

 Microcontrol lers

Appl icat ion Note
V1.0 2011-08

TriCore

AP32178

cstart

Edition 2011-08

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2011 Infineon Technologies AG
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN
THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.

 AP32178
 cstart

Application Note 3 V1.0, 2011-08

TriCore

Revision History: V1.0, 2011-08 Martin Schrape

Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

mcdocu.comments@infineon.com

 AP32178
 cstart

 Table of Contents

Application Note 4 V1.0, 2011-08

Table of Contents

1 Preface .. 5

2 Introduction .. 5

3 Overview ... 5

4 Implementation and Usage ... 9

 AP32178
cstart

 Preface

Application Note 5 V1.0, 2011-08

1 Preface

This application note describes a user’s startup code implementation on the TriCore processor architecture [1,2]
for the AUDO MAX-family. The document is aimed at developers who write or design applications for the
TriCore.

This application note assumes that readers have access to the TriCore Architecture Manual [1] and TriCore
User Manual [3-6], and have at least some knowledge about the following sections of the user’s manual:

 Startup SoftWare (SSW) (see section BootROM content in [3-5])

 Clock system of the System Control Unit (SCU) (see section Clock System overview in [3-5])

 ENDINIT protection and watchdog timer (WDT) (see section Watchdog Timer in [3-5])

 The TriCore instruction set.

See References on Page 13 for more information on the TriCore manuals and other relevant documentation.

2 Introduction

Compilers for the TriCore processor are available by third party Infineon tool partners and offers user’s startup
code with their tool chain. It is provided as C source code or assembler source code. The source file for the
user’s startup code named cstart.c for Tasking, crt0.S for Hightec and crt0.s for Wind River. This application
note is written explicitly for Tasking users. It improves and extends the default Tasking startup file cstart.c in four
ways. First it improves the PLL initialization and implements a program flow exactly as described in the user’
manual. Second it extends the number of registers that could be configured in the startup code. It especially
offers configuration for most ENDINIT protected registers. ENDINIT bit protected register are typically needs to
be configured only once at startup. Grouping them together makes it possible to clear and set the ENDINIT bit
only once. This practice saves execution time which is often critical at startup. An endinit_clear()/endinit_set()
programming sequence typically requires about 0.5 µs running at 180 MHz CPU frequency. Third a fast
ENDINIT bit clear and set routines are offered as inline functions. Fourth the cstart.h header files comes with
PLL initialization values for most popular configurations of the TriCore AUDO-MAX family. To limit the jump of
the dynamic current consumption the PLL initialization uses a ramp-up sequence.

Together these modifications of the default Tasking startup code give the user a quick start programming the
TriCore. With entering the C main() function the processor is already running at the configured CPU frequency
and configured modules frequencies.

3 Overview

The PLL uses two different start-up mechanisms depending on the triggering reset. Upon a power-on reset the
PLL starts to supply the system in Precscaler Mode. The starting frequency is 16.6 MHz. A system reset brings
the PLL control register in the SCU to the defined reset values and the system clock operates in free-running
mode at fVCOBASE/16. In both cases the SSW in the BootROM restores the clock system to free-runnning mode
before jumping to the user’s startup code located at the User STartup ADDress STADD. Tasking named this
address the RESET vector. Two addresses are valid: 0xA0000000 for starting from internal flash memory
module (internal start) or 0xA1000000 for starting from external EBU space (external start). The SSW therefore
evaluates the HWCFG[7..0] pins. For external start the EBU reads its configuration parameter from internal
memory 000004H (see section External Bus Unit in [7], chapter ‘Boot Process’ respectively ‘Configuration Word
Fetch Process’).

The major design goal of the user’s startup code is to initialize the processor and to bring up the PLL quickly, to
configure major CSFR and other ENDINIT protected SFR registers. The steps are illustrated in Figure 1. The
changes made to the original code are mainly related to the PLL ramp-up sequence and the ability to configure
more ENDINIT protected sfr registers. The execution time on a TC1798 running at 300 MHz CPU frequency of
the startup code is about 250-350 µs, where the largest single part (230 µs) is the ramp-up sequence using six
steps with a delay in between two steps of 20 µs. Details of the PLL ramp-up sequence are illustrated in Figure
2. A block diagram of the Clock Generation Unit (CGU) is shown in Figure 3. The current consumption during a
PLL ramp-up sequence with just four steps is shown in Figure 4. Formulas for the dynamic current consumption
are given in the data sheet.

The internal Watchdog starts after reset in Time-Out Mode. With the startup code presented by this application
node the watchdog would enter Prewarning Mode after 4 × fFPI/16384 which is measured to 950 µs. The

 AP32178
cstart

 Overview

Application Note 6 V1.0, 2011-08

execution time of the startup code as configured in this application note is less than 300 µs. To safe time the
watchdog is serviced and the ENDINIT bit is set after all ENDINIT protected registers are configured.

Figure 1 Startup code Flow Diagram

Init Stack pointer

Init PSW

Init PCXI

Init BTW, BIV, ICR, ISP

Init PMU/PMI

Init DMI

Init EBU_CLC

Init OSCCON

Init PLL Ramp-Up

Init SCU FDR

Init DTS

Init STM_CLC

Init PCP_CLC, PCP_CS

Init GPTA0_CLC, GPTA_FDR

Init CAN_CLC

Init ADC_CLC, ADCn_GLOBCFG, ADCn_GLOBSTR

Init SSC0_CLC, SSC0_FDR

Init WDT

Init EBU_CON, EBU_ADDRSELn, EBU_BFCON, EBU_BUS

APn, EBU_BUSCONn, EBU_EMUAS, EBU_EMUBAP, EBU_EMUCON

Init DMA_ME0AENR, DMA_ME0ARR

Start at address STADD

Call main

Init WDT

Init CSA, FCX

added

modif ied

deleted

modif ied

 AP32178
cstart

 Overview

Application Note 7 V1.0, 2011-08

Figure 2 PLL initialization Flow Diagram (TC1798 300MHz)

yes

yes

yes

fPLL = fVCOBase/K2 = fPLLBase/K2 = 200 MHz/(K1DIV+1) = 200 MHz/16 = 12 MHz

fCPU = fPLL/(CCUCON.SRIDIV+1) = 12 MHz

Select

Prescaler Mode

PLLSTAT.VCOBYST==0

PLLCON0.VCOBYP = 1

Prescaler Mode; VCO is bypassed

PLLCON1.K1DIV = 0

PLLSTAT.K1RDY== 0

SSW exits with

Free-running Mode

Enter

Prescaler Mode

fPLL = fOSC/(K1DIV+1) = 20 MHz/1 = 20 MHz

fCPU = fPLL/(CCUCON.SRIDIV+1) = 20 MHz

Conf igure K1 for

Prescaler Mode

OSCCON.PLLLV==0

Prescaler Mode

PLLCON0 = __SCU_PLLCON0_VALUE

PLLCON1.K2DIV = (NDIV+1)*(K1DIV+1)/(PDIV+1)-1
Conf igure N, P, K2 for

Normal Mode

yes

PLLSTAT.FINDIS == 1

PLLCON0.RESLD = 1

yes

PLLSTAT.VCOLOCK == 0

CCUCON0, CCUCON1, CCUCON2

PLLCON0.CLRFINDIS = 1

fPLL = (NDIV+1)/(PDIV+1) /(K2DIV_0+1) fOSC = 20 MHz

fCPU = fPLL/(CCUCON.SRIDIV+1) = 10 MHz

Wait 20µs

PLLSTAT.VCOBYST==1

yes

PLLCON0.VCOBYP = 0

Normal operation; VCO is not bypassed

Connect clock to VCO

Restart VCO Lock Detection

Conf igure CCUCONn

PLL ramp-up

Enter

Normal Mode

Normal Mode

SCU_PLLCON1.B.K2DIV = K2DIV_n (n=1…6)

fPLL = (NDIV+1)/(PDIV+1) /(K2DIV_6+1) fOSC = 600 MHz

fCPU = fPLL /(CCUCON.SRIDIV+1)= 300 MHz
Normal Mode

 AP32178
cstart

 Overview

Application Note 8 V1.0, 2011-08

Figure 3 CGU and CCU

Figure 4 Current consumption during frequency Ramp-up sequence.

 AP32178
cstart

 Implementation and Usage

Application Note 9 V1.0, 2011-08

4 Implementation and Usage

The implementation follows the default Tasking startup file cstart.c but modifies or adds certain parts as
explained in section 3. The cstart.c and cstart.h files that come with this application notes replaces the Tasking
C startup files

The new cstart.h header file offers popular configurations for the AUDO-MAX TriBoards.

 TC172x 80/132 MHz

 TC178x 132/180 MHz

 TC179x 240/270/300 MHz

To enable one of these configuration the control program cctc should be called with option __<TriCore
Derivative>__ and __fCPU=<frequency[MHz]>, for example –D__TC1798__ -D__fCPU=300. Select Project >
Properties and navigate to C/++ Build > Settings > C/C++ Compiler > Preprocessing and add these
symbols to the list of defined symbols (Figure 5).

These macros will select the appropriate settings in cstart.h. Listing 1 shows this configuration for the TC1798
running at 300MHz.

More changes to the cstart.h are also reflected by more options in the cstart editor within the Tasking EDE.
Figure 6 for example shows the register page with ADC, CAN, GPTA, SCU, SSC and STM registers.

Details of the configurations are listed in Table 1 to Table 3.

Figure 5 Add Preprocessor symbols

239

240

241

242

#elif (defined __TC1798__ || defined __TC1793__ || defined __TC1791__)

#if __fCPU==300

// fPLL=600MHz

// fPCP=200MHz

 AP32178
cstart

 Implementation and Usage

Application Note 10 V1.0, 2011-08

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

// fFSI=150MHz

// fSRI=300MHz

// fFPI=100MHz

// fEDBBB=150MHz

// fREFCLK=25MHz

// fMCDS=150MHz

// fEBU=75MHz

// fERAY=300MHz

// fOUT=25MHz

#define __SCU_PLLCON0_INIT 1

#define __SCU_PLLCON0_VALUE 0x1017600

#define __SCU_PLLCON1_INIT 1

#define __SCU_PLLCON1_VALUE 0x0

#define __SCU_PLLK2RAMPUP_INIT 1

#define __SCU_PLLK2RAMPUP_VALUE 0x08040201

#define __SCU_PLLK2RAMPUP_WAIT 6000

#define __SCU_CCUCON0_INIT 1

#define __SCU_CCUCON0_VALUE 0x2030105

#define __SCU_CCUCON1_INIT 1

#define __SCU_CCUCON1_VALUE 0x30B03

#define __SCU_CCUCON2_INIT 1

#define __SCU_CCUCON2_VALUE 0x701

#define __SCU_FDR_INIT 1

#define __SCU_FDR_VALUE 0x43FE

#define __FLASH0_FCON_INIT 1

#define __FLASH0_FCON_VALUE 0x00074804

#define __FLASH1_FCON_INIT 1

#define __FLASH1_FCON_VALUE 0x00074804

Listing 1 PLL specific configuration in cstart.h. TC1798 with fCPU=300Mhz shown

Figure 6 start editor: Register page

 AP32178
cstart

 Implementation and Usage

Application Note 11 V1.0, 2011-08

Table 1 TC179x PLL configuration examples

Parameter TC179x 300MHz TC179x 270MHz TC179x 240MHz

Clock Diver Option 3 3 3

fOSC 20 MHz 20 MHz 20 MHz

fVCOBASE 200 MHz 200 MHz 200 MHz

PLLCON0.PDIV 1 1 1

PLLCON0.NDIV 0x3B 0x35 0x2F

PLLCON1.K1DIV 0 0 0

PLLCON1.K2DIV 0 0 0

CCUCON0.PCPDIV 2 2 2

CCUCON0.FSIDIV 3 3 3

CCUCON0.SRIDIV 1 1 1

CCUCON0.FPIDIV 5 5 5

CCUCON1.EDBBBDIV 3 3 3

CCUCON1.REFCLKDIV 0xB 0xB 0xB

CCUCON1.MCDSDIV 3 3 3

CCUCON2.EBUDIV 7 7 7

FDR.STEP 0x3FE 0x3FE 0x3FF

fVCO = fOSC × (NDIV+1)/(PDIV+1) 600 MHz 540 MHz 480 MHz

fPLL = fOSC × (NDIV+1)/((PDIV+1)*(K2DIV+1)) 600 MHz 540 MHz 480 MHz

fPCP = fPLL /(PCPDIV+1) 200 MHz 180 MHz 160 MHz

fFSI = fPLL /(FSIDIV+1) 150 MHz 135 MHz 120 MHz

fSRI = fPLL/(SRIDIV+1) 300 MHz 270 MHz 240 MHz

fFPI = fPLL /(FPIDIV+1) 100 MHz 90 MHz 80 MHz

fEDBBB = fPLL /(EDBBBDIV+1) 150 MHz 135 MHz 120 MHz

fREFCLK = fPLL /2/(REFCLKDIV+1) 25 MHz 22.5 MHz 20 MHz

fMCDS = fPLL /(MCDSDIV+1) 150 MHz 135 MHz 120 MHz

fEBU = fPLL /(EBUDIV+1) 75 MHz 67.5 MHz 60 MHz

fERAY = fPLL /(ERAYDIV+1)= 300 MHz 270 MHz 240 MHz

fOUT = fFPI × (1/(0x400-STEP)= 25 MHz 22.5 MHz 40 MHz

PLL ramp up sequence 6 steps:
20, 66.7, 120, 200,
300, 600 MHz

6 steps:
20, 67.5,135,180,
270, 540 MHz

5 steps:
20, 68.6, 120, 240,
480 MHz

 AP32178
cstart

 Implementation and Usage

Application Note 12 V1.0, 2011-08

Table 2 TC178x PLL configuration examples

Parameter TC178x 180MHz TC178x 132MHz

Clock Diver Option 2 1

fOSC 20 MHz 20 MHz

fVCOBASE 200 MHz 200 MHz

PLLCON0.PDIV 1 1

PLLCON0.NDIV 0x47 0x41

PLLCON1.K1DIV 0 1

PLLCON1.K2DIV 3 4

CCUCON0.PCPDIV 0 0

CCUCON0.LMBDIV 0 0

CCUCON0.FPIDIV 1 1

CCUCON1.REFCLKDIV 0xB 0xB

CCUCON1.MCDSDIV 1 1

FDR.STEP 0x3FE 0x3FF

fVCO = fOSC × (NDIV+1)/(PDIV+1) 720 MHz 540 MHz

fPLL = fOSC × (NDIV+1)/((PDIV+1)*(K2DIV+1)) 180 MHz 540 MHz

fPCP = fPLL /(PCPDIV+1) 180 MHz 180 MHz

fLMB = fPLL/(LMBDIV+1) 180 MHz 270 MHz

fFPI = fPLL /(FPIDIV+1) 90 MHz 90 MHz

fREFCLK = fPLL /2/(REFCLKDIV+1) 7.5 MHz 22.5 MHz

fMCDS = fPLL /(MCDSDIV+1) 90 MHz 135 MHz

fOUT = fFPI × (1/(0x400-STEP)= 22.5 MHz 22.5 MHz

PLL ramp up sequence 3 steps:
20, 120, 180 MHz

3 steps:
20, 110, 132 MHz

 AP32178
cstart

 References

Application Note 13 V1.0, 2011-08

Table 3 TC172x PLL configuration examples

Parameter TC172x 132MHz TC172x 80MHz

Clock Diver Option 2 1

fOSC 20 MHz 20 MHz

fVCOBASE 200 MHz 200 MHz

PLLCON0.PDIV 1 1

PLLCON0.NDIV 0x41 0x3F

PLLCON1.K1DIV 0 0

PLLCON1.K2DIV 4 7

CCUCON0.PCPDIV 0 0

CCUCON0.LMBDIV 0 0

CCUCON0.FPIDIV 1 0

CCUCON1.REFCLKDIV 0xB 0xB

CCUCON1.MCDSDIV 1 1

CCUCON2.ERAYDIV 1 1

FDR.STEP 0x3FF 0x3FF

fVCO = fOSC × (NDIV+1)/(PDIV+1) 660 MHz 640 MHz

fPLL = fOSC × (NDIV+1)/((PDIV+1)*(K2DIV+1)) 132 MHz 80 MHz

fPCP = fPLL /(PCPDIV+1) 132 MHz 80 MHz

fLMB = fPLL/(LMBDIV+1) 132 MHz 80 MHz

fFPI = fPLL /(FPIDIV+1) 66 MHz 80 MHz

fREFCLK = fPLL /2/(REFCLKDIV+1) 5.5 MHz 3.33 MHz

fMCDS = fPLL /(MCDSDIV+1) 66 MHz 40 MHz

fERAY = fPLL /(ERAYDIV+1)= 66 MHz 40 MHz

fOUT = fFPI × (1/(0x400-STEP)= 33 MHz 40 MHz

PLL ramp up sequence 3 steps:
20, 110, 132 MHz

2 steps:
20, 80 MHz

5 References

[1] TriCore Architecture V1.3.8 2007-11, Infineon Technologies AG

[2] http://www.infineon.com/tricore

[3] TC1784 User’s Manual V1.0 2009-07, Infineon Technologies AG

[4] TC1798 User’s Manual V1.1 2011-03, Infineon Technologies AG

[5] TC1728 User’s Manual V1.0D1 2011-03, Infineon Technologies AG

http://www.infineon.com/tricore

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

