User’s Manual

FOCs

Formal Checkers - a Productivity
Tool

Version 0.59

Formal Methods and Technologies Group
IBM Research Labsin Haifa
February 2003

Notices

FoCs User’'s Manua

Date modified February 2003

For information regarding FOCs, contact: Gil Shapir (shapir@il.ibm.com)
Tel: +972-4-8296258

International Business Machines Corporation provides this publication “asis’ without warranty of any kind, either express or
implied. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore this statement
may not apply to you.

This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the
preparation of this document, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/
or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, programming, or servicesin your country.

All trademarks and service marks are trademarks of their respective owners.

© Copyright IBM Research Lab in Haifa 2000-2003. All rightsreserved.

Table of Contents

CHAPTER 1 INtrOQUCLION ..cueiiiciietieiesie e e 5
L1 OVEIVIBW .ottt sttt ettt s seesee e e ne e tesre e e e naesaesresnaennens 5
1.2 ADOUL TRISMANUELccueiieiie et 6
CHAPTER 2 Installation and SEtUPccocvveieriieciee et 8
P20 I g = 1 = o o PSSR 8
2.2 RUNNING FOCS......ciiiiie e ie sttt ettt se e e nnes 9
CHAPTER 3 Linking Checkerswith your Designccoceveeiineeicnien s 11
1350 R 111 oo [FTox £ o PSS 11
172 T 7= LY. =] o1 o 12
3.3 LiNKBOE ..ot 17
CHAPTER 4 TULOII@l ..oooviecieecee et s 21
7 R 1 1 [F o1 o ORI 21
4.2 DeSigN DESCIIPLIONc.eecveeieesie et e 21
4.3 The RUIES Rl ..o 22
4.4 Initial Setup for aWorking EnvVironmentccccoovvnineneneinenennne 25
4.5 Generating CheCKErS.........c.coiiiiiiiieii e 26
CHAPTER 5 The Sugar Specification Language..........ccceeeeeeeeieeneeneereeneenn 30
L300 R g 11 oo [UTox £ o OSSN 30
5.2 Getting Started With SUGar..........cceoveiriieiinseseseeese e 31
5.3 The Building Blocks of a Sugar Formula............ccoecvevvviieeiecvecneenn, 38
5.4 Writing @RUIES Fle......ccooiviiii et 43
5.5 State MaChinesS........ccoiiiiiiie e 49
CHAPTER 6 Customizing FOCS SEttingS.......cccevviieiieie e e e 61
8.1 OVEIVIBW ...ttt eae e e seeeteeneeseeseesaeeneeaeeseeeneens 61
6.2 MAIN TAD ..ot 61
6.3 Clock and RESEL Tahcocveiieiieriieiise e 62
6.4 Checker Generation Style Tabcccccvveriiieinine e 64
6.5 REPOMING TaD ..ot 66
6.6 Signal Mapping Tah........ccccvieiieerie e s 81

CHAPTER 7 Using FoCsfor Functional Coverage Analysis.........cccccveunee. 83
7.1 FUNCLIONAl COVEIAQE ... eoeeeeieeeeeeieie sttt e 83
CHAPTER 8 Defining Bugspray EVents........cccccoeceeviecieieviene e 85
S 200 1 g1 0o 1 ') o S 85
S Y 4| - GRS 85
8.3 BVENLS ... 86
CHAPTER 9 FOCsfor RUIEBASE USEr'S......ccccviiiirireneeeeie e 91
9.1 Tipsfor Usersof RUIEBESE........ccccverieiiie e 91
CHAPTER 10 APPENIX A ..ottt sttt s sn e s 93
10.1 Examples of Checker Code in Verilog and VHDLcccoovveeneeeee. 93
10.2 Checker Code in VErilog....c.ccuevieiieeiiee et s 93
10.3 Checker Codein VHDLoooiiiieeeee e 95
CHAPTER 11 APPEeNdiX B.....ooeeeiieiie et s 103

11.1 Common FOCS Error MESSAgEScvuveiererieereerenieesieeesneeesseeesnenesees 103

CHAPTER 1 I ntrOdUCtI On

1.1 Overview

FoCs (short for Formal Checkers, pronounced “fox”) is a productivity tool that greatly
aids design and verification engineers in the complex, costly task of developing
simulation test benches.

FoCs automatically generates simulation checkers, also known as monitors, from
properties specified in the language Sugar". These properties, also called “rules’ or
“assertions’, describe the legal behaviors of the design under test. Typicaly, the user
of FoCs derives properties from the design specification documents where they are
written informally in English and writes them as Sugar formulas. Using FoCs, these
properties are transated into checker code in the desired target language—\Verilog or

VHDL¥*. The checker code is then connected to the simulation environment. Duri ng
simulation, the checkers track and report violations of the properties.

As an example of the power of FoCs, consider an arbiter which must abide by the
following property: upon the compl etion of five consecutive cycles where the request

T. “Sugar” isan industry-standard language for assertion-based verification. It was selected as abasis for
an | EEE standard by Accelleraon April 22, 2002.

f. Inthefuture, FoCswill also generate checkersin C/C++.

FoCs: Forma Checkers 5

CHAPTER 1

signal is asserted and the acknowledge signal not asserted, the busy signal should be
asserted.

The Sugar formulation for this property is:

e {[*], {request & ! acknow edge}[5]}-> {busy_flag}

Once this property isfed into FOCs, the tool produces a corresponding VHDL or
Verilog checker that can be integrated into a simulation environment and monitor the
design behavior on a cycle-by-cycle basis for violation of the property. It is often the
case that a 1-line or 2-line Sugar property is automatically translated by FoCsto a

checker which spans hundreds of lines of HDL code'. The benefit—in terms of
programmer time that would have otherwise been spent in manually coding the
checker—is evident. There are other benefits to using FoCs—such as reduced
debugging time, portability, and reuse of properties. The checking code produced by
FoCsis synthesizable, so this code can be used in emulation aswell. By virtue of these
advantages, FoCs increases engineering productivity in a very notable manner.

A complimentary application of FOCs s the generation of coverage monitors for
coverage analysis. When FoCs is used for this purpose, the user specifies
combinations and/or sequences of eventswhich he or she wants covered in simulation.
FoCs then automatically generates a checker to track the occurrence of these events
during simulation.

For further information on FoCs, see the FOCs website at

www.haifail.ibm.com/projects/verification/focs/index.html

1.2 About This Manual

Thismanual isintended to serve as a guide for using FOCs (including the definition of
design properties using Sugar). The manual is organized as follows:

e Chapter 1 Introduction —introduces the FoCstool.

* Chapter 2 Installation and Setup — explains how to install and set up the FoCs
tool.

T. The checker produced by FoCs for the above Sugar property isincluded, for reference, in Appendix
A.

6 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

www.haifa.il.ibm.com/projects/verification/focs/index.html

Introduction

» Chapter 3Linking the Checkerswith your Design —explains how to link the
checkers with the design you are testing.

» Chapter 4 Tutorial — guides you through a short example, where you can get
hands-on experience in creating checkers using FoCs.

» Chapter 5 Sugar — provides details on how to start using the Sugar and EDL spec-
ification languages to specify the design properties, including the structure of the
rulesfile, creating formulas, expressions, and satellites. This chapter also presents
examples of real-life formulas that can be used with FoCs.

» Chapter 6 Customizing FoCs Settings — describes the settings and tabs that can
be customized for your use.

» Chapter 7 Using FoCsfor Functional Cover age — explains how to enhance the
quality of tests by providing a means for measuring test coverage.

» Chapter 8 Defining Bugspray Events—for users who want to use FoCs with
Bugspray instrumentation. Explains how to define Bugspray eventsin the FoCs
rulesfile.

» Chapter 9 FoCsfor RuleBase User s— explains the methodol ogy of working with
FoCs with properties used for Formal Verification.

» Appendix A — Shows examples of checker codein VHDL and Verilog.
» Appendix B — Documents and explains common error messages.

FoCs: a Forma Checker Tool 7

cnnererz INStallation and Setup

2.1 Installation

This section explains how to install the FoCs tool and get it up and running.

If FoCsisnot already installed on your computer or network, proceed as follows:

1. Create anew directory and copy theinstallation file focs.tar.gz into the directory.
2. Type the command gzip -d focs.tar and press Enter.

3. Type the command tar xvf focs.tar and press Enter.

4. Type the command rm focs.tar and press Enter.

Thiswill unzip the tar file and copy the installation files into their appropriate
location.

2.1.1 Personal Setup

To customize FoCs for your individual environment, you need to set an environment
variable and create an alias for FoCs.
The environment variable FOCS DIR should point to the FoCs installation directory.

In csh: setenv FOCS DIR the_installation_directory
In ksh: export FOCS DI R=the_ installation directory

FoCs: Forma Checkers 8

Installation and Setup

Createan dias “focs” for $FOCS_DIR/focs asfollows:

or

In csh: alias focs ‘$FOCS DI R/ focs’

add $FOCS_DIR to your search path.

2.2 Running FoCs

The following sections provide tips on how to begin working with FoCs.

2.2.1 Checker Generation

Before you begin, you should create a working directory from which you run FoCs.To
begin using the FoCs tool:

1
2.

Type the command: f ocs

If thisisyour first FOCs session in this directory, you have to set up FoCs for your
project. Click Settingsto open the Settings dial og.

Select the target language (VHDL or Verilog), the target simulator (only for
VHDL), the clock signal name, and the reset signal name (unless you ask FoCs to
generate an internal reset).

Select the rules file—the file in which you write your rules. The language in which
you specify rules (Sugar) is described in Chapter 4 of this guide.

You can browse through the other Settings tabs and fieldsif you want to have more
control over the generation process. Use the tool-tips to see short field descriptions.

When you are done, close the Settings dialog and return to the main window.

Select arule to betranslated into a checker and click Generate. Errors are reported
in the Messages window below. If generation is successful, the checker filename
will appear in the M essages window.

If you wish to translate several rules into one checker file, select theserules (using
control/mouse-button or shift/mouse-button or the All button) and press Generate.
You will be asked to provide a name for the checker file, and for the entity name if
the generated checker isin VHDL.

FoCs: Forma Checkers 9

CHAPTER 2

2.2.2 Batch Mode

Checkers can a'so be generated by the command line without invoking the GUI. To
generate a checker for a specific rule, you must type in the command line: focs -
batch <rule name>. To generate achecker for all rulesin the rulesfile, you must type
in the command line: focs -batch all. To generate several rules, you must typein the
command line: focs -batch <rules names>. In this case, the settings for the generated
checker are those defined in the file focs.setup. The best way to update thisfileis by
defining the settings through the GUI. When exiting FoCs, the settings are saved to
thisfile. You can also use the following flags in the batch mode:

focs -batch <rule name or rules names or all> -rulefile> -0 <output_file_name>

-s<setup_file_name>.

Flag Explanation

-r Thisflag reads the rule file from the command line instead of
reading the rule file from the setup file

-0 Thisflag gives a specific name for the output file (checker
name).

-S This flag reads the setup file from the command line instead
of reading the default setup file focs.setup (from the current
directory).

10 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

CHAPTER 3

Linking Checkerswith your
Dedgn

3.1 Introduction

In order to monitor design behavior during simulation, the generated checkers must
become part of the simulated model. This occurs through the following three steps:

1

Linkage
The checker module (in Verilog) or entity/architecture (in VHDL) must be
compiled and linked to the design under test. The actual commands are specific to

the compilation/simulation environment, and are not within the scope of this
document.

I nstantiation

A call to the module (in Verilog) or instantiation of the entity (in VHDL) must
(usually) beincluded in the design. FoCs assists in this step by generating the
calling statements.

Signal Connection

The checker signals must be connected to the real design signals. The solution
depends on the language and on the simulation environment. FoCs provides a
standard language solution for port mapping, and specific signal-connection
solutions for several simulations.

FoCs: Forma Checkers 11

CHAPTER 3

In the following sections, we describe the mapping method and linkage.

3.2 Signal Mapping

To keep your formulas simple and readable, you can use short and meaningful signal
names. You can then map these simple names to the real signal names. FoCswill map
those signalsto real portsif an instantiation statement was created, when a mapping
for MTI isdefined, or when Bugspray is used.

For example, use the namer equest rather than BXX_ARB_REQ. You can create a
mapping filein your working directory and let FOCs map the aliases to the real names.
The basic format of the mapping fileisalist of pairs of signal names, one pair in each
line.

aliasl real nanel
alias2 r eal nane2
For example:

request BXX_ARB_REQ
signal 1 / MY_DESI GN BLOCK1/ BLOCK11/ SI GNAL1

You should define the deliminators according to your mapping option, for example,
dots for port mapping or slashesfor MTI Signal Spy.

The mapping file should be pointed to by Settings/Signal Mapping/M appingFile.

3.2.0.1 Nested Design Signals

If design signals are nested and all signals are declared in the same entity, it is possible
to define the Design Signals Prefix parameter in the settings options, under Signal
Mapping. The value of thisfield is added to every design signal that appearsin the
mapping file. In case of Automatic Mapping, where the port name is considered to be
the corresponding design signal name, the Design Signals Prefix is added to all port
names that appear in the checkers entity (see Section 3.2.0.2 on page 14).

For example:
Design Signals Prefix is defined to: design.buf

12 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Linking Checkerswith your Design

content of file mapping.dat :
cl k clock
rec receive

trans transmt

Is equivalent to:
cl k desi gn. buf. cl ock;
rec design. buf.receive;
trans design.buf.transnit;

To map portsto signals that appear in different parts of the design (the signals are
nested, but the path is different from signal to signal), the following syntax existsin
the file mapping.dat:

#path < path for the signal >

All of the signals that appear after thisline, and until the next line with the same
syntax, will receive the string in arrow brackets (<>) as a subpath, in addition to the
global path defined by aenvironment variable. It ispossible to use this syntax without
defining a global path.
Example 1.
Design Signals Prefix is defined to: design
content of file mapping.dat:

#path buf 1

clk clock

rec receive

#path buf_2

trans transnmit

Is equivalent to:

cl k design. buf 1. cl ock;

rec design. buf _1.receive;

FoCs: Forma Checkers 13

CHAPTER 3

trans design.buf_2.transmt;
Example 2:
Design signals Prefix is undefined.
content of file mapping.dat:

#path design. buf _1

clk clock

rec receive

#pat h design. buf _2

trans transmt
I's equivalent to:

cl k design. buf _1.cl ock;

rec design. buf _1.receive;

trans design. buf 2.transnit;

3.2.0.2 Automatic Signhal Mapping

There is one more possibility to map a port signal. If the port signals have the same
names as the signals in the design and are not nested or have the common path, they
can be mapped by defining Warn Incomplete Mapping to No (in the Settings options,
under Signal Mapping), and defining Design Signals Prefix to the path needed.

In this case, every port name in the checker that does not appear in the mapping file
(or if amapping file does not exist at all) will be mapped to the signal with the same
name and with the path defined by Design Signals Prefix. A mapping that is defined in
amapping file, overrides the Automatic Mapping. As before, defining the path is
optional.

Example 1.
Warn Incomplete Mapping No
Design Signals Prefix design
content of mapping.dat

#pat h buf

cl k clock

14 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Linking Checkerswith your Design

checker ports : clk, rec,
Is equivalent to:

cl k desi gn. buf . cl ock;
rec design.rec;

trans design.trans;

Example 2:

Warn Incomplete Mapping No
Design signals Prefix is undefined
file mapping.dat doesn’t exist

checker ports: clk, rec, trans

Is equivaent to:
clk clk;
rec rec;

trans trans;

Example 3:
File mapping.dat doesn’t exist
Warn Incomplete Mapping No
Design signals Prefix design
Is equivalent to:

cl k design. clk;

rec design.rec;

trans design.trans;

trans

FoCs: Forma Checkers

15

CHAPTER 3

3.2.0.3 Using Hierarchical Signal Names

It is possible to use hierarchical signal names when writing Sugar formulas. For such
signals, FoCs will automatically create a unigue, non hierarchal signal name, and map
it to the hierarchical name.

For example, it is possible to write the formula:

fornmul a

{

al ways(ul. u2. aa)

In this case, FOCs will generate a checker signal named focs ul u2 aa, anda
mapping between it and ul.u2.aa.

If adesign signal prefix is defined, it will be added to the signals mapping. In the
previous example, if we had design signal prefix set to main we would get the

mapping:
focs ul u2 aa =>main..ul.u2.aa

For this kind of mapping, “ Automatic Mapping” should be chosen, i.e., “Warn
Incomplete Mapping” should be set to “No”.

It is possible to override the default mapping that is created by defining a different
mapping for the signal name that was created in the mapping.dat file.

In the above example, it is possible to define in the file mapping.dat the following
mapping:
focs_ul u2 aa "design. my_bl ock. aa"

3.2.0.4 Mapping Vectors

When a checker port is avector, the signal that will be mapped to it should aso be a
vector. In the file mapping.dat, the syntax for vector is:

vect or _name(i ndex1..index2)

16 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Linking Checkerswith your Design

Thisisasyntax only for design signals because the range of a checker port is known
(the size of design vector has to correspond to the appropriate checker port).

Example:

content of file mapping.dat:
#path buf 1
clk clock
rec "receive"
#path buf 2
trans transmt
bus "vector(10..41)"

Where “bus’ isthe port in the checker which is vector 0..31, the above is equivalent
to:

clk buf_1.cl ock;

rec buf _1.receive;

trans buf _2.transmt;
bus buf _2.vector(10..41);

If the range of the vector is not defined, the range of the checker port will be used. All
the options that were discussed in the previous subsections are relevant for both
vectors and signals.

3.3 Linkage

The following sections discuss linkage, which describes how to link the generated
checkers with the design for several simulation environments.

3.3.1 Verilog

By default, two files are generated—the checker module and afile that contains a call
to this module. You should embed the call statement in the design. The actual
parametersin the call statement are the design signal names mentioned in the

FoCs: Forma Checkers 17

CHAPTER 3

formulas. If aname is mapped, as described in the Signal M apping section above, the
post-mapping name will be used as an actual parameter in the call statement.

You can choose to generate a bare Verilog by using Settings/GenerationStyle/
GenerateModule=NO. In this case, the checker will not be encapsulated in amodule
and you will have to embed its body in the design.

3.3.2 Pure VHDL

By default, three files are generated—the checker entity+architecture, afile that
contains a component statement, and afile that contains an instantiation statement.
You should embed the latter two statements in the design (automatically, if possible).
The actual parameters in the port map of the instantiation statement are the design
signal names mentioned in the formulas. If aname is mapped, as described in the
Signa Mapping section above, the post-mapping name will be used in the
instantiation.

3.3.3 Bugspray (IBM only)

The generated checker containsinstrumentation directives that help Bugspray link the
checker to the design and connect the checker signalsto the design signals. The
component and instantiation statements are not required and are not generated.
Settings/GenerationStyle/DesignEntityName must specify the design entity to which
the checkers refer. Port mapping names are used in Bugspray “ --!! inputs’ section.

3.3.4 Model Sim®

Three files are generated—the checker entity+architecture, afile that contains a
component statement and a file that contains an instantiation statement. You should
embed the latter two statements in the design.

There are three possible signal mapping methods, controlled by Settings/

Signa M apping/M appingM ethod. If you choose None, the generated checker will be
regarded as a Pure VHDL checker and linked to the design as such (see above). We
recommend that you choose None. If force freeze or signal spy is used, appropriate
mapping directives will be added to the generated checker. In the case of force-freeze,
the directives are written to a separate file, with the extension “mon” (shortcut for
monitor). When using signal spy, every design signal name must be double quoted

18 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Linking Checkerswith your Design

except for generic ports, described in the next section. Thisis because signal spy
mapping deals with strings.

3.3.4.1 Signal Spy Mapping Using Generic Ports

It is possible to define a mapping from signals to generic ports.

To map asignal to ageneric port, simply write the name of the generic port, in the
mapping file, without double quotes. It is aso possible to use a concatenation of
strings, using generic ports (exactly as you do when applying signa spy on your
VHDL).

For example:
aa, bb, cc are checker ports.
/main/ul/aa, main/u2/bb, main/u2/cc are design-under-test signals

to which we want to map checker ports (correspondingly).

Two examples of possible mappings FoCs can generate:
a. without generic ports:
init_signal _spy("aa", "/main/ul/aa");
i nit_signal _spy("bb", "/main/u2/bb");
init_signal _spy("cc", "/min/u2/cc");
b. with generic ports:
generic (
X STRING:="";
y . STRING: ")

init_signal _spy("aa", "/main/u" & x & "/aa");
init_signal _spy("bb", "/main/u" &y & "/bb");
init_signal _spy("cc", "/main/u" &y & "/cc");

It isthe user’sresponsibility to set x tobe*1” andy to be“2” in checker
instantiation.

FoCs: Forma Checkers 19

CHAPTER 3

* Note: two mappings are give the sameresult under condition x =" 1" andy =
n 2ll .

Mapping file for (a) - without generic ports:
aa "/main/ullaa"
bb "/ main/u2/bb"
cc "/main/fu2/cc"

Mapping file for (b) - with generic ports:
aa "/main/u" &x & "/aa"

bb "/main/u" &y & "/bb"

cc "/main/u" &y &"/cc"

* Note: x andy appear in mapping file without double quotes so that they are
interpreted by FoCs as generic ports.

For more information about force freeze and signal spy, see the MTI documentation.
The directives are derived from the mapping mechanisms described in the Signal

M apping section above. This means that you have to provide a mapping file and/or
use the Design Signal Prefix option.

If the mapping method is something other than None, the generated entity, component,
and instantiation have an almost empty port map because the actual signal hooking is
done through the special directives. Only the clock and reset signals are explicitly
referenced.

20 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

CHAPTER 4 TUtOHaI

4.1 Introduction

This chapter guides you through an example of asimple design and how FoCs can be
used to enhance its verification productivity. The tutorial presents a small design
named BUF and alist of rules which the design must abide by, and shows you how to
generate checkers from these rules.

4.2 Design Description

BUF isadesign block that buffers aword of data (32 bits) sent by a sender to a
receiver. It hastwo control inputs, two control outputs, and a data bus on each side, as
shown in the block diagram below:

FoCs: Forma Checkers 21

CHAPTER 4

T ESOB_REQI BtoR_REQ. ___________
. .BtOS_ACK .RtoB_ACK. .
Sender . BUF Receiver
L DAy po.3y

Communication (on both sides) takes place by means of a four-phase handshaking as
follows:

When the sender has data to send to the receiver, it initiates a transfer by putting the
data on the data bus and asserting St oB_REQ (server to buffer request). If BUF isfree,
it reads the data and asserts Bt 0S_ACK (buffer to server acknowledge). Otherwise, the
sender waits. After seeing Bt 0S_ACK, the sender may rel ease the data bus and deassert
St oB_REQ. To conclude the transaction, BUF deasserts Bt 0S_ACK.

When BUF has data, it initiates a transfer to the receiver by putting the data on the
data bus and asserting Bt oR_REQ (buffer to receiver request). If the receiver isready, it
reads the data and asserts Rt 0B_ACK (receiver to buffer acknowledge). Otherwise,
BUF waits. After seeing Rt 0B_ACK, BUF may release the data bus and deassert

Bt oR_REQ. To conclude the transaction, the receiver deasserts Rt 0B_ACK.

4.3 The Rules File

For the tutorial, arules file with some rules regarding the BUF design has already
been created, and can be found at;: $FOCS_DIR/tutorial/rules.

The rules are written in Sugar. See CHAPTER 5: The Sugar Specification Language
for more details.

The rulesfile contains the following rules:

rule ack_interleaving {

btor _reqstob _reqbtos_ackbtos_ack formul a

22 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Tutorial

"No overflow rtob_ack is asserted between any two btos_ack
assertions "

{

{ [*] ., '"RST & rose(btos_ackbtos_ack) , true }(
rose(rtob_ack) before rose(btos_ack))

}

formul a

"No underflow. btos_ack is asserted between any two rtob_ack
assertions”

{

{ [*] ., 'RST & rose(rtob_ack) , true }(rose(btos_ack) before
rose(rtob_ack))

}

rul e four_phase_handshake | eft{
formul a

"A request can not be raised when ack is high "

{

{ [*] , 'stob_req & btos_ack , stob_req }(false)
}
formul a

"A request can not be | owered when ack is | ow

{

{ [*] , stob_req & !btos_ack , !stob req }(false)
}
formul a

"An acknow edge can not be raised when req is | ow'

FoCs: Forma Checkers 23

CHAPTER 4

{

{ [*] , '"btos_ack & !stob req , btos_ack }(false)
}
formul a

"An acknow edge can not be | owered when req is high"

{
{ [*] , btos_ack & stob_req , !btos_ack }(false)

}

rul e four_phase_handshake ri ght {
formul a

"A request can not be raised when ack is high"

{

{ [*] , '"btor_req & rtob_ack , btor_req }(false)
}
formul a

"A request can not be |owered when ack is | ow'

{
{ [*] , btor_req & !rtob_ack , !btor_req }(false)

}

formul a
"An acknow edge can not be raised when req is | ow'

{
{ [*] , 'rtob_ack & !btor_req , rtob_ack }(false)
}
formul a
24 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Tutorial

"An acknow edge can not be | owered when req i s high"
{
{ [*] , rtob_ack & btor _req , !rtob_ack }(false)

}

VAR t np(0..31): bool ean;
ASSIGN init(tnp(0..31)) :
ASSI GN next (tnp(0..31)) :
| F rose(btos_ack) THEN DI (0. . 31)
ELSE tnp(0. . 31)
ENDI F;

1
<

rul e checki ng_dat a{

"The data sent to the receiver is the same data received fromthe
sender in the last wite"

formula {
{ [*] , 'RST & rose(rtob_ack) }(DQO0..31) = tnp(0..31))

4.4 Initial Setup for a Working Environment

If you are running FoCs for the first time:
1. Add thefollowing setting to your .cshrc file (or the shell with which you are work-
ing):

setenv FOCS DIR | ocation_of _focs_executabl e

FoCs: Forma Checkers 25

CHAPTER 4

alias focs $FOCS DI R/ focs

2. Create adirectory called focs_tutorial.

3. Copy $FOCS _DIR/tutoria/rulesinto your focs tutoria directory.
The rulesfile includes four rules about BUF.

4. Invoke the FoCs GUI by typing focs.

4.5 Generating Checkers

The FoCS GUI has three different windows:

* Ruleswindow —displays alist of rule names from the rulefile (select rulefile
from the settings window).

* Formulaswindow — displays all formulas from the selected rulesin the rules win-
dow.

* Messageswindow —displays all relevant messages from FoCs.

The following is a screenshot from the tutorial.

26 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Tutorial

B

R
B Genide Seflings Hep
ptash | Iula's

Formulas

X Wing
~four_phase _handshake |=ft

Formula 1 of rule ack_interleaving:

Mo overffow: ATOE_ACK [z azserfed Hatweer amy Mo
~four_phase _handshake_rght § 8705 ACK assemions
- -21‘IE'-'.‘*~1I'IQ_I’33EE
[[*]. IRST & rose{BTOS_ACK) , true | rose(RTOB_ACK) before
resa(BTOS_ACK))
Formula 2 of rule ack_interleaving:
Mo undarfiow: BTOS _ACK Je asserod batwaen any two
RTOB_ACK asseftions
[[, !RST & rosa|{ RTOB_ACK) , rug | ross{BTOS_ACK) befors
rose{ RTOB_ACK))
o [Messages
Generating ..

Cone: VHDL checker written to ack_interleaving vhd

To display the Settings window:

1. Click Settings.

2. Update the Clock Name and Reset Name in the Clock/Reset Tab.
You can browse through the other Settings tabs and fieldsif you want to have more
control over the generation process. Use the tool-tips to see short field descriptions.

3. Choose the target language: VHDL /Verilog
When you open FoCS for the first time, all settings are set to their default values.

4. Click OK. This saves your settings and closes the Settings window.

To generate a checker from onerule:

FoCs: Forma Checkers

27

CHAPTER 4

1

2.

Select rule ack_interleaving
The Formulas window displays two formulas.

Click Generate.

One of the following messages (according to the target language) appearsin the
M essage window:

Generating ...
Done: VHDL checker written to ../ack_interleaving.vhd

or
Done: Verilog checker written to ../ack_interleaving.v

You can open the file (ack_interleaving.vhd or ack_interleaving.v) created in your
current directory, and see the checker that was generated.

To generate a checker from several rules:

1
2.

Select rule ack_interleaving.

Press the Ctrl button and select rule checking data.

The Formulas window displays all of the formulas for these two rules.
Click Generate.

The Choose an output filename window will open.

Enter the name of the desired checker (checker.vhd or checker.v) and click OK.
The following message appears in the M essages window:

Generating ...
Done: VHDL checker written to ../checker.vhd

or
Done: Verilog checker written to ../checker.v

To generate a checker from all rules:

1

2.

Click All from the Rules window.
Thisselectsall rulesin this window.

Click Generate.
The Choose an output filename window opens.

28

IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Tutorial

3. Enter the name of the desired checker (all.vhd or al.v) and click OK.
The following message appears in the M essages window:

Generating ...
Done: VHDL checker written to ../checker.vhd

or
Done: Verilog checker written to ../checker.v

FoCs: Forma Checkers

29

CHAPTER 5

The Qugar Soecification
Language

5.1 Introduction

Sugar is the specification language used by FoCs. It is used to describe properties that
arerequired to hold in the design under test (DUT). FoCs can very easily create
powerful checkersfrom Sugar properties using only a small number of Sugar
constructs.

In this document, the term 'property’ refersto a specification, described in informal
English, that must hold true for the design under smulation. The term ‘formula’ refers
to the coded representation of propertiesin Sugar. This chapter introduces Sugar in a
way that allows FoCs users to start describing propertiesin Sugar and generating
checkers from those properties simply.

The chapter is organized as follows:

Section 5.2: Getting Started with Sugar —introduces the basic Sugar constructs. Thisis
an informal description of these constructs, designed to give you the notion of how to
describe the required design behaviors using Sugar.

Section 5.3: The Building Blocks of a Sugar Formula— thisis amore precise
description of the Sugar properties building blocks.

Section 5.4: Writing aRules File — describes the notion and structure of the Rules File,

FoCs: Forma Checkers 30

The Sugar Specification L anguage

from which FoCs reads Sugar propertiesto create checkers.

Section 5.5: State Machines — this section describes how to use alarger subset of the
Sugar language and gain further expressive power, for defining complex properties.

5.2 Getting Started with Sugar

The Sugar specification language lets you describe properties to which the design
under simulation must adhere. Many properties can be easily described using the
following constructs.

5.2.1 Always (p)

This Sugar construct enables you to assert that some property p istrue on every cycle
of the simulation. P can be any boolean expression composed of signal names,
constants, and operators.

For example, you may want to check that signalsgrant 1 and gr ant 2 are not asserted
together. This property can be expressed in Sugar by the following formula:

always (!(grantl & grant2))

which states that at every cycle of asimulation, it is never the case that both gr ant 1
and gr ant 2 are asserted.
Thefollowing are more examples of propertiesthat can be expressed using always(p):

» The property “Whenever ack is asserted, r eq was asserted in the previous cycle,”
can be expressed as

al ways (ack->prev(rew))
prev(x) isabuilt-in function, which istrue if x was truein the previous cycle. A
list of built-in functions you can use appears in Section 5.3.3 on page 43.

* “Variablesst at el and st at e2 never have the same value.”

always (statel != state2)

“1 =" denotesinequality. A list of relational operators appearsin Table 2.
o “If busy istrue then wor ki ng is also true”

al ways (busy -> working)

“->" denotes“implies’.

“At most one of thesignalsx, y, orz is1 (mutua exclusion).”

FoCs: Forma Checkers 31

CHAPTER 5

al ways (x+y+z <=1)
A list of mathematical operators appearsin Section 5.3.1 on page 38.

» “If thehead pointer of aqueueisequal tothetai |l pointer, queue_enpty must be
true’:
al ways((head(0..3)=tail (0..3)-> queue_enpty))
Both head and t ai | are 4-bit arrays and the expression head(0. . 3) =t ai | (0. . 3)
denotes equality of arrays. The symbol “..” denotes arange of array bits.
head(0. . 3) denotes bits 0 through 3 in the array head. You can refer either to a
range of entries of an array head (0. .3) or to one entry of an array (e.g.,
head(2)). A reference to awhole vector should explicitly include its range
(vec1(0..16) rather thanvecl).

» “The bitwise and of vectorsvec(0..7) and mask(0..7) hasat least one bit set”:
al ways((vec(0..7) & mask(0..7)) !'= 00000000b)

We need the parentheses around vec(0..7) & mask(0..7) because“!=" hasa
higher precedence than “&" . Table 1 shows the operators precedence.

5.2.2 Sugar Extended Regular Expression — SERE

The construct always(p) can refer only to an expression that spans one cycle.
Sometimes we want to check events that span over a period of time, and not just one
cycle.

To this end, we can express properties of multi-cycle traces using Sugar Extended
Regular Expressions—SERES. SERES can be used to describe sequences of boolean
expressions over time.

For example, a SERE describing any occurrence of st art, r eady, r eady can be
written as: {[*], start, ready, r eady}.

The [*] at the start of the sequence is an event that denotes “ skip any number of
cycles’; st art between two commas(, start,) meansacycleinwhichstart is
asserted; and in the following two cycles, r eady is asserted. So this sequence
represents many possible traces. For example:

» tracesinwhichst art isasserted at the beginning and then followed by two r eady:
start, ready, r eady,...

32 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

» tracesinwhichstart happensat the second step and then followed by two r eady:
true, start, ready, r eady (true represents “skip one cycle’), etc.

If we omit [*], the sequence would describe only traces that start with

start, ready, r eady. It isimportant to write[*] at the beginning of the sequence
because we usually want to refer to any occurence of st art, r eady, r eady in thetrace,
and not just at the beginning of the execution.

Writing SEREsis an extension to writing regular expressions. Regular expressions are
simple to write but still very expressive. Defining aregular expression isvery
intuitive, when keeping the desired timing diagram in mind.

5.2.2.1 The constructs {SERE} -> {SERE} and {SERE} =>{SERE}

SERE'’s can be used to described properties that span several cycles. For example, the
property “whenever the sequencest art, ready, ready appears, the secondr eady
after st art isaccompanied by result = ok and followed by done” can be written as

{[*], start, ready, ready} ->{result=o0k ,done}

The meaning of this construct is as follows: if the sequence on the left sideis
encountered during simulation, then the right side should be true, starting at the last
cycle of this sequence.

It is possible to use two kinds of implication operators. Using - > between the two
sequences means that the right hand sequence must begin at the last cycle of the left
hand side. Using => means that the right hand side sequence must begin one cycle
after the left hand side.

The following are examples of properties that can be expressed using SEREs
implication:
e {[*],start, busy[*], end}->{success, done}

statesthat if signal start isasserted, at the next cycle or later in the future, signal

end is asserted, and in the interim signal busy holds, then success is asserted with
end, and at the next cycle done is asserted.

e {[*],request}=>{request[*], grant}
statesthat if thereisarequest , than it must remain active until gr ant .

FoCs: Forma Checkers 33

CHAPTER 5

All propertiesin theform of { SERE} -> {SERE} and { SERE} => { SERE}, can be
described in English as “If the right side occurs, then the left side must occur.” For
example, the property “If during get tag=1, theninthenext get tag=2 andin
the next get tag=3,” isexpressed by:

{ [*] , get&ag=1 }=>{ !get[*], get& ag=2, !get[*] , get& ag=3 }
And the property “If during get tag=1 and inthe next get t ag=2 thenin the next
get tag=3,"” isexpressed by:

{ [*], geté&ag=1, !get[*], get&tag=2}=>{ !get[*], get&t ag=3 }

When we want to express that asignal p isasserted at least once, we can use the event p[+] .

For example, {[*], start, busy[+], end}->{success, done}

statesthat if signal start isasserted, signal busy is asserted for one or more
cycles, and finally signal end is asserted, then success is asserted with end, and
followed by done.

Instead of writingt r ue[+] , you canwrite[+] .

{[*], start, [+], end}->{success}

states that if signal st art isasserted, and two or more cycles later signal end is
asserted, then success is asserted with end, followed by done.

Thereisaspecia way to describe an exact number of consecutive repetitions. For
example, writing r eady[8] expresses eight consecutive cyclesin whichready is
asserted.

{[*], start, ready[8]}->{result=0k}

statesthat if st art isfollowed by eight consecutive cyclesin whichready is
asserted, then at the eighthr eady resul t =ok.

To say that r eady is asserted at most eight consecutive cycles we write

ready[.. 8].

{[*], start, ready[..8], !ready}->{ok} statesthat if start was asserted,
and starting the next cycle, r eady was asserted for at most eight cyclesuntil r eady
was false, then ok is asserted with ! r eady. The other types of consecutive
repetitions are listed in Table 2.

Assume we want to write “the second r eady after st art should be accompanied
with success”. Here we want to check also executionsin which the st art and the
r eady signals are not necessarily consecutive. This can be expressed by

{[*], start, !ready[*], ready, !ready[*], ready}

->{success}

IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

Theexpression! r eady[*] meanszero or more consecutive stepsin which ready is
false.

» Thereisaspecial shorthand for non-consecutive repetition. For example, the
property “Whenever we see eight non-consecutive data transfers between
start_trans andend_trans, thesignal error isnot asserted with end_t r ans”
can be described by:

{[*],start_trans, data[=8],end_trans}->{!error}
The event dat a[=8] represents eight non-consecutive repetitions of dat a.

5.2.2.2 Subsequences

A sequence may contain a subseguence in curly braces.

» For example, the sequence
{[*], {start, [*], end}[*]} describesatracein which there are zero or more
occurrences of the scenarioinwhich st art isasserted and in the next cycle or later
end is asserted.

» The other consecutive repetitions can a so be applied to subsequences. For
example:
{[*], {start, [*], end}[+]} describesatracein which the subsequence
{start,[*], end} occursat least once.

o {[*], {start, [*], end}[8]} describesatracein which the subsequence
{start, [*], end} occursexactly eight times.

o {[*], {start, [*], end}[..8]} describesatracein which the subsequence
{start, [*], end} occursat most eight times.

The following are examples that use subsequences:

» Afterstart, if wesee8gets (not necessarily consecutive) and there is no abor t
during this period, then one cycle after the last get must begin 8 put s (not
necessarily consecutive before done (done may not come at al)

{ [*], start, {!get& abort[*], get& abort}[8] }=>{ {!put& done[*],
put & done}[8] }

» Ifreqlisactive, it will be granted (gnt 1) within no morethan 7 gnt s

{ [*], reql }->{ {!gnt[*], ognt& gnt1}[0..6], !gnt[*], gnt&gntl }
» pistrueincycle 0 and every fifth cycle

{ true, {true[4]}[*] }=>{ p}

FoCs: Forma Checkers 35

CHAPTER 5

For details on all subsequence options, see Section 5.3.2.2 on page 41.

5.2.2.3 The || and && operators

It is possible to define an AND and OR relation between subsequences, using the ||
and & &, respectively.
» For example, to express the property:

“If thereisareguest that is followed either by r ead and no cancel _readorwrite
and nocancel _write until done, then ok is asserted with done”

it ispossible to write:
{[*], request, {read, !cancel read, !'done[*]}||{wite,
Icancel _wite, !done[*]}, done} -> {ok}
Writing an or between two subsequences means that only one of them must happen for
the sequence to hold. The subsequences may be of different length.
» To express the property:
“If thereisnoabort during{start, a, b, c[*], d, end}, success will be
asserted with end”

it ispossible to write:
{[*], {start, a, b, c[*], d, end}&&{!abort[*]}}->{success}

The subsequences that have a & & operator between them occur simultaneously. This
means that they begin and end together, and must have a non-contradicting length.

The & & operator cannot appear in the right side sequence.

5.2.2.4 Applying Never to SERE’s

We can use a sequence to check that a bad trace never happens. Thisis done by

applying the never operator to the forbidden sequence.

Examples:

» Ifrequest isasserted it will remain active until (inclusive) grant .
never{[*], request& !grant, !grant[*], !request}

» If request isasserted, it will remain active until (not inclusive) grant :
never{[*], request, !grant[*], !request & !grant}

» Ifgrant isactive, andthereisnoret ry inthe next cycle, busy must become active
two cycles after grant :

36 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

never {[*], grant, !retry, !busy}

5.2.2.5 Counting Boolean events

It is possible to count boolean events that are not necessarily consecutive. Thisis
particularly useful when combined with & &.
Examples:
» Request will be serviced within the 5 coming acknow edges
never{[*], req, ack[=5]&S&serv[=0]}
» Itisforbiddento have 15w it es during which there are lessthen 2 r eads.
never{[*], wite[=15] &&read[<2]}

5.2.3 Suffix Implication {SERE}()

It is possible to combine SEREs with temporal properties. Thisform of writing means
that starting from the last cycle of the sequence, the temporal property must hold.

5.2.3.1 {SERE}(p until q)

Using this construct, it is possible to check that some signal holds until another signal
is asserted. For example: “Between ar equest and itsacknow edge the busy signal
must remain asserted” can be described by

{[*], req, true}(busy until ack)

{SERE} (a until b) meansa should be true on the last cycle of the sequence and
continue to be true until (but not including when) b istrue. a and b are boolean
expressions, and b may never happen.

{SERE} (a until_ b) meansa should betrue on thelast cycle of the sequence, and
continue to be true until (and including when) b istrue. aand b are boolean
expressions, and b may never happen.

For example:

FoCs: Forma Checkers 37

CHAPTER 5

e {[*], req, 'retry, !retry}(busy until end)
states that for every request (assertion of signal r eq) that is not retried (signa
retry isnot retried in the next two cycles), signal busy must be asserted until
signal end is asserted.

5.2.3.2The Construct {SERE} (p before q)

If wewant to describe that a specific signal must be asserted before another signal, we
can use the befor e operator. For example: “Alwaysif r eq then ack will happen before
thenextreq”.

{ [*], req, true}(ack before req)
{SERE} (a before b)

expresses the requirement that on the last cycle of al traces that match SERE, the first
occurrence of a must happen before or together with the first occurrence of b. Thereis
no requirement that b eventually happen.

{SERE} (a before_ b)

expresses the requirement that on the last cycle of all traces that match SERE, the first
occurrence of a must happen strictly before or the first occurrence of b. Thereisno
requirement that b eventually happen.
For example:
» If start isactivated, it must not be active again before st op is activated.

{ [*], start, true }(stop before start)

Thet rue at the end of the sequence skips one cycle because we want to check the
property on the cycle after start .

5.3 The Building Blocks of a Sugar Formula

5.3.1 Boolean Expressions

The basic building blocks of a Sugar formula are Boolean expressions. A Boolean
expression consists of signal names of the design under verification, numbers,
constants, and operators.

38 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

5.3.1.1 Signal Names

For integersi and j, the following are the signal names:

asimple name: si gnal _nane

A bit of avector: si gnal _nane(i) (biti of signal si gnal _nane)

si gnal _nane(i..j) (bitsi throughj of signa si gnal _nane)

signal _name(b: i..j) (bitbof signa si gnal _nane, wheretherangeisgiven by
i and j. b must be an integer, and the relevant signal must be defined in the rules
file)

5.3.1.2 Numbers

A decimal number has only decimal digits and no suffix (e.g., 1276)
A binary number consists of binary digits and endswith ‘B’ (e.g., 1011B)

A hexadecimal number begins with adecimal digit, has hexadecimal digitsless
than 8, and ends with ‘H’ (e.g., 7FFFH, OFFH)

A reference to awhole vector should explicitly includeitsrange (vec1(0. . 16) rather
than vecl).

5.3.1.3 Operators

The operators appearing in boolean expressions in decreasing precedence are
described below.

FoCs: Forma Checkers 39

CHAPTER 5

TABLE 1. Operators

0 parentheses

I not

* multiplication and division

+ - addition and subtraction

—l=><>=<= relational operators

& Boolean and

| Boolean or

XOr Boolean xor

-> Boolean implication

<< >> vector shift; the right operand should be an
integer

Examples:

* request isaboolean expression asserting that the environment signal r equest is
Set.

* o0p=READ | op=WRI TEisaboolean expression asserting that the design signal op
currently has either the value READ or the value WRI TE.

* (counter>32) <-> queue_is_full isaboolean expression asserting that the
user-defined signal count er has avalue greater than 32, if and only if the design-
signal queue_is_ful | isasserted.

5.3.2 Temporal Properties

5.3.2.1 Temporal Constructs

The temporal constructs of Sugar used by FOCs are summarized below. These

40 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

constructs provide for the definition of temporal behavior across multiple cycles.

always (p) — p istrue on every cycle

{SERE} -> {SERE} —if theleft side sequence occurs, the right side sequence must
hold, starting from its last cycle.

{SERE} => {SERE} —if the left hand side sequence occurs, the right hand side
sequence must hold, starting from the following cycle.

never{SERE} — The sequence may never occur.

{SERE} (p until g) — Starting at the last cycle of the sequence, p must hold until g

occurs, not including the cycle q is asserted. The formula does not require that g
must eventually occur (in that case, p must be true forever).

{SERE} (p until__qg) — Starting at the last cycle of the sequence, p must hold until g
occurs, including the cycle q is asserted. The formula does not require that g must
eventually occur (in that case, p must be true forever)

{SERE} (p before_q) — Starting at the last cycle of the sequence, p must happen
before the first g. The formula does not require that q eventually happen.

{SERE} (p before q) — Starting at the last cycle of the sequence, p must happen
before or together with the first g. The formula does not require that q eventually
happen.

The above formulas are enough for expressing most desired properties. For a
description of al Sugar formulas, see the Sugar v1.4 document.

5.3.2.2 Sequence Operators

The building blocks of sequences are boolean expressions and operations on them.
The following tables summarize the possible operators.

Using b to represent a boolean expression, Table 2 lists legal operators and their
meaning.

FoCs: Forma Checkers 41

CHAPTER 5

TABLE 2. Simple Operators

b[*]
b[+]
b[i]
bli..j]

bli..]
b[..i]

[*]

[+]

[i]
[i..]]
[i-.]
[..0]

b[=i]

b[>i]

b[<k]

b[>=i]
b[<=i]
b[>i, <j]
b[>=i, <]
b[>i, <5j]
b[>=i, <5]

b occursin O or more consecutive cycles
b occursin one or more consecutive cycles
b occursinexactly i consecutive cycles

b occursinat least i consecutive cycles, but in no more than |
cycles

b occurs i n i or moreconsecutive cycles

b occursinno morethan i consecutive cycles

Zero or more cycles are skipped

One or more cycles are skipped

i cyclesare skipped

at least i cycles, but no more than j cycles, are skipped
Atleasti cyclesare skipped

At most i cycles are skipped

A sub-sequence in which b occurs the number of times indicated
(not necessarily consecutively).

TABLE 3. Subsequence Operators

If Q represents a sequence, then the following are possible operators:

Operator Name Description
q*] Any repetition Q occurs 0 or more times.
q +] Positive repetition Qoccurs one or more times.
qi] Exact repetition Q occursexactly i times.
42 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

The Sugar Specification L anguage

Operator Name Description

qi..jl Range repetition Qoccursat least i times, but not more than
j times.

qi..] At least repetition Q occurs i or moretimes.

q..i] At most repetition Q occursno morethan i times.

5.3.3 Built-in Functions

Sugar has severa built-in functions, which are described below:
fell(expr) istrueif expr is 0, and was 1 on the previous cycle.
rose(expr) istrueif expris 1, and was 0 on the previous cycle.
prev(x) istrueif x wastruein the previous cycle.

next (x) istrueif x istrue in the next formula. This construct can not be used in rules,
since rules shouldn’t relate to the future. It can be used when defining auxiliary
variables and behaviors, as will be explained in section 4.7.

5.4 Writing a Rules File

FoCsisrule-oriented. A ruleis the basic component for which FOCs can generate a
checker. A rule defines a group of related properties, represented as Sugar formulas,
which are trandated into one checker. (It ispossibleto translate multiple rulesinto one
checker). It is aso possible to define auxiliary variables and state machines by
defining Finite State Machines (FSMs), as explained in section 5.5, and to include
macro definitions, as explained in Section 5.4.3.

5.4.1 The Structure of the Rules File

Before beginning, you should plan the hierarchical structure of the rulesfiles and how
it will best represent the design properties.

A rulesfile consists of a set of rules, where each rule may include one or more
formulas (at least one formula), macros, and FSM statements. A formula describes a
property of the design at hand. Macros and FSM statements can be used to define
auxiliary variables and state machines that ease expressing properties.

The structure of therulesfileis:

FoCs: Forma Checkers 43

CHAPTER 5

rule rul enamel {
<Macro definitions (#define, %f,%or)>
<FSM st at enents (var, assign, define, nodule, instance)>

fornul a
“textual description”
{ formal description }

formul a
“textual description”
{ formal description }

rule rul ename2 {

The rule names are any meaningful names that begin with aletter and consist of
letters, digits, or underscores. The textual description istext delimited within double
guotes that describes the property in informal English. The formal descriptionisa
Sugar expression. The syntax of the Sugar language, FSM statements, and macros are
defined in the following sections of this chapter.

The rule syntax is as follows:
rul e nane {
<Macro definitions (#define,%f,% or)> (optional)
<FSM statements (var, assign, define, nodule, instance)>
(optional)

formula “textual description” { Sugar-formula }
formula “textual description” { Sugar-formula }

44 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

A rule must contain at least one formula. All the other parts are optional. The order of
statementsin arule is unimportant, and each type of a statement may appear severa
times. Itisimportant to fill in the textual description of formulas. It is possible to have
this description displayed when the checker generated from this formula detects an
error during simulation.

5.4.2 A Methodology for Writing Rules Files

When designing arulesfile, you should consider both readability and efficiency

issues.

» Go over the block outputs, one by one, and write (in English) all the things you can
check on that signal—its shape, itsvalid values, its relations with other signals, etc.

* From amethodological standpoint, it isuseful to divide rulesinto 3 levels:
Level 1. Every signdl to itself (e.g., pul se, constant zero...).

Level 2: Relations between signals at the same interface (e.g., request, ack).
Level 3: Cross-design signals or very complex rules.

» Write an English explanation for every rule, specifying exactly what you are
checking. If you have an English documentation of the rules—use the same
description for both, and write the rule names in the relevant placesin the
documentation as well.

» Keep your rulesfile as readable and simple as possible—you’ll return to them
when you don’t expect it! Using advanced mechanisms such as “module”’ and
“%for” is not aways the most readabl e approach.

» Write your rules short aswell—A long/complex rule can be easily fragmented. It's
good for generic reasons and also for readability.

» Partitioning your rulesinto severa fileswill makeit easier to work with when you
have dozens of them.

» Usespecial naming conventionsfor auxiliary variables defined by FSM statements
to distinguish them from signals of the design.

5.4.3 Comments, Macros, and Preprocessing Directing

There are two types of comments in environment description files:

FoCs: Forma Checkers 45

CHAPTER 5

1) Text beginning with “--" and ending at the end of line.
2) Text beginning with “/*” and ending with “*/”,

Comment text isignored by FoCs A comment can be inserted anywhere a space is
legal (except in text strings).

Before processing the environment description files, FoCs calls a standard
preprocessor, cpp, to filter these files. The mechanisms provided by cpp can be used to
facilitate the devel opment of environment models. The most useful mechanisms are
macros, conditional compilation (#ifdef, #if, #endif, etc.) and #include. See “man
cpp” on your unix system for more details.

FoCs provides additional preprocessing abilitiesin addition to cpp. These are the
%for and %if constructs described bel ow.

%for

The % for construct replicates a piece of text anumber of times, with the possibility of
each replication receiving a parameter. The syntax of the % for construct isasfollows:

% or <var>in <exprl> .. <expr2> do

%end

or:

% or <var> in <exprl> .. <expr2> step <expr3> do

%end
-- step can be negative

or:

%Wor <var>in { <itenmr , <itemr , ... , <itenmr } do

% end

where <i t en® is either a number, an identifier, or a string in double-quotes.When the
value of an item is substituted into the loop body (see below), the double quotes will
stripped.

Be aware that % for generates aformulafor each iteration of the %for loop.

46 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

In thefirst case, the text inside the % for-% end pairswill be replicated expr 2-

expr 1+1 times (assuming that expr 2>=expr 1). In the second case, the text will be
replicated (| expr 2- expr 1| +1) / expr 3 times (if both | expr 2-expr 1| and expr 3 are
positive, or both are negative). Inthethird case, the text will be replicated according to
the number of itemsin thelist.

During each replication of the text, the loop variable value can be substituted into the
text asfollows. Supposethe loop variableiscalled “i i ”. Then, the current value of the
loop variable can be accessed from the loop body using the following three methods:

The current value of the loop variable can be accessed using simply “ii " if “ii” isa
separate token in the text. For instance:

%or ii in0..3 do
define aa(ii) :=ii > 2;
%end

is equivaent to:
define aa(0)
define aa(l) :
define aa(2)
define aa(3)

w N O
vV V V V

NN

If “ii” ispart of anidentifier, it can be accessed using % i i } asfollows:

%or ii in 0..3 do
define aa%ii} :=ii > 2;
%end

is equivaent to:
define aa0 :
define aal :
define aa2 :
define aa3 :

o mnon
wWwnN - O
V V V V

NN

If “ii” needsto be used as part of an expression, it can be accessed using % <expr >}
asfollows:

%or ii inl. .4 do

FoCs: Forma Checkers 47

CHAPTER 5

define aa%ii-1} := %ii-1} > 2,
%end

is equivaent to:
define aa0 :
define aal :
define aa2 :
define aa3 :

T TR TR
wWwnN - O
V V VvV V

The following operators can be used in pre-processor expressions:
= Iz < > <= >= -+ * [O
In the current version, operators work only on numeric values (i.e., it's OK to writethe
following):
%or i in0..3 do
i %f i !=3 %hen + %nd
%end
But it is not possible to write

% or command in {read, wite} do

%f command = read % hen-- doesn’t work!

% f

The %if construct is similar to the #if construct of the cpp preprocessor. However,
% if must be used when <expr > refers to variables defined in an encapsulating % for.
The syntax of the %if construct is as follows:

% f <expr> % hen

%end

or:

% f <expr> % hen

48 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

%l se

%end

5.5 State Machines

Although Sugar increases expressiveness capabilities, there are still properties that
cannot be expressed, and othersthat are too complicated to formulate. Sate machines
may provide solutions in many of these cases. The state machine records events that
occur in the design under verification. Formulas can then refer to these events by
accessing the state machine's internal state. State machines do not affect the design
because information flows only from the design to the state machine. In this section,
we describe the special statements for writing state machines.

For example, assumethat aqueue of depth k reads data on one side and writesit on the
other side. Assume that we want to prove that the queue never contains more than k
dataitems. Formulation of this property in Sugar is difficult, but it becomes easy with
asatellite. An up/down counter is defined, with arange of 0 to k, and which is
incremented on reads and decremented on writes.

It is now necessary only to verify that the counter never exceeds k.We can use the
same counter to check for an underflow; its value should never be less than O.

Some properties might have become easier if one could talk about past events.
Assume we want to statethat “if p occurs, then at that time g should be active since the
last occurrence of r.” We can define a state-machine inside the rule that will help us
express this property as follows:

rule if_p_then_g_since_r{

var state: bool ean; -- defining a bool ean variable state
assign init(state):= 0 - initialising the variable
assign next(state):= -- assigning a value to state in the next
case -- cycle
lq :0; -- if gis false then next(state) is false
qé&r :1; -- if gand r are true then next(state) is true

FoCs: Forma Checkers 49

CHAPTER 5

el se :state; -- if the above conditions are false then state
esac; -- does not change.
define g sincer :=(q &r)|(q & state); -- g_since_r neans ¢ is

- active since the | ast occurance of r.
formul a

"If p occurs, then at that tinme q should be active since the |ast
occurrence of r"

{always (p ->qg_since_r)}

5.5.1 Additional Expressions Used in State Machines

State machines may include boolean expressions, if-then-else expressions, and case
expressions.

5.5.1.1 if and case Expressions
There are two constructs which express a choice between two or more expressions.
They are the case and if expressions, described below.
The case expression has the following format:
case
conditionl : exprl ;

condition2 : expr2 ;

el se : exprn ;

esac

A case expression is evaluated as follows: condi ti onl is evaluated first. If it istrue,
expr 1 isreturned. Otherwise, condi ti on2 isevaluated. If it istrue, expr 2 isreturned,
and so forth. The else part is essential FOCs—in order to define the behavior as
deterministic, it is advisable to the behavior as the default entry if you are not certain
that the other conditions cover all the cases. Falling through the end of a case
statement may have unpredictable results. Notice that from the description of the case
expression above, it follows that an earlier condition takes precedence over alater

50 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

one. That is, if two conditions are true, the first takes precedence.

The if expression is shorthand for a case with two entries, and it has the following
format:

if condition then exprA else exprB endif

In the above if expression, exprA isreturned if condition istrue, and exprB is returned
if condition isfalse.

5.5.2 Statements for State Machines — FSM Statements

The following statements are required for defining auxiliary variables writing state
machines:

var

define

assign next, assign init

module, instance

The order of the statements is unimportant. We now describe each of these statements
in detail.

5.5.2.1 The var Statement

A var statement declares auxiliary variables required for the state-machine and the
formulasin arule, and has the following format:

var name, nane, ... @ type; name, nane, ... @ type;
The type can be one of the following:

boolean

{ enuml, enum2, ... }

numberl .. number2 (range between integers)

For instance, the following are legal var statements:
var request, acknow edge: bool ean;
var state: {idle, reading, witing, hold};

var counter: {0, 1, 2, 3};

FoCs: Forma Checkers 51

CHAPTER 5

var length: 3 .. 15;

Thefirst statement declares two variables, “request” and “acknowledge”, to be of type
boolean. The second statement declares avariable called “state” which can take on
one of four enumerated values: “idle’, “reading”, “writing”, or “hold”. The third
statement declares avariable called “counter” which can take on the values 0, 1, 2, or
3. The fourth statement declares a variable called “length” which can take on any of
the values between 3 and 15, inclusive.

We can also define arrays using the var statement:
An array of state variablesis defined as follows:
var nane (indexl .. index2) : type ;

It actually defines (| i ndex2-i ndex1| +1) state variables named nane(i ndex1), ...,
nanme(i ndex2) , wherei ndex1 can be either greater or lessthani ndex2.

Examples:
var
addr(0..7) : bool ean; -- 8 bool ean vari abl es, addr(0), addr(1), ... ,

A var statement only declares auxiliary variables. The assign and define statements,
described below, define the behavior of these variables. FoCs does not allow non-
determinism—the value of avariable at each cycle should be explicitly defined using
the assign and define statements.

5.5.2.2 The Assign Statement

An assign statement assigns avalue to a state variable declared with avar statement.
It has one of the following formats:

assign init(name) := expression;
assi gn next(nane) := expression;
assi gn nane : = expression;

Thefirst statement assigns an initial value to an auxiliary variable. The second
statement defines the value of an auxiliary variable in the next cycle. Thethird
statement assigns avalue to a variable in the current cycle.

52 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

The following are examples of legal assign statements:
assign init(state) :=idle;
assign next(state) :=
case
reset : idlel;
statezidle & !start : idle;
state=idle & start : busy;
state=busy & done : { idle };
el se : state

esac

The keyword assign may be omitted for the second and following consecutive assign
statements. Thus, the following:

assign varl := xyz;
init(var2) := abc;
next(var2) := Qrs;

is equivaent to:

assign varl := xyz
assign init(var2) := abc;
assign next(var2) := qrs;

5.5.2.3 The Define Statement

A define statement is used to give aname to afrequently-used expression, much like a
macro in other programming or hardware description languages. The define statement
has the following format:

define name : = expression

For instance, the following are legal define statements:
define adef :=(q | r) & (t | v);

define bb(0) :=q & t; cc = 3;

Aswith the assign statement, the keyword define may be omitted in second and

FoCs: Forma Checkers 53

CHAPTER 5

following consecutive define statements.
assign must refer to avariable defined with var.
define must NOT refer to avariable defined with var.

5.5.2.4 The Module and Instance Statements

A module statement is used to group together the statements of a state machine.
Instead of writing them directly inside the rule, this module can be instantiated inside
the rule using the instance statement.

For instance, the following is alegal module statement:
nmodul e since(el, e2)(el_since_e2)

{

var state: bool ean;

assign next(state): =

case

lel :0;

el &2 :1;

el se :state;

esac;

define el since_e2 :=(el &e2)| (el &state);
}

This module can be defined in the rules file (outside arule) and instantiated and used
inarule asfollows:

rule if_p_then_g_since_r{
instance il :since(q,r)(q_since_r);
fornul a
“If p occurs, then at that time q should be active since the last occurrence of r”

{always (p ->g_since_r)}

54 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

A module statement is used to define a module which can be instantiated a number of
times, asin hardware description languages. It has the following format:

nodul e nodul e_name (inputs) (outputs)
{

st at enent ;

statenent;

}

where inputsisalist of formal parameters passed to the module, outputsis alist of
formal parameters produced by the module, and statementsis any sequence of var,
assign, define and instance statements. The input/output parameters can be thought
of asinput/output signals. Input parameters are produced el sewhere, and they drive
the module, while output parameters are produced by the module itself and can be
used elsewhere. A signa that appears as an output parameter of amodule must be
defined and assigned avalue in that module (var or define or instance output). If a
signal that appears as an input parameter of amodule is not used in that module, FoCs
will issue awarning.

Modules cannot be declared inside rules or other modules but they can be used
(instantiated) by rules and other modules.

A module statement is only a definition—it has no effect until it isinstantiated
(called). The instance statement instantiates a module using the following format:

i nstance instance_name : modul e_nane (inputs) (outputs);

where:

instance_name is the name of the specific instance (one module can be multiply
instantiated)

module_name is the name of the module being instantiated

inputsis alist of expressions passed as inputs to thisinstance

outputsisalist of output parameters, actually connecting the instance outputs to real
signals of the design. An instance name is optional.

5.5.2.5 Advanced Operations on Arrays

It is often convenient to apply operations to entire arrays or to ranges of indices.
Boolean arrays are the only arrays supported by FoCs. These arrays are commonly

FoCs: Forma Checkers 55

CHAPTER 5

used for buses and bundles.

5.5.2.6 Defining Arrays

An array of state variablesis defined as follows:

var nane (indexl .. index2) : bool ean ;

An array can also be defined with a define statement:
define name(indexl .. index2) := <expr>;

For example:

define masked_sig(0..3) :=sig(0..3) & mask(0..3);

5.5.2.7 Operations on Arrays

Reference:

The simplest operation on an array is areference to abit or abit range. One bit of an
array isreferenced as array_name(N) where N is a constant. A range of bitsis
referenced asarray_name(M..N). It is always necessary to specify the bit range when
referencing an array.

Other operations that can be used with arrays are:

= I=if case& | M > <>

Example: aa(0..7) :=if bb(0..2)=cc(0..2) then dd(0..7) else ee(l..8)
endi f;

In boolean operands, both operands must be of the same width (unless one of them is
constant). The result will have the same width as the vector operands.

Example: v(0..7) :=x(0..7) &y(0..7) | 1z(0..7);

Rdational: < > <= >=

Both operands must be of the same width (unless one of them is constant). The result
will be a scalar boolean value.

56 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

Examples: c¢:=v(0..7) >x(0..7); d:=v(0..7) <= 16;
Arithmetic (unsigned): + - *

Both operands must be of the same width (unless one of them is constant). The result
will have the same width as the vector operands.

Examples:
define ccl1(0..7) := aa(0..7) + bb(0..7);
cc2(0..7) :=aa(0..7) + 1;
cc3(0..7) :=10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands with zeroes
on the left. For example:

define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);
co++sum(0..7) := 0++a(0..7) + 0++b(0..7);

(++ isthe concatenation operator, described below. zeroes(4) is a vector of four
Z€eroes)

Shift: >> <<

The first operand must be a boolean vector and the second operand must be an integer
constant or variable. The result is a boolean vector of the same width as the first
operand. These operations perform the logical shift (i.e., vacated bit positions are
filled with zeroes).

Examples:
define cc(0..7) := aa(0..7) << 2;
var shift_anount: 0..5;
define dd(0..7) := bb(0..7) >> shift_amount;
ee(0..8) := 0++ff(0..7) << 1;

Conversion of Bit Vectorsto Integersand Vice Versa

The following are built-in functions for converting bit vectors to integers and vice
versa,

FoCs: Forma Checkers 57

CHAPTER 5

Bit vector to integer:

bvtoi (a_vector)

Integer to bit vector:

itobv(an_integer)

Example:

al ways (Addr(0..31) = itobv(256) -> bvtoi(data(0..3)) =9)

Note that constant integers are converted to bit vectors implicitly. There is no need to
apply i t obv.

Construction of Bit Vector s from Bitsor Sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or smaller
Vectors:

expr ++ expr
Example:

define wide(0..5):=narrowm2..3) ++ bitl ++ bit2 ++
anot her _narrow(0..1);

If expr isaconstant, it should be either 0 or 1. Wider constant vectors should be split
into separate bits.

define x(0..5):= y(0..2)++1++0++z; -- allowed
define x(0..5) :=y(0..2)++10B++z; -- not all owed

The concatenation operator can also appear on the left-hand-side of an assign or
define statement. For instance, the following statement:

define a ++ b ++ ¢(0..2) :=d ++ 1 ++ 0 ++ ¢(0..1);

is equivalent to the following four statements:

definea:=d; b:=1;, ¢(0) :=0; c¢(1..2) :=1¢(0..1);

The built-in construct rep(expr,N) can help to construct arrays of repeated elements:
For example, defining an array of 8 1's

assign arr(0..7) :=rep(1,8);

58 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

The Sugar Specification L anguage

Shorthands:
zeroes(N) isequivalent to rep(0O,N)
ones(N) is equivalent to rep(1,N)

5.5.2.8 Array Notes

The exact range must be specified in the operation. “a=b" is not equivalent to
“a(0..3) = b(0..3)". b(0..3) represents variables b(0) through b(3), while b represents
one variable with no index.

Operands can take any ranges, provided that their widths are compatible. For example,
“a(0..3) & b(1l..4)" islegd, but“a(0..3) & b(0..4)" isnot.

If one of the operands is a boolean vector and the other is a numeric constant, the
constant isconsidered an array of bits. For example, “a(0. . 1) = 10B” isequivalent to
“a(0)=1 & a(1)=0" and“a(1..0) = 10B” isequivalentto“a(1)=1 & a(0)=0".

If you write “#define N 7” and later “a(0. . N)”, leave a space around the two dots:
a(0 .. N). Otherwise the standard preprocessor (cpp) used by FoCswill identify ..N as
atoken and will not replace N by 7.

5.5.2.9 More Array Examples

var a(0..3), b(0..8), ¢(0..2) : bool ean;
define d(0..3) :
define e(0..2) :

b(5..8);-- different sub-ranges
b(0..2) & ¢(0..2);-- different directions

var x_state(0..2), y state(0..2): {sl, s2, s3 };
define sane_state := x_state(0..2) =y state(0..2);

var nda(0..2): bool ean;

11
o

assign init(a(0..2)) :

assign next(a(0..2)) :

FoCs: Forma Checkers 59

CHAPTER 5

case
reset : O;
a(0..2) =b(0..2) : c(1..3);
a(0..1) = 10B : d(0..2);
else : a(0..2);

esac;

var counter(0..7) : bool ean

assign
init(counter(0..7)) :=0;
next(counter(0..7)) := counter(0..7) + 1;
60 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

cnnerers . CUtOMzng FOCs Sattings

6.1 Overview

FoCs can be customized using the Settings dialog box. The Settings dialog box
consists of severa tabs—Main, Clock and Reset, Checker Generation Style,
Reporting, and Signal Mapping—each of which contains several options. When you
give an option anew value, the new value is active as soon as you set it. The value
remains active for the rest of the session. When you quit FoCs, your settings are saved
and used the next time you run FoCs. The options are written to the file focs.setup.

6.2 Main Tab

The following sections describe the options available within the Main tab.

6.2.1 Rules File

In thisfile, you write the specification—the properties to be checked. For information
on the specification language, see CHAPTER 5: The Sugar Specification Language.

FoCs: Forma Checkers 61

CHAPTER 6

6.2.2 Target Language

This option allows you to select the target language for the automatically generated
checkers.

« VHDL

» Verilog

Future versions of FOCs may include more target languages, e.g., C and/or C++.

6.2.3 Target Simulator (VHDL only)

Some simulation environments only support a subset of the VHDL language. Some
environments include special instrumentation for linking the checkers with the unit
under test (UUT). If your simulation environment appears below, select it. Otherwise,
use Pure VHDL and tailor the checkers with the UUT to suit your needs.

* PureVHDL

* MTI - FoCsgeneratesa“spy” file used for linking checker names with UUT
names. See Section 3.2 on page 12.

» Mvlsim/Bugspray - FOCs generates the checkersin a Bugspray file that are to be
included in the simulation build process.

6.2.4 Output File Name

Thisisthe name of the resulting checker file. By default, the rule nameis used with
the extension v (verilog) or vhd (VHDL). If you select User Defined, you will be
asked to provide a name each time a checker is generated.

* Userule name — the rule name will be used as the file name.

* Useentity name (VHDL only) — the entity name will be used as the file name.

» Use module name (Verilog only) —the module name will be used as the file name.
e User defined — you will be asked to provide a name during translation.

6.3 Clock and Reset Tab

The following sections describe the options available within the Clock and Reset tab.

62 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

6.3.1 Clock Name

Thisisthe design clock that drives the checker’s clock (mandatory). Currently only a
single clock is supported.

6.3.2 Clock Polarity

Thisisthe clock edge in which signals are sampled during simulation.

* Rising edge
e Falling edge
» Both edges

6.3.3 Simulation Delay (Verilog only)

This option allows you to add adelay of n nano-seconds between the active edge of
the clock and the sampling of signals.

* No
* Yes

6.3.4 Reset Mode

This option allows you to provide an external reset to the checker or ask for an
internally-generated reset.

» External —thereset signal will be provided as an input to the checker.
* Interna —the reset signal will be generated internally.

It is mandatory to either define the external reset signal name or to choose the option
of an internal reset signal.

6.3.5 Checker Reset Name (External Only)

If you choose “External” for the Reset Mode option, you should provide the reset
signa name (mandatory).

6.3.6 Number of Reset Cycles (Internal Only)

If you choose “Internal” for the Reset Mode option, you may select the number of
cycles during which the internal reset signal remains active at the beginning of

FoCs: a Forma Checker Tool 63

CHAPTER 6

simulation. The default is one cycle.

6.3.7 Reset Polarity
* Activehigh
o Activelow

6.4 Checker Generation Style Tab

The following sections describe the options available within the Checker Generation
Style tab.

6.4.1 Checker Entity Name (VHDL Only)

Thisisthe entity name of the resulting checkers. By default, the rule name is used.
You can select User Defined and provide a name.

* Userule name — the rule name will be used as the entity name.

» User defined — you will be asked to provide a name during translation.

6.4.2 Checker Module Name (Verilog Only)

Thisisthe module name of the resulting checker. By default, the rule nameis used.
You can select User Defined and provide a name.
* Userule name — the rule name will be used as the module name.

» User defined — you will be asked to provide a name during translation.

6.4.3 Generate Module (Verilog only)

This option allows you to choose whether or not to encapsul ate the checker within a
module.

* Yes
* No
64 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Customizing FoCs Settings

6.4.4 Produce Instantiation Code

» FoCs can provide automatic generation of instantiation statements—Component
and Instancein VHDL, Call in Verilog. The instantiation code is produced
according to the defined Mapping Options (see CHAPTER 3: Linking Checkers
with your Design).

* Yes

* No

6.4.5 Create Enable Signals

This option allows you to add these signals to the checkers code. It either enables or
disables the checkers during run time. All checkers are enabled initialy.

To disable awholerule, set enabl e_<rul e_nanme>to 0.

To disable aformula, set enabl e_<rul e_name>_<f or nul a_nunber > to 0.
* Yes
* No

6.4.6 Interface Filename

By default, FoCsregards signalsthat are only referenced (not assigned) in the rules as
design signals. Thefile defined as " Interface Filename" can be used to add signalsthat
you want to regard as design signals. If the signal has auxiliary EDL definitionsin the
rulesfile, they will beignored. Thisoption is useful when using the rule file for both
model-checking and checker generation. The fileis either aVIM/DEF file or list of
lines, one signal name in each line.

6.4.7 Design Entity Name (Mvisim/Bugspray Simulation Only)

This option alows you to define the design entity to which the checkers refer. Thisis
mandatory when using Bugspray.

(It producesthe Bugspray code“--!! design entity <name>".)

6.4.8 Vector Direction

This option allows you to define the bit order in which FoCs generates vectors. All

FoCs: a Forma Checker Tool 65

CHAPTER 6

vectors in the checker are written in the same way.
e Ascending —[0..n]
» Descending —[n..0]

6.4.9 Logic Signal Type (VHDL only)

This option allows you to choose the standard logic support package to use.
e std logic
e std ulogic

6.5 Reporting Tab
The following sections describe the options available within the Reporting tab.

6.5.1 Severity of Assertion (VHDL Only)

This option allows you to define the severity of the generated VHDL assertion.
* Note

* Warning
s Error
* Failure

6.5.2 Report Template File Mechanism (Verilog and VHDL-93 full)

6.5.2.1 Report template file

In order to configure the checker output, you can write areport template file. In this
file, write the VHDL / Verilog commands you want executed when the formulafails
(report template).

You can define different sets of commands for different formulatypes. You can write
the report template file in the following style:

66 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

VHDL Verilog
IF (focs formula type = ERROR) THEN if (focs formula type=='"ERROR)
<VHDL code> <Verilog code>
ELSEIF (focs formula type = COVER) THEN
<VHDL code> elseif (focs formula type=="COVER)
END IF; <Verilog code>

This styleis only arecommendation. Every legal VHDL / Verilog code is allowed,
because this code is simply copied to the checker. Note that there is no previous
syntactical or semantical checking done on this code, so that every error in it will be
determined only when compiling the checker with the VHDL / Verilog compiler.

Both in VHDL and Verilog, two additional commands with special treatment can be
used—printf and fprintf. Their semantics and usage in the report template file are
defined later in this document. Verilog commands $display and $fdisplay have the
same treatment as printf and fprintf and can be used for checkers generated in VHDL
aswell as Verilog (FoCs will create equivalent code in the checker’s language).

The content of the report template file is copied to the checker inside the IF statement
used instead of assertion, as shown in the pseudo-code example below:

| F(fornula failed) THEN
focs _formula type <= ERROR / COVER
report template file content
END | F;

6.5.2.2 Formula type definition

You can define the type of every formula as follows:
#type = ERROR# /| COVER#.

If no type is defined, the default type value is ERROR.

Example:
formula {

"#type = COVER# Standard fornula description”

FoCs: a Forma Checker Tool 67

CHAPTER 6

{formul a body}

When generating checker code, FoCs adds a variable named “focs_formula_type” for
every formulathat contains the value ERROR or COVER, according to the type
defined in the formula description. ERROR and COVER are integer constants whose
definition isimplicitly generated by FoCs.

You may choose not to use this mechanism, by means of not mentioning the
formulatypein thereport templatefile.

The only side effect of this mechanism is the definition of the variables ERROR and
COVER in the checker, which implies that redefining these variables is forbidden.

6.5.2.3 Usage and semantics of printf / $display and fprintf / $fdisplay

The syntax and semantics of the $display and $fdisplay commands are similar to those
of printf and fprintf, respectively.

Syntax: printf (“format”, parameters) or fprintf (fp, “format”, parameters). (The
explanation for “fp” -file pointer appears below.)

The purpose of these commands isto configure the output which iswritten during the
simulation to the log (file or stdout). The semantics are like the C semantics of these
commands. FoCswill identify these commands and generate VHDL / Verilog code
which will write output to the output stream defined in print command.

The syntax of the format is like C syntax—every parameter should be defined in
format by its prototype (%d, %s, etc.) and every string can be written in the format.
The only difference from C isthat there is no need to add a backslash before special
characters (like quotation marks), and the use of double quotation marks (*") and “%".

Allowed prototypes, inside the format string, are %s - string, %d - integer, %b -
boolean, and %l - std_logic. Print commands should start at the new line, cannot be
broken by the new line in the middle, and must not end with a semi-colon (“;").
Among the parameters, there are two parameter names with special semantics—

rul e_nane and desc (description), both of which are strings. When FoCs finds these
parametersin the printf command, the following is performed:

1. rul e_nane will be replaced in the format string by the appropriate rule name.

68 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

2. desc will be replaced in the format string by the description of the appropriate
formula. In the formula description, you can define signal s whose values you want
outputted when the formulafails. The syntax is: < <si gnal _nane> >. Every
signa which appearsin the formuladescription in <> brackets is replaced by its
current value in the simulation output when the formulafails.

For example:
Formula description:
formla {
"#type = COVER# Val ues of signals : fool = <fool>"
{ fornul a body}
}

FoCsfinds the signalsin <> brackets in the description, and adds them to the
parameters list of the printf command. If the signal is not a checker signal (neither a
checker port nor checker internal signal), itstypeisassumed to be std_logicin VHDL,
or boolean in Verilog.

Note: The use of the special namesrule name and desc is optional.

6.5.2.4 Writing output to the file streams

There are two options for defining file descriptors:

Option 1: The user controls file opening and closing outside the checker. Thereisno
special definition for file descriptors—FoCs finds them in the fprintf commands and
adds them to the checker ports (as port of type FILE in VHDL or port of type
reg[31:0] in Verilog). In this option, the user opens and closes the files, and maps the
file descriptors to the appropriate checker ports.

Option 2: Implicit file opening and closing within the checker. In this option, the user
defines the file descriptors connections in the file section of the report template.

The syntax of the file section:
#FI LES
<file descriptor> <file nane on disk>

<file descriptor> <file nane on disk>

FoCs: a Forma Checker Tool 69

CHAPTER 6

#END

i.e, every lineinthe file section consists of the file descriptor, which can be used in
print commands as described above, and the file associated with it. For example:

#FI LES
error_fd /proj/simut/error _file
cover_fd /proj/simut/cover file

#END

FoCs generatesthe VHDL / Verilog code for opening and closing files and connecting
them to their descriptors. Thereis no need to predefine standard output stream. The
commands printf and $display create the code which writes output to stdout according
to the HDL subset.

When using implicitly-generated opening/closing of files, FOCs generates the port
“focs finish_signal”.

The user must connect this port to the signal which gets the value “1” when the
simulation ends. The purpose of this port in the checker is to tell the checker when to
close thefiles.

6.5.2.5 Including files, libraries, and packages

When describing the use of file descriptors, the term file section was mentioned.
There are three special sections which can be defined in report templates: the library
section, the use section, and the file section. This paragraph will describe the use of
the library section and the use section.

Syntax: library section
#L1 BRARY
<library 1>
<library 2>
#END
Syntax: use section
#USE

70 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

<package 1>
<package 2>
#END

In VHDL, thelibrary section contains libraries, which the user wants defined in the
final VHDL code by the “library” clause (like ieee), while the use section contains the
full package names, including the appropriate library name (for example,

ieee.std logic_1164.all). In the use section in Verilog, the user must write Verilog file
names which he wants included in the final Verilog code by using the Verilog
compiler directive “include’. The library section isignored in Verilog.

The main purpose for including external librariesin checker codeisto allow the use of
functions and variables defined in these libraries. If the function was defined in the
external package (file in Verilog) and the package was included, the user can use this
function in his’her report templ ate.

FoCs does not perform syntactical or semantical checkson the included user packages
(files), so if the package contains errors, or if the parametersto the function call in the
report template are not checker signals or predefined signalsin included packages
(files), FoCswill not report any error, but the created checker will fail during the
compilation.

For VHDL users only: the only libraries which should not be defined in the library
sections are ieee, ibm, work, modelsim_lib, and std. These libraries areincluded in the
checker automatically. The packages which are included automatically are:

ieee.std logic_1164.all, modelsim_lib.util.all, ibm.std_logic_support.al, and
std.textio.al. Each library / package isincluded according to FoCs settings, so that not
all these packages are included in every checker.

The use of the libraries section, the use section, and the files section is optional. You
can write as many library/package/file sections as you wants. Every new library/
package/file descriptor name should appear on anew line. The report template
directives (#LIBRARY, #USE, #FILE, #END) should also appear on anew line. All
text outside these special sectionsistreated as report template, and is copied to the
checker.

Comments

Lines which starts with “--" are treated as comments and thus are ignored by FoCs
(either in the report template or in the specia sections).

FoCs: a Forma Checker Tool 71

CHAPTER 6

6.5.2.6 Examples

1. Thefollowing is an example for output configuration using the report template
file and formula description:

VHDL example:

Report template file:

#L1 BRARY
utilsl Li braries section
utils2
#END
#USE
utilsl. print_functions_packagel. al | Use section

utils2.print_function_package2.all

#END

#FI LES
cover _file [proj/sinulation_output/cover File section
#END

Template body:
IF (focs_formula_type = ERROR) THEN

printf (" ERRORin % at cycle % : % ", rule_name, cycle, desc)
cycle is signal defined by user in one of the packages

error_func(); error_func is the function witten in one
of the predefined packages

72 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

ELSEIF (focs_formula type = COVER)

fprintf (cover _file," COVERAGE EVENT : rule % at cycle % : %
, rule_nane, cycle, desc)

END I F;

Formula description:
formul a {
"#type = COVER# Val ues of signals : foo = <foo>"

forml a body

Generated code:

Assuming that the rule name is CheckRul e and f oo is of typestd_I ogi ¢, the VHDL
code generated by FoCs will be:

other libraries

library utilsi,; Li brary section

library utils2;

ot her packages

use utilsl.print_functions_packagel.all; Use section

use utils2.print_function_package2.all;

FoCs: a Forma Checker Tool 73

CHAPTER 6

ENTITY ...
PORT (

checker ports

f oo “IN std_| ogi c;

focs finish signal :IN std_|ogic);
file commands

END ...

Speci al port added for

ARCHI TECTURE . ..

TYPE focs _ftype i s (ERROR COVER);

checker internal signals

FILE cover _file : TEXT;

SHARED VARI ABLE focs_string 0 : STRING1 TO10) :=" ERRORin ";
SHARED VARI ABLE focs_string_1 : STRING1 TO 10) := " at cycle ";
SHARED VARI ABLE focs_string_2 : STRINJ1 TO3) :=" : ";
SHARED VARI ABLE focs_string_3 : STRING1 TO1) :=" ";
SHARED VARI ABLE focs_string_4 : STRING1 TO 23) := " COVERAGE EVENT
rul e ;
SHARED VARI ABLE focs_string 5 : STRIN§1 TO 10) := " at cycle ";

SHARED VARI ABLE focs_string 6 : STRING(1 TO3) :=" : ";

STRING(1 TO1) :=" ",

SHARED VARI ABLE focs_string_7 :

74 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Customizing FoCs Settings

SHARED VARI ABLE focs_checkrule : STRING1 TO 9) := "checkrul e";

SHARED VARI ABLE focs_string 8 : STRING 1 TO 27) := "Values of
signals : foo ="

SIGNAL focs_file_handl e_enable 0 : std_l ogic;
SIGNAL focs_file_ open : std_ logic :=i2l(1);

checker internal signals

BEG N
PRCCESS Process for files opening / closing
BEG N
WAIT UNTIL cl k" EVENT AND clk =" 1";
IF (focs file open ='1") THEN
focs_file_ open <="'0';
file_open(cover_file,"/proj/simlation_output/cover", WR TE_MODE) ;
focs_file_handl e_enable 0 <="1";
END | F;
VWAIT UNTIL focs_finish signal ='1";
IF (focs_file_open ='0") THEN
focs file handle enable 0 <='0";
file_close(cover_file);
END | F;
END PROCESS,;

FoCs: a Forma Checker Tool 75

CHAPTER 6

PROCESS
ot her process vari abl es
VARI ABLE focs_line_ 1 : LINE
VARI ABLE focs_formula_type : focs_ftype;
BEG N

VHDL checker body

focs_formul a_type : = COVER,

IF (<fornula failure condition>) THEN Report tenplate
I'F (focs_formula_type = ERROR) THEN
WRI TE(focs_line_1,focs_string_0); Transl ation of print
command

WRI TE(f ocs_line_1, focs_checkrul e);
WRI TE(focs_line_1,focs_string_1);
WRI TE(focs_|ine_1,cycle);
WRI TE(focs_line_1,focs_string_2);
WRI TE(focs_line_1,focs_string_8);
WRI TE(focs_line_1,to bit(foo));
WRI TELI NE(QUTPUT, focs_line_1);
error_func();
ELSEIF (focs_formla_type = COVER)
WRI TE(focs_line_1,focs_string_4);
WRI TE(focs_line_1, focs_checkrule);
VWRI TE(focs_line_1,focs_string 5);
WRI TE(focs_line_1,cycle);

76 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

WRI TE(focs_line_1,focs_string_6);
WRI TE(focs_|line_1,focs _string 8);
WRI TE(focs line 1,to bit(foo));
WRI TELI NE(cover file,focs line 1);
END | F;
END | F
END PROCESS;
END ...

Verilog example:

Report template file:

#USE
print.v
#END

#FI LES
cover file /proj/simlation_|og/cover
#END

if (focs_fornula_type == ' ERRCR) begin
$display (" ERRORin % at time %l : % ", rule_name, $tine, desc)
end

el se

FoCs: a Forma Checker Tool 77

CHAPTER 6

if (focs_formula_type == ' COVER) begin

$fdi splay(cover file," COVERAGE EVENT : rule % at time % : % "
rul e_nane,

$time, desc)

end

Formula description:
formila {
"#type = COVER# Val ues of signals : foo = <foo>"

fornul a body

Generated code:
Assuming that the rule nameis CheckRul e and f ool is of type bool ean

The Verilog code generated by FoCs will be:

module ... (

checker ports

f oo,

focs_finish_signal

)
checker signals
i nput foo;
reg focs_file_handl e_enabl e_0;
78 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Customizing FoCs Settings

i nput focs_finish_signal;

“include "print.v"
‘define ERROR 1
‘define COVER 2
initial
begin
cover_file=$fopen("/proj/simulation_|og/cover");
if (cover_file==0)
begin

$rmonitor("Fatal error : Can't open file /proj/simulation_|og/
cover");

$finish;
end
focs_file handle enable 0 <= 1'd1;
wait (focs_finish_signal);
focs file handle enable 0 <= 1'dO;
$f cl ose(cover _file);
end

checker body

if (<fornula fail condition>) begin :assert0
i nteger focs_formula_type = * COVER
if (focs_fornula_type == ‘ERROR) begin

$di spl ay(" ERROR in CheckRule at time 9%9d : Values of signals :
fool = %", $tine, foo);

end

el se

FoCs: a Forma Checker Tool 79

CHAPTER 6

if (focs_formula_type == * COVER) begin

$fdi spl ay(cover _file," COVERAGE EVENT : rul e CheckRule at tinme
%d : Values of signals : foo = %", $tine, foo)

end
end
endnodul e

2. VHDL Example: counting events and stopping the simulation, using report
template file:

Report template file:
#library
utils
#end
#use
utils.countevents. al

--Package utils.countevents contains definition of integer
counter with initial value 0

--and the definition of constant STOP_VALUE
#end
IF (focs_formula_type = ERROR) THEN
counter <= counter + 1;
|F (counter = STOP_VALUE) THEN
< stop the simulation >
END | F
END | F;

80 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Customizing FoCs Settings

6.5.3 Maximal Number of Fails

This option alows you to limit the number of reported errors for one formula (during
run time), inactivating the relevant part of the checker. Moreover, the formulawill be
disabled after the defined number of fails. This option depends on setting Create
Enable Signalsto Yes, because the enable signals are used to disable the formula.

6.6 Sighal Mapping Tab

The following sections describe the options available within the Signal Mapping tab.

6.6.1 Mapping File

It is possible to define a mapping file, that defines a mapping between checker ports
and the actual design signals. For more details, see Section 3.2 on page 12.

6.6.2 Mapping Method (VHDL — MTI Simulator only)

Selecting a Mapping Method allows you to select which method to use for mapping
checker signalsto design signals.

e Signa spy
* None

6.6.3 Design Signals Prefix

If design signals are nested and there is acommon path for al signals, it is possible to
define the common path here. In the mapping of checker portsto design signals, this
path will be added as a prefix to the names of design signals. See examplesin
CHAPTER 3: Linking Checkerswith your Design.

6.6.4 Checker Signals Prefix (MTI — force-freeze only)

When using force-freeze, specify the location of the checker relative to the monitor
file.

6.6.5 Warn Incomplete Mapping
FoCs can supply warnings about checker ports that do not have a mapping defined in

FoCs: a Forma Checker Tool 81

CHAPTER 6

the mapping file, or complete these values itself by mapping such checker signalsto
signals with the same name (with the design signals prefix if such was defined).

* Yes—FoCswill warn about signals that do not have a mapping defined for them.

* No-FoCswill create adefault mapping for signals that do not have a mapping
defined for them.

82 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

cnaerer7 - USINQ FOCsfor Functional
Coverage Analysis

7.1 Functional Coverage

FoCs can be easily used to automatically generate monitors for tracking user-defined
coverage events. The only difference between afunctional checker and a coverage
checker isin the interpretation of the “error” message in simulation. For coverage
purposes, the message is a positive indication that the desired event happened.

We recommend using the following formula styles for coverage analysis with FoCs:

1. always !(b)
The boolean expression b can never be true.

2. never{ [*]; eventl; event2; ..., eventn }(
The sequence of events can never happen.

In the checker which FoCs generates, a message indicates that the event, or sequence
of events, did happen.

Examples:

rul e request Wt hFul | Queue {

formula “a request cones when the queue is full”

FoCs: Forma Checkers 83

CHAPTER 7

al ways !(request & queue full)

rul e cover RMR {
fornula “read and later wite and | ater read again

{

never{ [*], read, [*], wite, [*], read }

}

assert “read and later wite and |later read again,
and there was no other read between the two reads”

never { [*], read, 'read[*], !read & wite, !read[*], read }

More coverage options, such as event counting, will be added to FoCs in the future.

84 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

cuaerers DEfINING Bugspray Events'

T. For IBM usersonly

8.1 Introduction

When using Bugspray, it is possible to define events of type fail, count, and harvest. It
is possible to associate a Bugspray event to every Sugar formula. The definitionis
made in the description of the formula.

8.2 Syntax

The description of the Sugar formula starts with the Bugspray definition. A Bugspray
definition is separated from a standard description by “- - 11" at the beginning and a
semicolon (*; ") at the end:

formul a{
“--1lI<Bvent type(fail,count, harvest)> <Special flags>;
standard formul a description “

Sugar fornul ation

FoCs: Formal checkers 85

CHAPTER 8

If no bugspray definition is used, the formulawill be afail event.

The following are special flags used by Bugspray. All specia flags are optional.

Flag

Explanation

-t

In count events, this flag defines atrigger signal (asignal that
says when to increase a counter for event). If no signal name
isdefined (in this case thereisno need for writing -t in special
flags), the keyword “no_trigger” is used as the trigger signal.

This flag denotes whether to use the keyword “ TracePoint”
for acount event.

Thisflag allows you to specify a variable name for count and
harvest events.

Thisflag allows you to specify a class hame for count events.

This flag denotes whether to use the keyword “Cycle” for a
harvest event.

8.3 Events

8.3.1 Fail Events

Syntax:

f or mul a{

“--Ilfail; standard fornula description”

Sugar fornul ation

}

will be translated in checker to :

--I1fail outputs

86

IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Defining Bugspray Events

-1 1

-- 1 i: “standard fornula description”;

--Ilend fail outputs;

Standard formula description is used for error message string.

8.3.2 Count Events
Syntax:

formul a{
“--1lcount <-t signal nane> <-Tp><-cn class name><-vn variabl e nane>;”
Sugar formul ation

Note: <xxx> is used for optional values supplied by the user.

For each count event, if the class or variable name are not defined by the user, the
checker automatically produces a class name and a variable name using the name of
checker’s entity:

classname: count _cl ass_<checker entity name>

variable name : count _<checker entity name>_ i, wherei isanindex of the count
event

Examples for possible definitions: (assuming checker entity nameis “chkr”)
formul a

“--1lcount;”

{ Sugar formula }

will be translated to :

--!lcount outputs

--1r 1

FoCs: Formal checkers 87

CHAPTER 8

--1'l i: count_class_chkr count _chkr i no_trigger;

--!lend count outputs;

formul a{

“--1lcount -t clk -cn user_class_nane;”
Sugar formul ation ;

}

will be translated to :

--1lcount outputs

-- L

--1l" i: user_class_nane count_chkr i clk;

--1lend count outputs;

for mul a{

“--Ilcount -t clk -Tp -cn user_class_nane -vn user_var_nang;”
Sugar formulation

}

will be translated to :

--Ilcount outputs

-- L

--1l i: user_class_name user_var_name clk, TracePoint;

88 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Defining Bugspray Events

--Ilend count outputs;

formul a{
“--1lcount -Tp;”
Sugar formul ation

}

will be translated to :
--Ilcount outputs
-1 1

--I'li: count_class_chkr count_chkr_i no_trigger, TracePoint;

--1l'end count outputs;

8.3.3 Harvest Events
Syntax :

for mul a{

“--Ilharvest <-c¢> <-vn variable name>; standard fornula description”
Sugar formul ation

}

Note: <xxx> is used for optional values supplied by the user.

For each harvest event, if the variable name is not defined by the user, the checker
automatically produces a variable name using the name of checker’s entity :

variable name : harvest _<checker entity name>_i;

Examples for possible definitions : (assuming checker entity nameis "chkr™)
formul a{

FoCs: Formal checkers 89

CHAPTER 8

“--1lharvest; standard formula description”
Sugar formul ation

}

will be translated to :
--!Tharvest outputs
--1 L

--11 i: harvest _chkr_i “standard fornula description”;

--1lend harvest outputs;

for mul a{

“--Ilharvest -c -vn user_var_nane; standard fornula description”
Sugar fornul ation

}

will be translated to :
--1l'harvest outputs
--1 1

--11 i: user_var_name “standard formula description”, Cycle;

--!1lend harvest outputs;

In all types of events, indexes are assigned automatically.

20 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

CHAPTER 9

FoCsfor RuleBase Use's

9.1 Tips for Users of RuleBase

RuleBase is an industrial-strength formal verification (FV) tool, developed by the
IBM Haifa Research Laboratory. RuleBase is especialy applicable for verifying the
control logic of hardware designs, and uses Sugar for design specification. There are
several advantages to using FoCs-generated checkers in the simulation of designs
which were formally verified against the same Sugar properties.

» Often, theinput constraints (a.k.a. “the environment model”) defined for formal
verification are more restricted than the real environment modeled in simulation.
Thus, in simulation, one can exercise the design against inputs whose effect on the
design has not been explored by FV. It follows that the enhanced checking capabil-
ity of FOCs provides better coverage and confidence in verification quality.

» FoCs checkers can help find problemsin the input constraints defined for FV. For
example, if the results of FV and simulation—relative to the same properties—do
not agree, it islikely that the input constraints have not been defined correctly.

» Using FoCs, one can validate the assumptions made in the FV process. These
assumptions can be formulated as Sugar properties, translated by FoCs into check-
ers, and checked during simulation.

It is possible to use the same rulesfilefor both RuleBase and for FoCs; however, FoCs
only allows deterministic signal definitions. The RuleBase rules file may include non-

FoCs: Forma Checkers 91

CHAPTER 9

deterministic definitions that are relevant for environment definitions. These
definitions are irrelevant for the generated checker, which receivesitsinput from the
simulation inputs. For FoCs to ignore such definitions, you must set the Interface
Filename (in Settings, under Generation Style) to your VIM DEF file, located in your
vimdbase/DEF directory. Using this file, FoCs knows what signals are actual design
inputs.

92 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

CHAPTER 10 ApFH]dIX A

10.1 Examples of Checker Code in Verilog
and VHDL

Below isthe checker code generated by FoCs for the Sugar rule:
vuni t check_busy_fl ag{
assert

{[*], {request& acknow edge}[5]} |-> {busy_flag}

}

10.2 Checker Code in Verilog

The following is the FoCs checker code in Verilog:
nmodul e check_busy flag (

clk,

rst,

request,

acknow edge,

FoCs: Forma Checkers

93

CHAPTER 10

busy flag

i nput clk;

i nput rst;

i nput request;

i nput acknow edge;

i nput busy fl ag;

reg focs_enable O;

reg focs_ok O;

reg [0:6] focs_v_O;
reg [0:6] focs_vout 0;

initial
begi n
end
al ways @ posedge cl k)
if (rst) begin
focs_enable 0 <= 1'd1;
focs_ok 0 <= 1'd1;
focs_v_0[0:6] <= 7' b1110000;
end
el se
if (focs_enable 0) begin

focs_ok 0 <= !((focs_v_0[6] & ((request &
I'(acknow edge))

& !'(busy_flag))));
focs_vout _0[0:6] = {1'd0, (focs_v_0[1] & 1'bl),
(focs v 0[2

] & (request & !(acknow edge))), (focs_v_0[3] & (request & !(

acknow edge))), (focs_v_0[4] & (request & !(acknow edge))),
(focs v 0O

94 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Appendix A

[5] & (request & !(acknow edge))), (focs_v_0[6] & ((request & !(
acknow edge)) & !(busy flag)))};
focs_v_0[0:6] <= {focs_vout_0[0], (focs_vout 0[0] |

focs_vout _0[1]), (focs_vout 0O[0] | focs_vout_O0[1]),
focs_vout _0[2],

focs_vout _0[3], focs_vout 0[4], focs_vout 0[5]};
if ('(('(clk) | (('(focs_enable_0) | focs_ok_0) | rst))
)) begin
$display("formula 1");
$fini sh;
end
end
endrmodul e

10.3 Checker Code in VHDL

The following is the FoCs checker codein VHDL.:
library ieee;
library ibm
use ieee.std logic _1164.all;
use i bmstd | ogic_support.all;
ENTI TY check_busy flag IS
PORT (
clk :INstd_logic;
rst :INstd_logic;
request :IN std_|l ogic;
acknow edge :IN std_| ogic;
busy flag :IN std_logic);
END check_busy flag ;

FoCs: a Forma Checker Tool 95

CHAPTER 10

ARCHI TECTURE checker COF check_busy flag IS
SIGNAL focs_enable 0 : std_| ogic;
SIGNAL focs_ok 0 : std_l ogic;
SIGNAL focs_v_0 : std_|ogic_vector(0 TO 6);

function i2l (src: integer)
return std_logic is
variable R std_logic;
begi n
if src =0 then
R:="'0;
el se
R:="1;
end if;
return R
end i2l;

function 12i (src: std_|logic)
return integer is
variable R integer;

begi n
if src ='0 then
R:=0;
el se
R:=1;
end if;
return R
end |2i;
96 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Appendix A

function b2l (src:
return std_logic is
variable R std_logic;
begi n
if src then
R:="1;
el se
R:="'0;
end if;
return R
end b2l;

function I2b (src:
return boolean is
variable R bool ean;

begi n
if (src ='1) then
R := true;
el se
R := false;
end if;
return R
end | 2b;

function b2i (src:
return integer is
variable R integer;
begi n

bool ean)

std_| ogic)

bool ean)

FoCs: a Forma Checker Tool

CHAPTER 10

if src then
R:=1;
el se
R:=0;
end if;
return R
end b2i;

function i2b (src: integer)
return boolean is
vari able R bool ean;

begi n
if src =0 then
R := fal se;
el se
R := true;
end if;
return R
end i 2b;

function reverse (arg: std_Logic_vector) return std_Logic_vector i

variable result : std Logic_vector(arg range);

begi n
for i in arg’ range |oop
result(result’'right - i + result’left) :=arg(i);

end | oop;
return (result);
end reverse;

98 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Appendix A

-- convert an integer to an STD_LOGIC_VECTOR

function i2vl (ARG INTEGER; SIZE: INTEGER) return STD LOd C VECTOR
is
variable result: STD LOG C VECTOR (SIZE-1 downto 0);
variabl e tenp: integer;
-- synopsys built_in SYN_INTEGER TO S| GNED
begi n
-- synopsys synthesis_of f
tenp = ARG
for i in SIZE-1 downto O | oop
if (tenp mod 2) = 1 then

result(i) :='1";
el se

result(i) :='0";
end if;

if tenp > 0 then
tenp :=tenp / 2;
el se
tenp := (tenp - 1) / 2; -- simulate ASR
end if;
end | oop;
return result;
-- synopsys synthesis_on
end i2vl;

-- convert abooleanto an STD_LOGIC_VECTOR

function b2vl (ARG BOCOLEAN; SIZE: INTEGER) return STD LOd C VECTOR
is

FoCs: a Forma Checker Tool 99

CHAPTER 10

variable result: STD LOG@ C VECTOR (SIZE-1 downto 0);
begi n

if (ARG = false) then

result(SIZE-1) :="0";
el se

result(SIzE-1) :="1";
end if;

if (SIZE = 1) then
return result;

end if;

for i in SIZE-2 downto O | oop
result(i) :='0;

end | oop;

return result;
end b2vl;

-- convert alogic vector to integer
function vl 2i (src: STD LOJd C_VECTOR)
return integer is

variable R : integer;

variable nult : integer;
begi n
R:=0;
mlt :=1;
for i in src’high downto src’low | oop
if src(i) ='21 then
R:= R+ mlt;
end if;
100 IBM HaifaResearch Laboratory

Provided by special agreement with IBM

Appendix A

mult :=nult * 2;
end | oop;
return R

end vl 2i;

BEG N
PROCESS
VARI ABLE focs_vout _0 : std_logic_vector(0 TO 6);
BEG N
WAIT UNTIL clk’ EVENT AND clk = "1";
IF (I2b(rst)) THEN
focs_enable 0 <= "1
focs_ok 0 <= 1" ;
focs_v_0(0 TO 6) <= "1110000";
ELSIF (I2b(focs_enable 0)) THEN
focs_ok_0 <= NOT((focs_v_0(6) AND ((request AND NOTI(
acknow edge)
) AND NOT(busy flag))));
(

focs_vout_0(0 TO6) :=((((('0" & (focs_v_0(1) AND

1 11))
& (focs_v_0(2) AND (request AND NOT(acknowl edge))))
& (
focs_v_0(3) AND (request AND NOT(acknowl edge)))) & (
focs_v_0(4) AND (request AND NOT(acknowl edge)))) & (
focs_v_0(5) AND (request AND NOT(acknowl edge)))) & (
focs_v_0(6) AND ((request AND NOT(acknow edge)) AND
NOT(

busy_flag))));

FoCs: a Formal Checker Tool 101

CHAPTER 10

focs v 0(0 TO6) <= ((((((focs_vout_0(0) & (
focs_vout_0(0) OR

focs_vout _0(1))) & (focs_vout_0(0) OR focs_vout _0(1)))
&

focs_vout _0(2)) & focs_vout 0(3)) & focs_vout _0(4)) &
focs_vout_0(5));
END | F;
END PROCESS;

ASSERT (NOT(((NOT(clk) OR((NOT(focs_enable 0) OR
focs_ok 0) OR

rst))= "0 1))
)

REPORT " FAILURE EVENT: rule: CHECK BUSY FLAG fornmula: 1 :
formula 1"

SEVERI TY NOTE;
END checker ;

102 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

CHAPTER 11 ApFH]dIX B

11.1 Common FoCs Error Messages

Below are some common error messages and their meanings:

11.1.1 Settings Errors
Fatal error: In “ Settings” clock name must be supplied

Defining the Clock in the Settings is obligatory.

Fatal error: In “ Settings” reset name must be supplied
Defining the reset signal, when reset is defined as External, is obligatory.

Fatal error : In Bugspray mode, the name of the design must be specified

When selecting Target simulator to be "Bugspray", defining the design entity nameis
obligatory.

FoCs: Forma Checkers 103

CHAPTER 11

11.1.2 Sugar Errors and Warnings
Warning: Formula 1: Formula does not begin with “ always”

When aformula begins with al ways, or a sequence beginswith [*], it is checked at
every cycle. Otherwise, it is checked only at thefirst cycle. Such amessageislikely to
appear if thereisaformulawith{el, e2,...}. Thisformuladoesn’t start with [*],
and therefore will only be checked on the first cycle.

Warning: Formula 1. Operation AF cannot run in Safety on-the-fly mode
Warning: Formula 1. Running this formula with OnTheFly = No.

Warning: Formulais not safety. Trandation failed. Check if thereisno use of AF
or ECTL operatorsin the formula

Formula not on-the-fly

If one or more of the above messages appears, it means that the Sugar formulais not
supported by FoCs. Since checkers run during simulation, and the properties are
checked at each cycle, only propertiesthat can be verified at each cycle can be written.
Such properties are caled Safety properties.

Properties that refer to “sometime in the future”, such as “liveness’ properties, that
ensure the occurrence of some event, can not be verified during simulation, and
therefore cannot be used in FoCs.

See Sugar_v1.4 -with FoCs notes for further explanation on unsupported Sugar
operators.

Fatal error : Nondeterministic operator is used

Since the Sugar properties are translated to HDL code, it is forbidden to use non-
determinism in the formulas and state machines. Such a message may mean that there
isavariable that has received a non-deterministic value.

Fatal error: Environment is nondeterministic: behaviour of signal x isundefined

In this case, there must be some variable that was defined but not assigned.

104 IBM HaifaResearch Laboratory
Provided by special agreement with IBM

Appendix B

Fatal error: Environment is nondeterministic : in signal x next state is defined
without init state

This means that there is an assign statement for variable x, but no init statement. This
is forbidden, because behaviour must be deterministic.

Fatal error : Nondeterministic environment - case without elsein file...

A case statement must always contain an else part (even if al cases are covered),
Otherwise the behaviour is considered as non deterministic.

FoCs: a Formal Checker Tool 105

	FoCs
	Notices
	Table of Contents
	CHAPTER 1 Introduction 5
	CHAPTER 2 Installation and Setup 8
	CHAPTER 3 Linking Checkers with your Design 11
	CHAPTER 4 Tutorial 21
	CHAPTER 5 The Sugar Specification Language 30
	CHAPTER 6 Customizing FoCs Settings 61
	CHAPTER 7 Using FoCs for Functional Coverage Analysis 83
	CHAPTER 8 Defining Bugspray Events 85
	CHAPTER 9 FoCs for RuleBase Users 91
	CHAPTER 10 Appendix A 93
	CHAPTER 11 Appendix B 103

	CHAPTER 1 Introduction
	1.1 Overview
	1.2 About This Manual

	CHAPTER 2 Installation and Setup
	2.1 Installation
	2.1.1 Personal Setup

	2.2 Running FoCs
	2.2.1 Checker Generation
	2.2.2 Batch Mode

	CHAPTER 3 Linking Checkers with your Design
	3.1 Introduction
	3.2 Signal Mapping
	3.2.0.1 Nested Design Signals
	3.2.0.2 Automatic Signal Mapping
	3.2.0.3 Using Hierarchical Signal Names
	3.2.0.4 Mapping Vectors

	3.3 Linkage
	3.3.1 Verilog
	3.3.2 Pure VHDL
	3.3.3 Bugspray (IBM only)
	3.3.4 Model Sim®
	3.3.4.1 Signal Spy Mapping Using Generic Ports

	CHAPTER 4 Tutorial
	4.1 Introduction
	4.2 Design Description
	4.3 The Rules File
	4.4 Initial Setup for a Working Environment
	4.5 Generating Checkers

	CHAPTER 5 The Sugar Specification Language
	5.1 Introduction
	5.2 Getting Started with Sugar
	5.2.1 Always (p)
	5.2.2 Sugar Extended Regular Expression – SERE
	5.2.2.1 The constructs {SERE} -> {SERE} and {SERE} =>{SERE}
	5.2.2.2 Subsequences
	5.2.2.3 The || and && operators
	5.2.2.4 Applying Never to SERE’s
	5.2.2.5 Counting Boolean events

	5.2.3 Suffix Implication {SERE}()
	5.2.3.1 {SERE}(p until q)
	5.2.3.2 The Construct {SERE} (p before q)

	5.3 The Building Blocks of a Sugar Formula
	5.3.1 Boolean Expressions
	5.3.1.1 Signal Names
	5.3.1.2 Numbers
	5.3.1.3 Operators

	5.3.2 Temporal Properties
	5.3.2.1 Temporal Constructs
	5.3.2.2 Sequence Operators

	5.3.3 Built-in Functions

	5.4 Writing a Rules File
	5.4.1 The Structure of the Rules File
	5.4.2 A Methodology for Writing Rules Files
	5.4.3 Comments, Macros, and Preprocessing Directing

	5.5 State Machines
	5.5.1 Additional Expressions Used in State Machines
	5.5.1.1 if and case Expressions

	5.5.2 Statements for State Machines – FSM Statements
	5.5.2.1 The var Statement
	5.5.2.2 The Assign Statement
	5.5.2.3 The Define Statement
	5.5.2.4 The Module and Instance Statements
	5.5.2.5 Advanced Operations on Arrays
	5.5.2.6 Defining Arrays
	5.5.2.7 Operations on Arrays
	5.5.2.8 Array Notes
	5.5.2.9 More Array Examples

	CHAPTER 6 Customizing FoCs Settings
	6.1 Overview
	6.2 Main Tab
	6.2.1 Rules File
	6.2.2 Target Language
	6.2.3 Target Simulator (VHDL only)
	6.2.4 Output File Name

	6.3 Clock and Reset Tab
	6.3.1 Clock Name
	6.3.2 Clock Polarity
	6.3.3 Simulation Delay (Verilog only)
	6.3.4 Reset Mode
	6.3.5 Checker Reset Name (External Only)
	6.3.6 Number of Reset Cycles (Internal Only)
	6.3.7 Reset Polarity

	6.4 Checker Generation Style Tab
	6.4.1 Checker Entity Name (VHDL Only)
	6.4.2 Checker Module Name (Verilog Only)
	6.4.3 Generate Module (Verilog only)
	6.4.4 Produce Instantiation Code
	6.4.5 Create Enable Signals
	6.4.6 Interface Filename
	6.4.7 Design Entity Name (Mvlsim/Bugspray Simulation Only)
	6.4.8 Vector Direction
	6.4.9 Logic Signal Type (VHDL only)

	6.5 Reporting Tab
	6.5.1 Severity of Assertion (VHDL Only)
	6.5.2 Report Template File Mechanism (Verilog and VHDL-93 full)
	6.5.2.1 Report template file
	6.5.2.2 Formula type definition
	6.5.2.3 Usage and semantics of printf / $display and fprintf / $fdisplay
	6.5.2.4 Writing output to the file streams
	6.5.2.5 Including files, libraries, and packages
	6.5.2.6 Examples

	6.5.3 Maximal Number of Fails

	6.6 Signal Mapping Tab
	6.6.1 Mapping File
	6.6.2 Mapping Method (VHDL – MTI Simulator only)
	6.6.3 Design Signals Prefix
	6.6.4 Checker Signals Prefix (MTI – force-freeze only)
	6.6.5 Warn Incomplete Mapping

	CHAPTER 7 Using FoCs for Functional Coverage Analysis
	7.1 Functional Coverage

	CHAPTER 8 Defining Bugspray Events
	8.1 Introduction
	8.2 Syntax
	8.3 Events
	8.3.1 Fail Events
	8.3.2 Count Events
	8.3.3 Harvest Events

	CHAPTER 9 FoCs for RuleBase Users
	9.1 Tips for Users of RuleBase

	CHAPTER 10 Appendix A
	10.1 Examples of Checker Code in Verilog and VHDL
	10.2 Checker Code in Verilog
	10.3 Checker Code in VHDL

	CHAPTER 11 Appendix B
	11.1 Common FoCs Error Messages
	11.1.1 Settings Errors
	11.1.2 Sugar Errors and Warnings

