

XVPX-9400 Single-Slot 3U VPX bus 8-Channel RAID Controller and PMC/XMC Carrier Module

USER'S MANUAL

ACROMAG INCORPORATED 30765 South Wixom Road P.O. BOX 437 Wixom, MI 48393-7037 U.S.A. Tel: (248) 295-0885 Fax: (248) 624-9234 Email: xembeddedsales@acromag.com

Copyright 2013, Acromag, Inc., Printed in the USA. Data and specifications are subject to change without notice.

8500-984F

Trademark Information

Brand or product names are trademarks or registered trademarks of their respective owners. Intel® and Pentium® are registered trademarks and Celeron™ is a trademark of Intel Corporation. Windows®, Windows XP®, and Windows 7® are registered trademarks of Microsoft Corporation in the US and in other countries.

Copyright Information

This document is copyrighted by Xembedded, LLC (Xembedded) and shall not be reproduced or copied without expressed written authorization from Xembedded.

The information contained within this document is subject to change without notice. Xembedded does not guarantee the accuracy of the information.

Associated Documents

Due to the complexity of some of the parts used on the XVPX-9400, it is not possible to include all of the detailed data on all such devices in this manual. A list of the specifications and data sheets that provide additional information is as follows:

VPX Standard, VITA 46.0 – 2007. <u>http://www.vita.com</u> PLX <u>http://www.plx.com</u>

WARNING

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

Warning for European Users – Electromagnetic Compatibility

European Union Directive 89/336/EEC requires that this apparatus comply with relevant ITE EMC standards. EMC compliance demands that this apparatus is installed within a VME enclosure designed to contain electromagnetic radiation and which will provide protection for the apparatus with regard to electromagnetic immunity. This enclosure must be fully shielded. An example of such an enclosure is a Schroff® 7U EMC-RFI VME System chassis, which includes a front cover to complete the enclosure.

The connection of non-shielded equipment interface cables to this equipment will invalidate European Free Trade Area (EFTA) EMC compliance and may result in electromagnetic interference and/or susceptibility levels that are in violation of regulations which apply to the legal operation of this device. It is the responsibility of the system integrator and/or user to apply the following directions, as well as those in the user manual, which relate to installation and configuration:

All interface cables should be shielded, both inside and outside of the VME enclosure. Braid/foil type shields are recommended for serial, parallel and SCSI interface cables. Where as external mouse cables are not generally shielded, an internal mouse interface cable must either be shielded or looped (1 turn) through a ferrite bead at the enclosure point of exit (bulkhead connector). External cable connectors must be metal with metal back-shells and provide 360-degree protection about the interface wires. The cable shield must be terminated directly to the metal connector shell; shield ground drain wires alone are not adequate. VPX panel mount connectors that provide interface to external cables (e.g., RS232, USB, keyboard, mouse, etc.) must have metal housings and provide direct connection to the metal VPX chassis. Connector ground drain wires are not adequate.

Environmental Protection Statement

This product has been manufactured to satisfy environmental protection requirements where possible. Many of the components used (structural parts, printed circuit boards, connectors, batteries, etc.) are capable of being recycled. Final disposition of this product after its service life must be accomplished in accordance with applicable country, state, or local laws or regulations.

Note

This VPX 8-Channel RAID Controller and PMC/XMC carrier module is designed to be used in a VPX backplane that supports module profile MOD3-PAY-1D-16.2.6-2. Use of this module in any other backplane profile could result in damage to this module or others in the chassis

Technical Support

In the unlikely event that you experience problems with your product, contact Technical Support. Please be prepared to provide contact information and details of your problem. You may be asked for further details when calling:

TELEPHONE734-975-0577FAX734-975-0588

Support may also be obtained via email. E-mail to <u>support@xembedded.com</u>

Chapter 1 – Introduction	
Module Features	
Module and Backplane Profiles	
Handling	
ESD Safe Work Area Guidelines	
Operational Block Diagram	
Environmental Specifications	
Flammability	
EMI/EMC Regulatory Compliance	
I2C Bus and Temperature Sensor	
Electrical Specifications	
VPX Power Supply Requirements	
Power Consumption	
Auxiliary Supply	
Build Levels	
Ordering Information	
Chanter 2 – Installation and Setun	2-1
Jumper Settings	2-1
Connectors	2-2
PMC/XMC Connectors	2-2
XMC Connector Pin Out	2-3
VPX Connectors	2.0
Front Panel Lavout	2-5
Installation	2-5
Board Keving	2-5
Installation Notes	2-5
Power Requirements	2-6
Connecting to XVPX-9400	
Power-Up/Reset Sequence	
Chanter 3 – Accessory Modules	2_1
XVPX-9940	
Jumpers	
Connectors	
Chapter 4 Revision History	

Chapter 1 – Introduction

Xembedded's XVPX-9400 is a rugged 8-Channel RAID Controller and PMC/XMC Carrier Module in the 3U VPX form factor, targeted for processing, communications and display applications in the commercial, military and aerospace markets.

In addition to the RAID controller which provides connection for up to 8 drives, the XVPX-9400 also allows the use of a PMC or XMC module. The XVPX-9940 is the Rear Transition Module for the XVPX-9400 used to turn the backplane I/O into standard SATA connections.

The XVPX-9400 supports up to eight PCI Express lanes from the backplane for connection to other cards in the system.

Module Features

- 8-Channel RAID controller with Heartbeat monitor
- The PMC site is 64-bit, 133MHz 3.3VIO
- The XMC site is PCIe 8-lanes Gen 2.0
- Supports standard IEEE1386.1 modules
- Supports Vita 65, OpenVPX
- Module conforms to VPX Spec. Vita 46.0, 46.4 and 46.9
- Front panel I/O for the Air-cooled versions.
- Rear I/O for all differential I/O lines for all variants
- 8 lanes of PCI Express (Vita 46.0 and 46.4)
- 3U VPX form factor supporting OpenVPX and Vita 65
- Air and conduction-cooled variants
- REDI covers supporting Vita 48 is available

Module and Backplane Profiles

The XVPX-9400 conforms to module profile MOD3-PAY-1D-16.2.6-2. Use of this module in an incompatible backplane profile could result in damage to this module or others in the chassis.

Note

Due to a BIOS limitation on the XVPX-6300, when used with this CPU module the XVPX-9400 RAID device or installed PMC/XMC card may not boot properly when connected to Fat Pipe B. They will function normally from inside an operating system. These devices will boot normally if connected to Fat Pipe A.

Handling

Modules should be handled in ESD-safe work areas in order to prevent damage to sensitive components from electrostatic discharges. These areas must be designed and maintained to prevent ESD damage.

ESD Safe Work Area Guidelines

- 1. Module should be handled at properly designated work areas only.
- 2. Designated ESD safe work areas must be checked periodically to ensure their continued safety from ESD. The areas should be monitored for the following:
 - a. Proper grounding methods.
 - b. Static dissipation of work surfaces.

- c. Static dissipation of floor surfaces.
- d. Operation of ion blowers and ion air guns.
- 3. Designated work areas must be kept free of static generating materials such as styrofoam, vinyl, plastic, fabrics or any other static generating materials.
- 4. Work areas must be kept clean and neat in order to prevent contamination of the work area.
- Modules should be handled by the edges. Avoid touching the component leads.
 NOTE: When not installed in a system, modules must be enclosed in shielded bags or boxes. There are three types of ESD protective enclosure materials this module was shipped in an approved ESD bag.
- 6. Whenever handling the module the operator must be properly grounded by one of the following:
 - a. Wearing a wrist strap connected to earth ground.
 - b. Wearing heel grounders and have both feet on a static dissipative floor surface.
- 7. Stacking of modules should be avoided to prevent physical damage.

Operational Block Diagram

Environmental Specifications

Flammability

The circuit board is made by an UL recognized manufacturer and has a flammability rating of UL94V-1.

EMI/EMC Regulatory Compliance

Caution

This module generates, uses, and can radiate electromagnetic energy. It may cause, or be susceptible to EMI if not installed and used in a cabinet with adequate EMI protection.

The XVPX-9400 is designed using good EMC practices and, when used in a suitably EMC-compliant chassis, should maintain the compliance of the total system.

The XVPX-9400 also complies with EN60950 (product safety), which is essentially the requirement for the Low Voltage Directive (73/23/EEC).

Air-cooled build levels of the XVPX-9400 are designed for use in systems meeting VDE class B, EN and FCC regulations for EMC emissions and susceptibility.

Conduction-cooled and REDI build levels of the XVPX-9400 are intended for integration into EMC hardened cabinets/boxes.

I2C Bus and Temperature Sensor

There is one I2C bus to access the FRU (Field Replaceable Unit) which can store user data. This device will also report board temperature and status.

Caution

The XVPX-9400 requires air-flow of at least 200 LFM for the air-cooled version plus what is required for the PMC/XMC installed on this module. If the conduction-cooled XVPX-9400 is operating on an extender card, it requires air-flow of at least 300 LFM across it. Versions using the REDI covers MUST NOT operate outside of a fully configured and fully installed conduction-cooled REDI system. With the covers installed conduction is the only cooling method.

ENVIRONMENTAL SPECIFICATION	OPERATING	NON-OPERATING
THERMAL		
Air-cooled	0° to 70°C*	-40° to 85°C
Conduction-cooled	-40° to 85°C*1	-40° to 105°C
REDI Cover, Conduction-cooled	-40° to 85°C*2	-40° to 105°C
HUMIDITY	20% - 80% RH, non-condensing	
SHOCK	30 g peak acceleration, 11msec duration	50 g peak acceleration, 11msec duration
VIBRATION	.015" (.38mm) peak-to-peak	.030" (.76mm) peak-to-peak
20 - 2000 Hz	displacement	displacement
	2.5 g max acceleration	5.0 g max acceleration
COMPLIANCE	IEEE 1386.1 (CMC Standard),	
	Vita 46.0, 46.4, 46.9, 48 and 65	
	MIL Spec 217-F@ 105,000 Hrs	
FORM FACTOR	6.299" (160mm), 3.937" (100mm)	

* w/ 200lfm airflow ¹ must operate in a fully installed conduction-cooled rack ² must operate in a fully installed conduction-cooled RAID rack

Electrical Specifications

VPX Power Supply Requirements

The XVPX-9400 requires +3.3V and +5V from the VPX back plane. The +/-12V supplies are used only if required by the PMC/XMC module.

Power Consumption

+5V: 48W max (w/o mezzanine card) +3.3V: 20W max (w/o mezzanine card)

Auxiliary Supply

The following functions may be powered from the 3.3 V Auxiliary supply (VPX +3.3V_AUX line):

FRU EEPROM, TEMP SENSOR

Build Levels

The XVPX-9400 is available in three electrically compatible build levels, each of which is carefully tailored to a particular set of requirements and environments. All three levels fully support the power and versatility of VPX, so no matter how large or diversified your project, absolute compatibility is assured at all stages of development. The three build levels have three basic mechanical configurations, both in accordance with the VITA 46.0 VPX standard and the Vita 48 REDI standard:

- 1. Air (convection) cooled modules are intended for use in standard industrial chassis.
- 2. Conduction-cooled modules are intended for use in sealed Air Transportable Racking (ATR) and other conduction-cooled environments.
- 3. REDI cover, Conduction-cooled modules are intended for use in sealed Air Transportable Racking (ATR) and other conduction-cooled environments.

Ordering Information

XVPX-9400-A00-X	
A = CPU	1 = Air-cooled
	2 = Conduction-cooled
	3 = REDI Conduction-cooled
X = SOLDER	LF – Lead-free solder

Chapter 2 – Installation and Setup

Below is the outline of the XVPX-9400 showing the six jumper locations. The module comes in a standard configuration which may not be compatible with your application. The following information will help you understand how to configure this module.

Fig. 2-1 shows the jumper locations on the XVPX-9400

Jumper Settings

The following section describes the XVPX-9400 jumpers with their default positions and functions.

PEXSPD PCIe Speed	1-2 (default)	GEN 1 & GEN 2 SUPPORTED
Select	2-3	FORCE GEN 1 SPEED ON ALL CONNECTIONS

CLKSEL	1-2 (default)	NON-COMMON CLOCK
Select	2-3	100MHz COMMON CLOCK FROM P0 REFCLK PINS

Best system stability may be achieved with the use of a 100MHz common clock connection from the SBC, especially at Gen 2 link speeds. If the system does not provide a common clock then non-common clock mode must be used.

FRUSEL	1-2 (default)	USES 3.3V
Sensor Voltage	2-3	USES 3.3V_AUX

ORBGND	1-2 (default)	FRONT PANEL TIED TO GND
Orb/Chassis Ground	2-3	FRONT PANEL ISOLATED

Connectors

PMC/XMC Connectors

PMC Site Connector J11				PMC Site Connector J12			
Signal	PIN	PIN	Signal	Signal	PIN	PIN	Signal
TCK	1	2	-12V	+12V	1	2	TRST*
Ground	3	4	INTA*	TMS	3	4	TDO
INTB*	5	6	INTC*	TDI	5	6	Ground
BUSMODE1*	7	8	+5V	Ground	7	8	PCI-RSVD*
INTD*	9	10	PCI-RSVD*	PCI-RSVD*	9	10	PCI-RSVD*
Ground	11	12	PCI-RSVD*	BUSMODE2*	11	12	+3.3V
CLK	13	14	Ground	RST*	13	14	BUSMODE3*
Ground	15	16	GNT*	+3.3V	15	16	BUSMODE4*
REQ*	17	18	+5V	PCI-RSVD*	17	18	Ground
V(I/O)	19	20	AD(31)	AD(30)	19	20	AD(29)
AD(28	21	22	AD(27)	Ground	21	22	AD(26)
AD(25)	23	24	Ground	AD(24)	23	24	+3.3V
Ground	25	26	C/BE(3)*	IDSEL	25	26	AD(23)
AD(22)	27	28	AD(21)	+3.3V	27	28	AD(20)
AD(19)	29	30	+5V	AD(18)	29	30	Ground
V(I/O)	31	32	AD(17)	AD(16)	31	32	C/BE(2)*
FRAME*	33	34	Ground	Ground	33	34	PMC-RSVD
Ground	35	36	IRDY*	TRDY*	35	36	+3.3V
DEVSEL*	37	38	+5V	Ground	37	38	STOP*
Ground	39	40	LOCK*	PERR*	39	40	Ground
SDONE*	41	42	SBO*	+3.3V	41	42	SERR*
PAR	43	44	Ground	C/BE(1)*	43	44	Ground
V(I/O)	45	46	AD(15)	AD(14)	45	46	AD(13)
AD(12)	47	48	AD(11)	M66EN	47	48	AD(10)
AD(09)	49	50	+5V	AD(08)	49	50	+3.3V
Ground	51	52	C/BE(0)*	AD(07)	51	52	PMC-RSVD
AD(06)	53	54	AD(05)	+3.3V	53	54	PMC-RSVD
AD(04)	55	56	Ground	PMC-RSVD	55	56	Ground
V(I/O)	57	58	AD(03)	PMC-RSVD	57	58	PMC-RSVD
AD(02)	59	60	AD(01)	Ground	59	60	PMC-RSVD
AD(00)	61	62	+5V	ACK64*	61	62	+3.3V
Ground	63	64	REQ64*	Ground	63	64	PMC-RSVD

PMC Site Connector J13				PMC Site Connector J14 (shown as differential pairs)					
Signal	PIN	PIN	Signal	Pair Number	Signal	PIN	PIN	Signal	Pair Number
PCI-RSVD	1	2	Ground	Pair 1	PMC_IO1_DN	1	2	PMC_IO2_DN	Pair 2
Ground	3	4	C/BE(7)*	Pair 1	PMC_IO1_DP	3	4	PMC_IO2_DP	Pair 2
C/BE(6)*	5	6	C/BE(5)*	Pair 3	PMC_IO3_DN	5	6	PMC_IO4_DN	Pair 4
C/BE(4)*	7	8	Ground	Pair 3	PMC_IO3_DP	7	8	PMC_IO4_DP	Pair 4
V(I/O)	9	10	PAR64	Pair 5	PMC_IO5_DN	9	10	PMC_IO6_DN	Pair 6
AD(63)	11	12	AD(62)	Pair 5	PMC_IO5_DP	11	12	PMC_IO6_DP	Pair 6
AD(61)	13	14	Ground	Pair 7	PMC_IO7_DN	13	14	PMC_IO8_DN	Pair 8

- ·	L			- · -					
Ground	15	16	AD(60)	Pair 7	PMC_IO7_DP	15	16	PMC_IO8_DP	Pair 8
AD(59)	17	18	AD(58)	Pair 9	PMC_IO9_DN	17	18	PMC_IO10_DN	Pair 10
AD(57)	19	20	Ground	Pair 9	PMC_IO9_DP	19	20	PMC_IO10_DP	Pair 10
V(I/O)	21	22	AD(56)	Pair 11	PMC_IO11_DN	21	22	PMC_IO12_DN	Pair 12
AD(55)	23	24	AD(54)	Pair 11	PMC_IO11_DP	23	24	PMC_IO12_DP	Pair 12
AD(53)	25	26	Ground	Pair 13	PMC_IO13_DN	25	26	PMC_IO14_DN	Pair 14
Ground	27	28	AD(52)	Pair 13	PMC_IO13_DP	27	28	PMC_IO14_DP	Pair 14
AD(51)	29	30	AD(50)	Pair 15	PMC_IO15_DN	29	30	PMC_IO16_DN	Pair 16
AD(49)	31	32	Ground	Pair 15	PMC_IO15_DP	31	32	PMC_IO16_DP	Pair 16
Ground	33	34	AD(48)	Pair 17	PMC_IO17_DN	33	34	PMC_IO18_DN	Pair 18
AD(47)	35	36	AD(46)	Pair 17	PMC_IO17_DP	35	36	PMC_IO18_DP	Pair 18
AD(45)	37	38	Ground	Pair 19	PMC_IO19_DN	37	38	PMC_IO20_DN	Pair 20
V(I/O)	39	40	AD(44)	Pair 19	PMC_IO19_DP	39	40	PMC_IO20_DP	Pair 20
AD(43)	41	42	AD(42)	Pair 21	PMC_IO21_DN	41	42	PMC_IO22_DN	Pair 22
AD(41)	43	44	Ground	Pair 21	PMC_IO21_DP	43	44	PMC_IO22_DP	Pair 22
Ground	45	46	AD(40)	Pair 23	PMC_IO23_DN	45	46	PMC_IO24_DN	Pair 24
AD(39)	47	48	AD(38)	Pair 23	PMC_IO23_DP	47	48	PMC_IO24_DP	Pair 24
AD(37)	49	50	Ground	Pair 25	PMC_IO25_DN	49	50	PMC_IO26_DN	Pair 26
Ground	51	52	AD(36)	Pair 25	PMC_IO25_DP	51	52	PMC_IO26_DP	Pair 26
AD(35)	53	54	AD(34)	Pair 27	PMC_IO27_DN	53	54	PMC_IO28_DN	Pair 28
AD(33)	55	56	Ground	Pair 27	PMC_IO27_DP	55	56	PMC_IO28_DP	Pair 28
V(I/O)	57	58	AD(32)	Pair 29	PMC_IO29_DN	57	58	PMC_IO30_DN	Pair 30
PCI-RSVD	59	60	PCI_RSVD	Pair 29	PMC_IO29_DP	59	60	PMC_IO30_DP	Pair 30
PCI-RSVD	61	62	Ground	Pair 31	PMC_IO31_DN	61	62	PMC_IO32_DN	Pair 32
Ground	63	64	PCI-RSVD	Pair 31	PMC_IO31_DP	63	64	PMC_IO32_DP	Pair 32

XMC Connector Pin Out

	Α	В	С	D	E	F
01	DP00+	DP00-	3.3V	DP01+	DP01-	VPWR
02	GND	GND	TRST#	GND	GND	MRSTI#
03	DP02+	DP02-	3.3V	DP03+	DP03-	VPWR
04	GND	GND	TCK	GND	GND	MRSTO#
05	DP04+	DP04-	3.3V	DP05+	DP05-	VPWR
06	GND	GND	TMS	GND	GND	+12V
07	DP06+	DP06-	3.3V	DP07+	DP07-	VPWR
08	GND	GND	TDI	GND	GND	-12V
09	DP08+	DP08-	RPS	DP09+	DP09-	VPWR
10	GND	GND	TDO	GND	GND	GA0
11	DP10+	DP10-	MBIST#	DP11+	DP11-	VPWR
12	GND	GND	GA1	GND	GND	MPRESENT#
13	DP12+	DP12-	3.3V AUX	DP13+	DP13-	VPWR
14	GND	GND	GZ2	GND	GND	MSDA
15	DP14+	DP14-	RPS	DP15+	DP15-	VPWR
16	GND	GND	MVMRO	GND	GND	MSCL
17	DP16+	DP16-	RFU	DP17+	DP17-	RFU
18	GND	GND	RPS	GND	GND	RPS
19	DP18+	DP18-	RPS	DP19+	DP19-	RPS

VPX Connectors

P0 Connector

P0 Wafer	Α	В	С	D	Е	F	G
1	+3.3 V	+3.3 V	+3.3 V	None	+12 V	Unused	+12 V
2	+3.3 V	+3.3 V	+3.3 V	None	+12 V	+12 V	+12 V
3	+5 V	+5 V	+5 V	None	+5 V	+5 V	+5 V
4	NVRMO	SYSRESET-	GND	-12V	GND	UNUSED	UNUSED
5	SM1	SM0	GND	+3V3_AUX	GND	GA4-	GAP-
6	GA0	GA1	GND	UNUSED	GND	GA2-	GA3-
7	TRST	TMS	GND	TDI	TDO	GND	TCLK
8	GND	UNUSED	UNUSED	GND	UNUSED	UNUSED	GND

P1 Connector

P1 Wafer	А	В	С	D	E	F	G
1	PCIE_RXP0	PCIE_RXN0	GND	PCIE_TXP0	PCIE_TXN0	GND	UNUSED
2	GND	PCIE_RXP1	PCIE_RXN1	GND	PCIE_TXP1	PCIE_TXN1	GND
3	PCIE_RXP2	PCIE_RXN2	GND	PCIE_TXP2	PCIE_TXN2	GND	UNUSED
4	GND	PCIE_RXP3	PCIE_RXN3	GND	PCIE_TXP3	PCIE_TXN3	GND
5	PCIE_RXP4	PCIE_RXN4	GND	PCIE_TXP4	PCIE_TXN4	GND	UNUSED
6	GND	PCIE_RXP5	PCIE_RXN5	GND	PCIE_TXP5	PCIE_TXN5	GND
7	PCIE_RXP6	PCIE_RXN6	GND	PCIE_TXP6	PCIE_TXN6	GND	UNUSED
8	GND	PCIE_RXP7	PCIE_RXN7	GND	PCIE_TXP7	PCIE_TXN7	GND
9	SATA_RXP0	SATA_RXN0	GND	SATA_TXP0	SATA_TXN0	GND	ZEROIZE_LED
10	GND	SATA_RXP1	SATA_RXN1	GND	SATA_TXP1	SATA_TXN1	GND
11	SATA_RXP2	SATA_RXN2	GND	SATA_TXP2	SATA_TXN2	GND	PURGE#
12	GND	SATA_RXP3	SATA_RXN3	GND	SATA_TXP3	SATA_TXN3	GND
13	SATA_RXP4	SATA_RXN4	GND	SATA_TXP4	SATA_TXN4	GND	ZEROIZE#
14	GND	SATA_RXP5	SATA_RXN5	GND	SATA_TXP5	SATA_TXN5	GND
15	SATA_RXP6	SATA_RXN6	GND	SATA_TXP6	SATA_TXN6	GND	UNUSED
16	GND	SATA_RXP7	SATA_RXN7	GND	SATA_TXP7	SATA_TXN7	GND

P2 Connector

P2 Wafer	А	В	С	D	Е	F	G
1	PMCIO2_DP	PMCIO2_DN	GND	PMCIO1_DP	PMCIO1_DN	GND	UNUSED
2	GND	PMCIO4_DP	PMCIO4_DN	GND	PMCIO3_DP	PMCIO3_DN	GND
3	PMCIO6_DP	PMCIO6_DN	GND	PMCIO5_DP	PMCIO5_DN	GND	UNUSED
4	GND	PMCIO8_DP	PMCIO8_DN	GND	PMCIO7_DP	PMCIO7_DN	GND
5	PMCIO10_DP	PMCIO10_DN	GND	PMCIO9_DP	PMCIO9_DN	GND	UNUSED
6	GND	PMCIO12_DP	PMCIO12_DN	GND	PMCIO11_DP	PMCIO11_DN	GND
7	PMCIO14_DP	PMCIO14_DN	GND	PMCIO13_DP	PMCIO13_DN	GND	UNUSED
8	GND	PMCIO16_DP	PMCIO16_DN	GND	PMCIO15_DP	PMCIO15_DN	GND
9	PMCIO18_DP	PMCIO18_DN	GND	PMCIO17_DP	PMCIO17_DN	GND	UNUSED
10	GND	PMCIO20_DP	PMCIO20_DN	GND	PMCIO19_DP	PMCIO19_DN	GND
11	PMCIO22_DP	PMCIO22_DN	GND	PMCIO21_DP	PMCIO21_DN	GND	UNUSED
12	GND	PMCIO24_DP	PMCIO24_DN	GND	PMCIO23_DP	PMCIO23_DN	GND
13	PMCIO26_DP	PMCIO26_DN	GND	PMCIO25_DP	PMCIO25_DN	GND	UNUSED
14	GND	PMCIO28_DP	PMCIO28_DN	GND	PMCIO27_DP	PMCIO27_DN	GND
15	PMCIO30_DP	PMCIO30_DN	GND	PMCIO29_DP	PMCIO29_DN	GND	UNUSED
16	GND	PMCIO32_DP	PMCIO32_DN	GND	PMCIO31_DP	PMCIO31_DN	GND

Front Panel Layout

The XVPX-9400 uses four onboard LEDs to indicate the status of PCIe link training. The VPX_PG (VPX back plane to the system processor), 8114PG (PCIe link train to the PMC sites), XMC_PG (XMC link train to the XMC site), and RAIDPG (PCIe link train to the LSI RAID Controller) may be solid or blinking if these items are linked.

On the front panel of air-cooled assemblies, there are 8 activity LEDs, one for each drive connection. These LEDs indicate activity to the drive.

There is also a blue heartbeat LED, which blinks indicating that the firmware is running properly on the LSI RAID Controller.

Fig. 3-1 shows an air-cooled front panel

Installation

The XVPX-9400 VPX bus carrier can connect to the VPX bus as a Double Fat Pipe (PCIe x8) device, but is also supported with a smaller link width.

The path to the XMC site is PCIe x8 from the PCIe switch. The PMC site is PCIx 133MHz 64-bit interface and only supports 3.3V signaling. The PMC/XMC rear I/O is out the P14 connector, consult the VPX P2 connector for the pin out of this I/O, Vita 46.9 standard was followed on this design.

Review the Safety Notices section before installing the board. The following notices also apply:

Caution The XVPX-9400 has been specifically designed for use with 3U VPX backplanes and may not be compatible with some 6U backplanes. Plugging the board into an unsupported 6U VPX backplane may cause permanent component damage.

Consult the enclosure documentation to ensure that the XVPX-9400's power requirements are compatible with those supplied by the backplane.

Board Keying

The 3U VPX backplane specification requires all backplane slots to have two guide pins: one above the J0 connector and one below the J2 connector. As well as providing correct alignment, these pins are keyed to prevent cards from being inserted into incorrect backplane slot(s) to avoid electrical incompatibility.

The XVPX-9400 has receptacles for these guide pins (see the Connectors section). By default, these are not keyed. Please contact the factory to discuss keying requirements.

Installation Notes

- 1. Keying may dictate the backplane slot(s) into which the XVPX-9425 can be inserted.
- 2. Air-cooled versions have an ejector handle to ensure that the backplane connectors mate properly with the backplane. The captive screws at the top and bottom of the front panel allow the XVPX-9425 to be tightly secured in position, which provides continuity with system chassis ground.
- 3. Conduction-cooled and REDI versions have screw driven wedge locks at the top and bottom of the board to provide the necessary mechanical/thermal interface. Correct adjustment requires a calibrated torque wrench set to between 0.6 and 0.8 Nm.

 In an air-cooled development enclosure, when making I/O connections from the backplane connectors, use of Xembedded's RTM modules (or some equivalent system) ensures optimum operation with regard to EMI.

Power Requirements

The XVPX-9400 may require up to 6 Amps from the +3.3V supply and up to 9.6 Amps from the +5V supply. For more details, see the Electrical Specification in Chapter 1.

Connecting to XVPX-9400

One single width PMC/XMC module can be fitted to the XVPX-9400, which is set to 3.3V signaling only. The XVPX-9425 does not support 5V signaling and may cause damage to the PMC/XMC module if connected.

It is usually necessary to install driver software to the system to support the PMC/XMC module. Consult the PMC/XMC manufacturer's manual for this information.

To install a PMC/XMC module first slid the front bezel of the module thru the XVPX-9400 (only if air-cooled version). Then press down to join the PMC/XMC connectors to the XVPX-9400 as shown below.

Power-Up/Reset Sequence

From the application of 3.3V and 5V power to all components being out of reset typically takes 250 ms.

Since the ramp up times of the 3.3V and 5V system power source and the onboard power source will vary with load, the time taken for the XVPX-9400 to come out of reset will vary from system to system. It is the software's responsibility to account for this.

Chapter 3 – Accessory Modules

XVPX-9940

The XVPX-9940 is the rear transition module for the XVPX-9400 and is used in backplanes that bring out the rear I/O signals from the XVPX-9400. If you are using a custom backplane you will not need the RTM.

Jumpers

The XVPX-9940 only has one jumper setting, ORB (front panel) ground:

ORBGND	1-2 (default)	ORB GND TIED TO DIGITAL GND
	2-3	ORB GND ISOLATED

Connectors

This section provides pin outs for some of the XVME-9940 connectors. Refer to the EMC warning at the beginning of this manual before attaching cables.

Purge

Purge input to the XVPX-9400:

1	Purge
2	N/C
3	GND

Zeroize

Zeroize input to the XVPX-9400:

1	Zero
2	N/C
3	GND

J_0LED

This is the Zeroize function LED. Connect the external LED from Pin-1 to a limit resistor to LED and Pin-3 to GND for LED. This provides an external indication that a Zeroize cycle has started and is in progress.

1	Zero LED
2	N/C
3	GND

Chapter 4 Revision History

The following table shows the revision history for this document:

Release Date	Revision	EGR/DOC	Description of Revision
JUN-10	A	JAS	Initial Release
SEP-11	В	JAS	Edits
MAR-12	С	DWR	Updated for new PCB artwork; numerous edits
SEP-12	C1 (D)	DWR	Added warning about option ROM usage on FAT PIPE B.
29-OCT-13	E	DWR	Corrected P1 pin out table
2-Oct-15	F	CAB/MJO	Remove Lead Solder Option for RoHS Compliance.