
T
h

e
p

d
fT

EX
u

se
r

m
an

u
al%PDF-1.2

3 0 obj <<

/Length 4 0 R

>>

stream

1 0 0 1 91.925 759.924 cm

BT

/F51 9.963 Tf 0 0 Td[(W)80(elcome)-250(to)

-250(pdfT)]TJ 67.818 -2.241 Td[(E)]TJ 4.842

2.241 Td[(X!)]TJ 138.923 -654.744 Td[(1)]TJ

ET

endstream

endobj

4 0 obj

162

endobj

1 0 obj <<

/Font << /F51 5 0 R >>

/ProcSet [/PDF /Text]

>> endobj

2 0 obj <<

/Type /Page

/Contents 3 0 R

/Resources 1 0 R

/MediaBox [0 0 595.273 841.887]

/Parent 6 0 R

>> endobj

7 0 obj <<

/Type /Encoding

/Differences [0/.nothdef 5/dotaccent

/hungarumlaut/ogonek 8/.notdef 9/fraction

10/.notdef 11/ff/fi/fl/ffi/ffl/dotlessi

/dotlessj/grave/acute/caron/breve/macron

/ring/cedilla/germandbls/ae/oe/oslash/AE

/OE/Oslash/space/exclam/quotedbl/numbersign

/dollar/percent/ampersand/quoteright

/parenleft/parenright/asterisk/plus/comma

/hyphen/period/slash/zero/one/two/three/four

/five/six/seven/eight/nine/colon/semicolon

/less/equal/greater/question/at/A/B/C/D/E/F

/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z

/bracketleft/backslash/bracketright

/circumflex/underscore/quoteleft/a/b/c/d/e

/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z

/braceleft/bar/braceright/tilde/dieresis

/Lslash/quotesingle/quotesinglbase/florin

/quotedblbase/ellipsis/dagger/daggerdbl

/circumflex/perthousand/Scaron/guilsinglleft

/OE/Zcaron/asciicircum/minus/lslash/quoteleft

/quoteright/quotedblleft/quotedblright/bullet

/endash/emdash/tilde/trademark/scaron

/guilsinglright/oe/zcaron/asciitilde

/Ydieresis/space/exclamdown/cent/sterling

/currency/yen/brokenbar/section/dieresis

/copyright/ordfeminine/guillemotleft

/logicalnot/hyphen/registered/macron/degree

/plusminus/twosuperior/threesuperior/acute

/mu/paragraph/periodcentered/cedilla

/onesuperior/ordmasculine/guillemotright

/onequarter/onehalf/threequarters

/questiondown/Agrave/Aacute/Acircumflex

/Atilde/Adieresis/Aring/AE/Ccedilla/Egrave

/Eacute/Ecircumflex/Edieresis/Igrave/Iacute

/Icircumflex/Idieresis/Eth/Ntilde/Ograve

/Oacute/Ocircumflex/Otilde/Odieresis/multiply

/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis

/Yacute/Thorn/germandbls/agrave/aacute

/acircumflex/atilde/adieresis/aring/ae

/ccedilla/egrave/eacute/ecircumflex/edieresis

/igrave/iacute/icircumflex/idieresis/eth

/ntilde/ograve/oacute/ocircumflex/otilde

/odieresis/divide/oslash/ugrave/uacute

/ucircumflex/udieresis/yacute/thorn

/ydieresis]

>> endobj

5 0 obj <<

/Type /Font

/Subtype /Type1

/Encoding 7 0 R

/BaseFont /Times-Roman

>> endobj

6 0 obj <<

/Type /Pages

/Count 1

/Kids [2 0 R]

>> endobj

8 0 obj <<

/Type /Catalog

/Pages 6 0 R

>> endobj

9 0 obj <<

/Creator (TeX)

/Producer (pdfTeX-0.12r)

/CreationDate (D:19981205172300)

>> endobj

xref

0 10

0000000000 65535 f

0000000242 00000 n

0000000308 00000 n

0000000009 00000 n

0000000223 00000 n

0000002238 00000 n

0000002326 00000 n

0000000420 00000 n

0000002383 00000 n

0000002432 00000 n

trailer

<<

/Size 10

/Root 8 0 R

/Info 9 0 R

>>

startxref

2526

%%EOF

Hàn Thế Thành

Sebastian Rahtz

Hans Hagen

January 28, 1999

The pdfTEX manual

thanh@informatics.muni.cz — Hàn Thế Thành

s.rahtz@elsevier.co.uk — Sebastian Rahtz

pragma@wxs.nl — Hans Hagen

January 28, 1999

The title page of this manual

represents the plain TEX coded

text “Welcome to pdfTEX!”

\pdfoutput=1

\pdfcompresslevel=0

\font\tenrm=tir

\tenrm

Welcome to pdf\TeX !

\end

mailto:thanh@informatics.muni.cz
mailto:s.rahtz@elsevier.co.uk
mailto:pragma@wxs.nl

The pdfTEX user manual

1

Contents

1 Introduction 1

2 About PDF 1

3 Getting started 2

4 Macro packages supporting PDFTEX 8

5 Setting up fonts 9

6 New primitives 13

7 Graphics and color 20

8 Formal syntax specification 21

1 Introduction

The main purpose of the pdfTEX project was to create an extension of TEX that can create pdf directly

from TEX source files and improve/enhance the result of TEX typesetting with the help of pdf. When

pdf output is not selected, pdfTEX produces normal dvi output, otherwise it produces pdf output

that looks identical to the dvi output. The next stage of the project, apart from fixing any errors in

the program, is to investigate alternative justification algorithms, possibly making use of multiple

master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix,

Amiga, Win32 and MSDos systems. It is still under beta development and all features are liable to

change. Despite its β--state, pdfTEX produces excellent pdf code.

As pdfTEX evolves, this manual will evolve and more background information will be added. Be

patient with the authors.

2 About PDF

The cover of this manual shows a simple pdf file. Unless compression and/or encryption is applied,

such a file is rather verbose and readable. The first line specifies the version used; currently pdfTEX

produces level 1.2 output. Viewers are supposed to skip silently all those elements they are not able

to handle.

A pdf file consist of objects. These objects can be recognized by their number and keywords:

8 0 obj << /Type /Catalog /Pages 6 0 R >> endobj

Here 8 0 obj ... endobj is the object capsule. The first number is the object number. Later we will

see that pdfTEX gives access to this number. One can for instance create an object by using \pdfobj

after which \pdflastobj returns the number. So

\pdfobj{/Type /Catalog /Pages 6 0 R}

inserts an object in the file, while \pdflastobj returns the number pdfTEX assigned to this object.

The sequence 6 0 R is an object reference, a pointer to another object. The second number (here a

zero) is currently not used in pdfTEX; it is the version number of the object. It is for instance used

by pdf editors, when they replace objects by new ones.

In general this rather direct way of pushing objects in the files is rather useless and only makes sense

when implementing for instance fill--in field support or annotation content reuse. We come to that

later. Unless such direct objects are part of something larger, they will end up as isolated entities,

not doing any harm but not doing any good either.

When a viewer opens a pdf file, it first goes to the end of the file. There it finds the keyword

startxref, the signal where to look for the so called object cross reference table. This table provides

The pdfTEX user manual

2

fast access to the objects that make up the file. The actual starting point of the file is defined after

the trailer. The /Root entry points to the catalog. In this catalog the viewer can find the page list,

in our example we have only one page. The trailer also holds an /Info entry, which tells a bit more

about the document. Just follow the thread:

/Root −→ object 8 −→ /Pages −→ object 6 −→ /Kids −→ object 2 −→ page content

As soon as we add annotations, a fancy word for hyperlinks and alike, some more entries are present

in the catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the

level of compression can be set with \pdfcompresslevel. Let’s take a closer look to this stream.

First there is a transformation matrix, six numbers followed by cm. As in PostScript, the operator

comes after the operands. Between BT and ET comes the text. A font switch can be recognized as

/F... The actual text goes between () to form a so called string. When one analyzes a file produced

by a less sophisticated typesetting engine, whole sequences of words can be recognized. In TEX

however, the text comes out rather fragmented, mainly because a lot of kerning takes place. Because

viewers can search in these streams, one can imagine that the average TEX produced files becomes

more difficult as soon as the typesetting engine does a better job; TEX cannot do less.

This one page example uses an Adobe Times Roman font. This is one of the 14 fonts that is always

present in the viewer application, and is called a base font. However, when we use for instance

Computer Modern Roman, we have to make sure that this font is available, and the best way to

do this is to embed it in the file. Just let your eyes follow the object thread and see how a font is

described. The only thing missing in this example is the (partially) embedded glyph description file,

which for the base fonts is not needed.

In this simple file, we don’t specify in what way the file should be opened, for instance full screen or

clipped. A closer look at the page object (/Type /Page) shows that a mediabox is part of the page

description. A mediabox acts like the bounding box in a PostScript file. pdfTEX users have access

to this object by \pdfpageattr.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access

to many of the entries described here, either automatically by translating the TEX data structures

into pdf ones, or directly by pushing entries to the catalog, page, info or self created objects. Those

who, after this introduction, feel uncomfortable in how to proceed, are advised to read on but skip

section 6. Before we come to that section, we will describe how to get started with pdfTEX.

3 Getting started

This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not

yet installed. Some TEX distributions have pdfTEX as a component, like teTEX, fpTEX, MikTeX and

CMacTEX, so when you use one of them, you don’t need to bother with the pdfTEX installation. Note

that the installation description in this manual is Web2c--specific.

For some years there is a ‘moderate’ successor to TEX available, called e-TEX. Because the main stream

macro packages start supporting this welcome extension, pdfTEX also is available as pdfe-TEX. Al-

though in this document we will speak of pdfTEX, we advise users to use pdfe-TEX when available.

That way they get the best of all worlds and are ready for the future.

The pdfTEX user manual

3

3.1 Getting sources and binaries

The latest sources of pdfTEX are distributed together with precompiled binaries of pdfTEX for some

platforms, including Linux1, SGI IRIX, Sun SPARC Solaris and MSDos (djgpp).2 The primary location

where one can fetch the source code is:

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest

For Win32 systems (Windows 95, Windows NT) there are two packages that contain pdfTEX, both in

ctan:systems/win32: fpTEX, maintained by Fabrice Popineau, popineau@ese-metz.fr, and Mik-

TeX by Christian Schenk, cschenk@berlin.snafu.de.

A binary version of pdfTEX for the Amiga is coming with the AmiWeb2c distribution (ctan:systems

/amiga/amiweb2c) by Andreas Scherer (andreas.scherer@pobox.com). For the MacIntosh there

is CMacTEX.

3.2 Compiling

If there is no precompiled binary of pdfTEX for your system, you need to build pdfTEX from sources.

The compilation is expected to be easy on Unix--like systems and can be described best by example.

Assuming that all needed files are downloaded to $HOME/pdftex, on a Unix system the following

steps are needed to compile pdfTEX:

cd \$HOME/pdftex

gunzip < web-7.2.tar.gz | tar xvf -

gunzip < web2c-7.2.tar.gz | tar xvf -

gunzip < pdftex.tar.gz | tar xvf -

mv pdftexdir web2c-7.2/web2c

cd ./web2c-7.2

./configure

cd ./web2c

make pdftex

If you happen to have a previously configured source tree and just install a new version of pdfTEX,

you can avoid running configure from the top--level directory. It’s quicker to run config.status,

which will just regenerate the Makefile’s based on config.cache:

cd web2c-7.2/web2c

sh config.status

make pdftex

Apart from the binary of pdfTEX the compilation also produces several other files which are needed

for running pdfTEX:

pdftex.pool so--called pool file, needed for creating formats, located in web2c-7.2/web2c

texmf.cnf Web2c run--time configuration file, located in web2c-7.2/kpathsea

ttf2afm an external program to generate afm file from TrueType fonts, located in web2c-7.2

/web2c/pdftexdir

The Linux binary is apparently compiled for the new libc-6 (gnu glibc-2.0), which will not run for users of older Linux1

installations still based on libc-5.

The djgpp version is built by djgpp cross--compiler on Linux.2

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex-testing/latest
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32
popineau@ese-metz.fr
popineau@ese-metz.fr
popineau@ese-metz.fr
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
ctan:systems/amiga/amiweb2c/
ctan:systems/amiga/amiweb2c/
ctan:systems/amiga/amiweb2c/
ctan:systems/amiga/amiweb2c/
andreas.scherer@pobox.com
andreas.scherer@pobox.com
andreas.scherer@pobox.com
andreas.scherer@pobox.com

The pdfTEX user manual

4

Precompiled binaries are included in the zip archive pdftex.zip.

3.3 Getting PDFTEX--specific platform--independent files

Apart from above--mentioned files, there is another zip archive (pdftexlib-0.12.zip) in pdfTEX

distribution which contains platform--independent files required for running pdfTEX:

• configuration file: pdftex.cfg

• encoding vectors: *.enc

• map files: *.map

• macros: *.tex

Unpacking this archive —don’t forget -d option when using pkunzip— will create a texmf tree

containing pdfTEX--specific files.

3.4 Placing files

The next step is to place the binaries somewhere in PATH. If you want to use LATEX, you also need to

make a copy (or symbolic link) of pdftex and name it pdflatex. The files texmf.cnf and pdftex.

pool and the directory texmf, created by unpacking the file pdftexlib-0.12.zip, should be moved

to the ‘appropriate’ place (see below).

3.5 Setting search paths

Web2c--based programs, including pdfTEX, use the Web2c run--time configuration file called texmf.

cnf. This file can be found via the user--set environment variable TEXMFCNF or via the compile--time

default value if the former is not set. It is strongly recommended to use the first option. Next you

need to edit texmf.cnf so pdfTEX can find all necessary files. Usually one has to edit TEXMFS and

maybe some of the next variables. When running pdfTEX, some extra search paths are used beyond

those normally requested by TEX itself:

VFFONTS the path where pdfTEX looks for virtual fonts

T1FONTS the path where pdfTEX looks for Type1 fonts

TTFONTS the path where pdfTEX looks for TrueType fonts

PKFONTS the path where pdfTEX looks for PK fonts

TEXPSHEADERS the path where pdfTEX looks for the configuration file pdftex.cfg, font mapping

files (*.map), encoding files (*.enc), and pictures

3.6 The PDFTEX configuration file

One has to keep in mind that, opposed to dvi output, there is no postprocessing stage. This has

several rather fundamental consequences, like one--pass graphic and font inclusion. When TEX builds

a page, the macro package used quite certain has a concept of page dimensions, which is not the

same as paper dimensions. The reference point of the page is the top--left corner.

Most dvi postprocessors enable the user to specify the paper size, which often defaults to ‘A4’ or

‘letter’. In most cases it does not harm that much to mix the two, because one will seldom put too

The pdfTEX user manual

5

small paper in the printer. And, if one does, one will certainly not do that a second time. In pdf

the paper size is part of the definition. This means that everything that is off page, is clipped off,

it simply disappears. Even worse, just like in a PostScript file, the reference point is in the lower

corner, which is opposite to dvi’s reference point.

And so, we’ve found one of the main reasons why pdfTEX explicitly needs to know the paper dimen-

sions. These dimensions can either be passed using the so called configuration file, or by using the

primitives provided for this purpose. In this respect, the pdfTEX configuration file can be compared

to configuration files that come with dvi postprocessors and/or command line options. Both contain

information on the paper used, the fonts to be included and optimizations to be applied.

When pdfTEX starts, it reads the Web2c configuration file as well as the pdfTEX configuration file

called pdftex.cfg, searched for in the TEXPSHEADERS path. As Web2c systems commonly specify a

‘private’ tree for pdfTEX where configuration and map files are located, this allows individual users

or projects to maintain customized versions of the configuration file.

The configuration file sets default values for the following parameters, all of which can be over--

ridden in the TEX source file:

output format This integer parameter specifies whether the output format should be dvi or pdf.

A positive value means pdf output, otherwise we get dvi output.

compress level This integer parameter specifies the level of text and in--line graphics compression.

pdfTEX uses zip compression as provided by zlib. A value of 0 means no compression, 1 means

fastest, 9 means best, 2..8 means something in between. Just set this value to 9, unless there is a

good reason to do otherwise — 0 is great for testing macros that use \pdfliteral.

decimal digits This integer specifies the preciseness of real numbers in pdf page descriptions. It

gives the maximal number of decimal digits after the decimal point of real numbers. Valid values

are in range 0..5. A higher value means more precise output, but also results in a much larger file

size and more time to display or print. In most cases the optimal value is 2. This parameter does

not influence the precision of numbers used in raw pdf code, like that used in \pdfliterals and

annotation action specifications.

image resolution When pdfTEX is not able to determine the natural dimensions of an image, it

assumes a resolution of type 72 dots per inch. Use this variable to change this default value.

page width & page height These two dimension parameters specify the output medium dimensions

(the paper, screen or whatever the page is put on). If they are not specified, the page width is

calculated as wbox being shipped out + 2 × (horigin + \hoffset). The page height is calculated in a similar

way.

horigin & vorigin These dimension parameters can be used to set the offset of the TEX output box

from the top left corner of the ‘paper’.

map This entry specifies the font mapping file, which is similar to those used by many dvi to

PostScript drivers. More than one map file can be specified, using multiple map lines. If the name

of the map file is prefixed with a +, its values are appended to the existing set, otherwise they replace

it. If no map files are given, the default value psfonts.map is used.

A typical pdftex.cfg file looks like this, setting up output for A4 paper size and the standard TEX

offset of 1 inch, and loading two map files for fonts:

The pdfTEX user manual

6

output_format 1

compress_level 0

decimal_digits 2

image_resolution 300

page_width 210mm

page_height 297mm

horigin 1in

vorigin 1in

map standard.map

map +cm.map

Dimensions can be specified as true, which makes them immune for magnification (when set). The

previous example settings, apart from map, can also be set during a TEX run. This leaves a special

case:

include form resources Sometimes embedded pdf illustrations can pose viewers for problems.

When set to 1, this variable makes pdfTEX take some precautions. Forget about it when you never

encounteres problems. When all the programs you use conform to the pdf specifications, you will

never need to set this variable.

3.7 Creating formats

Formats for pdfTEX are created in the same way as for TEX. For plain TEX and LATEX it looks like:

pdftex -ini -fmt=pdftex plain \dump

pdftex -ini -fmt=pdflatex latex.ltx

In ConTEXt the generation depends on the interface used. A format using the english user interface

is generated with.

pdftex -ini -fmt=cont-en cont-en

When properly set up, one can also use the ConTEXt command line interface TEXexec to generate

one or more formats, like:

texexec --make en

for an english format, or

texexec --make --tex=pdfetex en de

for an english and german one, using pdfe-TEX. Indeed, there is pdfTEX as well as pdfe-TEX, use it!

Whatever macro package used, the formats should be placed in the TEXFORMATS path. We strongly

recommend to use pdfe-TEX, if only because the main stream macro packages (will) use it.

3.8 Testing the installation

When everything is set up, you can test the installation. In the distribution there is a plain TEX test

file example.tex. Process this file by saying:

pdftex example

If the installation is ok, this run should produce a file called example.pdf. The file example.tex is

also a good place to look how to use pdfTEX’s new primitives.

The pdfTEX user manual

7

3.9 Common problems

The most common problem with installation is that pdfTEX complains that something cannot

be found. In such cases make sure that TEXMFCNF is set correctly, so pdfTEX can find texmf.

cnf. The next best place to look/edit is the file texmf.cnf. When still in deep trouble, set

KPATHSEA_DEBUG=255 before running pdfTEX or run pdfTEX with option -k 255. It will cause pdfTEX

to write a lot of debugging information, that can be useful to trace problems. More options can be

found in the Web2c documentation.

Variables in texmf.cnf can be overwritten by environment variables. Here are some of the most

common problems you can encounter when getting started:

• I can’t read tex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf.cnf, or TEXPOOL in texmf.cnf

doesn’t contain a path to the pool file pdftex.pool.

• You have to increase POOLSIZE.

pdfTEX cannot find texmf.cnf, or the value of pool_size specified in texmf.cnf is not large

enough and must be increased. If pool_size is not specified in texmf.cnf then you can add

something like

pool_size = 500000

• I can’t find the format file ‘pdftex.fmt’!

I can’t find the format file ‘pdflatex.fmt’!

Format is not created (see above how to do that) or is not properly placed. Make sure that TEX-

FORMATS in texmf.cnf contains the path to pdftex.fmt or pdflatex.fmt.

• Fatal format file error; I’m stymied.

This appears if you forgot to regenerate the .fmt files after installing a new version of the pdfTEX

binary and pdftex.pool.

• TEX.POOL doesn’t match; TANGLE me again!

TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version

of the pdfTEX binary.

• pdfTEX cannot find the configuration file pdftex.cfg, one or more map files (*.map), encoding

vectors (*.enc), virtual fonts, Type 1 fonts, TrueType fonts or some image file.

Make sure that the required file exists and the corresponding variable in texmf.cnf contains a

path to the file. See above which variables pdfTEX needs apart from the ones TEX uses.

Normally the page content takes one object. This means that one seldom finds more than a few hun-

dred objects in a file. This document for instance uses about 300 objects. In demanding applications

this number can grow, especially when one uses a lot of widget annotations, shared annotations or

other shared things. In these situations in texmf.cnf one can enlarge pdfTEX’s internal object table,

for instance:

obj_tab_size = 400000

The pdfTEX user manual

8

4 Macro packages supporting PDFTEX

When producing dvi output, for which one can use pdfTEX as well as any other TEX, part of the job

is delegated to the dvi postprocessor, either by directly providing this program with commands,

or by means of \specials. Because pdfTEX directly produces the final format, it has to everything

itself, from handling color, graphics, hyperlink support, font--inclusion, upto page imposition and

page manipulation.

As a direct result, when one uses a high level macro package, the macros that take care of these

features have to be set up properly. Specials for instance make no sense at all. Actually being a

comment understood by dvi postprocessors —given that the macro package speaks the specific

language of this postprocessor— a \special would end up as just a comment in the pdf file, which

is of no use. Therefore, \special issues a warning when pdfTEX is in pdf mode.

When one wants to get some insight to what extend pdfTEX specific support is needed, one can start

a file by saying:

\pdfoutput=1 \let\special\message

or, if this leads to confusion,

\pdfoutput=1 \def\special#1{\write16{special: #1}}

And see what happens. As soon as one ‘special’ message turns up, one knows for sure that some

kind of pdfTEX specific support is needed, and often the message itself gives a indication of what is

needed.

Currently all main stream macro packages offer pdfTEX support in one way or the other. When using

such a package, it makes sense to turn on this support in the appropriate way, otherwise one cannot

be sure if things are set up right. Remember that for instance the page and paper dimensions have

to be taken care of, and only the macro package knows the details.

• For LATEX users, Sebastian Rahtz’ hyperref package has substantial support for pdfTEX, and pro-

vides access to most of its features. In the simplest case, the user merely needs to load hyperref

with a pdftex option, and all cross--references will be converted to pdf hypertext links. pdf out-

put is automatically selected, compression is turned on, and the page size is set up correctly.

Bookmarks are created to match the table of contents.

• The standard LATEX graphics and color packages have pdftex options, which allow use of normal

color, text rotation, and graphics inclusion commands.

• The ConTEXt macro package by Hans Hagen (pragma@wxs.nl) has very full support for pdfTEX in

its generalized hypertext features. Support for pdfTEX is implemented as a special driver, and is

invoked by saying \setupoutput[pdftex] or feeding TEXexec with the --pdf option.

• Hypertexted pdf from texinfo documents can be created with pdftexinfo.tex, which is a slight

modification of the standard texinfo macros. This file is part of the pdfTEX distribution.

• A similar modification of webmac.tex, called pdfwebmac.tex, allows production of hypertext’d

pdf versions of programs written in web. This is also part of the pdfTEX distribution.

Some nice samples of pdfTEX output can be found on the tug web server, at http://www.tug.org

/applications/pdftex and http://www.ntg.nl/context.

mailto:pragma@wxs.nl
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/

The pdfTEX user manual

9

5 Setting up fonts

pdfTEX can work with Type 1 and TrueType fonts, but a source must be available for all fonts used

in the document, except for the 14 base fonts supplied by Acrobat Reader (Times, Helvetica, Courier,

Symbol and Dingbats). It is possible to use METAFONT--generated fonts in pdfTEX— but it is strongly

recommended not to use METAFONT--fonts if an equivalent is available in Type 1 or TrueType format,

if only because bitmap Type 3 fonts render very poorly in Acrobat Reader. Given the free availability

of Type 1 versions of all the Computer Modern fonts, and the ability to use standard PostScript

fonts, most TEX users should be able to experiment with pdfTEX.

5.1 Map files

pdfTEX reads the map files, specified in the configuration file, see section 3.6, in which reencoding

and partial downloading for each font are specified. Every font needed must be listed, each on a

separate line, except pk fonts. The syntax of each line is similar to dvips map files3 and can contain

up to the following (some are optional) fields: texname, basename, fontflags, fontfile, encodingfile

and special. The only mandatory is texname and must be the first field. The rest is optional, but

if basename is given, it must be the second field. Similarly if fontflags is given it must be the third

field (if basename is present) or the second field (if basename is left out). It is possible to mix the

positions of fontfile, encodingfile and special, however the first three fields must be given in fixed

order.

texname sets the name of the tfm file. This name must be given for each font.

basename sets the base (PostScript) font name. If not given then it will be taken from the font file.

Specifying a name that doesn’t match the name in the font file will cause pdfTEX to write a warning,

so it is best not to have this field specified if the font resource is available, which is the most common

case. This option is primarily intended for use of base fonts and for compatibility with dvips map

files.

fontflags specify some characteristics of the font. The next description of these flags are taken,

with a slight modification, from the pdf Reference Manual (the section on Font Descriptor Flags).

The value of the flags key in a font descriptor is a 32--bit integer that contains a collection

of boolean attributes. These attributes are true if the corresponding bit is set to 1. Table 1

specifies the meanings of the bits, with bit 1 being the least significant. Reserved bits must be

set to zero.

All characters in a fixed--width font have the same width, while characters in a proportional

font have different widths. Characters in a serif font have short strokes drawn at an angle

on the top and bottom of character stems, while sans serif fonts do not have such strokes. A

symbolic font contains symbols rather than letters and numbers. Characters in a script font

resemble cursive handwriting. An all--cap font, which is typically used for display purposes

such as titles or headlines, contains no lowercase letters. It differs from a small--cap font in

that characters in the latter, while also capital letters, have been sized and their proportions

adjusted so that they have the same size and stroke weight as lowercase characters in the same

typeface family.

dvips map files can be used with pdfTEX without problems.3

The pdfTEX user manual

10

bit position semantics

1 Fixed-width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

6 Uses the Adobe Standard Roman Character Set

7 Italic

8–16 Reserved

17 All-cap font

18 Small-cap font

19 Force bold at small text sizes

20–32 Reserved

Table 1 The meaning of flags in the font descriptor.

Bit 6 in the flags field indicates that the font’s character set conforms the Adobe Standard

Roman Character Set, or a subset of that, and that it uses the standard names for those char-

acters.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels

even at very small text sizes. Typically, when characters are drawn at small sizes on very low

resolution devices such as display screens, features of bold characters may appear only one

pixel wide. Because this is the minimum feature width on a pixel--based device, ordinary non--

bold characters also appear with one--pixel wide features, and cannot be distinguished from

bold characters. If bit 19 is set, features of bold characters may be thickened at small text

sizes.

If the font flags are not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the

correct value, it would be best not to specify it, as specifying a bad value of font flags may cause

troubles in viewers. On the other hand this option is not absolutely useless because it provides

backward compatibility with older map files (see the fontfile description below).

fontfile sets the name of the font source file. This must be a Type 1 or TrueType font file. The font

file name can be preceded by one or two special characters, which says how the font file should be

handled.

• If it is preceded by a < the font file will be partly downloaded, which means that only used glyphs

(characters) are embedded to the font. This is the most common use and is strongly recommended

for any font, as it ensures the portability and reduces the size of the pdf output. Partial fonts are

included in such a way that name and cache clashes are minimalized.

• In case the font file name is preceded by a double <<, the font file will be included entirely — all

glyphs of the font are embedded, including the ones that are not used in the document. Apart

from causing large size pdf output, this option may cause troubles with TrueType fonts too, so

The pdfTEX user manual

11

it is not recommended. It might be useful in case the font is untypical and can not be subsetted

well by pdfTEX. Beware: some font vendors forbid full font inclusion.

• In case nothing preceded the font file name, the font file is read but nothing is embedded, only the

font parameters are extracted to generate the so--called font descriptor, which is used by Acrobat

Reader to simulate the font if needed. This option is useful only when you do not want to embed

the font (i.e. to reduce the output size), but wish to use the font metrics and let Acrobat Reader

generate instances that look close to the used font in case the font resource is not installed on the

system where the pdf output will be viewed or printed. To use this feature the font flags must be

specified, and it must have the bit 6 set on, which means that only fonts with the Adobe Standard

Roman Character Set can be simulated. The only exception is in case of Symbolic font, which is

not very useful.

• If the font file name is preceded by a !, the font is not read at all, and is assumed to be available

on the system. This option can be used to create pdf files which do not contain embedded fonts.

The pdf output then works only on systems where the resource of the used font is available. It’s

not very useful for document exchange, as the pdf is not ‘portable’ at all. On the other hand it is

very useful when you wish to speed up running of pdfTEX during interactive work, and only in a

final version embed all used fonts. Don’t over--estimate gain in speed and when distributing files,

always embed the fonts! This feature requires Acrobat Reader to have access to installed fonts

on the system. This has been tested on Win95 and Unix (Solaris).

Note that the standard 14 fonts are never downloaded, even when they are specified to be downloaded

in map files.

encoding specifies the name of the file containing the external encoding vector to be used for the

font. The file name may be preceded by a <, but the effect is the same. The format of the encoding

vector is identical to that used by dvips. If no encoding is specified, the font’s built--in default

encoding is used. It may be omitted if you are sure that the font resource has the correct built--in

encoding. In general this option is highly preferred and is required when subsetting a TrueType font.

special instructions can be used to manipulate fonts similar to the way dvips does. Currently only

the keyword SlantFont is interpreted, other instructions are just ignored.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix .pgc,

which is a so--called pgc source (pdf Glyph Container)4. If no pgc source is available, pdfTEX will try

to use pk fonts in a normal way as dvi drivers do, on--the--fly creating pk fonts if needed.

Lines containing nothing apart from texname stand for scalable Type 3 fonts. For scalable fonts as

Type 1, TrueType and scalable Type 3 font, all the fonts loaded from a tfm at various sizes will be

included only once in the pdf output. Thus if a font, let’s say csr10, is described in one of the map

files, then it will be treated as scalable. As a result the font source for csr10 will be included only

once for csr10, csr10 at 12pt etc. So pdfTEX tries to do its best to avoid multiple downloading of

identical font sources. Thus vector pgc fonts should be specified as scalable Type 3 in map files like:

csr10

This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files4

can contain whatever allowed in pdf page description, which may be used to support fonts that are not available in METAFONT.

At the moment pgc fonts are not very useful, as vector Type 3 fonts are not displayed very well in Acrobat Reader, but it may

be more useful when Type 3 font handling gets better.

The pdfTEX user manual

12

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source

will be downloaded multiple times for various sizes, which causes a much larger pdf output. On the

other hand if a font is in the map files is defined as scalable Type 3 font and its pgc source is not

scalable or not available, pdfTEX will use pk font instead; the pdf output is still valid but some fonts

may look ugly because of the scaled bitmap.

To summarize this rather confusing story, we include some sample lines.

Use a built--in font with font--specific encoding, i.e. neither a download font nor an external encoding

is given. A SlantFont is specified similarly as for dvips.

psyr Symbol

psyro Symbol ".167 SlantFont"

pzdr ZapfDingbats

Use a built--in font with an external encoding. The < preceded encoding file may be left out.

ptmr8r Times-Roman <8r.enc

ptmri8r Times-Italic <8r.enc

ptmro8r Times-Roman <8r.enc ".167 SlantFont"

Use a partially downloaded font with an external encoding:

putr8r Utopia-Regular <8r.enc <putr8a.pfb

putri8r Utopia-Italic <8r.enc <putri8a.pfb

putro8r Utopia-Regular <8r.enc <putr8a.pfb ".167 SlantFont"

Use some faked font map entries:

logo8 <logo8.pfb

logo9 <logo9.pfb

logo10 <logo10.pfb

logosl8 <logo8.pfb ".25 SlantFont"

logosl9 <logo9.pfb ".25 SlantFont"

logosl10 <logosl10.pfb

logobf10 <logobf10.pfb

Use an ascii subset of OT1 and T1:

ectt1000 cmtt10 <cmtt10.map <tex256.enc

Download a font entirely without reencoding:

pgsr8r GillSans <<pgsr8a.pfb

Partially download a font without reencoding:

pgsr8r GillSans <pgsr8a.pfb

Do not read the font at all — the font is supposed to be installed on the system:

pgsr8r GillSans !pgsr8a.pfb

Entirely download a font with reencoding:

pgsr8r GillSans <<pgsr8a.pfb 8r.enc

Partially download a font with reencoding:

The pdfTEX user manual

13

pgsr8r GillSans <pgsr8a.pfb 8r.enc

Sometimes we do not want to include a font, but need to extract parameters from the font file

and reencode the font as well. This only works for fonts with Adobe Standard Encoding. The font

flags specify how such a font looks like, so Acrobat Reader can generate similar instance if the font

resource is not available on the target system.

pgsr8r GillSans 32 pgsr8a.pfb 8r.enc

A TrueType font can be used in the same way as a Type 1 font:

verdana8r Verdana <verdana.ttf 8r.enc

5.2 TrueType fonts

As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType files is similar to

Type 1 font. The only extra thing to do with TrueType is to create a tfm file. There is a program

called ttf2afm in the pdfTEX distribution which can be used to extract afm from TrueType fonts.

Usage is simple:

ttf2afm <ttf> [<encoding>]

A TrueType file can be recognized by its suffix ttf. The optional encoding specifies the encoding,

which is the same as the encoding vector used in map files for pdfTEX and dvips. If the encoding is

not given, all the glyphs of the afm output will be mapped to /.notdef. ttf2afm writes the output

afm to standard output. If we need to know which glyphs are available in the font, we can run

ttf2afm without encoding to get all glyph names. The resulting afm file can be used to generate a

tfm one by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test.map is

included in pdftex.cfg.

ttf2afm times.ttf 8r.enc >times.afm

afm2tfm times.afm -T 8r.enc

echo "times TimesNewRomanPSMT <times.ttf <8r.enc" >>test.map

The PostScript font name (TimesNewRomanPSMT) is reported by afm2tfm, but from pdfTEX version

0.12l onwards it may be left out.

The SlantFont transformation also works for TrueType fonts.

6 New primitives

Here follows a short description of new primitives added by pdfTEX. One way to learn more about

how to use these primitives is to have a look at the file example.tex in the pdfTEX distribution. Each

pdfTEX specific primitive is prefixed by \pdf.

6.1 Document setup

ñ \pdfoutput = number

This Integer parameter specifies whether the output format should be dvi or pdf. Positive value

means pdf output, otherwise dvi output. This parameter cannot be specified after shipping out the

The pdfTEX user manual

14

first page. In other words, this parameter must be set before pdfTEX ships out the first page if we

want pdf output. This is the only one parameter that must be set to produce pdf output. All others

are optional.

When pdfTEX starts complaining about specials, one can be sure that the macro package is not aware

of this mode. A simple way of making macros pdfTEX aware is:

\ifx\pdfoutput\undefined \newcount\pdfoutput \fi

\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

However, there are better ways to handle these things.

ñ \pdfcompresslevel = number

This integer parameter specifies the level of text compression via zlib. Zero means no compression,

1 means fastest, 9 means best, 2..8 means something in between. A value out of this range will be

adjusted to the nearest meaningful value. Use a value of 9 for normal runs.

ñ \pdfpagewidth = dimension

This dimension parameter specifies the page width of the pdf output. If not given then the page

width will be calculated as mentioned above. Like the next one, this value replaces the value set in

the configuration file. When part of the page falls of the paper or screen, you can be rather sure that

this parameter is set wrong.

ñ \pdfpageheight = dimension

Similar to the previous one, this dimension parameter specifying the page height of the pdf output.

If not given then the page height will be calculated as mentioned above.

ñ \pdfpagesattr = tokens

Use this token list parameter to specify optional attributes common for all pages of the pdf output

file. Some examples of attributes are /MediaBox, the rectangle specifying the natural size of the

page, /CropBox, the rectangle specifying the region of the page being displayed and printed, and

/Rotate, the number of degrees (in multiples of 90) the page should be rotated clockwise when it is

displayed or printed.

ñ \pdfpageattr = tokens

This is similar to \pdfpagesattr, but it takes priority to the former one. It can be used to overwrite

any attribute given by \pdfpagesattr for individual pages.

6.2 The document info and catalog

ñ \pdfinfo {info keys}

This allows the user to add information to the document info section; if this information is provid-

ed, it can be extracted by Acrobat Reader (version 3.1: menu option Document Information, Gen-

eral). The {info keys} is a set of data pairs, a key and a value. The key names are preceded by

a /, and the values, being strings, are given between parentheses. All keys are optional. Possible

keys are /Author, /CreationDate (defaults to current date), /ModDate, /Creator (defaults to TeX),

/Producer (defaults to pdfTeX), /Title, /Subject, and /Keywords.

The pdfTEX user manual

15

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmss, where YYYY is the

year, MM is the month, DD is the day, hh is the hour, mm is the minutes, and ss is the seconds.

Multiple appearances of \pdfinfo will be concatenated to only one. If a key is given more than once,

then the first appearance will take priority. An example of use of \pdfinfo may look like:

\pdfinfo

{ /Title (example.pdf)

/Creator (TeX)

/Producer (pdfTeX 0.15a)

/Author (Tom and Jerry)

/CreationDate (D:19980212201000)

/ModDate (D:19980212201000)

/Subject (Example)

/Keywords (pdfTeX) }

ñ \pdfcatalog {catalog keys} 〈openaction action〉

Similar to the document info section is the document catalog, where keys are /URI, which provides

the base url of the document, and /PageMode determines how Acrobat displays the document on

startup. The possibilities for the latter are explained in Table 2:

value meaning

/UseNone neither outline nor thumbnails visible

/UseOutlines outline visible

/UseThumbs thumbnails visible

/FullScreen full–screen mode

Table 2 Supported /PageMode values.

In full--screen mode, there is no menu bar, window controls, nor any other window present. The

default setting is /UseNone.

The openaction is the action provided when opening the document and is specified in the same way

as internal links, see section 6.7. Instead of using this method, one can also write the open action

directly into the catalog.

ñ \pdfnames {text}

Inserts the text to /Names array. The text must be conform to the specifications as laid down in the

pdf Reference Manual, otherwise the document can be invalid.

6.3 Fonts

ñ \font ... numberstretch numbershrink numberstep number

Although still in an experimental stage, and therefore subjected to changes, the next extension to

the TEX primitive font is worth mentioning.

\font\somefont=somefile at 10pt stretch 30 shrink 20 step 5

The pdfTEX user manual

16

The stretch 30 shrink 20 step 5 means as much as: “hey TEX, when things are going to bad,

you may stretch the glyphs in this font as much as 3% or shrink them by 2%”. Because pdfTEX uses

internal datastructures with fixed widths, each additional width also means an additional font. For

practical reasons pdfTEX uses discrete steps, in this example a 5% one. This means that for font

somefile upto 11 differently scaled alternatives are used. When no step is specified, 1% steps are

used.

Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TEX

cannot break a line in the appropriate way, the unbreakable parts of the word will stick into the

margin. When pdfTEX notes this, it will try to scale the glyphs in that line using fixed steps, until the

line fits. When lines are too spacy, the opposite happens: pdfTEX starts scaling the glyphs until the

white space gaps is acceptable.

The additional fonts are named as somefont+10 or somefont-15, and tfm files with these names

and appropriate dimensions must be available. So, each scaled font must have its own tfm file!

When no tfm file can be found, pdfTEX will try to generate it by executing the script mktextfm, when

available and supported.

This mechanism is inspired on an optimization introduced first by Herman Zapf, which in itself goes

back to optimizations used in the early days of typesetting: use different glyphs to optimize the

greyness of a page. So, there are many, slightly different a’s, e’s, etc. For practical reasons pdfTEX

does not use such huge glyph collections; it uses horizontal scaling instead. This is sub--optimal, and

for many fonts, sort of offending to the design. But, when using pdf, it’s not that illogical at all: pdf

viewers use so called Multiple Master fonts when no fonts are embedded and/or can be found on the

target system. Such fonts are designed to adapt their design to the different scaling parameters. It

is up to the user to determine to what extend mixing slightly remastered fonts can be used without

violating the design. Think of an O: when simply stretched, the vertical part of the glyph becomes

thicker, and looks incompatible to an unscaled original. In a multiple master, one can decide to

stretch but keep this thickness compatible.

ñ \pdfadjustspacing number

The output that pdfTEX produces is pretty compatible with the normal TEX output: TEX’s typesetting

engine is unchanged. The optimization described here, is turned of by default. At this moment there

are two methods. When set to 1, simple stretching is applied. This alternative uses the normal tfm

files, and is not related to the stretch and shrink as described in the previous section. When set to 2,

the previously described multiple font optimization comes into action.

ñ \efcode number

We didn’t yet tell the whole story. One can imagine that some glyphs are more sensitive for scaling

than others. The \efcode primitive can be used to influence the stretchability of a glyph. The syntax

is similar to \sfcode, and default to 1000, meaning 100%.

\efcode‘A=2500

\efcode‘O=0

In this example an A may stretch 2.5 times as much as normal and the O is not to be stretched at

all. The minimum and maximum stretch is however bound by the font specification, otherwise one

would end up with more fonts inclusions than comfortable.

The pdfTEX user manual

17

6.4 Graphics inclusion

ñ \pdfimage width dimension height dimension depth dimension {filename}

Inserts an image, optionally changing width, height, depth or any combination of them. Default

values are zero for depth and ‘running’ for height and width. If all of them are given, the image will

be scaled to fit the specified values. If some of them (but not all) are given, the rest will be set to a

value corresponding to the remaining ones so as to make the image size to yield the same proportion

of width : (height + depth) as the original image size, where depth is treated as zero. If none of

them is given then the image will take its natural size. An image inserted at natural size often has

a resolution 72 dots per inch in the output file, but some images may contain data specifying the

image resolution, and in such a case the image will be scaled to the correct resolution.

The filename of the image must appear after the optional dimension parameters. The dimension

of the image can be accessed by enclosing the \pdfimage command to a box and checking the

dimensions of the box:

\setbox0=\hbox{\pdfimage {somefile.png}}

Now we can use \wd0 and \ht0 to question the natural size of the image as determined by pdfTEX.

When dimensions are specified before the {somefile.pdf}, the graphic is scaled to fit these.

The image type is specified by the extension of the given file name, so .png stands for png image,

tif for tiff, and .pdf for pdf file. Otherwise the image is treated as jpeg (jpg).

ñ \pdfimageresolution = number

We already mentioned the default resolution of 72 dots per inch. It is possible to overrule this value

by using this register. Of course this only applies to bitmap png, tiff, and jpeg illustrations.

6.5 XObject Forms

The next three primitives support a pdf feature called ‘object reuse’ in pdfTEX. The idea is to create a

Form object in pdf. The content of this XObject Form object corresponds to the content of a TEX box,

which can also contain pictures and references to other XObject Form objects as well. After that the

XObject Form can be used by simply referring to its object number. This feature can be useful for

large documents with a lot of similar elements, as it can reduce the duplication of identical objects.

ñ \pdfform number

Writes out the TEX box number as a XObject Form to the PDF file.

ñ \pdflastform

Returns the object number of the last XObject Form written to the pdf file.

ñ \pdfrefform \name

Inserts a reference to the XObject Form called \name.

As said, this feature can be used for reusing information. This mechanism also plays a role in

typesetting fill--in form. Such widgets sometimes depends on visuals that show up on user request,

but are hidden otherwise.

6.6 Annotations

pdf level 1.2 provides four basic kinds of annotations:

The pdfTEX user manual

18

• hyperlinks, general navigation

• text clips (notes)

• movies

• sound fragments

The first type differs from the other three in that there is a designated area involved on which one

can click, or when moved over some action occurs. pdfTEX is able to calculate this area, as we will

see later. All annotations can be supported using the next two general annotation primitives.

ñ \pdfannot width dimension height dimension depth dimension {text}

This primitive attaches an annotation at the current point in the text. The text is inserted as raw pdf

code to the contents of annotation.

ñ \pdflastannot

This primitive returns the object number of the last annotation created by \pdfannot. These two

primitives allow users to create any annotation that cannot be created by \pdfannotlink (see below).

6.7 Destinations and links

The first type of annotation mentioned before, is implemented by three primitives. The first one

is used to define a specific location as being referred to. This location is tied to the page, not the

exact location on the page. The main reason for this is that pdf maintains a dedicated list of these

annotations —and some more when optimized— for the sole purpose of speed.

ñ \pdfdest 〈num n name refname〉 appearance

This primitive establishes a destination for links and bookmark outlines; the link is identified by

either a number or a symbolic name, and the way the viewer is to display the page must be specified;

appearance must be one of those mentioned in table 3.

keyword meaning

fit fit the page in the window

fith fit the width of the page

fitv fit the height of the page

fitb fit the ‘Bounding Box’ of the page

fitbh fit the width of ‘Bounding Box’ of the page

fitbv fit the height of ‘Bounding Box’ of the page

xyz keep the current zoom factor

Table 3 The outline and destination appearances.

xyz can optionally be followed by zoom factor to provide a fixed zoom--in. The factor is like TEX

magnification, i.e. 1000 is the ‘normal’ page view.

ñ \pdfannotlink width dimension height dimension depth dimension attr {attributes} action

Starts a hypertext link; if the optional dimensions are not specified, they will be calculated from the

box containing the link. The {attributes} are explained in great detail in the pdf Reference Manual

The pdfTEX user manual

19

and determine the appearance of the link. Typically, the attributes specify the color and thickness

of any border around the link. Thus /C [0.9 0 0] /Border [0 0 2] specifies a color (in rgb) of

dark red, and a border thickness of 2 points.

While all graphics and text in a pdf document have relative positions, annotations have internally

hard--coded absolute positions. Again we’re dealing with a speed optimization. The main disadvan-

tage is that these annotations do not obey transformations issued by \pdfliteral’s

The action can do many things; some possibilities are:

page n jump to page n

goto num n jump to point n

goto name refname jump to a point established as refname with \pdfdest

goto file filename open a local file; this can be used with a name or page specification, to point

to a specific location on the file

thread num n jump to thread identified by n

thread name refname jump to thread identified by refname

user {specification} perform a user--specified action; the pdf Reference Manual explains the

possibilities; a typical use of this is to specify a url, e.g. /S /URI /URI (http://www.tug.org/)

ñ \pdfendlink

This primitive ends a link. All text between \pdfannotlink and \pdfendlink will be treated as part

of this link. pdfTEX may break the result across lines (or pages), in which case it will make several

links with the same content.

6.8 Bookmarks

ñ \pdfoutline action count n {text}

This primitive creates an outline (or bookmark) entry. The first parameter specifies the action to

be taken, and is the same as that allowed for \pdfannotlink. The count specifies the number of

direct subentries under this entry; specify 0 or omit it if this entry has no subentries. If the number

is negative, then all subentries will be closed and the absolute value of this number specifies the

number of subentries. The {text} is what will be shown in the outline window (note that this is

limited to characters in the pdf Document Encoding vector).

6.9 Article threads

ñ \pdfthread 〈num n name refname〉

Starts an article thread; the corresponding \pdfendthread must be in the box in the same depth as

the box containing \pdfthread. All boxes in this depth level will be treated as part of this thread.

An identifier (n or refname) must be specified; threads with same identifiers will be joined together.

ñ \pdfendthread

Finishes the current thread.

The pdfTEX user manual

20

ñ \pdfthreadhoffset dimension

Specifies a threads horizontal margin.

ñ \pdfthreadvoffset dimension

Specifies a threads vertical margin.

6.10 Miscellaneous

ñ \pdfliteral {pdf code}

Like \special in normal TEX, this command inserts raw pdf code into the output. This allows support

of color and text transformation. This primitive is heavily used in the METAPOST inclusion macros.

ñ \pdfobj stream {text}

Similar to \pdfliteral, but the text is inserted as contents of an object. If the optional keyword

stream is given then the contents will be inserted as a stream.

ñ \pdflastobj

Returns the object number of the last object created by \pdfobj. These primitives provide a mech-

anism allowing insertion of a user--defined object into the pdf output.

ñ \pdffontprefix {string}

In the pdf file produced by pdfTEX, one can recognize a font switch by the prefix F, for instance /F12

or /F54. This primitive can be used to force another prefix. This is only needed when one expects

(or encounters) viewing problems with included pdf illustrations that use similar prefixes.

ñ \pdfformprefix {string}

Forms are reusable graphic, textual or mixed objects. In the files made by pdfTEX such forms are

internally identified by a number, which is not to be confused with the object reference as reported

by \pdflastform. Like the previous and next primitive, this one can be used to overrule the default

prefix, which is Fm, like in /Fm1.

ñ \pdfimageprefix {string}

Like \pdffontprefix and \pdfformprefix, this primitive overrules a default prefix, this time Im,

such as /Im58. Forget about these three primitives when you never encountered viewing prob-

lems, unless you want more fancy prefixes. When you do encounter pdf inclusion problems,

change one or more of these prefixes in your document setup, and in the configuration file set

include_form_resources to 1.

ñ \pdftexversion

Returns the version of pdfTEX multiple by 100, e.g. for version 0.12x it returns 12. This document

is typeset with version 13.a.

ñ \pdftexrevision

Returns the revision of pdfTEX, e.g. for version 0.12x it returns x.

7 Graphics and color
pdfTEX supports inclusion of pictures in png, jpeg, tiff and pdf format. The most common technique

—the inclusion of eps figures— is replaced by pdf inclusion. eps files can be converted to pdf by

The pdfTEX user manual

21

GhostScript, Acrobat Distiller or other PostScript--to--pdf convertors. The BoundingBox of a pdf file

is taken from CropBox if available, otherwise from the MediaBox. To get the right BoundingBox from

a eps file, before converting to pdf, it is necessary to transform the eps file so that the start point

is at the (0,0) coordinate and the page size is set exactly corresponding to the BoundingBox. A Perl

script (epstopdf) for this purpose has been written by Sebastian Rahtz. The TEXutil utility script

that comes with ConTEXt can so a similar job. (Concerning this conversion, it handles complete

directories, removes some garbage from files, takes precautions against duplicate conversion, etc.)

Other alternatives for graphics in pdfTEX are:

LATEX picture mode Since this is implemented simply in terms of font characters, it works in exactly

the same way as usual.

Xy--pic If the PostScript back--end is not requested, Xy-pic uses its own Type 1 fonts, and needs

no special attention.

tpic The ‘tpic’ \special commands (used in some macro packages) can be redefined to produce

literal pdf, using some macros written by Hans Hagen.

METAPOST Although the output of METAPOST is PostScript, it is in a highly simplified form, and a

METAPOST to pdf conversion (written by Hans Hagen and Tanmoy Bhattacharya) is implemented as

a set of macros which reads METAPOST output and supports all of its features.

pdf It is possible to insert arbitrary one--page--only pdf files, with their own fonts and graphics,

into a document. The front page of this document is an example of such an insert, it is an one page

document generated by pdfTEX.

For new work, the METAPOST route is highly recommended. For the future, Adobe has announced

that they will define a specification for ‘encapsulated pdf’, and this should solve some of the present

difficulties.

The inclusion of raw PostScript commands —a technique utilized by for instance the pstricks

package— cannot be supported. Although pdf is a direct descendant of PostScript, it lacks any

programming language commands, and cannot deal with arbitrary PostScript.

8 Formal syntax specification

The formal syntax specification!

Abbreviations

afm Adobe Font Metrics

Amiga Amiga hardware platform

AmiWeb2c Amiga distribution

ascii ...

CMacTEX MacIntosh Web2c distribution

ConTEXt general purpose macro package

djgpp ...

dvi natural TEX Device Independ fileformat

eps Encapsulated PostScript

The pdfTEX user manual

22

epstopdf eps to pdf conversion tool

e-TEX an extension to TEX

fpTEX Win32 Web2c distribution

gnu ...

jpeg Joined Photographic Expert Group

LATEX general purpose macro package

MacIntosh MacIntosh hardware platform

METAFONT graphic programming environment, bitmap output

METAPOST graphic programming environment, vector output

MikTeX Win32 distribution

MSDos Microsoft DOS platform (Intel)

pdf Portable Document Format

pdfe-TEX e-TEX extension producing pdf output

pdfTEX TEX extension producing pdf output

Perl Perl programming environment

pgc pdf glyph container

pk Packed Bitmap Font

png Portable Network Graphics

PostScript PostScript

rgb Red Green Blue color specification

teTEX Unix Web2c distribution

TEX typographic language and program

TEXexec ConTEXt command line interface

TEXutil ConTEXt utility tool

tfm TEX Font Metrics

tiff Tagged Interchange File Format

tug TEX Users Group

Unix Unix platform

url Uniform Resource Locator

web literate programming environment

Web2c official multi--platform web environment

Win32 Microsoft Windows platform

zip compressed file format

	Introduction
	About PDF
	Getting started
	Getting sources and binaries
	Compiling
	Getting PDFTEX ||specific platform||independent files
	Placing files
	Setting search paths
	The PDFTEX configuration file
	Creating formats
	Testing the installation
	Common problems

	Macro packages supporting PDFTEX
	Setting up fonts
	Map files
	TrueType fonts

	New primitives
	Document setup
		ype {pdfoutput }
		ype {pdfcompresslevel }
		ype {pdfpagewidth }
		ype {pdfpageheight }
		ype {pdfpagesattr }
		ype {pdfpageattr }

	The document info and catalog
		ype {pdfinfo }
		ype {pdfcatalog }
		ype {pdfnames }

	Fonts
		ype {�ont }
		ype {pdfadjustspacing }
		ype {efcode }

	Graphics inclusion
		ype {pdfimage }
		ype {pdfimageresolution }

	XObject Forms
		ype {pdfform }
		ype {pdflastform }
		ype {pdfrefform }

	Annotations
		ype {pdfannot }
		ype {pdflastannot }

	Destinations and links
		ype {pdfdest }
		ype {pdfannotlink }
		ype {pdfendlink }

	Bookmarks
		ype {pdfoutline }

	Article threads
		ype {pdfthread }
		ype {pdfendthread }
		ype {pdfthreadhoffset }
		ype {pdfthreadvoffset }

	Miscellaneous
		ype {pdfliteral }
		ype {pdfobj }
		ype {pdflastobj }
		ype {pdffontprefix }
		ype {pdfformprefix }
		ype {pdfimageprefix }
		ype {pdftexversion }
		ype {a}

	Graphics and color
	Formal syntax specification

