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Abstract  

Coprocessing involves running a visualization process concurrently with a simulation, 
and making intermediate simulation results visible during the course of the run. Through 
computational monitoring, a researcher can watch the progress of a run, perhaps ending 
the run if it looks unproductive. In this report, we experiment with applying two software 
packages designed to support computational monitoring to a parallel version of a code for 
water quality modeling.  

 

1. Introduction  

This report describes our early experience with software packages that address the problem of 
interactive computation, or computational monitoring and steering (a.k.a., coprocessing). In an 
earlier survey [1], we described scenarios where computational monitoring and steering could 
play a valuable role in high performance computing (HPC). For example, a researcher might 
want to visualize results of a running parallel simulation, rather than save data to disk and post-
process -- perhaps because the amount of data is simply too large. Monitoring a running 
simulation in this fashion may in turn lead the researcher to stop the computation if it has gone 
awry, or to change computational parameters and steer the computation in a new direction.  

In the next section, we briefly survey existing packages for coprocessing. We explain why we 
chose two packages, pV3 from MIT and CUMULVS from ORNL, for the focus of this 
preliminary study. In Section 3, we briefly discuss PVM, since it is the common denominator of 
both pV3 and CUMULVS. In Sections 4 and 5, we describe in some detail how each of these 
packages operate and how an application developer would interface with each. An example 
application, a parallelized water quality model of the Chesapeake Bay, is described in Section 6. 
We connected this application to both pV3 and CUMULVS, as well as to a collaborative 
visualization tool. This work was demonstrated at Supercomputing '98 and is discussed in 
Section 7. Lastly, we provide a Summary and a list of References.  
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2. Coprocessing Survey  

In an earlier survey, we considered a handful of packages that can provide partial solutions for 
the challenge of computational monitoring and steering. We review those packages here and 
explain why we focused our attention on two of them for this phase of the project. The packages 
considered were the following: 

Freely Available Restricted Availability 
CUMULVS IBM Data Explorer 

DICE AVS 
FAST expeditions SCIRun 

pV3  
Vis5D  
VisAD  
scivis  

  
 
Given the obvious constraints of limited time and resources, a process of elimination was 
required to select candidate packages for our initial study. Some simple criteria included:  
 

Accessibility: Is it downloadable (for free)? 

Source code: Is it available? 

Stability: Has the package been around awhile? Is it 
used? Is it supported? 

Dependencies: Does it depend on other packages? 

Familiarity: Do we have any experience with it? 
What's the learning curve like? 

These criteria were merely guidelines, since there are usually trade-offs involved when choosing 
software packages of any kind. For example a full-featured package may be difficult to install 
and/or may have a steep learning curve. A very stable package may not be taking advantage of 
the latest software language features. And you often get what you pay for -- free software usually 
comes with no support.  

From this collection of packages, CUMULVS, DICE from the Army Research Lab, and pV3 are 
most appropriate for this study, since they appear to offer the most potential for immediate use 
among researchers. Other candidates were judged as less appropriate for the current study for a 
variety of reasons. The two Java-based packages were put aside as being too immature for 
immediate use. In conversations with the lead author of one of these, Scivis from NPAC, we 
learned that this package is undergoing major revision. The other Java-based package, VisAD 
from University of Wisconsin, is also at an early stage in its life cycle. The author admits that the 
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package is appropriate for only small and medium-sized data sets -- i.e., it is not up to dealing 
with big data. Further, VisAD relies not only on Java but on Java3D, which is currently available 
on Sun and Windows only. While VisAD is not yet ready for transfer to the full research 
community, it does offer real promise for the future. The development team has experience with 
developing large-scale software -- Vis5D is in wide use. They are taking a broad-based approach 
to VisAD, intending to handle unstructured as well as structured data, and intending to support 
collaborative visualization as well.  

FASTexpeditions from NASA Ames was less appealing since it is uses SGI's proprietary GL 
graphics library, rather than the newer industry standard, OpenGL. There are no plans to update 
to OpenGL. After discussions with many researchers doing parallel visualization, AVS and IBM 
Data Explorer were rejected for this study. Their greater strength is in the more traditional 
approach, where visualization is done as a post-processing activity.  

Of the three packages that offer promise for immediate use by computational researchers, DICE 
is perhaps the most complete, even including GUI interfaces to selected codes. To date, DICE 
has been used as a prototype vehicle to pioneer and showcase coprocessing with particular 
applications. Deployment to a wide user community has not been a focus for the DICE project, 
although the code is documented and available for download by contacting the project lead. We 
found the installation process to be somewhat painful. DICE depends on some software patches 
that had not yet been installed on our workstation. This demonstrates that DICE has not been 
fully tested with a large user community. Nevertheless the DICE team was extremely helpful and 
we eventually got it installed and running. The supplied examples ran fine and the 
documentation appeared to be adequate to allow us to instrument a code for DICE. We did not 
include DICE in this phase of our study due to time limitations, but we anticipate that we will 
work with DICE at a later time.  

CUMULVS and pV3 are of very different designs. pV3 is designed to outfit an existing [parallel] 
client application with user-supplied routines for extracting various geometries. These are then 
sent to and displayed by the pV3 front-end graphics server. CUMULVS, on the other hand, is 
primarily designed to provide easy access to data being generated by a parallel application. 
CUMULVS can supply an attached viewer with as much (or as little) of the computed data as 
possible; pV3 does not. pV3 is specifically designed for CFD applications. CUMULVS on the 
other hand is intended to be more general-purpose.  

3. PVM  

One similarity between pV3 and CUMULVS is that they both use PVM for their communication 
layer. PVM provides the ability to dynamically attach and detach the visualization engine (the 
'server' in pV3 and the 'viewer' in CUMULVS) from a running application.  

The PVM (Parallel Virtual Machine) package is used by both pV3 and CUMULVS for 
communication and for dynamic process attachment. For this project, we used version 3.4.beta7 
(available for download from Netlib). An excellent reference for getting started using PVM can 
be found at the Netlib page www.netlib.org/pvm3/book/node1.html. This walks a user through 
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the basic steps of installing PVM, running the PVM console, building a virtual machine, and 
spawning processes.  

One caveat is worth mentioning for environments using the Kerberos distributed authentication 
service (for security purposes) -- as was the case for us at NCSA and for our demonstration at the 
Supercomputing conference. After downloading the PVM package, the /conf subdirectory 
contains various configuration options for all the supported architectures. One of these options is 
the location of rsh (PVM uses the remote shell process). For our platform-dependent file, 
SGI64.def, the DRSHCOMMAND was defined to use the standard /usr/bsd/rsh. However, in a 
Kerberos environment, this had to be changed to invoke the Kerberos version of rsh (e.g., 
/usr/local/krb5/bin/rsh). After making this minor change, one can then build and install PVM.  

4. pV3  

pV3 (parallel Visual3) was developed at MIT and is targeted primarily for CFD codes. It is a 
client-server system. The client (a researcher's parallel application) must be augmented with 
appropriate pV3 routines to extract geometry for graphics and to handle communication of 
steering parameters, both of which are communicated to and from the pV3 server. The server is 
embodied as a front-end graphical user interface (GUI). Some screen shots of the GUI are shown 
in Figures 1 and 2. An adequate User's Manual is provided for the server. This explains how to 
dynamically select isovalues for isosurfaces, modify colormaps, display cutting planes, and much 
more. Similarly, a Programmer's Guide is provided for the client side. This describes the format 
of the required user-supplied routines, the allowed topologies for grid cells, and more.  
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Figure 1. The pV3 server GUI with a sample client's data.  

 

Figure 2. With domain surfaces turned off, the pV3 server showing a density isosurface.  

Unfortunately, the source code for pV3 is not available. Except for some client application code 
examples, the rest of the package is binary format only. There are servers available for SGI, Sun, 
DEC, and IBM workstations. There are no servers available for PC platforms. In addition to 
these four platforms, the client-side pV3 library is also available for Cray and HP.  

All example clients provided with the pV3 package deal with a single block computational grid, 
sometimes displayed as an irregular physical grid. The process of displaying results from an 
unstructured (computational) grid was not obvious. We were eventually successful at displaying 
unstructured data, but only after some trial and error. The main confusion involved the notion of 
pV3 ``domain surfaces''. For a single block of gridded data, the domain surfaces are trivially 
defined as the outer faces of the cells. However, when one has unstructured data (cells), you 
must explicitly tell pV3 which faces comprise the outer domain surface. Failure to do so leads to 
rather obscure error messages.  

One of the example clients provided with the pV3 package demonstrated a multi-client case. In 
this simple example, the user types in a ``processor identifier'' (1,2,3,...). Therefore, by running 
the client from two different windows and supplying different (sequential) IDs, it's possible to 
simulate a running parallel client application. In this example, the client program simply uses the 
processor ID to offset the base geometry, resulting in replicated graphics in the server.  

As a final note, the pV3 home page makes mention of pV3-Gold but the associated hyperlinks 
are dead. pV3-Gold, a version with a nice Motif user interface, is not available at this time. It 
may eventually become a commercial product. An image showing the pV3-Gold interface can be 
found at sop.geo.umn.edu/~reudi/pv3b.html.  
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5. CUMULVS  

CUMULVS (Collaborative User Migration User Library for Visualization and Steering) was 
developed at ORNL and is described as an ``infrastructure library that allows multiple, possibly 
remote, scientists to monitor and coordinate control over a parallel simulation program''.  

In practice, an application program is augmented with a few calls to routines in the CUMULVS 
library. These routines describe the data distribution, the steerable parameters, and enable the 
visualization. From a separate CUMULVS-aware ``viewer'' program, one requests blocks or 
subsampled regions of data to visualize. The CUMULVS package does not provide a self-
contained 3D graphics viewer program (like the pV3 server). It does provide an AVS5 module 
for connecting to a user-constructed AVS network (see Fig. 3). It also provides a couple of 
Tcl/Tk viewers for viewing 2D representations such as slices (see Fig. 4), as well as a simple text 
viewer which is especially useful for debugging. More importantly, CUMULVS can connect to 
any user-constructed CUMULVS-aware viewer.  

 

Figure 3. CUMULVS supplies an AVS5 module for connecting to AVS networks.  

 6  



 

Figure 4. CUMULVS can connect to simple Tcl/Tk viewers for viewing 2D representations.  

From a viewer, one makes requests to a running application for a ``frame'' of data and specifies 
the frequency with which to receive frames. A frame of data is defined by a range and step size 
for each coordinate index of the computational domain. In this regard, we see that CUMULVS, 
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much like pV3, is ideally suited for regularly gridded, block domain applications. CUMULVS, 
like pV3, allows the nice feature of being able to dynamically attach/detach a viewer to/from a 
running application (as mentioned in the above PVM Section).  

CUMULVS is free to download with complete source and adequate documentation. One request 
for the CUMULVS team is to augment the collection of PVM-based examples with at least one 
MPI-based example application. This would prevent the confusion that we experienced when we 
passed incorrect processor IDs to CUMULVS routines -- an example of which is shown in the 
next section.  

6. Monitoring Parallel CE-QUAL-ICM  

The application currently being used to test these coprocessing packages is known as CE-QUAL-
ICM [2]. It was developed by Carl Cerco and Thomas Cole at the U.S. Army Corps of Engineers 
Waterways Experiment Station (CEWES). It is a three-dimensional, time-variable eutrophication 
model that has been used extensively to study the Chesapeake Bay estuary. [Eutrophication is the 
process by which a body of water becomes enriched in dissolved nutrients (as phosphates) that 
stimulate the growth of aquatic plant life, usually resulting in the depletion of dissolved oxygen]. 
There have been varying sizes of grids used for the Chesapeake Bay model. For our study, we 
use the largest grid available, consisting of approximately 10,000 hexahedral cells. A top-down 
view of physical grid is shown in Fig. 5 and a view of the computational grid is shown in Fig. 6. 
A 3D view of the cells in computational space is shown in Fig. 7.  

 

Figure 5. Chesapeake Bay physical grid viewed from the top.  
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Figure 6. Chesapeake Bay computational grid viewed from the top.  

 

Figure 7. Chesapeake Bay computational domain.  

This application was parallelized by Mary Wheeler's group [3] at the Center for Subsurface 
Modeling (CSM), part of the Texas Institute for Computational and Applied Mathematics 
(TICAM) at the University of Texas at Austin. They used MPI to perform the parallelization. 
Executing on 32 processors vs. 1 processor, parallel CE-QUAL-ICM (or PCE-QUAL-ICM) runs 
15 times faster than CE-QUAL-ICM. This surpasses the team's goal of a 10-times speedup.  
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To understand the approach taken for the parallelization effort, it helps to understand how file-
I/O intensive the application is. Because CE-QUAL-ICM does not compute hydrodynamics, this 
information must be read in at start-up. This (binary) file alone is nearly 900M in size. And this 
is just one of dozens of input files. (The hydrodynamics file is the largest; the remaining files 
have a total size of around 200M). The approach taken by the TICAM group was in three-
phases:  

• run a pre-processor that would partition the input files across subdirectories (hence, the 
pre-processor would only need to be run when configuring the parallel application for a 
different number of processors)  

• run the (MPI) parallel CE-QUAL-ICM application (which needs to have parameters set 
and then recompiled based upon the pre-processor results)  

• run a post-processor which locates the (local) output files spread across all subdirectories 
(corresponding to all processors) and merges them into (global) output files which can 
then be post-processed and/or archived.  

CE-QUAL-ICM directly computes the following 24 fields (other fields are post-computed using 
combinations of these together with other information):  

1. Dissolved_silica  
2. Particulate_silica  
3. Dissolved_oxygen  
4. COD  
5. Refractory _particulate_P  
6. Labile_particulate_P  
7. Dissolved_organic_P  
8. Total_phosphate  
9. Refractory_particulate_N  
10. Labile_particulate_N  
11. Dissolved_organic_N  
12. Nitrate-nitrite  
13. Ammonium  
14. Refractory_particulate_C  
15. Labile_particulate _C  
16. Dissolved_organic_C  
17. Zooplankton _Group_2  
18. Zooplankton _Group_1  
19. Algal_Group_3  
20. Algal_Group_2  
21. Algal_Group_1  
22. Inorganic_Solids  
23. Salinity  
24. Temperature  
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6.1 pV3  

Figures 8 through 13 illustrate some results using pV3 on the CE-QUAL-ICM application. 
Unfortunately, we are not yet able to run pV3 with the parallel application, due to the problem 
discussed earlier for unstructured grids. To reiterate, the pV3 client requires that domain 
surface(s) be supplied. If they are not defined or if they are defined incorrectly (pV3 does some 
internal checks), then the client will generate errors and will not execute. It is a straightforward 
matter to define the domain surface of the global Chesapeake Bay grid. However, when we 
decompose the domain for parallel processing, the resulting multiple domain surfaces are not so 
easily obtained. We have not yet solved this problem and consequently, can't run this problem in 
parallel. We have been in contact with Bob Haimes, the lead author for pV3, and are hopeful that 
we can arrive at a solution in the near future. Until then, it is enlightening to see the 
visualizations that pV3 is capable of producing and we continue to gain familiarity with using 
both the pV3 client library and server.  
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Figure 8. Displaying temperature using slices.  
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Figure 9. Displaying the domain surfaces for salinity.  
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Figure 10. With pV3, the user can interactively change the display technique.  

 

Figure 11. 3D contour lines mapped on a domain surface.  
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Figure 12. 3D contour lines.  
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Figure 13. An isosurface embedded within a translucent domain surface.  

6.2 CUMULVS  

CUMULVS ended up being our coprocessing package of choice. CUMULVS offers a simple 
and clean design, full source code, and the flexibility of being able to attach custom viewers. The 
user is free to use as simple or as complex a viewer as desired. Via CUMULVS, we connected 
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CE-QUAL-ICM to two viewers. In one case, we used a simple viewer based on the Visualization 
ToolKit (VTK) [4]. This viewer allowed us to look at CE-QUAL-ICM's output in many different 
ways, including slices, isosurfaces, streamlines, etc. We could have made the viewer as complete 
as VTK itself. We also connected CE-QUAL-ICM to the NCSA Collaborative Data Analysis 
Toolsuite (CDAT) to support collaborative computational monitoring.  

One of the first tasks undertaken with CUMULVS was to visualize the domain decomposition 
for the parallel CE-QUAL-ICM. Fig. 14 shows the top-down view of the problem domain for 
decompositions on 2, 4, 8, and 16 processors. We found the visual display of the decomposition 
to be a valuable debugging aid. We were puzzled by the disconnected character of the 
decomposition but confirmed with TICAM that it is correct. As illustrated in Fig. 15, the 
decomposition algorithm assigns all sub-surface cells in a (depth) column to the same processor 
containing the surface cell.  
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Figure 14. Top-down view of domain decompositions for 2,4,8, and 16 processors.  

 18  



 

Figure 15. A tilted view of the domain decomposition for two processors.  

As mentioned in an earlier section, one problem we encountered during development was due to 
a processor ID mismatch between CUMULVS, PVM, and MPI (Fig. 16). (We remind the reader 
that PCE-QUAL-ICM had been parallelized using MPI.) Due to the manner in which local cells 
on each processor were being mapped to global cells, the solution was not as trivial as one might 
expect. Being able to visualize the results was a very valuable aid in the debugging process.  

 

Figure 16. A processor ID mismatch problem yielded the incorrect results shown on the left. The 
correct results are shown on the right.  
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7. Collaborative Computational Monitoring  

Taking advantage of CUMULVS' viewer flexibility, we also connected CE-QUAL-ICM to 
CDAT. CDAT is a collection of cooperating applications running on various platforms. It 
supports collaborative data analysis among users working at ImmersaDesks, Unix workstations, 
PC workstations, and Web-browser only machines. While various configurations are possible, 
CDAT currently makes use of VTK for visualization algorithms on the ImmersaDesk and 
workstations. It utilizes Tango from NPAC to assist with registering participants and to provide 
whiteboards and chat windows (Fig. 17). CDAT also uses an http server embedded in a 
workstation application to push screen captures out to Web-only laptop.  

 

Figure 17. CE-QUAL-ICM and CDAT.  

We demonstrated this capability to attendees at Supercomputing '98. At the NCSA Alliance 
booth, we typically ran the application on four (SGI) processors and were still able to maintain 
interactive updates of the visualization. At the DoD HPC booth, we ran the application on the 12-
processor SGI Origin. CDAT made it possible to collaboratively visualize results on the 
ImmersaDesk, a desktop graphics workstation, and a Web-only PC.  
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The demonstration was the result of a lot of teamwork spread across several groups throughout 
the country, including CEWES, TICAM, NCSA, and NPAC. Also, the ORNL developers (for 
CUMULVS and PVM) and the VTK developers provided a substrate on which to do this work. 
The demonstrations at Supercomputing '98 went quite well and were attended by some very 
appreciative scientists and software developers.  

8. Summary  

To date, we have surveyed and summarized the various packages available for coprocessing. In 
this report, we outline the experience gained in applying two of these packages to a particular 
application. In the next phase of this study, we will continue working with other coprocessing 
packages, as well as resolve the problem encountered with pV3 in this phase. Also, while the 
mechanism for performing computational steering has been readily available to us, we have not 
yet exploited it in a truly beneficial manner. We need more feedback from application scientists 
regarding this capability.  

One could arguably claim that the parallel CE-QUAL-ICM used in this study does not constitute 
a HPC application -- with only 10,000 cells of data to display. As this project evolves, we plan to 
target other parallel applications with much larger datasets to visualize. HPC applications of the 
near future will routinely involve thousands of processors and terabytes of data. It remains to be 
seen whether today's coprocessing systems will be able to function properly in such a setting.  

We welcome comments and corrections from readers.  
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