

© 2005 - 2015 JNetDirect, Inc. All rights reserved.

JNetDirect Combine™

Introductory Guide

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 2

JNetDirect Combine
TM

 Copyright and Disclaimer ... 3

Key Features of JNetDirect Combine™ ... 4

Containers and Environments ... 6

Introduction ... 6

Containers ... 6

Static vs. Dynamic Containers .. 8

Environments .. 12

The Dev-QA-Production Release Process .. 16

Best Practices I: Sharing Environments and Containers by using a Combine Repository

with Dynamic Containers ... 22

Best Practices II: Tracking Deployments and DB Changes by Using a Change History

Repository ... 23

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 3

JNetDirect Combine
TM

 Copyright and Disclaimer

This document and all sample applications therein, are provided as guidelines and for

informational purposes to JNetDirect Combine
TM

 users only. JNetDirect, Inc. makes no

warranties, either expressed or implied, in this document. Information in this document,

including samples, URL and other Internet Web site references, is subject to change without

notice. The risks of using this document or the results of the use of this document are the sole

responsibility of the user.

The primary purpose of this document, as well as the samples, diagrams, concepts, and all

other content provided in this document, is to demonstrate reasonable use of particular

features of Combine
TM

. Most samples, diagrams, and other examples provided in this

document do not include all of the code and operational scenarios that would normally be

found in a full production system, as this document is only focused on concepts and

fundamental associated with the basic operation of Combine
TM

 Technical support is not

available for the samples demonstrated in this document.

Unless otherwise noted, the example companies, environments, organizations, databases,

people, and events depicted throughout this document are fictitious and are not associated

with any real company, environment, organization, database, person, or event is intended or

should be inferred. Complying with all applicable copyright laws is the responsibility of the

user. Without limiting the rights under copyright, no part of this document may be

reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by

any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of JNetDirect, Inc.

JNetDirect, Inc. may have patents, patent applications, trademarks, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any written license agreement from JNetDirect, Inc., the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other

intellectual property.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 4

Key Features of JNetDirect Combine™

Combine™ is the first development, change management, and code deployment tool

designed to automate the lifecycle of database projects and provide agile code deployment

solutions from Development, to Quality Assurance (QA), and to Production. Combine™ is

designed to scale as it allows developers to collaborate and work on DB project releases

together, and then deploy the entire database code release by a click of a button on any

number of databases and servers in parallel. Combine™ is therefore extremely useful for

small, mid-size, and up to very large SQL server environments. Additional features in

Combine™ include the ability to run queries and execute scripts on any number of databases

and servers in parallel (patent-pending technology). Some of these novel features are

highlighted below and are discussed throughout this document (for a complete list of features,

please visit our Web site at http://www.jnetdirect.com):

1. Collaborative code development, code packaging, one-click package deployment on all

databases and servers - Using Combine™ (much like Visual Studio® for .Net

developers), database developers can use source control and change management systems

to collaborate and compose project releases together. When done, developers package all

SQL scripts, queries, and any other SQL code components for their release into a single

code package file. Each script in the package is associated with a group of target

databases. The entire code package is then deployed by a click of a button onto any

number of databases and servers, as the tool will automatically connect and execute each

script on all the appropriate target databases in the group.

2. Easy transfer and agile package deployment between Dev, QA, and Production -

Combine™ allows users to map groups of target databases in Development to a

corresponding group of target databases in QA and in Production. Each group of target

databases is identified by a user-configured name. When developers compose a code

package, the name of the desired target database group is assigned to each script.

Packages are composed and configured once by the developers. When the code package

is ready, developers send the package file to QA. QA engineers can open the package

using Combine™, review the content and settings of the package, and deploy the package

on the target databases and servers in the QA environment without modifying the

package settings. In addition, QA engineers can choose to deploy only parts of the

package, or deploy code only on selected databases and servers. The same concept

applies when sending packages to Production. Furthermore, deployment results from

each environment can be saved into a single file, stored for auditing purposes, or sent

back to the developers.

3. Run queries on multiple databases and servers in parallel - Users can run scripts and

queries against a group of target databases on any number of servers in parallel, or

against a single database. When running queries against multiple databases, Combine™

automatically connects and executes the queries on all target databases. Results returned

from all databases are then formatted and displayed together, and can be automatically

saved to central database, for monitoring and reporting applications.

http://www.jnetdirect.com/

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 5

4. Easy configuration and maintenance - Combine™ does not require a designated

repository database. To make best use of the tool, users can configure the groups of target

databases in Dev, QA, and Production by using a rich set of built-in configuration options

and features. If users already maintain a repository database with information about their

databases, the tool can be easily configured to retrieve the group settings by querying the

repository (to find out more about the repository database, or to implement such a

repository, please mail to JNetDirect support at support@jnetdirect.com). In addition,

once a single person configures the target groups, these settings can be exported and

imported by other users.

5. With security in mind - Combine is designed to be secure. Developers, QA engineers,

and Production DBAs only need to configure the sets of target databases in their own

environment. Moreover, users can choose whether to store user-credentials using strong

encryption techniques or to require credentials to be entered at each use.

mailto:support@jnetdirect.com

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 6

Containers and Environments

Introduction

Containers are used in Combine to deploy SQL code and execute queries against multiple

databases in parallel, and retrieve unified results from all queried databases. Containers and

Environments are extremely useful for passing SQL code packages between the Development

(Dev), Quality Assurance (QA), and Production SQL server environments, and easily

deploying release packages on any number of databases and servers in those environments.

The use of Containers and Environments in the Dev-QA-Production change management and

code release process is described below, and continued in the section titled The Dev-QA-

Production Release Process.

General Note: Be sure to register all servers that you will be working with in the Object

Browser in Combine before defining Containers or executing code in the editor. Combine

servers are used throughout the application and hold the connection information for all

databases and servers.

Containers

A Container is a group of one or more databases, either on the same server or on different

servers. Each database in the group is identified by the database name and its SQL server

instance name (or IP address). A single database can belong to several Containers. In other

words, a database that belongs to one Container can belong to other Containers as well.

Containers allow users to group multiple databases into a single entity so that scripts and

queries could be run against all databases in the Container in parallel. Throughout this

document, the term script is used to denote all types of SQL and T-SQL statements, such as

table and user creation statements, stored procedure and SQL job execution commands,

queries, or any other data definition or data manipulation statements.

Think of the group of databases in a Container as the set of target databases on which SQL

scripts will be executed. To deploy code and scripts on several databases simultaneously, the

user is only required to create a Container that consists of all desired target databases, and

then execute the script against the Container (see samples and figures below). Combine will

then automatically connect to all databases defined in the Container and execute the script on

those databases. In addition, if any result sets (e.g., data sets, data tables) are returned from

one or more target databases in response to the deployment of the script, Combine will

automatically format and aggregate the results returned from all servers, and will then display

the unified results to the user.

As an example, consider the following diagram that describes three different Containers:

Container1 consists of all user-defined databases on the DevSvr1 and DevSvr2 servers. The

ExecutingScripts.ExecutingMultipleDatabases.htm
ExecutingScripts.ExecutingMultipleDatabases.htm
PackageExplorer.ExecutingCodePackages.htm
ContainersAndEnvironments.Environments.htm
ContainersAndEnvironments.TheDevQAProdReleaseProcess.htm
ContainersAndEnvironments.TheDevQAProdReleaseProcess.htm

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 7

target databases of Container2 are the DBA databases named DBAMaint on the two servers,

and Container3 holds the set of Web databases, namely Web1Dev and Web2Dev. With these

mappings, the user can now run scripts and queries against several databases in parallel. For

instance, if we execute the SQL statement SELECT * FROM sysindexes against

Container1, then the content of sysindexes will be returned from all six databases in the

container. Similarly, running a script that creates a stored procedure against Container3 will

create the stored procedure on the Web1Dev and Web2Dev databases at the same time.

Additional examples are provided in the images below. By running scripts and queries

against Containers, database administrators can easily collect information about indexes, jobs,

and all other database objects by a click of a button.

Figure 1: An example of mapping databases to Containers.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 8

Figure 2: The results displayed by Combine after selecting top 5 rows from

sysindexes and running EXEC msdb..sp_help_job against the DBA Databases

container.

Static vs. Dynamic Containers

Two types of Containers are supported, Static Containers and Dynamic Containers. Each

type uses a different technique to store and identify the set of target databases.

A Static Container consists of a fixed group of databases. Databases are added to the Static

Container by specifying the typical connection information, such as the database name and

SQL server name (or IP address). To add or remove databases from the Static Container, the

user must open the Container Manager and manually edit the Container configuration.

When scripts and queries are run against a Static Container, Combine will retrieve the

identifiers (i.e., database and server names) of the target databases from the Container

configuration, and then run the scripts on all those databases using the authentication type

and credentials entered for the Container. Static Containers are therefore useful to store

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 9

groups of databases that are relatively "static" (i.e., when databases that belong to the group

are not created, dropped, or moved between servers frequently). To demonstrate this fact,

consider the following counter example where Static Containers should not be used: A Static

Container named "MSDB Databases" consists of all msdb databases over all servers in the

production environment, and assume that a new instance of SQL server is installed every day.

In order to ensure that the "MSDB Databases" Static Container indeed holds all msdb

databases, the user must manually add the msdb database to the Container for each new

server, daily. This maintenance overhead can be overcome by using Dynamic Containers.

Note: The main advantage of Dynamic Container is that they allow users to share

Environment and Container information from a single data repository. Using Dynamic

Containers, developers only need to configure the Environments and Containers in their user-

interface once, and a single person can maintain the data repository from that point on.

Dynamic Containers assume that a list of servers and databases is already available in some

tables. Throughout, we use the term Repository, or Reference, to denote the database in

which the server-to-database mappings reside. When a script is run against a Dynamic

Container, Combine first connects to the Reference database and runs a user-provided query

that returns the identifiers of all target databases. Then, as in the case of Static Containers,

Combine connects and deploys the script on all target databases.

The following steps are required to create a Dynamic Container:

1. Locate the Reference database and table(s) that holds the server and database

information.

2. Write a query that returns the database and server names for all target databases.

3. Create a Static Container and add the Reference database to it. The Reference

database should be the only database in this Container.

4. Use the Dynamic Container Wizard to create the Dynamic Container. When

prompted, associate the Static Container in (3) and the query in (2) with the

Dynamic Container.

The example below illustrated the concept of Dynamic Containers. Here, we create a

Dynamic Container with five DBAMaint target databases on five different servers, and call

this Container "DBA Databases". First, a Reference database is required. Assume that the

ServerRepository database on ProdSvr5 has the server-database mappings, and that the data

is stored in a table named DBServers (the content of the DBServers table is given in Figure

4).

ContainerManager.DynamicContainerWizard.htm

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 10

Figure 3: Using the ServerRepository Reference database to build the "DBA

Databases" Dynamic Container.

Figure 4: The server-database mappings in table DBServers on the Reference

database.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 11

Now, either one of the following queries (or many other queries) will return the set of

DBAMaint target databases:

SELECT NameOfServer AS ServerName,

NameOfDatabase AS DatabaseName

FROM DBServers

WHERE IsDBA = 1

SELECT DISTINCT NameOfServer AS ServerName,

'DBAMaint' AS DatabaseName

FROM DBServers

Next, we create a Static Container (named DBServerMap in Figure 3) that holds the

ServerRepository target database. Finally, we create the Dynamic Container using the

Dynamic Container Wizard, and when prompted, assign the DBServerMap Container and the

query as part of the Dynamic Container configuration. Once the "DBA Databases" Container

is created, every time scripts are run against this Container, Combine performs the steps in

Figure 5 to deploy code on all DBAMaint target databases.

Figure 5: The steps taken by Combine to execute a script against the "DBA

Databases" Dynamic Container.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 12

Environments

Each Environment consists of any number of Static and Dynamic Containers, with the

restriction that Container names in a single Environment must be unique. However,

Containers that belong to different Environments can (and in many cases should) have the

same name. Environments are introduced in Combine to relate groups of databases (i.e.,

Containers) between separate physical SQL server environments. The primary benefit of

Environments is that they allow developers, software testers, and DB administrators to pass

SQL scripts and code packages between Development, QA, and Production, respectively,

while guaranteeing fast deployment on each environment.

For now, consider three Environments, namely the Development (Dev) environment, the

Quality Assurance (QA) environment, and the Production environment. In most companies,

databases and servers used by developers to write SQL code are separate from the databases

and servers used by software engineers in QA, which are also distinct from the databases and

servers in production. By using Combine Environments it is now possible to map groups of

databases between these physical environments on the basis of their functionality.

The Development environment - Assume that developers write code and test scripts on two

SQL servers, namely the DevSvr1 and DevSvr2 servers (see Figure 6). The DevSvr1 server

contains the FinanceDev, Web1Dev, and DBAMaint user-databases, whereas the DevSvr2

server contains the Billing, Web2Dev, and DBAMaint user-databases. For the purpose of this

example, assume that the schema in the Web1Dev and Web2Dev databases is similar, so that

scripts developed for Web1Dev must also be deployed on the Web2Dev database.

Figure 6: Containers and their target databases in the Development

environment.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 13

The QA environment - In the QA environment, assume that three SQL servers are available,

namely QASvr1, QASvr2, and QASvr3, as illustrated in Figure 7. When scripts written by

developers for the Billing database (in Development) are passed to QA, these scripts must

then be deployed on the Billing database on the QASvr2 server. Similarly, scripts composed

for the FinanceDev database on the DevSvr1 server are later deployed on the FinanceQA

database in the QA environment. In the same manner, code developed on the Web1Dev and

Web2Dev databases is then deployed on the Web1QA, Web2QA, Web3QA and Web4QA

databases in QA, and the same concept applies to the DBAMaint databases as well.

Figure 7: Containers and their target databases in the QA environment.

The Production environment - Releases that pass all quality assurance tests are forwarded to

production for final deployment. Here, assume that there are four SQL servers: ProdSvr1,

ProdSvr2, ProdSvr3, and ProdSvr4 (see Figure 8). In production, scripts developed for the

Billing database are deployed on the Billing database on the ProdSvr4 server; scripts written

for the FinanceDev database are now executed on the Finance1Prod and Finance2Prod

databases, whereas all Web scripts are now run on five production databases, namely

Web1Prod, Web2Prod, Web3Prod, Web4Prod, and Web5Prod. The same idea is followed by

the DBAMaint databases.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 14

Figure 8: Containers and their target databases in the Production environment.

To summarize, the following figure describes the flow of code deployment between Dev, QA,

and Production, where each color denotes the appropriate group of target databases (i.e.,

Containers) across all environments.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 15

Figure 9: Database groups and the flow of code releases between the Dev, QA,

and Production environments.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 16

The Dev-QA-Production Release Process

Change management and code release processes are supported in Combine through several

key features:

1. Code packages: A code package consists of scripts. Each script in the package is

assigned to a Container. When running a code package, each script will be deployed on

all target databases in the associated Container.

2. Passing code packages between Dev, QA, and Production: Scripts are packaged

into a single .cpa file. This file contains the text of the scripts and the name of the

Container assigned to each script. Entire releases can therefore be saved as a single file

that can be passed, viewed, edited, and deployed by individuals running Combine. More

importantly, once all Containers are configured properly in the Dev, QA, and Production

environments in the Combine Container Manager, each Container in Dev has a

corresponding Container (i.e., Container with the same name) in QA and a matching

Container in Production. This fact ensures fast release deployment for the following

reasons: After developers write the release code and build a code package, software

engineers in QA can easily open the package and deploy the entire package on the servers

in QA by a click of a button, without altering the package content. Since each script in

the package is already associated with a Container name, code deployed on target

databases of Containers in Development is now deployed on the target databases of the

corresponding Containers in QA. This principle also applies when passing packages from

QA to Production. Examples that demonstrate the transfer and fast deployment of code

packages between Dev, QA, and Production are provided below.

3. Sharing Environments and Container settings: Once Environments and Containers

are defined, users can utilize a Combine Repository to share the definitions and settings.

For additional information please refer to the Best Practices section below.

Important note: The three Environments (Dev, QA, Production) need not be defined on each

Machine running Combine: Developers only need the Dev Environment with the correct

Containers settings, QA engineers need only have the QA Environment with Containers

having the same name as in Dev, and Production DBAs only need the Production

Environment, again, with same Containers names as in Dev and QA.

As an example, below is a snapshot of the Container Manager that stores the configuration of

all three Environments and Containers for the physical Dev, QA, and Production

environments previously described in Figure 9 when all Containers are Static Containers.

ContainerManager.Introduction.htm
ContainersAndEnvironments.Environments.htm

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 17

Figure 10: Environments and Containers in the Container Manager where the

settings of all three Environments are defined in Combine. Note that the folders

names and Container names must be the same in the Dev, QA, and Production

Environments.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 18

As stated earlier, it is sufficient for developers to maintain the Dev Containers, for QA

engineers to maintain the Containers that belong to the QA Environment, and for DBAs to

keep the Production Environment Container settings. In this case, the following figure shows

the Container Manager viewed by developers, QA engineers, and DBAs, respectively, when

all the Containers are Static Containers. Keep in mind that Containers in different

Environments need not be of the same type - Static Containers in one Environment could

correspond to Dynamic Containers in another Environment as long as they have the same

Container name (and they are placed under folders with same names in the Container

Manager).

Figure 11: Environments and Containers in the Container Manager seen by

developers, QA engineers, and Production DBAs, when users only configure

their own Environment.

Passing packaged between Dev, QA, and Production using Combine guarantees fast

deployment in each environment as now demonstrated (see the section titled Code Packages

to learn more about packages): Consider the code package in Figure 12. Each script in the

package is associated with a Container name. In this sample package, scripts 01 to 04 are

associated with the Web Databases Container, scripts under the Finance Databases folders

are associated with the Finance Databases Container, scripts under DBA Databases as well as

the script 08 are mapped to the DBA Databases Container, and script 07 is associated with

the Billing Databases Container.

ContainerManager.CreatingStaticContainers.htm
ContainerManager.CreatingDynamicContainers.htm

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 19

Figure 12: A sample package that deploys scripts to all databases and servers in

the Web Databases, Billing Databases, Finance Databases, and DBA Databases

Containers.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 20

Notice that each script in the sample package of Figure 12 includes a SQL statement that

verifies that changes and objects created in the script are indeed deployed successfully. For

example, once a table is created the script verifies that a valid OBJECT_ID is available for

the new table (i.e., OBJECT_ID(TableName) IS NOT NULL) and returns a single row to

inform the user of the rollout results.

Scripts in the package are executed according to their order in the package tree. When

developers run the package, scripts will be deployed on databases in the Containers of the

Development Environment listed in Figure 11, and the deployment results are given in Figure

13. When the package is passed to QA engineers, the package is deployed by a click of a

button on all the target databases in the QA Environment shown in Figure 11 without making

any modification to the package configuration or package content. Execution results in the

QA Environment are presented in Figure 14. In the same manner, after the package is sent to

Production, DBAs need not make any package changes and can deploy the entire package on

all target databases in the Production Environment by a click of a button as shown in Figure

16 below. Notice that the ContainerServer and ContainerDatabase columns in the grids result

in the images below are added automatically by Combine to reflect the target database from

which each row in the grid is returned). Results returned from the package execution are

displayed as aggregated results from all target databases and also include the execution plan

and results for each individual database.

Notes:

1. Once a package is executed, Combine performs a set of tests and verifications to

ensure that scripts in the package will be executed successfully. For example, database

and server connectivity as well as proper authentication and credentials are verified for

all databases involved in the package execution before Combine deploys any of the

scripts in the package. If any tests and checks are not successful, Combine will notify you

of all issues and will not execute any portions of the package. In addition, several screens

are displayed before the package scripts are deployed to provide users with better control

and visibility to the execution. These screens and many other details involving the

package execution can be found in the Combine User Manual.

2. If multiple Environments are used to deploy code from one client machine as in the

example of Figure 10, then using the Container Manager the user must set the Active

Environment against which the package will be deployed. At any given time, only a

single Environment can be active and the active Environment is the one displayed in bold

letters in the Container Manager (for example, in Figure 10 the Development

Environment is the active Environment). By setting the appropriate active Environment

in the Container Manager, the Dev-QA-Production release process can also be followed

from a single client machine that has access to all databases and servers.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 21

Figure 13: Execution results of the code package in Figure 12 against the

Development Environment.

Figure 14: Non-sorted execution results of the code package in Figure 12 against

the QA Environment. Results can be sorted using tools in the grid.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 22

Figure 15: Non-sorted execution results of the code package in Figure 12 against

the Production Environment. Results can be sorted using tools in the grid.

Best Practices I: Sharing Environments and Containers

by using a Combine Repository with Dynamic Containers

Environments and Containers defined under the MyEnvironments node in the Container

Manager are stored on the local user machine. This includes Environment names,

Environment Variables, Container names, databases in Static Containers, as well as the

Reference (Repository) Static Container and the Queries used by Dynamic Containers.

In order to share the settings of Environments and Containers, you can use a Combine

Repository (see installation scripts and manual for the repository on SQL Farms’ website or

in the application F1 help) and add it to the Container Manager. Once added, you can define

your Environments and Container settings directly in the repository. Alternatively, you can

first create Environments and Containers under the MyEnvironments node and then copy-

paste them to the repository. Once the settings are available in the repository, then all users

can share the same configurations and settings.

© 2005 - 2015 JNetDirect, Inc. All rights reserved.
Page 23

The repository includes three built in roles: read-only, change managers, and admins. Using

these roles you can restrict the access and update permissions to the repository content. For

additional information please refer to the Combine Repository user manual and installation

scripts on SQL Farms’ website or in the application F1 help.

Best Practices II: Tracking Deployments and DB Changes

by Using a Change History Repository

Combine™ enables users to install a Change History repository and then record deployments

and package executions in a central repository database, for tracking and auditing purposes.

Users can then access the repository using the Change History tool to view and search

information relating to previously deployed code packages.

The scripts to create a Change History Repository database are available on SQL Farms’

website, as well as in the SQL Farm Combine application installation directory. For

additional information, please refer to the built-in F1 help in the application.

