDTO
LargeDep� ELSE SENDTO
SmallDep�	

At random �� � of the times the messages are sent to LargeDep� �� � to SmallDep�

��� BETA random value from a Beta distribution

Syntax�

BETA
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a BETA function with �rst param�
eter equal to the �rst �real expression� and second parameter equal to the second �real expression��
computed with random numbers taken from the stream indicated by �stream�� This is an integer from � to
��� If omitted� � is assumed�

��	 BIN random value from a Binomial distribution

Syntax�

BIN
�integer expression�� �integer expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a binomial function with �rst pa�
rameter equal to the �rst �integer expression� and second parameter equal to the second �integer expression��
computed with random numbers taken from the stream indicated by �stream�� This is an integer from � to
��� If omitted� � is assumed�

��� CHAPTER �� FUNCTIONS

��
 ERLG random value from an Erlang distribution

Syntax�

ERLG
�real expression�� �integer expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is an Erlang function� This
is the sum of a number equal to �integer expression� of exponential functions with mean equal to
�real expression�� computed with random numbers taken from the stream indicated by �stream�� This
is an integer from � to ��� If omitted� � is assumed�

��� EXPO random value from an Exponential distribution

Syntax�

EXPO
�real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is an exponential function with
mean equal to �real expression�� computed with random numbers taken from the stream indicated by
�stream�� This is an integer from � to ��� If omitted� � is assumed�

��� GAMMA random value from a Gamma distribution

Syntax�

GAMMA
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a GAMMA function with mean
equal to the �rst �real expression� and deviation equal to the second �real expression�� computed
with random numbers taken from the stream indicated by �stream�� This is an integer from � to ��� If
omitted� � is assumed�

��� GAUSS random positive value from a Normal distribution�

Syntax�

GAUSS
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a normal function in which only
the positive values are considered� The mean is equal to the �rst �real expression� and the standard
deviation equal to the second �real expression�� computed with random numbers taken from the stream
indicated by �stream�� This is an integer from � to ��� If omitted� � is assumed�

��� LOGNORM random value from a Lognormal distribution

Syntax�

LOGNORM
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a lognormal function with mean
equal to the �rst �real expression� and deviation equal to the second �real expression�� computed
with random numbers taken from the stream indicated by �stream�� This is an integer from � to ��� If
omitted �� is assumed�

����� NORM RANDOM VALUE FROM A NORMAL DISTRIBUTION ��	

��� NORM random value from a Normal distribution

Syntax�

NORM
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a normal function with mean
equal to the �rst �real expression� and deviation equal to the second �real expression�� computed
with random numbers taken from the stream indicated by �stream�� This is an integer from � to ��� If
omitted� � is assumed� The algorithm may produce negative values�

��� POISSON random value from a Poisson distribution

Syntax�

POISSON
�real expression� � ��stream� ��	

Returns an INTEGER value of a random variable whose probability function is a Poisson function with
mean equal to �real expression�� computed with random numbers taken from the stream indicated by
�stream�� This is an integer from � to ��� If omitted� � is assumed�

��� RAND random value from a multivariate distribution

Syntax�

RAND
�array�� � ��stream� ��	

This is in reality a procedure� It is used to generate random variates taken from multivariate random
functions� The n�dimensional random functions are given by an n�dimensional �array� whose values are an
n�dimensional frequency table� It must be declared of FREQ type and initialized in the INIT section�
The values of the variables must be declared in a two dimensional arrays �one array for each variable�� In
the �rst row are the successive values of the �rst variable� in the second row the successive values of the
second variable� etc� The number of rows is then equal to the number of variables� The number of columns
must be equal to the number of values of the variable that has the maximum number of values� The name
of this array must be VAL �array�� When the procedure is evaluated� a random value is computed for each
variable according to the frequency table given in �array� and these values are stored in an array of name
RAND �array� to be used in the program� The values are computed with random numbers taken from the
stream indicated by �stream�� This is an integer from � to ��� If omitted� � is assumed�

Example ��

Test RAND procedure for multivariate random values�

This example generates random numbers from a distribution

given by a three variable frequency table given by an array Mul of

three indexes� The multivariant frequency table is�

�� �� �� ��

������ ������

��� ! � � ��� ! � �

��� ��� ! � � ��� ��� ! � �

���� ! � � ���� ! � �

So� Mul������������
� is the number of cases in which the values

of the variables were
���� ���� ���	

��� CHAPTER �� FUNCTIONS

Mul�������������
�

The sum of all values is ��� The first matrix sum up ��� the

second one� ���

The RAND algorithm selects one vector� for example
���� ���� ���

with a probability according to the frequency table�

Each value is selected according to its marginal probability

distribution conditional to the previous values�

It is decided between ��� and ��� according its

marginal probabilities� ����� for ��� and ����� for ����

If the selected is� for instance ���� the second value is selected

according to the marginal probabilities�
������� for the

value ����
������� for the value ����
������� for the value �����

If the selected is� for instance ���� the third value is selected

according to the probabilities ��� for ���� and ��� for �����

See that the probability of the value
���� ���� ��� is

then ��������������
����� as may be see directly�

The following program computes ����� random numbers with the

frequencies in the array Mul� counts the different results

and put them in a table Zzz similar to Mul� The values in Zzz

must be approximately those in Mul�

NETWORK

A�� IT �
 �	 RAND
Mul���	

IF RANDV�Mul���
 ��� THEN I �
 � ELSE I �
 �	

IF RANDV�Mul���
 ��� THEN J �
 � ELSE

IF RANDV�Mul���
 ��� THEN J �
 � ELSE J �
 �	

IF RANDV�Mul���
 ���� THEN K �
 � ELSE K �
 �	

Zzz�I� J� K� �
 Zzz�I� J� K� � �	

Result
A��� WRITELN	

FOR I �
 � TO � DO

BEGIN WRITELN	

FOR J �
 � TO � DO

BEGIN WRITELN	

FOR K �
 � TO � DO WRITE
Zzz�I� J� K� � ����� �� ��	

END

END	

PAUSE	 ENDSIMUL	

INIT

ACT
A� ��	

ASSI Mul������ ����� ����� �

 �� � ��
 �� � ��
 �� � � � �

 �� � ��
 �� � ��
 �� � � � � 	

ASSI VAL�Mul������ ������

���� ���� �����
�� �� ����
��� ��� �� � 	

ASSI Zzz������ ����� ����� �

 �� � ��
 �� � ��
 �� � � � �

 �� � ��
 �� � ��
 �� � � � � 	

ACT
Result� ������	

DECL VAR Mul� ARRAY������ ����� ����� OF FREQ	

Zzz� ARRAY������ ����� ����� OF REAL	

����� TRIA RANDOM VALUE FROM A TRIANGULAR DISTRIBUTION ��

VAL�Mul� ARRAY������ ����� OF REAL	

I� J� K� INTEGER	

END�

Example ��

Logs are processed by a set of machines� The processing time

was adjusted by regression to a linear function of the Length L

and the Diameter D of the logs� Logs arrive each �� m� with random

sizes� A frequency table aggregated in � diameters
��� ��� ��

inches� and � lengths
��� ��� ��� �� feet�� obtained by sampling�

gives the quantity in each class�

NETWORK

Arrivals
I� �� IT �
 ��	 RAND
Fld�	

L �
 RANDV�Fld���	 D �
 RANDV�Fld���	

Machines
R� �� STAY �
 ��� � ���� � L � ���� � D	

Dep
E� ��

INIT

ACT
Arrivals� ��	 TSIM �
 ����	 Machines �
 �	

�Multivariate frequency array D� rows L� columns� ��

ASSI Fld������ ����� �

� Length feet �

� �� �� �� �� �

����

 ���� ���� ��� �� ��

�Diameter inches� ����
 ��� ���� ��� �� ��

����
 ��� ��� ���� ���� � 	

�values of the variables
columns� � ��

ASSI VAL�Fld������ ������

��� ��� ��� ���
��� ��� ��� ���� 	

DECL VAR�Fld� ARRAY������ ����� OF FREQ	

VAL�Fld� ARRAY������ ����� OF REAL	

MESSAGES Arrivals
L� D� REAL�	

STATISTICS ALLNODES	

END�

��� TRIA random value from a Triangular distribution

Syntax�

TRIA
�real expression�� �real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a randomvariablewhose probability function is a triangular function with minimum
equal to the �rst �real expression�� mode equal to the second �real expression�� and maximum equal
to the third �real expression�� computed with random numbers taken from the stream indicated by
�stream�� This is an integer from � to ��� If omitted� � is assumed�

��	 UNIF random value from a real Uniform distribution

Syntax�

��� CHAPTER �� FUNCTIONS

UNIF
�real expression�� �real expression� � ��stream� ��	

Returns a REAL value of a random variable whose probability function is a continuous uniform function with
minimum equal to the �rst �real expression� and maximum equal to the second �real expression��
computed with random numbers taken from the stream indicated by �stream�� This is an integer from � to
��� If omitted� � is assumed�

��
 UNIFI random value from an integer Uniform distribution

Syntax�

UNIFI
�real expression�� �real expression� � ��stream� ��	

Returns an INTEGER value of a random variable whose probability function is a discrete uniform function
with minimumequal to the �rst �real expression� and maximumequal to the second �real expression��
computed with random numbers taken from the stream indicated by �stream�� This is an integer from � to
��� If omitted �� is assumed�

��� WEIBULL random value from a Weibull distribution

Syntax�

WEIBULL
�real expression�� �real expression� � ��stream� ��	

Returns a value of a random variable whose probability function is a function with �rst parameter equal
to the �rst �real expression� and second parameter equal to the second �real expression�� computed
with random numbers taken from the stream indicated by �stream�� This is an integer from � to ��� If
omitted� � is assumed�

Chapter 	

RESERVED WORDS

The GLIDER system de�nes a set of identi�ers as reserved words� They cannot be de�ned by the user�

��� Message variables

� GT real� generation time of the message being processed�

� O GT real� generation time of the message being processed�

� ET real� time of entry of the message to the actual list�

� O ET real� time of entry of the alternative message to the actual list�

� XT real� time of exit of the message from the actual list�

� O XT real� time of exit of the message from the actual list�

� USE real� quantity of resource to be used by the message�

� O USE real� quantity of resource to be used by the alternative message�

� NUMBER integer� generation number� in its origin node� of the message being processed�

� NODE string� name of the origin node of the message being processed�

� O NUMBER integer� generation number� in its origin node� of the alternative message being pro�
cessed�

� O NODE string� name of the origin node of the alternative message being processed�

� REMA real� its value is the remaining time of a preempted message� although it must be declared by
the user in a MESSAGES declaration� it is managed by the instruction PREEMPTION�

��� Event variables

� IEV integer� index of the event�

� EVP byte� parameter of the event�

� SU boolean� parameter to suspend the event�

���

��
 CHAPTER 	� RESERVED WORDS

��� Indexed node variable

� INO integer� index of the node being executed� also index of the EL from which the messages are
selected from a type D node with multiple predecessors�

��� Control and state variables

� ICOPY integer� number of the copy produced by a COPYMESS instruction�

� EXTREL boolean� TRUE if there was extraction of messages by an instruction REL�

� SYNC boolean� TRUE if there was assembling or synchronization of messages by ASSEMBLE or
SYNCHRONIZE instructions�

� SENT boolean� TRUE if a SENDTO was executed�

� RND�� integer �� real� index from � to ��� is the actual value of the random number between � and
� of the stream given by the index�

� RN�� integer �� real� index from � to ��� is the actual value of the random number �between � and
the module �����
	����� of the stream given by the index� Its initial value is the seed of the stream�
This value can be changed by the user�

��� Node dependent variables

In the following �node name� includes the index between � �� if the node is multiple�

� IL�node name� designs the internal list of the node�

� EL�node name� designs the entry list of the node� If the node is of D type with several predecessors
it must include the reference to the predecessor between ���

� U�node name� real� its value is the actual quantity of used resource of the R node�

� F�node name� real� its value is the actual quantity of free resource of the R node�

� M�node name� real� its value is the total quantity of resource of the R node�

� DT�node name� real� its value is the integration step that will be used in the indicated C type node�
The RKF method may change it during the integration process�

��� Variables depending on user�s variables

� O �variable� where �variable� is a �eld variable� It keeps the value of the alternative �eld�

� RANDV �frequency array name� keeps the vector of the random values taken from a random
multivariate frequency table�

� VAL �frequency array name� must be given by the user� it must contain the possible values of the
random variables corresponding to a multivariate frequency table�

� N �DBASE table name� is generated when DBASE tables are used� it contains the number of records
in the table�

� NOM �DBASE table name� is an array generated when DBASE tables are used� It contains the
names of the �rst �eld of the records in the table�

� name in �elds are constants generated when DBASE tables are used� They have the names of the
�rst �elds in the table and their values are �� �� 	� etc� �see example in ��
�

	��� VARIABLES THAT MAY BE INITIALIZED BY THE USER ���

��	 Variables that may be initialized by the user

� IT real� its value is the Interval Time until the next activation of the node being executed�

� NT real� its value is the Next Time of activation of the node being executed�

� STAY real� its value is the scheduled permanence of the message being processed in the

IL of a node type R�

� TIME real� its value is the actual simulation time�

� TITLE string of
� characters� It contains the title of the experiment�

� TSIM real� its value is the total simulation time�

��
 Classes of declarations

CONST DBTABLES FACTORS GFUNCTIONS
MESSAGES NODES PROCEDURES RESPONSES
STATISTICS TABLES TYPE VAR

The use of RESPONSES and FACTORS �for the design of experiments� will be introduced in a future
version of this manual�

��� GLIDER or Pascal prede�ned types

ARRAY BOOLEAN BYTE CHAR
CONT DOUBLE FILE FUNCTION
FREQ INTEGER LONGINT POINTER
PROCEDURE REAL RECORD RET
SET STR
� STRING TEXT
WORD

���� Pascal separators

BEGIN CASE DO DOWNTO
ELSE END END� FOR
GOTO IF IN NIL
OF REPEAT THEN TO
UNTIL WHILE

���� GLIDER types of functions
GFUNCTIONS�

DISC FREQ POLYG SPLINE
STAIR

���� GLIDER separators

NETWORK INIT DECL END�
MODULE EXPER ENDEXP MODULE is used in the NETWORK section to divide the simulation program in units� This is very convenient in case of very la

��� CHAPTER 	� RESERVED WORDS

���� Operators

AND DIV MOD NOT
OR XOR

���� GLIDER instructions and procedures

ACT ASSEMBLE ASSI BEGINSCAN
BLOCK CLRSTAT COPYMESS CREATE
DBUPDATE DEACT DEASSEMBLE DEBLOCK
DOEVENT DONODE ENDSIMUL EXTFEL
EXTR FIFO FILE FREE
GRAPH INTI IT LIFO
LOAD MENU METHOD NOTFREE
NT ORDER OUTG PAUSE
PREEMPTION PUTFEL REL RELEASE
REPORT RETARD SCAN SELECT
SENDTO SORT STAT STATE
STAY STOPSCAN SYNCHRONIZETAB
TITLE TRACE TRANS TSIM
UNLOAD UNTRACE UPDATE USE

���� Pascal procedures

APPEND ASSIGN BLOCKREAD BLOCKWRITE
CLOSE CLRSCR DELAY DISPOSE
FILEPOS FILESIZE GETDATE GETTIME
GOTOXY MAX MIN NEW
OPEN READ READLN RELEASE
RESET REWRITE SEEK SOUND
STR TRUNCATE VAL WRITE
WRITELN

���� GLIDER functions

BER BETA BIN DMEDL
DMSTL ENTR ERLG EXPO
GAMMA GAUSS LL LOGNORM
MAX MAXI MAXL MEDL
MIN MINI MINL MODUL
MSTL NORM POISSON RAND
TFREE TRIA UNIF UNIFI
WEIBULL

���	 Pascal functions

ABS ARCTAN COPY COS
EOF EXP FILESIZE INT
KEYPRESSED LENGTH LN NOSOUND
OFS ORD RANDOM READKEY

	���� COLORS ���

ROUND SEG SIN SQRT
TRUNC WHEREX WHEREY

���
 Colors

BLACK BLUE BROWN CYAN
DARKGRAY GREEN LIGHTBLUE LIGHTCYAN
LIGHTGRAY LIGHTGREEN LIGHTMAGENTA LIGHTRED
MAGENTA READ RED WHITE
YELLOW

���� Pascal constants

HEAPORG HEAPPTR HEAPEND

���� Other reserved words

� A or B used in SENDTO� TRANS� and PUTFEL to indicate if the message is put before �B� or after
�A� the pointed message �in the case of SENDTO or TRANS� or the event with the same value of
TIME �in the case of PUTFEL�� Note that there are not reserved words outside these instructions�

� A or D used in the procedures ORDER and SORT to indicate the increasing �A� or decreasing �D�
order� They are not reserved word outside these procedures�

� ALL used in ASSEMBLE or SYNCHRONIZE to indicate that all the elements of the list must be
assembled or synchronized�

� ALLNODES used in STATISTICS to ask for statistics of all the nodes�

� EABS absolute error for RKF method of integration�

� ELIM in the ASSEMBLE instruction indicates that all the assembled messages but the representative
will be eliminated�

� EQUFIELD in the ASSEMBLE or SYNCHRONIZE to group messages with equal value in a �eld�

� EREL relative error for RKF method of integration�

� EUL indicates Euler method of integration�

� FIRST in an ASSEMBLE instruction it indicates that the �rst assembled message will represent the
group�

� FIRST or LAST in SENDTO and TRANS to indicate if the sent or transferred message is put at
the beginning or ending of the list� These words are also used in pointers as indicated in section ������

� FREE in SENDTO to indicate the �rst free in a multiple node�

� LABEL used in the heading of a node �to declare labels for the node��

� MESS used in UPDATE to update the �elds of the message being processed�

� MIN in SENDTO to indicate the less occupied in a multiple node�

� MAXSEL in SELECT to indicate the maximum of messages to be selected in the next selection
attempt�

��� CHAPTER 	� RESERVED WORDS

� NEW in an ASSEMBLE instruction it indicates that a new message will represent the group�

� NREP number of the replication when the Replications option is used �its use will be discussed in a
future version of the GLIDER manual��

� O MESS used in UPDATE to update the �elds of the alternative message being processed�

� OUTF alternative �le variable in REPORT instruction�

� O VAR used in UPDATE to update the �elds variables of the alternative message being processed�

� RKF indicates Runge�Kutta�Fehlberg method of integration�

� RK� indicates fourth order Runge�Kutta method of integration�

� TRUE used in the instruction ASSEMBLE instead of a logical expression�

� VAR used in UPDATE to update the �eld variables of the message being processed�

� VAR used in the heading of a node �to declare local variables��

���� Types of Node

The following letters� that indicate the types of node� are not reserved words� see chapter
� however� they
are included here�

� G

� L

� I

� D

� E

� R

� C

� A

���� Constants

� MAXREAL ���E	

� MAXINTEGER 	����

� MAXLONGINT �����
	���

� MAXWORD �

	�

� PI 	����
����

Chapter �

OPERATION

The GLIDER system operates in the MS�DOS operating system�

���� GLIDER system

The Operation of the GLIDER system needs at least the following �les to function in its elementary form�

UG
�EXE GLIDER compiler
TURBO�TPL Turbo Pascal line compiler v��
PP�PAS GLIDER procedures
FUNG�TPU GLIDER functions
INPOUT�TPU I�O unit
GDINAR�TPU Random variates from multivariate distributions
GGRAPHIC�TPU GLIDER graphic generation
RATON�TPU Mouse managing unit
OBJECTS�TPU Mouse management
DRIVERS�TPU Mouse driver
GRAPH�TPU Turbo Pascal graphic unit
TPC�EXE Turbo Pascal procedures
GL�BAT System monitor
TURBO�EXE Turbo Pascal compiler �if the editor of this program is used�
EGAVGA�BGI Graphic unit

The elementary use requires to have the source �les in the same directory as the GLIDER �les and its
presentation is not very sophisticate� but may be convenient during the development of large programs
because of memory saving in the compilation�

An environment may be used without those restrictions� To use the environment the following units have to
be added�

GLIDERIN�EXE Environment unit
GLEDIT�EXE Editor unit
TVGLIDER�BAT System monitor
TVGL�BAT System monitor

In this case TURBO�EXE and GL�BAT are not needed�

To use graphic input the following units have to be added

GLIDERIN�EXE Environment unit
GLEDIT�EXE Editor unit
GLIDER�GRA Graphic data

��	

��� CHAPTER �
� OPERATION

TVGLIDER�EXE System monitor
TVGL�BAT System monitor
GLISIMB�EXE Symbols generator

The �les TURBO�EXE� TURBO�TPL� GRAPH�TPL� EGA�BGI� and TPC�EXE are �les from the package
Turbo Pascal V�� of Borland Corp� and are not provided with the GLIDER system� The user may
contact with authorized dealers to get them

���� Source program

The source program must be in a �le with extension GLD in ASCII code� It is a text �le with lines of �

characters at most� from column � to �
�

���� Operation without environment

The source �le must be in the directory of the GLIDER system� The process of compiling and execution is
called with the command�
� GL � filename �
The extension GLD must be omitted� The GLIDER compiler produces a Pascal program that is then com�
piled by the Turbo Pascal compilerTPL�EXE� The executable program remains in the �le� filename�EXE ��
Then the execution phase begin� That starts with the Initial Menu�

���� Initial menu

This menu appears at the beginning of the execution� It has the following options�

I Initialize and run
T set Title of the experiment
R make Replications
G Graphic
A set Additional time
Q Quit

� I to initialize the system variables� it executes the INIT section and it calls the Run Interactive Menu�

� T allows to introduce a title up to
� characters that will appear in the statistical output�

� R allows to make replications of the run without re�initializing the seeds of the random numbers�

� G to display a graphic for the results �led with the FILE instruction during a simulation run�

� A to run an experiment with extra time after a run�

� Q to abandon the run

After this menu the INIT section is executed and the Run Interactive Menu is called�

���� Run interactive menu

It appears after the execution of the INIT section and just before the beginning of the simulation� During
the simulation it may be called by pressing the M type�

It has the following options�

�
��� TRACING ��

C Continue
S initialize Statistics
E read Experiment
W Write statistics
F display Future event list
D Display or skip statistics after each replication
T Trace
G Graphic
Q Quit

� C to continue the operation or run�

� S to initialize Statistics and continue the run�

� E to shown the Experimental variables� these may be changed by the user�

� W to write the standard statistics at the actual state of the run�

� F to display Future Event List indicating Node� Time� Index and Event Parameter�

� D to allow to decide if the standard statistics will be displayed or skipped after each replication�

� T to put the tracing mode�

� G to allow to display a graphic for the results �led with the FILE instruction during the simulation
up to the actual time�

� Q to �nish the simulation�

���� Tracing

In the Trace mode the program is executed step by step� It may be very useful for inspection and debugging�
In each event the movements of the messages are reported in detail and the FEL is displayed� The steps are
advanced pressing any key di�erent of T �stop tracing� and M �call Menu�� Tracing may be very useful for
inspection and debugging�

Tracing may be called from the Run Interactive Menu� from the program �TRACE procedure� see ���	� or
by pressing the T key during the running� If it is called from the Menu the system asks if user want to keep
the output shown in the screen in a �le for detailed examination� Tracing is terminated by pressing the T
key several times or M to call the Run Interactive Menu� See an example in the Chapter ��

���	 Statistics

The standard statistics of the simulation are requested by the STATISTICS declaration �see ����� in which
nodes and variables for which statistics are wanted are indicated� Statistics are always displayed at the end
of the simulation run� They may also be displayed when a STAT instruction �see ����� is executed or by
request from the Run Interactive Menu� The statistics presented are�

� The title of the experiment� by default �Basic Experiment�� The user can put other titles from the
program �see instruction TITLE� section ����� or from the Execution Menu�

� The total time of simulation and the last time in which the statistics were initialized �see procedure
CLRSTAT� section �����

� The number of the replication�

� The date and time of the beginning of the execution�

��� CHAPTER �
� OPERATION

� The real time spent in the simulation run�

� For the I type nodes the number of generated messages�

� For each EL and IL the statistics are�

� the number of entries� in the list�

� the actual length�

� the maximum length attained�

� the mean length and its deviation�

� the maximumwaiting time that one message had to wait in the list�

� the mean waiting for all the messages that were in the list�

� its deviation�

� the time that the list remained empty�

� For the E types nodes the mean time in the system of the messages destroyed in the node and its
deviation�

� For the used time of the resources and the requested variables the statistics given are�

� the mean �t� and deviation of the variables as a function of time�
Example� if a variable take the values�
� at time ��
 at time �� � at time
� � at time
� and remain � to the end time� that is ��� then
the mean is�
���� �� � � � �
 � �� �
 � �
�
� � � � ����
� � ������� �� � ���������

� the maximum and minimum values�

� the mean �v� and deviation of the values attained for the variable�
Example� In the above example this mean is�
�� �
 � �� ���� �� ��

� the actual ��nal� value�

After the statistics the Final Menu is displayed

���
 Final Menu

R Repeat statistics
C Continue
M Menu
F Frequency tables
G Graphic

� R The system asks for a �le to put the statistics� It may be CON to use the screen again� LPT� for
the printer or any �le indicated by the user�

� C Continue to the next menu that will be the Initial Menu again to continue the simulation with
additional time or to repeat the run with possible modi�cations� From this it is also possible to quit
the simulation�

� M Call the Run Interactive Menu�

� F To display frequency tables�

� G to display a graphic for the data �led with the FILE instruction during a simulation run�

When the option C is selected the Initial Menu is called again�

Chapter ��

DEVELOPMENT OF GLIDER

���� The GLIDER group

The development of the language started in ��

 from a proposal made by Renato Del Canto� who par�
ticipated in the early meetings with Carlos Domingo and Marisela Hern"andez� All them were working at
the IEAC �Institute for Applied Statistics and Computing of the Economy Faculty at Los Andes University�
M"erida� Venezuela�� The general outlines were designed by C�Domingo and M� Hern"andez during ��

���
��
and useful suggestions were made by Cristina Zolt"an from Sim"on Bol"#var University� Since ��
�� a formal
group� constitued by Carlos Domingo� Marta Sananes� Giorgio Tonella� Jos"e G� Silva and Herbert Hoeger�
developed important features of the language and advised the implementation of the compiler� made by
C�Domingo and the graphic input programmed by M�Sananes� G� Tonella� from the CESIMO �Modeling
and Simulation Research Centre of the Engineering Faculty�� was responsable for the development of ap�
plications that suggested new developments and improvements� He also contributed with general key ideas
linking the structure of the language with the general theory of simulation� Important suggestions� devel�
opments and applications were made in graduate and undergraduate thesis� supervised by member of the
GLIDER group �such as Carlos Domingo� Herbert Hoeger� Marta Sananes� Giorgio Tonella��

Omar Velandia ������� Oscar Nu$nez ������� Cruz Mario Acosta ���������� Gerardo Rojas ������� Henry
Reinoza ����������� Maria D"avila ������� Mayba Uzc"ategui ����������� Segundo Quir"oz �M�Sc� �������
��
LilianaCapacho ������� DominiqueTineo ������� Hungr"#aBerbes"# ����	�� Tania Zambrano �M�Sc� ���	������
Mauricio Jer"ez �M�Sc� ���	�� Esperanza D"#az ����	��	�� Kay Tucci ����	���	�� Francisco Palm �����������
Gilberto Gonz"alez ������� Ter"an Osvaldo �M�Sc� ���������� Ricardo Guanieri �M�Sc� ������ Margarita
Molina �M�Sc� ���
��

And with the research training projects of the following students�

Kay Tucci ����	�� Tania Jim"enez ��������	�� Gilberto Gonz"alez ������� Rafael Tineo ������� Dante Conti
������� Marisol Benitez �������

Financial support were obtained from the C�D�C�H�T� �Comittee for Scienti�c� Humanistic and Technological
Development� of the Andes University� M"erida� Venezuela for the period ��������� �project E�������� and
��������
 �project I�
����
�AA��

���� How to get the GLIDER

The software for using the GLIDER and a User�s Manual in Spanish or in English is available from� Carlos
Domingo� IEAC� FACES� Universidad de los Andes� M"erida� Venezuela� email� carlosd%ula�ve or from�
Giorgio Tonella� CESIMO� Facultad de Ingenier"#a� Universidad de los Andes� M"erida� Venezuela� email�
cesimo%ula�ve�

GLIDER is available in two versions� a commercial and a student version� for MS�DOS or Unix operating
systems�

���

��
 CHAPTER ��� DEVELOPMENT OF GLIDER

The software does not include Turbo Pascal V��� Some unit of this system are required to use the GLIDER�
This system must be obtained from Borland International or authorized dealers�

���� Di�erences of Version ���
July ����� with the previous

versions

������ Introduction

Only the main di�erences are listed below� The �rst prototypes developed during ��

���
� had very
few commands �such as STAY� STOP� TSIM� TIME� FIFO� LIFO� STAT� USE� PREE �for Preemption��
ACT� ORDER� ASSEMBLE� SYNC�� They included the � basic nodes �G� L� I� D� E� R� and the following
commands for the lists� EXAM� EXTRACT� MOVE� ACREF� FIN� SORT� None of these were included in
the later versions� In addition� the code of nodes were divided depending of the code functions �for example
in the following parts� Assign� Next� File� Revi� Use� etc��� The heading of node was completly di�erent
from the present version�

������ Version alfa ��
		� and beta ��
	
�

The alfa and beta versions are more similar to the present version� The alfa version was including the
instructions POINT� EXAM� EXTR� MOVE to use records� It includes other commands that disappears in
the version � such as NOSUG� EXAM� MOVE� The beta version included �in addition to the alfa version�
the instructions EXTR� GRAPH� SCAN� CLRSTAT� DEASSEMBLE� TRACE� UNTRACE� DONODE�
DOEVENT� RELEASE� STATE� TAB and most of the basic GLIDER functions� It included also node with
subindex �multiple node�

������ Version � �February �

��

The di�erences with the previous beta version were the inclusion of�

� Node type C with the METHOD Euler and Runge Kutta Fehlberg�

� Instruction GRAPH

� Instruction ASSI

� Instruction FILE�

� Instruction INTI�

� Instruction OUTG�

� Procedure DEACT�

� Important changes in the instructions ASSEMBLE� SCAN� SELECT� SYNCHRONIZE�

� Elimination of the instructions MOVE� SPLIT� COUNT� SENDTOF�

� Instruction COPY�

� Functions MAX� MAXI� MIN� MINI�

� Random functions BETA� BER� GAMMA� LOGNORM� POISSON� TRIA� WEIBULL�

� The GLIDER environment �without the graphic facility��

� The syntactical editor�

����� DIFFERENCES OF VERSION ��

JULY �		�� WITH THE PREVIOUS VERSIONS ���

������ Version ��� �May �

��

It included�

� Node type A�

� METHOD Runge Kutta �RK���

� LABEL and VAR as local variable of a node�

� Functions GAMMA� BETA� LOGNORM�

� Interpolation with SPLINE�

� Function MODUL�

� Graphic facility to develop the model�

������ Version ��
 �May �

�� and Version ��� �November �

��

It included�

� Change of the instruction NODE to the instruction MESSAGES�

� The instruction TRANS�

� The instructions REPORT ��� ENDREPORT�

� Change in ASSEMBLE �EQUFIELDS��

� The instruction FILE�

� A new editor�

������ Version ��
 �April �

�� and ��� �September �

��

It included�

� Possibility to use MODULE to divide the network in units�

� Possibility to connect with a data base �DBASE IV� instructions LOAD� UNLOAD� DBUPDATE��

� Procedure RETARD�

� Procedures BLOCK and DEBLOCK�

� Procedures BEGINSCAN and MENU�

� Elimination of the instructions GO� GOALL� STOP� STOPALL�

� Change in the instruction SENDTO�

� Elimination of the procedure AGRE�

� Elimination of resources with size � and introduction of resources with size MAXREAL�

� New version of the manual in Spanish�

� New default statistics�

� First short version of the manual in English�

� Change of instruction COPY to COPYMESS�

� A new version of the GLIDER environment�

��� CHAPTER ��� DEVELOPMENT OF GLIDER

������ Version ��
 �July �

��

It includes�

� A complete new version of the manual �in English��

� A correction of some bugs and a complete review of all the commands with minor changes�

� A version for the Unix operating system�

� Elimination of GPOINTER declaration�

Bibliography

��� Acosta Castillo� C� A� ����� �Editor Sint"actico del Lenguaje de Simulaci"on GLIDER� Documento de
Dise$no��Trabajo especialde grado� �Syntactic Editor for GLIDER Simulation Language� Thesis� Escuela
de Ingenier"#a de Sistemas� Universidad de los Andes� M"erida� Venezuela� Tutor� G� Tonella�

��� Acosta Castillo� C� A� ����� �Ambiente Integrado del GLIDER� Manual del Usuario� Versi"on �����
�Integrated Environment of GLIDER� User�s Manual� Version �� CESIMO Technical Report IT������
Universidad de los Andes� M"erida� Venezuela� March �����

�	� D"#az E� ���	� �Modelo en GLIDER para el Central Azucarero de R"#oTurbio�� Trabajo especial de grado�
�GLIDER Model of Sugar Mill at Rio Turbio� Thesis� Escuela de Ingenier"#a de Sistemas� Universidad
de los Andes� M"erida� Venezuela� Tutor� C� Domingo�

��� Domingo� C� ��

� �GLIDER� A Network Oriented Simulation Language for Continuous and Discrete
Event Simulation�� Intl� Conf� on Math� Models�� Madras� India� �Aug� �������

�
� Domingo� C� y Hern"andez� M� ��

� �Ideas B"asicas del Lenguaje GLIDER�� �Basic Ideas of GLIDER
Language� Mimeogra�ado� IEAC� Universidad de los Andes� Octubre de ��

� M"erida� Venezuela� pp�
	��

��� Domingo� C� y Hern"andez� M� ��

 �GLIDER� A Network Oriented Simulation Language�� �nd Work�
shop on Computer Performance Evaluation� Milan� �May 	� � Jun ���

��� Domingo� C�� M� Hern"andez� M� Sananes� J� Silva y G� Tonella� ��
�� �GLIDER� A New Simulation
Language�� Intl� Congress of New Technology for the Development of Software and Supercomputers�
Caracas� Venezuela� �Nov� ��� Dic� ���

�
� DomingoC�� G� Tonella� H� Hoeger� M� Hern"andez� M� Sananes y J� Silva� ���	� �Use of Object Oriented
Programming Ideas in a New Simulation Language�� in Schoen �ed�� Proceedings of Summer Computer
Simulation Conference� Boston� ����� de Julio de ���	� pp �	������

��� Domingo C�� Quiroz S�� Ter"an O������� Sistema Estad"#stico para el Lenguaje de Simulaci"on GLIDER�
�Statistical System for Simulation Language GLIDER�� Meeting of Venezuelan Society of Biometric and
Statistics� Caracas Julio �����

���� Domingo C�� Fargier M�E�� Mora J��Rojas A�� Tonella G� ����� �Modelo de la Econom"#a de Venezuela
basado en Conceptos Microecon"omicos� �Model of Venezuelan Economy based on Microeconomic Con	
cepts�� XII Latin America Meeting o Econometric Society� August �����

���� Domingo C� ����� �Modelo de Simulaci"on de Flujo de Crudos y Puerto Petrolero usando el Lenguaje
GLIDER� � �Simulation Model of Oil Flow and Shipment using GLIDER Language�� IEAC� Universidad
de los Andes� M"erida� Venezuela�

���� Hern"andez� C� ���	� �Ense$nanza Programada para el GLIDER�� Trabajo Especial de Grado� �Pro	
grammed Learning of GLIDER Language� Thesis�� Escuela de Ing� de Sistemas� Universidad de los
Andes� M"erida� Venezuela� Tutor� G� Tonella�

���

��� BIBLIOGRAPHY

��	� Jim"enez� T� ����� �Ambiente Gr"a�co para el Lenguaje de Simulaci"on GLIDER� sobre el Sistema X�
Windows���The Graphical Environment for the GLIDER Language� using the X	Windows System��
Pasant"ia de Investigaci"on� Escuela de Ing� de Sistemas� Universidad de los Andes� Tutor� M� Sananes�

���� Palm� F� ���	� �Prototipo de Lenguaje GLIDER para Manejar Problemas de Valores Iniciales en
Derivadas Parciales�� Trabajo especial de grado� �GLIDER Language Prototype to handle Initial Value
Problems in Partial Di
erential Equations� Thesis� Escuela de Ingenier"#a de Sistemas� Universidad de
los Andes� M"erida� Venezuela� Tutors� G� Tonella and C�Domingo�

��
� Quir"oz� S� ����� �Dise$nos Experimentales en Simulaci"on�� Tesis de Maestr"#a� �Experimental Designs in
Simulation� M�S� Thesis in Statistics� IEAC� Universidad de los Andes� M"erida� Venezuela� Julio de
����� Tutor� C� Domingo�

���� Reinoza� M� ����� �An"alisis de Lenguajes de Simulaci"on para Control y su Posible Adaptaci"on al
Lenguaje GLIDER�� Trabajo especial de grado� �Analysis of Control Simulation Languages and Adap	
tation to GLIDER Language� Thesis� Escuela de Ingenier"#a de Sistemas� Universidad de los Andes�
M"erida� Venezuela� Tutor� G� Tonella�

���� Sananes� M� ����� �Editor Gr"a�co del Lenguaje de Simulaci"on GLIDER� Documento de Dise$no��
�Graphic Editor of GLIDER Simulation Language� Design Report� Publicaci"onCesimo IT������ Cesimo
and IEAC� Universidad de los Andes� M"erida� Venezuela� Febrero de �����

��
� Sananes� M� ����� �Instructivo del Uso del Editor Gr"a�co del Lenguaje de Simulaci"onGLIDER�� Cesimo
and IEAC� �Manual for Using of Graphic Editor of the GLIDER Simulation Language� Universidad de
los Andes� M"erida� Venezuela� Febrero de �����

���� Ter"an O� ����� �Simulaci"on de Cambios Estructurales en Lenguaje GLIDER� � Tesis de Maestr"#a en
Estad"#stica Aplicada� �Simulation of Structural Changes in GLIDER Language� M�S� Thesis in Applied
Statistics�� IEAC� Universidad de los Andes� M"erida� Venezuela� Tutor C�Domingo�

���� Tonella G� y C� Domingo� ����� �GLIDER� a New Simulation Language� in K�G� Nock �ed�� Proceed�
ings de UKSC Conference on Computer Simulation ����� Brighton
�� de Septiembre de ����� UKSC
Publications� Burgess Hill� England� p ����
�

���� Tonella� G�� Acevedo M�� Sananes M�� Domingo C�� H� Hoeger� M� Ablan� �Simulation of Ecosystems
with GLIDER� a Discrete�Continuous Simulation Language�� in M� H� Hamza �ed�� Applied Modeling
and Simulation ���� Conference� Lugano Switzerland� June ������ Acta Press� Anaheim� California� pp�
����	�

���� Tonella� G�� Domingo� C�� Sananes� M�� Tucci� K� �El Lenguaje GLIDER y la Computaci"on Orientada
hacia Objeto�� �The GLIDER Language and the OO Programming�� Asovac XLIII Convenci"on Anual
����� de Noviembre de ���	� M"erida� Venezuela�

��	� Tucci� K� ���	� �GLIDER Orientado hacia Objetos en C���� Trabajo especial de grado� �Object Ori	
ented GLIDER Language in C��� Thesis � Escuela de Ingenier"#a de Sistemas� Universidad de los Andes�
M"erida� Venezuela� Tutor� G� Tonella�

���� Uzc"ategui� M� ����� �Mecanismos de Manejo de Materiales en GLIDER Basados en SIMAN y SLAM��
Trabajo especial de grado� �Material Handling Mechanisms in GLIDER based on SIMAN and SLAM�
Thesis� Escuela de Ingenier"#a de Sistemas� Universidad de los Andes� M"erida� Venezuela� Tutor� G�
Tonella�

��
� Velandia� O� ����� �Simulaci"on Discreta Orientada al Proceso Usando GLIDER�� Trabajo especial de
grado� �Process Oriented Discrete Simulation using GLIDER� Thesis� Escuela de Ingenier"#a de Sistemas�
Universidad de los Andes� M"erida� Venezuela� Tutor� G� Tonella�

���� Zambrano� T� ����� �Modelo Preliminar de Simulaci"on del Crecimiento en Area Basal para Planta�
ciones de Teca� Trabajo de Maestr"#a en Ciencias Forestales� �Preliminar Simulation Model of Basal
Area Growth of Teak Plantations� M�S� Thesis in Forestry Science� Universidad de los Andes� M"erida�
Venezuela� Tutor� C� Domingo�

