

September 2013 U10SSS

www.dialogic.com

Dialogic® Distributed Signaling Interface
Components -
Software Environment Programmer's Manual

2

Copyright and Legal Notice
Copyright © 1995-2013 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part
without permission in writing from Dialogic Inc. at the address provided below.
All contents of this document are furnished for informational use only and are subject to change without notice and do
not represent a commitment on the part of Dialogic Inc. and its affiliates or subsidiaries (“Dialogic”). Reasonable effort
is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant the
accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be
contained in this document.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC
ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A
THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see
http://www.dialogic.com/company/terms-of-use.aspx for more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only
in specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your
use of such products occurs only in the countries where such use is suitable. For information on specific products,
contact Dialogic Inc. at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual property
licenses with the sale of Dialogic products other than a license to use such product in accordance with intellectual

property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed
agreement with Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal
department at 1504 McCarthy Boulevard, Milpitas, CA 95035-7405 USA. Dialogic encourages all users of its
products to procure all necessary intellectual property licenses required to implement any concepts or
applications and does not condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from country to country and
it is the responsibility of those who develop the concepts or applications to be aware of and comply with
different national license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, Diva ISDN, Making Innovation Thrive, Video is the New
Voice, VisionVideo, Diastar, Cantata, TruFax, SwitchKit, SnowShore, Eicon, Eiconcard, NMS Communications, NMS
(stylized), SIPcontrol, Exnet, EXS, Vision, PowerMedia, PacketMedia, BorderNet, inCloud9, I-Gate, ControlSwitch,
NaturalAccess, NaturalCallControl, NaturalConference, NaturalFax and Shiva, among others as well as related logos,
are either registered trademarks or trademarks of Dialogic Inc. and its affiliates or subsidiaries. Dialogic's trademarks
may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 1504 McCarthy Boulevard, Milpitas, CA 95035-7405 USA. Any authorized use of Dialogic's trademarks
will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of
Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

Publication Date: September 2013

Document Number: U10SSS

http://www.dialogic.com/company/terms-of-use.aspx

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

3

Revision History

Issue Date Description

15 30-Sep-13 Addition of IPv6 support for SIGTRAN.

Addition of support for SS7LD, DNI2410TEPE2HMP, DNI1210TEPE2HMP DNI610TEPE2HMP
and DN310TEPE2HMP boards under Linux.

Number of supported SIGTRAN associations increased from 256 to 384.

14 26-Jun-13 Addition of support for SS7LD, DNI2410TEPE2HMP, DNI1210TEPE2HMP DNI610TEPE2HMP
and DN310TEPE2HMP boards under Windows.

13 22-Feb-13 Updates to Diameter Java package.

12 11-Jan-13 Addition of Diameter support for Linux DPK. Additional SIGTRAN configuration
documentation.

11 05-Nov-12 Addition of documantation for Dialogic® DSI Diameter Stack.

Addition of IPv6 support for RSI.

Changes to locations of 32 and 64 bit shared object libraries.

General updates to reflect current Development Packages.

10 13-Apr-12 Added documentation of RSI, RSICMD and RSI_LNK and RSI message definitions.

Includes enhancements to gctload –tn status displays and other minor changes
throughout.

9 28-Jul-11 This release expands the scope of the manual to include all config.txt related configuration
commands and full details on SIGTRAN configuration (previously contained in Dialogic

®

SS7 Protocols Programmer's Manual for SIGTRAN Host Software).

Support for the SS7LD board is added.

8 09-Dec-10 Addition of Installation, Configuration and Execution sections

7 12-Feb-10 S7_log PCAP support documented. GCT_LOAD Verification command added. System
resource parameter settings defined.

6 28-Nov-08 Rebranded Dialogic
®
 DSI, added long message support, rolling logs and updated Solaris

kernel tuning.

5 05-Dec-05 Additional information added including s7_log, s7_play, congestion management and
gctload command line parameters.

References to T_FRAME and R_FRAME removed.

4 02-Aug-03 Branding changed to Intel® NetStructure™.

3 28-May-99 Description of module instance and associated library functions added. Table of default
module identifiers added.
Module identifiers and message types reserved for user's applications added.

2 19-Feb-97 All commands in system.txt now commence with a key word. Definition of MSG made
consistent with actual header file.

1 18-Jul-95 Initial Release

Note: The current version of this guide can be found at:
http://www.dialogic.com/support/helpweb/signaling

http://www.dialogic.com/support/helpweb/signaling

Contents

4

Contents

Revision History .. 3

1 Introduction .. 9

1.1 Applicability ... 9
1.2 Related Documentation ... 9

1.2.1 Dialogic® DSI SS7 Protocol Manuals .. 9
1.2.2 Dialogic® DSI SIGTRAN Protocol Manuals .. 10
1.2.3 Dialogic® DSI Diameter Stack Manuals .. 10
1.2.4 Dialogic® DSI Network Interface Boards Manuals .. 10
1.2.5 Dialogic® DSI Signaling Servers Manuals ... 10

2 Basic Concepts .. 11

2.1 Modules ... 11
2.2 Module Identifiers ... 11
2.3 Messages ... 11
2.4 Message Queues ... 12
2.5 Distributed Modules .. 12
2.6 Library Functions .. 12
2.7 System Initialization ... 17
2.8 Attaching to the DSI environment ... 17
2.9 System Congestion ... 18

3 Installation .. 19

3.1 Introduction ... 19
3.2 Software Installation for Linux .. 21

3.2.1 Installing Development Package for Linux .. 21
3.2.2 Building Device Drivers for DSI boards .. 24
3.2.3 Support for SIGTRAN SCTP under Linux .. 25
3.2.4 Adjusting Linux Kernel Parameters ... 26
3.2.5 Using 64-bit Linux Applications .. 27
3.2.6 Removing the Development Package for Linux ... 27
3.2.7 RPM Creation ... 28

3.3 Software Installation for Solaris .. 30
3.3.1 Installing the Development Package for Solaris .. 30
3.3.2 Solaris 9 - Interface Name Checking ... 32
3.3.3 Solaris 10 –User Account Permissions ... 32
3.3.4 Installation of SIGTRAN support for Solaris .. 32
3.3.5 Tuning Solaris System Resource Parameters .. 32
3.3.6 Creating a Solaris ‘project’ to tune System Resource parameters 33
3.3.7 Using 64-bit Solaris Applications .. 34
3.3.8 Avoiding “Non-serviced interrupt” reports .. 34
3.3.9 Removing the Development Package for Solaris ... 35

3.4 Software Installation for Windows ... 36
3.4.1 Installing Development Package for Windows ... 36
3.4.2 Starting the Windows Device Driver .. 37
3.4.3 Additional steps using Windows 7 ... 38
3.4.4 Running software as a Windows Service .. 38
3.4.5 Using 64-bit Windows Applications ... 40
3.4.6 Removing Development Package for Windows .. 41

4 Configuration and Operation ... 42

4.1 Selecting the System Architecture .. 42
4.1.1 TDM Board Systems ... 42
4.1.2 SIGTRAN Systems .. 43

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

5

4.1.3 Diameter Systems .. 44
4.1.4 Protocol Modules .. 44

4.2 Creating the System Configuration File (system.txt).. 46
4.2.1 System Configuration File Syntax ... 46
4.2.2 Generating the system.txt Configuration File ... 47

4.3 Creating the Protocol Configuration File (config.txt) .. 50
4.4 Executing the Software.. 51
4.5 Developing a User Application .. 51

5 Message Reference .. 53

5.1 Message Format ... 53
5.1.1 MSG Message Structure .. 53
5.1.2 Header Fields ... 53
5.1.3 Parameter Field .. 54

5.2 Common Message Specifications ... 55
5.2.1 GEN_MSG_MOD_IDENT - Module Identification Request .. 56
5.2.2 SYS_MSG_CONGESTION - Congestion Status Indication .. 57
5.2.3 MGT_MSG_TRACE_EV - Trace Event Indication .. 58
5.2.4 API_MSG_CNF_IND - Configuration Completion Status Indication 59

5.3 RSI Messages ... 60
5.3.1 RSI_MSG_CONFIG – RSI Link Configuration Request .. 60
5.3.2 RSI_MSG_UPLINK – RSI Link Activate Request .. 62
5.3.3 RSI_MSG_DOWNLINK – RSI Link Deactivate Request ... 62
5.3.4 RSI_MSG_LNK_STATUS – RSI Link Status Indication .. 63
5.3.5 RSI_MSG_R_LNK_STATS – RSI Link Statistics Request ... 64
5.3.6 RSI_MSG_READ_LINK – RSI Read Link Status ... 65

6 Library Functions ... 67

6.1 Inter-Process Communications Functions ... 67
6.1.1 GCT_send.. 67
6.1.2 GCT_receive .. 67
6.1.3 GCT_grab .. 68
6.1.4 GCT_set_instance ... 68
6.1.5 GCT_get_instance .. 69
6.1.6 getm... 70
6.1.7 relm ... 71
6.1.8 GCT_link ... 71
6.1.9 GCT_unlink .. 72
6.1.10 GCT_partition_congestion .. 72
6.1.11 confirm_msg.. 73

6.2 General Library Functions .. 74
6.2.1 rpackbytes .. 74
6.2.2 runpackbytes ... 74

6.3 Java Inter-Process Communications .. 76

7 Host Utilities .. 78

7.1 gctload .. 78
7.1.1 System Configuration File (system.txt) ... 81
7.1.2 NUM_MSGS / NUM_LMSGS Commands ... 82
7.1.3 CONG_MSG Command .. 82
7.1.4 LOCAL Command ... 83
7.1.5 REDIRECT Command .. 83
7.1.6 DEFAULT_MODULE Command .. 84
7.1.7 FORK_PROCESS Command .. 84
7.1.8 Example system.txt File .. 85

7.2 s7_log ... 86
7.3 s7_play ... 90

7.3.1 s7_play Command File Format ... 90

Contents

6

7.4 tick and tim ... 93
7.5 s7_mgt.. 94
7.6 ssd ... 95

7.6.1 ssds (for SPCI4/SPCI2S boards) ... 95
7.6.2 ssdl (for SS7LD boards) .. 96
7.6.3 ssdh (for SS7HD boards) ... 97
7.6.4 ssdm (for SS7MD boards) .. 98

7.7 rsi ... 101
7.8 rsicmd ... 103
7.9 tempmon ... 105
7.10 dsictrl .. 106
7.11 dsistat ... 109
7.12 dsitrace ... 111

8 Configuration Command Reference ... 113

8.1 Physical Interface Configuration Commands ... 113
8.1.1 SS7_BOARD Command ... 113
8.1.2 LIU_CONFIG Command ... 116
8.1.3 LIU_SC_DRIVE Command.. 119
8.1.4 SCBUS_LISTEN Command ... 120
8.1.5 STREAM_XCON Command (Cross Connect Configuration) .. 121

8.2 Maintenance Module Commands ... 123
8.2.1 MGMT_MOD_ID, MAINT_MOD_ID & TRACE_MOD_ID Commands 123

8.3 Monitor Configuration Commands ... 125
8.3.1 MONITOR LINK Command (for HSL/LSL Links) ... 125
8.3.2 MONITOR LINK Command (for ATM Links) ... 127

8.4 MTP Configuration Commands .. 129
8.4.1 MTP_CONFIG Command .. 129
8.4.2 MTP_LINKSET Command ... 130
8.4.3 MTP_LINK Command (for HSL/LSL Links) .. 132
8.4.4 MTP_LINK Command (for ATM Links) .. 135
8.4.5 MTP_ROUTE Command ... 136
8.4.6 MTP_USER_PART Command .. 137
8.4.7 MTP_TRACE Command .. 138

8.5 ATM Configuration Commands .. 139
8.5.1 ATM_CONFIG Command .. 139
8.5.2 ATM_STREAM Command (Configure ATM Cell Stream) .. 139
8.5.3 ATM_TIMER Command (Configure Timers for Q.SAAL Links) .. 141

8.6 ISUP Configuration Commands ... 142
8.6.1 ISUP_CONFIG Command ... 142
8.6.2 ISUP_CFG_CCTGRP Command (Circuit Group Configuration).. 143
8.6.3 ISUP_TIMER Command (ISUP Timer Configuration) .. 144

8.7 TUP Configuration Commands .. 146
8.7.1 TUP_CONFIG Command (Global TUP Configuration) .. 146
8.7.2 TUP_CFG_CCTGRP Command (Circuit Group Configuration) ... 147

8.8 SCCP Configuration Commands .. 149
8.8.1 SCCP_CONFIG Command .. 149
8.8.2 SCCP_SSR Command (Configure SCCP Sub-System Resource) 150
8.8.3 SCCP_CONC_SSR Command (Configure Concerned SSR) .. 152
8.8.4 SCCP_TRACE Command .. 152
8.8.5 SCCP_GTT_PATTERN Command (Define Global Title Pattern) 153
8.8.6 SCCP_GTT_ADDRESS Command (Define Global Title Address) 154
8.8.7 SCCP_GTT Command (Add Entry in GTT Table) .. 155

8.9 DTC Configuration Commands .. 156
8.9.1 DTC_CONFIG Command .. 156
8.9.2 DTC_SSR Command (Configure DTC Sub System Resource) .. 156

8.10 TCAP Configuration Commands .. 158
8.10.1 TCAP_CONFIG Command .. 158
8.10.2 TCAP_CFG_DGRP Command (Dialog Group Configuration) ... 159
8.10.3 TCAP_TRACE Command .. 160

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

7

8.11 MAP Configuration Commands .. 162
8.11.1 MAP_CONFIG Command .. 162
8.11.2 MAP_TRACE Command .. 162

8.12 INAP Configuration Commands ... 164
8.12.1 INAP_CONFIG Command ... 164
8.12.2 INAP_FE Command (Configure INAP Functional Entity) ... 164
8.12.3 INAP_AC Command (Configure INAP Application Context) ... 165
8.12.4 INAP_TRACE Command ... 165

8.13 IS41 Configuration Commands ... 167
8.13.1 IS41_TRACE Command ... 167

8.14 SIGTRAN Protocol Configuration Overview ... 168
8.14.1 SIGTRAN M3UA ASP, Host to SGP Configuration Model .. 168
8.14.2 SIGTRAN M3UA IPSP, Peer to Peer Configuration Model .. 169
8.14.3 SIGTRAN M3UA User Parts .. 169
8.14.4 M2PA Configuration Model ... 169
8.14.5 SIGTRAN SUA IPSP, Peer to Peer Configuration Model ... 169
8.14.6 SIGTRAN SUA ASP, Host to SGP Configuration Model .. 170
8.14.7 SIGTRAN Parameters .. 170
8.14.8 IP address scope .. 172

8.15 SIGTRAN Configuration Commands ... 174
8.15.1 SNAPI Command - SIGTRAN Local AS Initiate .. 174
8.15.2 SNSLI Command - SIGTRAN Signaling Link Initiate .. 175
8.15.3 SNRTI Command - SIGTRAN Route Initiate .. 176
8.15.4 SNRLI Command - SIGTRAN Route List Initiate .. 176
8.15.5 SNRKI Command - SIGTRAN Routing Key Initiate ... 177
8.15.6 SNRAI Command - SIGTRAN Remote AS Configuration ... 178
8.15.7 SNALI Command - SIGTRAN AS List Initiate .. 178
8.15.8 SNLBI Command - SIGTRAN Local AS Bind Initiate ... 179
8.15.9 CNSYS Command - Configuration System Set .. 179
8.15.10 CNOPS Command - Configuration Module Options Set ... 180
8.15.11 CNNCI Command - Configuration Network Context Initiate .. 182
8.15.12 CNTOS Command - Configuration Timeout Set ... 183

8.16 Diameter Parameters .. 185
8.17 Diameter Configuration Commands ... 186

8.17.1 DMNCI Command - Diameter Network Context Initiate ... 186
8.17.2 DMPRI Command - Diameter Peer Initiate ... 186
8.17.3 DMRTI Command - Diameter Route Initiate ... 187
8.17.4 DMRLI Command - Diameter Route List Initiate ... 187
8.17.5 DMAPI Command - Diameter Application Initiate .. 188
8.17.6 DMSYI Command - Diameter System Initiate ... 188

9 Example Configuration Files .. 189

9.1 Example system.txt System Configuration file .. 189
9.2 Example config.txt Protocol Configuration File .. 191
9.3 Example M3UA ASP Config.txt – Multiple SG .. 195
9.4 Example M3UA IPSP Config.txt – Multiple RAS .. 196
9.5 Example M3UA ASP Config.txt – Multiple LAS ... 197
9.6 Example M3UA IPSP (Client) Config.txt.. 198
9.7 Example M3UA IPSP (Server) Config.txt .. 199
9.8 Example M2PA Configuration .. 200
9.9 Example GTT Configuration .. 201
9.10 Example Configuration of an ATM Terminated Link .. 202
9.11 Example Diameter Configuration... 203

Appendix A. Default Module Identifiers .. 204

Appendix B. Values reserved for Custom Use ... 206

B.1 Reserved module identifiers ... 206
B.2 Reserved message types ... 206

Contents

8

Appendix C. GCTLIB Javadoc .. 207

C.1 com.dialogic.signaling.gct - Class BBUtil .. 207
C.2 com.dialogic.signaling.gct - Class GctException .. 210
C.3 com.dialogic.signaling.gct - Class GctLib .. 211
C.4 com.dialogic.signaling.gct - Class GctLib.PartitionInfo ... 216
C.5 com.dialogic.signaling.gct - Enum GctLib.StandardMsgSizes ... 217
C.6 com.dialogic.signaling.gct - Class GctMsg .. 219
C.7 com.dialogic.signaling.gct Interface IMsg ... 223

Tables
Table 1. Dialogic® DSI Network Interface Board Family Code File Extensions 19
Table 2. Files Installed on a System Running Linux .. 22
Table 3. Files Installed on a System Running Solaris .. 31
Table 4. Files Installed on a System Running Windows ... 36
Table 5. Practical System Configurations for Telephony Systems .. 42
Table 6. System Configurations for SIGTRAN Telephony Systems .. 44
Table 7. System Configurations for Diameter Systems .. 44
Table 8. System Host Utilities .. 45
Table 9. ISUP Default Timer Values .. 145
Table 10. Default module identifier values .. 204

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

9

1 Introduction

Dialogic® Distributed Signaling Interface (DSI) Components is a range of hardware and
software components for realization of SS7, SIGTRAN and Diameter signaling nodes
and applications for use in a service provider environment. The range includes
Dialogic® DSI Protocol Stacks, which are software implementations of standards-based
signaling protocol layers. DSI Protocol Stacks are available for specific Dialogic®
products and are suitable for use under standard commercially available operating
systems including Linux, Solaris, and Windows1 operating systems.

In a signaling node built from DSI Components (the “system”), each module in the
system is implemented as a separate task within the chosen operating environment. A
module implements either a layer within the DSI Protocol Stack, a User Part, or some

other functional entity within the system. In general, a module supports multiple
internal instances within a single process (for example multiple links, multiple circuits,
or multiple transactions). The architecture supports multi-processor operation with

modules being distributed between different processors.

For increased flexibility, the protocol implementation is abstracted from the underlying
operating system. Each module makes a minimum demand on the host operating
system using a common set of functions for all inter-process communication and
resource allocation. This approach means that different layers of the DSI Protocol
Stack can easily be run on different processors or machines as required.

This document is the base reference material applicable to all Dialogic® DSI board

based and SIGTRAN based deployments. It introduces the fundamental architectural
concepts of modules, messages and message queues and the mechanisms for inter
process communication. It provides details of all the host-based utilities used to
configure and maintain an operational system including full definitions of all
configuration file commands and messages.

This manual also provides full installation and configuration details for use of the
Development Packages for Linux, Solaris (SPARC and x86) and Windows Operating

Systems.

1.1 Applicability
This manual is applicable to the following software:

Dialogic® DSI Development Package for Linux – Release 6.6.1 or later

Dialogic® DSI Development Package for Solaris – Release 5.4.0 or later

Dialogic® DSI Development Package for Windows – Release 6.5.0 or later

1.2 Related Documentation
Current software and documentation supporting Dialogic® DSI products is available at:

http://www.dialogic.com/support/helpweb/signaling

1.2.1 Dialogic® DSI SS7 Protocol Manuals

• Dialogic® SS7 Protocols MTP2 Programmer’s Manual

1 Note: Throughout this document, the term “Windows” is used to refer to the Windows Server 2008, Windows
Server 2008 R2, and Windows 7 operating systems.

http://www.dialogic.com/support/helpweb/signaling

Section 1 Introduction

10

• Dialogic® SS7 Protocols MTP3 Programmer’s Manual

• Dialogic® SS7 Protocols ISUP Programmer's Manual

 Dialogic® SS7 Protocols SCCP Programmer’s Manual

 Dialogic® SS7 Protocols TCAP Programmer’s Manual

 Dialogic® SS7 Protocols TUP Programmer’s Manual

 Dialogic® SS7 Protocols MAP Programmer’s Manual

 Dialogic® SS7 Protocols IS41 Programmer’s Manual

 Dialogic® DSI Protocol Stacks - Host Licensing User Guide

 Dialogic® DSI Protocol Stacks - SNMP User Manual

1.2.2 Dialogic® DSI SIGTRAN Protocol Manuals

 Dialogic® SS7 Protocols SCTP Programmer’s Manual

 Dialogic® SS7 Protocols M3UA Programmer’s Manual

 Dialogic® SS7 Protocols M2PA Programmer’s Manual

 Dialogic® SS7 Protocols SUA Programmer’s Manual

1.2.3 Dialogic® DSI Diameter Stack Manuals

 Dialogic® DSI Diameter Stack – DMR Programmer’s Manual

 Dialogic® DSI Diameter Stack - Diameter Functional API Manual

1.2.4 Dialogic® DSI Network Interface Boards Manuals

• Dialogic® DSI SPCI Network Interface Boards Programmer's Manual

• Dialogic® DSI SS7HD Network Interface Boards Programmer’s Manual

• Dialogic® DSI SS7MD Network Interface Boards Programmer’s Manual

• Dialogic® DSI SS7LD Network Interface Boards Programmer’s Manual

1.2.5 Dialogic® DSI Signaling Servers Manuals

• Dialogic® DSI Signaling Servers SS7G41 SIU Developers Manual

• Dialogic® DSI Signaling Servers SS7G41 Operators Manual

• Dialogic® DSI Signaling Servers SS7G41 SWS Developers Manual

• Dialogic® DSI Signaling Servers SS7G41 Hardware Manual

• Dialogic® DSI Signaling Servers SNMP User Manual

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

11

2 Basic Concepts

This section introduces basic concepts and terminology that will be used throughout
the remainder of the manual.

2.1 Modules
A module is an implementation of a particular layer in the Dialogic® DSI Protocol Stack
(e.g., Dialogic® DSI MTP3 Layer), a particular user part (e.g., Dialogic® DSI ISUP
Layer), or a collection of other functionality which fits together as a logical entity. A
module may be a Dialogic® DSI Component or a User-supplied module.

Each module in the system runs as a separate task, process, or program (depending

on the type of operating system). The module is identified by a Module Identifier and
communicates with other modules in the system by sending Messages to a Message

Queue belonging to the destination module. A set of Library Functions is used by
the module to interact with the operating system.

A module handles multiple internal instances of the functional entity associated with
the module (e.g., Dialogic® DSI MTP2 Layer handles multiple Signaling links, the
Dialogic® DSI MTP3 Layer handles multiple link sets and multiple routes and the
Dialogic® DSI ISUP Layer handles multiple circuits).

2.2 Module Identifiers
Each module has a module identifier (module_id), which is a logical number in the
range 0 to 254, and is used to identify modules within the system for the purposes of
inter-process communication. To send a message to another process, the sending

module uses the module identifier of the destination process. To receive a message
from a module's own message queue, it uses its own module identifier.

Some modules operate with a fixed module identifier, whereas others allow the module
identifier to be specified at run-time.

The module identifiers of other modules with which a module will communicate is
usually a run-time configuration option.

The module identifier is a logical value; it is not the same as an Operating System’s

task id or process id (pid), which are usually allocated automatically when a process is
created.

In addition to modules that are physically implemented, it is possible to use virtual
module_ids that are redirected within the software environment to an actual module.
This re-direction mechanism is used when messages need to be transferred to another
board or module in the system or to a separate host. Messages for all processes that

run on separate boards are redirected to a special local module that handles inter-
board message passing. Other modules within the system do not need to know
whether the modules with which they communicate are running locally or not.

A list of default module identifiers used by the Dialogic® Distributed Signaling Interface
(DSI) software is given in 9.10.

2.3 Messages
Modules communicate by sending messages to other modules in the system.

Section 2 Basic Concepts

12

The MSG message is a ‘C’ data structure containing a fixed format header field and a
buffer for variable length parameter data.

Each hardware product in the Dialogic® Distributed Signaling Interface (DSI)
Components range has a manual that details the messages appropriate for that
particular product. In addition, each Dialogic® DSI Protocol Stack has a supporting
Programmer’s Manual, which describes the messages appropriate to that protocol.

A detailed description of the message structure is given in 5.1 Message Format.

2.4 Message Queues
Each module in the system has a single message queue that is used by other modules

to send messages to the module. A message queue is a system buffer which stores
messages (usually by reference) in first-in, first-out order.

Messages are read out of the message queue by the receiving module, which typically
uses a blocking function call to wait until there is a message available before returning,
it then processes the message and blocks until the next message is available. Input to
the module is through its message queue.

2.5 Distributed Modules
Some systems require the functional entity implemented by a module to be distributed
across several processors in a system. For example, a module may run on several
separate boards in a single computer, each board interacting with a single module

running on the computer. Alternatively, a user's application may be distributed across
several host computers where each host interacts with a protocol module running on a
single protocol server.

In both cases, there is a ‘one too many’ relationship between the distributed

processors and the adjacent layer in the DSI Protocol Stack. There is a clear
requirement for the single module to be able to determine from which of the
distributed processors a message has been received and to which of the distributed

processors a message should be sent to. This is achieved using the concept of a
module Instance.

The module Instance is a number in the range of 0 to one less than the number of
distributed processors. The module instance is used by the inter-board message
passing process to determine which board to send the message to. When messages
are received from other boards, the inter-board message passing process inserts the
module instance of the board from which the message was received.

The module instance is not directly accessible as a field in the message; instead, a
functional interface is provided to read and write instance information to the message.
By default, the instance number is initialized to zero.

2.6 Library Functions
Host modules and user applications make use of the following set of ‘system’ library
functions:

getm Function to allocate a message (MSG).

relm Function to release MSG back to the system.

GCT_send Function to send a message to another module.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

13

GCT_receive Function to receive a message from a module's own message queue. The
function does not return until a message is ready.

GCT_grab Function to receive a message from a module's own message queue. This
function returns immediately if there are no messages ready.

GCT_set_instance Function to insert the module instance into a message.

GCT_get_instance Function to extract the module instance from a message.

GCT_link Function to attach to the message passing environment.

GCT_unlink Function to detach from the message passing environment.

GCT_partition_
congestion

Function to determine current system congestion status.

confirm_msg Function to confirm a message once it has been handled.

The syntax for each of these functions is described in the following section. Their usage
is described below.

A module wishing to send a message to another module will first allocate a MSG
structure using the getm function. At this stage, it is necessary to decide whether or
not a confirmation message will be required and initialize the rsp_req field accordingly.
Once all the message parameters have been entered into the MSG, the module calls
GCT_send to send the message to the destination module. If the GCT_send function

fails to send the message, the sending module must release the message back to the
system using the relm function (although this will only happen when the system is
incorrectly configured). When multiple destination processors are used, the module
sending the message must call GCT_set_instance prior to calling GCT_send in order
to write the destination module instance into the message.

The destination module will receive the message from its own message queue using

either the GCT_receive or GCT_grab functions (depending on whether it wishes to
block or not if no messages are available). It then processes the message. When
multiple source processors are used, the module receiving the message should call
GCT_get_instance after calling GCT_receive or GCT_grab in order to read the
source module instance from the message.

When the receiving module has finished processing the message, it carries out one of
two possible courses of action depending on whether or not a confirmation is required.

If no confirmation is required, then the message is released back to the system using
the relm function. If a confirmation is required, then a status value is written into the
message header, the message type is changed (bit 14 is cleared), and the message is
sent back to the original sending module using the GCT_send function. On receipt of
the confirmation, the original sending module (after inspecting the status) releases the
message back to the system using the relm function.

Note: confirm_msg() is a useful library function that can be called once the application has

finished with a message. It determines whether or not a confirmation is required, modifies

the message header accordingly, and finally calls either GCT_send() or relm() as
appropriate.

In this way it is ensured that each message will eventually be released back to the system.

Example Code

 Allocating and Sending a Message

Section 2 Basic Concepts

14

/*

 * Base DSI headers.

 */

#include "system.h"

#include "msg.h"

#include "sysgct.h"

/*

 * DSI protocol headers.

 */

#include "mtp_inc.h"

/*

 * MACROs for sending and receiving requests.

 */

#define NO_RESPONSE (0)

#define RESPONSE(mod_id) (1 << ((mod_id) & 0x0f))

#define CONF(i) ((i) & ~REQUEST)

#define EXAMPLE_MODULE_ID (0x1d)

int allocate_and_send_example(void)

{

 MSG *m;

 u8 *pptr;

 /*

 * Allocate a MSG from the message pool.

 * In this example, a MTP3 Linkset Configuration Message.

 *

 * The rsp_req field is set to request a response from the

 * destination module Id.

 */

 if ((m = getm(MTP_MSG_CNF_LINKSET, (u16)(<LINKSET ID> << 8),

 (u16)RESPONSE(EXAMPLE_MODULE_ID), MTPCFLS_LENGTH)) != 0)

 {

 /*

 * getm() succeeds and returns a pointer to a MSG from the

 * global message pool.

 * This process now 'owns' the MSG and is responsible for

 * sending it (GCT_send) to another module, or releasing it

 * (relm).

 */

 m->hdr.src = EXAMPLE_MODULE_ID;

 m->hdr.dst = MTP_TASK_ID;

 /*

 * Initialise a memory pointer to the start of the MSG's

 * parameter area.

 */

 pptr = get_param(m);

 /*

 * Reset the MSG's parameter area to 0.

 */

 memset(pptr, 0, m->len);

 /*

 * Initialise the MSG's parameter values:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

15

 */

 rpackbytes(pptr, MTPCFLS_adj_pc_OFF,

 (u32)<ADJACENT POINT_CODE>,

 MTPCFLS_adj_pc_SIZ);

 rpackbytes(pptr, MTPCFLS_num_links_OFF,

 (u32)<NUMBER OF LINKS>,

 MTPCFLS_num_links_SIZ);

 /*

 * MSG parameter initialization continues . . .

 */

 /*

 * Set the MSG instance.

 */

 GCT_set_instance(<INSTANCE ID>, &m->hdr);

 /*

 * Send the MSG

 */

 if (GCT_send(msg->hdr.dst, &msg->hdr) != 0)

 {

 /*

 * GCT_send() has failed.

 * Sending process retains ownerships of the MSG.

 * Release the MSG.

 */

 relm(&msg->hdr);

 }

 }

Section 2 Basic Concepts

16

 Receiving and Processing a Message

int receive_and_process_msg(void)

{

 MSG *m;

 if ((msg = (MSG *)GCT_receive(EXAMPLE_MODULE_ID)) != 0)

 {

 /*

 * GCT_receive() succeeds and returns a MSG.

 * The MSG is now owned by the receiving program.

 */

 switch (msg->hdr.type)

 {

 case CONF(MTP_MSG_CNF_LINKSET):

 /*

 * Process MTP3 Configure Linkset request's response.

 */

 . . .

 break;

 case . . .

 }

 /*

 * Release received MSG back to the system pool.

 */

 relm(&m->hdr);

 }

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

17

2.7 System Initialization
System initialization requires first that a pool of message buffers is created for
subsequent inter-process communication. Secondly, a message queue is created for

each module that will run and that any message re-direction for modules that are
running remotely is initialized. Then the process can be started.

A program gctload exists to handle this initialization sequence. It reads input from a
text file called system.txt, carries out all system initialization and starts up the
processes. It then remains dormant until it receives a signal from the operating system
to shutdown. Then, it terminates the processes that it started and releases any system

resources back to the system in a controlled manner.

The basic operation of the gctload program, and the format of the text file it uses, is
described in section 7.1. The gctload utility is available for a number of operating
systems including Linux, Solaris (Sparc and x86) and Windows.

2.8 Attaching to the DSI environment
Normally, the gctload module, which establishes message queues and pre-allocates
memory from the system for the messages used by all tasks is used to initiate all user
modules. These structures are released on termination of gctload, hence the tasks that
communicate using these mechanisms and the user tasks are also terminated.

If the user chooses to run applications independently, then it is necessary to confirm

that the system is available before using any system resources The GCT_link library
function can be used to obtain this confirmation. See section 6.1.8 for details.

The user must also ensure that the application does not attempt to access system
resources after the GCT environment has been terminated. The GCT_unlink library

function can be used to release all system resources. See section 6.1.9 for details.

If the user wishes to terminate and re-start an application, this can be achieved by
calling GCT_unlink from the old instance of the application prior to termination and

the calling GCT_link from the new application before using system resources.

Section 2 Basic Concepts

18

2.9 System Congestion
When the host software is first run, a specified number of messages (as configured in
the NUM_MSGS command in the system.txt file) are allocated from host system

resources. These messages are available for inter-task communication.

User applications should read messages from their own input queue, extract the
information from these messages, then release the original message structure back to
the system. Hence, under normal operating conditions, the host application works to
ensure that its queue is almost empty, and that all the messages are available.

If, however, more messages are received than the system can handle, then a backlog

of messages in input queues will build up. Possible causes include input being received

at a faster rate than can be processed by the output device or the system being unable
to process received input in at the required rate.

The message handling environment monitors the number of allocated messages
available as a percentage of the total message pool. If this percentage exceeds a
configurable congestion onset threshold, the host is said to be in a congested state.

When the number of allocated messages available as a percentage of the total

message pool returns to a configurable congestion abatement threshold, the host
is said to leave the congested state.

On entering or leaving a congested state, the software environment generates a
congestion notification message (SYS_MSG_CONGESTION), which is sent to a
nominated congestion-handling module. This module is responsible for taking
actions to slow down the source of system congestion.

The congestion handling parameters are set using the CONG_MSG command in the

system.txt file.

The current system congestion status may also be obtained on demand using the
GCT_partition_congestion function as detailed in section 6.1.10.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

19

3 Installation

3.1 Introduction
This manual covers the installation and use of the software contained in the following
distributions:

• Development Package for Linux

• Development Package for Solaris (x86 and SPARC)

• Development Package for Windows®

Each Development Package contains the device drivers, library functions, and header

files for use by an application, a number of executables to create and maintain the DSI
software environment, utilities and configuration files to configure the protocol
software, the User Part Development (UPD) Package, the DSI Protocol Stacks, MIBs

and the DSI Network Interface Boards code files. The installation of each package type
is described in the following sections.

The UPD contains example source code to illustrate the techniques used for interfacing
with the protocol modules and protocol-specific header files for use when building an
application.

The DSI Network Interface Boards Code Files contain the operating software for the
DSI Network Interface Boards. The appropriate code file must be downloaded by the

host, to the board, at run-time. Code files have a file suffix which denotes which board
product they are used in conjunction with.

Table 1. Dialogic® DSI Network Interface Board Family Code File Extensions

Dialogic
®
 DSI Network

Interface Board Family
Code File Extension Software License

Mechanism

SPCI dc3 License Button

SS7HD dc4 License Button

SS7MD dc6 Host License

SS7LD dc7 Host License

The code file must be licensed; two mechanisms exist to support licensing dependant
on the board family in use:

 License Button

The board is used in conjunction with a software license button, which is purchased

and installed on the board to determine the protocols that the user is authorized to
run. The types of license buttons available are described in the appropriate DSI
Network Interface Board Programmer’s Manual. The license button is subsequently
downloaded onto the board at run time.

 Host License

As indicated in the table above, some of the boards require a Host License; details on
how to use a Host License are given in the Dialogic® Distributed Signaling Interface

Components Host Licensing User Guide.

Section 3 Installation

20

Some SS7 protocols also optionally may be run as Host Protocol Binaries subject to the
purchase of appropriate licenses, which may be run above boards or above M2PA
creating a software only architecture with SIGTRAN. refer to Section 4.1.4 Protocol
Modules for further details.

The Development Package may be obtained by downloading it from the Dialogic
website, see Section 1.1 Related Documentation, and must be copied onto the target

host machine maintaining binary file integrity; possible transfer methods include
copying using transferable media and ftp.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

21

3.2 Software Installation for Linux
The Development Package for Linux is distributed electronically. The distribution is in
the form of a single compressed file called dpklnx.Z.

The Development Package for Linux includes, in a single distribution, the software
required by users of the Dialogic® DSI SS7 Boards and Dialogic® DSI Protocol Stacks.

The Development Package includes the host protocol binaries, board code files and the
example software from the User Part Development Package. This allows users to
update multiple components within a single installation cycle.

The host-based software uses a three part release number in the form “Release x.y.z”

to uniquely identify the software version. Furthermore, the host-based binaries that
form part of this distribution have the same release number.

For example:

DSI gctload Release 6.5.0 (Build 1121)

Part of the Dialogic(R) DSI Development Package for Linux

Copyright (C) 1994-2012 Dialogic Inc. All Rights Reserved.

The DSI shared objects are located in sub-directories, ‘32’ for the 32 bit libraries and
‘64’ for the 64 bit libraries.

Installation of the software is described in more detail in the following topics:

• Installing Development Package for Linux

• Installing the DSI Source Device Drivers

• Support for Native SCTP

• Removing the Development Package for Linux

• RPM Creation

3.2.1 Installing Development Package for Linux

Install the Development Package as follows:

1) Remove any existing Development Package installation referring to Section 3.2.6
Removing the Development Package for Linux on page 27.

2) Login and switch to a user account with root privileges.

3) Create a new directory on the development system to act as the root directory for

the software. This directory is referred to as the install directory.

mkdir /opt/DSI

cd /opt/DSI

4) Copy the dpklnx.Z file to the install directory. Take care to retain the Z extension
(which identifies the file as a compressed file) and ensure binary file integrity is

maintained.

5) Extract the files using the command:

Section 3 Installation

22

tar --no-same-owner -zxvf dpklnx.Z

The following files (or similar) are extracted into the current working directory.

Table 2. Files Installed on a System Running Linux

Sub- Directory File name Description

 example_system.txt Example system configuration file

 example_config.txt Example protocol configuration file.

 dsictrl, dsistat,dsitrace, gctload,
rsi, rsi_lnk, rsicmd s7_log,
s7_mgt, s7_play, sctp, sctpd,
sctpn, ssdh, ssdl, ssdm, ssds,
tempmon, tick, tim, etc

General purpose DSI host utilities
documented within this manual

 dsa, dtc, hstmgr, rmm, , ssm, etc Specialized host utilities documented
elsewhere

 ctu, intu, istr, istu, mtr, mtu, ttu,
upe, etc

Ready built versions of the examples
contained in the User Part Development
Package.

 dsi-mibs.zip Dialogic
®
 DSMI SNMP MIBs distributed as

a compressed ZIP file

32 libgctjni.so, libgctlib.so,
libgctlib.so.1, libgctlib.so.1.49.0,
libin_api.so

Sub-directory containing 32 bit shared
object libraries

64 libgctjni.so, libgctlib.so,
libgctlib.so.1, libgctlib.so.1.49.0,
libin_api.so

Sub-directory containing 64 bit shared
object libraries

DC monitor.dc3, ss7.dc3, ss7.dc4,
ss7.dc6, ss7.dc6amc, ss7.dc7,
ss7mcd.dc6 etc

Sub-directory containing downloadable
Code Files

HSTBIN dmr, inap, is41, isup, m2pa,
m3ua, map, mst, mtp3, sccp,
sua, tcap, tup etc.

Sub-directory containing Host Protocol
Binaries

INC Sub-directory containing header files for
use with user’s application.

JAVA dmrApi.jar, dmtrCmds.jar,
dms.jar, gctApi.jar, etc

Sub-directory containing Java files.

SPCI_CPM_DRIVER Sub-directory containing driver source
code and makefiles for SPCI boards.

SS7HD_DRIVER Sub-directory containing driver source
code and makefiles for SS7HD boards.

SS7LD_DRIVER Sub-directory containing driver source
code and makefiles for SS7LD boards.

SS7MD_DRIVER Sub-directory containing driver source
code and makefiles for SS7MD boards.

UPD Sub-directory containing the User Part
Development package.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

23

6) Add the following lines to the file /etc/ld.so.conf indicating the path to the

shared object:

/opt/DSI/32

/opt/DSI/64

7) Run ldconfig to configure the dynamic linker's run time configuration.

ldconfig -v

A series of links will be configured, similar to the following example (the name of
libgctlib.so will reflect the current version number of the shared object library):

/opt/DSI/32:

 libgctjni.so -> libgctjni.so

 libin_api.so -> libin_api.so

 libgctlib.so.1 -> libgctlib.so.1.49.0

/opt/DSI/64:

 libgctjni.so -> libgctjni.so

 libin_api.so -> libin_api.so

 libgctlib.so.1 -> libgctlib.so.1.49.0

8) When using Java-based APIs to connect into the GCT environment then the
location of the libgctjni.so can optionally be set using the LD_LIBRARY_PATH
environment variable. The syntax of the command to set this variable will vary
depeding on the system.

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/DSI/32

The user can alternatively set the library path each time the java command is run. For
example, to run the example jar file /opt/DSI/JAVA/dtr.jar:

java -Djava.library.path=/opt/DSI/32 -jar /opt/DSI/JAVA/dtr.jar

Note: For 64 bit systems replace /opt/DSI/32 with /opt/DSI/64.

9) Before proceeding, verify that the shared object is installed correctly using the
gctload command with the –v option to print out version information.

Note: The DSI binaries require the 32 bit run-time libraries (libc.so). to be installed. Some 64 bit
Linux distributions only install 64 bit run-time libraries by default. Refer to your
distribution's documentation for instructions on how to install the 32 bit run-time libraries.

gctload –v

If the shared object is not correctly installed then an error message will be printed out
instead. E.g:

Section 3 Installation

24

./gctload: error while loading share libraries: libgctlib.so.1: cannot

open shared object file: No such file or directory

10) If SIGTRAN software is going to be used then see section 3.2.3 Support for
SIGTRAN SCTP under Linux for further details.

If using the SCTPD binary then change the privileges for the binary as follows:

chown root sctpd

chmod +s sctpd

If using the MST binary then, change the privileges as follows:

chown root ./HSTBIN/mst

chmod +s ./HSTBIN/mst

11) To reserve sufficient system resources, the Linux kernel parameters should be set
as detailed in section 3.2.4 Adjusting Linux Kernel Parameters on page 26.

3.2.2 Building Device Drivers for DSI boards

Once the Development Package is installed, the device drivers for all DSI boards are
contained in a per-board folder. If using a DSI board it is first necessary to build the
device driver in your target environment.

Build scripts and installation scripts are supplied in the following locations:

Dialogic
®
 DSI

Network
Interface Board

Family

Sub-directory Build Script Install Script

SPCI SPCI_CPM_DRIVER build_spci_cpm.sh install_spci_cpm.sh

SS7HD SS7HD_DRIVER build_ss7hd.sh install_ss7hd.sh

SS7LD SS7LD_DRIVER build_ss7ld.sh install_ss7ld.sh

SS7MD SS7MD_DRIVER build_ss7md.sh install_ss7md.sh

To build the driver, run the appropriate script. The build script assumes that a suitable
environment for building Kernel modules is available. This must include the appropriate

Kernel include files being found at: /usr/src/linux-`uname -r`/include (e.g.,
/usr/src/linux 2.6.5/include). If these are not found, the build will fail.

Note: When installing the Development Package in systems that include a DNIxxxxTEPE2HMP
board it is important NOT to install the SS7LD device driver. The driver from the Dialogic®
PowerMedia™ HMP 4.1 Linux (SU 151 or later) release includes a driver that also supports
the SS7LD).

Some Linux installations do not create a system source directory with the required
name; for example, some SMP kernels do not create a directory with the required smp

suffix. If this is the case, then a softlink needs to be created to give an appropriate
path to the system header files. For example:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

25

cd /usr/src

ln –s linux-2.6.5 linux-2.6.5 smp

Some later versions of Linux use a revised format for the remap_page_range
parameters (for example, Red Hat Linux Kernel Versions greater than 2.4.20 require

this revised format). The build script supports an optional new_remap parameter. If
this parameter is set, the compile uses the revised format.

The build script supports an optional clean parameter that removes the driver and all
intermediate files.

Under some versions of Linux a warning similar to the following is generated which can
safely be ignored:

warning: changing search order for system directory.

Once the driver has been successfully built, the appropriate install script should be
invoked. This installs the device driver, automatically allocates the major device
numbers, and creates the four appropriate device nodes.

Driver installation must be performed by a user with root privileges.

Correct loading of the device driver can be confirmed by looking in the system log. The
system log is displayed using the command:

dmesg | more

Successful installation of the driver is indicated by the allocation of a device id. (Note
that a Device Id will only be allocated if the target DSI board is present in the system
when the driver is built).

Example output, using the SPCI board, is:

DSI SPCI Release 6.3.3 (Build 1071)

Part of the Dialogic(R) DSI Development Package for Linux

Copyright (C) Dialogic Corporation 2000-2011. All Rights Reserved.

Build options: NEW_DDK

Using major device number 253.

sptpci[0]: DPM offset adjustment 0x0

ACPI: PCI Interrupt 0000:08:02.0[A] -> GSI 18 (level, low) -> IRQ 185

 sptpci Device Id 0 @ Bus: 8 Device: 2 Function: 0

The install script supports an optional remove parameter. This causes the device driver
to be removed and the device nodes to be deleted. For example:

install_*.sh remove

3.2.3 Support for SIGTRAN SCTP under Linux

The Development Package for Linux supports two different SCTP configurations:

The SCTP binary (in conjunction with the SCTPD binary) provides a complete
implementation of the SIGTRAN SCTP protocol suitable for use with pre-2.6.16 kernels
which do not support Native SCTP within the kernel.

Section 3 Installation

26

The SCTPN binary (in conjunction with the native SCTP capability within Linux)
provides a complete implementation of the SIGTRAN SCTP stack suitable for use on
kernels that do support the Native SCTP capability.

Operation of the SCTPN binary in conjunction with the kernel SCTP implementation
requires versions 2.6.16 or greater of the Linux kernel and 1.0.6 or greater of the
lksctp-tools package. Please note that the lksctp-tools package may not be installed by

default on some Linux distributions, in which case it must be installed manually.

Linux systems using (Security Enhanced Linux) SELinux or other firewalls may require
further configuration to allow SCTP traffic to be sent and received.

To make use of the Native SCTP capability, the user should use the SCTPN binary
instead of the binaries SCTP and SCTPD which are usually found in the SS7

Development Package installation directory (the recommended location is /opt/DSI).

Before starting the system, the sctp loadable kernel module will usually need to be
inserted into the system. This can be done using the modprobe command:

modprobe sctp

On systems with Linux kernel version 2.6.16 or greater, adding the following lines to
/etc/modprobe.conf will cause the system to insert the kernel module automatically

on demand:

alias net-pf-10-proto-132 sctp

alias net-pf-2-proto-132 sctp

3.2.4 Adjusting Linux Kernel Parameters

To reserve sufficient system resources for the DSI inter-process communication

mechanism to function correctly it is important to adjust certain kernel parameters to
suitable values.

For linux, the kernel.msgmnb parameter usually needs to be adjusted.

kernel.msgmnb should be set to at least 12 times the total number of messages
configured in the system.txt file (in addition to any requirements of other software
making use of these resources).

Once system.txt is written, add together NUM_MSGS and NUM_LMSGS and multiply

the result by 12. Add on any requirements from other software to determine the
required setting for kernel.msgmnb.

Edit the /etc/rc.local (or distribution-specific equivalent) file to add the following

line:

sysctl -w kernel.msgmnb=62400

For Linux, the kernel.msgmni parameter controls the number of message queues
supported.

The kernel.msgmni parameter should be set to the number of module queues defined
in system.txt with the LOCAL command (in addition to any requirements of other
software making use of these resources).

Edit the /etc/rc.local (or distribution-specific equivalent) file to add the following line:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

27

sysctl -w kernel.msgmni=256

When run, GCTLOAD will attempt to allocate the maximum number of system
resources in order to verify, as far as possible, that the kernel parameters have been

correctly adjusted.

3.2.5 Using 64-bit Linux Applications

The Development Package includes both 32-bit and 64-bit GCTLIB shared object files,
allowing 64-bit user applications to co-exist with 32-bit DSI software. Both libraries
share the same naming convention (libgctlib.x.y.z .), with the 32-bit library stored in

the 32 directory and the 64-bit library stored in the 64 directory.

Note: The ‘x.y.z’ of ‘libgctlib.so.x.y.z’ refers to the GCTLIB shared object’s major, minor and
release version numbers.

Users should update the target system’s run-time linker’s shared object search paths
to include the paths to the 32-and 64-bit GCTLIB shared libraries as required.

To create a 64-bit application, users must ensure that their application code does not
access the ‘next’ field in the HDR structure of a message. This field is called ‘hdr.next’
in a 32-bit environment and ‘hdr.next_ref’ in a 64-bit environment. Any existing

application code that made use of this field needs to be removed.

To build a 64-bit application, all Makefiles and/or IDE configurations need to be
modified to define DSI_64BIT, for example, by editing the User Part Development
Package’s makdefs.mak to:

DKDEFINES = -DLINT_ARGS -DIN_LMSGS -DDSI_64BIT

All 64 bit user applications should be linked against the 64 bit version of GCTLIB which
is installed by default in the following location:

64/gctlib.so.x.y.z.

3.2.6 Removing the Development Package for Linux

Prior to installing a new version of the Development Package for Linux, the previous
version should be removed. This can be achieved using the following procedure

(assuming the user logs on as root):

1) Back-up any license files and user configuration files (eg. system.txt, config.txt,
*.ms7 scripts etc) so that these may be re-installed after the new installation has
been completed.

2) Delete both the installed files and the directory /opt/DSI.

3) The file /etc/ld.so.conf should be edited and the line indicating the path to the

shared object should be removed

 For 32 bit systems this should be: /opt/DSI/32

 For 64 bit systems this should be: /opt/DSI/64

4) Then ldconfig should be run to re-configure the dynamic linker's run time

configuration.

Section 3 Installation

28

5) Reboot the target machine.

3.2.7 RPM Creation

The Development Package provides support for the generation of RPM (RedHat
Package Management) packages for Linux kernels from V2.6.

RPM Creation Instructions

Note: The 'rpmbuild' package must be installed before the following steps can be performed.

A number of RPM packages will be created from the Development Package. The RPM
packages are created by executing the following steps:

1. Select a directory to be used when creating the RPM packages.

For this example, “/var/tmp/dpk/rpm” is used.

2. Create a file called “.rpmmacros” in the user account's home directory and enter

the location of the directory from step 1:

%_topdir /var/tmp/dpk/rpm

3. Prepare the RPM directory:

mkdir -p /var/tmp/dpk/rpm/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

4. Copy the dpklnx.Z file to the user account's home directory. Take care to retain the
Z extension (which identifies the file as a compressed file) and ensure binary file

integrity is maintained.

5. Execute rpmbuild:

rpmbuild -tb dpklnx.Z

6. For 32bit operation systems, the RPM packages are stored in:
/var/tmp/dpk/rpm/RPMS/i386/.

For 64bit operation systems, the RPM packages are stored in:
/var/tmp/dpk/rpm/RPMS/x86_64/

For example:

ls /var/tmp/dpk/rpm/RPMS/<ARCH>/

ss7dpk-5.08-1.<ARCH>.rpm

ss7dpk-devel-5.08-1.<ARCH>.rpm

ss7dpk-debuginfo-5.08-1.<ARCH>.rpm

ss7dpk-kmod-5.08-1.2.6.9_34.EL.<ARCH>.rpm

Where <ARCH> is i386 for 32bit operation and x86_64 for 64 bit operation systems.

Note: Device driver binaries will be built as rpmbuild is run. Therefore, it is necessary for the
machine on which rpmbuild is run to share the same kernel version as the machine on
which the RPM packages will be installed.

RPM Packages

The following packages are created:

ss7dpk-<DPK>.<ARCH>.rpm Run-time files, including binaries, GCT run-time shared

library and system.txt and config.txt configuration files.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

29

ss7dpk-devel-<DPK>.<ARCH>.rpm Development Package development files,

including header files and GCT link-time shared library.

ss7dpk-kmod-<DPK>-<KERNEL>.<ARCH>.rpm Signaling boards device drivers binaries.

ss7dpk-debuginfo-<DPK>.<ARCH>.rpm RPM build artifact, not required.

Using the RPM Management Tool

The RPM management tool, “rpm”, is used to maintain packages on a target system.
Documentation on how to use the “rpm” tool is available from www.rpm.org.

Common tasks using the rpm utility include:

1. Installation of an RPM package:

rpm -i <package_name>

2. Removal of an installed RPM package:

rpm -e <package_name>

3. Upgrading an installed RPM package:

rpm -U <package>

4. List all RPM packages on a system:

rpm –qa

Section 3 Installation

30

3.3 Software Installation for Solaris
Installation of the software is described in more detail in the following topics:

 Installing the Development Package for Solaris

 Removing the Development Package for Solaris

 Solaris 9 - Interface Name Checking

 Solaris 10 - Additional Commands

 Choice and configuration of SCTP module

 Non-serviced interrupts reports

The Development Package for Solaris includes, in a single distribution, the software

required by users of the Dialogic® DSI SS7 Boards and Dialogic® DSI Protocol Stacks.

The Development Package now includes the host protocol binaries, board code files
and the example software from the User Part Development Package. This allows users
to update multiple components within a single installation cycle.

The host-based software uses a three part release number in the form “Release x.y.z”
to uniquely identify the software version. Furthermore, the host-based binaries that
form part of this distribution have the same release number.

For example:

DSI gctload Release 6.2.9 (Build 1055)

Part of the Dialogic(R) DSI Development Package for Solaris(SPARC)

Copyright (C) Dialogic Corporation 1994-2010. All Rights Reserved.

The consolidated Development Packages for Solaris are distributed within two

compressed 'tar' archive files:

dpksparc.tar.gz - Solaris Packages for Solaris-SPARC

dpkx86.tar.gz - Solaris Packages for Solaris-x86

Each distribution contains two Solaris packages:

dsidpk - DSI Development Package

dsidrv - DSI Network Interface Board Driver Package

All users need to install the ‘dsidpk’ package, whereas only users of signaling boards
will need to install the ‘dsidrv’ package. Both packages contain support for 32 bit and

64 bit systems and the installation process selects the appropriate package for the
target system.

These files can be downloaded from the Dialogic website. See Section 1.1 Related
Documentation.

3.3.1 Installing the Development Package for Solaris

The Solaris package installation steps are:

1) Backup any license files and user generated configuration files (e.g. system.txt,
config.txt, *.ms7 scripts etc) so that they may be re-installed after the new
installation is complete.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

31

2) Remove any existing Development Package installation referring to Section 3.3.9
Removing the Development Package for Solaris on page 35.

3) Select the correct Solaris distribution and extract the Solaris package files:

 For SPARC systems:

 gzip -d dpksparc.tar.gz

 tar -xf dpksparc.tar

 For x86 systems:

 gzip -d dpkx86.tar.gz

 tar -xf dpkx86.tar

4) While logged-on as 'root', install the extracted Solaris packages:

 pkgadd -d dsidrv

 pkgadd -d dsidpk

Note: ‘dsidrv’ is only necessary for users requiring board-level drivers.

The following files (or similar) are transferred into the root installation directory (

/opt/DSI).

Table 3. Files Installed on a System Running Solaris

Sub- Directory File name Description

 example_config.txt Example protocol configuration file.

 example_system.txt Example system configuration file

 dsictrl, dsistat, dsitrace, gctload,
s7_log, s7_mgt, s7_play, rsi,
rsi_lnk, rsicmd, sctp, sctpd,
sctpn, ssdh, ssdl, ssdm, ssds,
tempmon, tick, tim, etc

General purpose DSI host utilities
documented within this manual

 dsa, dtc, hstmgr, mbm, rmm, etc Specialized host utilities documented
elsewhere

 ctu, intu, istr, istu, mtr, mtu, ttu,
upe, etc

Ready built versions of the examples
contained in the User Part Development
Package.

 dsi-mibs.zip Dialogic
®
 DSMI SNMP MIBs distributed as

a compressed ZIP file

32 libgctjni.so, libgctlib.so ,
libgctlib.so.1, libgctlib.so.1.49.0,
libgctlib_nomco.so.1.49.0,
libin_api.so

Sub-directory containing 32 bit shared
object libraries

64 libgctlib.so, libgctlib.so.1,
libgctlib.so.1.49.0,
libgctlib_nomco.so.1.49.0,
libin_api.so

Sub-directory containing 64 bit shared
object libraries

DC monitor.dc3, ss7.dc3, ss7.dc4,
ss7.dc6, ss7.dc7, ss7mcd.dc6,
etc

Sub-directory containing downloadable
Code Files

Section 3 Installation

32

Sub- Directory File name Description

HSTBIN dmr, inap, is41, isup, m2pa,
m3ua, map, mst, mtp3, sccp,
sua, tcap, tup etc.

Sub-directory containing Host Protocol
Binaries

INC Sub-directory containing header files for
use with user’s application.

JAVA dmrApi.jar, dmtrCmds.jar,
dms.jar, gctApi.jar, etc

Sub-directory containing Java files.

UPD Sub-directory containing the User Part
Development package.

Note: To reserve sufficient system resources, the Solaris System Resource parameters should be
set as detailed in Section 3.3.5 Tuning Solaris System Resource Parameters.

3.3.2 Solaris 9 - Interface Name Checking

To use the package under Solaris 9, interface name checking must be disabled.
(otherwise the device driver may not start correctly) This is achieved by adding the
following line to the /etc/system file:

set sunddi_netifname_constraints=0

3.3.3 Solaris 10 –User Account Permissions

On Solaris 10, all non-root user accounts must be updated to access the DSI Signaling
board.

For example, the command (which must be executed by root) to update ‘dsiuser’ is:

usermod -K defaultpriv=basic,net_rawaccess dsiuser

3.3.4 Installation of SIGTRAN support for Solaris

The Development Package for Solaris supports two different SCTP configurations:

The SCTP binary (in conjunction with the SCTPD binary) provides a complete
implementation of the SIGTRAN SCTP protocol suitable for use on Solaris 9.

The SCTPN binary (in conjunction with the native SCTP capability within Solaris)
provides a complete implementation of the SIGTRAN SCTP stack suitable for use on

Solaris 10 or later.

Note: If using the SCTPN binary, then this must be running with superuser privileges. From DSI
Development Package for Solaris Release 5.2.1 this is the default setting, for earlier
releases this can be achieved by ensuring the binary is owned by ‘root’ and have the binary
file setuid bit set. If these are not set then the binary will not be able to modify all of the
appropriate kernel settings such as timers.

3.3.5 Tuning Solaris System Resource Parameters

When using Solaris, it is essential to configure the kernel such that sufficient resources
are made available for inter-process communications. Failure to complete this step
may cause the system to halt.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

33

Note: The Sun document: ‘System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones’ (http://www.sun.com/documentation) is the designated
reference relating to Solaris resource management.

Three Solaris resources parameters need to be set (the names of these parameters
differ between Solaris 9 and Solaris 10 - both naming conventions are shown for
clarity) as follows, although users should also take into account other applications that
may require these resources:

Solaris 10

Solaris Resource Name

Solaris 9

Old /etc/system name

Setting

process.max-msg-messages msginfo_msgtql Set to a value greater than or equal
to the sum of NUM_MSGS +
NUM_LMSGS

process.max-msg-qbytes
2
 msginfo_msgmnb Set to a value greater than or equal

to the number of NUM_MSGS +
NUM_LMSGS multiplied by 12.

project.max-msg-ids msginfo_msgmni Set to a value greater than or equal
to the number of LOCAL message
queues.

3.3.6 Creating a Solaris ‘project’ to tune System Resource parameters

Solaris projects provide a mechanism for grouping multiple configuration options. They
also provide an administrative identifier for related work.

1) The following example creates a new project (gctenv), adds the user (gctuser) to
the project, and modifies the projects attributes. Create a new project, gctenv

projadd gctenv

2) Add the user, gctuser, to the project:

projmod –a –U gctuser gctenv

3) Modify the projects’ attributes according to the size of the GCT resources.

In this example, the target system will use 20 message queues (20 instances of LOCAL
in system.txt) and 10000 messages and 1000 long messages – giving a total of 11000
messages. A 10% ‘margin of error’ has been added to each resource value:

projmod -a -K "process.max-msg-messages=(priv,12100,deny)" gctenv

projmod -a -K "project.max-msg-ids=(priv,22,deny)" gctenv

projmod -a -K "process.max-msg-qbytes=(priv,145200,deny)" gctenv

Note: Each projmod command is a single line.

4) Make the project gctenv the default project for user gctuser. As root, edit

/etc/user_attr and add:

2 The process.max-msg-qbytes/msginfo_msgmnb values specified are the System V (SYS V) Interprocess
Communications (IPC) values required for the correct operation of DSI Software Environment. Other application
software may use the SYSV IPC resources and, therefore, their configuration requirements must be added to the
process.max-msg-qbytes/msginfo_msgmnb total.

Section 3 Installation

34

gctuser::::project=gctenv

Note: There are four (4) colons between ‘gctuser’ and ‘project’.

5) Login as gctuser and verify the correct default project

id -p

uid=100(gctuser) gid=1(other) projid=100(gctenv)

3.3.7 Using 64-bit Solaris Applications

The Development Package includes both 32-bit and 64-bit GCTLIB shared objects

(shared libraries), allowing 64-bit user applications to co-exist with 32-bit DSI

software. Both libraries share the same naming convention (libgctlib.x.y.z .) with the
64-bit library stored in the 64-directory.

Note: The ‘x.y.z’ of ‘libgctlib.so.x.y.z’ refers to the GCTLIB shared object’s major, minor and
release version numbers.

To create a 64-bit application, users must ensure that their application code does not
access the ‘next’ field in the HDR structure of a message. This field is called ‘hdr.next’
in a 32-bit environment and ‘hdr.next_ref’ in a 64-bit environment.

To build a 64-bit application, all Makefiles and/or IDE configurations need to be

modified to define DSI_64BIT, for example, edit the User Part Development Package’s
makdefs.mak to:

DKDEFINES = -DLINT_ARGS -DIN_LMSGS -DDSI_64BIT

64 bit user applications should be linked against the 64 bit version of GCTLIB. This is
installed by default in the following location:

/opt/DSI/64/gctlib.so.x.y.z.

3.3.8 Avoiding “Non-serviced interrupt” reports

Some systems exhibit issues due to non-serviced interrupts being reported by the
system. The issue can result in large numbers of event reports that can impact the
system performance.

The DSI Board drivers included in this package include an optional work-around to

eliminate these issues.

To enable this functionality, the following line must be added to the /etc/system file:

DSI Network Interface Board

SPCI2S or SPCI4 set septel:spt_claimint=1

SS7HD set ss7hd:ss7hd_claimint=1

SS7MD No change required

Note: The system has to be rebooted to force the change to take effect.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

35

3.3.9 Removing the Development Package for Solaris

Before removing the Development Package users should take a back-up of any user
configuration files (eg. system.txt and config.txt) so that these may be re-installed
after the new installation has been completed.

The Development Package for Solaris can be removed using the package removal

utility as follows Removal must be performed by a user with Administrator privileges:

pkgrm dsidpk

pkgrm dsidrv

The Solaris package removal utility (pkgrm) then prompts for further input.

On successful completion of the procedure, the following message is displayed and the
user should reboot the system:

Removal of <dsidpk / dsidrv> was successful.

Section 3 Installation

36

3.4 Software Installation for Windows
The Development Package for Windows is distributed electronically as a download from
the Dialogic website. See Section 1.1 Related Documentation. The distribution is in the

form of a single self extracting binary named DPKWIN.EXE. This binary can be run
directly from a hard disk.

Installation and removal of the software is described in more detail in the following
topics:

● Installing Development Package for Windows

● Starting the Windows Device Driver

● Removing Development Package for Windows

3.4.1 Installing Development Package for Windows

If the development package is to be used with a Dialogic® DSI Network Interface
Board, then the board must be installed before installation of the Development
Package such that the driver is correctly loaded.

1) Backup any user generated configuration files (e.g. system.txt, config.txt, *.ms7
scripts etc) so that they may be re-installed after the new installation is complete.

2) Remove any existing Development Package installation referring to section 3.4.6
Removing Development Package for Windows on page 41.

3) The installation must be performed by a user with Administrator privileges. Before
performing the installation, close all other applications.

4) To perform the installation, run the self-extracting binary DPKWIN.EXE. The

installation procedure will ask you to select the driver to be installed; select the

required driver. You may also select an installation directory. The default directory
is C:\DSI. If required, the default directory can be modified.

Note: When installing the Development Package in systems that include a DNIxxxxTEPE2HMP
board it is important NOT to install the SS7LD device driver. The driver from the Dialogic®
PowerMediaTM HMP 3.0 Windows (SU 347 or later) release includes a driver that also
supports the SS7LD).

The following files (or similar) are transferred to the installation directory.

Table 4. Files Installed on a System Running Windows

Sub- Directory File name Description

 example_system.txt Example system configuration file

 example_config.txt Example protocol configuration
file.

 ddinst.exe Device driver installer (common
between SPCI and SS7HD).

 gctload.exe, gctserv.exe,
servcfg.exe, tick.exe, tim.exe,
s7_mgt.exe, s7_log.exe,
s7_play.exe, dsictrl.exe,
dsitrace.exe, dsistat.exe,
sctp.exe, sctpd.exe, ssdh.exe,
ssds.exe, etc

General purpose DSI host utilities
documented within this manual

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

37

Sub- Directory File name Description

 dtc.exe, rmm.exe, rsi.exe,
rsi_lnk.exe, rsicmd.exe, txa.exe,
etc

Specialized host utilities
documented elsewhere

 ctu, intu, istr, istu, mtr, mtu, ttu,
upe, etc

Ready built versions of the
examples contained in the User
Part Development Package.

 dsi-mibs.zip Dialogic
®
 DSMI SNMP MIBs

distributed as a compressed ZIP
file

32 gctlib.dll, gcltlib.lib Sub-directory containing 32 bit
shared object libraries

64 gctlib.dll, gctlib.lib Sub-directory containing 64 bit
shared object libraries

DC ss7.dc3, ss7.dc4, etc Sub-directory containing
downloadable Code Files

HSTBIN Inap.exe, is41.exe, isup.exe,
m2pa.exe, m3ua.exe, map.exe,
mst.exe, mtp3.exe, sccp.exe,
sua.exe, tcap.exe, tup.exe, etc.

Sub-directory containing Host
Protocol Binaries

INC Sub-directory containing header
files for use with user’s
application.

UPD Sub-directory containing the User
Part Development package.

SPCIDVR Sub-directory containing 32 and
64 bit device drivers for DSI SPCI
boards

SS7HDDVR Sub-directory containing 32 and
64 bit device drivers for DSI
SS7HD boards

SS7LD Sub-directory containing 32 and
64 bit device drivers for DSI
SS7LD boards.

The setup program may request a reboot of the target machine when it has finished

installing the package. If requested, then the machine should be allowed to reboot.

The files the user needs to use have been installed in the installation directory. It is
recommended that the user not modify any files in this directory, but instead create a
working directory into which all the necessary files are copied.

3.4.2 Starting the Windows Device Driver

Under Windows, a plug and play driver will be installed for DSI boards when the new

development package is installed on the system. The system will automatically detect
any of the DSI Network Interface Boards and configure the driver for these boards.

To confirm the correct behavior, proceed as follows:

1) Choose Start -> Control Panel to open the Control Panel dialog.

2) Double-click on the Administrative Tools icon, then double-click the Computer
Management icon to open the Computer Management window.

Section 3 Installation

38

3) Click on the Device Manager tree item to display a tree of devices in the right
window pane.

4) Check for the appropriate Board device under Dialogic DSI SS7 Boards. If the
driver is not correctly installed, there will be a question mark (?) or an exclamation
mark (!) before the SS7 Board item.

3.4.3 Additional steps using Windows 7

For Windows 7 users, the following additional steps are necessary to configure the DSI
software environment:

1) Open up the <DPK> folder (normally ‘c:\DSI’ on a Windows system) so that you
have access to the root of the installation where “gctload.exe” etc is located

2) Right click on "gctload.exe" and select ‘properties’

3) A new window will pop-up

4) Select the ‘Compatibility’ tab

5) Now click on the "Run as Administrator option"

6) Click on Apply / OK and then close

3.4.4 Running software as a Windows Service

The Development Package for Windows can be configured to allow it to be
automatically executed at system initialization. This is achieved by running it via a
Windows Service. Running as a Service allows for the automatic invocation of gctload
at system boot; it also allows the stopping and restarting of gctload via a standard
programming interface and additionally provides a mechanism for remote restarting of
the DSI software.

This functionality utilizes the following two executables which are part of the

Development Package for Windows.

gctserv.exe - Service executable.

servcfg.exe - Service configuration and installation tool.

Installing a Service

Note: For Windows 7, all commands must be run from a command shell (cmd.exe) which has
been run with 'Administrator' privileges. To select 'Administrator' privileges run Windows
Explorer, find the ‘cmd.exe’ file, right click on ‘cmd.exe’ and select ‘Run as administrator’.

Before the Service can be installed, the executable must be copied to the appropriate

directory of the Windows installation.

For 32-bit Windows:

copy C:\DSI\gctserv.exe %WINDIR%\system32

For 64-bit Windows:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

39

copy C:\DSI\gctserv.exe %WINDIR%\syswow64

For 32-bit operating systems the 32-bit gctlib.dll file must also be copied to the
%WINDIR%\system32 directory.

copy C:\DSI\32\gctlib.dll %WINDIR%\system32

For 64-bit operating systems copy the 32-bit gctlib.dll into the SYSWOW64 directory as
follows (this DLL will be used by the WOW emulator when running any of the standard
(32-bit) binaries that are part of the development package):

copy C:\DSI\32\gctlib.dll C:\%WINDIR%\SYSWOW64

The installation is performed using the executable servcfg.exe. This installation must
be performed by a user with Administrator privileges.

When installed, the Service is identified by the name "Dialogic® DSI Startup Service"
within the 'services' utility.

The command line format for Service installation are:

32-bit Windows:

servcfg.exe install %WINDIR%\system32\gctserv.exe <gctload> <system.txt>

<start_dir>

64-bit Windows:

servcfg.exe install %WINDIR%\syswow64\gctserv.exe <gctload> <system.txt>

<start_dir>

Where

<gctload> is the full pathname for the gctload executable, and

<system.txt> is the pathname for the system configuration file.

<start_dir> is the directory in which the Service is started. All files referenced by the
gctload executables (including the system.txt and all executables specified within)
must be specified with pathnames relative to this directory (or as absolute path
names).

For example, if system.txt is present in the c:\DSI directory, the following command
would be used to configure the Service:

32-bit Windows:

servcfg.exe install %WINDIR%\system32\gctserv.exe c:\DSI\gctload.exe

system.txt c:\DSI

64-bit Windows:

servcfg.exe install %WINDIR%\syswow64\gctserv.exe c:\DSI\gctload.exe

system.txt c:\DSI

Section 3 Installation

40

When the Service is installed, by default, the startup mode is set to 'manual'. To cause
the Service to be automatically invoked at boot time it must be explicitly configured to
'automatic' mode. This is achieved by running the Services tool and setting the startup
option to "automatic".

Under Windows Server® 2008 and Windows Server® 2008 R2 operating systems

the

Services tool can be found under Control Panel -> Administrative Tools -> Services.

Under the Windows® 7 operating system the Services tool is located under Control
Panel -> System and Security -> Administrative Tools -> Services.

Uninstalling a Service

The Windows Service is also removed using the executable servcfg.exe using the

syntax given below and can be removed from the system32 directory as follows:

servcfg.exe remove

del servcfg.exe

Running the Service manually

The Service is started manually using the "Services" tool.

Select the required Service ("Dialogic DSI Startup Service") and start the Service using
the start icon. When the Service has been successfully started, the displayed status of
the Service is "started".

The Service is stopped manually using the "Services" tool (using the button labeled
"stop" or the stop icon). When the Service has been successfully stopped, the
displayed status of the Service is "stop".

3.4.5 Using 64-bit Windows Applications

The Dialogic® DSI Development Package for Windows offers support for both 32-bit

and 64-bit applications. For 32-bit applications, users should use the gctlib.dll library
whilst for 64-bit applications the gctlib.dll library (which is shipped in the DSI\64
directory of the distribution) should be used.

Having installed the DSI Development Package for Windows, users wishing to use 64-
bit applications need to perform the following additional steps (which assume the
default installation path, C:\DSI).

Copy the (32-bit) gctlib.dll into the SYSWOW64 directory as follows (this DLL will be
used by the WOW emulator when running any of the standard (32-bit) binaries that
are part of the development package):

Copy C:\DSI\32\gctlib.dll C:\WINDOWS\SYSWOW64

Copy the (64-bit) gctlib.dll file into the system32 directory as follows. This DLL will be
used by the user’s (64-bit) application (the system32 directory is the default location
for 64-bit binaries in a 64-bit system, despite its name).

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

41

Copy C:\DSI\64\gctlib.dll C:\WINDOWS\system32

For correct operation of 64-bit applications, it is essential that the user does not access
the ‘next’ field in the HDR structure of a message. This field is called ‘hdr.next’ in a 32-

bit environment and ‘hdr.next_ref’ in a 64-bit environment. Any existing application
code that made use of this field needs to be removed.

All Makefiles and/or IDE configurations need to define DSI_64BIT, for example, edit
the User Part Development Package’s makdefs.mnt to:

DKDEFINES = -DLINT_ARGS -DIN_LMSGS -DDSI_64BIT

All 64 bit user applications should be linked against the 64 bit version of GCTLIB. This
is installed by default in the following location:

C:\DSI\64\gctlib.lib

3.4.6 Removing Development Package for Windows

Prior to installing a new version of the Development Package for Windows, the previous
package must be removed as follows. This procedure requires a user with
Administrator privilege.

1) Back-up any license files and user configuration files (eg. system.txt and
config.txt) so that these may be re-installed after the new installation has been
completed.

2) Select the Control Panel (Start → Settings → Control Panel).

3) Select "Add/Remove Programs".

4) Scroll down the devices and select "Dialogic® DSI SS7 Development Package" and

select "Remove".

5) When package removal is confirmed, restart the target machine.

Section 4 Configuration and Operation

42

4 Configuration and Operation

Before attempting software configuration, you should gain an understanding of the
flexibility of the protocol stack, the run-time options that exist and the mechanisms
that are used to select specific features. This Section gives an overview of these
options. You should also read Section 2 Basic Concepts that describes the basic
principles of modules and message passing.

This section provides information about:

 Selecting the System Architecture

 Creating the System Configuration File (system.txt)

 Creating the Protocol Configuration File (config.txt)

 Executing the Software

 Developing a User Application

4.1 Selecting the System Architecture
This section describes both board-based systems and SIGTRAN software-based
systems. Both types of systems are supported by the Dialogic DSI Protocol stack and

the choice will usually be determined by the application and type of connection
required.

4.1.1 TDM Board Systems

The Dialogic® DSI Protocol Stack software running on the board communicates with an
application running on the host computer. The physical interface to the board uses the
PCI bus. Communication with the board is handled by a device driver and message

passing to and from the board is managed by the board management and interface
process (ssdx, sometimes generically referred to as ssd) that runs on the host
computer.

In addition to running the application on the host, the user may, depending on the
Dialogic® DSI Network Interface Board, the size of the overall system and the network
topology, choose to run some of the SS7 protocol modules on the host. See Section
4.1.4 Protocol Modules for more information. In such cases, the interface between the
application and the SS7 protocol software remains identical. This allows for easy
migration from a small system contained on a single board to a large system
distributed over many boards with minimal changes to the application.

Table 5. Practical System Configurations for Telephony Systems

 Small System Medium System Large System

Board Support
SPCI (see note),
SS7HD

SPCI, SS7HD
SPCI. SS7HD and
SS7MD

Software running on
board

MTP2 MTP3 ISUP /
TUP / SCCP / TCAP /
MAP / INAP / IS41

MTP2 MTP3 MTP2

Software running on
Host CPU

User Application
ISUP / TUP / SCCP /
TCAP / MAP / INAP /
IS41 User Application

MTP3 ISUP / TUP /
SCCP / TCAP / MAP /
INAP / IS41 User
Application

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

43

 Small System Medium System Large System

Number of boards Single

Single board with
signaling (although
additional boards may
be used to support voice
only)

Multiple

Description

Suitable for single board
solutions where the user
wishes to maximize the
available host
processing power.

Suitable for single board
solutions where the user
wishes to make use of a
high performance host
to improve system
throughput. Can also be
used to support more
complex protocol
configurations.

Suitable for systems
requiring larger numbers
of links and systems that
require distribution of
MTP over multiple
boards.

Note: The SPCI board only supports the use of MTP2, MTP3, ISUP and TUP protocols running on
the board.

In board-based systems, the board management and interface process (ssd) is
required to run on the host machine. The ssd process handles message transfer
between the host and the board using the device driver.

4.1.2 SIGTRAN Systems

A software-only architecture may be configured using the appropriate Dialogic DSI

SIGTRAN modules in place of MTP2 and/or MTP3. These modules provide the same

interface to upper protocol modules and use the services of SCTP to transport SS7
signaling reliably over IP.

SS7 Hosts may connect to SIGTRAN M3UA or M2PA Signaling Gateways such as the
Dialogic DSI Signaling Servers. Peer to peer connections between hosts using M2PA

or M3UA are also supported.

The common interfaces presented to the upper layers enable applications to be easily
ported between hardware and software-only architectures. The product designations
are as follows:

 Dialogic DSI M2PA – MTP2 Peer to Peer Adaptation Layer

 Dialogic DSI M3UA – MTP3 User Adaptation Layer

 Dialogic DSI SUA – SCCP User Adaptation Layer

As described in the installation section there are two choices of SCTP module – SCTP
(used with SCTPD) and SCTPN which utilizes the ‘native’ SCTP stack provided by the
host Operating System kernel.

Section 4 Configuration and Operation

44

Table 6. System Configurations for SIGTRAN Telephony Systems

 M2PA System M3UA System SUA System

Software running on
Host CPU

SCTP / SCTPN
M2PA MTP3
ISUP / TUP / SCCP /
TCAP / MAP / INAP /
IS41
User Application

SCTP / SCTPN
M3UA
ISUP / TUP / SCCP /
TCAP / MAP / INAP /
IS41
User Application

SCTP / SCTPN
SUA
TCAP / MAP / INAP /
IS41
User Application

Description

Suitable for SIGTRAN
solutions where MTP2
and below are replaced
with an IP based
solution.

Useful when migrating
an existing TDM system
to IP

Suitable for SIGTRAN
solutions where MTP3
and below are replaced
with an IP based
solution.

M3UA provides the
same interface as MTP3
to the upper layer
modules

Suitable for SIGTRAN
solutions where SCCP
and below are replaced
with an IP based
solution.

Usage

Provides the ability to
connect the Host
Application to 8
Signaling Gateways or
Remote Point Codes.

Provides the ability to
connect the Host
Application to 256
Signaling Gateways or
IPSPs (remote hosts)
and route to 256 remote
Point Codes.

Provides the ability to
connect the Host
Application to 4
Signaling Gateways or
32 IPSPs (remote hosts)
and route to 256 remote
Point Codes.

4.1.3 Diameter Systems

Diameter systems may be set-up using the software-only architecture in the Dialogic

DSI Diameter Stack in conjunction with the SIGTRAN SCTP layer all of which are
included in the DSI Development Package for Linux or Solaris. The Dialogic DSI

Diameter Stack includes a Diameter Module (DMR) implementing the core base
protocol functionality and is supported by a Functional API library to aid application

development.

Table 7. System Configurations for Diameter Systems

 Diameter System

Software running on
Host CPU

SCTPN

DMR (Diameter Module)

User Application - built using the Diameter Functional API which is part of the

Dialogic DSI Diameter Stack).

Description Suitable for Diameter solutions in either client or server configurations.

Usage Provides the ability to connect the Host Application to Peer Diameters nodes.

4.1.4 Protocol Modules

The selection of which protocol modules to run on the host is made by editing the
system.txt configuration file.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

45

Some SS7 protocol modules can be run on either the host machine or on DSI Network
Interface Boards. The options available for each individual board are described in the
appropriate Programmer’s Manual.

The user then runs the gctload program that reads the system configuration
parameters from the system.txt configuration file and starts the selected processes
bringing the system into operation. For further details on the operation of the gctload

program, refer to 7.1 gctload.

Table 8 shows processes and utilities for use on the host that are included in the
distribution.

Note: s7_mgt, s7_log and s7_play are optional utilities. A user may choose to implement the
functionality provided by these utilities in their own applications.

Table 8. System Host Utilities

Process or
Utility

Purpose

gctload
Process to initialize the system environment and start all other related processes running
on the host, deriving the configuration from a text file (system.txt).

s7_log

Utility process to allow messages received from the protocol stack to be logged to a text
file.

This is useful for diagnostic purposes when getting started. Refer to “s7_log” for more
information.

s7_mgt

Process to perform one time protocol configuration for all protocol modules, deriving the
configuration parameters from a text file (config.txt). This process is optional. As an
alternative to using it, the user may elect to perform protocol configuration by sending
messages directly to the other modules in the system. Refer to the appropriate
Programmer’s Manual for information on configuration using discrete messages.

s7_play

Utility process used to generate messages from a text file and send them into the system.

This is useful for diagnostic purposes when getting started. Refer to “s7_play” for more
information.

ssdx

Process to interface with the device driver for passing messages to and from the board(s)
and for downloading software to the board(s). Only required for TDM systems.

Note: This process is referred to in a generic manner as 'ssd'.

rsi
Process to provide message passing over TCP/IP between DSI environments running on
different machines.

rsi_lnk Per link process created by rsi.

rsicmd Configuration utility to configure individual RSI links.

tick
Protocol timer process to send periodic tick notification to the tim process that in turn
handles protocol timers.

tim
Process to receive periodic tick notification from tick and handle protocol timers for all
other processes.

Section 4 Configuration and Operation

46

4.2 Creating the System Configuration File (system.txt)
System configuration is handled by the gctload program that reads system
configuration data from a file called system.txt. System initialization requires:

• First, that a pool of message buffers is created for subsequent inter-process
communication.

• Second, that a message queue is created for each process that will run and that any
message redirection for modules that are running remotely is initialized.

• Finally, that all processes can be started.

The gctload program handles this initialization sequence and creates the inter-process

communication environment. The program reads input from the system.txt
configuration file, carries out all system initialization and starts all processes.

The system.txt configuration file is a user-configurable file containing details of all the
module identifiers known to the system, details of whether they are local modules or
remote modules accessed by a local module (message redirection) and include the
command line for all processes to be started by the gctload program.

The gctload program creates a message queue for each of the local module identifiers.

The program subsequently expects a process to service its message queue, otherwise
messages written to that queue will never be read causing eventual loss of system
messages.

The gctload program initializes the message queue look-up table so that messages
destined for modules that do not exist locally are redirected to a message queue for a
module that does exists locally.

Having created the system environment, the gctload program proceeds to spawn all

processes listed in the system.txt configuration file in the order listed.

Note: Prior to running the gctload program, the system.txt configuration file must be edited to
reflect the requirements of your system.

4.2.1 System Configuration File Syntax

The system.txt configuration file is a text file used by the gctload program to configure
the software environment. The file syntax permits the use of comments to improve the

readability of the file. Comments are inserted into the file by using an asterisk (*). All
characters on the line following the asterisk are ignored.

Numbers can be entered in either decimal or hexadecimal format. Hexadecimal
numbers should be prefixed with 0x. For example, the value 18 can be entered in
either of the following formats:

0x12 *(Hexadecimal)

18 *(Decimal)

The system configuration file can contain the following commands:

• LOCAL commands to allow the gctload program to generate message queues for
modules running locally

• REDIRECT commands to cause messages generated for modules not running locally
to be redirected via a module that is running locally.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

47

• FORK_PROCESS commands advising the gctload program of any processes that need
to be started locally

The full syntax of each command is listed in 7.1.1 System Configuration File
(system.txt).

An example system.txt configuration file is shown in section 9.1.

4.2.2 Generating the system.txt Configuration File

This section describes the procedure for generating a system.txt configuration file and
details operating system specific differences in behavior among the development
packages.

First, the file must contain LOCAL declarations for modules that are to run on the host
computer. For a board-based system, this must include the ssd module and the timer

module. For a SIGTRAN system, ssd is not required:

LOCAL 0x20 * ssdh - Board interface task

LOCAL 0x00 * tim - Timer task

LOCAL declarations are also required for optional modules running on the host.
Typically, this includes the s7_mgt protocol configuration utility and the user's own

application module. It may also include any host-based protocol modules and the
s7_log utility. For example:

LOCAL 0xcf * s7_mgt - Management/config task

LOCAL 0x2d * upe - Example user part task

LOCAL 0x3d * s7_log - Prints messages to screen/file

Additionally, a SIGTRAN system using M3UA requires LOCAL definitions for the SCTP

and M3UA protocols. (the SCTPD module is only used when for systems that do not
make use of the Native SCTP implementation).

LOCAL 0xd0 * SCTPD module (not required if SCTPN is being used)

LOCAL 0xd1 * SCTP or SCTPN module

LOCAL 0xd2 * M3UA module

Once all the LOCAL declarations are in place, REDIRECT commands should be added

for modules that are running on the board so that messages destined for these
modules are transported via ssd (module_id = 0x20) and the device driver to the
board.

The following REDIRECT commands are always required for TDM-based systems:

REDIRECT 0x10 0x20 * CT Bus/Clocking control module

REDIRECT 0x8e 0x20 * On-board management module

For boards running MTP2 protocol layer a redirect command is required for all MTP2
module_id in use by the board. Usually this is just module_id=0x71 but for the SS7HD
board there is a separate MTP2 module_id for each signaling processor. As follows:

Section 4 Configuration and Operation

48

REDIRECT 0x71 0x20 * MTP2 module_id (except SS7HD boards)

REDIRECT 0x81 0x20 * MTP2 module_id for SP 0 (SS7HD boards only)

REDIRECT 0x91 0x20 * MTP2 module_id for SP 1 (SS7HD boards only)

REDIRECT 0xe1 0x20 * MTP2 module_id for SP 2 (SS7HD boards only)

REDIRECT 0xf1 0x20 * MTP2 module_id for SP 3 (SS7HD boards only)

If ATM support is required (SS7MD boards only), then the following REDIRECT
commands are also required:

REDIRECT 0x31 0x20 * ATM Module

REDIRECT 0x41 0x20 * Q.SAAL Module

For SIGTRAN systems using SCTPN the following REDIRECT is required:

REDIRECT 0xd0 0xd1 * required for SCTPN usage

For SIGTRAN systems using M3UA, the following REDIRECTS are required:

REDIRECT 0x22 0xd2 * redirect MTP3 to M3UA

REDIRECT 0xc2 0xd2 * mbm task now handled by M3UA

When using M3UA with multiple local AS, each additional local AS requires a redirect:

REDIRECT 0xd6 0xd2 * M3UA LAS2/NC1

REDIRECT 0xd7 0xd2 * M3UA LAS3/NC2

REDIRECT 0xd8 0xd2 * M3UA LAS4/NC3

In addition, REDIRECT commands are required for protocols running on the board. This
typically includes MTP3 and one or more user parts. Examples of these commands are
given below:

REDIRECT 0x22 0x20 * MTP3 module

REDIRECT 0x23 0x20 * ISUP module

REDIRECT 0x4a 0x20 * TUP module

REDIRECT 0x33 0x20 * SCCP module

REDIRECT 0x14 0x20 * TCAP module

Having provided that modules running on the board are accessible, it is then necessary
to provide that status indications issued from the board successfully arrive at a module
running on the host. If this does not happen, the system quickly runs out of available

messages for inter-process communication.

Two module_id's (0xdf and 0xef) require redirection to a suitable process running on
the host. Initially, these messages should be redirected to the s7_log utility that prints

out a line for each message received. Ultimately, the user's own application will expect
to receive these notifications.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

49

REDIRECT 0xdf 0x3d * LIU/MTP2 status messages -> s7_log

REDIRECT 0xef 0x3d * Other indications -> s7_log

It is next necessary to include FORK_PROCESS commands for modules running on the
host computer. All systems require tick and tim binaries to be run; therefore:

The mandatory FORK_PROCESS commands are:

FORK_PROCESS tim

FORK_PROCESS tick

Systems containing signaling boards require the appropriate ssdx process to be

started:

FORK_PROCESS ssdx

For SIGTRAN implementations using the Native SCTP (SCTPN) and M3UA the following
processes should be started:

FORK_PROCESS sctpn

FORK_PROCESS m3ua

For SIGTRAN implementations that use SCTP & SCTPD and M3UA the following
processes should be started:

FORK_PROCESS sctpd

FORK_PROCESS sctp

FORK_PROCESS m3ua

Finally, FORK_PROCESS commands should be added for any other modules running on
the host, such as, protocol modules, user applications or diagnostic utilities. For
example:

FORK_PROCESS s7_mgt

FORK_PROCESS upe

FORK_PROCESS s7_log

Section 4 Configuration and Operation

50

4.3 Creating the Protocol Configuration File (config.txt)
The s7_mgt protocol configuration utility performs initialization of the protocol
software modules. It reads the protocol configuration data from a text file, called

config.txt, and provides a quick and flexible method of configuring the protocol
modules without the need to write software for that purpose.

Alternatively, the protocol stack may be configured by sending the individual
configuration messages documented in the per-module Programmer’s Manuals for each
protocol module. This approach can be of particular use when the application needs to
make dynamic changes to protocol configuration without stopping the application

program.

The command line syntax for s7_mgt is detailed in section 7.5. By default s7_mgt runs
with module_id=0xcf and uses the filename “config.txt” for the Protocol Configuration
File. Typically s7_mgt is started up from within system.txt using a FORK_PROCESS
command. On completion of the single shot configuration sequence, s7_mgt will issue
a notification message which can be used by an application as the indication that
configuration is complete. The following example extract from system.txt starts

s7_mgt so that it uses the default configuration file, and module_id and sends a
notification to module_id 0xef:

FORK_PROCESS s7_mgt –i0xef

To assist diagnosis of issues, s7_mgt can be run using the -d option that generates

additional diagnostic output.

The user should generate the config.txt file by reference to section 8 of this manual
which details the syntax of all protocol configuration commands. In some cases it will
also be necessary to refer to the Programmer’s Manual for the specific protocols.

An example config.txt file is supplied as part of the DSI Development Package and this
is repeated in section 9.2 of this manual. The example file shows typical usage of most

commands although many of the commands are commented out by the use of ‘*’ as
the first character on the line.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

51

4.4 Executing the Software
This section describes how to start the software running. It assumes that the software
has already been installed and operating system adjustments have been made as

detailed in section 3.

Ensure that device drivers for any boards have been installed and the system
configuration file (system.txt) has been modified according to the system
requirements.

Ensure that the location of any code file is consistent with the SS7_BOARD entry in
config.txt (or the message based configuration parameters).

Ensure that the location of any host protocol binaries is consistent with the
FORK_PROCESS entries in the system.txt file

If using s7_mgt, ensure that the protocol configuration file config.txt has been edited
to provide the correct protocol configuration. Typically s7_mgt is started using a
FORK_PROCESS command in system.txt).

To start the software running, change to the directory containing the gctload binary
and run gctload, optionally specifying the system configuration file. To run the system

in the background, enter:

gctload -csystem.txt &

For Windows users, gctload can be run in the background using:

start gctload -csystem.txt

The gctload program initializes the system environment and starts up other processes.
The s7_mgt process configures the protocol modules. A banner confirms that the
system is running.

To shutdown the DSI software environment, run gctload using the –x parameter (or if
gctload was run in the foreground simply use CTRL-C). All modules that have been
started by gctload are terminated automatically, for example:

gctload –x

The command line management utility dsictrl can be used to activate signaling links,
for example:

dsictrl MTPL ACT 0-0

dsictrl MTPL ACT 0-1

Once gctload is running they status of the system can be observed by running a
second instance of gctload using the –t1 parameter.

4.5 Developing a User Application
The development package, with the User Part Development Package, contains the files

to allow the user to develop applications. These consist of makefile definitions, C
header files (.h), and libraries.

Section 4 Configuration and Operation

52

A single definitions file is supplied (for each operating system) containing the
definitions relating to the user's own development environment. This file is then
included in the make files for all other processes. The user may need to modify this
definitions file to ensure correct paths etc are set up.

Some simple example programs are supplied to illustrate techniques for interfacing to
the protocol stack, although they are not intended to show a real application. Before

starting to develop an application, you can familiarize yourself with the example
programs and how they are built.

The example programs are contained in the User Part Development Package.

upe is a framework for a User Part module and contains a worked example of
exchanging messages with the MTP3 module. It loops back any MTP-TRANSFER-

INDICATIONS messages that it receives and reports other MTP indications to the user.

mtpsl is an example of how to send messages to MTP3 to activate and deactivate

signaling links. It can be used as a command line tool for this purpose initially. It is
intended that the user build the example code into the management application.

ctu is an example of how a user application can interface with telephony user parts,
e.g., ISUP or TUP.

A makefile is included to allow users to build the application programs. To build the
programs, change to the appropriate directory and enter (to build ctu):

nmake /f ctu.mak (Windows)

make -f ctu.mak (Linux)

make -f ctu.mak (Solaris)

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

53

5 Message Reference

5.1 Message Format

5.1.1 MSG Message Structure

A message consists of a fixed header field and a variable length parameter field:

typedef struct msg

{

 HDR hdr;

 u16 len;

 u32 param[80]

} MSG;

hdr: The message header

len: This field indicates the number of bytes in the parameter area of the message.
Some messages do not contain any data in the parameter area, in which case len is
set to zero.

param: The parameter area of the message. The contents of this field are dependent
on the message type. This field is normally accessed via a pointer obtained using the
macro get_param(), which returns an unsigned character pointer to the param field.

The meaning of each field for a given message type is described in the individual
application message specification. (See Programmer’s Manual for each module).

The size of the param array is 320 bytes for a normal length message (ie as shoen
above) or 4200 bytes for a long message.

Note: Users of systems where the structure 'MSG' is already defined for other purposes should use
the alternative definition 'MSF'.

5.1.2 Header Fields

The application messages start with a common header, which is used to determine the
message type, the source and destination module identities, and status information.
This header structure is defined as follows:

typedef struct hdr

{

 u16 type; /* type of message */

 u16 id; /* module instantiation */

 u8 src; /* sending module ID */

 u8 dst; /* destination module ID*/

 u16 rsp_req; /* response required */

 u8 hclass; /* generic MSG type */

 u8 status; /* returned status */

 u32 err_info; /* status information */

#ifdef DSI_64BIT

 u32 next_ref; /* reserved for internal use only */

#else

 struct hdr *next; /* reserved for internal use only */

#endif

} HDR;

Section 5 Message Reference

54

type: The type field is used to distinguish between different messages. It uniquely
identifies the format of the remainder of the message and in particular the format of
the message parameter area.

id: The id field allows modules, which handle multiple internal instances of a single
entity (such as a circuit or signaling link) to distinguish the entity for which the
message is destined.

src: The src field contains the module identity of the module that issued the message.

dst: The dst field contains the module identity of the module for which the message is
destined.

rsp_req: The rsp_req field is used by the originator of a message to indicate whether
or not it requires confirmation from the receiving module that the message has been

received.

If the sending module requires confirmation, it sets a bit in the rsp_req field prior to

sending the message. Which bit to set is determined by the value of the least
significant nibble of the module's own module id (as written in the src field) For
example, if the module id is 0x36 and message confirmation is required, the least
significant nibble value of 0x6 indicates that the user would set bit 6 in the rsp_req
field, so rsp_req would equal 0x0040.

If message confirmation is not required, then the rsp_req field should be set to zero.

The confirmation message takes the same format as the request message but uses a

different type value. The type value for a confirmation message is derived from the
type value in the request message by clearing bit 14.

hclass: This field is assigned by getm() and must not be modified.

status: This field is used for confirmation messages and indications to indicate the
status associated with the message. A value of zero in a confirmation message usually

indicates success.

err_info: This field is used in some confirmation and indication messages to
supplement the status field and provide additional information

next: This field is reserved for internal use and must not be used.

5.1.3 Parameter Field

The parameter field for the standard MSG can contain 0 to 320 bytes of data. The data

is stored in the parameter field in a host independent format. The contents and format
of messages parameter field are defined in the various Programmer’s Manuals. In
order to support longer payload messages associated with some protocols, in addition
to the standard MSG a ‘long message’ is supported, which offers up to 4,200 bytes in
the parameter area. Long messages co-exist with the standard MSG and are only used
as needed based on payload size.

When the message is allocated the length parameter specified in the getm() function

call is used to determine whether to allocate a normal message (length <= 320) or a
‘Long Message’ (length > 320).

Internally two partitions are created, the first for standard 320 octet messages and the
second for 4200 octet messages. The use of the second partition is optional and is
enabled by the use the NUM_LMSGS command in the system.txt file which takes a
single parameter representing the number of ‘Long Messages’ required in the system.
This should be in the range 1 to 65,000.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

55

5.2 Common Message Specifications
This section defines the inter process messages that are of generic use within the DSI
software environment. Messages for individual protocol modules are specified in the

appropriate protocol Programmer’s Manual and control messages for specific boards
are contained in the Programmer’s Manual for the board.

This section defines the following message types:

 GEN_MSG_MOD_IDENT - Module Identification Request

 SYS_MSG_CONGESTION - Congestion Status Indication

 MGT_MSG_TRACE_EV - Trace Event Indication

 API_MSG_CNF_IND - Configuration Completion Status Indication

Section 5 Message Reference

56

5.2.1 GEN_MSG_MOD_IDENT - Module Identification Request

Synopsis

Message issued to any module to read the module type and core revision number.

Format

MESSAGE HEADER

Field Name Meaning

type GEN_MSG_MOD_IDENT (0x6111)

id 0

src Sending module's ID

dst Destination module_ID

rsp_req Used to request a confirmation.

hclass 0

status 0

err_info 0

len 28

PARAMETER AREA

Offset Size Name

0 2 Reserved

2 1 maj_rev

3 1 min_rev

4 24 text

Description

This message can be issued to any module to determine the module type and the core
revision number of the internal software.

The confirmation message contains the major and minor revision numbers and a text
string identifying the module.

Parameters

maj_rev

Major revision identifier for the object being queried.

min_rev

Minor revision identifier for the object being queried.

text

Null terminated string giving textual module identity (for example, "ss7.dc6").

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

57

5.2.2 SYS_MSG_CONGESTION - Congestion Status Indication

Synopsis

Message sent to the designated congestion handling module on change of system
congestion state.

Format

MESSAGE HEADER

Field Name Meaning

type SYS_MSG_CONGESTION (0x0001)

id Partition_ id
0 - Indication relates to pool of standard length messages
1 - Indication relates to pool of ‘long’ messages.

src 0

dst congestion-handling module

rsp_req 0

hclass 0

status congestion_status

err_info 0

len 0

Description

When, as a result of allocating or releasing a message the system congestion status

changes, this message is sent to the designated congestion handling module.

Parameters

congestion_status

The current congestion state of the DSI software environment. A value of zero
indicates no congestion and non-zero values indicate various levels of congestion.
Currently only 1 level of congestion is supported.

Section 5 Message Reference

58

5.2.3 MGT_MSG_TRACE_EV - Trace Event Indication

Synopsis

Message issued by a module to trace a message sent to or received by the module.

Format

MESSAGE HEADER

Field Name Meaning

type MGT_MSG_TRACE_EV (0x0003)

id 0

src module_id of module generating the trace event

dst management module id

rsp_req 0

hclass 0

status 0

err_info Timestamp

len 18 + length of traced data

PARAMETER AREA

Offset Size Name

0 1 src - hdr->src from traced message.

1 1 dst - hdr->dst from traced message.

2 2 id - hdr->id from traced message.

4 2 type - hdr->type from traced message.

6 2 status - hdr->status from traced message.

8 4 err_info – hdr->err_info from traced message.

12 4 par - pointer to hdr of message being traced.

16 2 data_length - number of bytes in data field.

18 0 to 280 data - Data taken from parameter area of traced message.

Description

For diagnostic purposes, each protocol module has the ability to trace messages sent,
and received and certain management events. When a message is traced a copy of the
message is embedded within the MGT_MSG_TRAVE_EV message and sent to the
appropriate trace or management module. The user can dynamically change the

configuration of which messages are traced using the per-module message to set the
appropriate trace masks. Typically the trace messages are sent to the message queue
of the s7_log utility which logs them to a rolling log file.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

59

5.2.4 API_MSG_CNF_IND - Configuration Completion Status Indication

Synopsis

Message issued by s7_mgt protocol configuration utility on completion of initial
configuration sequence.

Format

MESSAGE HEADER

Field Name Meaning

type API_MSG_CNF_IND (0x0f09)

id 0

src s7_mgt module_id (0xcf)

dst Notification module (see below)

rsp_req 0

hclass 0

status completion_status (see below)

err_info Reserved for future use.

len 0

Description

This message is issued by the s7_mgt protocol configuration utility on completion of
the configuration sequence and indicates either success (status=0) or an error
condition that occurred during configuration. The message is only issued when s7_mgt

is run with the –i command line option specifying the module ID of the Notification
Module to which the message should be sent.

It is recommended that the user invoke this option, then wait for an
API_MSG_CNF_IND message to provide that the application does not attempt to send
messages until initial configuration is complete.

Parameters

completion_status

The result of initial configuration. The following table shows the possible values and
their meanings.

Value Meaning

0 Success

1 Error opening the config.txt protocol configuration file

2 Syntax or value error in the config.txt protocol configuration file

3 Error during configuration (invalid parameters)

4 Error during configuration (no response)

Section 5 Message Reference

60

5.3 RSI Messages
RSI messages allow RSI links to be configured, activated and deactivated by the user.
Once established they may also be used to gather the status and statistics on the link.

The following message types are defined:

 RSI_MSG_CONFIG – RSI Link Configuration Request

 RSI_MSG_UPLINK – RSI Link Activate Request

 RSI_MSG_DOWNLINK – RSI Link Deactivate Request

 RSI_MSG_LNK_STATUS – RSI Link Status Indication

 RSI_MSG_R_LNK_STATS – RSI Link Statistics Request

 RSI_MSG_READ_LINK – RSI Read Link Status

5.3.1 RSI_MSG_CONFIG – RSI Link Configuration Request

Synopsis

Message sent to the rsi module to configure an individual RSI link.

Format

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_CONFIG (0x7f80)

id rsi_link_id

src Sending module ID

dst RSI module ID (0xb0)

rsp_req Used to request a confirmation

hclass 0

status 0

err_info 0

len 130

PARAMETER AREA

Offset Size Name

0 1 reserved – must be set to zero

1 1 conc_id

2 2 flags

4 2 local_port

6 2 remote_port

8 20 reserved – must be set to zero

28 20 remote_addr

48 2 reserved – must be set to zero

50 80 peer_addr

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

61

Description

The RSI_MSG_CONFIG message is used to configure an RSI link. For correct operation
one end of the link must be configured as a client and the other as a server. The link is
initialized in the out of service (inactive) state and can subsequently be brought into
service using the RSI_MSG_UPLINK message.

Network addresses can be specified as DNS hostname, IPv4 or IPv6 addresses. All

addresses are specified as null terminated ASCII strings.

For example:

IPv4 address: 123.124.125.126

IPv6 link local address via eth0: fe80::20d:60ff:feb7:d751%eth0

IPv6 global address: 19a9:8cf0:0:20d:60ff:feb7:d751

DNS address: dpkbuild.lab.yourcompany.com

Parameters

rsi_link_id

The local logical RSI link identifier in the range 0 to one less than the number of links
supported.

conc_id

The concerned module_id to which RSI link status indications will be sent.

flags

A 16-bit value specifying additional run-time configuration options.

flags Description

Bit 0 Client / Server setting. This bit should be set to 0 for the Client end of the link and set to 1
for the Server end or the link.

Bit 1 Reserved for future use and should be set to zero.

Bit 2 This bit should be set to 1 on system that support ‘long’ messages.

Bits 3 to 15 All other bits are reserved for future use and should be set to zero.

local_port

The local port number for a server link. (This should be set to zero for client links).

remote_port

The remote port number for a client link. (This should be set to zero for server links).

remote_addr

Retained for backwards compatibility only.

peer_address

Holds either the peer’s Network Address, or an IPv4 or IPv6 address as null terminated
ASCII string.

Section 5 Message Reference

62

5.3.2 RSI_MSG_UPLINK – RSI Link Activate Request

Synopsis

Message sent to the RSI module to activate an individual RSI link.

Format

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_UPLINK (0x7f81)

id rsi_link_id

src Sending module ID

dst RSI module ID (0xb0)

rsp_req Used to request a confirmation

hclass 0

status 0

err_info 0

len 0

Description

The RSI_MSG_UPLINK message is sent to RSI to activate a previously configured rsi
link. The rsi process attempts to establish the link on receipt of this message. In the
event that the link subsequently fails, the RSI module will automatically attempt to

restore it.

5.3.3 RSI_MSG_DOWNLINK – RSI Link Deactivate Request

Synopsis

Message sent to the RSI module to deactivate an individual RSI link.

Format

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_DOWNLINK (0x7f82)

id rsi_link_id

src Sending module ID

dst RSI module ID (0xb0)

rsp_req Used to request a confirmation

hclass 0

status 0

err_info 0

len 0

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

63

Description

The RSI_MSG_DOWNLINK message is sent to RSI to take an RSI link out of service.

5.3.4 RSI_MSG_LNK_STATUS – RSI Link Status Indication

Synopsis

Message issued by RSI to indicate changes in status of the RSI link.

Format

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_LNK_STATUS (0x0f83)

id link_id

src RSI module ID (0xb0)

dst Concerned ID

rsp_req 0

hclass 0

status Link State

err_info 0

len 0

Description

The RSI_MSG_LNK_STATUS message is issued by RSI to the concerned module (as

configured at RSI link configuration) whenever the RSI link goes in service or out of

service.

Parameters

Link State

The status of the RSI link as follows:

Value Link state

1 Link established (In Service)

2 Link failed (Out of Service)

Section 5 Message Reference

64

5.3.5 RSI_MSG_R_LNK_STATS – RSI Link Statistics Request

Synopsis

Message sent to RSI to read (and optionally reset) statistics for an individual RSI link.

Format

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_R_LNK_STATS (0x6f87)

id rsi_link_id

src Sending module ID

dst RSI module ID (0xb0)

rsp_req Used to request a confirmation

hclass 0

status Set to 0 to read statistics
Set to 1 to read and reset statistics

err_info 0

len 36

PARAMETER AREA

Offset Size Name

0 1 version

1 3 spare

4 4 period

8 4 tx_msgs

12 4 rx_msgs

16 4 tx_kbytes

20 4 rx_kbytes

24 4 oos_duration

28 4 oos_count

32 4 tx_discards

Description

The RSI_MSG_R_LNK_STATS message is used to read back statistics from the rsi link.
The sending module should set to ‘version’ parameter to zero and should ensure that a

confirmation is requested. The RSI module will populate the remaining parameters in
the parameter area in the confirmation message. The statistics can optionally be reset
by setting the ‘status’ to 1.

Parameters

period

The time period over which the statistics have been gathered (in multiples of 100ms).

tx_msgs

Number of messages transmitted over the link within the measurement period.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

65

rx_msgs

Number of messages received over the link within the measurement period.

tx_kbytes

Number of octets transmitted in messages over the link within the measurement
period. Excludes the message header.

rx_kbytes

Number of octets received in messages over the link within the measurement period.
Excludes the message header.

oos_duration

The total amount time the link was out of service during the measurement period (in
multiples of 100ms).

oos_count

The number of times the link went out of service during the measurement period.

tx_discards

The number of messages due to be transmitted on the link that were discarded during
the measurement period.

5.3.6 RSI_MSG_READ_LINK – RSI Read Link Status

Synopsis

Message used to read the current status and parameters of an RSI link.

Message Format:

MESSAGE HEADER

Field Name Meaning

type RSI_MSG_READ_LINK (0x6f84)

id rsi_link_id

src Sending module ID

dst RSI module ID (0xb0)

rsp_req Used to request a confirmation

hclass 0

status 0

err_info 0

len 130

PARAMETER AREA

Offset Size Name

0 4 reserved – must be set to zero

4 2 lport

6 4 reserved – must be set to zero

10 2 fport

12 2 tcpstate

14 18 host_addr

32 18 peer_addr

Section 5 Message Reference

66

50 80 peer_name

Parameters

lport

Local port

fport

Peer port

tcpstate

State of the underlying TCP connection

host_addr

Holds the local IPv4 or IPv6 address of the connection. The message supports both
IPv4 and IPv6 addresses.

For an IPv4 connection, the first byte is set to 1 followed by a 32 bit IPv4 address.

For an IPv6 connection, the first byte is set to 2 followed by a 128 bit IPv6 address and
in the case of a link local address the scope (or 0xff for a non link local address).

peer_addr

Holds the remote IPv4 or IPv6 address of the connection. The message supports both

IPv4 and IPv6 addresses.

For an IPv4 connection, the first byte is set to 1 followed by a 32 bit IPv4 address.

For an IPv6 connection, the first byte is set to 2 followed by a 128 bit IPv6 address and
in the case of a link local address the scope (or 0xff for a non link local address).

peer_name

For client end, this parameter is the name used at configuration time. For server end
this parameter is set to a null string.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

67

6 Library Functions

6.1 Inter-Process Communications Functions

6.1.1 GCT_send

Synopsis

Function to send a message to the specified module_id.

Prototype

int GCT_send(unsigned int module_id, HDR *h);

Return Value

Returns zero on success, non-zero otherwise.

Parameters

module_id - The destination module id. This will usually be the same as the value
contained in the hdr.dst field of the message.

h - A pointer to the HDR structure at the start of the MSG to be sent. This parameter

should always point to a buffer allocated using getm().

Description

This function uses module_id to determine which message queue the message should
be sent to and sends the message. A success return value implies that the message
has been sent to the message queue belonging to the destination process.

If the call is successful, the calling program no longer owns the message and must no

longer access it. If the function does not return success, then the calling program is
responsible for the release of the message back to the system using relm().

6.1.2 GCT_receive

Synopsis

Function to wait until the next message for module_id is available and return a

pointer to the message.

Prototype

HDR *GCT_receive(unsigned int module_id);

Return Value

A pointer to the received message on success or zero on failure (in which case the user
should retry the call).

Section 6 Library Functions

68

Parameters

module_id - The module's own module id.

Description

This function uses module_id to determine from which message queue to receive. If
the message queue contains a message, then a pointer to the first message is
returned. Otherwise, the function suspends the calling task until a message is

available.

After processing, the message returned by the GCT_receive function must either be
sent back to the sending module (as a confirmation message), released back to the
system using relm() or forwarded to a third module.

The only difference between GCT_receive and GCT_grab is whether to block or not
when no messages are available.

6.1.3 GCT_grab

Synopsis

Function to determine whether there is a message ready for module_id and return a
pointer to the message. If no message is ready, then the function returns immediately.

Prototype

HDR *GCT_grab(unsigned int module_id);

Return Value

A pointer to the received message on success or zero if there are no messages waiting.

Parameters

module_id - The module's own module id.

Description

This function uses module_id to determine from which message queue to receive. If
the message queue contains any messages, then a pointer to the first message is
returned. Otherwise the function immediately returns zero.

After processing, the message returned by the GCT_grab function must either be sent
back to the sending module (as a confirmation message) or released back to the

system using relm() or forwarded to a third module.

The only difference between GCT_receive and GCT_grab is whether to block or not
when no messages are available.

6.1.4 GCT_set_instance

Synopsis

Function to write the module instance into the message pointed to by h.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

69

Prototype

int GCT_set_instance(unsigned int instance, HDR *h);

Return Value

Returns zero on success, non-zero otherwise (currently no failure conditions are
defined).

Parameters

instance - The destination module instance.

h - A pointer to the HDR structure at the start of the MSG.

Description

Writes the destination module instance into the message. This function should be

called prior to calling GCT_send by the module sending the message.

The destination module instance is used when messages are sent from one processor
to another processor. It determines the destination processor to which the message is
sent.

Examples of the use of this function are as follows:

a) When sending messages to one of several boards. In this case, the module instance

is the board_id.

b) When sending messages to one or other Dialogic® DSI Signaling Interface Unit
(SIU) from an SIU pair. In this case, the module instance is 0 (SIUA) or 1 (SIUB).

6.1.5 GCT_get_instance

Synopsis

Function to recover the module instance from the message pointed to by h.

Prototype

unsigned int GCT_get_instance(HDR *h);

Return Value

Returns the module instance read from the message.

Parameters

h - A pointer to the HDR structure at the start of the MSG.

Description

Recovers the source module instance from a received message. This function should be
called after return from GCT_receive or GCT_grab.

The source module instance is used when messages are received from a number of
processors by the local module. It identifies the source processor at which the message
originated.

Section 6 Library Functions

70

Examples of the use of this function are as follows:

a) When receiving messages from one of several boards. In this case, the module
instance is the board_id.

b) When receiving messages from one or other Signaling Interface Unit (SIU) in an SIU
pair. In this case, the module instance is 0 (SIUA) or 1 (SIUB).

6.1.6 getm

Synopsis

Function to allocate an MSG and initialize given fields in the message header.

Prototype

MSG *getm(unsigned short type, unsigned short id,

 unsigned short rsp_req, unsigned short len);

Return Value

A pointer to the allocated message, or zero if no message available.

Parameters

type - The message type, this is written to the hdr.type field of the message before
the function returns.

id - The id value; this is written to the hdr.id field of the message before the function
returns.

rsp_req - The rsp_req value; this is written to the hdr.rsp_req field of the message
before the function returns (Refer to 5.1.2 Header Fields).

len - The number of bytes that the user wishes to place in the parameter area of the
message. This is written to the len field of the message before the function returns.
This field is used to determine whether to allocate a standard message or a long

message. If len is less than or equal to 320, then a standard message is allocated. If
len is between 321 and 4200 inclusive, then a long message is allocated.

Description

This function allocates a message buffer from the buffer pool and initializes the type,
id, rsp_req and len fields of the message to the specified values.

The function is used to allocate a message for subsequent inter-process

communication, where it will be sent to the destination process. On return from the
function, it is the calling functions responsibility to initialize the hdr.src and hdr.dst
fields and the parameter area of the message prior to calling GCT_send().

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

71

6.1.7 relm

Synopsis

Function to release a message that has previously been allocated by getm(), back to
the system.

Prototype

int relm(HDR *h);

Return Value

Zero on success; non-zero otherwise.

Parameters

h - A pointer to the HDR structure at the start of the MSG.

Description

Returns a message buffer allocated by getm() to the system buffer pool.

Each message allocated must be returned once (and only once) to the system. It does
not need to be returned by the same process that allocated it.

6.1.8 GCT_link

Synopsis

Function optionally used to attach an application to the DSI software environment, and
detect the existence of the environment.

Prototype

int GCT_link(void);

Return Value

Returns zero on success.

Non zero is returned on failure, indicating that gctload is not running (GCT

environment is not available).

Description

This optional function is called by an application that wishes to confirm the existence of
the DSI software environment in advance of using it. Refer to section 2.8 for further

details.

Typically this function is not needed. The first call by an application to GCT_grab,
GCT_receive or getm will automatically attach to the DSI environment.

Section 6 Library Functions

72

6.1.9 GCT_unlink

Synopsis

Function optionally used to force an application to detach from the DSI software
environment.

Prototype

int GCT_unlink(void);

Return Value

Always returns zero.

Description

This optional function is called by an application that wishes to forcibly unlink from the
DSI software environment (for example to allow the DSI software environment ot be
restarted without needing to restart the application). Refer to section 2.8 for further
details.

Prior to calling GCT_unlink() the application must ensure that all messages have been
released back to the environment.

Typically this function is not needed. When a module terminates it automatically
unlinks from the DSI software environment.

6.1.10 GCT_partition_congestion

Synopsis

Function used to determine the congestion status of the DSI software environment.

Prototype

int GCT_partition_congestion (int partition_id);

Parameters

The partition_id identifies the particular message pool. It should be set to 0 for the
pool of standard MSGs and 1 for the pool of ‘Long’ messages.

Return Value:

The return value is set to the current congestion state of the DSI software
environment. A value of zero indicates no congestion and non-zero values indicate
various levels of congestion. Currently only 1 level of congestion is supported.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

73

Description

The congestion status is determined by the number of messages currently allocated as
a percentage of the total number of messages within the message pool. When a
system is under heavy load there may be insufficient CPU power to process the
incoming messages as fast as they are received so the number of messages queued
within the environment starts to increase. Usually this is a transient condition and the

load over time balances out and the congestion clears. A second cause of congestion is
when messages are sent to a message queue which is not being serviced by an active
process. A further cause of congestion is when modules do not release messages back
into the environment. If the number of messages currently allocated increases above a
threshold the congestion status will be set to 1. This function allows an application to
determine the current congestion status of the system.

See also gctload –t1 which provides similar information from the command line.

6.1.11 confirm_msg

Synopsis

Function to confirm a message once it has been handled.

Prototype

int confirm_msg(MSG *message);

Parameter

The message is a pointer to the message to be confirmed.

Return Value

The function always returns 0.

Description

This function is called when a module has finished processing a message. If the
sending layer’s response required bit is set, then the message is converted to a
confirmation message and sent back using GCT_send() to the sending module. If no
confirmation was requested then the message is released back to the software
environment using the relm().

A confirmation message is generated by swapping the hdr.src and hdr.dst fields,
clearing bit 14 in the hdr.type field and clearing the sending layer’s bit in the
hdr.rsp_req field.

The confirm_msg() function is the preferred way for an application to release a
message back to the system once it has finished processing the content. It takes care
of inspecting the rsp_req field to determine whether a confirmation is required, and it

adjusts the type field if necessary and calls either relm or GCT_send simplifying the

application code and reducing the risk of errors.

Section 6 Library Functions

74

6.2 General Library Functions
This section details other useful functions that are built into the gctlib library.

6.2.1 rpackbytes

Synopsis

Function to pack bytes into machine independent format.

Prototype

void rpackbytes(unsigned char *dest, int dest_byte_offset,

 unsigned long value, int bytecount);

Return Value

None.

Parameters

dest - pointer to the destination buffer

dest_byte_offset - offset from the start of the destination buffer to store data

value - the value to be put into the buffer

bytecount - the number of significant bytes to take from value.

Description

Packs the requested number of bytes into a buffer in a machine-independent manner
for sending to another module, regardless of byte ordering on either processor.
Typically this function is used to populate configuration messages with the appropriate

data.

Example

rpackbytes(dest, 10, value, 2);

This call will use the least significant 2 bytes of the value and store the resulting data

starting at location dest + 10. The least significant byte of value will be written to dest
+ 11 and the next significant byte to dest + 10.

6.2.2 runpackbytes

Synopsis

Function to extract bytes from machine-independent format.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

75

Prototype

unsigned long runpackbytes(unsigned char *src, int src_byte_offset,

 int bytecount);

Return Value

The numeric value unpacked from the buffer. The user should cast this to the required
type (u8, u16, u32 etc).

Parameters

src - pointer to the source buffer

src_byte_offset - offset from the start of the message buffer to retrieve data

bytecount - the number of bytes to take from the message

Description

Unpacks the requested number of bytes from a buffer, regardless of byte order on the
processor.

Example:

result = (u16)runpackbytes(src, 10, 2);

This call will retrieve the least two significant bytes from the buffer src and return the
value as a u16. The u16 will be formed by src + 11 as the least significant byte and src
+ 10 as the most significant byte.

Section 6 Library Functions

76

6.3 Java Inter-Process Communications
As an alternative to the C library functions discussed in section 6.1 the DSI
Development Package includes a set of Java classes that provide equivalent

functionally for use in a Java environment. The classes are included in the gctApi.jar

within the JAVA sub-directory of the Development Package.

There are two key classes in this package.

+getParam()
+getType()
+setType()
+getId()
+setId()
+getSrc()
+setSrc()
+getDst()
+setDst()
+getRspReq()
+setRspReq()
+getStatus()
+setStatus()
+getInstance()
+setInstance()

GctMsg

+getm()
+relm()
+send()
+grab()
+link()
+unlink()
+isPartitionCongested()
+gePartitionInfo()
+pendingMsgs()

GctLib

IMsg

GctLib

This class controls the access into the Message-Passing environment. It provides
methods equivalent to the functions listed in section 6.1 Inter-Process Communications
Functions.

Allocating a message:

GctMsg txMsg = GctLib.getm(MessageLength);

Sending a message:

GctLib.send(DestModId,txMsg);

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

77

Receiving a message:

GctMsg rxMsg = GctLib.receive(LocalModuleId);

GctMsg

This class provides a wrapper around a C message structure to allow it to be used in an
alternative language.

The full list of classes and methods for the package are listed in Appendix C - GCTLIB
Javadoc.

Example Code to display a message:

 try {

 System.out.print(prefix

 + "M-t" + String.format("%04x", gctmsg.getType())

 + "-i" + String.format("%04x", gctmsg.getId())

 + "-f" + String.format("%02x", gctmsg.getSrc())

 + "-d" + String.format("%02x", gctmsg.getDst())

 + "-s" + String.format("%02x", gctmsg.getStatus()));

 ByteBuffer buf = gctmsg.getParam();

 if (buf.hasRemaining()) {

 System.out.print("-p");

 while (buf.hasRemaining()) {

 System.out.print(String.format("%02x", BBUtil.getU8(buf)));

 }

 }

 System.out.print("\n");

 } catch (GctException gctEx) {

 System.out.println("Problem with message: " + gctEx.getMessage());

 }

This example shows the message body being read via the use of the ByteBuffer class.
The ByteBuffer can also be used to manipulate the message body to add parameters.

Section 7 Host Utilities

78

7 Host Utilities

7.1 gctload

Description

The DSI software environment is created and maintained using the gctload utility. All

DSI implementations use gctload.

gctload reads user supplied system configuration parameters from the System
Configuration File. The filename of this file by default is “system.txt” although an
alternative filename can be used if the –c option is specified. Within this manual it is

often simply referred to as system.txt.

The system.txt file details the number and type of all messages to allocate, it lists all
the module identifiers known to the system (including details of whether they are local

modules or remote modules accessed through message redirection) and lists the
command lines for all processes to be started by gctload. The file also contains
configuration parameters for congestion management and a number of optional
commands.

gctload uses the NUM_MSGS and NUM_LMSGS commands to build pools of message
buffers for subsequent use by the getm() and relm() functions.

gctload creates a message queue for each of the LOCAL module identifiers. It

subsequently expects a process to service each message queue; otherwise, messages
will be written to message queues and never read causing a loss of messages.

gctload uses the REDIRECT commands to initialize the message queue look-up table
so that messages destined for remote modules can be re-directed via the appropriate
LOCAL module.

gctload uses the CONG_MSG command to initialize congestion reporting parameters

and thresholds.

Having created the system environment, gctload uses the FORK_PROCESS
commands to spawn all processes listed in the system configuration file. It then
remains dormant until it receives a signal from the user (using gctload –x) to shutdown
the system.

To shut down the system, it terminates any processes that it created and releases all
system resources back to the operating system.

The gctload utility can also be run a second time with one of the options (-t1, -t2, -t3
or –t4) in order to retrieve status information relating to the DSI software
environment.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

79

Syntax

gctload -v

gctload [-c<system config file> -d]

gctload -x

gctload –t1

gctload –t2

gctload –t3

gctload –t4

Parameters

-v

Show version information.

-c<system config file>

The system configuration file contains full details of message queues, module_ids and
local processes. This parameter is the filename of that file which by default is
“system.txt”. The format of the system configuration file is detailed fully in section
7.1.1, System Configuration File (system.txt) on page 81.

-d

Enables additional diagnostic output during creation of the DSI software environment.

-x

This option is used to terminate an existing gctload session. It ensures that the
environment is shutdown in a controlled manner and that all processes forked within
the system.txt file are also shutdown. This is the preferred way to shutdown the DSI
software environment.

-t1

-t1r

The –t1 option is used to obtain a report on the current status of the DSI software
environment. gctload should already have been run (without the –t1 option) so the
DSI software environment is operational, running gctload a second time using the –t1
option will interrogate the current status.

The status output shows the key configuration parameters and current status values
and is intended as a diagnostic tool to monitor the health of the system. The example

below shows typical usage.

The –t1r form of the option additionally resets certain measurements (‘Max alloc

since reset’ and ‘Cong count since reset’) and the associated time stamps.

gctload –t1

GCTLOAD System Status: 2012-03-06 16:52:46.112

 System restart time: 2011-03-06 16:52:46.

 Congestion module Id: 0x21

 GCTLIB library: V1.44

 Internal system error: 0

 GCTLIB Atomic: Enabled

 Timed licenses in use: No

Section 7 Host Utilities

80

 Partition[0]

 Parameter size: 320

 MSGs in partition: 5000

 MSGs allocated : 0

 MSGs free: 5000

 Maximum MSGs allocated: 13

 Max alloc since reset: 12

 Time of last max 2012-03-06 16:52:46.112

 Out of MSG count: 10

 Congestion onset: 2500

 Congestion abate: 500

 Congestion status: 0

 Congestion count: 2

 Cong count since reset: 1

 Last congestion onset: 2012-03-06 16:52:46.112

 Partition[1]

 Parameter size: 4200

 MSGs in partition: 10

 MSGs allocated : 0

 MSGs free: 10

 Maximum MSGs allocated: 8

 Max alloc since reset: 7

 Time of last max 2012-03-15 13:02:23.178

 Out of MSG count: 10

 Congestion onset: 5

 Congestion abate: 1

 Congestion status: 0

 Congestion count: 2

 Cong count since reset: 1

 Last congestion onset: 2012-03-15 13:02:23.178

-t2

The –t2 option displays a list of all the currently allocated messages to the console.
These messages are shown in the same format as described for the s7_log and s7_play

programs. Typically the –t2 option is used after having identified (using the –t3 option)
that unexpected messages are queued within the environment in order to understand
which message types are involved. Example output is shown below:

gctload –t2

GCTLOAD Allocated MSGs: 2012-03-06 16:52:46.112

M-I0000-t7680-i0000-fcf-d20-s00

M-I0001-t7681-i0000-fcf-d20-s00

M-I0000-t7203-i0000-fcf-d71-s00-p(9)112233445566778899

-t3

The –t3 option displays the current message queue status for all local message
queues. This includes the number of messages currently queued and the process id
(pid) of the last process to read from the message queue. To use the option the user
should run a second instance of gctload using the –t3 option.

Under normal operation, the message queues for destination tasks should either be
empty or contain a small number of messages. If this is not the case, this may be due
to one of the following reasons:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

81

● No active task has been set to read messages for the listed destination

● The destination task may have stopped reading from its message queue or may
have stopped running.

● There may be a missing REDIRECT statement in the hosts’ system.txt file to
redirect messages from the listed destination to a running task.

gctload -t3

GCTLOAD Message Queue Status: 2012-03-06 16:52:46.112

LOCAL=0x00, MSGs queued=6, last read by pid=1167

LOCAL=0xef, MSGs queued=0, last read by pid=1182

-t4

The –t4 option displays the license status of all active DSI host software licenses and,
in the case of time limited licenses, shows the expiry date for the license.

gctload –t4

GCTLOAD License Status: 2012-03-06 16:52:46.112

pid Token Expires

123456 MTP3_LNX 29-Feb-2012

120 MTP2MD256_LNX -

7.1.1 System Configuration File (system.txt)

The system configuration file (system.txt) is used by gctload to configure the DSI

software environment. The system.txt file is tailored by the user to include the
appropriate set of protocols and utilities. This section details the format of the
system.txt file and defines the commands and parameters that can be used in the file.

The file syntax permits the use of comments to improve readability. Comments are
inserted into the file by using an asterisk (*); all characters on the line after the
asterisk are ignored.

Numbers can be entered in either decimal or hexadecimal format. Hexadecimal
numbers should be prefixed with 0x. For example the value eighteen can be entered in
either of the following formats:

0x12 * (Hexadecimal)

18 * (Decimal)

The System Configuration File commands allow local modules to be declared (each
local module requires a message queue), messages for remote modules to be

redirected via the appropriate interface module (eg ssd, rsi etc) and command lines for

processes to be started up to be listed. The syntax of each command is listed in the
following sections.

Section 7 Host Utilities

82

7.1.2 NUM_MSGS / NUM_LMSGS Commands

Synopsis

Configure the number of messages in the standard and large message pools.

Syntax

NUM_MSGS <num msgs>

NUM_LMSGS <num_lmsgs>

Example

NUM_MSGS 5000

NUM_LMSGS 200

Description

This command configures the number of messages globally allocated for use within the
DSI software environment. All systems need to have a pool of ‘standard’ messages
configured using the NUM_MSGS command. Optionally, systems may also have a pool
of ‘long’ messages configured using the NUM_LMSGS command. Long messages are

typically required for the use of transaction-based protocols where SCCP is performing
segmentation and reassembly.

7.1.3 CONG_MSG Command

Synopsis

Configures the congestion parameters for the DSI software environment.

Syntax

CONG_MSG <module Id> <onset threshold> <abatement threshold>

Example

CONG_MSG 0x21 50 10

Description

This command configures the behavior of the congestion reporting system, as detailed
in section 2.9. The following parameters can be configured using this message.

The congestion module Id specifies the module to which a congestion notification

message is to be sent in the event of system congestion onset or abatement.

The congestion onset threshold specifies the percentage of the total number of
available messages that must be allocated before the system will start congestion
procedures.

The congestion abatement threshold specifies the percentage of the total number of
messages that must be available before the system will terminate congestion

procedures.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

83

7.1.4 LOCAL Command

Synopsis

Command to create a message queue for a given module identifier that will be serviced
by a local module.

Syntax

LOCAL <module_id>

Example

LOCAL 0x20 * Create message queue for module_id 0x20

Description

This command causes gctload to create a message queue and associate the queue with
the given module_id.

These commands should appear prior to any redirect commands. One entry should
appear for each local module that will run in the system. The module identifier,
<module_id>, must be in the range 0x00 to 0xfe and must not have already been
declared. Usually, the module_id is entered in hexadecimal format.

7.1.5 REDIRECT Command

Synopsis

Command to cause messages for a given module identifier to be redirected to an
alternative message queue.

Syntax

REDIRECT <new_module_id> <existing_module_id>

Example

REDIRECT 0x22 0x20 * Redirect messages for 0x22 to module 0x20

Description

This command causes messages destined to <new_module_id> to be redirected to
<existing_module_id>. The <existing_module_id> must have already been declared
as a local module.

Messages for many module identifiers may be re-directed to a single module. A
separate command line should be used in each case.

Typical use for this command is to redirect messages intended for processes that are

running on a remote board via a local process which is responsible for transferring the
message to the remote board.

Section 7 Host Utilities

84

7.1.6 DEFAULT_MODULE Command

Synopsis

Command to cause messages for any module identifier not explicitly defined to be
redirected to an alternative message queue.

Syntax

DEFAULT_MODULE <default_module_id>

Example

DEFAULT_MODULE 0xef * Redirect messages by default to module 0xef

Description

This command saves using several REDIRECT commands and allows messages for any
unspecified module_id to be redirected to a single default module_id. It is good

practice to always include the DEFAULT_MODULE command to ensure that all module
identifiers are serviceable.

7.1.7 FORK_PROCESS Command

Synopsis

Command to start up processes within the DSI software environment.

Syntax

FORK_PROCESS <process_path_name> { <parameters> }

Example

FORK_PROCESS /mydir/BIN/myproc * Startup my process

Description

This command causes the specified process to be spawned once the system
environment has been created. Command line parameters for the process can also be

specified, although there may be some limitations to the symbols that are permitted.

The maximum number of FORK_PROCESS commands supported in a system.txt
configuration file is 64. A process does not have to be spawned in the configuration
file, provided it is run after gctload and its module identifier has been declared as

local. An advantage of using the configuration file is that the processes spawned by
gctload automatically get shutdown when using gctload –x to shutdown the DSI
software environment.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

85

7.1.8 Example system.txt File

The following example of a generic system.txt file creates and assigns a message
queue to module_ids 0x10, 0x20 and 0x30, and redirects messages for module_id
0x40 to module_id 0x20. It then starts up processes to service the message queues for
the local modules. An example real-world system.txt file is shown in section 9.1.

* Example System Configuration File - system.txt

*

*

NUM_MSGS 5000

*

CONG_MSG 0x21 50 10

*

LOCAL 0x10 * Process_A’s Module ID

LOCAL 0x20 * Process_B’s Module ID

LOCAL 0x30 * Process_C’s Module ID

*

REDIRECT 0x40 0x20 * Redirect msgs for Module ID 0x40 to Process_B

*

DEFAULT_MODULE 0x30 * Send messages for any unspecified Module ID to Process_C

*

NUM_MSGS 5000 * Number of standard size messages in the environment

NUM_LMSGS 200 * Number of ‘long’ messages (used for certain TCAP based

applications)

*

FORK_PROCESS Process_A

FORK_PROCESS Process_B

FORK_PROCESS Process_C

Section 7 Host Utilities

86

7.2 s7_log

Synopsis

The s7_log utility services a specified message queue, receiving all messages and

generates text based output either to the screen or to a log file. Maintenance and
status events are interpreted as text; other messages are displayed in raw
hexadecimal format. All entries in the log file are timestamped with date and time.

The utility is able to generate rolling, size limited log files and is suitable for real-time
logging of messages to disk. Typically one or more instances of s7_log will be present
in a system. For example one instance might log management events and status

indications whilst other instances could be used to log measurements or to log traces

protocol messages.

Syntax

s7_log [-v –m<module_id> -o<options> -f<filename> -n<num_log_files>

 -s<logfile_size> -p<PCAP_filename> -t<timestamp> -q –r –w -x]

Parameters

-v

Show version information.

-m<module_id>

The module identifier assigned to the s7_log process. If not specified, s7_log will use a
module ID of 0xef. The module ID assigned to s7_log must have a corresponding
LOCAL entry in the system.txt file and must not be in use by other processes.

-o<options>

A 16 bit value that specifies the type of message reporting that will occur. If not
specified, a value of 0xaf0d is used. Each bit set to 1 enables reporting of a particular
message group or parameter field as described in the following table:

Bit Function

0 Enable text interpretation of all recognized messages.

1 Display ALL received messages (including those interpreted as text) as hexadecimal.

2 Decode and display Management trace messages.

3 Decode and display Management Trace Event ‘time stamp’ field.

4 Decode message header src and dst fields as text if recognized.

5 Enables the decoding of timestamps included in API_MSG_RX_INDT messages received from
DSI SS7 Boards. Setting bit 5 to 1 specifies the timestamp values taken from the internal board
clock should be displayed in short form (time only). The timestamp information is displayed
after the “BRD:“ label in the log.

Note: This timestamp is different and more precise than the timestamp derived from the host
clock, enabling usage of the -t[t|d] option as described below.

6 As for bit 5, it enables the decoding of timestamps included in API_MSG_RX_INDT messages
received from DSI SS7 Boards. Bit 6 differs from bit 5 by displaying the timestamp values
taken from the internal board clock in long format (date and time). Setting bit 6 to 1 overrides
the value of bit 5 and always results in the display of timestamps in the long format. If both bits
5 and 6 are set to 0, the timestamp is not displayed.

7 Not used. Must be set to zero.

8 Display message type field.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

87

Bit Function

9 Display message id field.

10 Display message src field.

11 Display message dst field.

12 Display message rsp_req field.

13 Display message status field.

14 Display message err_info field.

15 Display message parameter field.

-f<filename>

Optionally specifies a text file to which the output from s7_log will be written. s7_log
will create a backup of the existing log file, if one exists, with the filename

<logfile_name>.old. When operating with rolling log files using the –s and –n options
s7_log will not create the backup file.

-n<num_log_files>

Optionally allows multiple log files to be created in a rolling log format to prevent filling
the hard drive. This parameter should be set to a value between 2 and 99 to control
how many log files are created. The filenames of the log files will be in the following
form. Each time the latest file is full, each file is renamed.

log.txt (most recent file),

log.txt.1 (second most recent file)
…

log.txt.[n-1] (oldest file)

-s<logfile_size>

Use in conjunction with the –n option to specify the maximum file size (in kbytes) for a

rolling log file. The valid range is from 1 to 100,000 representing log file sizes from
1kbytes to 100,000kbytes.

-p<PCAP_filename>

The –p option causes a PCAP formatted log file with the given filename to be created.
s7_log will log the following message types in the PCAP format file: API_MSG_RX_IND,
API_MSG_RX_INDT and API_MSG_TX_REQ.

When running in terminated mode, the user needs to activate tracing of MTP3 TX_REQ
in the output event trace mask and RX_IND in the input trace mask and these trace
messages will be logged into the PCAP format log file.

-tt, -td, -tp

The –tt, –td and -tp options cause each entry created by s7_log to contain a
timestamp.

Option Output Format

-tt Displays time only hh:mm:ss:ddd

-td Displays date and time YYYY-MM-DD hh:mm:ss.ddd

-tp Displays date and higher precision
timestamps to micro-second granularity

YYYY-MM-DD hh:mm:ss.dddddd

Section 7 Host Utilities

88

-q

Optional quiet mode which prevents output being sent to the display console. The use
of this option is highly recommended for all systems under load as the impact of
writing lots of messages to the screen can seriously impact system throughput.

-r

An option for use when rolling log files are enabled to cause a new file to be started

the first time a new event is logged each day. This functionality is enabled by adding
the –r option (in conjunction with the –n option). This behavior applies to both text
and PCAP format log files.

-x

This option is used to modify the filename format for rotating log files. By default the
sequence number is appended at the end of the filename (eg. maint.log.2) but if the –
x option is used the sequence number is placed before the file extension (eg.

maint.2.log).

Examples

For example, the command line to run s7_log as module ID 0xef with rolling logs
enabled would be:

s7_log -q -td -n20 -s1000 -m0xef -o0xff87 -fmaint.log

Typical output from s7_log is shown below:

S7L:2012-04-13 14:34:28.105 I0000 M t06a0 i0000 f20 def s60 p00100000

S7L:2012-04-13 14:34:28.187 I0000 LIU Status : id=0 SYNC LOSS

S7L:2012-04-13 14:34:28.187 I0000 LIU Status : id=0 AIS

S7L:2012-04-13 14:34:28.187 I0000 LIU Status : id=0 PCM LOSS

S7L:2012-04-13 14:34:28.187 I0000 LIU Status : id=0 REMOTE ALARM

S7L:2012-04-13 14:34:28.313 I0000 LIU Status : id=1 SYNC LOSS

S7L:2012-04-13 14:34:28.313 I0000 LIU Status : id=1 AIS

S7L:2012-04-13 14:34:28.313 I0000 LIU Status : id=1 PCM LOSS

S7L:2012-04-13 14:34:28.313 I0000 LIU Status : id=1 REMOTE ALARM

S7L:2012-04-13 14:34:28.516 I0000 Level 2 State : id=0 OUT OF SERVICE

S7L:2012-04-13 14:34:28.527 I0000 Level 2 State : id=1 OUT OF SERVICE

S7L:2012-04-13 14:34:28.805 I0000 LIU Status : id=0 AIS CLEARED

S7L:2012-04-13 14:34:29.004 I0000 LIU Status : id=1 AIS CLEARED

S7L:2012-04-13 14:34:29.504 I0000 Level 2 State : id=0 INITIAL ALIGNMENT

S7L:2012-04-13 14:34:29.505 I0000 Level 2 State : id=1 INITIAL ALIGNMENT

S7L:2012-04-13 14:34:30.006 I0000 Level 2 State : id=1 IN SERVICE

S7L:2012-04-13 14:34:30.006 I0000 Level 2 State : id=0 IN SERVICE

S7L:2012-04-13 14:34:30.008 I0000 MTP Event : linkset_id/link_ref=0100

Changeback

S7L:2012-04-13 14:34:30.008 I0000 MTP Event : linkset_id=01 Link set

recovered

S7L:2012-04-13 14:34:30.008 I0000 MTP Event : linkset_id=01 Adjacent SP

accessible

S7L:2012-04-13 14:34:30.008 I0000 MTP Event : point code=00000002

 Destination available

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

89

Each line of text corresponds to a received message. The parameter prefixed I is the
instance recovered from the message. In an SIU host environment, the instance
identifies the SIU (by the siu_id value) that originated the message. Instance 0 refers
to SIUA and instance 1 refers to SIUB.

Messages that are not interpreted as text are displayed in hexadecimal format as
follows:

M t<type> i<id> f<src> d<dst> s<status> e<err_info> p<param>

Each field contains the value of the corresponding message field in hexadecimal
format.

Section 7 Host Utilities

90

7.3 s7_play

Description

s7_play is a utility, primarily intended for diagnostic purposes, which takes text based

representation of messages and sends them to the DSI software environment. It can
optionally wait for a response to a message, insert a delay between messages or pause
until a specific message type is received.

Typically s7_play is used to prototype configuration sequences, or to generate status
requests or statistics gathering messages from a live system.

Syntax

s7_play –v –m<module_id> -f<filename>

Parameters

-v

Show version information.

-m<module_id>

Set the module_id that s7_play will use. By default this is 0x5d but may need to be
changed depending on the manner in which s7_play is being used. If s7_play is simply
generating messages then it can run with the default module_id. If it is also receiving
responses then it is important that there is a corresponding LOCAL entry in the
system.txt file and that module_id is not in use by other processes. Also it is important
that the correct module_id is entered in the src field of messages in the command file

so that the responses come back to the correct message queue.

-f<filename>

The filename of the text file containing the commands to be executed by s7_play.
Optionally a space may be inserted between –f and the file name. By convention the
filename suffix .ms7 is used.

Example

For example, to run s7_play as module ID 0x2d and take commands from a file
cmd.ms7.

s7_play –m0x2d –f cmd.ms7

7.3.1 s7_play Command File Format

The s7_play utility takes commands from a user-supplied text file and generates
messages into the DSI software environment. This section details the format of the file

and the syntax of all commands used within the file.

The s7_play command file is a text file with each line in the file representing a single
command. The first character on the line determines the command type. Inserting a *

or # character as the first character of a line causes the remainder of the line to be
ignored by s7_play.

The following commands are supported:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

91

Command Function

M Send message

W Send message and wait for response

P Pause and wait for a specified message type to be received

D Delay

R Change the receive message queue which s7_play uses when waiting for responses

The command file can be made self executing (within a Linux or Solaris environment)
by using a feature of the Unix environment and including the following text (or similar)
in the first line of the file and changing the file permissions to be executable. (Note

however that this technique does not allow the module_id to be changed):

#!/opt/DSI/s7_play –f

M Command – Send Message

The send message command causes s7_play to allocate a message and populate it in

accordance with the values contained within the file. S7_play then calls the
GCT_send() function to send the message into the DSI software environment. The
command format allows all fields of the message header, the parameter area and the
message instance to be populated. Any fields not specified in the command are set by
default to zero. As soon as the message has been sent, s7_play continues with the
next command.

*

* The format for individual parameters is as follows:

*

* -I0000 specifies the instance value for the message

* -t0000 specifies the hdr->type value for the message

* -i0000 specifies the hdr->id value for the message

* -f00 specifies the hdr->src value for the message

* -d00 specifies the hdr->dst value for the message

* -r0000 specifies the hdr->rsp_req value for the message

* -e00000000 specifies the hdr->err_info value for the message

* -s00 specifies the hdr->status value for the message

*

* The param field is variable length up to 320 octets

* -p0000..0000 specifies the param value for the message

*

* The following command sends a GEN_MSG_MOD_IDENT message to board_id=1

* NOTE: the message is a single line which wraps to fit the document!

*

M–I0001-t6111-i0000-fef-d8e-r8000-p00000000000000000000000000000000

000000000000000000000000

*

W Command – Send Message and Wait for Response

The wait command causes s7_play to allocate and send a message (as for the send
message command). s7_play then reads messages from its own input message queue
until it receives a response to the message it has just sent before continuing with the
next command. When using this mode it is important that the src module_id is set
(using the –f parameter) to the module_id of s7_play and that the appropriate bit in
the rsp_req field is set so that a response is received. In addition it is important that
the module_id in use by s7_play is not in use by another module.

Section 7 Host Utilities

92

*

* The following sends message type-0x1234 and waits for a response

W–t1234-i0000-sef-d8e-r8000-p000000

*

P Command – Pause until specific message received

The pause command causes s7_play to wait until a specific message type (as specified
in the command) is received before continuing to the next command. The message

type is a two byte hexadecimal value using the –t parameter.

*

* The following line pauses until message type 0x1234 is received

P–t1234

*

D Command – Delay for fixed interval

The delay command causes s7_play to delay for a (nominal) fixed interval before

continuing to the next command. It takes two forms, one allowing the delay to be
specified in seconds (using the –s parameter) and the other allowing the delay to be
specified in milliseconds (using the –m parameter). The value of the delay is coded as
a two byte hexadecimal value.

*

* The following line implements a 3 second delay

D-s0003

*

* The following line implements a 20ms delay

D-m0014

*

R Command – Change the Receive Message Queue

The “R” command causes s7_play to change the module_id that it uses for subsequent
reads of its own message queue. The command takes a single 16 bit parameter
designated –m as follows:

*

* The following line changes the s7_play module_id to 0x2d

R-m002d

*

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

93

7.4 tick and tim

Description

The tick and tim utilities are essential to the correct operation of any DSI deployment

and both should always be started using the FORK_PROCESS command in the
system.txt file.

The tick utility generates a periodic timing reference and sends it to the tim utility. The
tim utility handles the timer mechanism for all other processes in the system, in most
cases issuing a periodic timer tick message to the module every 100ms.

Syntax

tick [-v]

tim [-v]

Parameters

-v

Show version information.

Example

The following example shows the typical use of the tick and tim utilities as commands
within the system.txt file:

FORK_PROCESS tim

FORK_PROCESS tick

Section 7 Host Utilities

94

7.5 s7_mgt

Description

The s7_mgt utility is the primary tool for configuring a DSI software stack. It is a

single-shot configuration utility that takes configuration commands from a text file
(config.txt by default).

The full set of configuration commands are detailed in section 8.16 of this manual.

As an alternative to using s7_mgt, experienced users can build their own configuration
utilities using messaged-based configuration. In this case users should refer to the
definitions of individual messages in the appropriate Programmer’s Manuals.

Syntax

s7_mgt [-v -k<config_file> -m<module_id> -i<notify_id> -d -f<filename>]

Parameters

-v

Show version information.

-k<config file>

Specifies the filename of the user generated text file that contains all the protocol
configuration commands. The default is config.txt.

-m<module id>

Run using an alternative specified module_id to the default. By default s7_mgt uses

module_id=0xcf and typically this does not need to be changed.

-i<notify module id>

On completion of the single-shot configuration sequence, s7_mgt is able to generate a
API_MSG_CNF_IND message to a user application indicating the completion status.
The user application may use this indication to start up its own operation. This option
is used to specify the module_id to which the notification message is sent. By default
no notification is issued.

-d

Enables additional diagnostic output to assist diagnosis of configuration problems.

-f<filename>

Optionally specifies a text file to which the output from s7_mgt will be written. s7_mgt
will overwrite existing log files.

Example

The following example uses the configuration file “my_config.txt” and on completion

will issue notification to module_id=0xef.

s7_mgt -kmy_config.txt -i0xef

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

95

7.6 ssd
ssd is the generic name for the process that interfaces with the per-board device driver
for passing messages to and from the board. It also controls resetting and

downloading software onto the board.

ssd also provides the ability to configure the addressing mode for the board, this is
particularly important where multiple boards of the same type are in use in a single
server to ensure that the board_id always refers to the same board.

Each board type has its own version of ssd as follows:

ssds for SPCI4/SPCI2S boards

ssdl for SS7LD boards

ssdh for SS7HD boards
ssdm for SS7MD boards

7.6.1 ssds (for SPCI4/SPCI2S boards)

Description

The ssds utility interfaces with the device driver for passing messages to and from the
SPCI4 and SPCI2S boards and controls the downloading software to the board. ssds
also controls geographic addressing for all boards in a system which can be based on
either the PCI bus enumeration or the ADDR switch setting on the board.

Syntax

ssds [-v -o -a –d -m]

Parameters

-v

Show version information.

-o<addressing mode>

This parameter specifies the Geographic Addressing mode of operation. Geographic
Addressing allows the logical position of a board (or board_id) in a system to remain
the same irrespective of the addition or removal of other boards on the PCI bus. It can
take the following values:

-o1 - PCI address mode where address is determined by enumerating boards on the

PCI bus at boot time (i.e., the default order found by the operating system).

-o3 - Switch address mode where address is determined by a 16 position ADDR switch
on the board. The switch must be set to a different value for each board.

If the parameter is omitted then operation defaults to PCI address mode.

-a<address>

For Switch address mode it is necessary to specify a second command line parameter s
containing a list of the addresses for each logical board position (or board_id) derived

from the ADDR switch setting. Each entry in the list (up to a maximum of 16) is
separated by a comma as follows:

-a6,4,2,3,12,14

Section 7 Host Utilities

96

If using Switch address mode , board_id=0 would be the board with ADDR switch set
to 6, board_id=1 would be the board with ADDR switch set to 4 and so on. It is not
necessary for all boards listed in this option to physically exist in a system.

-d

Enables additional diagnostic output to provide feedback on progress of code file
download and initialization to help resolve configuration issues.

-m<module id>

Run using an alternative specified module_id to the default. By default ssds uses
module_id=0x20.

7.6.2 ssdl (for SS7LD boards)

Description

The ssdl utility interfaces with the device driver for passing messages to and from the
SS7LD board and controls the downloading software to the board. ssdl can be
configured to handle different modes of addressing for each board within a system.
This can be based on either the PCI bus enumeration or board serial number.

Syntax

ssdl [-v –o -a -d –m –Lp –Lt -t]

Parameters

-v

Show version information.

-o<addressing mode>

This parameter specifies the Geographic Addressing mode of operation. Geographic
addressing allows a board's logical position in a system to remain the same
irrespective of the addition or removal of other boards on the PCI bus. Two different
schemes of addressing DSI SS7LDH4Q boards are supported:

-o1 - PCI address mode, as supplied by enumerating boards on the PCI bus at boot
time

-o3 - Switch address mode based addressing, determined by a 16-position rotary

switch (SW1) on the board. Note that any changes to the ADDR switch setting will not
be recognized by the system until the system is power cycled.

If the parameter is omitted, then operation defaults to PCI address mode.

-a<address>

For Switch address mode, it is necessary to specify a second command line parameter
containing a list of the switch settings for each logical board position (or board_id).
Each entry in the list (up to a maximum of 16) is separated by a comma as follows:

-a6,4,2,3

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

97

If using Switch address mode, board_id=0 would be the board with ADDR switch set to
6, board_id=1 would be the board with ADDR switch set to 4, and so on. It is not
necessary for all boards listed in this parameter to actually exist in a system. A board
that is listed, but missing, would result in a gap in the logical board_id sequence.

-d

Enables additional diagnostic output to provide feedback on progress of code file

download and initialization to help resolve configuration issues.

-m<module id>

Run using an alternative specified module_id to the default. By default ssdl uses
module_id=0x20.

-Lp<license path>

Specifies the path to the license file.

-Lt

License test mode option used to check that the specified license is valid. The result is
displayed to the console.

-t

Permits the module to run without a license in ‘trial mode’ for one hour after which the
binary will terminate.

7.6.3 ssdh (for SS7HD boards)

Description

The ssdh utility interfaces with the device driver for passing messages to and from the

SS7HD board and controls the downloading software to the board. ssdh handles
different modes of addressing for boards within a system. This can be based on either
PCI bus enumeration or the ADDR switch setting on the board.

Syntax

ssdh [-v -o -a -d –m]

Parameters

-v

Show version information.

-o<addressing mode>

Select geographic address mode. Geographic addressing allows a board’s logical
position in a system to remain the same irrespective of the addition or removal of

other boards on the PCI bus. The following addressing schemes are supported:

-o1 – PCI address mode as supplied by enumerating boards on the PCI bus at boot
time

-o3 - ADDR switch-based addressing, determined by a 16-position rotary switch on the
board

If the parameter is omitted then operation defaults to PCI address mode.

Section 7 Host Utilities

98

-a<address>

For switch based addressing, it is necessary to specify a second option that provides a
list of the switch settings to be used for each logical board position (or board_id).

-a6,4,2,3,12,14

Up to a maximum of 16 addresses can be specified in this list. In the example above,
board_id = 0 would be the board with the ADDR rotary switch set to position 6,
board_id = 1 would be the board with the rotary switch set to position 4 and so on.

It is not necessary for all boards listed in this option to physically exist in a system.

-d

Enables additional diagnostic output to provide feedback on progress of code file

download and initialization to help resolve configuration issues.

-m<module id>

Run using an alternative specified module_id to the default. By default ssdh uses
module_id=0x20.

Example

The following example shows the use of a three-board system using the hardware

switch mode where the switches would be set to 1 for board_id=0, 2 for board_id=1
and 5 for board_id=2.

ssdh -o3 -a1,2,5

7.6.4 ssdm (for SS7MD boards)

Description

The ssdm utility interfaces with the device driver for passing messages to and from the
SS7MD board and controls the downloading software to the board. ssdm can be
configured to handle different modes of addressing for each board within a system.
This can be based on either the PCI bus enumeration or board serial number.

Syntax

ssdm [-v -o -a -d –m –Lp –Lt –t]

Parameters

-v

Show version information.

-o<addressing mode>

Select geographic address mode. Geographic addressing allows a board's logical
position in a system to remain the same irrespective of the addition or removal of
other boards on the PCI bus. Two different addressing schemes are supported:

-o1 – PCI address mode, as supplied by enumerating boards on the PCI bus at boot

time

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

99

-o2 - Board serial number, determined by the board unique serial number

If the parameter is omitted then operation defaults to PCI address mode.

-a<address>

For serial number based addressing, it is necessary to specify a second option that
provides a list of the serial numbers of the board to reside at each logical board
location. Up to a maximum of eight addresses can be specified in the following format:

-aPX800020,PX800015,PX800015,PX801000

It is not necessary for all boards listed in this option to physically exist in a system. In
board serial number address mode, if a board does not have a valid entry in the

address list, that board will be inaccessible to the system.

To leave a logical board id unused then a dummy entry (e.g. PX800000) should be
included in that position in the address list.

Under certain circumstances (for example to determine the serial number of a new
board added to the system which, as yet, does not have a valid mapping in the
system.txt file), the user may require access to all the boards in a system irrespective
of the address mode or any address list specified in the system.txt file.

To retrieve a board's serial number under these conditions, the
SSD_MSG_BOARD_INFO message allows each board to be addressed either via its
logical address (as determined by the address list mapping) or via its physical address
(as determined via its discovery order in the platforms PCI bus enumeration). To
access the board under its physical address, the most significant bit of the
SSD_MSG_BOARD_INFO ID field is set.

-d

Enables additional diagnostic output to provide feedback on progress of code file
download and initialization to help resolve configuration issues.

-m<module id>

Run using an alternative specified module_id to the default. By default ssdm uses
module_id=0x20.

-Lp<license path>

Specifies the path to the license file.

-Lt

License test mode option used to check that the specified license is valid. The result is
displayed to the console.

-t

Permits the module to run without a license in ‘trial mode’ for one hour after which the

binary will terminate.

Example

The following example is for a two-board system using the board serial number
address mode where serial numbers PX800007 and PX800046, map to board identifiers
0, and 1, respectively:

Section 7 Host Utilities

100

ssdm -o2 -aPX800007,PX800046 -Lpc:/opt/LIC

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

101

7.7 rsi

Description

The RSI utility allows two DSI environments operating on separate platforms to extend

the message passing mechanism to work between the two platforms over TCP/IP. The
RSI utility includes mechanisms to detect link failure and manage link restoration. The
RSI utility creates one instance of the rsi_lnk process for each RSI link that is created
up to a maximum of 32 links.

RSI is the primary means by which user applications interface with the Dialogic® DSI
Signaling Interface Unit, in this case the SIU is the server end of the RSI link. RSI can

also be used for generic communication between two host based DSI environments.

Syntax

rsi –v

rsi –m -p<pipe> -l<link_selection>-r<link_process> -nl

Parameters

-v

Show version information.

-m<module id>

Run using an alternative specified module_id to the default. By default rsi uses
module_id=0xb0.

-p<pipe>

Specifies the pipe used for communication between rsi and rsi_lnk. If not specified, rsi

attempts to use /tmp/pipe.

This parameter is not used when operating under Windows.

-l<link_selection>

Specifies the algorithm to be used by RSI to select which RSI link to use for sending a
message. Messages are routed according to their Instance value (which is set by the
sending module using the GCT_set_instance() function) and the link selection
algorithm. The following algorithms are supported:

Value RSI Selection Algorithm

1 Messages are routed by Instance value contained within the message. This allows the
sending application to directly select which link will be used to send a message. It is the
default and most widely used algorithm.

2 All messages are routed to rsi_link_id=0.

3 The message is sent on the lowest available (and in service) rsi_link_id.

-r<link_process>

Specifies the location of the rsi_lnk binary. If not specified, rsi assumes that the rsi_lnk

binary is located in the current directory.

-nl

Enables transmission of long messages.

Section 7 Host Utilities

102

Example

Example rsi entry in the system.txt file:

FORK_PROCESS ../BIN/rsi -r../BIN/rsi_lnk –l1

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

103

7.8 rsicmd

Description

The rsicmd utility is a command line utility to configure an individual RSI link.

Syntax

rsicmd <link_id> <conc_id> <link_type> <IP_addr> < port_number>

Parameters

<link_id>

The local logical RSI link identifier in the range 0 to one less than the number of links
supported.

When connecting from a host to a pair of SIUs in a dual redundant configuration,
rsi_link_id=0 should be used to communicate with SIUA and rsi_link_id=1 should be
used to communicate with SIUB.

<conc_id>

The concerned module_id to which RSI link status indications will be sent.

<link_type>

Client / Server setting. This bit should be set to 0 for the Client end of the link and set
to 1 for the Server end of the link. All SIU Host links to an SIU must be created as
Client link types.

<IP_addr>

The IP address (IPv4 and IPv6 address formats are supported). For the Client end of

the link this should be set to the IP address of the remote machine. For the Server end
of the link this should be set to the machine’s local IP address.

<port number>

Specifies the TCP/IP port number used for the RSI link. For SIU Hosts the first host
(host_id=0) should connect to port number 9000. Subsequent hosts connect to ports
9001, 9002 etc.

Examples

For example, to start a link to SIUA with an IPv4 address 123.124.125.126 as host 0,
nominating a module whose ID is 0xef to receive RSI status information, the command
line is:

rsicmd 0 0xef 0 123.124.125.126 9000

The following IPv6 address formats, as specified by RFC4291 and RFC4007, are
supported:

Section 7 Host Utilities

104

* IPv6 link local address via eth0

rsicmd 1 0xef 1 fe80::20d:60ff:feb7:d751%eth0 9000

* IPv6 global address

rsicmd 1 0xef 1 fd77:19a9:8cf0:0:20d:60ff:feb7:d751 9000

* IPv4 or IPv6 via DNS lookup

rsicmd 1 0xef 1 dpkbuild.lab.companyname.com 9000

rsicmd may be run from system.txt by adding the appropriate FORK_PROCESS
commands, hence to connect to both SIUA and SIUB as host ID 3, the following
commands would be entered in the system.txt file on the host:

FORK_PROCESS ..\RUN\rsicmd 0 0xef 0 123.234.345.456 9003

FORK_PROCESS ..\RUN\rsicmd 1 0xef 0 123.234.345.457 9003

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

105

7.9 tempmon

Description

The tempmon utility periodically monitors the operating temperature of SS7MD and

SS7LD boards to support evaluation of a suitable host chassis for deployment. The
utility runs directly above the board driver and does not require or make use of the
GCT environment.

The tempmon output which can optionally be sent to file includes date and time of all
readings and the serial number of all boards detected.

The tempmon utility can be shut down by pressing <CTRL>C. The application will then

close any log file and exit.

Syntax

tempmon [-v [-f<filename>] [-t<sample period>] [-b<board mask]

Parameters

-v

Show version information.

-f <filename>

Optionally specifies a file to which all output is written.

-t <sample period>

Period, in seconds, between successive temperature readings. Defaults to 1 second.

-b <board mask>

A 16 bit bitmap of boards to include (each bit set will display that board). The least
significant bit corresponds to board_id=0. If the parameter is omitted a default value
of 0x000f is used which will display the temperature for the first 4 boards.

Example

tempmon -ftemplog.txt -t5

Sample Output

tempmon: Temperature monitor (C) 2009 Dialogic Corporation

==

2009-06-02 10:36:00, PX800007, PX800046, PX800057, PX800023

2009-06-02 10:36:00, 35, 36, 34, 35

2009-06-02 10:36:05, 35, 36, 34, 35

2009-06-02 10:36:10, 35, 36, 35, 36

2009-06-02 10:36:15, 35, 37, 35, 36

2009-06-02 10:36:20, 35, 37, 35, 37

2009-06-02 10:36:25, 35, 37, 35, 37

2009-06-02 10:36:30, 35, 38, 35, 37

2009-06-02 10:36:35, 35, 38, 35, 37

Section 7 Host Utilities

106

7.10 dsictrl

Description

The dsictrl utility is a command line utility that allows the user to perform interactive

control to the various elements within a DSI deployment.

dsictrl supports control of the following entities: E1/T1 LIUs, MTP links, SIGTRAN links,
Call control circuit groups and RSI links.

MTP links can be Activated, Deactivated, Inhibited & Uninhibited.

Circuit groups can be Reset, Maintenance or Hardware Blocked and Unblocked.

LIUs can be forced to generate alarm conditions (eg RAI, AIS) and put in various

loopback modes.

For a full syntax listing run the tool with the –h option.

Each invocation of dsictrl performs an action on a single element. In order to perform
operations on multiple elements users should create a script file containing a separate
invocation of dsictrl on each line of the file.

Syntax

dsictrl <type> <action> <id> [-m -dm -di]

dsictrl -h

Parameters

<type>

A token indicating the type of entity being acted upon as detailed in the following
table:

<type> Description

L
IU

M
T

P
L

M
3

U
A

L

C
G

R
P

R
S

IL

LIU Line Interface Unit. ●

MTPL MTP Signaling Link ●

M3UAL M3UA SIGTRAN Link ●

CGRP Call Control Circuit Group ●

RSIL RSI Link ●

<action>

A token indicating the action to be taken as detailed in the following table:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

107

<action> Description

L
IU

M
T

P
L

M
3

U
A

L

C
G

R
P

R
S

IL

ACT Activate ● ●

DEACT Deactivate ● ●

INH Maintenance Inhibit ●

UNINH Maintenance Uninhibit ●

GRS Reset Circuit Group ●

MCGB Maintenance Block Circuit group ●

MCGU Maintenance Unblock Circuit group ●

HCGB Hardware Block Circuit Group ●

HCGU Hardware Unblock Circuit Group ●

AIS Force generate of AIS (Blue Alarm) ●

NOAIS Cancel forced generation of AIS (Blue Alarm) ●

RAI Force generation of RAI (Yellow Alarm) ●

NORAI Cancel generation of RAI (Yellow Alarm) ●

AUTORAI Set RAI (Yellow Alarm) generation to automatic ●

RLOOP Activate remote loopback ●

LLOOP Activate local loopback ●

NOLOOP Cancel all loopbacks ●

<id>

The identifier indicating the instance of the entity to be controlled. The id is formatted
according to the following table:

Format of
<id>

Description

L
IU

M
T

P
L

M
3

U
A

L

C
G

R
P

R
S

IL

x The liu_id within a board in the range from 0 to one less
than the number of LIUs on the board. (Note: When using
multiple boards, the board_id must be specified using the
–di parameter).

●

x-y The MTP Signaling Link id where x is the linkset_id and y
is the link_ref.

 ●

x The SIGTRAN link_id. ●

x The Circuit Group Identifier (gid) in the range 0 to one less
than the number of groups supported.

 ●

x The RSI link_id. ●

-m<module id>

Run using an alternative specified module_id to the default. By default dsictrl uses
module_id=0x3d.

Section 7 Host Utilities

108

-dm<dest_module_id>

The optional destination module id. Default destination module_ids for each entity can
be listed using the –h option.

-di<dest_module_instance>

The optional destination module instance, used for example when communicating with
multiple boards to specify the board_id. If not specified, –di defaults to 0.

Examples

dsictrl MTPL ACT 0-1

dsictrl MTPL ACT 1-1 -dm0x82

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

109

7.11 dsistat

Description

The disstat utility is a command line utility that allows the user to request and display

status and measurements from the various elements within a DSI deployment.

For a full syntax listing run the tool with the –h option.

Syntax

dsistat <type> <action> <id> [-r -m -dm -di -sh -sr]

dsistat -h

Parameters

<type>

A token indicating the type of element for which the status or measurements are to be
read. For example: MTPL, MTPR, CGRP, CCTS, LIU, SCTPP, SCTPA, M3UAP, M3UAS,
M3UAS, M3UAR, LSS, RSS, RSP, RSIL. For full details run the dsistat with the –h
option.

<action>

A token which should be set to STATUS to read back status or STATS to read back
measurements.

<id>

The identifier of the element. For full details of the available options and the format of
the parameter run dsistat using the –h option.

-r

An optional parameter to cause the measurements to be reset.

-m<module id>

Run using an alternative specified module_id to the default. By default dsistat uses
module_id=0x3d.

-dm<dest_module_id>

The optional destination module id. Default destination module_ids for each entity can
be listed using the –h option.

-di<dest_module_instance>

The optional destination module instance, used for example when communicating with
multiple boards to specify the board_id. If not specified, –di defaults to 0.

-sh

Optional parameter causes the short format of the output to be displayed omitting the
header. This is useful when creating a script to read status or measurements from

several elements. The header is only needed for the first line and subsequent
invocations of dsistat can use the –sh option.

Section 7 Host Utilities

110

-sr

Optional parameter causes the short format of the output to be displayed omitting the
status footer. This is useful when creating a script to read status or measurements
from several elements. The footer may not be required.

Example

The following are examples of individual commands:

dsistat MTPL STATUS 1-0

dsistat MTPR STATS 1232 -r -dm0x82

dsistat RSIL STATS 0

An example of a script file which displays a header for the first row and lists status only
in subsequent rows is shown below:

dsistat rsp status 639 -sr

dsistat rsp status 756 -sh -sr

dsistat rsp status 9064 -sh

Example output from the above script is shown below:

SPC STATE

639 ALLOWED

756 PROHIBITED

9064 ALLOWED

Executed

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

111

7.12 dsitrace

Description

The distrace utility is a command line utility that allows the user to conveniently set

the trace masks for individual protocols from the command line.

For a full syntax listing run the tool with the –h option.

Syntax

dsitrace <type> <action> [-ti -to -tm -m -dm -di]

dsitrace -h

Parameters

<type>

A token indicating the protocol module (eg MTP3, ISUP, SCCP, TCAP, MAP, INAP, IS41,
M3UA, SUA, SCTP, AAL5).

<action>

A token which should be set to TRACE to activate tracing or NOTRACE to deactivate

tracing.

-m<module id>

Run using an alternative specified module_id to the default. By default dsitrace uses
module_id=0x3d.

-dm<dest_module_id>

The optional destination module id. Default destination module_ids for each entity can
be listed using the –h option.

-di<dest_instance>

The optional destination module instance, used for example when communicating with
multiple boards to specify the board_id. If not specified, –di defaults to 0.

-ti<input_event_mask>

The value to use for the input event mask. This parameter is optional and when not
specified dsitrace will select a per-module default value. The default value can be listed
by running dsitrace with the –h option.

-to<output_event_mask>

The value to use for the output event mask. This parameter is optional and when not
specified dsitrace will select a per-module default value. The default value can be listed
by running dsitrace with the –h option.

-tm<mgmt_event_mask>

The value to use for the management event mask. This parameter is optional and

when not specified dsitrace will select a per-module default value. The default value
can be listed by running dsitrace with the –h option.

Section 7 Host Utilities

112

Examples

dsitrace MTP3 TRACE

dsitrace MTP3 TRACE -ti0x00000003 -dm0x82

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

113

8 Configuration Command Reference

This section describes the commands and parameters used in the protocol
configuration file config.txt. These are used by the s7_mgt utility to perform single-
shot configuration of the protocol stack at startup.

8.1 Physical Interface Configuration Commands
The physical interface configuration commands are:

 SS7_BOARD Command

 LIU_CONFIG Command

 LIU_SC_DRIVE Command

 SCBUS_LISTEN Command

 STREAM_XCON Command (Cross Connect Configuration)

8.1.1 SS7_BOARD Command

Synopsis

Command to configure an SS7 board in the system

Syntax

SS7_BOARD <board_id> <board_type> <flags> <code_file> <run_mode>

Example

SS7_BOARD 0 SPCI4 0x0043 ./DC/ss7.dc3 ISUP-L

Parameters

<board_id>

The logical identity of the board in the range from 0 to one less than the number of
boards supported.

<board_type>

The board type within the system. Possible values are:

SPCI2S, SPCI4,
SS7HDP, SS7HDE,
SS7MD,
SS7LD,
DNI2410, DNI1210, DNI610 and DNI310

<flags>

A 32 bit value that provides additional level 1 configuration for the board. The meaning
of each bit may vary with different board types. The bits in the flags field are used as
follows (when using a DNIxxxx board the flags should be set to zero):

Section 8 Configuration Command Reference

114

Flag Bit
Support

SPCI SS7HD SS7MD SS7LD

0 ● ● ● ●

1 ● ● ● ●

3 ●

6 ● ● ●

7 ● ● ●

9 ● ● ● ●

13 ● ● ●

Bit 0 controls the reference source used for on-board clocks when acting as CT bus
Primary Master. If set to 1 then the clock is recovered from one of the line interfaces.

If set to zero then the on-board clock oscillator is used.

Bit 1 is reserved for future use and must always be set to 1.

Bit 3 is applicable for the SS7HDP and SS7HDE boards only. It should be set to 1 to
enable H.100 bus termination or set to 0 to disable H.100 bus termination. Setting bus
termination prevents the bus clock signal from being reflected and must be set for any
board at either end of the H.100 bus. For all other board types this bit should be set to
0.

Bit 6 and 7 together select the initial clocking mode for the CT bus as shown in the
following table. The clocking mode can subsequently modified dynamically using the
MVD_MSG_CNFCLOCK message:

Bit 7 Bit 6 CT Bus Clocking Mode

0 0 The CT bus interface is disabled - In this mode, the board is electrically
isolated from the other boards using the CT bus. The CT bus connection
commands may still be used, but the connections made are only visible to this
board. When using this mode, the on-board clocks are synchronized to the
source selected by bit 0 of this flags parameter.

0 1 Primary Master, Clock set A - The board drives CT bus clock set A using the
clock source selected by bit 0 of this flags parameter.

1 0 Secondary Master, Clock set B - The board is configured to drive clock set B in
Secondary Master mode. It automatically switches to become Primary Master if
the board driving clock set A fails. While acting as Secondary Master the on-
board clocks are synchronized to the CT bus clock set A.

1 1 Slave, initially using Clock set A – The board uses the CT bus clocks, which
must be generated by another board on the CT bus. Initially the board recovers
from clock set A, though will switch over automatically to recover from clock set B
if set A fails.

Bit 9 – Typically this bit is not used and should be set to 0. In dual board fault tolerant

configurations where the MTP3 layer is running on the board, Board A must set bit 9 to
0 while Board B must set bit 9 to 1.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

115

Bit 13 causes the board to drive the CT_NETREF1 clocks on the CT bus when set to 1.
The highest priority in-sync line interface is used as a clock source. If this bit is set to
zero then the CT_NETREF1 clock is not driven. By default, liu_id=0 is the highest
priority and liu_id=7 is the lowest. The priority may however be modified using the
MVD_MSG_CLOCK_PRI message.

Bit 16 is set to 1 to enable SNMP on a per-board basis. Information provided through

this configuration includes board specific data, and all Line Interface Units
subsequently configured. For additional information on SNMP support refer to the
Dialogic® DSI Protocol Stacks SNMP User Manual.

All other bits are reserved and must be set to zero.

<code file>

The filename of the Code File which gets downloaded to the board when it is reset. To
support code file paths the code file name may be up to 49 characters long. Each

board family uses a different file suffix as follows:

Board Family Code File Suffix

SPCI .dc3

SS7HD .dc4

SS7MD .dc6

SS7LD .dc7

All appropriate SS7 protocols for the board are included within the Code File. The
selection of which protocols are run is made using the run_mode parameter below.

When using DNIxxxx boards <code_file> is not used and should be set to ‘null’.

<run_mode>

The run_mode determines which protocols are invoked at run time. The different board
families have separate run modes. For details on what is supported refer to the
Programmer’s Manual for your specific board.

When using SS7LD or DNIxxxx boards, <run_mode> should be set to one of the
following values depending on which protocols are required to run as part of the ssdl
module. If not running within ssdl then the user can run the protocol as a stand-alone

host binary. All protocols that run embedded within ssdl use their own message queue
so they require a LOCAL entry in the system.txt file.

Run Mode Protocols running embedded within ssdl Optional Host Protocols

MTP2 None MTP3, ISUP, SCCP etc

MTP MTP3 ISUP, SCCP etc

ISUP MTP3 and ISUP SCCP etc

Section 8 Configuration Command Reference

116

8.1.2 LIU_CONFIG Command

Synopsis

This command configures the operating parameters for a T1/E1 Line Interface Unit
(LIU).

Syntax

LIU_CONFIG <board_id> <liu_id> <liu_type> <line_code> <frame_format>
<crc_mode> [<build_out> <options>]

Example

LIU_CONFIG 0 0 5 1 1 1 0x0000

Parameters

<board_id>

The logical identity of the board in the range from 0 to one less than the number of
boards supported.

<liu_id>

The identifier of the T1/E1 Line Interface Unit in the range from 0 to one less than the
number of LIUs supported (except for the SPCI2S board where the valid values are 2
and 3).

<liu_type>

The physical type of interface according to the following table:

liu_type Description

Support
S

P
C

I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

1 Disabled (used to deactivate a LIU). In this mode the LIU does not
produce an output signal.

● ● ● ●

3 E1 120ohm balanced interface. ● ● ● ●

4 T1 ● ● ● ●

5 E1 Impedance according to hardware ● ● ● ●

6 E1 high-impedance (for monitoring applications) ● ● ●

7 T1 high-impedance (for monitoring applications) ● ● ●

8 E1 PMP mode (for monitoring with a Protected Monitoring Point) ● ●

9 T1 PMP mode (for monitoring with a Protected Monitoring Point) ● ●

Note: When using the SS7LD board all four ports must be configured as either T1 or E1.

<line_code>

The line coding technique taken from the following table:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

117

line_code Description

Support

S
P

C
I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

1 HDB3 (E1 only). ● ● ● ●

2 AMI with no Zero Code Suppression. ● ● ● ●

3 AMI with Zero Code Suppression (The appropriate bit in the
clear_mask parameter may be set to disable Zero Code
Suppression for individual timeslots if required) (T1 only).

● ● ●
3

4 B8ZS (T1 only). ● ● ● ●

<frame_format>

The frame format taken from the following table:

frame_
format

Description

Support

S
P

C
I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

1 E1 double frame (E1 only) ● ● ● ●

2 E1 CRC4 multiframe (E1 only) ● ● ● ●

3 F4 4-frame multi-frame (T1 only) ●

4 D3/D4 (Yellow alarm = bit 2 in each channel) (T1 only) ● ● ● ●

7 ESF (Yellow alarm in data link channel) (T1 only) ● ● ● ●

8 F72/SLC96 (72-frame multi-frame) (T1 only) ●

9 J1 frame format. (<liu_type> must be 4; T1) ● ●

10 Unstructured mode (HSL) ●

<crc_mode>

The CRC mode. The following table shows the permitted values and their meanings.

3 Note: The ability to disable Zero Code Suppression on a per timeslot basis is not supported by the
SS7LD board.

Section 8 Configuration Command Reference

118

crc_mode Description

Support

S
P

C
I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

1 CRC generation disabled ● ● ● ●

2 CRC4 enabled (frame_format must be set to 2) ● ● ● ●

3 CRC4 compatibility mode (frame_format must be set to 2) ● ●

4 CRC6 enabled (frame_format must be set to 7) ● ● ● ●

5 CRC4 G.706 mode (frame_format must be set to 2)

Note: Out of CRC4-multiframe E-Bits are transmitted as zeroes.

 ●

<build_out>

The build out type. The following table shows the permitted values and their meanings.

Value Description Valid For

Support

S
P

C
I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

0 E1 setting (default) liu_type = 3 or 5 ● ● ● ●

1 T1 short haul, 0 to 110 ft. (default)

liu_type = 4

 ● ● ●

2
T1 short haul, 0 to 110 ft. (same as
value=1)

● ● ●

3 T1 short haul, 110 to 220 ft. ● ●

4 T1 short haul, 220 to 330 ft. ● ●

5 T1 short haul, 330 to 440 ft. ● ●

6 T1 short haul, 440 to 550 ft. ● ●

7 T1 short haul, 550 to 600 ft. ● ●

8 T1 long haul LB0 (-0db) ● ● ●

9 T1 long haul LB0 (-7.5db) ● ●

10 T1 long haul LB0 (-15db) ● ●

11 T1 long haul LB0 (0db, TR62411) ● ●

<options>

A 16 bit value that provides additional per-LIU run-time configuration options. The bits
in the <options> field are used as follows:

Bit 0 set to 1 to prevent the LIU being used as a source of clock recovery. This option
is applicable only for the SS7MD board. For SPCI and SS7HD boards this functionality

can be achieved by using the LIU priority message.

All other bits are reserved and must be set to zero.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

119

8.1.3 LIU_SC_DRIVE Command

Synopsis

This command is used during initialization to set up a static switch path through the
board between the Line Interface Unit (LIU) and the CT bus. It connects selected
incoming voice timeslots from an T1/E1 LIU to a sequential block of channels on the CT

bus and prepares the outgoing timeslots for subsequent use by the
MVD_MSG_SC_LISTEN message.

Note: This command is only supported for SPCI and SS7HD product families.

Syntax

LIU_SC_DRIVE <board_id> <liu_id> <sc_channel> <ts_mask> {<mode>}

Example

LIU_SC_DRIVE 0 0 512 0xfffefffe

Parameters

<board_id>

The logical identity of the board in the range from 0 to one less than the number of
boards supported.

<liu_id>

The identifier of the T1/E1 Line Interface Unit in the range 0 to one less than the

number of LIUs supported (except for the SPCI2S board where the valid values are 2
and 3). This parameter can also be set to special values which are board specific.

For SPCI boards, value 0x83 selects the signaling processor instead of an LIU. In this
case timeslots 0 ... 3 in the ts_mask correspond to signaling processor 0…3.

For SS7HD boards, this parameter can also be set to one of the special values 0x90,
0x91, 0x92, and 0x93, depending on the number of signaling processors. In these
cases, the timeslots 0 to 31 in the <ts_mask> parameter correspond to the signaling

processor's signaling links.

<sc_channel>

The channel number of the first channel to be used on the CT bus. This must be in the
range from 0 up to one less than the total number of channels on the CT bus.

<ts_mask>

A 32 bit timeslot mask where each bit position is set to 1 if the corresponding timeslot
on the T1/E1 interface is required to be connected to the CT bus. The least significant

bit (bit 0) represents timeslot 0. Each timeslot for which the corresponding bit is set in
ts_mask is connected up to the CT bus; other timeslots are not affected in any way.

Timeslots containing SS7 signaling that are processed by the signaling processor on
the board should not be included in the timeslot mask. Usually the mask should be set
to include all bearer (voice) timeslots but no signaling timeslots. Bit 0 (corresponding
to timeslot 0 on the LIU) must not be set.

Section 8 Configuration Command Reference

120

As an example, for an E1 interface with SS7 signaling on timeslot 16, and the
remaining 30 timeslots used for voice circuits, ts_mask should be set to the value
0xfffefffe. For a T1 interface with signaling on timeslot 24, ts_mask should be set to
the value 0x00fffffe.

<mode>

This parameter allows the user to select how the CT bus channels are allocated.

Usually (mode=1) the first timeslot connected to the CT bus is connected to
sc_channel and each subsequent timeslot that is selected is connected to the next CT
bus channel. This allows maximum utilization of channels on the CT bus.

An alternative mode (mode=2) (only used if there is a specific requirement for it)
associates (but does not necessarily connect) timeslot 0 on the LIU with sc_channel

and subsequent timeslots on the LIU with subsequent CT bus channels. Connections
are only made when the corresponding bit in the timeslot mask is set to 1. This mode

of operation preserves the spacing between timeslots that was originally found on the
T1/E1 interface but does result in a number of CT bus channels being not used.

The mode parameter is optional and may be omitted altogether. This has the same
effect as setting it to 1.

8.1.4 SCBUS_LISTEN Command

Synopsis

This command establishes a connection from the CT bus to an outgoing timeslot on the
Line Interface Unit (LIU).

Dynamic modification of voice paths can only be performed by issuing messages
directly to the board. The MVD_MSG_SC_LISTEN message is recommended for this
purpose.

Note: This command is only fully supported for SPCI and SS7HD product families. For the SS7MD

board this command can be used to switch between timeslots between LIUs on the same
board. Refer to SS7MD Programmer’s Manual for full details.

Syntax

SCBUS_LISTEN <board_id> <liu_id> <timeslot> <sc_channel>

Example

SCBUS_LISTEN 0 0 31 23

Parameters

<board_id>

The logical identity of the board in the range from 0 to one less than the number of

boards supported.

<liu_id>

The identifier of the T1/E1 Line Interface Unit in the range 0 to one less than the
number of LIUs supported (except for the SPCI2S board where the valid values are 2
and 3). This parameter can also be set to special values which are board specific.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

121

For SPCI boards, value 0x83 selects the signaling processor instead of an LIU. In this
case timeslots 0 ... 3 in the ts_mask correspond to signaling processor 0…3.

For SS7HD boards, this parameter can also be set to one of the special values 0x90,
0x91, 0x92, and 0x93, depending on the number of signaling processors. In these
cases, the timeslots 0 to 31 in the <ts_mask> parameter correspond to the signaling
processor's signaling links.

<timeslot>

The timeslot number on the T1/E1 line interface unit on which the data from the CT
bus is transmitted. The valid ranges for timeslot are 1 to 31 for an E1 interface, 1 to 24
for a T1 interface and 0 to 31 when referring to the signaling processor on the SS7HD
board.

<sc_channel>

The channel number on the CT bus to which the LIU listens. This must be in the range

from 0 up to one less than the total number of channels on the CT bus.

8.1.5 STREAM_XCON Command (Cross Connect Configuration)

Synopsis

The STREAM_XCON command controls the cross connect switch on the signaling
boards, enabling the cross connection of timeslots between two Line Interface Units

(LIUs) on each signaling board. The LIUs on a board are referenced by a fixed logical
stream number.

This command is supported for SPCI, SS7HD and SS7LD boards.

Syntax

STREAM_XCON <bpos> <stream_a> <stream_b> <mode> <ts_mask>
<pattern>

Example

STREAM_XCON 3 2 3 3 0xfffefffe 0

Parameters

<bpos>

The board position of the cross connect switch to be controlled. There must be a valid
board at this position (previously defined by an SS7_BOARD command).

<stream_a>

Reference to the 2 Mb/s stream for the output of the connection. There must be a valid
LIU at this position (previously defined by a LIU_CONFIG command). Valid values are:

Section 8 Configuration Command Reference

122

Dialogic
®
 DSI SS7 Board Type Stream T1/E1 Interface

SPCI4, SS7HD, SS7LD 0 L1

1 L2

SPCI2S, SPCI4, SS7HD, SS7LD 2 L3

3 L4

<stream_b>

A reference to the 2 Mb/s stream for the input of a simplex connection (mode 2) or
one half of a duplex cross connection (mode 3). In other modes, this field should be
set to 0. There must be a valid LIU at this position (previously defined by a

LIU_CONFIG command). For valid values, see the table in the <stream_a> parameter
description above.

<mode>

Indicates the requested cross connect switch function according to the following table.

Mode Function

1 Not supported

2 Connect the input timeslot to the output timeslot

3 Duplex cross-connect the input and output timeslot

<ts_mask>

A 32-bit mask specifying the timeslots to which the cross connect is applied to. Each
bit corresponds to a timeslot in the input/output stream. Bit 0 (the least significant bit)
corresponds to timeslot number 0. To apply this command to a timeslot, the
corresponding bit must be set to one.

— E1 interfaces have 32 timeslots numbered 0 to 31. Timeslot 0 is used for frame

alignment and timeslot 16 is generally used for signaling or is empty. Hence the
normal configuration is to cross connect timeslots 1 to 15 and 17 to 31 between the
two ports on each signaling board by setting the <ts_mask> value to 0xfffefffe.

— T1/J1 interfaces have 24 timeslots, numbered 1 to 24. To cross connect all the
timeslots on a T1 interface between the two PCM ports on a signaling board, the
<ts_mask> value 0x1fffffe should be used.

In duplex mode both PCM ports should have been previously configured under the

same type of PCM connector T1, E1 or J1.

<pattern>

This parameter should be set to zero.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

123

8.2 Maintenance Module Commands
The maintenance module commands are:

 MGMT_MOD_ID, MAINT_MOD_ID & TRACE_MOD_ID Commands

8.2.1 MGMT_MOD_ID, MAINT_MOD_ID & TRACE_MOD_ID Commands

Synopsis

These commands are used to modify the default module_ids used by the s7_mgt utility

to configure the Management ID, Maintenance ID and Trace ID for Protocol modules;
this permits the user to specify the separate destinations to be used for trace,

maintenance and management messages.

Syntax

MGMT_MOD_ID <mgmt_id>
MAINT_MOD_ID <maint_id>
TRACE_MOD_ID <trace_id>

Examples

MGMT_MOD_ID 0xcf
MAINT_MOD_ID 0xdf
TRACE_MOD_ID 0xef

Parameters

<mgmt_id>, <maint_id>, <trace_id>

The user may specify the module_ids to use for mgmt_id, maint_id and trace_id
respectively. The table below shows how these apply to specific protocols.

If the command is not used then the module_ids take the default value 0xef.

Protocol Management ID Maintenance ID Trace ID

MTP2 mgmt_id - trace_id

Q.SAAL mgmt_id - trace_id

MTP3 mgmt_id - trace_id

ISUP ISUP user id ISUP user id trace_id

TUP TUP user id TUP user id -

SCCP mgmt_id maint_id trace_id

TCAP mgmt_id maint_id trace_id

MAP mgmt_id maint_id trace_id

INAP mgmt_id maint_id trace_id

IS41 mgmt_id maint_id trace_id

SCTP/SCTPD mgmt_id - trace_id

M2PA mgmt_id - trace_id

Section 8 Configuration Command Reference

124

Protocol Management ID Maintenance ID Trace ID

M3UA mgmt_id maint_id trace_id

SUA mgmt_id - trace_id

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

125

8.3 Monitor Configuration Commands
The monitor configuration commands are:

• MONITOR LINK Command (for HSL/LSL Links)

• MONITOR LINK Command (for ATM Links)

8.3.1 MONITOR LINK Command (for HSL/LSL Links)

Synopsis

This command is used to configure a signaling link to operate in receive only mode so
that received signaling messages are passed directly to the user application without

further processing.

Note: For the SPCI boards the ss7.dc3 code file does not support the use of the MONITOR_LINK
command. When using the SPCI board for monitoring applications users must select the
mon.dc3 code file.

Note: Often, applications that use MONITOR_LINK also require the line interfaces to operate in
high impedance or Protected Monitoring Point mode. When using SS7HD, SS7MD or SS7LD
boards high impedance and PMP modes can be selected for a particular LIU using the
<liu_type> parameter in the LIU_CONFIG command.

Syntax

MONITOR_LINK <link_id> <board_id> <blink> <stream> <timeslot>
<user_module> <reserved1> <flags> <reserved2> [<data_rate>]

Example

MONITOR_LINK 0 0 0-0 0 16 0x0d 0 0 0x00

Parameters

<reserved1>, <reserved2>

These parameters are reserved for future use and should be set to zero.

<link_id>

The unique logical identity of the link. It must be in the range 0 to one less than the
total number of signaling links supported.

<board_id>

The ID of the board that will process the incoming signaling.

<blink>

For SPCI, SS7MD and SS7LD Boards

This is the index of the signaling link. It must be in the range 0 to one less than the
number of signaling links licensed on the board.

Section 8 Configuration Command Reference

126

For SS7HD boards

This is a compound parameter that indicates the signaling processor and the channel
on the signaling processor that will be monitored. It is represented in the form sp_id -
sp_channel where:

— sp_id is the identifier of the signaling processor with a value in the range 0 to one
less than the number of processors on the board.

— sp_channel is the identifier of the channel on the signaling processor with a value in
the range 0 to one less than the number of links supported per signaling processor.

The MONITOR_LINK and MTP_LINK commands cannot be used on the same
sp_id/sp_channel resource.

For HSL operation, only one link per signaling processor is supported so sp_channel
must be set to 0.

<stream>

When the <timeslot> parameter is set to a non-zero value, the <stream> parameter is
the logical identity of the T1/E1 LIU (liu_id) containing the signaling link. It should be
in the range 0 to one less than the number of LIUs.

Set both the <stream> and <timeslot> parameters to 0 to disable automatic
configuration. The signaling path should be set up manually using the switch control
messages.

<timeslot>

The timeslot used for signaling in the range 0-31. The valid range for an E1 interface is
1 to 31 and for a T1 interface 1 to 24.

To disable automatic configuration both <stream> and <timeslot> should be set to
zero. The signaling path should then be set up manually using the switch control

messages.

For HSL operation <timeslot> should be set to 0xff and the Data rate is set using the

optional data rate parameter, if not present data rate defaults based on LIU type
(T1/E1).

<user_module>

The module ID of the process that will receive the incoming signaling messages,
passed as API_MSG_RX_IND messages.

<flags>

Per-link flags for monitoring operation.

— Bit 0 - Reserved, should be set to zero.

— Bit 1 - Enable Fill In Signal Units (FISUs) monitoring.

— Bit 10 - Set to the same value as in the MTP_LINK command.

— Bit 11 - Set to the same value as in the MTP_LINK command.

— Bit 12 - Set to the same value as in the MTP_LINK command.

— All other bits should be set to 0.

<data_rate>

An optional parameter used for SS7HD and SS7MD boards as follows:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

127

For SS7HD boards used to specify the HSL format as follows:

Value Description

E1_HSL unstructured E1 HSL operation

T1_HSL unstructured T1 HSL operation

E1_FRAMED structured 31 slot E1 operation

T1_FRAMED structured 24 slot T1 operations

E1_PCM
structured 30 slot E1 operation (where timeslots 0 and 16 are not used for
signaling)

For SS7MD boards used to differentiate between signaling formats as follows:

Value Description

TDM single timeslot SS7 LSL (default)

E1_FRAMED HSL structured 31 slot E1 operation

T1_FRAMED HSL structured 24 slot T1/J1 operations

E1_PCM
HSL structured 30 slot E1 operation (where timeslots 0 and 16 are not used
for signaling)

ATM The command follows the syntax for ATM links

8.3.2 MONITOR LINK Command (for ATM Links)

Synopsis

This command is used user to configure an ATM link to operate in receive only mode

for monitoring purposes. This functionality is only supported on the SS7MD board. The
command is differentiated based on the data rate parameter. Received signaling
messages are passed directly to a user application without further processing. If an
ATM link is specified, multiple MONITOR_LINK commands may reference the same ATM

cell stream provided the cell stream VPI-VCI combination is unique.

Syntax

MONITOR_LINK <link_id> <board_id> <blink> <atm_stream> <vpi-vci>
<user_module> <reserved1> <flags> <reserved2> [<data_rate>]

Example

MONITOR_LINK 0 0 0 0 8-100 0x0d 0 0x0000 0x06 ATM

Parameters

<reserved1>, reserved2>

These parameters are reserved for future use and should be set to zero.

<board_id>

The logical identity of the board in the range from 0 to one less than the number of
boards supported. This must be the same value as used in the ATM_STREAM
command.

Section 8 Configuration Command Reference

128

<blink>

The index of the signaling link. It must be in the range 0 to one less than the number
of signaling links licensed on the board.

<atm_stream>

This defines the logical id of the cell stream over which the link runs.

<vpi-vci >

This is a compound parameter that identifies the vpi and vci of the ATM link to be
monitored. It is represented in the form vpi-vci where:

— vpi is the Virtual Path Indicator of the signaling link within the ATM cell stream.

— vci is the Virtual Channel Indicator of the signaling link within the ATM cell stream.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

129

8.4 MTP Configuration Commands
The MTP configuration commands are:

 MTP_CONFIG Command

 MTP_LINKSET Command

 MTP_LINK Command (for HSL/LSL Links)

 MTP_LINK Command (for ATM Links)

 MTP_ROUTE Command

 MTP_USER_PART Command

 MTP_TRACE Command

8.4.1 MTP_CONFIG Command

Synopsis

This command sets the global configuration parameters for the Message Transfer Part
(MTP).

Syntax

MTP_CONFIG <reserved1> <reserved2> <options>

Example

MTP_CONFIG 0 0 0x00040f00

Parameters

<reserved1>, <reserved2>

These parameters are reserved for backwards compatibility and should be set to zero.

<options>

A 32 bit value containing run-time options for the operation of the MTP as follows:

Bit 0 is set to 1 to disable the MTP3 message discrimination function (allowing the
signaling point to receive all messages irrespective of the destination point code
contained in the message) or zero to allow the discrimination function to function
normally.

Bit 1 is set to 1 to disable sub-service field (SSF) discrimination. If this bit is set to
zero, received MSUs whose ssf value does not match the configured ssf value for that

link set are discarded.

Bit 3 is set to 1 to cause MTP3 to generate a UPU (User Part Unavailable) message to
the network on receipt of a message containing a Service Indicator value that has not
been configured. If set to zero the message is discarded without sending UPU.

Bit 8 is set to 1 to select ANSI operation; otherwise it must be set to zero.

Bits 9 and 20 are used to select the point codes used in the MTP routing label as

defined below:

Section 8 Configuration Command Reference

130

Bit 9 Bit 20 Point Code Description

0 0 14-bit ITU

0 1 16-bit Japan

1 0 24-bit ANSI

Bit 10 is set to 1 for ANSI operation; otherwise it is set to zero.

Bit 11 is set to 1 for ANSI operation; otherwise it is set to zero.

Bit 18 is used to control MTP functionality in the event of detection of RPO (Remote

Processor Outage). If set to 1, RPO is handled in accordance with the ITU-T 1992 (and
later) recommendations. If set to zero, on detection of RPO the signaling link is taken

out of service and restoration commenced. This bit is usually set to 1.

Bit 20 used in conjunction with bit 9 to select point codes (see above).

Bit 21 is set to 1 for use in Japanese networks; otherwise it must be set to zero.

All other bits are reserved for future use and must be set to zero.

Note: For correct ANSI operation bits 8, 9, 10, 11, and 18 must all be set to 1. This gives a

typical<options> field value of 0x00040f00.

8.4.2 MTP_LINKSET Command

Synopsis

This command configures a link set to an adjacent signaling point.

Syntax

MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags>

<local_spc> <ssf>

Example

MTP_LINKSET 0 321 2 0x0000 456 0x8

Parameters

<linkset_id>

The logical identity of the link set, in the range 0 to one less than the number of link

sets supported, The linkset_id is used in other commands for reference.

<adjacent_spc>

The signaling point code of the adjacent signaling point.

<num_links>

The number of links to be allocated to the link set.

<flags>

A 16 bit value containing run-time options for the link set as follows:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

131

Bit Meaning

0 This bit is used to determine whether or not the user has supplied a per-link set local
point code for this link set. If not, the point_code parameter from the global
configuration message is used instead.

• 0 - Use the per module (default) point_code as the local point code
• 1 - Use the local_pc parameter as the local point code for this link set

1 This bit is used to determine whether or not the user has supplied a per-link set
subservice-field (SSF) for this link set. If not, the ssf parameter from the global
configuration message is used instead.

• 0 - Use the per-module (default) SSF for this link set
• 1 - Use the per-link set ssf parameter for this link set

2 This bit must be set to 1 when the message is being used to modify the existing link
set configuration.

• 0 – Normal setting; used when link set is first configured
• 1 – Reconfiguration; used when the link set is being modified

3 This bit is used to enable restart procedures on a link set.

• 0 - Normal setting
• 1 - Restart procedures enabled.

Note: Use of MTP Restart is recommended for all link sets including the inter-chassis
link set on a dual system.

4 This bit is used to enable SNMP indications for this link set

• 0 - SNMP disabled
• 1 - SNMP enabled

11 This bit is used to automatically activate the links in this linkset

• 0 – Auto-activate disabled
• 1 – Auto-activate enabled

15 This bit is used to indicate that the link set is the inter-MTP3 link set connecting
together the two halves when operating in a dual MTP3 configuration.

• 0 – Normal setting
• 1 – This link set is the inter-MTP3 link set in a dual configuration

Other bits All other bits are reserved for future use and must be set to zero.

<local_spc>

The signaling point code of the signaling point itself.

<ssf>

The value to be used in the sub-service field of all level 3 messages and checked for by
the discrimination function in all received messages. This is a 4 bit value.

Note: For ANSI operation both of the two least significant bits must be set to 1.

Note: For correct operation the adjacent point code must also have its own MTP_ROUTE
declaration.

Section 8 Configuration Command Reference

132

8.4.3 MTP_LINK Command (for HSL/LSL Links)

Synopsis

This section describes the MTP_LINK command format used to configure an MTP
signaling link for Low Speed Link (LSL) or High Speed Link (HSL) operation. All boards
support LSL operation but HSL operation is only supported on SS7HD and SS7MD

boards.

Syntax

MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>
<stream> <timeslot> <flags> [<data rate>]

Examples

For SPCI, SS7MD and SS7LD: MTP_LINK 0 0 2 2 0 1 0 16 0x0006 TDM

For SS7HD: MTP_LINK 0 0 2 2 0 1-4 0 16 0x0006 TDM

Parameters

<link_id>

The link’s unique logical link identity. It must be in the range 0 to one less than the
total number of signaling links supported.

<linkset_id>

The logical identity of the link set to which the link belongs. The linkset must already

have been configured using the MTP_LINKSET command.

<link_ref>

The logical identity within the link set of the signaling link. It must be in the range 0 to
one less than the number of links in the link set.

<slc>

The signaling link code for the signaling link. This must be unique within the link set
and is usually the same as the <link_ref>. The valid range is 0 to 15.

<board_id>

The board id of the signaling processor allocated for this signaling link.

<blink>

For SPCI, SS7MD and SS7LD Boards

This is the index of the signaling link. It must be in the range 0 to one less than the
number of signaling links licensed on the board.

For SS7HD boards

This is a compound parameter that indicates the signaling processor and the channel
on the signaling processor that will be monitored. It is represented in the form sp_id -
sp_channel where:

— sp_id is the identifier of the signaling processor with a value in the range 0 to one
less than the number of processors on the board.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

133

— sp_channel is the identifier of the channel on the signaling processor with a value in
the range 0 to one less than the number of links supported per signaling processor.

The MONITOR_LINK and MTP_LINK commands cannot be used on the same
sp_id/sp_channel resource.

For HSL operation, only one link per signaling processor is supported. Therefore
sp_channel must be 0.

<stream>

When the <timeslot> parameter is set to a non-zero value, the <stream>
parameter is the logical identity of the T1/E1 line interface (liu_id) containing the
signaling link It must be in the range 0 to one less than the number of line interfaces.

Note: For SPCI2S. Stream identifiers for the PCM interfaces are implemented on streams 2 and 3.

Note: For SS7HD. If set to 0x90, 0x91, 0x92, or 0x93, depending on the number of signaling
processors, specifies the use of a specific signaling processor. In these cases, the timeslot
should be the signaling processor's signaling link in the range 0 to 31.

<timeslot>

The timeslot used for signaling in the range 1 ... 31. For an E1 interface the valid range
is 1 ... 31. For a T1 interface the valid range is 1 ... 24. When set to zero the signaling
path through the board must be set up manually using the switch control messages.

For HSL operation <timeslot> should be set to 0xff and the Data rate is set using the
optional data rate parameter, if not present data rate defaults based on LIU type
(T1/E1).

<flags>

A 32 bit value containing additional run-time options.

Bit 0 is set to 1 to force the use of the emergency proving period during link alignment
or zero to use the appropriate proving period according to the MTP3 recommendations.

Bit 1 is set to 1 to cause a signaling link test (in accordance with ITU-T Q.707 / ANSI
T1.111.7) to be carried out before a link is put into service, or zero if a test is not
required.

Bit 2 is set to 1 to cause a signaling link test (in accordance with ITU-T Q.707 / ANSI
T1.111.7) to be carried out every 30 seconds. This bit is ignored unless bit 1 is also set
to 1.

Bit 8 is used to select the MTP2 error correction mode. It is set to 1 to select PCR
(Preventive Cyclic Retransmission) operation or zero for the Basic Method of Error
Correction.

Bits 10 and 11 together select the appropriate operating bit rate for the link. The

table below specifies the appropriate values for 48, 56 or 64 kb/s.

Section 8 Configuration Command Reference

134

Bit 11 Bit 10 Data Rate

0 0 64 kb/s

0 1 48 kb/s
1

1 1 56 kb/s
1

Notes:

1. When using a serial port (SPCI2S only), 48kbit/s or 56kbit/s operation is only supported when the clock is
applied externally.

2. For unstructured HSL operation (SS7HD only), these bits should be set to 0.

3. For framed HSL operation (SS7HD and SS7MD), these bits select the bit rate for each slot of the HSL
link.

Bit 12 is used to select 12- or 7-bit sequence numbers for HSL only. This bit should be
set for 12-bit sequence numbers, clear otherwise.

Bit 13 is only used when the link has been configured to run over a serial port. If set
to 1 an external clock is used (Receive clock). If set to zero an internal clock (Transmit

clock) is used. If the link has not been configured to run over a serial port, this bit
must be set to zero. This bit is only applicable for SPCI2S boards and should otherwise
be set to zero.

Bit 14 is set to 1 to use a serial port rather than a PCM timeslot for this link. In this
mode the stream and timeslot parameters for this link are ignored (and must be set to
zero). If this bit is set to zero, the link uses the specified stream and timeslot. This bit

is only applicable for SPCI2S boards and should otherwise be set to zero. The serial
port used by the signaling processors for each link is fixed, according to the following
table:

Blink Serial Port

0 B

1 A

2 Cannot be used for a serial port.

3 Cannot be used for a serial port.

Bit 15 is set to 1 to disable the link or zero to enable the link.

Bit 30 is set to 1 to enable SNMP indications for individual MTP links.

Bit 31 is set to 1 to denote the link as using the M2PA protocol. If selected, then blink
identifies the Snlink to be used. Board_id, timeslot and stream should be set to 0.

All other bits are reserved for future use and must be set to zero.

<data_rate>

An optional parameter to specify link parameters, required for HSL or ATM operation.
The valid values are:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

135

Value Description

Support

S
P

C
I

S
S

7
H

D

S
S

7
M

D

S
S

7
L

D

TDM single timeslot SS7 LSL (default) ● ● ● ●

E1_FRAMED HSL structured 31 slot E1 operation ● ●

T1_FRAMED HSL structured 24 slot T1/J1 operation ● ●

E1_PCM
HSL structured 30 slot E1 operation (where
timeslots 0 and 16 are not used for signaling)

 ● ●

ATM The command follows the syntax for ATM links ●

8.4.4 MTP_LINK Command (for ATM Links)

Synopsis

This command configures an ATM signaling link. ATM operation is only supported on
the SS7MD board.

Syntax

MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>
<atm_stream> <vpi-vci> <flags> ATM

Example

MTP_LINK 0 0 0 0 3 0 0 8-100 0x0006 ATM

Parameters

The parameters <link_id>, <linkset_id>, <link_ref> and <slc> are common to

the MTP_LINK command for HSL/LSL links (refer to section 8.4.3).

<board_id>

The logical identity of the board in the range from 0 to one less than the number of
boards supported. This should be the same value as used in the ATM_STREAM
command. If the value selected is different, then the configuration will be rejected.

<blink>

The index of the signaling link. It must be in the range 0 to one less than the number
of signaling links licensed on the board.

<atm_stream>

This defines the logical id of the cell stream over which the link runs. It must be in the
range 0 to one less than the combined number of ATM Cell Streams supported by all
the SS7MD boards in the system.

Section 8 Configuration Command Reference

136

<vpi-vci >

This is a compound parameter that identifies the vpi and vci of the ATM link. It is
represented in the form vpi-vci where:

— vpi is the Virtual Path Indicator of the signaling link within the ATM cell stream.

— vci is the Virtual Channel Indicator of the signaling link within the ATM cell stream.

Note: Users should normally select a vpi/vci combination, with vpi in the range 0 to 15 and a vci in
the range 0-511 (0, 3 and 4 are reserved). The vpi/vci combination associated with the

link must not be the same as the default vpi/vci combination on the underlying cell stream
and must be unique within the cell stream.

<flags>

A 32 bit value reserved for future use and must be set to zero.

8.4.5 MTP_ROUTE Command

Synopsis

This command configures the route to a remote point code.

Syntax

MTP_ROUTE <dpc> <norm_ls> <user_part_mask> <flags> <second_ls>

Example

MTP_ROUTE 567 0 0x0020 0x0000 0

Parameters

<dpc>

The point code of the remote signaling point for which this command is configuring
routing data. It may be either an adjacent point code or a point code accessible via an
adjacent Signaling Transfer Point (STP).

<norm_ls>

The linkset_id of the normal link set used to reach the specified destination. The
norm_ls must be a linkset_id that has already been configured using the MTP_LINKSET

command. The normal link set may be any of the following:

 The only link set used to reach the destination.

 The preferred link set used to reach the destination.

 One of a pair of links sets forming a combined link set.

In the latter two cases a second link set (second_ls) must also be specified.

Within a link set messages are automatically load-shared across links using the
Signaling Link Selection (SLS) field in the message.

<second_ls>

The linkset_id of an optional second link set used to reach the specified destination.
This may be either of the following options:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

137

 The secondary link set used to reach the destination only on failure of the
preferred link set.

 One of a pair of links sets forming a combined link set over which load-sharing
takes place. (in this case bit 1 must also be set in the <flags> parameter of the
command).

When a second link set is specified the user must also set bit 0 in the <flags> field of

this command.

<user_part_mask>

This is a 16 bit field used to identify the user parts that are supported over this route.
The bits are labelled 0 to 15 and for each user part supported the bit corresponding to
the Service Indicator for that user part must be set. (e.g., To support just ISUP

messages, the ISUP Service Indicator is 5 so bit 5 should be set. Therefore a value of
0x0020 would be appropriate).

<flags>

A 16 bit field containing run-time configuration options for the route as follows:

Bit 0 is set to 1 to indicate that a second link set is specified within the command. If
zero the second_ls parameter is ignored.

Bit 1 is used to determine whether or not to load-share messages across the two link
sets. It is only used when two link sets are specified for the route. When set the MTP3
module load-shares messages for the destination equally across each of the two

specified link sets. Otherwise the MTP3 module considers the normal link set to be the
preferred link set and only uses the second link set in the event of failure of the normal
link set. The bit may be set to 1 to enable load-sharing across the two link sets, or
zero to disable load-sharing and use preferred and secondary link sets.

Bit 2 is used to indicate this is a default route permitted to carry traffic for any

unknown DPC

Bit 3 is used to enable Pseudo DPC operation - used in conjunction with bit 2 to control
the behavior of default routes. When set the route is considered available to carry
traffic as soon as either link set is accessible. MTP3 does not generate Route Set Test
messages or expect Transfer Allowed messages for this “default” route

Bit 4 is used to enable timer T103 – buffering of messages for up to 10 seconds in the
event that the destination becomes inaccessible, allowing for recovery of the route.

Bit 5 is used to disable route-set-test for this route

Bit 6 is used to activate SNMP indications for the route

All other bits are reserved for future use and must be set to zero.

8.4.6 MTP_USER_PART Command

Synopsis

This command is used to configure a local user part module in situations when the user

part does not already have its own configuration in the config.txt protocol configuration
file.

Syntax

MTP_USER_PART [NC] <si> <module_id>

Section 8 Configuration Command Reference

138

Example

MTP_USER_PART 0x03 0x2d
MTP_USER_PART NC1 0x05 0x3d

Parameters

[NC]

Optional Network Context parameter (if not present defaults to NC0).

The use of the NC parameter is only required for M3UA Multiple LAS configurations,
where NC0 corresponds to LAS1, NC1 corresponds to LAS2 and so on.

<si>

The service indicator.

<module_id>

The module id of the user process.

Note: This command must not be used when the corresponding configuration commands are used

(ISUP_CONFIG, TUP_CONFIG, SCCP_CONFIG, etc) as these commands automatically
perform the function of the MTP_USER_PART command for the default NC (NC0).

8.4.7 MTP_TRACE Command

Synopsis

This command sets the MTP3 trace masks.

Syntax

MTP_TRACE <op_evt_mask> <ip_evt_mask>

Example

MTP_TRACE 0x0001 0x0001

Parameters

<op_evt_mask>

Output event trace mask. For full description of use refer to the MTP3 Programmer’s
Manual.

<ip_evt_mask>

Input event trace mask. For full description of use refer to the MTP3 Programmer’s
Manual.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

139

8.5 ATM Configuration Commands
ATM configuration is only supported on the SS7MD board. The ATM configuration
commands are:

 ATM_CONFIG Command

 ATM_STREAM Command (Configure ATM Cell Stream)

 ATM_TIMER Command (Configure Timers for Q.SAAL Links)

8.5.1 ATM_CONFIG Command

Synopsis

Global configuration of the ATM Module.

Syntax

ATM_CONFIG <options> <num_streams>

Example

ATM_CONFIG 0x0000 4

Parameters

<options>

A 16-bit value containing additional run-time options. The bit significance is as follows:

— Bit 0 - Use ATM Forum Idle cell format rather than ITU.

<num_streams>

The maximum number of cell streams per board this module will be asked to
simultaneously support. For an IMA bundle, each TDM stream within the bundle is
counted separately.

8.5.2 ATM_STREAM Command (Configure ATM Cell Stream)

Synopsis

Configures an ATM Cell Stream.

Syntax

ATM_STREAM <id> <board_id> <cellstream_id> <liu_id> <options>

<ima_frame_len> <max_frame_len> <def_vpi> <def_vci> <timeslot>

Example

ATM_STREAM 3 0 3 3 0x06 0 280 12 10 0xfffefffe

Section 8 Configuration Command Reference

140

Parameters

<id>

The logical Cell Stream ID from the user's perspective.

<board_id>

The board ID of the signaling processor allocated for this ATM link.

<cellstream_id>

The Layer 2 ID of the cell stream within the board. In the range of 0 to one less than
the number of cell streams supported per board.

<liu_id>

Line Interface Units (LIUs) to be used by the cell stream. If IMA is active (Bit 3 of the
<options> parameter), the parameter is a bitmap of the LIUs to be used by the bundle
(bit 0 = LIU 0, etc.). If IMA is not active, the parameter identifies the LIU to be used.

<options>

A 16-bit value containing additional options for the ATM link. The bit significance is as
follows:

— Bit 0 - Enable payload scrambling

— Bit 1 - Use ATM coset in HEC calculation. When terminating Q.SAAL links on the cell
stream this bit must be set. When monitoring links values of 0 or 1 are permitted.

— Bit 2 - Autocorrect invalid cells if possible

— Bit 3 - Configuration describes an IMA bundle

Note: Either Payload Scrambling or ATM Coset mode, or both, must be enabled for correct
operation.

<ima_frame_len>

The length of the IMA frame (for IMA use only).

Value Options

1 32 cells per IMA frame

2 64 cells per IMA frame

3 128 cells per IMA frame

4 256 cells per IMA frame

Note: For non IMA streams this field is reserved and should be set to zero.

<max_frame_len>

The maximum length of a reassembled (AAL) frame. Frames longer than this will be

discarded by the ATM layer. Recommended value is 280.

<def_vpi>

A default AAL5 link will be configured for the cell stream to signal incoming active
connections. This is the VPI that will be used for this connection.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

141

<def_vci>

A default AAL5 link will be configured for the cell stream to signal incoming active
connections. This is the VCI that will be used for this connection. Values 0, 3, and 4
are reserved and should not be used.

Note: The default VPI/VCI combination configured here must not be specified for any AAL5 link on
this cell stream.

<timeslot>

Bitmap of active timeslots within the above TDM streams. Typically the timeslot bitmap
for E1 will be 0xfffefffe and for T1/J1 will be 0x01fffffe.

8.5.3 ATM_TIMER Command (Configure Timers for Q.SAAL Links)

Synopsis

This command allows specific timer values to be set for STM links. Otherwise default

values are used.

Syntax

ATM_TIMER <reserved> <timer_id> <value>

Example

ATM_TIMER 0 T1 10

Parameters

<reserved>

This parameter is reserved for future use and should be set to zero.

<timer_id>

The identifier of the timer to be changed. It should be set to one of the following
tokens: CC, KEEP_ALIVE, NO_RESP, POLL, IDLE, T1, T2, T3.

<value>

The timer value in milliseconds. Any timers not explicitly configured use the default

values shown.

Timer ID Default Value (ms) Range (min - max)

CC 1,500 15 - 2,500

KEEP_ALIVE 300 15 - 2,500

NO_RESP 1,500 100 - 10,000

POLL 100 20 - 600

IDLE 100 20 - 600

T1 5,000 1,000 - 20,000

T2 120,000 10,000 - 300,000

T3 10 1 - 30

Section 8 Configuration Command Reference

142

8.6 ISUP Configuration Commands
The ISUP configuration commands are:

 ISUP_CONFIG Command

 ISUP_CFG_CCTGRP Command (Circuit Group Configuration)

 ISUP_TIMER Command (ISUP Timer Configuration)

8.6.1 ISUP_CONFIG Command

Synopsis

This command sets the global configuration parameters for the ISUP module.

Syntax

ISUP_CONFIG <res1> <res2> <user_id> <options> <num_grps>
<num_ccts> [<partner_id>]

Example

ISUP_CONFIG 0 0 0x2d 0x0435 4 128

Parameters

<res1>, <res2>

Reserved for backwards compatibility. These fields should be set to zero.

<user_id>

The module_id of the application running on the host that uses the ISUP module.

<options>

A 16 bit value containing global run-time options for the operation of the ISUP module.
The meaning of each bit is as defined for the 'options' parameter in the ISUP Configure

Request message as detailed in the ISUP Programmer's Manual

<num_grps>

The maximum number of ISUP circuit groups that the user intends to use. This must
not exceed the maximum number of circuit groups supported otherwise module
configuration will fail. Typically <num_grps> would be set to the maximum number
of circuit groups supported.

<num_ccts>

The maximum number of ISUP circuits that the user intends to use. This must not
exceed the maximum number of circuits supported otherwise module configuration will

fail. Typically <num_ccts> is set to 32 times the number of groups for E1 operation
and 24 times the number of circuit groups for T1 operation.

Note: The valid range for the circuit identifier (cid) is from zero up to one less than the maximum
number of circuits (<num_ccts>).

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

143

<partner_id>

Optional parameter for use when operating in dual resilient configuration. This
parameter is the module_id of the ‘partner’ ISUP module (equivalent to the ‘module_id
field in the ISUP Configure Request message as documented in the ISUP Programmer’s
Manual).

8.6.2 ISUP_CFG_CCTGRP Command (Circuit Group Configuration)

Synopsis

This command sets the configuration parameters for a group of ISUP circuits. Usually a
group is all the circuits on a single E1 or T1 interface.

Syntax

ISUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask>

<options> <user_inst> <user_id> <opc> <ssf> <variant> <options2>

Example

ISUP_CFG_CCTGRP 0 3 1 1 0x7fff7fff 0x00000003 0 0x2d 2 0x8 4
0x00000000

Parameters

<gid >

The group id of the circuit group in the range 0 to one less than the number of groups

supported.

<dpc>

The destination point code for all circuits in the circuit group.

<base_cic>

The Circuit Identification Code (CIC) that is allocated to the first circuit in the circuit
group.

<base_cid>

The logical id for the first circuit in the circuit group. It must lie in the range 0 to one
less than the number of circuits supported.

<cic_mask>

A 32 bit mask with bits set to indicate which circuits are to be allocated to the circuit
group. Bit zero must always be set as it represents the base_cic/base_cid. Subsequent
bits represent the subsequent circuits.

Note: ANSI circuit groups are not permitted to contain more than 24 circuits.

<options>

A 32 bit value containing run-time options for the ISUP circuit group (see "Configure
Circuit Group Request" section of the ISUP Programmer’s Manual). Bits 0 through 15
are equivalent to the "options" field and bits 16 through 31 represent the "ext_options"
field as detailed in the ISUP Programmer’s Manual.

Section 8 Configuration Command Reference

144

<user_inst>

The instance number of the user application. Typically only a single user application
exists so this field would be set to zero.

<user_id>

The module_id of the user application.

<opc>

Originating Point Code. The local point code for all circuits in the group.

<ssf>

The value to be used in the sub-service field of all ISUP messages for this circuit group.

<variant>

The protocol "variant" for this circuit group. Refer to the ISUP Programmer’s Manual for
full details.

<options2>

A 32 bit value containing additional run-time options for the ISUP circuit group (see
"Configure Circuit Group Request" section of the ISUP Programmer’s Manual). Bits 0
through 31 are equivalent to the "ext_1_options" as detailed in the ISUP Programmer’s
Manual.

8.6.3 ISUP_TIMER Command (ISUP Timer Configuration)

Synopsis

This command provides the ability to configure the ISUP protocol timers from the

config.txt file.

Syntax

ISUP_TIMER <reserved> <timer_id> <value>

Example

ISUP_TIMER 0 T4 550

Parameters

<reserved>

Must be set to 0. Reserved for future use.

<timer_id>

The text identifier for the timer to be configured as shown below in Table 9.

<value>

The timer value in seconds, except T29 and T30 which are in multiples of tenths of a
second (100 ms). Any timers not explicitly set are set to their default values, as shown
below in Table 9

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

145

Table 9. ISUP Default Timer Values

Timer
Mnemonic

Default Value
(Seconds)

Timer
Mnemonic

Default Value
(Seconds)

Timer
Mnemonic

Default Value
(Seconds)

T1 10 T15 60 T28 10

T2 180 T16 10 T29 0.5

T3 180 T17 60 T30 8

T4 300 T18 10 T33 14

T5 60 T19 60 T34 3

T6 180 T20 10 T35 20

T7 25 T21 60 T36 13

T8 13 T22 10 T38 150

T9 45 T23 60 T39 10

T10 5 T24 2 T103 20

T12 10 T25 5 T104 3

T13 60 T26 120

T14 10 T27 240

Section 8 Configuration Command Reference

146

8.7 TUP Configuration Commands
The TUP configuration commands are:

 TUP_CONFIG Command (Global TUP Configuration)

 TUP_CFG_CCTGRP Command (Circuit Group Configuration)

8.7.1 TUP_CONFIG Command (Global TUP Configuration)

Synopsis

This command sets the global configuration parameters for the TUP module.

Syntax

TUP_CONFIG <res1> <res2> <user_id> <options> <num_grps>
<num_ccts> <partner_id>

Example

TUP_CONFIG 0 0 0x2d 0x8541 4 128

Parameters

<res1>, <res2>

Reserved for backwards compatibility. These fields should be set to zero.

<user_id>

The module_id of the application running on the host that uses the TUP module.

<options>

A 16 bit value containing global run-time options for the operation of the TUP module.
The meaning of each bit is as defined for the 'options' parameter in the TUP Configure
Request message as detailed in the TUP Programmer's Manual.

<num_grps>

The maximum number of TUP circuit groups that the user intends to use. This must
not exceed the maximum number of circuit groups supported otherwise module
configuration will fail. Typically <num_grps> would be set to the maximum number of
circuit groups supported.

<num_ccts>

The maximum number of TUP circuits that the user intends to use. This must not

exceed the maximum number of circuits supported otherwise module configuration will
fail. Typically <num_ccts> is set to 32 times the number of groups for E1 operation

and 24 times the number of circuit groups for T1 operation.

Note: The valid range for the circuit identifier (cid) is from zero up to one less than the maximum
number of circuits (num_ccts).

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

147

<partner_id>

Optional parameter for use when operating in dual resilient configuration. This
parameter is the module_id of the "partner" TUP module (equivalent to the "ucic_id"
field in the TUP Configure Request message as documented in the TUP Programmer’s
Manual).

8.7.2 TUP_CFG_CCTGRP Command (Circuit Group Configuration)

Synopsis

This command sets the configuration parameters for a group of TUP circuits. Usually a
group is all the circuits on a single E1 or T1 interface.

Syntax

TUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask>

<options> <user_inst> <user_id> <opc> <ssf> <variant> <options2>

Example

TUP_CFG_CCTGRP 0 3 1 1 0x7fff7fff 0x00000003 0 0x2d 123 0x8 0 0x0

Parameters

<gid >

The group id of the circuit group in the range 0 to one less than the number of groups
supported.

<dpc>

The destination point code for the circuits in the circuit group.

<base_cic>

The Circuit Identification Code (CIC) that is allocated to the first circuit in the circuit
group.

<base_cid>

The logical id for the first circuit in the circuit group. It must lie in the range 0 to one

less than the number of circuits supported.

<cic_mask>

A 32 bit mask with bits set to indicate which circuits are to be allocated to the circuit
group. Bit zero must always be set as it represents the base_cic/base_cid. Subsequent
bits represent the subsequent circuits.

<options>

A 32 bit value containing run-time options for the TUP circuit group (see "Configure

Circuit Group Request" section of the TUP Programmers Manual).

<user_inst>

The instance number of the user application. Typically only a single user application
exists so this field would be set to zero.

Section 8 Configuration Command Reference

148

<user_id>

The module_id of the user application.

<opc>

Originating Point Code. The local point code for all circuits in the group.

<ssf>

The value to be used in the sub-service field of all TUP messages for this circuit group.

<variant>

This field is reserved for future use and must be set to zero.

<options2>

This field is reserved for future use and must be set to zero.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

149

8.8 SCCP Configuration Commands
The SCCP configuration commands are:

 SCCP_CONFIG Command

 SCCP_SSR Command (Configure SCCP Sub-System Resource)

 SCCP_CONC_SSR Command (Configure Concerned SSR)

 SCCP_TRACE Command

 SCCP_GTT_PATTERN Command (Define Global Title Pattern)

 SCCP_GTT_ADDRESS Command (Define Global Title Address)

 SCCP_GTT Command (Add Entry in GTT Table)

8.8.1 SCCP_CONFIG Command

Synopsis

The SCCP_CONFIG command supplies the global configuration parameters for the
SCCP protocol, activating the SCCP and TCAP protocols.

Syntax

SCCP_CONFIG <local_spc> <ssf> <options> [<options2> [<partner_id>
<instance> <smb_flags>]]

Example

SCCP_CONFIG 123 8 0

Parameters

<local_spc>

The local point code.

<ssf>

The sub-service field value that SCCP uses when exchanging messages with the MTP.
This value must always be set so that the Network Indicator bits (the two most
significant bits of the 4-bit ssf value) match those set in the MTP_LINKSET command.

<options>

A 32-bit value containing run-time configuration options for the SCCP module. The 16
least significant bits provide the ‘options’ parameter and the 16 most significant bits

provide the ‘ext_options’ parameter, as defined in the SCCP Programmer's Manual.

Bit 0 must always be set to zero.

<options2>

Additional 32 bit run time options for the configuration and operation of SCCP. Bits 0
and 31 are used by s7_mgt during configuration as detailed below. The remaining bits
map directly to the ‘ext2_options’ parameter as documented in the Module

Configuration Request section of the SCCP Programmer's Manual.

Section 8 Configuration Command Reference

150

Bit 0 Send_User In Service (UIS). When set to 1 this bit causes s7_mgt to
automatically generate and send UIS messages to SCCP for all configured local sub-
systems. By default the bit is 0 and the user application is responsible for generating
UIS messages.

Bit 31 is used to activate SCCP Connection Oriented operation. When set to zero
s7_mgt configures SCCP for Connectionless operation. When set to 1 s7_mgt

configures SCCP for Connection Orientated operation using the fixed configuration
parameter values shown below. Note that for SCCP operation two license types are
available: SCCP-CL which only permits connectionless operation and SCCP-CO which
supports both connectionless and connection oriented (Class 2 only) operation.

Parameter Value

NUM_UC 2048

UC_ONSET 1536

UC_ABTM 1024

BASE_ID 1024

TOP_ID 2047

MIN_ID 0

MAX_ID 2047

<partner_id>

Specifies the module_id of the partner SCCP module.

<instance>

Value in the range 0 - 15 which specifies the instance of SCCP running on this system.

The <partner_id> and <instance> parameters provide the capability to configure dual
chassis fault tolerant systems that appear to the network as a single point code. For
further details refer to the Application Note: Enabling Dual Chassis Fault Tolerance with
Dialogic® Signaling Boards.

<smb_flags>

Flags relating to the SCCP management broadcast mechanism. For full details refer to
the Module Configuration Request section of the SCCP Programmer's Manual.

8.8.2 SCCP_SSR Command (Configure SCCP Sub-System Resource)

Synopsis

The SCCP_SSR command supplies the global configuration parameters for SCCP.

Syntax

SCCP_SSR <ssr_id> RSP <remote_spc> <flags> <pc_mask> [<ssf>

 [<mtp_module_id>]]

SCCP_SSR <ssr_id> LSS <local_ssn> <module_id> <flags> <protocol>

SCCP_SSR <ssr_id> RSS <remote_spc> <remote_ssn> <flags>

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

151

Examples

SCCP_SSR 1 RSP 1236 0

SCCP_SSR 2 LSS 0x07 0x0d 1 TCAP

SCCP_SSR 3 RSS 1236 0x67 0

Parameters

<ssr_id>

Unique ID for the SSR.

<remote_spc>

The point code of the remote signaling point, which may be either an STP or an SCP.
For correct operation, <remote_spc> must always have its own RSP entry in addition
to any RSS entries. There must also be an MTP_ROUTE defined for this signaling point.

<local_ssn>

The local sub-system number as defined by the SCCP protocol.

<flags>

A 16-bit value, where each bit enables or disables additional features of the RSP, RSS,
or LSS. The meaning for each bit is as defined for the options parameter described in
the Configure Sub-System Resource Request section of the SCCP Programmer’s
Manual.

<module_id>

The module identifier of the user application that implements the local sub-system.

<remote_ssn>

The remote sub-system number as defined by the SCCP protocol.

<pc_mask>

A 32-bit value specifying the part of a destination point code that must match the
<remote_spc> value for a SCCP transmit message to be sent down to this destination
sub-system. Bits set to 0 indicate that the corresponding bit position in the transmit

message destination point code must match the bit position of the <remote_spc>, bits
set to 1 indicate bit positions in the message destination point code that do not need to
match the <remote_spc> set for this RSP. This allows configuration of default
destination sub-systems (for example, to a gateway SCP).

<protocol>

Should be set to SCCP, TCAP, MAP, INAP or IS41 according to the layer of the protocol
stack to which the user application interfaces. Note there can be at most one LSS for

each of the MAP, INAP and IS41 protocols.

<ssf>

The SSF (Sub-Service Field) for use in messages sent to this RSP. If <ssf> is not
present or is set to 0xff, then the default SSF value configured in the SCCP_CONFIG
command will be used. The SSF value should always be configured to match the value
used within MTP3 for the corresponding link set(s).

Section 8 Configuration Command Reference

152

<mtp_module_id>

The mtp_module_id field allows SCCP to optionally send messages to a different MTP3
module on a per-RSP basis. If omitted or set to zero the MTP3 module_id will be used.

8.8.3 SCCP_CONC_SSR Command (Configure Concerned SSR)

Synopsis

This command marks the specified sub-system (which was declared by SCCP_SSR) as
requiring notification of changes in the accessibility of another sub-system. Notification
is given in the form of an SCCP management indication.

Syntax

SCCP_CONC_SSR <id> <cssr_id> <ssr_id>

Example

SCCP_CONC_SSR 1 2 3

Parameters

<id>

A unique value of local significance in the range 0 to 8191 used to identify the
concerned sub-system resource.

<cssr_id>

The ID of the subsystem that will receive the notifications.

<ssr_id>

The ID of the sub-system for which state changes will be issued.

8.8.4 SCCP_TRACE Command

Synopsis

This command sets the SCCP trace masks. Refer to SCCP Programmer’s Manual for full

details.

Syntax

SCCP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

Example

SCCP_TRACE 0x1 0x1 0x1

Parameters

<op_evt_mask>

Output event trace mask.

<ip_evt_mask>

Input event trace mask.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

153

<non_prim_mask>

Non-primitive trace mask.

8.8.5 SCCP_GTT_PATTERN Command (Define Global Title Pattern)

Synopsis

The SCCP_GTT_PATTERN command defines a global title pattern to be matched for a

global title translation.

Syntax

SCCP_GTT_PATTERN <pattern_id> <addr_indicator> <pc> <ssn>
<global_title> [<gtai_pattern>]

Example

SCCP_GTT_PATTERN 5 0x10 0x0000 0 0x001104 44/+

Parameters

<pattern_id>

A unique ID identifying the pattern.

<addr_indicator>

The address indicator octets, formatted according to the point-code format specified in
the SCCP_CONFIG <options> parameter (see "Called Party Address", Q.713 or ANSI
T1.112).

<pc>

The point code. This is ignored if bit 0 of <addr_indicator> is not set.

<ssn>

The subsystem number. This is ignored if bit 1 of <addr_indicator> is not set.

<global_title>

The global title, excluding the global title address information, specified as a string of
hexadecimal octets starting with 0x.

<gtai_pattern>

The pattern of global title address information to match, specified as a string of
hexadecimal digits in left-to-right order (that is, the pairs of digits are not swapped as
is the case for a BCD string). In addition to hexadecimal digits, this string can contain
the following characters:

Character Function

- Padding (ignored).

+
Wildcard - matches any number of digits. The “+” wildcard matches the shortest possible string of digits for

example a pattern such as “12+67” matches “1234567”, but does not match “1236767”.

? Wildcard - matches exactly one digit.

/
Separator used to split the pattern into sections. Each section can be processed differently, as
specified by the <mask> parameter in the SCCP_GTT command.

Section 8 Configuration Command Reference

154

8.8.6 SCCP_GTT_ADDRESS Command (Define Global Title Address)

Synopsis

This command defines a global title to be used as the primary or backup destination of
a translation. The global title address information of this command is combined with
the global title being translated by examining the mask provided in the SCCP_GTT

command.

Syntax

SCCP_GTT_ADDRESS <address_id> <addr_indicator> <pc> <ssn>
<global_title> [<gtai_replacement>]

Example

SCCP_GTT_ADDRESS 9 0x11 0x1234 0 0x001104 0-/-

Parameters

<address_id>

A unique ID identifying the address.

<addr_indicator>

The address indicator octet, formatted according to the point-code format specified in
the SCCP_CONFIG <options> parameter (see "Called Party Address", Q.713 or ANSI
T1.112).

<pc>

The point code. This is ignored if bit 0 of <addr_indicator> is not set.

<ssn>

The subsystem number. This is ignored if bit 1 of <addr_indicator> is not set.

<global_title>

The global title, excluding the global title address information, specified as a string of
hexadecimal octets starting with 0x.

<gtai_replacement>

The global title address information to translate to, specified as a string of hexadecimal
digits in left-to right order (that is, the pairs of digits are not swapped as is the case
for a BCD string). In addition to hexadecimal digits, this string can contain the
following characters:

Character Function

- Padding (ignored).

/
Separator used to split the address into sections. Each section can be processed
differently, as specified by the <mask> parameter in the SCCP_GTT command.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

155

8.8.7 SCCP_GTT Command (Add Entry in GTT Table)

Synopsis

The SCCP_GTT command adds a translation to the SCCP global title translation table.
This command must be specified after the SCCP_GTT_PATTERN and
SCCP_GTT_ADDRESS commands. The pattern, mask, primary and backup addresses

referenced by this command must all have an identical number of sections.

Syntax

SCCP_GTT <pattern_id> <mask> <primary_address_id>
[<backup_address_id>]

Example

SCCP_GTT 5 R-/K 9

Parameters

<pattern_id>

Identifies the pattern specified by the SCCP_GTT_PATTERN command. This value is
also used to index the translation within the SCCP/SUA module.

<mask>

An expression detailing the operation to be applied to each section of the global title
pattern. The format is exactly one operation per section and must contain exactly the

same number of sections as the <gtai_pattern> parameter of the associated
SCCP_GTT_PATTERN command and the <gtai_replacement> parameter of the
associated SCCP_GTT_ADDRESS command. The mask can contain the following:

Mnemonic Function

- Padding (ignored).

/ Separator used to split the mask into sections.

K or KEEP
The digits in the corresponding section of the global title address information
undergoing translation will be preserved.

R or REPLACE
The digits in the corresponding section of the global title address information
undergoing translation will be replaced with digits in the corresponding section of
the primary (or backup) address.

<primary_address_id>

Identifies the SCCP_GTT_ADDRESS command to use as the primary translation.

<backup_address_id>

Identifies the SCCP_GTT_ADDRESS command to use as the backup translation.

Section 8 Configuration Command Reference

156

8.9 DTC Configuration Commands
The DTC configuration commands are:

 DTC_CONFIG Command

 DTC_SSR Command (Configure DTC Sub System Resource)

8.9.1 DTC_CONFIG Command

Synopsis

The DTC_CONFIG command supplies the global configuration parameters for the DTC
protocol, activating DTC and higher protocols.

Syntax

DTC_CONFIG <num_servers> <server_selection> <host_number>
<rsi_status_user_id>

Example

DTC_CONFIG 2 0 0 0xef

Parameters

<num_servers>

Number of servers in the system.

<server_selection>

The selection mechanism used by DTC to determine which server to be used taken
from the following values:

Value Mnemonic Description

0 DTC_SELECT_SEQ Selects available servers in a sequential order

1 DTC_SELECT_REV_SEQ Selects available servers in a reverse sequential order

2 - 255 Reserved for future use.

<host_number>

The host number, which should be unique across hosts.

<rsi_status_user_id>

Module ID to forward RSI link status messages to.

8.9.2 DTC_SSR Command (Configure DTC Sub System Resource)

Synopsis

The DTC_SSR command configures a local subsystem using DTC. The command works
in a similar way to the SCCP_SSR LSS command but configures the subsystem to run
on top of DTC instead of SCCP. DTC and SCCP cannot be used at the same time, so the
SCCP_SSR and DTC_SSR commands are incompatible with each other.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

157

Syntax

DTC_SSR <ssr_id> LSS <local_ssn> <module_id> <reserved> <protocol>

Example

DTC_SSR 1 LSS 0x07 0x0d 0 TCAP

Parameters

<ssr_id>

A unique ID for the SSR.

<local_ssn>

The local sub-system number as defined by the SCCP protocol.

<module_id>

The module identifier of the user application on the host computer that implements the
local sub-system.

<reserved>

Must be set to 0.

<protocol>

Should be set to TCAP, MAP, INAP or IS41 according to the layer of the protocol stack
to which the user application interfaces.

Note: There can be at most one LSS for each of MAP, INAP and IS41.

Section 8 Configuration Command Reference

158

8.10 TCAP Configuration Commands
The TCAP configuration commands are:

 TCAP_CONFIG Command

 TCAP_CFG_DGRP Command (Dialog Group Configuration)

 TCAP_TRACE Command

8.10.1 TCAP_CONFIG Command

Synopsis

The TCAP_CONFIG command provides the TCAP operating parameters and, when used,

must appear after the SCCP_SSR or DTC_SSR commands. This command should only
be used when an SCCP_CONFIG or DTC_CONFIG command is present. The use of the
TCAP_CONFIG command is not required and TCAP is configured with default values if
the TCAP_CONFIG command is not present.

By default, TCAP is configured with 32k incoming and 32k outgoing dialogs. The
TCAP_CONFIG command must be used to change these parameters for systems

requiring a different number of dialogs.

Syntax

TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
<nic_dialogues> <options> <dlg_hunt> [[<addr_format>] <partner_id>
<tcap_inst>[<max_instance>]]

Example

TCAP_CONFIG 0x0000 8192 0x8000 8192 0x0000 0

Parameters

<base_ogdlg_id>

The dialogue_id for the first outgoing dialog.

<nog_dialogues>

The number of outgoing dialogs to support. The valid range is 0 to 65535.

<base_icdlg_id>

The dialogue_id for the first incoming dialog.

<nic_dialogues>

The number of incoming dialogs to support. The valid range is 0 to 65535.

Note: The total number of dialogs (<nog_dialogues> + <nic_dialogues>) must not exceed 65535.

<options>

Specifies TCAP protocol options as defined for the TCAP Configuration Request
message in the TCAP Programmer’s Manual.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

159

<dlg_hunt>

The hunt mode used in the case of multiple TCAP hosts to determine which TCAP group
is selected whenever a new incoming dialog arrives. It should be set to 0, 1 or 2 for
the following hunt modes:

Option Function

0 Cyclic Selection. Each new incoming dialog is allocated to the next TCAP group.

1
Load Balanced Selection. Each new incoming dialog is allocated to the group with the
least number of active incoming dialogs.

2
Sequential Selection. Each new incoming dialog is allocated to the group containing
the first inactive incoming dialogue_id.

<addr_format>

Defines how TCAP should interpret address information from messages received from
SCCP in order to direct received TCAP primitives to unique SCCP sub-systems (TCAP
user applications). It should be set to 0, 1, 2, 3 or 4 for the following options:

Option Function

0
If configured to use ITU-T PDU formats (options bit 1 not set), use the ITU-T Q.713
SCCP address format. If configured to use ANSI PDU formats (options bit 1 set), use
the ANSI T1.112 SCCP address format.

1 Use the ITU-T Q.713 SCCP address format (14-bit point codes).

2 Use the ITU-T Q.713 SCCP address format modified for 24-bit point codes.

3 Use the ANSI T1.112 SCCP address format modified for 14-bit point codes.

4 Use the ANSI T1.112 SCCP address format (24-bit point codes).

<partner_id>

Specifies the module_id of the partner TCAP module.

<tcap_inst>

Value in the range 0 - 15 which specifies the instance of TCAP running on this system.

The <partner_id> and <tcap_inst> parameters provide the capability to configure dual

chassis fault tolerant systems that appear to the network as a single point code. See
the Application Note: Enabling Dual Chassis Fault Tolerance with Dialogic® Signaling
Boards for a description of how such a configuration can be used.

<max_instance>

Specifies the maximum number of hosts considered to make up the system, in the
range 0-128. When used in conjunction with an SIU using DTS this value must also be

present in the DTS_CONFIG command on the SIU(s).

8.10.2 TCAP_CFG_DGRP Command (Dialog Group Configuration)

Synopsis

This command allows the user to configure TCAP dialog groups, each group handling a
subset of the total available dialogs. This allows each group to reside on a separate

host computer that in turn allows the application using TCAP to be distributed over
several machines. If the TCAP_CFG_DGRP command is omitted, the complete range of
dialog identifiers defined by the TCAP_CONFIG command is assigned.

Section 8 Configuration Command Reference

160

The TCAP_CONFIG command must exist before this command in the config.txt file.

Syntax

TCAP_CFG_DGRP <gid> <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
<nic_dialogues> <options> <reserved>

Example

TCAP_CFG_DGRP 0 0x0000 1024 0x8000 1024 0 0

Parameters

<gid>

A logical identifier for this group. The valid range is 0 to 31.

<base_ogdlg_id>

The first outgoing dialog ID assigned to this dialog group.

<nog_dialogues>

The number of outgoing dialogs assigned to this group, hence outgoing dialog IDs

base_ogdlg_id to base_ogdlg_id + nog_dialogues-1 are assigned to this group.

<base_icdlg_id>

The first incoming dialog ID assigned to this dialog identifier group.

<nic_dialogues>

The number of incoming dialogs assigned to this group, therefore, outgoing dialog IDs
base_ogdlg_id to base_icdlg_id + nic_dialogues-1 are assigned to this group.

<options>

Reserved for future use, set to 0.

<reserved>

Must be set to 0.

8.10.3 TCAP_TRACE Command

Synopsis

This command sets the TCAP trace masks. Refer to TCAP Programmer’s Manual for full
details.

Syntax

TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

Example

TCAP_TRACE 0x7 0xf 0x0

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

161

Parameters

<op_evt_mask>

Output event trace mask.

<ip_evt_mask>

Input event trace mask.

<non_prim_mask>

Non-primitive trace mask.

Section 8 Configuration Command Reference

162

8.11 MAP Configuration Commands
The MAP configuration commands are:

 MAP_CONFIG Command

 MAP_TRACE Command

8.11.1 MAP_CONFIG Command

Synopsis

The MAP_CONFIG command provides the MAP operating parameters and, if used, must
appear after the SCCP_SSR commands in the config.txt file. The use of this command

is not required and MAP is configured with default values if the MAP_CONFIG command
is not present.

Syntax

MAP_CONFIG <options>

Example

MAP_CONFIG 2

Parameters

<options>

Specifies MAP protocol options as defined for the MAP Configuration Request message
in the MAP Programmer’s Manual.

8.11.2 MAP_TRACE Command

Synopsis

This command sets the MAP trace masks. Refer to MAP Programmer’s Manual for full
details.

Syntax

MAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

Example

MAP_TRACE 0xf 0xf 0x4

Parameters

<op_evt_mask>

Output event trace mask.

<ip_evt_mask>

Input event trace mask.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

163

<non_prim_mask>

Non-primitive trace mask.

Section 8 Configuration Command Reference

164

8.12 INAP Configuration Commands
The INAP configuration commands are:

 INAP_CONFIG Command

 INAP_FE Command (Configure INAP Functional Entity)

 INAP_AC Command (Configure INAP Application Context)

 INAP_TRACE Command

8.12.1 INAP_CONFIG Command

Synopsis

The INAP_CONFIG command provides the INAP operating parameters and, if used,
must appear after the SCCP_SSR commands in the config.txt file. The use of this
command is not required and MAP is configured with default values if the
INAP_CONFIG command is not present.

Syntax

INAP_CONFIG <options>

Example

INAP_CONFIG 2

Parameters

<options>

Specifies INAP protocol options as defined for the INAP Configuration Request message
in the INAP Programmer’s Manual.

8.12.2 INAP_FE Command (Configure INAP Functional Entity)

Synopsis

This command is used to configure the INAP functional entity records for operation.
These allow the user application to refer to Functional Entities (FEs) in the network via
a local reference rather than providing the full SCCP address. The user may
subsequently use this reference in the “Destination FE” or “Originating FE” parameters

of the INAP_OPEN_DLG primitive or in the “IN_dialogue_open” API function. This
reference is used instead of the destination or origination address parameter.

Syntax

INAP_FE <fe_ref> <options> <sccp_address>

Example

INAP_FE 0x00000007 0x00000001 0x00000000

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

165

Parameters

<fe_ref>

A logical identifier for this Functional Entity (FE).

<options>

A 16-bit options value. Bit 0, when set to 1 identifies a local FE. Other bits should be
set to 0.

<sccp_address>

The SCCP address of the local FE, in Q.713 format commencing with the address
indicator, as a string of hex characters, up to 18 characters in length. The SIU supports

up to 32 functional entities.

8.12.3 INAP_AC Command (Configure INAP Application Context)

Synopsis

This command is used to configure the INAP Application Context (AC) records for use.
These control the application context negotiation that the module conducts during
dialog establishment. The supported application contexts must be individually
configured using this message. The module only accepts incoming dialogs with
configured Application Contexts. If a dialog request with an unconfigured context is
received, a dialog abort message is returned to the requesting Functional Entity. If no

supported Application Contexts are configured, the application context negotiation is
disabled. The module accepts all incoming dialogs.

Syntax

INAP_AC <ac_ref> <ac>

Example

INAP_AC 0x00 0xa109060704000101010000

Parameters

<ac_ref>

A logical identifier for this Application Context (AC).

<ac>

Application context. Specified as hexadecimal characters, prefixed by “0x”. An
application context may be up to 32 octets (character pairs) in length. The SIU
supports up to 32 application contexts.

8.12.4 INAP_TRACE Command

Synopsis

This command sets the INAP trace masks. Refer to INAP Programmer’s Manual for full
details.

Syntax

Section 8 Configuration Command Reference

166

INAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

Example

INAP_TRACE 0xf 0xf 0x7f

Parameters

<op_evt_mask>

Output event trace mask.

<ip_evt_mask>

Input event trace mask.

<non_prim_mask>

Non-primitive trace mask.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

167

8.13 IS41 Configuration Commands
The IS41 configuration commands are:

 IS41_TRACE Command

8.13.1 IS41_TRACE Command

Synopsis

This command sets the IS41 trace masks. Refer to IS41 Programmer’s Manual for full
details.

Syntax

IS41_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

Example

IS41_TRACE 0xf 0xf 0xff

Parameters

<op_evt_mask>

Output event trace mask.

<ip_evt_mask>

Input event trace mask.

<non_prim_mask>

Non-primitive trace mask.

Section 8 Configuration Command Reference

168

8.14 SIGTRAN Protocol Configuration Overview
This section gves an overview of the SIGTRAN configuration model and defines the
configuration parameters.

8.14.1 SIGTRAN M3UA ASP, Host to SGP Configuration Model

M3UA SIGTRAN hosts use the IETF SIGTRAN M3UA protocol to carry SS7 MTP3 traffic
to and from M3UA Signaling Gateways (SG). The host connects to one or more
Signaling Gateways using SIGTRAN SCTP Associations. The host can then send MTP3
messages generated by an MTP3 User Part to a remote SS7 point code via the SG.

M3UA will select which SG to send these messages to depending on the Destination

Point Code (DPC) of the message.

Each SG the host connects to will be configured using the SIGTRAN Link Initiate
‘SNSLI’ command. This identifies details of the IP link connecting the host and SG, with
the host end always marked as ‘client’. This command also identifies the type of SS7
traffic (e.g. ITU14). There may be up to four SNLINKs to the same SG, allowing for

loadsharing of traffic.

Each DPC to which the host sends traffic must be configured using a SIGTRAN Route
Initiate ‘SNRTI’ command. This defines a route to the DPC which must then be added
to the specific Signaling Gateways that provide that route using the SIGTRAN Route
List Initiate ‘SNRLI’ command.

M3UA uses the term Application Server (AS) to identify a host application processing
SS7 traffic. The SIGTRAN Application Server Initiate ‘SNAPI’ command is used to

configure a Local AS. Up to four Local AS are supported per host, each may be
individually managed and controlled. Each LAS can be active across one or more
associations or multiple LAS may share the same association, in which case Routing

Context parameters must be used.

The SG maintains a 1:1 mapping of Routing Key to LAS and optionally a 1:1 mapping
of Routing Key to Routing Context (RC). The Routing Key may be predefined on the
SG or may be configured by the host when the link is established using Routing Key

Management procedures (RKM). The SIGTRAN Routing Key Initiate ‘SNRKI’ command
is used to define the Routing Key and the SIGTRAN Local AS Bind Initiate ‘SNLBI’
command is used to bind the LAS to the SG, optionally with the Routing Key id, or RC.

When establishing communication with the SG, if RKM procedures are enabled the
Routing Key will be registered with the SG which will return a RC to use in traffic for
that LAS-SG relationship. When going active, the local ‘Traffic Mode’ is used to tell the

SG how to distribute traffic across multiple hosts or multiple LAS.

The system can be made to automatically audit Signaling Gateways to ensure that
route status is kept synchronized with the Signaling Gateways. Auditing happens on
recovery of the Signaling Gateway connection, and every 30 seconds thereafter until
all destinations are available and uncongested.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

169

8.14.2 SIGTRAN M3UA IPSP, Peer to Peer Configuration Model

M3UA can be used to allow remote end points to exchange MTP3 messages directly
using SCTP Associations without using a Signaling Gateway. One or more Remote
Application Servers (RAS) can be configured, each of which will have a different Point
Code. M3UA will select the RAS to send the MTP3 message to depending on the

Destination Point Code (DPC) of the message.

One or more SIGTRAN Links can be created with the ‘SNSLI’ command identifying the
IP details and SS7 traffic type (e.g. ITU14). One end of the association should be
marked as ‘client’ and the other as ‘server’.

Each Remote Application Server (RAS) is defined using the SIGTRAN Remote AS
Initiate ‘SNRAI’ command and will have a DPC and an optional Routing Context (RC).

The SIGTRAN links are attached to the RAS with the SIGTRAN AS List initiate ‘SNALI’
command. Up to four SNLINKs may be attached to the same RAS allowing traffic to be
load shared across the associaitons. Alternatively one SNLINK may be attached to
multiple RAS allowing them to share the association.

The SIGTRAN Application Server Initiate ‘SNAPI’ command is used to configure a Local
AS. Up to four Local AS are supported per host, each may be individually managed
and controlled. Each LAS can be active across one or more associations or multiple

LAS may share the same association.

SIGTRAN Local AS Bind Initiate ‘SNLBI’ command is used to bind the LAS to the RAS
with an optional RC to use for that LAS-RAS relationship. Where multiple LAS or RAS
use the same association, the RC parameter must be used to differentiate traffic.

8.14.3 SIGTRAN M3UA User Parts

The default LAS1 (NC0) is configured with user parts and service indicators according

to the protocols configured in the config.txt file or explicitly by using the
MTP_USER_PART NC0 command. For each additional LAS configured the
MTP_USER_PART NCx command must be used to connect the LAS to its user part
which may be configured in a separate config.txt or externally with DSI messages.

8.14.4 M2PA Configuration Model

M2PA SIGTRAN hosts use MTP3 as normal. Instead of using SS7 Signaling Boards they
use IP and SIGTRAN SCTP to carry SS7 traffic. Each M2PA link is configured using a
‘SNSLI’ command and an MTP_LINK command.

A single M2PA link may carry the same load as a number of MTP2 links. This means a
typical Link Set should only require a single M2PA link.

8.14.5 SIGTRAN SUA IPSP, Peer to Peer Configuration Model

SUA SIGTRAN hosts use the IETF SIGTRAN SUA protocol to carry SS7 SCTP traffic to a
Remote Application Server. Signaling links to a RAS are instantiated using the SNSLI

command. This gives details of the IP link connecting the host to the RAS. This
command also identifies the type of SS7 traffic to be used (e.g. ITU14). This command

is used once for each Signaling link that is to be supported.

Each LAS is identified with a SNAPI command. A maximum of four LASs are supported.
Each RAS must be identified with a SNRAI command. A maximum of 32 RASs are
supported.

Section 8 Configuration Command Reference

170

The SNLBI command is used to bind a LAS to a RAS or RSG. The SNALI command is
used to bind an RAS to a specific link.

The SNRTI command is used to define a route. Each route is bound to a specific RAS or
RSG by an SNRLI command. A maximum of 64 routes and route bind commands are
supported.

The DPC must either be defined in the SNRAI command which defines the RAS or in

any route which is subsequently bound to the RAS.

8.14.6 SIGTRAN SUA ASP, Host to SGP Configuration Model

SUA SIGTRAN hosts use the IETF SIGTRAN SUA protocol to carry SS7 SCTP traffic to
SUA Remote Signaling Gateways. Links to the RSG are declared using the SNSLI

command. This gives details of the IP link connecting the host to the RSG and declares

the presence of an RSG by including an SG parameter.

Each LAS is identified with a SNAPI command. A maximum of four LASs are supported.
RSGs do not have to be explicitly declared – they are set up implicitly by the SNSLI
command.

The SNLBI command is used to bind a LAS to an RSG. The SNALI command is not
required as the RSG is bound to a specific link by the SNSLI command.

As in IPSP configurations, the SNRTI command is used to define a route and routes are

bound to a specific RSG by an SNRLI command. A maximum of 64 routes and route
bind commands are supported.

For SG connections, the DPC must be included in any routes which are bound to the
RSG.

8.14.7 SIGTRAN Parameters

The Configuration of SCTP, SCTPD, SCTPN, M3UA and SUA uses Man Machine Interface
(MMI) format commands. MMI commands start with a 5 character command name; if
parameters are included, then the command name is followed by a colon and then the
parameters. Parameters are of the format ‘parameter name’=’parameter value’ and
are separated by a comma. The command line is terminated with a semi-colon.

The following parameters are supported:

Name Description Range Default

AS Application Server 1:4

AUTOACT Automatic activation of SIGTRAN
associations

Y, N Y

CIC_RANGE Range of ciscuits for use with ISUP/TUP.
This is a compound parameter
comprising the CIC of the first circuit
(‘base’) and the number of consecutive
circuits included (‘range’).

<base>-<range>

DAUD Destination Audit Y, N N

DPC Destination Point Code 0:16777215

DUAL Dual resilient configuration host identifier A,B

HPORT Host SCTP Port (M3UA)
(SUA)

1:65535 2905
14001

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

171

Name Description Range Default

HIPADDR1 First per-link (local) host IP address. IPv4 addresses using dot
notation: w.x.y.z

Or

IPv6 addresses using
colon notation A:B:C::E:F.

HIPADDR2 Second per-link (local) host IP address.

HIPADDR3 Third per-link (local) host IP address.

HIPADDR4 Fourth per-link (local) host IP address.

IPADDR IP address of Host or SG or RAS. IPv4 addresses using dot
notation: w.x.y.z

Or

IPv6 addresses using
colon notation A:B:C::E:F.

IPADDR2 Second IP address of Host or SG or
RAS.

IPADDR3 Third IP address of Host or SG or RAS.

IPADDR4 Fourth IP address of Host or SG or RAS.

M2PA Logical reference for an M2PA Link 1:8

M2PA_VER Version of M2PA Protocol to support RFC, 9 RFC

M3UAHBT M3UA Heartbeats enable Y,N N

MAXSIF Max Signaling Information Field
accepted in API_MSG_TX_REQ

5:4199 272

MODULE Name of module to configure DMR, DTC, DTS, INAP,
IS41, ISUP, M2PA, M3UA
, MAP, MTP3, RMM,
SCCP, SCTP, SCTPD,
SUA, TCAP

MOD_ID Module ID 0:255

NA Network Appearance 0:4294967295

NC Network Context (maps to LAS) 0:3 0

NASP Minimum number of ASPs required to
fully resource the AS.

0:64 0

OPC Originating Point Code 0:16777215

OPTIONS Run-time options used in SNRLI, SNRTI
CNNCI and CNOPS commands

0: 0xffffffff

PER Personality Configuration 0:255 0

PPORT Peer SCTP Port (M3UA)
(SUA)

1:65535 2905
14001

RAS Remote Application Server 1:64

RC SIGTRAN Routing Context 0:4294967295

RTXB Max SCTP heartbeat retransmissions
(max_retx_heartbeat)

0:20
0 = use SCTP default

2

RTXD Max SCTP data retransmissions
(max_retx_data)

0:20
0 = use SCTP default

2

RTXI Max SCTP init retransmissions
(max_retx_init)

0:20
0 = use SCTP default

5

RTXP Number of consecutive init
retransmissions on a path

0:20
0 = use SCTP default

1

SG Logical reference for a Signaling
Gateway

1:64

Section 8 Configuration Command Reference

172

Name Description Range Default

SI Service Indicator 0:15

SNAL Logical identifier of a SIGTRAN
Remote Application Server list

1:256

SNEND Determines Client or Sever for SCTP C,S C

SNLB Logical ID of SIGTRAN AS Bind 1:256

SNLINK Logical ID of a SIGTRAN Link 1:384

SNMP SNMP enabled for object Y,N N

SNRK Logical ID of a M3UA Routing Key 1:64

SNRL Logical ID of a SIGTRAN Route List 1:512

SNRT Logical ID of SIGTRAN Route 1:4096

SNTYPE Type of SNLINK M2PA, M3UA, SUA, DMR M3UA

SS7MD SS7 variant. ITU14, ITU16, ITU24,
ANSI

ITU14

SSN Sub-System Number 0:255 0

SSR_ID Sub-system resource to be used by this
LAS

0:511 0

TID_START Start bit for TCAP instance identifier 0:31

TID_END End bit for TCAP instance identifier 0:31

TID_VALUE Value of TCAP instance identifier 0:65535

TMSEC Time value in milliseconds (ms) 0:15000

TRMD Traffic Mode for Host system
Load Share – LS
Broadcast – BC
Override - OR

LS, BC, OR LS

TSEC Time value in seconds 0:65

TTYPE Protocol Timer type SCTP,M2PA,M3UA

8.14.8 IP address scope

The IPv4 address space is divided into four different scopes:

 Global – these are the globally unique addresses used on the public Internet.

 Site-local – there are three site-local networks which are defined by RFC 1918.
These are 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. Site-local addresses are
only unique within the local network and are therefore meaningless to systems
outside of the local network.

 Link-local – there is one link-local network, 169.254.0.0/16, which is defined by

RFC 3927. Link-local addresses are only unique within the link and are therefore
meaningless to external systems.

 Loopback – the loopback network, 127.0.0.0/8, is defined by RFC 1700 and is only
valid within the local host.

The IPv6 address space is divided into three different scopes:

 Global – these are the globally unique addresses used on the public Internet.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

173

 Link-local – for uniquely identifying interfaces within (i.e., attached to) a single link
only. Link-local addresses are only unique within the link and are therefore
meaningless to external systems.

 Loopback – The IPv6 unicast loopback address, ::1, is treated as having link-local
scope within an imaginary link to which a virtual "loopback interface" is attached.

When communicating with a host, addresses from a more restrictive scope must never

be transmitted since it is likely that such an address would be meaningless (or even
harmful) to the remote system. Since this behavior is enforced on some SCTP
implementations, it is recommended that addresses of different scopes not be mixed
within a single multi-homed association.

Section 8 Configuration Command Reference

174

8.15 SIGTRAN Configuration Commands
The SIGTRAN configuration commands are:

 SNAPI Command - SIGTRAN Local AS

 SNSLI Command - SIGTRAN Signaling Link Initiate

 SNRTI Command - SIGTRAN Route

 SNRLI Command - SIGTRAN Route List

 SNRKI Command - SIGTRAN Routing Key Initiate

 SNALI Command - SIGTRAN AS List Initiate

 SNLBI Command - SIGTRAN Local AS Bind Initiate

 CNSYS Command - Configuration System Set

 CNOPS Command - Configuration Module Options Set

 CNNCI Command - Configuration Network Context Initiate

 CNTOS Command - Configuration Timeout Set

8.15.1 SNAPI Command - SIGTRAN Local AS Initiate

Synopsis

This command initiates a Local Application Server (LAS). A LAS is a logical entity
representing an SS7 end point that can process circuit-related and or non circuit-
related signaling. Communication with a SG or Remote Application Server may use the

Routing Context to identify the LAS.

SS7MD defaults to ITU14 and the local traffic mode (how peer should route traffic to
this LAS) defaults to loadshare. Optional OPC is for information only.

TID parameters are for SUA only and if any TID parameter is present they must all be
present.

For M3UA the Routing Context parameter is optional and then only used when
connecting to a remote SG. When connecting to a Remote AS the Routing Context
parameter can be configured by SNRAI. In most cases it is recommended that the
Routing Context parameter be configured by SNLBI.

Syntax

SNAPI:LAS=,[RC=,][SS7MD=,][TRMD=,][SNTYPE=,][OPC=,]
[TID_START=,][TID_END=,][TID_VALUE=,][SSR_ID=];

Example

SNAPI:LAS=1,OPC=123;
SNAPI:LAS=2,SS7MD=ITU16,TRMD=OR;

Prerequisites

The RC, if specified, must not already be associated with another local AS

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

175

8.15.2 SNSLI Command - SIGTRAN Signaling Link Initiate

Synopsis

This command initiates a SIGTRAN link. A SIGTRAN link provides an SCTP association
to a Signaling Gateway or Remote Application Server Process or between two M2PA
nodes, or Diameter nodes.

If two IP addresses are specified, then the first IP address will be used until it proves
unreliable in which case the second will be used.

SS7MD defaults to ITU14 if not specified.
SNTYPE defaults to M3UA if not specified.

For M3UA, M3UAHBT (Heartbeat) and SNMP indications may be enabled.

SG must be specified for a link to a Signaling Gateway, otherwise this is an IPSP link.

If no M2PA Version is specified and the link type is M2PA, then it will default to the RFC
version.

Syntax

SNSLI:SNLINK=,IPADDR=,[SG=,][SS7MD=,][IPADDR2=,][IPADDR3=,]
[IPADDR4=,][HIPADDR1=,][HIPADDR2=,][HIPADDR3=,][HIPADDR4=,]
[HPORT=,][PPORT=,][SNEND=,][SNTYPE=,][M2PA=,][M2PA_VER=,]
[NA=,][M3UAHBT=,][SNMP=,][RTXI=,][RTXP=,][RTXD=,][RTXB=];

Example

SNSLI:SNLINK=1,SNEND=C,IPADDR=192.168.0.1,SG=2, IPADDR2=192.168.1.1;

SNSLI:SNLINK=2,IPADDR=192.168.0.10,HPORT=2906,PPORT=2906,

 SNEND=S,SNTYPE=M3UA;

SNSLI:SNLINK=3,IPADDR=192.168.0.20,SNEND=C,SNTYPE=M2PA,M2PA=3,
 PPORT=3567;

SNSLI:SNLINK=1,IPADDR=2001:DB8::1234:5678,HIPADDR1=2001:DB8::1234:ABCD

 ,SNEND=S,SNTYPE=DMR,PPORT=3868,HPORT=3868;

Prerequisites

SS7MD must be the same throughout the system

For security reasons, the user must explicitly specify the IP addresses the link is
connected to. The Peer is not allowed to respond or request IP addresses not
configured by this command.

An IP address of 0.0.0.0 cannot be specified

Section 8 Configuration Command Reference

176

8.15.3 SNRTI Command - SIGTRAN Route Initiate

Synopsis

This command is used to configure a SIGTRAN route to a remote SS7 destination.

For M3UA: if the LAS parameter is not specified the route is attached to LAS1 by
default. The DPC is mandatory and SNMP indications are available.

For SUA: if the LAS parameter is not specified then the route is attached to all LASs

Syntax

SNRTI:SNRT=,[DPC=,][LAS=,][SNTYPE=,][SSN=,][OPTIONS=,][SNMP=];

Example

SNRTI:SNRT=1,DPC=130;
SNRTI:SNRT=2,DPC=200,LAS=2,OPTIONS=0x0004;

Prerequisites

Another route cannot exist with the same DPC.

Parameters

<OPTIONS>

The OPTIONS parameter is a 16 bit field to configure run-time options with

values defined below. If omitted, it defaults to 0x0002 for backwards

compatibility

Bit Mnemonic Meaning

0 M3UOP_ROUTE_ASSUME_AVAIL Assume route always available

1 M3UOP_ROUTE_LOADSHARE Loadshare across all servers in the route

2 M3UOP_ROUTE_DEFAULT Default Route

3 M3UOP_ROUTE_SNMP Enable SNMP indications for this route (will also be set by
specifying SNMP=’Y’)

8.15.4 SNRLI Command - SIGTRAN Route List Initiate

Synopsis

This command attaches Signaling Gateways to a SIGTRAN Route. A SIGTRAN route will

use these adjacent Signaling Gateways to reach an eventual destination Point Code.

For SUA a RAS or a SG must be specified.

For M3UA SG is mandatory and OPTIONS may be specified. Where a route (SNRT) is
attached to more than 1 SG, and route loadshare is enabled, this applies to the first 2
active SGs in the SNRL list.

Syntax

SNRLI:SNRL=,SNRT=,[SG=,][RAS=,][OPTIONS=];

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

177

Example

SNRLI:SNRL=1,SNRT=1,SG=1;

Prerequisites

The route has already been initiated.

A SG must have at least one SNLINK associated with it. For SUA if SG is specified the
route must contain DPC. If RAS is specified the DPC must be in each route or the RAS.

Parameters

<OPTIONS>

The OPTIONS parameter is a 16 bit field to configure run-time options with values
defined below. If omitted, it defaults to 0.

Bit Mnemonic Meaning

0 M3UOP_ROUTE_SERV_ASSUME_AVAIL Presume the route is available via the server once
the server is available, i.e. without waiting for
reception of DAVA

8.15.5 SNRKI Command - SIGTRAN Routing Key Initiate

Synopsis

This command initiates a Routing Key for use with a Signaling Gateway (ASP Mode).
Once defined the SNRK id may be used in an SNLBI command in place of the RC
parameter to add the Routing Key to a Signaling Gateway. At runtime the Routing Key
will be registered with the Signaling Gateway which will return the RC to use.

The SNRK parameter is the logical identifier of the Routing Key (in the range 1 to 64).

CIC_RANGE is a compound parameter in the form <base-range> where base is the
base CIC and range is the number of contiguous CICs in the range.
e.g. CIC_RANGE 10-15 results in cics 10 to 24 inclusive. When CIC_RANGE is specified
the OPC parameter is mandatory.

When specifying OPC and DPC they are specified from the Signaling Gateway’s point of
view, i.e. OPC is the remote point code that is originating traffic and DPC represents
the Local AS which intends to receive the messages.

Syntax

SNRKI:SNRK=,DPC=,[SI=,][OPC=,][OPC=,CIC_RANGE=];

Example

SNRKI:SNRK=1,DPC=123;

SNRKI:SNRK=2,DPC=123,OPC=567;
SNRKI:SNRK=3,DPC=123,OPC=567,SI=5,CIC_RANGE=64-32;

Prerequisites

Can only be used when connecting to a Signaling Gateway (not IPSP mode)

Section 8 Configuration Command Reference

178

8.15.6 SNRAI Command - SIGTRAN Remote AS Configuration

Synopsis

This command initiates a Remote Application Server entity. A Remote Server
represents a Remote SS7 signaling point. A Remote AS may run on a number of
remote hosts. The optional NASP parameter defines the target number of RAS’s

required in load sharing mode.

SS7MD defaults to ITU14.

TRMD is the Peer Traffic Mode (ie how traffic is routed towards the peer), it defaults to
LS (Loadshare).

For SUA if the DPC is omitted, it must be specified in all SNRTs bound to this RAS.

For M3UA the (optional) Routing Context parameter for use with the RAS is configured

by this command, not by the SNAPI command.

Syntax

SNRAI:RAS=,[RC=,][DPC=,][NASP=,][TRMD=,][SNMP=,][LAS=,];

Example

SNRAI:RAS=1,RC=1,DPC=555;

Prerequisites

RC must not be associated with any other RAS.

Normally only one RAS or SNRT can be configured with a particular DPC, however for
M3UA multiple RAS may be configured with the same DPC providing a different LAS is

specified.

A remote application server may only be bound to a single local application server.

8.15.7 SNALI Command - SIGTRAN AS List Initiate

Synopsis

This command is used to attach a SIGTRAN link to a Remote Application Server. It
identifies the remote ASPs that the AS is hosted on.

Syntax

SNALI: SNAL=,RAS=,SNLINK=;

Example

SNALI:SNAL=1,RAS=1,SNLINK=1;

Prerequisites

The Remote Application Server has already been initiated.

The specified SIGTRAN link has already been initiated.

The SIGTRAN link must be of type M3UA or SUA and connect to a Remote ASP (IPSP).

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

179

For M3UA an SNLINK may be attached to multple RAS.

The application list id SNAL must not have been used.

For SUA an automatic SNALI will be created for any SNLINK to a SG. The SNAL id will
be the same as the SNLINK id and therefore may not be used for other SNALI
commands.

A RAS must have at least one SNLINK associated with it.

8.15.8 SNLBI Command - SIGTRAN Local AS Bind Initiate

Synopsis

This command initiates a relationship between a Local Application Server and Remote
Application Server or Signaling Gateway. The Local Application Server will use the
SIGTRAN Links associated with the Remote Application Server or Gateway.

For M3UA IPSP use this command is not required.

For ASP to SG configurations this command will use the RC parameter from the LAS
(see SNAPI) and the SG may only be bound to one LAS.

Syntax

SNLBI: SNLB=,LAS=,[RAS=,][SG=,][RC=,][SNRK=];

Example

SNLBI:SNLB=1,LAS=1,SG=1;

SNLBI:SNLB=2,LAS=2,RAS=1;
SNLBI:SNLB=3,LAS=3,RAS=2,RC=2;

SNLBI:SNLB=4,LAS=4,SG=2,SNRK=1;

Prerequisites

The LAS and RAS or SG have been initiated.

The RAS or SG is associated with at least one SNLINK.

The RAS or SG is not attached to another LAS.

Routing Keys (SNRK) may only be specified when binding to a SG

8.15.9 CNSYS Command - Configuration System Set

Synopsis

This command allows system wide settings to be configured.

Checksums for SCTP associations default to CRC32. If ADLER is required then PER

should be set to 1.

If DAUD is set to ‘Y’ then each SG will be audited concerning route status.

For Dual Resilient systems using RMM the DUAL parameter must be applied with value
‘A’ or ‘B’. This parameter may be used in non-SIGTRAN configurations.

The AUTOACT parameter can be set to ‘N’ to disable automatic activation of SIGTRAN
associations. For M3UA when set to ‘Y’ (default) the following 3 steps occur:

Section 8 Configuration Command Reference

180

1. Association is activated at SCTP level
2. ASP is brought UP (when possible)
3. ASP is made ACTIVE (when possible)

If set to ‘N’ it is the users responsibility to control the steps as required with GCT
messages. This allows users to activate the association only and have a peer control
the ASPUP and ASPAC stages.

IPADDR is mandatory for SIGTRAN, optional for TDM configurations.

SNMP setting enables SNMP for all objects in the system.

Syntax

CNSYS: [IPADDR=,][IPADDR2=,][IPADDR3=,][IPADDR4=,][PER=,]
[DAUD=,][DUAL=,][AUTOACT=,][SNMP=];

Example

CNSYS:IPADDR=192.168.1.20;

CNSYS:IPADDR=192.168.1.20,DAUD=Y;
CNSYS:IPADDR=2001:DB8::1234:5678,DUAL=A,AUTOACT=N;

8.15.10 CNOPS Command - Configuration Module Options Set

Synopsis

This command allows per-module settings to be varied from the default settings.

Specifically it allows the default module_id to be set to a different value and, for
certain modules, allows additional run-time configuration options to be set.

Syntax

CNOPS: MODULE=,[OPTIONS=,][MOD_ID=,][NC=];

Example

CNOPS: MODULE=M2PA,OPTIONS=0x0123;
CNOPS: MODULE=MTP3,MOD_ID=0x3d;

CNOPS: MODULE=M3UA,MOD_ID=0xfd,NC=1;

Parameters

<MODULE>

A token representing the module for which the configuration applies. Possible values
are: DMR, DTC, DTS, INAP, IS41, ISUP, M2PA, M3UA, MAP, MTP3, RMM, SCCP, SCTP,
SCTPD, SUA and TCAP.

<MOD_ID>

The value for the module_id in the range 0x01 to 0xfe. Care should be taken when
selecting module_id value to ensure that the value is not already in use. Typically it is
not necessary to change the default module_id.

<NC>

Network Context. Defaults to 0 if not specified.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

181

<OPTIONS>

This is a 32 bit value used to set the per-module run-time configuration options. This
parameter is only valid when used with the following settings for <MODULE>: M2PA,
M3UA, RMM, SCTP and SCTPD. Other modules have the ability to set the run-time
options in other config.txt commands.

M2PA Options

Bit Meaning

0 Set to 1 to use Multiple Congestion levels

1 Set to 1 to use 7-bit sequence numbers instead of default 24-bit sequence numbers. Use if
MTP3 does not support Extended Changeover Procedures.

2 Set to 1 to use the (older) Draft Version 9 of the M2PA Specification. Default operation
supports the RFC specification.

M3UA Options

Bit Meaning

0 Enable IPSP functionality

1 Enable Signaling Gateway functionality

2 Set to 1 to select the lowest bit of the SLS value to determine which Signaling Gateway to
route traffic to. If not set, the highest bit of the SLS value is used.

3 By default, data traffic is load-shared across the SCTP streams based on the SLS value.
When set, this option forces the M3UA module to use only stream 1 for transmitting data.

RMM Options

Bit 0 Bit 1 Meaning

0 0 14 bit point codes

1 0 16 bit point codes

0 1 24 bit point codes

Section 8 Configuration Command Reference

182

SCTP Options

Bit Meaning

SCTP/SCTPD SCTPN

0 Controls the SCTP checksum algorithm.
When set to 1 the CRC32 checksum is used
otherwise the Adler32 (FRC2960) checksum
is used.

When using the native SCTP module
(SCTPN) Adler32 checksum is not
supported so this bit should always be set
to 1.

1 Module will ignore rather than abort
incoming connection attempts for none
present SCTP ports.

Reserved for future use and should be set
to 0.

4 Forces retransmits of the data on the same
path until it is considered inactive

Reserved for future use and should be set
to 0.

5 If set the SCTP module will use the
preferred path if available. The preferred
path uses the first host address set for the
association.

If set the SCTPN module will use the
preferred path if available. The preferred
path uses the first host address set for the
association.

8.15.11 CNNCI Command - Configuration Network Context Initiate

Synopsis

This command configures basic network variant and configuration options for a
network context.

Syntax

CNNCI:SS7MD=,[OPTIONS=,][NC=,][MAXSIF=];

Example

CNNCI:SS7MD=ANSI,OPTIONS=0x0003;
CNNCI:SS7MD=NC=1,ITU14,MAXSIF=272;

Parameters

<SS7MD>

The SS7 network variant. Takes one of the following values: ANSI, ITU14, ITU16 or
ITU24. If SS7MD is specified it must be consistent with the setting of this value
elsewhere within the same Network Context, e.g. the SNAPI configuration command.

<NC>

Network Context. Defaults to 0 if not specified.

<MAXSIF>

Maximum permitted number of octets in the Signaling Information Field for
transmission to the network. If omitted defaults to 272.

<OPTIONS>

The OPTIONS parameter is a 16 bit field to configure run-time options with values
defined below. If omitted, it defaults to 0.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

183

Bit Meaning

0 Set to 1 to activate M3UA SLS Rotation. Used in conjunction with bit 1 (see below)

1 When M3UA SLS rotation is enabled (see bit 0) this bit controls the number of SLS bits that are
rotated as follows:
Set to zero for 4 or 5 bit SLS rotation based on protocol variant.
Set to 1 for 8 bit SLS rotation.

8.15.12 CNTOS Command - Configuration Timeout Set

Synopsis

This command allows the user to set the values of timers to be used in the SCTP, M2PA
and M3UA protocols.

Syntax

CNTOS:TTYPE=,TO=,{TSEC=|TMSEC=};

Examples

CNTOS:TTYPE=SCTP,TO=HBT,TMSEC=500;

CNTOS:TTYPE=M2PA,TO=T4N,TSEC=10;

Parameters

<TTYPE>

The protocol timer type, SCTP, M2PA or M3UA.

<TSEC>, <TMSEC>

The value of the timeout in seconds or milliseconds.

<TO>

The token designating a particular timer taken from the following table:

TO Default Granularity SCTP Timer

Rmin 200ms 1ms Minimum RTO

Rmax 1400ms 1ms Maximum RTO

Rinit 1000ms 1ms Initial RTO

Ck 30000ms 1ms Cookie lifetime

Hbt 1000ms 1ms Time between heartbeats

T1i 3000ms 1ms Starting timeout of an INIT chunk

T2i 3000ms 1ms Starting timeout of a SHUTDOWN chunk

SACKD 10ms 1ms

SACK delay timer (Linux only) For Solaris the SACK delay
time can be adjusted if required using operating system
utilities as follows:
 ndd -set /dev/sctp

 sctp_deferred_ack_interval 10

Section 8 Configuration Command Reference

184

TO Default Granularity M2PA Timer

T1 40s 1s 'Alignment Ready' timer value

T2 10s 1s 'Not Aligned' timer value

T3 2s 1s 'Aligned' timer value

T4n 7s 1s 'Normal Proving' timer value

T4e 500ms 100ms 'Emergency Proving' timer value

T6 3s 1s 'Remote Congestion' timer value

T7 1s 100ms 'Excessive Delay Of Acknowledgement' timer value

TO Default Granularity M3UA Timer

Tack 2000ms 1ms Peer response timeout

Tr 1000ms 1ms Recovery timer for inactive ASPs

Tdaud 30s 1s DAUD generation timer

Tbeat 30s 1s M3UA heartbeat timer

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

185

8.16 Diameter Parameters
Configuration of the Diameter protocol uses Man Machine Interface (MMI) format
commands. MMI commands start with a 5 character command name; if parameters are

included, then the command name is followed by a colon and then the parameters.
Parameters are of the format ‘parameter name’=’parameter value’ and are separated
by a comma. The command line is terminated with a semi-colon.

The following parameters are supported:

Name Description Range Default

APPID The Diameter Application ID AVP value
for use in Diameter capability
negotiation.

S6a, S13, Rf, NAS, CC,
ACCT

BASEICD First session ID for incoming sessions 0: 0xffffffff

BASEOGD First session ID for outgoing sessions 0: 0xffffffff

DMAP Logical ID of a Diameter Application 0:15

DMNC Logical ID of a Diameter Network
Context

0:3

DMPR Logical ID of a Diameter Peer 0:255

DMRL Logical ID of a Diameter Route List 0:2047

DMRT Logical ID of a Diameter Route 0:1023

HOST Diameter Host-name AVP value FQDN

MOD_INST Module Instance 0:255

NODENAME Diameter Node-name AVP value.A
logical node label string.

POLICYID Identifier providing a routing policy for
the route.

0:0xffff

REALM Diameter Realm-name AVP value. FQDN

VENDORID The Diameter Vendor ID AVP value for
use in Diameter capability negotiation.

0: 0xffffffff

Section 8 Configuration Command Reference

186

8.17 Diameter Configuration Commands
The Diameter configuration commands are:

 DMNCI Command - Diameter Network Context Initiate

 DMPRI Command - Diameter Peer Initiate

 DMRTI Command - Diameter Route Initiate

 DMRLI Command - Diameter Route List Initiate

 DMAPI Command - Diameter Application Initiate

 DMSYI Command - Diameter System Initiate

8.17.1 DMNCI Command - Diameter Network Context Initiate

Synopsis

Command to initiate a Diameter Network Context. This command allows the node
name, origin host and realm as well as additional options to be set for the Diameter
Node.

If not specified, the DMNC defaults to zero.

Syntax

DMNCI:DMNC=,[OPTIONS=,]HOST=,REALM=,NODENAME=;

Example

DMNCI:DMNC=0,OPTIONS=0x00,HOST=dmr01.lab.dialogic.com,

 REALM=dmradmin01.dialogic.com,
 NODENAME=ExampleMME

Prerequisites

The DMNC value must be unique within the system.

8.17.2 DMPRI Command - Diameter Peer Initiate

Synopsis

Command to configure parameters of the Diameter Peer node to be specified. The
SNLINK parameter specifies the SCTP association which will be used to communicate

with the Peer. The DMNC parameter indicates which Diameter Network Context should
handle traffic for this Peer.

If not specified, the DMNC defaults to zero.

Syntax

DMPRI:DMPR=[,DMNC=][,OPTIONS=],SNLINK=,HOST=,REALM=[,LABEL=];

Example

DMPRI:DMPR=10,DMNC=0,OPTIONS=0x00000000,SNLINK=1,HOST=dmr02.lab.dialog

ic.com,REALM=dmradmin01.dialogic.com,LABEL=Paris;

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

187

Prerequisites

An SNLINK may only be specified by one Peer. DMPR value must be unique.

8.17.3 DMRTI Command - Diameter Route Initiate

Synopsis

Command to initiate a Diameter Route. The Diameter Route defines a final Peer or

remote node reachable via a Relay agent.

If not specified, the DMNC, OPTIONS, POLICYID and APPID default to zero. The default
route option allows a single route to be intentified for use when no specific host or

realm is matched. Realm-based routing allows routing to a set of hosts that match a
specific realm. Host-based routing will only route to a specific host.

Syntax

Default Routing:

DMRTI:DMRT=,OPTIONS=[,DMNC=][,LABEL=];

Host Routing:

DMRTI:DMRT=,HOST=[,DMNC=][,OPTIONS=][,POLICYID=][,LABEL=];

Realm Routing:

DMRTI:DMRT=,REALM=[,DMNC=][,OPTIONS=][,APPID=][,POLICYID=][,LABEL=];

Examples

DMRTI:DMRT=1,DMNC=0,OPTIONS=0x00000001,LABEL=DefaultRoute;

DMRTI:DMRT=5, ,DMNC=0,HOST=dmr02.lab.dialogic.com,LABEL=HostRoute;

DMRTI:DMRT=35,DMNC=0,APPID=S6A,REALM=dialogic.com,POLICYID=10,LABEL=Re
almRoute;

Prerequisites

DMRT value must be unique. The Route configuration must contain one instance of
HOST, REALM or Default Route option.

8.17.4 DMRLI Command - Diameter Route List Initiate

Synopsis

Command to initiate a Diameter Route List entry. The Diameter Route List identifies
the Peer which can be used by a Route.

If not specified, the DMNC defaults to zero.

Syntax

DMRLI:DMRL=,[DMNC=,]DMPR=,DMRT=;

Example

DMRLI:DMRL=5,DMNC=0,DMPR=10,DMRT=5;

Section 8 Configuration Command Reference

188

Prerequisites

DMRL value must be unique. The DMRT parameter must identify the ID of a configured
Route.

8.17.5 DMAPI Command - Diameter Application Initiate

Synopsis

Command to specify the applications which are advertised or accepted during
capabilities exchange. This command should be specified for each Diameter Application
required, for the specified DMNC.

If not specified, the DMNC defaults to zero.

Syntax

DMAPI:DMAP=[,OPTIONS=],MOD_ID=[,MOD_INST=][,DMNC=],

 APPID=,VENDORID=[,LABEL=];

Example

DMAPI:DMAP=1,OPTIONS=0x00000000,MOD_ID=0x2d,MOD_INST=0,
 DMNC=0,APPID=S6a,VENDORID=test,LABEL=Billing;

Prerequisites

DMAP value must be unique.

8.17.6 DMSYI Command - Diameter System Initiate

Synopsis

This command allows diameter module settings to be varied from the default settings.
Specifically allows additional run-time configuration options to be set.

Syntax

DMSYI:[BASEICD=,][BASEOGD=,][OPTIONS=,];

Example

DMSYI:BASEICD=0x00,BASEOGD=0x8000;

Parameters

<BASEICD>
<BASEOGD>

Set the value for the base incoming and outgoing session IDs for the Diameter module.

If these values are not specified the default values of 0x0000 and 0x8000 will be used.
The module will then allow session IDs of <BASEICD> to <BASEOGD> -1 for incoming
sessions. And <BASEOGD> to 0xfffe for outgoing sessions. Note: the value of 0xffff is
reserved.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

189

9 Example Configuration Files

9.1 Example system.txt System Configuration file

**

*

* Example System Configuration File (example_system.txt) for use with

* the Dialogic(R) DSI Development Package.

*

* Edit this file to reflect your configuration.

*

**

*

* Essential modules running on host:

*

LOCAL 0x20 * ssds/ssdh/ssdm - Board interface task

LOCAL 0x00 * tim - Timer task

*

* Optional modules running on the host:

*

LOCAL 0xcf * s7_mgt - Management/config task

LOCAL 0xef * s7_log - Display and logging utility

LOCAL 0x2d * upe - Example user part task

*

* Modules that optionally run on the host:

*

LOCAL 0x22 * MTP3 module (and SS7LD 'mtp' and 'isup' run-mode)

* LOCAL 0x23 * ISUP module (and SS7LD 'isup' run-mode)

* LOCAL 0x4a * TUP module

* LOCAL 0x33 * SCCP module

* LOCAL 0x14 * TCAP module

* LOCAL 0x15 * MAP module

* LOCAL 0x25 * IS41 module

* LOCAL 0x35 * INAP module

*

* Essential modules running on the board (all redirected via ssd):

*

REDIRECT 0x71 0x20 * MTP2 module (except SS7HD boards)

* REDIRECT 0x81 0x20 * MTP2 module_id for SP 0 (SS7HD boards only)

* REDIRECT 0x91 0x20 * MTP2 module_id for SP 1 (SS7HD boards only)

* REDIRECT 0xe1 0x20 * MTP2 module_id for SP 2 (SS7HD boards only)

* REDIRECT 0xf1 0x20 * MTP2 module_id for SP 3 (SS7HD boards only)

REDIRECT 0x10 0x20 * CT bus/Clocking control module

REDIRECT 0x8e 0x20 * On-board management module

*

* Modules that optionally run on the board (all redirected via ssd):

*

* REDIRECT 0x22 0x20 * MTP3 module (except for SS7LD 'mtp' and 'isup' run

modes)

* REDIRECT 0x23 0x20 * ISUP module (except for SS7LD 'mtp' and 'isup' run

modes)

* REDIRECT 0x4a 0x20 * TUP module

* REDIRECT 0x33 0x20 * SCCP module

* REDIRECT 0x14 0x20 * TCAP module

* REDIRECT 0x15 0x20 * MAP module

* REDIRECT 0x25 0x20 * IS41 module

Section 9 Example Configuration Files

190

* REDIRECT 0x35 0x20 * INAP module

*

*

* SS7MD boards only:

*

* REDIRECT 0x31 0x20 * ATM Module

* REDIRECT 0x41 0x20 * Q.SAAL Module

* REDIRECT 0x61 0x20 * Signalling Driver Module

*

* Redirection of status indications:

*

REDIRECT 0xdf 0xef * LIU/MTP2 status messages -> s7_log

*

DEFAULT_MODULE 0xef * Redirect messages by default to module 0xef

*

* Dimensioning the Message Passing Environment:

*

NUM_MSGS 5000 * Number of standard size

* messages in the environment

*NUM_LMSGS 200 * Number of 'long' messages

* (used for certain TCAP based applications)

*

* Now start-up all local tasks:

* for SPCI start-up use ssds

* for SS7HD boards use ssdh

* for SS7MD boards use ssdm

* for SS7LD boards use ssdl

*

* FORK_PROCESS ./ssds

* FORK_PROCESS ./ssdh

* FORK_PROCESS ./ssdm

* FORK_PROCESS ./ssdl

FORK_PROCESS ./tim

FORK_PROCESS ./tick

FORK_PROCESS ./s7_mgt

FORK_PROCESS ./s7_log

FORK_PROCESS ./HSTBIN/mtp3

FORK_PROCESS ./upe

*

*

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

191

9.2 Example config.txt Protocol Configuration File

**

*

* Example Protocol Configuration File (example_config.txt) for use with

* the Dialogic(R) DSI Development Package.

*

* Boards supported are SPCI, SS7MD, SS7HD and the SS7LD range.

* Note - Not all boards are supported on all operating system.

*

* This file needs to be modified to suit individual circumstances.

* Refer to the relevant Programmer's Manuals for further details.

*

**

*

*

* Configure individual boards:

* SS7_BOARD <board_id> <board_type> <flags> <code_file> <run_mode>

*

* For SPCI2S boards:

*SS7_BOARD 0 SPCI2S 0x0043 ./DC/ss7.dc3 MTP2

*

* For SPCI4 boards:

*SS7_BOARD 0 SPCI4 0x0043 ./DC/ss7.dc3 MTP2

*

* For SS7HD PCI boards:

*SS7_BOARD 0 SS7HDP 0x0043 ./DC/ss7.dc4 MTP2

*

* For SS7HD PCIe boards:

*SS7_BOARD 0 SS7HDE 0x0043 ./DC/ss7.dc4 MTP2

*

* For SS7MD boards:

*SS7_BOARD 0 SS7MD 0x0001 ./DC/ss7.dc6 LSL

*

* For SS7LD boards:

*SS7_BOARD 0 SS7LD 0x0001 ./DC/ss7.dc7 MTP2

*

TRACE_MOD_ID 0xef * Set default trace module to 0xef.

*

* Configure individual T1/E1 interfaces:

* LIU_CONFIG <board_id> <liu_id> <liu_type> <line_code> <frame_format>

* <crc_mode> [<build_out>]

LIU_CONFIG 0 0 5 1 1 1

*

* ATM parameters:

*

* Configure ATM module (SS7MD boards only):

* ATM_CONFIG <options> <num_streams>

*

* ATM_CONFIG 0x0000 4

*

* Define an ATM Cell Stream (SS7MD boards only):

* ATM_STREAM <id> <board_id> <cellstream_id> <liu_id> <options> <ima_frame_len>

<max_frame_len>

* <def_vpi> <def_vci> <timeslot>

*

* ATM_STREAM 3 0 1 0 0x01 0 280 12 10 0xfffefffe

Section 9 Example Configuration Files

192

*

*

* Configure MTP3 module:

* MTP parameters:

*

* MTP_CONFIG <reserved> <reserved> <options>

MTP_CONFIG 0 0 0x00040000

*

* Define linksets:

* MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc> <ssf>

MTP_LINKSET 0 1 2 0x0000 2 0x0008

*

* Define signaling links:

* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>

* <stream> <timeslot> <flags>

*

*

* For SPCI4 / SPCI2S, SS7MD and SS7LD boards:

*MTP_LINK 0 0 0 0 0 0 0 16 0x0006

*MTP_LINK 1 0 1 1 1 0 0 1 0x0006

* For SS7HD boards:

*MTP_LINK 0 0 0 0 0 0-0 0 16 0x0006

*MTP_LINK 1 0 1 1 1 0-1 0 1 0x0006

*

* Define QSAAL links (SS7MD boards only):

* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>

* <atm_stream> <vpi-vci> <flags> ATM

*

* MTP_LINK 0 0 0 0 0 0 0 5-10 0x0006 ATM

*

* Define a route for each remote signaling point:

* MTP_ROUTE <dpc> <linkset_id> <user_part_mask>

MTP_ROUTE 1 0 0x0020

*

* Define any user provided Layer 4 protocol:

* MTP_USER_PART <service_ind> <module_id>

*MTP_USER_PART 0x0a 0x2d

*

*

* ISUP parameters:

*

* Configure ISUP module:

* ISUP_CONFIG <reserved> <reserved> <user_id> <options> <num_grps> <num_ccts>

*ISUP_CONFIG 0 0 0x1d 0x0435 4 64

*

* Configure ISUP circuit groups:

* ISUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask> <options>

* <user_inst> <user_id> <opc> <ssf> <variant> <options2>

*ISUP_CFG_CCTGRP 0 1 0x01 0x01 0x7fff7fff 0x001c 0 0x1d 2 0x8 0 0x00

*

*

* TUP parameters:

* Configure TUP module:

* TUP_CONFIG <reserved> <reserved> <user_id> <options> <num_grps> <num_ccts>

*TUP_CONFIG 0 0 0x1d 0x8141 4 64

*

* Define TUP circuit groups:

* TUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask> <options>

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

193

* <user_inst> <user_id> <opc> <ssf>

*TUP_CFG_CCTGRP 0 1 0x01 0x01 0x7fff7fff 0x0030 0 0x1d 2 0x08

*

*

* SCCP parameters:

*

* Configure SCCP module:

* SCCP_CONFIG <local_spc> <ssf> <options> [<send_uis>]

* SCCP_CONFIG 123 8 0

*

* Configure SCCP Sub-System Resource

* SCCP_SSR <ssr_id> RSP <remote_spc> <flags> <pc_mask>

* SCCP_SSR 1 RSP 1236 0

*

* SCCP_SSR <ssr_id> LSS <local_ssn> <module_id> <flags> <protocol>

* SCCP_SSR 2 LSS 0x07 0x0d 1 TCAP

*

* SCCP_SSR <ssr_id> RSS <remote_spc> <remote_ssn> <flags>

* SCCP_SSR 3 RSS 1236 0x67 0

*

* SCCP Concerned Sub-System Resource

* SCCP_CONC_SSR <id> <cssr_id> <ssr_id>

* SCCP_CONC_SSR 1 2 3

*

* Configure SCCP Trace

* SCCP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

* SCCP_TRACE 0x1 0x1 0x1

*

* Define Global Title Pattern

* SCCP_GTT_PATTERN <pattern_id> <addr_indicator> <pc> <ssn> <global_title>

[<gtai_pattern>]

* SCCP_GTT_PATTERN 5 0x10 0x0000 0 0x001104 44/+

*

* Define Global Title Address

* SCCP_GTT_ADDRESS <address_id> <addr_indicator> <pc> <ssn> <global_title>

[<gtai_replacement>]

* SCCP_GTT_ADDRESS 9 0x11 0x1234 0 0x001104 0-/-

*

* Add Entry in GTT Table

* SCCP_GTT <pattern_id> <mask> <primary_address_id> [<backup_address_id>]

* SCCP_GTT 5 R-/K 9

*

*

* TCAP parameters:

*

* Configure TCAP

* TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id> <nic_dialogues> <options>

<dlg_hunt>

* [<addr_format>]

* TCAP_CONFIG 0x0000 8192 0x8000 8192 0x0000 0

*

* Define TCAP circuit groups:

* TCAP_CFG_DGRP <gid> <base_ogdlg_id> <nog_dialogues> <base_icdlg_id> <nic_dialogues>

<options>

* <reserved>

* TCAP_CFG_DGRP 0 0x0000 1024 0x8000 1024 0 0

*

* Configure TCAP Trace

Section 9 Example Configuration Files

194

* TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

* TCAP_TRACE 0x7 0xf 0x0

*

*

* MAP parameters:

*

* Configure MAP

* MAP_CONFIG <options>

* MAP_CONFIG 2

*

* Configure MAP Trace

* MAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

* MAP_TRACE 0xf 0xf 0x4

*

*

* INAP parameters:

*

* Configure INAP

* INAP_CONFIG <options>

* INAP_CONFIG 2

*

* Configure INAP Functional Entities

* INAP_FE <fe_ref> <options> <sccp_address>

* INAP_FE 0x00000007 0x0000000f 0x00000000

*

* Configure INAP Application Context

* INAP_AC <ac_ref> <ac>

* INAP_AC 0x00 0xa109060704000101010000

*

* Configure INAP Trace

* INAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

* INAP_TRACE 0xf 0xf 0x7f

*

*

* IS41 parameters:

*

* Configure IS41 TRACE

* IS41_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>

* IS41_TRACE 0xf 0xf 0xff

*

**

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

195

9.3 Example M3UA ASP Config.txt – Multiple SG

*

* Example config.txt for the SIGTRAN Host Package.

*

* This example has a single LAS connecting to two SGs with multiple

* associations. Each route is added to both SGs so traffic will be load

* shared between them if availability allows (Load sharing across 2 SGs max).

* Traffic to each SG will also be load shared across two associations.

* (Load share works across max 4 associations to an SG)

* Local IP Address Configuration

CNSYS:IPADDR=192.168.0.1,IPADDR2=192.168.1.1,DAUD=Y;

* Local AS configuration

SNAPI:LAS=1,OPC=104,TRMD=LS;

* SCTP Association configuration to Remote SG

SNSLI:SNLINK=1,IPADDR=192.168.0.2,IPADDR2=192.168.1.2,SNTYPE=M3UA,SNEND=C,SG=1;

SNSLI:SNLINK=2,IPADDR=192.168.0.3,IPADDR2=192.168.1.3,SNTYPE=M3UA,SNEND=C,SG=1;

SNSLI:SNLINK=3,IPADDR=192.168.0.4,IPADDR2=192.168.1.4,SNTYPE=M3UA,SNEND=C,SG=2;

SNSLI:SNLINK=4,IPADDR=192.168.0.5,IPADDR2=192.168.1.5,SNTYPE=M3UA,SNEND=C,SG=2;

* Define routes

SNRTI:SNRT=1,DPC=101;

SNRTI:SNRT=2,DPC=102;

* Add routes to SG

SNRLI:SNRL=1,SNRT=1,SG=1;

SNRLI:SNRL=2,SNRT=1,SG=2;

SNRLI:SNRL=3,SNRT=2,SG=1;

SNRLI:SNRL=4,SNRT=2,SG=2;

* Bind LAS to SG

SNLBI:SNLB=1,LAS=1,SG=1;

* ISUP parameters for Default NC0/LAS1:

* Configure ISUP module:

* ISUP_CONFIG <reserved> <reserved> <user_id> <options> <num_grps> <num_ccts>

ISUP_CONFIG 0 0 0x1d 0x0435 4 64

*

* Configure ISUP circuit groups:

* ISUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask> <options>

* <user_inst> <user_id> <opc> <ssf> <variant> <options2>

ISUP_CFG_CCTGRP 0 101 0x01 0x01 0x7fff7fff 0x001c 0 0x1d 104 0x08 0 0x00

ISUP_CFG_CCTGRP 1 102 0x21 0x21 0x7fff7fff 0x001c 0 0x1d 104 0x08 0 0x00

Section 9 Example Configuration Files

196

9.4 Example M3UA IPSP Config.txt – Multiple RAS

*

* Example config.txt for the SIGTRAN Host Package.

*

* This example has a single LAS connecting to multiple RAS.

* The single LAS has an association to each RAS so there are no shared

* associations. Each RAS has an optional RC defined by SNRAI.

* Local IP Address Configuration

CNSYS:IPADDR=192.168.0.1;

* Local AS configuration

SNAPI:LAS=1,OPC=104;

* SCTP Association configuration to Remote IPSP

SNSLI:SNLINK=1,IPADDR=192.168.0.2,HPORT=2905,PPORT=2905,SNTYPE=M3UA,SNEND=S;

SNSLI:SNLINK=2,IPADDR=192.168.0.3,HPORT=2906,PPORT=2906,SNTYPE=M3UA,SNEND=S;

* Define Remote AS

SNRAI:RAS=1,DPC=101,RC=1;

SNRAI:RAS=2,DPC=102,RC=2;

* Add Remote AS to Association

SNALI:SNAL=1,RAS=1,SNLINK=1;

SNALI:SNAL=2,RAS=2,SNLINK=2;

* Bind LAS to RAS

SNLBI:SNLB=1,LAS=1,RAS=1;

SNLBI:SNLB=2,LAS=1,RAS=2;

* ISUP parameters for Default NC0/LAS1:

* Configure ISUP module:

* ISUP_CONFIG <reserved> <reserved> <user_id> <options> <num_grps> <num_ccts>

ISUP_CONFIG 0 0 0x3d 0x0435 32 1024

*

* Configure ISUP circuit groups:

* ISUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask> <options>

* <user_inst> <user_id> <opc> <ssf> <variant> <options2>

ISUP_CFG_CCTGRP 0 101 0x01 0x01 0x7fff7fff 0x001c 0 0x3d 104 0x00 0 0x00

ISUP_CFG_CCTGRP 1 102 0x21 0x21 0x7fff7fff 0x001c 0 0x3d 104 0x00 0 0x00

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

197

9.5 Example M3UA ASP Config.txt – Multiple LAS

*

* Example config.txt for the SIGTRAN Host Package.

*

* This example has multiple LAS connecting to a single SG with LAS1 handling ISUP

* traffic and LAS2 handling SCCP traffic.

* In this example the multiple LAS share a single association to the SG.

* This requires the RC parameter to be configured with SNLBI for each LAS-SG

* relationship, to identify the traffic on the shared association.

* Routes must be configured with each LAS specified (default is LAS1).

* ISUP config is in this file since it is for the default NC0 (LAS1).

* SCCP config must be external to this file for NC1 (LAS2).

* Local IP Address Configuration

CNSYS:IPADDR=192.168.0.1,DAUD=Y;

* Local AS configuration

SNAPI:LAS=1,OPC=104;

SNAPI:LAS=2,OPC=105;

* SCTP Association configuration to Remote SG

SNSLI:SNLINK=1,IPADDR=192.168.0.2,SNTYPE=M3UA,SNEND=C,SG=1;

* Define routes

SNRTI:SNRT=1,DPC=101,LAS=1;

SNRTI:SNRT=2,DPC=102,LAS=1;

SNRTI:SNRT=3,DPC=101,LAS=2;

SNRTI:SNRT=4,DPC=103,LAS=2;

* Add routes to SG

SNRLI:SNRL=1,SNRT=1,SG=1;

SNRLI:SNRL=2,SNRT=2,SG=1;

SNRLI:SNRL=3,SNRT=3,SG=1;

SNRLI:SNRL=4,SNRT=4,SG=1;

* Bind LAS to SG

SNLBI:SNLB=1,LAS=1,SG=1,RC=7;

SNLBI:SNLB=2,LAS=2,SG=1,RC=9;

* ISUP parameters for Default NC0/LAS1:

* Configure ISUP module:

* ISUP_CONFIG <reserved> <reserved> <user_id> <options> <num_grps> <num_ccts>

ISUP_CONFIG 0 0 0x1d 0x0435 4 64

*

* Configure ISUP circuit groups:

* ISUP_CFG_CCTGRP <gid> <dpc> <base_cic> <base_cid> <cic_mask> <options>

* <user_inst> <user_id> <opc> <ssf> <variant> <options2>

ISUP_CFG_CCTGRP 0 101 0x01 0x01 0x7fff7fff 0x001c 0 0x1d 104 0x08 0 0x00

ISUP_CFG_CCTGRP 1 102 0x21 0x21 0x7fff7fff 0x001c 0 0x1d 104 0x08 0 0x00

* External module for SCCP (SI=0x03) for NC1/LAS2:

* MTP_USER_PART [NC] <service_ind> <module_id>

MTP_USER_PART NC1 0x03 0x2d

Section 9 Example Configuration Files

198

9.6 Example M3UA IPSP (Client) Config.txt

*

* Example config.txt for the SIGTRAN Host Package.

*

* This example has multiple LAS connecting to a single RAS.

* It can be used in conjunction with the following example as the peer.

* The multiple LAS share a single association to the RAS. This requires the RC

* parameter to be configured for each LAS-RAS relationship, to identify the traffic on

* the shared association. RC is defined by SNLBI rather than SNRAI.

* Local IP Address Configuration

CNSYS:IPADDR=192.168.0.1;

* Local AS configuration

SNAPI:LAS=1,OPC=101;

SNAPI:LAS=2,OPC=102;

* SCTP Association configuration to Remote IPSP

SNSLI:SNLINK=1,IPADDR=192.168.0.2,HPORT=2905,PPORT=2905,SNTYPE=M3UA,SNEND=C;

* Define Remote AS

SNRAI:RAS=1,DPC=103;

* Add Remote AS to Association

SNALI:SNAL=1,RAS=1,SNLINK=1;

* Bind LAS to RAS

SNLBI:SNLB=1,LAS=1,RAS=1,RC=5;

SNLBI:SNLB=2,LAS=2,RAS=1,RC=6;

* Connect to external user parts for NC0/LAS1 and NC1/LAS2

* for testing use s7_log (0xef) to display traffic

* MTP_USER_PART [NC] <service_ind> <module_id>

MTP_USER_PART NC0 0x03 0xef

MTP_USER_PART NC1 0x05 0xef

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

199

9.7 Example M3UA IPSP (Server) Config.txt

*

* Example config.txt for the SIGTRAN Host Package.

*

* This example has a single LAS connecting to multiple RAS.

* It can be used in conjunction with the preceding example as the peer.

* The LAS shares a single association to the multiple RAS. This requires the RC

* parameter to be configured for each LAS-RAS relationship, to identify the traffic on

* the shared association. RC is defined by SNLBI rather than SNRAI.

* Local IP Address Configuration

CNSYS:IPADDR=192.168.0.2;

* Local AS configuration

SNAPI:LAS=1,OPC=103;

* SCTP Association configuration to Remote IPSP

SNSLI:SNLINK=1,IPADDR=192.168.0.1,HPORT=2905,PPORT=2905,SNTYPE=M3UA,SNEND=S;

* Define Remote AS

SNRAI:RAS=1,DPC=101;

SNRAI:RAS=2,DPC=102;

* Add Remote AS to Association

SNALI:SNAL=1,RAS=1,SNLINK=1;

SNALI:SNAL=2,RAS=2,SNLINK=1;

* Bind LAS to RAS

SNLBI:SNLB=1,LAS=1,RAS=1,RC=5;

SNLBI:SNLB=2,LAS=1,RAS=2,RC=6;

* Connect to external user parts for NC0/LAS1

* for testing use s7_log (0xef) to display traffic

* MTP_USER_PART [NC] <service_ind> <module_id>

MTP_USER_PART NC0 0x03 0xef

MTP_USER_PART NC0 0x05 0xef

Section 9 Example Configuration Files

200

9.8 Example M2PA Configuration

*

* Example config.txt for the SIGTRAN Host Package.

*

* Edit this file to reflect your configuration.

*

* SYSTEM Parameters

CNSYS:IPADDR=192.168.0.1,PER=0;

SNSLI:SNLINK=1,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=1, HPORT=3565,PPORT=3565;

SNSLI:SNLINK=2,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=2, HPORT=3566,PPORT=3566;

SNSLI:SNLINK=3,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=3, HPORT=3567,PPORT=3567;

SNSLI:SNLINK=4,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=4, HPORT=3568,PPORT=3568;

SNSLI:SNLINK=5,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=5, HPORT=3569,PPORT=3569;

SNSLI:SNLINK=6,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=6, HPORT=3570,PPORT=3570;

SNSLI:SNLINK=7,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=7, HPORT=3571,PPORT=3571;

SNSLI:SNLINK=8,IPADDR=192.168.0.2,SNEND=C,SNTYPE=M2PA,M2PA=8, HPORT=3572,PPORT=3572;

MTP_CONFIG 0 0 0x00000000

*

* Define linksets:

* MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc> <ssf>

MTP_LINKSET 0 10 8 0x0000 100 0x00

*

* Define signaling links:

* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>

* <stream> <timeslot> <flags>

MTP_LINK 0 0 0 0 0 1 0 0 0x80000006

MTP_LINK 1 0 1 1 0 2 0 0 0x80000006

MTP_LINK 2 0 2 2 0 3 0 0 0x80000006

MTP_LINK 3 0 3 3 0 4 0 0 0x80000006

MTP_LINK 4 0 4 4 0 5 0 0 0x80000006

MTP_LINK 5 0 5 5 0 6 0 0 0x80000006

MTP_LINK 6 0 6 6 0 7 0 0 0x80000006

MTP_LINK 7 0 7 7 0 8 0 0 0x80000006

*

* MTP_ROUTE <dpc> <linkset_id> <user_part_mask>

MTP_ROUTE 10 0 0x0028

*

MTP_USER_PART 0x0a 0x1d

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

201

9.9 Example GTT Configuration

*

* Specific Address to PC + SSN

* This example translates a received specific Global Title address *

(09876543210) into a combination of Point Code (138) and SSN (3).

*

* SCCP_GTT_PATTERN <pattern_id> <addr_indicator> <pc> <ssn> <global_title>

[<gtai_pattern>]

SCCP_GTT_PATTERN 1 0x10 0 0 0x001104 09876543210

SCCP_GTT_ADDRESS 1 0x03 138 8 0x00 -

SCCP_GTT 1 R 1

*

* Match a 7 digit number starting "123", followed by any three digits, then "7".

* change the first digits to "333" keep the next three digits from the called- * party

address and change the fourth digit to "4", and add a PC & SSN.

*

SCCP_GTT_PATTERN 2 0x10 0 0 0x001104 123/???/7

SCCP_GTT_ADDRESS 2 0x11 11 0 0x001104 333/---/4

SCCP_GTT 2 R--/K--/R 2

* A Matching Prefix to PC + SSN

* This example translates any global title address matching a pattern *

consisting of a prefix (441425) following by a suffix of any digits and any * length

into the digits minus the prefix, and adding a PC (238) and SSN (3).

*

SCCP_GTT_PATTERN 3 0x10 0 0 0x001104 441425/+

SCCP_GTT_ADDRESS 3 0x13 238 3 0x001104 -/-

SCCP_GTT 3 R/K 3

* A Matching Prefix to PC + SSN

* Ignoring any preceding digits, match "1425" followed by any six digits. *

Remove any digits preceding the “1425”, keeping the final six digits from the * Input

GTAI. Add a PC & SSN.

*

SCCP_GTT_PATTERN 4 0x10 0 0 0x001104 +/1425/??????

SCCP_GTT_ADDRESS 4 0x13 128 9 0x001104 -/-/-

SCCP_GTT 4 R/K/K 4

* Adding a PC + SSN to any GTAI

* This example matches any GTAI Digits and adds a Point Code and SSN, retaining * any

GTAI digits.

*

SCCP_GTT_PATTERN 5 0x10 0x0000 0x03 0x001204 +/-

SCCP_GTT_ADDRESS 5 0x53 0x3FFF 0x08 0x001204 -/e

SCCP_GTT 5 K/R 5

Section 9 Example Configuration Files

202

9.10 Example Configuration of an ATM Terminated Link

Example configuration for a terminated ATM link.

*

* Example Protocol Configuration File (config.txt) for use with

* Dialogic(R) DSI SS7MD Network Interface Boards.

*

* This file needs to be modified to suit individual circumstances.

* Refer to the relevant Programmer's Manuals for further details.

*

* SS7_BOARD <board_id> <board_type> <flags> <code_file> <run_mode>

SS7_BOARD 0 SS7MD 0x0000 ./DC/ss7.dc6 ATM

*

* LIU_CONFIG <board_id> <liu_id> <liu_type> <line_code> <frame_format> *

<crc_mode> [<build_out>]

LIU_CONFIG 0 0 5 1 1 1 0

*

* ATM_CONFIG <options> <num_streams>

ATM_CONFIG 0x0000 4

*

*

* ATM_STREAM <id> <board_id> <cellstream_id> <liu_id> <options> <ima_frame_len> <max_

frame_len> <def_vpi> <def_vci> <timeslot>

ATM_STREAM 3 0 1 0 0x01 0 280 12 10 0xfffefffe

*

MTP_CONFIG <reserved1> <reserved2> <options>

MTP_CONFIG 0 0 0x00040000

*

* MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc> <ssf>

MTP_LINKSET 0 1 1 0x0000 2 0x08

*

* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink> *

<atm_stream> <vpi-vci > <flags> [<data_rate>]

MTP_LINK 0 0 0 0 0 0 3 8-100 0x0006 ATM

*

* MTP_ROUTE <dpc> <linkset_id> <user_part_mask>

MTP_ROUTE 1 0 0x0020

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

203

9.11 Example Diameter Configuration
The DSI Development Pack includes example applications for the DSI Diameter Stack.
A sample configuration file for use with the DTU example application is shown below.

This file and the equivalent example configuration file for the partner example
application DTR are included in the UPD/RUN sub-directory of the Development
Package.

**

*

* Example protocol configuration file for the Dialogic(R) DSI Diameter Stack

*

* Diameter - DTU Basic configuration:

*

**

*

* Local IP Address Configuration

*

CNSYS:IPADDR=192.168.0.2;

*

* Set per-module options for Diameter

*

* CNOPS:MODULE=DMR,MOD_ID=0x74;

*

* Set module-specific options for Diameter

*

DMSYI:BASEOGD=0x0000,BASEICD=0x8000;

*

* Configure an SCTP association

*

SNSLI:SNLINK=1,IPADDR=192.168.0.1,HIPADDR1=192.168.0.2,SNEND=C,SNTYPE=DMR,PPORT=3868,HPORT=3868;

*

* Configure the Diameter Network Context

*

DMNCI:DMNC=0,OPTIONS=0x00000000,HOST=dmr01.lab.dialogic.com,REALM=dialogic.com,NODENAME=ExampleMME

,LABEL=London;

*

* Configure the Peer, linking the DMNC to the SNLINK

* (Options bit 0 must be set for Server operation)

*

DMPRI:DMPR=0,DMNC=0,OPTIONS=0x00000000,SNLINK=1,HOST=dmr02.lab.dialogic.com,REALM=dialogic.com,LAB

EL=Paris;

*

* Configure the Route

*

DMRTI:DMRT=0,DMNC=0,APPID=S6a,OPTIONS=0x00000000,HOST=dmr02.lab.dialogic.com,LABEL=Primary;

*

* Identify the Peers which can be used by a Route

*

DMRLI:DMRL=0,DMPR=0,DMRT=0;

* Configure the Application which uses the DMNC

*

DMAPI:DMAP=0,OPTIONS=0x00000000,MOD_ID=0x1d,MOD_INST=0,DMNC=0,APPID=S6a,VENDORID=0,LABEL=Billing;

DMAPI:DMAP=1,OPTIONS=0x00000000,MOD_ID=0x1d,MOD_INST=0,DMNC=0,APPID=CC,VENDORID=0,LABEL=CreditCont

rol;

*

*

**

Appendix A Default Module Identifiers

204

Appendix A. Default Module Identifiers

The default module identifiers are listed in the following table. In some systems, these
default values may be changed at run-time when the system is run up, so care should
be taken to understand that the module identifier is not necessarily fixed to the default
value.

Module identifiers with a least significant nibble set to 0x0d are reserved for user-
generated applications. Although the values may also be used in example applications

supplied by Dialogic.

Module identifiers with a least significant nibble set to 0x0c are reserved entirely for

user-generated applications. These 16 module identifiers will not be used in any
Dialogic® DSI Components and are therefore available for use by the user in custom
applications.

Table 10. Default module identifier values

Value Mnemonic Description

0x00 TIM_MOD_ID Timer module

0x10 MVD_TASK_ID Physical switch & clock driver (per-board)

0x20 SSD_TASK_ID Physical board interface module

0x80 DVR_SP0_TASK_ID Driver for SP0

0x90 DVR_SP1_TASK_ID Driver for SP1

0xb0 RSI_MOD_ID RSI socket based interface

0xe0 DVR_SP2_TASK_ID Driver for SP2

0xf0 DVR_SP3_TASK_ID Driver for SP3

0x21 CONG_TASK_ID Congestion module

0x31 ATM_TASK_ID ATM Module

0x41 QSL_TASK_ID Q.SAAL Module

0x61 DVR_ALT_TASK_ID SS7MD Signaling Driver Module

0x71 SS7_TASK_ID MTP2 protocol module

0x74 DMR_TASK_ID DMR Diameter Module

0x81 SS7_SP0_TASK_ID MTP2 for SP0 (SS7HD only)

0x91 SS7_SP1_TASK_ID MTP2 for SP1 (SS7HD only)

0xb1 MST_TASK_ID SIGTRAN Monitor task

0xc1 M2P_TASK_ID M2PA protocol module

0xe1 SS7_SP2_TASK_ID MTP2 for SP2 (SS7HD only)

0xf1 SS7_SP3_TASK_ID MTP2 for SP3 (SS7HD only)

0x22 MTP_TASK_ID MTP3 protocol module

0x32 RMM_TASK_ID RMM module

0xd2 M3UA_TASK_ID M3UA protocol module

0x23 ISP_TASK_ID ISUP protocol module

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

205

Value Mnemonic Description

0x33 SCP_TASK_ID SCCP protocol module

0xc3 SUA_TASK_ID SUA protocol module

0x14 TCP_TASK_ID TCAP protocol module

0x15 MAP_TASK_ID MAP protocol module

0x25 IS41_TASK_ID IS41 protocol module

0x35 INAP_TASK_ID INAP protocol module

0x4a TUP_TASK_ID TUP protocol module

0x0d APP0_TASK_ID User's application module

0x1d APP1_TASK_ID User's application module

0x2d APP2_TASK_ID User's application module

0x3d
.
.
0xcd.

 User's application module

0xdd APP13_TASK_ID User's application module

0xed APP14_TASK_ID User's application module

0xfd APP15_TASK_ID User's application module

0x8e MGMT_TASK_ID General management module

0xce MGMT_SP0_TASK_ID Management Module for SP0

0xde MGMT_SP1_TASK_ID Management Module for SP1

0xee MGMT_SP2_TASK_ID Management Module for SP2

0xfe MGMT_SP3_TASK_ID Management Module for SP3

0xcf s7_mgt - Management/config task

0xdf SIU_MGT_TASK_ID Internal SIU use

0xef REM_API_ID Remote (users) application

0xff Invalid module_id - do not use!

Appendix B Values reserved for Custom Use

206

Appendix B. Values reserved for Custom Use

In some cases, users may wish to add their own modules and messages to a system.
To this end, a range of module identifiers and message types have been reserved for
this purpose and will not be used in Dialogic® DSI Components.

B.1 Reserved module identifiers
All module_id values containing 0xc as the least significant nibble are reserved for use
in user-generated applications.

B.2 Reserved message types
A total of 1024 message types are reserved exclusively for use in the user's own
applications.

The reserved message types are of the following 4 formats, where the nibbles
identified by a question mark can be set to any value:

0x?cc?
0x?cd?

0x?ce?
0x?cf?

For example, the message types 0x1cc1, 0x2cd2, 0x3ce3 and 0x4cf4 are reserved for
use in the user's applications.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

207

Appendix C. GCTLIB Javadoc

This appendix documents the Java class library provided for access to the message
passing environment. See section 6.3 Java Inter-Process Communications for further
details.

C.1 com.dialogic.signaling.gct - Class BBUtil
java.lang.Object

 com.dialogic.signaling.gct.BBUtil

public class BBUtil

extends java.lang.Object

BBUtil - allows access to unsigned values within a ByteBuffer

Constructor Summary

BBUtil()

Method Summary

static int getU16(java.nio.ByteBuffer byteBuffer)

static int getU16(java.nio.ByteBuffer byteBuffer, int offset)

static int getU24(java.nio.ByteBuffer byteBuffer)

static int getU24(java.nio.ByteBuffer byteBuffer, int offset)

static long getU32(java.nio.ByteBuffer byteBuffer)

static long getU32(java.nio.ByteBuffer byteBuffer, int offset)

static short getU8(java.nio.ByteBuffer byteBuffer)

static short getU8(java.nio.ByteBuffer byteBuffer, int offset)

static void putU16(java.nio.ByteBuffer byteBuffer, int value)

Appendix C GCTLIB Javadoc

208

static void putU16(java.nio.ByteBuffer byteBuffer, int offset, int value)

static void putU24(java.nio.ByteBuffer byteBuffer, int value)

static void putU24(java.nio.ByteBuffer byteBuffer, int offset, int value)

static void putU32(java.nio.ByteBuffer byteBuffer, int offset, long value)

static void putU32(java.nio.ByteBuffer byteBuffer, long value)

static void putU8(java.nio.ByteBuffer byteBuffer, int value)

static void putU8(java.nio.ByteBuffer byteBuffer, int offset, int value)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

BBUtil

public BBUtil()

Method Detail

getU8

public static short getU8(java.nio.ByteBuffer byteBuffer)

putU8

public static void putU8(java.nio.ByteBuffer byteBuffer,

 int value)

getU8

public static short getU8(java.nio.ByteBuffer byteBuffer,

 int offset)

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

209

putU8

public static void putU8(java.nio.ByteBuffer byteBuffer,

 int offset,

 int value)

getU16

public static int getU16(java.nio.ByteBuffer byteBuffer)

putU16

public static void putU16(java.nio.ByteBuffer byteBuffer,

 int value)

getU16

public static int getU16(java.nio.ByteBuffer byteBuffer,

 int offset)

putU16

public static void putU16(java.nio.ByteBuffer byteBuffer,

 int offset,

 int value)

getU32

public static long getU32(java.nio.ByteBuffer byteBuffer)

putU32

public static void putU32(java.nio.ByteBuffer byteBuffer,

 long value)

getU32

public static long getU32(java.nio.ByteBuffer byteBuffer,

 int offset)

putU32

public static void putU32(java.nio.ByteBuffer byteBuffer,

 int offset,

 long value)

Appendix C GCTLIB Javadoc

210

getU24

public static int getU24(java.nio.ByteBuffer byteBuffer)

putU24

public static void putU24(java.nio.ByteBuffer byteBuffer,

 int value)

getU24

public static int getU24(java.nio.ByteBuffer byteBuffer,

 int offset)

putU24

public static void putU24(java.nio.ByteBuffer byteBuffer,

 int offset,

 int value)

C.2 com.dialogic.signaling.gct - Class GctException
java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 com.dialogic.signaling.gct.GctException

All Implemented Interfaces:
java.io.Serializable

public class GctException

extends java.lang.Exception

See Also:
Serialized Form

Constructor Summary

GctException(java.lang.String message)

Method Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,

initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace,

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

211

toString

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

GctException

public GctException(java.lang.String message)

C.3 com.dialogic.signaling.gct - Class GctLib
java.lang.Object

 com.dialogic.signaling.gct.GctLib

public class GctLib

extends java.lang.Object

Nested Class Summary

static class GctLib.PartitionInfo

static class GctLib.StandardMsgSizes

Field Summary

static java.lang.String GctLibVersionNumber

Constructor Summary

GctLib()

Method Summary

static GctMsg getm(GctLib.StandardMsgSizes size)

 Get a new GctMsg object.

static GctMsg getm(int len)

Appendix C GCTLIB Javadoc

212

 Get a new GctMsg object.

static GctMsg getm(int type, int id, int rspReq, int len)

 Get a new GctMsg object.

static GctLib.PartitionInfo getPartitionInfo(int partitionId)

 Gets information about the specified partition.

static GctMsg grab(short taskId)

 Non blocking call to receive a new Msg on the identified

taskId.

static boolean isPartitionCongested(int partitionId)

 Determines whether the native message partition is

currently congested.

static void link()

 Establishes a link to the GCT environment

static int pendingMsgs(short taskId)

 Returns the number of messages queued against the task.

static GctMsg receive(short taskId)

 Blocking call waiting to receive a new Msg on the

identified taskId.

static void relm(GctMsg msg)

 Returns the underlying native Msg resource for reuse.

static void send(GctMsg msg)

 Sends the Msg.

static void send(short taskId, GctMsg msg)

 Sends the Msg to the identified taskId.

static void unlink()

 Closes a link to the GCT environment

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

GctLibVersionNumber

public static final java.lang.String GctLibVersionNumber

See Also:
Constant Field Values

Constructor Detail

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

213

GctLib

public GctLib()

Method Detail

getm

public static GctMsg getm(int type,

 int id,

 int rspReq,

 int len)

 throws GctException

Get a new GctMsg object. The returned GctMsg wraps a native GCT message from the

nativeGCT message passing environment.

Parameters:

type - Set the GctMsg type field to this value

id - Set the GctMsg id field to this value

rspReq - Set the GctMsg rspReq to this value

len - Get a message of at least this length and set the GctMsg len field to this value

Returns:
A new GctMsg message wrapping a native Msg

Throws:

GctException - If a native Msg could not be allocated

getm

public static GctMsg getm(int len)

 throws GctException

Get a new GctMsg object. The returned GctMsg wraps a native GCT message from the

native message passing environment. The message parameter area will be at least 'len' bytes

long.

Parameters:

len - Get a message of at least this length and set the GctMsg len field to this value

Returns:
A new GctMsg message wrapping a native Msg

Throws:

GctException - If a native Msg could not be allocated

getm

public static GctMsg getm(GctLib.StandardMsgSizes size)

 throws GctException

Get a new GctMsg object. The returned GctMsg wraps a native GCT message from the GCT

message passing environment. The message parameter area will be at least 320 bytes long.

Returns:

Appendix C GCTLIB Javadoc

214

A new GctMsg message wrapping a native Msg

Throws:

GctException - If a native Msg could not be allocated

relm

public static void relm(GctMsg msg)

 throws GctException

Returns the underlying native Msg resource for reuse. Note: the GctMsg object may be

separately disposed of.

Parameters:

msg - The GctMsg to be released

Throws:

GctException - If the underlying native Msg is null or failed to release Msg

send

public static void send(short taskId,

 GctMsg msg)

 throws GctException

Sends the Msg to the identified taskId. Note: This actually sends the underlying native Gct

Msg.

Parameters:

taskId - The taskId or moduleId to send the Msg to

msg - The Msg to send

Throws:

GctException - If the native Msg is null or failed to send

send

public static void send(GctMsg msg)

 throws GctException

Sends the Msg. The destination taskId is that within the message header Note: This actually

sends the underlying native Gct Msg.

Parameters:

msg - The Msg to send

Throws:

GctException - If the native Msg is null or failed to send

receive

public static GctMsg receive(short taskId)

Blocking call waiting to receive a new Msg on the identified taskId. Note: This waits for a

native Gct Msg to be received on the given taskId and wraps it in a GctMsg object.

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

215

Parameters:

taskId - Task Id to wait for a message on.

Returns:
GctMsg

grab

public static GctMsg grab(short taskId)

Non blocking call to receive a new Msg on the identified taskId. If there are no messages

waiting then this function returns immediately. Note: This wraps the native Msg in a

GctMsg object.

Parameters:

taskId - Task Id to wait for a message on.

Returns:
GctMsg or null

link

public static void link()

Establishes a link to the GCT environment

unlink

public static void unlink()

Closes a link to the GCT environment

isPartitionCongested

public static boolean isPartitionCongested(int partitionId)

Determines whether the native message partition is currently congested.

Parameters:

partitionId - The message partition to check

Returns:
True if congested, otherwise false.

getPartitionInfo

public static GctLib.PartitionInfo getPartitionInfo(int partitionId)

 throws GctException

Gets information about the specified partition.

Parameters:

partitionId - The native message partition for which information is requested.

Returns:
PartitionInfo instance

Appendix C GCTLIB Javadoc

216

Throws:
GctException

pendingMsgs

public static int pendingMsgs(short taskId)

Returns the number of messages queued against the task.

Parameters:

taskId - The task Id for which the number of pending messages is requested.

Returns:
The number of pending messages.

C.4 com.dialogic.signaling.gct - Class GctLib.PartitionInfo
java.lang.Object

 com.dialogic.signaling.gct.GctLib.PartitionInfo

Enclosing class:
GctLib

public static class GctLib.PartitionInfo

extends java.lang.Object

Field Summary

 boolean congStatus

 java.lang.Integer numMsgs

 java.lang.Integer paramSize

 java.lang.Integer partitionId

Method Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

217

partitionId

public java.lang.Integer partitionId

numMsgs

public java.lang.Integer numMsgs

paramSize

public java.lang.Integer paramSize

congStatus

public boolean congStatus

C.5 com.dialogic.signaling.gct -
Enum GctLib.StandardMsgSizes

java.lang.Object

 java.lang.Enum<GctLib.StandardMsgSizes>

 com.dialogic.signaling.gct.GctLib.StandardMsgSizes

All Implemented Interfaces:
java.io.Serializable, java.lang.Comparable<GctLib.StandardMsgSizes>

Enclosing class:
GctLib

public static enum GctLib.StandardMsgSizes

extends java.lang.Enum<GctLib.StandardMsgSizes>

Enum Constant Summary

Bytes320

Bytes4200

Method Summary

static GctLib.StandardMsgSizes valueOf(java.lang.String name)

 Returns the enum constant of this type with the

specified name.

Appendix C GCTLIB Javadoc

218

static GctLib.StandardMsgSizes[] values()

 Returns an array containing the constants of this

enum type, in the order they are declared.

Methods inherited from class java.lang.Enum

compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Enum Constant Detail

Bytes320

public static final GctLib.StandardMsgSizes Bytes320

Bytes4200

public static final GctLib.StandardMsgSizes Bytes4200

Method Detail

values

public static GctLib.StandardMsgSizes[] values()

Returns an array containing the constants of this enum type, in the order they are declared.

This method may be used to iterate over the constants as follows:
for (GctLib.StandardMsgSizes c : GctLib.StandardMsgSizes.values())

 System.out.println(c);

Returns:
an array containing the constants of this enum type, in the order they are declared

valueOf

public static GctLib.StandardMsgSizes valueOf(java.lang.String name)

Returns the enum constant of this type with the specified name. The string must match

exactly an identifier used to declare an enum constant in this type. (Extraneous whitespace

characters are not permitted.)

Parameters:

name - the name of the enum constant to be returned.

Returns:
the enum constant with the specified name

Throws:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

219

java.lang.IllegalArgumentException - if this enum type has no constant with the

specified name

java.lang.NullPointerException - if the argument is null

C.6 com.dialogic.signaling.gct - Class GctMsg
java.lang.Object

 com.dialogic.signaling.gct.GctMsg

All Implemented Interfaces:
IMsg

public class GctMsg

extends java.lang.Object

implements IMsg

This class wraps a native Gct Msg and implements the IMsg interface

Method Summary

 short getDst()

 Get the destination field value of the message

 int getId()

 Get the id field value of the message

 long getInstance()

 Get the instance field value of the message

 java.nio.ByteBuffer getParam()

 Get parameter area of the message

 boolean getRspReq()

 Get the response request field value of the message

 short getSrc()

 Get the source field value of the message

 short getStatus()

 Get the status field value of the message

 int getType()

 Get the type field value of the message

 void setDst(short dst)

 Set the destination field value of the message

 void setId(int id)

 Set the id field value of the message

Appendix C GCTLIB Javadoc

220

 void setInstance(long instance)

 Set the instance field value of the message

 void setRspReq(boolean rspReq)

 Set the raw response request field value of the message

 void setSrc(short src)

 Set the source field value of the message

 void setStatus(short status)

 Set the status field value of the message

 void setType(int type)

 Set the type field value of the message

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

getParam

public final java.nio.ByteBuffer getParam()

 throws GctException

Get parameter area of the message

Specified by:

getParam in interface IMsg

Throws:
GctException

getType

public final int getType()

 throws GctException

Get the type field value of the message

Specified by:

getType in interface IMsg

Throws:
GctException

setType

public final void setType(int type)

 throws GctException

Set the type field value of the message

Specified by:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

221

setType in interface IMsg

Throws:
GctException

getId

public final int getId()

 throws GctException

Get the id field value of the message

Specified by:

getId in interface IMsg

Throws:
GctException

setId

public final void setId(int id)

 throws GctException

Set the id field value of the message

Specified by:

setId in interface IMsg

Throws:
GctException

getSrc

public final short getSrc()

 throws GctException

Get the source field value of the message

Specified by:

getSrc in interface IMsg

Throws:
GctException

setSrc

public final void setSrc(short src)

 throws GctException

Set the source field value of the message

Specified by:

setSrc in interface IMsg

Throws:
GctException

Appendix C GCTLIB Javadoc

222

getDst

public final short getDst()

 throws GctException

Get the destination field value of the message

Specified by:

getDst in interface IMsg

Throws:
GctException

setDst

public final void setDst(short dst)

 throws GctException

Set the destination field value of the message

Specified by:

setDst in interface IMsg

Throws:
GctException

getRspReq

public final boolean getRspReq()

 throws GctException

Get the response request field value of the message

Specified by:

getRspReq in interface IMsg

Throws:
GctException

setRspReq

public final void setRspReq(boolean rspReq)

 throws GctException

Set the raw response request field value of the message

Specified by:

setRspReq in interface IMsg

Throws:
GctException

getStatus

public final short getStatus()

 throws GctException

Get the status field value of the message

Specified by:

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

223

getStatus in interface IMsg

Throws:
GctException

setStatus

public final void setStatus(short status)

 throws GctException

Set the status field value of the message

Specified by:

setStatus in interface IMsg

Throws:
GctException

getInstance

public final long getInstance()

 throws GctException

Get the instance field value of the message

Specified by:

getInstance in interface IMsg

Throws:
GctException

setInstance

public final void setInstance(long instance)

 throws GctException

Set the instance field value of the message

Specified by:

setInstance in interface IMsg

Throws:
GctException

C.7 com.dialogic.signaling.gct Interface IMsg

All Known Implementing Classes:
GctMsg

public interface IMsg

Method Summary

 short getDst()

Appendix C GCTLIB Javadoc

224

 int getId()

 long getInstance()

 java.nio.ByteBuffer getParam()

 boolean getRspReq()

 short getSrc()

 short getStatus()

 int getType()

 void setDst(short dst)

 void setId(int id)

 void setInstance(long instance)

 void setRspReq(boolean rspReq)

 void setSrc(short src)

 void setStatus(short status)

 void setType(int type)

Method Detail

getParam

java.nio.ByteBuffer getParam()

 throws GctException

Throws:
GctException

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

225

getType

int getType()

 throws GctException

Throws:
GctException

setType

void setType(int type)

 throws GctException

Throws:
GctException

getId

int getId()

 throws GctException

Throws:
GctException

setId

void setId(int id)

 throws GctException

Throws:
GctException

getSrc

short getSrc()

 throws GctException

Throws:
GctException

setSrc

void setSrc(short src)

 throws GctException

Throws:
GctException

getDst

short getDst()

 throws GctException

Throws:
GctException

Appendix C GCTLIB Javadoc

226

setDst

void setDst(short dst)

 throws GctException

Throws:
GctException

getRspReq

boolean getRspReq()

 throws GctException

Throws:
GctException

setRspReq

void setRspReq(boolean rspReq)

 throws GctException

Throws:
GctException

getStatus

short getStatus()

 throws GctException

Throws:
GctException

setStatus

void setStatus(short status)

 throws GctException

Throws:
GctException

getInstance

long getInstance()

 throws GctException

Throws:
GctException

setInstance

void setInstance(long instance)

Dialogic® Distributed Signaling Interface Components - Software Environment Programmer's Manual Issue 15

227

 throws GctException

Throws:
GctException

	Revision History
	1 Introduction
	1.1 Applicability
	1.2 Related Documentation
	1.2.1 Dialogic® DSI SS7 Protocol Manuals
	1.2.2 Dialogic® DSI SIGTRAN Protocol Manuals
	1.2.3 Dialogic® DSI Diameter Stack Manuals
	1.2.4 Dialogic® DSI Network Interface Boards Manuals
	1.2.5 Dialogic® DSI Signaling Servers Manuals

	2 Basic Concepts
	2.1 Modules
	2.2 Module Identifiers
	2.3 Messages
	2.4 Message Queues
	2.5 Distributed Modules
	2.6 Library Functions
	2.7 System Initialization
	2.8 Attaching to the DSI environment
	2.9 System Congestion

	3 Installation
	3.1 Introduction
	3.2 Software Installation for Linux
	3.2.1 Installing Development Package for Linux
	3.2.2 Building Device Drivers for DSI boards
	3.2.3 Support for SIGTRAN SCTP under Linux
	3.2.4 Adjusting Linux Kernel Parameters
	3.2.5 Using 64-bit Linux Applications
	3.2.6 Removing the Development Package for Linux
	3.2.7 RPM Creation

	3.3 Software Installation for Solaris
	3.3.1 Installing the Development Package for Solaris
	3.3.2 Solaris 9 - Interface Name Checking
	3.3.3 Solaris 10 –User Account Permissions
	3.3.4 Installation of SIGTRAN support for Solaris
	3.3.5 Tuning Solaris System Resource Parameters
	3.3.6 Creating a Solaris ‘project’ to tune System Resource parameters
	3.3.7 Using 64-bit Solaris Applications
	3.3.8 Avoiding “Non-serviced interrupt” reports
	3.3.9 Removing the Development Package for Solaris

	3.4 Software Installation for Windows
	3.4.1 Installing Development Package for Windows
	3.4.2 Starting the Windows Device Driver
	3.4.3 Additional steps using Windows 7
	3.4.4 Running software as a Windows Service
	Installing a Service
	Uninstalling a Service
	Running the Service manually

	3.4.5 Using 64-bit Windows Applications
	3.4.6 Removing Development Package for Windows

	4 Configuration and Operation
	4.1 Selecting the System Architecture
	4.1.1 TDM Board Systems
	4.1.2 SIGTRAN Systems
	4.1.3 Diameter Systems
	4.1.4 Protocol Modules

	4.2 Creating the System Configuration File (system.txt)
	4.2.1 System Configuration File Syntax
	4.2.2 Generating the system.txt Configuration File

	4.3 Creating the Protocol Configuration File (config.txt)
	4.4 Executing the Software
	4.5 Developing a User Application

	5 Message Reference
	5.1 Message Format
	5.1.1 MSG Message Structure
	5.1.2 Header Fields
	5.1.3 Parameter Field

	5.2 Common Message Specifications
	5.2.1 GEN_MSG_MOD_IDENT - Module Identification Request
	5.2.2 SYS_MSG_CONGESTION - Congestion Status Indication
	5.2.3 MGT_MSG_TRACE_EV - Trace Event Indication
	5.2.4 API_MSG_CNF_IND - Configuration Completion Status Indication

	5.3 RSI Messages
	5.3.1 RSI_MSG_CONFIG – RSI Link Configuration Request
	5.3.2 RSI_MSG_UPLINK – RSI Link Activate Request
	5.3.3 RSI_MSG_DOWNLINK – RSI Link Deactivate Request
	5.3.4 RSI_MSG_LNK_STATUS – RSI Link Status Indication
	5.3.5 RSI_MSG_R_LNK_STATS – RSI Link Statistics Request
	5.3.6 RSI_MSG_READ_LINK – RSI Read Link Status

	6 Library Functions
	6.1 Inter-Process Communications Functions
	6.1.1 GCT_send
	6.1.2 GCT_receive
	6.1.3 GCT_grab
	6.1.4 GCT_set_instance
	6.1.5 GCT_get_instance
	6.1.6 getm
	6.1.7 relm
	6.1.8 GCT_link
	6.1.9 GCT_unlink
	6.1.10 GCT_partition_congestion
	6.1.11 confirm_msg

	6.2 General Library Functions
	6.2.1 rpackbytes
	6.2.2 runpackbytes
	Example:

	6.3 Java Inter-Process Communications

	7 Host Utilities
	7.1 gctload
	7.1.1 System Configuration File (system.txt)
	7.1.2 NUM_MSGS / NUM_LMSGS Commands
	7.1.3 CONG_MSG Command
	7.1.4 LOCAL Command
	7.1.5 REDIRECT Command
	7.1.6 DEFAULT_MODULE Command
	7.1.7 FORK_PROCESS Command
	7.1.8 Example system.txt File

	7.2 s7_log
	7.3 s7_play
	7.3.1 s7_play Command File Format

	7.4 tick and tim
	7.5 s7_mgt
	7.6 ssd
	7.6.1 ssds (for SPCI4/SPCI2S boards)
	7.6.2 ssdl (for SS7LD boards)
	7.6.3 ssdh (for SS7HD boards)
	7.6.4 ssdm (for SS7MD boards)

	7.7 rsi
	7.8 rsicmd
	7.9 tempmon
	7.10 dsictrl
	7.11 dsistat
	7.12 dsitrace

	8 Configuration Command Reference
	8.1 Physical Interface Configuration Commands
	8.1.1 SS7_BOARD Command
	8.1.2 LIU_CONFIG Command
	8.1.3 LIU_SC_DRIVE Command
	8.1.4 SCBUS_LISTEN Command
	8.1.5 STREAM_XCON Command (Cross Connect Configuration)

	8.2 Maintenance Module Commands
	8.2.1 MGMT_MOD_ID, MAINT_MOD_ID & TRACE_MOD_ID Commands

	8.3 Monitor Configuration Commands
	8.3.1 MONITOR LINK Command (for HSL/LSL Links)
	8.3.2 MONITOR LINK Command (for ATM Links)

	8.4 MTP Configuration Commands
	8.4.1 MTP_CONFIG Command
	8.4.2 MTP_LINKSET Command
	8.4.3 MTP_LINK Command (for HSL/LSL Links)
	Parameters

	8.4.4 MTP_LINK Command (for ATM Links)
	8.4.5 MTP_ROUTE Command
	8.4.6 MTP_USER_PART Command
	8.4.7 MTP_TRACE Command

	8.5 ATM Configuration Commands
	8.5.1 ATM_CONFIG Command
	8.5.2 ATM_STREAM Command (Configure ATM Cell Stream)
	8.5.3 ATM_TIMER Command (Configure Timers for Q.SAAL Links)

	8.6 ISUP Configuration Commands
	8.6.1 ISUP_CONFIG Command
	8.6.2 ISUP_CFG_CCTGRP Command (Circuit Group Configuration)
	8.6.3 ISUP_TIMER Command (ISUP Timer Configuration)

	8.7 TUP Configuration Commands
	8.7.1 TUP_CONFIG Command (Global TUP Configuration)
	8.7.2 TUP_CFG_CCTGRP Command (Circuit Group Configuration)

	8.8 SCCP Configuration Commands
	8.8.1 SCCP_CONFIG Command
	8.8.2 SCCP_SSR Command (Configure SCCP Sub-System Resource)
	8.8.3 SCCP_CONC_SSR Command (Configure Concerned SSR)
	8.8.4 SCCP_TRACE Command
	8.8.5 SCCP_GTT_PATTERN Command (Define Global Title Pattern)
	8.8.6 SCCP_GTT_ADDRESS Command (Define Global Title Address)
	8.8.7 SCCP_GTT Command (Add Entry in GTT Table)

	8.9 DTC Configuration Commands
	8.9.1 DTC_CONFIG Command
	8.9.2 DTC_SSR Command (Configure DTC Sub System Resource)

	8.10 TCAP Configuration Commands
	8.10.1 TCAP_CONFIG Command
	8.10.2 TCAP_CFG_DGRP Command (Dialog Group Configuration)
	8.10.3 TCAP_TRACE Command

	8.11 MAP Configuration Commands
	8.11.1 MAP_CONFIG Command
	8.11.2 MAP_TRACE Command

	8.12 INAP Configuration Commands
	8.12.1 INAP_CONFIG Command
	8.12.2 INAP_FE Command (Configure INAP Functional Entity)
	8.12.3 INAP_AC Command (Configure INAP Application Context)
	8.12.4 INAP_TRACE Command

	8.13 IS41 Configuration Commands
	8.13.1 IS41_TRACE Command

	8.14 SIGTRAN Protocol Configuration Overview
	8.14.1 SIGTRAN M3UA ASP, Host to SGP Configuration Model
	8.14.2 SIGTRAN M3UA IPSP, Peer to Peer Configuration Model
	8.14.3 SIGTRAN M3UA User Parts
	8.14.4 M2PA Configuration Model
	8.14.5 SIGTRAN SUA IPSP, Peer to Peer Configuration Model
	8.14.6 SIGTRAN SUA ASP, Host to SGP Configuration Model
	8.14.7 SIGTRAN Parameters
	8.14.8 IP address scope

	8.15 SIGTRAN Configuration Commands
	8.15.1 SNAPI Command - SIGTRAN Local AS Initiate
	8.15.2 SNSLI Command - SIGTRAN Signaling Link Initiate
	8.15.3 SNRTI Command - SIGTRAN Route Initiate
	8.15.4 SNRLI Command - SIGTRAN Route List Initiate
	8.15.5 SNRKI Command - SIGTRAN Routing Key Initiate
	8.15.6 SNRAI Command - SIGTRAN Remote AS Configuration
	8.15.7 SNALI Command - SIGTRAN AS List Initiate
	8.15.8 SNLBI Command - SIGTRAN Local AS Bind Initiate
	8.15.9 CNSYS Command - Configuration System Set
	8.15.10 CNOPS Command - Configuration Module Options Set
	8.15.11 CNNCI Command - Configuration Network Context Initiate
	8.15.12 CNTOS Command - Configuration Timeout Set

	8.16 Diameter Parameters
	8.17 Diameter Configuration Commands
	8.17.1 DMNCI Command - Diameter Network Context Initiate
	8.17.2 DMPRI Command - Diameter Peer Initiate
	8.17.3 DMRTI Command - Diameter Route Initiate
	8.17.4 DMRLI Command - Diameter Route List Initiate
	8.17.5 DMAPI Command - Diameter Application Initiate
	8.17.6 DMSYI Command - Diameter System Initiate

	9 Example Configuration Files
	9.1 Example system.txt System Configuration file
	9.2 Example config.txt Protocol Configuration File
	9.3 Example M3UA ASP Config.txt – Multiple SG
	9.4 Example M3UA IPSP Config.txt – Multiple RAS
	9.5 Example M3UA ASP Config.txt – Multiple LAS
	9.6 Example M3UA IPSP (Client) Config.txt
	9.7 Example M3UA IPSP (Server) Config.txt
	9.8 Example M2PA Configuration
	9.9 Example GTT Configuration
	9.10 Example Configuration of an ATM Terminated Link
	9.11 Example Diameter Configuration

	Appendix A. Default Module Identifiers
	Appendix B. Values reserved for Custom Use
	B.1 Reserved module identifiers
	B.2 Reserved message types

	Appendix C. GCTLIB Javadoc
	C.1 com.dialogic.signaling.gct - Class BBUtil
	BBUtil
	getU8
	putU8
	getU8
	putU8
	getU16
	putU16
	getU16
	putU16
	getU32
	putU32
	getU32
	putU32
	getU24
	putU24
	getU24
	putU24

	C.2 com.dialogic.signaling.gct - Class GctException
	GctException

	C.3 com.dialogic.signaling.gct - Class GctLib
	GctLibVersionNumber
	GctLib
	getm
	getm
	getm
	relm
	send
	send
	receive
	grab
	link
	unlink
	isPartitionCongested
	getPartitionInfo
	pendingMsgs

	C.4 com.dialogic.signaling.gct - Class GctLib.PartitionInfo
	partitionId
	numMsgs
	paramSize
	congStatus

	C.5 com.dialogic.signaling.gct - Enum GctLib.StandardMsgSizes
	Bytes320
	Bytes4200
	values
	valueOf

	C.6 com.dialogic.signaling.gct - Class GctMsg
	getParam
	getType
	setType
	getId
	setId
	getSrc
	setSrc
	getDst
	setDst
	getRspReq
	setRspReq
	getStatus
	setStatus
	getInstance
	setInstance

	C.7 com.dialogic.signaling.gct Interface IMsg
	getParam
	getType
	setType
	getId
	setId
	getSrc
	setSrc
	getDst
	setDst
	getRspReq
	setRspReq
	getStatus
	setStatus
	getInstance
	setInstance

