JNetDirect Combine™
Introductory Guide

Combine

Database tools that Scale

_ Inc._

Combine \@ge

Database tools that Scale

INetDirect Combine™ Copyright and DISCIAIMETceviveeeeeeeeeeeeeeeeeeeeeeeeeee e esee e 3

Key Features of INetDIreCt Combine™cccooiiiiiiiiinieiee e 4

Containers and ENVIFONMENTScouiiiiiieieie ettt b anes 6
INEFOTUCTION ...ttt ettt b et e e bt e b e e st e sbeenbeeneesneenteaneeas 6
(O00] 01 1- U 1< £ TSSO 6
Static VS. DYNAMIC CONAINEISuiiiiiieieeeiee et 8
ENVITONMIENES ..ttt bbbttt bbbt ne e 12
The Dev-QA-Production REIEASE PrOCESSciveiiiieiierie ettt 16
Best Practices I: Sharing Environments and Containers by using a Combine Repository
WIth DYNAMIC CONTAINETScviiiiiiiiiieiieiei ettt 22
Best Practices II: Tracking Deployments and DB Changes by Using a Change History
R E] 0011] YRS 23

Page 2
© 2005 - 2015 JNetDirect, Inc. All

Combine

Database tools that Scale

Page 3

@

@
)

7

JNetDirect Combine™ Copyright and Disclaimer

This document and all sample applications therein, are provided as guidelines and for
informational purposes to JNetDirect Combine™ users only. JNetDirect, Inc. makes no
warranties, either expressed or implied, in this document. Information in this document,
including samples, URL and other Internet Web site references, is subject to change without
notice. The risks of using this document or the results of the use of this document are the sole
responsibility of the user.

The primary purpose of this document, as well as the samples, diagrams, concepts, and all
other content provided in this document, is to demonstrate reasonable use of particular
features of Combine™. Most samples, diagrams, and other examples provided in this
document do not include all of the code and operational scenarios that would normally be
found in a full production system, as this document is only focused on concepts and
fundamental associated with the basic operation of Combine™ Technical support is not
available for the samples demonstrated in this document.

Unless otherwise noted, the example companies, environments, organizations, databases,
people, and events depicted throughout this document are fictitious and are not associated
with any real company, environment, organization, database, person, or event is intended or
should be inferred. Complying with all applicable copyright laws is the responsibility of the
user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by
any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of JNetDirect, Inc.

JNetDirect, Inc. may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from JNetDirect, Inc., the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

- @
Combine | a2z
Database tools that Scale =

Page 4

Key Features of JNetDirect Combine™

Combine™ is the first development, change management, and code deployment tool
designed to automate the lifecycle of database projects and provide agile code deployment
solutions from Development, to Quality Assurance (QA), and to Production. Combine™ is
designed to scale as it allows developers to collaborate and work on DB project releases
together, and then deploy the entire database code release by a click of a button on any
number of databases and servers in parallel. Combine™ is therefore extremely useful for
small, mid-size, and up to very large SQL server environments. Additional features in
Combine™ include the ability to run queries and execute scripts on any number of databases
and servers in parallel (patent-pending technology). Some of these novel features are
highlighted below and are discussed throughout this document (for a complete list of features,
please visit our Web site at http://www.jnetdirect.com):

1. Collaborative code development, code packaging, one-click package deployment on all
databases and servers - Using Combine™ (much like Visual Studio® for .Net
developers), database developers can use source control and change management systems
to collaborate and compose project releases together. When done, developers package all
SQL scripts, queries, and any other SQL code components for their release into a single
code package file. Each script in the package is associated with a group of target
databases. The entire code package is then deployed by a click of a button onto any
number of databases and servers, as the tool will automatically connect and execute each
script on all the appropriate target databases in the group.

2. Easy transfer and agile package deployment between Dev, QA, and Production -
Combine™ allows users to map groups of target databases in Development to a
corresponding group of target databases in QA and in Production. Each group of target
databases is identified by a user-configured name. When developers compose a code
package, the name of the desired target database group is assigned to each script.
Packages are composed and configured once by the developers. When the code package
is ready, developers send the package file to QA. QA engineers can open the package
using Combine™, review the content and settings of the package, and deploy the package
on the target databases and servers in the QA environment without modifying the
package settings. In addition, QA engineers can choose to deploy only parts of the
package, or deploy code only on selected databases and servers. The same concept
applies when sending packages to Production. Furthermore, deployment results from
each environment can be saved into a single file, stored for auditing purposes, or sent
back to the developers.

3. Run queries on multiple databases and servers in parallel - Users can run scripts and
queries against a group of target databases on any number of servers in parallel, or
against a single database. When running queries against multiple databases, Combine™
automatically connects and executes the queries on all target databases. Results returned
from all databases are then formatted and displayed together, and can be automatically
saved to central database, for monitoring and reporting applications.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

http://www.jnetdirect.com/

Combine |

Database tools that Scale

Page 5

25
%°

4. Easy configuration and maintenance - Combine™ does not require a designated
repository database. To make best use of the tool, users can configure the groups of target
databases in Dev, QA, and Production by using a rich set of built-in configuration options
and features. If users already maintain a repository database with information about their
databases, the tool can be easily configured to retrieve the group settings by querying the
repository (to find out more about the repository database, or to implement such a
repository, please mail to JNetDirect support at support@jnetdirect.com). In addition,
once a single person configures the target groups, these settings can be exported and
imported by other users.

5. With security in mind - Combine is designed to be secure. Developers, QA engineers,
and Production DBASs only need to configure the sets of target databases in their own
environment. Moreover, users can choose whether to store user-credentials using strong
encryption techniques or to require credentials to be entered at each use.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

mailto:support@jnetdirect.com

Combine

Database tools that Scale

Page 6

@

@
)

7

Containers and Environments

Introduction

Containers are used in Combine to deploy SQL code and execute gueries against multiple
databases in parallel, and retrieve unified results from all queried databases. Containers and
Environments are extremely useful for passing SQL code packages between the Development
(Dev), Quality Assurance (QA), and Production SQL server environments, and easily
deploying release packages on any number of databases and servers in those environments.
The use of Containers and Environments in the Dev-QA-Production change management and
code release process is described below, and continued in the section titled The Dev-QA-
Production Release Process.

General Note: Be sure to register all servers that you will be working with in the Object
Browser in Combine before defining Containers or executing code in the editor. Combine
servers are used throughout the application and hold the connection information for all
databases and servers.

Containers

A Container is a group of one or more databases, either on the same server or on different
servers. Each database in the group is identified by the database name and its SQL server
instance name (or IP address). A single database can belong to several Containers. In other
words, a database that belongs to one Container can belong to other Containers as well.

Containers allow users to group multiple databases into a single entity so that scripts and
queries could be run against all databases in the Container in parallel. Throughout this
document, the term script is used to denote all types of SQL and T-SQL statements, such as
table and user creation statements, stored procedure and SQL job execution commands,
queries, or any other data definition or data manipulation statements.

Think of the group of databases in a Container as the set of target databases on which SQL
scripts will be executed. To deploy code and scripts on several databases simultaneously, the
user is only required to create a Container that consists of all desired target databases, and
then execute the script against the Container (see samples and figures below). Combine will
then automatically connect to all databases defined in the Container and execute the script on
those databases. In addition, if any result sets (e.g., data sets, data tables) are returned from
one or more target databases in response to the deployment of the script, Combine will
automatically format and aggregate the results returned from all servers, and will then display
the unified results to the user.

As an example, consider the following diagram that describes three different Containers:
Containerl consists of all user-defined databases on the DevSvrl and DevSvr2 servers. The

© 2005 - 2015 INetDirect, Inc. All rights reserved.

ExecutingScripts.ExecutingMultipleDatabases.htm
ExecutingScripts.ExecutingMultipleDatabases.htm
PackageExplorer.ExecutingCodePackages.htm
ContainersAndEnvironments.Environments.htm
ContainersAndEnvironments.TheDevQAProdReleaseProcess.htm
ContainersAndEnvironments.TheDevQAProdReleaseProcess.htm

Combine

Database tools that Scale

Page 7

g

target databases of Container2 are the DBA databases named DBAMaint on the two servers,
and Container3 holds the set of Web databases, namely Web1Dev and Web2Dev. With these
mappings, the user can now run scripts and queries against several databases in parallel. For
instance, if we execute the SQL statement SELECT * FROM sysindexes against
Containerl, then the content of sysindexes will be returned from all six databases in the
container. Similarly, running a script that creates a stored procedure against Container3 will
create the stored procedure on the Web1Dev and Web2Dev databases at the same time.
Additional examples are provided in the images below. By running scripts and queries
against Containers, database administrators can easily collect information about indexes, jobs,
and all other database objects by a click of a button.

S| Nl
DevSvri DevSvr2
i Master
Nt S
msdb msdb
e i
DBAMaint DBAMaint
« - — —
Web1Dev Web2Dev
S———r ——”
FinanceDev Billing

Container1 — user-defined databases

%

Container2 — DBA databases

Container3 — Web databases

Figure 1: An example of mapping databases to Containers.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

Combine |

Database tools that Scale

Page 8

<l Combine EEX

File Edit View Package Container Query Tools Window Help

DB S Ha XG@B g A

= 8 ,3\; 2 %

el /@ Untitled 3 * \DBA Databases | ¥ x ey

& 1] SELECT TOP 5 © FROH sysindexes = (=
- 8

2 2 @

= ¢ My Envionments =
3 My 5 EXEC msdb..sp_help_job F

= % Development
BB} DB 4 Databases
|J DEVSVR1 [DBAMaint]
| J DEVSVR2 [DBAMaint]
= 7 UserDefined Databases
| J DEVSVR1 [DBAMaint]
| J DEVSVR1 [FinanceDev]

[J DEVSVR1 [Web1Dev]

| DEVSVR2 [Biling]

[J DEVSVR2 [DBAMaint]

| DEVSVR2 [Web2Dev]
=7 Web Databases

[J) DEVSVR1 [Web1Dev]

| DEVSVR2 [Web2Dev]

] ioareoaicd T- JETIENENENE M
5 Aggiegated Ta E

& B Individual Res ContainerServer ContainerDatabase id status first indid o0t minlen K
= DEvsVR1 DEVSVR1 DBAMaint 1 18 0080000000100 1 00B000000CN00 42 1
5 Table1 || DEVSVA1 DBAMaint 1 2 0:0F0000000100 2 00F0000000100 7 3
Lab‘elz DEVSVR1 DBAMaint 1 0 0:1F0000000T00 3 0x1F0000000100 9 2
hx Mce‘:; || DEvavR1 DBAMaint 2 18 0+130000000100 1 040E0000000100 B2 2
® [DEVSVR2 DEVSVR1 DBAMaint 2 0 0x400000000100 = 255 0x400000000100 O 0
DEVSVR2
DEVSVR2 = W NN DA
DEVSVR2 - - = — -
e i ContainerServer ContainerDatabase job_id originating_server name
DEVSVR2 DE: -5 DEVSVR1 DEVSVR1 DBAMaint 275b2a3-752-4755-b0c4-31b9(244ad58 devswrl Check databases
‘ i Table 1 || DEVSVR1 DBAMaint 746438 efd5-4572-68ba 6118304287ct devswrl Check Server St
< LS Table 2|/ pevsvR2 DEAMaint 4a1b0 a-c02d-4eb3-9933-041eDbS78b devswi2 Check Server St
2.2 A
3 Results |2] Output g MZ‘::E' DEVSVR2 DBAMaint 743b38a1-cEa2-4498.b897b8dB17H0MIT devewi2 Check database:
) Container..] Package.. |4 Object Br.. | | Script Execution Completed # [DEVSVR2
51 [E] Package Output
DemoProject
< il

[Results [=] Output
Script Execution Completed

Figure 2: The results displayed by Combine after selecting top 5 rows from
sysindexes and running EXEC msdb..sp_help_job against the DBA Databases
container.

Static vs. Dynamic Containers

Two types of Containers are supported, Static Containers and Dynamic Containers. Each
type uses a different technique to store and identify the set of target databases.

A Static Container consists of a fixed group of databases. Databases are added to the Static
Container by specifying the typical connection information, such as the database name and
SQL server name (or IP address). To add or remove databases from the Static Container, the
user must open the Container Manager and manually edit the Container configuration.

When scripts and queries are run against a Static Container, Combine will retrieve the
identifiers (i.e., database and server names) of the target databases from the Container
configuration, and then run the scripts on all those databases using the authentication type
and credentials entered for the Container. Static Containers are therefore useful to store

© 2005 - 2015 INetDirect, Inc. All rights reserved.

@

)

-

Combine

Database tools that Scale

7

groups of databases that are relatively "static" (i.e., when databases that belong to the group
are not created, dropped, or moved between servers frequently). To demonstrate this fact,
consider the following counter example where Static Containers should not be used: A Static
Container named "MSDB Databases" consists of all msdb databases over all servers in the
production environment, and assume that a new instance of SQL server is installed every day.
In order to ensure that the "MSDB Databases" Static Container indeed holds all msdb
databases, the user must manually add the msdb database to the Container for each new
server, daily. This maintenance overhead can be overcome by using Dynamic Containers.

Note: The main advantage of Dynamic Container is that they allow users to share
Environment and Container information from a single data repository. Using Dynamic
Containers, developers only need to configure the Environments and Containers in their user-
interface once, and a single person can maintain the data repository from that point on.

Dynamic Containers assume that a list of servers and databases is already available in some
tables. Throughout, we use the term Repository, or Reference, to denote the database in
which the server-to-database mappings reside. When a script is run against a Dynamic
Container, Combine first connects to the Reference database and runs a user-provided query
that returns the identifiers of all target databases. Then, as in the case of Static Containers,
Combine connects and deploys the script on all target databases.

The following steps are required to create a Dynamic Container:

1. Locate the Reference database and table(s) that holds the server and database
information.

2. Write a query that returns the database and server names for all target databases.

3. Create a Static Container and add the Reference database to it. The Reference
database should be the only database in this Container.

4. Use the Dynamic Container Wizard to create the Dynamic Container. When
prompted, associate the Static Container in (3) and the query in (2) with the
Dynamic Container.

The example below illustrated the concept of Dynamic Containers. Here, we create a
Dynamic Container with five DBAMaint target databases on five different servers, and call
this Container "DBA Databases". First, a Reference database is required. Assume that the
ServerRepository database on ProdSvr5 has the server-database mappings, and that the data
is stored in a table named DBServers (the content of the DBServers table is given in Figure
4).

Page 9]]
© 2005 - 2015 INetDirect, Inc. All rights reserved.

ContainerManager.DynamicContainerWizard.htm

Combine

Database tools that Scale

=

(il =\

“DBA Databases”
Dynamic Container

Ll iis
m| = =™

Web1Prod

§

5
E
E
3

3
\

“DBServerMap”
Static Container

@ iDlEaiaiss ok

D iiss

)

Finance1Prod rod

Figure 3: Using the ServerRepository Reference database to build the "DBA
Databases' Dynamic Container.

NameOfServer IPAddress NameOfDatabase ISDBA . ..

ProdsSvrl 192.168.1.21 DBAMaint 1
ProdsSvrl 192.168.1.21 WeblProd 0
Prodsvr2 192.168.1.22 DBAMaint 1
ProdSvrz 192.168.1.22 WebZ2Prod 0
ProdSvr3 192.168.1.23 DBAMaint 1
ProdSvr3 192.168.1.23 Web3Prod 0
ProdSvr3 192.168.1.23 Web4Prod 0
ProdSvr4 192.168.1.24 DBAMaint 3
ProdSvr4d 192.168.1.24 Web5Prod 0
ProdSvrS 192.168.1.25 DBAMaint 1

Figure 4: The server-database mappings in table DBServers on the Reference
database.

Page 10
© 2005 - 2015 INetDirect, Inc. All righ

Combine \ogo

Database tools that Scale

Page 11

Now, either one of the following queries (or many other queries) will return the set of
DBAMaint target databases:

SELECT NameOfServer AS ServerName,
NameOfDatabase AS DatabaseName
FROM DBServers

WHERE IsDBA = 1

SELECT DISTINCT NameOfServer AS ServerName,
'DBAMaint' AS DatabaseName
FROM DBServers

Next, we create a Static Container (named DBServerMap in Figure 3) that holds the
ServerRepository target database. Finally, we create the Dynamic Container using the
Dynamic Container Wizard, and when prompted, assign the DBServerMap Container and the
query as part of the Dynamic Container configuration. Once the "DBA Databases" Container
IS created, every time scripts are run against this Container, Combine performs the steps in
Figure 5 to deploy code on all DBAMaint target databases.

2 i

g e) s ol
N e e S
ProdSvri ProdSvr2 ProdSvr3 ProdSvrd ProdSvrs
Master Master Master Master Master “DBA Databases”
" '] [' "‘ |’ I B ‘I I'] Dynamic Container
2 zosdh + e e t L 1. Run the query against the
target databases listed in the
| DBServerMap Static Container.
- & o L& € y
DBAMaint DBAMaint | DBAMaint DBAMaint | DBAMaint N 2. Get query results. The returned
- | - | results are the identifiers of the
l |] ‘ D target databases of the Dynamic
C iner.
Web1Prod Web2Prod Web3Prod WebS5Prod ‘ ServerRepository | | 3. Execute the script against all
pj [j U] 2 target database found in (2).
\\ L s s L “DBServerMap™
Finance1Prod Finance2Prod Web4Prod Billing | Static Container

Figure 5: The steps taken by Combine to execute a script against the "DBA
Databases' Dynamic Container.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

%5

Environments

Each Environment consists of any number of Static and Dynamic Containers, with the
restriction that Container names in a single Environment must be unique. However,
Containers that belong to different Environments can (and in many cases should) have the
same name. Environments are introduced in Combine to relate groups of databases (i.e.,
Containers) between separate physical SQL server environments. The primary benefit of
Environments is that they allow developers, software testers, and DB administrators to pass
SQL scripts and code packages between Development, QA, and Production, respectively,
while guaranteeing fast deployment on each environment.

Combine |«

Database tools that Scale

For now, consider three Environments, namely the Development (Dev) environment, the
Quality Assurance (QA) environment, and the Production environment. In most companies,
databases and servers used by developers to write SQL code are separate from the databases
and servers used by software engineers in QA, which are also distinct from the databases and
servers in production. By using Combine Environments it is now possible to map groups of
databases between these physical environments on the basis of their functionality.

The Development environment - Assume that developers write code and test scripts on two
SQL servers, namely the DevSvrl and DevSvr2 servers (see Figure 6). The DevSvrl server
contains the FinanceDev, Web1Dev, and DBAMaint user-databases, whereas the DevSvr2
server contains the Billing, Web2Dev, and DBAMaint user-databases. For the purpose of this
example, assume that the schema in the Web1Dev and Web2Dev databases is similar, so that
scripts developed for Web1Dev must also be deployed on the Web2Dev database.

‘\ e Ll i
5 S
& - | ’ —a =
5] SI§
DevSvr1 ng§v1'2
Ii;ster Nia;ler
msdb msdb
j j ' | “DBA Databases” container
DBAMaint DBAMaint |
== !
l J “Web Databases” container
| Web1Dev Web2Dev | -
“Finance Databases” container l] “Billing Databases” container
1| FinanceDev | Billing i

Figure 6: Containers and their target databases in the Development
environment.

Page 12]]
© 2005 - 2015 INetDirect, Inc. All rights reserved.

Combine

Database tools that Scale

2

The QA environment - In the QA environment, assume that three SQL servers are available,
namely QASvrl, QASvr2, and QASvr3, as illustrated in Figure 7. When scripts written by
developers for the Billing database (in Development) are passed to QA, these scripts must
then be deployed on the Billing database on the QASvr2 server. Similarly, scripts composed
for the FinanceDev database on the DevSvrl server are later deployed on the FinanceQA
database in the QA environment. In the same manner, code developed on the Web1Dev and
Web2Dev databases is then deployed on the Web1QA, Web2QA, Web3QA and Web4QA
databases in QA, and the same concept applies to the DBAMaint databases as well.

‘\J '] 'v lil

QAswrt QASvr2 QAswr3

I;aster ﬁaster h;laster

msdb | msdb msdb

l l l “DBA Databases” container

DéAMaint | DéAMaint DBAMaint §

g | L L “Web Databases” container
Web1QA | Web2QA Web3QA 2
Fit?anerA { Billing L W;MQA

“Finance Databases” container “Billing Databases” container

Figure 7: Containers and their target databases in the QA environment.

The Production environment - Releases that pass all quality assurance tests are forwarded to
production for final deployment. Here, assume that there are four SQL servers: ProdSvrl,
ProdSvr2, ProdSvr3, and ProdSvr4 (see Figure 8). In production, scripts developed for the
Billing database are deployed on the Billing database on the ProdSvr4 server; scripts written
for the FinanceDev database are now executed on the FinancelProd and Finance2Prod
databases, whereas all Web scripts are now run on five production databases, namely
Web1Prod, Web2Prod, Web3Prod, Web4Prod, and Web5Prod. The same idea is followed by
the DBAMaint databases.

Page 13]
© 2005 - 2015 INetDirect, Inc. All rights reserved.

Combine \@ge

Database tools that Scale

£2)
|§u §u|§uwm§$>

o §u{§ua«.ﬁ §"'7’

“DBA Databases” container

“Web Databases” container

/

“Finance Databases” container -)
“Billing Databases” container

/

3
I]
[E]
iLE

[|_WebdProd |

Figure 8: Containers and their target databases in the Production environment.

To summarize, the following figure describes the flow of code deployment between Dev, QA,
and Production, where each color denotes the appropriate group of target databases (i.e.,
Containers) across all environments.

Page 14
© 2005 - 2015 JNetDirect, Inc.

Combine \@%

Database tools that Scale

Development (Dev) environment Quality Aassurance (QA) environment

(ZT7Q
g Wt
~

L]~ [} ()
o i)

[T ™ H (5N

S

T

Figure 9: Database groups and the flow of code releases between the Dev, QA,
and Production environments.

Page 15
© 2005 - 2015 INetDirect, Inc. All rig

@

)

-

Combine

Database tools that Scale

7

The Dev-QA-Production Release Process

Change management and code release processes are supported in Combine through several
key features:

1. Code packages: A code package consists of scripts. Each script in the package is
assigned to a Container. When running a code package, each script will be deployed on
all target databases in the associated Container.

2. Passing code packages between Dev, QA, and Production: Scripts are packaged
into a single .cpa file. This file contains the text of the scripts and the name of the
Container assigned to each script. Entire releases can therefore be saved as a single file
that can be passed, viewed, edited, and deployed by individuals running Combine. More
importantly, once all Containers are configured properly in the Dev, QA, and Production
environments in the Combine Container Manager, each Container in Dev has a
corresponding Container (i.e., Container with the same name) in QA and a matching
Container in Production. This fact ensures fast release deployment for the following
reasons: After developers write the release code and build a code package, software
engineers in QA can easily open the package and deploy the entire package on the servers
in QA by a click of a button, without altering the package content. Since each script in
the package is already associated with a Container name, code deployed on target
databases of Containers in Development is now deployed on the target databases of the
corresponding Containers in QA. This principle also applies when passing packages from
QA to Production. Examples that demonstrate the transfer and fast deployment of code
packages between Dev, QA, and Production are provided below.

3. Sharing Environments and Container settings: Once Environments and Containers
are defined, users can utilize a Combine Repository to share the definitions and settings.
For additional information please refer to the Best Practices section below.

Important note: The three Environments (Dev, QA, Production) need not be defined on each
Machine running Combine: Developers only need the Dev Environment with the correct
Containers settings, QA engineers need only have the QA Environment with Containers
having the same name as in Dev, and Production DBAs only need the Production
Environment, again, with same Containers names as in Dev and QA.

As an example, below is a snapshot of the Container Manager that stores the configuration of
all three Environments and Containers for the physical Dev, QA, and Production
environments previously described in Figure 9 when all Containers are Static Containers.

Page 16]]
© 2005 - 2015 INetDirect, Inc. All rights reserved.

ContainerManager.Introduction.htm
ContainersAndEnvironments.Environments.htm

Combine \@2@

Database tools that Scale

F Container Manager

=% My Envuonments
B0 Jocrcioon=

=3 DBA Contalnels
(=1 3 DBA Databases
DEVSVR1 [DBAMaint]
-1] DEVSVR2 [DBAMaint)
=23 Financial Containers
B :} Biling Databases
[} DEVSYR2 [Biling]
EI 3 Finance Databases
‘[J DEVSYR1 [FinanceDev]
= 3 web Databases
DEVSVR1 [weblDev]
DEVSVR2Z [web2Dev]
El e Production
. 21 DBA Containers
= 7} DBA Databases
| | PRODSVR1 [DBAMaint]
: PRODSVRZ [DBAMaint)
1 PRODSVR3 [DBAMaint]
: PRODSVR4 [DBAMaint]
(=3 Financial Containers
9 :a Biling Databases
‘[PRODSVR [Biling)
B 3 Finance Databases
PRODSVR1 [FinancelProd)
1 4 PRODSYR2 [Finance2Prod)
=] :} ‘web Databases
PRODSYR1 [weblProd]
PRODSVR2 [Web2Prod]
PRODSYR3 [Web3Prod]
PRODSYR3 webdProd)
PRODSYR4 [WebSProd]

=@y QA
=3 DBA Containers
=} DBA Databases
1 DASVR1 [DBAMaint]
""" QASVRZ2 [DBAMaint)
(QASYR3 [DBAMaint]
=3 Financial Containers
B 3 Biling D atabases
| J DASVR2 [Biling]
E :} Finance Databases
[J QASYR1 [FinanceQA]
= 7] Web Databases

§ QASVRT [web10Q4]

QASVR2 [Web20A)
| J DASVR3 [web30A]
|) DASVR3 [webdDa]

Figure 10: Environments and Containers in the Container Manager where the

settings of all three Environments are defined in Combine. Note that the folders

names and Container names must be the same in the Dev, QA, and Production
Environments.

Page 17
© 2005 - 2015 JNetDirect, Inc. All rights re

Combine

Database tools that Scale

As stated earlier, it is sufficient for developers to maintain the Dev Containers, for QA
engineers to maintain the Containers that belong to the QA Environment, and for DBAS to
keep the Production Environment Container settings. In this case, the following figure shows
the Container Manager viewed by developers, QA engineers, and DBAS, respectively, when
all the Containers are Static Containers. Keep in mind that Containers in different
Environments need not be of the same type - Static Containers in one Environment could
correspond to Dynamic Containers in another Environment as long as they have the same
Container name (and they are placed under folders with same names in the Container

Manager).
Container Manager >
Eaffey 2 & 2 &
= ’_‘, My Environments = “’ My Environments = ‘, My Environments
=L 40 velopmen] @ =P 47 oo |
=13 DBA Containers =1 3 DBA Containers =3 DBA Containers
= T} DBA Databases = T} DBA Databases =) DBA Databases
| J DEVSVR1 [DBAMaint] | J QASVR1 [DBAMaint] | J PRODSVR1 [DBAMaint]
J DEVSVRZ [DBAMaint] J QASVR2 [DBAMaint] | i PRODSVR2 [DBAMaint]
=13 Financial Containers J DASVR3 [DBAMaint] | PRODSVR3 [DBAMaint]
= 7} Biling Databases = [Financial Containers | J PRODSVR4 [DBAMaint]
J DEVSVR2 [Billing] = __‘1 Biling Databases = [Financial Containers
=1 7} Finance Databases J DASVR2 [Biling] =} Biling Databases
J DEVSVR1 [FinanceDev] = T} Finance Databases | J PRODSVR4 [Billing]
= j Web Databases J GASVR1 [Finance(A] =1 T Finance Databases
) DEVSVR1 [wWeb1Dev] = T} Web Databases | PRODSVR1 [FinanceProd]
| DEVSVR2 [Web2Dev] | J DASVR1 [web104] | J PRODSVR2 [Finance2Prod]
| J DASVR2[Web204] = T} Web Databases
| J QASYR3 [Web304) J PRODSVR1 [Web1Prod]
| DASVR3 [Web404] | PRODSVR2 [wWeb2Prod]

| PRODSVR3 [wWeb3Prod]
| PRODSVR3 [WebdProd]
J PRODSVR4 [WebSProd]

Dev QA Production

Figure 11: Environments and Containers in the Container Manager seen by
developers, QA engineers, and Production DBAs, when users only configure
their own Environment.

Passing packaged between Dev, QA, and Production using Combine guarantees fast
deployment in each environment as now demonstrated (see the section titled Code Packages
to learn more about packages): Consider the code package in Figure 12. Each script in the
package is associated with a Container name. In this sample package, scripts 01 to 04 are
associated with the Web Databases Container, scripts under the Finance Databases folders
are associated with the Finance Databases Container, scripts under DBA Databases as well as
the script 08 are mapped to the DBA Databases Container, and script 07 is associated with
the Billing Databases Container.

Page 18]
© 2005 - 2015 INetDirect, Inc. All rights reserved.

ContainerManager.CreatingStaticContainers.htm
ContainerManager.CreatingDynamicContainers.htm

Combine

Database tools that Scale

01. Create Web tabies

| e
%m i -=- brop nev foreigo keys (Mare) c Web tables
)15 2 Creste Web procedures. i o y e ————— s
EB\J 3. Popedste Wb tabla: S| IF OBJECT_ID('FX_utblogins utb¥ebUsers") IS5 NOT WULL < Cordaner Web Datab
[4 AddWeblogins. users, and e & ALTER TABLE utblogins 'hm___-‘
=)3 5. Finance Databaes 2 oRop F¥_utbloging Flalsveal st AWl L
[¥]5 1 Cieate Finance tables 8 _& T
E}s‘: 2 Cinate Finance shored po EN
(¥]5% 3 Popuate Finsnce data 10 5
()33 4 Add Finance logins, user 11| IF OBIECT_ID('FX_utbeblsezPages utb¥ebPages®) I35 NOT WULL
= ()3 6.D8A Databaces 12! ALTER TAELE utbWenUaerPages
[¥)id 1 Create DRAMant cbjects 13! DROP CONSTRAINT FX_utb¥ebUsexPages_utbVebPages
= 3 2 &be 14
[£)3y 1. Coaste DBA Manters =
EH::’ Z Cinaial g Jubi 16| IF UBJECT_ID('FX_utb¥ebUserPages utb¥ebUsezs') 15 BUT BULL
21y Sk aacver s Kb 17| AUTER TAPLE uthVebUserPages
18| DROP C b8 ages_
19| ®
2o
213 -- Create new schema

23| IF CBIECT_ID('uchk@edUsexs') IS NOT NULL
24 DROP TADLE utbVebUsers
25| @

27| CHEATE TABLE dbo.utbBebUsers{

28! DaerID INY TRENTITV(1, 1) CONSTRAINT UQ_utbdebUsecs_UsexID DNIOUE,

29| FirscNeae WVARCMAR(64) 40T NULL,

30| LastNane NVARCHAR (64),

3y ExailAddress NVARCHAR(64) HOT NULL COMSTRAINT DF_utiWebUsers EwailAddress DEFAULT(R''),

3z AddressID INT,

33 Inser tTine3tanp GOT DATEYIME X007 WULL CONSTRAINT DF utbVWebUzers InsertTimeScampCMT DEFAULT

34! UpdateTine Scanp GNT DATETIME %07 WULL CONSTRAINT DF_utbWeblUsera UpdateTimeStampGMT DEFAULT

35 @

38

37| -- Rollout verification

38| IF OBJECT_ID('ucbUebUsezs') IS NOT NULL

38 SELECT 'Table ucthiebUsers created auccepafully an ¢ db_name() AS RolloutRes

40| ELSE

n{ SELECT 'Ecrox creating table utdBeblzess on ' + db_name () A3 RolloutRes

qz| o

a3

44, TF GBIECT_ID('urblogina ') I3 ¥oT WULL

45! DROP TABLE utblodins . | —
£ SRR SN AibLuging. ; i 3 |

S S * =
23 Contaras.. 3 Package . |Ha Otrect B1. | 02000 grows [tn3cich |
YR Packase Oueut |
(Eomoecit Cons bl 25l
[F1=) 1. Create Web tables
Scripts associated with the V]2 2 Create Web procedures
Web Databases Container [3 Populate Web tables
[V 4. AddWeb logins, users, and roles
2 5. Finance Databases
- [y 1. Create Finance tables
Scripts associated with the - [VIE) 2 Create Finance stored procedures
Finance Databases Container ~ [FE) 3 Populste Finance data
" [V]Zy 4. Add Finance logins, users, and rol
= 6. DBA Databases
4 5 -
Scripts associated with the & 12?::" Doek checs
DBA Databases Container " 2 1. Create DBA Maintenance jobs
T [Z12 7. Create Billing T ables > Scripts associated with the
[F]=y 8. Get server and job info Billing Databases Container

Figure 12: A sample package that deploys scripts to all databases and servers in
the Web Databases, Billing Databases, Finance Databases, and DBA Databases
Containers.

Page 19
© 2005 - 2015 INetDirect, Inc. All rig

- @
Combine | a2z
Database tools that Scale =

Page 20

Notice that each script in the sample package of Figure 12 includes a SQL statement that
verifies that changes and objects created in the script are indeed deployed successfully. For
example, once a table is created the script verifies that a valid OBJECT _ID is available for
the new table (i.e., OBJECT _ID(TableName) IS NOT NULL) and returns a single row to
inform the user of the rollout results.

Scripts in the package are executed according to their order in the package tree. When
developers run the package, scripts will be deployed on databases in the Containers of the
Development Environment listed in Figure 11, and the deployment results are given in Figure
13. When the package is passed to QA engineers, the package is deployed by a click of a
button on all the target databases in the QA Environment shown in Figure 11 without making
any modification to the package configuration or package content. Execution results in the
QA Environment are presented in Figure 14. In the same manner, after the package is sent to
Production, DBAs need not make any package changes and can deploy the entire package on
all target databases in the Production Environment by a click of a button as shown in Figure
16 below. Notice that the ContainerServer and ContainerDatabase columns in the grids result
in the images below are added automatically by Combine to reflect the target database from
which each row in the grid is returned). Results returned from the package execution are
displayed as aggregated results from all target databases and also include the execution plan
and results for each individual database.

Notes:

1. Once a package is executed, Combine performs a set of tests and verifications to
ensure that scripts in the package will be executed successfully. For example, database
and server connectivity as well as proper authentication and credentials are verified for
all databases involved in the package execution before Combine deploys any of the
scripts in the package. If any tests and checks are not successful, Combine will notify you
of all issues and will not execute any portions of the package. In addition, several screens
are displayed before the package scripts are deployed to provide users with better control
and visibility to the execution. These screens and many other details involving the
package execution can be found in the Combine User Manual.

2. If multiple Environments are used to deploy code from one client machine as in the
example of Figure 10, then using the Container Manager the user must set the Active
Environment against which the package will be deployed. At any given time, only a
single Environment can be active and the active Environment is the one displayed in bold
letters in the Container Manager (for example, in Figure 10 the Development
Environment is the active Environment). By setting the appropriate active Environment
in the Container Manager, the Dev-QA-Production release process can also be followed
from a single client machine that has access to all databases and servers.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

Combine ogo

Database tools that Scale

fle Edt View Package Query Tools Window Help
D3 5| Wd| %R oo 8 A

(8 g0 Z| 8 -B |35
(lPackage Explorer v # X | 7§ create Web tables | s AL
i 3| 3] 26
27 CREATE TABLE dbo.utbiebUsers (
oy 28, UserID INT IDENTITY(1, 1) CONSTRAINT UQ_utbeblsers_UserID UNIQUE, [P0
Creale Web procedures o BizatNexe BVARCHRR(6)2HOD UKL web Databases
Populate Web tables 30 Lestiians HVAVCCEL 6815 Web Databases .|
ek Faios. irdrs; andcles 31 Eneilhddress NVARCHAR(64) 10T NULL CONSTRAINT DF_utbVebUsers_Emailhddress DEFAU Descigion
Finance Databases 32 AddressID INT, —|| Relativer: Create Web tables
1. Create Finance tables 33 InsertTineStanpGNT DATETIME 10T NULL CONSTRAINT DF_utbWebUsers_InsertTimeStempGl T
[2 Create Finance stored procedures 34 UpdateTine5tanpGUT DATETINE 0T NULL CONSTRAINT DF_utbiebUsers UpdateTineStamps)
3. Populate Finance data 3s| 60
= 4 AddFinance logins, users, and rol 36
(73 6. DBA Databases 37 -- Rollout verification
[1. Create DBAMaint objects 38 IF OBJECT_ID('utbWebUsers') IS NOT NULL
oY 2 Jobe 39 SELECT 'Table utbWebUsers created successfully on ' + db_name() AS RolloutRes
[1. Create DBA Maintenance jobs =l
IR 7 Cioste By Tehies a1 SELECT 'Error creating table utbWebUsers on ' + db_name() AS RolloutRes
|25 8 Get server and job nfo
421 G0
43
44 IF OBJECT_ID('utbLogins') IS NOT NULL
45 DROP TABLE utbLogins)
i i J Il
2] m I 3| | Resuts | Static Container
|3 Container M... | B4 Obiect Brow.. |5 Package Ex. lnaady rows | Ln 10 Col 1

]IS ==& YT
) Agoregated Table 2 (2 ows) | ContaineSenver | ContaneiDatabase | RoloutRes

Exportto~ O -

Aggregated Table 3 (2 rows] DEVSVR1 WebiDev Table utbiweblsers created successfully on Web1Dev
=124 Individual Results DEVSVR2 ‘Web2Dev Table utbiweblsers created successfuly on Web2Dev
@ [{ DEVSVR1[WeblDev] |
=[] DEVSVR2[web2Dev]

(3] Table 1 (1 roms)
(3] Table 2(1 roms)
Table 3(1 rows)
3. Actual Execultion Plan
(3 Messages (0items)
2 2 Create Web procedures
Aggregated Table 1 (2rows)
& (24 Individual Resuts
2 3. Populate Web tables
Aggregated Table 1 (8 rows]
‘Aggregated Table 2 (16 rows)
Aggregated Table 3 (4 rows)
Aggregated Table 4 (4 rows)
Aggregated Table 5 (10 1ows)
Aggregated Table 6 (4 rows)
Aggregated Table 7 (4 rows)
O D
[Package Results |[=] Output |

Figure 13: Execution results of the code package in Figure 12 againét the
Development Environment.

fle Edt Wiew Package Query Tooks Window Help

D@ Ed %R 90 M

2% sl tom| v g ~.
(lPackage Explorer v ax Create Web tables | v Rx
CREATE TABLE dbo.utbWebUsers(
UserID INT IDENTITY(1, 1) CONSTRAINT UQ_utbWebUsers UserID UNIQUE, Create Web tables
. Create Web procedures Frxopiexc MVARCHAR 64) 00D HULL web Databases
Populate Web tables Lastiene NVARCHAR(64) , Web Databases
[Afd Wb lodins teas, anvl ioles Ensiliddress NVARCHAR(64) 10T NULL CONSTRAINT DF_utbiebUsers_Emailhddress DEF
5. Finance Databases AddressID INT, Create Web &

InsertTineStaupGHT DATETIME 0T NULL CONSTRAINT DF_utbUebUsers_InsertTimeStampGl || 1.,
UpdateTine$taup GT DATETIME 0T NULL CONSTRAINT DF_utbWebUsers_UpdateTimeStanpGl

[1. Create Finance tables
G0
- Rollout verification

IF OBJECT_ID('utbVebUsers') IS NOT NULL
SELECT 'Table utbWebUsers created successfully on ' + db_name() AS RolloutRes

55 1.Cr ELSE
7:Crsais Biing Tebles SELECT 'Error creating table uthUebUsers on ' + db_name() AS RolloutRes
8. Get server and job info. - =
i i) (Name)
2 I) 3| |2 Resutts | Indicates the name used when displaying the
; obiect.
|23 Container M... | B4 Obiect Brow.. |5 Package Ex.. || Ready 0:00:00 '0rows Ln36 Col 1 Ch 1

Exportto~ O -

[Rolloutfes
Table utbWweblsers created successfully on Web20A
Table utbWweblUsers created successfully on Web10A

Aggregated Table 2 (4 rows)
(=] Aggregated Table 3 (4 rows)
123 Individual Resuits

g::x; mgtgg:} Table uibiweblsers created successfull on Web30A
o

B Table utbwebUsers created successfuly on Webd0A

= [0ASVR3Webd0A]

Table 1 (1 rows)
Table 2 (1 rows)
Table 3(1 rows)
3. Actual Execution Plan
(3 Messages (0items)
2 2 Create Web procedures
Aggregated Table 1 (4 rows)
4 Individual Resuls
24 3. Populate Web tables
(=] Agaregated Table 1 (16 rows)
Aggregated Table 2 (32 rows)
Aggregated Table 3 8 rows)
Aggregated Table 4 (8 rows)
Aggregated Table 5 (20 rows)
Aggregated Table 6 (8 rows)
Aggregated Table 7 (8 rows)
Aggregated Table 8 (28 1ows) |
£ il) >
[Package Results |[=] Output |
|DemoPraject|1, Create Web tables O

Figure 14: Non-sorted execution results of the code package in Figure 12 against
the QA Environment. Results can be sorted using tools in the grid.

Page 21
© 2005 - 2015 INetDirect, Inc. All rights rese

Combine

Database tools that Scale

Page 22

(M

3 Combine EEX
File Edt View Package Query Hel
Y AT e Y

SPackage Explorer v % X | 7§ create Web tables | x | 3 Propet v X
[26 — |[®=z
25 —[E =
27 CREATE TABLE dbo.utbiebUsers (.
28 UserID INT IDENTITY(1, 1) CONSTRAINT UQ_utbWebUsers UserID UNIQUE, Name) Create Web tabl
29 FirstName NVARCHAR(64) NOT NULL,
o Lastli-neHVARCHARISE s Container Web Databases
31 Emai. dress NVARCHAR(64) NOT NULL CONSTRAINT DF_utbWebUsers EmailAddress DEFAU: Deseri iption
32 xe D INT,
33 TInse; taup GUT DATETIME 0T NULL CONSTRAINT DF_utbiWebUsers_InsertTimeStaumpGl
34 UpdeteTineStaupGUT DATETIME 0T NULL CONSTRAINT DF_utbWebUsers UpdateTimeStanps)
35| 60
7| -- Rollout verification
38] IF OBJECT_ID('utbWebUsers') IS NOT NULL
39 SELECT 'Table utbWebUsers on ' + db_name() AS RolloutRes
40, ELSE
41 SELECT 'Error creating table utbWebUsers on ' + db_name () AS RolloutRes
i .
< % (Name)
< 3| B3 Resuts Indicales the name used when displaying the

obj
0:00:00 0 rows | Ln 39 Col 27 Ch 27

s D EEETE A
(5 rows] —

CortanerServer | ContainerDalabase RoloutRes
PRODSVRZ Web2Priod
PRODSVR1 Web1Prod
ol | i:ggg;g‘zme:‘;"’ji PRODSVR4 WebSProd
@ 5 eb2Pro
% § PRODSVA3 [Web3Prod] ERODSVRS [Web ol
® || PRODSVR3 [WebdPiod] FRODSYRS ___[WebiRiod
=[] PRODSVR4 [WebSPiod]
[Table 1 (1 rows)
(] Table 2(1 rows)
B
P fan
e
ows)
£ In
cl - B
[Package Results [=] Output
DemoProjecti1. Create Web tables owR

Figure 15: Non-sorted execution results of the code package in Figure 12 against
the Production Environment. Results can be sorted using tools in the grid.

Best Practices I: Sharing Environments and Containers
by using a Combine Repository with Dynamic Containers

Environments and Containers defined under the MyEnvironments node in the Container
Manager are stored on the local user machine. This includes Environment names,
Environment Variables, Container names, databases in Static Containers, as well as the
Reference (Repository) Static Container and the Queries used by Dynamic Containers.

In order to share the settings of Environments and Containers, you can use a Combine
Repository (see installation scripts and manual for the repository on SQL Farms’ website or
in the application F1 help) and add it to the Container Manager. Once added, you can define
your Environments and Container settings directly in the repository. Alternatively, you can
first create Environments and Containers under the MyEnvironments node and then copy-
paste them to the repository. Once the settings are available in the repository, then all users
can share the same configurations and settings.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

Combine

Database tools that Scale

Page 23

o%6

|
\

The repository includes three built in roles: read-only, change managers, and admins. Using
these roles you can restrict the access and update permissions to the repository content. For

additional information please refer to the Combine Repository user manual and installation

scripts on SQL Farms’ website or in the application F1 help.

Best Practices I1: Tracking Deployments and DB Changes
by Using a Change History Repository

Combine™ enables users to install a Change History repository and then record deployments
and package executions in a central repository database, for tracking and auditing purposes.
Users can then access the repository using the Change History tool to view and search
information relating to previously deployed code packages.

The scripts to create a Change History Repository database are available on SQL Farms’

website, as well as in the SQL Farm Combine application installation directory. For
additional information, please refer to the built-in F1 help in the application.

© 2005 - 2015 INetDirect, Inc. All rights reserved.

