Programmer’s Reference Manual

X7100

ACQIRIS
PROGRAMMER’S
REFERENCE
MANUAL

acqiris

ZMO020100E Rev A

acqiris

December 2004

The information in this document is subject to change without notice and may not be construed as in any
way as a commitment by Acqiris. While Acqiris makes every effort to ensure the accuracy and contents
of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and
copied in accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought
to be functional but it is supplied “as is” with no warranty for specified performance. No responsibility is
assumed for the use or the reliability of software, firmware or any equipment that is not supplied by
Acqiris SA or its affiliated companies.

Any versions of this manual which are supplied with a purchased product will be replaced at your request
with the latest revision in electronic format. At Acqiris we appreciate and encourage customer input. If
you have a suggestion related to the content of this manual or the presentation of information, please
contact your local Acqiris representative or Acqiris Technical Support (support@acqiris.com) or come
visit our web site at http://www.acqiris.com.

Trademarks: product and company names listed are trademarks or trade names of their respective
companies

Acqiris Headquarters: Acqiris USA: Acqiris Asia-Pacific:

Acqiris SA Acqiris LLC Acqiris Pty Ltd

18, chemin des Aulx 234 Cromwell Hill Rd. Suite 7, Level 1

CH-1228 Plan-les-Ouates P.O. Box 2203 407 Canterbury Road,

Geneva Monroe, NY 10950-1430 P.O. Box 13

Switzerland USA Surrey Hills 3127
Australia

Tel: +41 22 884 33 90
Fax: +41 22 884 33 99

Tel: 845 782 6544
Fax: 845 782 4745

© Copyright December 2004, Acqiris SA. All rights reserved.

Programmer’s Reference Manual

Tel: +61 3 9888 4586
Fax: +61 3 9849 0861

Page 2 of 130

mailto:support@acqiris.com
http://www.acqiris.com/

acqiris
CONTENTS
1. INTRODUCTION 5
1.1, MESSAZE 10 the USET...cuiiiiiiiiiiciieeiieiceit ettt st esa e et esba e ba e b e essessaessaesseessessaenens 5
1.2, USING thisS MANUAL.....cc.iiiiiiiiiiiieie ettt ettt e b et et eae et e e e besbeebesaeenseneenean 5
1.3. Conventions Used in This Manualccccooiiiiiiiiiiiniee e e 6
1.4. Warning Regarding Medical USEcceiieriiriiiiieiiesiesie ettt ses 6
) B T N U 1 ¢ 11 PRSP RP SRR 6
1.6. Warranty and Repair Return Procedure, Assistance and Support..........ccceeceveeeeieieienienieneneene. 6
1.7 System REqUITEIMENLScc.ieiiiiiieiieiiet ettt ettt et e st e e teentesntesseesseenneenneens 6
2. DEVICE DRIVER FUNCTION REFERENCE 7
2.1, Status values and Error COAESouiiuiiriiiieiieiec ettt 7
2.2, API Function clasSifiCation.........c.coueririreririnieietetetestesese sttt ettt 9
2.3, API FUNCtion dESCIIPLIONSccveeviieriiiieriieriietieeteetieeteesteesessesseeseeesseesseesseessesssessesssesssenssesssesses 11
2.3.1 AcqrsD1_accumulateDataco.eiiiiiiiiiieee e e 11
232 AcqrsD1_accumulateWform (DEPRECATED).......ccciiiiiiiieiieeeeeee e 13
233 ACGISDT _ACODOMNE.......iiiiiiiiiiitie e et 15
2.3.4 ACOISDT ACQUITEeevveeiiieeieeiieetterte et ettt et e st eteebe e e saeesaeesbeesbeesseessessaesseessesssesssesseenseensennns 16
2.3.5 ACQrSD1 aCqUITEEXc.eiiiiiiiiiiii et e 17
2.3.6 AcqrsD1_averagedData..........ccoeiuieiieiieiecee e 18
2.3.7 AcqrsD1_averagedWform (DEPRECATED) ...cc.ocovviiiiiiieieeeeeeeeeee e 21
2.3.8 AcqrsD1_bestNOmMINalSAMPIES..........ccveriiiiiiiieiieieete ettt ees 23
2.3.9 AcqrsD1_bestSampInterval...........oooiiiiiiiiiieeee e 24
/20 20 L0 BN o 451 B B B 7 1 1o ¢ USSR 26
2.3.11 AcqrsD1 calibrateEX........cccueiieiiieiieiieie ettt et snaennees 27
2.3.12 ACQISDI _CIOSEAIL ..ottt st taeetaebeenraes 29
2.3.13 AcqrsD1 cONfIgAVECONTIZ.oiiiiiiiieiieii ettt et 30
2.3.14 AcqrsD1_configChannelCombInation.cceeueeeerieriiereeie et 34
2.3.15 AcqrsD1_configControllOc.ooieiieiieiieieeieiieee ettt eae s 36
2.3.16 AcqrsD1 _CONfIgEXICIOCK.uiiiiiiiiieiieiieieet ettt ettt nseesaessaenees 39
2.3.17 AcqrsD1 configFCOUNET.couiiiiiiiiieiieeee et 41
2.3.18 AcqrsD1 _configHOrizontal...........cccooriiiiiiiiiieie e 43
2.3.19 AcqrsD1 _configlogiCDEVICEcceeriieiieiieiieeiieiieeeie ettt ettt enaesnsessaennees 44
2.3.20 AcqrsD1 _CONFIGMEIMOTYccviieieiiieiieiieti et etteettes e e teeresaeseeesteesseesseesseessessaessaeseesseessesnnas 46
2321 AcqrsD1 _CONfIZMOMEcuieiiiiieiieieee ettt ettt eae e 47
2322 AcqrsD1_configMultilnpuLccooiiriiiiieiiee et 49
2.3.23 AcqrsD1 CONfIGSEIUPATITAYeevieeiieiieeiieieeieeie e ste st eteetesee st e sseesseenseeneesseenseenseensesnnesnees 50
2.3.24 AcqrsD1 CONIGTIICIASSecviiiiieieiietieiieieete ettt ve et seee st te b e esaeessesse e saenseessessnenenes 52
2.3.25 AcqrsD1 configTriZSOUICE.couiiiiiieiieieeeeteet ettt ettt s seee b 54
2326 AcqrsD1 _configTriZTV ..ottt ettt eneas 56
2.3.27 AcqrsD1 _configVertiCal.........ccoecuerierieriieiieieeieeee ettt ettt sese e enees 58
2.3.28 AcCQISD1 _eITOTIMESSAZE ...c.vveeereeiiieiieeiieeite ettt eiteeiteetteebee et e sabeesabeesabeesaseesnbeesnseesnseesnseenes 60
2.3.29 ACQISD1 fOTCETTIZ .eetieiiiiiiie ettt ettt et ettt et et sbeesaeas 61
2330 AcqrsD1 fOrCETTIZEX ..ooiuiiiiiieiieiieee ettt ettt ettt a ettt eneeeneenneas 62
2331 AcqrsD1 getAVECONTIZcciiiieiieiieieeieeee ettt ettt ettt et nne s neennes 64
2.3.32 AcqrsD1_getChannelCombination.............cuecueecuerierieerieenieeieeeeseeseesseeseessesseesseessesssesssessnes 66
2.3.33 AcqrsD1 getControllOccoiiiiiiiieieiee ettt ettt sttt 67
2334 AcqrsD1 getEXTCIOCK ... coiiiiiiieeiee ettt 69
2.3.35 AcqrSD1 GetFCOUNLET....cc..iiiiiiiiiieiieee ettt ettt et sbe e e 71
2.3.36 AcqrsD1 getHOTIZONTAL........cceeiieiieiiciiciectet ettt ae e ae e e esseesaessaessaenseas 73
2337 AcqrsD1 getInStrumentDatac.covuieiiiiinienieieeeeeee e 74
2.3.38 AcqrsD1_getInstrumentInfoccooiiiiiiiiiiiiiiee e 75
2.3.39 AcQISD1 _GEIIMEIMOTYeeiiiiiiiieiiieeiieesite ettt ettt ettt ettt st e st sabe e st e sabeesanee e 78
2.3.40 AcCQISD1 GEtMOME.. ... iiiieieciecieeee ettt ettt eraeereenees 79
2.3.41 AcqrsD1 getMUItIINDUL......cocoiiiiiiieciieie ettt ettt este e b e eseessessneeeees 80
Programmer’s Reference Manual Page 3 of 130

2.3.42
2.3.43
2.3.44
2.3.45
2.3.46
2.3.47
2.3.48
2.3.49
2.3.50
2.3.51
2.3.52
2.3.53
2.3.54
2.3.55
2.3.56
2.3.57
2.3.58
2.3.59
2.3.60
2.3.61
2.3.62
2.3.63
2.3.64
2.3.65
2.3.66
2.3.67
2.3.68
2.3.69
2.3.70
2.3.71
2.3.72

acqiris
AcqrsD1_getNDIrCRaNNEIS..........covieiiiiieiiecieieeie ettt sbeeseenaeees 81
AcqrsD1_getNbrPhysicallNStrumentsc.cceoverieierireneiieiceeee e 82
ACOISD1_EtSELUPAITAYeouiieieiieiieiie ettt ettt ettt ettt et e bt e e et e eseesseesneeneeneeenes 83
F e[] B) B (=Tl I Vg O] USSR 85
ACOISDT _@EtTIIZSOUICE ...ueevieeriieiieeieeeieeteeteeieeteette st e steeaeestesseesaeesseesseesseessesssesseesseenseensennns 87
ACOISDT ETTIZTV ..ttt et st 89
ACOISDT_GEEVEISION ...ttt ettt et ettt ettt et e se e bt e beeae e ees 91
ACOISDT_EtVEITICAL.....eeiiiieieiieii ettt et ettt et e esbeenaesseeseenseenneens 92
ACOISDT INTE ceviiiiiieiecii ettt ettt et e e e esae s ae e bt esbeesseesaesssesseesseessessaesseeseenseensennns 94
AcqrsD1 INTtWithOPLIONS.couiiuiiieieieieee ettt 95
AcqrsD1_multiInStrAUtODETINEc.eeiiieieiieiieeee e e 97
AcqrsD1_multiInStrDEfINEceouieiieiieieciecieee ettt e 98
AcqrsD1_multilnstrUndefiNEALL...........ocovieiieiiiieiieiece et 100
ACQISDT PIOCDIONEcueiiiiiiiiieiiecitetet ettt ettt ettt e 101
ACQISD1_ProCESSDALAccueeeieieiieeiieetietee ettt 102
AcqrsD1_readCharSequence (DEPRECATED)oooiiiiiiirieieicceeeeeee e 103
AcqrsD1_readCharWform (DEPRECATED)ccoiieviiiiiiieceeeceeeeeeeeee e 106
ACQISDT 1€adDALAeiiiieiiie et 108
ACQIrSD1 _1€adFCOUNLETeuietieiieie ettt ettt ettt e et ettt et e e e e sseeaean 114
AcqrsD1_readRealSequence (DEPRECATED).......cccoivoiiiieiieiee e 115
AcqrsD1_readRealWform (DEPRECATED)........cccivviiiiiiieceeeecee e 117
AcqrsD1_reportNbrACqUIrEdSEZMEntScc.eeuiruieieieieierieeteee et 119
ACOISDT TESEE ...ttt ettt sttt ettt et et ettt e bttt en e neeeneenean 120
AcqrsD1_resetDigitiZErMEIMOTYc.cecuveriieiierieiiesieieeieeeeeeeseee et eseeaesseesseeseenseensessnesnees 121
AcqrsD1_restorelnternalREZISIEIS.ccuievieiieiieriieiieie ettt e e e sseensees 122
AcCQrSD1 SEtLEDCOIONieiiiiiiiieie ettt et 124
AcqrsD1_setSimulationOPLIONScecueeiieieriieitieiieie et eeaesaees 125
AcCQrSD1_StOPACGUISILION.eevieeieieeieeiieit et et eteete st et e e etesaesneesseesseenseenseensesssensaenseas 126
ACOISD1_StOPPIOCESSINGcveeuvieiiieiiieieeeestiete et eteete et este e teebessaesseesseesseesseesseessesssesssesens 127
AcqrsD1_waitFOrEndOfACQUISTHONcoveiiieiieiieieieie et 128
AcqrsD1_waitFOrENdOfPIOCESSING.eoueeruietieiieiieeeiect ettt 130

Programmer’s Reference Manual Page 4 of 130

acqiris

1. Introduction

1.1. Message to the User

Congratulations on having purchased an Acqiris data conversion product. Acqiris Digitizers, Averagers,
and Analyzers are high-speed data acquisition modules designed for capturing high frequency electronic
signals. To get the most out of the products we recommend that you read the accompanying product User
Manual, the Programmer's Guide and this Programmer’s Reference Manual carefully. We trust that the
product you have purchased as well as the accompanying software will meet with your expectations and
provide you with a high quality solution to your data conversion applications.

1.2. Using this Manual

This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows
95/98/2000/NT4/XP or other supported operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to control your Acqiris product. It
also assumes you have a basic understanding of the principles of data acquisition using either a waveform
digitizer or a digital oscilloscope.

The User Manual that you also have received (or have access to) has important and detailed instructions
concerning your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris
product. Special attention should be paid to sections on safety, packaging and product
handling. Before installing your product please ensure that your system configuration
matches or exceeds the requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performance verification.
Before attempting to use your Acqiris product for actual measurements we strongly
recommend that you read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements
of your product.
Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either

the operation of AcqirisLive 2.13, an application that enables basic operation
of Acqiris digitizers or averagers in a Windows 95/98/2000/NT4/XP environment;

the operation of AP_SSRDemo and in the following chapter APx01Demo,
applications that enable basic operation of Acqiris analyzers in a Windows
95/98/2000/NT4/XP environment;

The Programmer’s Guide is divided into 4 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.
Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a

description for programming applications using a variety of software products and
development environments.

Chapter 3 PROGRAMMING AN ACQIRIS DIGITIZER, provides information on using the
device driver functions to operate an Acqiris digitizer.

Chapter 4 ATTRIBUTES, contains reference information about attributes. The attribute interface
to the driver can be used with the MATLAB interface and the SP201 Software
Development Kit.

This Programmer’s Reference manual is divided into 2 sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.
Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function

reference. This documents the traditional Application Program Interface (API) as it can
be used in the following environments:

LabWindowsCVI, Visual C++, LabVIEW, Visual Basic, Visual Basic .NET.

Programmer’s Reference Manual Page 5 of 130

acqiris

1.3. Conventions Used in This Manual

The following conventions are used in this manual:

This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take to avoid being electrically
shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical,
mechanical, or operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples and operating system
commands.

Certain features are common to several different modules. For increased readability we have defined the
following families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
DC271/DC271A/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306

1.4. Warning Regarding Medical Use

The Digitizer cards are not designed with components and testing procedures that would ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by
errors on the part of the user. These cards are not intended to be a substitute for any form of established
process or equipment used to monitor or safeguard human health and safety in medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct
measurements on the human body. Users who connect an Acqiris module to a human
body do so at their own risk.

1.5. Warranty

Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance and Support

Please refer to the appropriate User Manual.

1.7. System Requirements

Please refer to the appropriate User Manual.

Programmer’s Reference Manual Page 6 of 130

acqiris

2. Device Driver Function Reference

All function calls require the argument instrumentID in order to identify the Acqiris Digitizer card to
which the call is directed. The only exceptions are the initialization/termination functions:

e AcqrsD1_closeAll e AcqrsD1_init e AcqrsD1_InitWithOptions
e AcqrsD1_getNbrPhysicallnstruments e AcqrsD1_multilnstrAutoDefine
e AcqrsD1_setSimulationOptions e AcqrsD1_multilnstrUndefineAll

The functions AcqrsD1_init, AcqrsD1_InitWithOptions and AcqrsD1_multilnstrDefine actually
return instrument identifiers at initialization time, for subsequent use in the other function calls.

2.1. Status values and Error codes

All function calls return a status value of type 'ViStatus' with information about the success or failure of
the call. All Acqiris specific values can be found in the header file AcqirisErrorCodes.h and are shown
in Table 2-1. The generic ones, defined by the VXIplug&play Systems Alliance, are listed in the header
file vpptype.h (VXIplug&play instrument driver header file, which includes visatype.h: fundamental
VISA data types and macro definitions). They are reproduced in Table 2-2 for convenience. The header
file AcqirisD1Interface.h shows the common error codes associated with each function.

Acqiris Error Codes Hex value Decimal value
ACQIRIS ERROR FILE NOT FOUND BFFA4800 ~1074116608
ACQIRIS ERROR PATH NOT FOUND BFFA4801 ~1074116607
ACQIRIS ERROR INVALID HANDLE BFFA4803 -1074116605
ACQIRIS ERROR NOT SUPPORTED BFFA4805 -1074116603
ACQIRIS ERROR INVALID WINDOWS PARAM BFFA4806 -1074116602
ACQIRIS ERROR NO DATA BFFA4807 ~1074116601
ACQIRIS ERROR NO ACCESS BFFA4808 ~1074116600
ACQIRIS ERROR BUFFER OVERFLOW BFFA4809 -1074116599
ACQIRIS ERROR ALREADY OPEN BFFA4840 -1074116544
ACQIRIS ERROR SETUP NOT AVAILABLE BFFA4880 -1074116480
ACQIRIS ERROR 10 WRITE BFFA48A0 -1074116448
ACQIRIS ERROR 10 READ BFFA48A1 ~1074116447
ACQIRIS ERROR INTERNAL DEVICENO INVALID BFFA48C0O -1074116416
ACQIRIS ERROR_ TOO MANY DEVICES BFFA48C1 ~1074116415
ACQIRIS ERROR EEPROM DATA INVALID BFFA48C2 -1074116414
ACQIRIS ERROR_INIT STRING INVALID BFFA48C3 -1074116413
ACQIRIS ERROR INSTRUMENT NOT FOUND BFFA48C4 -1074116412
ACQIRIS ERROR INSTRUMENT RUNNING BFFA48C5 -1074116411
ACQIRIS ERROR INSTRUMENT STOPPED BFFA48C6 -1074116410
ACQIRIS ERROR_ MODULES NOT ON_SAME BUS BFFA48C7 -1074116409
ACQIRIS ERROR NOT ENOUGH _DEVICES BFFA48C8 -1074116408
ACQIRIS ERROR NO MASTER DEVICE BFFA48C9 -1074116407
ACQIRIS ERROR PARAM STRING INVALID BFFA48CA | -1074116406
ACQIRIS ERROR_ COULD NOT CALIBRATE BFFA48CB -1074116405
ACQIRIS ERROR_CANNOT READ THIS CHANNEL BFFA48CC ~1074116404
ACQIRIS ERROR_PRETRIGGER STILL RUNNING BFFA48CD -1074116403
ACQIRIS ERROR CALIBRATION FAILED BFFA48CE -1074116402
ACQIRIS ERROR MODULES NOT CONTIGUOUS BFFA48CF -1074116401
ACQIRIS ERROR INSTRUMENT ACQ LOCKED BFFA48D0 -1074116400
ACQIRIS ERROR_INSTRUMENT ACQ NOT LOCKED BFFA48D1 -1074116399
ACQIRIS ERROR INVALID GEOMAP FILE BFFA48EQ -1074116384
ACQIRIS ERROR ACQ TIMEOUT BFFA4900 -1074116352
ACQIRIS ERROR_ OVERLOAD BFFA4901 -1074116351
ACQIRIS ERROR _PROC TIMEOUT BFFA4902 -1074116350
ACQIRIS ERROR LOAD TIMEOUT BFFA4903 -1074116349
ACQIRIS ERROR READ TIMEOUT BFFA4904 -1074116348
ACQIRIS ERROR FPGA | LOAD BFFA4AQ1L ~1074116095
ACQIRIS ERROR FPGA 2 LOAD BFFA4A02 ~1074116094
ACQIRIS ERROR FPGA 3 LOAD BFFA4A03 ~1074116093
ACQIRIS ERROR FPGA 4 LOAD BFFA4A04 -1074116092
ACQIRIS ERROR FPGA 5 LOAD BFFA4A05 -1074116091
ACQIRIS ERROR FPGA 6 LOAD BFFA4A06 ~1074116090
ACQIRIS ERROR FPGA 7 LOAD BFFA4AQ7 ~1074116089

Programmer’s Reference Manual Page 7 of 130

acqiris

Acqiris Error Codes Hex value Decimal value
ACQIRIS ERROR FPGA 8 LOAD BFFA4A0S ~1074116088
ACQIRIS ERROR ATTR NOT FOUND BFFA4BOO -1074115840
ACQIRIS ERROR_ ATTR. WRONG TYPE BFFA4BO1 -1074115839
ACQIRIS ERROR ATTR IS READ ONLY BFFA4B02 -1074115838
ACQIRIS ERROR _ATTR IS WRITE ONLY BFFA4B03 -1074115837
ACQIRIS ERROR ATTR ALREADY DEFINED BFFA4B04 -1074115836
ACQIRIS ERROR ATTR IS LOCKED BFFA4B05 -1074115835
ACQIRIS ERROR ATTR INVALID VALUE BFFA4B0O6 -1074115834
ACQIRIS ERROR_OTHER WINDOWS ERROR BFFA4C00 -1074115584
ACQIRIS ERROR UNKNOWN ERROR BFFA4CO1 -1074115583
ACQIRIS ERROR PARAMETERY BFFA4D0O9 -1074115319
ACQIRIS ERROR PARAMETERI10 BFFA4DOA -1074115318
ACQIRIS ERROR PARAMETERI1 BFFA4DOB -1074115317
ACQIRIS ERROR PARAMETERI12 BEFFA4DOC -1074115316
ACQIRIS ERROR PARAMETER13 BEFFA4DOD -1074115315
ACQIRIS ERROR PARAMETER14 BFFA4DOE -1074115314
ACQIRIS ERROR PARAMETERI15 BFFA4DOF -1074115313
ACQIRIS ERROR NBR SEG BFFA4D10 -1074115312
ACQIRIS ERROR NBR_SAMPLE BFFA4D11 -1074115311
ACQIRIS ERROR DATA ARRAY BFFA4D12 -1074115310
ACQIRIS ERROR SEG DESC ARRAY BFFA4D13 -1074115309
ACQIRIS ERROR FIRST SEG BFFA4D14 -1074115308
ACQIRIS ERROR SEG OFF BFFA4D15 -1074115307
ACQIRIS ERROR_FIRST SAMPLE BFFA4D16 -1074115306
ACQIRIS ERROR DATATYPE BFFA4D17 -1074115305
ACQIRIS ERROR READMODE BFFA4D18 -1074115304
ACQIRIS WARN SETUP ADAPTED 3FFA4E00 1073368576
ACQIRIS WARN READPARA NBRSEG ADAPTED 3FFA4E10 1073368592
ACQIRIS WARN READPARA NBRSAMP ADAPTED 3FFA4E11 1073368593
ACQIRIS WARN EEPROM AND DLL MISMATCH 3FFA4E12 1073368594
ACQIRIS WARN ACTUAL DATASIZE ADAPTED 3FFA4E13 1073368595
ACQIRIS WARN UNEXPECTED TRIGGER 3FFA4E14 1073368596
Table 2-1 Acqiris Error Codes
Error code Hex value Decimal value

VI_SUCCESS 0 0

VI ERROR PARAMETERI BFFC0001 -1074003967
VI ERROR PARAMETER2 BEFFC0002 -1074003966
VI ERROR_PARAMETER3 BFFC0003 ~1074003965
VI ERROR_PARAMETER4 BFFC0004 -1074003964
VI ERROR PARAMETERS BFFC0005 -1074003963
VI ERROR PARAMETER6 BFFC0006 -1074003962
VI ERROR PARAMETER?7 BEFFC0007 -1074003961
VI ERROR_PARAMETERS BFFC0008 -1074003960
VI_ ERROR FAIL ID QUERY BFFC0011 -1074003951
VI ERROR INV RESPONSE BFFC0012 -1074003950

Table 2-2 VXIplug&play Error Codes

If important parameters supplied by the user (e.g. an instrumentID) are found to be invalid, most
functions do not execute and return an error code of the type VI ERROR_PARAMETERI, where i = 1,
2,... corresponds to the argument number.

If the user attempts (with a function AcqrsD1_configXXXX) to set a digitizer parameter to a value
outside of its acceptable range, the function typically adapts the parameter to the closest allowed value
and returns ACQIRIS_WARN_SETUP_ADAPTED. The digitizer parameters that are actually in use
can be retrieved with the query functions AcqrsD1_getXXXX.

Data are always returned through pointers to user-allocated variables or arrays.

Some parameters are labeled "Currently ignored". It is recommended to supply the value "0" (ViInt32)
or "0.0" (ViReal64) in order to be compatible with future products that may offer additional
functionality.

Programmer’s Reference Manual Page 8 of 130

acqiris

2.2. API Function classification

Initialization Functions Function Name
Number of Physical Instruments AcqrsDl getNbrPhysicalInstruments
Multilnstrument Auto Define AcqrsDl multiInstrAutoDefine
Initialization AcgrsDl init
Initialization with Options AcgrsDl InitWithOptions
Simulation Options AcgrsDl setSimulationOptions

Calibration Functions
Calibrate Instrument AcqrsDl calibrate
Calibrate for External Clock AcqrsDl calibrateEx

Configuration Functions

Configure Vertical Settings AcgrsDl configVertical
Configure Horizontal Settings AcgrsDl configHorizontal
Configure Channel Combination AcgrsDl configChannelCombination
Configure Trigger Class AcgrsDl configTrigClass
Configure Trigger Source AcqrsDl configTrigSource
Configure Trigger TV AcqrsDl configTrigTV
Configure Memory Settings AcqrsDl configMemory
Configure External Clock AcqrsDl configExtClock
Configure Digitizer Mode AcqrsDl configMode
Configure Multiplexer Input AcqrsDl configMultilInput
Configure Control 10 AcgrsDl _configControlIO
Configure Frequency Counter AcgrsDl configFCounter

Configure Averager Configuration Attribute AcqrsDl configAvgConfig

Configure (program) on-board FPGA AcgrsDl configLogicDevice
Configure Array of Setup Parameters AcgrsDl configSetupArray
MultiInstrument Manual Define AcgrsDl multiInstrDefine
Multilnstrument Undefine AcgrsDl multiInstrUndefineAll

Acquisition Control Functions

Start Acquisition AcqgrsDl acquire

Start Acquisition (Extended) AcgrsDl acquireEx

Query Acquisition Status AcgrsDl_acgDone

Software Trigger AcgrsDl forceTrig

Software Trigger (Extended) AcqrsDl forceTrigEx

Stop Acquisition AcqgrsDl stopAcquisition

Wait for End of Acquisition AcqrsDl waitForEndOfAcquisition
Number of Acquired Segments AcqrsDl reportNbrAcquiredSegments

Data Transfer Functions

Universal Waveform Read AcqrsDl readData
Accumulate Data AcgrsDl accumulateData
Averaged Data AcqgrsDl averagedData

Programmer’s Reference Manual Page 9 of 130

Read Frequency Counter
DEPRECATED
Read Sequence (ADC counts)
Read Sequence (Volts)
Read Waveform (ADC counts)
Read Waveform (Volts)
Accumulate Waveform
Averaged Waveform
Query Functions
Query External Clock
Query Horizontal Settings
Query Channel Combination
Query Memory Settings
Query Multiplexer Input
Query Trigger Class
Query Trigger Source
Query Trigger TV
Query Vertical Settings
Query Digitizer Mode
Query Control IO
Query Frequency Counter
Query Averager Configuration
Instrument Basic Data
Instrument Information
Number of Channels
Query Array of Setup Parameters
Control Functions
Query (on-board) Processing Status
Start (on-board) Processing
Stop (on-board) Processing
Wait for End of (on-board) Processing
Utility Functions
Best Nominal Samples
Best Sampling Interval
Version
Error Message
Reset
Reset Digitizer Memory
Restore Internal Registers
Set LED Color

Close all instruments

Programmer’s Reference Manual

acqiris

AcqgrsDl readFCounter

DO NOT USE FOR NEW PROGRAMS
AcgrsDl readCharSequence
AcqrsDl readRealSequence
AcgrsDl readCharWform
AcqgrsDl readRealWform
AcgrsDl accumulateWform

AcqrsDl averagedWform

AcgrsDl getExtClock
AcqrsDl getHorizontal
AcqrsDl getChannelCombination
AcgrsDl getMemory

AcqgrsDl getMultiInput
AcqrsDl getTrigClass
AcqrsDl getTrigSource
AcqrsDl getTrigTV

AcqrsDl getVertical
AcqrsDl getMode

AcgrsDl getControlIO
AcgrsDl getFCounter
AcqrsDl getAvgConfig
AcgrsDl getInstrumentData
AcqgrsDl getInstrumentInfo
AcgrsDl getNbrChannels

AcqgrsDl getSetupArray

AcqrsDl procDone
AcqrsDl processData
AcqrsDl stopProcessing

AcqrsDl waitForEndOfProcessing

AcqrsDl bestNominalSamples
AcgrsDl bestSampInterval
AcqgrsDl getVersion

AcqgrsDl errorMessage
AcgrsDl reset

AcqrsDl resetDigitizerMemory

AcqrsDl restorelInternalRegisters

AcqgrsDl setLEDColor

AcgrsDl closeAll

Page 10 of 130

2.3.

API Function descriptions

acqiris

This section describes each function in the Device Driver. The functions appear in alphabetical order.

2.3.1 AcqrsD1_accumulateData

Purpose

Returns a waveform as an array and accumulates it in a client array.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32
readPar AqgReadParameters | Requested parameters for the acquired waveform.
Output
Name Type Description
dataArray ViAddr User-allocated waveform destination array of type char
or byte. Its size in dataType units MUST be at least
'‘nbrSamples' + 32, for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least mbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
dataDesc AgDataDescriptor | Waveform descriptor structure.
segDescArray | ViAddr Segment descriptor structure.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1'
and 'readPar->readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real)

and 'readPar->dataType = 2' (long) are NOT supported.

The sumArray contains the sample-by-sample sums. To get the average values, the array
elements must be divided by the number of accumulations performed. The sumArray can be
interpreted as an unsigned integer. Alternatively, negative values have to be increased by 2**32,

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char)
or 65536 for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed
values will wrap around 0.

The value in Volts of a data point data in the returned dataArray can be computed with the
formula:

V =

dataDesc.vGain * data - dataDesc.vOffset

Programmer’s Reference Manual

Page 11 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus AcqrsDl accumulateData
ViInt32 channel,
void* dataArray,

(ViSession instrumentID,
AgReadParameters* readPar,
ViInt32 sumArrayl[],

AgDataDescriptor* dataDesc,

void* segDescArray) ;

LabVIEW Representation

AgDx Accumulate Data.vi

This Vi is polymorphic, the sample data is returned in an array of type 18 or 116.

segDescArray in
channe
Instrument ID
readPar
sumarray in
datafrray in —I_

error in (no error)

Aql

ATCUm.
12

=

Visual Basic Representation

AccumulateData

dup Inskrument 10

mﬂm dataDesc
seqDescarray ouk

sumbrray ouk

error ouk
datafrray ouk

(ByVal instrumentID As Long,

ByVal channel As Long,

readPar As

AgReadParameters,

dataArray As Any,

sumArray As Long,

dataDesc As AgDataDescriptor,

segDescArray As Any)

As Long

Visual Basic .NET Representation

AcqrsDl accumulateData
ByVal
ByRef
ByRef
ByRef
ByRef
ByRef

As Int32

Programmer’s Reference Manual

(ByVal instrumentID As Int32,

channel As Int32,
readPar As AgReadParameters,
dataArray As Byte,
sumArray As Int32,
dataDesc As AgDataDescriptor,

segDescArray As AgSegmentDescriptor)

Page 12 of 130

acqiris

2.3.2 AcqrsD1_accumulateWform (DEPRECATED)

Purpose

Returns a waveform as a byte (8-bit integer) array and accumulates it in a client array. This

routine is for use with 8-bit Digitizers.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
segmentNumber Vilnt32 Requested segment number, may assume 0 to the
(number of segments — 1) set with the function
AcqrsD1l configMemory.
firstSample Vilnt32 Requested position of first sample to read, typically O.
May assume 0 to the (number of samples — 1) set with
the function AcqrsD1 configMemory.
nbrSamples Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqgrsD1l configMemory.
Output
Name Type Description
waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least 'nbrSamples' + 32,
for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.
returnedSamples Vilnt32 Number of data samples actually returned
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The sumArray contains the sample-by-sample sums. To get the average values, the array
elements must be divided by the number of accumulations performed.

The value in Volts of a data point data in the returned waveformArray can be computed with

the formula:

Programmer’s Reference Manual

V = vGain * data - vOffset

Page 13 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus AcgrsDl accumulateWform (ViSession instrumentID,
ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViChar waveformArray[], ViInt32 sumArrayl],
ViInt32 *returnedSamples, ViReal64 *sampTime,
ViReal64 *vGain, ViRealo64d *vOffset);

LabVIEW Representation

AgDx Read Accumulated Waveform.vi should be considered as obsolete.
Please use AgDx Accumulate Data.vi instead.

Visual Basic Representation

AccumulateWform (ByVal
ByVval
ByVal
ByVal
ByVal

instrumentID As Long,
channel As Long,
segmentNumber As Long,
firstSample As Long,
nbrSamples As Long,

waveformArray As Byte,

sumArray As Long,

returnedSamples As Long,

sampTime As Double,

vGain As Double,
vOffset As Double) As Long

Programmer’s Reference Manual

Page 14 of 130

acqiris
2.3.3 AcqrsD1_acqDone
Purpose
Checks if the acquisition has terminated.
Parameters
Input
Name Type Description
InstrumentID ViSession Instrument identifier
Output
Name Type Description
Done ViBoolean done = VI TRUE if the acquisition is terminated
VI FALSE otherwise

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl acgDone (ViSession instrumentID,
ViBoolean* done) ;

LabVIEW Representation

AgDx Query Acquisition Status.vi

Instrument 1D Aaliz dup Inztrurnent [0
) o | \ L Dione
2rrar in [ho ermar] btz e Doka?
errar aut

Visual Basic Representation

AcgDone (ByVal instrumentID As Long, done As Boolean) As Long
Visual Basic .NET Representation

AcqgrsDl acgDone (ByVal instrumentID As Int32,
ByRef done As Boolean) As Int32

Programmer’s Reference Manual Page 15 of 130

2.3.4 AcqrsD1_acquire

acqiris

Purpose

Starts an acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl acquire(ViSession instrumentID);

LabVIEW Representation

AgDx Start Acquisitio

n.vi

Instrument ID ———— Aabs
Maode

dup Instrument 1D

Stark

errar out

Errar in (no error) ==

Visual Basic Representation

Acquire (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqgrsDl acquire (ByVa

Programmer’s Reference Manual

1 instrumentID As Int32) As Int32

Page 16 of 130

acqiris

2.3.5 AcqrsD1_acquireEx

Purpose

Starts an acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
acquireMode Vilnt32 =0, normal
= 2, continue to accumulate (AP Averagers only)
acquireFlags Vilnt32 Flags, currently not used
acquireParams Vilnt32 Parameters, currently not used
reserved Vilnt32 Currently not used
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl acquireEx(ViSession instrumentID ,

ViInt32 acquireMode, ViInt32 acquireFlags,
ViInt32 acquireParams, ViInt32 reserved);

LabVIEW Representation

AgDx Start Acquisition.vi

Instrument ID ———— A8 L d)n Instrument ID
Mode
Error in (no error) ==

Start errar ouk

Visual Basic Representation

AcquireEx (ByVal instrumentID As Long, ByVal acquireMode As Long,
ByVal acquireFlags As Long, ByVal acquireParams As Long,
ByVal reserved As Long) As Long

Visual Basic .NET Representation

AcqrsDl acquireEx (ByVal instrumentID As Int32,
ByVal acquireMode As Int32, ByVal acquireFlags As Int32,
ByVal acquireParams As Int32, ByVal reserved As Int32) As Int32

Programmer’s Reference Manual Page 17 of 130

2.3.6 AcqrsD1_averagedData

acqiris

Purpose

This function is intended for single instrument, single channel operation.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters
Input
Name Type Description
InstrumentID ViSession Instrument identifier
Channel Vilnt32 1...Nchan
readPar AgReadParameters | Requested parameters for the acquired waveform
nbrAcq Vilnt32 Number of acquisitions to be performed.
calculateMean | ViBoolean TRUE to divide the sumArray by nbrAcq to get the
mean values.
FALSE to leave the sample-by-sample sums in the
sumArray.
timeout ViReal64 Acquisition timeout in seconds. The function will
return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of the
acquisition.
The minimum value is 1 ms.
Output
Name Type Description
dataArray ViAddr User-allocated waveform destination array of type char
or byte. Its size in dataType units MUST be at least
'‘nbrSamples' + 32, for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least mbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.
dataDesc AqgDataDescriptor | Waveform descriptor structure. The returned values
will be those of the last acquisition
segDescArray | ViAddr Segment descriptor structure. The returned values will
be those of the last acquisition.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 18 of 130

acqiris

Discussion

Because the acquisition control loop is done inside this function, it is suitable only for single
instrument, single channel operation.

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1'
and 'readPar->readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real)
and 'readPar->dataType = 2' (long) are NOT supported.

The sumArray contains either the average values (calculateMean = TRUE), or the sample-by-
sample sums (calculateMean = FALSE). Note that, in the latter case, the sumArray can be
interpreted as an unsigned integer. Alternatively, negative values have to be increased by 2**32,

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char)
or 65536 for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed

values will wrap around 0.

The value in Volts of a data point data in the returned waveformArray or normalized
sumArray can be computed with the formula:

V = dataDesc.vGain * data - dataDesc.vOffset

The function will return ACQIRIS ERROR _ACQ_TIMEOUT if there is no trigger within the
specified timeout interval after the start of each acquisition.

LabWindowsCVI1/Visual C++ Representation

ViStatus AcqrsDl averagedData (ViSession instrumentID,

ViInt32 channel, AgReadParameters* readPar,
ViInt32 nbrAcqg, ViInt8 calculateMean,

ViReal64 timeout,

void* dataArray, ViInt32 sumArrayl(],
AgDataDescriptor* dataDesc,

void* segDescArray) ;

LabVIEW Representation

AgDx Averaged Data.vi

This Vi is polymorphic, the sample data is returned in an array of type 18 or 116.

segDescArray in
channel
Instrument ID Aqliz dup Inskrument 10

readPar = e B=dataDest
avgParams mgml] mlseg[)esc.ﬁ.rray ouk

sum#array in | E sumbrray ouk

datafrray in error out

Error in (no error) datafrray ouk

Programmer’s Reference Manual Page 19 of 130

acqiris

Visual Basic Representation

AveragedData (ByVal instrumentID As Long,
ByVal channel As Long,
readPar As AgReadParameters,
ByVal nbrAcqg As Long,
ByVal calculateMean As Boolean,
ByVal timeout As Double,
dataArray As Any,
sumArray As Long,
dataDesc As AgDataDescriptor,
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsDl averagedData (ByVal instrumentID As Int32,
ByVal channel As Int32,
ByRef readPar As AgReadParameters,
ByVal nbrAcq As Int32,
ByVal calculateMean As Boolean,
ByVal timeout As Double,
ByRef dataArray As Byte,
ByRef sumArray As Int32,
ByRef dataDesc As AgDataDescriptor,
ByRef segDescArray As AgSegmentDescriptor) As Int32

Programmer’s Reference Manual Page 20 of 130

acqiris

2.3.7 AcqrsD1_averagedWform (DEPRECATED)

Purpose

This function is intended for single instrument, single channel operation. It is for use with 8-bit

Digitizers.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters
Input
Name Type Description
InstrumentID ViSession Instrument identifier
Channel Vilnt32 1...Nchan
SegmentNumber | Vilnt32 Requested segment number, may assume 0 to the
(number of segments — 1) set with the function
AcqrsD1 configMemory.
firstSample Vilnt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples — 1) set with
the function AcqrsD1 configMemory.
nbrSamples Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqgrsD1l configMemory.
nbrAcq Vilnt32 Number of acquisitions to be performed.
timeout ViReal64 Acquisition timeout in seconds. The function will
return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of the
acquisition.
The minimum value is 1 ms.
Output
Name Type Description
waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least 'nbrSamples' + 32,
for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.
returnedSamples Vilnt32 Number of data samples actually returned
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 21 of 130

Discussion

acqiris

Because the acquisition control loop is done inside this function, it is suitable only for single

instrument, single channel operation.

The sumArray contains the sample-by-sample sums. To get the average values, the array

elements must be divided by nbrAcq.

The value in Volts of a data point data in the returned waveformArray can be computed with

the formula:

V = vGain * data - vOffset

LabWindowsCVI1/Visual C++ Representation

ViStatus AcqrsDl averagedWform (ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,

ViInt32 firstSample,
ViInt32 nbrAcqg, ViReal64 timeout,
ViChar waveformArrayl[],
ViInt32 *returnedSamples,
ViReal64 *vGain, ViRealo64 *vOffset);

LabVIEW Representation

ViInt32 nbrSamples,

ViInt32 sumArrayl[],
ViReal64 *sampTime,

AgDx Read Averaged Waveform.vi should be considered to be obsolete.

Please use AgDx Averaged Data.vi instead.

Visual Basic Representation

AveragedWform (ByVal
ByVval
ByVal
ByVal
ByVval
ByVal
ByVal

instrumentID As Long,
channel As Long,
segmentNumber As Long,
firstSample As Long,
nbrSamples As Long,
nbrAcg As Long,

timeout As Double,

waveformArray As Byte,

sumArray As Long,

returnedSamples As Long,

sampTime As Double,

vGain As Double,
vOffset As Double) As Long

Programmer’s Reference Manual

Page 22 of 130

acqiris

2.3.8 AcqrsD1_bestNominalSamples

Purpose

Helper function to simplify digitizer configuration. It returns the maximum nominal number of
samples that fit into the available memory.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nomSamples Vilnt32 Maximum number of data samples available

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When using this method, make sure to use AcqrsD1_configHorizontal and
AcqrsD1_configMemory beforehand to set the sampling rate and the number of segments to the
desired values (nmbrSamples in AcqrsD1_configMemory may be any number!).
AcqrsD1_bestNominalSamples depends on these variables.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl bestNominalSamples (ViSession instrumentID,
ViInt32* nomSamples) ;

LabVIEW Representation

AgDx Query Best Nominal Samples.vi

Instrument 1D Al dup Inztrurnent [0
) Biary L Maminal Sarmples
2rar in [ho errar] Boat # leoomaern c e aut

Visual Basic Representation

BestNominalSamples (ByVal instrumentID As Long,
nomSamples As Long) As Long

Visual Basic .NET Representation

AcqrsDl bestNominalSamples (ByVal instrumentID As Int32,
ByRef nomSamples As Int32) As Int32

Programmer’s Reference Manual Page 23 of 130

acqiris

2.3.9 AcqrsD1_bestSamplnterval

Purpose

Helper function to simplify digitizer configuration. It returns the best possible sampling rate for
an acquisition, which covers the timeWindow with no more than maxSamples. The calculation
takes into account the current state of the instrument, in particular the requested number of
segments. In addition, this routine returns the "real" nominal number of samples that can be
accommodated (it is computed as timeWindow/samplingInterval!).

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
maxSamples Vilnt32 Maximum number of samples to be used
timeWindow ViReal64 Time window to be covered, in seconds
Output

Name Type Description
samplnterval ViReal64 Recommended sampling interval in seconds
nomSamples Vilnt32 Recommended number of data samples

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns the value status = ACQIRIS_ ERROR SETUP NOT_AVAILABLE when
the available memory is too short, and the longest available sampling interval too short. The
returned sampling interval is the longest one possible. It returns VI SUCCESS when a good
solution has been found.

NOTE: This function does not modify the state of the digitizer at all. It simply returns a
recommendation that the user is free to override.

NOTE: When using this method, make sure to use AcqrsD1_configMemory beforehand to set
the number of segments to the desired value (nbrSamples may be any number!).
AcqrsD1_bestSamplInterval depends on this variable.

NOTE: The returned "recommended" values for the sampling interval samplInterval and the
nominal number of samples nomSamples are expected to be used for configuring the instrument
with calls to AcqrsD1_configMemory and AcqrsD1_configHorizontal. Make sure to use the
same number of segments in this second call to AcqrsD1_configMemory, as in the first one.

Programmer’s Reference Manual Page 24 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl bestSampInterval (ViSession instrumentID,
ViInt32 maxSamples, ViReal64 timeWindow,
ViReal64* sampInterval, ViInt32* nomSamples) ;

LabVIEW Representation

AgDx Query Best Sampling Interval.vi

Instrument 1D Aalz dup Instrurnent |0
M aximum 5amples [10000] - Simer L Mominal Samples
Time Window [1E-6 =] mﬂ“‘ﬁ'*" nt “"Lm Sampling Interal [2]

Ermar in (o error] erar oLt

Visual Basic Representation

BestSampInterval (ByVal instrumentID As Long,
ByVal maxSamples As Long,
ByVal timeWindow As Double,
sampInterval As Double,
nomSamples As Long) As Long

Visual Representation

AcqrsDl bestSampInterval (ByVal instrumentID As Int32,
ByVal maxSamples As Int32,
ByVal timeWindow As Double,
ByRef sampInterval As Double,
ByRef nomSamples As Int32) As Int32

Programmer’s Reference Manual Page 25 of 130

acqiris

2.3.10 AcqrsD1_calibrate

Purpose

Performs an auto-calibration of the instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl calibrate(ViSession instrumentID);

LabVIEW Representation

AgDx Calibrate Instrument.vi

Instrument 1D Aal dup Instrurnent 10

error in [no errorl (Ealibr. | error out

Visual Basic Representation

Calibrate (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcgrsDl calibrate (ByVal instrumentID As Int32) As Int32

Programmer’s Reference Manual

Page 26 of 130

acqiris

2.3.11 AcqrsD1_calibrateEx

Purpose

Performs a (partial) auto-calibration of the instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
calType Vilnt32 = (calibrate the entire instrument

= 1 calibrate only the current channel configuration
= 2 calibrate external clock timing. Requires operation
in External Clock (Continuous).
= 3 calibrate only at the current frequency
(12-bit-FAMILY, only)
= 4 fast calibration for current settings only
modifier Vilnt32 For calType = 0,1, or 2: Currently unused, set to “0”
For calType = 3 or 4, 0 = calibrate for all channels
n = calibrate for channel "n"
flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
Calling this function with calType = 0 is equivalent to calling AcqrsD1_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many possible
channel combinations, e.g. the DC271. However, the user must keep track of which channel
combinations were calibrated, and request another such partial calibration when changing the
channel configuration with the function AcqrsD1_configChannelCombination.

Calibrating with calType = 2 can only be done if the external input frequency is appropriately
high. See the discussion in the Programmer's Guide section 3.12.2, External Clock
(Continuous). If the calibration cannot be done an error code will be returned. It is not
applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the HRes SR
functionality. For best results it, or the longer full calibration, should be called after a change of
sampling rate.

Calibrating with calType = 4 is for DC135, DC140, DC211A, DC241A, and DC271A models. A
new calibration should be done if the AcqrsD1_configChannelCombination parameters or any
of the following AcqrsD1_configVertical parameters are changed: fullScale, coupling
(impedance), bandwidth, channel. This calibration will be much faster than the calType = 0 case
for models with more than one impedance setting.

Programmer’s Reference Manual Page 27 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation
ViStatus status = AcqrsDl calibrateEx(ViSession instrumentID,

ViInt32 calType, ViInt32 modifier, ViInt32
flags);

LabVIEW Representation

AgDx CalibrateEx Instrument.vi

Instrurent ID —— Aqb: dup Instrument 1D
calType

]
modifier fﬂalibE errar oufk
ErFar in (N0 error)

Visual Basic Representation

CalibrateEx (ByVal instrumentID As Long,
ByVal calType As Long,
ByVal modifier As Long, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqgrsDl calibrateEx (ByVal instrumentID As Int32,
ByvVal calType As Int32,
ByVal modifier As Int32,
ByVal flags As Int32) As Int32

Programmer’s Reference Manual Page 28 of 130

2.3.12 AcqrsD1_closeAll

acqiris

Purpose

Closes all instruments in preparation for closing the application.

Return Value

Name

Type

Description

Status

ViStatus

Refer to Table 2-1 for error codes.

Discussion

This function should be the last call to the driver, before closing an application. Make sure to
stop all instruments beforehand.

If this function is not called, closing the application might crash the computer in some situations,
particularly in multi-threaded applications.

LabWindowsCVI1/Visual C++ Representation

ViStatus st

atus

LabVIEW Representation

AgDx Close All Instruments.vi

FiqDi
ClozcAll

errar in (no err

ar)

Visual Basic Representation

CloseAll (

Visual Basic .NET Representation

AcgrsDl closeAll

Programmer’s Reference Manual

) As Long

As Int32

errar out

AcqrsDl closeAll (void);

Page 29 of 130

acqiris
2.3.13 AcqrsD1_configAvgConfig
Purpose
Configures a parameter for averager/analyzer operation.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See below for the list of accepted strings.
value ViAddr Value to set. ViAddr resolves to void* in C/C++. The
user must allocate the appropriate variable type (as listed
below), set it to the requested value and supply its address
as 'value'.
Return Value
Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Data Description
Type
"DitherRange" Vilnt32 Range of offset dithering, in ADC LSB’s. May assume
values v =0, 1...15. The offset is dithered over the range
[-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.
"GateType" Vilnt32 For AP240/AP235 Analyzers ONLY.

0 = No gates

1 = User Gates

2 = Threshold Gates

"HistoTDCEnable" Vilnt32 May assume 0 for not enabled and

1 to enable the simple TDC mode for the channel

"InvertData" Vilnt32 May assume 0 (no inversion) and
1 (invert data, 1’s complement).
"NbrSamples" Vilnt32 Number of data samples per waveform segment. May

assume values between 16 or 32 and the available memory
length, in multiples of 16 (32) as explained below.

"NbrSegments" Vilnt32 | Number of waveform segments to acquire. May assume
values between 1 and 8192.
"NbrWaveforms" Vilnt32 Number of waveforms to average before going to next

segment. May assume values between 1 and 65535 (64K —
1). For Averagers ONLY.

"NbrRoundRobins" Vilnt32 Number of times to perform the full segment cycle during
data accumulation. For AP240/AP235 Averagers ONLY.
"P1Control" Vilnt32 May assume 0 = not enabled

For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable

Programmer’s Reference Manual Page 30 of 130

acqiris

Parameter String

Data
Type

Description

"P2Control"

Vilnt32

May assume 0 = not enabled
For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable

"PostSamples"

Vilnt32

For AP240/AP235 Analyzers in Threshold Gate mode.
Used to guarantee a number of samples before the first one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.

"PreSamples"

Vilnt32

For AP240/AP235 Analyzers in Threshold Gate mode.
Used to guarantee a number of samples after the last one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.

"StartVetoEnable"

Vilnt32

For AP100/AP200 Averagers ONLY
May assume 0 = for trigger enable functionality

and 1 = use high state of I/O signal to allow the
average accumulation to start. Must be used in conjunction
with AcqrsD1_configControllO.

"StartDelay"

Vilnt32

Start delay in samples. May assume values between 0 and
33554400(16777216) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

"StopDelay "

Vilnt32

Stop delay in samples. May assume values between 0 and
2097120(1048560) in steps of of 16 (32) as explained
below. The limit is StepSize*(64*1024-1)

"TrigAlways"

Vilnt32

May assume 0 (no trigger output) and 1 (trigger output on),
in the case of no acquisition.

"TrigResync"

Vilnt32

May assume 0 (no resync), 1 (resync) and 2 (free run)

"ThresholdEnable"

Vilnt32

May assume 0 (no threshold) and 1 (threshold enabled). For
Averagers ONLY.

"Threshold"

ViReal64

Value in Volts of the threshold for Noise Supressed
Averaging or for SSR Threshold Gates.

""NoiseBaseEnable"

Vilnt32

May assume 0 (no base subtraction) and 1 (base subtraction
enabled). It can only be enabled if the threshold is enabled.
For Averagers ONLY.

"NoiseBase"

ViReal64

Value in Volts of the value to be added in Noise Supressed
Averaging. For Averagers ONLY.

"StartDeltaNegPeak"

Vilnt32

Negative excursion needed before searching for negative
peak. May assume values between 1 and 0xff. For
Analyzers ONLY.

"StartDeltaPosPeak"

Vilnt32

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff. For
Analyzers ONLY.

"ValidDeltaNegPeak"

Vilnt32

Positive excursion needed to validate a negative peak. May
assume values between | and Oxff. For ONLY.

"ValidDeltaPosPeak"

Vilnt32

Negative excursion needed to validate a positive peak. May
assume values between | and Oxff. For AP101/AP201
ONLY.

"TriggerTimeout"

Vilnt32

Trigger timeout in units of 30 ns in the range [0,2°* - 1].

A value of 0 means that no trigger will be generated and no
Prepare for Trigger signal will be needed. For
AP101/AP201 ONLY.

Programmer’s Reference Manual

Page 31 of 130

acqiris
Parameter String Data Description
Type
The desired minimum width of a peak in the waveform;
. It can take on a value (n) from 1 to 4. A peak is accepted if
" " .
TdeMinTOT Vilnt32 there are at least n consecutive data samples above the
Threshold. For SimpleTDC mode ONLY.
The desired increment to be applied for each entry;
"TdcHistogramIncre) 1 means increment by 1,
ment" Vilnt32 | 2 means increment by the ADCvalue — NoiseBase.
For SimpleTDC mode ONLY.
Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger (useful for
background acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin segment
acquisition mode with n triggers for each segment.

The channelNbr is used to designate the channel number for those parameters whose values can
be different for the two channels of an AP240/AP235 in dual-channel mode. These parameters
are indicated in bold in the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the AP100/AP101
and the AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the
AP240/AP235 in Single-Channel mode.

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will be added
if the signal, or the or of both signals, is in the high state. The same rule holds if they are used for
trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is accepted for
an average and drops back down when the last trigger's acquition is complete.

Example
long channelNbr = 0, dither = 8;
AcqrsDl configAvgConfig (ID, channelNbr, "DitherRange", &dither);

This function sets the dithering range to = 8 LSB’s.

Note that this function takes the address, not the value of the parameter to be set.

Programmer’s Reference Manual Page 32 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViAddr wvalue);

LabVIEW Representation
AgDx Configure Averager Settings.vi

Configuration Number ———
Instrument ID Aally dup Instrument ID
Parameter String wf

?due;ifz
error in (no error)

Visual Basic Representation

Cufis

error auk

ConfigAvgConfig (ByVal instrumentID As Long,
ByVal channelNbr As Long,
ByVal parameterString As String,
value As Any) As Long

Visual Basic .NET Representation

AcqrsDl configAvgConfig (ByVal instrumentID As Int32,
ByVal channelNbr As Int32,
ByVal parameterString As String,
ByRef value As Int32) As Int32

or

AcqrsDl ConfigAvgConfig (ByVal instrumentID As Int32,
ByVal channelNbr As Int32,
ByVal parameterString As String,
ByRef value As Double) As Int32

Programmer’s Reference Manual Page 33 of 130

acqiris

2.3.14 AcqrsD1_configChannelCombination

Purpose

Configures how many converters are to be used for which channels. This routine is for use with
some DC271-FAMILY instruments and the AP240/AP235 Signal Analyzer platforms.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

nbrConvertersPer | Vilnt32 =1 all channels use 1 converter each (default)

Channel =2 half of the channels use 2 converters each
=4 1/4 of the channels use 4 converters each

usedChannels Vilnt32 bit-field indicating which channels are used. See
discussion below

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The acceptable values for 'usedChannels' depend on 'nbrConvertersPerChannel' and on the
number of available channels in the digitizer:
A) If 'nbrConvertersPerChannel' = 1, 'usedChannels' must reflect the fact that ALL channels are
available for use. It accepts a single value for a given digitizer:
'‘usedChannels' = 0x00000001 if the digitizer has 1 channel

=0x00000003 if the digitizer has 2 channels

= 0x0000000f if the digitizer has 4 channels
B) If 'nbrConvertersPerChannel' = 2, 'usedChannels' must reflect the fact that only half of the
channels may be used:
'usedChannels' = 0x00000001 use channel 1 on a 2-channel digitizer

=0x00000002 wuse channel 2 on a 2-channel digitizer

=0x00000003 use channels 1+2 on a 4-channel digitizer

= 0x00000005 use channels 1+3 on a 4-channel digitizer

= 0x00000009 use channels 1+4 on a 4-channel digitizer

= 0x00000006 use channels 2+3 on a 4-channel digitizer

= 0x0000000a use channels 2+4 on a 4-channel digitizer

= 0x0000000c use channels 3+4 on a 4-channel digitizer
C) If 'nbrConvertersPerChannel' = 4, 'usedChannels' must reflect the fact that only 1 of the
channels may be used:
'‘usedChannels' = 0x00000001 use channel 1 on a 4-channel digitizer

=0x00000002 use channel 2 on a 4-channel digitizer

=0x00000004 use channel 3 on a 4-channel digitizer

= 0x00000008 use channel 4 on a 4-channel digitizer
NOTE: Digitizers which don't support channel combination, always use the default
'‘nbrConvertersPerChannel' = 1, and the single possible value of 'usedChannels'
NOTE: Changing the channel combination doesn't change the names of the channels; they are
always the same.
NOTE: If digitizers are combined with ASBus, the channel combination applies equally to
all participating digitizers.

Programmer’s Reference Manual Page 34 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configChannelCombination (
ViSession instrumentID,
ViInt32 nbrConvertersPerChannel,
ViInt32 usedChannels) ;

LabVIEW Representation

AgDx Configure Channel Combination.vi

briC I?Str;n-&int mi e dup Instrument I0
nbrConvertersPerChanne e
usedChannels f Chth P====grrar out

errar in (no errar)
Visual Basic Representation

ConfigChannelCombination (ByVal instrumentID As Long,
ByVal nbrConvertersPerChannel As Long,
ByVal usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsDl configChannelCombination (ByVal instrumentID As Int32,
ByVal nbrConvertersPerChannel As Int32,
ByVal usedChannels As Int32) As Int32

Programmer’s Reference Manual Page 35 of 130

2.3.15 AcqrsD1_configControllO

acqiris

Purpose

Configures a ControllO connector. (For DC271-FAMILY/AP-FAMILY/ 12-bit-FAMILY only)

Parameters
Input
Name Type Description
InstrumentID ViSession Instrument identifier
Connector Vilnt32 Connector Number
1 = Front Panel I/O A (MMCX connector)
2 = Front Panel I/O B (MMCX connector)
9 = Front Panel Trigger Out (MMCX connector)
11 =PXI Bus 10 MHz (DC135/DC140/DC211/
DC211A/DC241/DC241A/DC271/DC271A)
12 = PXI Bus Star Trigger (same models as above)
Signal Vilnt32 The accepted values depend on the type of connector
See the table below for details.
qualifierl Vilnt32 The accepted values depend on the type of connector
See the table below for details.
qualifier2 ViReal64 If trigger veto functionality is available (AP101/AP201
only), accepts values between 30 ns and 1.0 sec. The
trigger veto values given will be rounded off to steps of
33 ns. A value of 0.0 means that no holdoff is required
and no Prepare for Trigger signal will be needed.
Return Value
Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Accepted Values of signal vs. Connector Type

Connector Type

Possible Values of signal and qualifierX

Front Panel I/O

0 = Disable
Inputs:
6 = (Level) Enable trigger input (for Digitizers)
If one of the two I/O connectors is set to this value then a
high level must be present before an edge can be accepted.
If both I/O connectors are set to this value, they both must
be high before the trigger edge can be accepted.
6 = (Level) Enable trigger input or Start Veto (for AP100/AP200
Averagers) see AcqrsD1_configAvgConfig for more
8 = Prepare for Trigger signal present on this connector.
qualifier2 gives the desired holdoff in time.
Outputs:
19 = (Clock) 10 MHz reference clock
20 = (Pulse) Acquisition skips to next segment (in sequence
acquisition mode) input
(Not for AP240/AP235 Signal Analyzers).
21 =(Level) Acquisition is active
22 = (Level) Trigger is armed (ready)
The values of qualifier! and qualifier2 are not used

Programmer’s Reference Manual

Page 36 of 130

acqiris

Connector Type Possible Values of signal and qualifierX
Front Panel Trigger Out | The value of signal is interpreted as a signal offset in mV.
E.g. signal = -500 offsets the output signal by —500 mV. The
accepted range of signal is [-2500,2500], i.e. £ 2.5 V with a
resolution of ~20 mV.
The value of qualifier! controls if the trigger output is
resynchronized to the clock or maintains a precise timing relation to
the trigger input.
qualifier1= 0 (default): Non-resynchronized
qualifieri=1 : Resynchronized to sampling clock
PXI Bus 10 MHz 0 = Disable
1 = Enable
Replaces the internal 10 MHz reference clock with the 10 MHz
clock on the PXI rear panel connector
PXI Bus Star Trigger 0 = Disable
1 = Use PXI Bus Star Trigger as Trigger Input
2 = Use PXI Bus Star Trigger for Trigger Output
Note: When using this connector as Trigger Input, you also must
set the trigger source in sourcePattern in the function
AcqrsD1_configTrigClass to External Trigger2!

Discussion

ControllO connectors are front panel 10 connectors for special purpose control functions of the
digitizer. Typical examples are user-controlled acquisition control (start/stop/skip) or control
output signals such as ‘acquisition ready’ or ‘trigger ready’.

The connector numbers are limited to the allowed values. To find out which connectors are
supported by a given module, use the query function AcqrsD1_getControllO.

The variable signal specifies the (programmable) use of the specified connector.

In order to set I/O A as a ‘Enable Trigger’ input and the I/O B as a 10 MHz reference output, use
the function calls

AcqrsDl configControlIO(instrID, 1, 6, 0, 0.0);
AcgrsDl configControlIO (instrID, 2, 19, 0, 0.0);

In order to obtain a signal offset of +1.5 V on the Trigger Output, use the call
AcqrsDl configControlIO (instrID, 9, 1500, 0, 0.0);

Programmer’s Reference Manual Page 37 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configControlIO(ViSession instrumentID,
ViInt32 connector, ViInt32 signal,
ViInt32 qualifierl, ViReal64 qualifier?2);

LabVIEW Representation

AgDx Configure Control IO Connectors.vi

Qualifierz
Qualfier] ———
Instrument ID Al dup Instrument ID
Connector - Canfiq.
Signal f Cirl 2o error ouk

error in (na errar)
Visual Basic Representation

ConfigControlIO (ByVal instrumentID As Long,
ByVal connector As Long,
ByVal signal As Long,
ByVal qualifierl As Long, _
ByVal qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqgrsDl configControlIO (ByVal instrumentID As Int32,
ByVal connector As Int32,
ByVal signal As Int32,
ByVal qualifierl As Int32,
ByVal qualifier2 As Double) As Int32

Programmer’s Reference Manual Page 38 of 130

acqiris
2.3.16 AcqrsD1_configExtClock
Purpose
Configures the external clock of the digitizer.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
clockType Vilnt32 =0 Internal Clock (default at start-up)
=1 External Clock, continuously running
=2 External Reference (10 MHz)
=4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples | Vilnt32 Number of samples to acquire after trigger (for
digitizers using 'clockType' =1 only!)
inputFrequency ViReal64 The input frequency of the external clock, for
clockType = 1 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1
only
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When clockType is set to 1 or 4, the parameters of the function AcqrsD1_configHorizontal are
ignored! Please refer to your product User Manual, for the conditions on the clock signals, and to
the Programmer’s Guide section 3.12, External Clock, for the setup parameters and the theory
of operation.

Programmer’s Reference Manual Page 39 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl configExtClock(ViSession instrumentID,
ViInt32 clockType, ViReal64 inputThreshold,
ViInt32 delayNbrSamples, ViReal64 inputFrequency,
ViReal64 sampFrequency) ;

LabVIEW Representation

AgDx Configure External Clock.vi

[rput Freguency [0]

Instrument 1D Fiali dup Inztrument [0

ClockType [0: Internal] - é—;n{g—’
E

[nput Threzhold [0]
mmﬂnhnmmﬂﬂﬂfz
Delay Mumber of Samples [0] —————
Sampling Frequency [0

efrar out

Visual Basic Representation

ConfigExtClock (ByVal instrumentID As Long,
ByVal clockType As Long,
ByVal inputThreshold As Double,
ByVal delayNbrSamples As Long,
ByVal inputFrequency As Double,
ByVal sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqgrsDl configExtClock (ByVal instrumentID As Int32,
ByVal clockType As Int32,
ByVal inputThreshold As Double,
ByVal delayNbrSamples As Int32,
ByVal inputFrequency As Double,
ByVal sampFrequency As Double) As Int32

Programmer’s Reference Manual Page 40 of 130

acqiris
2.3.17 AcqrsD1_configFCounter
Purpose
Configures a frequency counter measurement
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
signalChannel Vilnt32 Signal input channel
type Vilnt32 Type of measurement
=0 Frequency (default)
=1 Period (1/frequency)
=2 Totalize by Time
=3 Totalize by Gate
targetValue ViReal64 User-supplied estimate of the expected value, may be
0.0 if no estimate is available.
apertureTime ViReal64 Time in sec, during which the measurement is
executed, see discussion below.
reserved ViReal64 Currently ignored
flags Vilnt32 Currently ignored
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The Frequency mode (type = 0) measures the frequency of the signal applied to the selected
‘signalChannel’ during the aperture time. The default value of ‘apertureTime’ is 0.001 sec and
can be set to any value between 0.001 and 1000.0 seconds. A longer aperture time may improve
the measurement accuracy, if the (externally applied) reference clock has a high accuracy and/or
if the signal slew rate is low.

The ‘targetValue’ is a user-supplied estimated of the expected result, and helps in choosing the
optimal measurement conditions. If the supplied value is < 1000.0, and > 0.0, then the instrument
will not use the HF trigger mode to divide the input frequency. Otherwise, it divides it by 4 in
order to obtain a larger frequency range.

The Period mode (type = 1) is equal to the frequency mode, but the function
AcqrsD1_readFCounter returns the inverse of the measured frequency. If the ‘targetValue’ is <
0.001 (1 ms), then the instrument will not use the HF trigger mode, otherwise it does.

The Totalize by Time mode (type = 2) counts the number of pulses in the signal applied to the
selected ‘signalChannel” during the time defined by ‘apertureTime’. The ‘targetValue’ is
ignored.

The Totalize by Gate mode (type = 3) counts the number of pulses in the signal applied to the
selected ‘signalChannel’ during the time defined by signal at the I/O A or I/O B inputs on the
front panel. The gate is open while the signal is high, and closed while the signal is low (if no
signal is connected, counting will be enabled, since there is an internal pull-up resistor). The gate
may be opened/closed several times during the measurement. The measurement must be
terminated with the function AcqrsD1_stopAcquisition.

Programmer’s Reference Manual Page 41 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl configFCounter (ViSession instrumentID,
ViInt32 signalChannel, ViInt32 type, ViReal64 targetValue,
ViReal64 apertureTime,ViReal64 reserved, ViInt32 flags);

LabVIEW Representation

AgDx Configure FCounter.vi

Instrument ID = dup Instrument 1D

Configure values =2
q o “E. e gy QU

Visual Basic Representation

ConfigFCounter (ByVal instrumentID As Long,
ByVal signalChannel As Long,
ByvVal type As Long,
ByVal targetValue As Double,
ByVal apertureTime As Double,
ByVal reserved As Double,
ByvVal flags As Long) As Long

Visual Basic .NET Representation

AcqgrsDl configFCounter (ByVal instrumentID As Int32,
ByVal signalChannel As Int32,
ByvVal type As Int32,
ByVal targetValue As Double,
ByVal apertureTime As Double,
ByVal reserved As Double,
ByVal flags As Int32) As Int32

Programmer’s Reference Manual

Page 42 of 130

acqiris
2.3.18 AcqrsD1_configHorizontal
Purpose
Configures the horizontal control parameters of the digitizer.

Parameters

Input

Name Type Description

instrumentID ViSession Instrument identifier

samplnterval ViReal64 Sampling interval in seconds

delayTime ViReal64 Trigger delay time in seconds, with respect to the

beginning of the record. A positive number
corresponds to a trigger before the beginning of the
record (post-trigger recording). A negative number
corresponds to pre-trigger recording. It can’t be less
than -(samplnterval * nbrSamples), which corresponds
to 100% pre-trigger.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Refer to the Programmer’s Guide section 3.9, Trigger Delay and Horizontal Waveform
Position, for a detailed discussion of the value delayTime.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configHorizontal (ViSession instrumentID,
ViReal64 sampInterval, ViReal64 delayTime);

LabVIEW Representation

AgDx Configure Horizontal Settings.vi

Instrument 1D Fializ dup [ngtrument (D

Sampling Interval [10 ns] Canfia.
Dielay Time [0 2] | Horiz, feeomeem gror out
2o in [no ermor| mr

Visual Basic Representation

ConfigHorizontal (ByVal instrumentID As Long,
ByVal sampInterval As Double,
ByVal delayTime As Double) As Long

Visual Basic .NET Representation

AcqgrsDl configHorizontal (ByVal instrumentID As Int32,
ByVal sampInterval As Double,
ByVal delayTime As Double) As Int32

Programmer’s Reference Manual Page 43 of 130

acqiris

2.3.19 AcqrsD1_configLogicDevice

Purpose

NOTE: This function now needs to be used only by ETS and VxWorks users to specify the
filePath for FPGA .bit files. Otherwise it should no longer have to be used

Configures (programs) on-board logic devices, such as user-programmable FPGA’s.
Parameters

Input
Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program
In the AP100/AP101, AP235/AP240, and the 12-bit
modules this string must be "Block1Devx", with x = 1
or 2.
In the AP200/AP201, it must be "Block1Devx",
withx =1, 2,3 or4.
When clearing the FPGA' s, the string must be
"Block1DevAll".
filePathName ViChar [] File path and file name
modifier Vilnt32 Modifier, may be:
0 = program logic device with data in the file
“filePathName”
1 = clear the logic device
2 = set path where FPGA .bit files can be found

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

With modifier = 1 in VxWorks systems, the filePathName must point to a directory containing
the FPGA configuration files with extension °.bit’

With modifier = 0, the filePathName must point to an FPGA configuration file with extension
“bit’, e.g. “D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.

For more details on programming on-board logic devices, please refer to the Programmer’s
Guide sections 3.2, Device Initialization and 3.3, Device Configuration.

Programmer’s Reference Manual Page 44 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl configLogicDevice (ViSession instrumentID,
ViChar deviceName[], ViChar filePathNamel[],

ViInt32 modifier);

LabVIEW Representation

AgDx Configure Logic Device.vi

Flag
Instrument ID Al dup Instrument ID
Device Name - Canfia.
File Path ~ F=os error out

error in (na errar)
Visual Basic Representation

ConfigLogicDevice (ByVal instrumentID As Long,
ByVal deviceName As String,
ByVal filePathName As String,
ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsDl configLogicDevice (ByVal instrumentID As Int32,
ByVal deviceName As String,
ByVal filePathName As String,
ByVal modifier As Int32) As Int32

Programmer’s Reference Manual

Page 45 of 130

acqiris

2.3.20 AcqrsD1_configMemory

Purpose

Configures the memory control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
nbrSamples Vilnt32 Nominal number of samples to record (per segment!)
nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configMemory (ViSession instrumentID,
ViInt32 nbrSamples, ViInt32 nbrSegments) ;

LabVIEW Representation

AgDx Configure Memory Settings.vi

Inztrument 1D Aali dup Instrument 10
Mumber of Segments [1] - Canfia.
Number of Samples [1000] f hilim erar out
2o in [no emor|

Visual Basic Representation

ConfigMemory (ByVal instrumentID As Long,
ByVal nbrSamples As Long,
ByVal nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsDl configMemory (ByVal instrumentID As Int32,
ByVal nbrSamples As Int32,
ByVal nbrSegments As Int32) As Int32

Programmer’s Reference Manual

Page 46 of 130

acqiris

2.3.21 AcqrsD1_configMode

Purpose

Configures the operational mode of Averagers and Analyzers. It doesn’t apply to digitizers.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

mode Vilnt32 0 = normal data acquisition
2 = averaging mode (only in real-time averagers)
3 = buffered data acquisition (only in AP101/AP201

analyzers)

6 = frequency counter mode
7 = AP235/AP240-SSR mode

modifier Vilnt32 Currently not used, set to 0

flags Vilnt32 If ‘mode’ = 0, this variable can take these values:

0 = ‘normal’ (default value)
1 = “Start on Trigger’ mode
2 = ‘Sequence Wrap’ mode

If “‘mode’ = 2, this variable is not used (set to 0).

For AP101/AP201 units, if ‘mode’ = 3, this variable
can take these values:

0 = acquire into 1* memory bank

1 = acquire into 2™ memory bank

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

Most digitizers only permit the default mode = 0. Real-time averagers support the normal data
acquisition mode (0) and the averager mode (2). The analyzers (digitizers with buffered
acquisition memory) (AP101/AP201 and AP235/AP240 with SSR) support both the normal data
acquisition mode (0) and the buffered mode (3).

The normal data acquisition mode (0) supports the following submodes:
o flags = 0: normal digitizer mode

o flags = 1: “StartOnTrigger’ mode, whereby data recording only begins after the receipt
of a valid trigger. For details, see Programmer’s Guide section 3.14, Special
Operating Modes.

o flags = 2: ‘Sequence Wrap’ mode, whereby a multi-segment acquisition (with
‘nbrSegments’ > 1, when configured with the function AcqrsD1_configMemory), does
not stop after ‘nbrSegments’, but wraps around to zero, indefinitely. Thus, such
acquisitions must be stopped with the function AcqrsD1_stopAcquisition at the
appropriate moment. The digitizer memory then contains the last (nbrSegments-1)
waveform segments. For details, see Programmer’s Guide section 3.14, Special
Operating Modes.

The averaging mode (2) has the following differences from the default mode (0):

Programmer’s Reference Manual Page 47 of 130

acqiris

e The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition,

whereas in mode 2, it makes the instrument run as a real-time averager.

e The function AcqrsD1_readData() with dataType = ReadReal64: In mode 0, it returns
the last acquired waveform, whereas in mode 2, it returns the averaged waveform (in Volts).

The buffered data acquisition mode (3) and the SSR mode (7) have the following differences

from the default mode (0):

e The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition,
whereas in modes 3 or 7, it starts an acquisition into the next memory bank or a special
memory bank, as defined by flags.

e The functions AcqrsD1_readData(): In mode 0, they return the last acquired waveform
from the normal acquisition memory, whereas in mode 3, they return data from a memory

bank (opposite to what is defined by flags).

LabWindowsCVI1/Visual C++ Representation

ViStatus status =

LabVIEW Representation

AcgrsDl configMode (ViSession instrumentID,
ViInt32 modifier,

ViInt32 mode,

AgDx Configure Operation Mode.vi

Flags
Madifier
Instrument ID Aal
mode Cianfig.
Pods

error in (no errop) ===

Visual Basic Representation

ConfigMode (ByVal instrumentID As Long,

dup Instrument 1D

error ouk

ByVal mode as Long,

ByVal modifier As Long,

ByVal flags As Long)

Visual Basic .NET Representation

AcqrsDl configMode

(ByVal instrumentID As Int32,

ByVal mode as Int32,
ByVal modifier As Int32,

ByvVal flags As Int32)

Programmer’s Reference Manual

As Long

As Int32

ViInt32 flags);

Page 48 of 130

acqiris

2.3.22 AcqrsD1_configMultilnput

Purpose

Selects the active input when there are multiple inputs on a channel. It is useful for Averagers,
Analyzers, and some digitizer models.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
input Vilnt32 =0 set to input connection A
=1 setto input connection B
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per
digitizer, e.g. DP211). On the "normal" instruments with a single input per channel, this function
may be ignored.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configMultiInput (ViSession instrumentID,

ViInt32 channel, ViInt32 input);

LabVIEW Representation

AgDx Configure Multiplexer Input.vi

Instrument 1D Al dup [nstrurment 1D
Channel (1) T —|ez5hg
LDulti |

Input Selection [0: A f

ermar in [ho ermar]

e grror Uk

Visual Basic Representation

ConfigMultiInput (ByVal instrumentID As Long,
ByVal channel As Long,
ByVal connection As Long) As Long

Visual Basic .NET Representation

AcqgrsDl configMultilInput (ByVal instrumentID As Int32,
ByVal channel As Int32,

ByVal connection As Int32) As Int32

Programmer’s Reference Manual Page 49 of 130

acqiris

2.3.23 AcqrsD1_configSetupArray
Purpose

Sets the configuration for an array of configuration values. It is useful for Analyzers only.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan

setupType Vilnt32 Type of setup.
0 = GateParameters

nbrSetupObj Vilnt32 Number of setup objects in the array

setupData ViAddr Pointer to an array containing the setup objects
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type and supply its
address as ‘setupData’.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
GateParameters
Name Type Description
GatePos Vilnt32 Start position of the gate (must be multiple of 4)
GateLength Vilnt32 Length of the gate (must be multiple of 4)

Discussion

The user has to take care to allocate sufficient memory for the setupData. nbrSetupObj should not be
higher than what the allocated setupData holds.

The SSR option allows up to 4095 gate definitions. The AP101/AP201 analyzers are limited to 64 gate

definitions.

Note: The driver contains a set of 4095(64) default AqGateParameters, defined as { {0,256} {256, 256}
{512,256} {768,256} ... }.

Programmer’s Reference Manual Page 50 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configSetupArray(ViSession instrumentID,
ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData);

LabVIEW Representation

Not yet supported

Visual Basic Representation

ConfigSetupArray (ByVal instrumentID As Long,
ByVal channel As Long,
ByVal setupType As Long,
ByVal nbrSetupObj As Long,
setupData As Any) As Long

Visual Basic .NET Representation

AcqrsDl configSetupArray (ByVal instrumentID As Int32,
ByVal channel As Int32,
ByVal setupType As Int32,
ByVal nbrSetupObj As Int32,
ByRef setupData As Int32) As Int32

Programmer’s Reference Manual Page 51 of 130

acqiris
2.3.24 AcqrsD1_configTrigClass
Purpose
Configures the trigger class control parameters of the digitizer.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
trigClass Vilnt32 =0 edge trigger
=1 TV trigger (12-bit-FAMILY External only)
sourcePattern Vilnt32 =0x000n0001 for Channel 1,
=0x000n0002 for Channel 2,
=0x000n0004 for Channel 3,
=0x000n0008 for Channel 4 etc.
=0x800n0000 for External Trigger 1,
=0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for Multilnstruments (ASBus operation). See
discussion below.
validatePattern Vilnt32 Currently ignored
HoldType Vilnt32 Currently ignored
holdValuel ViReal64 Currently ignored
holdValue2 ViReal64 Currently ignored

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

For more details on the trigger source pattern in ASBus-connected Multilnstruments, please refer
to the Programmer’s Guide section 3.13.2, Trigger Source Numbering with ASBus.

For configuring the TV trigger see AcqrsD1_configTrigTV.

Programmer’s Reference Manual Page 52 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configTrigClass (ViSession instrumentID,

ViInt32 trigClass,
ViInt32 validatePattern,
ViReal64 holdValuel,

LabVIEW Representation

AgDx Configure Trigger

Class.vi

Walidate Pattern (0]
Source Pattern [1: Chan 1] ———

Instrument 1D

Trigger Clazs [0; edge] = e

Al dup Instrurment 1D

Huold Type [0] —I_r‘ Trig error auk

error in [no eror)
Haold W alue 1 [0]
Hald Y alue 2 [0

Visual Basic Representation

ConfigTrigClass (ByVal
ByVal
ByVal
ByVval
ByVal
ByVal
ByVval

instrumentID As Long,
trigClass As Long,
sourcePattern As Long,
validatePattern As Long,
holdType As Long,
holdvaluel As Double,
holdvalue2 As Double) As Long

Visual Basic .NET Representation

AcqrsDl configTrigClass

ByVal
ByVal
ByVal
ByVval
ByVal
ByVal

Programmer’s Reference Manual

(ByVal instrumentID As Int32,
trigClass As Int32,
sourcePattern As Int32,
validatePattern As Int32,
holdType As Int32,
holdvaluel As Double,
holdvValue2 As Double) As Int32

ViInt32 sourcePattern,
ViInt32 holdType,
ViReal64 holdValue?2);

Page 53 of 130

2.3.25 AcqrsD1_configTrigSource

acqiris

Purpose

Configures the trigger source control parameters for the specified trigger source (channel or

External).
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 = 1...(Number of IntTrigSources) for internal sources
= -1..-(Number of ExtTrigSources) for external sources
See discussion below.
trigCoupling Vilnt32 =0 DC
=1 AC
=2 HF Reject (if available)
=3 DC, 50 Q (ext. trigger only, if available)
=4 AC, 50 Q (ext. trigger only, if available)
trigSlope Vilnt32 =0 Positive
=1 Negative
=2 out of Window
=3 into Window
=4 HF divide
trigLevell ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.
trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

The allowed range for the trigger threshold depends on the model and the channel chosen. See
your product User Manual.

NOTE: Some of the possible states may be unavailable in some digitizers. In particular, the
trigCoupling choices of ‘DC, 50 Q’ and ‘AC, 50 Q’ are only needed for modules that have both
50 Q and 1 MQ external input impedance possibilities.

Programmer’s Reference Manual

Page 54 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configTrigSource (ViSession instrumentID,
ViInt32 channel, ViInt32 trigCoupling,
ViInt32 trigSlope, ViReal64 trigLevell,
ViReal64 trigLevel?2);

LabVIEW Representation
AgDx Configure Trigger Source.vi

Trigger Lewel 2 [0
Channel [1) ———

Instrument 1D Al dup Instrument 1D
TnggerEDumMQ[D:DE]jJ___Cmﬁ_
TﬁggerShpe[U:pnste]lﬂng“T”“ ror out

errar in [ho errar]
Trigger Lewel 1[0

Visual Basic Representation

ConfigTrigSource (ByVal instrumentID As Long, _
ByVal Channel As Long,
ByVal trigCoupling As Long, _
ByVal trigSlope As Long,
ByVal trigLevell As Double, _

ByVal trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqgrsDl configTrigSource (ByVal instrumentID As Int32,
ByVal Channel As Int32,
ByVal trigCoupling As Int32,
ByVal trigSlope As Int32, _
ByVal trigLevell As Double, _
ByVal trigLevel2 As Double) As Int32

Programmer’s Reference Manual Page 55 of 130

2.3.26 AcqrsD1_configTrigTV

acqiris

Purpose

Configures the TV trigger parameters (12-bit-FAMILY only).

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 = -1..-(Number of ExtTrigSources) for external sources
See discussion below.

standard Vilnt32 =0 625/50/2:1 (PAL or SECAM)
=2 525/60/2:1 (NTSC)

field Vilnt32 =1 Field 1 - odd
=2 Field 2 - even

line Vilnt32 = line number, depends on the parameters above:
For 'standard' = 625/50/2:1
= 1to 313 for 'field' = 1
=314 to 625 for 'field' = 2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' =
= 1to 262 for 'field' = 2

Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

Programmer’s Reference Manual

Page 56 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl configTrigTV (ViSession instrumentID,

ViInt32 channel,
ViInt32 field, ViInt32 line);

LabVIEW Representation

AgDx Configure Trigger TV.vi

channel ——
Instrument ID —— Al

standard - Canpr

dup Inskrument 10

FMdmnF_nu el =g g N |
Error in (no error)

line

Visual Basic Representation

ConfigTrigTV (ByVal instrumentID As Long,

ByVal
ByVal
ByVval
ByVal

Channel As Long,
standard As Long,
field As Long,

line AS Long) As Long

Visual Basic .NET Representation

AcqrsDl configTrigTV (ByVal instrumentID As Int32,

ByVal
ByVal
ByVval
ByVal

Programmer’s Reference Manual

Channel As Int32,
standard As Int32,
field As Int32,
line AS Int32) As Int32

ViInt32 standard,

Page 57 of 130

2.3.27 AcqrsD1_configVertical

acqiris

Purpose

Configures the vertical control parameters for a specified channel of the digitizer.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan, or —1,... for the External Input

fullScale ViReal64 in Volts

offset ViReal64 in Volts

coupling Vilnt32 = (0 Ground (Averagers ONLY)
=1DC, 1 MQ
=2AC, 1 MQ
=3DC,50Q
=4 AC,50Q

bandwidth Vilnt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
=2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For the DC440 and DP310 the coupling input is used to select the signal input: DC, 50 Q for the
Standard input and AC, 50 Q for the Direct HF input.

Some instruments have no bandwidth limiting capability. In this case, use bandwidth = 0. With
channel = -1 this function can be used to set the Full Scale Range and the bandwidth limit of the
external trigger for the DC271-FAMILY digitizers and the AP240/AP235 signal analyzer
platforms. For the case of a DC271-FAMILY Multilnstrument using ASBus, the external triggers

of the additional modules are numbered -3, -5,

... following the principles given in the

Programmer’s Guide section 3.13.2, Trigger Source Numbering with ASBus.

Programmer’s Reference Manual

Page 58 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl configVertical (ViSession instrumentID,
ViInt32 channel,ViReal64 fullScale,
ViReal64 offset, ViInt32 coupling,
ViInt32 bandwidth);

LabVIEW Representation

AgDx Configure Vertical Settings.vi

Coupling [1: DC, 1 MOkm)
Channel [1] ———
Instrument 1D Aal dup Instrurnent 1D
Full Scale [5.0%] Canfig.

Offzet [0 et errar out
amnnmummﬂﬂﬂfm
B andwidth [0: no limit) ———

Visual Basic Representation

ConfigVertical (ByVal instrumentID As Long, ByVal Channel As Long,
ByVal fullScale As Double, ByVal offset As Double,
ByVal coupling As Long, _
ByVal bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsDl configVertical (ByVal instrumentID As Int32,
ByVal Channel As Int32,
ByVal fullScale As Double,
ByVal offset As Double,
ByVal coupling As Int32,
ByVal bandwidth As Int32) As Int32

Programmer’s Reference Manual Page 59 of 130

acqiris
2.3.28 AcqrsD1_errorMessage
Purpose
Translates an error code into a human readable form.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier can be VI NULL
errorCode ViStatus Error code (returned by a function) to be translated
Output
Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (minimum size 256)
into which the error-message text is returned

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl errorMessage (ViSession instrumentID,
ViStatus errorCode, ViChar errorMessagel[]):;

LabVIEW Representation

AgDx Error Message.vi

e ———— Statuz

Instrument 1D CELE dup Instrument (D
Type of Dialog [1: OK Mzg] ;' Eﬁ_l_E'" Error Meszage
ermar in [ho erar] “"Lm Eror Code

errar aut

Visual Basic Representation

errorMessage (ByVal instrumentID As Long, ByVal errorCode As Long,

ByVal errorMessage As String) As Long

Visual Basic .NET Representation

AcqgrsDl errorMessage (ByVal instrumentID As Int32,
ByVal errorCode As Int32,
ByVal errorMessage As String) As Int32

Programmer’s Reference Manual Page 60 of 130

2.3.29 AcqrsD1_forceTrig

acqiris

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after initiating an acquisition. One must therefore wait until the
acquisition has terminated before reading the data, by checking the status with the
AcqrsD1_acqDone function. If the external clock is enabled, and there is no clock signal applied
to the device, AcqrsD1_acqDone will never return done = VI_TRUE. Consider using a timeout
and calling AcqrsD1_stopAcquisition if it occurs. In multisegment mode, the current segment is
acquired, the acquisition is terminated and the data and timestamps of subsequent segments are

invalid.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

LabVIEW Representation

AgDx Software Trigger.vi

Instrument ID

Twpe — |
error in {no error) ==

gl

Sofk. Tr.

Visual Basic Representation

AcqrsDl forceTrig(ViSession instrumentID);

dup Insktrument 10
error auk

ForceTrig (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsDl forceTrig

Programmer’s Reference Manual

(ByVal instrumentID As Int32) As Int32

Page 61 of 130

acqiris
2.3.30 AcqrsD1_forceTrigEx
Purpose
Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
forceTrigType Vilnt32 =0 Sends a software trigger to end the full acquisition
=1 Sends a single software trigger and generates the
TrigOut hardware signal
modifier Vilnt32 Currently not used
flags Vilnt32 Currently not used

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after initiating an acquisition. One must therefore wait until the
acquisition has terminated before reading the data, by checking the status with the
AcqrsD1_acqDone function. If the external clock is enabled, and there is no clock signal applied
to the device, AcqrsD1_acqDone will never return done = VI_TRUE. Consider using a timeout
and calling AcqrsD1_stopAcquisition if it occurs.

For forceTrigType = 0, the 'trigOut' Control IO will NOT generate a trigger output. This mode is
equivalent to AcqrsD1_forceTrig. In multisegment mode, the current segment is acquired, the
acquisition is terminated and the data and timestamps of subsequent segments are invalid.

For forceTrigType = 1, 'trigOut’ Control 10 will generate a trigger output on each successful call.
In multisegment mode, the acquisition advances to the next segment and then waits again for a
trigger. If no wvalid triggers are provided to the device, the application must call
AcqrsD1_forceTrigEx as many times as there are segments. Every acquired segment will be
valid. This mode is only supported for single (i.e. non-ASBus-connected) digitizers (not
Averagers or Analyzers).

Programmer’s Reference Manual Page 62 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl forceTrigEx(ViSession instrumentID ,
ViInt32 forceTrigType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

AgDx Software Trigger.vi

Instrument ID —,:"'_‘":',‘%." —— dup Instrument 1D
Tvpe
error in {no error) ==

Soft. Tr. error auk

Visual Basic Representation

ForceTrigEx (ByVal instrumentID As Long,
ByVal forceTrigType as Long,
ByVal modifier As Long,
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsDl forceTrigEx (ByVal instrumentID As Int32,
ByVal forceTrigType as Int32,
ByVal modifier As Int32,
ByVal flags As Int32) As Int32

Programmer’s Reference Manual Page 63 of 130

acqiris
2.3.31 AcqrsD1_getAvgConfig
Purpose
Returns an attribute from the analyzer/averager configuration channelNbr.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number for use with AP240/AP235 dual-
channel mode. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See AcqrsD1_configAvgConfig for the list of
accepted strings.
Output
Name Type Description
value ViAddr Requested information value.

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed under
AcqrsD1_configAvgConfig) and supply its address
as 'value'.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configAvgConfig.

Programmer’s Reference Manual Page 64 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViAddr wvalue);

LabVIEW Representation

AgDx Query Averager Settings.vi

Configuration Mumber ————

Instrument ID #q0:: dup Inskrument ID
Parameter String -~ ery = Value

I e gprror Uk

Error in (no error) ===

Visual Basic Representation

GetAvgConfig (ByVal instrumentID As Long,
ByVal channelNbr As Long,
ByVal parameterString As String,
value as Any) As Long

Visual Basic .NET Representation

AcqrsDl getAvgConfig (ByVal instrumentID As Int32,
ByVal channelNbr As Int32,
ByVal parameterString As String,
ByRef value as Int32) As Int32

or
AcqrsDl getAvgConfig (ByVal instrumentID As Int32,
ByVal channelNbr As Int32,

ByVal parameterString As String,
ByRef value as Double) As Int32

Programmer’s Reference Manual Page 65 of 130

acqiris

2.3.32 AcqrsD1_getChannelCombination

Purpose

Returns the current channel combination parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrConvertersPer | Vilnt32 =1 all channels use 1 converter each (default)
Channel =2 half of the channels use 2 converters each
=4 1/4 of the channels use 4 converters each
usedChannels Vilnt32 bit-field indicating which channels are used. See
discussion below
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configChannelCombination.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getChannelCombination (
ViSession instrumentID,
ViInt32* nbrConvertersPerChannel,
ViInt32* usedChannels);

LabVIEW Representation

AgDx Query Channel Combination.vi

dup Inskrument 10
) L nbrConvertersPerChannel
Errar in (no error) =T

““Lusedchannels

error ouk

Instrument ID ——, 0

Visual Basic Representation

GetChannelCombination (ByVal instrumentID As Long,
nbrConvertersPerChannel As Long,

usedChannels As Long) As Long

Visual Basic .NET Representation

AcqgrsDl getChannelCombination (ByVal instrumentID As Int32,

ByRef nbrConvertersPerChannel As Int32,
ByRef usedChannels As Int32) As Int32

Programmer’s Reference Manual Page 66 of 130

acqiris

2.3.33 AcqrsD1_getControllO

Purpose

Returns the configuration of a ControllO connector. (For DC271-FAMILY/AP-FAMILY/12-bit-

FAMILY only)
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
connector Vilnt32 Connector Number

1 = Front Panel I/O A (MMCX connector)

2 = Front Panel I/O B (MMCX connector)

9 = Front Panel Trigger Out (MMCX connector)
signal Vilnt32 Indicates the current use of the specified connector
0 = Disabled, 6 = Enable trigger etc.

For a detailed list, see the description of
AcqgrsDl1l configControlIO

qualifierl Vilnt32 The returned values depend on the type of connector,
see the discussion in AcqrsD1 configControlIO
qualifier2 ViReal64 The returned values depend on the module, see the

discussion in AcqrsD1 configControlIO

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

ControllO connectors are front panel 10 connectors for special purpose control functions of the
digitizer. Typical examples are user-controlled acquisition control (trigger enable) or control
output signals such as 10 MHz reference’ or ‘trigger ready’.

The connector numbers are limited to 0 and the supported values. To find out which connectors
are supported by a given module, use this function with connector = 0:

AcqrsDl getControlIO(instrID, 0, &ctrlIOPattern, NULL, NULL);

In this case, the returned value of signal is the bit-coded list of the connectors that are available
in the digitizer. E.g. If the connectors 1 (I/O A), 2 (I/O B) and 9 (TrigOut) are present, the bits 1,
2 and 9 of signal are set, where bit 0 is the LSbit and 31 is the MSbit. Thus, the low order 16 bits
of signal (or ctrllOPattern in the example above) would be equal to 0x206.

The DC271-FAMILY, AP-FAMILY, and 12-bit-FAMILY cards support the connectors 1 (front

panel /O A MMCX coax), 2 (front panel /O B MMCX coax) and 9 (front panel Trig Out
MMCX coax).

Programmer’s Reference Manual Page 67 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl getControlIO(ViSession instrumentID,
ViInt32 connector, ViInt32* signal,
ViInt32* qualifierl, ViReal64* qualifier2)

LabVIEW Representation

AgDx Query Control IO Connectors.vi

Instrument ID Al dup Instrument 10
Connector - iy L Signal
error in (no error) seelliilie Be==tem arrgr ot
Qualifierz
Cualifier1

Visual Basic Representation

GetControlIO (ByVal instrumentID As Long,
ByVal connector As Long,
signal As Long,
qualifierl As Long, _
qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsDl getControlIO (ByVal instrumentID As Int32,
ByVal connector As Int32,
ByRef signal As Int32,
ByRef qualifierl As Int32,
ByRef qualifier2 As Double) As Int32

Programmer’s Reference Manual

’

Page 68 of 130

acqiris
2.3.34 AcqrsD1_getExtClock
Purpose
Returns the current external clock control parameters of the digitizer.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
clockType Vilnt32 =0 Internal Clock (default at start-up)
=1 External Clock, continuously running
=2 External Reference (10 MHz)
=4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples | Vilnt32 Number of samples to acquire after trigger (for
'clockType' = 1 only!)
inputFrequency ViReal64 The presumed input frequency of the external clock,
for clockType = 4 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 4
only
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configExtClock.

Programmer’s Reference Manual Page 69 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getExtClock(ViSession instrumentID,
ViInt32* clockType, ViReal64* inputThreshold,
ViInt32* delayNbrSamples, ViReal64*
inputFrequency, ViReal64* sampFrequency);

LabVIEW Representation

AgDx Query External Clock.vi

ClockTvpe
Reference Frequency
Instrument 1D AaD dup Inztrurment 1D
Ciuery | Sample Frequency
o in [ho error) Exr Tl

“‘EﬂznlnputTPueshnh
errar out

Delay Mumber of S amples

Visual Basic Representation

GetExtClock (ByVal instrumentID As Long,
clockType As Long,
inputThreshold As Double,
delayNbrSamples As Long,
inputFrequency As Double,
sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqgrsDl getExtClock (ByVal instrumentID As Int32,
ByRef clockType As Int32,
ByRef inputThreshold As Double,
ByRef delayNbrSamples As Int32,
ByRef inputFrequency As Double,
ByRef sampFrequency As Double) As Int32

Programmer’s Reference Manual Page 70 of 130

2.3.35 AcqrsD1_getFCounter

acqiris

Purpose

Returns the current frequency counter configuration

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
signalChannel Vilnt32 Signal input channel
type Vilnt32 Type of measurement
=0 Frequency (default)
=1 Period (1/frequency)
=2 Totalize by Time
=3 Totalize by Gate
targetValue ViReal64 User-supplied estimate of the expected value
apertureTime ViReal64 Time in sec, during which the measurement is executed
reserved ViReal64 Currently ignored
flags Vilnt32 Currently ignored
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 71 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getFCounter (ViSession instrumentID,

ViInt32* signalChannel, ViInt32* type, ViReal64* targetValue,

ViReal64* apertureTime,

LabVIEW Representation

AgDx Query FCounter.vi

Instrument ID L — dup Instrument ID

|y ====m (yary resulks

errar out

Visual Basic Representation

GetFCounter (ByVal

instrumentID As Long,

signalChannel As Long,

type As Long,

targetValue As Double,

apertureTime As Double,

reserved As Double,

flags As Long) As Long

Visual Basic .NET Representation

AcgrsDl getFCounter

ByRef
ByRef
ByRef
ByRef
ByRef
ByRef

(ByVal instrumentID As Int32,
signalChannel As Int32,
type As Int32,
targetValue As Double,
apertureTime As Double,
reserved As Double,
flags As Int32) As Int32

Programmer’s Reference Manual

ViReal64* reserved, ViInt32* flags);

Page 72 of 130

acqiris

2.3.36 AcqrsD1_getHorizontal

Purpose

Returns the current horizontal control parameters of the digitizer.

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
Output

Name Type Description
samplnterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configHorizontal.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getHorizontal (ViSession instrumentID,
ViReal64* sampInterval, ViReal64* delayTime);

LabVIEW Representation

AgDx Query Horizontal Settings.vi

Instrument 1D Aaliz dup Inztrurnent [0
) e Delay Time
&Irar in [no errar] m_um..nan Sample Interval
errar aut

Visual Basic Representation

GetHorizontal (ByVal instrumentID As Long,
sampInterval As Double,

delayTime As Double) As Long

Visual Basic .NET Representation

AcqgrsDl getHorizontal (ByVal instrumentID As Int32,
ByRef sampInterval As Double,
ByRef delayTime As Double) As Int32

Programmer’s Reference Manual Page 73 of 130

acqiris
2.3.37 AcqrsD1_getInstrumentData
Purpose
Returns some basic data about a specified digitizer.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
name ViChar [] Pointer to user-allocated string, into which the model
name is returned (length < 32 characters).
serialNbr Vilnt32 Serial number of the digitizer.
busNbr Vilnt32 Bus number of the digitizer location.
slotNbr Vilnt32 Slot number of the digitizer location. (logical)

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getlInstrumentData (ViSession instrumentID,
ViChar name[], ViInt32* serialNbr,
ViInt32* busNbr, ViInt32* slotNbr);

LabVIEW Representation

AgDx Query Instrument ID.vi

'_E"""‘""""" Marme
Instrument 1D Fial dup Inztrument [0

P‘E L Serial Mumber
2Iror in [no error)

0 Jeemy L Busz Mumber
znﬂ===-=err|:-r-:|ut
Slot Mumber

Visual Basic Representation

GetInstrumentData (ByVal instrumentID As Long, ByVal name As String,
serialNbr As Long, busNbr As Long,
slotNbr As Long) As Long

Visual Basic .NET Representation

AcqrsDl getInstrumentData (ByVal instrumentID As Int32,
ByVal name As String, _
ByRef serialNbr As Int32,
ByRef busNbr As Int32,
ByRef slotNbr As Int32) As Int32

Programmer’s Reference Manual Page 74 of 130

2.3.38 AcqrsD1_getInstrumentInfo

acqiris

Purpose

Returns general information about a specified digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter. See
below for the list of accepted strings.
Output
Name Type Description
infoValue ViAddr Requested information value.
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed below)
and supply its address as 'infoValue'.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Returned Description
Type
"ASBus_m BusNb" Vilnt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules —1).
"ASBus_m_ IsMaster" Vilnt32 Physical crate number of the m'th module of a multi-
instrument (perhaps from AqGeo.map). m runs from 0 to
(nbr of modules —1).
"ASBus_m_ PosInCrate" Vilnt32 Physical slot num.b.er (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules —1).
"ASBus m SerialNb" . Serial number of the m'th module of a multi-instrument. m
- - Vilnt32
runs from 0 to (nbr of modules —1).
"ASBus m SlotNb" . Slot number of the m'th module of a multi-instrument. m
- - Vilnt32
runs from 0 to (nbr of modules —1).
"CrateNb" Vilnt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 | Calibrated Delay Offset
(only useful for recovery of battery backed-up acquisitions)
"DelayScale" ViReal64 | Calibrated Delay Scale
(only useful for recovery of battery backed-up acquisitions)
"ExtCkRatio" ViReal64 | Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" Vilnt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" Vilnt32 Returns 1 if the module has an acquisition started but is not
yet ready to accept a trigger.
"LOGDEVHDRBLOCKmDEVnS ViChar[] | Returns information about FPGA firmware loaded. See
string" comments below.
"MaxSamplesPerChannel" Vilnt32 Max. Number of samples per channel available in digitizer
mode
"NbrADCBits" Vilnt32 Number of bits of data per sample from this modules ADCs
"NbrExternalTriggers" Vilnt32 Number of external trigger sources
"NbrInternalTriggers" Vilnt32 Number of internal trigger sources
"NbrModulesInInstrument" | Vilnt32 Number of modules in this instrument. Individual modules

Programmer’s Reference Manual

Page 75 of 130

acqiris
Parameter String Returned Description
Type
(not connected through ASBus) return 1.
"Options" ViChar[] | List of options, separated by ‘,’, installed in this instrument.
"OverloadStatus chan" Vilnt32 Returns 1 if chan is in overload, 0 otherwise.

chan takes on the same values as 'channel' in
AcqrsD1l configTrigSource.

"OverloadStatus ALL" Vilnt32 Returns 1 if any of the signal or external trigger inputs is in
overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine which
channel is in overload.

"PosInCrate" Vilnt32 Physical slot number (position) in cPCI crate

"TbSegmentPad" Vilnt32 Returns the additional array space (in samples) per segment
needed for the image read of AcqrsD1l_readData,
AcqrsDl_readCharSequence or

AcqrsD1 readRealSequence (DEPRECATED).

"Temperature m" Vilnt32 Temperature in degrees Centigrade (°C)
"TrigLevelRange chan" ViReal64 | Trigger Level Range on channel chan
“WersionUserDriver” ViChar[] | String containing the full driver version.
Discussion

For the case "TriglevelRange chan" the result 1is to be interpreted as
+ (returned value), which is in % of the vertical Full Scale of the channel, or in mV for an
external trigger source. The value of chan takes is the same as the values of 'channel' in
AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a Multilnstrument and runs from 0 to
(nbr of modules —1) following the channel order. It may be omitted on single digitizers or for the
master of a Multilnstrument

For the case "Options" the available options are returned in a ‘,” separated string. The options
include the memory size if additional memory has been installed in the form "MnM" for
digitizers where n is the number of megabytes available or "PnMB" for AP235/AP240 and
"AnM" for AP100/AP101/AP200/AP201. Other possible options include "NoASBus",
"BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The infoValue should point to a string
of at least 32 characters.

The case of "LOGDEVHDRBLOCKmDEV=nS string" is one in which several possible values of
m, n, and string are allowed. The single digit number m refers to the FPGA block in the module.
For the moment this must always have the value 1. The single digit number » refers to the FPGA
device in the block. It can have values in the range 1,2,3,4 depending on the module. Among the
interesting values of string are the following case-sensitive strings: "name", "version",

nn

"versionTxt", "compDate", "model".
Examples

double trigLevelRange;
AcgrsDl getInstrumentInfo (ID, "TrigLevelRange -1",
&trigLevelRange) ;
The acceptable trigger levels are in the range [-triglevelRange, +trigLevelRange] mV (external trigger!).

For modules supporting switch on overload protection:
long overLoad;
AcgrsDl getInstrumentInfo (ID, "OverLoadStatus ALL", &overLoad);
if (overLoad)
DO SOMETHING

In order to find out which channel(s) caused the overload, you have to loop over "OverLoadStatus
-1", "OverLoadStatus 1", "OverLoadStatus 2", ...

Programmer’s Reference Manual Page 76 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getInstrumentInfo(ViSession instrumentID,
ViString parameterString, ViAddr infoValue);

LabVIEW Representation

AgDx Query Instrument Information.vi

Instrument ID #iql: dup Inskrument 10
Parameter Skring ~ @ : L Infio Walue (ink)
Returned Tyvpe poe Info Yalue {double)
Error in {no errar) MHE""“ Info walue (skring)
error ouk

NOTE: The type of the returned value depends on the parameter requested. In LabVIEW, the correct
returned type should be supplied as input to the VI, and the appropriate output wire connected. Any other
wire will always return zero.

Visual Basic Representation
NOTE: In Visual Basic, a returned type of Vi Int32 should be declared as Long, while a returned type
of ViReal64 should be declared as Double.
GetInstrumentInfo (ByVal instrumentID As Long,
ByVal parameterString As String,
infovalue As Any) As Long

Visual Basic .NET Representation

AcqrsDl getInstrumentInfo (ByVal instrumentID As Int32,
ByVal parameterString As String,
ByRef infoValue As Int32) As Int32

or

AcqgrsDl getInstrumentInfo (ByVal instrumentID As Int32,
ByVal parameterString As String,
ByRef infoValue As Double) As Int32

or

AcqrsDl getInstrumentInfo (ByVal instrumentID As Int32,

ByVal parameterString As String,
ByVal infoValue As String) As Int32

Programmer’s Reference Manual Page 77 of 130

acqiris
2.3.39 AcqrsD1_getMemory
Purpose
Returns the current memory control parameters of the digitizer.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrSamples Vilnt32 Nominal number of samples to record (per segment!)
nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMemory.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getMemory (ViSession instrumentID,
ViInt32* nbrSamples, ViInt32* nbrSegments);

LabVIEW Representation

AgDx Query Memory Settings.vi

Instrument 1D Aaliz dup Inztrurnent [0
) o Humber of Segments
&Irar in [no errar] Pler 1 Mumber of 5amples
errar aut

Visual Basic Representation

GetMemory (ByVal instrumentID As Long,
nbrSamples As Long,
nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqgrsDl getMemory (ByVal instrumentID As Int32,
ByRef nbrSamples As Int32,
ByRef nbrSegments As Int32) As Int32

Programmer’s Reference Manual Page 78 of 130

2.3.40 AcqrsD1_getMode

acqiris

Purpose

Returns the current operational mode of the digitizer

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
mode Vilnt32 Operational mode
modifier Vilnt32 Modifier, currently not used
flags Vilnt32 Flags
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getMode (ViSession instrumentID,

ViInt32* mode, ViInt32* modifier,

LabVIEW Representation

AgDx Query Operation Mode.vi

Instrument ID Al dup Instrument 10
Gier L Made
Error in (no error) Ilgds 1M0diﬁer
errar out
———Flags

Visual Basic Representation

GetMode (ByVal instrumentID As Long,
mode as Long,
modifier As Long,

flags As Long) As Long

Visual Basic .NET Representation

AcqgrsDl getMode (ByVal instrumentID As Int32,
ByRef mode as Int32,
ByRef modifier As Int32,
ByRef flags As Int32) As Int32

Programmer’s Reference Manual

ViInt32* flags);

Page 79 of 130

acqiris

2.3.41 AcqrsD1_getMultilnput

Purpose

Returns the multiple input configuration on a channel.

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
Output

Name Type Description
input Vilnt32 =0 input connection A

=1 input connection B

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per
digitizer, e.g. DP211). On the "normal" instruments with a single input per channel, this function
may be ignored.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getMultiInput (ViSession instrumentID,
ViInt32 channel, ViInt32* input);

LabVIEW Representation

AgDx Query Multiplexer Input.vi

Instrument 1D #abi dup Inztrurnent [0
Channel [1] - Sarp | . = Input
error in [no error] skl =g ... [nput [Falze = &)
errar aut

Visual Basic Representation

GetMultiInput (ByVal instrumentID As Long,
ByVal channel As Long,
inputs As Long) As Long

Visual Basic .NET Representation

AcqgrsDl getMultiInput (ByVal instrumentID As Int32,
ByVal channel As Int32,
ByRef input As Int32) As Int32

Programmer’s Reference Manual Page 80 of 130

acqiris

2.3.42 AcqrsD1_getNbrChannels

Purpose

Returns the number of channels on the specified module.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrChannels Vilnt32 Number of channels in the specified module

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getNbrChannels (ViSession instrumentID,
ViInt32* nbrChannels);

LabVIEW Representation

AgDx Query Number of Channels.vi

Instrument 1D Al dup Inztrurnent [0
) Siery L Murnber aof Channels
2rar in [ho errar] # Chan o e aut

Visual Basic Representation

GetNbrChannels (ByVal instrumentID As Long,
nbrChannels As Long) As Long

Visual Basic .NET Representation

AcqrsDl getNbrChannels (ByVal instrumentID As Int32,
ByRef nbrChannels As Int32) As Int32

Programmer’s Reference Manual Page 81 of 130

acqiris

2.3.43 AcqrsD1_getNbrPhysicallnstruments

Purpose

Returns the number of physical Acqiris modules found on the computer.

Parameters
Output
Name Type Description
nbrinstruments Vilnt32 Number of Acqiris modules found on the computer

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getNbrPhysicallInstruments (
ViInt32* nbrInstruments);

LabVIEW Representation

AgDx Query Number of Instruments.vi

Aglx

Murmber af Instruments
. Hucry
erar in [ho errar] 4 Inztr errar oLk

Visual Basic Representation

GetNbrPhysicalInstruments (nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqgrsDl getNbrPhysicalInstruments (ByRef nbrInstruments As Int32
) As Int32

Programmer’s Reference Manual Page 82 of 130

acqiris
2.3.44 AcqrsD1_getSetupArray
Purpose
Returns an array of configuration parameters.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
setupType Vilnt32 Type of setup.
0 = GateParameters
nbrSetupObj Vilnt32 Maximum allowed number of setup objects in the
output.
Output
Name Type Description
setupData ViAddr Pointer to an array for the setup objects
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate array and supply its address as
‘setupData’
nbrSetupObj- ViAddr Number of setup objects returned
Returned
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
AqGateParameters
Name Type Description
GatePos Vilnt32 Start position of the gate
GateLength Vilnt32 Length of the gate
Discussion

For the object definition refer to AcqrsD1_configSetupArray. If AcqrsD1_getSetupArray is
called without having set the Parameters before, the default values will be returned.

Note: The driver contains a set of 64 default AqGateParameters, defined as { {0,256} {256,
256} {512,256} {768, 256} ... }.

Programmer’s Reference Manual Page 83 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getSetupArray(ViSession instrumentID,
ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj
ViAddr setupData, ViInt32 nbrSetupObjReturned) ;

LabVIEW Representation

Not yet supported

Visual Basic Representation
GetSetupArray (ByVal instrumentID As Long,
ByVal channel As Long,
ByVal setupType As Long,
ByVal nbrSetupObj As Long,
setupData As Any,
nbrSetupObjReturned As Long) As Long

Visual Basic .NET Representation

AcqrsDl getSetupArray (ByVal instrumentID As Int32,
ByVal channel As Int32,
ByVal setupType As Int32,
ByVal nbrSetupObj As Int32,
ByRef setupData As Int32,
ByRef nbrSetupObjReturned As Int32) As Int32

Programmer’s Reference Manual Page 84 of 130

2.3.45 AcqrsD1_getTrigClass

acqiris

Purpose

Returns the current trigger class control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
trigClass Vilnt32 =0 edge trigger
=1 TV trigger
sourcePattern Vilnt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= (0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for Multilnstruments (ASBus operation). See
discussion below.
validatePattern Vilnt32 Currently returns "0"
holdType Vilnt32 Currently returns "0"
holdValuel ViReal64 Currently returns "0"
holdValue2 ViReal64 Currently returns "0"
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

See remarks under AcqrsD1_configTrigClass.

Programmer’s Reference Manual

Page 85 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl getTrigClass (ViSession instrumentID,
ViInt32* trigClass, ViInt32* sourcePattern,
ViInt32* validatePattern, ViInt32* holdType,
ViReal64* holdValuel, ViReal64* holdValue?2);

LabVIEW Representation

AgDx Query Trigger Class.vi

Walidate Pattern
Huald % alue 1

Instrument 1D Aal dup Instrurnent 1D
Hold ' alue 2
error in [no error) Tﬁ”;ﬂ;mwm%ﬁ
error out
Source Pattern
—— Hold Type

Visual Basic Representation

GetTrigClass (ByVal instrumentID As Long,
trigClass As Long,
sourcePattern As Long,
validatePattern As Long,
holdType As Long, _
holdvaluel As Double,
holdvalue2 As Double) As Long

Visual Basic .NET Representation

AcqrsDl getTrigClass (ByVal instrumentID As Int32,
ByRef trigClass As Int32,
ByRef sourcePattern As Int32,
ByRef validatePattern As Int32,
ByRef holdType As Int32,
ByRef holdValuel As Double,
ByRef holdValue2 As Double) As Int32

Programmer’s Reference Manual Page 86 of 130

2.3.46 AcqrsD1_getTrigSource

acqiris

Purpose

Returns the current trigger source control parameters for a specified channel.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 = 1...(Number of IntTrigSources) for internal sources
= -1..-(Number of ExtTrigSources) for external sources
See discussion below.
Output
Name Type Description
trigCoupling Vilnt32 =0 DC
=1 AC
=2 HF Reject
=3 DC,50Q
=4 AC,50Q
trigSlope Vilnt32 =0 Positive
=1 Negative
=2 out of Window
=3 into Window
=4 HF divide
triglevell ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.
trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

See remarks under AcqrsD1_configTrigSource.

Programmer’s Reference Manual

Page 87 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getTrigSource (ViSession instrumentID,
ViInt32 channel, ViInt32* trigCoupling,
ViInt32* trigSlope, ViReal64* trigLevell,
ViReal64d* trigLevel?l);

LabVIEW Representation

AgDx Query Trigger Source.vi

Trigoer Lewvel 1
Trigger Level 2
Instrument 1D Al dup Instrurnent 10D
Channel [1] - er & Trigger Coupling
efar in [ho error] ==l 1 Trigger Slope
errar aut

Visual Basic Representation

GetTrigSource (ByVal instrumentID As Long,
ByVal Channel As Long,
trigCoupling As Long,
trigSlope As Long,
trigLevell As Double,
trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqgrsDl getTrigSource (ByVal instrumentID As Int32,
ByVal Channel As Int32,
ByRef trigCoupling As Int32,
ByRef trigSlope As Int32, _
ByRef trigLevell As Double,
ByRef trigLevel2 As Double) As Int32

Programmer’s Reference Manual Page 88 of 130

acqiris
2.3.47 AcqrsD1_getTrigTV
Purpose
Returns the current TV trigger parameters (12-bit-FAMILY only).
Parameters
Input
Name Type Description
InstrumentID ViSession Instrument identifier
Channel Vilnt32 = -1..-(Number of ExtTrigSources) for external sources
See discussion below.
Output
Name Type Description
Standard Vilnt32 =0 625/50/2:1 (PAL or SECAM)
=2 525/60/2:1 (NTSC)
Field Vilnt32 =1 Field I - odd
=2 Field 2 - even
Line Vilnt32 = line number, depends on the parameters above:
For 'standard' = 625/50/2:1
= 1to 313 for 'field' =1
=314 to 625 for 'field' =2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' =2

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

See discussion under AcqrsD1_configTrigTV.

Programmer’s Reference Manual Page 89 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getTrigTV (ViSession instrumentID, ViInt32
channel, ViInt32* standard,

ViInt32* field, ViInt32* line);
LabVIEW Representation

AgDx Query Trigger TV.vi

— field
Instrument ID Fiqli dup Inskrurment 1D
channel — et skandard

errar in no error) == UG e e
lire:

Visual Basic Representation

GetTrigTV (ByVal instrumentID As Long,
ByVal Channel As Long,
standard As Long,
field As Long,
line AS Long) As Long

Visual Basic .NET Representation

AcqgrsDl getTrigTV (ByVal instrumentID As Int32,
ByVal Channel As Int32,
ByRef standard As Int32,
ByRef field As Int32, _
ByRef line AS Int32) As Int32

Programmer’s Reference Manual Page 90 of 130

acqiris

2.3.48 AcqrsD1_getVersion

Purpose

Returns version numbers associated with a specified digitizer or current device driver.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
versionltem Vilnt32 1 for version of Kernel-Mode Driver
2 for version of EEPROM Common Section
3 for version of EEPROM Digitizer Section
4 for version of CPLD firmware
Output
Name Type Description
version Vilnt32 version number of the requested item
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent the major
version number, and the lower 2 bytes represent the minor version number.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl getVersion (ViSession instrumentID,
ViInt32 versionItem, ViInt32* version);

LabVIEW Representation

AgDx Revision Query.vi

[rtr Drriver Rey [numeric)
Instrument 1D Fialic dup Inztrument [0
Firmware Yersion ltem [4: C__. Gaerle] Be | mztr Driver Flevizion

ermar in Ko emar) “““"‘““WW‘E"""“"E [rstr Firrmware Fevision
efrar out
[nztr Firrmware Rew [numernic]

Visual Basic Representation

GetVersion (ByVal instrumentID As Long,

ByVal versionItem As Long, version As Long) As Long

Visual Basic .NET Representation

AcqrsDl getVersion (ByVal instrumentID As Int32,

ByVal versionItem As Int32, ByRef version As Int32) As Int32

Programmer’s Reference Manual Page 91 of 130

2.3.49 AcqrsD1_getVertical

acqiris

Purpose

Returns the vertical control parameters for a specified channel in the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan, or —1,... for the External Input
Output
Name Type Description
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling Vilnt32 =1DC, 1 MQ
=2AC, 1 MQ
=3DC, 50Q
=4 AC,50Q
bandwidth Vilnt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configVertical.

Programmer’s Reference Manual

Page 92 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl getVertical (ViSession instrumentID,
ViInt32 channel, ViRealo64* fullScale,
ViReal64* offset, ViInt32* coupling,
ViInt32* bandwidth) ;

LabVIEW Representation

AgDx Query Vertical Settings.vi

— Coupling

Instrument 1D Aal dup Instrurnent 10
Channel [1] - ary L Bandwidth
10 i [no error] ===l Full Scale
error out
Offzet

Visual Basic Representation

GetVertical (ByVal instrumentID As Long,
ByVal Channel As Long,
fullScale As Double,
offset As Double,
coupling As Long,
bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsDl getVertical (ByVal instrumentID As Int32,
ByVal Channel As Int32, _
ByRef fullScale As Double,
ByRef offset As Double,
ByRef coupling As Int32,
ByRef bandwidth As Int32) As Int32

Programmer’s Reference Manual Page 93 of 130

acqiris
2.3.50 AcqrsD1 _init
Purpose
Initializes an instrument.
Parameters
Input
Name Type Description
resourceName ViRsrc ASCII string which identifies the digitizer to be
initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE, resets the digitizer after initialization.
Output
Name Type Description
InstrumentID ViSession Instrument identifier
Return Value
Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for a detailed
explanation on the initialization procedure.

The function returns the error code ACQIRIS ERROR INIT STRING INVALID when the
initialization string could not be interpreted.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl init (ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean resetDevice, ViSession* instrumentID);

LabVIEW Representation

AgDx Initialize.vi

Resouce Mame [PCI::INSTRO]
D Quen [F: Skip)

Reset [T: Resat] -

EIror in [no emor]

[l] Instrument 10
: E_I_E“ Hame
Initial. “"Lm S enal Mumnber

errar out

Visual Basic Representation

Init (ByVal resourceName As String, ByVal IDQuery As Boolean,
ByVal resetDevice As Boolean, instrumentID As Long) As Long

Visual Basic .NET Representation

AcqgrsDl init (ByVal resourceName As String, ByVal IDQuery As Boolean,
ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

Programmer’s Reference Manual Page 94 of 130

2.3.51 AcqrsD1_InitWithOptions

acqiris

Purpose

Initializes an instrument with options.

Parameters
Input
Name Type Description
resourceName ViRsrc ASCII string which identifies the digitizer to be
initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to '"TRUE, resets the digitizer after initialization.
optionsString ViString ASCII string that specifies options.
Syntax: "optionName=bool" where bool is TRUE (1)
or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)
"DMA": use scatter-gather DMA for data transfers
(default 1).
"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.
Output
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a detailed
explanation on the initialization procedure.

The function returns the error code ACQIRIS ERROR INIT STRING INVALID when the
initialization string could not be interpreted.

When setting the option simulate to 1 (TRUE), the function AcqrsD1_setSimulationOptions
should be called first with the appropriate options.

Multiple options can be given; Separate the option=value pairs with ‘,” characters.

Programmer’s Reference Manual

Page 95 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status =

AcqgrsDl InitWithOptions (ViRsrc resourceName,
ViBoolean IDQuery, ViBoolean resetDevice,
ViString optionsString, ViSession* instrumentID);

LabVIEW Representation

AgDx Initialize with Options.vi

Optiang String [noll ztring]
Resouce Hame [PCIL::INSTRO]

|D Query [F: Skip] -
Feset [T: Reset] -

error in [no ermor)
Simulation Options [rul st

Pl Ingtrument 10
MHame

: i Senal Mumber

errar out

Visual Basic Representation

InitWithOptions (ByVal
ByVval
ByVal

ByVal

instrumentID As Long)

resourceName As String,
IDQuery As Boolean,

resetDevice As Boolean,
optionsString As String,
As Long

Visual Basic .NET Representation

AcqgrsDl InitWithOptions
ByVal IDQuery As Boolean,

(ByVal resourceName As String,
ByVal resetDevice As Boolean,

ByVal optionsString As String,
ByRef instrumentID As Int32) As Int32

Programmer’s Reference Manual

Page 96 of 130

acqiris

2.3.52 AcqrsD1_multilnstrAutoDefine

Purpose

Automatically initializes all digitizers and combines as many as possible to Multilnstruments.
Digitizers are only combined if they are physically connected via ASBus.

Parameters
Input
Name Type Description
optionsString ViString ASCII string which specifies options.
Currently no options are supported.
Output
Name Type Description
nbrnstruments Vilnt32 Number of user-accessible instruments. It also includes
single instruments that don't participate on the ASBus.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This call must be followed by nbrInstruments calls to the functions AcqrsD1 _init or
AcqrsD1_InitWithOptions to retrieve the instrumentID of the (multi)digitizers.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl multiInstrAutoDefine (ViString optionsString,
ViInt32* nbrInstruments);

LabVIEW Representation

AgDx MultiInstrument Auto Define.vi

Mumber of Inskruments

&rrar in (no errar) Liuto, | error ouk

Visual Basic Representation
MultiInstrAutoDefine (ByVal optionsString As String,

nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqgrsDl multiInstrAutoDefine (ByVal optionsString As String,
ByRef nbrInstruments As Int32) As Int32

Programmer’s Reference Manual Page 97 of 130

acqiris

2.3.53 AcqrsD1_multilnstrDefine

Purpose

This function defines the combination of a number of digitizers connected by ASBus into a
single Multilnstrument.

Parameters
Input
Name Type Description
instrumentList ViSession [| Array of 'instrumentID' of already initialized single
digitizers
nbrlnstruments Vilnt32 Number of digitizers in the 'instrumentList'
master]D ViSession 'instrumentID' of master digitizer
Output
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS ERROR_MODULES NOT _ON_SAME BUS if
all modules in the instrumentList are not on the same bus.

It may also return the error codes ACQIRIS ERROR NOT ENOUGH DEVICES or
ACQIRIS ERROR NO MASTER DEVICE, when nbrInstruments is < 2 or the masterID is
not one of the values in the instrumentList.

This function should only be used if the choices of the automatic initialization function
AcqrsD1_multilnstrAutoDefine must be overridden. If the function executes successfully, the
instrumentID presented in the instrumentList cannot be used anymore, since they represent
individual digitizers that have become part of the new Multilnstrument, identified with newly
returned instrumentID. Please refer to the Programmer’s Guide section 3.2.6, Manual
Definition of Multilnstruments for more information.

Programmer’s Reference Manual Page 98 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl multiInstrDefine (ViSession instrumentList[],

ViInt32 nbrInstruments,
ViSession* instrumentID);

LabView Representation

AgDx Configure MultiInstrument Manual Define.vi

Instrument List [none]

Master Digitizer 1D [0] -
2ol in [ho o] ===

Visual Basic Representation

MultiInstrDefine (ByRef instrumentlList As Long,
ByVal nbrInstruments As Long,
ByVal masterID As Long,

AqDx

Cianfig.
Llanyal |

kdLltilnztrurnent [D

oo @rror auk

instrumentID As Long)

Visual Basic .NET Representation

AcqgrsDl multilInstrDefine

Programmer’s Reference Manual

(ByRef instrumentList As Int32,
ByVal nbrInstruments As Int32,

ByVal masterID As Int32,
ByRef instrumentID As Int32)

ViSession masterID,

Page 99 of 130

acqiris
2.3.54 AcqrsD1_multilnstrUndefineAll
Purpose
Undefines all Multilnstruments.

Parameters

Input

Name Type Description
optionsString ViString ASCII string which specifies options.
Currently no options are supported.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

This function is almost never needed, except if you want to dynamically redefine
Multilnstruments with the aid of the function AcqrsD1_multilnstrDefine. If the function
executes successfully, the instrumentID of the previously defined Multilnstruments cannot be
used anymore. You must either have remembered the instrumentID of the single instruments
that made up the Multilnstruments, or you must reestablish all instrumentID of all digitizers by
reinitializing with the code shown in the Programmer’s Guide section 3.2.1, Identification by
Order Found.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl multiInstrUndefineAll (ViString
optionsString) ;

LabVIEW Representation

AgDx Configure MultiInstrument Undefine.vi

Aql

Dptiong [null zting] o
. Config.
error in [no errorl Lindy error out

Visual Basic Representation

MultiInstrUndefineAll (ByVal optionsString As String) As Long

Visual Basic .NET Representation

AcqgrsDl multiInstrUndefineAll (ByVal optionsString As String) As Long

Programmer’s Reference Manual Page 100 of 130

acqiris

2.3.55 AcqrsD1_procDone

Purpose

Checks if the on-board data processing has terminated. This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
done ViBoolean done = VI _TRUE if the processing is terminated
VI FALSE otherwise

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl procDone (ViSession instrumentID,
ViBoolean* done) ;

LabVIEW Representation

Not yet supported

Visual Basic Representation

ProcDone (ByVal instrumentID As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsDl procDone (ByVal instrumentID As Int32,
ByRef done As Boolean) As Int32

Programmer’s Reference Manual Page 101 of 130

2.3.56 AcqrsD1_processData

acqiris

Purpose

Starts on-board data processing on acquired data in the current bank as soon as the current
acquistion terminates. It can also be used to allow the following acquisition to be started as soon
as possible. This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
processType Vilnt32 Type of processing
0 = no processing
1 = gated peak detection, extrema mode
2 = gated peak detection, hysteresis mode
3 = interpolated peaks, extrema mode
4 = interpolated peaks, hysteresis mode
flags Vilnt32 Autoswitch functionality
0 = do (re-)processing in same bank
1 = start the next acquisition in the other bank
2 = switch banks but do not start next acquisition
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

AcqrsDl processData (ViSession instrumentID,

ViInt32 processType, ViInt32 flags);

LabVIEW Representation

Not yet supported

Visual Basic Representation

ProcessData

Visual Basic .NET Representation

AcqgrsDl processData

Programmer’s Reference Manual

(ByVal instrumentID As Long,

ByVal processType As Long,

ByVal flags As Long)

As Long

(ByVal instrumentID As Int32,

ByVal processType As Int32,

ByvVal flags As Int32)

As Int32

Page 102 of 130

acqiris

2.3.57 AcqrsD1_readCharSequence (DEPRECATED)

Purpose

Returns a sequence of waveforms as a byte array.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
firstSegment Vilnt32 Requested first segment number, may assume 0 to the
(number of segments — 1).
nbrSegments Vilnt32 Requested number of segments, may assume 1 to the
number of segments set with the function
AcqgrsD1l configMemory.
firstSamplelnSeg | Vilnt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples — 1), as set
with the function AcqrsD1 configMemory.
nbrSamplesInSeg | Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqgrsD1l configMemory.
segmentOffset Vilnt32 Requested offset, in number of samples, between
adjacent segments in the destination buffer
waveformArray. Must be > nbrSamplesInSeg.
arraySize Vilnt32 Number of data elements in the user-allocated
waveformArray. Used for verification / protection.
Output
Name Type Description
waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. See discussion below for the required size.
horPos ViReal64 [] User-allocated array for horizontal positions of first
data point, one per segment. See discussion below.
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
timeStampLo Vilnt32 [] User-allocated arrays for low and high parts of the 64-
timeStampHi Vilnt32 [] bit trigger timestamp. See discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

This function is faster than a loop over AcqrsD1_readCharWform, if many short segments
(< 10'000 samples/segment) are read. See the Programmer’s Guide, Appendix A: Estimating

Data Transfer Times for timing details.

The waveform destination array waveformArray must not only allocate enough space to hold
the requested data, but also some additional space. This function achieves a higher transfer speed
by simply transferring an image of the digitizer memory to the CPU memory, and then
reordering all circular segment buffers into linear arrays. Since allocating a temporary buffer for
the memory image is time consuming, the user-allocated destination buffer is also used as a
temporary storage for the memory image. The rule for the minimum storage space to allocate

Programmer’s Reference Manual

Page 103 of 130

acqiris

with waveformArray is discussed in to the Programmer’s Guide section 3.8.2, Reading
Sequences of Waveforms.

The value of segmentOffset must be > nbrSamplesInSeg. The waveforms are thus transferred
sequentially into a single linear buffer, with 'holes' of length (segmentOffset — nbrSamplesinSeg)
between them. Such 'holes' could be used for depositing additional segment-specific information
before storing the entire sequence as a single array to disk. If you specify firstSegment > 0, you
don’t have to allocate any buffer space for waveforms that are not read, i.e. waveformArray[0]
corresponds to the first sample of the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesinSeg = segmentOffset = 1500. Then with
nbrSegments = 80 and nbrSamplesNom = 1000, since the currentSegmentPad = 408, you would
have to allocate at least 1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently rather than
dynamically, in order to avoid system overheads for buffer allocation/deallocation.

The arrays horPos, timeStampLo and timeStampHi must always be allocated with length that
corresponds to the total number of segments requested with the function
AcqrsD1_configMemory. The timestamp of the first requested segment is therefore deposited in
timeStampLo|firstSegment], which is not necessarily timeStampLo[0].

The returned parameters horPos| | are the horizontal positions, for each segment, of the first
(nominal) data point with respect to the origin of the nominal trigger delay in seconds. Since the
first data point is BEFORE the origin, this number will be in the range [-sampTime, 0]. Refer to
the Programmer’s Guide section 3.9, Trigger Delay and Horizontal Waveform Position, for
a detailed discussion of the value delayTime.

The returned parameters timeStampLo| | and timeStampHi][] are respectively the low and high
parts of the 64-bit trigger timestamp, on per segment, in units of picoseconds. The timestamp is
the trigger time with respect to an arbitrary time origin (typically the start-time of the
acquisition), which is intended for the computation of time differences between segments of a
Sequence acquisition. Please refer to the Programmer’s Guide section 3.11, Sequence
Timestamps, for a detailed explanation.

The value in Volts of a data point data in the returned waveformArray can be computed with
the formula:

V = vGain * data - vOffset

Programmer’s Reference Manual Page 104 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl readCharSequence (ViSession instrumentID,
ViInt32 channel, ViInt32 firstSegment,
ViInt32 nbrSegments, ViInt32 firstSampleInSeg,
ViInt32 nbrSamplesInSeg, ViInt32 segmentOffset,

ViInt32 arraySize, ViChar waveformArrayl([],
ViReal64 horPos|[], ViReal64* sampTime,
ViReal64* vGain, ViRealo4d* vOffset,

ViInt32 timeStampLo[],ViInt32 timeStampHil[]);

LabVIEW Representation

AgDx Read Sequence in ADC.vi should be considered as obsolete.
Please use AgDx Read Digitizer Data.vi instead

Visual Basic Representation

ReadCharSequence (ByVal instrumentID As Long,
ByVal channel As Long,
ByVal firstSegment As Long,
ByVal nbrSegments As Long,
ByvVal firstSampleInSeg As Long,
ByVal nbrSamplesInSeg As Long,
ByVal segmentOffset As Long,
ByVal arraySize As Long,
waveformArray As Byte,
horPos As Double,
sampTime As Double,
vGain As Double,
vOffset As Double,
timeStampLo As Long,
timeStampHi As Long) As Long

Programmer’s Reference Manual Page 105 of 130

acqiris
2.3.58 AcqrsD1_readCharWform (DEPRECATED)
Purpose
Returns a waveform as a byte array.

Parameters

Input

Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan

segmentNumber Vilnt32 Requested segment number, may assume 0 to the

(number of segments — 1) set with the function
AcqrsD1l configMemory.

firstSample Vilnt32 Requested position of first sample to read, typically O.
May assume 0 to the (number of samples — 1) set with
the function AcqrsD1 configMemory.
nbrSamples Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function

AcqrsD1 configMemory.

Output
Name Type Description
waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least (nbrSamples + 32),
for reasons of data alignment.
returnedSamples Vilnt32 Number of data samples actually returned
addrFirstPoint Vilnt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always be in
the range [0...31].
horPos ViReal64 Horizontal position of first data point. See discussion
below.
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
timeStampLo Vilnt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi Vilnt32 discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The returned parameter horPos is the horizontal position of the first (nominal) data point with
respect to the origin of the nominal trigger delay in seconds. Since the first data point is
BEFORE the origin, this number will be in the range [-sampTime, 0]. Refer to the
Programmer’s Guide section 3.9, Trigger Delay and Horizontal Waveform Position for a
detailed discussion of the value delayTime.

The returned parameters timeStampLo and timeStampHi are respectively the low and high
parts of the 64-bit trigger timestamp, in units of picoseconds. The timestamp is the trigger time
with respect to an arbitrary time origin (typically the start-time of the acquisition), which is
intended for the computation of time differences between segments of a Sequence acquisition.
Please refer to the Programmer’s Guide section 3.11, Sequence Timestamps, for a detailed
explanation.

Programmer’s Reference Manual Page 106 of 130

acqiris

The value in Volts of a data point data in the returned waveformArray can be computed with

the formula:

V = vGain * data - vOffset

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl readCharWform(ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViChar waveformArray([], ViInt32* returnedSamples,

ViInt32* addrFirstPoint, ViReal64* horPos,
ViReal64* sampTime, ViReal64* vGain,
ViReal64* vOffset, ViInt32* timeStampLo,
ViInt32* timeStampHi) ;

LabVIEW Representation

AgDx Read Waveform in ADC.vi should be considered as obsolete.

Please use AgDx Read

RAW Data.vi instead

Visual Basic Representation

ReadCharWform (ByVal
ByVval
ByVal
ByVal
ByVal

instrumentID As Long,
channel As Long,
segmentNumber As Long,
firstSample As Long,
nbrSamples As Long,

waveformArray As Byte,

returnedSamples As Long,

addrFirstPoint As Long,

horPos As Double,

sampTime As Double,

vGain As Double, vOffset As Double,

timeStamplLo As Long, timeStampHi As Long) As Long

Programmer’s Reference Manual

Page 107 of 130

acqiris

2.3.59 AcqrsD1_readData

Purpose

Returns all waveform information. The sample data is returned in an array whose type is
specified in the AqReadParameters structure.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
readPar AqgReadParameters | Requested parameters for the acquired waveform.
Output
Name Type Description
dataArray ViAddr User-allocated waveform destination array.
The array size restrictions are given below.
ViAddr resolves to void* in C/C++.
dataDesc AqgDataDescriptor | Waveform descriptor structure, containing waveform
information that is common to all segments.
segDescArray ViAddr Segment descriptor structure array, containing data that
is specific for each segment. The size of the array is
defined by nbrSegments and the type by readMode.lf
readMode =4 there are no segment descriptors.

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqReadParameters

Name Type Description

dataType Vilnt32 Type representation of the waveform
0 =8-bit (char) =1 byte

1 = 16-bit (short) =2 bytes

2 =32-bit (long) =4 bytes

3 = 64-bit (double) = 8 bytes

readMode Vilnt32 readout mode of the digitizer

0 = standard waveform (single segment only)

1 = image read for sequence waveform

2 = averaged waveform (from an averager ONLY)

3 = gated waveform (from an AP101/AP201 ONLY)
4 = peaks (from an AP101/AP201 ONLY)

5 = short averaged waveform (from an averager)

6 = shifted short averaged waveform (from an

averager)
7 = SSR waveform from an Analyzer

firstSegment Vilnt32 Requested first segment number, may assume 0 to the
(number of segments — 1).

nbrSegments Vilnt32 Requested number of segments, may assume 1 to the
actual number of segments.

firstSamplelnSeg Vilnt32 Requested position of first sample to read, typically O.
May assume 0 to the actual (number of samples — 1).

nbrSamplesInSeg Vilnt32 Requested number of samples, may assume 1 to the

actual number of samples.

Programmer’s Reference Manual Page 108 of 130

acqiris

segmentOffset Vilnt32 ONLY used for readMode = 1 in DIGITIZERS:
Requested offset, in number of samples, between
adjacent segments in the destination buffer dataArray.
Must be > nbrSamplesinSeg

dataArraySize Vilnt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection.

segDescArraySize Vilnt32 Number of bytes in the user-allocated segDescArray.
Used for verification / protection.

flags Vilnt32 ONLY used for DIGITIZERS

0 = First data point is before delayTime after Trigger
1 = First data point is at a fixed number of points with
respect to the resynchronized trigger

reserved Vilnt32 Reserved for future use
reserved2 ViReal64 Reserved for future use
reserved3 ViReal64 Reserved for future use

Segment Descriptor for Normal Waveforms (readMode = 0,1,3) in

AqSegmentDescriptor
Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo ViUInt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi ViUInt32 discussion below.

Segment Descriptor for Averaged Waveforms (readMode = 2,5) in
AqSegmentDescriptorAvg

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo ViUInt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi ViUInt32 discussion below.
actualTriggersInSeg ViUInt32 Number of actual triggers acquired in this segment
avgOvfl Vilnt32 Acquisition overflow. See discussion below.
avgStatus Vilnt32 Average depth and status. See discussion below.
avgMax Vilnt32 Max value in the sequence. See discussion below.
reservedl ViReal64 Reserved for future use

Data Descriptor in AqDataDescriptor

Name Type Description

returnedSamplesPerSeg | Vilnt32 Total number of data samples actually returned.
DataArray[indexFirstPoint]...
DataArray[indexFirstPoint+ returnedSamplesPerSeg-1]

indexFirstPoint Vilnt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always be in
the range [0...31]. It is not an offset in bytes but rather
and index in units of samples that may occupy more

than one byte.
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
returnedSegments Vilnt32 Number of segments
nbrAvgWforms Vilnt32 Number of averaged waveforms (nominal) in segment
actualTriggersInAcqLo | ViUlInt32 Low and high part of the 64-bit count of the number of
actualTriggersInAcqHi | ViUlInt32 triggers taken for the entire acquisition
actualDataSize ViUInt32 Actual length in bytes used at dataArray
missingValue ViReal64 Reserved for future use
reserved3 ViReal64 Reserved for future use

Programmer’s Reference Manual Page 109 of 130

acqiris

Discussion

All structures used in this function can be found in the header file AcqirisDataTypes.h.

The type of the dataArray is determined from the AqReadParameters struct entry dataType.

The following dataType and readMode combinations are supported:

0= 1= 2= 3= 4= 5 =short | 6= shifted 7 =SSR
standard | image | averaged | gated | peaks | averaged | short averaged

0 =Int8 8 8 - X - - - X

1 =1Intl6 12 12 - - - X X -

2 =1Int32 - - X - - - - -

3 =Real64 X X X - X X X -

In this table '8' means that the functionality is available for 8-bit Digitizers and AP units in the
digitizer mode while '12' means that it is available for 12-bit Digitizers. It must be remembered
that 12-bit digitizers generate 12 or 13-bit data which will be transferred as 2 bytes with the data
shifted so that the MSB of the data becomes the MSB of the 16-bit word, thus preserving the
sign information. The vGain value is therefore not the gain of the ADC in volts/LSB but rather
the volts/LSB of the 16-bit word.

The value in Volts of any integer data point data in the returned dataArray for a digitizer can be
computed with the formula:

V = vGain * data - vOffset

Except in the case of Analyzers, the data points for dataType = 3 are in Volts and no conversion
is needed. For Analyzers the data points are in units of the LSB of the ADC and must be
converted using the formula above.

The 3 "averaged" modes correspond to:

2 — 24-bit data read as such into either Int32 32-bit integers or converted into volts for
Real64,

5 — 16-bit data read of the least significant 16 bits of the 24-bit sum. The result is
presented in either an Intl6 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows,

6 — 16-bit data read of the most significant 16 bits of the 24-bit sum. The result is
presented in either an Intl6 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows.

It should also be noted that the interpretation of averager results was discussed in the
Programmer’s Guide section 3.8.4, Reading an Averaged Waveform from an Averager and
3.8.5, Reading a RT Add/Subtract Averaged Waveform from an Averager.

If readMode is set to gated, the nbrSamplesInSeg is set to the sum of the gate lengths.

The rules for the allocation of memory for the dataArray are as follows:
= For digitizers (or other modules used as such)
o with readMode = 0 and dataType = 0, the array size in bytes must be at least
(nbrSamplesInSeg+32).
o with readMode = 0 and dataType = 1, the array size in words must be at least
(nbrSamplesInSeg+32).
o with readMode = 0 and dataType = 3, the array size in bytes must be at least 40.
o with readMode = 1 the waveform destination array dataArray must not only
allocate enough space to hold the requested data, but also some additional space.
This function achieves a higher transfer speed by simply transferring an image of
the digitizer memory to the CPU memory, and then reordering all circular segment

Programmer’s Reference Manual Page 110 of 130

acqiris

buffers into linear arrays. Since allocating a temporary buffer for the memory
image is time consuming, the user-allocated destination buffer is also used as a
temporary storage for the memory image. The rule for the minimum storage space
to allocate with waveformArray is discussed in the Programmer’s Guide section
3.8.2, Reading Sequences of Waveforms.

= For averagers readMode =2, 5 or 6 are allowed and the size must be at least
nbrSamplesInSeg* nbrSegments * size_of dataType

= For analyzers
o with readMode = 0,1,2 its size must be at least nbrSamplesInSeg* nbrSegments
o with readMode = 3 the array size must be at least the sum of all gate lengths.
o with readMode = 4 the array size must be 4*sizeof(double) * number of gates
o for all other cases, its size, in bytes, must be at least nbrSamplesInSeg*
nbrSegments*size_of dataType

For configuring gate parameters see the User Manual: Family of Analyzers
The value of returnedSamplesPerSeg for readMode = 7 is not useable and therefore set to 0.

The segment descriptor array segDesc[] must always be allocated with a length that corresponds
to the total number of segments requested with nbrSegments in AqReadParameters. The first
requested segment is therefore deposited in SegDesc[0]. The segment descriptor array must also
be allocated with the correct structure type that depends on the readMode.

The returned segment descriptor values timeStampLo and timeStampHi are respectively the
low and high parts of the 64-bit trigger timestamp, in units of picoseconds. The timestamp is the
trigger time with respect to an arbitrary time origin (typically the start-time of the acquisition),
which is intended for the computation of time differences between segments of a Sequence
acquisition. Please refer to the Programmer’s Guide section 3.11, Sequence Timestamps, for a
detailed explanation.

The returned segment descriptor value horPos is the horizontal position, for the segment, of the
first (nominal) data point with respect to the origin of the nominal trigger delay in seconds. Since
the first data point is BEFORE the origin, this number will be in the range [-sampTime, 0].
Refer to the Programmer’s Guide section 3.9, Trigger Delay and Horizontal Waveform
Position, for a detailed discussion of the value delayTime. For Averaged Waveforms, the value
of horPos will always be 0.

avgOvfl, avgStatus and avgMax will apply to Signal Averagers only. The features that they
support have not yet been implemented.

The value of segmentOffset must be > nbrSamplesinSeg. The waveforms are thus transferred
sequentially into a single linear buffer, with 'holes' of length (segmentOffset — nbrSamplesinSeg)
between them. Such 'holes' could be used for depositing additional segment-specific information
before storing the entire sequence as a single array to disk. If you specify firstSegment > 0, you
don’t have to allocate any buffer space for waveforms that are not read, i.e. waveformArray[0]
corresponds to the first sample of the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesinSeg = segmentOffset = 1500. Then with
nbrSegments = 80 and nbrSamplesNom = 1000, since the currentSegmentPad = 408, you would
have to allocate at least 1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently rather than
dynamically, in order to avoid system overheads for buffer allocation/deallocation.

Programmer’s Reference Manual Page 111 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl readData(ViSession instrumentID,
ViInt32 channel, AgReadParameters* readPar,
ViAddr dataArray, AgDataDescriptor* descriptor,
ViAddr segDesc);

LabVIEW Representations

AgDx Read Digitizer Data.vi
This Vi is polymorphic, the sample data is returned in an array of type 18, 116 or DBL.

It is meant for the readout of multiple segments with readMode = 1.

channel 1T datafrray ouk
Instrument ID AiqDt dup Instrument 10
readPar = £ Dig o datalesc

seqDescArray in % j”"'%seg[ﬁesc.ﬁ.rray ot
datafrray in error out
Error in (N0 error) meeeeeen

AgDx Read Raw Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, 116.

It is meant for the readout of a single segment with readMode = 0.

channel datafrray ouk
Instrument ID dup Inskrument 10
readPar =] b J sk aliesc
segDesc in ﬁ segDesc ouk
datafrray in error auk
error in (na errar)

AgDx Read Averager Data.vi
This Vi is polymorphic, the sample data is returned in an array of type 132 or DBL

It is meant for the readout of an averager with readMode = 2.

channel 1] datadrray out
Instrument ID .-;E'x dup Inskrurment 1D
readPar = £ BB b= dataDesc
seqDeschrray in W j”"'%seg[ﬁesc.ﬁ.rray ok
datafrray in error ouk
Error in (N0 errop) s

Programmer’s Reference Manual Page 112 of 130

acqiris

Visual Basic Representation

ReadData (ByVal instrumentID As Long,
ByVal channel As Long,
readPar As AgReadParameters,
dataArray As Any,
dataDesc As AgDataDescriptor,
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsDl readData (ByVal instrumentID As Int32,

ByVal channel As Int32,

ByRef readPar As AgReadParameters,

ByRef dataArray As DATATYPE,

ByRef dataDesc As AgDataDescriptor,

ByRef segDescArray As AgSegmentDescriptor) As Int32
Where DATATYPE can be either Int8, Intl6, or Double

or

AcqrsDl readData (ByVal instrumentID As Int32,

ByVal channel As Int32,

ByRef readPar As AgReadParameters,

ByRef dataArray As DATATYPEAVG,

ByRef dataDesc As AgDataDescriptor,

ByRef segDescArray As AgSegmentDescriptorAvg) As Int32 Int32
Where DATATYPEAVG can be either Intl6, Int32, or Double

Programmer’s Reference Manual Page 113 of 130

acqiris

2.3.60 AcqrsD1_readFCounter

Purpose

Returns the result of a frequency counter measurement

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
result ViReal64 Result of measurement

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The result must be interpreted as a function of the effected measurement ‘type’:

Measurement Type Units
0 Frequency Hz

1 Period Sec

2 Totalize by Time Counts
3 Totalize by Gate Counts

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl readFCounter (ViSession instrumentID,
ViRealo64d* result);

LabVIEW Representation

AgDx Read FCounter.vi

Instrument ID ——— P ——— dup Inskrument I

: result auk
errar in (no errar) BaicE b wppor oUk

Visual Basic Representation

ReadFCounter (ByVal instrumentID As Long,
result As Double) As Long

Visual Basic .NET Representation

AcqrsDl readFCounter (ByVal instrumentID As Int32,
ByRef result As Double) As Int32

Programmer’s Reference Manual Page 114 of 130

acqiris

2.3.61 AcqrsD1_readRealSequence (DEPRECATED)

Purpose

Returns a sequence of waveforms as a floating point (double) array, with the measured data
values in Volts.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
firstSegment Vilnt32 Requested first segment number, may assume 0 to the
(number of segments — 1).
nbrSegments Vilnt32 Requested number of segments, may assume 1 to the

number of segments set with the function

AcqrsD1 configMemory.

firstSamplelnSeg | Vilnt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples — 1), as set
with the function AcqrsD1 configMemory.
nbrSamplesIinSeg | Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function

AcqgrsD1l configMemory.

segmentOffset Vilnt32 Requested offset, in number of samples, between
adjacent segments in the destination buffer
waveformArray. Must be > nbrSamplesInSeg.
arraySize Vilnt32 Number of data elements in the user-allocated
waveformArray. Used for verification / protection.

Output
Name Type Description
waveformArray ViReal64 [] User-allocated waveform destination array of type
double. See discussion below for the required size.
horPos ViReal64 [] User-allocated array for horizontal positions of first
data point, one per segment. See discussion below.
sampTime ViReal64 Sampling interval in seconds
timeStampLo Vilnt32 [] User-allocated arrays for low and high parts of the 64-
timeStampHi Vilnt32 [] bit trigger timestamp. See discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 115 of 130

Discussion

acqiris

See remarks under AcqrsD1_readCharSequencefor details about the horPos and timeStamp
parameters and the Programmer’s Guide section 3.8.2, Reading Sequences of Waveforms, for
the allocation of the buffers. The dataType = 3 rule given there for the arraySize becomes

arraySize = segmentOffset * (nbrSegments+1)

since the waveformArray here is ViReal64. However, the other rule changes too

8*arraySize > (nbrSamplesNom + currentSegmentPad) * (nbrSegments+1)

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl readRealSequence (ViSession instrumentID,
ViInt32 channel, ViInt32 firstSegment,
ViInt32 nbrSegments, ViInt32 firstSamplelnSegq,
ViInt32 nbrSamplesInSeg, ViInt32 segmentOffset,
ViInt32 arraySize, ViReal64 waveformArrayl[],
ViReal64 horPos|[], ViReal64* sampTime,
ViInt32 timeStamplo[],ViInt32 timeStampHil[]);

LabVIEW Representation

AgDx Read Sequence in Volts.vi should be considered as obsolete.
Please use AgDx Read Digitizer Data.vi instead

Visual Basic Representation

ReadRealSequence (ByVal
ByVval
ByVal
ByVal
ByVval
ByVal
ByVal
ByVal

instrumentID As Long,
channel As Long,
firstSegment As Long,
nbrSegments As Long,
firstSampleInSeg As Long,
nbrSamplesInSeg As Long,
segmentOffset As Long,
arraySize As Long,

waveformArray As Double,
horPos As Double,
sampTime As Double,

timeStampLo As Long,

timeStampHi As Long) As Long

Programmer’s Reference Manual

Page 116 of 130

acqiris

2.3.62 AcqrsD1_readRealWform (DEPRECATED)

Purpose

Returns a waveform as a floating point (double) array, with the measured data values in Volts.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
segmentNumber Vilnt32 Requested segment number, may assume 0 to the
(number of segments — 1) set with the function
AcqrsD1l configMemory.
firstSample Vilnt32 Requested position of first sample to read, typically O.
May assume 0 to the (number of samples — 1) set with
the function AcqrsD1 configMemory.
nbrSamples Vilnt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1 configMemory.
Output
Name Type Description
waveformArray ViReal64 [] User-allocated waveform destination array. Its size
MUST be at least the maximum of nbrSamples or 5.
returnedSamples Vilnt32 Number of data samples actually returned
horPos ViReal64 Horizontal position of first data point. See discussion
below.
sampTime ViReal64 Sampling interval in seconds
timeStampLo Vilnt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi Vilnt32 discussion below.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

See remarks under AcqrsD1_readCharWform for details about the horPos and timeStamp

parameters.

Programmer’s Reference Manual

Page 117 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcgrsDl readRealWform(ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,

ViReal64 waveformArray[], ViInt32* returnedSamples,
ViReal64* horPos, ViReal64* sampTime,

ViInt32* timeStamplo, ViInt32* timeStampHi) ;

LabVIEW Representation

AgDx Read Waveform in Volts.vi should be considered as obsolete.

Please use AgDx Read

Digitizer Data.vi instead

Visual Basic Representation

ReadRealWform (ByVal
ByVal
ByVal
ByVval
ByVal

instrumentID As Long,
channel As Long,
segmentNumber As Long,
firstSample As Long,
nbrSamples As Long,

waveformArray As Double,

returnedSamples As Long,
horPos As Double,

sampTime As Double,

timeStampLo As Long,

timeStampHi As Long) As Long

Programmer’s Reference Manual

Page 118 of 130

acqiris

2.3.63 AcqrsD1_reportNbrAcquiredSegments

Purpose

Returns the number of segments already acquired. For averagers (but not AP100 or AP200) it
will give the number of triggers already accepted for the current acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrSegments Vilnt32 Number of segments already acquired

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Can be called while an acquisition is active, in order to follow the progress of a Sequence and/or
Averaging acquisition. As needed the result should be interpreted as a ViUInt32.

Can be called after an acquisition, in order to obtain the number of segments/triggers actually
acquired (until AcqrsD1_stopAcquisition was called).

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl reportNbrAcquiredSegments (
ViSession instrumentID, ViInt32* nbrSegments) ;

LabVIEW Representation

AgDx Query Number of Acquired Segments.vi

Instrument 1D AaD dup Instrurnent 1D
) Siary L Mumber of Segments
error in [no eror) # 200, s arrar out

Visual Basic Representation

ReportNbrAcquiredSegments (ByVal instrumentID As Long,
nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsDl reportNbrAcquiredSegments (ByVal instrumentID As Int32,
ByRef nbrSegments As Int32) As Int32

Programmer’s Reference Manual Page 119 of 130

2.3.64 AcqrsD1_reset

acqiris

Purpose

Resets an instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

There is no known situation where this action is to be recommended.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

LabVIEW Representation

AgDx Reset.

Instrument 1D

error in [no errorl

vi

B

Visual Basic Representation

Reset (ByVal instrumentID As Long)

Visual Basic .NET Representation

AcgrsDl reset

Programmer’s Reference Manual

efrar out

AcqrsDl reset (ViSession instrumentID);

dup Inztrument [0

As Long

(ByVal instrumentID As Int32) As Int32

Page 120 of 130

2.3.65 AcqrsD1_resetDigitizerMemory

acqiris

Purpose

Resets the digitizer memory to a known default state.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values Oxaa, 0x55, 0x00
and Oxff. This functionality is mostly intended for use with battery backed-up memories.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl resetDigitizerMemory (
ViSession instrumentID) ;

LabVIEW Representation

AgDx Reset Digitizer Memory.vi

Instrument 1D AaD dup Instrurnent 10D

fEdd

error in (o errar] Flem errar ot

Visual Basic Representation

ResetDigitizerMemory (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsDl resetDigitizerMemory (ByVal instrumentID As Int32)

Programmer’s Reference Manual

As Int32

Page 121 of 130

acqiris
2.3.66 AcqrsD1_restorelnternalRegisters
Purpose
Restores some internal registers of an instrument.
Only needed after power-up of a digitizer with the battery back-up option.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
delayOffset ViReal64 Global delay offset, should be retrieved with

AcqrsDl_getInstrumentInfo(...,
“DelayOffset”, ..) before power-off

If not known, use the value —20.0e-9
delayScale ViReal64 Global delay scale, should be retrieved with
AcqrsDl_getInstrumentInfo(...,
“DelayScale”, ..) before power-off

If not known, use the value 5.0e-12

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The normal startup sequence destroys the contents of the Acqiris digitizer memories. This
function, together with a specific sequence of other function calls, prevents this from occurring
in digitizers with battery backed-up memories.

Please refer to the Programmer’s Guide section 3.15, Readout of Battery Backed-up

Memories, for a detailed description of the required initialization sequence to read battery
backed-up waveforms.

Programmer’s Reference Manual Page 122 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status =

LabVIEW Representation

AcqrsDl restorelnternalRegisters (

AgDx Restore Internal Registers.vi

Instrument 1D
Delay Offset
Delay Scale

&rrar in [ho ermar]

Visual Basic Representation

RestoreInternalRegisters

Aglx

Fe. Reg

-

dup [rstrument 1D

errar out

(ByVal instrumentID As Long,
ByVal delayOffset As Double,
ByVal delayScale As Double) As Long

Visual Basic .NET Representation

AcqgrsDl restorelnternalRegisters (ByVal instrumentID As Int32,

Programmer’s Reference Manual

ByVal delayOffset As Double,
ByVal delayScale As Double) As Int32

ViSession instrumentID, ViReal64 delayOffset,
ViReal64 delayScale);

Page 123 of 130

2.3.67 AcqrsD1_setLEDColor

acqiris

Purpose

Sets the front panel LED to the desired color.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
color Vilnt32 0 = OFF (return to normal acquisition status indicator)
1 = Green
2=Red
3 = Yellow
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl setLEDColor (ViSession instrumentID,
ViInt32 color);

LabVIEW Representation

AgDx Set LED Color.vi

Instrument 1D Aalz
Color [0: OFf) - K

errar in [ho erpor] st LED error out

Visual Basic Representation

dup [rstrument 1D

SetLEDColor (ByVal instrumentID As Long,

ByVal color As Long)

Visual Basic .NET Representation

AcqgrsDl setLEDColor (ByVal instrumentID As Int32,
ByVal color As Int32)

Programmer’s Reference Manual

As Long

As Int32

Page 124 of 130

acqiris

2.3.68 AcqrsD1_setSimulationOptions

Purpose

Sets one or several options which will be used by the function AcqrsD1_InitWithOptions,
provided that the optionsString supplied to AcqrsD1_InitWithOptions contains the string
"simulate=TRUE".

Parameters
Input
Name Type Description
simOptionString ViString String listing the desired simulation options. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See the Programmer’s Guide section 3.2.8, Simulated Devices, for details on simulation. A
string of the form “M8M?” is used to set an 8 Mbyte simulated memory. The simulation options
are reset to none by setting simOptionString to an empty string "".

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl setSimulationOptions (
ViString simOptionString);

LabVIEW Representation

Use AgDx Initialize with Options.vi

Visual Basic Representation
SetSimulationOptions (ByVal simOptionString As String) As Long

Visual Basic .NET Representation

AcqrsDl setSimulationOptions (ByVal simOptionString As String)
As Int32

Programmer’s Reference Manual Page 125 of 130

2.3.69 AcqrsD1_stopAcquisition

acqiris

Purpose

Stops the acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the acquisition and not return until this has been accomplished. The data
is not guaranteed to be valid. To obtain valid data after "manually" stopping the acquisition (e.g.
timeout waiting for a trigger), one should use the AcqrsD1_forceTrig function to generate a
"software" (or "manual") trigger, and then continue polling for the end of the acquisition with
AcqrsD1_acqDone. This will ensure correct completion of the acquisition.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

AcqrsDl stopAcquisition (ViSession instrumentID);

LabVIEW Representation

AgDx Stop Acquisition.vi

Instrument 1D

Aql

Stop

error in [no errorl

Visual Basic Representation

StopAcquisition

Visual Basic .NET Representation

AcqrsDl stopAcquisition

Programmer’s Reference Manual

efrar out

dup Inztrument [0

(ByVal instrumentID As Long) As Long

(ByVal instrumentID As Int32) As Int32

Page 126 of 130

2.3.70 AcqrsD1_stopProcessing

acqiris

Purpose

Stops on-board data processing. This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

This function will stop the on-board data processing immediately. The output data is not

guaranteed to be valid.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl stopProcessing(ViSession instrumentID);

LabVIEW Representation

Not yet supported

Visual Basic Representation

StopProcessing (ByVal instrumentID As Long)

Visual Basic .NET Representation

AcqrsDl stopProcessin

Programmer’s Reference Manual

As Long

g (ByVal instrumentID As Int32) As Int32

Page 127 of 130

acqiris

2.3.71 AcqrsD1_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout Vilnt32 Timeout in milliseconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the acquisition has terminated or when the requested timeout
has elapsed, whichever is shorter. For protection, the timeout is clipped to a maximum value of
10 seconds. If a larger timeout is needed, call this function repeatedly.

While waiting for the acquisition to terminate, the calling thread is put into 'idle', permitting
other threads or processes to fully use the CPU.

If a channel or trigger overload was detected, the returned status is always
ACQIRIS ERROR_OVERLOAD. Else, if the acquisition times out, the returned status is
ACQIRIS ERROR_ACQ TIMEOUT, in which case you should wuse either
AcqrsD1_stopAcquisition or AcqrsD1_forceTrig to stop the acquisition. Otherwise, the
returned status is VI_SUCCESS.

Programmer’s Reference Manual Page 128 of 130

acqiris

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqgrsDl waitForEndOfAcquisition (ViSession
instrumentID, ViInt32 timeout);

LabVIEW Representation

AgDx Wait For End Of Acquisition.vi

Instrument ID Al dup Instrument 10
Timeout - E
errar in (no error]) s B === apror out

Visual Basic Representation

WaitForEndOfAcquisition (ByVal instrumentID As Long,
ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqgrsDl waitForEndOfAcquisition (ByVal instrumentID As Int32,
ByVal timeout As Int32) As Int32

Programmer’s Reference Manual Page 129 of 130

acqiris

2.3.72 AcqrsD1_waitForEndOfProcessing

Purpose

Waits for the end of on-board data processing. . This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout Vilnt32 Timeout in milliseconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the on-board processing has terminated or when the requested
timeout has elapsed, whichever is shorter. For protection, the timeout is clipped to a maximum
value of 10 seconds. If a larger timeout is needed, call this function repeatedly.

While waiting for the processing to terminate, the calling thread is put into 'idle', permitting other
threads or processes to fully use the CPU.

If the processing times out, the returned status is ACQIRIS ERROR PROC TIMEOUT, in
which case you should use AcqrsD1_stopProcessing to stop the processing. Otherwise, the
returned status is VI_SUCCESS.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsDl waitForEndOfProcessing(ViSession
instrumentID, ViInt32 timeout);

LabVIEW Representation
Not yet supported
Visual Basic Representation

WaitForEndOfProcessing (ByVal instrumentID As Long,
ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsDl waitForEndOfProcessing (ByVal instrumentID As Int32,
ByVal timeout As Int32) As Int32

Programmer’s Reference Manual Page 130 of 130

	Introduction
	Message to the User
	Using this Manual
	Conventions Used in This Manual
	Warning Regarding Medical Use
	Warranty
	Warranty and Repair Return Procedure, Assistance and Support
	System Requirements

	Device Driver Function Reference
	Status values and Error codes
	API Function classification
	API Function descriptions
	AcqrsD1_accumulateData
	AcqrsD1_accumulateWform (DEPRECATED)
	AcqrsD1_acqDone
	AcqrsD1_acquire
	AcqrsD1_acquireEx
	AcqrsD1_averagedData
	AcqrsD1_averagedWform (DEPRECATED)
	AcqrsD1_bestNominalSamples
	AcqrsD1_bestSampInterval
	AcqrsD1_calibrate
	AcqrsD1_calibrateEx
	AcqrsD1_closeAll
	AcqrsD1_configAvgConfig
	AcqrsD1_configChannelCombination
	AcqrsD1_configControlIO
	AcqrsD1_configExtClock
	AcqrsD1_configFCounter
	AcqrsD1_configHorizontal
	AcqrsD1_configLogicDevice
	AcqrsD1_configMemory
	AcqrsD1_configMode
	AcqrsD1_configMultiInput
	AcqrsD1_configSetupArray
	AcqrsD1_configTrigClass
	AcqrsD1_configTrigSource
	AcqrsD1_configTrigTV
	AcqrsD1_configVertical
	AcqrsD1_errorMessage
	AcqrsD1_forceTrig
	AcqrsD1_forceTrigEx
	AcqrsD1_getAvgConfig
	AcqrsD1_getChannelCombination
	AcqrsD1_getControlIO
	AcqrsD1_getExtClock
	AcqrsD1_getFCounter
	AcqrsD1_getHorizontal
	AcqrsD1_getInstrumentData
	AcqrsD1_getInstrumentInfo
	AcqrsD1_getMemory
	AcqrsD1_getMode
	AcqrsD1_getMultiInput
	AcqrsD1_getNbrChannels
	AcqrsD1_getNbrPhysicalInstruments
	AcqrsD1_getSetupArray
	AcqrsD1_getTrigClass
	AcqrsD1_getTrigSource
	AcqrsD1_getTrigTV
	AcqrsD1_getVersion
	AcqrsD1_getVertical
	AcqrsD1_init
	AcqrsD1_InitWithOptions
	AcqrsD1_multiInstrAutoDefine
	AcqrsD1_multiInstrDefine
	AcqrsD1_multiInstrUndefineAll
	AcqrsD1_procDone
	AcqrsD1_processData
	AcqrsD1_readCharSequence (DEPRECATED)
	AcqrsD1_readCharWform (DEPRECATED)
	AcqrsD1_readData
	AcqrsD1_readFCounter
	AcqrsD1_readRealSequence (DEPRECATED)
	AcqrsD1_readRealWform (DEPRECATED)
	AcqrsD1_reportNbrAcquiredSegments
	AcqrsD1_reset
	AcqrsD1_resetDigitizerMemory
	AcqrsD1_restoreInternalRegisters
	AcqrsD1_setLEDColor
	AcqrsD1_setSimulationOptions
	AcqrsD1_stopAcquisition
	AcqrsD1_stopProcessing
	AcqrsD1_waitForEndOfAcquisition
	AcqrsD1_waitForEndOfProcessing

