TaqMan[®] Human Endogenous Control Plate

Protocol

For Research Use Only. Not for use in diagnostic procedures.

© Copyright 2001, 2010 Applied Biosystems

For Research Use Only. Not for use in diagnostic procedures.

NOTICE TO PURCHASER: LIMITED LICENSE

ABI PRISM and its design, Applied Biosystems, GeneScan, and MicroAmp are registered trademarks of Life Technologies Corporation or its subsidiaries in the U.S. and certain other countries.

MultiScribe and VIC are trademarks of Life Technologies Corporation or its subsidiaries in the U.S. and certain other countries.

AmpErase, AmpliTaq Gold, GeneAmp, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.

AppleScript and Macintosh are registered trademarks of Apple, Inc.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

All other trademarks are the sole property of their respective owners.

Contents

1 Introduction

Overview	1-1
Control Plate Assay System	1-2
Preventing Contamination	1-9
Materials and Equipment	. 1-10
Safety	. 1-13

2 Reverse Transcription

Overview	2-1
Sample Preparation	2-2
Reverse Transcription for All Amplicons Except 18S	2-4
Reverse Transcription for the 18S Amplicon	2-8

3 PCR

Overview	3-1
Preparing the Sequence Detection System for PCR	3-2
Preparing and Running the PCR Reactions	3-5

4 Data Analysis

Overview	4-1
Setting the Baseline	4-2
Setting the Threshold Value	4-6

5 Calculating Relative Quantification

Overview	1
Exporting and Viewing the Results File 5-	.2
Calculating the Relative Quantification Using a Spreadsheet 5-	-5
Interpreting Results	7

A Troubleshooting Early Amplification

B About These Assays

C References

D) Technical Support	
	Technical Support D-1	

Glossary

1

Introduction

Overview

About This	The TaqMan® Human Endogenous Control Plate is a research tool
Product	designed to simplify the selection of endogenous controls for gene
	expression studies. The plate evaluates the expression of eleven select
	housekeeping genes in total RNA samples using a two-step, reverse
	transcription–polymerase chain reaction (RT-PCR). The plate also
	features a unique internal positive control (IPC) designed to detect the
	presence of PCR inhibitors in test samples.

In This Chapter The following topics are discussed in this chapter:

Торіс	See Page
Control Plate Assay System	1-2
Preventing Contamination	1-9
Materials and Equipment	1-10
Safety	1-13

Control Plate Assay System

Purpose of the Kit Applied Biosystems® developed the TaqMan Human Endogenous Control Plate to simplify endogenous control selection by eliminating several major developmental obstacles. The following table explains difficulties researchers face when investigating potential controls and how the plate alleviates these problems.

Obstacle	Solution
Assay development and optimization is expensive and time-consuming.	The TaqMan Human Endogenous Control Plate features 11 preoptimized, ready-to-use control gene assays.
Several studies indicate that expression of traditional housekeeping genes, such as GAPDH and beta-actin, varies among tissues and developmental stages (Bonini and Hofmann, 1991; Spanakis, 1993).	The TaqMan Human Endogenous Control Plate simultaneously evaluates eleven candidate controls that cover a broad range of biological functions and vary in expression levels.
Recent studies indicate that pseudogenes and related genes make RT-PCR results unreliable unless the PCR primers are cDNA-specific (Raff <i>et al.</i> , 1997; Multimer <i>et al.</i> , 1998).	TaqMan endogenous control assays are cDNA-specific, and their performance was tested using cDNA prepared from human total RNA samples.

Instruments This protocol describes how to evaluate candidate control gene expression in total RNA samples using the plate and the following sequence detection systems:

- ABI PRISM® 7700 Sequence Detection System ŧ
- GeneAmp® 5700 Sequence Detection System

About TaqMan Endogenous Control Assays	With the exception of 18S rRNA, all assays present on the TaqMan Human Endogenous Control Plate are cDNA-specific. Each assay has been experimentally proven not to detect up to 10,000 copies of contaminating DNA.	
	The 18S rRNA assay is not cDNA-specific. However, because of the extremely high expression level of rRNA, amplification from contaminant DNA has a negligible effect on gene expression values obtained from the plate. In spite of these design characteristics, Applied Biosystems recommends using only purified total RNA samples.	
About the Internal Positive Control	Applied Biosystems designed the TaqMan Internal Positive Control (IPC) to help interpret negative results caused by PCR inhibitors. In the absence of inhibitors, IPC is co-amplified with the target DNA and gives a consistent signal. If inhibitors are present, the signal generated by the IPC assay diminishes or becomes nonexistent. The IPC sequence is artificial to prevent nonspecific amplification.	
Product	t Read the following information before proceeding:	
Guidelines	 The endogenous control plate cannot be used to conduct multiplex experiments. It is designed only as a tool to aid in the selection of endogenous controls. 	
	The endogenous control plate should not be used to assay poly A+ RNA samples. The 18S rRNA assay cannot evaluate poly A+ RNA samples because most of the ribosomal RNA has been removed. Applied Biosystems designed the plate to evaluate only total RNA.	
	 Reverse transcription of total RNA to cDNA must be done using random hexamers. 	
	 ABI PRISM 7700 Sequence Detection Systems must be calibrated for the VIC[™] dye before running the TaqMan Human Endogenous Control Plate. See "Configuring the ABI Prism 7700 Software for the VIC Dye" on page 3-2 for more information. 	
	The endogenous control plate is optimal for use with the following:	
	 ABI PRISM 7700 Sequence Detection System and GeneAmp 5700 Sequence Detection System 	
	 TaqMan[®] Universal PCR Master Mix (P/N 4304437) 	
	 TaqMan[®] Reverse Transcription Reagents (P/N N808-0234) 	

About the TaqMan Human Endogenous Control Plate

The TaqMan Human Endogenous Control Plate is a MicroAmp® Optical 96-Well Reaction Plate divided into 12 columns, one for every control assay. Each column consists of eight identical wells containing TaqMan primers and probes for the detection of one target gene. The figure below illustrates the assay configurations on the plate.

Column	Control Assay	Abbreviation
1	Internal Positive Control	IPC
2	18S rRNA	18S
3	Acidic ribosomal protein	huPO
4	Beta-actin	huβA
5	Cyclophilin	huCYC
6	Glyceraldehyde-3-phosphate dehydrogenase	huGAPDH
7	Phosphoglycerokinase	huPGK
8	β_2 -Microglobulin	huβ2m
9	β-Glucronidase	huGUS
10	Hypoxanthine ribosyl transferase	huHPRT
11	Transcription factor IID, TATA binding protein	huTBP
12	Transferrin receptor	huTfR

Note See Appendix B, "About These Assays," for a list of the TaqMan assays and their functions.

1-4 Introduction

Procedure The following diagram is a simplified overview of this protocol: **Flowchart**

Introduction 1-5

How TaqMan Endogenous Control Assays Work The TaqMan Human Endogenous Control Plate kit evaluates RNA expression in a two-step reverse transcription–polymerase chain reaction (RT-PCR). The figure below illustrates the assay steps.

In the RT step, cDNA is reverse transcribed from total RNA samples using random hexamers from the TaqMan Reverse Transcription Reagents. In the PCR step, products are synthesized from cDNA samples using the TaqMan Universal PCR Master Mix.

Basics of the 5' Nuclease Assay

The PCR reaction exploits the 5[°] nuclease activity of AmpliTaq Gold[®] DNA Polymerase to cleave a TaqMan[®] probe during PCR. The TaqMan probe incorporates a VIC reporter dye at the 5[°] end of the probe and a quencher dye at the 3[°] end of the probe.

During the reaction, cleavage of the probe separates the VIC reporter dye and the quencher dye, which results in increased fluorescence of the reporter. Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye as shown in the figure below.

When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence primarily by Förster-type energy transfer (Förster, 1948; Lakowicz, 1983). During PCR, if the target of interest is present, the probe specifically anneals between the forward and reverse primer sites.

The 5 \rightarrow 3' nucleolytic activity of the AmpliTaq Gold DNA Polymerase cleaves the probe between the reporter and the quencher only if the

	probe hybridizes to the target. The probe fragments are then displaced from the target, and polymerization of the strand continues. The 3' end of the probe is blocked to prevent extension of the probe during PCR. This process occurs in every cycle and does not interfere with the exponential accumulation of product.
	The increase in fluorescence signal is detected only if the target sequence is complementary to the probe and is amplified during PCR. Because of these requirements, any nonspecific amplification is not detected.
About AmpliTaq Gold DNA Polymerase	AmpliTaq Gold is a thermal stable DNA polymerase. The enzyme has a $5' \rightarrow 3'$ nuclease activity, but lacks a $3' \rightarrow 5'$ exonuclease activity (Innis <i>et al.</i> , 1988; Holland <i>et al.</i> , 1991). When using AmpliTaq Gold enzyme, you can introduce Hot Start PCR and Time Release PCR into existing amplification systems with little or no modification of cycling parameters or reaction conditions. These techniques improve amplification of most templates by lowering background and increasing amplification of specific products.
TaqMan Universal PCR Master Mix	TaqMan Universal PCR Master Mix is 2X in concentration and contains sufficient reagent to perform 200 reactions (50 μ L each). The mix is optimized for TaqMan reactions and contains AmpliTaq Gold DNA Polymerase, AmpErase UNG, dNTPs with dUTP, Passive Reference, and optimized buffer components.

Preventing Contamination

Introduction	Because of the high throughput and repetitive nature of the 5 ⁻ nuclease assay, special laboratory practices are necessary in order to avoid false positive amplifications (Kwok and Higuchi, 1989). This is because of the capability for single DNA molecule amplification provided by the PCR process (Saiki <i>et al.</i> , 1985; Mullis and Faloona, 1987).	
About AmpErase UNG	AmpErase uracil-N-glycosylase (UNG) is a pure, nuclease-free, 26-kDa recombinant enzyme encoded by the <i>Escherichia coli</i> uracil-N-glycosylase gene. This gene was inserted into an <i>E. coli</i> host to direct expression of the native form of the enzyme (Kwok and Higuchi, 1989).	
	UNG acts on single- and double-stranded dU-containing DNA. It acts by hydrolyzing uracil-glycosidic bonds at dU-containing DNA sites. The enzyme causes the release of uracil, thereby creating an alkali-sensitive apyrimidic site in the DNA. The enzyme has no activity on RNA or dT-containing DNA (Longo <i>et. al.</i> , 1990).	
General PCR	Please follow these recommended procedures:	
Practices	 Wear a clean lab coat (not previously worn while handling amplified PCR products or during sample preparation) and clean gloves when preparing samples for PCR amplification. 	
	• Change gloves whenever you suspect that they are contaminated.	
	 Maintain separate areas, dedicated equipment, and supplies for: 	
	 Sample preparation 	
	 PCR setup 	
	 PCR amplification 	
	 Analysis of PCR products 	
	 Never bring amplified PCR products into the PCR setup area. 	
	 Open and close all sample tubes carefully. Try not to splash or spray PCR samples. 	
	 Keep reactions and components capped as much as possible. 	
	• Use positive-displacement pipettes or aerosol-resistant pipette tips.	
	• Regularly clean benches and equipment with 10% bleach solution.	

Materials and Equipment

Kit Components TaqMan Human Endogenous Control Plates are available in the following configurations:

P/N	Contents	
4309920	Component	P/N
	TaqMan Human Endogenous Control Plates (2)	_
	TaqMan Universal PCR Master Mix	4304437
	TaqMan Human Control Total RNA	4307281
	TaqMan Human Endogenous Control Plate Protocol	4308134
4200024		
4309921	Component	P/N
	TaqMan Human Endogenous Control Plates (2)	—
	TaqMan Universal PCR Master Mix	4304437

Materials Storage The table below lists the storage conditions for the TaqMan Human Guidelines Endogenous Control Plate Kit and reagents used in this protocol.

Kit Component/Reagent	Storage Conditions
TaqMan Human Endogenous Control Plate	2 to 8 °C, dark
TaqMan Universal PCR Master Mix	2 to 8 °C, dark
TaqMan Human Control Total RNA	–15 to –25 °C

IMPORTANT Do not remove the TaqMan Human Endogenous Control Plate from its packaging until ready to use. Excessive exposure to light damages the fluorescent probes.

Materials and Some equipment and materials are required in addition to the reagents Equipment Not supplied with the TaqMan Human Endogenous Control Plate. Many of **Included** the items listed are available from major laboratory suppliers (MLS). Equivalent sources are acceptable where noted.

Sequence Detection Systems	Source
ABI PRISM 7700 Sequence Detection System	Contact your local Applied Biosystems sales office for the instrument best suited to meet your needs.
GeneAmp 5700 Sequence Detection System	

User-supplied materials:

Materials	Source	
MicroAmp Optical 96-Well Reaction Plate/Optical Caps	Applied Biosystems (P/N 403012)	
Note The MicroAmp Optical 96-Well Reaction Plate may be sealed with:		
 MicroAmp Optical Caps 		
or		
 ABI PRISM[™] Optical Adhesive Cover The Optical Adhesive Cover must be used with a compression pad and applicator, which are included in the starter pack. 		
ABI PRISM Optical Adhesive Cover Starter Pack	Applied Biosystems (P/N 4313663)	
 20 optical adhesive covers 		
♦ 1 applicator		
 1 compression pad 		
Sequence Detection Systems Spectral Calibration Kit ^a	Applied Biosystems (P/N 4305822)	
TaqMan Reverse Transcription Reagents	Applied Biosystems (P/N N808-0234)	
Centrifuge with 96-well plate adapter	MLS	
Disposable gloves	MLS	
Microcentrifuge	MLS	
Microcentrifuge tubes, sterile, 1.5 mL	MLS	
MicroAmp Reaction Tubes with Caps	Applied Biosystems (P/N N802-0540)	
Microsoft [®] Excel (or equivalent software)	Software vendors	

Introduction 1-11

User-supplied materials: (continued)

Materials	Source
Pipette tips, aerosol resistant	MLS
Pipettors:	MLS
 Positive-displacement 	
♦ Air-displacement	
Polypropylene tubes	MLS
Water, RNase-free, distilled, deionized	MLS

a. Only for 7700 instruments not calibrated with the VIC dye. See "Configuring the ABI Prism 7700 Software for the VIC Dye" on page 3-2 for more information.

Safety

Documentation User Attention Words	Five user attention words appear in the text of all Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below.		
	Note Calls attention to useful information.		
	IMPORTANT Indicates information that is necessary for proper instrument operation.		
	ACAUTION Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.		
	A WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.		
	A DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.		
Chemical Hazard Warning	A WARNING CHEMICAL HAZARD . Some of the chemicals used with Applied Biosystems instruments and protocols are potentially hazardous and can cause injury, illness, or death.		
	 Read and understand the material safety data sheets (MSDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. 		
	 Minimize contact with and inhalation of chemicals. Wear appropriate personal protective equipment when handling chemicals (<i>e.g.</i>, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS. 		
	 Do not leave chemical containers open. Use only with adequate ventilation. 		
	 Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended on the MSDS. 		
	 Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal. 		

Ordering MSDSs You can order free additional copies of MSDSs for chemicals manufactured or distributed by Applied Biosystems using the contact information below.

To order MSDSs	Then		
Over the Internet	a. Go to our Web site at www.appliedbiosystems.com/techsuppb. Click MSDSs		
	If you have		Then
	The MSDS docu number or the Do on Demand inde number	ment ocument x	Enter one of these numbers in the appropriate field on this page.
	The product part	number	Select Click Here, then
	Keyword(s)		enter the part number or keyword(s) in the field on this page.
	c. You can open and download a PDF (using Adobe [®] Acrobat [®] Reader [™]) of the document by selecting it, or you can choose to have the document sent to you by fax or email.		
By automated telephone service from any country	Use "To Obtain Documents on Demand" on page D-7.		
By telephone in the United States	Dial 1-800-327-3002, then press 1.		
By telephone from	To order in	Then di	al 1-800-668-6913 and
Ganada	English	Press 1,	then 2, then 1 again
	French	Press 2,	, then 2 , then 1
By telephone from any other country	See the specific region in "To Contact Technical Support by Telephone or Fax" on page D-3.		

For chemicals not manufactured or distributed by Applied Biosystems, call the chemical manufacturer.

1-14 Introduction

Site Preparation A site preparation and safety guide is a separate document sent to all **and Safety Guide** customers who have purchased an Applied Biosystems instrument. Refer to the guide written for your instrument for information on site preparation, instrument safety, chemical safety, and waste profiles.

2

Reverse Transcription

Overview

About This	This chapter covers reverse transcription (RT), a process in which
Chapter	cDNA is synthesized from total RNA samples. Reverse transcription is
	the first step in the two-step RT-PCR gene expression quantification
	experiment, as described in "How TaqMan Endogenous Control Assays
	Work" on page 1-6. In this step, random hexamers from the TaqMan®
	Reverse Transcription Reagents prime total RNA samples for reverse
	transcription using MultiScribe™ Reverse Transcriptase.

In This Chapter The following topics are discussed in this chapter:

Торіс	See Page
Sample Preparation	2-2
Reverse Transcription for All Amplicons Except 18S	2-4
Reverse Transcription for the 18S Amplicon	2-8

Sample Preparation

Recommended Based on the template conflicts explained below, Applied Biosystems recommends evaluating only human total RNA samples using the Template TaqMan Human Endogenous Control Plate.

The following table lists the known template incompatibilities:

Template	Explanation
Poly A+	The 18S rRNA assay cannot accurately evaluate poly A ⁺ RNA samples, because most of the rRNA has been removed.
Non-human	Except for the 18S rRNA and the internal positive control (IPC), all assays on the endogenous control plate are human-specific.

Preparation and Quality

RNA Template Because the quality of results is directly related to the purity of the RNA template, Applied Biosystems recommends using only well-purified samples with the TaqMan Human Endogenous Control Plate. Because ribonuclease and genomic DNA contamination are common problems in gene expression studies, purify your samples accordingly to ensure the best results.

> IMPORTANT Each TaqMan endogenous control assay has been experimentally proven not to detect up to 10,000 copies of contaminating DNA. In spite of this design characteristic, Applied Biosystems recommends using purified total RNA samples to obtain the best results.

If possible, use spectrophotometric analysis to determine the Recommended concentrations of your purified total RNA samples. The table below Quantity contains the recommended range of template quantity.

Initial Template	Quantity Per Well ^a
Human Total RNA	10–100 ng

a. Initial RNA converted to cDNA

IMPORTANT Enough sample-specific cDNA must be generated for each sample to fill 24 wells on the TaqMan Human Endogenous Control Plate.

2-2 Reverse Transcription

Calibrator Sample

About the Applied Biosystems recommends evaluating duplicate rows of three test samples and a calibrator sample on the TaqMan Human Endogenous Control Plate. The figure below illustrates the recommended plate configuration.

The calibrator sample serves the following purposes:

- Provides a baseline for comparison with the other samples on the plate.
- Serves as a basis for comparing sample data from multiple, • independently run plates.

Note The calibrator sample can be used to compare sample data from independently run plates only if the same calibrator sample is present on all plates.

Reverse Transcription for All Amplicons Except 18S

Reverse	The following guidelines ensure optimal RT performance:			
Transcription Guidelines	 Depending on gene expression levels in your samples, Applied Biosystems recommends using 10–100 ng of total RNA (converted to cDNA) per well. Enough sample-specific cDNA must be generated for each sample to fill 24 wells on the TaqMan Human Endogenous Control Plate. 			
	 Perform multiple RT reactions in multiple wells if using more than 2 µg total RNA. A maximum of 2 µg total RNA per 100 µL RT reaction efficiently converts to cDNA. 			
	 Prior to use, thaw all reagents except the enzyme and the RNase Inhibitor. When the reagents are thawed, keep them on ice. 			
	 Keep the MultiScribe Reverse Transcriptase RNase Inhibitor in a freezer until immediately prior to use. 			
Instruments for Reverse	Because the data acquired during the RT reaction is not needed for analysis, any of the thermal cyclers listed below can be used:			
Transcription	♦ ABI PRISM 7700 Sequence Detection System			
	 GeneAmp 5700 Sequence Detection System 			
	 GeneAmp[®] PCR System 9700 Thermal Cycler 			
	 GeneAmp[®] PCR System 9600 Thermal Cycler 			

Performing the RT Reaction

Performing the **A CAUTION** CHEMICAL HAZARD. TaqMan Reverse Transcription

Reagents may cause eye and skin irritation. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

To perform the RT reaction:

Step	Action				
1	In a 1.5-mL microcentrifuge tube, prepare a reaction mix for all total RNA samples to be reverse transcribed.				
	Volume (µL)				
	Component	Per Sample	Reaction Mix (x4)	Final Conc.	
	RNase-free water	See below ^a	See below ^a	—	
	10X RT Buffer	10.0	40.0	1X	
	25 mM MgCl ₂	22.0	88.0	5.5 mM	
	deoxyNTPs Mixture 20.0 80.0 500 μM (per dNTF Random Hexamers 5.0 20.0 2.5 μM				
	RNase Inhibitor 2.0 8.0 0.4				
	MultiScribe Reverse Transcriptase (50 U/μL) 2.5 10.0 1.25 U/μ Total ^{b, c} 61.5 246.0 —				
	a. The volume of RNase-free water (μ L) is 38.5 μ L–RNA sample volume in a 100- μ L reaction.				
	 b. If changing the reaction volume, make sure that the final proportions are consistent with the recommendd values above. 			al proportions are	
	c. Perform multiple RT reactions in multiple wells if using more than 2 µg total RNA.				
	Note The calibrator is a s with the other samples on t Sample" on page 2-3 for m	sample usec he plate (se ore informat	l as a basis f e "About the tion).	or comparison Calibrator	
2	Label four 1.5-mL microcer a calibrator sample.	ntrifuge tube	s for three te	est samples and	
3	Transfer 60 ng to 2 µg (up the corresponding microcer	to 38.5 µL) o ntrifuge tube	of each total	RNA sample to	

Reverse Transcription 2-5

To perform the RT reaction: (continued)

Step	Action				
4	If necessary, dilute each total RNA sample to a volume of 38.5 μL with RNase-free, deionized water.				
5	Cap the tubes and gently tap each to mix the diluted samples.				
6	Briefly centrifuge the tubes to eliminate air bubbles in the mixture.				
7	Label four 0.2-mL MicroAmp Reaction tubes for the three total RNA samples and a calibrator sample.				
8	Pipette 61.5 μ L of reaction mix (from step 1) into each MicroAmp Reaction Tube (from step 7).				
	• 10X RT buffer • MgCl ₂ • dNTPs mixture • Random hexamers • MultiScribe reverse transcriptase • RNase inhibitor				
	61.5 μL 61.5 μL 61.5 μL				
	Calibrator Sample 1 Sample 2 Sample 3				
9	Transfer 38.5 μ L of each dilute total RNA sample to the corresponding MicroAmp Reaction tube.				
10	Cap the reaction tubes and gently mix the reactions.				
11	Breifly centrifuge the tubes to force the solution to the bottom of the tube and eliminate air bubbles from the mixture.				
12	Transfer each reaction to:				
	 MicroAmp Optical Tube(s), or 				
	 Wells of a MicroAmp Optical 96-Well Reaction Plate. 				
13	Cap the MicroAmp Optical tubes or plate.				
14	Centrifuge the plate or tubes to spin down the contents and eliminate air bubbles from the solutions.				

2-6 Reverse Transcription

To perform the RT reaction: (continued)

Step	Action					
15	Load the reactions into a thermal cycler.					
16	Program your th	ermal cycler w	ith the following co	onditions:		
	IMPORTANT If using a 9700 thermal cycler, select MAX Mode to perform 100-µL reactions.					
	ReverseReverseReverseTranscriptaseIncubationTranscription					
	Step	HOLD	HOLD	HOLD		
	Temperature	25.0 °Cª	48.0 °C	95.0 °C		
	Time	10 min	30 min	5 min		
	Volume	100 µL				
	a. If using random synthesis, a pri maximize prime	n hexamers or oligo d(T) ₁₆ primers for first-strand cDNA imer incubation step (25 °C for 10 min) is necessary to er-RNA template binding.				
	Note The thermal cycling parameters are optimal for the Applied Biosystems thermal cyclers listed in "Instruments for Reverse Transcription" on page 2-4. Due to differences in ramp rates and thermal accuracy, you may need to adjust the settings if using another thermal cycler.					
	Note See you thermal cycling	r thermal cycle conditions.	r user's manual fo	r help on setting		
17	Load the plate in	nto your therma	al cycler and begin	thermal cycling.		
	IMPORTANT I thermal cycling i PCR amplificatio	Remove the 96 s complete. Th on or stored at	-well reaction plate e cDNA can be us –15 to –25 °C for	e immediately after ed immediately for later use.		

Reverse Transcription for the 18S Amplicon

Overview Synthesis of cDNA from total RNA samples is the first step in the two-step RT-PCR gene expression quantification experiment. In this step, random hexamers from the TaqMan® Reverse Transcription Reagents (P/N N808-0234) prime total RNA samples for reverse transcription using MultiScribe™ Reverse Transcriptase.

RecommendedUse only human total RNA samples to generate cDNA for the TaqManTemplateHuman Endogenous Control Plate.

The following table lists the known template incompatibilities:

Template	Explanation
Poly A+	The 18S rRNA endogenous control assay cannot accurately evaluate cDNA generated from poly A ⁺ RNA samples because most of the rRNA has been removed from them.
Non-human	Except for 18S rRNA and the IPC, all assays on the TaqMan Human Endogenous Control Plate are human-specific.

Template Quality The quality of your results is directly related to the purity of your RNA template. Therefore, use only well-purified samples with the TaqMan Human Endogenous Control Plate. Because ribonuclease and genomic DNA contamination are common problems in gene expression studies, purify your samples accordingly to ensure the best results.

Template Quantity If possible, use spectrophotometric analysis to determine the concentrations of purified total RNA samples before reverse transcription. The table below lists the recommended range of initial template quantities for the reverse transcription (RT) step.

Initial Template	Quantity of total RNA (per 100-µL RT reaction)	
Human Total RNA	60 ng–2 μg	

2-8 Reverse Transcription

Guidelines	Follow the guidelines below to ensure optimal RT performance:
	 Poly A+ RNA samples are not recommended for endogenous control experiments because most rRNA has been removed from them.
	 A 100-μL RT reaction efficiently converts a maximum of 2 μg total RNA to cDNA. Perform multiple RT reactions in multiple wells if using more than 2 μg total RNA.
	 Use only random hexamers to reverse transcribe the total RNA samples for endogenous control gene expression assays.
Preparing the Reactions	The following procedure describes the preparation of three different test samples and a calibrator sample for reverse transcription. Scale the recommended volumes accordingly for the number of samples needed using the TaqMan Reverse Transcription Reagents (P/N N808-0234).
	ACAUTION CHEMICAL HAZARD. TaqMan Reverse Transcription Reagents may cause eye and skin irritation. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

To prepare the reverse transcription reactions:

Step	Action					
1	In a 1.5-mL microcentrifuge tube, prepare a reaction mix for all total RNA samples to be reverse transcribed.					
		Volum	ne (µL)			
	Component	Per Sample	Reaction Mix (x4)	Final Conc.		
	RNase-free water	See below ^a	See below ^a	—		
	10X RT Buffer	10.0	40.0	1X		
	25 mM MgCl ₂	22.0	88.0	5.5 mM		
	deoxyNTPs Mixture 20.0 80.0 500 μM per dNT					
	Random Hexamers	5.0	20.0	2.5 µM		
	RNase Inhibitor 2.0 8.0 0.4					
	MultiScribe Reverse Transcriptase (50 U/µL)	6.25	25.0	3.125 U/µL		
	Total ^b 65.25 261.0 —					
	 a. The volume of RNase-free water (μL) is 34.75–RNA sample volume 100-μL reaction. b. If changing the reaction volume, make sure the final proportions are consistent with the recommended values above. 					
2	Label four 1.5-mL microcentrifuge tubes for the three test samples and a calibrator sample.					
3	Transfer 60 ng–2 μ g (up to 34.75 μ L) of each total RNA sample to the corresponding microcentrifuge tube.					
4	If necessary, dilute each total RNA sample to a volume of 34.75 μL with RNase-free, deionized water.					
5	Cap the tubes and gently ta	ap each to m	ix the diluted	samples.		
6	Briefly centrifuge the tubes	to eliminate	air bubbles ir	n the mixture.		
7	Label four 0.2-mL MicroAm RNA test samples and the	np [®] Reaction calibrator sa	Tubes for the mple.	e three total		

2-10 Reverse Transcription

To prepare the reverse transcription reactions: (continued)

Reverse Transcription 2-11

Thermal Cycling To conduct reverse transcription thermal cycling:

Step	Action					
1	Load the reactions into a thermal cycler.					
2	Program your thermal cycler with the following conditions:					
	StepHexamerReverseIncubationaTranscriptionIncubationaTranscription					
		HOLD	HOLD	HOLD		
	Temp.	25 °C	37 °C	95 °C		
	Time	10 min	60 min	5 min		
	Volume	100 µL				
	a. When using random hexamers for first-strand cDNA synthesis, a primer incubation step (25 °C for 10 min) is necessary to maximize primer-RNA template binding.					
3	Begin reverse transcription.					
	IMPORTANT After thermal cycling, store all cDNA samples at -15 to -25 °C.					

2-12 Reverse Transcription

3

PCR

Overview

About This Chapter	his chapter covers PCR, or the amplification of cDNA. PCR is the econd step in the two-step RT-PCR experiment, as described in "How aqMan Endogenous Control Assays Work" on page 1-6. In this step, mpliTaq [®] Gold DNA polymerase amplifies cDNA synthesized from the riginal total RNA sample.			
	Note See "Basics of the 5´ Nuclease Assay" on page 1-7 for more inform on AmpliTaq Gold DNA polymerase and the 5´ nuclease assay.			
In This Chapter The following topics are discussed in this chapter:				
	Торіс	See Page		
	Preparing the Sequence Detection System for PCR	3-2		

Preparing and Running the PCR Reactions

3-5

Preparing the Sequence Detection System for PCR

Instruments	IMPORTANT Because the data acquired during the PCR is needed for analysis, you must use one of the following sequence detectors for PCR:		
	♦ ABI PRISM 7700 Sequence Detection System		
	 GeneAmp 5700 Sequence Detection System 		
Configuring the ABI PRISM 7700 Software for the VIC Dye	If your ABI PRISM 7700 Sequence Detection System is not calibrated for the VIC dye, it must be calibrated using the Sequence Detection Systems Spectral Calibration Kit (P/N 4305822). The kit provides the standards needed to configure the ABI PRISM 7700 Sequence Detector for use with products containing TaqMan® VIC or SYBR® Green dyes. If the instrument is not calibrated for the VIC dye, the instrument software will be unable to configure the VIC dye layer for the endogenous control gene expression assay.		
	Note For more information about the Sequence Detection Systems Spectral Calibration Kit or the calibration procedure, see the <i>ABI PRISM 7700 Sequence Detection Systems User Bulletin #4: Generating New Spectra Components</i> (P/N 4306234). User bulletin #4 can be obtained from Applied Biosystems. See "To Obtain Documents on Demand" on page D-7.		
Programming the Sequence Detector for PCR	To run the TaqMan Human Endogenous Control Plate on a sequence detection system instrument, you must configure a plate document with the appropriate assay and sample information. The TaqMan Human Endogenous Control Plate compares gene expression levels based on the data collected during the PCR run. By configuring the plate document with the sample and assay locations, the SDS software can collect and organize the florescence data for analysis.		

To configure the PCR plate document:

Step	Action			
1	Open the Sequence Detection Syster	m (SDS) software.		
2	Create a plate document with the following attributes:			
	7700 Plate Document 5700 Plate Document			
	 Single Reporter 	◆ 5700		
	♦ 7700 Sequence Detector	♦ 5700 Quantitation		
	♦ Real Time			

3-2 PCR

To configure the PCR plate document: (continued)

li A	If using an					Then							
	ABI PRISM 7700 Sequence Detection System GeneAmp 5700 Sequence Detection System				се	 From the Dye Layer menu, select VIC. Note If VIC does not appear on the Dye Layer menu, the instrument is not calibrated for the VIC dye. See "Configuring the ABI Prism 7700 Software for the VIC Dye" on page 3-2 for more information. a. From the Primer/Probe Setup dialog box, create the following primer/probe entry: 							
C					ce								
						Acronym			TA	TAQ1			
						0	Descrip	tion	Tac	qMan V	ΊC		
						b. App	ly the p	robe to	all well	s.			
Co	onfię	gure tł	ne plate	docum	nent as	b. App shown	ly the p in the fi	robe to gure be	all well	S.			
Co	onfig	gure th	ne plate 2	e docum	nent as	b. App shown 5	ly the p in the fi	robe to gure be	all well elow.	S. 9	10	11	12
Co	onfig •	gure th	ne plate 2 UNKN 18S	e docum 3 UNKN huP0	nent as 4 UNKN huBA	b. App shown 5 UNKN huCYC	Iy the p in the fi 6 UNKN huGAP	gure be	all wells elow. 8 UNKN huB2m	9 UNKN huGUS	10 UNKN huHPRT	11 UNKN huTBP	12 UNKM huTff
Co	onfiç A	gure th	2 UNKN 18S UNKN 18S	3 UNKN huPO UNKN huPO	unkn huBA UNKN huBA	b. App shown 5 UNKN huCYC UNKN huCYC	Iy the p in the fi UNKN huGAP UNKN huGAP	gure be gure be UNKN huPGK UNKN huPGK	all Well elow. UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS	10 UNKN huHPRT UNKN huHPRT	11 UNKN huTBP UNKN huTBP	12 UNKM huTfl UNKM huTfl
Co	onfiç A B	UNKN IPC UNKN IPC UNKN IPC	2 UNKN 18S UNKN 18S UNKN 18S	a docum 3 UNKN huPO UNKN huPO UNKN huPO	4 UNKN huBA UNKN huBA UNKN huBA	b. App shown 5 UNKN huCYC UNKN huCYC	Iy the p in the fi UNKN huGAP UNKN huGAP UNKN huGAP	gure be gure be <u>7</u> UNKN huPGK UNKN huPGK	All Well: Blow. UNKN huB2m UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS UNKN huGUS	10 UNKN huHPRT UNKN huHPRT UNKN huHPRT	11 UNKN huTBP UNKN huTBP UNKN huTBP	12 UNKN huTff UNKN huTff UNKN huTff
Co	Donfiq B C D	UNKN IPC UNKN IPC UNKN IPC UNKN IPC	2 UNKN 18S UNKN 18S UNKN 18S UNKN 18S	e docum 3 UNKN huPO UNKN huPO UNKN huPO UNKN huPO	4 UNKN huBA UNKN huBA UNKN huBA	b. Appl shown 5 UNKN huCYC UNKN huCYC UNKN huCYC	ly the p in the fi UNKN huGAP UNKN huGAP UNKN huGAP	Tobe to gure be 7 UNKN huPGK UNKN huPGK UNKN huPGK	All Well: BOW. UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS UNKN huGUS	10 UNKN huHPRT UNKN huHPRT UNKN huHPRT	11 UNKN huTBP UNKN huTBP UNKN huTBP	12 UNKN huTff UNKN huTff UNKN huTff
	Donfiç A B C D E	UNKN IPC UNKN IPC UNKN IPC UNKN IPC UNKN IPC	2 UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S	e docum 3 UNKN huPO UNKN huPO UNKN huPO UNKN huPO	4 UNKN huBA UNKN huBA UNKN huBA UNKN huBA	b. Appl shown 5 UNKN huCYC UNKN huCYC UNKN huCYC UNKN huCYC	ly the p in the fi UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP	Tobe to gure be 7 UNKN huPGK UNKN huPGK UNKN huPGK UNKN huPGK	All Well: All Well: UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS UNKN huGUS UNKN huGUS	10 UNKN huHPRT UNKN huHPRT UNKN huHPRT UNKN huHPRT	11 UNKN huTBP UNKN huTBP UNKN huTBP UNKN huTBP	12 UNKN huTff UNKN huTff UNKN huTff UNKN huTff
	Donfiç A B C D E F	UNKN IPC UNKN IPC UNKN IPC UNKN IPC UNKN IPC UNKN IPC	2 UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S	e docum 3 UNKN huPO UNKN huPO UNKN huPO UNKN huPO UNKN huPO	4 UNKN huBA UNKN huBA UNKN huBA UNKN huBA	b. Appl shown 5 UNKN huCYC UNKN huCYC UNKN huCYC UNKN huCYC UNKN huCYC	ly the p in the fi UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP	Tobe to gure be 7 UNKN huPGK UNKN huPGK UNKN huPGK UNKN huPGK	All Well: All Well: UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS UNKN huGUS UNKN huGUS UNKN huGUS	10 UNKN huHPRT UNKN huHPRT UNKN huHPRT UNKN huHPRT UNKN huHPRT	11 UNKN huTBP UNKN huTBP UNKN huTBP UNKN huTBP UNKN huTBP	12 UNKN huTff UNKN huTff UNKN huTff UNKN huTff UNKN huTff
	A B C C D E F G	UNKN IPC UNKN IPC UNKN IPC UNKN IPC UNKN IPC UNKN IPC	2 UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S UNKN 18S	docum docum docum unkn huP0 UNKN huP0	4 UNKN huBA UNKN huBA UNKN huBA UNKN huBA UNKN huBA	b. Appl shown 5 UNKN huCYC	ly the p in the fi UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP UNKN huGAP	Tobe to gure be 7 UNKN huPGK UNKN huPGK UNKN huPGK UNKN huPGK UNKN huPGK	All Well: All Well: UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m UNKN huB2m	9 UNKN huGUS UNKN huGUS UNKN huGUS UNKN huGUS UNKN huGUS	10 UNKN huhprt UNKN huhprt	11 UNKN huTBP UNKN huTBP UNKN huTBP UNKN huTBP UNKN huTBP	12 UNKN huTff UNKN huTff UNKN huTff UNKN huTff UNKN huTff UNKN huTff

PCR 3-3

To configure the PCR plate document: (continued)

	UNG Activation ^a	AmpliTaq Gold Activation ^b	PCR			
	HOLD	HOLD	CYCLE (40 cycles)			
Step			Denature	Anneal/ Extend		
Temp.	50.0 °C	95.0 °C	95.0 °C	60.0 °C		
īme	2 min	10 min	15 sec	1 min		
/olume	50 µL					
/olume Required Required	for optimal AmpErase L for optimal AmpliTaq Go	50 μL ING activation. old DNA Polymerase a	ctivation.			

Preparing and Running the PCR Reactions

PCR Guidelines	The following	auidelines e	ensure optimal	PCR performance:
r UN Guidennes	The following	yuluelilles e	insule optimat	FOR periornance.

- Do not remove the TaqMan Human Endogenous Control Plate from its foil packaging until you are ready to load the PCR reaction mix. Excessive exposure to light can damage the florescent probes.
- Prior to use, thaw frozen cDNA samples by placing them on ice. When thawed, vortex and briefly centrifuge the contents of each tube to resuspend the samples.
- Prepare PCR reaction mixture for each sample in separate microcentrifuge tube before aliquoting it to the reaction plate for thermal cycling and fluorescence analysis.
- The volume of the PCR reaction mix per well must be 50 µL minus the volume of the cDNA sample from the RT step.
- Do not mix the PCR mixture and cDNA samples in the MicroAmp Optical 96-Well Reaction Plate.

Note The cDNA amplification reaction is optimized with TaqMan Universal PCR Master Mix.

Performing PCR CAUTION CHEMICAL HAZARD. TaqMan Universal PCR Master Mix may cause eye and skin irritation. It may cause discomfort if swallowed or inhaled. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
To perform the PCR:

To perform the PCR: (continued)

To perform the PCR: (continued)

3-8 PCR

4

Data Analysis

Overview

About This Chapter	This chapter covers data analysis, which requires adjustment of the baseline and threshold values within the Sequence Detection Systems (SDS) software. After the adjustments, the data can be exported from the SDS software for spreadsheet analysis.	
	IMPORTANT If the threshold value is set before the baseline, the values may be invalid and produce errors when calculating gene e	eresulting C _T expression.
In This Chapter	The following topics are discussed in this chapter:	
	Торіс	See Page
	Setting the Baseline	4-2
	Setting the Threshold Value	4-6

Data Analysis 4-1

Setting the Baseline

Baseline Basics The baseline is a defined range of cycles before the Sequence Detection Systems (SDS) software detects the amplification of PCR product. The SDS software uses a default range of cycles 3–15 on 7700 instruments and cycles 6–15 on 5700 instruments to establish the baseline. The figure below illustrates the important characteristics of the baseline on a 7700 amplification plot.

Because of the abundance of rRNA, low C_T values can be obtained in TaqMan RT-PCR applications with the 18S assays. When the amplification of the 18S target reaches a detectable level at a very early cycle, it can limit the number of cycles over which the software calculates the baseline. In rare cases, this interferes with the detection of less abundant targets. See Appendix A, "Troubleshooting Early Amplification," for more information.

Guidelines for Setting the Baseline Correct placement of the baseline is a crucial step in data analysis. Follow the guidelines below to ensure the baseline is set properly.

- Set the baseline so that the initial amplification curve begins at a cycle that is greater than the maximum value of the baseline.
- Do not adjust the default baseline if the amplification curve growth begins after cycle 15. For example, the default can be used for the plot above because initial amplification occurs at cycle 16.

4-2 Data Analysis

Setting the Baseline for the ABI PRISM 7700 Instrument

Setting the Before setting the baseline, you must first

- Display the results on an amplification plot
- Change the Y-axis to linear scale

Displaying Results on an Amplification Plot

To display the results on an amplification plot:

Step	Action
1	Select Analysis > Analyze.
	The SDS software analyzes the raw data and displays an amplification plot.
2	If the SDS software does not display an Amplification Plot, then select Analysis > Amplification Plot .
	The SDS software displays an amplification plot (log ΔR_n vs. Cycle).

Changing the Y-Axis to Linear Scale

To change the Y-axis to linear scale:

Step	Action
1	Double-click the ΔR_n label on the Y-axis of the amplification plot.
	Double-click here
	The Scale dialog box appears.
2	Click the Linear Scale radio button to graph the data on a linear scale.
	Click here
3	Click OK.
	The amplification plot appears in a linear scale format.

Data Analysis 4-3

Procedure for Setting the Baseline for the ABI PRISM 7700 Instrument

To set the baseline:

Step	Action	
1	Identify the components of the linear scale a shown on page 4-2.	amplification plot as
2	Click the Stop text field in the Baseline box	ζ.
	Threaded Cycle Extended to the first state of the first state state of the first state of the first state of the first state state of the first state of the first state state of the first state state of the first state of the first state state of the first state state state of the first state	Click here
3	Following the guidelines from the previous p of the following actions:	bage, choose from one
	If the amplification plot looks like	Then
		the amplification curve begins after the maximum baseline. Do not adjust the baseline.
		the maximum baseline is set too high. Decrease the Stop baseline value.
		the maximum baseline is set too low.
		baseline value.
4	Click Update Calculations.	
	The SDS software updates the C_T and stan	dard deviation values.

4-4 Data Analysis

Setting the
Baseline for the
GeneAmp 5700To set the baseline for the GeneAmp 5700 instrument:StepActionInstrument1In the Plate window, select all wells for analysis.

Step Action 1 In the Plate window, select all wells for analysis. 2 Select Analysis > Analyze. An SDS warning message appears. 3 Click **OK** to continue. 4 In the Plate window, click the Results tab. **Note** The tabs just above the wells in the Plate window let you toggle between the Setup, Instrument, and Results views. 5 In the Results view, click the Amp Plot tab. The Amplification Plot window appears. Identify the components of the linear scale amplification plot as 6 shown in "Baseline Basics" on page 4-2. 7 Click the Analysis Preferences button or select Edit > Preferences. The Preferences dialog box appears. In the **Baseline** box, highlight the current Start and Stop values and 8 type in new values. **IMPORTANT** When selecting a baseline, refer to the guidelines listed in "Guidelines for Setting the Baseline" on page 4-2. Click OK. 9 Select Analysis > Analyze. 10 The software performs the analysis. The system beeps when the analysis is complete.

Note For help on setting the baseline, see the *GeneAmp 5700 Sequence Detection System User's Manual* (P/N 4304472).

Setting the Threshold Value

Basics

Threshold Value For the 7700 instrument, the default threshold value is the average standard deviation of ${\boldsymbol{\Delta}} R_n$ within the defined baseline region, multiplied by an adjustable factor. The SDS software calculates the threshold value as ten standard deviations from the baseline. For this reason, the baseline must be set before you adjust the threshold value. The threshold value must be set manually for the 5700 instrument.

> The figure below illustrates the important characteristics of the threshold on a 7700 plot.

Characteristic	Description
1	Product amplification
2	Plateau phase
3	Exponential phase
4	Threshold value
5	Background (spectral noise)

4-6 Data Analysis

Guidelines for Setting the	Note Correct placement of the threshold is a crucial step in data analysis. Follow the guidelines below to ensure the threshold is set properly.
Threshold	To obtain accurate results:
	 Set the threshold value within the exponential phase of the logarithmic scale amplification plots. The exponential phase occurs within the range of data points that increase linearly when graphed.
	 Set the threshold value so that it is within the exponential phase of all amplification plots. If a single threshold cannot be set to satisfy all plots, then it must be set multiple times.
Setting Multiple Thresholds	Because the expression levels and ΔR_n values of TaqMan endogenous control assays can vary significantly, it may be necessary to set the threshold more than once to obtain accurate results. If a single threshold value does not intersect the exponential phase of all amplification plots, the data must be analyzed (and subsequently exported) with multiple threshold values.
	The figure below shows a 5700 amplification plot where the threshold must be set independently for each group of curves. As shown, Threshold 1 is within the exponential phase of the plots in Group A; however, it intersects with the plateau phase of the plots in Group B. The results from this setting would be accurate for the plots in Group A, but invalid for the plots in Group B. If reset for Group B (Threshold 2), the threshold intersects Group A at a point very early in the exponential phase where background noise causes non-reproducibility. The solution for this situation is to set the threshold separately for both groups.

To set multiple thresholds:

Step	Action
1	Following the appropriate procedure for your instrument, set a threshold value that is valid for the majority of plots on the logarithmic graph.
2	Export the data as explained in "Exporting and Viewing the Results File" on page 5-2. The software saves the data to a file.
3	From the logarithmic amplification plot, identify the plots for which the threshold set in step 1 was invalid.
4	Reset the threshold value for the second group of plots.
5	Export the data as explained in "Exporting and Viewing the Results File" on page 5-2.
	IMPORTANT Save the file with a name different than that used in step 2. The software overwrites files with identical names.
	There are now two files on the disk:
	 The file created in step 2 containing valid data for the majority of plots from the experiment
	 The file created in step 5 containing valid data for the remaining plots
	Note The data in the files is combined later during spreadsheet analysis.

To set multiple thresholds: (continued)

Ste	Action
6	Follow the procedure for spreadsheet analysis as described in "Calculating the Relative Quantification Using a Spreadsheet" on page 5-5.

Setting the Changing the Y-Axis to Logarithmic Scale

Threshold Value for the ABI PRISM 7700 Instrument

To view the threshold value:

Step	Action	
1	Double-click the ΔR_n label on the Y-axis of the graph.	
	The Scale dialog box appears.	
2	Click the Logarithmic Scale radio button from the Display box.	
	Display Diteor Scale Click horo	
3	Click OK .	
	The amplification plot appears in logarithmic format.	

Procedure for Setting the Baseline for the ABI PRISM 7700 Instrument

To set the threshold value:

Step	Action
1	Identify the components of the amplification curve as shown in "Threshold Value Basics" on page 4-6.
2	Click and drag the threshold line so that it is:
	 Above the background noise
	 Below the plateaued region
	 Within the exponential phase of the amplification curve

To set the threshold value: (continued)

3	Click Update Calculations.
	The SDS software updates the C_{T} and standard deviation values.
4	Click OK.

Setting the To set the threshold for the GeneAmp 5700 instrument: **Threshold Value** for the GeneAmp **5700 Instrument**

Action Step 1 In the Plate window, click the Results tab. **Note** The tabs just above the wells in the Plate window let you toggle between the Setup, Instrument, and Results views. In the Results view, click the Amp Plot tab. 2 The Amplification Plot window appears. 3 Identify the components of the amplification curve as shown in "Threshold Value Basics" on page 4-6. 4 Determine a value for threshold that is: Above the background noise Below the plateaued region Within the exponential phase of the amplification curve **IMPORTANT** When selecting a threshold, refer to the guidelines listed in "Guidelines for Setting the Threshold" on page 4-7. Click the Analysis Preferences button, or select Edit > 5 Preferences. The Preferences dialog box appears. 6 In the Threshold box, enter the value you determined in step 4 above. Click OK. 7 8 Select Analysis > Analyze . The software performs the analysis. The system beeps when the analysis is complete.

Note For help on setting the threshold value, see the GeneAmp 5700 Sequence Detection System User's Manual (P/N 4304472).

Data Analysis 4-11

Calculating Relative Quantification

Overview

About This	This chapter explains how to calculate relative quantification values
Chapter	from C_T values with the use of a spreadsheet application such as
-	Microsoft [®] Excel. Applied Biosystems [®] recommends using a
	professional spreadsheet software package to analyze the results from
	the TaqMan Human Endogenous Control Plate. Although calculation of relative quantification values can be done manually, spreadsheet
	packages speed the process considerably.

In This Chapter The following topics are discussed in this chapter:

Торіс	See Page
Exporting and Viewing the Results File	5-2
Calculating the Relative Quantification Using a Spreadsheet	5-5
Interpreting Results	5-17

Exporting and Viewing the Results File

Creating a To analyze data from the TaqMan Human Endogenous Control Plate, Results File export the results to a results file. The SDS software can export raw data from a sequence detection run in formats that are compatible with most spreadsheet applications. The type of file the software exports depends on the model instrument used to collect the data.

Instrument	Exported Format					
ABI PRISM 7700 Instrument	Tab-delimited text file					
GeneAmp 5700 Instrument	Comma-separated text file (.csv)					

Exporting Results from a GeneAmp 5700 Sequence Detection System

To export the data from the endogenous control gene expression assay:

Step	Action
1	Select Analysis > Export > Ct.
	The Save As dialog box appears.
	Note You can also click the Export button in the Report window to open the Save As dialog box.
2	Click the Save as text box and type a name for the results file.
3	Click Save.
	The SDS software exports the data to a comma-separated text file.
4	Close the SDS software.

The figure below is an example of an exported 5700 results file as viewed with the Microsoft Excel spreadsheet.

- 11										100
A	:8	0	D	E.	P.1	- G	H		1 L	
1 Well	Printer	Reporter	Ct.							1
2 1	IPR1	SYBR	12.74							
12	IPR1	2108	15.91							
# 12	PR1	SYBR	18.12							
6114	IPR1	SYBR	16.52							
6 5	(P41	SYBR	21.09							
5 1	19973	5189	28.09							
817	1781	SYBR	20.6							
9.0	IPR1	SYBR	19.77							
10.72	PR1	SYBR	12.45							
11 10	PR1	SYBR	19.6							
12 11	PP1	2199	18.42							
13 "12	IPR1	SYBR	18.81							
14 *13	(P#1	SYBR	17.57							
15 14	(PR1	SYBR	18.31							
18 15	1781	SYDR	17.54							
121-10	221	SYDR	18.00							
10717	PR1	SYDR	16.00							
	1/100	ALC: NO.	10.66	_			141			in suff

Exporting Results from a ABI PRISM 7700 Sequence Detection System

To export the data from the endogenous control gene expression assay:

Step	Action							
1	Select File > Export > Results.							
2	Click the Export result data as text box and type a name for the file.							
3	Click the Export All Wells radio button.							
	Export result data as:	— Click here						
	The software saves the data from all wells	to the results file.						
4	Click Export.							
	The SDS software exports the data to a Mid spreadsheet.	crosoft Excel						
5	Close the SDS software.							

The figure below is an example of an exported 7700 results file as viewed with the Microsoft Excel spreadsheet.

D	data.reaults F								
	A 8	C		C C		6	11	1	3
8 visit	Reporter	Tupe	Decel ine SADAr	deltains	C1	Euro/Pig	Replicate	Ofly Hean	Uts SMOwn
2	1 1/10	UNKN	1.080-02	1.31E+00	21.85	-1.00E+00		0.006+00	0.08E+08
3	2 VIC	LINKI	8.801-03	3.816-01	18.58	-1.00E+00		0.006+00	0.085+08
-4	I VIE	UNKN	6.541-03	2.321+00	21.88	-1.00E+00		0.006+00	0.000+00
3	4 VIC	UNKI	6.351-03	1.738+00	18.74	-1.00E+00		0.000+00	0.085+08
-	5 VIC	UNICH	1.888-02	1.488+00	27.87	+1.00E+00		0.000+00	0.085+08
2	6 VIC	08034	7.142-05	1.518+00	28.75	■1.00€+00		0.000+00	0.005+00
	7 VIC	0.0004	1.195-02	1.09£+00	22.65	-1.00E+00		0.006+00	0.085+08
	0 VIC	0.0001	9.076-05	5.268-01	15.0	-1.00E+00		0.005+00	0.085+08
10	9 VIC	UNKO	1.190-02	2.416-02	24.6	-1.00E+00		0.000+00	0.085+08
11	10 VIC	UNKN	0.381-05	9.046-01	23.36	-1.00E+00		0.006+00	0.085+08
12	11 VIE	UNKN	1.901-02	1.07E+00	28.25	-1.00E+00		0.006+00	0.005+00
13	12 VIC	UNKN	6.158-03	2.38E+00	25.88	-1.00E+00		0.000+00	0.005+00
4 4 9 9	data results /					1			F F

Viewing the
Results FileThe exported SDS file from the data analysis procedure can be viewed
using almost any spreadsheet application.

To view the exported results file:

Step	Action							
1	Open the spreadsheet software.							
2	Select File > Open.							
3	Select from one of the following:							
	If you created Then select the							
	one results file	exported results file and click Open .						
	two results files as explained in the "Setting Multiple Thresholds" on page 4-7	exported file created in steps 1–2 and click Open .						
	two results files as explained in "How to Correct for Early Amplification" on page A-2	exported file created in steps 1–4 and click Open .						

Calculating the Relative Quantification Using a Spreadsheet

Overview Applied Biosystems recommends using a spreadsheet to create comparative gene expression profiles from TaqMan Human Endogenous Control Plate data.

Constructing a To construct a C_T table: C_T Table Step Action 1 Select File > New. A new spreadsheet appears. 2 From the Window menu, select the results file. New Window Arrange... Hide hide. Split Freeze Panes Show Clipboard 1 Workbook2 2 data.results The endogenous control plate results spreadsheet reappears. Select cells A2-A13. 3 D E Cline StdDerdelfteRn 2 23E-03 1 7 1 66E-03 1 8 E. Type UNKN UNKN UNKN UNKN 78E-01 84E-01 821 28E-05 78E-05 60E-03 872-01 33 UNKN 41E-0 29 UNKN 2.43E-03 2.58E-05 50E-0 602-01 0 UNEN 455-05 578-01 UNKN 32E-03 00E-03 91E-01 56E-01 UNKN 632-03 - 01 15.51 2.615-0 4 Select Edit > Copy. 5 From the Window menu, select the new spreadsheet. The new spreadsheet file reappears. 6 Click cell A2. 7 Select Edit > Paste. Excel pastes the data into the new spreadsheet.

To construct a $C_{T}\ \text{table:}\ \textit{(continued)}$

Step	Action								
8	Type the labels for the C_T table as specified in the following tab								
	Click on cell	Туре							
	A1	Column							
	B1	Ct Calibrator							
	C1	Ct Calibrator							
	D1	Ct Sample 1							
	E1	Ct Sample 1							
	F1	Ct Sample 2							
	G1	Ct Sample 2							
	H1	Ct Sample 3							
	l1	Ct Sample 3							
The ∆C	$C_{\rm T}$ table appears as show	wn below.							
D		Workbecki	85						

Workbeck1 E								
		c	P			E	н	COLUMN TO A
Coloren	C1 Calibrator	O Delterater	D1 Sample 3	Ct Sample 1	O.Sangle 2	Et Semple 2	Ct Sample 3	O Sample 5
	1							
-	-							
	4							
1	5							
	6							
-	2							
-	-			-				
	ú							
	11							
	12							
-								
							-	
P P Ste	et 1 / Steet2 /	Intera Z Sheet	4 / SeerS /	Sheets / Sheet	7 2 3 4 1			P.

$\begin{array}{c|c} \textbf{Importing Data to} & \textbf{Note} & \textbf{This section also consolidates the data from additional files created in the sections:} \end{array}$

- "Setting Multiple Thresholds" on page 4-7
- Appendix A, "Troubleshooting Early Amplification."

To transfer data from the results file to the $\ensuremath{\mathsf{C}_{\mathsf{T}}}$ table:

Step	Action								
1	From the Window menu, select the exported results file.								
	The endogenous control plate results spreadsheet reappears.								
2	From the results file spreadsheet select:								
	If viewing a Select cells								
	5700 results file	D2–D13							
	7700 results file	F2–F13							
	Note The columns of the selected cells contain the C_T values for the wells in row A of the TaqMan Human Endogenous Control Plate.								
3	Select Edit > Copy.								
4	From the Window mer	nu, select the new spi	eadsheet.						
	The new spreadsheet	file reappears.							
5	Click on cell B2 .								
6	Select Edit > Paste.								
	Excel pastes the data i	into the new spreadsh	neet.						
7	Using the cut-and-past into the new spreadshe	e procedure from ster eet as shown below.	os 1–6, copy the C_T values of the rer	naining wells					
	Select and copy the	following cells							
	5700 results file	7700 results file	Paste to cells						
	D14–D25	F14–F25	C2–C13						
	D26–D37	F26–F37	D2–D13						
	D38–D49 F38–F49 E2–E13								
	D50–D61	F50–F61	F2–F13						
	D62–D73	F62–F73	G2–G13						
	D74–D85	F74–F85	H2–H13						
	D86–D97	F86–F97	12–113						

To transfer data from the results file to the C_{T} table: (continued)

Step	Action					
8	Choose one of the following:					
	If the baseline and/or threshold values were set	Then				
	once for all targets	go to "Deleting Invalid CT Values" on page 5-10.				
	separately for the targets as done in:	using the figure below as a reference, replace the $C_{\rm T}$ values for the invalid wells as follows:				
	 "Setting Multiple Thresholds" on page 4-7, or Appendix A, "Troubleshooting Early Amplification." 	 a. Open the second results file. b. Copy and paste the C_T values of the valid wells from the second file to the C_T table, replacing the invalid values from the first results file. c. "Deleting Invalid CT Values" on page 5-10. 				

To transfer data from the results file to the C_{T} table: (continued)

-

Step	Action					
The foll	owing figures ill	ustrate the plac	ement of the we	ll data in the C	⊤ table. As sl	hown, the cells in the
C _T table	e correspond to	the 96 wells of	the TaqMan Hu	man Endogeno	ous Control I	Plate.
			Workbook1			D B
1 00.4	A B	C D	1 Ct Sample 1 Ct Sam	ole 2 Ct Senole 2	Ct Semple 5 Ct See	note 3
2	1 D Will 1 2 D Will 2	Ct Will 15 Ct Will Ct Will 14 Ct Will	25 C Will 57 C	Well 49 Ct Well 61	Ct Well 73 Ct	Well 85
4	3 Ct Well 3	Ct Well 15 Ct Well	27 Ct Well 39 Ct	well 51 Ct Well 63	Ct Well 75 Ct	well 87
0	5 D WH 5	D WHI 17 D WHI	29 D Well 41 D	Well 55 Cr Well 65	Ci Well 77 Ci	Well 30
8	7 Ct Well 5	Ct Well 19 Ct Well	31 Ct Well 43 Ct	Well SE C1 Well 67	C1 Well 79 C1	Well 91
10	9 Et With 9	Ct Well 20 Ct Well	32 Ct Well 44 Ct 35 Ct Well 45 Ct	Will 57 Ct Well 69	Ct Well 81 Ct	Well 93
12	10 Ct Well 10	Ct Well 22 Ct Well	34 Ct Well 45 Ct 35 Ct Well 47 Ct	Well S9 Ct Well 71	C1 Well 83 C1	Well 95
18	12 Ct Web 12	D. Well 24 D. Well	36 Ct Well 48 Ct	well 60 Ct well 72	CT Well 84 CT	Well 96
HAPP	Sheet1 / Sheet2 / Sh	uers /sheet4 /sheets	/Saceté /Sacet) /Sac	#18 / 9 4 @		•
[
	2 3 4 5	6 7 8	9 10 11 12 \	1		
				Calibrator		
B (13)	(14) (15) (16) (17) (18) (19) (20) (2	21) (22) (23) (24)))		Well numbers
C (25)	(26) (27) (28) (29)) (30) (31) (32) (3	33 (34) (35) (36)			correspond to
	(38) (39) (40) (41)			Sample 1		the numbered
				-		
E (49)	50 51 52 53	64 65 66 6		Sample 2		TaqMan Human
∬F (61)	(62) (63) (64) (65) (66) (67) (68) (6	69) (70) (71) (72)	() F··• -		Endogenous
G (73)	(74) (75) (76) (77)) (78) (79) (80) (8	81) (82) (83) (84)			Control Plate
н (85)	86 87 88 89		3 94 95 96	Sample 3		

Guidelines for Deleting Invalid C_T Values

Guideline Description Use the 18S rRNA Because cells generally express 18S rRNA at extremely high levels, the assay as an indicator target is usually a good indicator of sample concentration. Typically, the 18S assay yields C_T values \leq 22. If sample produces C_T values above 22 for the of sample concentration and 18S assay, it may not contain enough cDNA for accurate analysis. Therefore, the sample must be cleared from the spreadsheet as shown quality below. The calibrator data must be deleted because the C_T values for the 18S 22.5 assay (cells B2 and 20.30 26.91 C2) are greater than 26.85 29.19 28.15 29.22 28.44 22 cycles. Look for individual Occasionally, a single well produces a C_T outside the average for its target group. Abnormalities of this kind are typically due to experimental error outlying C_Ts rather than differences in gene expression. To obtain accurate C_T values for the sample, the C_T must be cleared from the spreadsheet as shown below. This value is 21.50 11.70 21.16 21.63 61 beyond the average C_{T} for this row and 18.00 must be deleted.

Use the following guidelines to identify invalid data for deletion:

How to Delete Invalid C_T Values

To delete an invalid C_T value from the spreadsheet:

Step	Action
1	Click the cell containing an invalid C_T to select it.
2	Select Edit > Clear > All.

Averaging Duplicate C _T Values	Before calculating ΔC_T values for the calibrator and samples, average the C_T values from duplicate wells. Because the samples and calibrator are arrayed twice across the endogenous control plate, the exported data for every sample contains two C_T values for each target control. To calculate ΔC_T values, you must average the values for these duplicate wells
	wells.

To add Average C_T columns to your C_T table:

Step	Action				
1	Create columns into the spreads	s for the a sheet as f	verage calibrator and sar follows:	nple C _T values by ins	erting new columns
	Click cell	Select.			
	D1	Select	insert > Columns.		
		Insert Cells Bares Columi Works Chart Macro Page D Function Name Name Name Name	nserts a new column befo	re column D.	
	G1	Select	nsert > Columns.		
		Excel in	nserts a new column befo	re column G.	
	J1	Select	nsert > Columns.		
		Excel in	nserts a new column befo	re column J.	
2	Type the labels	for the C	$_{T}$ table as specified in the	following table:	
	Click on cell.		Туре		
	D1		Avg Ct Calibrator		
	G1		Avg Ct Sample 1		
	J1		Avg Ct Sample 2		
	M1		Avg Ct Sample 3		

To add Average C_{T} columns to your C_{T} table: (continued)

Step	Action								
3	Average the $C_{\rm T}$ values of duplicate calibrator and sample wells by typing the following formulas into the specified cells:								
	Click cell	Туре							
	D2	=AVERA	GE(B2:C2)						
		Excel ave	erages the C	_τ values of c	ells l	B2 and C2	and disp	olays it in ce	ell D2.
	G2	=AVERA	GE(E2:F2)						
		Excel ave	erages the C	$_{\rm T}$ values of c	ells	E2 and F2	and disp	lays it in ce	ell G2.
	J2	=AVERA	GE(H2:I2)						
		Excel ave	erages the C	$_{\rm T}$ values of α	ells	H2 and I2	and disp	lays it in ce	ell J2.
	M2	=AVERA	GE(K2:L2)						
		Excel ave	erages the C	T values of c	ells	K2 and L2	and disp	lays it in ce	ell M2.
4	Copy the formure remaining cells	ulas entered of each col	into the spre umn, as follo	eadsheet in ows:	the p	previous sto	ep and p	aste them	to the
	Select and c	opy cell	Paste to c	ells					
	D2		D3-	-D13					
	G2		G3-	-G13					
	J2		J3-	-J13					
	M2		M3-	-M13					
Excel av C _T .	verages the C_T v	alues for the	e two cells to	the left of ea	ach c	opied cell	and displ	ays the ave	eraged
	Ave	rage C _T valu	ues Averaç	ge C _T values	A	verage C _T	values	Average C	; _T values
	calil	orator wells	for Sar	mple 1	fc	or Sample 2	2 2	for Sample	e wells e 3
	5 6	0	t r -	6 H			K		н
	C 100 months (c) 100 months 1 21 63 21 33 2 11 70 5 21 22 21 4 4 195.08 10.13 5 28.52 26.94 6 29.94 20.98 7 22.64 25.35 9 17.33 17.45	21,477 1,170 21,179 16,85 26,12 20,82 22,90 17,39	apple C: Semiplified apple 21:38 21:41 428 25:58 1:428 25:50 25:58 51:46 22:59 22:59 22:59 22:59 24:79 20:38 20:27	27 300 1 (7 300 0 2) 15 30 21 15 30 24 15 30 24 15 30 24 15 30 24 15 30 24 15 30 24 15 30 24 25 30 24 26 30 24 27 30 25 26 30 24 27 30 25 26 30 24 27 30 25 26 30 24 27 30 25 28 30 24 28 30 24 29 30 24 28 3	07 Sam	21,24 21 11,36 11 14,45 24 22,24 25 14,45 24 22,445 24 22,45 24 22,52 25 25,52 25 25,52 25 25,54 28	2 Crisemple 5 25 21.12 75 12.05 45 25.61 57 19.05 16 30.40 52 21.73 02 24.44 71 19.38	0150mp0 5 ang 01 12:62 25:90 16:87 90:17 21:80 25:89 19:27	21 21 4 12 344 12 345 16 855 50 30 21 77 24 17 19 29
11 12 13	10 25.63 25.67 11 27.37 20.57 12 26.21 26.44	25.45 27.87 26.35	26.05 27.09 29.18 29.22 29.15 20.44	28.97 26 28.21 30 28.30 30	62 41 14	28.92 28.91 28.91 38 38.03 38	77 26.32 16 29.17 09 26.07	25.55 20.11 25.62	10122

$\begin{array}{lll} \textbf{About the } \Delta C_T & \text{Derivation of } \Delta C_T \text{ values from the average } C_T \text{ values of the calibrator} \\ \textbf{Equation} & \text{and samples is the final step in comparative gene expression analysis.} \\ \text{The following equation describes the } \Delta C_T \text{ calculation.} \end{array}$

 $\Delta C_{T(Sample)} = AverageC_{T(Calibrator)} - AverageC_{T(Sample)}$

The equation above uses the average C_T of the calibrator as a baseline for evaluating target gene expression in each sample.

- Samples with initial template concentrations higher than the calibrator have lower average C_T values and yield positive numbers.
- Samples with lower initial template concentrations have higher average C_T values and yield negative numbers.

Constructing a To construct a ΔC_T table: ΔC_T Table

Step Action 1 Copy cells A1-A13 and paste into cells A16-A28. 21.47 21.70 21.19 21.58 13.50 ration **Ct Callibrator** 211 21.65 50 70 21 21.22 18.00 28.52 20.93 21.19 23.09 23. 21 18 31 28.91 28.72 \$1.56 20.90 20.92 22.59 22 24 20. 26. 27. 22.69 22 98 24.75 20.30 43 24.24 25.63 27.37 26.21 2425 2565 2797 2635 26.91 10 26.85 10 29. 28. 28.57Copy 29.19 28.15 26.45 and 븝 Paste 30 H < F N, Sheet1 / Sheet2 / Sheet5 / Sheet4 / Sheet5 / Sheet5 / Sheet7 / 5 4 =

To construct a ΔC_{T} table: (continued)

Step	Action		
2	Type the following labels	nto the specified cells in the table:	
	Click on cell	Туре	
	B16	Target	
	B17	IPC	
	B18	18S	
	B19	huPO	
	B20	huBA	
	B21	huCYC	
	B22	huGAPDH	
	B23	huPGK	
	B24	huB2m	
	B25	huGUS	
	B26	huHPRT	
	B27	huTBP	
	B28	huTfR	
3	Type the following ΔC_T lal	pels into the specified cells in the tabl	e:
	Click on cell	Type	
	C16	∆Ct Sample 1	
	D16	∆Ct Sample 2	
	E16	∆Ct Sample 3	
	F16	Average ∆Ct	
	G16	∆Ct Calibrator	
The ∆C-	r table appears as shown b	elow.	
16 Citon 17 10 20 21 22 23 24 25 26 26 26 27 28	A B C in Tanget aCt Sample 1 aCt 3 1 IPC 2 105 3 3 InuPO 4 4 4 4 hu B4 5 5 10 5 hu CHC 6 hu G4P0H 7 7 hu PEK 8 hu G4D 10 9 hu G4D 10 hu HPRT 11 hu TBP 12 hu TBP 12 hu THR 12 hu THR	b E F G omple 2 aCt Sample 3 Average aCt aCt Celtionator	

Calculating ΔC_T	To calcu	late ΔC_T values for the calibrator and samples:
values	Step	Action

1	Type the follow Click cell C17 D17 E17 F17	wing formulas into the specified cells:Type=D2-G2Excel subtracts the averaged C_T value for Sample 1 (cell G2) from the averaged C_T value for the calibrator (cell D2).=D2-J2Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for for the calibrator (cell D2).=D2-M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.	; e er					
	Click cell C17 D17 E17 F17	Type=D2-G2Excel subtracts the averaged C_T value for Sample 1 (cell G2) from the averaged C_T value for the calibrator (cell D2).=D2-J2Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for the calibrator (cell D2).=D2-M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.) ne ne er					
	C17 D17 E17 F17	=D2-G2Excel subtracts the averaged C_T value for Sample 1 (cell G2) from the averaged C_T value for the calibrator (cell D2).=D2-J2Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for the calibrator (cell D2).=D2-M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.) er er					
	D17 E17 F17	Excel subtracts the averaged C_T value for Sample 1 (cell G2) from the averaged C_T value for the calibrator (cell D2).=D2–J2Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for the calibrator (cell D2).=D2–M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.) er er					
	D17 E17 F17	=D2–J2Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for the calibrator (cell D2).=D2–M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.	; e er					
	E17 F17	Excel subtracts the averaged C_T value for Sample 2 (cell J2) from the averaged C_T value for the calibrator (cell D2).=D2-M2Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.	; ne ne					
-	E17 F17	=D2–M2 Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2). =AVERAGE(C17:D17:E17) Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.) S					
-	F17	Excel subtracts the averaged C_T value for Sample 3 (cell M2) from the averaged C_T value for the calibrator (cell D2).=AVERAGE(C17:D17:E17)Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.) 					
-	F17	=AVERAGE(C17:D17:E17) Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.	;					
-		Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.	;					
		0	Excel averages ΔC_T values for the three samples yielding an overall mean for the IPC endogenous control.					
	G17	=D2–D2						
	Excel subtracts the averaged calibrator C_T (cell D2) from itself to verify the calibrator.							
-	The ΔC_T table	appears as shown below.						
	8	C D E F G						
16 Crium 17 19 20 21 22 23 24 25 24 25 26 27 28 29 30	Target 4 1 IPC 4 2 IBS 4 3 hu P0 4 4 hu P4 5 5 hu CYC 6 6 hu G4P0H 7 7 hu P64 8 9 hu CYC 8 9 hu CYC 9 10 hu HP2m 9 10 hu HP2T 11 11 hu T8P 12 12 hu TH2	ACT Semple 1 ACT Semple 2 ACT Semple 3 Average ACT aCT Catherelor =D2-G2 =D2-J2 =D2-H2 =AVERAGE CT:=D2-D2						
HIIFH.								

To calculate ΔC_{T} values for the calibrator and samples: (continued)

Step	Acti	ion						
2	Sele	Select and copy cells C17–G17.						
	Exce	Excel changes the boarder of the selected cell to a dotted line indicating that the cell is ready for duplication.						
16 Crite 17 18	A m 1 2	B Target IPC 105	C ACI Somple 1 -0.05	b aCT Sonialie 2 0188	E aCt Senole 3 0449	F Average aCt 0.16	6 all Celibrator 100	A
3	Sele	ect cells	F18–G28	and paste t	he select	ion into t	he spreadsł	neet.
Excel a	automa	atically c	opies the f	ormulas in	cells C17	7–G17 to	the cells be	elow.
								_
	A	8	e	Þ	E	F	6	-
16 Crit	A	8 Target	C ACT Semple 1	þ JÓT Samale 2	E 401 Semple 3	F Average <u>u</u> C1	6 aCl Calibrator	•
16 Cell	A m 1	8 Target IPC	6 401 Semple 1 -0.05	p act Senate 2	E aCt Senole 3	F Average aC1 DTTA	6 aCl Californior	^
16 Celu 17 18	A 1	B Target IPC 105 hu-PD	C 401 Sample 1 -0.03 11 83	0 401 Sonial e 2 12 11	E 403 Semple 3 1943 13552	F Average <u>aC1</u> 0.16 12.53	G aCl Calibrator 0.00 0.017	1
16 Criv 17 18 19	A 1 2 3	8 Target IPC 105 Hu P0 Hu P0	6 aCt Senole 1 -0.03 11.95 -2.33	b ACT Sonial e 2 0.24 12.11 -3.25	E a/2 Serget 3 0943 13552 - 2657 - 049	F Average <u>JC</u> 1 12,53 - 2,74	6 aCl Californior 0.00 0.00 0.00	*
16 Calu 17 18 19 20 21	A mn 2 3 4 5	8 Target IPC IDS Hu P0 Hu B4 Hu CVE	C ACT Sensite 1 -0.03 11.95 -2.53 -1.53 -2.83	b ACI Sonole 2 12.11 -3.26 -2.31 -3.46	E a(7 Seende 3 0945 13.52 -2257 -0.059 -1.59	F Average <u>JC1</u> 0.174 12.53 -2.74 -1.63 -2.74	6 all Calibrater 0.00 0.00 0.00 0.00	•
16 Celu 17 18 19 20 21 22	A 1 2 3 4 5 6	B Target IPC 105 Hu P0 Hu B4 Hu C4P0 H	C ACT Sensite 1 -0.03 11.95 -2.53 -1.53 -2.53 -1.63	0 a(1 Sensir 2 12.11 -3.25 -2.31 -3.45 -2.61	E 013 senole 3 0343 1352 -2357 -0.89 -1.59 -0.85	F Average <u>a</u> C1 0.16 12.53 -2.74 -1.63 -2.61 -1.69	6 a0 Calibrator 0.00 0.00 0.00 0.00 0.00	•
16 Celu 17 18 19 20 21 22 23	A 1 2 3 4 5 6 7	B Target IPC 105 Hu P0 Hu B4 Hu CYC Hu CP0H Hu P6K	E -0.05 -0.05 11.96 -2.50 -1.70 -2.80 -1.62 -1.75	b a(1 Sensir 2 12.11 -3.25 -2.51 -3.45 -2.60 -3.05	E 0748 1352 -2357 -0.89 -1.89 -1.89 -1.89 -1.89 -1.89	F Average <u>s</u> C1 12,53 -2,53 -2,74 -1,53 -2,61 -1,69 -2,00	6 all Calibrator 0.00 0.00 0.00 0.00 0.00 0.00	•
16 Celu 17 10 19 20 21 22 23 24	A 1 2 3 4 5 6 7 8	B Tanget IPC IPC Hu BA Hu EYC Hu BA Hu EYC Hu BAPOH Hu PCR Hu B2m	6 4(3 Senote 1 -0.03) 11.98 -2.33 -1.70 -2.53 -1.63 -1.73 -2.93	b a/1 Sensele 2 0 #24 12 11 - 3 25 - 2 51 - 3 45 - 2 60 - 3 00 - 3 33	E 0745 1345 1352 -267 -0.89 -1.59 -0.85 -1.19 -1.91	F Average <u>sC1</u> 12:53 -2:74 -1:43 -2:61 -1:62 -2:70 -2:71	6 a(1 Californitor 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
16 Crit 17 10 19 20 21 22 23 24 25	A 1 2 3 4 5 6 7 8 9	B Tanget IPC 1005 hu P0 hu BA hu CYC hu GAP0H hu PGK hu GUS	6 4(7 Sender 1 -0.03) 11.98 -2.30 -1.70 -2.00 -1.70 -2.00 -1.63 -1.70 -2.91 -2.91 -2.91 -2.57	b A(2 Sorrole 2 0.24 12.11 -3.26 -3.26 -3.46 -2.60 -3.05 -3.35 -3.57	E a(7.3emole 3 0.445 1.3522 -2.457 -0.859 -1.39 -1.39 -1.39 -1.59 -1.74	F Average aC1 0.16 12.53 -2.74 -1.43 -2.61 -1.49 -2.01 -2.71 -2.76	6 all Califienter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
16 Calo 17 18 19 20 21 22 23 24 25 26	A 12 3 4 5 6 7 7 8 9	B Target IPC IDS hu P0 hu B4 hu B4 hu B4 hu B4 hu B4 hu B4 m hu B4 m hu B4 m hu B4 m hu B4 hu B4	6 4(3 Sangle 1 -0.03 -2.30 -2.30 -2.30 -2.30 -1.33 -1.33 -1.33 -1.33 -1.33 -1.33 -1.33	b 4/3 Soriole 2 0 24 12 31 - 3 35 - 2 31 - 3 45 - 2 40 - 3 05 - 3 05 - 3 97 - 1 2	E a(7 Senole 3 0.42 13.52 -2857 -0.89 -0.85 -1.99 -1.99 -1.91 -1.91 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.95	F Average aC1 12:53 -2:74 -1:63 -2:61 -1:69 -2:00 -2:71 -2:71 -2:76 -2:71 -2:76 -2:71 -2:71 -2:76	6 all Californitor 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
16 Celu 17 18 19 20 21 22 23 24 25 26 27 26 27	A 12 3 4 5 6 7 8 7 10 11 11	B Target IPC 105 hu P0 hu B4 hu P0 hu B4 hu F0 hu F0 h	6 4/3 Sande 1 -0.07 11.93 -2.83 -1.73 -1.63 -1.73 -2.93 -1.74 -2.93 -1.74 -2.93	D 4(7 3 small n 2 1 2 11 - 3 2 5 - 2 3 1 - 3 4 - 2 40 - 3 40 -	E a(1 Sengle 5 13.52 -2.57 -0.39 -0.39 -0.35 -1.19 -1.19 -1.19 -0.28 -0.28 -0.28 -0.28 -0.39 -0.29	F Average aC1 2253 2244 -1.63 -1.60 -2.00 -2.10 -2.10 -2.10 -2.11 -0.91 -0.91 -1.47	6 all Calibrator 0100 0010 0010 0010 0010 0010 0010 00	*
16 Cell. 17 10 20 21 22 23 24 25 26 27 28	A 1 2 3 4 5 6 7 8 9 10 11 12	B Target IPC 105 hu P0 hu B4 hu B4 hu B4 hu B4 hu B2m hu F0K hu B2m hu F0S hu HPBT hu T0P hu T0P	6 a(2.3 anole 1 -0.03) -1.03 -2.33 -1.03 -1.03 -1.02 -1.03 -2.93 -1.03 -1.03 -1.24 	B 4(7 3 small + 2 9 24 12 11 - 3 25 - 3 35 - 2 60 - 3 05 - 3 35 - 3 37 - 1 12 - 2 19 - 3 74 - 3 75 - 3 7	E 4(1 Sender 3 0.45 13.55 -3.57 -0.89 -1.59 -0.55 -1.59 -1.59 -1.59 -1.59 -1.57 -1.57 -0.55 -1.57 -0.55 -1.57 -0.55 -1.57 -0.55	F Average uC1 0.16 12.53 -32.63 -2.53 -2.51 -1.59 -2.50 -2.50 -2.50 -2.51 -2.75 -2.55 -2.5	6 all Calibrator 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	•
16 Celu 17 18 19 20 21 22 23 24 25 26 27 28 29 20 27 28 29 20 29 20 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20	A 1 2 3 4 5 6 7 7 8 9 10 11 12 12 12 12 12 12 12 12 12	B Target IPC 105 hu P0 hu P4 hu P4 h	C aCt Stands 1 	0 4(7 3 stret n 2 0 4(4) 12 11 - 3 26 - 2 40 - 2 40 - 3 05 - 3 35 - 3 35 - 3 97 - 1 12 - 2 19 - 3 74	E 0.13 sende 3 0.44 1.5.52 -2.57 -0.89 -1.59 -0.85 -1.19 -1.31 -0.85 -1.19 -0.85 -1.19 -0.85 -1.19 -0.85 -1.52 -0.85 -1.55	F Average uC1 12,53 -2,54 -1,63 -2,54 -1,69 -2,00 -2,00 -2,00 -2,00 -2,00 -2,00 -2,00 -2,10 -2,10 -1,07 -1,07 -1,07 -1,07 -1,07 -1,07 -1,07 -2,04	6 201 Calibrator 0000 0000 0000 0000 0000 0000 0000 0	-
116 Celu 17 19 20 21 22 23 24 25 26 27 28 29 30 0 7	A mh 1 2 3 3 4 5 6 7 7 8 9 10 11 12 12 10 11 12 12 13 14 15 15 16 17 19 10 10 10 10 10 10 10 10 10 10	B Tanget IPC 105 hu P0 hu P0 h	¢ 4/2 Sonote 1 -0.03 -1.03 -2.23 -2.23 -2.23 -2.23 -1.24 -2.241 -2.2	D a(7 3 small n 2 1 2 11) - 3 2 5 - 2 3 31 - 3 40 - 2 60 - 3 33 - 3 05 - 3 12 - 2 19 - 3 74 - 3 74 - 3 75 - 3 75	E 4(7 Seriele 3 0.45 15.52 -2.57 -0.39 -0.39 -0.39 -0.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -0.35 -1.39 -0.	F Average gC1 0.16 1.253 -274 -1.63 -2.61 -1.69 -2.00 -2.11 -2.70 -0.91 -1.47 -1.73	6 att Calibrator 0100 0202 0202 0202 0202 0202 0202 020	
116 Celu 177 19 20 21 22 23 24 25 26 27 28 29 30 4 4 4 b	A 11 2 3 4 4 5 6 7 7 8 8 9 10 11 11 12 12 12 10 10 11 12 12 12 12 12 12 12 12 12 12 12 13 14 13 14 15 15 14 11 12 13 14 15 15 14 15 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	B Target IPC 305 huP0 huE4 huE4P0H huE4P0H huE4P0H huE4P0H huE42m huE4P5 huE4P3T huE4P3T huT8P huT8P	C a/1 Stands 1 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 2.80 - 1.60 - 2.80 - 1.20 - 2.80 - 1.20 - 1.2	b ACT Served n 2 12 11 -3 23 -2 45 -2 65 -3 55 -3 55 -3 57 -1 12 -2 12 -3 17 -3 1	E 4(7 Stendt 3 - 345 - 3457 - 0.59 - 1.59 - 1.59	F Average aC1 0.16 12.53 -32.63 -2.53 -2.51 -1.69 -2.10 -2.10 -2.10 -2.11 -2.13 -1.17 -1.1	6 all Calibertor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	

Interpreting Results

Overview To interpret the results from the spreadsheet analysis, create a profile of control gene expression from the data in the ΔC_T table.

Interpreting results consists of the following steps:

Торіс	See Page
Generating a Gene Expression Profile	5-17
Interpreting the Gene Expression Profile	5-18
The Relationship Between ΔC_{T} and Gene Expression	5-18
Choosing an Endogenous Control	5-19
Demonstrating Performance with TaqMan Human Control Total RNA	5-20

Generating a Gene The following procedure describes how to generate a profile using the Expression Profile Excel Chart Wizard.

To graph your results using the Excel Chart Wizard:

S	Step	Action							
	1	Select cells A16–E28.							
	16 Colu 17 18 19	A 10	B Israel ISS INS PD	6 2008/00/m1 20 -0.03 11.96 -2.30	D 0.24 12.11 - 3.26	E 0.0.650000000 0.245 1.555 -2.650	F Average #C1 8.18 7.51 7.53	6 aC1 Calibrator D D 0	ŕ
	20 21 22 23 24 25 26 27	4 5 7 3 7 3 7 10 10	NU DR NU CYT NU CAPOH NU CAPOH NU CAS NU CAS NU HPRT NU TBP	-1,70 -2,80 -1,63 -1,75 -2,91 -2,91 -2,57 -1,52 -1,52 -1,24	-1, 81 -3,46 -2,66 -3,055 -3,355 -3,355 -3,357 -1,12 -2,19	- 0.85 - 1.59 - 0.85 - 1.51 - 1.51 - 1.74 - 0.26 - 0.97	5.60 2.64 2.79 1.05 1.48 - 2.18 - 0.23 - 0.70	0 0 0 0 0 0 0	2
	28	Select Insert > Chart > On This Sheet. The Excel chart wizard requests data for the new graph.							
	3	Click	Click the selected data. The chart wizard prompts you for information.						
	4	Follo	w the in	structions a	as directed	d by the v	wizard.		

Interpreting the Gene Expression Profile

The results of the Endogenous Control Plate are expressed in ΔC_T , greater than or less than the calibrator ΔC_T . Thus, the calibrator serves as a baseline for the assays and is shown as zero on the graph.

- Samples with positive △C_T values have initial template concentrations higher than that of the calibrator sample.
- Samples with negative ∆C_T values have initial template concentrations lower than that of the calibrator sample.

Note See "About the ΔC_T Equation" on page 5-13 for more information.

The plot below illustrates a typical gene expression profile.

The Relationship Between ΔC_T and Gene Expression

One ΔC_T is equal to a twofold difference in initial template concentration. This relationship is shown with the following equation:

$$X_n = X_0(1 + E_X)$$

Where:

X _n	=	Copy number at cycle n	E_{X}	=	Amplicon efficiency
X ₀	=	Copy number at cycle 0	n	=	Cycle number

Because amplicons designed and optimized according to Applied Biosystems guidelines have equivalent efficiencies approaching 100%, it can be stated that $E_X = 1$. Also, because we are interested in the difference in initial template for one cycle, it can be stated that n = 1.

Substituting values for the appropriate variables, the equation becomes:

 $X_1 = X_0(1+1)^1 = 2X_0$

Good Endogenous Control Candidates

From the ΔC_T profile shown below, the 18S ribosomal RNA (18S) and transferrin receptor (huTfR) genes are good candidate controls because their expression remains relatively consistent across the test samples. Both assays produced ΔC_T values that deviate little from zero, indicating a fairly stable level of gene expression relative to the other candidate controls.

Poor Endogenous Control Candidates

In contrast to the 18S and huTfR controls, the TATA-binding protein (huTBP) and β -Glucronidase (huGUS) genes are the least desirable choices from the profile in the figure below. The expression of both controls vary widely, exhibiting ΔC_T values that fluctuate in excess of 4 cycles (this represents a 16-fold difference in gene expression).

Demonstrating Performance with TaqMan Human Control Total RNA TaqMan Human Control Total RNA is available to demonstrate the performance of the TaqMan Human Endogenous Control Plate. The figure below shows a typical gene expression profile for the sample.

To generate the profile shown above:

Step	Action
1	Perform the reverse transcription step as described in "Reverse Transcription for All Amplicons Except 18S" on page 2-4 using the TaqMan Human Control Total RNA (10 ng per well).
2	Perform the PCR step as described in Chapter 3, "PCR," configuring the plate with duplicate wells for the control sample.
3	Analyze and export the data. See Chapter 4, "Data Analysis."
4	Construct a ΔC_T table and import data to it by following the procedures on pages 5-4 to 5-7.
5	Select the column of cells containing the C_{T} data for the Human Control Total RNA.
6	Select Insert > Chart > On This Sheet.
7	Click the selected data.
8	Follow the instructions as directed by the wizard.

Troubleshooting Early Amplification

Effects of Early Amplification of the 18S Assay

In rare cases, the amplification of the 18S assay can interfere with the detection of less abundant targets. When amplification of the 18S target reaches a detectable level at a very early cycle, it limits the number of cycles over which the software can calculate the baseline. As the available baseline is compressed, the amplification plots of the less abundant targets may appear to disperse. This can lead to poor reproducibility and inaccurate quantification.

For example, in the figure below the baseline is set correctly for the 18S amplification (baseline is set for cycles 2–7), however the plots of the less abundant targets have become dispersed. As a result, C_T values from this plot are valid only for the 18S amplifications.

The baseline in the figure below is reset for the less abundant targets (baseline is set for cycles 3–15). Notice that the amplification plots of these targets are now well pronounced and allow the SDS software to determine accurate C_T values. In contrast, the plots of 18S targets now exhibit a sigmoidal curve and do not yield valid data points.

Troubleshooting Early Amplification A-1

How to Correct for Early Amplification

When early amplification of the 18S rRNA target interferes with the detection of less abundant genes, set the baseline and threshold values independently for each group of plots. The following procedure explains how to configure each group of plots independently and export the data. The results from the results files are combined during spreadsheet analysis.

To set the baseline and threshold separately:

Step	Action
1	From the amplification plot, deselect the 18S wells that amplify during the very early cycles of the PCR.
2	Following the guidelines in "Guidelines for Setting the Baseline" on page 4-2, set the baseline for those plots that amplify during the later cycles of the PCR.
3	Following the guidelines in "Guidelines for Setting the Threshold" on page 4-7, set the threshold for the plots that amplify during the later cycles of the PCR.
4	Export the data as explained in "Exporting and Viewing the Results File" on page 5-2. The software saves the data. The results in the file are valid only for
	the wells that amplify during the later cycles.
5	From the amplification plot, deselect the wells that amplify during the later cycles of the PCR.
6	Following the guidelines in "Guidelines for Setting the Baseline" on page 4-2, reset the baseline for the 18S wells that amplify during the very early cycles of the PCR.
7	Following the guidelines in "Guidelines for Setting the Threshold" on page 4-7, set threshold for the 18S wells that amplify during the very early cycles of the PCR.

A-2 Troubleshooting Early Amplification

To set the baseline and threshold separately: (continued)

Step	Action			
8	Export the data as explained in "Exporting and Viewing the Results File" on page 5-2.			
	The software saves the data. The results in the file are valid only for the wells that amplify during the very early cycles.			
	You now have two results files:			
	♦ A file containing valid data for plots appearing in the later cycles			
	• A file containing valid data for plots appearing in the early cycles			
9	Follow the procedure for spreadsheet analysis as described in "Calculating the Relative Quantification Using a Spreadsheet" on page 5-5.			

Troubleshooting Early Amplification A-3

B

About These Assays

Overview	The TaqMan Human Endogenous Control Plate evaluates the expression of eleven common "housekeeping" genes and an internal positive control in total RNA samples. Applied Biosystems designed TaqMan assay primers and probes to be cDNA specific to avoid problems associated with pseudogenes, related genes, and contaminant genomic DNA.
Quality Control	Applied Biosystems tests the preloaded primers and probes on the TaqMan Human Endogenous Control Plate as part of a manufacturing quality control process. In this process, the performance of each endogenous control target was gauged using cDNA prepared from human total RNA samples. Each assay demonstrated that it did not detect up to 10,000 copies of contaminating genomic DNA.
Description of Endogenous	The following table lists the potential controls and their cellular functions:

luogenous	
Controls	

Endogenous Control	Role
IPC	Applied Biosystems designed the TaqMan Exogenous Internal Positive Control (IPC) to help interpret negative results caused by PCR inhibitors. In the absence of inhibitors, IPC co-amplifies with target DNA and gives a specific signal. The IPC sequence is artificial so that PCR primers do not amplify anything in the test samples.
18S rRNA	18S ribosomal RNA makes up 80% of total RNA and its level is a good indicator for the relative amount of total RNA. It is transcribed by a different polymerase from mRNAs and its level is less likely to fluctuate with the test sample. The 18S rRNA endogenous reference is the most abundant target on the TaqMan Human Endogenous Control Plate.

About These Assays B-1

Endogenous Control	Role
Acidic ribosomal protein (huPO)	Acidic ribosomal protein is moderately abundant (Rich <i>et al.</i> , 1987) and found in most tissue types. Because huPO gene expression level seems to remain relatively constant (Okubo <i>et al.</i> , 1997), some researchers select it as their standard when studying samples that are affected by estrogen treatment.
Beta-actin (huβA)	The beta-actin gene is ubiquitously expressed in all eukaryotic cells and one of the most frequently used as an internal standard. It is a moderately abundant gene, constituting 0.1% of mRNA and 0.003% of total RNA. Its level fluctuates in some cells and tissues (Greenberg <i>et al.</i> , 1985; Dodge <i>et al.</i> , 1990). Actins are highly conserved proteins involved in various types of cell motility.
Cyclophilin (huCYC)	Cyclophilin is a major cellular component, comprising 0.1–0.4% of total cellular protein. It is found in all cells of wide phylogenetic distribution (Koletsky <i>et al.</i> , 1986). It was originally isolated as the main cyclosporin A binding protein.
Glyceraldehyde- 3-phosphate dehydrogenase (huGAPDH)	GAPDH is a key enzyme involved in glycolysis and is moderately abundant (Allen <i>et al.</i> , 1987). Its expression changes with insulin treatment and shows fluctuation through cell cycles and among different cell lines and tissue types.
Phosphoglycero- kinase (huPGK)	PGK is a key enzyme involved in glycolysis following GAPDH. Because typical concentrations of glycolytic intermediates are 1 μ M for 1,3-bisphosphoglycerate and 118 μ M for 3-phosphoglycerate, the regulation may be different.
β ₂ -Microglobulin (huβ2m)	β_2 -microglobulin is involved with immune response. It is moderately abundant and expressed in most tissue types (Güssow <i>et al.</i> , 1987). The level of β_2 -microglobulin expression may vary in different tissues (Okubo <i>et al.</i> , 1997).
β-Glucronidase (huGUS)	β-glucronidase is a relatively abundant glycoprotein that is expressed constitutively in many tissues. It acts as an exoglycosidase in lysomes (Oshima <i>et al.</i> , 1988).
Hypoxanthine ribosyl transferase (huHPRT)	Hypoxanthine ribosyl transferase is located on the X chromosome and is constitutively expressed at low levels (Patel <i>et al.</i> , 1986). It plays an important role in the metabolic salvage of purines in mammalian cells.
Transcription Factor IID, TATA Binding Protein (huTBP)	The TATA binding protein is constitutively expressed in many tissues and cells at low levels. It is required for transcription directed by RNA polymerases I, II, and III (Chalut <i>et al.</i> , 1995).
Transferrin Receptor (huTfR)	Transferrin receptor mediates cellular iron uptake and is expressed at low levels in both tissues and cells. The expression of the receptor on the cell surface correlates with cellular proliferation, being highest on rapidly dividing cells and much lower on resting cells and more terminally differentiated cell types (McClelland <i>et al.</i> ,1984). As shown in the figure in "Demonstrating Performance with TaqMan Human Control Total RNA" on page 5-20, transferrin receptor exhibits the lowest level of gene expression when evaluating TaqMan Human Control Total RNA using the TaqMan Human Endogenous Control Plate.

B-2 About These Assays

C

References

Allen, R.W., Trach, K.A., and Hoch, J.A. 1987. Identification of the 37-kDa protein displaying a variable interaction with the erythroid cell membrane as glyceraldehyde-3-phosphate dehydrogenase. *J. Biol. Chem.* 262:649-653.

Bonini, J.A. and Hofmann, C. 1991. A rapid, accurate, nonradioactive method for quantitating RNA on agarose gels. *Biotechniques* 11:708-710.

Chalut, C., Gallois, Y., Poterszman, A., Moncollin, V., and Egly, J.-M. 1995. Genomic structure of the human TATA-box-binding protein (TBP). *Gene* 161:277–282.

Dodge, G.R., Kovalszky, I., Hassell, J.R., and Iozzo, R.V. 1990. Transforming growth factor β alters the expboression of heparan sulfate proteoglycan in human colon carcinoma cells. *J. Biol. Chem.* 265:18023–18029.

Förster, V.T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. *Annals of Physics (Leipzig)* 2:55–75.

Greenberg, M.E., Greene, L.A., and Ziff, E.B. 1985. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. *J. Biol. Chem.* 260:14101-14110.

Güssow, D., Rein, R., Ginjaar, I., *et al.* 1987. The human β 2-microglobulin gene. Primary structure and definition of the transcriptional unit. *J. Immunol.* 139:3132-3138.

Holland, P.M., Abramson, R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the $5' \rightarrow 3'$ exonuclease activity of *Thermus aquaticus* DNA polymerase. *Proc. Natl. Acad. Sci. USA* 88:7276–7280.

Innis, M.A., Myambo, K.B., Gelfand, D.H., and Brow, M.A. 1988. DNA sequencing with *Thermus aquaticus* DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. *Proc. Natl. Acad. Sci. USA* 85:9436–9440.

Koletsky, A.J., Harding, M.W., and Handschumacher, R.E. 1986. Cyclophilin: distribution and variant properties in normal and neoplastic tissues. *J. Immunol.* 137:1054-1059.

Kwok, S. and Higuchi, R. 1989. Avoiding false positives with PCR. *Nature* 339:237–238.

Lakowicz, J.R. 1983. *Principles of Fluorescence Spectroscopy*, ed. New York: Plenum Press. xiv, 496 pp.

Longo, M.C., Berninger, M.S., and Hartley, J.L. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. *Gene* 93:125–128.

McClelland, A., Kühn, L.C., and Ruddle, F.H. 1984. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. *Cell* 39:267-274.

Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA *in vitro* via a polymerase-catalyzed chain reaction. *Methods Enzymol.* 155:335–350.

Mutimer, H., Deacon, N., Crowe, S., and Sonza, S. 1998. Pitfalls of processed pseudogenes in RT-PCR. *Biotechniques* 24:585–588.

Okubo, K. and Matsubara, K. 1997. Complementary DNA sequence (EST) collections and the expression information of the human genome. *FEBS Lett.* 403:225-229.

Oshima, A., Kyle, J.W., Miller, R.D., *et al.* 1987. Cloning, sequencing, and expression of cDNA for human β -glucuronidase. *Proc. Natl. Acad. Sci. USA* 84:685-689.

Patel, P.I., Framson, P.E., Caskey, C.T., and Chinault, A.C. 1986. Fine structure of the human hypoxanthine phosphoribosyltransferase gene. *Mol. Cell. Biol.* 6:393-403.

Raff, T., van der Giet, M., Endemann, D., Wiederholt, T., and Paul, M. 1997. Design and testing of β -actin primers for RT-PCR that do not co–amplify processed pseudogenes. *Biotechniques* 23:456–460.

C-2 References

Rich, B.E. and Steitz, J.A. 1987. Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, *in vitro* synthesis, and assembly. *Mol. Cell. Biol.* 7:4065–4074.

Saiki, R.K., Scharf, S., Faloona, F., *et al.* 1985. Enzymatic amplification of β -globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230:1350–1354.

Spanakis, E. 1993. Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. *Nucleic Acids Res.* 21:3809–3819.

D

Technical Support

Technical Support

Contacting Technical Support	You can contact Applied Biosystems for technical support by telephone or fax, by e-mail, or through the Internet. You can order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents 24 hours a day. In addition, you can download documents in PDF format from the Applied Biosystems Web site (please see the section "To Obtain Documents on Demand" following the telephone information below).		
To Contact	Contact technical support by e-mail for help in the following product		
Technical Support	t areas:		
by E-Mail	Product Area	E-mail address	
	Genetic Analysis (DNA Sequencing)	galab@appliedbiosystems.com	
	Sequence Detection Systems and PCR	pcrlab@appliedbiosystems.com	
	Protein Sequencing, Peptide and DNA Synthesis	corelab@appliedbiosystems.com	
	 Biochromatography PerSeptive DNA, PNA and Peptide Synthesis systems FMAT[™] 8100 HTS System CytoFluor[®] 4000 Fluorescence Plate Reader Voyager[™]Mass Spectrometers Mariner[™] Mass Spectrometers 	tsupport@appliedbiosystems.com	
	LC/MS (Applied Biosystems/MDS Sciex)	support@sciex.com	
	Chemiluminescence (Tropix)	tropix@appliedbiosystems.com	
		·	

Technical Support D-1

Hours for
TelephoneIn the United States and Canada, technical support is available at the
following times:

Technical Support

Product	Hours
Chemiluminescence	8:30 a.m. to 5:30 p.m. Eastern Time
Framingham support	8:00 a.m. to 6:00 p.m. Eastern Time
All Other Products	5:30 a.m. to 5:00 p.m. Pacific Time

D-2 Technical Support

To Contact In North America

Technical Support To contact Applied Biosystems Technical Support, use the telephone or by Telephone or Fax numbers given below. (To open a service call for other support needs, or in case of an emergency, dial 1-800-831-6844 and press 1.)

Product or Product Area	Telephone Dial	Fax Dial
ABI PRISM [®] 3700 DNA Analyzer	1-800-831-6844, then press 8	1-650-638-5981
DNA Synthesis	1-800-831-6844, then press 2, then 1	1-650-638-5981
Fluorescent DNA Sequencing	1-800-831-6844, then press 2, then 2	1-650-638-5981
Fluorescent Fragment Analysis (includes GeneScan [®] applications)	1-800-831-6844, then press 2, then 3	1-650-638-5981
Integrated Thermal Cyclers (ABI PRISM®877 and Catalyst 800 instruments)	1-800-831-6844, then press 2, then 4	1-650-638-5981
ABI PRISM [®] 3100 Genetic Analyzer	1-800-831-6844 , then press 2 , then 6	1-650-638-5981
Peptide Synthesis (433 and 43X Systems)	1-800-831-6844, then press 3, then 1	1-650-638-5981
Protein Sequencing (Procise [®] Protein Sequencing Systems)	1-800-831-6844, then press 3, then 2	1-650-638-5981
PCR and Sequence Detection	1-800-762-4001 , then press 1 for PCR, 2 for the 7700, 7900 or 5700, 6 for the 6700 or dial 1-800-831-6844 , then press 5	1-240-453-4613
 ♦ Voyager™ MALDI-TOF Biospectrometry ♦ Mariner™ ESI-TOF Mass Spectrometry Workstations 	1-800-899-5858, then press 1, then 3	1-508-383-7855

Technical Support D-3

Product or Product Area	Telephone Dial	Fax Dial
Biochromatography (BioCAD [®] Workstations and POROS [®] Perfusion Chromatography Products)	1-800-899-5858, then press 1, then 4	1-508-383-7855
Expedite™ Nucleic acid Synthesis Systems	1-800-899-5858, then press 1, then 5	1-508-383-7855
Peptide Synthesis (Pioneer™ and 9050 Plus Peptide Synthesizers)	1-800-899-5858, then press 1, then 5	1-508-383-7855
PNA Custom and Synthesis	1-800-899-5858, then press 1, then 5	1-508-383-7855
 ◆ FMAT[™] 8100 HTS System ◆ Cytofluor[®] 4000 Fluorescence Plate Reader 	1-800-899-5858, then press 1, then 6	1-508-383-7855
Chemiluminescence (Tropix)	1-800-542-2369 (U.S. only), or 1-781-271-0045	1-781-275-8581
LC/MS (Applied Biosystems/MDS Sciex)	1-800-952-4716	1-508-393-7899

Outside North America

Region	Telephone Dial	Fax Dial		
Afric	Africa and the Middle East			
Africa (English Speaking) and West Asia (Fairlands, South Africa)	27 11 478 0411	27 11 478 0349		
Africa (French Speaking; Courtaboeuf Cedex, France)	33 1 69 59 85 11	33 1 69 59 85 00		
South Africa (Johannesburg)	27 11 478 0411	27 11 478 0349		
Middle Eastern Countries and North Africa (Monza, Italia)	39 (0)39 8389 481	39 (0)39 8389 493		

Region	Telephone Dial	Fax Dial
Easter	n Asia, China, Oceania	l
Australia (Scoresby, Victoria)	61 3 9730 8600	61 3 9730 8799
China (Beijing)	86 10 64106608 or 86 800 8100497	86 10 64106617
Hong Kong	852 2756 6928	852 2756 6968
India (New Delhi)	91 11 653 3743/3744	91 11 653 3138
Korea (Seoul)	82 2 593 6470/6471	82 2 593 6472
Malaysia (Petaling Jaya)	60 3 79588268	603 79549043
Singapore	65 896 2168	65 896 2147
Taiwan (Taipei Hsien)	886 2 2358 2838	886 2 2358 2839
Thailand (Bangkok)	66 2 719 6405	66 2 319 9788
	Europe	
Austria (Wien)	43 (0)1 867 35 75 0	43 (0)1 867 35 75 11
Belgium	32 (0)2 532 4484	32 (0)2 582 1886
Czech Republic and Slovakia (Praha)	420 2 35365189	420 2 35364314
Denmark (Naerum)	45 45 58 60 00	45 45 58 60 01
Finland (Espoo)	358 (0)9 251 24 250	358 (0)9 251 24 243
France (Paris)	33 (0)1 69 59 85 85	33 (0)1 69 59 85 00
Germany (Weiterstadt)	49 (0) 6150 101 0	49 (0) 6150 101 101
Hungary (Budapest)	36 (0)1 270 8398	36 (0)1 270 8288
Italy (Milano)	39 (0)39 83891	39 (0)39 838 9492
Norway (Oslo)	47 23 12 06 05	47 23 12 05 75
Poland, Lithuania, Latvia, and Estonia (Warszawa)	48 (22) 866 40 10	48 (22) 866 40 20
Portugal (Lisboa)	351 (0)22 605 33 14	351 (0)22 605 33 15
Russia (Moskva)	7 502 935 8888	7 502 564 8787
South East Europe (Zagreb, Croatia)	385 1 34 91 927/838	385 1 34 91 840
Spain (Tres Cantos)	34 (0)91 806 1210	34 (0)91 806 1206
Sweden (Stockholm)	46 (0)8 619 4400	46 (0)8 619 4401
Switzerland (Rotkreuz)	41 (0)41 799 7777	41 (0)41 790 0676

Technical Support D-5

Region	Telephone Dial	Fax Dial		
The Netherlands (Nieuwerkerk a/d IJssel)	31 (0)180 392400	31 (0)180 392409 or 31 (0)180 392499		
United Kingdom (Warrington, Cheshire)	44 (0)1925 825650	44 (0)1925 282502		
All other countries not listed (Warrington, UK)	44 (0)1925 282481	44 (0)1925 282509		
Japan				
Japan (Hacchobori, Chuo-Ku, Tokyo)	8120 477392 (Toll free within Japan) or 81 3 5566 6230	8120 477120 (Toll free within Japan) or 81 3 5566 6507		
Latin America				
Caribbean countries, Mexico, and Central America	52 55 35 3610	52 55 66 2308		
Brazil	0 800 704 9004 or 55 11 5070 9654	55 11 5070 9694/95		
Argentina	800 666 0096	55 11 5070 9694/95		
Chile	1230 020 9102	55 11 5070 9694/95		
Uruguay	0004 055 654	55 11 5070 9694/95		

Through the Internet

To Reach We strongly encourage you to visit our Web site for answers to **Technical Support** frequently asked questions and for more information about our products. You can also order technical documents or an index of available documents and have them faxed or e-mailed to you through our site. The Applied Biosystems Web site address is

http://www.appliedbiosystems.com/techsupp

To submit technical questions from North America or Europe:

Step	Action
1	Access the Applied Biosystems Technical Support Web site.
2	Under the Troubleshooting heading, click Support Request Forms , then select the relevant support region for the product area of interest.
3	In the Personal Assistance form, enter the requested information and your question, then click Ask Us RIGHT NOW .

D-6 Technical Support

To submit technical questions from North America or Europe:

Step	Action
4	In the Customer Information form, enter the requested information and your question, then click Ask Us RIGHT NOW .
	Within 24 to 48 hours, you will receive an e-mail reply to your question from an Applied Biosystems technical expert.

To Obtain Free, 24-hour access to Applied Biosystems technical documents, Documents on including MSDSs, is available by fax or e-mail or by download from our Demand Web site.

To order documents	Then
by index number	 Access the Applied Biosystems Technical Support Web site at http://www.appliedbiosystems.com/techsupp
	 b. Click the Index link for the document type you want, then find the document you want and record the index number.
	 Use the index number when requesting documents following the procedures below.
by phone for fax delivery	a. From the U.S. or Canada, call 1-800-487-6809 , or from outside the U.S. and Canada, call 1-858-712-0317 .
	b. Follow the voice instructions to order the documents you want.
	Note There is a limit of five documents per request.

To order documents	Then
through the Internet for fax or e-mail delivery	 a. Access the Applied Biosystems Technical Support Web site at http://www.appliedbiosystems.com/techsupp
	 Under Resource Libraries, click the type of document you want.
	 Enter or select the requested information in the displayed form, then click Search.
	d. In the displayed search results, select a check box for the method of delivery for each document that matches your criteria, then click Deliver Selected Documents Now (or click the PDF icon for the document to download it immediately).
	 Fill in the information form (if you have not previously done so), then click Deliver Selected Documents Now to submit your order.
	Note There is a limit of five documents per request for fax deliver but no limit on the number of documents you can order for e-mail delivery.

Customer Training Information

-

To Obtain The Applied Biosystems Training web site at www.appliedbiosystems.com/techsupp/training.html provides course descriptions, schedules, and other training-related information.

D-8 Technical Support

Glossary

- calibrator A sample used as a basis for comparison with the other samples on the TaqMan Human Endogenous Control Plate.
- endogenous control RNA or DNA that is present in each experimental sample as isolated. By using an endogenous control as an active reference, you can normalize quantification of a messenger RNA (mRNA) target for differences in the amount of total RNA added to each reaction.
- exogenous control Characterized RNA or DNA spiked into each sample at a known concentration. An exogenous active reference is usually an *in vitro* construct that can be used as an internal positive control (IPC) to distinguish true target negatives from PCR inhibition. An exogenous reference can also be used to normalize for differences in efficiency of sample extraction or complementary DNA (cDNA) synthesis by reverse transcriptase.
- **reference** A passive or active signal used to normalize experimental results. Endogenous and exogenous controls are examples of active references. Active reference means the signal is generated as the result of PCR amplification. The active reference has its own set of primers and probe.
- \mathbf{R}_{n}^{+} The \mathbf{R}_{n} value of a reaction containing all components including the template.
- $\mathbf{R_n}^-$ The $\mathbf{R_n}$ value of an unreacted sample. This value can be obtained from the early cycles of a Real Time run (the cycles prior to a detectable increase in fluorescence) or from a reaction not containing template.
- $\Delta \mathbf{R_n}$ The difference between the $\mathbf{R_n^+}$ value and the $\mathbf{R_n^-}$ value. It reliably indicates the magnitude of the signal generated by the given set of PCR conditions.
- **threshold cycle** (C_T) The value is the cycle at which a statistically significant increase in ΔR_n is first detected. Calculated as the average standard deviation of R_n for the early cycles, multiplied by an adjustable factor.

P/N 4308134 Rev. D