From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

CHOICES WITHOUT BACKTRACKING

Johan de Kleer

Intelligent Systems Laboratory
XEROX Palo Alto Rescarch Center
3333 Coyote Hill Road
Palo Alto, California 94304

ABSTRACT

Artificial Intelligence problem solvers are frequently confronted
with the necessity to make choices among equally plausible alternatives.
These muay concern the choice of which goal to try to achieve next,
which priority 1o assign to a task or which plausible inference to draw
Srom incomplete data. Choices can be wrong: later problem solving
may determine that an earlier choice was incorrect. In such cases most
problem solvers invoke some form of backtracking to undo the faulty
choice, retract the inferences that were made from that choice and make
sonme other choice. This paper discusses a method of dealing with choice
that does not involve any backtracking yet explores no more alternatives
than the best backtracking schemes. 1t has an additional advantage
over backtracking schemes that it is possible 1o ecasily compare fwo
aliernative incompatible choices -— this cannot be done in backiracking
schemes because of their necessity of requiring a globally consistent set

o} assertions.

MOTIVATION

‘I'he results of this paper are born out of frustration. Qualitative
reasoning and constraint languages, the primary topics of my rescarch,
hoth require making choices among alternatives. Various packages
for dealing with choice have been developed, primarily derived from
{(Doyle, 1979) and (McAllester, 1980). These systems have proven to
be woelully inadequate for even simple qualitative reasoning tasks.
The reasons for this are twofold. First, they are intrinsically incapable
of working with multiple contradictory choices at once — somcthing
one needs o do all the time in qualitative reasoning. Second, they are
very incfficient in both time and space. Very simple problems fill up
all the memory of Symbolics 1.M-2 or 3600 in short order (reported
by various rescarchers in qualitative reasoning (Forbus, 1982) (de
Kleer and Brown, 1984) (Williams, 1983)). 'Iiming analysis shows
that the reasoner spends the majority of its time in the backtracking
algorithms. The term “non-monotonic™ reasoning is a misnomer as
far as memory spacce is concerned: the number of justifications grows
monotoenically as problem solving proceeds.

‘I'his paper presents an alternative solution to using a gencral
choice mechanism such as a TMS. It is the result of carefully analyzing
the kind of backtracking actually needed for a class of problem-solving
tasks and dcesigning a matching choice mechanism. ‘This mechanism is
as genceral as any 'TMS for the task, can handle multiple contradictory

79

choices at once, is extremely cfficient. The technique is appropriate
for tasks in which: (a) as in a standard TMS it must be possible to
attribute all conclusions to a small sct of antecedents it depends on,
otherwise no TMS can do much good; (b) the user is interested in
many or all of the solutions which achicve the goal (if onc is only
interested in a single solution, a standard 'I'MS is probably better); {(c)
few combinations of assumptions arc consistent; (d) there arc finitely
many (but not necessarily bounded) sotutions and choices.
Additionally, the proposed scheme performs better if: (¢) the
number of alternatives for cach choice are finite and exclusive;
however, there is no necessity for the choices, the number of choices
or the alternatives of the choices 10 be known a priori; () there is no
single solution which requires infinite time to explore (a standard 'TTMS
can often be controlled to avoid such holes). These six requirements
hold for many kinds of constraint satisfaction problems, and in
particular for qualitative reasoning! The strategy proposed in this
paper has been implemented and used successfully in (de Kleer,
1979) and (dc Kleer and Brown, 1984) with great success (time spent
handling assumptions is in the noise). 1t is also used as the mechanism

for handling disjunction in a constraint language under development.

ARCHITECTURAL ASSUMPTIONS

For the purposes of this paper an extremely simplified model of
problem solving suffices. 'The reasoning system consists of a procedure
for performing problem solving, and a data base for recording the
state of the problem-solving process. Most of the problem-solving
task consists of deriving new inferences from data and previously
made inferences. All these are added to the data base. Sometimes the
problem solver must make choices among which there is no preferred
option. Each choice may involve substantial additional work before
it proves to be contradictory or fruitless. However, a choice must
be made for problem solving to proceed. If a choice is subsequently
discavered to be incorrect, problem solvers typically backtrack to some
previous alternative. In doing so the data basc must be updated by

crasing those cntries which no longer hold.

TA typical “easy" problem taking a fow minutes total on a 1 M-2 involves tens of
thousands of new assertions. thousands of assumptions and hundreds of solutions. If a
conventional TMS were used for the same problem (this is hypothetical because a TMS
has certain conceptual limitations which make it nearly impossible to use for qualitative
reasoning). it would cither exhaust the address space of the machine (if ining or outing
were not handled carefully), or [ail to converge for hours.

The subject of this paper is how this process can be made more
cfficient. Without additional information, choice cannot be avoided.
However, improvements can be made in the preservation of relevant
information when a choice is retracted. Suppose the problem solver
has produced data-basc state S; using {4, B,C} and subscquently
cxplores implications of choices {A, B, D}. The question is how much
of state 8, arc valid in the data-base state that would result if the
é()llscqumccs of choices {A, B, D} were explored. This problem can
be viewed as an “internal™ version of the classic Al frame problem:
how much of the description of the problem-solving state is changed

when some action is performed.
TECHNIQUES FOR DEALING WITH CHOICE

Consider the task of the problem solver which performs the
following sequence. (It must first do one of A or B, then one of C or
D. then one of E or F, and then G. Admittedly, any well-designed
problem solver would do G first as it doesn’t require a choice — but

this ordering best brings out the issucs | want to address.)

AV B
cvD
TVEF
G

Assume the disjunctions are exclusive and the letters represent poten-
tially complex operations,

The simplest and most often used strategy is exponential: Enumer-
ate all the possibilities and try cach one until a solution is found
(or all solutions are found): {4,C,E,G} {A,C,F,G} {A,D,E,G}
{A,D,F,G} {B,C,E,G} {B.C,F,G} {B,D,E,G} {B,D,F,C}
Usually many of the combinations arc inconsistent. And often these
inconsistencics can be detected in small subsets of choices. This
suggests a modification of the brute-force enumeration where cach
option is attempted, but whenever an inconsistency is detected, the
problem solver backtracks to the most recent choice. If {4,C} and
{D, F'} arc inconsistent the search order is:

{A} {A,C} {A, D} {A,D,E} {A,D,E,G} {A,D,I'} {B} {B,C}

{B,C,E} {B,C,E,G} {B,C,I'} {B,C,F,G} {B,D} {B,D,E}
{B,D,E,G} {B,D,F'}
‘The advantage of this technique is that it explores far fewer complete
sets of options than brute-force enumeration. In this example, it
explores four complete scts, while enumeration explores eight. This
strategy is called chronological backtracking and onc of its carly
applications was in QA4 (Rulifson, Derkson and Waldinger, 1972).

Chronological backtracking has three serious faults which result
in it doing far more work than nccessary. Consider the case where
{C,G} is inconsistent. Chronological backtracking will scarch in the
following order:

{A,C,E,G} {A,C,F} {A,C,F,G} {A,D} ... {B,C,G}

The second two steps are futile. As G is inconsistent with the choice
of € from C Vv D, backtracking to the last choice, i.c., £ from EV F

80

has no effect as it has no influence on the contradiction. When a
contradiction is discovered the scarch should backtrack to a choice
which contributed to the coniradiction, not to the most recent choice.
The sccond defect is illustrated by the third and last step. Once it
is discovered that {€, G} is inconsistent the problem solver should
never explore that possibility again. The final defect of chronological
backtracking is that it requires more problem solving opcerations than
necessary. Supposc that choosing the combination {E,G} results in
a great deal of the problem-solving cffort that is solely dependent
on E and ¢. Chronological backtracking might scarch the space of
assumption scts as:

(B,C,E,GY {B,D} {B,D,E,G}

In doing so it will do any computations involving both £ and G twice.
It will add the inferences resulting from {&, ('} to the data base, then
backtrack to {B, D} crasing the inferences, and finally rederive these
erased inferences while explorivg {13, D, J8, G }.

A solution to all three of these defects is enabled by maintaining
records of the dependence of cach inference on carlier ones. When a
contradiction is encountered these dependency records are consulted
to determine which choice to backtrack to. Reconsider the example
where € is inconsistent with G when such records are available, 'The
dependency records state that G is given, but C is a choice from
C v D.
C v D. In general, the problem solver should immediately backerack

Thus the problem solver should backtrack to the choice

to the most recent choice which influcnces the contradiction. "This
technique is called dependency-directed backtracking.

Whenever a contradiction is discovered the dependency records
are consulted to determine which choices caused the contradiction,
so this choice can be avoided in the future. These are called the
nogood scts (Stecle, 1979) as they represent choices which are mutually
contradictory.

Dependency records also solve the third problem of chronological
backtracking (illustrated by working on {E,G} twice). 'The depen-
dence of b on a is recorded with b; but b is a consequence of a and
this is also recorded. Thus, whenever some option is included in the
current set, the dependency records can be consulted to determine
the consequences of those options. Thus, the consequences of {£, G}
need only be determined once. 'This can be affected quite directly
within the data base. Entrics arc marked as temporarily unavailable
(i.c., out) if they arc not devivable from the sct of choices currently
being cxplored.

These techniques are the basis of the 'TMS strategics of (Doyle,
1979) and (McAllester, 1980). In the more gencral TMS strategics it
is not necessary to specify the overall ordering of the scarch space
(so far we have been presuming some simple-minded enumecration
algorithm). They, in effect, choose their own enumeration but this
ordering can be controlled somewhat by specifying which parts of the
scarch space to explore first.

It is important to note that all these strategies are equivalent in
the scts of options that are cxplored. 'The most sophisticated TMS
will find as many consistent solutions as purc enumeration. The goal

is to enhance efficiency without sacrificing completeness.

PROBLEMS WITH USING TMS

Truth maintcnance systems are the best general-purpose mechanism

for dealing with choice. However, they have certain limitations which
In appropriate circumstances can be avoided,

The single state problem. Given a set of choices which admits
multiple solutions, the IT'MS algorithms only allow onc solution to be
considered at a time. ‘This makes it extremely difficult to compare
two cqually plausible solutions. For example, suppose A, D, E,G and
B,C,E,G arc both solutions.
these states simultancously. However, this is often exactly what one

It is impossible to cxamine both of

wants to do in problem solving — differential diagnosis to determine
the best solution.

Overzealous contradiction avoidance. Suppose A and B arc
contradictory. In this casc, the TMS will guarantee that if A is
belicved, B will not be, and if B is belicved, A will not be.

is not necessarily the best problem-solving tactic. All a contradiction

This

between A and B indicates is that any inference dependent on both
A and B is of no value. But it is stll important to draw inferences
from A and B independently. A discovery of a contradiction between
A and B will result in one of A or B being abandoned undil another
contradiction is encountered.

Switching states is difficult. Suppose that the problem solver
decides to temporarily change a choice (i.e., not in response to a
contradiction). ‘There is no convenient mechanism to facilitate this.
The only direct way to change the current choice set is o introduce a
contradiction, but once added it cannot be removed so the knowledge
state of the problem solver is irrcconcilably altered. Suppose the
change of state was somchow achieved. There is no way to specify
the target state. All a 'I'MS can guarantee is that it is contradiction-
free. So, in particular, there is no way to go back to a previous state.
The reason for these oddities is that a T™MS has no uscful notion of
global state. All 'TMS guarantecs is that cach justification is satisfied
in some way. Onc inclegant mechanism that is sometimes utilized to
manipulate states is to take snapshots of the status and justifications
of cach asscrtion and then later resct the centire datxbase from the
snapshot. This approach is antithetical to the spirit of TMS for it
reintroduces chronological backtracking. Information garnered within
onc snapshot is not rcadily transferred to another.

The dominance of justifications. A 'TMS solcly uscs justifications,
not assumptions. Furthermore, what (Doyle, 1979) calls an assumption
is context-dependent: an assumption is any node whose current
supporting justification depends on some other node being out. ‘Thus,
as problem solving proceeds the underlying support justifications
and hence the assumptions underlying assertions change. ‘This is
particularly problematic for problem solvers which must often consult
the assumptions and justifications for assertions.

The machinery is cumbersome. The 'TMS algorithm, partly be-
cause it is very gencral often spends a surprising amount of time
to find a solution that satisfies all the justifications. A particularly

81

expensive opceration can result from the dependency-directed back-
tracking in response to a contradiction. The backtracking may require
extensive scarch, and the resolution of the contradiction often results
in other contradictions. Eventually, all contradictions are resolved,
but only aftcr much backtracking. During this time the status of
some assertion may have changed between in (believed) and out (not
belicved) many times.

Unouting. Suppose the option sct {B,C, E,G} is cxplored, a
contradiction is discovered and then some time later the option sct
{B,D,E,G} is explored. The use of dependency records assures that
the inferences derived from {B, E,G} in the first set {,C,E,G}
will carry through to the second set {B, D, E, G} without additional
computation. The situation is unfortunately not so simple. Suppose
that in this example the set {C, E, G} is contradictory but that this
was not discovered untl after extensive problem solving effort. Once
the contradiction is discovered there is no longer any point to working
on the current state and therefore dependency-directed backtracking
begins. Work on the situation {B, C, E, G} was never permitted to go
to conclusion. In particular, not all inferences based on {E, G} may
have been made, When the set {B, D, I2,C} is explored the carlier
derived consequences of {I7, G} can be included, but problem solving
must continue for {E,G}. The difficult task, for which TMS is of no
aid, is how to fill the “gaps™ of the consequences of {17, G} without
redoing the entire computation.

There are four styles of solutions to this task, none completely
satisfactory. (1) Even though a contradiction occurs during analysis
of {E, G} this computation could be allowed to go on. "The difficulty
here is that a great deal of cllort may be spent working on a sct of
(2) Another

technique is to store a snapshot of the problem-solver's state (its

choices that may be irrelevant to an overall solution.

pending task queuce) which can be reactivated at a later time. (3)
It is also possible to restart the computation from {I7, G}, taking
advantage of the prcviuﬁs result by looking at the consequences and
cxamining which ones arc nissing. (4) ‘I'he casicst technique is just
to restart the computation from {£, G} without taking any cffort to
sce which consequences should be unouted. All expensive problem-
solving steps arc memoized so no time-consuming steps arc repeated.
For example, (de Kleer and Sussman, 1980) usecs this technique to
cache all symbolic GCD computations.

A GENERAL SOLUTION

My solution is to include with cach assertion. in addition to its
justifications, the set of choices (assumptions) under which it holds.
For cxample, cach assertion derived from assumption A is labeled
with the set {4}, cach assertion derived from both assumptions A and
B is labeled with the set {4, B}. Thus if z == 1 under assumption
A and z 4- y = 0 under assumption B then we deduce y = —1
under assumption set {A, B}. (For clarity, I'll call the combination
of an asscrtion with its assumptions and justifications a value and
notate it: (assertion,{assumptio‘ns},jusﬁ'fication(s)). Thus, the
preceding inference is written as: if <z = 1,{4},> and <z 4y =

0,{B}>, then <y = —1,{4,B},>.) Unlike a TMS where the same
node can be brought in and out an arbitrary number of times, a value
is removed from the data base only if its assumption sct is found to
be contradictory. For example, the database can contain both <z =
1, {A},> and <z = 0, {B},> without difficulty. = = 1 contradicts z =
0 but this provides no information about z = 1 or z = 0 individually.
However, these two values imply that the assumption sct {4, B} is
contradictory. ‘Thus, if the database contained <z -+ ¢ = 0, {4, B},>
it would be removed? beeause the set {4, B} is contradictory. As this
scheme is primarily based on assumptions, not justifications I term it
assumption-based as opposed to justification-based 'I'’MS systems.
Abstractly, onc possible3 mode of interaction between the the
problem solver and the data base is as follows. A list is maintained of
cvery assumption set discovered to be contradictory. Whenever the
problem solver discovers two values with contradictory assumptions,
the combined assumption set is placed on this fist, and cvery value
based on it or any of its super scts is crased from the data base.
Suppose cvery problem-solving step can be formulated as: from
a and b determine f(a,b) where f takes some problem solving
‘Then the interaction with the data basc of values should
be: : <a,A,,> and B : <b, Ap,> add value
<f(a, b), As U A, (e, 8),> unless the assumption sct A, J 4, a superset
Note that this

work.
for all values of form «

of some known contradictory sct of assumptions.
scheme does not have or require any notion of context. ‘The
cquivalent notion in the assumption-based scheme is just a st of
assumptions: implicitly, a set of assumptions selects all those values
whose assumption sct is a subset of the context's assumption sct.

It is not necessary to be this extreme. A more sophisticated mode
of interaction would be to explore only a part of the solution space,
i.c.. only perform inferences using those values whose assuinptions
are a subsct of the current sct of interesting assumptions. ‘Then, when
a contradiction is discovered, the sct of interesting assumptions is
changed but nothing is done to the data basc.

These are just two of many possible modes of interaction between
the problem solver and the data base. Regardless of the mode
ol interaction, the basic assumption-based solution addresses the
problems discussed carlier:

The single state problem. 'I'he assumption-based scheme allows
arbitrarily many contradictory solutions to coexist. Thus, it is simple
to compare two solutions.

Overzealous contradiction avoidance. The presence of two con-
tradictory assertions does not terminate work on the overall knowledge
state, rather only those assertions are removed which depend on the
two contradictory assertions. This is exactly the result desired from a
contradiction — no more, no less.

Switching states is difficulr. Changing state is now trivial or
irrclevant, A state is completely specified by a sct of assumptions,

21¢ is not necessary lo remove it, because unlike a conventional logical sysiem a
contradiction docs not imply everything. T'or some tasks, as pointed out in (Martins
and Shapiro. 1983), there is some utility in deriving further contradictory values.

3But extremely incfficient.

82

Problem solving can be restricted to a current context (i.c., a set of
assumptions) or all states can be explored simultancously. In cither
case, valucs obtained in one statc arc ‘“‘automatically” transferred
For example, if <z = 1,{E,G},> is deduced while
exploring {B, C, E, G}, then z = 1 will still be present while exploring
{B,D,E,G}

to another.

The dominance of justifications. As assumptions, not justifications
are the dominant representational mode it is casy to compare sets of
assumptions underlying assertions. For example, it is casy to find
the assertion with the most assumptions or the least; it is casy to
determine whether the presence of an assertion implies the presence
of another {a implics b if the assumptions of b are a subsct of the
assumptions of a). Also the justifications underlying a value never
change.

The machinery is cumbersome. The underlying mechanism is
simple. There is no backtracking of any kind — let alone dependency-
directed backtracking. 'The assumptions underlying a contradiction are
directly identifiable. A valuc once added is never removed unless it
is removed permanently, thus it is not necessary to explicitly mark
entrics as believed or disbelicved.

Unouting. 'The unouting problem is partially resolved. Consider
the analog to the TMS problem of preserving assertions while moving
from state {B,C, E,G} to {B,D,E,G} in responsc to a contradiction.
In the simplest assumption-based scheme, all possibilities arc cxplored
simultancously. Hence, a contradiction within {B,C, E,G} mcrcly
implics that any cxploration of that state ceases, i.c.. any inferences
involving scts which contain {B,C,E,G} as a subsct arc avoided.
Work on state {B, D, E,G} continucs as if thc contradiction never
occurred. Assertions derived from {E,G} arc automatically part
of every superset hence arc also part of {B,D,E,G} (and the
contradictory {B, C,E, G} for that matter).

Unfortunately, the assumption-based approach fails to address all
of the unouting problem. Suppose that under the assumption {E, G}
the problem solver has determined that z = 1 and has consequently
gonc through the difficult process of determining

V3

/2:1 1
) ' S
°© Vi —ae? 3
and that z = 1 is also deduced urder assumptions {G, H} (i.c., an
indcpendent derivation). Not all consequences of z = 1 using {E, G}
carry over to {G, H}. In addition there are derivations from z = 1
possible under {G, H} but not under {E,G}. Consider a simplificd
example. Suppose the problem solver deduced a @ <z = 1, {A},>, §:
e +y=0,{B}> 7:<z2=1,{4,B}> and x: <z = 0,{4,B},>. In
this situation y = —1 is not derivable from o and B as the sct {4, B} is
contradictory. However, if € : <z = 1, {C},> is discovered later, <y =
—1,{C, B}, (B,)> is derivable. Thus, <z = 1, {C},> has consequence
y = —1, but <z == 1, {A},> docs not. This unouting problem cxists
whether assumption-based or justification-based techniques are used.
There is an inclegant fix to this problem which we have implicitly
adopted carlier in this discussion: two values are considered the same
only if both their assertion and their assumptions are the same. 'This is

contrary to the way TMS’s arc usually used (two valucs arc the same if
their assertion is the same). Thus, the unouting problem produced by
simply changing statuses is completely avoided, but unouting problems
produced by adding significantly different justifications is still with us.

More research is required to find more elegant solutions. Unouting
is a open problem for both approaches. Tt just shows up in a different
place in the assumption-based approach than in the justification ap-
proach. Depending on the characteristics of problem-solving task, an
system implementor must choose which which inadequacy he can live

with,

REDUNDANCY AND INCOHERENCY

The problem solver will invariably discover multiple derivations
for some asscrtions. 1f the only goal is to identify the statuses of
asscrtions, the problem solver should throw out all values whose
assumptions arc cqual to or a superset of the assumptions of some
alternate derivation.

For many tasks the statuses of the assertions are as important
as their derivations. For example, causal reasoning carcfully analyzes
the derivations for quantitics to determine device functioning. IFor
such tasks the problem solver cannot be so cavalier in throwing
away derivations, Strictly speaking, if the goal is to discover all
possible derivations as well as all possible assertions, the problem
solver should never throw away any derivation. Unfortunately, there
is no guarantce that the rules of inference the problem solver are
using are logically independent. Redundancy in the inference rules
results in syntactically different but essentially identical derivations.
This problem of logical independence is outside of the scope of the
‘I'MS. but is one cvery problem solver which examines derivations
must cope with 4

Another problem that ariscs if derivations are important is that
of incoherency. If the data base contained « : <z + z = v, {}>
8 : <z = 1,{A}>. and v : <z = 1,{A},>, three values would be
deduced: <y = 2,{A}, (e, 8,80, <y = 2,{A}, (e, 7,7 and <y =
2,{A}, (e, B,7)>. 'This last valuc is incoherent in that its derivation
uses z twice with a different derivation for z cach time. 'Thus it
should be discarded.

INTERPRETATION CONSTRUCTION

Onec of the advantages of the assumption-based approach is that
With the
inference algorithm suggested in this paper it is not cven known
how many globally consistent states, if any, there are. Howcver,
at the termination of the problem-solving cffort some notion of
global consistent state is often required. We call the global choice
scts interpretations and the process of computing them interprelation

the notion of global consistent statc does not appear.

4A solution that has worked in practice; A and B are two derivations for the same
asscrtion. Suppose A is derived under assumption set @ and B is derived under
assumption set b. 1f @ is a proper subset of b, B should be discarded. If @ and b are
the same, compute all the assertions A and B depend on, call these o and 8. Mo is
a proper subset of B, B should be discarded. Otherwise, both derivations should be
kept and used.

83

construction. Most of the complexity of interpretation construction
results from the goal of maintaining global coherence and is outside
the scope of this paper.

(de Kleer, 1979) and (de Kleer and Brown, 1984) usc a very
simple technique to manage the construction of interpretations. All
non-contradictory inferences are permitted to proceed unchecked.
After the data base reaches quicscence a sccond process is invoked to
construct all possible globally consistent states. It can be viewed as
a straight-forward sct-manipulation algorithm. Its task is to construct
maximal sets of assumptions, such that the addition of any assumption
results in sclecting a contradiction or an incompatibility and the

removal of any assumption removes all values for some assertion.

SOMLE (MORE) COMPUTATIONAL TECHNIQUES

More rescarch is required to determine which implementation
techniques are best for assumption-based approaches. Here [present
and cvaluate some possible implementation options.

The basic data structure is the set and its representation can be
optimized (c.g., as cdr-coded lists, arrays or bit-vectors). 'the same
set can be arrived at by unioning many different combinations of
other sets. So it is important to (a) uniquize sets, and (b) quickly
determine whether the given st has been created carlier. "I'hese goals
arc achicved with a canonical form for sets and a hash table for these
canonicalized sets. ‘Thus, for example, once a set of assumptions is
determined to be contradictory its unique structure can be marked as
such.

‘The most common operations of the assumption-based algorithims
are sct operations, thercfore they can be optimized by creating an
explicit subset/superset lattice such that subsct/superset computations
can proceed quickly (this is only possible of course if the sets arc
uniquized). Like the justification-based approaches, assumption-based
approaches must somchow record and access the nogood sets. The
simplest technique is to maintain a list of all the contradictions and
whenever a new sct is created by unioning two it is checked to
determine whether the new set is a superset of any known nogood set.
As scts are uniquized this operation need only be performed once per
sct. Given a lattice data-structure contradiction manipulation can be
surprisingly cfficient. As cvery sct is entered into the lattice structure
as it is created. the fact that it is a superset of some nogood set is
computed by a simple intersection of the nogood sets with the subscts
of the new sct (which takes lincar time for ordered data structures).
Furthermore, when a new contradiction is discovered it is a simple
matter to mark all its supersets as contradictory and stop all problem
solving on them.,

Howecver, unless the problem is cxtremely large (ic., tens of
thousands of assumptions in an 1.M-2) thesc advantages do not
outweigh the costs of maintaining the data-structures in the first
place. In our experience the extra cffort incurred in maintaining this
data-structure docs not turn out to be worth the cost (storing sets as
ordered cdr-coded lists or bit-vectors speeds up subset computations
sufficiently).

(Martins and Shapiro, 1983) uscs the technique of marking each
assertion with the super-sets of its assumption-set which are nogood.
((Martins and Shapiro, 1983) calls these super-sets the restriction sets
and the assumption sct the origin set’) This has the advantage that
it is cxtremely simple to determine whether a newly created sct is
contradictory as only these super-sets nced be consulted, not the
cntire set of contradictions. However, whenever a contradiction is
i o deteim

¢ updated (this is

discovered an

¢

T

whether the restriction scts of any assertion must
roughly cquivalent to entering a sct into a lattice).

Although the ordering of the inferences is irrelevant to complete-
ness it has significant influence on cfficiency. For cfficiency, the
problem solver should work on values with fewer assumptions first.
The overall cfficiency of the problem solving is roughly proportional
to the number of assumptions and inferences (i.c., the number of
constructed values). Fortunately, with the computational techniques
outlined in this section, performance degrades very slowly with the
number assumptions. However, cach inference involves a scparate
problem-solving step. so, roughly spcaking, cfficiency is lincarly re-
lated to the number of inferences. This provides a strong motivation
for reducing the number of inferences. There are two classes of in-
ferences which are guaranteed to be futile: values whose assumption
sets are fater discovered to be contradictory and valucs which are su-
perseded by other values with identical assertions whose assumptions
arc a subsct of the original assumptions. Both of these inferences are
avoided by working on values with smaller assumption scts first. One
way to achicve this is to introduce new assumptions as late as possible;
this ensures that any values following from the new assumption will
not be superseded with values with subsct assumption scts and no
subsets arc contradictory.

The exclusive-or between choices produces many contradictions
which tend to clutter the contradiction recording mechanism. For
cxample, the choice

AVBvVC

introduces the four nogood scts {4, B} {4, C} {B,C} and {4, B, C}.
A significant increase in cfficiency can be obtained by marking each
individuat choice with the choice sct it is a member of, Thus, two
different choices of the same set can be trivially checked to sce
whether their combinations results in a contradiction. Two choices
arc compatible if they arc not members of the same choice set. This

approach is used in (de Kleer, 1979) and (de Kleer and Brown, 1984).

RELATED WORK AND SAMPLE IMPLEMENTATIONS

There are many applications for which the architectural proposal
of this paper is applicable.

LOCAL (dc Kleer, 1976) is a program for troubleshooting clectronic
circuits which was incorporated in SOPHIE I (Brown, Burton and
de Kleer, 1983). It uses propagation of constraints to make predictions

SIn his actual implementation he subtracts out the origin scl from each restriction set,
but this is conceptually unnccessary.

84

about device behavior from component models and circuit measure-
ments. As the circuit is faulted, some component is not operating as
intended. Thus, at some point, as the correct component model does
not describe the actual faulty component, the predictions will become
inconsistent. The assumptiohs arc that individual components arc
functioning correctly. A contradiction implics that some underlying
assumption is violated, hence the fault is localized to a particular
).
next is the one that provides maximal information about the validity
of the yet unverified assumptions. ‘This program requires that the
assumptions of an inference be explicitly available and that multiple
contradictory propagations be simultancously present in the data base.
Hence, for this task the assumption-bascd approach is better.

QUAL. (dc¢ Klcer, 1979) and ENVISION (de Kleer and Brown,
1984) produce causal accounts for device behavior. QUAL can deter-
mine the function of a circuit solely from its schematic. Qualitative
analysis is inhcrently ambiguous, and thus multiple solutions are
produced. However, for any particular situation a device has only onc
function. Qual sclects the correct one by explicitly comparing different
solutions — somcthing that is only possible using assumption-based
schemes.

(Martins and Shapiro, 1983), (McDermott, 1983) and (Barton,
1983) all attempt to unify assumption-based and justilication-based
approaches. Each of these is powerful enough to formulate the scheme
proposcd in this paper. However, for many tasks, the complexitics
and incfficicncics introduced by a general scheme are unnecessary.
No matter how making choices is formulated, it is important to first
identify the essential problem-solving work it is providing — the topic
of this paper.

MBR (Multiple Belief Reasoner) (Martins and Shapiro, 1983) is a
general rcasoning system which allows multiple, including contradic-
It
is bascd on a relevance logic which explicitly takes into account as-

tory and hypothetical, belicfs to be represented simultancously.

sumptions underlying underlying wifs, In this system multiplc agents
can interact with the samc data base, each individually possessing
consistent belicfs, but belicfs that well may contradict beliefs that
other agents have cntered into the data base.

McDermott (McDermott, 1983) has proposed a very generalized
and relatively complicated scheme which unifics assumption-basced and
justification-based techniques. It uses constraint satisfaction among
justifications and the assumptions marking contexts.

XRup (Barton, 1983), an cquality-bascd rcasoning systcm, uscs
an assumption-based context mechanism instead of the justification-
bascd framework of Rup (McAllester, 1982). As a conscquence it has
many of the advantages of the assumption-bascd approach, c.g., easy
switching between contexts. Interestingly, XRup’s cquality mechanism
is also used to construct cquivalence classes of assumptions and as
a conscquence it is possible to identify syntactically differeni but
essentially cquivalent assumption sets. With the scheme presented
in this paper, there is no nccessity for contexts and their associated
overhead.

The incfficiencies of backtracking for constraint satisfaction prob-
Iems was recognized quite carly. (Mackworth, 1977) summarizes the
difficulties and proposes a number of efficient techniques. Although
not formulated in terms of assertions, justifications, assumptions, his
technique explores the solution space nearly as cfficiently as TMS-like

schemes.

ACKNOWLEDGMENTS

I thank Danicl Bobrow and Brian Williams who hclped sort
out many of the technical issues and forced me to clean up the
implementation.

BIBLIOGRAPHY

[1] Barton, G.E., “A Multiple-Context Equality-based Recasoning
System,” Artificial Intelligence Laboratory, TR-715, Cambridge: M.LT.,
1983.

[2] Brown, J.S., D. Burton and J. de Kleer, “Pedagogical, natural
language and knowledge engincering techniques in SOPHIE I, 11 and
I in Intelligent Tutoring Systems, cdited by ID.Slceman and J.S.
Brown, Academic Press, 1983.

[3] de Kleer, J. and 1.S. Brown, “A Qualitative Physics Based on
Confluences,” to appear in Artificial Intelligence.

[4] de Kleer, J., “Causal and Teleotogical Reasoning in Circuit Recog-
nition,” Artificial Intclligence Laboratory, TR-529, Cambridge: M.ILT.,
1979.

[S] de Kleer, J. and G.J. Sussman, “Propagation of Constraints Applied
to Circuit Synthesis,” Circuit Theory and Applications, Vol. 8, 1980.

[6] de Klcer, “Local Mecthods of Localizing Faults in Electronic
Circuits,” Artificial Intclligence Laboratory, AIM-394, Cambridge:
M.LT., 1976.

”

[7] Doyle, 1., “A Truth Maintenance System,” Artificial Intelligence,
Vol. 12, No. 3, 1979.

[8] Forbus, K.D., “Qualitative Process Theory,” Artificial Intelligence
Laboratory, AIM-664, Cambridge: M.L'T., 1982.

[9] Mackworth, A.K., “Consistency in Networks of Relations,™ Artificial
Intelligence, Vol. 8, No. 1, 1977.

[10] Martins, J.P. and S.C. Shapiro, “Reasoning in Multiplc Belief
Spaces,” 1JCAT-1983, 1983 (sce also: Department of Computer Science,
T'echnical Report No. 203, Buffalo, New York: State University of
New York, 1983).

85

[11] McAllester D., “An Outlook on Truth Maintenance,” Artificial
Intclligence Laboratory, AIM-551, Cambridge: M.LT., 1980.

[12] McAllester D., “Reasoning Utility Package User’'s Manual,”
Artificial Intclligence Laboratory, AIM-667, Cambridge: M.LT., 1982.

[13] McDermott D., “Contexts and Data Dependencies: A Synthesis,”
1983.

[14] Rulifson, J.F., J.A. Derkson, and R.J. Waldinger, “QA4: A
Proccdural Calculus for Intuitive Reasoning,” Artificial Intelligence
Center, Tcechnical Note 73, Menlo Park: S.R.1L., 1972,

[15] Steele, G., “The Definition and lmplementation of a Computer
Programming language based on Constraints,” Artificial Intclligence
Laboratory, TR-595, Cambridge: M.L'T., 1979.

[16] Williams, B.C., “Qualitative Analysis of MOS Circuits,” M.LT.
Al Laboratory TR-567, 1983.

