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SUMMARY

The current work of the authors in the area of software tools for automatic construction of compilers is
described. This focuses on attempts to provide for automatic production of the semantic-analysis and
intermediate-code-generation parts of the Cigale compiler-writing system, developed at the University of
Nice. This work relies on use of the Amsterdam Compiler Kit (ACK) to ensure a full set of optimizers
and code generators based on a semi-universal intermediate language, and, therefore, emphasizes the
filling of the gap between parsing and the intermediate language. It is intended as a pragmatic contribution
to the automation of the production of true compilers (rather than mere program evaluators) that
generate efficient machine code.
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INTRODUCTION
During the short history of computer science, programming languages have been
one of the most productive areas for designers’ imaginations. From time to time,
tentative universal programming languages have been proposed (the most prominent
being PL/I, Algol 68 and Ada). Yet, the number of different programming languages
continues to grow steadily, and there is no evidence that this will change in the near
future.

In the past decade, one could imagine that only a small number of different
machines would soon dominate the market: a few models of microprocessors were
the heart of most personal computers and workstations; major machine constructors
provided full compatibility for their complete range of machines. But many new
RISC architectures have been publicized recently, microprocessor series continue to
develop, and there is no evidence that the number of different computers will stop
increasing.

As a consequence, language implementations must continue to be built, for new
languages on existing machines, or for old languages on new machines, or both. The
industrial production of good language implementations is thus a major challenge.

Moreover, it seems that current academic research has more interest in the
automatic construction of program evaluators than in true compilers, i.e. implemen-
tations generating efficient machine code. On the contrary, industrial users of langu-
age implementations are much more interested in optimized code than in the fully
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automatic generation of compilers. Software shops too often produce language
implementations entirely by hand, ignoring even parser generators. As a conse-
quence, current commercial compilers are generally very far from international
standard definitions, their reliability is doubtful, and they are often not maintained
after delivery. Since all software products must be written in some programming
language, this can mean that they rely on a very fragile basis.

We place ourselves in a somewhat restricted (but economically very important)
context: we consider only conventional procedural languages, which can be translated
fully into machine language (with a small run-time support, of course). For these
languages, we consider that it is more important than ever to make the construction
and validation of language implementations easier. By this we mean that the construc-
tion of a full language implementation for a language of realistic size should take
no more than one person-year for a competent, but not exceptional, software
engineer. Of course, this holds only if the language does not contain too many new
features involving run-time difficulties. It is very important that industrial compilers
be built using the full power of existing theories, but this must be non-contradictory
with their efficiency. Building a compiler has at present most of the characteristics
of a craft, 1 which makes it a fascinating challenge for interested programmers.
However, this situation makes it impossible to have very good implementations of
most languages on most machines. We think that building a compiler must take on
most of the characteristics of an industrial process: the aim of our work is to make
progress towards complete tools for automating the production of all components
of language implementations, and for validating them.

THE SUCCESSIVE PHASES OF A COMPILER

A compiler may be viewed as a black box, which accepts as input a source text,
written in some higher-level language, and translates it into an object text, written

Figure 1. The compiler as a black box

in some lower-level language, understandable by some machine ( Figure 1 ). The
target machine may be an actual one, or a virtual machine, in which case the
compiler translates source text into an intermediate language.

For the rest of the paper, and for the sake of discussion, we shall consider a
language implementation as canonically divided into a number of successive phases.
However, we want to emphasize that this does not mean that these phases must
always constitute separate components of the language implementation. In fact, a
compiler is very often syntax-directed, i.e. the parser is the main procedure, which
calls the other phases as needed (they are implemented as subroutines or modules;
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see Figure 2 ). This may be true at least for the first pass of the language implemen-
tation, if it is composed of several successive passes.

The scanner

This takes the source text as input, and transforms it into a sequence of tokens,
while omitting some information, such as comments. The lexical part of programming
languages may be described using regular expressions. Practical scanner generators
exist; one of the most widely-known scanner generators is Lex. 2 However, it is often
more expeditious to program the scanner by hand, since its work is not very
complicated, is very similar from language to language, and the interface between
scanning and parsing is more easily realized.

The parser

This checks the syntax of the source text, and builds or enumerates some tree
representation of its syntactic structure. Parser generators have been the subject of
intensive studies for a long time, and the result is currently satisfactory. The syntax
of the source language is specified using a context-free grammar, for example in
Yacc, 3 LLGen 4 or Syntax. 5 On the other hand, it is very cumbersome, or even
impossible, to build ‘a parser manually, except
method. 6

when using the recursive-descent

Figure 2. A syntax-directed compiler
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The semantic analyser

The exact purpose of this component is subject to dispute. There are two main
semantic aspects. Static semantics defines the set of context-dependent rules that
provide for checking the legality of programs, independently of a specific set of input
data. More precisely, it uses visibility rules and type-checking rules. It specifies the
meaning of declarations, and of all uses of names in text. In fact, ‘static semantics’
is a misleading name, and this should be called ‘context-sensitive syntax’. However,
we cannot avoid the common usage.

Dynamic semantics provides a model for program execution. It specifies the effect
of executing a statement, or the value returned by evaluating an expression, in a
given environment. For example, the statement var : = exp has the consequence of
assigning to var the value returned by exp. The exact boundary between static
semantics and dynamic semantics is fuzzy. A rule of thumb could be that the static
aspects deal with declarations and identifier utilizations, and the dynamic aspects
deal with evaluations and executions.

Here, we consider the semantic analyser as dealing only with static semantics.
Dynamic semantics will be handled during code generation. Generators for semantic
analysers are still in the domain of research. In fact, several tentatively universal
formalisms, intended for describing the semantics of programming languages, have
been designed ,7 but none is entirely satisfactory: denotational, operational, axio-
matic, natural, 8 algebraic abstract data types, 9 W-grammars, production systems,
attribute grammars, or coupled attribute grammars 10 are the most prominent formal-
isms. At present, the most popular formalism is one of the simplest, i.e. attribute
grammars. Several semantic-analyser generators are based on them: GAG, 11

HLP/TOOLS, 12’13 MUG2 ,14’15 FNC-2 16 or the Synthesizer Generator. 17

In most cases, these systems or generators do not result in true compilers, but
instead they yield program evaluators, i.e. a special case of interpreters. The advan-
tage is that these systems are inherently portable, since they do not depend on any
target machine. They actually rely on some abstract machine, whose machine langu-
age is the language in which they are programmed. The price to pay is high
inefficiency. Moreover, the implementation language must have been implemented
in some other way.

The code generator

This component’s responsibility is to generate (hopefully) efficient object code.
One solution is to produce target-machine code directly. Building a very crude code
generator is feasible, but trying to generate code that uses the full power of the
target machine is generally a major challenge. The other solution is to produce code
in an intermediate language. The code generator is much simpler than in the first
case, since the target code has been designed with this in mind. The part of the
language implementation that translates source text into intermediate code is
machine-independent, and can be used on several machines.

Thus we choose this second solution, because it greatly increases portability 18

and facilitates reusability of implementation components. Moreover, many very
interesting optimizations can be done on the text in intermediate code, 19 and they
present the very important advantage of being independent both of the source
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language and the object language. We choose EM, 20 a successful attempt at a source
language-independent intermediate language (see Appendix  I ).

Code-generator generators are not numerous: see for example References  21, 22,
and 23. Current research is somewhat scarce, and much more progress is needed.

THE TOOLKIT USED IN NICE: CIGALE

Cigale is a compiler-writing system, written in Pascal, and producing compilers
written in Pascal. It is the last instance of the system initially designed in 1974, at
the University of Montreal, by one of the authors. 24

Cigale accepts as input a so-called integrated description, which contains among
other things, an attribute grammar of the language to be compiled. Its output is a
compiler for this language (see Figure 3 ).

Figure 3. Cigale viewed as a black box

The

It

1.
2.

3.

integrated description

is divided into three main parts:

A set of options for the various modules of Cigale.
Global declarations, written in Pascal, which describe the objects (constants,
types, variables, procedures) needed for semantic analysis and code generation.
These declarations can also be stored in several independent modules, and
imported from the integrated description using import statements. This makes
use of the separate compilation capabilities of most current Pascal compilers.
An LAG(1) attribute grammar, i.e. an attribute grammar where all attributes
are evaluated in only one pass from left to right.* A complete example of an
integrated description is given in a later section.

* The terminology is not fixed: LAG(1) is the acronym used in Reference 25, whereas in Reference  26 the term
‘L-attributed description’ is preferred. Moreover, as we show later, we are actually using a syntax-directed translation
schema, rather than a purely declarative attribute grammar.
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The components of Cigale

Cigale has five main modules, which can be executed in a relatively independent
way from each other (see Figure 4 ). Four are described below.

1.

2.

Lexigen is the scanner generator. It chooses the parts of a skeleton scanner that
must be included in the resulting compiler, according to the specific terminals
used in the language to be compiled. For example, if this language does not
contain real constants, the corresponding procedure is not included. It also
builds the tables that describe operators, reserved identifiers or keywords.
The generated scanner has the capability of recognizing some specific token
categories, and an extensive set of options allows users to modify their deno-
tation, for example by choosing the delimiters for strings, the maximum size
for integers, etc.
Syntgen is the parser generator. It uses a bottom-up method based on weak

Figure 4. The main components of Cigale
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precedence relations, extended with left-hand contexts (with the capability of
a BC( n ,l ) method). It takes as input the encoded grammar and its vocabulary.

The generated parser is an interpreter of Floyd–Evans productions. It
includes a full syntax-error recovery mechanism, derived from the
Graham–Rhodes 27 method. This mechanism proceeds in three steps: the first
one locates the error, the second one condenses the left-hand and right-hand
contexts at the error location, and the last one replaces the offending sentential
form with a least-cost correct one.

Right-hand part conflicts in the grammar are solved using a left context, if
possible. When this cannot be done, Syntgen gives hints to the users, and allows
them to resolve the resulting ambiguity by using special semantic actions. Since
these actions can examine the whole parsing stack, look ahead in the source
text, or use available semantic information, there is no real limit to what they
can do.

3. Compgen merges all parts generated by other components, and produces the
Pascal source text of the generated compiler. It also merges the tables generated
by other components, into a file read by the compiler at initialization time.

4. Proggen (which does not appear in Figure 4 ) generates test cases, and has no
consequence for the compiler generation. However, it is very useful for testing
the compiler, and overall for checking the apparent validity of the grammar.
It produces a set of syntactically correct phrases, derived from the grammar
and using all productions and all transitions between productions. These phrases
contain no attempt at semantic correctness, but it would be a major challenge
to try removing this weakness. Proggen also produces a linearization of the
derivation tree for all generated phrases.

In order to provide for separate compilation of the generated compiler, the Unix-
dependent version of Cigale provides several small components in addition to the
preceding ones. They are used for:

(a) generating external procedure declarations for all first-level procedures of a
Pascal module

(b) generating a ‘makefile’ for building at will the various parts of the generated
compiler

(c) transforming the import directives in source texts for referring to generated
files.

AIDS FOR CONTEXT-SENSITIVE SPECIFICATION

Cigale allows users to attach typed attributes to every non-terminal of the grammar,
similar to procedure parameters. These attributes are synthesized, i.e. they are result
parameters. However, it is also possible to refer directly to attributes of non-
terminals already encountered during parsing. They are called context attributes, and
give the full power of inherited attributes in a strictly left-to-right evaluation. More-
over, users can program semantic actions, executed just before right-hand part
reductions, i.e. just after the right-hand part of a grammar production has been
recognized. These semantic actions can assign values to left-hand attributes, using
right-hand and context attribute values, and more generally do any useful work.

For every new language, compiler writers must (among other things) design and
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describe a symbol table, along with all its access and handling procedures. Thus, we
considered it useful to define for Cigale users as general a built-in symbol table as
possible, i.e. a symbol table that would encompass the various capabilities of most
existing programming languages. The structure of this symbol table is based upon a
trio of concepts found under various names in all programming languages: we call
them names, types and values. The symbol table is a collection of name descriptors,
which contain general-purpose information (key, scope level, etc), as well as more
specific information related to the name class. For example, a constant-identifier
descriptor contains a pointer to a value descriptor (which gives the type and value
of the constant); a parameter-identifier descriptor contains its transmission mode,
its type, etc. Figures 5 and 6 show the representations of two simple examples.

Organization of the symbol table (see Figure 7 )

Names must be stored in the symbol table in such a way that their declaration
order (in the source text) is not lost. Moreover, one must be able to collect all
names pertaining to the same scope or declaration level. In order to achieve this,
we use an array Level (indexed with the level number), where every element is a
list of doublets, which point to the name descriptors of this level. An additional
indirection (instead of a simple list of names) is needed for languages where a single
name may belong to several scopes at the same time (in Modula-2, for example).
With this representation, it is easy to erase all names of a given level, when exiting
a block, for example. Another level of indirection is needed for overloaded names:
in the same block, two identical names may be used for two different objects, for
example in Ada or in polymorphic languages.

Another array, Homonyms, indexed with the unique keys given by the scanner,
serves to access all names that are homonyms. Thus, to search for a given name is
very fast, since one accesses the list of overloaded name descriptors directly, and
has only to check its scope level. If necessary, overloading resolution is then carried
out .

Figure 5. Representation of a constant declaration
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Figure 6. Representation of a type declaration

Use of the symbol table

It is important to note that the structure of the symbol table is not frozen: users
can extend it at will. In fact, a name descriptor is a Pascal record, and we have
defined in it a field Extension, as a pointer to a record type NameExtension, which
users can fill as they like. They will also define the management procedures related
to this extension. The same feature is defined for value and type descriptors. Another
important remark is that, whatever generality we aim at, we cannot pretend to be
capable of implementing any language. As stated at the beginning of this paper, we
consider only conventional procedural languages. Even with this important limi-
tation, the price of generality cannot be ignored.

One of the intended main aims of this method is that the internal contents of the
symbol table are hidden from users. As many primitive procedures as necessary have
been defined for bookkeeping the table and accessing the information it contains.
Some procedures correspond to general actions, others are more specialized and
handle only constants, types, variables, subroutines, or expressions. Some procedures
are provided for declaring a name in the current block, or for accessing a declared
name. Others serve to create integer values, or values of any other type. Figure 8
shows some examples. The result is something like a complex abstract data type.

It is interesting to remark that this approach has many similarities with the object-
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I

Figure 7. Organization of the symbol table

oriented one. We are aware of this, but we preferred not to include object-oriented
concepts explicitly in our system. This has been already done in the TOOLS system. 13

AIDS FOR CODE GENERATION

Most compiler-writing systems provide nothing for code generation. However, this
part is of the utmost importance in industrially-used compilers. Software vendors
are interested in efficient generation of very efficient code for the software products
they build.

This part of a compiler is very often the most complicated one, for several reasons:

(a) no aid is available for specifying and building it
(b) the object language is complicated, full of special cases, etc.
(c) generation of efficient object code is much more complicated than generation

of systematic but inefficient code.



BUILDING LANGUAGE IMPLEMENTATIONS 921

●  General procedures
DeclareName : KeyType × ldentClass × Boolean → → NameDescPtr

{if the ident whose key and class are given does not exist in the symbol table at
the current level, a name descriptor corresponding to this ident is created and
returned. If the boolean is true (that means overloading accepted), the name
descriptor is created and returned without checking.}
FindSymbol : KeyType → → NameList

{returns the name descriptor list corresponding to the given name key, if it exists
in the symbol table at the current level, nil otherwise.}

● Constants
IntegerValue : ValueDescPtr → → Boolean

{yields true if the value described by the value descriptor is of type Integer.}
There exist similar functions for the other value types: RealValue, StringValue, etc.

CreateIntegerValue : Integer → → ValueDescPtr

{creates a value descriptor with the integer value.}
PutConst : NameDescPtr × ValueDescPtr → → NameDescPtr

{initializes the name descriptor with the value descriptor.}
ConstName : NameDescPtr → → Boolean
{returns true if the name descriptor describes a constant.}

● Types
CreateIntegerType : TypeDescPtr × Integer × Integer → → TypeDescPtr

{creates a type descriptor, whose subtype and bounds are specified.}
There exist similar procedures for the other types CreateRealType, CreateSetType, CreatePtrType,

CreateRecordType, etc.

● Expressions
ComputableExp : ExpDesc →  →  Boolean

{yields true if the expression given is computable at compile-time.}
IntegerOperation : ExpDesc × ExpDesc × OpType → → Integer

{returns the integer result of the specified operation on the given left and right
operands.}
CreatelntegerConst Exp : Integer → → ExpDesc
{yields the expression descriptor corresponding to the given integer constant.}
CreateVarExp : → → ExpDesc
{yields the expression descriptor corresponding to a variable expression.}
There exist similar functions for real expressions, etc.

Figure 8. Examples of some procedures
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In the case of EM, as in the case of most intermediate languages, the second reason
does not hold, since the language was designed with facility of generation as a
primary aim. However, the third reason is still important, and an elaborate code
generator for EM remains a major challenge: the compiler must recognize and
handle all special cases, subject to optimization, in order to choose the best instruc-
tion sequence in every situation.

However, a much more interesting situation occurs here, thanks to the remaining
components of ACK, and to the design objectives of EM. If code generation in the
compiler is limited to the kernel of the EM instruction repertoire, the EM architec-
ture presents more characteristics of a RISC architecture. Thus, code generation no
longer has to consider special cases, and can be made according to very simple and
systematic guidelines and principles. The immediate consequence is that generated
code is very cumbersome and inefficient, but the results of the ACK optimizer,
applied to such a code, are at least as good as those that could have been produced
directly by an elaborate code generator. In fact, the ACK local optimizer searches
in the code for the sequences that can be optimized, using a pattern-matching
technique, and it can do this more generally and exhaustively than a code generator.

Figure 9. Optimization examples

The example in Figure 9 demonstrates this (column 1: statement in high-level
language; column 2: EM code; column 3: EM code after optimization).

In the first case, an address load ( Iae ) followed by an indirect ( Ioi ) is replaced by
a direct load ( Ide ). In the second case, an indexed address load with a constant
index ( Iae, Ioc, Iae, aar ) is replaced by an address load ( Iae 12 ) . Moreover, two code
sequences have been exchanged in order to stack operands of the array address
computation ( aar ) and then of the block move ( blm ) in the required order. This
demonstrates the usefulness of the optimizer.

These considerations being made, our approach to providing aids for code gener-
ation has been similar to the one adopted for context-sensitive analysis, i.e. a very
pragmatic one. Instead of designing a high-level semantic specification ab abstracto,
and then trying to use it in our existing framework, we have preferred to proceed
in the following way:

1. isolate and specify the minimal instruction repertoire and set of addressing
modes of EM.
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Complete the abstract data structures with the information needed.
Design and build the primitive procedures necessary for handling these struc-
tures - and generating instructions and addressing modes of the minimal reper-
toire.

Using the same approach as for context-sensitive analysis allows us to take one
step more towards a simpler and more declarative notation. In the case of code
generation, universal programming concepts occur mainly for statements, where
most code is generated.

There exist procedures for generating labels, handling variable addresses and type
sizes, as well as procedures for expression evaluation. For statements, there are
procedures for generating an assignment or a branch to a label, among others (see
Figure 10 ).

With EM, we can generate code ‘on the fly’, thanks to the EXC pseudo-instruction,
which exchanges two instruction sequences. It is still necessary to split the rules in
order to generate code in the right place. Predefined modules for expressions and
statements are provided in Cigale, so users can re-use them and only modify the
lexico-syntactic parts as needed.

A COMPLETE EXAMPLE

As an illustration, we now give a full example for a tiny language, which prints the
result of the evaluation of an if–then–else condition. Constant integers can be
declared. as well as integer variables whose value is read at run-time. The correspond-
ing grammar in EBNF is

● NewLabel : → Integer
{yields a new instructions label.}
DefineLabel : Integer →→
{puts in the code the given instruction label.}
There exist similar procedures for producing instructions.

● ProdAssign : ExpDesc × ExpDesc →→
{generates code for assigning the second given expression into the first one:}
There exist similar procedures for case statement, for statement, if statement, loop statement, etc.

● PushValue : Exp Desc →→
{stacks the given expression value, according to its class.}
PushAddress : NameDescPtr × LevelRange →→
{generates code for stacking the address of the given object, declared at the given
level.}
SizeAndAddrFields : NameDescPtr × Integer → → NameDescPtr × Integer
{computes the size of the given field list and updates the address of every field;
returns the updated list and the computed size.}
There exist similar procedures for parameters and variants. I

Figure 10. Examples of some procedures
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Axiom : definition { ‘,’definition} ‘IN’ condition ‘.’.
definition : ident ‘:=’ number  ‘?’ ident.
condition : ‘ IF’ relation ‘THEN’ expression ‘ELSE’ expression ‘Fl’.
relation : expression reloper expression.
expression : term {addoper term}.
term : factor { muloper factor }.
factor : number  ident  ‘(’expression’)’.
reloper : ‘ =’  ‘ 〈〉 ’   ‘ 〈 ’      ‘ 〈 = ’   ‘ 〉  ’  ‘ 〉 = ’ 
addoper : ‘+’  ‘–’.
muloper : ‘*’    ‘/’

An example phrase in this language is

?a, b:=30 IN lF a(b THEN b ELSE a Fl.

which yields 40 when the value read for a is 40. Thus, one can define constants,
then use them in an expression. If the expression can be evaluated (all names are
declared, no overflow), its result is output.

Appendix II gives the full integrated description for this tiny language. First (lines
1–4), we state options for the different modules of the system. After a delimiter
($), the description contains the declarations provided by the user. There is one
constant declaration (line 7) and four variable declarations (line 10).

Then, several external declaration files are mentioned by import commands (line
12). This facility makes use of the separate compilation capability of the Berkeley
Pascal compiler we use on the system Ultrix (DEC Vax), but similar features exist
in most Pascal compilers. Files declarations, static and dynamic are provided by the
system, and contain general-purpose declarations similar to those shown above. They
are in a built-in Cigale directory.

In this example, the user has needed some additional procedures, which are given
directly in the description (lines 14–36), but could equally well have been put in an
external file (and called by an import command).

Keyword grammar (line 38) introduces the attribute grammar. Its syntactic aspects
are similar to EBNF. The general form of a rule is

left-part = right-part : semantic action $

Non-terminals must appear at least once in the left part of some rule. Terminals
are enclosed in special delimiters (generally simple quotes), or are predefined
identifiers.

Non-terminals and predefine terminals may have attributes, which appear like
formal parameters in left-parts, and actual parameters in right-parts. Attribute names
are local to the rule in which they occur. They are used in semantic actions, and
translated into references to the semantic stack, parallel to the parsing stack.

Semantic actions may begin with local Pascal declarations: they take the form of
a procedure body where the body keyword begins the body. If there are no local
declarations, this keyword may be omitted.

Non-terminal Line (lines 40–41): we call procedure EndCode for generating the
program epilogue.
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Non-terminal LineHead (lines 43–45): after analysis of the declarations (in this
case, only a context-sensitive analysis is needed), a call to procedure MainProg is
needed for generating the allocation of the global area and the opening of standard
files. Before generating any instruction, we must produce those that read integer
values for every declared variable. This is done by procedure ProdReadVar, called
with the list of declared variables (built line 56) as argument.

In the handling of the conditional statement, the three actions needed for generat-
ing evaluations and branches will be described in the next section. A call is made
to a procedure which outputs the value at the top of the stack.

Non-terminal Factor (lines 102–118): if it is an integer, an integer constant
expression is created. Otherwise, we must check whether it exists in the symbol table
(FindGoodSymbol). If it is a constant, the corresponding integer constant expression is
created, with no code generated. If it is a variable, we must stack its address and
create a variable expression. If the name does not exist, a non-declaration error is
detected; we repair it by declaring the name as a zero constant. If the factor contains
a unary operation, we call the procedure that checks its type and generates the code
needed.

In lines 120–121, ident and integer are declared as predefine terminals. In lines
123–128, the pseudo-rule Initialize serves to provide statements to be executed just
before beginning parsing. This can be used for initializing tables, for example. Here,
it serves to define stop and restart symbols for panic mode error handling (used
when the more elaborate error-repair mechanism fails). Note that references to
grammar symbols may occur in semantic actions, enclosed in delimiters ‘(/’ and ‘/)’.
Then, we call the procedure that initializes the code file ( Begin Code). The initializ-
ation part serves also to declare predefine types, here just integer and boolean.

In summary, when users want to develop a compiler for a new language, generally
they do not begin from scratch. Several modules exist in Cigale for handling the
main parts of programming languages. They include all general paradigms, and the
predefine tools make their processing very easy. The following basic ideas can be
isolated:

1. Separate lexical aspects from syntactic aspects, and specify parameters to
Lexigen.

2. Build a grammar that can be handled entirely by Syntgen; this may need several
attempts if the language is a complex one, and if its grammar has been written
without paying intention to parsing constraints.

3. In the case of reluctant residual ambiguities in the grammar, program semantic
actions to solve the problem.

4. Associate semantic attributes to most non-terminals, using predefine types of
the predefine symbol table.

5. Split some grammar rules in order to place semantic actions at proper locations,
and write these actions so that most should reduce to a call to some predefine
procedure.

Because the predefine modules can be re-used, most of these steps have to be
done in full only for new constructs of the language that are not general enough to
have been included in the predefine modules. For most other constructs, users have
only to modify lexical or syntactic details in the modules in order to adapt to the
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specific programming language they want to compile. Thus they can pay more
attention to the new, original, and probably more difficult aspects of this language.

After all these steps, a full compiler has been built.

A DECLARATIVE NOTATION

As one can understand from the preceding sections, the current set of procedures,
when used in semantic actions of the integrated description, provides an operational
specification of the source-language semantics (context-sensitive syntax and dynamic
semantics). After our experiments with this set of primitives, it became evident that
some semantic actions amount to a single procedure call, some others are more
complicated, but always the same in most language descriptions.

We decided to design a more declarative notation, from which the first module
of Cigale could deduce what specific primitives should be called. The first step was
to isolate frequent paradigms, present in most language definitions. For example,
the concept of constant declarations is a very stable paradigm, which can be described
in an operational way by calling specific primitives with specific attributes, but which
can also be built into a new declarative notation, as a primitive concept. The second
step was to design this notation, so as to allow users to program most implementation
details, and to concentrate only on the important concepts of the language to be
compiled.

Using this notation, the implementation language is hidden from the Cigale user,
which allows us to change it at will. At present, the notation is completely specified,
but not yet implemented. We now present some examples, in order to give a flavour
of its characteristics.

In the case where a ‘factor’ is a procedure, the corresponding rule in the integrated
description will become:

factor ( e: ExpDesc)
= ′ procedure ′ formalParameters(pnl, ptl) procBody (dp) : 
e ← constantExp ofType subroutineType ptl

ofValue subroutineValue pnl, dp $

The synthesized attribute e must be a constant-expression descriptor with some
type and some value. The type must be ‘subroutine’, and is specified by the list of
formal parameter types. The value is a subroutine value, specified by the list of
formal parameter names, together with a procedure description: reference to the
body code, size of the local region, declaration level.

Another example is the conditional statement. We note that it is specified by three
different actions. The first one must be performed when the condition expression is
parsed; it is used for creating the else label and generating a branch when false to
this label. The second action must be carried out when the then part is parsed; it

creates the end label and generates a branch to it, then defines the else label. The
last one, which must occur after the whole statement is parsed, defines the end label.

Thus we have three specific actions, BeginIf, Middlelf and EndIf, which are used in
the following:

statement



BUILDING LANGUAGE IMPLEMENTATIONS 927

= if Begin(endl) if End : Endlf endl $
if Begin(endl: integer)

= exprThen(elsel) statementList : endl ← Middlelf elsel $
exprThen(elsel: integer)

= ′ if ′ expression(e) ′ then ′ : elsel ← Beginlf e $

A complete specification of the notation would not be useful in the present paper.
We anticipate no special problem for the implementation: we know what procedure
calls must be generated for every statement, thanks to our bottom-up approach.
Moreover, the current version of Cigale will be used for this implementation.

The notation will provide for a more declarative specification of programming-
language implementations. It will be the basis for a validation tool for the integrated
description. Attribute references and attribute assignments are clearly separated;
thus it will be easy to check whether the attributed grammar is LAG(1): for a given
production, a value must be assigned to every left-hand attribute, using only the
values of right-hand or context attributes (or possibly already-assigned left-hand
attributes).

CONCLUSION

Assessment

The small example given above cannot be enough for evaluating the extent to
which we have attained the goals set out at the beginning of this paper. In fact, we
have made two full-size experiments with actual programming languages. The first
one is Oberon, 28 for which compilers were built by undergraduate students using
Cigale, in the framework of a part-time project. The second experiment is more
significant, since it deals with a language outside the Pascal family. Moreover, this
experimental language, called Leda, was not known to us before the exercise. The
detailed results are described elsewhere; 29 we give a summary of them here.

In order to obtain an operational compiler, generating operational code, for all
parts of the language except those that produced difficulties at run-time, we needed
about three person-months. This included discussions with the author of the langu-
age, since its design was not frozen (and is still fluid).

For making significant comparisons, we wrote programs in the subset of Leda that
is equivalent to Pascal, and have compiled and executed them with our Leda
compiler, the ACK Pascal compiler, and the Berkeley Pascal compiler. Despite the
fact that this third compiler is written in C, we found compilation timings to be
equivalent for Leda and Berkeley Pascal, ACK Pascal being 30 per cent faster.
These timings include the whole translation from source text to executable text.
Execution timings were equivalent for the three implementations.

In the next version of Cigale, we intend to abandon Pascal as an implementation
language, and probably shift to C++. We expect further improvements in compile-
time performance, which will make Cigale highly competitive, while placing very
small demands on the host computer.

Compared to more ambitious systems, Cigale has the fundamental advantage, in
our opinion, that it disappears entirely after generating the compiler. Thus, the
generated product can exist without support from the tools used to build it, and this
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is true also for the programs compiled by the generated compiler. This makes Cigale
suitable for building compilers on personal computers, or more generally in any
situation where simplicity and frugality are important.

Summary

For many years, the idea of an automatic compiler-generator has been an ideal
that many teams have tried to achieve. Many years ago, this was imagined as a sort
of magic box, in which one would input formal descriptions of the three languages
involved in a language implementation: source language, target language and
implementation language. The result, produced completely automatically, would be a
full compiler from source language to target language, written in the implementation
language (see Figure 11 ).

One of the main obstacles encountered when trying to achieve such a tool is the
true idea of a formal description of a programming language. While lexical and
syntactic aspects have been given successfully some almost perfect means of descrip-
tion, the semantic aspects are much less tractable. Numerous formalisms have been
designed, but all attempts to build compiler-generators around them have been
disappointing: formalisms themselves are generally much too complicated to be used
as readable descriptions, and above all, systems that use them fail to be true compiler-
generators. To avoid machine-dependence and code-generation problems, they rely
on the abstract machine provided by some higher-level language such as LISP or
Prolog. At best, they constitute interpreter-generators, i.e. we obtain the production
scheme of Figure 12. This is acceptable only for experimental languages, when run-
time performance is not important. At worst, they constitute parametrized program-
evaluators, along the lines of Figure 13. The supporting system is present when
executing programs, and run-time performance is tolerable only for small demon-
strations or experiments, not for daily use.

This results from the very ambitious goal generally aimed at by most current
research teams: to provide only a full formal definition of the source language, with
no operational parts and no reference to any object machine. Of course, this cannot

Figure 11. An ideal compiler-generator
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Figure 12. An interpreter-generator

Figure 13. A parametrized program evaluator

result in something comparable with any industrial compiler,
in efficiency.

either in flexibility or

Our approach is much less ambitious than the one just summarized, but we believe
it to be also much more realistic. Moreover, we think it is at present the only one
that can help to make progress towards the automatic construction of validated and
efficient implementations of languages. The idea of the magic box is forgotten, since
the implementation language is built into the system. Moreover, we provide a full
set of specialized components, instead of a single general-purpose program. When
these components already exist, we use them if they are satisfactory, even if they
were made by other people. Some components are the same in any language
implementation. Other components are generated automatically from formal or
semi-formal descriptions.

The same idea is used when Cigale users are building an integrated description:
instead of trying to write it entirely from scratch, they can make full use of re-usable
existing modules. Thus we are not trying to a give a fully automatic compiler-
generator. Rather, our final aim is what we could call a compiler building and
assembly workshop. Adding components and tools to such a workshop, we think,
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will be more productive and realistic than periodically designing a completely
integrated and monolithic compiler-generator.

APPENDIX I: ACK, THE AMSTERDAM COMPILER KIT

new

ACK is a set of tools, 20 designed and built at the University of Amsterdam, which
provides for the construction of very efficient and portable back-ends for compilers.
Its design is centred around EM, an intermediate language which can be microprog-
rammed, or interpreted, or translated into machine code (the most frequent
situation ). A compiler built using ACK has the structure that appears in Figure 14.

The front-end can typically be built using available scanner and parser generators

Figure 14. ACK components
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(for example, the Cigale toolkit). It translates source text into EM intermediate
language, and is the only part of the compiler that depends on the source language.

The peephole and global optimizers depend only on EM, and consequently are
identical in every compiler. Moreover, the global optimizer can be bypassed when
maximum efficiency of the target code is not necessary.

The back-end translates EM code into assembly code. It is generated using a code-
generator generator, from a symbolic description of the target machine and its
assembly code.

The target optimizer depends only on the target machine, and is generated in the
same way as the back-end, from another description. Of course, this component is
not necessary, and often does not exist at all.

The assembler and link editor can be those of the existing machine (which is the
case, for example, on the DEC Vax), but a universal assembler and a universal link
editor also exist, parametrized with a description of the target machine, and used in
the case of cross-compilation.

The EM language is that of a stack, byte-addressed machine, with separate store
memories for instructions and data. Data store is structured in words: a word is
made of one, two, four, or eight consecutive bytes. Instruction and data stores are
divided into fragments, whose relative location is undefined. The instruction set is
very rich, but based on a small minimal set of about 30 instructions. Data-storage
organization includes the notions of evaluation stack, procedure stack frames, and
allocation heap. There are specific instructions for access to array components,
integer and real arithmetic, local and global-variable access, procedure call and
return, etc. The abstract-machine design even includes the concepts of traps and
exceptions. On the other hand, there are no built-in input–output operations, but
it is assumed that monitor calls similar to those of Unix can be executed.

The main advantages of ACK are the following:
1. The dependencies of the compiler components from source, intermediate, and

target languages are very neatly separated, as shown in Figure 14 by dashed
lines.

2. The three optimizers provided can produce object code with extremely good
performance.

3. The design of the EM abstract machine is suited to most current machine
architectures.

4. Numerous back-ends have already been built, for most current microprocessors.
5. EM is by far the most serious and usable attempt at achieving the Uncol ideal.
6. Back-ends, target optimizers, assemblers, and link editors can be generated

automatically, or parametrized, for new target machines (this is useful for cross-
compilers for microprocessors).

7. It is also possible to use native assemblers and link editors.
The current drawbacks of ACK are the following:
1. It is proprietary software.
2. The architecture of the abstract machine is already more than ten years old.

This explains why some details now seem to be disputable, and probably would
be designed in a different way in an abstract machine defined today.

3. Some uncommon language constructs cannot be translated easily into EM
code. During our experiments, we encountered difficulties, for example, in
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implementing the goal-directed evaluation in an experimental language similar
to Icon 30 This needs to copy explicitly parts of the evaluation stack, although
EM provides no instructions for doing this in any simple way.

4. The cost of the many successive phases of the compilers produced makes them
somewhat slow: at least five complete passes are needed, when the global and
target optimizers are bypassed. However, recent work 31 allows us to use a
variant of this scheme, which generates object code directly along the interface
provided by EM. This yields fast compilation when run-time performance is
not needed.

5. Although the aids provided for building back-ends and other target-dependent
modules are very useful, they do not provide for validation of the generated
modules, and building a new back-end still remains an important and difficult
job.

6. The only aid for generating front-ends that ACK provides is LLGen, which is
somewhat limited.

7. To change even a detail in the design of the abstract machine (for example,
adding an instruction) would be a major challenge, since almost all components
of ACK more or less depend on the intermediate language EM.

APPENDIX II. INTEGRATED DESCRIPTION FOR THE TINY
LANGUAGE

1
2
3
4

6
7
9
10
12

14
15
16
17
18
19
20

22
23
24
25
26
27

29

task*lexigen(groupedblanks);
syntgen(conflicts, ambiguities, unsolvable);
proggen(sentences)
$

const
stopsymbolnumber = 2;

var
i : NameDescPtr; niv : LevelRange; e : ExpDesc; fv : NameQueue;

import declarations, static, dynamic;

procedure Error(number:integer);
begin

case number of
1: writeln( ′ Expression not good ′ );
2: writeln( ′ Variable not declared ′ )

end
end; {Error}

procedure WriteExpr(e:ExpDesc);
begin

if not ExpError(e)
then begin ProdWrite(e); ProdWriteln end
else begin Error(2); Prod EndCode(76) end

end; {WriteExpr}

procedure Prod ReadVar(v:NameDescPtr);
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30
31
32
33
34
35

36

38

40
41

43
44
45
47
48
49

51
52
53
54
55
56

58
59

61

62

64
65

67
68

70
71

73
74
75
76
77
78
79

81
82
83

begin
while v () nil
do begin

e : = BldVarExp(PTypEntComp, v); e.Line : = CurrentLine;
PushAddress(v, GlobalLevel); ProdRead(e); ProdReadIn; v : = v ˆ.Link
end

end; { Prod ReadVar}

grammar

Line
= LineHead ′ IN ′ Condition ′ . ′ : EndCode $

LineHead
= DefPart :
MainProg; ProdReadVar(QNtoLN(fv)) $
DefPart
= Definition $
= DefPart ′ , ′ Definition $

Definition
= ident(n) ′ := ′ integer(v) :
ConstantDecl(i, n, IntegerType, BldlntCstExp(v), false) $
= ′ ? ′ ident(n) :
VariableDecl(i, n, IntegerType, false);
if not ldentError(i) then AddFN(fv, i) $

Condition
—— Beginlf(endl) ′ ELSE ′ Expr(e) ′ F1 ′ : WriteExpr(e); ProdEndlf(endl) $

Beginlf(endl: integer)

= ExprThen(elsel) Expr(e) : WriteExpr(e); ProdMiddlelf(endl, elsel) $

ExprThen(elsel: integer)
= ′ IF ′ Relation(e) ′ THEN ′ : PushValue(e); ProdBeginlf(elsel) $

Reiation(e: ExpDesc)
—– ExpRel(e1, op) Expr(e2) : ComputeBinaryExpr(e, e1, e2, op)$

ExpRel(e:ExpDesc; op:TypOp)
= Expr(e) RelOp(op) : PushValue(e) $

RelOp(op:TypOp)
=  ′ = ′ : op : = oequal $
= ′ 〈〉′ : op := odiff $
= ′ 〈 ′ : op := oless $
= ′ 〈= ′ : op := olesseq $
= ′ 〉 ′ : op := ogreat $
= ′ 〉= ′   : op := ogreateq $

Expr(e:ExpDesc)
= Term(e) $
—— ExpAdd(e1, op) Term(e2) : ComputeBinaryExpr(e, e1, e2, op) $
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85
86

88
89
90

92
93
94

96
97

99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

120
121

123

124

125

126

127

128

129
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ExpAdd(e: ExpDesc; op:TypOp)
= Expr(e) AddOp(op) : PushValue(e) $

AddOp(op:TypOp)
= ′ + ′ : op := oplus $
= ′−′ : op := ominus $

Term(e:ExpDesc)
= Factor(e) $
= TerMul(e1, op) Factor(e2) : ComputeBinaryExpr(e, e1, e2, op) $

TerMul(e:ExpDesc; op:TypOp)
= Term(e) MulOp(op) : PushValue(e) $

MulOp(op:TypOp)
= ′∗ ′ : op := ostar $
= ′ / ′ : op := oslash $

Factor(e:ExpDesc)
= entier(v) : e : =BldlntCstExp(v) $
= ident(n) :
i : = FindGoodSymbol( niv, n);
if i 〈〉 nil
then if ldentConstant(i)

then e : = BldlntCstExp(Getl ntCstVal(GetCst( i)))
else begin

e : = BldVarExp(lntegerType, i);
PushAddress(i, GlobalLevel)

end
else begin

Error(3); e : = BldlntCstExp(0);
ConstantDecl(i, n, IntegerType, e, false)

end $
= ′ ( ′ Expr(e) ′ ) ′ $

= AddOp(op) Factor(e1) : ComputeUnaryExpr(e, e1, op) $

ident(n:typident) = terminal $
integer(n: integer) = terminal $

initialize :

stopsymb[1] : = (/ ′,′ /); restartsymb[1] : = (/Depart/);

stopsymb[2] : = (/ ′ lN ′ /); restartsymb[2] : = (/Condition/);

Tableslnit; BeginCode;

DeclPredeflnteger( –Maxint, +Maxint);

lnitQN(fv, nil)

$$

DeclPredefBoolean;
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