ONO AP WN -

10
11
12
13
14

Email to 3D Print

Chad Klusek
Andrew Ward
Evan Zeller

CS499 - Senior Design Project

University of Kentucky
Fall 2014
Sections
Disclaimer
Abstract
Introduction

Product Specifications
Effort and Size Estimation
Schedule and Milestones
Platforms, Tools and Languages
Design
8.1 Module Descriptions
8.2 User Scenarios
Implementation
9.1 Unit Testing
9.2 Integration Testing
9.3 System and Customer Testing
9.4 Final Test Results
Future Enhancements
Maintenance
Conclusions
References
User's manual and installation guide

OO~ WN

10-16
11-14
15-16
17-27
19-22
23
24
25-27
28
29
30-31
32
33

Section 1: Disclaimer

Disclaimer:

This project has been designed and implemented as a part of the requirements for
CS-499 Senior Design Project for Fall 2014 semester. While the authors make every
effort to deliver a high quality product, we do not guarantee that our products are free
from defects. Our software is provided "as is," and you use the software at your own
risk.

We make no warranties as to performance, merchantability, fitness for a particular
purpose, or any other warranties whether expressed or implied.

No oral or written communication from or information provided by the authors
or the University of Kentucky shall create a warranty.

Under no circumstances shall the authors or the University of Kentucky be liable for
direct, indirect, special, incidental, or consequential damages resulting from the use,
misuse, or inability to use this software, even if the authors or the University of Kentucky
have been advised of the possibility of such damages.

Section 2: Abstract

3D printing is now hitting its stride as a consumer level product with printers like
the MakerBot Replicator Mini' and the Replicator2? now being affordable and easy to
use. Hackers and geeks around the world have experimented and improved upon the
hardware and software that drive this industry. However, there still are not many tools,
especially for the automation of printing. We have attempted to implement an
automated 3d printing build process to print any file to your printer from anywhere in the
world.

Section 3: Introduction

The project commissioned by our client, the Collexion Hackerspace?, is to
provide a program (written in Python), that acts as a pipeline for converting a valid
3D model, received via an email interface, into G-code instructions that can be
interpreted by a MakerBot Replicator 2 3D printer. They use 3D printing as an
educational tool for The Learning Center*, a Fayette County Schools project in
Lexington, Kentucky. They have felt that their current build process is inefficient,
requiring manual conversion between and through multiple file formats and physically
carrying data from the computer to the printer. This project aims to limit human
interaction in the 3D printing process, by providing powerful tools to do the
compilation and printing work, and an easy to use email interface that keeps the user
informed about their print job's status. The only human interaction beyond an email
submission, will be the removing of the previously printed object from the build
platform, and verification that the system is ready for the next build by a local
administrator.

Section 4: Product Specifications

The following bulleted list provides a summary of project specifications and
interesting features to be completed, in order of highest to lowest priority, and as time
allows. In summary, the program should:

e Receive a user submitted email, and verify that it contains an OBJ or STL
formatted attachment.

e Convert an OBJ model to STL format

e Validate that the model can be printed

e Slice the model (convert to G-code)

e Print or queue the model, only when the printer status is OK
e Monitor or poll for printer status

e Log Print job status

e Handle as many 3d model types as possible, especially proprietary formats.

e Send a notification email to a user if there is a problem with the printer or
their job

e Detect if the printer is in an OK state automatically so the next job can be
printed

Section 5: Effort and Size Estimation

During the project design phase, the intermediate COCOMO method® was used
to estimate the number of PERSON-MONTHS required for this project. The number of
PERSON-MONTHS, E, is computed using the formula:

E = a_i(KLOC)®-) * EAF

Assumptions and Estimations:
This is an “Organic Project”, with little or no pre-existing code base, and a small
team of developers working on the project. Therefore,a i=3.2,b_i=1.05

KLOC is “kilo lines of code”. This is a very rough, uneducated guess, but the “gut
feeling” is that this project is closer to 1000 lines than 2000 or more. Therefore, KLOC =
1.

Next, we calculate the EAF (effort adjustment factor) by rating a number of
categories from very low to very high, and providing the appropriate adjustment from a
table. The components of the EAF calculation are:

Required software reliability: 1.15

Size of application database: 0.94
Complexity of product: 1.00

Run time constraints: 1.00

Memory constraints: 1.00

Volatility of VM environment: 1.00
Required turnabout time: 1.15

Analyst capability: 1.19

Applications experience: 1.13

Software engineer capability: 1.17
Virtual machine experience: 1.00
Programming language experience: 1.00
Application of SW engineering methods: 1.10
Use of software tools: 1.10

Required development schedule 1.10

EAF is calculated as the product of the above 15 estimates, which is ~2.60
So:
#PERSON-MONTHS = 3.2(1)"%*2.60 = ~ 8.3 PERSON-MONTHS

Unexpected occurrences, like the lack of software that performs the tasks that we
expected initially can put significant restraints on the project. For instance we attempted
to use at least five different tools in the printing stage of the pipeline. Each of these tools
presented their own complications from incompatibility with makerware’s proprietary
protocols to ungraceful failure and lack of documentation.

Section 6: Schedule and Milestones

15 September Project assignment and team formation
17 September Initial meeting with customer
17 September Start of module design

24 September Start of module code

03 October Project website started

20 October Completion of module design

24 October Midterm presentation

03 November Start of test plan development

06 November Testing session at CirrusMio

10 November Finalized test plan

18 November Testing session at CirrusMio

20 November Testing session at CirrusMio

03 December System testing at Learning Center, customer delivery
12 December Final presentation

15 December Delivery of report to Todd Willey

17 December Delivery meeting with Dr. Piwowarski

Section 7: Platforms, Tools, and Languages

A

The application was developed to reside on a workstation, computer, or server
to be provided by the customer. The operating system is a non-specific Linux
distribution or virtual machine. This platform was chosen for us, but makes sense. We
don’t need any of the user facing features that a Windows or Mac platform would
provide, since most of the time the computer will only be used by an admin who will
understand the system.

We used python 3 as the implementation language, to glue various 3rd party
code together. We selected this language because it is high level and easy to read and
debug, and is universally available. We didn’'t need much performance, since the printer
itself would always be our bottleneck, so we weren’t willing to sacrifice expressive
power for a “larger” language like c or java.

Various open source projects already exist to perform slicing and to act as a
“printer driver”. We used several of them, including Slic3r and GPX. Using open source
code was important to us, because there are some complicated bureaucratic rules on
using commercial products for a project by a public school.

Section 8: Design

Module Interface Diagram

Config ‘

'

‘ Pipeline ‘

Mailfetch |

¢ —» Logger ‘
Convert - l

4 —+ Mailsend ‘
Validate [o——

Slicer -

brint Modules on Linux

Computer

| S

PRINTER

Hardware-Software
Interface

MakerBot Printer

10

Section 8.1: Module Descriptions

Pipeline()
Purpose:
Provide the infrastructure of a PrintJob object to encapsulate data pertinent to
each given print request, such as sender, status, file paths, ...
Inputs:
No explicit inputs
Outputs:
A PrintJob object
Design:
In the spirit of object oriented methods, this module is a class with constructor,
getters, setters, etc...
Tracks the current pipeline stage (block diagram phase completed)
Contains sender information
Contains system related info such as timing and file paths

Config()
Purpose:

Read/write configuration values from/to a configuration file on disk
Inputs:

Read or write flag indicating action to be performed
Outputs:

Read configuration from disk or writes configuration to disk
Design:

If flag is READ, read configuration from disk

IF flag is WRITE, write configuration data to file on disk

Mailfetch()
Purpose:

Fetch STL or OBJ attachments sent via email by users
Inputs:

Module configuration parameters
Outputs:

Save attachments to disk

Create a PrintJob object containing attachment and sender email address
Design:

Read configuration data from a file on disk

Open a socket to the Google mail server

Login to the e-mail account

Generate a list of unread messages from the inbox

11

For each message containing a valid attachment:

- Capture the e-mail address of the sender

- Save the attachment to disk

- Create a PrintJob object to pass to later modules
Logout of e-mail account and close connection socket
After a number of minutes have elapsed, return to step 2

Convert()
Purpose:
Convert OBJ to STL format model
Inputs:
OBJ file
Outputs:
STL file
Design:
If file extension is .stl, do nothing
else if file extension is .obj convert to .stl
else error condition

Validate()
Purpose:
Verify that STL model is valid/printable
Inputs:
STL file
Outputs:
Error if file is not valid or printable
Design:
Execute a sequence of validation routines
If any return a failure condition log the error and send email to user

Slicer()
Purpose:
Produce G-code, which provides low level instructions allowing the target
hardware to print the intended object, layer by layer.
Inputs:
An STL format model file
Outputs:
G-code if slicing is successful
Error log and email, otherwise
Design:

12

Call slic3r or replicatorG with appropriate arguments for slicing
If error:

Log and send email to user
Else:

Save G-code in file to be sent to hardware for printing

Print()
Purpose:
Physically print the requested model
Inputs:
File containing G-codes
Outputs:
Hardware prints the requested design or report error is failure occurs
Design:
Call replicatorG to print the model
If error:
Log and send email to user
Else:
Model was printed successfully
Notify user by email that job was successfully completed
Log job completion and update quota statistics

Logger()
Purpose:

Write a message to the error log

Inputs:
Pipeline stage
User/sender email address
Error message

Outputs:
Write time, user name, stage, and error message to an error log file

Design:
Open log file for writing
Write time, user name, stage, and error to log file
Close log file

13

Mailsend()
Purpose:
Construct and send an email to the user advising of success or failure

Inputs:
Pipeline stage

Output:
Email to the user informing them of success, or failure and the point of failure

Design:
Construct a properly formed header
Construct a “form letter” body based on value of the pipeline stage provided
Send the message to user

14

Section 8.2: User Scenarios (Use Cases)

Case 1 - Normal Case

Here is an example of an anticipated normal user scenario:

1. User submits a .stl or .obj model to be printed to a Gmail account designated for such
purpose.

2. Program detects than an unread message has arrived in the INBOX.

3. The attachment is a recognized model file format, so the file is saved to disk, and the
user name of the sender is captured.

4. Program verifies that the model file is valid and printable.

5. Model file is converted to G-code.

6. G-code is sent via usb interface and replicatorG software to the Makerbot printer.

7. Model is printed. Job statistics are logged, and user is notified by email that the print
job completed successfully.

Case 2 — Print job failed

Here is an example of a failure to print by the hardware:

1. User submits a .stl or .obj model to be printed to a Gmail account designated for such
purpose.

2. Program detects than an unread message has arrived in the INBOX.

3. The attachment is a recognized model file format, so the file is saved to disk, and the
user name of the sender is captured.

4. Program verifies that the model file is valid and printable.

5. Model file is converted to G-code.

6. G-code is sent via usb interface and replicatorG software to the Makerbot printer.

7. Model did not print.

8. Error is logged and user is notified of the failure and reason for failure.

Case 3 — Model file is invalid

Here is an example of a scenario where the submitted model is invalid or not printable:
1. User submits a .stl or .obj model to be printed to a Gmail account designated for such
purpose.

2. Program detects than an unread message has arrived in the INBOX.

3. The attachment is a recognized model file format, so the file is saved to disk, and the
user name of the sender is captured.

4. Program examines that the model file is invalid.

5. Error is logged and user is notified of the failure and reason for failure.

Case 4 — Model file is not STL or OBJ

15

In this example, the program did not receive an STL or OBJ file, due to a mistake or
misunderstanding by the target user(s), a spam email that bypassed the Gmail filters, or
due to some other unanticipated reason:

1. User submits an unsupported model to be printed to a Gmail account designated for
such purpose.

2. Program detects than an unread message has arrived in the INBOX.

3. The attachment is not a supported model file format, so no further action is taken.

16

Section 9: Implementation

We chose to implement the pipeline as described by the customer using Python
3 in a Linux environment. As 3D printing has historically been closely tied with the open
source community there are a variety of tools available to perform the actions required
by this project. There were some unexpected consequences of relying on these open
source tools to perform the actions we needed that we will discuss in further detail.

The python libraries used to fetch mail from inboxes were found to be robust and
performed as expected. Moving further into the pipeline we begin making use of more
blackbox tools via bash. The focus here is on inputs and outputs. While the initial project
description only called for the ability to slice® STL files we, as well as the customer,
decided to include a step to allow other 3D modeling formats to be supported. Although
STL and OBJ model formats are supported, all submitted models are converted to STL
format to minimize test cases and possible support issues.

For conversion of OBJ models to STL format, we explored both meshconv and
meshlab. Meshconv has a precompiled linux binary executable available, and most
early testing was performed with meshconv. If in the future it is desired to support more
model formats, meshlab offers more import and export options than meshconv. For that
reason it was used for conversion purposes during the final testing session at the
Learning Center, and during the final presentation.

Slic3r is the most robust tool for slicing 3D model files into G-code’. G-code
operates as machine instructions for the 3D printer, using 3D coordinates to extrude
plastic layer by layer constructing the target object. Transferring these instructions to the
printer is where our struggle begins.

There are many open source tools for communicating G-code to a 3D printer.
Makerbot printers now run firmware that communicates using a proprietary protocol.
This makes the field a little bit thinner. What follows is a list of the different tools and
approaches we tried and researched for this last piece of the pipeline:

1. ReplicatorG: ReplicatorG was the first option we researched, while it is robust
and is the open source standard in 3D printing it lacks a programmatic interface
and thus cannot be used reliably.

2. DuplicatorG: A fork of ReplicatorG that gives ReplicatorG a programmatic CLI
interface. While promising the project was out of date and didn’t seem to be
maintained.

3. Printrun/Pronsole.py: While also promising this option requires a custom
firmware to be installed on the printer, which is not an option for our customer.

4. Makerware/Conveyor: Makerware software uses a service known as conveyor to
communicate with the printer. It may be possible to develop a shim to
communicate with the conveyor service, but there are no documented interfaces
and this option would take more time than we have available to reverse engineer
and implement.

5. Roll your own driver: similar to the conveyor shim this is not an option in the
timespan we have, in itself it could be a semester long project to implement a
driver for the x3g protocol.

17

6. Octoprint: One of the remaining viable options octoprint is a modern piece of
software that runs in the web browser and communicates with printers on the
network or connected directly. May require custom firmware, which is not an
option for us. Will require a modified version of pyserial on the system.

7. GPX: The most promising tool is gpx, which is what the pipeline currently uses
for communicating with the printer. While the print job is seen on the printer’s
display the print job makes no progress towards completion due to an unknown
and undocumented bug.

We believe that at this point octoprint presents the best possible solution for the
final part of the pipeline. Its modern interfaces integrate well with software best practices
and trends. While the time remaining may not prove to be enough for us to implement
an interface to octoprint we would recommend it as the first in line solution for the
printing part of the pipeline.

18

Section 9.1: Unit Testing

Unit tests include test cases specific to the major modules of the project, as well

as functions contained within each individual module. Our plan for unit testing our
project will involve (ideally automated) testing of the individual parts of the project. If
they each pass the test cases, we can be confident that they behave as expected.

Config.py
Number Description Input Expected Output
211 Normal Case Reads configuration file Configuration variable values
available for other modules to use
as needed
21.2 Error Case Configuration file malformed Exit with informative error
message
21.3 Error Case Configuration file not found Exit with informative error
message
Converter.py
Number | Description Input Expected Output
2.21 Normal Case STL model No conversion performed
222 Normal Case OBJ model Convert model to STL format
2.2.3 Error Case Any other file type No conversion, log error
224 Error Case File has STL or OBJ extension, | No conversion, log error
but is another file type
225 Error Case OBJ file conversion failed Log error
Logger.py
Number | Description Input Expected Output
2.3.1 Normal Case Log file found Log file available for update
2.3.2 Error Case Log file not found Raise exception and exit

19

Mailfetch.py

Number | Description Input Expected Output
241 Normal Case Reads configuration file Configuration variable available to
Mailfetch
242 Normal Case No unread messages found | No further actions, no PrintJob
243 Normal Case Unread message, no No further actions, no PrintJob
attachment
244 Normal Case Unread message with 1 STL | Create PrintJob object
or OBJ attachment Save attachment to disk
Save sender username
245 Normal Case Unread message with >1 Create PrintJob for each attachment
STL or OBJ attachment Save attachments to disk
Save sender username
246 Error Case Configuration variable Raise exception and exit
missing Email admin and log error
247 Error Case Opening connection fails Raise exception and exit
Email admin and log error
24.8 Error Case Login to gmail fails Raise exception and exit
Email admin and log error
249 Error Case Unable to write attachment Raise exception and exit
to disk Email admin and log error
Mailsend.py
Number | Description Input Expected Output
251 Normal Case Configuration file read Variables available to Mailsend
252 Normal Case Receiver address Send email to receiver with contents
Pipeline Stage depending on stage value
253 Error Case Configuration variable Exit with informative error
missing
254 Error Case Opening connection fails Raise exception and exit
Email admin and log error
255 Error Case Login to gmail fails Raise exception and exit
Email admin and log error
2.5.6 Error Case Message send fails Raise exception and exit
Email admin and log error

20

Pipeline.py

Number | Description Input Expected Output
2.6.1 Normal Case Instantiated PrintJob Stage updated based on pipeline
point
Contains member variables:
Sender
Filenames
Time
Status
Printer.py
Number | Description Input Expected Output
271 Normal Case Reads configuration file Config variables available for other
modules
2.7.2 Normal Case PrintJob with successful Admin removes object from build plate
printing Admin places object in box for customer
Successful job logged
Email sent to user
2.7.3 Error Case PrintJob not printed Log error
Email admin and user
2.7.4 Error Case Configuration variable Exit with informative error
missing
275 Error Case File to be printed not found | Log error
Email admin and user
Slicer.py
Number | Description Input Expected Output
2.8.1 Normal Case Reads configuration file Config variables available for other
modules
2.8.2 Normal Case STL model, correctly sliced | G-code file
2.8.3 Error Case STL model, slicing error Log error
Email user
28.4 Error Case Configuration variable Raise exception and exit
missing Email admin and log error

21

Note: Due to using slic3r for validation as well as slicing, section 2.9 validator.py tests
presented in the original testing plan have been removed.

22

Section 9.2: Integration Testing

Integration tests examine the behavior between interacting modules of the
project. The Main.py module functions much like a driver, calling other program
modules when they are needed. This kind of testing will simply make sure that the data
flows between modules according to the spec.

Number | Description Input Expected Output
3.1.1 Normal Case | Completed print job A part is successfully printed
Email sent to job originator with news of success
3.1.2 Normal Case | Failure at print stage No part was printed
Email job originator of print stage failure
Clean up temp files
3.1.3 Normal Case | Failure at slicing No part was printed
Email job originator of slicing failure
Clean up temp files
3.1.4 Normal Case | Failure at validation No part was printed
Email user of validation failure
Clean up temp files
3.1.5 Normal Case | Failure at conversion No part was printed
Email job originator of conversion failure
Clean up temp files
3.1.6 Error Case Config module not Raise exception and exit
present Email admin and log error
3.1.7 Error Case Logger module not Raise exception and exit
present Email admin and log error
3.1.8 Error Case Mailfetch module not Raise exception and exit
present Email admin and log error
3.1.9 Error Case Converter module not Raise exception and exit
present Email admin and log error
3.1.10 Error Case Validator module not Raise exception and exit
present Email admin and log error
3.1.1 Error Case Slicer module not Raise exception and exit
present Email admin and log error
3.1.12 Error Case Print module not Raise exception and exit
present Email admin and log error
3.1.13 Error Case Mailsend module not Raise exception and exit
present Email admin and log error

23

Section 9.3: System and Customer Testing

This is the final phase of testing, and its purpose is to verify functionality at the
customer site, on customer provided hardware, using a customer installed Linux
distribution and Python 3.x environment. The integration test cases will be repeated, in
the customer's production environment.

Number | Description Input Expected Output

411 Normal Case | Completed print job A part is successfully printed

Email sent to job originator with news of success

4.1.2 Normal Case | Failure at print stage No part was printed
Email job originator of print stage failure

Clean up temp files

4.1.3 Normal Case Failure at slicing No part was printed
Email job originator of slicing failure

Clean up temp files

414 Normal Case | Failure at validation No part was printed
Email user of validation failure

Clean up temp files

415 Normal Case | Failure at conversion No part was printed
Email job originator of conversion failure

Clean up temp files

24

Section 9.4: Final Test Results

Number | Date Pass/Fail | Notes

2.1.1 11/29/14 Pass

21.2 11/29/14 Fail Not implemented

2.1.3 11/29/14 Fail Not implemented

2.2.1 11/29/14 Pass

222 11/29/14 Pass

223 11/29/14 Pass

224 11/29/14 Pass

225 11/29/14 Pass

2.3.1 11/29/14 Pass

2.3.2 11/29/14 Pass

241 11/29/14 Pass

24.2 11/29/14 Pass

243 11/29/14 Pass

244 11/29/14 Pass

245 11/29/14 Pass

246 11/29/14 Partial Errors only logged or sent to stdout
247 11/29/14 Partial Errors only logged or sent to stdout
248 11/29/14 Partial Errors only logged or sent to stdout
249 11/29/14 Partial Errors only logged or sent to stdout
251 11/29/14 Pass

252 11/29/14 Pass

253 11/29/14 Pass

254 11/29/14 Partial Errors only logged or sent to stdout
255 11/29/14 Partial Errors only logged or sent to stdout

25

Number | Date Pass/Fail | Notes

2.5.6 11/29/14 Partial Errors only logged or sent to stdout
2.6.1 11/29/14 Pass

2.7.1 11/29/14 Fail Stub code for print module

272 11/29/14 Fail Not Automated, stub code

2.7.3 11/29/14 Fail Stub code for print module

2.7.4 11/29/14 Fail Stub code for print module

275 11/29/14 Fail Stub code for print module

2.8.1 11/29/14 Pass

2.8.2 11/29/14 Pass

2.8.3 11/29/14 Partial Errors only logged or sent to stdout
2.8.4 11/29/14 Partial Errors only logged or sent to stdout
Number | Date Pass/Fail | Notes

3.1.1 12/1/14 Fail Performed with stub since automated print not implemented
3.1.2 12/1/14 Partial Errors only logged or sent to stdout
3.1.3 12/1/14 Partial Errors only logged or sent to stdout
3.1.4 12/1/14 Partial Errors only logged or sent to stdout
3.1.5 12/1/14 Partial Errors only logged or sent to stdout
3.1.6 12/1/14 Partial Errors only logged or sent to stdout
3.1.7 12/1/14 Partial Errors only logged or sent to stdout
3.1.8 12/1/14 Partial Errors only logged or sent to stdout
3.1.9 12/1/14 Partial Errors only logged or sent to stdout
3.1.10 12/1/14 Partial Errors only logged or sent to stdout
3.1.11 12/1/14 Partial Errors only logged or sent to stdout
3.1.12 12/1/14 Partial Errors only logged or sent to stdout
3.1.13 12/1/14 Partial Errors only logged or sent to stdout

26

Number | Date Pass/Fail | Notes

411 12/3/14 Fail Unable to perform automated print with GPX
4.1.2 12/3/14 Fail Stub code since printer.py incomplete

413 12/3/14 Partial Errors only logged or sent to stdout

4.1.4 12/3/14 Partial Errors only logged or sent to stdout

4.1.5 12/3/14 Partial Errors only logged or sent to stdout

27

Section 10: Future Enhancements

There are many opportunities to improve and enhance the functions of the Email
to 3D Print program. The first opportunity is to introduce use statistics. This feature is
not currently present, but would be valuable in future versions, as it could be used by
the Learning Center in grant proposals, and justification for financing.

Another possibility is to introduce quota enforcement, where a user would only be
pre-authorized to print a specified number of jobs.

Enhancements to security would also provide a great opportunity for future work.
In this first project iteration, the customer has expressed interest in the proof of concept,
and not in security, and the development team has not introduced security features by
design. As a result, anyone in the world who sends email to the designated account
would invoke a print job of a valid model, or, more maliciously, could introduce a
possible denial of service by frequently sending any email to the account. A user
whitelist could potentially alleviate some of the security issues, and a lockout or
shutdown feature would probably be helpful as well.

In its current form, error handling is performed by both a logger module, and an
email to the job originator that states either success, or the stage of failure (fetch,
conversion, validation, slicing, or printing). This behavior alone is desirable and useful,
but the error handling would improve with more specific information.

Individualized configuration provides another potentially desirable future project
enhancement. Currently, low level parameters such as plastic wire diameter, target
heating temperatures, and flow rates, among others, are set to sane defaults, but in
some specialized cases, it may be of interest to the user to customize those based on
individual model designs, or lessons learned through previous print jobs (or failures).
This could potentially be accomplished by allowing the user to also submit a parseable
configuration file with their print job.

A final consideration is the management of dependencies for helper programs,
such as Slic3r, and the numerous print driver programs that were examined. This is
currently a server side, hands on process that may involve pulling code from a project’s
git repository, manual dependency checking, and manual compilation in some cases.

28

Section 11: Maintenance

During the final testing visit to the Learning Center, we learned of a recent issue
of hardware damage due to a controller computer connected to the printer going into
sleep mode and causing significant hardware damage to the printer. At the time of
design and throughout the development of the project, this issue was not known to the
development team or the customer.

We have implemented several items to aid in the maintainability of this project:

- Modularity
We have strived to introduce modularity in the overall design, and within the
individual functions contained in each module. The idea is that as better methods
become available in the 3D printing community, or as fixes, changes, or improvements
are made to the code base, those modifications will be relatively easy to make without
disrupting unrelated portions of the code, and without breaking too many things.

- User manual
We have added a brief user manual section to this report to aid in the
rudimentary use and installation of this software. This is a server side program running
in a Linux environment, and as a result assumes some familiarity with Linux and system
administration.

- Comments
We have made a conscious effort to thoroughly and purposefully comment the
code to indicate what a module and its components do, and how they perform those
functions.

29

Section 12: Conclusions
1. Achieved goals for all but final pipeline stage work
- Can capture emailed model files and job originator info
- Can convert submitted OBJ models to STL
- Slic3r can validate and slice STL models

2. Cannot currently perform fully automated printing
No single available program for communicating with the printer, that we
have examined, has the right combination of open source code, compatibility with
default manufacturer firmware, availability of a command line version, doesn’t
require installation of non-standard python libs, or no unusual and undocumented
bugs that we need to successfully communicate with the printer without human
interaction.

3. Error handling via email incomplete.
The Mailsend module is present for sending error notices via email, but we
were unable to implement those hooks on time. Currently, errors can only be
logged to a file, or sent to stdout. This has been noted in test case results.

4. What we learned:

- Even seemingly trivial things can turn out to be more complex than
anticipated.

- Writing a set of test cases before coding provides a good set of guidelines
to code toward, but the fluid nature of development requires flexibility to
revise, update, and improve those test cases.

- We gained infinitely more respect for experienced project managers (in all
engineering disciplines) who seen to have a knack for/know how to
accurately estimate timelines, resources, schedules, budgets, etc... for
successful projects.

5. What we would do differently:

- Spend less time working with the Thing-o-matic printer, more time with
target Replicator2 printer.

- Time was a limiting factor, but it would have been nice to complete some
of the stretch goals and enhancements that we have talked about. This is
especially true for security enhancements, improved error handling, and in
robustness and stress testing of the code.

- We didn’t consider the side effects of running on slow or congested
wireless networks. Initial development was done with cable modem and
gigabit ethernet.

6. Customer impression of the product:
- Good, in spite of the fact that the final project stage is incomplete.

30

- Interest is high with administrator at the Learning Center. He would like to
extend the automated pipeline idea to download, validate, and slice
e-mailed 3D models, and transfer them to CNC/machining processes.

31

Section 13: References

https://store.makerbot.com/replicator-mini
https://store.makerbot.com/replicator2

http://www.collexion.net
http://www.fcps.net/schools/others/the-learning-center
http://en.wikipedia.org/wiki/fCOCOMO
http://edutechwiki.unige.ch/en/Slicers_and_user_interfaces_for_3D_printers
http://reprap.org/wiki/G-code

N Ok owdh =

32

https://www.google.com/url?q=https%3A%2F%2Fstore.makerbot.com%2Freplicator-mini&sa=D&sntz=1&usg=AFQjCNF-J5cJZUzwwC-LjdwYKH7fVwONrw
https://www.google.com/url?q=https%3A%2F%2Fstore.makerbot.com%2Freplicator2&sa=D&sntz=1&usg=AFQjCNEYAokVEnfMYVrEKQJZd6rR2NeHKw
http://www.google.com/url?q=http%3A%2F%2Fwww.collexion.net&sa=D&sntz=1&usg=AFQjCNFGL1TU5rVI_AmLRmMpNFyxdaHzdw
http://www.google.com/url?q=http%3A%2F%2Fwww.fcps.net%2Fschools%2Fothers%2Fthe-learning-center&sa=D&sntz=1&usg=AFQjCNFBouWoD0BQPeuNCLimqcyU_ublGA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCOCOMO&sa=D&sntz=1&usg=AFQjCNFtJ2xk7G_jYtFsAu8_V5SZD-oZpA
http://www.google.com/url?q=http%3A%2F%2Fedutechwiki.unige.ch%2Fen%2FSlicers_and_user_interfaces_for_3D_printers&sa=D&sntz=1&usg=AFQjCNHZBcDWta1uOYqhcbuqGkjIN7EDJw

Section 14: User’s Manual and Installation Guide

Dependencies

Install dependencies meshlab, slic3r, and GPX.
Copy code directory or clone the repository onto your system.
Set up configuration information:

1. open mailfetch.conf

2. change Path under [Slicer] to the absolute path of the executable to Slic3r

3. change Path under [Converter] to the absolute path of the executable of
meshlab

4. change Path under [Printer] to the absolute path of the executable of gpx

5. change server and username under Mailfetch to point to the email account you
will be listening to.

6. change server and sender under Mailsend to reflect the account that you will be
sending error messages and status reports from. This can be/most likely will be
the same as the one under Mailfetch.

Plug in your printer via usb. GPX should automatically detect the device.

At this point, the application should be ready to use. There are two scripts that you can run.
The first is main.py. This will ask you to log into the email account it will listen to, and then run
as a daemon. It will attempt to 3d print any models emailed to the account specified in the
[Mailfetch] section of mailfetch.conf. The usage is

python main.py

The other program you can use is mockmain.py. This will execute the pipeline on a local file
instead of downloading it from email. This is useful if you already have a model from
somewhere on a USB drive, and want to print it. The pipeline will greatly simplify the build
process, even without reading from email. The usage is

python mockmain.py SMODELFILE

33

